
Use NETCONF Protocol to Define Network
Operations with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

Network Configuration Protocol (NETCONF) is a standard transport protocol that communicates with network
devices. NETCONF provides mechanisms to edit configuration data and retrieve operational data from network
devices. The configuration data represents the way interfaces, routing protocols and other network features
are provisioned. The operational data represents the interface statistics, memory utilization, errors, and so on.

NETCONF uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as
well as protocol messages. It uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. The client can be a script or application that runs as part of a
network manager. The server is a network device such as a router. NETCONF defines how to communicate
with the devices, but does not handle what data is exchanged between the client and the server.

To enable NETCONF, use the ssh server capability netconf-xml command to reach XML subsystem on
port 22.

NETCONF Session

A NETCONF session is the logical connection between a network configuration application (client) and a
network device (router). The configuration attributes can be changed during any authorized session; the effects
are visible in all sessions. NETCONF is connection-oriented, with SSH as the underlying transport. NETCONF
sessions are established with a "hello" message, where features and capabilities are announced. Sessions are
terminated using close or kill messages.

NETCONF Layers

NETCONF protocol can be partitioned into four layers:

Use NETCONF Protocol to Define Network Operations with Data Models
1



Figure 1: NETCONF Layers

• Content layer: includes configuration and notification data

• Operations layer: defines a set of base protocol operations invoked as RPCmethods with XML-encoded
parameters

• Messages layer: provides a simple, transport-independent framing mechanism for encoding RPCs and
notifications

• Secure Transport layer: provides a communication path between the client and the server

For more information about NETCONF, refer RFC 6241.

This article describes, with a use case to configure the local time on a router, how data models help in a faster
programmatic configuration as comapared to CLI.

• NETCONF Operations, on page 2
• Set Router Clock Using Data Model in a NETCONF Session, on page 6

NETCONF Operations
NETCONF defines one or more configuration datastores and allows configuration operations on the datastores.
A configuration datastore is a complete set of configuration data that is required to get a device from its initial
default state into a desired operational state. The configuration datastore does not include state data or executive
commands.

The base protocol includes the following NETCONF operations:

| +--get-config
| +--edit-Config
| +--merge
| +--replace
| +--create
| +--delete
| +--remove
| +--default-operations
| +--merge
| +--replace
| +--none
| +--get
| +--lock
| +--unLock
| +--close-session
| +--kill-session

Use NETCONF Protocol to Define Network Operations with Data Models
2

Use NETCONF Protocol to Define Network Operations with Data Models
NETCONF Operations



These NETCONF operations are described in the following table:

ExampleDescriptionNETCONF
Operation

Retrieve specific interface configuration details from
running configuration using filter option

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter>
<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg"\>
<interface-configuration>
<active>act</active>
<interface-name>TenGigE0/0/0/2/0</interface-name>
</interface-configuration>
</interface-configurations>
</filter>
</get-config>
</rpc>

Retrieves all or part of a specified
configuration from a named data
store

<get-config>

Retrieve all acl configuration and device state
information.

Request:
<get>
<filter>
<ipv4-acl-and-prefix-list
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ipv4-acl-oper"/>
</filter>
</get>

Retrieves running configuration
and device state information

<get>

Use NETCONF Protocol to Define Network Operations with Data Models
3

Use NETCONF Protocol to Define Network Operations with Data Models
NETCONF Operations



ExampleDescriptionNETCONF
Operation

Configure ACL configs using Merge operation

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target><candidate/></target>
<config
xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ipv4-acl-and-prefix-list
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ipv4-acl-cfg"
xc:operation=”merge”>

<accesses>
<access>
<access-list-name>aclv4-1</access-list-name>
<access-list-entries>
<access-list-entry>
<sequence-number>10</sequence-number>
<remark>GUEST</remark>
</access-list-entry>
<access-list-entry>
<sequence-number>20</sequence-number>
<grant>permit</grant>
<source-network>
<source-address>172.0.0.0</source-address>
<source-wild-card-bits>0.0.255.255</source-wild-card-bits>
</source-network>
</access-list-entry>
</access-list-entries>
</access>
</accesses>
</ipv4-acl-and-prefix-list>
</config>
</edit-config>
</rpc>

Commit:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>
</rpc>

Loads all or part of a specified
configuration to the specified
target configuration

<edit-config>

Lock the running configuration.
Request:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>
</lock>
</rpc>

Response :
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Allows the client to lock the
entire configuration datastore
system of a device

<lock>

Use NETCONF Protocol to Define Network Operations with Data Models
4

Use NETCONF Protocol to Define Network Operations with Data Models
NETCONF Operations



ExampleDescriptionNETCONF
Operation

Lock and unlock the running configuration from the same
session.
Request:
rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<unlock>
<target>
<running/>
</target>
</unlock>
</rpc>

Response -
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Releases a previously locked
configuration.

An <unlock> operation will not
succeed if either of the following
conditions is true:

• The specified lock is not
currently active.

• The session issuing the
<unlock> operation is not
the same session that
obtained the lock.

<Unlock>

Close a NETCONF session.
Request :
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<close-session/>
</rpc>

Response:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Closes the session. The server
releases any locks and resources
associated with the session and
closes any associated
connections.

<close-session>

Terminate a session if the ID is other session ID.
Request:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<kill-session>
<session-id>4</session-id>
</kill-session>
</rpc>

Response:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Terminates operations currently
in process, releases locks and
resources associated with the
session, and close any associated
connections.

<kill-session>

NETCONF Operation to Get Configuration

This example shows how a NETCONF <get-config> request works for CDP feature.

The client initiates a message to get the current configuration of CDP running on the router. The
router responds with the current CDP configuration.

Use NETCONF Protocol to Define Network Operations with Data Models
5

Use NETCONF Protocol to Define Network Operations with Data Models
NETCONF Operations



Netconf Response (Router to Client)Netconf Request (Client to Router)

<?xml version="1.0"?>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>
<cdp

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-cdp-cfg">

<timer>10</timer>
<enable>true</enable>
<log-adjacency></log-adjacency>
<hold-time>200</hold-time>
<advertise-v1-only></advertise-v1-only>
</cdp>

#22
</data>
</rpc-reply>

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<get-config>
<source><running/></source>
<filter>
<cdp
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-cdp-cfg"/>
</filter>
</get-config>
</rpc>

The <rpc> element in the request and response messages enclose a NETCONF request sent between
the client and the router. The message-id attribute in the <rpc> element is mandatory. This attribute
is a string chosen by the sender and encodes an integer. The receiver of the <rpc> element does not
decode or interpret this string but simply saves it to be used in the <rpc-reply> message. The sender
must ensure that the message-id value is normalized. When the client receives information from the
server, the <rpc-reply> message contains the same message-id.

Set Router Clock Using Data Model in a NETCONF Session
NETCONF is an XML-based protocol used over Secure Shell (SSH) transport to configure a network. The
client applications use this protocol to request information from the router, and make configuration changes
to the router.

The process for using data models involves:

• Obtain the data models.

• Establish a connection between the router and the client using NETCONF communication protocol.

• Manage the configuration of the router from the client using data models.

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide for Cisco NCS 5500 Series Routers.

Note

The following image shows the tasks involved in using data models.

Use NETCONF Protocol to Define Network Operations with Data Models
6

Use NETCONF Protocol to Define Network Operations with Data Models
Set Router Clock Using Data Model in a NETCONF Session

b-programmability-cg-ncs5500-71x_chapter2.pdf#nameddest=unique_9


Figure 2: Process for Using Data Models

In this section, you use native data models to configure the router clock and verify the clock state using a
NETCONF session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Use NETCONF Protocol to Define Network Operations with Data Models
7

Use NETCONF Protocol to Define Network Operations with Data Models
Set Router Clock Using Data Model in a NETCONF Session



Figure 3: Network Topology for gRPC session

You use Cisco IOS XR native models Cisco-IOS-XR-infra-clock-linux-cfg.yang and
Cisco-IOX-XR-shellutil-oper to programmatically configure the router clock. You can explore the structure
of the data model using YANG validator tools such as pyang.

Before you begin

Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information,
see Access the Data Models.

Configure Router Clock

Step 1 Explore the native configuration model for the system local time zone.

Example:

controller:netconf$ pyang --format tree Cisco-IOS-XR-infra-infra-clock-linux-cfg.yang
module: Cisco-IOS-XR-infra-infra-clock-linux-cfg

+--rw clock
+--rw time-zone!
+--rw time-zone-name string
+--rw area-name string

Step 2 Explore the native operational state model for the system time.

Example:

controller:netconf$ pyang --format tree Cisco-IOS-XR-shellutil-oper.yang
module: Cisco-IOS-XR-shellutil-oper

+--ro system-time
+--ro clock
| +--ro year? uint16
| +--ro month? uint8
| +--ro day? uint8

Use NETCONF Protocol to Define Network Operations with Data Models
8

Use NETCONF Protocol to Define Network Operations with Data Models
Configure Router Clock

https://github.com/mbj4668/pyang
b-programmability-cg-ncs5500-71x_chapter2.pdf#nameddest=unique_13


| +--ro hour? uint8
| +--ro minute? uint8
| +--ro second? uint8
| +--ro millisecond? uint16
| +--ro wday? uint16
| +--ro time-zone? string
| +--ro time-source? Time-source
+--ro uptime

+--ro host-name? string
+--ro uptime? uint32

Step 3 Retrieve the current time on router LER1.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper"/>
controller:netconf$ netconf get --filter xr-system-time-oper.xml
198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper">

<clock>
<year>2019</year>
<month>8</month>
<day>22</day>
<hour>17</hour>
<minute>30</minute>
<second>37</second>
<millisecond>690</millisecond>
<wday>1</wday>
<time-zone>UTC</time-zone>
<time-source>calendar</time-source>

</clock>
<uptime>

<host-name>ler1</host-name>
<uptime>851237</uptime>

</uptime>
</system-time>

Notice that the timezone UTC indicates that a local timezone is not set.

Step 4 Configure Pacific Standard Time (PST) as local time zone on LER1.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper"/>
controller:netconf$ get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper">
<clock>

<year>2019</year>
<month>8</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>

</clock>

Use NETCONF Protocol to Define Network Operations with Data Models
9

Use NETCONF Protocol to Define Network Operations with Data Models
Configure Router Clock



<uptime>
<host-name>ler1</host-name>
<uptime>852530</uptime>

</uptime>
</system-time>

View the Router Clock
Verify that the router clock is set to PST time zone.

controller:netconf$ more xr-system-time-oper.xml
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper"/>

controller:netconf$ netconf get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper">

<clock>
<year>2018</year>
<month>12</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>

</clock>
<uptime>

<host-name>ler1</host-name>
<uptime>852530</uptime>

</uptime>
</system-time>

In summary, router LER1, which had no local timezone configuration, is programmatically configured using
data models.

Use NETCONF Protocol to Define Network Operations with Data Models
10

Use NETCONF Protocol to Define Network Operations with Data Models
View the Router Clock


	Use NETCONF Protocol to Define Network Operations with Data Models
	NETCONF Operations
	Set Router Clock Using Data Model in a NETCONF Session
	Configure Router Clock
	View the Router Clock



