Use gRPC Protocol to Define Network Operations
with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automated mechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure using protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf.
The Protobuf binary data object in gRPC is transported over HTTP/2.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server. The structure of the data is defined by YANG models.

N

Note

TCP protocol.

All 64-bit IOS XR platforms support gRPC and TCP protocols. All 32-bit IOS XR platforms support only

Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and
define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent
to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:

syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {
rpc GetConfig(ConfigGetArgs) returns (stream ConfigGetReply) {};
rpc MergeConfig (ConfigArgs) returns (ConfigReply) {};

rpc DeleteConfig (ConfigArgs) returns (ConfigReply) {};

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |

rpc ReplaceConfig(ConfigArgs) returns (ConfigReply) {};
rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};
rpc GetOper (GetOperArgs) returns (stream GetOperReply) {};

rpc CommitReplace (CommitReplaceArgs) returns (CommitReplaceReply) {};
}
message ConfigGetArgs {

int64 ReqId = 1;

string yangpathijson = 2;

message ConfigGetReply {
int64 ResReqgld = 1;
string yangjson = 2;
string errors = 3;

message GetOperArgs {
int64 ReqId = 1;
string yangpathijson = 2;

message GetOperReply {
int64 ResReqId = 1;
2;

string yangjson =
string errors = 3;

}

message ConfigArgs {
int64 ReqId = 1;
string yangjson = 2;

message ConfigReply {
int64 ResReqId = 1;
string errors = 2;

message CliConfigArgs {
int64 ReqId = 1;
string cli = 2;

message CliConfigReply {
int64 ResReqld = 1;
string errors = 2;

message CommitReplaceArgs {
int64 ReqId = 1;
string cli = 2;
string yangjson = 3;

message CommitReplaceReply {
int64 ResReqgld = 1;
string errors = 2;

}
Example for gRPCExec configuration:

[l Use gRPC Protocol to Define Network Operations with Data Models

Use gRPC Protocol to Define Network Operations with Data Models

service gRPCExec ({
rpc ShowCmdTextOutput (ShowCmdArgs) returns(stream ShowCmdTextReply) {};
rpc ShowCmdJSONOutput (ShowCmdArgs) returns(stream ShowCmdJSONReply) {};
rpc ActionJSON (ActionJSONArgs) returns (stream ActionJSONReply) {};

message ShowCmdArgs {
int64 ReqId = 1;
string cli 2;

message ShowCmdTextReply {
int64 ResReqgld =1;
string output = 2;
string errors = 3;

message ActionJSONArgs {
int64 ReqId = 1;
string yangpathijson = 2;
}

message ActionJSONReply {
int64 ResReqld 1
string yangjson =
string errors = 3;

}

2;

Example for OpenConfiggRPC configuration:

service OpenConfiggRPC {
rpc SubscribeTelemetry (SubscribeRequest) returns (stream SubscribeResponse) {};
rpc UnSubscribeTelemetry (CancelSubscribeReq) returns (SubscribeResponse) {};
rpc GetModels (GetModelsInput) returns (GetModelsOutput) {};

message GetModelsInput {

uint64 requestId = 1;
string name = 2;
string namespace = 3;
string version = 4;

enum MODLE_REQUEST_ TYPE {
SUMMARY = 0;
DETAIL = 1;
}
MODLE_REQUEST TYPE requestType = 5;

message GetModelsOutput {

uint64 requestId = 1;
message ModelInfo {
string name =1;
string namespace = 2;
string version = 3;

GET_MODEL_TYPE modelType = 4;
string modelData = 5;
}
repeated ModelInfo models = 2;
OC_RPC_RESPONSE TYPE responseCode = 3;
string msg = 4;

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |
. gRPC Operations

This article describes, with a use case to configure interfaces on a router, how data models helps in a faster
programmatic and standards-based configuration of a network, as comapared to CLI.

* gRPC Operations, on page 4

* gRPC over UNIX Domain Sockets, on page 5

» gRPC Network Management Interface, on page 7

» gNMI Wildcard in Schema Path, on page 7

» gNMI Bundling of Telemetry Updates, on page 12

» OpenConfig Metadata for Configuration Annotations, on page 14

» gRPC Network Operations Interface , on page 16

* Configure Interfaces Using Data Models in a gRPC Session, on page 22

gRPC Operations

You can issue the following gRPC operations:

gRPC Operation Description

GetConfig Retrieves a configuration

GetModels Gets the supported Yang models on the router
MergeConfig Appends to an existing configuration
DeleteConfig Deletes a configuration

ReplaceConfig Modifies a part of an existing configuration
CommitReplace Replaces existing configuration with the new

configuration file provided

GetOper Gets operational data using JSON

CliConfig Invokes the CLI configuration
ShowCmdTextOutput Displays the output of show command
ShowCmdJSONOutput Displays the JSON output of show command
ActionJSON Displays the gRPC JSON action

gRPC Operation to Get Configuration
This example shows how a gRPC GetConfig request works for CDP feature.

The client initiates a message to get the current configuration of CDP running on the router. The
router responds with the current CDP configuration.

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models

gRPC over UNIX Domain Sockets .

gRPC Request (Client to Router)

gRPC Response (Router to Client)

rpc GetConfig
{
"Cisco-I0S-XR-cdp-cfg:cdp": [
"cdp": "running-configuration"
]
}

{
"Cisco-I0S-XR-cdp-cfg:cdp": {

"timer": 50,
"enable": true,
"log-adjacency": [
null

1,

"hold-time": 180,
"advertise-vl-only": [
null

1

}

gRPC over UNIX Domain Sockets

Table 1: Feature History Table

Feature Name

Release Information Description

domain sockets for Enhanced
Security and Control

gRPC Connections over UNIX Release 7.5.1

This feature allows local containers and scripts
on the router to establish gRPC connections
over UNIX domain sockets. These sockets
provide better inter-process communication
eliminating the need to manage passwords for
local communications. Configuring
communication over UNIX domain sockets
also gives you better control of permissions
and security because UNIX file permissions
come into force.

This feature introduces the grpc
local-connection command.

You can use local containers to establish gRPC connections via a TCP protocol where authentication using
username and password is mandatory. This functionality is extended to establish gRPC connections over
UNIX domain sockets, eliminating the need to manage password rotations for local communications.

When gRPC is configured on the router, the gRPC server starts and then registers services such as gRPC
Network Management Interface and gRPC Network Operations Interface . After all the gRPC server
registrations are complete, the listening socket is opened to listen to incoming gRPC connection requests.
Currently, a TCP listen socket is created with the IP address, VRF, or gRPC listening port. With this feature,
the gRPC server listens over UNIX domain sockets that must be accessible from within the container via a
local connection by default. With the UNIX socket enabled, the server listens on both TCP and UNIX sockets.
However, if disable the UNIX socket, the server listens only on the TCP socket. The socket file is located at

/misc/app_host/ems/grpc.sock directory.

The following process shows the configuration changes required to enable or disable gRPC over UNIX domain

sockets.

Use gRPC Protocol to Define Network Operations with Data Models [JJj

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/programmability/75x/b-programmability-cg-ncs5500-75x/m-grpc-session.html#Cisco_Task.dita_9b042157-1e36-4696-aaec-85f468528ba7
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/programmability/75x/b-programmability-cg-ncs5500-75x/m-grpc-session.html#Cisco_Task.dita_9b042157-1e36-4696-aaec-85f468528ba7

. gRPC over UNIX Domain Sockets

Step 1

Step 2

Configure the gRPC server.

Example:

Router (config) #grpc

Router (config-grpc) #local-connection
Router (config-grpc) #commit

Use gRPC Protocol to Define Network Operations with Data Models |

To disable the UNIX socket use the following command.

Router (config-grpc) #no local-connection

The gRPC server restarts after you enable or disable the UNIX socket. If you disable the socket, any active gRPC sessions
are dropped and the gRPC data store is reset.

The scale of gRPC requests remains the same and is split between the TCP and Unix socket connections. The maximum
session limit is 256, if you utilize the 256 sessions on Unix sockets, further connections on either TCP or UNIX sockets

is rejected.

Verify that the local-connection is successfully enabled.

Example:

Router#show grpc status
Thu Nov 25 16:51:30.382 UTC

*************************Show gRPC Status**********************

transport
access-family

TLS

trustpoint
listening-port
local-connection
max-request-per-user
max-request-total
max-streams
max-streams-per-user
vrf-socket-ns-path

min-client-keepalive-interval

grpc
tcp4
enabled

57400
enabled

10

128

32

32
global-vrf
300

A gRPC client must dial into the socket to send connection requests.

The following is an example of a Go client connecting to UNIX socket:

const sockAddr = "/misc/app host/ems/grpc.sock"

func UnixConnect (addr string, t time.Duration) (net.Conn, error) {

unix addr, err

net.ResolveUnixAddr ("unix", sockAddr)

conn, err := net.DialUnix("unix", nil, unix_ addr)

return conn, err

func main() {

opts = append (opts,
opts = append (opts,

opts = append (opts,
conn, err := grpc.Dial (sockAddr,

grpc.WithTimeout (time.Second*time.Duration (*operTimeout)))
grpc.WithDefaultCallOptions (grpc.MaxCallRecvMsgSize (math.MaxInt32)))

grpc.WithDialer (UnixConnect))

opts...)

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models
gRPC Network Management Interface .

gRPC Network Management Interface

gRPC Network Management Interface (gNMI) is a gRPC-based network management protocol used to modify,
install or delete configuration from network devices. It is also used to view operational data, control and
generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage
configurations and stream telemetry data from network devices.

The subscription in a gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.
gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gNMI Wildcard in Schema Path

Table 2: Feature History Table

Feature Name Release Information Description
Use gNMI Get Request With Release 7.5.2 You use a gRPC Network
Wildcard Key to Retrieve Data Management Interface (gNMI) cet

request with wildcard key to
retrieve the configuration and
operational data of all the elements
in the data model schema paths. In
carlier releases, you had to specify
the correct key to retrieve data. The
router returned a JSON error
message if the key wasn't specified
in a list node.

For more information about using
wildcard search in gNMI requests,
see the Github repository.

gNMI protocol supports wildcards to indicate all elements at a given subtree in the schema. These wildcards
are used for telemetry subscriptions or gNMI Get requests. The encoding of the path in gNMI uses a structured
format. This format consists of a set of elements such as the path name and keys. The keys are represented as
string values, regardless of their type within the schema that describes the data. gNMI supports the following
options to retrieve data using wildcard search:

» Single-level wildcard: The name of a path element is specified as an asterisk (*). The following sample
shows a wildcard as the key name. This operation returns the description for all interfaces on a device.

path {
elem {
name: "interfaces"

}

elem {

Use gRPC Protocol to Define Network Operations with Data Models [JJj

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md

Use gRPC Protocol to Define Network Operations with Data Models |
. gNMI Wildcard in Schema Path

name: "interface"
key {
key: "name"
value: "*"
}
}
elem {
name: “config"
}
elem {
name: "description"

}

» Multi-level wildcard: The name of the path element is specified as an ellipsis (...). The following
example shows a wildcard search that returns all fields with a description available under /interfaces
path.

path {
elem {
name: "interfaces"

}
elem {
name: "..."

}
elem {
name: "description"

Example: gNM I Get Request with Unique Path to a L eaf

The following is a sample Get request to fetch the operational state of GigabitEthernet0/0/0/0
interface in particular.

path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""
>
>
elem: <
name: "state"
>
>

type: OPERATIONAL
encoding: JSON_IETF

The following is a sample Get response:

notification: <
timestamp: 1597974202517298341
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models
gNMI Wildcard in Schema Path .

elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <

key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""

>
>
elem: <
name: "state"
>
>
val: <
json_ietf val: im-state-admin-down
>
>
>
error: <
>

Example: gNM| Get Request Without a Key Specified in the Schema Path

The following is a sample cet request to fetch the operational state of all interfaces.

path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
>
elem: <
name: "state"
>
>

type: OPERATIONAL
encoding: JSON_ IETF

The following is a sample Get response:

path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
>
elem: <
name: "state"
>
>

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |
. gNMI Wildcard in Schema Path

type: OPERATIONAL

encoding: JSON_ IETF
notification: <
timestamp: 1597974202517298341

update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <

key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""

>
>
elem: <
name: "state"
>
>
val: <
json_ietf val: im-state-admin-down
>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/1\""
>
>
elem: <
name: "state"
>
>
val: <
json_ietf val: im-state-admin-down
>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <

[l Use gRPC Protocol to Define Network Operations with Data Models

Use gRPC Protocol to Define Network Operations with Data Models

key: "interface-name"
value: "\"GigabitEthernet0/0/0/2\""

>
>
elem: <
name: "state"
>
>
val: <
json_ietf val: im-state-admin-down
>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"MgmtEthO/RP0/CPUQ/0\""
>
>
elem: <
name: "state"
>
>
val: <
json_ietf val: im-state-admin-down
>
>

gNMI Wildcard in Schema Path .

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |
. gNMI Bundling of Telemetry Updates

gNMI Bundling of Telemetry Updates

Table 3: Feature History Table

Feature Name Release Description
Information

gNMI Bundling Size Release 7.8.1 With gRPC Network Management Interface (gNMI) bundling,
Enhancement the router internally bundles multiple gNMI update messages
meant for the same client into a single gNMI Notification
message and sends it to the client over the interface.

You can now optimize the interface bandwidth utilization by
accommodating more gNMI updates in a single notification
message to the client. We have now increased the gNMI

bundling size from 32768 to 65536 bytes, and enabled gNMI
bundling size configuration through Cisco native data model.

Prior releases allowed only a maximum bundling size of
32768 bytes, and you could configure only through CLI.

The feature introduces new XPaths to the
Cisco—IOS—XR—telemetry—model—driven—cfg.yang(ﬁSCO
native data model to configure gNMI bundling size.

To view the specification of gNMI bundling, see Github
repository.

To send fewer number of bytes over the gNMI interface, multiple gNMI update messages pertained to the
same client are bundled and sent to the client to achieve optimized bandwidth utilization.

The router internally bundles multiple gNMI update messages in a single gNMI notification message of
gNMI subscribeResponse message. Cisco IOS XR software Release 7.8.1 supports gNMI bundling size up
to 65536 bytes.

Router bundles multiple instances of the same client. For example, a router bundles interfaces
MgmtEth0/RP0/CPU0/0, FourHundredGigE0/0/0/0, FourHundredGigE0/0/0/1, and so on, of the following
path.

® Cisco-I0S-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters

Router does not bundle messages of different client in a single gNMI notification message. For example,
® Cisco-I0S-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters
® Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/protocols

Data under the container of the client path cannot be split into different bundles.
The gNMI votification message contains a timestamp at which an event occurred or a sample is taken. The

bundling process assigns a single timestamp for all bundled update values. The notification timestamp is the
first message of the bundle.

[l Use gRPC Protocol to Define Network Operations with Data Models

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates

| Use gRPC Protocol to Define Network Operations with Data Models
Configure gNMI Bundling Size .

\)

Note * ON-CHANGE subscription mode does not support gNMI bundling.

* Router does not enforce bundling size in the following scenarios:

+ At the end of (N-1) message processing, if the notification message size is less than the configured
bundling size, router allows one extra instance which could result in exceeding the bundling size.

* Data of a single instance exceeding the bundling size.

* The XPath: network-instances/network-instance/afts does not support bundling.

Configure gNMI Bundling Size

gNMI bundling is disabled by default and the default bundling size is 32,768 bytes. gNMI bundling size ranges
from 1024 to 65536 bytes. Prior to Cisco IOS XR software Release 7.8.1 the range was 1024 to 32768 bytes.
You can enable gNMI bundling to all gNMI subscribe sessions and specify the bundling size.

Configuration Example

This example shows how to enable gNMI bundling and configure bundling size.

Router# configure

Router (config) # telemetry model-driven
Router (config-model-driven) # gnmi
Router (config-gnmi) # bundling

Router (config-gnmi-bdl) # size 2000
Router (config-gnmi-bdl) # commit

Running configuration

This example shows the running configuration of gNMI bundle.

Router# show running-config
telemetry model-driven
gnmi
bundling
size 2000
|
|
|

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |

. OpenConfig Metadata for Configuration Annotations

OpenConfig

Metadata for Configuration Annotations

Table 4: Feature History Table

Feature Name Release Description
OpenConfig Metadata for | Release 7.10.1 Introduced in this release on: NCS 5500 fixed port
Configuration Annotations routers; NCS 5700 fixed port routers; NCS 5500

modular routers (NCS 5500 line cards; NCS 5700
line cards [Mode: Compatibility; Native])

You can annotate the OpenConfig-metadata as
part of the OpenConfig edit-config request to the
Cisco I0S XR router and later fetch using the
OpenConfig get-config request or delete through
gNMI request only.

The set or cet operations can be performed
through gNMI only; not through Netconf RPCs.

In the Cisco IOS XR Software Release 7.10.1, the feature supports a specific RFC7952 based
OpenConfig-metadata annotation. Here, root level node contains the OpenConfig-metadata, which you
can set or delete through gNMI request only and can be read back while retrieving or verifying the device
configuration. Netconf RPC requests are not supported.

)

Note

The usage guidelines in this document provides the OpenConfig YANG support for a specific metadata
annotation based on RFC7952 requirements for configuration commits only.

This solution is intended for the requirements of the OpenConfig-metadata annotation use case only and not
intended to be changed for any other use beyond the scope of this document.

Following is an example for the item:

{

"@": {
"openconfig-metadata:config-metadata":

xyz" // xyz is base64 encoded string per RFC7951

encoding rules

}

}

// Rest of configurations

The OpenConfig-metadata annotation is persistent across system restart. The latest OpenConfig-metadata
annotation is preserved and it overwrites all the previous data. Also, the previous or old OpenConfig-metadata
annotations cannot be retrieved with any operation (including configuration rollback). If the commit action
fails, then the OpenConfig-metadata annotation is not updated. During startup failures resulting in removal
of running configurations, the OpenConfig-metadata annotation at the time of last commit shall persist.

Example: Set Request

The following is a sample set request for OpenConfig-metadata:

Request:

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models
OpenConfig Metadata for Configuration Annotations .

update: {
path: {
}
val: {

json_ietf val: "{\"openconfig-1lldp:1ldp\":{\"config\":{
\"enabled\":true, \"system-description\":\"test-replace\"}},
\"@\":{\"openconfig-metadata:protobuf-metadata\":
\"012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789\"}}"
}

Response:

response: <
path: <
>
op: UPDATE
>
message: <
>
timestamp: 1662150302538441219

Example: Get Request

The following is a sample cet request for OpenConfig-metadata:

Request:
path: {
elem: {
name: "@"
}
elem: {
name: "protobuf-metadata"

}
type: CONFIG
encoding: JSON_IETF

Response:

notification: <
timestamp: 1662869232324390815
update: <
path: <
origin: "openconfig"
elem: <
name: "@"
>
elem: <
name: "protobuf-metadata"
>
>
val: <
json ietf val: "\"0123456789012345678901234567890
12345678901234567890123456789012345678901234567890
1234567890123456789\""
>
>

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |
. gRPC Network Operations Interface

error: <

Verification

The OpenConfig-metadata annotations are stored persistently in the router and are opaque (not visible) to
the IOS XR routers. However, the show command displays the presence and size of the OpenConfig-metadata
annotation.

The following example displays the show command output:

Router#show cfgmgr commitdb

last-commit-metadata-len
[UINT32] 100000 (Ox186A0)

)

Note The show command displays only the presence and size of the OpenConfig-metadata annotation. If there
is no OpenConfig-metadata annotation stored in the persistent database, then the output of the show command
will not contain this entry.

gRPC Network Operations Interface

gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing
operational commands on network devices. These services are to be used in conjunction with gRPC network
management interface (gNMI) for all target state and operational state of a network. gNOI uses gRPC as the
transport protocol and the configuration is same as that of gRPC. For more information about gNOI, see the
Github repository.

gNOI RPCs

To send gNOI RPC requests, you need a client that implements the gNOI client interface for each RPC.

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gNOI OpenConfig
proto files are located in the Github repository.

Table 5: Feature History Table

Feature Name Release Information | Description

gNOI System Proto Release 7.8.1 You can now avail the services of cancelReboot
to terminate outstanding reboot request, and
KillProcess RPCs to restart the process on
device.

gNOI supports the following remote procedure calls (RPCs):

[l Use gRPC Protocol to Define Network Operations with Data Models

https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi

| Use gRPC Protocol to Define Network Operations with Data Models
gnoirees I

System RPCs

The RPCs are used to perform key operations at the system level such as upgrading the software, rebooting
the device, and troubleshooting the network. The system.proto file is available in the Github repository.

RPC Description
Reboot Reboots the target. The router supports the following reboot
options:

* COLD = 1; Shutdown and restart OS and all hardware
* POWERDOWN = 2; Halt and power down

* HALT = 3; Halt

* POWERUP = 7; Apply power

RebootStatus Returns the status of the target reboot.

SetPackage Places a software package including bootable images on the
target device.

Ping Pings the target device and streams the results of the ping
operation.
Traceroute Runs the traceroute command on the target device and streams

the result. The default hop count is 30.

Time Returns the current time on the target device.

SwitchControlProcessor Switches from the current route processor to the specified route
processor. If the target does not exist, the RPC returns an error
message.

CancelReboot Cancels any pending reboot request.

KillProcess Stops an OS process and optionally restarts it.

File RPCs

The RPCs are used to perform key operations at the file level such as reading the contents if a file and its
metadata. The file.proto file is available in the Github repository.

RPC Description

Get Reads and streams the contents of a file from the target device.
The RPC streams the file as sequential messages with 64 KB of
data.

Remove Removes the specified file from the target device. The RPC

returns an error if the file does not exist or permission is denied
to remove the file.

Stat Returns metadata about a file on the target device.

Use gRPC Protocol to Define Network Operations with Data Models [JJj

https://github.com/openconfig/gnoi/blob/main/system/system.proto
https://github.com/openconfig/gnoi/blob/main/file/file.proto

Use gRPC Protocol to Define Network Operations with Data Models |
Bl onoirees

RPC Description
Put Streams data into a file on the target device.
TransferToRemote Transfers the contents of a file from the target device to a

specified remote location. The response contains the hash of the
transferred data. The RPC returns an error if the file does not
exist, the file transfer fails or an error when reading the file. This
is a blocking call until the file transfer is complete.

Certificate Management (Cert) RPCs

The RPCs are used to perform operations on the certificate in the target device. The cert.protofile is available

in the Github repository.

RPC Description

Rotate Replaces an existing certificate on the target device by creating
anew CSR request and placing the new certificate on the target
device. If the process fails, the target rolls back to the original
certificate.

Install Installs a new certificate on the target by creating a new CSR
request and placing the new certificate on the target based on
the CSR.

GetCertificates Gets the certificates on the target.

RevokeCertificates Revokes specific certificates.

CanGenerateCSR Asks a target if the certificate can be generated.

Interface RPCs
The RPCs are used to perform operations on the interfaces. The interface.proto file is available in the Github
repository.

RPC Description

SetLoopbackMode Sets the loopback mode on an interface.

GetLoopbackMode Gets the loopback mode on an interface.

ClearInterfaceCounters Resets the counters for the specified interface.

Layer2 RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The layer 2.proto file is available in the Github repository.

Feature Name Description

ClearLLDPInterface Clears all the LLDP adjacencies on the specified interface.

[l Use gRPC Protocol to Define Network Operations with Data Models

https://github.com/openconfig/gnoi/blob/main/cert/cert.proto
https://github.com/openconfig/gnoi/blob/cc419f3696d3a6d3e1a3999b75c51231b4773ace/interface/interface.proto
https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto

| Use gRPC Protocol to Define Network Operations with Data Models

BGP RPCs

gnoirees I

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The bgp.proto file is available in the Github repository.

Feature Name

Description

ClearBGPNeighbor

Clears a BGP session.

Diagnostic (Diag) RPCs

The RPCs are used to perform diagnostic operations on the target device. You assign each bit error rate test
(BERT) operation a unique ID and use this ID to manage the BERT operations. The diag.proto file is available

in the Github repository.

Feature Name Description

StartBERT Starts BERT on a pair of connected ports between devices in
the network.

StopBERT Stops an already in-progress BERT on a set of ports.

GetBERTResult Gets the BERT results during the BERT or after the operation
is complete.

gNOI RPCs

The following examples show the representation of few gNOI RPCs:

Get RPC

Streams the contents of a file from the target.

RPC to 10.105.57.106:57900

RPC start time: 20:58:27.513638

RPC start time: 20:58:27.513668

remote file: "harddisk:/giso image repo/test.log"

RPC end time: 20:58:27.518413

contents: "GNOI \n\n"

hash {
method: MD5

hash: "D\002\375h\237\322\024\341\370\3619k\310\333\016\343"

}
Remove RPC

Remove the specified file from the target.

RPC to 10.105.57.106:57900

RPC start time: 21:07:57.089554
————————————————————— File Remove Request---------—---————-—-——-
remote file: "harddisk:/sample.txt"

Use gRPC Protocol to Define Network Operations with Data Models [JJj

https://github.com/openconfig/gnoi/blob/main/bgp/bgp.proto
https://github.com/openconfig/gnoi/blob/main/diag/diag.proto

Use gRPC Protocol to Define Network Operations with Data Models |
Bl onoirees

RPC end time: 21:09:27.796217
File removal harddisk:/sample.txt successful

Reboot RPC

Reloads a requested target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536

RPC start time: 21:12:49.811561
method: COLD

message: "Test Reboot"
subcomponents {

origin: "openconfig-platform"
elem {

name: "components"

}

elem {

name: "component"

key {

key: "name"
value: "O/RPO"

elem {

name: "state"

}

elem {

name: "location"

RPC end time: 21:12:50.023604
Set Package RPC

Places software package on the target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536

RPC start time: 15:33:34.378745

Sending SetPackage RPC

package {

filename: "harddisk:/giso image repo/<platform-version>-giso.iso"
activate: true

}

method: MD5

hash: "C\314\207\354\217\270=\021\341y\355\240\274\003\034\334"
RPC end time: 15:47:00.928361

Reboot Status RPC

Returns the status of reboot for the target.

RPC to 10.105.57.106:57900
RPC start time: 22:27:34.209473

subcomponents {
origin: "openconfig-platform"

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models
gnoirees I

elem {

name: "components"
}

elem {

name: "component"
key {

key: "name"
value: "O/RPO"
}

}

elem {

name: "state"

}

elem

name: "location"

RPC end time: 22:27:34.319618

Active : False

Wait : O

When : O

Reason : Test Reboot
Count : O

CancelReboot RPC

Cancels any outstanding reboot

Request

CancelRebootRequest
subcomponents {

origin: "openconfig-platform"
elem {

name: "components"

}

elem {

name: "component"

key {

key: "name"

value: "O0/RPO/CPUO"
}

}

elem {

name: "state"

}

elem {

name: "location"

CancelRebootResponse

(rhel7-22.24.10) -bash-4.2%

KillProcess RPC

Kills the executing process. Either a PID or process name must be specified, and a termination signal
must be specified.
KillProcessRequest

pid: 3451
signal: SIGNALiTERM

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |

. Configure Interfaces Using Data Models in a gRPC Session

KillProcessResponse
-bash-4.2$

Configure Interfaces Using Data Models in a gRPC Session

Google-defined remote procedure call () is an open-source RPC framework. gRPC supports IPv4 and IPv6
address families. The client applications use this protocol to request information from the router, and make
configuration changes to the router.

The process for using data models involves:

)

* Obtain the data models.
* Establish a connection between the router and the client using gRPC communication protocol.

» Manage the configuration of the router from the client using data models.

Note

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

In this section, you use native data models to configure loopback and ethernet interfaces on a router using a
gRPC session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper [P addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models

Figure 1: Network Topology for gRPC session

Configure Interfaces Using Data Models in a gRPC Session .

Controller Out-of-band network
i oocc
3
198.18.1.127/24
v
198.18.1.11/24 198.18.1.111/24 198.18.1.112/24 198.18.1.12/24
% g0/0/0/0 % go/0/0f2 % g0/0/0/0 %
172.16.1.0/31 172.16.2.4/31 172.16.2.0/31
LER1 LSR1 LSR2 LER2
lo0 lo0 100 loD
172.16.255.1/32 172.16.255.101/32 172.16.255.102/32 172.16.255.2/32
g0/
172.16.1.2/31 g0/0/0A .
=1
172.16.2.2/31 g

You use Cisco IOS XR native model cisco-10S-XR-ifmgr-cfg.yang to programmatically configure router

LERI.

Before you begin

* Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information

* Configure Transport Layer Security (TLS). Enabling gRPC protocol uses the default HTTP/2 transport
with no TLS. gRPC mandates AAA authentication and authorization for all gRPC requests. If TLS is

not configured, the

authentication credentials are transferred over the network unencrypted. Enabling

TLS ensures that the credentials are secure and encrypted. Non-TLS mode can only be used in secure

internal network.

Step 1 Enable gRPC Protocol

To configure network devices and view operational data, gRPC proptocol must be enabled on the server. In this example,

you enable gRPC protocol on LER1

Note Cisco IOS XR 64-bit pl

, the server.

atforms support gRPC protocol. The 32-bit platforms do not support gRPC protocol.

a) Enable gRPC over an HTTP/2 connection.

Example:

Router#configure
Router (config) #grpc

Router (config-grpc) #port <port-number>

The port number ranges from 57344 to 57999. If a port number is unavailable, an error is displayed.

b) Set the session parameters.

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |

. Configure Interfaces Using Data Models in a gRPC Session

Step 2

Example:
Router (config) #grpc {address-family | dscp | max-request-per-user | max-request-total | max-streams
|
max-streams-per-user | no-tls | tlsvl-disable | tls-cipher | tls-mutual | tls-trustpoint |
service-layer | vrf}
where:
* address-family: set the address family identifier type.
* dscp: set QoS marking DSCP on transmitted gRPC.
* max-request-per-user: set the maximum concurrent requests per user.

* max-request-total: set the maximum concurrent requests in total.

* max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription limit is 128
requests. The default is 32 requests.

* max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum subscription
limit is 128 requests. The default is 32 requests.

* no-t1s: disable transport layer security (TLS). The TLS is enabled by default
* tlsvl-disable: disable TLS version 1.0

* service-layer: enable the grpc service layer configuration.

This parameter is not supported in Cisco ASR 9000 Series Routers, Cisco NCS560 Series Routers, , and Cisco
NCS540 Series Routers.

* tls-cipher: enable the gRPC TLS cipher suites.
* t1s-mutual: set the mutual authentication.
* tls-trustpoint: configure trustpoint.

* server-vrf: enable server vrf.
After gRPC is enabled, use the YANG data models to manage network configurations.

Configure the interfaces.

In this example, you configure interfaces using Cisco IOS XR native model cisco-10S-XR-ifmgr-cfg.yang. You gain
an understanding about the various gRPC operations while you configure the interface. For the complete list of operations,
see gRPC Operations, on page 4. In this example, you merge configurations with merge-config RPC, retreive operational
statistics using get-oper RPC, and delete a configuration using delete-config RPC. You can explore the structure of

the data model using YANG validator tools such as pyang.

LERI1 is the gRPC server, and a command line utility grpcc is used as a client on the controller. This utility does not
support YANG and, therefore, does not validate the data model. The server, LER1, validates the data mode.

Note The OC interface maps all IP configurations for parent interface under a VLAN with index 0. Hence, do not
configure a sub interface with tag 0.
a) Explore the XR configuration model for interfaces and its [Pv4 augmentation.

Example:

controller:grpc$ pyang --format tree --tree-depth 3 Cisco-IOS-XR-ifmgr-cfg.yang
Cisco-I0S-XR-ipv4-io-cfg.yang

[l Use gRPC Protocol to Define Network Operations with Data Models

https://github.com/mbj4668/pyang

| Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session .

module: Cisco-IOS-XR-ifmgr-cfg

+--rw global-interface-configuration

| +--rw link-status? Link-status-enum

+--rw interface-configurations

+--rw interface-configuration* [active interface-name]

+--rw dampening
\
+--rw mtus
\
+--rw encapsulation
\
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string
+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ipv4-io-cfg:ipv4-network
\

+--rw ipv4-io-cfg:ipvé4-network-forwarding
b) Configure a loopbackO interface on LER1.

Example:

controller:grpc$ more xr-interfaces-lo0-cfg.json
{
"Cisco-IO0S-XR-ifmgr-cfg:interface-configurations":
{ "interface-configuration": [
{
"active": "act",
"interface-name": "LoopbackO",
"description": "LOCAL TERMINATION ADDRESS",
"interface-virtual": [
null
:I 4
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": ({
"addresses": {
"primary": {
"address": "172.16.255.1",
"netmask": "255.255.255.255"

¢) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server addr 198.18.1.11:57400 -json_in file xr-interfaces-giO-cfg.json
emsMergeConfig: Sending RegId 1

emsMergeConfig: Received RegId 1, Response '
L}

d) Configure the ethernet interface on LER1.

Example:

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |
. Configure Interfaces Using Data Models in a gRPC Session

controller:grpc$ more xr-interfaces-giO-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [

{

"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"description": "CONNECTS TO LSR1 (g0/0/0/0)",
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": ({
"addresses": {
"primary": {
"address": "172.16.1.0",

"netmask": "255.255.255.254"

e) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server addr 198.18.1.11:57400 -json_in file xr-interfaces-giO-cfg.json
emsMergeConfig: Sending Reqld 1

emsMergeConfig: Received RegId 1, Response '
T

f) Enable the ethernet interface GigabitEthernet 0/0/0/0 on LERI to bring up the interface. To do this, delete shutdown
configuration for the interface.

Example:
controller:grpc$ grpcc -username admin -password admin -oper delete-config

-server addr 198.18.1.11:57400 -yang path "$(< xr-interfaces-giO-shutdown-cfg.json)"
emsDeleteConfig: Sending ReqgId 1, yangJson {

"Cisco-I0S-XR-ifmgr-cfg:interface-configurations": ({
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [
null

emsDeleteConfig: Received RegId 1, Response ''

Step 3 Verify that the loopback interface and the ethernet interface on router LER1 are operational.
Example:
controller:grpc$ grpcc -username admin -password admin -oper get-oper
-server addr 198.18.1.11:57400 -oper yang path "$(< xr-interfaces-briefs-oper-filter.json)"

emsGetOper: Sending ReglId 1, yangPath {
"Cisco-I0S-XR-pfi-im-cmd-oper:interfaces": {

[l Use gRPC Protocol to Define Network Operations with Data Models

| Use gRPC Protocol to Define Network Operations with Data Models

}
{

"

interface-briefs": [
null
]

"Cisco-IOS-XR-pfi-im-cmd-oper:interfaces":
"interface-briefs": {

"

{

interface-brief": [

"interface-name": "GigabitEthernet0/0/0/0",

"interface": "GigabitEthernet0/0/0/0",
"type": "IFT GETHERNET",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 1000000

}I

"interface-name": "GigabitEthernet0/0/0/1",

"interface": "GigabitEthernet0/0/0/1",
"type": "IFT GETHERNET",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 1000000

}I

"interface-name": "LoopbackO",
"interface": "LoopbackO",

"type": "IFT_ LOOPBACK",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "loopback",
"encapsulation-type-string": "Loopback"
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 0

"interface-name": "MgmtEthO/RPO/CPU0/0"
"interface": "MgmtEthO0/RP0O/CPUO/O",
"type": "IFT ETHERNET",

"state": "im-state-up",

"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,

{

’

’

Configure Interfaces Using Data Models in a gRPC Session .

Use gRPC Protocol to Define Network Operations with Data Models [JJj

Use gRPC Protocol to Define Network Operations with Data Models |
. Configure Interfaces Using Data Models in a gRPC Session

"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000

"interface-name": "NullO",
"interface": "NullO",

"type": "IFT NULL",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "null",
"encapsulation-type-string": "Null",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 0

emsGetOper: Reqgld 1, byteRecv: 2325

In summary, router LER1, which had minimal configuration, is now programmatically configured using data models
with an ethernet interface and is assigned a loopback address. Both these interfaces are operational and ready for network
provisioning operations.

[l Use gRPC Protocol to Define Network Operations with Data Models

	Use gRPC Protocol to Define Network Operations with Data Models
	gRPC Operations
	gRPC over UNIX Domain Sockets
	gRPC Network Management Interface
	gNMI Wildcard in Schema Path
	gNMI Bundling of Telemetry Updates
	Configure gNMI Bundling Size

	OpenConfig Metadata for Configuration Annotations
	gRPC Network Operations Interface
	gNOI RPCs

	Configure Interfaces Using Data Models in a gRPC Session

