
Core Components of Policy-based Telemetry
Streaming

The core components used in streaming policy-based telemetry data are:

• Telemetry Policy File, on page 1
• Telemetry Encoder, on page 3
• Telemetry Receiver, on page 10

Telemetry Policy File
A telemetry policy file is defined by the user to specify the kind of telemetry data that is generated and pushed
to the receiver. The policy must be stored in a text file with a .policy extension. Multiple policy files can be
defined and installed in the /telemetry/policies/ folder in the router file system.

A policy file:

• Contains one or more collection groups; a collection group includes different types of data to be streamed
at different intervals

• Includes a period in seconds for each group

• Contains one or more paths for each group

• Includes metadata that contains version, description, and other details about the policy

Policy file syntax

The following example shows a sample policy file:

{
"Name": "NameOfPolicy",
"Metadata": {

"Version": 25,
"Description": "This is a sample policy to demonstrate the syntax",
"Comment": "This is the first draft",
"Identifier": "<data that may be sent by the encoder to the mgmt stn"

},
"CollectionGroups": {

"FirstGroup": {
"Period": 10,
"Paths": [

Core Components of Policy-based Telemetry Streaming
1



"RootOper.MemorySummary.Node",
"RootOper.RIB.VRF",
"..."

]
},
"SecondGroup": {

"Period": 300,
"Paths": [

"RootOper.Interfaces.Interface"
]

}
}
}

The syntax of the policy file includes:

• Name the name of the policy. In the previous example, the policy is stored in a file named
NameOfPolicy.policy. The name of the policy must match the filename (without the .policy extension).
It can contain uppercase alphabets, lower-case alphabets, and numbers. The policy name is case sensitive.

• Metadata information about the policy. The metadata can include the version number, date, description,
author, copyright information, and other details that identify the policy. The following fields have
significance in identifying the policy:

• Description is displayed in the show policies command.

• Version and Identifier are sent to the receiver as part of the message header of the telemetrymessages.

• CollectionGroups an encoder object that maps the group names to information about them. The name
of the collection group can contain uppercase alphabets, lowercase alphabets, and numbers. The group
name is case sensitive.

• Period the cadence for each collection group. The period specifies the frequency in seconds at which
data is queried and sent to the receiver. The value must be within the range of 5 and 86400 seconds.

• Paths one or more schema paths, allowed list entries or native YANG paths (for a container) for the data
to be streamed and sent to the receiver. For example,

Schema path:
RootOper.InfraStatistics.Interface(*).Latest.GenericCounters

YANG path:
/Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface=*/latest/generic-counters

Allowed list entry:
"RootOper.Interfaces.Interface(*)":
{

"IncludeFields": ["State"]
}

Schema Paths
A schema path is used to specify where the telemetry data is collected. A few paths are listed in the following
table for your reference:

Core Components of Policy-based Telemetry Streaming
2

Core Components of Policy-based Telemetry Streaming
Schema Paths



Table 1: Schema Paths

PathOperation

RootOper.Interfaces.Interface(*)Interface Operational data

RootOper.InfraStatistics.Interface(*).Latest.GenericCountersPacket/byte counters

RootOper.InfraStatistics.Interface(*).Latest.DataRatePacket/byte rates

RootOper.InfraStatistics.Interface(*).Latest.Protocol(['IPV4_UNICAST'])IPv4 packet/byte counters

• RootOper.MPLS_TE.Tunnels.TunnelAutoBandwidth
• RootOper.MPLS_TE.P2P_P2MPTunnel.TunnelHead
• RootOper.MPLS_TE.SignallingCounters.HeadSignallingCounters

MPLS stats

• RootOper.QOS.Interface(*).Input.Statistics
• RootOper.QOS.Interface(*).Output.Statistics

QOS Stats

RootOper.BGP.Instance({'InstanceName':
'default'}).InstanceActive.DefaultVRF.Neighbor([*])

BGP Data

RootOper.PlatformInventory.Rack(*).Attributes.BasicInfo
RootOper.PlatformInventory.Rack(*).Slot(*).Card(*).Sensor(*).Attributes.BasicInfo

Inventory data

Telemetry Encoder
The telemetry encoder encapsulates the generated data into the desired format and transmits to the receiver.

An encoder calls the streaming Telemetry API to:

• Specify policies to be explicitly defined

• Register all policies of interest

Telemetry supports two types of encoders:

• JavaScript Object Notation (JSON) encoder

This encoder is packaged with the IOS XR software and provides the default method of streaming
telemetry data. It can be configured by CLI and XML to register for specific policies. Configuration is
grouped into policy groups, with each policy group containing one or more policies and one or more
destinations. JSON encoding is supported over only TCP transport service.

JSON encoder supports two encoding formats:

• Restconf-style encoding is the default JSON encoding format.

• Embedded-keys encoding treats naming information in the path as keys.

• Google Protocol Buffers (GPB) encoder

This encoder provides an alternative encoding mechanism, streaming the data in GPB format over UDP
or TCP. It can be configured by CLI and XML and uses the same policy files as those of JSON.

Core Components of Policy-based Telemetry Streaming
3

Core Components of Policy-based Telemetry Streaming
Telemetry Encoder



Additionally, a GPB encoder requires metadata in the form of compiled .proto files to translate the data
into GPB format.

GPB encoder supports two encoding formats:

• Compact encoding stores data in a compact GPB structure that is specific to the policy that is
streamed. This format is available over both UDP and TCP transport services. A .proto file must
be generated for each path in the policy file to be used by the receiver to decode the resulting data.

• Key-value encoding stores data in a generic key-value format using a single .proto file. The
encoding is self-describing as the keys are contained in the message. This format is available over
TCP transport service. A .proto file is not required for each policy file because the receiver can
interpret the data.

TCP Header
Streaming data over a TCP connection either with a JSON or a GPB encoder and having it optionally
compressed by zlib ensures that the stream is flushed at the end of each batch of data. This helps the receiver
to decompress the data received. If data is compressed using zlib, the compression is done at the policy group
level. The compressor resets when a new connection is established from the receiver because the decompressor
at the receiver has an empty initial state.

Header of each TCP message:

MessageLengthFlagsType

Variable4 bytes4 bytes

• default - Use 0x0
value to set no flags.

• zlib compression -
Use 0x1 value to set
zlib compression on
the message.

4 bytes

where:

• The Type is encoded as a big-endian value.

• The Length (in bytes) is encoded as a big-endian value.

• The flags indicates modifiers (such as compression) in big-endian format.

• The message contains the streamed data in either JSON or GPB object.

Type of messages:

ValueLengthNameType

No value0Reset Compressor1

JSON message (any format)VariableJSON Message2

GPB message in compact formatVariableGPB compact3

Core Components of Policy-based Telemetry Streaming
4

Core Components of Policy-based Telemetry Streaming
TCP Header



ValueLengthNameType

GPB message in key-value formatVariableGPB key-value4

JSON Message Format
JSON messages are sent over TCP and use the header message described in TCP Header, on page 4.

The message consists of the following JSON objects:

{
"Policy": "<name-of-policy>",
"Version": "<policy-version>",
"Identifier": "<data from policy file>"
"CollectionID": <id>,
"Path": <Policy Path>,
"CollectionStartTime": <timestamp>,
"Data": { … object as above … },
"CollectionEndTime": <timestamp>,
}

where:

• Policy, Version and Identifier are specified in the policy file.

• CollectionID is an integer that allows messages to be grouped together if data for a single path is split
over multiple messages.

• Path is the base path of the corresponding data as specified in the policy file.

• CollectionStartTime and CollectionEndTime are the timestamps that indicate when the data was
collected

The JSON message reflects the hierarchy of the router's data model. The hierarchy consists of:

• containers: a container has nodes that can be of different types.

• tables: a table also contains nodes, but the number of child nodes may vary, and they must be of the same
type.

• leaf node: a leaf contains a data value, such as integer or string.

The schema objects are mapped to JSON are in this manner:

• Each container maps to a JSON object. The keys are strings that represent the schema names of the nodes;
the values represent the values of the nodes.

• JSON objects are also used to represent tables. In this case, the keys are based on naming information
that is converted to string format. Two options are provided for encoding the naming information:

• The default is restconf-style encoding, where naming parameters are contained within the child
node to which it refers.

• The embedded-keys option uses the naming information as keys in a JSON dictionary, with the
corresponding child node forming the value.

• Leaf data types are mapped in this manner:

Core Components of Policy-based Telemetry Streaming
5

Core Components of Policy-based Telemetry Streaming
JSON Message Format



Simple strings, integers, and booleans are mapped directly.•

• Enumeration values are stored as the string representation of the value.

• Other simple data types, such as IP addresses, are mapped as strings.

Example: Rest-conf Encoding

For example, consider the path -
Interfaces(*).Counters.Protocols(“IPv4”)

This has two naming parameters - the interface name and the protocol name - and represents a container
holding leaf nodes which are packet and byte counters. This would be represented as follows:
{
"Interfaces": [
{
"Name": "GigabitEthernet0/0/0/1"
"Counters": {
"Protocols": [
{
"ProtoName": "IPv4",
"CollectionTime": 12345678,
"InputPkts": 100,
"InputBytes": 200,

}
]

}
},{
"Name": "GigabitEthernet0/0/0/2"
"Counters": {
"Protocols": [
{
"ProtoName": "IPv4",
"CollectionTime": 12345678,
"InputPkts": 400,
"InputBytes": 500,

}
]

}
}

]
}

A naming parameter with multiple keys, for example Foo.Destination(IPAddress=1.1.1.1, Port=2000) would
be represented as follows:
{
"Foo":
{
"Destination": [
{
"IPAddress": 1.1.1.1,
"Port": 2000,
"CollectionTime": 12345678,
"Leaf1": 100,

}
]

}
}

Core Components of Policy-based Telemetry Streaming
6

Core Components of Policy-based Telemetry Streaming
JSON Message Format



Example: Embedded Keys Encoding

The embedded-keys encoding treats naming information in the path as keys in the JSON dictionary. The key
name information is lost and there are extra levels in the hierarchy but it is clearer which data constitutes the
key which may aid collectors when parsing it. This option is provided primarily for backwards-compatibility
with 6.0.
{
"Interfaces": {

"GigabitEthernet0/0/0/1": {
"Counters": {
"Protocols": {
"IPv4": {
"CollectionTime": 12345678,
"InputPkts": 100,
"InputBytes": 200,

}
}

}
},
"GigabitEthernet0/0/0/2": {
"Counters": {
"Protocols": {
"IPv4": {
"CollectionTime": 12345678,
"InputPkts": 400,
"InputBytes": 500,

}
}

}
}

}
}

}

A naming parameter with multiple keys, for example Foo.Destination(IPAddress=1.1.1.1, Port=2000), would
be represented by nesting each key in order:
{
"Foo":
{
"Destination": {

1.1.1.1: {
2000: {
Leaf1": 100,

}
}

}
]

}
}

GPB Message Format
The output of the GPB encoder consists entirely of GPBs and allows multiple tables in a single packet for
scalability.

GPB (Google Protocol Buffer) encoder requires metadata in the form of compiled .proto files. A .proto file
describes the GPB message format, which is used to stream data.

For TCP, the message body is either a Telemetry message or a TelemetryHeader message, depending on
which of the following encoding types is configured:

Core Components of Policy-based Telemetry Streaming
7

Core Components of Policy-based Telemetry Streaming
GPB Message Format



• Compact GPB format stores data in a compressed and non-self-describing format. A .proto file must
be generated for each path in the policy file to be used by the receiver to decode the resulting data.

• Key-valueGPB format uses a single .proto file to encode data in a self-describing format. This encoding
does not require a .proto file for each path. The data on the wire is much larger because key names are
included.

In the following example, the policy group, alpha uses the default configuration of compact encoding and
UDP transport. The policy group, beta uses compressed TCP and key-value encoding. The policy group,
gamma uses compact encoding over uncompressed TCP.
telemetry policy-driven encoder gpb
policy group alpha
policy foo
destination ipv4 192.168.1.1 port 1234
destination ipv4 10.0.0.1 port 9876

policy group beta
policy bar
policy whizz
destination ipv4 10.20.30.40 port 3333
transport tcp
compression zlib

policy group gamma
policy bang
destination ipv4 11.1.1.1 port 4444
transport tcp
encoding-format gpb-compact

Compact GPB Format

The compact GPB format is intended for streaming large volumes of data at frequent intervals. The format
minimizes the size of the message on the wire. Multiple tables can be sent in in a single packet for scalability.

The tables can be split over multiple packets but fragmenting a row is not supported. If a row in the table is
too large to fit in a single UDP frame, it cannot be streamed. Instead either switch to TCP, increase the MTU,
or modify the .proto file.

Note

The following .proto file shows the header, which is common to all packets sent by the encoder:
message TelemetryHeader {
optional uint32 encoding = 1

optional string policy_name = 2;
optional string version = 3;
optional string identifier = 4;

optional uint64 start_time = 5;
optional uint64 end_time = 6;

repeated TelemetryTable tables = 7;
}

message TelemetryTable {
optional string policy_path = 1;
repeated bytes row = 2;
}

where:

Core Components of Policy-based Telemetry Streaming
8

Core Components of Policy-based Telemetry Streaming
GPB Message Format



• encoding is used by receivers to verify that the packet is valid.

• policy name, version and identifier are metadata taken from the policy file.

• start time and end time indicate the duration when the data is collected.

• tables is a list of tables within the packet. This format indicates that it is possible to receive results for
multiple schema paths in a single packet.

• For each table:

• policy path is the schema path.

• row is one or more byte arrays that represents an encoded GPB.

Key-value GPB Format

The self-describing key-value GPB format uses a generic .proto file. This file encodes data as a sequence of
key-value pairs. The field names are included in the output for the receiver to interpret the data.

The following .proto file shows the field containing the key-value pairs:
message Telemetry {
uint64 collection_id = 1;
string base_path = 2;
string subscription_identifier = 3;
string model_version = 4;
uint64 collection_start_time = 5;
uint64 msg_timestamp = 6;
repeated TelemetryField fields = 14;
uint64 collection_end_time = 15;

}

message TelemetryField {
uint64 timestamp = 1;
string name = 2;
bool augment_data = 3;
oneof value_by_type {
bytes bytes_value = 4;
string string_value = 5;
bool bool_value = 6;
uint32 uint32_value = 7;
uint64 uint64_value = 8;
sint32 sint32_value = 9;
sint64 sint64_value = 10;
double double_value = 11;
float float_value = 12;

}
repeated TelemetryField fields = 15;

}

where:

• collection_id, base_path, collection_start_time and collection_end_time provide streaming details.

• subscription_identifier is a fixed value for cadence-driven telemetry. This is used to distinguish from
event-driven data.

• model_version contains a string used for the version of the data model, as applicable.

Core Components of Policy-based Telemetry Streaming
9

Core Components of Policy-based Telemetry Streaming
GPB Message Format



Telemetry Receiver
A telemetry receiver is used as a destination to store streamed data.

A sample receiver that handles both JSON and GPB encodings is available at https://github.com/cisco/
bigmuddy-network-telemetry-collector.

A copy of the cisco.proto file is required to compile code for a GPB receiver. The cisco.proto file is
available at http://github.com/cisco/logstash-codec-bigmuddy-network-telemetry-gpb/tree/master/resources/
xr6.0.0.

If you are building your own collector, use the standard protoc compiler. For example, for the GPB compact
encoding:
protoc --python_out . -I=/sw/packages/protoc/current/google/include/:. generic_counters.proto
ipv4_counters.proto

where:

• --python_out <out_dir> specifies the location of the resulting generated files. These files are of the form
<name>_pb2.py.

• -I <import_path> specifies the path to look for imports. This must include the location of
descriptor.proto from Google. (in /sw/packages) and cisco.proto and the .proto files that are
compiled.

All files shown in the above example are located in the local directory.

Core Components of Policy-based Telemetry Streaming
10

Core Components of Policy-based Telemetry Streaming
Telemetry Receiver

https://github.com/cisco/bigmuddy-network-telemetry-collector
https://github.com/cisco/bigmuddy-network-telemetry-collector
http://github.com/cisco/logstash-codec-bigmuddy-network-telemetry-gpb/tree/master/resources/xr6.0.0
http://github.com/cisco/logstash-codec-bigmuddy-network-telemetry-gpb/tree/master/resources/xr6.0.0

	Core Components of Policy-based Telemetry Streaming
	Telemetry Policy File
	Schema Paths

	Telemetry Encoder
	TCP Header
	JSON Message Format
	GPB Message Format

	Telemetry Receiver


