CONTENTS

PREFACE
Preface vii
Changes to This Document vii
Obtaining Documentation and Submitting a Service Request vii

CHAPTER 1
New and Changed Feature Information 1
New and Changed System Setup Features 1

CHAPTER 2
Cisco NCS 5000 Series Product Overview 3
Cisco NCS 5000 Series Product Overview 4
Command Modes 5

CHAPTER 3
Bring-up the Router 7
Boot the Router 7
Setup Root User Credentials 8
Access the System Admin Console 10
Configure the Management Port 11
Perform Clock Synchronization with NTP Server 12

CHAPTER 4
Perform Preliminary Checks 15
Verify Software Version 15
Verify Status of Hardware Modules 16
Verify Firmware Version 16
Verify Interface Status 18

CHAPTER 5
Create User Profiles and Assign Privileges 21
Create a User Profile 22
Preface

This Preface contains these sections:

- Changes to This Document, on page vii
- Obtaining Documentation and Submitting a Service Request, on page vii

Changes to This Document

This table lists the technical changes made to this document since it was first released.

<table>
<thead>
<tr>
<th>Date</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2019</td>
<td>Initial release of this document</td>
</tr>
</tbody>
</table>

Obtaining Documentation and Submitting a Service Request

Subscribe to What's New in Cisco Product Documentation, which lists all new and revised Cisco technical documentation as an RSS feed and delivers content directly to your desktop using a reader application. The RSS feeds are a free service.
New and Changed Feature Information

This table summarizes the new and changed feature information for the System Setup and Software Installation Guide for Cisco NCS 5000 Series Routers, and tells you where they are documented.

- New and Changed System Setup Features, on page 1

New and Changed System Setup Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace Installed Files with Golden ISO</td>
<td>The currently active software version is replaced with the full package including the image and SMUs from the newly added GISO.</td>
<td>Release 6.5.1</td>
<td>Customize installation using Golden ISO chapter Install Replace with Golden ISO, on page 61</td>
</tr>
<tr>
<td>Replace <code>install update</code> command with <code>install source</code> command</td>
<td>The <code>install update</code> command is not supported. This command is replaced with a new <code>install source</code> command.</td>
<td>Release 6.5.2</td>
<td>Manage Automatic Dependancy chapter Manage Automatic Dependency, on page 49</td>
</tr>
</tbody>
</table>
New and Changed System Setup Features
Cisco NCS 5000 Series Product Overview

Cisco NCS 5001 Overview

Cisco NCS 5001 is a dense 10/100 Gigabit Ethernet Router in 1 RU form factor. It is designed for service provider access and aggregation network. The Cisco NCS 5001 runs the industry-leading Cisco IOS XR Software operating system, with robust features and functions such as application hosting, machine to machine interface, telemetry, and flexible package delivery.

NCS 5001 contains the following ports:

- 40 x 10G SFP+ Ports:
 - 16 x Regular 10G SFP+ Ports
 - 24 x DWDM & ZR Capable 10G SFP+ Ports
- 4 x 100G QSFP28 Ports

Features

The Cisco NCS 5001 router has the following features:

- 10Gbps bandwidth for each of the 40 fixed SFP+ ports
- Four QSPF ports capable of providing 100Gbps bandwidth
- Two 1+1 redundant, hot-swappable power supplies, which provide port side intake or exhaust for cooling
- Two N+1 redundant, hot-swappable fan modules, which provide port side intake or exhaust for cooling
- A management console and USB interface on the fan side of the router

Cisco NCS 5002 Overview

Cisco NCS 5002 is a dense 10/100 Gigabit Ethernet Router in 2RU form factor. It is designed for service provider access and aggregation network. The Cisco NCS 5002 runs the industry-leading Cisco IOS XR Software operating system, with robust features and functions such as application hosting, machine to machine interface, telemetry, and flexible package delivery.

NCS 5002 contains the following ports:

- 80 x 10G SFP+ Ports:
 - 40 x Regular 10G SFP+ Ports
• 40 x DWDM & ZR Capable 10G SFP+ Ports

• 4 x 100G QSFP28 Ports

Features
The Cisco NCS 5002 router has the following features:
• 10Gbps bandwidth for each of the 80 fixed SFP+ ports
• Four QSPF ports capable of providing 100Gbps bandwidth
• Two 1+1 redundant, hot-swappable power supplies, which provide port side intake or exhaust for cooling
• Two N+1 redundant, hot-swappable fan modules, which provide port side intake or exhaust for cooling
• A management console and USB interface on the fan side of the router

• Cisco NCS 5000 Series Product Overview, on page 4
• Command Modes, on page 5

Cisco NCS 5000 Series Product Overview

Cisco NCS 5001 Overview
Cisco NCS 5001 is a dense 10/100 Gigabit Ethernet Router in 1 RU form factor. It is designed for service provider access and aggregation network. The Cisco NCS 5001 runs the industry-leading Cisco IOS XR Software operating system, with robust features and functions such as application hosting, machine to machine interface, telemetry, and flexible package delivery.

NCS 5001 contains the following ports:
• 40 x 10G SFP+ Ports:
 • 16 x Regular 10G SFP+ Ports
 • 24 x DWDM & ZR Capable 10G SFP+ Ports

• 4 x 100G QSFP28 Ports

Features
The Cisco NCS 5001 router has the following features:
• 10Gbps bandwidth for each of the 40 fixed SFP+ ports
• Four QSPF ports capable of providing 100Gbps bandwidth
• Two 1+1 redundant, hot-swappable power supplies, which provide port side intake or exhaust for cooling
• Two N+1 redundant, hot-swappable fan modules, which provide port side intake or exhaust for cooling
• A management console and USB interface on the fan side of the router
Cisco NCS 5002 Overview

Cisco NCS 5002 is a dense 10/100 Gigabit Ethernet Router in 2RU form factor. It is designed for service provider access and aggregation network. The Cisco NCS 5002 runs the industry-leading Cisco IOS XR Software operating system, with robust features and functions such as application hosting, machine to machine interface, telemetry, and flexible package delivery.

NCS 5002 contains the following ports:

- 80 x 10G SFP+ Ports:
 - 40 x Regular 10G SFP+ Ports
 - 40 x DWDM & ZR Capable 10G SFP+ Ports
- 4 x 100G QSFP28 Ports

Features

The Cisco NCS 5002 router has the following features:

- 10Gbps bandwidth for each of the 80 fixed SFP+ ports
- Four QSPF ports capable of providing 100Gbps bandwidth
- Two 1+1 redundant, hot-swappable power supplies, which provide port side intake or exhaust for cooling
- Two N+1 redundant, hot-swappable fan modules, which provide port side intake or exhaust for cooling
- A management console and USB interface on the fan side of the router

Command Modes

The router runs on virtualized Cisco IOS XR software. Therefore, the CLI commands must be executed on virtual machines, namely the XR LXC and the System Admin LXC. This table lists the command modes for the LXC.

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR EXEC mode (XR LXC execution mode)</td>
<td>Run commands on the XR LXC to display the operational state of the router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router#</td>
</tr>
<tr>
<td>XR Config mode (XR LXC configuration mode)</td>
<td>Perform security, routing, and other XR feature configurations on the XR LXC.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router#configure</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)#</td>
</tr>
</tbody>
</table>
Command Modes

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Description</th>
</tr>
</thead>
</table>
| System Admin EXEC mode (System Admin LXC execution mode) | Run commands on the System Admin LXC to display and monitor the operational state of the router hardware. The chassis or individual hardware modules can be reloading from this mode.
Example:
RP/0/RP0/CPU0:router#admin
sysadmin-vm:0_RP0# |
| System Admin Config mode (System Admin LXC configuration mode) | Run configuration commands on the System Admin LXC to manage and operate the hardware modules of the entire chassis.
Example:
RP/0/RP0/CPU0:router#admin
sysadmin-vm:0_RP0#config
sysadmin-vm:0_RP0(config)# |
CHAPTER 3

Bring-up the Router

After installing the hardware, boot the router. Connect to the XR console port and power on the router. The router completes the boot process using the pre-installed operating system (OS) image. If no image is available within the router, the router can be booted using iPXE boot or an external bootable USB drive.

After booting is complete, create the root username and password, and then use it to log on to the XR console and get the router prompt. The first user created in XR console is synchronized to the System Admin console. From the XR console, access the System Admin console to configure system administration settings.

- Boot the Router, on page 7
- Setup Root User Credentials, on page 8
- Access the System Admin Console, on page 10
- Configure the Management Port, on page 11
- Perform Clock Synchronization with NTP Server, on page 12

Boot the Router

Use the console port on the Route Processor (RP) to connect to a new router. The console port connect to the XR console by default. If required, subsequent connections can be established through the management port, after it is configured.

Step 1
Connect a terminal to the console port of the RP.

Step 2
Start the terminal emulation program on your workstation.

For NCS5001 and 5002 systems, the baud rate is 115200 bps, no parity, 2 stop bits and 8 data bits. For NCS5011 system, the console settings are baud rate 9600 bps, no parity, 2 stop bits and 8 data bits.

Step 3
Power on the router.

Connect the power chord to Power Entry Module (PEM) and the router boots up. The boot process details is displayed on the console screen of the terminal emulation program.

Step 4
Press Enter.

The boot process is complete when the system prompts to enter the root-system username. If the prompt does not appear, wait for a while to give the router more time to complete the initial boot procedure, then press Enter.
Important If the boot process fails, it may be because the pre-installed image on the router is corrupt. In this case, the router can be booted using an external bootable USB drive.

What to do next
Specify the root username and password.

Setup Root User Credentials

When the router boots for the first time, the system prompts the user to configure root credentials (username and password). These credentials are configured as the root user on the XR (root-lr) console, the System Admin LXC (root-system), and as disaster-recovery credentials.

Before you begin
The boot process must be complete. For details on how to initiate the boot process, see Bring-up the Router, on page 7.

SUMMARY STEPS

1. Enter root-system username: username
2. Enter secret: password
3. Enter secret again: password
4. Username: username
5. Password: password
6. (Optional) show run username

DETAILED STEPS

Step 1 Enter root-system username: username
Enter the username of the root user. The character limit is 1023. In this example, the name of the root user is "root".

Important The specified username is mapped to the "root-lr" group on the XR console. It is also mapped as the "root-system" user on the System Admin console.

When starting the router for the first time, or after a re-image, the router does not have any user configuration. In such cases, the router prompts you to specify the "root-system username". However, if the router has been configured previously, the router prompts you to enter the "username", as described in Step 4.

Step 2 Enter secret: password
Enter the password for the root user. The character range of the password is between 6 and 253 characters. The password you type is not displayed on the CLI for security reasons.

The root username and password must be safeguarded as it has the superuser privileges. It is used to access the complete router configuration.

Step 3 Enter secret again: password
Re-enter the password for the root user. The password is not accepted if it does not match the password entered in the previous step. The password you type is not displayed on the CLI for security reasons.

Step 4
Username: *username*
Enter the root-system username to login to the XR LXC console.

Step 5
Password: *password*
Enter the password of the root user. The correct password displays the router prompt. You are now logged into the XR LXC console.

Step 6
(Optional) **show run username**
Displays user details.

```plaintext
username root  
group root-lr  
group cisco-support  
secret 5 $1$NBg7$fhS1inKZ2VzqHv775UE/
```

Example

The NCS 5000 Routers running IOS-XR 64-bit OS can operate as a standalone device, ZTP controlled device or as an nV satellite.

When the router ships from the factory, the mode in which the router needs to operate is not predefined. Therefore, the software scans for a few events based on the usage, post-rack mounting, and power up, before deciding on the mode of operation. Now, there is a time window when the software is making this decision. During this duration, the router intended to operate in standalone or ZTP modes, could be compromised to fall into the nV satellite mode. Thereby, opening up privileged control of the router to a hostile external entity.

Ensure that the external entity has access to the same network as the auto-play ports (highest 10G and lowest 100G ports) in order to gain control as stated above. Once compromised, the router could become inaccessible to legitimate users but can be recovered by physical disconnection to the network and reset to factory defaults.

For deployments within insecure or public networks, it is strongly recommended to explicitly change the operating mode of NCS 5000 Router to the standalone mode through a utility option (using the “set sdac system-mode standalone” command in Exec mode). This will be a one-time staging step for the first boot after unboxing, or after factory reset of the router before it is connected to an insecure network. Especially, if the links connecting to the NCS 5000 Router on the lowest 100G and the highest 10G ports are not known to be secure.

What to do next

- Configure routing functions from the XR console.
• Configure system administration settings from the System Admin prompt. The System Admin prompt is displayed on accessing the System Admin console. For details on how to get the System Admin prompt, see Access the System Admin Console, on page 10.

Access the System Admin Console

You must login to the System Admin console through the XR console to perform all system administration and hardware management setups.

SUMMARY STEPS

1. Login to the XR console as the root user.
2. (Optional) Disable the login banner on console port when accessing the System Admin mode from XR mode.
3. admin
4. (Optional) exit

DETAILED STEPS

Step 1 Login to the XR console as the root user.

Step 2 (Optional) Disable the login banner on console port when accessing the System Admin mode from XR mode.

a) configure
b) service sysadmin-login-banner disable

Example:

RP/0/RP0/CPU0:router(config)#service sysadmin-login-banner disable

Disable the login banner on console port in System Admin mode.

c) commit
d) end

Step 3 admin

Example:

The login banner is enabled by default. The following example shows the command output with the login banner enabled:

RP/0/RP0/CPU0:router#admin

Mon May 22 06:57:29.350 UTC

root connected from 127.0.0.1 using console on host
sysadmin-vm:0_RP0# exit
Mon May 22 06:57:32.360 UTC

The following example shows the command output with the login banner disabled:

RP/0/RP0/CPU0:router#admin
Thu Mar 01:07:14.509 UTC
sysadmin-vm:0_RP0# exit

Step 4 (Optional) exit
Configure the Management Port

To use the Management port for system management and remote communication, you must configure an IP address and a subnet mask for the management ethernet interface. To communicate with devices on other networks (such as remote management stations or TFTP servers), you need to configure a default (static) route for the router.

Before you begin

- Consult your network administrator or system planner to procure IP addresses and a subnet mask for the management interface.
- Physical port Ethernet 0 and Ethernet 1 on RP are the management ports. Ensure that the port is connected to management network.

SUMMARY STEPS

1. `configure`
2. `interface MgmtEth rack/slot/port`
3. `ipv4 address ipv4-address subnet-mask`
4. `ipv4 address ipv4 virtual address subnet-mask`
5. `no shutdown`
6. `exit`
7. `router static address-family ipv4 unicast 0.0.0.0/0 default-gateway`
8. `commit`

DETAILED STEPS

Step 1 `configure`
Step 2 `interface MgmtEth rack/slot/port`

Example:

```
RP/0/RP0/CPU0:router(config)#interface mgmtEth 0/RP0/CPU0/0
```

Enters interface configuration mode for the management interface of the primary RP.

Step 3 `ipv4 address ipv4-address subnet-mask`

Example:

```
RP/0/RP0/CPU0:router(config-if)#ipv4 address 10.1.1.1/8
```

Assigns an IP address and a subnet mask to the interface.

Step 4 `ipv4 address ipv4 virtual address subnet-mask`

Example:
RP/0/RP0/CPU0:router(config-if)#ipv4 address 1.70.31.160 255.255.0.0
Assigns a virtual IP address and a subnet mask to the interface.

Step 5
no shutdown
Example:
RP/0/RP0/CPU0:router(config-if)#no shutdown
Places the interface in an "up" state.

Step 6
exit
Example:
RP/0/RP0/CPU0:router(config-if)#exit
Exits the Management interface configuration mode.

Step 7
router static address-family ipv4 unicast 0.0.0.0/0 default-gateway
Example:
RP/0/RP0/CPU0:router(config)#router static address-family ipv4 unicast 0.0.0.0/0 12.25.0.1
Specifies the IP address of the default-gateway to configure a static route; this is to be used for communications with devices on other networks.

Step 8
commit

What to do next
Connect to the management port to the ethernet network. With a terminal emulation program, establish a SSH or telnet connection to the management interface port using its IP address. Before establishing a telnet session, use the `telnet ipv4|ipv6 server max-servers` command in the XR Config mode, to set number of allowable telnet sessions to the router.

Perform Clock Synchronization with NTP Server

There are independent system clocks for the XR console and the System Admin console. To ensure that these clocks do not deviate from true time, they need to be synchronized with the clock of a NTP server. In this task you will configure a NTP server for the XR console. After the XR console clock is synchronized, the System Admin console clock will automatically synchronize with the XR console clock.

Before you begin
Configure and connect to the management port.

SUMMARY STEPS

1. `configure`
2. `ntp server server_address`
DETAILED STEPS

Step 1 configure
Step 2 ntp server server_address

Example:
RP/0/RP0/CPU0:router(config)#ntp server 64.90.182.55

The XR console clock is configured to be synchronized with the specified server.
Perform Clock Synchronization with NTP Server
Perform Preliminary Checks

After successfully logging into the console, you must perform some preliminary checks to verify the default setup. If any setup issue is detected when these checks are performed, take corrective action before making further configurations. These preliminary checks are:

- Verify Software Version, on page 15
- Verify Status of Hardware Modules, on page 16
- Verify Firmware Version, on page 16
- Verify Interface Status, on page 18

Verify Software Version

The router is shipped with the Cisco IOS XR software pre-installed. Verify that the latest version of the software is installed. If a newer version is available, perform a system upgrade. This will install the newer version of the software and provide the latest feature set on the router.

Perform this task to verify the version of Cisco IOS XR software running on the router.

SUMMARY STEPS

1. show version

DETAILED STEPS

show version

Example:
RP/0/RP0/CPU0:router# show version

Displays the version of the various software components installed on the router. The result includes the version of Cisco IOS XR software and its various components.
Verify Status of Hardware Modules

Hardware modules include RPs, fan trays, and so on. On the router, multiple hardware modules are installed. Perform this task to verify that all hardware modules are installed correctly and are operational.

Before you begin
Ensure that all required hardware modules have been installed on the router.

SUMMARY STEPS

1. show hw-module fpd

DETAILED STEPS

show hw-module fpd

Example:
RP/0/RP0/CPU0:router# show hw-module fpd

Displays the list of hardware modules detected on the router.

FPD Versions

<table>
<thead>
<tr>
<th>Location</th>
<th>Card type</th>
<th>HWver</th>
<th>FPD device</th>
<th>ATR Status</th>
<th>Running Programd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/RP0</td>
<td>NCS5002</td>
<td>3.0</td>
<td>DB-MIFPGA</td>
<td>CURRENT</td>
<td>0.13 0.13</td>
</tr>
<tr>
<td>0/RP0</td>
<td>NCS5002</td>
<td>3.0</td>
<td>MB-MIFPGA</td>
<td>CURRENT</td>
<td>0.13 0.13</td>
</tr>
<tr>
<td>0/RP0</td>
<td>NCS5002</td>
<td>3.0</td>
<td>BIOS</td>
<td>CURRENT</td>
<td>1.07 1.07</td>
</tr>
<tr>
<td>0/RP0</td>
<td>NCS5002</td>
<td>3.0</td>
<td>IOPPGA</td>
<td>CURRENT</td>
<td>0.16 0.16</td>
</tr>
</tbody>
</table>

Verify Firmware Version

The firmware on various hardware components of the router must be compatible with the Cisco IOS XR image installed. Incompatibility might cause the router to malfunction. Complete this task to verify the firmware version.
SUMMARY STEPS

1. show hw-module fpd

DETAILED STEPS

show hw-module fpd

Example:

RP/0/RP0/CPU0:router# show hw-module fpd
FPD Versions

Location Card type HWver FPD device ATR Status Running Programd

0/RP0 NCS5002 3.0 DB-MIFPGA CURRENT 0.13 0.13
0/RP0 NCS5002 3.0 MB-MIFPGA CURRENT 0.13 0.13
0/RP0 NCS5002 3.0 BIOS CURRENT 1.07 1.07
0/RP0 NCS5002 3.0 IOFPGA CURRENT 0.16 0.16

Displays the list of hardware modules detected on the router.

Note This command can be run from both XR LXC and System Admin LXC modes.

In the above output, some of the significant fields are:

- **FPD Device**: Name of the hardware component such as FPD, CFP, and so on.
- **ATR**: Attribute of the hardware component. Some of the attributes are:
 - B- Backup Image
 - S-Secure Image
 - P-Protected Image
- **Status**: Upgrade status of the firmware. The different states are:
 - CURRENT-The firmware version is the latest version.
 - READY-The firmware of the FPD is ready for an upgrade.
 - NOT READY-The firmware of the FPD is not ready for an upgrade.
 - NEED UPGD-A newer firmware version is available in the installed image. It is recommended that an upgrade be performed.
 - RLOAD REQ-The upgrade has been completed, and the ISO image requires a reload.
 - UPGD DONE-The firmware upgrade is successful.
 - UPGD FAIL- The firmware upgrade has failed.
 - BACK IMG-The firmware is corrupted. Reinstall the firmware.
 - UPGD SKIP-The upgrade has been skipped because the installed firmware version is higher than the one available in the image.
• Running- Current version of the firmware running on the FPD.

What to do next

• Upgrade the required firmware by using the upgrade hw-module location all fpd command in the System Admin EXEC mode. You can selectively update individual FPDs, or update all of them together. For the FPD upgrade to take effect, the router needs a power cycle.

• If required, turn on the auto fpd upgrade function. To do so, use the fpd auto-upgrade enable command in the System Admin Config mode. After it is enabled, if there are new FPD binaries present in the image being installed on the router, FPDs are automatically upgraded during the system upgrade operation.

Verify Interface Status

After the router has booted, all available interfaces must be discovered by the system. If interfaces are not discovered, it might indicate a malfunction in the unit. Complete this task to view the number of discovered interfaces.

SUMMARY STEPS

1. show ipv4 interface summary

DETAILED STEPS

show ipv4 interface summary

Example:

RP/0/RP0/CPU0:router#show ipv4 interface summary

When a router is turned on for the first time, all interfaces are in the 'unassigned' state. Verify that the total number of interfaces displayed in the result matches with the actual number of interfaces present on the router.

<table>
<thead>
<tr>
<th>IP address</th>
<th>State config</th>
<th>State up,up</th>
<th>State up,down</th>
<th>State down,down</th>
<th>State shutdown,down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigned</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unnumbered</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unassigned</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>84</td>
<td></td>
</tr>
</tbody>
</table>

In the above result:

• Assigned— An IP address is assigned to the interface.

• Unnumbered— Interface which has borrowed an IP address already configured on one of the other interfaces of the router.

• Unassigned— No IP address is assigned to the interface.
You can also use the `show interfaces brief` and `show interfaces summary` commands in the XR EXEC mode to verify the interface status.
Verify Interface Status
Create User Profiles and Assign Privileges

To provide controlled access to the System Admin configurations on the router, user profiles are created with assigned privileges. The privileges are specified using command rules and data rules. The authentication, authorization, and accounting (aaa) commands are used in the System Admin Config mode for the creation of users, groups, command rules, and data rules. The aaa commands are also used for changing the disaster-recovery password.

Note

You cannot configure the external AAA server and services from the System Admin LXC. It can be configured only from the XR LXC.

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured, the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol (NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid granting uncontrolled access, enable AAA authorization before setting up any configuration.

Note

If any user on XR is deleted, the local database checks whether there is a first user on System Admin VM.

- If there is a first user, no syncing occurs.
- If there is no first user, then the first user on XR (based on the order of creation) is synced to System Admin VM.

Users are authenticated using username and password. Authenticated users are entitled to execute commands and access data elements based on the command rules and data rules that are created and applied to user groups. All users who are part of a user group have such access privileges to the system as defined in the command rules and data rules for that user group.

The workflow for creating user profile is represented in this flow chart:
The root-lr user, created for the XR LXC during initial router start-up, is mapped to the root-system user for
the System Admin LXC. The root-system user has superuser permissions for the System Admin LXC and
therefore has no access restrictions.

Note
Use the **show run aaa** command in the System Admin Config mode to view existing aaa configurations.

The topics covered in this chapter are:

- Create a User Profile, on page 22
- Create a User Group, on page 24
- Create Command Rules, on page 26
- Create Data Rules, on page 28
- Change Disaster-recovery Username and Password, on page 30
- Recover Password using PXE Boot, on page 31

Create a User Profile

Create new users for the System Admin LXC. Users are included in a user group and assigned certain privileges.
The users have restricted access to the commands and configurations in the System Admin LXC console,
based on assigned privileges.

The router supports a maximum of 1024 user profiles.

Note
Users created in the System Admin LXC are different from the ones created in XR LXC. As a result, the
username and password of a System Admin LXC user cannot be used to access the XR LXC, and vice versa.

XR VM and System Admin VM User Profile Synchronization

When the user profile is created for the first time in XR VM, the user name and password are synced to the
System Admin VM if no user already exists in System Admin VM.
However, the subsequent password change or user deletion in XR VM for the synced user is not synchronized with the System Admin VM. Therefore, the passwords in XR VM and System Admin VM may not be the same. Also, the user synced with the System Admin VM will not be deleted if the user is deleted in XR VM.

The root-lr user of XR LXC can access the System Admin LXC by entering `Admin` command in the XR EXEC mode. The router does not prompt you to enter any username and password. The XR LXC root-lr user is provided full access to the System Admin LXC.

SUMMARY STEPS

1. **admin**
2. **config**
3. **aaa authentication users user** `user_name`
4. **password** `password`
5. **uid** `user_id_value`
6. **gid** `group_id_value`
7. **ssh_keydir** `ssh_keydir`
8. **homedir** `homedir`
9. **commit**

DETAILED STEPS

Step 1
admin

Example:

```
RP/0/RP0/CPU0:router# admin
```

Enters mode.

Step 2
config

Example:

```
sysadmin-vm:0_RP0#config
```

Enters System Admin Config mode.

Step 3
aaa authentication users user `user_name`

Example:

```
sysadmin-vm:0_RP0(config)#aaa authentication users user us1
```

Creates a new user and enters user configuration mode. In the example, the user "us1" is created.

Step 4
password `password`

Example:

```
sysadmin-vm:0_RP0(config-user-us1)#password pwd1
```

Enter the password that will be used for user authentication at the time of login into System Admin LXC.

Step 5
uid `user_id_value`
Create a User Group

Create a new user group to associate command rules and data rules with it. The command rules and data rules are enforced on all users that are part of the user group.

The router supports a maximum of 32 user groups.

What to do next

- Create user group that includes the user created in this task. See Create a User Group, on page 24.
- Create command rules that apply to the user group. See Create Command Rules, on page 26.
- Create data rules that apply to the user group. See Create Data Rules, on page 28.

SUMMARY STEPS

1. admin
2. config
3. aaa authentication groups group group_name
4. users user_name
Create User Profiles and Assign Privileges

Create a User Group

5. `gid group_id_value`
6. `commit`

DETAILED STEPS

Step 1
`admin`
Example:
```
RP/0/RP0/CPU0:router# admin
```
Enters mode.

Step 2
`config`
Example:
```
sysadmin-vm:0_RP0#config
```
Enters System Admin Config mode.

Step 3
`aaa authentication groups group group_name`
Example:
```
sysadmin-vm:0_RP0(config)#aaa authentication groups group gr1
```
Creates a new user group (if it is not already present) and enters the group configuration mode. In this example, the user group "gr1" is created.

Note
By default, the user group "root-system" is created by the system at the time of root user creation. The root user is part of this user group. Users added to this group will get root user permissions.

Step 4
`users user_name`
Example:
```
sysadmin-vm:0_RP0(config-group-gr1)#users us1
```
Specify the name of the user that should be part of the user group.

You can specify multiple user names enclosed withing double quotes. For example, `users "user1 user2 ..."`.

Step 5
`gid group_id_value`
Example:
```
sysadmin-vm:0_RP0(config-group-gr1)#gid 50
```
Specify a numeric value. You can enter any 32 bit integer.

Step 6
`commit`
Create Command Rules

Command rules are rules based on which users of a user group are either permitted or denied the use of certain commands. Command rules are associated to a user group and get applied to all users who are part of the user group.

A command rule is created by specifying whether an operation is permitted, or denied, on a command. This table lists possible operation and permission combinations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Accept Permission</th>
<th>Reject Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read (R)</td>
<td>Command is displayed on the CLI when "?" is used.</td>
<td>Command is not displayed on the CLI when "?" is used.</td>
</tr>
<tr>
<td>Execute (X)</td>
<td>Command can be executed from the CLI.</td>
<td>Command cannot be executed from the CLI.</td>
</tr>
<tr>
<td>Read and execute (RX)</td>
<td>Command is visible on the CLI and can be executed.</td>
<td>Command is neither visible nor executable from the CLI.</td>
</tr>
</tbody>
</table>

By default, all permissions are set to **Reject**.

Each command rule is identified by a number associated with it. When multiple command rules are applied to a user group, the command rule with a lower number takes precedence. For example, cmdrule 5 permits read access, while cmdrule10 rejects read access. When both these command rules are applied to the same user group, the user in this group gets read access because cmdrule 5 takes precedence.

As an example, in this task, the command rule is created to deny read and execute permissions for the "show platform" command.

Before you begin

Create an user group. See [Create a User Group, on page 24](#).

SUMMARY STEPS

1. `admin`
2. `config`
3. `aaa authorization cmdrules cmdrule command_rule_number`
4. `command command_name`
5. `ops {r | x | rx}`
6. `action {accept | accept_log | reject}`
7. `group user_group_name`
8. `context connection_type`
9. `commit`

DETAILED STEPS

Step 1

admin

Example:
RP/0/RP0/CPU0:router# admin

Enters mode.

Step 2 config

Example:
sysadmin-vm:0_RP0#config

Enters System Admin Config mode.

Step 3 aaa authorization cmdrules cmdrule command_rule_number

Example:
sysadmin-vm:0_RP0(config)#aaa authorization cmdrules cmdrule 1100

Specify a numeric value as the command rule number. You can enter a 32 bit integer.

Important Do not use numbers between 1 to 1000 because they are reserved by Cisco.

This command creates a new command rule (if it is not already present) and enters the command rule configuration mode. In the example, command rule "1100" is created.

Note By default "cmdrule 1" is created by the system when the root-system user is created. This command rule provides "accept" permission to "read" and "execute" operations for all commands. Therefore, the root user has no restrictions imposed on it, unless "cmdrule 1" is modified.

Step 4 command command_name

Example:
sysadmin-vm:0_RP0(config-cmdrule-1100)#command "show platform"

Specify the command for which permission is to be controlled.

If you enter an asterisk '*' for command, it indicates that the command rule is applicable to all commands.

Step 5 ops {r | x | rx}

Example:
sysadmin-vm:0_RP0(config-cmdrule-1100)#ops rx

Specify the operation for which permission has to be specified:

• r — Read
• x — Execute
• rx — Read and execute

Step 6 action {accept | accept_log | reject}

Example:
sysadmin-vm:0_RP0(config-cmdrule-1100)#action reject

Specify whether users are permitted or denied the use of the operation.

• accept — users are permitted to perform the operation
• accept_log— users are permitted to perform the operation and every access attempt is logged.
Create Data Rules

Data rules are rules based on which users of the user group are either permitted, or denied, accessing and modifying configuration data elements. The data rules are associated to a user group. The data rules get applied to all users who are part of the user group.

Each data rule is identified by a number associated to it. When multiple data rules are applied to a user group, the data rule with a lower number takes precedence.

Before you begin

Create an user group. See Create a User Group, on page 24.

SUMMARY STEPS

1. admin
2. config
3. aaa authorization datarules datarule data_rule_number
4. keypath keypath
5. ops operation
6. action { accept | accept_log | reject }
7. group user_group_name
8. context connection_type
9. namespace namespace
10. commit

reject—users are restricted from performing the operation.

Step 7 group user_group_name

Example:
	sysadmin-vm:0_RP0(config-cmdrule-1100)#group gr1

Specify the user group on which the command rule is applied.

Step 8 context connection_type

Example:
	sysadmin-vm:0_RP0(config-cmdrule-1100)#context *

Specify the type of connection to which this rule applies. The connection type can be netconf (Network Configuration Protocol), cli (Command Line Interface), or xml (Extensible Markup Language). It is recommended that you enter an asterisk ‘*’; this indicates that the command rule applies to all connection types.

Step 9 commit

What to do next

Create data rules. See Create Data Rules, on page 28.
DETAILED STEPS

Step 1 admin

Example:

RP/0/RP0/CPU0:router# admin
Enters mode.

Step 2 config

Example:

sysadmin-vm:0_RP0#config
Enters System Admin Config mode.

Step 3 aaa authorization datarules datarule data_rule_number

Example:

sysadmin-vm:0_RP0(config)#aaa authorization datarules datarule 1100
Specify a numeric value as the data rule number. You can enter a 32 bit integer.

Important Do no use numbers between 1 to 1000 because they are reserved by Cisco.

This command creates a new data rule (if it is not already present) and enters the data rule configuration mode. In the example, data rule "1100" is created.

Note By default "datarule 1" is created by the system when the root-system user is created. This data rule provides "accept" permission to "read", "write", and "execute" operations for all configuration data. Therefore, the root user has no restrictions imposed on it, unless "datarule 1" is modified.

Step 4 keypath keypath

Example:

sysadmin-vm:0_RP0(config-datarule-1100)#keypath /aaa/disaster-recovery
Specify the keypath of the data element. The keypath is an expression defining the location of the data element. If you enter an asterisk '*' for keypath, it indicates that the command rule is applicable to all configuration data.

Step 5 ops operation

Example:

sysadmin-vm:0_RP0(config-datarule-1100)#ops rw
Specify the operation for which permission has to be specified. Various operations are identified by these letters:

- c—Create
- d—Delete
- u—Update
- w—Write (a combination of create, update, and delete)
- r—Read
- x—Execute
Step 6

action {accept | accept_log | reject}

Example:
sysadmin-vm:0_RP0(config-datarule-1100)#action reject

Specify whether users are permitted or denied the operation.

- **accept** — users are permitted to perform the operation
- **accept_log** — users are permitted to perform the operation and every access attempt is logged
- **reject** — users are restricted from performing the operation

Step 7

group user_group_name

Example:
sysadmin-vm:0_RP0(config-datarule-1100)#group gr1

Specify the user group on which the data rule is applied. Multiple group names can also be specified.

Step 8

context connection_type

Example:
sysadmin-vm:0_RP0(config-datarule-1100)#context *

Specify the type of connection to which this rule applies. The connection type can be netconf (Network Configuration Protocol), cli (Command Line Interface), or xml (Extensible Markup Language). It is recommended that you enter an asterisk '*', which indicates that the command applies to all connection types.

Step 9

namespace namespace

Example:
sysadmin-vm:0_RP0(config-datarule-1100)#namespace *

Enter asterisk '*' to indicate that the data rule is applicable for all namespace values.

Step 10

commit

Change Disaster-recovery Username and Password

When you define the root-system username and password initially after starting the router, the same username and password gets mapped as the disaster-recovery username and password for the System Admin console. However, it can be changed.

The disaster-recovery username and password is useful in these scenarios:

- Access the system when the AAA database, which is the default source for authentication in System Admin console is corrupted.
- Access the system through the management port, when, for some reason, the System Admin console is not working.
- Create new users by accessing the System Admin console using the disaster-recovery username and password, when the regular username and password is forgotten.
On the router, you can configure only one disaster-recovery username and password at a time.

SUMMARY STEPS

1. admin
2. config
3. aaa disaster-recovery username **username** password **password**
4. commit

DETAILED STEPS

Step 1
admin

Example:

```
RP/0/RP0/CPU0:router# admin
```

Enters mode.

Step 2
config

Example:

```
sysadmin-vm:0_RP0#config
```

Enters System Admin Config mode.

Step 3
aaa disaster-recovery username **username** password **password**

Example:

```
sysadmin-vm:0_RP0(config)#aaa disaster-recovery username us1 password pwd1
```

Specify the disaster-recovery username and the password. You have to select an existing user as the disaster-recovery user. In the example, 'us1' is selected as the disaster-recovery user and assigned the password as 'pwd1'. The password can be entered as a plain text or md5 digest string.

When you need to make use of the disaster recovery username, you need to enter it as **username@localhost**.

Step 4
commit

Recover Password using PXE Boot

If you are unable to login or lost your XR and System administration passwords, use the following steps to create new password. A lost password cannot be recovered, instead a new username and password must be created with a non-graceful PXE boot.

Step 1
Boot the router using PXE.
Recover Password using PXE Boot

Note
PXE boot is fully intrusive. The router state, configuration and image is reset.

To PXE boot a router, see [Boot the Router Using iPXE, on page 72](#).

Step 2
Reset the password.
Perform System Upgrade and Install Feature Packages

The system upgrade and package installation processes are executed using `install` commands on the router. The processes involve adding and activating the iso images (.iso), feature packages (.rpm), and software maintenance upgrade files (.smu) on the router. These files are accessed from a network server and then activated on the router. If the installed package or SMU causes any issue on the router, it can be uninstalled.

The topics covered in this chapter are:

- Upgrading the System, on page 33
- Upgrading Features, on page 34
- Workflow for Install Process, on page 35
- Install Packages, on page 35
- Install Prepared Packages, on page 39
- Uninstall Packages, on page 42

Upgrading the System

Upgrading the system is the process of installing a new version of the Cisco IOS XR operating system on the router. The router comes pre-installed with the Cisco IOS XR image. However, you can install the new version in order to keep router features up to date. The system upgrade operation is performed from the XR LXC. However, during system upgrade, the operating systems that run both on the XR LXC and the System Admin LXC get upgraded.

Note

If an interface on a router does not have a configuration and is brought up by performing no-shut operation, then upon router reload, the interface state changes to `admin-shutdown` automatically.

System upgrade is done by installing a base package–Cisco IOS XR Unicast Routing Core Bundle. The file name for this bundle is `ncs5k-mini-x.iso`. Install this ISO image using `install` commands. For more information about the install process, see Workflow for Install Process, on page 35.
Upgrading Features

Upgrading features is the process of deploying new features and software patches on the router. Feature upgrade is done by installing package files, termed simply, packages. Software patch installation is done by installing Software Maintenance Upgrade (SMU) files.

Installing a package on the router installs specific features that are part of that package. Cisco IOS XR software is divided into various software packages; this enables you to select the features to run on your router. Each package contains components that perform a specific set of router functions, such as routing, security, and so on.

For example, the components of the routing package are split into individual RPMs, such as BGP and OSPF. BGP is a mandatory RPM which is a part of the base software version and hence cannot be removed. Optional RPMs such as OSPF can be added and removed as required.

The naming convention of the package is `<platform>-<pkg>-<pkg version>-<release version>.<architecture>.rpm`. Standard packages are:

<table>
<thead>
<tr>
<th>Package</th>
<th>Requirement</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP</td>
<td>Mandatory</td>
<td>ncs5k-bgp-1.0.0.0-r600141.x86_64.rpm</td>
</tr>
<tr>
<td>NCS5K RM</td>
<td>Mandatory</td>
<td>ncs5k-rm-1.0.0.0-r600141.x86_64.rpm</td>
</tr>
<tr>
<td>NCS 5K Forwarding</td>
<td>Mandatory</td>
<td>ncs5k-fwding-1.0.0.0-r600141.x86_64.rpm</td>
</tr>
<tr>
<td>ios-xr CE</td>
<td>Mandatory</td>
<td>ncs5k-iosxr-ce-1.0.0.0-r600141.x86_64.rpm</td>
</tr>
<tr>
<td>iosxr-fwding</td>
<td>Mandatory</td>
<td>ncs5k-iosxr-fwding-1.0.0.0-r600141.x86_64.rpm</td>
</tr>
<tr>
<td>iosxr-infra</td>
<td>Mandatory</td>
<td>ncs5k-iosxr-infra-1.0.0.0-r600141.x86_64.rpm</td>
</tr>
<tr>
<td>iosxr-infra-test</td>
<td>Optional</td>
<td>ncs5k-infra-test-1.0.0.0-r600141.x86_64.rpm</td>
</tr>
<tr>
<td>iosxr-mgbl</td>
<td>Optional</td>
<td>ncs5k-iosxr-mgbl-1.0.0.0-r600141.x86_64.rpm</td>
</tr>
<tr>
<td>iosxr-mpls</td>
<td>Optional</td>
<td>ncs5k-iosxr-mpls-1.0.0.0-r600141.x86_64.rpm</td>
</tr>
<tr>
<td>iosxr-os</td>
<td>Mandatory</td>
<td>ncs5k-iosxr-os-1.0.0.0-r600141.x86_64.rpm</td>
</tr>
<tr>
<td>iosxr-routing</td>
<td>Mandatory</td>
<td>ncs5k-iosxr-routing-1.0.0.0-r600141.x86_64.rpm</td>
</tr>
</tbody>
</table>

Caution

Do not perform any install operations when the router is reloading.
Do not reload the router during an upgrade operation.

Cisco IOS XR supports RPM signing and signature verification for Cisco IOS XR RPM packages in the ISO and upgrade images. All RPM packages in the Cisco IOS XR ISO and upgrade images are signed to ensure cryptographic integrity and authenticity. This guarantees that the RPM packages have not been tampered with and the RPM packages are from Cisco IOS XR. The private key, used for signing the RPM packages, is created and securely maintained by Cisco.

For more information on upgrading the system and the RPMs, see *Manage Automatic Dependency* chapter.
Package and SMU installation is performed using **install** commands. For more information about the install process, see [Install Packages](#), on page 35.

There are separate packages and SMUs for the XR LXC and the System Admin LXC. They can be identified by their filenames. The XR LXC packages or SMUs are activated from the XR LXC, whereas the System Admin LXC packages or SMUs are activated from the System Admin LXC.

For more information on upgrading the system and the RPMs, see *Cisco IOS XR Flexible Packaging Configuration Guide*.

Workflow for Install Process

The workflow for installation and uninstallation processes is depicted in this flowchart.

For installing a package, see [Install Packages](#), on page 35. For uninstalling a package, see [Uninstall Packages](#), on page 42.

Install Packages

Complete this task to upgrade the system or install a patch. The system upgrade is done using an ISO image file, while the patch installation is done using packages and SMUs. This task is also used to install .rpm files. The .rpm file contains multiple packages and SMUs that are merged into a single file. The packaging format defines one RPM per component, without dependency on the card type.

Note

The System Admin package and XR package can be executed using **install** commands in the System Admin EXEC mode and XR EXEC mode. All **install** commands are applicable in both these modes.

The workflow for installing a package is shown in this flowchart.
Before you begin

- Configure and connect to the management port. The installable file is accessed through the management port. For details about configuring the management port, see Configure the Management Port, on page 11.
- Copy the package to be installed either on the router's hard disk or on a network server to which the router has access.

SUMMARY STEPS

1. Execute one of these:
 - `install add source <tftp transfer protocol>/package_path/ filename1 filename2 ...`
 - `install add source <ftp or sftp transfer protocol>//user@server:/package_path/ filename1 filename2 ...`

2. `show install request`
3. `show install repository`
4. `show install inactive`
5. Execute one of these:
Install activate package_name
install activate id operation_id

6. show install active
7. install commit

DETAILED STEPS

Step 1
Execute one of these:
• install add source <tftp transfer protocol>/package_path/ filename1 filename2 ...
• install add source <ftp or sftp transfer protocol>//user@server:/package_path/ filename1 filename2 ...

Example:

or
RP/0/RP0/CPU0:router#install add source sftp://root@8.33.5.15:/auto/ncs/package/ncs5k-mcast-1.0.0.0-r60014I.x86_64.rpm ncs5k-iosxr-mpls-1.0.0.0-r60014I.x86_64.rpm
or
RP/0/RP0/CPU0:router#install add source sftp://root@8.33.5.15:/auto/ncs/package/ncs5k-mcast-1.0.0.0-r60014I.x86_64.rpm ncs5k-iosxr-mpls-1.0.0.0-r60014I.x86_64.rpm

Note A space must be provided between the package_path and filename.

The software files are unpacked from the package and added to the software repository. This operation might take time depending on the size of the files being added. The operation is performed in asynchronous mode. The install add command runs in the background, and the EXEC prompt is returned as soon as possible.

Note The repositories for the XR LXC and the System Admin LXC are different. The system automatically adds a routing package to the XR LXC repository and a system administration package to the System Admin LXC repository.

Step 2
show install request

Example:

RP/0/RP0/CPU0:router#show install request

(Optional) Displays the operation ID of the add operation and its status. The operation ID can be later used to execute the activate command.

Install operation 8 is still in progress

For system administration packages, the remaining steps must be performed from the System Admin EXEC mode. Use the admin command to enter the System Admin EXEC mode.

Step 3
show install repository

Example:

RP/0/RP0/CPU0:router#show install repository

Displays packages that are added to the repository. Packages are displayed only after the install add operation is complete.

Step 4
show install inactive

Example:
Step 5

Execute one of these:

- install activate package_name
- install activate id operation_id

Example:

RP/0/RP0/CPU0:router#install activate ncs5k-mcast-1.0.0.0-r60014I.x86_64.rpm
ncs5k-iosxr-mpls-1.0.0.0-r60014I.x86_64.rpm

or

RP/0/RP0/CPU0:router#install activate id 8

The operation_id is that of the install add operation. This command can also be run from System Admin mode. The package configurations are made active on the router. As a result, new features and software fixes take effect. This operation is performed in asynchronous mode. The install activate command runs in the background, and the EXEC prompt is returned.

If you use the operation ID, all packages that were added in the specified operation are activated together. For example, if 5 packages are added in operation 8, by executing install activate id 8, all 5 packages are activated together. You do not have to activate the packages individually.

Activation does not happen instantaneously, but takes some time. Activation of some SMUs require a manual reloading of the router. When such SMUs are activated, a warning message is displayed to perform reload. The components of the SMU get activated only after the reload is complete. Perform router reload immediately after executing the install activate command. If the SMU has dependency on both XR LXC and System Admin LXC, perform the reload after activating the SMU in both LXCs so that they take effect simultaneously. To reload the router, use the hw-module location allreload command from the System Admin EXEC mode.

Step 6

show install active

Example:

RP/0/RP0/CPU0:router#show install active

Displays packages that are active.

From the result, verify that the same image and package versions are active on all RPs and LCs.

Step 7

install commit

Example:

RP/0/RP0/CPU0:router#install commit

Commits the XR newly active software. To commit both XR and System Admin software, use install commit system.
Installing Packages: Related Commands

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show install log</td>
<td>Displays the log information for the install process; this can be used for troubleshooting in case of install failure.</td>
</tr>
<tr>
<td>show install package</td>
<td>Displays the details of the packages that have been added to the repository. Use this command to identify individual components of a package.</td>
</tr>
<tr>
<td>install prepare</td>
<td>Makes pre-activation checks on an inactive package, to prepare it for activation.</td>
</tr>
<tr>
<td>show install prepare</td>
<td>Displays the list of package that have been prepared and are ready for activation.</td>
</tr>
</tbody>
</table>

What to do next

- After performing a system upgrade, upgrade FPD by using the `upgrade hw-module location all fpd all` command from the System Admin EXEC mode. The progress of FPD upgrade process can be monitored using the `show hw-module fpd` command in the System Admin EXEC mode. Reload the router after the FPD upgrade is completed.
- Verify the installation using the `install verify packages` command.
- Uninstall the packages or SMUs if their installation causes any issues on the router. See Uninstall Packages, on page 42.

ISO images cannot be uninstalled. However, you can perform a system downgrade by installing an older ISO version.

If you are upgrading power supply modules for NC55-PWR-3KW-DC and NC55-PWR-3KW-2HV, ensure that you first upgrade SC IO FPGA by using `upgrade hw-module location <SC0/SC1> fpd all` command from Sysadmin prompt followed by the `upgrade hw-module location pm-all fpd` command, to upgrade FPD.

Finally use `hw-module location <SC0/SC1> reload` command from Sysadmin prompt to reload the shelf controller.

Install Prepared Packages

A system upgrade or feature upgrade is performed by activating the ISO image file, packages, and SMUs. It is possible to prepare these installable files before activation. During the prepare phase, pre-activation checks are made and the components of the installable files are loaded on to the router setup. The prepare process...
runs in the background and the router is fully usable during this time. When the prepare phase is over, all the prepared files can be activated instantaneously. The advantages of preparing before activation are:

- If the installable file is corrupted, the prepare process fails. This provides an early warning of the problem. If the corrupted file was activated directly, it might cause router malfunction.
- Directly activating an ISO image for system upgrade takes considerable time during which the router is not usable. However, if the image is prepared before activation, not only does the prepare process run asynchronously, but when the prepared image is subsequently activated, the activation process too takes very less time. As a result, the router downtime is considerably reduced.

Complete this task to upgrade the system and install packages by making use of the prepare operation.

Note

Depending on whether you are installing a System Admin package or a XR package, execute the `install` commands in the System Admin EXEC mode or XR EXEC mode respectively. All `install` commands are applicable in both these modes. System Admin install operations can be done from XR mode.

Before you begin

- If the installable file is corrupted, the prepare process fails. This provides an early warning of the problem. If the corrupted file was activated directly, it might cause router malfunction.
- Directly activating an ISO image for system upgrade takes considerable time during which the router is not usable. However, if the image is prepared before activation, not only does the prepare process run asynchronously, but when the prepared image is subsequently activated, the activation process too takes very less time. As a result, the router downtime is considerably reduced.

SUMMARY STEPS

1. Add the required ISO image and packages to the repository.
2. `show install repository`
3. Execute one of these:
 - `install prepare package_name`
 - `install prepare id operation_id`
4. `show install prepare`
5. `install activate`
6. `show install active`
7. `install commit`

DETAILED STEPS

Step 1
Add the required ISO image and packages to the repository.
For details, see [Install Packages, on page 35](#).

Step 2
`show install repository`
Example:
Perform this step to verify that the required installable files are available in the repository. Packages are displayed only after the "install add" operation is complete.

Step 3

Execute one of these:

- `install prepare package_name`
- `install prepare id operation_id`

Example:

```
RP/0/RP0/CPU0:router#install prepare ncs5k-mcast-1.0.0.0-r600141.x86_64.rpm
```

or

```
RP/0/RP0/CPU0:router#install prepare id 8
```

The prepare process takes place. This operation is performed in asynchronous mode. The `install prepare` command runs in the background, and the EXEC prompt is returned as soon as possible.

If you use the operation ID, all packages that were added in the specified operation are prepared together. For example, if 5 packages are added in operation 8, by executing `install prepare id 8`, all 5 packages are prepared together. You do not have to prepare the packages individually.

Step 4

`show install prepare`

Example:

```
RP/0/RP0/CPU0:router#show install prepare
```

Displays packages that are prepared. From the result, verify that all the required packages have been prepared.

Step 5

`install activate`

Example:

```
RP/0/RP0/CPU0:router#install activate
```

All the packages that have been prepared are activated together to make the package configurations active on the router.

Note
You should not specify any package name or operation ID in the CLI.

Activation of some SMUs require manual reload of the router. When such SMUs are activated, a warning message is displayed to perform reload. The components of the SMU get activated only after the reload is complete. Perform router reload immediately after the execution of the `install activate` command is completed.

Step 6

`show install active`

Example:

```
RP/0/RP0/CPU0:router#show install active
```

Displays packages that are active.

```
Node 0/RP0/CPU0 [RP]
Boot Partition: xr_lv55
Active Packages: 2
ncs5k-xr=6.0.0.30I version=6.0.0.30I [Boot image]
cs5k-k9sec=1.0.0.0-r60030I
```

From the result, verify that on all RPs and LCs, the same image and package versions are active.

Step 7

`install commit`
Uninstall Packages

Complete this task to uninstall a package. All router functionalities that are part of the uninstalled package are deactivated. Packages that are added in the XR LXC cannot be uninstalled from the System Admin LXC, and vice versa.

Note

Installed ISO images cannot be uninstalled. Also, kernel SMUs that install third party SMU on host, XR LXC and System Admin LXC, cannot be uninstalled. However, subsequent installation of ISO image or kernel SMU overwrites the existing installation.

The workflow for uninstalling a package is shown in this flowchart.

Installing Packages: Related Commands

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show install log</code></td>
<td>Displays the log information for the install process; this can be used for troubleshooting in case of install failure.</td>
</tr>
<tr>
<td><code>show install package</code></td>
<td>Displays the details of the packages that have been added to the repository. Use this command to identify individual components of a package.</td>
</tr>
<tr>
<td><code>install prepare clean</code></td>
<td>Clears the prepare operation and removes all the packages from the prepared state.</td>
</tr>
</tbody>
</table>

What to do next

- After performing a system upgrade, upgrade FPD by using the `upgrade hw-module location all fpd all` command from the System Admin EXEC mode. The progress of FPD upgrade process can be monitored using the `show hw-module fpd` command in the System Admin EXEC mode. Reload the router after the FPD upgrade is completed.
- Verify the installation using the `install verify packages` command.
- Uninstall the packages or SMUs if their installation causes any issues on the router. See [Uninstall Packages](#).

Note

ISO images cannot be uninstalled. However, you can perform a system downgrade by installing an older ISO version.
Figure 3: Uninstalling Packages Workflow

This task uninstalls XR LXC packages. If you need to uninstall System Admin packages, run the same commands from the System Admin EXEC mode.

SUMMARY STEPS

1. `show install active`
2. Execute one of these:
 - `install deactivate package_name`
 - `install deactivate id operation_id`
3. `show install inactive`
4. `install remove package_name`
5. `show install repository`

DETAILED STEPS

Step 1
show install active

Example:

`RP/0/RP0/CP0:router#show install active`

Displays active packages. Only active packages can be deactivated.

Node 0/RP0/CP0 [RP]
Boot Partition: xr_lv55
Active Packages: 2
ncs5k-xr-6.0.0.30I version=6.0.0.30I [Boot image]
ncs5k-k9sec-1.0.0.0-r60030I
Step 2 Execute one of these:

- `install deactivate package_name`
- `install deactivate id operation_id`

Example:

RP/0/RP0/CPU0:router#install deactivate ncs5k-mcast-1.0.0.0-r60014I.x86_64.rpm
ncs5k-iosxr-mpls-1.0.0.0-r60014I.x86_64.rpm

or

RP/0/RP0/CPU0:router#install deactivate id 8

The `operation_id` is the ID from `install add` operation. All features and software patches associated with the package are deactivated. You can specify multiple package names and deactivate them simultaneously.

If you use the operation ID, all packages that were added in the specified operation are deactivated together. You do not have to deactivate the packages individually. If System admin packages were added as a part of the `install add` operation (of the ID used in deactivate) then those packages will also be deactivated.

Step 3 `show install inactive`

Example:

RP/0/RP0/CPU0:router#show install inactive

The deactivated packages are now listed as inactive packages. Only inactive packages can be removed from the repository.

Step 4 `install remove package_name`

Example:

RP/0/RP0/CPU0:router#install remove ncs5k-mcast-1.0.0.0-r60014I.x86_64.rpm
ncs5k-iosxr-mpls-1.0.0.0-r60014I.x86_64.rpm

The inactive packages are removed from the repository.

Use the `install remove` command with the `id operation-id` keyword and argument to remove all packages that were added for the specified operation ID.

Step 5 `show install repository`

Example:

RP/0/RP0/CPU0:router#show install repository

Displays packages available in the repository. The package that are removed are no longer displayed in the result.

What to do next

Install required packages. See Install Packages, on page 35.
CHAPTER 7

Non-Stop Forwarding Using Hitless Upgrade and Reload

The hitless upgrade and reload features ensure that there is minimal downtime during upgrade or reload procedures.

The topics covered in this chapter are:

- How Hitless Upgrade and Reload Works, on page 45
- Hitless Upgrade and Reload Features, on page 45
- Hitless Upgrade and Reload Benefits, on page 46
- Platform Support, on page 46
- Hitless Upgrade and Reload Limitations, on page 46
- Supported Features, on page 46
- Performing Hitless Upgrade, on page 47
- Performing Hitless Reload, on page 47

How Hitless Upgrade and Reload Works

The Hitless upgrade and reload feature provide a facility to perform system upgrades or reloads with sub-second traffic loss using non-stop forwarding.

The Hitless upgrade is a variant of ISSU for single CPU systems and does not expect hardware level redundancy to perform upgrade and reload processes without impacting traffic.

For more information on upgrading the system and installing packages, see System Setup and Software Installation Guide for Cisco NCS 5000 Series Routers.

Hitless Upgrade and Reload Features

- Zero-Packet Loss Using Non-Stop Forwarding - When you perform an upgrade or reload using Hitless method, the hardware state is maintained intact and no hardware components are reset. After the upgrade or reload process, the control plane recovers the old hardware state, performs a reconciliation process with hardware and resumes with normal operations. Both upgrade or reload procedures complete with sub-second traffic loss.
• Support for Reload and Upgrade - The Hitless feature provides support to reload or upgrade the system. If you are performing a reload, you can either upgrade the forwarding container or the entire IOS XR system.

Hitless Upgrade and Reload Benefits

• Graceful Restart of BGP and OSPF in single CPU systems therefore removing the need to have redundancy.
• Non-stop forwarding leading to minimal down time during reload or upgrade process.
• Ability to hold the port state and optics in UP state during reload.
• Ability to maintain LLDP sessions during reload.

Platform Support

The Hitless reload and upgrade feature is only supported on NCS 5011 routers starting from IOS XR release 6.5.x.

Hitless Upgrade and Reload Limitations

Hitless upgrade will lead to traffic loss in the following scenarios:

• In case of an FPGA upgrade the router must be power booted and therefore it will lead to traffic loss and topology loss.
• In case of an upgrade, if Broadcom SDK does not support migration from older version, then it will lead to system reinitialization.
• If the router configuration differs from the combination specified in the Supported Features section.

Supported Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Sub-Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>L3 Physical Interfaces</td>
</tr>
<tr>
<td></td>
<td>Sub-Interfaces</td>
</tr>
<tr>
<td></td>
<td>Breakout Interfaces</td>
</tr>
<tr>
<td></td>
<td>Bundle Interfaces</td>
</tr>
</tbody>
</table>
Performing Hitless Upgrade

To perform a system upgrade using hitless method, use the following command from Sysadmin prompt:

```
sysadmin-vm:0_RP0# install activate warm id operation-id
```

For more information on upgrading the system and installing packages, see *System Setup and Software Installation Guide for Cisco NCS 5000 Series Routers*.

Performing Hitless Reload

You can choose to either perform hitless reload of the forwarding container or of the entire IOS XR system.

For more information on upgrading the system and installing packages, see *System Setup and Software Installation Guide for Cisco NCS 5000 Series Routers*.
Hitless Reload of the Forwarding Container

To initiate hitless reload of the forwarding plane, execute the following command from the Sysadmin prompt:

```
sysadmin-vm:0_RP0#reload warm
```

Hitless Reload of IOS XR System

To initiate hitless reload of the entire IOS XR system, execute the following command:

```
sysadmin-vm:0_RP0#hw-module location all reload warm
```
CHAPTER 8

Manage Automatic Dependency

Flexible packaging supports automatic dependency management. While the user is updating an RPM, the system automatically identifies all relevant dependent packages and updates them.

Figure 4: Flow for Installation (base software, RPMs and SMUs)

Until this release, users downloaded the software image and required RPMs from CCO on a network server (the repository). They used the `install add` and the `install activate` commands to add and activate the downloaded files on the router. Then, users needed to manually identify relevant dependent RPMs, to add and activate them.

With automatic dependency management, users need not identify dependent RPMs to individually add and activate them. They can execute new install command to identify and install dependent RPMs automatically.

The command `install source` adds and activates packages. The command `install replace` adds and activates packages in a given golden ISO (GISO).

1. Cisco IOS XR Version 6.0.2 and later does not provide third party and host package SMUs as part of automatic dependency management (`install source` command). The third party and host package SMUs must be installed separately, and in isolation from other installation procedures (installation of SMUs and RPMs in IOS XR or admin containers).

The rest of this chapter contains these sections:

- Update RPMs and SMUs, on page 50
- Upgrade Base Software Version, on page 50
- Downgrade an RPM, on page 51
Update RPMs and SMUs

An RPM may contain a fix for a specific defect, and you may need to update the system with that fix. To update RPMs and SMUs to a newer version, use the `install source` command. When this command is issued for a particular RPM, the router communicates with the repository, and downloads and activates that RPM. If the repository contains a dependent RPM, the router identifies that dependent RPM and installs that too.

The syntax of the `install source` command is:

```
install source  repository  [rpm]
```

Four scenarios in which you can use the `install source` command are:

- **When a package name is not specified**
 When no package is specified, the command updates the latest SMUs of all installed packages.

  ```
  install source  [repository]
  ```

- **When a package name is specified**
 If the package name is specified, the command installs that package, updates the latest SMUs of that package, along with its dependencies. If the package is already installed, only the SMUs of that package are installed. (SMUs that are already installed are skipped.)

  ```
  install source  [repository]  ncs5k-mcast.rpm
  ```

- **When a package name and version number are specified**
 If a particular version of package needs to be installed, the complete package name must be specified; that package is installed along with the latest SMUs of that package present in the repository.

  ```
  install source  [repository]  ncs5k-mcast=1.0.0.1-r611.x86_64.rpm
  ```

- **When an SMU is specified**
 If an SMU is specified, that SMU is downloaded and installed, along with its dependent SMUs.

  ```
  install source  [repository]  ncs5k-mcast=1.0.0.1-r611.CSCva85697.x86_64.rpm
  ```

Upgrade Base Software Version

You may choose to upgrade to a newer version of the base software when it becomes available. To upgrade to the latest base software version, use the `install source` command. With the upgrade of the base version, RPMs that are currently available on the router are also upgraded.

Note

SMUs are not upgraded as part of this process.

The syntax of the `install source` command is:

```
install source  repository  version  version-number  [rpm]
```
VRF and TPA on dataport is not supported. If the server is reachable only through non-default VRF interface, the file must already be retrieved using ftp, sftp, scp, http or https protocols.

You can use the `install source` command when:

- **The version number is specified**
 The base software (.mini) is upgraded to the specified version; all installed RPMs are upgraded to the same release version.

  ```
  install source [repository] version 6.2.2
  ```

- **The version number for an RPM is specified**
 When performing a system upgrade, the user can choose to have an optional RPM to be of a different release (from that of the base software version); that RPM can be specified.

  ```
  install source [repository] version 6.2.2 ncs5k-mcast-1.0.0.0-r623.x86_64.rpm
  ```

Downgrade an RPM

An RPM can be downgraded after it is activated. RPMs are of the following types:

- **Hostos RPM**: The RPM contains `hostos` in the name. For example:
 - `ncs5500-sysadmin-hostos-6.5.1.09-r65108I.CSChu77777.host.arm`
 - `ncs5500-sysadmin-hostos-6.5.1.09-r65108I.CSChu77777.admin.arm`
 - `ncs5500-sysadmin-hostos-6.5.1.09-r65108I.CSChu77777.host.x86_64`
 - `ncs5500-sysadmin-hostos-6.5.1.09-r65108I.CSChu77777.admin.x86_64`

- **Non-hostos RPM**: The RPM does not contain `hostos` in the name. For example:
 - `ncs5500-sysadmin-system-6.5.1.09-r65108I.CSCvc12346`

To deactivate the RPMs, perform the following steps:

- **Downgrade Hostos RPM**
 - Scenario 1: To downgrade to version 06 from the active version 09:
 1. Download the version 06 hostos RPMs, and add the RPMs.
      ```
      install add source [repository]
      ncs5500-sysadmin-hostos-6.5.1.06-r65108I.CSChu44444.host.arm
      ncs5500-sysadmin-hostos-6.5.1.06-r65108I.CSChu44444.admin.arm
      ncs5500-sysadmin-hostos-6.5.1.06-r65108I.CSChu44444.host.x86_64
      ncs5500-sysadmin-hostos-6.5.1.06-r65108I.CSChu44444.admin.x86_64
      ```
 2. Activate the downloaded RPMs.
      ```
      install activate [repository]
      ncs5500-sysadmin-hostos-6.5.1.06-r65108I.CSChu44444.host.arm
      ncs5500-sysadmin-hostos-6.5.1.06-r65108I.CSChu44444.admin.arm
      ```
3. Commit the configuration.
 `install commit`

- Scenario 2: Deactivate hostos RPM by activating base RPM, consider version 09 is active:

 1. Activate the base RPM.
 `install activate ncs5500-sysadmin-hostos-6.5.1.08I-r65108I.admin.arm`
 `ncs5500-sysadmin-hostos-6.5.1.08I-r65108I.host.arm`
 `ncs5500-sysadmin-hostos-6.5.1.08I-r65108I.admin.x86_64`
 `ncs5500-sysadmin-hostos-6.5.1.08I-r65108I.host.x86_64`
 For example, if RPM `ncs5500-sysadmin-hostos-6.5.1.06-r65108I.CSChu44444.host.arm` is the RPM installed, then `ncs5500-sysadmin-hostos-6.5.1.08I-r65108I.host.arm` is its base RPM.

 2. Commit the configuration.
 `install commit`

The downgrade for third-party RPMs is similar to the hostos RPMs. To downgrade a SMU, activate the lower version of the SMU. If only one version of SMU is present, the base RPM of the SMU must be activated.

Note

Hostos and third-party RPMs cannot be deactivated. Only activation of different versions is supported.

- **Downgrade Non-Hostos RPM**

 1. Deactivate the RPM to downgrade to earlier version of RPM.
 `install deactivate ncs5500-sysadmin-system-6.5.1.09-r65108I.CSCvc12346`

 2. Check the active version of the RPM.
 `show install active`

 3. Commit the configuration.
 `install commit`
CHAPTER 9

Customize Installation using Golden ISO

Golden ISO (GISO) is a customized ISO that a user can build to suit the installation requirement. The user can customize the installable image to include the standard base image with the basic functional components, and add additional RPMs, SMUs and configuration files based on requirement.

The ease of installation and the time taken to seamlessly install or upgrade a system plays a vital role in a cloud-scale network. An installation process that is time-consuming and complex affects the resiliency and scale of the network. The GISO simplifies the installation process, automates the installation workflow, and manages the dependencies in RPMs and SMUs automatically.

GISO is built using a build script `gisobuild.py` available on the github location https://github.com/ios-xr/gisobuild. For more information about the build script and the steps to build GISO, see Build Golden ISO, on page 55.

When a system boots with GISO, additional SMUs and RPMs in GISO are installed automatically, and the router is pre-configured with the XR configuration in GISO. For more information about downloading and installing GISO, see Install Golden ISO, on page 58.

The capabilities of GISO can be used in the following scenarios:

- Migration from IOS XR 32-bit to IOS XR 64-bit
- Initial deployment of the router
- Software disaster recovery
- System upgrade from one base version to another
- System upgrade from same base version but with additional SMUs
- Install update to identify and update dependant packages

Limitations, on page 53
Golden ISO Workflow, on page 54
Build Golden ISO, on page 55
Install Golden ISO, on page 58
Install Replace with Golden ISO, on page 61

Limitations

The following are the known problems and limitations with the customized ISO:

System Setup and Software Installation Guide for Cisco NCS 5000 Series Routers, IOS XR Release 6.5.x
• Building and booting GISO for asynchronous package (a package of different release than the ISO) is not supported.

• GISO build script `gisobuild.py` does not support verifying the XR configuration.

• Renaming a GISO build and then installing from the renamed GISO build is not supported.

Golden ISO Workflow

The following image shows the workflow for building and installing golden ISO.

Figure 5: Golden ISO Workflow
Build Golden ISO

The GISO build script supports automatic dependency management, and provides these functionalities:

- Builds RPM database of all the packages present in package repository.
- Skips and removes Cisco RPMs that do not match the mini-x.iso version.
- Skips and removes third-party RPMs that are not SMUs of already existing third-party base package in mini-x.iso.
- Displays an error and exits build process if there are multiple base RPMs of same release but different versions.
- Performs compatibility check and dependency check for all the RPMs. For example, the child RPM `ncs5000-mpls-te-rsvp` is dependent on the parent RPM `ncs5000-mpls`. If only the child RPM is included, the Golden ISO build fails.

To build GISO, provide the following input parameters to the script:

- Base mini-x.iso (mandatory)
- XR configuration file (optional)
- one or more Cisco-specific SMUs for host, XR and System admin (mandatory)
- one or more third-party SMUs for host, XR and System admin (mandatory)
- Label for golden ISO (optional)

Golden ISO can be built only from mini ISO. The full or fullk9 bundle ISO is not supported.

Use the following naming convention when building GISO:

<table>
<thead>
<tr>
<th>GISO Build</th>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>GISO without k9sec RPM</td>
<td><code><platform-name>-golden-x.iso-<version>.<label></code></td>
<td><code><platform-name>-golden-x64.iso-<version>.v1</code></td>
</tr>
<tr>
<td></td>
<td><code><platform-name>-golden-x-<version>.iso.<label></code></td>
<td><code><platform-name>-golden-x64-<version>.iso.v1</code></td>
</tr>
<tr>
<td>GISO with k9sec RPM</td>
<td><code><platform-name>-goldenk9-x.iso-<version>.<label></code></td>
<td><code><platform-name>-goldenk9-x64.iso-<version>.v1</code></td>
</tr>
<tr>
<td></td>
<td><code><platform-name>-goldenk9-x-<version>.iso.<label></code></td>
<td><code><platform-name>-goldenk9-x64-<version>.iso.v1</code></td>
</tr>
</tbody>
</table>

To successfully add k9sec RPM to GISO, change the permission of the file to 644 using the `chmod` command.

`chmod 644 [k9 sec rpm]`
To build GISO, perform the following steps:

Before you begin

- To upgrade from non-GISO to GISO version, it is mandatory to first upgrade to mini ISO with GISO support. For NCS 5001 series routers, upgrade to release 6.2.2 or later.
- The system where GISO is built must meet the following requirements:
 - System must have Python version 2.7 and later.
 - System must have free disk space of minimum 3 to 4 GB.
 - Verify that the Linux utilities `mount`, `rm`, `cp`, `umount`, `zcat`, `chroot`, `mkisofs` are present in the system. These utilities will be used by the script. Ensure privileges are available to execute all of these Linux commands.
 - Kernel version of the system must be later than 3.16 or later than the version of kernel of Cisco ISO.
 - Verify that a `libyaml` rpm supported by the Linux kernel is available to successfully `import yaml` in the tool.
 - User should have proper permission for security rpm(k9sec-rpm) in rpm repository, else security rpm would be ignored for Golden ISO creation.
- The system from where the gisobuild script is executed must have root credentials.

Step 1
Copy the script `gisobuild.py` from the github location https://github.com/ios-xr/gisobuild to an offline system or external server where the GISO will be built. Ensure that this system meets the pre-requisites described above in the Before You Begin section.

Step 2
Run the script `gisobuild.py` and provide parameters to build the golden ISO off the router. Ensure that all RPMs and SMUs are present in the same directory. The number of RPMs and SMUs that can be used to build the Golden ISO is 128.

Note
The `-i` option is mandatory, and either or both `-r` or `-c` options must be provided.

```bash
[directory-path]$ gisobuild.py [-h] [-i <mini-x.iso>] [-r <rpm repository>]
[-c <config-file>] [-l <giso label>] [-m] [-v]
```

The following example shows the script output:

```
[directory-path]$ gisobuild.py [-h] [-i <mini-x.iso>] [-r <rpm repository>]
[-c <config-file>] [-l <giso label>] [-m] [-v]

System requirements check [PASS]
Platform: ncs5000 Version: 6.2.2
Scanning repository [repository-path]...

Building RPM Database...
Total 3 RPM(s) present in the repository path provided in CLI
Following XR x86_64 rpm(s) will be used for building Golden ISO:

(+) ncs5000-mgbl-3.0.0.0-r622.x86_64.rpm

...RPM compatibility check [PASS]
```
Following SYSADMIN x86_64 rpm(s) will be used for building Golden ISO:

(+) ncs5000-sysadmin-system-6.2.2-r622.CSCcv44444.x86_64.rpm

Following SYSADMIN arm rpm(s) will be used for building Golden ISO:

(+) ncs5000-sysadmin-system-6.2.2-r622.CSCcv44444.arm.rpm

...RPM compatibility check [PASS]

Building Golden ISO...
Summary

XR rpms:
ncs5000-mgbl-3.0.0.0-r622.x86_64.rpm

SYSADMIN rpms:
ncs5000-sysadmin-system-6.2.2-r622.CSCcv44444.x86_64.rpm
ncs5000-sysadmin-system-6.2.2-r622.CSCcv44444.arm.rpm

...Golden ISO creation SUCCESS.

Golden ISO Image Location: <directory-path>/ncs5000-golden-x.iso-6.2.2

where:

• -i is the path to mini-x.iso
• -r is the path to RPM repository
• -c is the path to XR config file
• -l is the golden ISO label
• -h shows the help message
• -v is the version of the build tool gisobuild.py
• -m is to build the migration tar to migrate from IOS XR to IOS XR 64 bit

GISO is built with the RPMs placed in respective folders in the specified directory and also includes the log files giso_summary.txt and gisobuild.log-<timestamp>. The XR configuration file is placed as router.cfg in the directory.

Note
The GISO script does not support verification of XR configuration.

What to do next
Install the golden ISO on the router.
Install Golden ISO

Golden ISO (GISO) automatically performs the following actions:

- Installs host and system admin RPMs.
- Partitions repository and TFTP boot on RP.
- Creates software profile in system admin and XR modes.
- Installs XR RPMs. Use `show instal active` command to see the list of RPMs.
- Applies XR configuration. Use `show running-config` command in XR mode to verify.

Step 1 Download GISO image to the router using one of the following options:

- **PXE boot:** when the router is booted, the boot mode is identified. After detecting PXE as boot mode, all available ethernet interfaces are brought up, and DHClient is run on each interface. DHClient script parses HTTP or TFTP protocol, and GISO is downloaded to the box.
- **System Upgrade** when the system is upgraded, GISO can be installed using `install add`, `install activate`, or using `install update` commands.

 - **system upgrade from a non-GISO (image that does not support GISO) to GISO image:** If a system is running a version1 with an image that does not support GISO, the system cannot be upgraded directly to version2 of an image that supports GISO. Instead, the version1 must be upgraded to version2 mini ISO, and then to version2 GISO.

 - **system upgrade in a release from version1 GISO to version2 GISO:** If both the GISO images have the same base version but different labels, `install add` and `install activate` commands does not support same version of two images. Instead, using `install update` command installs only the delta RPMs. System reload is based on restart type of the delta RPMs.

    ```
    Router#install update source <path-to-image> <platform-name-goldenk9-x64.iso-6.2.2>
    Sat Dec 3 15:51:43.384 UTC
    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    ISO <platform-name-goldenk9-x64.iso-6.2.2> in input package list. Going to upgrade the system to version 6.2.2.
    Updating contents of golden ISO
    Scheme : localdisk
    Hostname : localhost
    Username : None
    SourceDir : Dir
    Collecting software state..
    Updating .... <ncs5000-name-goldenk9-x64.iso-6.2.2.v2>
    LC/0/0/CPUD:Dec 3 15:53:41.580 : %PLATFORM-STATS_INFRA-3-ERR_STR_1 : ErrStr:Unable to map
    ```
stats infra shared mem

Skipping openssh-scp-6.6p1.p1-r0.0.CSCtp12345.host.x86_64.rpm from GISO as it's active

Skipping <platform-name>-sysadmin-system-6.2.2-r622.CSCcv11111.x86_64.rpm from GISO as it's active

Skipping openssh-scp-6.6p1.p1-r0.0.CSCtp12345.admin.x86_64.rpm from GISO as it's active

Skipping openssh-scp-6.6p1-r0.0.host.x86_64.rpm from GISO (skipped SMUs base pkg)

Adding packages

<platform-name>-sysadmin-shared-6.2.2-r622.CSCcv33333.x86_64.rpm

<platform-name>-mpls-te-rsvp-x64-1.2.0.0-r622.x86_64.rpm

Router: Dec 3 15:54:12.308 : sdr_instmgr[1145]: %INSTALL-INSTMGR-2-OPERATION_SUCCESS : Install operation 1 finished successfully

Dec 03 15:54:03 Install operation 1 started by root:

install add source /misc/disk1/install_tmp_staging_area/6.2.2
ncs5000-sysadmin-shared-6.2.2-r622.CSCcv33333.x86_64.rpm
ncs5000-mpls-te-rsvp-x64-1.2.0.0-r622.x86_64.rpm

Dec 03 15:54:05 Install operation will continue in the background

Dec 03 15:54:13 Install operation 1 finished successfully

-------Truncated

- system upgrade across releases from version1 GISO to version2 GISO: Both the GISO images have different base versions. Use install add and install activate commands, or install update command to perform the system upgrade. The router reloads after the upgrade with the version2 GISO image.

 install update source <path-to-image> <platform-name-goldenk9-x64.iso-6.2.2.opt

+++
ISO <platform-name-goldenk9-x64.iso-6.2.2.opt> in input package list. Going to upgrade the system to version 6.2.2.
Scheme : localdisk
Hostname : localhost
Username : None
SourceDir : Dir
Collecting software state...
Getting platform
Getting supported architecture
Getting active packages from XR
Getting inactive packages from XR
Getting list of RPMs in local repo
Getting list of provides of all active packages
Getting provides of each rpm in repo
Getting requires of each rpm in repo
LC/0/0/CPU0: fab_si[193]: %PLATFORM-STATS_INFRA-3-ERR_STR_1 : ErrStr:Unable to map stats infra shared mem
Fetching <platform-name-goldenk9-x64.iso-6.2.2.opt>
Adding packages

<platform-name>-goldenk9-x64.iso-6.2.2.opt

......

July 4 08:17:07 Install operation 2 started by root:
install add source <path>/6.2.2 <platform-name>-goldenk9-x64.iso-6.2.2.opt

July 4 08:17:08 Install operation will continue in the background

July 4 08:26:43 Install operation 2 finished successfully
Install add operation successful
Activating <platform-name>-goldenk9-x64-6.2.2
July 4 08:26:49 Install operation 3 started by root:
 install activate pkg <platform-name>-goldenk9-x64-6.2.2
July 4 08:26:49 Package list:
July 4 08:26:49 <platform-name>-goldenk9-x64-6.2.2
This install operation will reload the sdr, continue?
[yes/no]:[yes] Install operation will continue in the background
------Truncated

Step 2
Run the `show install repository all` command in System Admin mode to view the RPMs and base ISO for host, system admin and XR.

```
sysadmin-vm:0_RP0# show install repository all
Admin repository
---------------------
ncs5000-sysadmin-6.2.2
ncs5000-sysadmin-hostos-6.2.2-r622.CSCcv10001.admin.x86_64
ncs5000-sysadmin-hostos-6.2.2-r622.CSCcv10001.admin.arm
ncs5000-sysadmin-system-6.2.2-r622.CSCcv10005.x86_64
ncs5000-sysadmin-system-6.2.2-r622.CSCcv10005.arm
....
XR repository
----------------------
ncs5000-iosxr-mgbl-3.0.0.0-r622.x86_64
ncs5000-xr-6.2.2
....
Host repository
----------------------
host-6.2.2
```

Step 3
Run the `show install package <golden-iso>` command to display the list of RPMs, and packages built in GISO.

```
Router#show install package ncs5000-goldenk9-x64-6.2.2
This may take a while ...
  ISO Name: ncs5000-goldenk9-x64-6.2.2
  ISO Type: bundle
  ISO Bundled: ncs5000-mini-x64-6.2.2
  Golden ISO Label: temp
  ISO Contents:
  ISO Name: ncs5000-xr-6.2.2
  ISO Type: xr
  rpms in xr ISO:
    iosxr-os-ncs5000-64-5.0.0.0-r622
    iosxr-ce-ncs5000-64-3.0.0.0-r622
    iosxr-infra-ncs5000-64-4.0.0.0-r622
    iosxr-fwding-ncs5000-64-4.0.0.0-r622
    iosxr-routing-ncs5000-64-3.1.0.0-r6122
  ISO Name: ncs5000-sysadmin-6.2.2
  ISO Type: sysadmin
  rpms in sysadmin ISO:
    ncs5000-sysadmin-topo-6.2.2-r622
    ncs5000-sysadmin-shared-6.2.2-r622
    ncs5000-sysadmin-system-6.2.2-r622
    ncs5000-sysadmin-hostos-6.2.2-r622.admin
    ...
  ISO Name: host-6.2.2
  ISO Type: host
```
rpms in host ISO:
ncs5000-sysadmin-hostos-6.2.2-r622.host

Golden ISO Rpms:
xr rpms in golden ISO:
ncs5000-k9sec-x64-2.2.0.1-r622.CSCxr33333.x86_64.rpm
openssh-scp-6.6p1.p1-r0.0.CSCtp12345.xr.x86_64.rpm
openssh-scp-6.6p1-r0.0.xr.x86_64.rpm
ncs5000-mpls-x64-2.1.0.0-r622.x86_64.rpm
ncs5000-k9sec-x64-2.2.0.0-r622.x86_64.rpm

sysadmin rpms in golden ISO:
ncs5000-sysadmin-system-6.2.2-r622.CSCcv11111.x86_64.rpm
ncs5000-sysadmin-system-6.2.2-r622.CSCcv11111.arm.rpm
openssh-scp-6.6p1-r0.0.admin.x86_64.rpm
openssh-scp-6.6p1-r0.0.admin.arm.rpm
ncs5000-sysadmin-hostos-6.2.2-r622.CSCcv10001.admin.x86_64.rpm
ncs5000-sysadmin-hostos-6.2.2-r622.CSCcv10001.admin.arm.rpm

host rpms in golden ISO:
openssh-scp-6.6p1-r0.0.host.x86_64.rpm
openssh-scp-6.6p1-r0.0.host.arm.rpm
openssh-scp-6.6p1.p1-r0.0.CSCtp12345.host.x86_64.rpm
openssh-scp-6.6p1.p1-r0.0.CSCtp12345.host.arm.rpm

The ISO, SMUs and packages in GISO are installed on the router.

Install Replace with Golden ISO

Golden ISO (GISO) upgrades the router to a version that has a predefined list of software maintenance update (SMUs) with a single operation. However, to update to the same version with a different set of SMUs requires a two-step process. The process involves upgrading the GISO to add the delta SMUs, and manually deactivating the SMUs that are not in use.

To avoid this two-step process, use the install replace command to replace the currently active version with the full package including the image an SMUs from the newly added GISO.

Note

The install replace command is supported only with GISO, but not with .mini and .rpm packages directly.

Step 1 install replace <location-to-GISO> [commit | noprompt].

Example:

RP/0/RP0/CPU0:ios#install replace harddisk:/misc/disk1/<giso-image>.iso
noprompt

Install operation 11 started by root:
exec-timeout is suspended.
No install operation in progress at this moment
Label = More_Pkgs
ISO <giso-iso-image>.iso in input package list. Going to upgrade the system to
version <new-giso-image>.
System is in committed state
Current full-label: <giso-image>_R_Commit
Current only-label: R_Commit
Current label: R_Commit
Updating contents of golden ISO
Scheme : localdisk
Hostname : localhost
Username : None
SourceDir : /ws
Collecting software state..
Getting platform
Getting supported architecture
Getting active packages from XR
Getting inactive packages from XR
Getting list of RPMs in local repo
Getting list of provides of all active packages
Getting provides of each rpm in repo
Getting requires of each rpm in repo
Fetching <giso-image>.iso
Label within GISO: More_Pkgs
Skipping <platform>-mgbl-3.0.0.0-<release>.x86_64.rpm from GISO as it's active
Adding packages
<platform>-golden-x-<release>-<Label>.
iso
Install operation 12 finished successfully
Install add operation successful
Activating <platform>-golden-x-<release>-<Label>
Jun 20 14:44:05 Install operation 13 started by root:
install activate pkg <platform>-golden-x-<release>-<Label> replace noprompt
Jun 20 14:44:05 Package list:
Jun 20 14:44:29 Install operation will continue in the background
exec-timeout is resumed.
Install operation 13 finished successfully
Install operation 13 finished successfully
The version and label of the newly added GISO is compared with the version and label of the currently active version.
If a mismatch is identified, a new partition is created and the full package is installed. After installation, the system reloads
with the image and packages from the newly added GISO.
Using the commit keyword in the command automatically starts the install commit operation after the router reloads
during activation of the image.

Note: Activating or deactivating on a system that has a valid label invalidates the label. This action is irreversible.
For example, running show version command on the system displays the label 6.3.3.151_633rev1005. If any
SMU is activated or deactivated on the system, the label 633rev1005 is invalidated, and the show version
command displays only 6.3.3.151 as the label.

Step 2: show version

Example:

RP/0/RP0/CPU0:ios#show version
Wed Jun 20 15:06:37.915 UTC
Cisco IOS XR Software, Version <new-giso-image>
Copyright (c) 2013-2018 by Cisco Systems, Inc.
The system loads with the image and packages from the newly added GISO.
Disaster Recovery

The topics covered in this chapter are:

- Boot using USB Drive, on page 65
- Boot using iPXE, on page 67

Boot using USB Drive

The bootable USB drive is used to re-image the router for the purpose of system upgrade or boot the router in case of boot failure. The bootable USB drive can be created using a compressed boot file.

Create a Bootable USB Drive Using Compressed Boot File

A bootable USB drive is created by copying a compressed boot file into a USB drive. The USB drive becomes bootable after the contents of the compressed file are extracted.

Note

In case of failure to read or boot from USB drive, ensure that the drive is inserted correctly. If the drive is inserted correctly and still fails to read from USB drive, check the contents of the USB on another system.

This task can be completed using Windows, Linux, or MAC operating systems available on your local machine. The exact operation to be performed for each generic step outlined here depends on the operating system in use.

Before you begin

- Have access to a USB drive with a storage capacity that is between 8GB (min) and 32 GB (max). USB 2.0 and USB 3.0 are supported.
- Copy the compressed boot file from the software download page at cisco.com to your local machine. The file name for the compressed boot file is in the format ncs5k-usb-boot-<release_number>.zip.

Step 1

Connect the USB drive to your local machine and format it with FAT32 or MS-DOS file system using the Windows Operating System or Apple MAC Disk Utility.

Step 2

Copy the compressed boot file to the USB drive.
Step 3 Verify that the copy operation is successful. To verify, compare the file size at source and destination. Additionally, verify the MD5 checksum value.

Step 4 Extract the content of the compressed boot file by unzipping it inside the USB drive. This converts the USB drive to a bootable drive.

Note The content of the zipped file ("EFI" and "boot" directories) should be extracted directly into root of the USB drive. If the unzipping application places the extracted files in a new folder, move the "EFI" and "boot" directories to root of the USB drive.

Step 5 Eject the USB drive from your local machine.

What to do next

Use the bootable USB drive to boot the router or upgrade its image.

Boot the Router Using USB

The router can be booted using an external bootable USB drive. This might be required when the router is unable to boot from the installed image. A boot failure may happen when the image gets corrupted. During the USB boot, process the router gets re-imaged with the version available on the USB drive.

Note During the USB boot process, the router is completely re-imaged with the ISO image version present in the bootable USB drive. All existing configurations are deleted because the disk 0 content is erased. No optional packages are installed during the upgrade process; they need to be installed after the upgrade is complete.

Before you begin

- Create a bootable USB drive. See [Create a Bootable USB Drive Using Compressed Boot File, on page 65](#).
- Ensure that an external connection unit (ECU) with two solid-state drives (SSDs) is present.

Step 1 Connect the USB drive to the active RP.

Step 2 Connect to the console

Step 3 Power the router.

Step 4 Press Esc to pause the boot process and get the RPs to BIOS menu.

Step 5 Select the USB from the boot menu on the RP to which the USB is connected to.

The image is copied in internal disk, and the router is restarted automatically.

What to do next

- After the booting process is complete, specify the root username and password.
- Install the required optional packages.
Boot using iPXE

iPXE is a pre-boot execution environment that is included in the network card of the management interfaces and works at the system firmware (UEFI) level of the router. iPXE is used to re-image the system, and boot the router in case of boot failure or in the absence of a valid bootable partition. iPXE downloads the ISO image, proceeds with the installation of the image, and finally bootstraps inside the new installation.

iPXE acts as a boot loader and provides the flexibility to choose the image that the system will boot based on the Platform Identifier (PID), the Serial Number, or the management mac-address. iPXE must be defined in the DHCP server configuration file.

Zero Touch Provisioning

Zero Touch Provisioning (ZTP) helps in auto provisioning after the software installation of the router using iPXE.

ZTP auto provisioning involves:

- **Configuration**: Downloads and executes the configuration file. The first line of the file must contain `!! IOS XR` for ZTP to process the file as a configuration.

- **Script**: Downloads and executes the script files. The script files include a programmatic approach to complete a task. For example, scripts created using IOS XR commands to perform patch upgrades. The first line of the file must contain `#! /bin/bash` or `#! /bin/sh` for ZTP to process the file as a script.

Setup DHCP Server

A DHCP server must be configured for IPv4, IPv6 or both communication protocols. The following example shows ISC-DHCP server running on Linux system.

Before you begin

- Consult your network administrator or system planner to procure IP addresses and a subnet mask for the management interface.

- Physical port Ethernet 0 or Ethernet 1 on RP is the management port. Ensure that the port is connected to management network.

- Enable firewall to allow the server to process DHCP packets.

- For DHCPv6, a Routing advertisement (RA) message must be sent to all nodes in the network that indicates which method to use to obtain the IPv6 address. Configure Router-advertise-daemon (radvd, install using `yum install radvd`) to allow the client to send DHCP request. For example:

```bash
interface eth3
{
    AdvSendAdvert on;
    MinRtrAdvInterval 60;
    MaxRtrAdvInterval 180;
    AdvManagedFlag on;
    AdvOtherConfigFlag on;
    prefix 2001:1851:c622:1::/64
    {
        AdvOnLink on;
    }
```

Disaster Recovery
Step 1 Create the dhcpd.conf file (for IPv4, IPv6 or both communication protocols), dhcpv6.conf file (for IPv6) or both in the /etc/ or /etc/dhcp directory. This configuration file stores the network information such as the path to the script, location of the ISO install file, location of the provisioning configuration file, serial number, MAC address of the router.

Step 2 Test the server once the DHCP server is running. For example, for IPv4:

- Use MAC address of the router:

 Note Using the host statement provides a fixed address that is used for DNS, however, verify that option 77 is set to iPXE in the request. This option is used to provide the bootfile to the system when required.

  ```
  host ncs5k {
    hardware ethernet <router-mac-address>;
    if exists user-class and option user-class = "iPXE" {
      filename = "http://<httpserver-address>/<path-to-image>/ncs5k-mini-x.iso";
    }
    fixed-address <ip address>;
  }
  ```

 Ensure that the above configuration is successful.

- Use serial number of the router:

  ```
  host ncs5k {
    option dhcp-client-identifier "<router-serial-number>";
    filename "http://<IP-address>/<path-to-image>/ncs5k-mini-x.iso";
    fixed-address <IP-address>;
  }
  ```

 The serial number of the router is derived from the BIOS and is used as an identifier.

Step 3 Restart DHCP.

```bash
killall dhcpd
/usr/sbin/dhcpd -f -q -4 -pf /run/dhcp-server/dhcpd.pid -cf /etc/dhcp/dhcpd.conf ztp-mgmt &
```

Example

The example shows a sample dhcpd.conf file:

```bash
allow bootp;
allow booting;
ddns-update-style interim;
option domain-name "cisco.com";
option time-offset -8;
ignore client-updates;
default-lease-time 21600;
```
max-lease-time 43200;
option domain-name-servers <ip-address-server1>, <ip-address-server2>;
log-facility local0;

subnet <subnet> netmask <netmask> {
 option routers <ip-address>;
 option subnet-mask <subnet-mask>;
 next-server <server-addr>;
}

host <hostname> {
 hardware ethernet e4:c7:22:be:10:ba;
 fixed-address <address>;
 filename "http://<address>/<path>/<image.bin>";
}

The example shows a sample dhcpd.conf file:

option dhcp6.name-servers <ip-address-server>;
option dhcp6.domain-search "cisco.com";
dhcpv6-lease-file-name "/var/db/dhcpd6.leases";
option dhcp6.info-refresh-time 21600;
option dhcp6.bootfile-url code 59 = string;
subnet6 <subnet> netmask <netmask> {
 range6 2001:1851:c622:1::2 2001:1851:c622:1::9;
 option dhcp6.bootfile-url "http://<address>/<path>/<image.bin>";
}

What to do next
Invoke ZTP.

Invoke ZTP

ZTP runs within the XR namespace, and within the global VPN routing/forwarding (VRF) namespace for management interfaces and line card interfaces.

Before you begin
Ensure that a DHCP server is setup. For more information, see Setup DHCP Server, on page 67.

Edit the dhcpd.conf file to utilize the capabilities of ZTP.

The following example shows a sample DHCP server configuration including iPXE and ZTP:

host <host-name>
{
 hardware ethernet <router-serial-number or mac-id>;
 fixed-address <ip-address>;
 if exists user-class and option user-class = "iPXE" {
 # Image request, so provide ISO image
 filename "http://<ip-address>/<directory>/ncs5k-mini-x.iso";
 } else {
 # Auto-provision request, so provide ZTP script or configuration
 filename "http://<ip-address>/<script-directory-path>/ncs5k-ztp.script";
 #filename "http://<ip-address>/<script-directory-path>/ncs5k-ztp.cfg"
Either the ZTP .script file or the .cfg file can be provided at a time for auto-provisioning.

With this configuration, the system boots using ncs5k-mini-x.iso during installation, and then download and execute ncs5k-ztp.script when XR LXC is up.

Invoke ZTP Manually

ZTP can also be invoked manually with the modified one touch provisioning approach. The process involves:

Before you begin

A configuration file can be used to specify a list of interfaces that will be brought up in XR and DHCP will be invoked on. /pkg/etc/ztp.config is a platform specific file that allows the platform to specify which if any additional interfaces will be used.

```
# List all the interfaces that ZTP will consider running on. ZTP will attempt
# to bring these interfaces. At which point dhclient will be able to use them.
# Platforms may add dynamically to this list.
#ZTP_DHCLIENT_INTERFACES=" \
#  G10_0_0_0 \n#"
...```

---

**Step 1** Boot the router.

**Step 2** Login manually.

**Step 3** Enable interfaces.

**Step 4** Invoke a new ZTP DHCP session manually using the `ztp initiate` command.

```
Router#ztp initiate
dfor example, to send DHCP requests on the GigabitEthernet interface 0/0/0/0, run the command:

Router#ztp initiate debug verbose interface GigabitEthernet0/0/0/0
```

ZTP will run on the management port by default unless the platform has configured otherwise. The logs will be logged in `/disk0:/ztp/ztp/log` location.

**Note** To configure a 40G interface into 4 separate 10G interfaces, use the `ztp breakout nosignal-stay-in-breakout-mode` command.
To enable dataport breakouts and invoke DHCP sessions on all dataport and line card interfaces that are detected, use the `ztp breakout` command.

```
Router#ztp breakout debug verbose
Router#ztp initiate dataport debug verbose
```

Invoke ZTP?(this may change your configuration) [confirm] [y/n]:

To override the prompt:

```
Router#ztp initiate noprompt
```

Invoke ZTP?(this may change your configuration) [confirm] [y/n]:

ZTP will now run in the background. Please use "show logging" or look at /disk0:/ztp/ztp/log to check progress.

ZTP runs on the management interfaces that are up by default.

**Step 5** To terminate the ZTP session, use the `ztp terminate` command.

**What to do next**

Boot the router using iPXE.

**Additional Commands for Manually Invoking ZTP**

The following table lists some of the additional commands that are useful while manually invoking ZTP.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ztp initiate management</code></td>
<td>Use this command to send DHCP request on the management interface</td>
</tr>
<tr>
<td><code>ztp initiate dhcp4</code></td>
<td>Use this command to send DHCP IPv4 requests.</td>
</tr>
<tr>
<td><code>ztp initiate dhcp4-client-identifier unique-identifier</code></td>
<td>Use this command to override the default DHCP IPv4 client identifier.</td>
</tr>
<tr>
<td><code>ztp initiate dhcp6</code></td>
<td>Use this command to send DHCP IPv6 requests.</td>
</tr>
<tr>
<td><code>ztp initiate dscp dscp-value</code></td>
<td>Use this command to set the DSCP value in the IPv4 packet header.</td>
</tr>
<tr>
<td><code>ztp initiate dscp6 dscp-value</code></td>
<td>Use this command to set the DSCP value in the IPv6 header.</td>
</tr>
<tr>
<td><code>ztp breakout nosignal-stay-in-breakout-mode</code></td>
<td>Use this command to keep the interfaces in breakout mode when there is no signal.</td>
</tr>
<tr>
<td><code>ztp breakout nosignal-stay-in-state-noshut</code></td>
<td>Use this command to keep the interfaces up when there is no signal.</td>
</tr>
<tr>
<td><code>ztp breakout hostname hostname</code></td>
<td>Use this command to set the XR hostname.</td>
</tr>
</tbody>
</table>
### Boot the Router Using iPXE

Before you use the iPXE boot, ensure that:

- DHCP server is set and is running.
- You have logged in to the System Admin console using the *admin* command.

Run the following command to invoke the iPXE boot process to reimage the router:

```
hw-module location all bootmedia network reload
```

**Example:**

```
sysadmin-vm:0_RP0# hw-module location all bootmedia network reload
Wed Dec 23 15:29:57.376 UTC
Reload hardware module ? [no,yes]
```

The following example shows the output of the command:

```
iPXE 1.0.0+ (3e573) -- Open Source Network Boot Firmware -- http://ipxe.org
Features: DNS HTTP TFTP VLAN EFI ISO9660 NBI Menu
Trying net0...
net0: c4:72:95:a6:14:e1 using dh8900cc on PCI01:00.1 (open)
 [Link:up, TX:0 TXE:0 RX:0 RXE:0]
Configuring (net0 c4:72:95:a6:14:e1).................. Ok << Talking to DHCP/PXE server to obtain network information
net0: 10.37.1.101/255.255.0.0 gw 10.37.1.0
net0: fe80::c672:95ff:fea6:14e1/64
 gw fe80::20c:29ff:fefb:b9fe
net1: fe80::c672:95ff:fea6:14e3/64 (inaccessible)
Next server: 10.37.1.235
Filename: http://10.37.1.235/ncs5k/ncs5k-mini-x.iso

http://10.37.1.235/ncs5k/ncs5k-mini-x.iso ... 58% << Downloading file as indicated by DHCP/PXE server to boot install image
```