
Implementing Secure Shell

Secure Shell (SSH) is an application and a protocol that provides a secure replacement to the Berkeley r-tools.
The protocol secures sessions using standard cryptographic mechanisms, and the application can be used
similarly to the Berkeley rexec and rsh tools.

Two versions of the SSH server are available: SSH Version 1 (SSHv1) and SSH Version 2 (SSHv2). SSHv1
uses Rivest, Shamir, and Adelman (RSA) keys and SSHv2 uses either Digital Signature Algorithm (DSA)
keys or Rivest, Shamir, and Adelman (RSA) keys, or Elliptic Curve Digital Signature Algorithm (ECDSA)
keys. Cisco software supports both SSHv1 and SSHv2.

This module describes how to implement Secure Shell.

Feature History for Implementing Secure Shell

ModificationRelease

This feature was introduced.Release 6.0

Support was added for these features:

• SSH Configuration Option to Restrict Cipher Public Key and HMAC
Algorithm

• Automatic Generation of SSH Host-Key Pairs

• SSH and SFTP in Baseline Cisco IOS XR Software Image

Release
7.0.1

• Prerequisites for Implementing Secure Shell, on page 2
• SSH and SFTP in Baseline Cisco IOS XR Software Image, on page 2
• Restrictions for Implementing Secure Shell, on page 2
• Configure SSH, on page 3
• Automatic Generation of SSH Host-Key Pairs, on page 7
• Configure SSH Client, on page 9
• Order of SSH Client Authentication Methods, on page 11
• SSH Configuration Option to Restrict Cipher Public Key and HMAC Algorithm, on page 12
• SSH Port Forwarding, on page 16
• Non-Default SSH Port, on page 19
• Information About Implementing Secure Shell, on page 23

Implementing Secure Shell
1

Prerequisites for Implementing Secure Shell
The following prerequisites are required to implement Secure Shell:

• Download the required image on your router. The SSH server and SSH client require you to have a a
crypto package (data encryption standard [DES], 3DES and AES) fromCisco downloaded on your router.

From Cisco IOS XR Software Release 7.0.1 and later, the SSH and SFTP
components are available in the baseline Cisco IOS XR software image itself.
For details, see, SSH and SFTP in Baseline Cisco IOS XR Software Image, on
page 2.

Note

• Configure user authentication for local or remote access. You can configure authentication with or without
authentication, authorization, and accounting (AAA).

• AAA authentication and authorizationmust be configured correctly for Secure Shell File Transfer Protocol
(SFTP) to work.

SSH and SFTP in Baseline Cisco IOS XR Software Image
From Cisco IOS XR Software Release 7.0.1 and later, the management plane and control plane components
that were part of the Cisco IOS XR security package (k9sec package) are moved to the base Cisco IOS XR
software image. These include SSH, SCP, SFTP and IPSec control plane. However, 802.1X protocol
(Port-Based Network Access Control) and data plane components likeMACsec remain as a part of the security
package as per the export compliance regulations. This segregation of package components makes the software
more modular. It also gives you the flexibility of including or excluding the security package as per your
requirements.

The base package and the security package allow FIPS, so that the control plane can negotiate FIPS-approved
algorithms.

Restrictions for Implementing Secure Shell
The following are some basic SSH restrictions and limitations of the SFTP feature:

• In order for an outside client to connect to the router, the router needs to have an RSA (for SSHv1 or
SSHv2) or DSA (for SSHv2) or ECDSA (for SSHv2) key pair configured. ECDSA, DSA and RSA keys
are not required if you are initiating an SSH client connection from the router to an outside routing device.
The same is true for SFTP: ECDSA, DSA and RSA keys are not required because SFTP operates only
in client mode.

• In order for SFTP to work properly, the remote SSH server must enable the SFTP server functionality.
For example, the SSHv2 server is configured to handle the SFTP subsystem with a line such as
/etc/ssh2/sshd2_config:

• subsystem-sftp /usr/local/sbin/sftp-server

Implementing Secure Shell
2

Implementing Secure Shell
Prerequisites for Implementing Secure Shell

• The SFTP server is usually included as part of SSH packages from public domain and is turned on by
default configuration.

• SFTP is compatible with sftp server version OpenSSH_2.9.9p2 or higher.

• RSA-based user authentication is supported in the SSH and SFTP servers. The support however, is not
extended to the SSH client.

• Execution shell and SFTP are the only applications supported.

• The SFTP client does not support remote filenames containing wildcards (* ?, []). The user must issue
the sftp command multiple times or list all of the source files from the remote host to download them
on to the router. For uploading, the router SFTP client can support multiple files specified using a wildcard
provided that the issues mentioned in the first through third bullets in this section are resolved.

• The cipher preference for the SSH server follows the order AES128, AES192, AES256, and, finally,
3DES. The server rejects any requests by the client for an unsupported cipher, and the SSH session does
not proceed.

• Use of a terminal type other than vt100 is not supported, and the software generates a warning message
in this case.

• Password messages of “none” are unsupported on the SSH client.

• Files created on the local device lose the original permission information because the router infrastructure
does not provide support for UNIX-like file permissions. For files created on the remote file system, the
file permission adheres to the umask on the destination host and the modification and last access times
are the time of the copy.

Configure SSH
Perform this task to configure SSH.

For SSHv1 configuration, Step 1 to Step 4 are required. For SSHv2 configuration, Step to Step 4 are optional.Note

From Cisco IOS XR Software Release 7.0.1 and later, the SSH host-key pairs are auto-generated at the time
of router boot up. Hence you need not perform steps 5 to 7 to generate the host keys explicilty. See, Automatic
Generation of SSH Host-Key Pairs, on page 7 for details.

Note

SUMMARY STEPS

1. configure
2. hostname hostname

3. domain name domain-name

4. Use the commit or end command.
5. crypto key generate rsa [usage keys | general-keys] [keypair-label]
6. crypto key generate dsa

Implementing Secure Shell
3

Implementing Secure Shell
Configure SSH

7. crypto key generate ecdsa [nistp256 | nistp384 | nistp521]
8. configure
9. ssh timeout seconds

10. Do one of the following:

• ssh server [vrf vrf-name]
• ssh server v2

11. Use the commit or end command.
12. show ssh
13. show ssh session details
14. show ssh history
15. show ssh history details
16. show tech-support ssh

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 hostname hostname

Example:

RP/0/RP0/CPU0:router(config)# hostname router1

Configures a hostname for your router.

Step 3 domain name domain-name

Example:

RP/0/RP0/CPU0:router(config)# domain name cisco.com

Defines a default domain name that the software uses to complete unqualified host names.

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 5 crypto key generate rsa [usage keys | general-keys] [keypair-label]

Example:

Implementing Secure Shell
4

Implementing Secure Shell
Configure SSH

RP/0/RP0/CPU0:router# crypto key generate rsa general-keys

Generates an RSA key pair. The RSA key modulus can be in the range of 512 to 4096 bits.

• To delete the RSA key pair, use the crypto key zeroize rsa command.

• This command is used for SSHv1 only.

Step 6 crypto key generate dsa

Example:

RP/0/RP0/CPU0:router# crypto key generate dsa

Enables the SSH server for local and remote authentication on the router. The supported key sizes are: 512, 768 and
1024 bits.

• The recommended minimum modulus size is 1024 bits.

• Generates a DSA key pair.

To delete the DSA key pair, use the crypto key zeroize dsa command.

• This command is used only for SSHv2.

Step 7 crypto key generate ecdsa [nistp256 | nistp384 | nistp521]

Example:

RP/0/RP0/CPU0:router# crypto key generate ecdsa nistp256

Generates an ECDSA key pair. The supported ECDSA curve types are: Nistp256, Nistp384 and Nistp521.

• To delete the ECDSA key pair, use the crypto key zeroize ecdsa [nistp256 | nistp384 | nistp521] command.

• This command is used for SSHv2 only.

Step 8 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 9 ssh timeout seconds

Example:

RP/0/RP0/CPU0:router(config)# ssh timeout 60

(Optional) Configures the timeout value for user authentication to AAA.

• If the user fails to authenticate itself to AAA within the configured time, the connection is terminated.

• If no value is configured, the default value of 30 seconds is used. The range is from 5 to 120.

Step 10 Do one of the following:

• ssh server [vrf vrf-name]

Implementing Secure Shell
5

Implementing Secure Shell
Configure SSH

• ssh server v2

Example:

RP/0/RP0/CPU0:router(config)# ssh server v2

• (Optional) Brings up an SSH server using a specified VRF of up to 32 characters. If no VRF is specified, the
default VRF is used.

To stop the SSH server from receiving any further connections for the specified VRF, use the no form of this
command. If no VRF is specified, the default is assumed.

The SSH server can be configured for multiple VRF usage.Note

• (Optional) Forces the SSH server to accept only SSHv2 clients if you configure the SSHv2 option by using the
ssh server v2 command. If you choose the ssh server v2 command, only the SSH v2 client connections are
accepted.

Step 11 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 12 show ssh

Example:

RP/0/RP0/CPU0:router# show ssh

(Optional) Displays all of the incoming and outgoing SSHv1 and SSHv2 connections to the router.

Step 13 show ssh session details

Example:

RP/0/RP0/CPU0:router# show ssh session details

(Optional) Displays a detailed report of the SSHv2 connections to and from the router.

Step 14 show ssh history

Example:

RP/0/RP0/CPU0:router# show ssh history

(Optional) Displays the last hundred SSH connections that were terminated.

Step 15 show ssh history details

Example:

RP/0/RP0/CPU0:router# show ssh history details

Implementing Secure Shell
6

Implementing Secure Shell
Configure SSH

(Optional) Displays the last hundred SSH connections that were terminated with additional details. This command is
similar to show ssh session details command but also mentions the start and end time of the session.

Step 16 show tech-support ssh

Example:

RP/0/RP0/CPU0:router# show tech-support ssh

(Optional) Automatically runs the show commands that display system information.

The order of priority while doing negotiation for a SSH connection is as follows:

1. ecdsa-nistp-521

2. ecdsa-nistp-384

3. ecdsa-nistp-256

4. rsa

5. dsa

Note

Automatic Generation of SSH Host-Key Pairs
This feature brings in the functionality of automatically generating the SSH host-key pairs for the DSA,
ECDSA (such as ecdsa-nistp256, ecdsa-nistp384, and ecdsa-nistp521) and RSA algorithms. This in turn
eliminates the need for explicitly generating each SSH host-key pair after the router boots up. Because the
keys are already present in the system, the SSH client can establish connection with the SSH server soon after
the router boots up with the basic SSH configuration. This is useful especially during zero touch provisioning
(ZTP) and Golden ISO boot up scenarios.

Before this automation, you had to execute the crypto key generate command to generate the required
host-key pairs.

Although the host-key pairs are auto-generated with the introduction of this feature, you still have the flexibility
to select only the required algorithms on the SSH server. You can use the ssh server algorithms host-key
command in XR Config mode to achieve the same. Alternatively, you can also use the existing crypto key
zeroize command in XR EXEC mode to remove the algorithms that are not required.

Prior to the introduction of this feature, you had to execute the crypto key generate command in XR EXEC
mode to generate the required host-key pairs.

In a system upgrade scenario from version 1 to version 2, the system does not generate the SSH host-key pairs
automatically if they were already generated in version 1. The host-key pairs are generated automatically only
if they were not generated in version 1.

Note

Implementing Secure Shell
7

Implementing Secure Shell
Automatic Generation of SSH Host-Key Pairs

Configure the Allowed SSH Host-Key Pair Algorithms
When the SSH client attempts a connection with the SSH server, it sends a list of SSH host-key pair algorithms
(in the order of preference) internally in the connection request. The SSH server, in turn, picks the first matching
algorithm from this request list. The server establishes a connection only if that host-key pair is already
generated in the system, and if it is configured (using the ssh server algorithms host-key command) as the
allowed algorithm.

If this configuration of allowed host-key pairs is not present in the SSH server, then you can consider that the
SSH server allows all host-key pairs. In that case, the SSH client can connect with any one of the host-key
pairs. Not having this configuration also ensures backward compatibility in system upgrade scenarios.

Note

Configuration Example

You may perform this (optional) task to specify the allowed SSH host-key pair algorithm (in this example,
ecdsa) from the list of auto-generated host-key pairs on the SSH server:

/* Example to select the ecdsa algorithm */
Router(config)#ssh server algorithms host-key ecdsa-nistp521

Similarly, you may configure other algorithms.

Running Configuration

ssh server algorithms host-key ecdsa-nistp521
!

Verify the SSH Host-Key Pair Algorithms

With the introduction of the automatic generation of SSH host-key pairs, the output of the show crypto key
mypubkey command displays key information of all the keys that are auto-generated. Before its introduction,
the output of this show command displayed key information of only those keys that you explicitly generated
using the crypto key generate command.

Note

Router#show crypto key mypubkey ecdsa
Mon Nov 19 12:22:51.762 UTC
Key label: the_default
Type : ECDSA General Curve Nistp256
Degree : 256
Created : 10:59:08 UTC Mon Nov 19 2018
Data :
04AC7533 3ABE7874 43F024C1 9C24CC66 490E83BE 76CEF4E2 51BBEF11 170CDB26
14289D03 6625FC4F 3E7F8F45 0DA730C3 31E960FE CF511A05 2B0AA63E 9C022482
6E

Key label: the_default
Type : ECDSA General Curve Nistp384
Degree : 384
Created : 10:59:08 UTC Mon Nov 19 2018
Data :

Implementing Secure Shell
8

Implementing Secure Shell
Configure the Allowed SSH Host-Key Pair Algorithms

04B70BAF C096E2CA D848EE72 6562F3CC 9F12FA40 BE09BFE6 AF0CA179 F29F6407
FEE24A43 84C5A5DE D7912208 CB67EE41 58CB9640 05E9421F 2DCDC41C EED31288
6CACC8DD 861DC887 98E535C4 893CB19F 5ED3F6BC 2C90C39B 10EAED57 87E96F78
B6

Key label: the_default
Type : ECDSA General Curve Nistp521
Degree : 521
Created : 10:59:09 UTC Mon Nov 19 2018
Data :
0400BA39 E3B35E13 810D8AE5 260B8047 84E8087B 5137319A C2865629 8455928F
D3D9CE39 00E097FF 6CA369C3 EE63BA57 A4C49C02 B408F682 C2153B7F AAE53EF8
A2926001 EF113896 5F1DA056 2D62F292 B860FDFB 0314CE72 F87AA2C9 D5DD29F4
DA85AE4D 1CA453AC 412E911A 419E9B43 0A13DAD3 7B7E88E4 7D96794B 369D6247
E3DA7B8A 5E

The following example shows the output for ed25519:

Router#show crypto key mypubkey ed25519
Wed Dec 16 16:12:21.464 IST
Key label: the_default
Type : ED25519
Size : 256
Created : 15:08:28 IST Tue Oct 13 2020
Data :
649CC355 40F85479 AE9BE26F B5B59153 78D171B6 F40AA53D B2E48382 BA30E5A9

Router#

Related Topics

Automatic Generation of SSH Host-Key Pairs, on page 7

Associated Commands

• ssh server algorithms host-key

• show crypto key mypubkey

Configure SSH Client
Perform this task to configure an SSH client.

SUMMARY STEPS

1. configure
2. ssh client knownhost device : /filename

3. Use the commit or end command.
4. ssh {ipv4-address | ipv6-address | hostname} [username user- cipher | source-interface type

instance]

Implementing Secure Shell
9

Implementing Secure Shell
Configure SSH Client

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 ssh client knownhost device : /filename

Example:

RP/0/RP0/CPU0:router(config)# ssh client knownhost slot1:/server_pubkey

(Optional) Enables the feature to authenticate and check the server public key (pubkey) at the client end.

The complete path of the filename is required. The colon (:) and slash mark (/) are also required.Note

Step 3 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 4 ssh {ipv4-address | ipv6-address | hostname} [username user- cipher | source-interface type instance]

Enables an outbound SSH connection.

• To run an SSHv2 server, you must have a VRF. This may be the default or a specific VRF. VRF changes are
applicable only to the SSH v2 server.

• The SSH client tries to make an SSHv2 connection to the remote peer. If the remote peer supports only the SSHv1
server, the peer internally spawns an SSHv1 connection to the remote server.

• The cipher des option can be used only with an SSHv1 client.

• The SSHv1 client supports only the 3DES encryption algorithm option, which is still available by default for those
SSH clients only.

• If the hostname argument is used and the host has both IPv4 and IPv6 addresses, the IPv6 address is used.

• If you are using SSHv1 and your SSH connection is being rejected, the reason could be that the RSA
key pair might have been zeroed out. Another reason could be that the SSH server to which the user is
connecting to using SSHv1 client does not accept SSHv1 connections. Make sure that you have specified
a hostname and domain. Then use the crypto key generate rsa command to generate an RSA host-key
pair, and then enable the SSH server.

Implementing Secure Shell
10

Implementing Secure Shell
Configure SSH Client

• If you are using SSHv2 and your SSH connection is being rejected, the reason could be that the DSA,
RSA host-key pair might have been zeroed out. Make sure you follow similar steps as mentioned above
to generate the required host-key pairs, and then enable the SSH server.

• When configuring the ECDSA, RSA or DSA key pair, you might encounter the following error messages:

• No hostname specified

You must configure a hostname for the router using the hostname command.

• No domain specified

You must configure a host domain for the router using the domain-name command.

• The number of allowable SSH connections is limited to the maximum number of virtual terminal lines
configured for the router. Each SSH connection uses a vty resource.

• SSH uses either local security or the security protocol that is configured through AAA on your router
for user authentication. When configuring AAA, you must ensure that the console is not running under
AAA by applying a keyword in the global configuration mode to disable AAA on the console.

If you are using Putty version 0.63 or higher to connect to the SSH client, set the
'Chokes on PuTTYs SSH2 winadj request' option under SSH > Bugs in your
Putty configuration to 'On.' This helps avoid a possible breakdown of the session
whenever some long output is sent from IOS XR to the Putty client.

Note

Configuring Secure Shell

The following example shows how to configure SSHv2 by creating a hostname, defining a domain
name, enabling the SSH server for local and remote authentication on the router by generating a DSA
key pair, bringing up the SSH server, and saving the configuration commands to the running
configuration file.

After SSH has been configured, the SFTP feature is available on the router.

From Cisco IOS XR Software Release 7.0.1 and later, the crypto keys are auto-generated at the time
of router boot up. Hence, you need to explicitly generate the host-key pair only if it is not present in
the router under some scenarios.

configure
hostname router1
domain name cisco.com
exit
crypto key generate rsa/dsa
configure
ssh server
end

Order of SSH Client Authentication Methods
The default order of authentication methods for SSH clients on Cisco IOS XR routers is as follows:

Implementing Secure Shell
11

Implementing Secure Shell
Order of SSH Client Authentication Methods

• On routers running Cisco IOS XR SSH:

• public-key, password and keyboard-interactive

• On routers running CiscoSSH (open source-based SSH):

• public-key, keyboard-interactive and password

How to Set the Order of Authentication Methods for SSH Clients
To set the preferred order of authentication methods for SSH clients on Cisco IOS XR routers, use the ssh
client auth-method command in the XR Config mode. This command is available from Cisco IOS XR
Software Release 7.9.2/Release 7.10.1and later.

Configuration Example

In this example, we set the order of SSH client authentication methods in such a way that public key
authentication is negotiated first, followed by keyboard-interactive, and then password-based authentication.

Router#configure
Router(config)#ssh client auth-method public-key keyboard-interactive password
Router(config-ssh)#commit

Running Configuration

Router#show run ssh client auth-methods
Tue Nov 21 17:55:44.688 IST
ssh client auth-methods public-key keyboard-interactive password
Router#

SSH Configuration Option to Restrict Cipher Public Key and
HMAC Algorithm

The Cisco IOS XR software provides a new configuration option to control the key algorithms to be negotiated
with the peer while establishing an SSH connection with the router. With this feature, you can enable the
insecure SSH algorithms on the SSH server, which are otherwise disabled by default. A new configuration
option is also available to restrict the SSH client from choosing the HMAC, or hash-based message
authentication codes algorithm while trying to connect to the SSH server on the router.

You can also configure a list of ciphers as the default cipher list, thereby having the flexibility to enable or
disable any particular cipher.

Use caution in enabling the insecure SSH algorithms to avoid any possible security attack.Caution

To disable the HMAC algorithm, use the ssh client disable hmac command or the ssh server disable hmac
command in XR Config mode.

Implementing Secure Shell
12

Implementing Secure Shell
How to Set the Order of Authentication Methods for SSH Clients

To enable the required cipher, use the ssh client enable cipher command or the ssh server enable cipher
command in XR Config mode.

The supported encryption algorithms (in the order of preference) are:

1. aes128-ctr

2. aes192-ctr

3. aes256-ctr

4. aes128-gcm@openssh.com

5. aes256-gcm@openssh.com

6. aes128-cbc

7. aes192-cbc

8. aes256-cbc

9. 3des-cbc

In SSH, the CBC-based ciphers are disabled by default. To enable these, you can use the ssh client enable
cipher command or the ssh server enable cipher command with the respective CBC options (aes-cbc or
3des-cbc). All CTR-based and GCM-based ciphers are enabled by default.

Disable HMAC Algorithm

Configuration Example to Disable HMAC Algorithm

Router(config)# ssh server disable hmac hmac-sha1
Router(config)#commit

Router(config)# ssh client disable hmac hmac-sha1
Router(config)#commit

Running Configuration

ssh server disable hmac hmac-sha1
!

ssh client disable hmac hmac-sha1
!

Related Topics

SSH Configuration Option to Restrict Cipher Public Key and HMAC Algorithm, on page 12

Associated Commands

• ssh client disable hmac

Implementing Secure Shell
13

Implementing Secure Shell
Disable HMAC Algorithm

• ssh server disable hmac

Enable Cipher Public Key

Configuration Example to Enable Cipher Public Key

To enable all ciphers on the client and the server:

Router 1:

Router(config)# ssh client algorithms cipher aes256-cbc aes256-ctr aes192-ctr aes192-cbc
aes128-ctr aes128-cbc aes128-gcm@openssh.com aes256-gcm@openssh.com 3des-cbc

Router 2:

Router(config)# ssh server algorithms cipher aes256-cbc aes256-ctr aes192-ctr aes192-cbc
aes128-ctr aes128-cbc aes128-gcm@openssh.com aes256-gcm@openssh.com 3des-cbc

To enable the CTR cipher on the client and the CBC cipher on the server:

Router 1:

Router(config)# ssh client algorithms cipher aes128-ctr aes192-ctr aes256-ctr

Router 2:

Router(config)# ssh server algorithms cipher aes128-cbc aes256-cbc aes192-cbc 3des-cbc

Without any cipher on the client and the server:

Router 1:

Router(config)# no ssh client algorithms cipher

Router 2:

Router(config)# no ssh server algorithms cipher

Enable only the deprecated algorithms on the client and the server:

Router 1:

Router(config)# ssh client algorithms cipher aes128-cbc aes192-cbc aes256-cbc 3des-cbc

Router 2:

Router(config)# ssh server algorithms cipher aes128-cbc aes192-cbc aes256-cbc 3des-cbc

Implementing Secure Shell
14

Implementing Secure Shell
Enable Cipher Public Key

Enable the deprecated algorithm (using enable cipher command) and enable the CTR cipher (using algorithms
cipher command) on the client and the server:

Router 1:

Router(config)# ssh client enable cipher aes-cbc 3des-cbc
Router(config)# ssh client algorithms cipher aes128-ctr aes192-ctr aes256-ctr

Router 2:

Router(config)# ssh server enable cipher aes-cbc 3des-cbc
Router(config)# ssh server algorithms cipher aes128-ctr aes192-ctr aes256-ctr

Running Configuration

All ciphers enabled on the client and the server:

Router 1:

ssh client algorithms cipher aes256-cbc aes256-ctr aes192-ctr aes192-cbc aes128-ctr aes128-cbc
aes128-gcm@openssh.com aes256-gcm@openssh.com 3des-cbc
!

Router 2:

ssh client algorithms cipher aes256-cbc aes256-ctr aes192-ctr aes192-cbc aes128-ctr aes128-cbc
aes128-gcm@openssh.com aes256-gcm@openssh.com 3des-cbc
!

Related Topics

SSH Configuration Option to Restrict Cipher Public Key and HMAC Algorithm, on page 12

Associated Commands

• ssh client enable cipher

• ssh server enable cipher

• ssh client algorithms cipher

• ssh server algorithms cipher

Implementing Secure Shell
15

Implementing Secure Shell
Enable Cipher Public Key

SSH Port Forwarding
Table 1: Feature History Table

Feature DescriptionRelease InformationFeature Name

With this feature enabled, the SSH
client on a local host forwards the
traffic coming on a given port to
the specified host and port on a
remote server, through an encrypted
SSH channel. Legacy applications
that do not otherwise support data
encryption can leverage this
functionality to ensure network
security and confidentiality to the
traffic that is sent to remote
application servers.

This feature introduces the ssh
server port-forwarding local
command.

Release 7.3.2SSH Port Forwarding

SSH port forwarding is a method of forwarding the otherwise insecure TCP/IP connections from the SSH
client to server through a secure SSH channel. Since the traffic is directed to flow through an encrypted SSH
connection, it is tough to snoop or intercept this traffic while in transit. This SSH tunneling provides network
security and confidentiality to the data traffic, and hence legacy applications that do not otherwise support
encryption can mainly benefit out of this feature. You can also use this feature to implement VPN and to
access intranet services across firewalls.

Figure 1: SSH Port Forwarding

Consider an application on the SSH client residing on a local host, trying to connect to an application server
residing on a remote host. With tunneling enabled, the application on the SSH client connects to a port on the
local host that the SSH client listens to. The SSH client then forwards the data traffic of the application to the
SSH server over an encrypted tunnel. The SSH server then connects to the actual application server that is
either residing on the same router or on the same data center as the SSH server. The entire communication of
the application is thus secured, without having to modify the application or the work flow of the end user.

The SSH port forwarding feature is disabled, by default. You can enable the feature by using the ssh server
port-forwarding local command in the XR Config mode.

Implementing Secure Shell
16

Implementing Secure Shell
SSH Port Forwarding

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5000/security/b-system-security-cr-ncs5000/secure-shell-commands.html#wp1149974546
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5000/security/b-system-security-cr-ncs5000/secure-shell-commands.html#wp1149974546

How Does SSH Port Forwarding Work?

Figure 2: Sample Topology for SSH Port Forwarding

Consider a scenario where port forwarding is enabled on the SSH server running on Router-1, in this topology.
An SSH client running on a local host tries to create a secure tunnel to the SSH server, for a local application
to eventually reach the remote application server running on Router-2.

The client tries to establish an SSH connection to Router-1 using the following command:

ssh -L local-port:remote-server-hostname:remote-port username@sshserver-hostname

where,

local-port is the local port number of the host where the SSH client and the application reside. Port 5678, in
this example.

remote-server-hostname:remote-port is the TCP/IP host name and port number of the remote application
server where the recipient (SSH server) must connect the channel from the SSH client to. 192.168.0.2 and
23, in this example.

sshserver-hostname is the domain name or IP address of the SSH server which is the recipient of the SSH
client request. 192.168.0.1, in this example.

For example,

ssh -L 5678:192.168.0.2:23 admin@192.168.0.1

When the SSH server receives a TCP/IP packet from the SSH client, it accepts the packet and opens a socket
to the remote server and port specified in that packet. Once the connection between SSH client and server is
established, the SSH server connects that communication channel to the newly created socket. From then
onwards, SSH server forwards all the incoming data from the client on that channel to that socket. This type
of connection is known as port-forwarded local connection. When the client closes the connection, the SSH
server closes the socket and the forwarded channel.

How to Enable SSH Port Forwarding

Guidelines for Enabling SSH Port Forwarding Feature

• The Cisco IOSXR software supports SSH port forwarding only on SSH server; not on SSH client. Hence,
to utilize this feature, the SSH client running at the end host must already have the support for SSH port
forwarding or tunneling.

• The remote host must be reachable on the same VRF where the current SSH connection between the
server and the client is established.

• Port numbers need not need match for SSH port forwarding to work. You can map any port on the SSH
server to any port on the client.

Implementing Secure Shell
17

Implementing Secure Shell
How to Enable SSH Port Forwarding

• If the SSH client tries to do port forwarding without the feature being enabled on the SSH server, the
port forwarding fails, and displays an error message on the console. Similarly the port-forwarded channel
closes in case there is any connectivity issue or if the server receives an SSH packet from the client in
an improper format.

Configuration Example

Router#configure
Router(config)#ssh server port-forwarding local
Router(config)#commit

Running Configuration

Router#show running-configuration

ssh server port-forwarding local
!

Verification

Use the show ssh command to see the details of the SSH sessions. The connection type field shows as
tcp-forwarded-local for the port-forwarded session.

Router#show ssh

Wed Oct 14 11:22:05.575 UTC
SSH version : Cisco-2.0

id chan pty location state userid host ver authentication connection
type
--
Incoming sessions
15 1 XXX 0/RP0/CPU0 SESSION_OPEN admin 192.168.122.1 v2 password
port-forwarded-local

Outgoing sessions

Router#

Use the show ssh server command to see the details of the SSH server. The Port Forwarding column shows
as local for the port-forwarded session. Whereas, for a regular SSH session, the field displays as disabled.

Router#show ssh server

Syslogs for SSH Port Forwarding Feature

The router console displays the following syslogs at various SSH session establishment events.

• When SSH port forwarding session is successfully established:

RP/0/RP0/CPU0:Aug 24 13:10:15.933 IST: SSHD_[66632]:
%SECURITY-SSHD-6-PORT_FWD_INFO_GENERAL : Port Forwarding, Target:=10.105.236.155,
Port:=22, Originator:=127.0.0.1,Port:=41590, Vrf:=0x60000000, Connection forwarded

• If SSH client tries to establish a port forwarding session without SSH port forwarding feature being
enabled on the SSH server:

Implementing Secure Shell
18

Implementing Secure Shell
How to Enable SSH Port Forwarding

RP/0/RP0/CPU0:Aug 24 13:20:31.572 IST: SSHD_[65883]: %SECURITY-SSHD-3-PORT_FWD_ERR_GENERAL
: Port Forwarding, Port forwarding is not enabled

Associated Command

• ssh server port-forwarding local

Non-Default SSH Port
Table 2: Feature History Table

Feature DescriptionRelease InformationFeature Name

We have enhanced the system
security to minimize the automated
attacks that may target the default
Secure Socket Shell (SSH) port on
your router. You can now specify
a non-default port number for the
SSH server on your router. The
SSH, Secure Copy Protocol (SCP),
and Secure File Transfer Protocol
(SFTP) client services can then
access your router only through this
non-default port. The new port
option also enables the SSH, SCP,
and SFTP clients on your router to
connect to SSH servers on the
network that use a wide range of
non-default port numbers. In earlier
releases, these SSH, SCP, and
SFTP connections were established
through the default SSH port, 22.
The non-default SSH port is
supported only on SSH version 2.

The feature introduces the ssh
server port command.

The feature modifies these
commands to include the port
option:

• ssh

• sftp

• scp

Release 7.7.1Non-Default SSH Port

Implementing Secure Shell
19

Implementing Secure Shell
Non-Default SSH Port

https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5000/security/b-system-security-cr-ncs5000/secure-shell-commands.html#wp2625392426
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5000/security/b-system-security-cr-ncs5000/secure-shell-commands.html#wp2625392426
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5000/security/b-system-security-cr-ncs5000/secure-shell-commands.html#wp3319202130
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5000/security/b-system-security-cr-ncs5000/secure-shell-commands.html#wp1306967150

The SSH, SCP, and SFTP services on the Cisco IOS XR routers used the default SSH port number, 22, to
establish connections between the server and the client. From Cisco IOS XR Software Release 7.7.1 and later,
you can specify a non-default SSH port number within a specific range for these services on Cisco IOS XR
64-bit routers. This non-default port option is available for routers that are functioning as servers, or as clients
for the SSH, SCP and SFTP services. This feature helps to restrict insecure client services from accessing the
router through the default SSH server port. Similarly, for Cisco IOS XR routers that are running as SSH
clients, the non-default port number option enables them to connect to other SSH servers on the network that
listens on a wide range of non-default SSH port numbers.

The non-default SSH port number ranges from 5520 to 5529 for the SSH server, and from 1025 to 65535 for
the SSH client.

The SSH server on the router does not listen on both the default and non-default ports at the same time. If
you have configured a non-default SSH server port, then the server listens only on that non-default port for
the client connections. The SSH clients can then establish sessions through this non-default SSH port. The
SCP and SFTP services also use the same SSH port for their connections, and hence they establish the client
sessions through the newly configured port.

If a session was already established through the default port, then that session remains intact even if you
change the ssh server port to a non-default port. The further client sessions are attempted through the newly
configured non-default port.

Restrictions for Non-Default SSH Port

These restrictions apply to the non-default SSH port option:

• Available only on 64-bit Cisco IOS XR routers; not on 32-bit routers

• Available only on version 2 of SSH (SSHv2); not on version 1 (SSHv1)

How to Configure Non-Default SSH Port

To establish SSH connections on the non-default port, ensure that the non-default port that you select for the
SSH server is not used by any other application on the router.

Note

Configuration Example

SSH Server:

To configure the non-default SSH port for the SSH server on the router, use the ssh server port command in
the XR Config mode.

Router#configure
Router(config)#ssh server port 5520
Router(config)#commit

SSH Client:

Similarly, the port option is available for the SSH client also, to initiate a connection to another SSH server
that listens on a non-default SSH port number.

Implementing Secure Shell
20

Implementing Secure Shell
How to Configure Non-Default SSH Port

This example shows how to connect to an SSH server, with IP address 198.51.100.1, that is listening on
non-default SSH port 5525.

Router#ssh 198.51.100.1 port 5525 username user1

Running Configuration

This is a sample running configuration of the SSH server.

Router#show running-configuration
!
ssh server v2
ssh server port 5520
ssh server vrf default
!

Verification

Use the following show commands to verify the SSH server configuration and LPTS entries for SSH
connections.

In this example, the SSH port field displays the port number, '5520', that you have configured for the SSH
server.

Router#show ssh server
Fri May 20 07:22:57.579 UTC

SSH Server Parameters

Current supported versions := v2
SSH port := 5520
SSH vrfs := vrfname:=default(v4-acl:=, v6-acl:=)

Netconf Port := 830
Netconf Vrfs :=

Algorithms

Hostkey Algorithms :=
x509v3-ssh-rsa,ssh-rsa-cert-v01@openssh.com,ecdsa-sha2-nistp521,ecdsa-sha2-nistp384,ecdsa-sha2-nistp256,rsa-sha2-512,rsa-sha2-256,ssh-rsa,ssh-dsa,ssh-ed25519

Key-Exchange Algorithms :=
ecdh-sha2-nistp521,ecdh-sha2-nistp384,ecdh-sha2-nistp256,diffie-hellman-group14-sha1,curve25519-sha256,diffie-hellman-group14-sha256,diffie-hellman-group16-sha512,curve25519-sha256@libssh.org

Encryption Algorithms :=
aes128-ctr,aes192-ctr,aes256-ctr,aes128-gcm@openssh.com,aes256-gcm@openssh.com,chacha20-poly1305@openssh.com

Mac Algorithms := hmac-sha2-512,hmac-sha2-256,hmac-sha1

Authentication Method Supported

PublicKey := Yes
Password := Yes

Keyboard-Interactive := Yes
Certificate Based := Yes

Others

DSCP := 16
Ratelimit := 60

Implementing Secure Shell
21

Implementing Secure Shell
How to Configure Non-Default SSH Port

Sessionlimit := 64
Rekeytime := 60

Server rekeyvolume := 1024
TCP window scale factor := 1

Backup Server := Disabled
Host Trustpoint :=
User Trustpoint :=
Port Forwarding := Disabled

Max Authentication Limit := 20
Certificate username := Common name(CN)

OpenSSH Host Trustpoint :=
OpenSSH User Trustpoint :=

In the following example, the Port field in theLocal-Address,Port column for theTCP entry for SSH displays
the port number as '5520'. This is the port on which the SSH server listens for client connections.

Router#show lpts bindings brief
Fri May 20 07:23:21.416 UTC

@ - Indirect binding; Sc - Scope

Location Clnt Sc L3 L4 VRF-ID Interface Local-Address,Port Remote-Address,Port
---------- ---- -- ---- ------ --------- ------------ --------------------------------------
0/RP0/CPU0 IPV4 LO IPV4 ICMP * any any,ECHO any
0/RP0/CPU0 IPV4 LO IPV4 ICMP * any any,TSTAMP any
0/RP0/CPU0 IPV4 LO IPV4 ICMP * any any,MASKREQ any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,ECHOREQ any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDRTRSLCT any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDRTRADV any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDNBRSLCT any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDNBRADV any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDREDIRECT any
0/RP0/CPU0 BFD LO IPV4 UDP * any any any
0/0/CPU0 IPV4 LO IPV4 ICMP * any any,ECHO any
0/0/CPU0 IPV4 LO IPV4 ICMP * any any,TSTAMP any
0/0/CPU0 IPV4 LO IPV4 ICMP * any any,MASKREQ any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,ECHOREQ any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDRTRSLCT any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDRTRADV any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDNBRSLCT any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDNBRADV any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDREDIRECT any
0/0/CPU0 BFD LR IPV4 UDP * any any 128.64.0.0/16
0/RP0/CPU0 TCP LR IPV6 TCP default any any,5520 any
0/RP0/CPU0 TCP LR IPV4 TCP default any any,5520 any
0/RP0/CPU0 UDP LR IPV6 UDP default any any,33433 any
0/RP0/CPU0 UDP LR IPV4 UDP default any any,33433 any
0/RP0/CPU0 RAW LR IPV4 IGMP default any any any
0/RP0/CPU0 RAW LR IPV4 L2TPV3 default any any any
0/RP0/CPU0 RAW LR IPV6 ICMP6 default any any,MLDLQUERY any
0/RP0/CPU0 RAW LR IPV6 ICMP6 default any any,LSTNRREPORT any
0/RP0/CPU0 RAW LR IPV6 ICMP6 default any any,MLDLSTNRDN any
0/RP0/CPU0 RAW LR IPV6 ICMP6 default any any,LSTNRREPORT any

Router#

If the non-default port was not configured, then the SSH server listens on the default SSH port 22, and the
above Port field displays '22'.

If a session was already established through the default port, and if you change the ssh server port to a
non-default port, then the output still displays an entry for that session on the default port, 22. Another entry

Implementing Secure Shell
22

Implementing Secure Shell
How to Configure Non-Default SSH Port

shows that the SSH server is listening on the newly configured non-default port. New connections establish
through the non-default port, 5520, in this example.

Location Clnt Sc L3 L4 VRF-ID Interface Local-Address,Port Remote-Address,Port
---------- ---- -- ---- --- --------- --------- ----------------- ------------------
.
.
.
0/RP0/CPU0 TCP LR IPV4 TCP default any 192.0.2.1,5520 198.51.100.1,37764
0/RP0/CPU0 TCP LR IPV4 TCP default any any,5520 any
0/RP0/CPU0 TCP LR IPV6 TCP default any any,5520 any
0/RP0/CPU0 TCP LR IPV4 TCP default any 192.0.2.1,22 198.51.100.1,45722
.
.
.

Information About Implementing Secure Shell
To implement SSH, you should understand the following concepts:

SSH Server
The SSH server feature enables an SSH client to make a secure, encrypted connection to a Cisco router. This
connection provides functionality that is similar to that of an inbound Telnet connection. Before SSH, security
was limited to Telnet security. SSH allows a strong encryption to be used with the Cisco software authentication.
The SSH server in Cisco software works with publicly and commercially available SSH clients.

SSH Client
The SSH client feature is an application running over the SSH protocol to provide device authentication and
encryption. The SSH client enables a Cisco router to make a secure, encrypted connection to another Cisco
router or to any other device running the SSH server. This connection provides functionality that is similar
to that of an outbound Telnet connection except that the connection is encrypted. With authentication and
encryption, the SSH client allows for a secure communication over an insecure network.

The SSH client works with publicly and commercially available SSH servers. The SSH client supports the
ciphers of AES, 3DES, message digest algorithm 5 (MD5), SHA1, and password authentication. User
authentication is performed in the Telnet session to the router. The user authentication mechanisms supported
for SSH are RADIUS, TACACS+, and the use of locally stored usernames and passwords.

The SSH client supports setting DSCP value in the outgoing packets.
ssh client dscp <value from 0 – 63>

If not configured, the default DSCP value set in packets is 16 (for both client and server).

The SSH client supports the following options:

• DSCP—DSCP value for SSH client sessions.
RP/0/5/CPU0:router#configure
RP/0/5/CPU0:router(config)#ssh ?
client Provide SSH client service
server Provide SSH server service

Implementing Secure Shell
23

Implementing Secure Shell
Information About Implementing Secure Shell

timeout Set timeout value for SSH
RP/0/5/CPU0:router(config)#ssh client ?

• Knownhost—Enable the host pubkey check by local database.
• Source-interface—Source interface for SSH client sessions.
RP/0/5/CPU0:router(config)#ssh client source-interface ?
ATM ATM Network Interface(s)
BVI Bridge-Group Virtual Interface
Bundle-Ether Aggregated Ethernet interface(s)
CEM Circuit Emulation interface(s)
GigabitEthernet GigabitEthernet/IEEE 802.3 interface(s)
IMA ATM Network Interface(s)
IMtestmain IM Test Interface
Loopback Loopback interface(s)
MgmtEth Ethernet/IEEE 802.3 interface(s)
Multilink Multilink network interface(s)
Null Null interface
PFItestmain PFI Test Interface
PFItestnothw PFI Test Not-HW Interface
PW-Ether PWHE Ethernet Interface
PW-IW PWHE VC11 IP Interworking Interface
Serial Serial network interface(s)
VASILeft VASI Left interface(s)
VASIRight VASI Right interface(s)
test-bundle-channel Aggregated Test Bundle interface(s)
tunnel-ipsec IPSec Tunnel interface(s)
tunnel-mte MPLS Traffic Engineering P2MP Tunnel interface(s)
tunnel-te MPLS Traffic Engineering Tunnel interface(s)
tunnel-tp MPLS Transport Protocol Tunnel interface

RP/0/5/CPU0:router(config)#ssh client source-interface
RP/0/5/CPU0:router(config)#

SSH also supports remote command execution as follows:
RP/0/5/CPU0:router#ssh ?
A.B.C.D IPv4 (A.B.C.D) address
WORD Hostname of the remote node
X:X::X IPv6 (A:B:C:D...:D) address
vrf vrf table for the route lookup

RP/0/5/CPU0:router#ssh 10.1.1.1 ?
cipher Accept cipher type
command Specify remote command (non-interactive)
source-interface Specify source interface
username Accept userid for authentication
<cr>

RP/0/5/CPU0:router#ssh 192.68.46.6 username admin command "show redundancy sum"
Password:

Wed Jan 9 07:05:27.997 PST
Active Node Standby Node
----------- ------------

0/4/CPU0 0/5/CPU0 (Node Ready, NSR: Not Configured)

RP/0/5/CPU0:router#

SFTP Feature Overview
SSH includes support for standard file transfer protocol (SFTP) , a new standard file transfer protocol introduced
in SSHv2. This feature provides a secure and authenticated method for copying router configuration or router
image files.

Implementing Secure Shell
24

Implementing Secure Shell
SFTP Feature Overview

The SFTP client functionality is provided as part of the SSH component and is always enabled on the router.
Therefore, a user with the appropriate level can copy files to and from the router. Like the copy command,
the sftp command can be used only in XR EXEC mode.

The SFTP client is VRF-aware, and you may configure the secure FTP client to use the VRF associated with
a particular source interface during connections attempts. The SFTP client also supports interactive mode,
where the user can log on to the server to perform specific tasks via the Unix server.

The SFTP Server is a sub-system of the SSH server. In other words, when an SSH server receives an SFTP
server request, the SFTP API creates the SFTP server as a child process to the SSH server. A new SFTP server
instance is created with each new request.

The SFTP requests for a new SFTP server in the following steps:

• The user runs the sftp command with the required arguments

• The SFTP API internally creates a child session that interacts with the SSH server

• The SSH server creates the SFTP server child process

• The SFTP server and client interact with each other in an encrypted format

• The SFTP transfer is subject to LPTS policer "SSH-Known". Low policer values will affect SFTP transfer
speeds

In IOS-XR SW release 4.3.1 onwards the default policer value for SSH-Known has been reset from 2500pps
to 300pps. Slower transfers are expected due to this change. You can adjust the lpts policer value for this punt
cause to higher values that will allow faster transfers

Note

When the SSH server establishes a new connection with the SSH client, the server daemon creates a new SSH
server child process. The child server process builds a secure communications channel between the SSH client
and server via key exchange and user authentication processes. If the SSH server receives a request for the
sub-system to be an SFTP server, the SSH server daemon creates the SFTP server child process. For each
incoming SFTP server subsystem request, a new SSH server child and a SFTP server instance is created. The
SFTP server authenticates the user session and initiates a connection. It sets the environment for the client
and the default directory for the user.

Once the initialization occurs, the SFTP server waits for the SSH_FXP_INIT message from the client, which
is essential to start the file communication session. This message may then be followed by any message based
on the client request. Here, the protocol adopts a 'request-response' model, where the client sends a request
to the server; the server processes this request and sends a response.

The SFTP server displays the following responses:

• Status Response

• Handle Response

• Data Response

• Name Response

Implementing Secure Shell
25

Implementing Secure Shell
SFTP Feature Overview

The server must be running in order to accept incoming SFTP connections.Note

RSA Based Host Authentication
Verifying the authenticity of a server is the first step to a secure SSH connection. This process is called the
host authentication, and is conducted to ensure that a client connects to a valid server.

The host authentication is performed using the public key of a server. The server, during the key-exchange
phase, provides its public key to the client. The client checks its database for known hosts of this server and
the corresponding public-key. If the client fails to find the server's IP address, it displays a warning message
to the user, offering an option to either save the public key or discard it. If the server’s IP address is found,
but the public-key does not match, the client closes the connection. If the public key is valid, the server is
verified and a secure SSH connection is established.

The IOS XR SSH server and client had support for DSA based host authentication. But for compatibility with
other products, like IOS, RSA based host authentication support is also added.

RSA Based User Authentication
One of the method for authenticating the user in SSH protocol is RSA public-key based user authentication.
The possession of a private key serves as the authentication of the user. This method works by sending a
signature created with a private key of the user. Each user has a RSA keypair on the client machine. The
private key of the RSA keypair remains on the client machine.

The user generates an RSA public-private key pair on a unix client using a standard key generation mechanism
such as ssh-keygen. The max length of the keys supported is 4096 bits, and the minimum length is 512 bits.
The following example displays a typical key generation activity:

bash-2.05b$ ssh-keygen –b 1024 –t rsa
Generating RSA private key, 1024 bit long modulus

The public key must be in base64 encoded (binary) formats for it to be imported correctly into the router.

You can use third party tools available on the Internet to convert the key to the binary format.Note

Once the public key is imported to the router, the SSH client can choose to use the public key authentication
method by specifying the request using the “-o” option in the SSH client. For example:

client$ ssh -o PreferredAuthentications=publickey 1.2.3.4

If a public key is not imported to a router using the RSA method, the SSH server initiates the password based
authentication. If a public key is imported, the server proposes the use of both the methods. The SSH client
then chooses to use either method to establish the connection. The system allows only 10 outgoing SSH client
connections.

Currently, only SSH version 2 and SFTP server support the RSA based authentication.

Implementing Secure Shell
26

Implementing Secure Shell
RSA Based Host Authentication

The preferred method of authentication would be as stated in the SSH RFC. The RSA based authentication
support is only for local authentication, and not for TACACS/RADIUS servers.

Note

Authentication, Authorization, and Accounting (AAA) is a suite of network security services that provide the
primary framework through which access control can be set up on your Cisco router or access server.

SSHv2 Client Keyboard-Interactive Authentication
An authentication method in which the authentication information is entered using a keyboard is known as
keyboard-interactive authentication. This method is an interactive authentication method in the SSH protocol.
This type of authentication allows the SSH client to support different methods of authentication without having
to be aware of their underlying mechanisms.

Currently, the SSHv2 client supports the keyboard-interactive authentication. This type of authentication
works only for interactive applications.

The password authentication is the default authentication method. The keyboard-interactive authentication
method is selected if the server is configured to support only the keyboard-interactive authentication.

Note

Implementing Secure Shell
27

Implementing Secure Shell
SSHv2 Client Keyboard-Interactive Authentication

Implementing Secure Shell
28

Implementing Secure Shell
SSHv2 Client Keyboard-Interactive Authentication

	Implementing Secure Shell
	Prerequisites for Implementing Secure Shell
	SSH and SFTP in Baseline Cisco IOS XR Software Image
	Restrictions for Implementing Secure Shell
	Configure SSH
	Automatic Generation of SSH Host-Key Pairs
	Configure the Allowed SSH Host-Key Pair Algorithms

	Configure SSH Client
	Order of SSH Client Authentication Methods
	How to Set the Order of Authentication Methods for SSH Clients

	SSH Configuration Option to Restrict Cipher Public Key and HMAC Algorithm
	Disable HMAC Algorithm
	Enable Cipher Public Key

	SSH Port Forwarding
	How to Enable SSH Port Forwarding

	Non-Default SSH Port
	How to Configure Non-Default SSH Port

	Information About Implementing Secure Shell
	SSH Server
	SSH Client
	SFTP Feature Overview
	RSA Based Host Authentication
	RSA Based User Authentication
	SSHv2 Client Keyboard-Interactive Authentication

