Script Infrastructure and Sample Templates

Table 1: Feature History Table

Feature Name Release Information Description

Contextual Script Infrastructure | Release 7.3.2 When you create and run Python
scripts on the router, this feature
enables a contextual interaction
between the scripts, the IOS XR
software, and the external servers.
This context, programmed in the
script, uses Cisco IOS XR Python
packages, modules, and libraries to:

* obtain operational data from
the router

* set configurations and
conditions

* detect events in the network
and trigger an appropriate
action

You can create Python scripts and execute the scripts on routers running Cisco IOS XR software. The software
supports the Python packages, libraries and dictionaries in the software image. For more informtion about the
script types and to run the scripts using CLI commands To run the same actions using NETCONF RPCs,

Cisco IOS XR, Release 7.3.2 supports creating scripts using Python version 3.5.
Cisco IOS XR, Release 7.5.1 supports creating scripts using Python version 3.9.

* Cisco IOS XR Python Packages, on page 2
* Cisco IOS XR Python Libraries, on page 4
» Sample Script Templates, on page 5

* Xrcli_helper Python Module, on page 8

* Xrlog Python Module, on page 12

Script Infrastructure and Sample Templates [JJjj

Script Infrastructure and Sample Templates |
. Cisco 10S XR Python Packages

Cisco 10S XR Python Packages

Table 2: Feature History Table

Feature Name Release Information Description
Upgraded IOS XR Python from | Release 7.5.1 This upgrade adds new modules
Version 3.5 to Version 3.9 and capabilities to create Python

scripts and execute the scripts on
routers running Cisco [0S XR
software. Some of the modules
added as part of the upgraded 10S
XR Python 3.9 are: hashlib, idna,
packaging, pyparsing, six, yaml.

With on-box Python scripting, automation scripts that was run from an external controller is now run on the
router. To achieve this functionality, Cisco IOS XR software provides contextual support using SDK libraries
and standard protocols.

The following Python third party application packages are supported by the scripting infrastructure and can
be used to create automation scripts.

Package Description Support Introduced in Release
appdirs Chooses the appropriate Release 7.3.2
platform-specific directories for
user data.
array Defines an object type that can Release 7.3.2

compactly represent an array of
basic values: characters, integers,
floating point numbers.

asnlcrypto Parses and serializes Abstract Release 7.3.2
Syntax Notation One (ASN.1) data
structures.

chardet Universal character encoding Release 7.3.2

auto-detector.

concurrent.futures Provides a high-level interface for | Release 7.3.2
asynchronously executing callables.

ecdsa Implements Elliptic Curve Digital | Release 7.3.2
Signature Algorithm (ECDSA)
cryptography library to create
keypairs (signing key and verifying
key), sign messages, and verify the
signatures.

[l Script Infrastructure and Sample Templates

| Script Infrastructure and Sample Templates
Cisco 10S XR Python Packages .

Package Description Support Introduced in Release

enum Enumerates symbolic names Release 7.3.2
(members) bound to unique,
constant values.

email Manages email messages. Release 7.3.2

google.protobuf Supports language-neutral, Release 7.3.2
platform-neutral, extensible
mechanism for serializing
structured data.

hashlib Implements a common interface to | Release 7.5.1
many different secure hash and
message digest algorithms.

idna Supports the Internationalized Release 7.5.1
Domain Names in Applications
(IDNA) protocol as specified in
RFC 5891.

ipaddress Provides capability to create, Release 7.3.2
manipulate and operate on [Pv4 and
IPv6 addresses and networks.

jinja2 Supports adding functionality Release 7.3.2
useful for templating environments.

json Provides a lightweight data Release 7.3.2
interchange format.

markupsafe Implements a text object that Release 7.3.2
escapes characters so it is safe to
use in HTML and XML.

netaddr Enables system-independent Release 7.3.2

network address manipulation and
processing of Layer 3 network
addresses.

packaging Add the necessary files and Release 7.5.1
structure to create the package.

pdb Defines an interactive source code | Release 7.3.2
debugger for Python programs.

pkg_resources Provides runtime facilities for Release 7.3.2
finding, introspecting, activating
and using installed distributions.

Script Infrastructure and Sample Templates [JJjj

Script Infrastructure and Sample Templates |
. Cisco 10S XR Python Libraries

Package Description Support Introduced in Release

psutil Provides library to retrieve Release 7.3.2
information on running processes
and system utilization such as CPU,
memory, disks, sensors and
processes.

pyasnl Provides a collection of ASN.1 Release 7.3.2
modules expressed in form of
pyasnl classes. Includes protocols
PDUs definition (SNMP, LDAP
etc.) and various data structures
(X.509, PKCS).

pyparsing Provides a library of classes to Release 7.5.1
construct the grammar directly in
Python code.

requests Allows sending HTTP/1.1 requests | Release 7.3.2
using Python.

shellescape Defines the function that returns a | Release 7.3.2
shell-escaped version of a Python
string.

Six Provides simple utilities for Release 7.5.1
wrapping over differences between
Python 2 and Python 3.

subprocess Spawns new processes, connects to | Release 7.3.2
input/output/error pipes, and obtain
return codes.

urllib3 HTTP client for Python. Release 7.3.2

xmltodict Makes working with XML feel like | Release 7.3.2
you are working with JSON.

yaml Provides a human-friendly format |Release 7.5.1
for structured data, that is both easy
to write for humans and still
parsable by computers.

Cisco 10S XR Python Libraries

Cisco I0S XR software provides support for the following SDK libraries and standard protocols.

[l Script Infrastructure and Sample Templates

| Script Infrastructure and Sample Templates

Sample Script Templates .

Library

Syntax

xrlog

To generate syslogs
from cisco.script mgmt import xrlog

syslog = xrlog.getSysLogger ('template exec')

For more information, see Xrlog Python Module, on
page 12.

netconf

#To connect to netconf client #
from iosxr.netconf.netconf lib import
NetconfClient

nc = NetconfClient (debug=True)

xrclihelper

To run native xr cli and config commands
from iosxr.xrcli.xrcli helper import *

helper = XrcliHelper (debug = True)

For more information, see Xrcli_helper Python
Module, on page 8.

config_validation

To validate configuration
import cisco.config validation as xr

For more information, see Config Scripts Chapter.

eem # For EEM operations #

from iosxr import eem

For more information, see EEM Scripts Chapter.
preconnnﬁ # For Precommit script operations #

from cisco.script mgmt import precommit

For more information, see Precommit Scripts Chapter.

Sample Script Templates

Table 3: Feature History Table

Feature Name

Release Information Description

Github Repository for Automation
Scripts

Release 7.5.1

You now have access to sample
scripts and templates published on
the Github repository. You can
leverage these samples to use the
python packages and libraries
developed by Cisco to build your
custom automation scripts for your
network

Use these sample script templates based on script type to build your custom script.

Script Infrastructure and Sample Templates [JJjj

https://github.com/CiscoDevNet/xr-python-scripts

Script Infrastructure and Sample Templates |

. Sample Script Templates

To get familiar with IOS XR Python scripts, see the samples and templates on the Cisco Devnet developer
program and Github repository.

Follow these instructions to download the sample scripts from the Github repository to your router, and run
the scripts:

1. Clone the Github repository.

$git clone https://github.com/CiscoDevNet/iosxr-ops.git

2. Copy the Python files to the router's harddisk or a remote repository.

Config Script

The following example shows a code snippet for config script. Use this snippet in your script to import the
libraries required to validate configuration and also generate syslogs.

#Needed for config validation
import cisco.config validation as xr

#Used for generating syslogs
from cisco.script mgmt import xrlog
syslog = xrlog.getSysLogger ('Add script name here')

def check config(root):
#Add config validations
pass

xr.register validate callback([<Add config path here>],check config)

Exec Script

Use this sample code snippet in your exec script to import Python libraries to connect to NETCONF client
and also to generate syslogs.

#To connect to netconf client
from iosxr.netconf.netconf lib import NetconfClient

#To generate syslogs
syslog = xrlog.getSysLogger ('template exec')

def test exec():

wun

Testcase for exec script

nc = NetconfClient (debug=True)
nc.connect ()

#Netconf or processing operations
nc.close ()

if name == "'_main_
test exec()

Process Script

Use the following sample code snippet to trigger a process script and perform various actions on the script.
You can leverage this snippet to create your own custom process script. Any exec script can be used as a
process script.

To trigger script
Step 1: Add and configure script as shown in README.MD

[l Script Infrastructure and Sample Templates

https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/xr-python-scripts
https://github.com/CiscoDevNet/xr-python-scripts

| Script Infrastructure and Sample Templates
Sample Script Templates .

Step 2: Register the application with Appmgr

Configuraton:

appmgr process-script my-process-app
executable test process.py

run args --threshold <threshold-value>

Step 3: Activate the registered application
appmgr process-script activate name my-process-app

Step 4: Check script status
show appmgr process-script-table

Router#show appmgr process-script-table
Name Executable Activated Status Restart Policy Config Pending

my-process-app test_process.py Yes Running On Failure No

Step 5: More operations
Router#appmgr process-script ?

activate Activate process script
deactivate Deactivate process script
kill Kill process script
restart Restart process script
start Start process script

stop Stop process script

[IRIR1]

#To connect to netconf client
from iosxr.netconf.netconf lib import NetconfClient

#To generate syslogs
syslog = xrlog.getSysLogger ('template exec')

def test process():

Testcase for process script

wnn

nc = NetconfClient (debug=True)
nc.connect ()

#Netconf or any other operations
nc.close ()

if name == "'_main_ ':
test _process()
EEM Script

You can leverage the following sample code to import Python libraries to create your custom eem script and
also generate syslogs.

Required configuration:
User and AAA configuration

event manager event-trigger <trigger-name>
type syslog pattern "PROC RESTART NAME"

event manager action <action-name>
username <user>

type script script-name <script-name> checksum sha256 <checksum>

event manager policy-map policyl

Script Infrastructure and Sample Templates [JJjj

Script Infrastructure and Sample Templates |
. Xrcli_helper Python Module

trigger event <trigger-name>
action <action-name>

To verify:
Check for syslog EVENT SCRIPT EXECUTED: User restarted <process—name>

wnn

#Needed for eem operations
from iosxr import eem

#Used to generate syslogs
from cisco.script mgmt import xrlog

syslog = xrlog.getSysLogger (<add your script name here>)

event dict consists of details of the event
rc, event dict = eem.event reginfo()

#You can process the information as needed and take action for example: generate a syslog.
#Syslog type can be emergency, alert, critical, error, exception, warning, notification,

info, debug

syslog.info (<Add you syslog here>)

Xrcli_helper Python Module

Overview of xrcli_helper Python Module

The xrclinelper is a utility class designed to facilitate the execution of IOS-XR CLI commands and
configuration changes programmatically. It provides methods to:

» Execute native JOS-XR commands.

* Apply configurations from files or strings.

Prerequisites of xrcli_helper Python Module
* Python 2.7 or higher.
* Ensure that you are on Cisco IOS XR Release 7.4.x or higher.

» Access to Cisco IOS XR device with AAA Authorization enabled. Use the aaa authorization exec
default group tacacs+ local command to enable AAA Authorization.

* Ensure that the iosxr.xrcli.xrcli_helper module is available in your Python environment.

Import Library Information

To use the XrcliHelper class in your Python script, you need to import it from the appropriate module. The
import statement provided allows you to bring the XrcliHelper class into your script so you can create instances
of it and use its methods.

from iosxr.xrcli.xrcli helper import XrcliHelper

[l Script Infrastructure and Sample Templates

| Script Infrastructure and Sample Templates
Xrcli_helper Script APIs .

Library/API Initialization

By initializing the XrcliHelper class, you establish the environment needed to execute IOS-XR commands
and apply configurations programmatically. This serves as the initial step in automating network management
tasks, enabling you to utilize the class's methods to efficiently interact with your IOS-XR devices.

<object name> = XrcliHelper ([debug=True/False (default)])

This example shows how to initialize Xrclihelper class.

helper = XrcliHelper ()

Xrcli_helper Script APIs

xrcli_exec

The xrcli_exec API executes IOS-XR exec commands to obtain the output.
Parameter

cmd: A String representing the IOS- XR exec command to be executed.
Result

The result of the xrcli_exec API is a dictionary containing:

* status: Indicates whether the command execution was error Or success.

* output: The output of the executed command.

Example

The following example shows the sample output of xrcli_exec API:

>>> result = helper.xrcli exec("show filesystem ")

>>> print (result)

{'output': '\n'
e show filesystem '
b o e e e \nl
'File Systems:\n'
l\nl
! Size (b) Free (b) Type Flags Prefixes\n'
' 4275265536 4274974720 flash-disk rw diskO:\n'
' 67301322752 67266158592 harddisk rw harddisk:\n'
! 0 0 network rw ftp:\n'
' 60264796160 51056054272 flash rw /misc/config\n’'
! 0 0 network rw tftp:\n',
'status': 'success'}

xr_apply_config_file
The xr_apply config_file API applies configuration to IOS-XR using a file.
Parameter

* filename: Path to a configuration file containing XR config commands with the following structure:

|

XR config command

Script Infrastructure and Sample Templates [JJjj

Script Infrastructure and Sample Templates |
. Xrcli_helper Script APIs

|

end

* comment: A comment for the configuration commit, which will be visible in the output of show
configuration commit list detail.

Result
The result of xr_apply_config_file is a dictionary specifying the effect of the configuration change:
* status: Indicates whether the configuration application was error or success.
* output:
o If status is error: use the show configuration failed command.

* If status is success: use the show configuration commit changes last 1 command.

Example

The following example shows sample output of xr_apply config_file API.

[node0_RPO_CPUO:~]$more /harddisk:/noshut_int.cfg
|

interface hundredGigE 0/0/0/24

no shutdown

interface hundredGigE 0/0/0/25

no shutdown

|

end

>>> result = helper.xr apply config file("/harddisk:/noshut int.cfg")
>>> print (result)

{'output': "\n'
e show configuration commit changes last 1 '
L \nl
'!'! Building configuration...\n'
'l I0S XR Configuration x.y.z \n'
'interface HundredGigE0/0/0/24\n"'
' no shutdown\n'
""\n'
'interface HundredGigE0/0/0/25\n"'
' no shutdown\n'
""\n'
'end\n'
'"\n',

'status': 'success'}

>>>

xr_apply_config_string

The xr_apply config_string applies configuration to XR using a single line string.
Parameter

emd: Single line string representing an XR config command.

comment:Reason for the config commit, visible in show configuration commit list detail.
Result

The result of xr_apply_config_string is a dictionary specifying the effect of the configuration change:

[l Script Infrastructure and Sample Templates

| Script Infrastructure and Sample Templates

Xrcli_helper Script APIs .

* status: Indicates whether the configuration application was error or success.

¢ output:
e If status is error: use the show configuration failed command.

* If status is success: use the show configuration commit changeslast 1 command.

Example

The following example shows sample output of xr_apply config file APIL.

>>> cmd = """

interface HundredGigE0/0/0/25

description "shut down by scriptx"

shut
>>> result = helper.xr apply config string(cmd)
>>> print (result)

{'output': '\n'
e show configuration commit changes last 1 '
L \nl
'!'! Building configuration...\n'
'l IOS XR Configuration x.y.z\n'
'interface HundredGigE0/0/0/25\n"'
' description "shut down by scriptx"\n'
' shutdown\n'
l!\nl
'end\n'
I\HI’
'status': 'success'
>>>
user

The user is an XrcliHelper Object Attribute (not API) which contains the username to authorize the XR
commands.

Example

The following example shows sample output of user.
Example:

>>> helper.user

'cisco’

toggle_debug

The toggle debug enables or disables debug logging.
Example

The following example shows sample output of toggle debug.

>>> helper.toggle debug(True)
>>>

Script Infrastructure and Sample Templates [JJjj

. Xrlog Python Module

Script Infrastructure and Sample Templates |

Xrlog Python Module

Overview of Xrlog Python Module

The xr1og Python module is a utility designed for generating syslog messages and script logs within Cisco
IOS XR environments. It provides methods to do the following:

* Module to generate XR syslog messages from scripts.

* Provides a logger for generating script logs.

Prerequisites of Xrlog Python Module
* Python 2.7 or higher.

* Ensure that you are on Cisco IOS XR Release 7.4.x or higher.

* Ensure that the cisco.script_mgmt.xrlog is available in your Python environment.

Import Library Information

To use the xr1og module in your Python script, you need to import it from the appropriate module. The import
statement provided allows you to bring the xr1og functionalities into your script so you can create instances
of syslog and script loggers.

from cisco.script mgmt import xrlog

Library/API Initialization

By initializing the xr10g module, you establish the environment needed to generate syslog messages and
script logs programmatically. This serves as the initial step in automating logging tasks, enabling you to utilize
the module's methods to efficiently log events and messages.

<object name> = xrlog.getSysLogger ([logger name [default: root]])
<object name> = xrlog.getScriptLogger ([logger name [default: root]])

Example:
This is the example of generating syslog and script logs.

syslog = xrlog.getSysLogger ('myscript')
log = xrlog.getScriptLogger ('myscript')

getSysLogger Script APIs

The getsysLogger API returns a syslogger object with APIs to print to XR syslog.
Parameter

name: A string representing the module name of the syslogger. This parameter is optional, and the default
value is "root".

Result

The result of the getsysLogger APl is a syslogger object.

[l Script Infrastructure and Sample Templates

| Script Infrastructure and Sample Templates
getSysLogger Script APIs .

Result
The result of the a1ert API is the message being logged to the XR syslog with severity level 1.

Syslogger APIs
The following are the list of Syslogger APIs:
* emergency
* alert
* critical
* error
* warning
* notification
* info
* debug
* log

* setlevel

emergency

The emergency API prints a message string to the XR syslog with severity level 0, indicating that the system
is unusable.

Parameters

» self: The syslogger object.

» msg_string: A string representing the syslog message to be printed.

Result
The result of the emergency API is the message being logged to the XR syslog with severity level 0.
Example

The following example shows how to use the emergency API to log a message indicating a system emergency
and the system logging message that you can see on the router.

>>> syslog.emergency ("script generated syslog message")
RP/0/RPO/CPUO: scripting python3[67965]: $0S-SCRIPT LOG-0-EMERGENCY : Script-myscript:
script generated syslog message

alert

The alert API prints a message string to the XR syslog with severity level 1, indicating that immediate action
is needed.

After getting the object, the following are the list of APIs that belong to that object.

Parameters

Script Infrastructure and Sample Templates [JJjj

Script Infrastructure and Sample Templates |
. getSysLogger Script APIs

« self: The syslogger object.

» msg_string: A string representing the syslog message to be printed.

Example

The following example shows how to use the alert API to log a message indicating that immediate action
is needed and the system logging message that you can see on the router:

>>> syslog.alert ("script generated syslog message")
RP/0/RP0O/CPUO: scripting python3[67965]: %$0S-SCRIPT LOG-1-ALERT : Script-myscript: script
generated syslog message
critical
The critical API prints a message string to the XR syslog with severity level 2, indicating critical conditions.
Parameters

» self: The syslogger object.

» msg_string: A string representing the syslog message to be printed.

Result
The result of the critical API is the message being logged to the XR syslog with severity level 2.
Example

The following example shows how to use the critical API to log a message indicating critical conditions
and the system logging message that you can see on the router:

>>> syslog.critical ("script generated syslog message")
RP/0/RPO/CPUO: scripting python3[67965]: %0S-SCRIPT LOG-2-CRITICAL : Script
error
The error API prints a message string to the XR syslog with severity level 3, indicating error conditions.
Parameters
» self: The syslogger object.

» msg_string: A string representing the syslog message to be printed.

Result
The result of the error API is the message being logged to the XR syslog with severity level 3.
Example

The following example shows how to use the error API to log a message indicating error conditions and the
system logging message that you can see on the router:

>>> syslog.error ("script generated syslog message")
RP/0/RPO/CPUO: scripting python3[67965]: $0S-SCRIPT LOG-3-ERROR : Script-myscript: script
generated syslog message

warning

The warning API prints a message string to the XR syslog with severity level 4, indicating a warning condition.

[l Script Infrastructure and Sample Templates

| Script Infrastructure and Sample Templates
getSysLogger Script APIs .

Parameters
» self: The syslogger object.

» msg_string: A string representing the syslog message to be printed.

Result
The result of the warning API is the message being logged to the XR syslog with severity level 4.
Example

The following example shows how to use the warning API to log a message indicating a warning condition
and the system logging message that you can see on the router:

>>> syslog.warning ("script generated syslog message")
RP/0/RP0O/CPUO: scripting python3[67965]: $0S-SCRIPT LOG-4-WARNING : Script-myscript: script
generated syslog message

notification

The notification API prints a message string to the XR syslog with severity level 5, indicating a normal
but significant condition.

Parameters
» self: The syslogger object.

» msg_string: A string representing the syslog message to be printed.

Result
The result of the notification API is the message being logged to the XR syslog with severity level 5.
Example

The following example shows how to use the notification API to log a message indicating a normal but
significant condition and the system logging message that you can see on the router:

>>> syslog.notification ("script generated syslog message")

RP/0/RP0O/CPUO:scripting python3[67965]: $0S-SCRIPT LOG-5-NOTIFICATION : Script-myscript:
script generated syslog message

info

The info API prints a message string to the XR syslog with severity level 6, indicating an informational
message only.

Parameters
« self: The syslogger object.

» msg_string: A string representing the syslog message to be printed.

Result
The result of the info API is the message being logged to the XR syslog with severity level 6.
Example

The following example shows how to use the info API to log an informational message and the system logging
message that you can see on the router:

Script Infrastructure and Sample Templates [JJjj

Script Infrastructure and Sample Templates |
. getSysLogger Script APIs

>>> syslog.info("script generated syslog message")
RP/0/RP0O/CPUO:scripting python3[67965]: $0S-SCRIPT LOG-6-INFO : Script-myscript: script
generated syslog message

debug

The debug API prints a message string to the XR syslog with severity level 7, indicating a debugging message
only.

Parameters
» self: The syslogger object.

» msg_string: A string representing the syslog message to be printed.

Result
The result of the debug API is the message being logged to the XR syslog with severity level 7.
Example

The following example shows how to use the debug API to log a debugging message and the system logging
message that you can see on the router:

>>> syslog.debug ("script generated syslog message")
RP/0/RPO/CPUO:scripting python3[67965]: $0S-SCRIPT_LOG-7-DEBUG : Script-myscript: script
generated syslog message
log
The 10g API prints a message string to the XR syslog at the provided severity level.
Parameters
» sef: The syslogger object.
* level: An integer representing the syslog logging level.

» msg_string: A string representing the syslog message to be printed.

Result
The result of the 109 API is the message being logged to the XR syslog at the specified severity level.
Example

The following example shows how to use the 10g API to log a message at a specified severity level and the
system logging message that is generated on the router:

syslog.log (xrlog.WARNING, "script generated syslog message")

RP/0/RP0O/CPUO: scripting python3[67965]: $0S-SCRIPT LOG-4-WARNING : Script-myscript: script
generated syslog message

>>> syslog.log (30, "script generated syslog message")

RP/0/RP0O/CPUO:scripting python3[67965]: $0S-SCRIPT LOG-4-WARNING : Script-myscript: script
generated syslog message

setlevel

The setrevel API sets the level of messages that should be written to syslogs. Messages with a lower level
than the specified level will be discarded.

Parameters

[l Script Infrastructure and Sample Templates

| Script Infrastructure and Sample Templates
Script Logger API .

level: An integer representing the syslog logging level.
Result

The result of the setLevel API is that only messages with a severity level equal to or higher than the specified
level will be logged to the XR syslog.

Example

The following example shows how to use the setLevel API to set the logging level:

syslog = xrlog.getSysLogger ('myscript')
syslog.setLevel (4)

Script Logger API

getScriptLogger

The getscriptLogger API returns a Python Logger object.

Parameters

name: A string representing the module name of the logger. This parameter is optional.
Result

The result of the getscriptLogger API is a Python Logger object.

For more information on Python Logger, refer to the Python logger documentation.
Example

The following example shows how to initialize a script logger using the getscriptLogger API:

log = xrlog.getScriptLogger ('myscript')

Script Infrastructure and Sample Templates [JJjj

https://docs.python.org/3/library/logging.html

Script Infrastructure and Sample Templates |
. Script Logger API

[l Script Infrastructure and Sample Templates

	Script Infrastructure and Sample Templates
	Cisco IOS XR Python Packages
	Cisco IOS XR Python Libraries
	Sample Script Templates
	Xrcli_helper Python Module
	Xrcli_helper Script APIs

	Xrlog Python Module
	getSysLogger Script APIs
	Script Logger API

