MPLS Traffic Engineering Commands

This module describes the commands used to configure Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) on your network.

Your network must support the following Cisco features before you can enable MPLS-TE:

- MPLS
- IP Cisco Express Forwarding (CEF)
- Intermediate System-to-Intermediate System (IS-IS) or Open Shortest Path First (OSPF) routing protocol
- Resource Reservation Protocol (RSVP)

MPLS Label Distribution Protocol (LDP), Resource Reservation Protocol (RSVP), and Universal Control Plane (UCP) command descriptions are documented separately.

For detailed information about MPLS concepts, configuration tasks, and examples, see *MPLS Configuration Guide for Cisco NCS 5000 Series Routers*.
• clear mpls traffic-eng auto-tunnel mesh, on page 36
• clear mpls traffic-eng counters auto-tunnel mesh, on page 37
• clear mpls traffic-eng counters auto-tunnel backup, on page 38
• clear mpls traffic-eng counters global, on page 39
• clear mpls traffic-eng counters signaling, on page 40
• clear mpls traffic-eng counters soft-preemption, on page 41
• clear mpls traffic-eng fast-reroute log, on page 42
• clear mpls traffic-eng link-management statistics, on page 43
• collect-bw-only (MPLS-TE), on page 44
• destination (MPLS-TE), on page 45
• disable (explicit-path), on page 46
• exclude srlg (auto-tunnel backup), on page 47
• fast-reroute, on page 48
• fast-reroute protect, on page 49
• fast-reroute timers promotion, on page 50
• flooding thresholds, on page 51
• forward-class, on page 52
• forwarding-adjacency, on page 53
• index exclude-address, on page 55
• index exclude-srlg, on page 57
• index next-address, on page 58
• interface (MPLS-TE), on page 60
• interface (SRLG), on page 62
• interface tunnel-te, on page 63
• ipv4 unnumbered (MPLS), on page 65
• ipv4 unnumbered mpls traffic-eng, on page 66
• link-management timers bandwidth-hold, on page 67
• link-management timers periodic-flooding, on page 68
• link-management timers preemption-delay, on page 69
• load-share, on page 70
• load-share unequal, on page 71
• match mpls disposition, on page 72
• maxabs (MPLS-TE), on page 73
• mpls traffic-eng, on page 74
• mpls traffic-eng auto-bw apply (MPLS-TE), on page 75
• mpls traffic-eng fast-reroute promote, on page 77
• mpls traffic-eng level, on page 78
• mpls traffic-eng link-management flood, on page 79
• mpls traffic-eng path-protection switchover tunnel-te, on page 80
• mpls traffic-eng reoptimize (EXEC), on page 81
• mpls traffic-eng reoptimize events link-up, on page 82
• mpls traffic-eng router-id (MPLS-TE router), on page 83
• mpls traffic-eng repotimize mesh group, on page 85
• mpls traffic-eng srlg, on page 86
• nhop-only (auto-tunnel backup), on page 88
• overflow threshold (MPLS-TE), on page 89
MPLS Traffic Engineering Commands

- path-option (MPLS-TE), on page 91
- path-protection (MPLS-TE), on page 94
- path-protection timers reopt-after-switchover, on page 95
- path-selection cost-limit, on page 96
- path-selection ignore overload (MPLS-TE), on page 97
- path-selection loose-expansion affinity (MPLS-TE), on page 99
- path-selection loose-expansion metric (MPLS-TE), on page 100
- path-selection metric (MPLS-TE), on page 101
- path-selection metric (interface), on page 102
- policy-class, on page 103
- priority (MPLS-TE), on page 105
- record-route, on page 106
- redirect default-route next-hop, on page 107
- redirect next-hop, on page 108
- reoptimize (MPLS-TE), on page 109
- reoptimize timers delay (MPLS-TE), on page 110
- route-priority, on page 112
- router-id secondary (MPLS-TE), on page 114
- set destination-address, on page 115
- set ipv4 df, on page 116
- set source-address, on page 117
- show explicit-paths, on page 118
- show interfaces tunnel-te accounting, on page 120
- show mpls traffic-eng affinity-map, on page 121
- show mpls traffic-eng attribute-set, on page 123
- show mpls traffic-eng autoroute, on page 125
- show mpls traffic-eng auto-tunnel backup, on page 127
- show mpls traffic-eng auto-tunnel mesh, on page 130
- show mpls traffic-eng collaborator-timers, on page 133
- show mpls traffic-eng counters signaling, on page 135
- show mpls traffic-eng forwarding, on page 139
- show mpls traffic-eng forwarding-adjacency, on page 141
- show mpls traffic-eng igp-areas, on page 142
- show mpls traffic-eng link-management admission-control, on page 145
- show mpls traffic-eng link-management advertisements, on page 149
- show mpls traffic-eng link-management bandwidth-allocation, on page 152
- show mpls traffic-eng link-management igp-neighbors, on page 155
- show mpls traffic-eng link-management interfaces, on page 157
- show mpls traffic-eng link-management statistics, on page 160
- show mpls traffic-eng link-management summary, on page 162
- show mpls traffic-eng maximum tunnels, on page 164
- show mpls traffic-eng preemption log, on page 167
- show mpls traffic-eng topology, on page 169
- show mpls traffic-eng tunnels, on page 173
- show mpls traffic-eng tunnels auto-bw brief, on page 202
- show mpls traffic-eng link-management soft-preemption, on page 204
• show srlg, on page 206
• signalled-name, on page 209
• signalling advertise explicit-null (MPLS-TE), on page 210
• snmp traps mpls traffic-eng, on page 211
• soft-preemption, on page 213
• soft-preemption frr-rewrite, on page 214
• srlg, on page 215
• timers loose-path (MPLS-TE), on page 216
• timers removal unused (auto-tunnel backup), on page 217
• timeout (soft-preemption), on page 218
• topology holddown sigerr (MPLS-TE), on page 219
• tunnel-id (auto-tunnel backup), on page 220
adjustment-threshold (MPLS-TE)

To configure the tunnel bandwidth threshold to trigger an adjustment, use the `adjustment-threshold` command in MPLS-TE automatic bandwidth interface configuration mode. To disable this feature, use the `no` form of this command.

```
adjustment-threshold  percentage  [ min  minimum  bandwidth ]
no  adjustment-threshold  percentage  [ min  minimum  bandwidth ]
```

Syntax Description

- **percentage**
 - Configures the bandwidth percent threshold to trigger an adjustment if the largest sample percentage is higher or lower than the current tunnel bandwidth. The range is from 1 to 100. The default is 5.

- **min minimum bandwidth**
 - (Optional) Configures the bandwidth change value to trigger an adjustment. The tunnel bandwidth is changed only if the largest sample is higher or lower than the current tunnel bandwidth, in kbps. The range is from 10 to 4294967295. The default is 10.

Command Default

- `percentage`: 5
- `minimum bandwidth`: 10

MPLS-TE automatic bandwidth interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you configure or modify the adjustment threshold while the automatic bandwidth is already running, the next band-aids application is impacted for that tunnel. The new adjustment threshold determines if an actual bandwidth takes place.

Examples

The following example configures the tunnel bandwidth threshold to trigger an adjustment:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# auto-bw
RP/0/RP0/CPU0:router(config-if-tunte-autobw)# adjustment-threshold 20 min 500
```
admin-weight

To override the Interior Gateway Protocol (IGP) administrative weight (cost) of the link, use the admin-weight command in MPLS-TE interface configuration mode. To return to the default behavior, use the no form of this command.

```
admin-weight weight
no admin-weight weight
```

Syntax Description

- `weight`: Administrative weight (cost) of the link. Range is 0 to 4294967295.

Command Default

- `weight`: IGP Weight (default OSPF 1, IS-IS 10)

Command Modes

MPLS-TE interface configuration

Command History

- **Release 6.2.1**: This command was introduced.

Usage Guidelines

To use the admin-weight command for MPLS LSP path computations, path-selection metric must be configured to TE.

Task ID

- `mpls-te` read, write

Examples

The following example shows how to override the IGP cost of the link and sets the cost to 20.

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# interface HundredGigE 0/0/0/3
RP/0/RP0/CPU0:router(config-mpls-te-if)# admin-weight 20
```
affinity

To configure an affinity (attributes which MPLS-TE tunnel requires in its links) for an MPLS-TE tunnel, use the `affinity` command in interface configuration mode. To disable this behavior, use the `no` form of this command.

```
affinity {affinity-value mask mask-value | exclude name | exclude-all | include name | include-strict name | flex-algo name}
no affinity {affinity-value mask mask-value | exclude name | exclude-all | include name | include-strict name}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>affinity-value</code></td>
<td>Attribute values that are required for links to carry this tunnel. A 32-bit decimal number. Range is from 0x0 to 0xFFFFFFFF, representing 32 attributes (bits), where the value of an attribute is 0 or 1.</td>
</tr>
<tr>
<td><code>mask mask-value</code></td>
<td>Checks the link attribute. A 32-bit decimal number. Range is 0x0 to 0xFFFFFFFF, representing 32 attributes (bits), where the value of an attribute mask is 0 or 1.</td>
</tr>
<tr>
<td><code>exclude name</code></td>
<td>Configures a particular affinity to exclude.</td>
</tr>
<tr>
<td><code>exclude-all</code></td>
<td>Excludes all affinities.</td>
</tr>
<tr>
<td><code>include name</code></td>
<td>Configures the affinity to include in the loose sense.</td>
</tr>
<tr>
<td><code>include-strict name</code></td>
<td>Configures the affinity to include in the strict sense.</td>
</tr>
</tbody>
</table>

Command Default

- `affinity-value`: 0X00000000
- `mask-value`: 0x0000FFFF

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Affinity determines the link attributes of the tunnel (that is, the attributes for which the tunnel has an affinity). The attribute mask determines which link attribute the router should check. If a bit in the mask is 0, the attribute value of a link or that bit is irrelevant. If a bit in the mask is 1, the attribute value of that link and the required affinity of the tunnel for that bit must match.

A tunnel can use a link if the tunnel affinity equals the link attributes and the tunnel affinity mask.

If there is an affinity failure, a 5-minute timer is started at the LSP headend. If the tunnel is not able to reoptimize within the timeframe, it is torn down. However, if you execute the `mpls traffic-eng reoptimize disable affinity-failure` command, no timer is started and the tunnel is not torn down. At a subsequent time, other triggers for reoptimization may start the timer for the LSPs with affinity failure.

Any properties set to 1 in the affinity should be 1 in the mask. The affinity and mask should be set as follows:
You can configure up to 16 affinity constraints under a given tunnel. These constraints are used to configure affinity constraints for the tunnel:

Include constraint

Specifies that a link is considered for CSPF if it contains all affinities associated with the include constraint. An acceptable link contains more affinity attributes than those associated with the include statement. You can have multiple include statements under a tunnel configuration.

Include-strict constraint

Specifies that a link is considered for CSPF if it contains only the colors associated with the include-strict statement. The link cannot have any additional colors. In addition, a link without a color is rejected.

Exclude constraint

Specifies that a link satisfies an exclude constraint if it does not have all the colors associated with the constraint. In addition, a link that does not have any attribute satisfies an exclude constraint.

Exclude-all constraint

Specifies that only the links without any attribute are considered for CSPF. An exclude-all constraint is not associated with any color; whereas, all other constraint types are associated with up to 10 colors.

You set 1 bit for each color; however, the sample output shows multiple bits at the same time. For example, you can configure red and black colors on HundredGigabitEthernet 0/0/0/3 from the `interface` command. The sample output from the `show mpls traffic-eng link-management interfaces`, on page 157 command shows that the Attributes field is set to 0x21, which means that there are 0x20 and 0x1 bits on the link.

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mpl-s te</td>
</tr>
<tr>
<td></td>
<td></td>
<td>read,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the tunnel affinity and mask:

```plaintext
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# affinity 0101 mask 303
```

This example shows that a link is eligible for CSPF if the color is red. The link can have any additional colors.

```plaintext
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# affinity include red
```

This example shows that a link is eligible for CSPF if it has at least red and black colors. The link can have any additional colors.
This sample output shows that the include constraint from the `show mpls traffic-eng tunnels` command is 0x20 and 0x1:

Name: tunnel-te1 Destination: 0.0.0.0
Status:
 Admin: up Oper: down Path: not valid Signalling: Down
 G-PID: 0x0800 (internally specified)
Config Parameters:
 Bandwidth: 0 kbps (CT0) Priority: 7 7
 Number of configured name based affinity constraints: 1
 Name based affinity constraints in use:
 Include bit map : 0x20
 Metric Type: TE (default)
 AutoRoute: disabled LockDown: disabled
 Loadshare: 0 equal loadshares
 Auto-bw: disabled(0/0) 0 Bandwidth Requested: 0
 Direction: unidirectional
 Endpoint switching capability: unknown, encoding type: unassigned
 Transit switching capability: unknown, encoding type: unassigned

Reason for the tunnel being down: No destination is configured

History:

This example shows that a tunnel can go over a link that contains red or black affinity. A link is eligible for CSPF if it has a red color or a black color. Thus, a link with red and any other colors and a link with black and other additional colors must meet the constraint.

This sample output shows that the include constraint from the `show mpls traffic-eng tunnels` command is 0x20 or 0x1:

Name: tunnel-te1 Destination: 0.0.0.0
Status:
 Admin: up Oper: down Path: not valid Signalling: Down
 G-PID: 0x0800 (internally specified)
Config Parameters:
 Bandwidth: 0 kbps (CT0) Priority: 7 7
 Number of configured name based affinity constraints: 2
 Name based affinity constraints in use:
 Include bit map : 0x20
 Metric Type: TE (default)
 AutoRoute: disabled LockDown: disabled
 Loadshare: 0 equal loadshares
 Auto-bw: disabled(0/0) 0 Bandwidth Requested: 0
 Direction: unidirectional
Endpoint switching capability: unknown, encoding type: unassigned
Transit switching capability: unknown, encoding type: unassigned

Reason for the tunnel being down: No destination is configured

History:

This example shows that a link is eligible for CSPF if it has only red color. The link must not have any additional colors.

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# affinity include-strict red
```

This example shows that a link is eligible for CSPF if it does not have the red attribute.

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# affinity exclude red
```

This example shows that a link is eligible for CSPF if it does not have red and blue attributes. Thus, a link that has only a red attribute or only a blue attribute is eligible for CSPF.

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# affinity exclude red blue
```

This example shows that a link is eligible for CSPF if it does not have either a red or a blue attribute.

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# affinity exclude red
RP/0/RP0/CPU0:router(config-if)# affinity exclude blue
```
affinity-map

To assign a numerical value to each affinity name, use the `affinity-map` command in MPLS-TE configuration mode. To return to the default behavior, use the `no` form of this command.

```
affinity-map affinity name {affinity value | bit-position value}
no affinity-map affinity name {affinity value | bit-position value}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>affinity name</code></td>
<td>Affinity map name-to-value designator (in hexadecimal, 0xffffffff).</td>
</tr>
<tr>
<td><code>affinity value</code></td>
<td>Affinity map value designator. Range is from 1 to 80000000.</td>
</tr>
<tr>
<td><code>bit-position</code></td>
<td>Configures the value of an affinity map for the bit position of the 32-bit number.</td>
</tr>
<tr>
<td><code>value</code></td>
<td>Bit position value. Range is from 0 to 31. Range is from 0 to 255.</td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values

Command Modes

MPLS-TE configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The name-to-value mapping must represent a single bit of a 32-bit value.

Repeat the `affinity-map` command to define multiple colors up to a maximum of 256 colors.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to assign a numerical value to each affinity name:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# affinity-map red 1
RP/0/RP0/CPU0:router(config-mpls-te)# affinity-map blue 2
```

The following example shows how to configure the value of 15 for an affinity map by bit position:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
```
RP/0/RP0/CPU0:router(config-mpls-te)# affinity-map red2 bit-position 15
To configure the application frequency, in minutes, for the applicable tunnel, use the \texttt{application} command in MPLS-TE automatic bandwidth interface configuration mode. To disable this feature, use the \texttt{no} form of this command.

\begin{verbatim}
application \textit{minutes} \\
no application \textit{minutes}
\end{verbatim}

Syntax Description

\textit{minutes} Frequency, in minutes, for the automatic bandwidth application. The range is from 5 to 10080 (7 days). The default is 1440.

Command Default

\texttt{minutes} : 1440 (24 hours)

Command Modes

MPLS-TE automatic bandwidth interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you configure and modify the application frequency, the application period can reset and restart for that tunnel. The next bandwidth application for the tunnel happens within the specified minutes.

Task ID

\begin{verbatim}
task ID \\
mpls-te read, write
\end{verbatim}

Examples

The following example shows how to configure application frequency to 1000 minutes for MPLS-TE interface 1:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# auto-bw
RP/0/RP0/CPU0:router(config-if-tunte-autobw)# application 1000
```
attribute-flags

To configure attribute flags for an interface, use the `attribute-flags` command in MPLS-TE interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
attribute-flags attribute-flags
no attribute-flags attribute-flags
```

Syntax Description
- `attribute-flags` Links attributes that are compared to the affinity bits of a tunnel during selection of a path. Range is 0x0 to 0xFFFFFFFF, representing 32 attributes (bits) where the value of an attribute is 0 or 1.

Command Default
- `attributes`: 0x0

Command Modes
- MPLS-TE interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `attribute-flags` command assigns attributes to a link so that tunnels with matching attributes (represented by their affinity bits) prefer this link instead of others that do not match.

The interface attribute is flooded globally so that it can be used as a tunnel headend path selection criterion.

Examples
The following example shows how to set attribute flags to 0x0101:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# interface HundredGigE 0/0/0/3
RP/0/RP0/CPU0:router(config-mpls-te-if)# attribute-flags 0x0101
```
attribute-names

To configure attributes for the interface, use the `attribute-names` command in MPLS-TE interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
attribute-names  attribute name
no attribute-names  attribute name
```

Syntax Description

- `attribute name` Attribute name expressed using alphanumeric or hexadecimal characters. Up to 32 attribute-names can be assigned.
- `index` Specifies an entry index for attribute names.
- `index-number` Specifies the index number. Range is from 1 to 8.

Command Default

No default behavior or values

Command Modes

MPLS-TE interface configuration

Command History

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
```

Usage Guidelines

The name-to-value mapping must represent a single bit of a 32-bit 256-bit value.

Task ID

```
mpls-te  read, write
```

Examples

The following example shows how to assign an attribute name (in this case, red) to a TE link:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# interface HundredGigabitEthernet 0/0/0/3
RP/0/RP0/CPU0:router(config-mpls-te-if)# attribute-name red
```
attribute-set

To configure attribute-set for auto-backup tunnels, use the attribute-set command in MPLS-TE configuration mode.

```
attribute-set auto-backup attribute-set-name {affinity {affinity-value mask mask-value | exclude name | exclude-all | include name | include-strict name} | logging events lsp-status {reoptimize | state} | policy-class {range | default} | priority setup-range hold-range | record-route}
```

To configure attribute-set for auto-mesh tunnels, use the attribute-set command in MPLS-TE configuration mode.

```
attribute-set auto-mesh attribute-set-name {affinity {affinity-value mask mask-value | exclude name | exclude-all | include name | include-strict name} | auto-bw collect-bw-only | autoroute announce | bandwidth bandwidth | fast-reroute [protect {bandwidth node | node bandwidth}] | logging events lsp-status {insufficient-bandwidth | reoptimize | reroute | state} | policy-class {range | default} | priority setup-range hold-range | record-route | signalled-bandwidth bandwidth [class-type cl] | soft-preemption}
```

To configure attribute-set for a path-option, use the attribute-set command in MPLS-TE configuration mode.

```
attribute-set path-option attribute-set-name {affinity {affinity-value mask mask-value | exclude name | exclude-all | include name | include-strict name} | signalled-bandwidth bandwidth [class-type cl]}
```

To disable this behavior, use the no form of this command.

```
no attribute-set
```

Syntax Description

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto-backup</td>
<td>Specifies the values of an attribute set for the auto-backup group.</td>
</tr>
<tr>
<td>auto-mesh</td>
<td>Specifies the values of an attribute set for the auto-mesh group.</td>
</tr>
<tr>
<td>path-option</td>
<td>Specifies the values of an attribute set for the path option.</td>
</tr>
<tr>
<td>xro</td>
<td>Specifies that the attribute-set is used to define an XRO.</td>
</tr>
<tr>
<td>attribute-set-name</td>
<td>A 32-bit character string, specifies the name of the attribute-set template.</td>
</tr>
<tr>
<td>affinity-value</td>
<td>Attribute values that are required for links to carry this tunnel. A 32-bit decimal number, representing 32 attributes (bits), where the value of an attribute is 0 or 1. Range is from 0x0 to 0xFFFF.</td>
</tr>
<tr>
<td>mask mask-value</td>
<td>Checks the link attribute. A 32-bit decimal number, representing 32 attributes (bits), where the value of an attribute mask is 0 or 1. Range is from 0x0 to 0xFFFF.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>exclude name</td>
<td>Configures a specific affinity that is to be excluded.</td>
</tr>
<tr>
<td>exclude-all</td>
<td>Excludes all affinities.</td>
</tr>
<tr>
<td>include name</td>
<td>Configures the affinity to include in the loose sense.</td>
</tr>
<tr>
<td>include-strict name</td>
<td>Configures the affinity to include in the strict sense.</td>
</tr>
<tr>
<td>logging</td>
<td>Per-interface logging configuration.</td>
</tr>
<tr>
<td>events</td>
<td>Per-interface logging events.</td>
</tr>
<tr>
<td>lsp-status</td>
<td>Enables interface LSP state change alarms.</td>
</tr>
<tr>
<td>reoptimize</td>
<td>Enables interface LSP REOPT change alarms.</td>
</tr>
<tr>
<td>state</td>
<td>Enables interface LSP UP/DOWN change alarms.</td>
</tr>
<tr>
<td>policy-class</td>
<td>Specifies class for policy-based tunnel selection.</td>
</tr>
<tr>
<td>range</td>
<td>Tunnel policy class range 1 to 7.</td>
</tr>
<tr>
<td>default</td>
<td>Default class for policy-based tunnel selection.</td>
</tr>
<tr>
<td>priority</td>
<td>Specifies the tunnel priority.</td>
</tr>
<tr>
<td>setup-range</td>
<td>Specifies setup priority. Range is 0 to 7.</td>
</tr>
<tr>
<td>hold-range</td>
<td>Specifies hold priority. Range is 0 to 7.</td>
</tr>
<tr>
<td>record-route</td>
<td>Records the route used by the tunnel.</td>
</tr>
<tr>
<td>signalled-bandwidth</td>
<td>Specifies the tunnel bandwidth requirement to be signaled.</td>
</tr>
<tr>
<td>bandwidth</td>
<td>Bandwidth required for an MPLS-TE tunnel, specified in kilobits per second.</td>
</tr>
<tr>
<td>class-type ct</td>
<td>(Optional) Configures the class type of the tunnel bandwidth request.</td>
</tr>
<tr>
<td>soft-preemption</td>
<td>Enables the soft-preemption feature on this tunnel.</td>
</tr>
</tbody>
</table>

Command Default
- **affinity-value**: 0x0
- **mask-value**: 0xFFFF

Command Modes
MPLS TE configuration
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The values specified for an attribute within a **path-option attribute-set** does not prevent the configuration of the same attribute at the tunnel level. However, only one level is taken into consideration. The configuration at the **path-option** level is considered more specific than the one at the level of the tunnel, and is therefore used.

Attributes that are **not** specified within an **attribute-set** picks their default values, as usual, from the configuration at the tunnel level, the configuration at the global mpls level, or default values.

An XRO attribute-set can be specified as part of the path-option, if required. An empty XRO attribute set results in the GMPLS tunnel being signaled with no exclusions, and therefore no XRO.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

This example shows how to configure an attribute-set to a TE interface for an auto-backup tunnel:

```
RP/0/RP0/CPU0:router# config
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# interface HundredGigabitEthernet 0/0/0/3
RP/0/RP0/CPU0:router(config-mpls-te-if-auto-backup)# auto-tunnel backup
RP/0/RP0/CPU0:router(config-mpls-te-if-auto-backup)# attribute-set ab
```

This example shows how to configure an attribute-set to a TE interface for an auto-mesh tunnel:

```
RP/0/RP0/CPU0:router# config
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# auto-tunnel mesh
RP/0/RP0/CPU0:router(config-te-auto-mesh)# group 1
RP/0/RP0/CPU0:router(config-te-mesh-group)# attribute-set am1
RP/0/RP0/CPU0:router(config-te-mesh-group)# destination-list dl1
```

This example shows how to configure the attribute-set for auto-backup tunnels:

```
RP/0/RP0/CPU0:router# config
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# attribute-set auto-backup ab
RP/0/RP0/CPU0:router(config-te-attribute-set)# affinity 0x1 mask 0x1
RP/0/RP0/CPU0:router(config-te-attribute-set)# priority 3 3
RP/0/RP0/CPU0:router(config-te-attribute-set)# policy-class 6
RP/0/RP0/CPU0:router(config-te-attribute-set)# logging events lsp-status reoptimize
RP/0/RP0/CPU0:router(config-te-attribute-set)# logging events lsp-status state
RP/0/RP0/CPU0:router(config-te-attribute-set)# policy-class default
RP/0/RP0/CPU0:router(config-te-attribute-set)# record-route
```

This example shows how to configure the attribute-set for auto-mesh tunnels:

```
RP/0/RP0/CPU0:router# config
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# attribute-set auto-mesh mesh1
RP/0/RP0/CPU0:router(config-te-attribute-set)# affinity include red blue
```
RP/0/RP0/CPU0:router(config-te-attribute-set)# affinity include-strict yellow green
RP/0/RP0/CPU0:router(config-te-attribute-set)# affinity exclude black
RP/0/RP0/CPU0:router(config-te-attribute-set)# affinity exclude-all
RP/0/RP0/CPU0:router(config-te-attribute-set)# policy-class default

This example shows how to configure the tunnel affinity and signalled-bandwidth for a path-option:

RP/0/RP0/CPU0:router# config
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# attribute-set path-option myset
RP/0/RP0/CPU0:router(config-te-attribute-set)# affinity 0x3 mask 0x3
RP/0/RP0/CPU0:router(config-te-attribute-set)# signalled-bandwidth 2000

The following example shows how to configure attribute set attr01:

RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# attribute-set xro attr01
RP/0/RP0/CPU0:router(config-te-attribute-set)#
auto-bw (MPLS-TE)

To configure automatic bandwidth on a tunnel interface and to enter MPLS-TE automatic bandwidth interface configuration mode, use the `auto-bw` command in MPLS-TE interface configuration mode. To disable the automatic bandwidth on that tunnel, use the `no` form of this command.

```
auto-bw
no auto-bw
```

Syntax Description
This command has no arguments or keywords.

Command Default
By default, automatic bandwidth is not enabled.

Command Modes
MPLS-TE interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the `auto-bw` command to enter MPLS-TE automatic bandwidth interface configuration mode.

The `auto-bw` and `load-share unequal` commands should not be used together.

The `load-share unequal` command determines the load-share for a tunnel based on the bandwidth. However, the MPLS-TE automatic bandwidth feature changes the bandwidth around. If you are configuring both the `load-share unequal` command and the MPLS-TE automatic bandwidth feature, it is recommended that you specify an explicit load-share value configuration under each MPLS-TE automatic bandwidth tunnel.

The following automatic bandwidth scenarios are described:

- If you configure the automatic bandwidth on a tunnel, the automatic bandwidth is enabled on that tunnel. If no other configuration is specified, defaults for the various parameters are used, the operation stops.
- The automatic operation (for example, output rate collection) starts when the automatic bandwidth is enabled on one tunnel. If automatic bandwidth is disabled from all tunnels, the operation stops.
- If the output rate collection is already active when the automatic bandwidth is configured on a tunnel, the statistics collection for that tunnel starts at the next collection configuration.

Note
Because the collection timer is already running, the first collection event for that tunnel happens in less than C minutes (for example, on an average of C/2 minutes).
Examples

The following example shows how to enter MPLS-TE automatic bandwidth interface configuration mode:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# auto-bw
RP/0/RP0/CPU0:router(config-if-tunte-autobw)#
```
auto-bw collect frequency (MPLS-TE)

To configure the automatic bandwidth collection frequency, use the `auto-bw collect frequency` command in MPLS-TE configuration mode. To reset the automatic bandwidth frequency to its default value, use the `no` form of this command.

```
auto-bw collect frequency minutes
no auto-bw collect frequency minutes
```

Syntax Description

| minutes | Interval between automatic bandwidth adjustments, in minutes. The range is from 1 to 10080. The default is 5. |

Command Default

`minutes`: 5

In addition, the `no` form of this command resets to the default.

Command Modes

MPLS-TE configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `auto-bw collect frequency` command configures the automatic bandwidth collection frequency for all the tunnels.

Modifying the global collection frequency does not restart the tunnel for the current application period. The application period continues with the modified collection frequency.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example configures a tunnel for an automatic bandwidth adjustment of 100 minutes:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# auto-bw collect frequency 100
```
autoroute announce

To specify that the Interior Gateway Protocol (IGP) should use the tunnel (if the tunnel is up) in its enhanced shortest path first (SPF) calculation, use the `autoroute announce` command in interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
autoroute announce [include-ipv6] [metric value]
no  autoroute announce
```

Syntax Description

| include-ipv6 | (Optional) Announces the MPLS-TE tunnel to IS-IS IGP for IPv6 routing. |
| metric value | (Optional) Specify the MPLS-TE tunnel metric that the Interior Gateway Protocol (IGP) enhanced Shortest Path First (SPF) calculation uses. |

This command has no arguments or keywords.

Command Default

Announces IPv4 tunnel

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When more than one IGP is configured, the tunnel is announced as autoroute to the IGP that is used to compute the TE tunnel path.

When the `autoroute announce` command is configured, the route metric of the tunnel path to the destination equals the route metric of the shortest IGP path to that destination.

The `autoroute announce metric` configuration overrides the `autoroute metric`, on page 26 configuration, if present.

Note

IS-IS is the only IGP supporting IPv6 MPLS-TE tunnel announcements.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure IGP to use the tunnel in its enhanced SPF calculation when the tunnel is up:

```
RP/0/RP0/CPU0:router# configure
```
This example shows how to make IPv6 announcements for MPLS-TE tunnel to the IGP:

```
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# autoroute announce
```

```
RP/0/RP0/CPU0:router(config)# interface tunnel-te 65534
RP/0/RP0/CPU0:router(config-if)# autoroute announce
RP/0/RP0/CPU0:router(config-if-tunte-aa)# include-ipv6
```
autoroute destination

To install multiple static routes in the routing information base (RIB) per MPLS TE tunnel, use the **autoroute destination** command in interface TE tunnel configuration mode. To disable autoroute destination, use the **no** form of this command.

```
autoroute destination ip-address
no autoroute destination ip-address
```

Syntax Description

- `ip-address`: Specifies the host address of the route to be installed in the RIB. A maximum of six routes can be specified apart from the default route.

Command Default

Autoroute destination is disabled.

Command Modes

Interface Tunnel TE

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

This example shows how to configure installing four routes in RIB for TE tunnel 10:

```
RP/0/RP0/CPU0:router#configure
RP/0/RP0/CPU0:router(config)#interface tunnel-te 10
RP/0/RP0/CPU0:router(config-if)# autoroute destination 192.168.1.2
RP/0/RP0/CPU0:router(config-if)# autoroute destination 192.168.2.2
RP/0/RP0/CPU0:router(config-if)# autoroute destination 192.168.3.2
RP/0/RP0/CPU0:router(config-if)# autoroute destination 192.168.4.2
```
autoroute metric

To specify the MPLS-TE tunnel metric that the Interior Gateway Protocol (IGP) enhanced Shortest Path First (SPF) calculation uses, use the `autoroute metric` command in interface configuration mode. If no specific metric is to be specified, use the `no` form of this command.

```
autoroute metric {absolute | relative} value
no autoroute metric {absolute | relative} value
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute</td>
<td>Enables the absolute metric mode; you can enter a positive metric value.</td>
</tr>
<tr>
<td>relative</td>
<td>Enables the relative metric mode; you can enter a positive, negative, or zero value.</td>
</tr>
<tr>
<td>value</td>
<td>Metric that the IGP enhanced SPF calculation uses. Relative value range is from –10 to 10. Absolute value range is from 1 to 2147483647.</td>
</tr>
</tbody>
</table>

| Command Default | The relative value is 0. |
| Command Modes | Interface configuration |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `autoroute metric` command overwrites the default tunnel route metric of the shortest IGP path to the destination.

Note

The `autoroute announce`, on page 23 configuration overrides the `autoroute metric` configuration, if present.

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to configure the IGP enhanced SPF calculation using MPLS-TE tunnel metric as relative negative 1:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# autoroute metric relative -1
```
auto-tunnel backup (MPLS-TE)

To automatically build next-hop (NHOP) and next-next-hop (NNHOP) backup tunnels, and to enter auto-tunnel backup configuration mode, use the `auto-tunnel backup` command in MPLS-TE configuration mode. To clear the NHOP and NNHOP backup tunnels, use the `no` form of this command.

```
auto-tunnel backup
no auto-tunnel backup
```

Syntax Description

This command has no arguments or keywords.

Command Default

No default behavior or values

Command Modes

MPLS-TE configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The range of `tunnel-ID` is required to be mentioned for the auto-tunnel backup tunnels; otherwise, none of the tunnels are created.

The `no` form of this command deletes both NHOP and NNHOP backup tunnels that are configured using either the `auto-tunnel backup` command or the `nhop-only` command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Example

The following example automatically builds NHOP and NNHOP backup tunnels:

```
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# auto-tunnel backup
```
backup-path tunnel-te

To set an MPLS-TE tunnel to protect a physical interface against failure, use the `backup-path tunnel-te` command in MPLS-TE interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
backup-path tunnel-te tunnel-number
no backup-path tunnel-te tunnel-number
```

Syntax Description

- `tunnel-number` Number of the tunnel protecting the interface. Range is 0 to 65535.

Command Default

No default behavior or values

Command Modes

MPLS-TE interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When the protected interface is down (shut down or removed), the traffic it was carrying (for the other label switched paths [LSPs], referred to as the protected LSPs) is rerouted, using fast reroute (FRR) onto the backup tunnels.

The following guidelines pertain to the FRR process:

- Multiple (backup) tunnels can protect the same interface by entering this command multiple times for different tunnels. The same (backup) tunnel can protect multiple interfaces by entering this command for each interface.
- The backup tunnel used to protect a physical interface must have a valid IP address configured.
- The backup tunnel cannot pass through the same interface that it is protecting.
- TE tunnels that are configured with the FRR option, cannot be used as backup tunnels.
- For the backup tunnel to provide protection to the protected LSP, the backup tunnel must have a terminating-end node in the path of a protected LSP.
- The source IP address of the backup tunnel and the merge point (MP) address (the terminating-end address of the backup tunnel) must be reachable.

Note

You must configure record-route on TE tunnels that are protected by multiple backup tunnels merging at a single node.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>
The following example shows how to protect the interface using tunnels:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# interface HundredGigabitEthernet 0/0/0/3
RP/0/RP0/CPU0:router(config-mpls-te-if)# backup-path tunnel-te 100
RP/0/RP0/CPU0:router(config-mpls-te-if)# backup-path tunnel-te 150
```
To configure a bidirectional LSP for an MPLS TE tunnel and define other parameters for the LSP, use the `bidirectional` command in the MPLS-TE interface configuration mode.

```
bidirectional association {id value | source-address IP address | global-id value | type co-routed | fault-oam}
```

Syntax Description

bidirectional Configures a bidirectional LSP.

association Specifies association parameters for the bidirectional LSP.

id value Value number that identifies the association. Range is 0 to 65535.

source-address value Specifies the source IP address of the LSP from which a reverse path is required.

global-id value Value number that identifies the global ID. Range is 0 to 4294967295. The default value is 0.

co-routed Configures co-routed LSPs with bidirectional CSPF.

fault-oam Configures fault OAM for the bidirectional co-routed LSPs.

Command Default
Tunnel interfaces are disabled.

Command Modes
Interface configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
No specific guidelines impact the use of this command.

Example
This example shows you how to configure an associated bidirectional co-routed MPLS-TE tunnel.

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RSP0/CPU0:router(config-if)# bidirectional
RP/0/RSP0/CPU0:router(config-if-bidir)# association id 1 source-address 11.0.0.1
RP/0/RSP0/CPU0:router(config-if-bidir)# association type co-routed
```
bw-limit (MPLS-TE)

To configure the minimum and maximum automatic bandwidth to be set on a tunnel, use the `bw-limit` command in MPLS-TE automatic bandwidth interface configuration mode. To disable this feature, use the `no` form of this command.

```
bw-limit min bandwidth {max bandwidth}
no bw-limit
```

Syntax Description

- `min bandwidth`: Configures the minimum automatic bandwidth, in kbps, on a tunnel. The range is from 0 to 4294967295. The default is 0.
- `max bandwidth`: Configures the maximum automatic bandwidth, in kbps, on a tunnel. The range is from 0 to 4294967295. The default is 4294967295.

Command Default

- `min`: 0
- `max`: 4294967295

Command Modes

MPLS-TE automatic bandwidth interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Both the `min` and `max` keywords must be configured.

The `bw-limit` command automatically sets the minimum bandwidth to the default value of 0, or the `bw-limit` command automatically sets the maximum to the default value of 4294967295 kbps.

If the value of the `min` keyword is greater than the `max` keyword, the `bw-limit` command is rejected. If you configure and modify the minimum or maximum bandwidth while the automatic bandwidth is already running, the next bandwidth application for that tunnel is impacted. For example, if the current tunnel requested bandwidth is 30 Mbps and the minimum bandwidth is modified to 50 Mbps, the next application sets the tunnel bandwidth to 50 Mbps.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to configure the minimum and maximum bandwidth for the tunnel:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# auto-bw
```
bw-limit (MPLS-TE)

RP/0/RP0/CPU0:router(config-if-tunte-autobw)# bw-limit min 30 max 80
clear mpls traffic-eng auto-bw (MPLS-TE EXEC)

To clear automatic bandwidth sampled output rates and to restart the application period for the specified tunnel, use the clear mpls traffic-eng auto-bw command in XR EXEC mode.

clear mpls traffic-eng auto-bw {all | internal | tunnel-te tunnel-number}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Clears the automatic bandwidth sampled output rates for all tunnels.</td>
</tr>
<tr>
<td>internal</td>
<td>Clears all the automatic bandwidth internal data structures.</td>
</tr>
<tr>
<td>tunnel-te tunnel-number</td>
<td>Clears the automatic bandwidth sampled output rates for a specific tunnel. The tunnel-number argument is the tunnel ID used to clear the sampled output rates.</td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values

Command Modes

XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If no tunnel is specified, the clear mpls traffic-eng auto-bw command clears all the automatic bandwidth enabled tunnels.

For each tunnel in which the automatic bandwidth adjustment is enabled, information is maintained about the sampled output rates and the time remaining until the next bandwidth adjustment. The application period is restarted and values such as the largest collected bandwidth get reset. The tunnel continues to use the current bandwidth until the next application.

Task ID

<table>
<thead>
<tr>
<th>Task Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te execute</td>
</tr>
</tbody>
</table>

Examples

The following example displays the information for the automatic bandwidth for tunnel number 0 from the show mpls traffic-eng tunnels auto-bw brief command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels 0 auto-bw brief

Tunnel        LSP ID  Last appl BW(kbps)  Requested BW(kbps)  Signalled BW(kbps)  Highest BW(kbps)  Application Time Left
-------------- ------- ---------- ------------- --------------- --------------- --------------- --------------- --------------- ---------------  ---------------
tunnel-te0     278     100        100            100             150             12m 38s
```

The following example shows how to clear the automatic bandwidth sampled output rates for tunnel number 0:
RP/0/RP0/CPU0:router# clear mpls traffic-eng auto-bw tunnel-te 0

RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels 0 auto-bw brief

<table>
<thead>
<tr>
<th>Tunnel</th>
<th>LSP Name</th>
<th>Last appl Requested</th>
<th>Signalled</th>
<th>Highest Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel-te0</td>
<td>278</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

MPLS Traffic Engineering Commands
clear mpls traffic-eng auto-tunnel backup unused

To remove unused automatic backup tunnels, use the `clear mpls traffic-eng auto-tunnel backup unused` command in XR EXEC mode.

```
clear mpls traffic-eng auto-tunnel backup unused  {all | tunnel-te  tunnel-number}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Clears all the unused automatic backup tunnels.</td>
</tr>
<tr>
<td><code>tunnel-te tunnel-number</code></td>
<td>Clears a specific unused automatic backup tunnel.</td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values

Command Modes

XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `unused` auto-tunnel backup tunnel is the tunnel that is not assigned to protect any FRR tunnel.

The behavior of this command is the same as the expiration of the `timers removal unused` command in which, when the timeout value is reached, the automatic backup tunnel is removed.

Task ID

```
Task ID | Operation ID
---     |------------
mpls-te  | execute
```

Example

The following example displays the information for the unused backup automatic tunnels from the `show mpls traffic-eng tunnels unused` command:

```plaintext
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels unused
```

The following example shows how to clear the unused backup automatic tunnels:

```plaintext
RP/0/RP0/CPU0:router# clear mpls traffic-eng auto-tunnel backup unused all
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels unused
```
clear mpls traffic-eng auto-tunnel mesh

To clear all unused auto-tunnel mesh destinations, use the clear mpls traffic-eng auto-tunnel mesh command in XR EXEC mode.

```plaintext
clear mpls traffic-eng auto-tunnel mesh unused {all | tunnel-te}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Clears all applicable unused auto-tunnel destinations.</td>
</tr>
<tr>
<td>tunnel-te id</td>
<td>Clears an unused auto-tunnel destinations identified by a tunnel identifier.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>execute</td>
</tr>
</tbody>
</table>

Examples

This is sample output from the clear mpls traffic-eng auto-tunnel mesh command:

```plaintext
clear mpls traffic-eng auto-tunnel mesh
```
clear mpls traffic-eng counters auto-tunnel mesh

To clear all auto-tunnel mesh counters, use the clear mpls traffic-eng counters auto-tunnel mesh command in XR EXEC mode.

clear mpls traffic-eng counters auto-tunnel mesh

This command has no arguments or keywords.

Command Default

None

Command Modes

XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>6.2.1</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>execute</td>
</tr>
</tbody>
</table>

Examples

This is sample output from the clear mpls traffic-eng counters auto-tunnel mesh command:

```
RP/0/RP0/CPU0:router clear mpls traffic-eng counters auto-tunnel mesh
```
clear mpls traffic-eng counters auto-tunnel backup

To clear MPLS-TE automatic tunnel backup counters, use the clear mpls traffic-eng counters auto-tunnel backup command in XR EXEC mode.

clear mpls traffic-eng counters auto-tunnel backup

Syntax Description
This command has no arguments or keywords.

Command Default
No default behavior or values

Command Modes
XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>execute</td>
</tr>
</tbody>
</table>

Example
The following example removes all counters for the automatic backup tunnels:

```
RP/0/RP0/CPU0:router# clear mpls traffic-eng counters auto-tunnel backup
```
clear mpls traffic-eng counters global

To clear the internal MPLS-TE tunnel counters, use the clear mpls traffic-eng counters global command in XR EXEC mode.

clear mpls traffic-eng counters global

Syntax Description
This command has no arguments or keywords.

Command Default
No default behavior or values

Command Modes
XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>execute</td>
</tr>
</tbody>
</table>

Examples
The following example shows how to clear the internal MPLS-TE tunnel counters:

RP/0/RP0/CPU0:router# clear mpls traffic-eng counters global
clear mpls traffic-eng counters signaling

To clear (set to zero) the MPLS tunnel signaling counters, use the `clear mpls traffic-eng counters signaling` command in XR EXEC mode.

```
clear mpls traffic-eng counters signaling {all | [heads | mids | tails] | name name | summary}
```

Syntax Description
- **all**: Clears counters for all MPLS-TE tunnels.
- **heads**: (Optional) Displays tunnels with their heads at this router.
- **mids**: (Optional) Displays tunnels with their midpoints at this router.
- **tails**: (Optional) Displays tunnels with their tails at this router.
- **name name**: Clears counters for an MPLS-TE tunnel with the specified name.
- **summary**: Clears the counter’s summary.

Command Default
No default behavior or values

Command Modes
XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the `clear mpls traffic-eng counters signaling` command to set all MPLS counters to zero so that changes can be seen easily.

Task ID
```
Task ID
mpls-te  read, write
```

Examples
The following example shows how to clear all counters:

```
RP/0/RP0/CPU0:router# clear mpls traffic-eng counters signaling all
```
clear mpls traffic-eng counters soft-preemption

To clear (set to zero) the counters for soft-preemption statistics, use the `clear mpls traffic-eng counters soft-preemption` command in XR EXEC mode.

```
clear mpls traffic-eng counters {all | soft-preemption}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Clears counters for all MPLS-TE tunnels.</td>
</tr>
<tr>
<td>soft-preemption</td>
<td>Clears the statistics for soft preemption counters.</td>
</tr>
</tbody>
</table>

Command Default
None

Command Modes
XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
When all counters are cleared using the `clear mpls traffic-eng counters all` command, the counters for soft-preemption statistics are automatically cleared.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>execute</td>
</tr>
</tbody>
</table>

Examples

This example shows how to clear all counters:

```
RP/0/RP0/CPU0:router# clear mpls traffic-eng counters signaling all
```
clear mpls traffic-eng fast-reroute log

To clear the log of MPLS fast reroute (FRR) events, use the **clear mpls traffic-eng fast-reroute log** command in XR EXEC mode.

clear mpls traffic-eng fast-reroute log

Syntax Description
This command has no arguments or keywords.

Command Default
No default behavior or values

Command Modes
XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows sample output before clearing the log of FRR events:

```bash
RP/0/RP0/CPU0:router# show mpls traffic-eng fast-reroute log

Node Protected LSPs Rewrites When Switching Time (usec)
       -------------- ---- -------------- -------------- --------------
0/0/CPU0 PO0/1/0/1 1  1  Feb 27 19:12:29.064000  147
0/1/CPU0 PO0/1/0/1 1  1  Feb 27 19:12:29.060093  165
0/2/CPU0 PO0/1/0/1 1  1  Feb 27 19:12:29.063814  129
0/3/CPU0 PO0/1/0/1 1  1  Feb 27 19:12:29.062861  128
```

RP/0/RP0/CPU0:router# clear mpls traffic-eng fast-reroute log
clear mpls traffic-eng link-management statistics

To clear all the MPLS-TE admission control statistics, use the clear mpls traffic-eng link-management statistics command in XR EXEC mode.

clear mpls traffic-eng link-management statistics

Syntax Description
This command has no arguments or keywords.

Command Default
No default behavior or values

Command Modes
XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples
The following example shows how to clear all the MPLS-TE statistics for admission control:

```
RP/0/RP0/CPU0:router# clear mpls traffic-eng link-management statistics
```
collect-bw-only (MPLS-TE)

To configure only the bandwidth collection without adjusting the bandwidth automatically, use the `collect-bw-only` command in MPLS-TE automatic bandwidth interface configuration mode. To disable this feature, use the `no` form of this command.

```
collect-bw-only
no collect-bw-only
```

Syntax Description

This command has no arguments or keywords.

Command Default

Bandwidth collection is either enabled or disabled.

Command Modes

MPLS-TE automatic bandwidth interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you enable the `collect-bw-only` command while the automatic bandwidth is already running on a tunnel, the bandwidth application is disabled from that moment. Before you enable the actual bandwidth application, you can get the status of the automatic bandwidth behavior.

If you disable the `collect-bw-only` command on a tunnel from which the automatic bandwidth is already running, the actual bandwidth application takes place on the tunnel at the next application period.

It is also possible to manually activate a bandwidth application regardless of the collect bandwidth only flag that is being specified on a tunnel. To activate the bandwidth application, use the `mpls traffic-eng auto-bw apply (MPLS-TE)`, on page 75 command in XR EXEC mode.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable only the bandwidth collection without adjusting the automatic bandwidth:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# auto-bw
RP/0/RP0/CPU0:router(config-if-tunte-autobw)# collect-bw-only
```
destination (MPLS-TE)

To configure the destination address of a TE tunnel, use the destination command in interface configuration mode. To return to the default behavior, use the no form of this command.

```
destination ip-address
no destination ip-address
```

Syntax Description

- `ip-address` Destination address of the MPLS-TE router ID.

Command Default

No default behavior or values

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Note

The tunnel destination address must be a unique MPLS-TE router ID; it cannot be an MPLS-TE link address on a node.

For Point-to-Point (P2P) tunnels, the destination command is used as a single-line command.

Task ID

- **Task ID**: mpls-te
- **Operations**: read, write

Examples

The following example shows how to set the destination address for tunnel-te1 to 10.10.10.10:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te1
RP/0/RP0/CPU0:router(config-if)# destination 10.10.10.10
```
disable (explicit-path)

To prevent the path from being used by MPLS-TE tunnels while it is configured, use the disable command in explicit path configuration mode. To return to the default behavior, use the no form of this command.

```
disable
no disable
```

Syntax Description

This command has no arguments or keywords.

Command Default

Explicit path is enabled.

Command Modes

Explicit path configuration

Command History

```
Release       Modification
------------- -------------------
Release 6.2.1  This command was introduced.
```

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to disable explicit path 200:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# explicit-path identifier 200
RP/0/RP0/CPU0:router(config-expl-path)# disable
```
exclude srlg (auto-tunnel backup)

To specify that automatic backup tunnels should avoid Shared Risk Link Groups (SRLGs) of protected interface, use the exclude srlg command in auto-tunnel backup configuration mode. To disable this feature, use the no form of this command.

```bash
exclude srlg [preferred]
no exclude srlg [preferred]
```

Syntax Description

| preferred | (Optional) Causes the backup tunnel to avoid SRLGs of its protected interface(s); however, the backup tunnel is created if SRLGs are not avoided. |

Command Default

Strict SRLG

Command Modes

Auto-tunnel backup configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Strict SRLG configuration of this command means that the path computed for the backup tunnel that is automatically created, must not contain any links that are part of the excluded SRLG groups. If such a path cannot be found, the backup tunnel does not come up.

Configuration of the preferred option allows the automatic backup tunnel to come up even if a path that excludes SRLGs cannot be found.

Example

In the following example, automatic backup tunnels must avoid SRLGs of the protected interface.

```bash
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)#
RP/0/RP0/CPU0:router(config-mpls-te-if)# auto-tunnel backup
RP/0/RP0/CPU0:router(config-mpls-te-if-auto-backup)# exclude srlg preferred
```
fast-reroute

To enable fast-reroute (FRR) protection for an MPLS-TE tunnel, use the `fast-reroute` command in interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
fast-reroute
no fast-reroute
```

Syntax Description

This command has no arguments or keywords.

Command Default

FRR is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When a protected link used by the fast-reroutable label switched path (LSP) fails, the traffic is rerouted to a previously assigned backup tunnel. Configuring FRR on the tunnel informs all the nodes that the LSP is traversing that this LSP desires link/node/bandwidth protection.

You must allow sufficient time after an RSP RP switchover before triggering FRR on standby RSPs RPs to synchronize with the active RSP RP (verified using the `show redundancy` command). All TE tunnels must be in the recovered state and the database must be in the ready state for all ingress and egress line cards. To verify this information, use the `show mpls traffic-eng tunnels` and `show mpls traffic-eng fast-reroute database` commands.

Note

Wait approximately 60 seconds before triggering FRR after verifying the database state.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable FRR on an MPLS-TE tunnel:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# fast-reroute
```
fast-reroute protect

To enable node and bandwidth protection for an MPLS-TE tunnel, use the fast-reroute protect command in interface configuration mode. To return to the default behavior, use the no form of this command.

```
fast-reroute protect {bandwidth | node}
no fast-reroute protect
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth</td>
<td>Enables bandwidth protection request.</td>
</tr>
<tr>
<td>node</td>
<td>Enables node protection request.</td>
</tr>
</tbody>
</table>

Command Default

FRR is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read,</td>
<td>write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable bandwidth protection for a specified TE tunnel:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)#interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# fast-reroute protect bandwidth
```
fast-reroute timers promotion

To configure how often the router considers switching a protected MPLS-TE tunnel to a new backup tunnel if additional backup-bandwidth or a better backup tunnel becomes available, use the **fast-reroute timers promotion** command in MPLS-TE configuration mode. To return to the default behavior, use the **no** form of this command.

fast-reroute timers promotion *interval*
no fast-reroute timers promotion

Syntax Description

interval Interval, in seconds, between scans to determine if a label switched path (LSP) should use a new, better backup tunnel. Range is 0 to 604800. A value of 0 disables backup tunnel promotions.

Command Default

interval: 300

Command Modes

MPLS-TE configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Setting the interval to a low value puts more load on the CPU because it has to scan all protected LSPs more frequently. It is not recommended that the timer be configured below the default value of 300 seconds.

Pacing mechanisms have been implemented to distribute the load on the CPU when backup promotion is active. Because of this, when a large number of protected LSPs are promoted, some delay is noticeable in backup promotion. If the promotion timer is configured to a very low value (depending on the number of protected LSPs) some protected LSPs may never get promoted.

To disable the timer, set the value to zero.

Examples

The following example shows how to specify that LSPs are scanned every 600 seconds (10 minutes) to determine if they should be promoted to a better backup tunnel:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# fast-reroute timers promotion 600
```
flooding thresholds

To set the reserved bandwidth thresholds for a link, use the **flooding thresholds** command in MPLS-TE interface configuration mode. To return to the default behavior, use the **no** form of this command.

```
flooding thresholds {down | up} percent [{percent1 percent2 percent3 ... percent 15}]  
no flooding thresholds {down | up}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>down</td>
<td>Configures the threshold for decreased resource availability.</td>
</tr>
<tr>
<td>up</td>
<td>Configures the threshold for increased resource availability.</td>
</tr>
<tr>
<td>percent [{percent }]</td>
<td>Bandwidth threshold level. Range is 0 to 100 for all 16 levels.</td>
</tr>
</tbody>
</table>

Command Default

- **down**: 100, 99, 98, 97, 96, 95, 90, 85, 80, 75, 60, 45, 30, 15
- **up**: 5, 30, 45, 60, 75, 80, 85, 90, 95, 97, 98, 99, 100

Command Modes

MPLS-TE interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can configure up to 16 flooding threshold values. The first value is mandatory; the next 15 are optional. When a threshold is crossed, MPLS-TE link management advertises updated link information. If no thresholds are crossed, changes can be flooded periodically unless periodic flooding was disabled.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to set the reserved bandwidth threshold for the link for decreased resource availability (down) and for increased resource availability (up) thresholds:

```
RP/0/RP0/CPU0:router# configure  
RP/0/RP0/CPU0:router(config)# mpls traffic-eng  
RP/0/RP0/CPU0:router(config-mpls-te)# interface HundredGigabitEthernet 0/0/0/3  
RP/0/RP0/CPU0:router(config-mpls-te-if)# flooding thresholds down 100 75 25  
RP/0/RP0/CPU0:router(config-mpls-te-if)# flooding thresholds up 25 50 100
```
forward-class

To define the forwarding path in the MPLS-TE interface, use the `forward-class` command in MPLS-TE configuration mode. To remove forward-class configuration, use the `no` form of this command.

```
forward-class
no forward-class
```

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Command Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No default behavior or values</td>
<td>MPLS-TE configuration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No specific guidelines impact the use of this command.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The following example shows how to define forwarding path in the MPLS-TE interface:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# interface tunnel-te 1</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-if)# forward-class 1</td>
<td></td>
</tr>
</tbody>
</table>
forwarding-adjacency

To configure an MPLS-TE forwarding adjacency, use the `forwarding-adjacency` command in interface configuration mode. By configuring forwarding adjacency, the MPLS-TE tunnels are considered to be links by the IGP. If no forwarding adjacency is to be defined, use the `no` form of this command.

```
forwarding-adjacency [holdtime time][include-ipv6]
no forwarding-adjacency [holdtime time][include-ipv6]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>holdtime time</code></td>
<td>(Optional) Configures the hold time value, in milliseconds, that is associated with each forwarding-adjacency LSP. The hold time is the duration after which the state change of LSP is advertised to IGP. The default value is 0.</td>
</tr>
<tr>
<td><code>include-ipv6</code></td>
<td>(Optional) Announces the MPLS-TE tunnel as an IPv6 forwarding adjacency.</td>
</tr>
</tbody>
</table>

Command Default

- `holdtime time`: 0

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you do not specify a `holdtime time` value, a delay is introduced with the following results:

- When forwarding-adjacency is configured on a tunnel that is up, TE notifies IGP without any additional delay.
- When forwarding-adjacency is configured on a tunnel that is down, TE does not notify IGP.
- When a tunnel on which forwarding-adjacency has been configured comes up, TE holds the notification to IGP for the period of `holdtime` (assuming non-zero `holdtime`). When the `holdtime` elapses, TE notifies IGP if the tunnel is still up.

The paths that traffic is taking to the destination can be manipulated by adjusting the forwarding adjacency link metric. To do that, use the `bandwidth` command. The unit of possible bandwidth values is in kbps.

Examples

This example shows how to configure forwarding adjacency with a `holdtime` value of 60 milliseconds:

```bash
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 888
RP/0/RP0/CPU0:router(config-if)# forwarding-adjacency holdtime 60
```
This example shows how to announce MPLS-TE tunnel as an IPv6 forwarding adjacency:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 65534
RP/0/RP0/CPU0:router(config-if)# forwarding-adjacency
RP/0/RP0/CPU0:router(config-if-tunte-fwdadj)# include-ipv6
```
index exclude-address

To exclude an address from a tunnel path entry at a specific index, use the **index exclude-address** command in explicit path configuration mode. To return to the default behavior, use the **no** form of this command.

```plaintext
index index-id exclude-address { ipv4 unicast IP address }
no index index-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index-id</td>
<td>Index number at which the path entry is inserted or modified. Range is 1 to 65535.</td>
</tr>
<tr>
<td>ipv4 unicast IP address</td>
<td>Excludes the IPv4 unicast address.</td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values

Command Modes

Explicit path configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You cannot include or exclude addresses from an IP explicit path unless explicitly configured using the **exclude-address** keyword.

Use the **exclude-address** keyword only after entering the explicit path configuration mode.

If you use the **exclude-address** keyword and specify the IP address of a link, the constraint-based routine does not consider that link when it sets up MPLS-TE paths. If the excluded address is a flooded MPLS-TE router ID, the constraint-based shortest path first (SPF) routine does not consider that entire node.

Note

The person who performs the configuration must know the IDs of the routers, as it may not be apparent if the value refers to the link or to the node.

MPLS-TE accepts IP explicit paths composed of all excluded addresses configured using the **exclude-address** keyword.

Task ID

- **Task ID**
- **mpls-te** read, write

Examples

The following example shows how to exclude address 192.168.3.2 at index 3 of the explicit path 200:

```plaintext
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# explicit-path identifier 200
```
RP/0/RP0/CPU0:router(config-expl-path)# **index 3 exclude-address ipv4 unicast 192.168.3.2**
index exclude-srlg

To exclude an address to get SRLGs from a tunnel path entry at a specific index, use the `index exclude-srlg` command in explicit path configuration mode. To return to the default behavior, use the `no` form of this command.

```plaintext
index index-id exclude-srlg ipv4 unicast IP address

no index index-id
```

Syntax Description

- **index-id**
 - Index number at which the path entry is inserted or modified. Range is 1 to 65535.

- **exclude-srlg**
 - Specifies an IP address to get SRLG values from for exclusion.

- **ipv4 unicast IP address**
 - Excludes the IPv4 unicast address.

Command Default

No default behavior or values

Command Modes

Explicit path configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Example

The following example shows how to exclude the SRLG values from the IP address 192.168.3.2 at index 1 of the explicit path 100:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# explicit-path identifier 100
RP/0/RP0/CPU0:router(config-expl-path)# index 1 exclude-srlg ipv4 unicast 192.168.3.2
```
index next-address

To include a path entry at a specific index, use the `index next-address` command in explicit path configuration mode. To return to the default behavior, use the `no` form of this command.

```
index index-id next-address [{loose | strict}] ipv4 unicast IP-address
no index index-id
```

Syntax Description

- **index-id**: Index number at which the path entry is inserted or modified. Range is 1 to 65535.
- **ipv4 unicast IP-address**: Includes the IPv4 unicast address (strict address).
- **loose ipv4 unicast IP-address**: (Optional) Specifies the next unicast address in the path as a loose hop.
- **strict ipv4 unicast IP-address**: (Optional) Specifies the next unicast address in the path as a strict hop.

Command Default

No default behavior or values

Command Modes

Explicit path configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You cannot include addresses from an IP explicit path unless explicitly configured using the `next-address` keyword.

Use the `next-address` keyword only after entering the explicit path configuration mode.

Note

The person who performs the configuration must know the IDs of the routers, as it may not be apparent if the value refers to the link or to the node.

Task ID

- **Task ID**: mpls-te
- **Operations ID**: read, write

Examples

The following example shows how to insert the `next-address` 192.168.3.2 at index 3 of the explicit path 200:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# explicit-path identifier 200
```
RP/0/RP0/CPU0:router(config-expl-path)# index 3 next-address ipv4 unicast 192.168.3.2
interface (MPLS-TE)

To enable MPLS-TE on an interface and to enter MPLS-TE interface configuration mode, use the `interface` command in XR Config mode. To return to the default behavior, use the `no` form of this command.

```
interface type interface-path-id
no interface type interface-path-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>interface-path-id</td>
<td>Physical interface or virtual interface.</td>
</tr>
</tbody>
</table>

Note

Use the `show interfaces` command to see a list of all possible interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

Command Default

No default behavior or values

Command Modes

XR Config mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must enter MPLS-TE interface mode to configure specific interface parameters on physical interfaces. Configuring MPLS-TE links or a tunnel TE interface begins the TE-control process on RSP RP.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enter the MPLS-TE interface configuration mode:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# interface HundredGigabitEthernet 0/0/0/3
```

The following example shows how to remove an interface from the MPLS-TE domain:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
```
RP/0/RP0/CPU0:router(config-mpls-te)# no interface HundredGigabitEthernet 0/0/0/3
interface (SRLG)

To enable Shared Risk Link Groups (SRLGs) on an interface and to enter SRLG interface configuration mode, use the `interface` command in SRLG configuration mode. To return to the previous configuration mode, use the `no` form of this command.

```
interface type interface-path-id
no interface type interface-path-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>interface-path-id</td>
<td>Physical interface or virtual interface.</td>
</tr>
</tbody>
</table>

Note
Use the `show interfaces` command to see a list of all possible interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

Command Default

No default behavior or values

Command Modes

SRLG configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Example

The following example shows how to enter SRLG interface configuration mode:

```
RP/0/RP0/CPU0:router(config)# srlg
RP/0/RP0/CPU0:router(config-srlg)# interface HundredGigabitEthernet 0/0/0/3
RP/0/RP0/CPU0:router(config-srlg-if)# value 10
RP/0/RP0/CPU0:router(config-srlg-if)# value 50
```
interface tunnel-te

To configure an MPLS-TE tunnel interface, use the `interface tunnel-te` command in XR Config mode. To return to the default behavior, use the `no` form of this command.

```
interface tunnel-te  tunnel-id
no  interface tunnel-te  tunnel-id
```

Syntax Description
- `tunnel-id` Tunnel number. Range is 0 to 65535.

Command Default
Tunnel interfaces are disabled.

Command Modes
XR Config mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>6.2.1 This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You cannot have two tunnels using the same encapsulation mode with exactly the same source and destination address. The workaround is to create a loopback interface and to use the loopback interface address as the source address of the tunnel.

Configuring MPLS-TE links or Tunnel-TE interface begins the TE-control process on RSP RP.

The `interface tunnel-te` command indicates that the tunnel interface is for an MPLS-TE tunnel and enables the various tunnel MPLS configuration options.

Note
You must configure record-route on TE tunnels that are protected by multiple backup tunnels merging at a single node.

Examples
The following example shows how to configure tunnel interface 1:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# ipv4 unnumbered loopback0
```

The following example shows how to set the tunnel-class attribute to map the correct traffic class to the tunnel:
configure
interface tunnel-te 1
policy-class 1
ipv4 unnumbered (MPLS)

To specify the MPLS-TE tunnel Internet Protocol Version 4 (IPv4) address, use the `ipv4 unnumbered` command in interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
ipv4 unnumbered type interface-path-id
no ipv4 unnumbered type interface-path-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type</code></td>
<td>Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td><code>interface-path-id</code></td>
<td>Physical interface or virtual interface.</td>
</tr>
</tbody>
</table>

Note: Use the `show interfaces` command to see a list of all interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

Command Default

No IP address is set.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Tunnel-te is not signaled until an IP address is configured on the tunnel interface; therefore, the tunnel state stays down without IP address configuration.

Loopback is commonly used as the interface type.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>network</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to configure the MPLS-TE tunnel to use the IPv4 address used on loopback interface 0:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# ipv4 unnumbered loopback0
```
ipv4 unnumbered mpls traffic-eng

To specify the Internet Protocol Version 4 (IPv4) address, use the `ipv4 unnumbered mpls traffic-eng` command in XR Config mode. To remove the IPv4 address, use the `no` form of this command.

Syntax Description

`interface-path-id` Physical interface or virtual interface.

Note

Use the `show interfaces` command to see a list of all interfaces currently configured on the router.

Command Default

No default behavior or values.

Command Modes

XR Config mode.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

Read, write

Examples

The following example shows how to specify unnumbered IPv4 address for a GigabitEthernet interface:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# ipv4 unnumbered mpls traffic-eng HundredGigabitEthernet 0/0/0/3
```

The following example shows how to specify unnumbered IPv4 address for an MPLS-TE tunnel with tunnel ID 200:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# ipv4 unnumbered mpls traffic-eng tunnel-te 200
```
link-management timers bandwidth-hold

To set the length of time that bandwidth is held for a Resource Reservation Protocol (RSVP) Path (setup) message to wait for the corresponding RSVP Resv message to return, use the **link-management timers bandwidth-hold** command in MPLS-TE configuration mode. To return to the default behavior, use the **no** form of this command.

Syntax Description

```plaintext
holdtime  Number of seconds that bandwidth can be held. Range is 1 to 300. Default is 15.
```

Command Default

`holdtime`: 15

Command Modes

MPLS-TE configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **link-management timers bandwidth-hold** command determines the time allowed for an RSVP message to return from a neighbor RSVP node.

Examples

The following example shows how to set the bandwidth to be held for 10 seconds:

```plaintext
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# link-management timers bandwidth-hold 10
```
link-management timers periodic-flooding

To set the length of the interval for periodic flooding, use the link-management timers periodic-flooding command in MPLS-TE configuration mode. To return to the default behavior, use the no form of this command.

```
link-management timers periodic-flooding interval
no link-management timers periodic-flooding
```

Syntax Description

- `interval`: Length of the interval, in seconds, for periodic flooding. Range is 0 to 3600. A value of 0 turns off periodic flooding. The minimum value is 30.

Command Default

- `interval: 180`

Command Modes

- MPLS-TE configuration

Command History

- Release 6.2.1: This command was introduced.

Usage Guidelines

The link-management timers periodic-flooding command advertises the link state information changes that do not trigger immediate action, such as a change to the allocated bandwidth that does not cross a threshold.

Task ID

- `mpls-te`: read, write

Examples

The following example shows how to set the interval length for periodic flooding to 120 seconds:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# link-management timers periodic-flooding 120
```
link-management timers preemption-delay

To set the length of the interval for delaying LSP preemption, use the `link-management timers preemption-delay` command in MPLS-TE configuration mode. To disable this behavior, use the `no` form of this command.

```
link-management timers preemption-delay bundle-capacity sec
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bundle-capacity <code>sec</code></td>
</tr>
<tr>
<td>Specifies the bundle-capacity preemption</td>
</tr>
<tr>
<td>timer value in seconds.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

MPLS-TE configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The value 0 as bundle-capacity value in the `link-management timers preemption-delay` command disables this timer. This means there is no delay before preemption sets in when the bundle capacity goes down.

<table>
<thead>
<tr>
<th>Task ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
</tr>
</tbody>
</table>

Operation

read, write

This example shows how to set the interval length for preemption-delay:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# link-management timers preemption-delay bundle-capacity 180
```
load-share

To determine load-sharing balancing parameters for a specified interface, use the `load-share` command in interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
load-share  value
no  load-share
```

Syntax Description

- `value` Load-share value, equivalent to the bandwidth in kbps (that is, the same value in configuration). Range is 1 to 4294967295. Default is 0.

Command Default
The default load-share for tunnels with no explicit configuration is the configured signalled bandwidth.

- `value`: 0 (if no value is assigned)

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 6.2.1</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines
Configuration schemas are supported for load balancing.

To enable the `load-share` command, you must enable unequal load balancing using the `load-share unequal` command.

Task ID

- `mpls-te` read, write

Examples
The following example shows how to configure load-sharing parameters on a specified interface:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 100
RP/0/RP0/CPU0:router(config-if)# load-share 100
```
load-share unequal

To configure unequal load-sharing for an MPLS-TE tunnel, use the load-share unequal command in MPLS-TE configuration mode. To return to the default behavior, use the no form of this command.

```
load-share unequal
no load-share unequal
```

Syntax Description
This command has no arguments or keywords.

Command Default
By default, unequal load-balancing is disabled and equal load-balancing occurs.

Command Modes
MPLS-TE configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The auto-bw and load-share unequal commands should not be used together.

The load-share unequal command determines the load-share for a tunnel based on the bandwidth. However, the MPLS-TE automatic bandwidth feature changes the bandwidth around. If you are configuring both the load-share unequal command and the MPLS-TE automatic bandwidth feature, we recommend that you specify an explicit load-share value configuration under each MPLS-TE automatic bandwidth tunnel.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples
The following example shows how to enable unequal load-sharing:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# load-share unequal
```
match mpls disposition

To match Tag2IP packets while redirecting MPLS labeled packets to a new destination using PBR policy, use the `match mpls disposition` command in class-map configuration mode. To remove redirection of MPLS labeled packets, use the `no` form of this command.

```
match mpls disposition access-group {ipv4 | ipv6} access-list
no match mpls disposition access-group {ipv4 | ipv6} access-list
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-group</td>
<td>Specifies an access-group.</td>
</tr>
<tr>
<td>ipv4</td>
<td>ipv6</td>
</tr>
<tr>
<td>access-list</td>
<td>Specifies an access-list.</td>
</tr>
</tbody>
</table>

Command Default

Match is not set.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>6.2.1</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

Only Tag2IP packets can be redirected.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos</td>
<td>read, write</td>
</tr>
</tbody>
</table>

This example shows how to configure match MPLS disposition sequence for an IPv4 address:

```
RP/0/RP0/CPU0:router#configure
RP/0/RP0/CPU0:router(config)#class-map type traffic class_mpls_src_test
RP/0/RP0/CPU0:router(config-cmap)#match mpls disposition access-group ipv4 ACL_MPLS_SRC
RP/0/RP0/CPU0:router(config-cmap)#end-class-map
```
maxabs (MPLS-TE)

To specify the maximum number of MPLS-TE tunnels that can be configured, use the `maxabs` command in MPLS-TE configuration mode. To return to the default behavior, use the `no` form of this command.

```
maxabs tunnels tunnel-limit destinations dest-limit
no maxabs tunnels tunnel-limit destinations dest-limit
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>maxabs</code></td>
<td>Configures all tunnels for MPLS-TE.</td>
</tr>
<tr>
<td><code>tunnel-limit</code></td>
<td>Maximum number of tunnel TE interfaces. Range is 1 to 65536.</td>
</tr>
<tr>
<td><code>dest-limit</code></td>
<td>Maximum total number of destinations that can be configured. Range is 1 to 65536.</td>
</tr>
</tbody>
</table>

Command Default

- `tunnel-limit`: 4096
- `dest-limit`: 4096

Command Modes

- MPLS-TE configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

- Read, write

Examples

The following example shows how to set the tunnel-te configuration limit to 1000:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# maxabs tunnels 1000 destinations 1000
```
mpls traffic-eng

To enter MPLS-TE configuration mode, use the mpls traffic-eng command in XR Config mode.

Syntax Description
This command has no arguments or keywords.

Command Default
No default behavior or values

Command Modes
XR Config mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples
The following example shows how to enter MPLS-TE configuration mode:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)#
```
mpls traffic-eng auto-bw apply (MPLS-TE)

To apply the highest bandwidth collected on a tunnel without waiting for the current application period to end, use the `mpls traffic-eng auto-bw apply` command in XR EXEC mode.

`mpls traffic-eng auto-bw apply {all | tunnel-te tunnel-number}`

Syntax Description
- **all** Applies the highest bandwidth collected instantly on all the automatic bandwidth-enabled tunnels.
- **tunnel-te tunnel-number** Applies the highest bandwidth instantly to the specified tunnel. The range is from 0 to 65535.

Command Default
No default behavior or values

Command Modes
XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `mpls traffic-eng auto-bw apply` command can forcefully expire the current application period on a specified tunnel and immediately apply the highest bandwidth recorded so far instead of waiting for the application period to end on its own.

Note
The predefined threshold check still applies on the configuration, and if the delta is not significant enough, the automatic bandwidth functionality overrides this command.

The bandwidth application is performed only if at least one output rate sample has been collected for the current application period.

To guarantee the application of a specific signaled bandwidth value when triggering a manual bandwidth application, follow these steps:

1. Configure the minimum and maximum automatic bandwidth to the bandwidth value that you want to apply by using the command.
2. Trigger a manual bandwidth application by using the `mpls traffic-eng auto-bw apply` command.
3. Revert the minimum and maximum automatic bandwidth value back to their original value.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>execute</td>
</tr>
</tbody>
</table>
Examples

The following example applies the highest bandwidth to a specified tunnel:

RP/0/RP0/CPU0:router# mpls traffic-eng auto-bw apply tunnel-te 1
To configure the router to assign new or more efficient backup MPLS-TE tunnels to protected MPLS-TE tunnels, use the `mpls traffic-eng fast-reroute promote` command in XR EXEC mode. To return to the default behavior, use the `no` form of this command.

```
no mpls traffic-eng fast-reroute promote
```

Syntax Description

This command has no arguments or keywords.

Command Default

No default behavior or values

Command Modes

XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to initiate backup tunnel promote and assignment:

```
RP/0/RP0/CPU0:router# mpls traffic-eng fast-reroute promote
```
mpls traffic-eng level

To configure a router running Intermediate System-to-System (IS-IS) MPLS-TE at IS-IS Level 1 and Level 2, use the `mpls traffic-eng level` command in XR Config mode. To return to the default behavior, use the `no` form of this command.

```
mpls traffic-eng level  isis-level
no  mpls traffic-eng level  isis-level
```

Syntax Description

`isis-level` IS-IS level (1, 2, or both) where MPLS-TE is enabled.

Command Default

No default behavior or values

Command Modes

XR Config mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `mpls traffic-eng level` command is supported for IS-IS and affects the operation of MPLS-TE only if MPLS-TE is enabled for that routing protocol instance.

Examples

The following example shows how to configure a router running IS-IS MPLS to flood TE for IS-IS level 1:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router isis 1
RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-af)# mpls traffic-eng level 1
RP/0/RP0/CPU0:router(config-isis-af)# metric-style wide
```
mpls traffic-eng link-management flood

To enable immediate flooding of all the local MPLS-TE links, use the `mpls traffic-eng link-management flood` command in XR EXEC mode. To return to the default behavior, use the `no` form of this command.

```
no  mpls traffic-eng link-management flood
```

Syntax Description
This command has no arguments or keywords.

Command Default
No default behavior or values

Command Modes
XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
If there is no change in the LSA since last flooding, IGP may dampen the advertisement.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples
The following example shows how to initiate flooding of the local MPLS-TE links:

```
RP/0/RP0/CPU0:router# mpls traffic-eng link-management flood
```
To force a manual switchover for path-protected tunnel, use the `mpls traffic-eng path-protection switchover tunnel-te` command in XR EXEC mode. To disable this feature, use the `no` form of this command.

```
no mpls traffic-eng path-protection switchover tunnel-te
```

Syntax Description
- **Tunnel ID**
 - Tunnel identifier of the P2P tunnel for the path protection switchover. Range is from 0 to 65535.

Command Default
No default behavior or values

Command Modes
- XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID
- **Task ID**
- Operations
- mpls-te execute

Examples
The following example configures the switchover for path-protection for tunnel-te:

```
RP/0/RP0/CPU0:router# mpls traffic-eng path-protection switchover tunnel-te 8
```
mpls traffic-eng reoptimize (EXEC)

To trigger the reoptimization interval of all TE tunnels, use the `mpls traffic-eng reoptimize` command in XR EXEC mode.

```
mpls traffic-eng reoptimize [tunnel-id] [tunnel-name] [all] [p2p [all tunnel-id]]
```

Syntax Description
- `tunnel-id` (Optional) MPLS-TE tunnel identification expressed as a number. Range is from 0 to 65535.
- `tunnel-name` (Optional) TE tunnel identification expressed as a name.
- `all` (Optional) Forces an immediate reoptimization for all tunnels.
- `p2p` (Optional) Forces an immediate reoptimization of all P2P TE tunnels.
- `tunnel-id` (Optional) Forces an immediate reoptimization for all P2P tunnels.
- `tunnel-id` (Optional) P2P TE tunnel identification to be reoptimized. Range is from 0 to 65535.

Command Default
No default behavior or values

Command Modes
XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>6.2.1</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mpls-te execute</td>
</tr>
</tbody>
</table>

Examples
The following example shows how to immediately reoptimize all TE tunnels:

```
RP/0/RP0/CPU0:router# mpls traffic-eng reoptimize
```

The following example shows how to immediately reoptimize TE tunnel-te90:

```
RP/0/RP0/CPU0:router# mpls traffic-eng reoptimize tunnel-te90
```

The following example shows how to immediately reoptimize all P2P TE tunnels:

```
RP/0/RP0/CPU0:router# mpls traffic-eng reoptimize p2p all
```
mpls traffic-eng reoptimize events link-up

To turn on automatic reoptimization of Multiprotocol Label Switching (MPLS) traffic engineering when certain events occur, such as, when an interface becomes operational, use the `mpls traffic-eng reoptimize events link-up` command in XR Config mode. To disable automatic reoptimization when link-up event occurs, use the `no` form of this command.

```mls traffic-eng reoptimize events link-up```
```no mpls traffic-eng reoptimize events link-up```

Syntax Description

This command has no arguments or keywords.

Command Modes

XR Config mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Example

The following example shows how to turn on automatic reoptimization when an interface becomes operational:

```RP/0/RP0/CPU0:router# mpls traffic-eng reoptimize events link-up```
mpls traffic-eng router-id (MPLS-TE router)

To specify that the TE router identifier for the node is the IP address associated with a given interface, use the `mpls traffic-eng router-id` command in the appropriate mode. To return to the default behavior, use the `no` form of this command.

```
mpls traffic-eng router-id type interface-path-id
no mpls traffic-eng router-id type interface-path-id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type</code></td>
<td>Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td><code>interface-path-id</code></td>
<td>Physical interface or virtual interface.</td>
</tr>
</tbody>
</table>

**Note**

Use the `show interfaces` command to see a list of all interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

**Command Default**

No default behavior or values

**Command Modes**

OSPF configuration

IS-IS address family configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A router identifier acts as a stable IP address for the TE configuration. This IP address is flooded to all nodes. You must set the destination on the destination node TE router identifier for all affected tunnels. This router ID is the address that the TE topology database at the tunnel head uses for its path calculation.

**Note**

When the `mpls traffic-eng router-id` command is not configured, global router ID is used by MPLS-TE if there is one configured.

We suggest that you configure the `mpls traffic-eng router-id` command explicitly under the IGP; otherwise, TE uses the default algorithm to pick up the TE router-id, which can be the highest IP address of the loopback interfaces or physical interfaces.

A TE router-id configuration is highly recommended to ensure that the tunnel head-end picks up the correct source address, and the configured static RPF address at the tail-end matches the tunnel source which avoids unexpected traffic drops.
 MPLS Traffic Engineering Commands

Examples

The following examples show how to specify the TE router identifier as the IP address associated with loopback interface:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router ospf CORE AS
RP/0/RP0/CPU0:router(config-ospf)# mpls traffic-eng router-id 7.7.7.7

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router isis 811
RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-af)# mpls traffic-eng router-id 8.8.8.8
**mpls traffic-eng reoptimize mesh group**

To reoptimize all tunnels of a mesh group, use the `mpls traffic-eng reoptimize mesh group` command in XR EXEC mode.

```
command
```

```
mpls traffic-eng reoptimize auto-tunnel mesh group group_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group_id</code></td>
<td>Defines auto-tunnel mesh group ID that is to be reoptimized. Range is 0 to 4294967295.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command Modes**

XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>execute</td>
</tr>
</tbody>
</table>

**Examples**

This is sample output from the `mpls traffic-eng reoptimize mesh group` command:

```
RP/0/RP0/CPU0:router mpls traffic-eng reoptimize mesh group 10
```
To enter MPLS-TE SRLG configuration mode, use the `mpls traffic-eng srlg` command in XR Config mode. To delete all the SRLG values and mapping configured under traffic engineering, use the `no` form of this command. To enter MPLS-TE SRLG value configuration submode, use the `mpls traffic-eng srlg value srlg value` command in the MPLS TE SRLG configuration mode. To delete all the SRLG values configured, use the `no` form of this command. To specify administrative weight associated with an SRLG value, use the `admin-weight` keyword in the MPLS TE SRLG value configuration submode.

`mpls traffic-eng srlg {admin-weight weight | value srlg-value} ipv4 address ip-address next-hop ipv4 address next-hop-ip-address`

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>admin-weight</strong></td>
<td>Weight added to link admin-weight during SRLG-aware path computation. Range is 0 to 4294967295.</td>
</tr>
<tr>
<td><strong>value</strong></td>
<td>SRLG value. Range is 0 to 4294967295.</td>
</tr>
<tr>
<td><strong>static</strong></td>
<td>Assign SRLG to topology link based on IP address.</td>
</tr>
<tr>
<td><strong>ipv4 address</strong></td>
<td>Assign IP address of the local end-point and next-hop address of the link.</td>
</tr>
</tbody>
</table>

### Command Default

The default value for `admin-weight` keyword is 1.

### Command Modes

XR Config mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

No specific guidelines impact the use of this command.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Examples

The following example shows how to enter MPLS-TE SRLG configuration mode:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng srlg
RP/0/RP0/CPU0:router(config-mpls-te-srlg)#
```

The following example shows how to enter MPLS-TE SRLG value configuration submode:
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng srlg value 150
RP/0/RP0/CPU0:router(config-mpls-te-srlg)#

The following example shows how to specify admin-weight in the MPLS-TE SRLG value configuration submode:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng srlg value 150
RP/0/RP0/CPU0:router(config-mpls-te-srlg)# admin-weight 10
nhop-only (auto-tunnel backup)

To configure only a next-hop automatic backup tunnel with only link protection, use the **nhop-only** command in MPLS-TE auto-tunnel backup interface configuration mode. To return to the default configuration setting for automatic backup tunnels, use the **no** form of this command.

```
nhop-only
no nhop-only
```

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
Both NHOP and NNHOP protection are enabled.

**Command Modes**
Auto-tunnel backup configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
If you configure the **nhop-only** command, you destroy any next-next-hop (NNHOP) tunnel created to provide node protection for tunnels running over the specified interface.

If you unconfigure the **nhop-only** command, you trigger a backup assignment on primary tunnels running over that link. The automatic backup tunnel feature attempts to create NNHOP backup tunnels to provide node protection for the specified tunnels.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Example**
In the following example, NNHOP automatic backup tunnels are destroyed and only NHOP tunnels with link protection is configured:

```
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# interface HundredGigE 0/0/0/3
RP/0/RP0/CPU0:router(config-mpls-te-if)# auto-tunnel backup
RP/0/RP0/CPU0:router(config-mpls-te-if-auto-backup)# nhop-only
```
overflow threshold (MPLS-TE)

To configure the tunnel overflow detection, use the `overflow threshold` command in MPLS-TE automatic bandwidth interface configuration mode. To disable the overflow detection feature, use the `no` form of this command.

```
overflow threshold percentage [min bandwidth] limit limit
no overflow threshold
```

**Syntax Description**

- **percentage**
  - Bandwidth change percent to trigger an overflow. The range is from 1 to 100.

- **min bandwidth**
  - (Optional) Configures the bandwidth change value, in kbps, to trigger an overflow.
    - The range is from 10 to 4294967295. The default is 10.

- **limit limit**
  - Configures the number of consecutive collection intervals that exceeds the threshold. The bandwidth overflow triggers an early tunnel bandwidth update.
    - The range is from 1 to 10. The default is none.

**Command Default**

The default value is disabled.

**Command Modes**

MPLS-TE automatic bandwidth interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

- If you modify the `limit` keyword, the consecutive overflows counter for the tunnel is also reset.
- If you enable or modify the minimum value, the current consecutive overflows counter for the tunnel is also reset, which effectively restarts the overflow detection from scratch.
- Several number of consecutive bandwidth samples are greater than the overflow threshold (bandwidth percentage) and the minimum bandwidth configured, then a bandwidth application is updated immediately instead of waiting for the end of the application period.
- Overflow detection applies only to bandwidth increase. For example, an overflow can not be triggered even if bandwidth decreases by more than the configured overflow threshold.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to configure the tunnel overflow detection for tunnel-te 1:

```
RP/0/RP0/CPU0:router# configure
```
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# auto-bw
RP/0/RP0/CPU0:router(config-if-tunte-autobw)# overflow threshold 50 limit 3
### path-option (MPLS-TE)

To configure a path option for an MPLS-TE tunnel, use the `path-option` command in tunnel-te interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
path-option preference-priority [protecting number] {dynamic | explicit {name path-name | identifier path-number}} [protected-by path-option-level] [attribute-set name] [isis instance-name level level] [lockdown] [ospf instance-name area {value address}] [verbatim]

no path-option preference-priority {dynamic | explicit {name path-name | identifier path-number}} [protected-by path-option-level] [isis instance-name level level] [lockdown] [ospf instance-name area {value address}] [verbatim]
```

#### Syntax Description

- **preference-priority**: Path option number. Range is from 1 to 1000.
- **protecting number**: Specifies a path setup option to protect a path. The range is from 1 to 1000.
- **dynamic**: Specifies that label switched paths (LSP) are dynamically calculated.
- **explicit**: Specifies that LSP paths are IP explicit paths.
- **name path-name**: Specifies the path name of the IP explicit path.
- **identifier path-number**: Specifies a path number of the IP explicit path.
- **protected-by path-option-level**: (Optional) Configures path protection for an explicit path that is protected by another explicit path.
- **isis instance-name**: (Optional) Limits CSPF to a single IS-IS instance and area.
- **attribute-set name**: (Optional) Specifies the attribute set for the LSP.
- **level level**: Configures the level for IS-IS. The range is from 1 to 2.
- **lockdown**: (Optional) Specifies that the LSP cannot be reoptimized.
- **ospf instance-name**: (Optional) Limits CSPF to a single OSPF instance and area.
- **area**: Configures the area for OSPF.
- **value**: Decimal value for the OSPF area ID.
- **address**: IP address for the OSPF area ID.
- **verbatim**: (Optional) Bypasses the Topology/CSPF check for explicit paths.

#### Command Default

No default behavior or values

#### Command Modes

Tunnel-te interface configuration
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can configure several path options for a single tunnel. For example, there can be several explicit path options and a dynamic option for one tunnel. The path setup preference is for lower (not higher) numbers, so option 1 is preferred.

When the lower number path option fails, the next path option is used to set up a tunnel automatically (unless using the lockdown option).

The `protecting` keyword specifies that you can configure path-protection for the primary LSP. The `protecting` keyword is available only for tunnel-gte interfaces.

You specify the backup path for the `path-option` command in case of the primary path failure.

CSPF areas are configured on a per-path-option basis.

The `dynamic` keyword is required to configure path-protection.

Any primary explicit path on a path protection enabled tunnel can be configured to be protected by an explicit path option level using `protected-by` keyword. Only one explicit protecting path is supported per path option.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to configure the tunnel to use a named IPv4 explicit path as verbatim and lockdown options for the tunnel. This tunnel cannot reoptimize when the FRR event goes away, unless you manually reoptimize it:

```
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# path-option 1 explicit name test verbatim lockdown
```

The following example shows how to enable path protection on a tunnel to configure an explicit path:

```
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# path-option 1 explicit name po4
RP/0/RP0/CPU0:router(config-if)# path-option protecting 1 explicit name po6
```

The following example shows how to limit CSPF to a single OSPF instance and area:

```
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# path-option 1 explicit name router1 ospf 3 area 7 verbatim
```

The following example shows how to limit CSPF to a single IS-IS instance and area:
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# path-option 1 dynamic isis mtbf level 1 lockdown
path-protection (MPLS-TE)

To enable path protection for a tunnel interface, use the `path-protection` command in interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
path-protection
no path-protection
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

No default behavior or values

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Although not as fast as a link or node protection, presignaling a secondary Labeled Switch Path (LSP) is faster than configuring a secondary path option or allowing the tunnel's source router to dynamically recalculate a path. The actual recovery time is topology-dependent, and is affected by delay factors such as propagation delay and switch fabric latency.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to enable path protection for the tunnel-te interface type:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# path-protection
```
path-protection timers reopt-after-switchover

To configure the time to wait after a switchover occurs on a tunnel before a reoptimization is attempted for the tunnel, use the `path-protection timers reopt-after-switchover` command in MPLS-TE configuration mode. To disable this feature, use the `no` form of this command.

```
path-protection timers reopt-after-switchover seconds
no path-protection timers reopt-after-switchover seconds
```

**Syntax Description**

| seconds | Time, in seconds, between path-protection event and tunnel reoptimization. Range is from 0 to 604800. |

**Command Default**

`seconds`: 180 (3 minutes)

**Command Modes**

MPLS-TE configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command is used as a triggered reoptimization, which allows a tunnel to reoptimize to a better path than the standby path after the switchover. This option is used as a one time reoptimization.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to adjust the number of seconds between when a path-protection switchover is effected on a tunnel head to when reoptimization is performed on the tunnel:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# path-protection timers reopt-after-switchover 180
```
## path-selection cost-limit

To set the upper limit on the path aggregate admin-weight when computing paths for MPLS-TE LSPs, use the `path-selection cost-limit` command in an appropriate configuration mode. To remove the upper limit, use the `no` form of this command.

```plaintext
path-selection cost-limit cost-limit-value
```

### Syntax Description

- **cost-limit-value**: Configures the path-selection cost-limit value. The range is from 1 to 4294967295.

### Command Default

The cost-limit is ignored.

### Command Modes

- XR Config mode
- Interface tunnel TE configuration
- MPLS TE path-option attribute set configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Path-selection cost-limit configuration works only on MPLS TE tunnels. The cost-limit configured under path-option attribute-set configuration mode takes priority and will be in effect if the cost-limit is configured under global configuration, interface tunnel TE, and path-option attribute-set configuration modes. The cost-limit is ignored by default.

A LSP is created only if its path aggregate admin-weight is less than the specified path cost limit.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

This example shows how to set the path-selection cost-limit for under MPLS TE path-option attribute-set `PO3AttrSet`.

```
RP/0/RP0/CPU0:router#configure
RP/0/RP0/CPU0:router(config)#mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)#attribute-set path-option PO3AttrSet
RP/0/RP0/CPU0:router(config-te-attribute-set)#path-selection cost-limit 50000
```
path-selection ignore overload (MPLS-TE)

To ignore the Intermediate System-to-Intermediate System (IS-IS) overload bit setting for MPLS-TE, use the `path-selection ignore overload` command in MPLS-TE configuration mode. To return to the default behavior, use the `no` form of this command.

```
path-selection ignore overload {head | mid | tail}
no path-selection ignore overload {head | mid | tail}
```

Syntax Description

This command has no arguments or keywords.

```
<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>head</td>
</tr>
<tr>
<td>mid</td>
</tr>
<tr>
<td>tail</td>
</tr>
</tbody>
</table>
```

Command Default

None

Command Modes

MPLS-TE configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `path-selection ignore overload` command to ensure that label switched paths (LSPs) are not broken because of routers that have IS-IS overload bit as enabled.

When the IS-IS overload bit avoidance (OLA) feature is activated, all nodes with the overload bit set, which includes head nodes, mid nodes, and tail nodes, are ignored. This means that they are still available for use with label switched paths (LSPs). This feature allows you to include an overloaded node in constraint-based shortest path first (CSPF).

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to use the `path-selection ignore overload head` command:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# path-selection ignore overload
```
path-selection ignore overload (MPLS-TE)

RP/0/RP0/CPU0:router(config-mpls-te)# path-selection ignore overload head
path-selection loose-expansion affinity (MPLS-TE)

To specify the affinity value to be used to expand a path to the next loose hop for a tunnel on an area border router, use the `path-selection loose-expansion affinity` command in MPLS-TE configuration mode. To return to the default behavior, use the `no` form of this command.

```
path-selection loose-expansion affinity affinity-value mask affinity-mask [class-type type]
no path-selection loose-expansion affinity affinity-value mask affinity-mask [class-type type]
```

### Syntax Description

- **affinity-value**: Attribute values required for links carrying this tunnel. A 32-bit decimal number. Range is 0x0 to 0xFFFFFFFF, representing 32 attributes (bits), where the value of an attribute is 0 or 1.

- **mask  affinity-mask**: Checks the link attribute, a 32-bit decimal number. Range is 0x0 to 0xFFFFFFFF, representing 32 attributes (bits), where the value of an attribute mask is 0 or 1.

- **class-type  type**: (Optional) Requests the class-type of the tunnel bandwidth. Range is 0 to 1.

### Command Default

- **affinity-value**: 0X00000000
- **mask-value**: 0xFFFFFFFF

### Command Modes

MPLS-TE configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The new affinity scheme (based on names) is not supported for loose-hop expansion. New configuration does not affect the already up tunnels.

### Task ID

- **Task ID**: mpls-te
- **Operations**: read, write

### Examples

The following example shows how to configure affinity 0x55 with mask 0xFFFFFFFF:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# path-selection loose-expansion affinity 55 mask FFFFFFFFF
```
path-selection loose-expansion metric (MPLS-TE)

To configure a metric type to be used to expand a path to the next loose hop for a tunnel on an area border router, use the `path-selection loose-expansion metric` command in MPLS-TE configuration mode. To return to the default behavior, use the `no` form of this command.

```
path-selection loose-expansion metric {igp | te} [class-type type]
no path-selection loose-expansion metric {igp | te} [class-type type]
```

**Syntax Description**

- `igp` Configures an Interior Gateway Protocol (IGP) metric.
- `te` Configures a TE metric. This is the default.
- `class-type type` (Optional) Requests the class type of the tunnel bandwidth. Range is 0 to 1.

**Command Default**

The default is TE metric.

**Command Modes**

MPLS-TE configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

New configurations do not affect tunnels that are already up.

**Examples**

The following example shows how to set the path-selection metric to use the IGP metric overwriting default:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# path-selection loose-expansion metric igp
```
**path-selection metric (MPLS-TE)**

To specify the MPLS-TE tunnel path-selection metric, use the `path-selection metric` command in MPLS-TE configuration mode. To return to the default behavior, use the `no` form of this command.

```
path-selection metric {igp | te}
no path-selection metric {igp | te}
```

**Syntax Description**
- `igp`: Configures an Interior Gateway Protocol (IGP) metric.
- `te`: Configures a TE metric.

**Command Default**
The default is TE metric.

**Command Modes**
MPLS-TE configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The metric type to be used for path calculation for a given tunnel is determined as follows:

- If the `path-selection metric` command was entered to specify a metric type for the tunnel, use that metric type.
- Otherwise, use the default (TE) metric.

**Examples**
The following example shows how to set the path-selection metric to use the IGP metric overwriting default:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# path-selection metric igp
```
path-selection metric (interface)

To configure an MPLS-TE tunnel path-selection metric type, use the `path-selection metric` command in interface configuration mode. To return to the default behavior, use the `no` form of this command.

```plaintext
path-selection metric {igp | te}
no path-selection metric {igp | te}
```

**Syntax Description**

- `igp` Configures Interior Gateway Protocol (IGP) metrics.
- `te` Configures TE metrics. This is the default.

**Command Default**

The default is TE metrics.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The metric type to be used for path calculation for a given tunnel is determined as follows:

- If the `path-selection metric` command was entered to either a metric type for the tunnel or only a metric type, use that metric type.
- Otherwise, use the default (TE) metric.

**Examples**

The following example shows how to set the path-selection metric to use the IGP metric overwriting default:

```plaintext
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# path-selection metric igp
```
policy-class

To configure policy-based tunnel selection (PBTS) to direct traffic into specific TE tunnels, use the `policy-class` command in interface configuration mode. To disable this feature, use the `no` form of this command.

Multiple EXP values can be specified as part of a policy-class, separated by spaces. The EXP values configured to a TE tunnel effectively form a monolithic policy-class, which should not overlap with other policy-classes. Once an EXP value is used in a policy-class configuration, it can only be reused if the subsequent policy-class configurations containing that EXP value are identical. For example, if the configuration `policy-class 1 2 3` is applied to one or more tunnels, configurations such as `policy-class 1`, `policy-class 2 3`, or `policy-class 3 4 5` become invalid.

```
policy-class {1 - 7 | default}
no policy-class
```

**Syntax Description**

<table>
<thead>
<tr>
<th>EXP values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 7</td>
<td>Policy-class attribute to map the correct traffic class to this policy. Multiple EXP values can be specified, separated by spaces.</td>
</tr>
<tr>
<td>default</td>
<td>Default tunnel policy class.</td>
</tr>
</tbody>
</table>

**Command Default**

The lowest class tunnels are assigned to carry default traffic only if no default tunnel is available for forwarding.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `policy-class` command to enable policy-based tunnel selection (PBTS). See *Cisco IOS XR MPLS Configuration Guide for the Cisco CRS-1 Router* and *Cisco IOS XR MPLS Configuration Guide for the Cisco XR 12000 Series Router* for more information on PBTS.

To display the configured PBTS policy-class value, use the `show mpls traffic-eng tunnels` command.

To display information about PBTS configuration, use the `show cef` and `show cef hardware` commands in *Cisco IOS XR IP Addresses and Services Command Reference for the Cisco XR 12000 Series Router* and *Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS-1 Router*.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to configure a policy class:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
```
The following example shows how to configure a policy-class that maps to multiple traffic classes:

RP/0/RP0/CPU0:router(config-if)# policy-class 7

The following example shows how to configure a default policy-class tunnel:

RP/0/RP0/CPU0:router(config-if)# policy-class default
RP/0/RP0/CPU0:router(config-if)# commit
priority (MPLS-TE)

To configure the setup and reservation priority for an MPLS-TE tunnel, use the `priority` command in interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
priority setup-priority hold-priority
no priority setup-priority hold-priority
```

**Syntax Description**

`setup-priority` Priority used when signaling a label switched path (LSP) for this tunnel to determine which existing tunnels can be preempted. Range is 0 to 7 (in which a lower number indicates a higher priority). Therefore, an LSP with a setup priority of 0 can preempt any LSP with a non-0 priority.

`hold-priority` Priority associated with an LSP for this tunnel to determine if it should be preempted by other LSPs that are being signaled. Range is 0 to 7 (in which a lower number indicates a higher priority).

**Command Default**

```
setup-priority: 7
hold-priority: 7
```

**Command Modes**

Interface configuration

**Command History**

```
Release Modification
6.2.1 This command was introduced.
```

**Usage Guidelines**

When an LSP is signaled and an interface does not currently have enough bandwidth available for that LSP, the call admission software (if necessary) preempts lower-priority LSPs to admit the new LSP. Accordingly, the new LSP priority is the setup priority and the existing LSP priority is the hold priority. The two priorities make it possible to signal an LSP with a low setup priority (so that the LSP does not preempt other LSPs on setup) and a high hold priority (so that the LSP is not preempted after it is established). Setup priority and hold priority are typically configured to be equal, and setup priority cannot be numerically smaller than the hold priority.

**Task ID**

```
mpls-te read, write
```

**Examples**

The following example shows how to configure a tunnel with a setup and hold priority of 1:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# priority 1 1
```
record-route

To record the route used by a tunnel, use the `record-route` command in interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
record-route
no record-route
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

No default behavior or values

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must configure record-route on TE tunnels that are protected by multiple backup tunnels merging at a single node.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to enable record-route on the TE tunnel:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# record-route
```
redirect default-route nexthop

To configure multi nexthop tracking on default-route on a VRF for IPv4 or IPv6 address family, use the `redirect default-route nexthop` command in policy-map class type configuration mode.

Syntax:

```
redirect {ipv4 | ipv6} default-route nexthop [vrf vrf-name] [{v4v6}] nexthop [vrf vrf-name] [{v4v6}] nexthop [vrf vrf-name] [{v4v6}]
```

**Syntax Description**

- **ipv4 | ipv6**
  - Specifies IPv4 or IPv6 address family.

- **vrf vrf-name**
  - Specifies the VRF name for nexthop.

- **v4**
  - Specifies IPv4 nexthop address in A.B.C.D format.

- **v6**
  - Specifies IPv6 nexthop address in X:X::X%zone format.

**Command Default**

No default behavior or values

**Command Modes**

Policy-map class type configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to configure multi nexthop tracking on default-route on a VRF for IPv4:

```
RP/0/RSP0/CPU0:Router# config
RP/0/RSP0/CPU0:Router(config)# policy-map type pbr kmd
RP/0/RSP0/CPU0:Router(config-pmap)# class type traffic acl
RP/0/RSP0/CPU0:Router(config-pmap-c)# redirect ipv4 default-route nexthop vrf vpn1 3.2.1.2 nexthop vrf vpn2 3.2.3.2 nexthop vrf vpn3 3.2.4.2
```
**redirect nexthop**

To configure multi nexthop tracking on a VRF for IPv4 or IPv6 address family, use the `redirect nexthop` command in policy-map class type configuration mode.

```
redirect {ipv4 | ipv6} nexthop
 [vrf vrf-name] [v4 v6] nexthop [vrf vrf-name] [v4 v6] nexthop [vrf vrf-name] [v4 v6]
```

**Syntax Description**

- `ipv4 | ipv6`:
  Specifies IPv4 or IPv6 address family.

- `vrf vrf-name`:
  Specifies the VRF name for nexthop.

- `v4`:
  Specifies IPv4 nexthop address in A.B.C.D format.

- `v6`:
  Specifies IPv6 nexthop address in X:X::X%zone format.

**Command Default**

No default behavior or values

**Command Modes**

Policy-map class type configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A maximum number of three nexthops can be configured. The first nexthop configured has the highest priority as compared to the last nexthop, which has the least priority. The nexthops configured must be either IPv4 or IPv6. Either a VRF name or an IPv4/IPv6 address, or both can be configured for a given nexthop. When VRF is not configured, it is presumed to be ingress interface VRF.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to configure multi nexthop tracking on a VRF for IPv4:

```
RP/0/RSP0/CPU0:Router# config
RP/0/RSP0/CPU0:Router(config)# policy-map type pbr kmd
RP/0/RSP0/CPU0:Router(config-pmap)# class type traffic acl
RP/0/RSP0/CPU0:Router(config-pmap-c)# redirect ipv4 nexthop vrf vpn1 3.2.1.2 nexthop vrf vpn2 3.2.3.2 nexthop vrf vpn3 3.2.4.2
```
reoptimize (MPLS-TE)

To force the reoptimization interval for all TE tunnels, use the `reoptimize` command in MPLS-TE configuration mode. To return to the default behavior, use the `no` form of this command.

```
reoptimize frequency
no reoptimize frequency
```

**Syntax Description**

- `frequency`: Timer frequency range, in seconds. Range is from 0 to 604800.

  Note:
  - A value of 0 disables periodic reoptimization.
  - Any value in the range from 1 to 60 results in periodic reoptimization that occurs every 60 seconds.

**Command Default**

- `frequency`: 3600

**Command Modes**

- MPLS-TE configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

- `mpls-te` read, write

**Examples**

The following example shows how to force the reoptimization interval to 60 seconds:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# reoptimize 60
```
reoptimize timers delay (MPLS-TE)

To delay removal or relabeling of the old label switched paths (LSPs) (reoptimized LSP from the forwarding plane) after tunnel reoptimization, use the reoptimize timers delay command in MPLS-TE configuration mode. To restore the default value, use the no form of this command.

```
reoptimize timers delay {after-frr seconds | cleanup delay-time | installation delay-time | path-protection seconds}
no reoptimize timers delay {after-frr seconds | cleanup delay-time | installation delay-time | path-protection seconds}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>after-frr</strong></td>
<td>Delays the LSP reoptimization in the event of the FRR.</td>
</tr>
<tr>
<td><strong>seconds</strong></td>
<td>Reoptimization initiation delay time of the tunnel, in seconds, after an FRR event. Range is from 0 to 120.</td>
</tr>
<tr>
<td><strong>cleanup</strong></td>
<td>Delays removal of the old LSPs after tunnel reoptimization.</td>
</tr>
<tr>
<td><strong>delay-time</strong></td>
<td>Reoptimization delay time, in seconds. A value of 0 disables delay. The valid range is from 0 to 300 for cleanup time.</td>
</tr>
<tr>
<td><strong>installation</strong></td>
<td>Delays installation of a new label after tunnel reoptimization.</td>
</tr>
<tr>
<td><strong>delay-time</strong></td>
<td>Reoptimization delay time, in seconds. A value of 0 disables delay. The valid range is 0 to 3600 for installation time.</td>
</tr>
<tr>
<td><strong>path-protection</strong></td>
<td>Delays the time between path protection switchover event and tunnel reoptimization.</td>
</tr>
<tr>
<td><strong>seconds</strong></td>
<td>Time, in seconds, between path protection switchover event and tunnel reoptimization. A value of 0 disables delay. Range is from 0 to 604800.</td>
</tr>
</tbody>
</table>

**Command Default**

- **after-frr delay**: 0
- **cleanup delay**: 20
- **delay-time**: 20
- **installation delay**: 20
**path-protection**: 180

**Command Modes**
MPLS-TE configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>6.2.1</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A device with Multiprotocol Label Switching traffic engineering (MPLS-TE) tunnels periodically examines tunnels with established LSPs to discover whether more efficient LSPs (paths) are available. If a better LSP is available, the device signals the more efficient LSP; if the signaling is successful, the device replaces the older LSP with the new, more efficient LSP.

Sometimes the slower router-point nodes may not yet utilize the new label’s forwarding plane. In this case, if the headend node replaces the labels quickly, it can result in brief packet loss. By delaying the cleanup of the old LSP using the **reoptimize timers delay cleanup** command, packet loss is avoided.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to set the reoptimization cleanup delay time to 1 minute:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# reoptimize timers delay cleanup 60
```

The following example shows how to set the reoptimization installation delay time to 40 seconds:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# reoptimize timers delay installation 40
```

The following example shows how to set the reoptimization delay time after the event of the FRR to 50 seconds:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# reoptimize timers delay after-frr 50
```

The following example shows how to set the reoptimization delay time between path protection switchover event and tunnel reoptimization to 80:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# reoptimize timers delay path-protection 80
```
route-priority

To enable users to adjust the route-priority given to TE labels into the data plane, compared to labels and route updates from other protocols, use the `route-priority` command in MPLS-TE configuration mode. To return to the default behavior, use the `no` form of this command.

```
route-priority role {middle | head {primary | backup}} queue queue
no route-priority role {middle | head {primary | backup}}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>route-priority</td>
<td>Defines the role of the tunnel to which the label belongs.</td>
</tr>
<tr>
<td>role</td>
<td>A tunnel mid-point.</td>
</tr>
<tr>
<td>middle</td>
<td>A tunnel head which is assigned as a FRR backup to an interface.</td>
</tr>
<tr>
<td>head backup</td>
<td>All other tunnel heads.</td>
</tr>
<tr>
<td>head primary</td>
<td>Defines the queue number. Range is from 0 to 12 inclusive; lower values represent higher priority queues.</td>
</tr>
<tr>
<td>queue</td>
<td></td>
</tr>
</tbody>
</table>

### Command Default

- head backup: 9
- head primary: 10
- middle: 10

### Command Modes

- MPLS-TE configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use this command to change the priority given to TE labels when updates to the forwarding plane are made from the control plane.

The priority values used by other applications are:

- 0 - Unused
- 1 - Unused
- 2 - RIB/LDP (Critical)
- 3 - Unused
- 4 - Unused
- 5 - RIB/LDP (High)
The default prioritization of label updates from the control plane to the forwarding plane has been carefully chosen to avoid traffic loss under both normal operation and high system load, and to balance the needs of the various features that employ label switching. Changing these defaults may cause unpredictable behavior including traffic loss, especially when the router is experiencing high load. Use of this command is not recommended without proper understanding of its effects and possible side-effects.

Examples
The following example shows how to enable route-priority:

RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# route-priority role middle queue 7
router-id secondary (MPLS-TE)

To configure a secondary TE router identifier in MPLS-TE to be used locally (not advertised through IGP), use the `router-id secondary` command in MPLS-TE configuration mode. To return to the default behavior, use the `no` form of this command.

```
router-id secondary IP address
no router-id secondary IP address
```

**Syntax Description**

- **IP address**: IPv4 address to be used as secondary TE router ID.

**Command Default**

No default behavior or values

**Command Modes**

MPLS-TE configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `router-id secondary` command on tail end nodes to terminate verbatim tunnels to secondary TE RIDs as destinations.

You can configure up to 32 IPv4 addresses as TE secondary router IDs.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to configure a secondary TE router identifier in MPLS-TE:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# router-id secondary 1.1.1.1
RP/0/RP0/CPU0:router(config-mpls-te)# router-id secondary 2.2.2.2
```
set destination-address

To set destination address while redirecting Tag2IP MPLS labeled packets using PBR policy, use the set destination-address command in policy map class type configuration mode. To remove this configuration, use the no form of this command.

```
set destination-address {ipv4 | ipv6} ip-address
no set destination-address {ipv4 | ipv6} ip-address
```

**Syntax Description**

- `ipv4 | ipv6` Specifies IPv4 or IPv6 address format.
- `ip-address` Specifies the IPv4 or IPv6 address.

**Command Default**

Destination IP address is not set.

**Command Modes**

Policy-map class type Configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>6.2.1</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Only Tag2IP packets redirection is supported.

**Task ID**

- `qos` read, write

This example shows how to set an IPv4 address as the redirect destination address:

```
RP/0/0/CP00:ios#configure
RP/0/0/CP00:ios(config)#policy-map type pbr pbr_prec_exp
RP/0/0/CP00:ios(config-pmap)#class type traffic class_prec_exp
RP/0/0/CP00:ios(config-pmap-c)#set destination-address ipv4 3.3.3.3
```
set ipv4 df

To set or clear the do not fragment (df) bit policy before forwarding the packet in IPv4 traffic, use the `set ipv4 df` command in Policy-map configuration mode. To disable setting or clearing the df bit, use the no form of this command.

```
set_ipv4 df df-value
```

**Syntax Description**

- `df-value` specifies the df bit value. Range is from 1 to 7.

**Command Default**

Set df bit policy is disabled.

**Command Modes**

Policy-map configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos</td>
<td>read, write</td>
</tr>
</tbody>
</table>

This example shows how to set the IPv4 df bit policy value as 1:

```
RP/0/RP0/CPU0:router(config-pmap-c)#set ipv4 df 1
```
**set source-address**

To set source address while redirecting Tag2IP MPLS labeled packets using PBR policy, use the `set source-address` command in policy map class type configuration mode. To remove this configuration, use the `no` form of this command.

```
set source-address {ipv4 | ipv6} ip-address
```

**Syntax Description**

- `ipv4 | ipv6` Specifies IPv4 or IPv6 address format.
- `ip-address` Specifies the IPv4 or IPv6 address.

**Command Default**

No default behavior or values

**Command Modes**

Policy-map class type Configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to set an IPv4 address as the source address:

```
RP/0/0/CPU0:ios#configure
RP/0/0/CPU0:ios(config)#policy-map type pbr pbr_prec_exp
RP/0/0/CPU0:ios(config-pmap)#class type traffic class_prec_exp
RP/0/0/CPU0:ios(config-pmap-c)#set source-address ipv4 1.1.1.1
```
show explicit-paths

To display the configured IP explicit paths, use the `show explicit-paths` command in XR EXEC mode.

```
show explicit-paths [{name path-name | identifier number}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name path-name</td>
<td>(Optional) Displays the name of the explicit path.</td>
</tr>
<tr>
<td>identifier number</td>
<td>(Optional) Displays the number of the explicit path. Range is 1 to 65535.</td>
</tr>
</tbody>
</table>

**Command Default**

No default behavior or values

**Command Modes**

XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

An IP explicit path is a list of IP addresses that represent a node or link in the explicit path.

**Task ID**

```
Task ID
mpls-te read
```

**Examples**

The following shows a sample output from the `show explicit-paths` command:

```
RP/0/RP0/CPU0:router# show explicit-paths

Path ToR2 status enabled
 0x1: next-address 192.168.1.2
 0x2: next-address 10.20.20.20
Path ToR3 status enabled
 0x1: next-address 192.168.1.2
 0x2: next-address 192.168.2.2
 0x3: next-address 10.30.30.30
Path 100 status enabled
 0x1: next-address 192.168.1.2
 0x2: next-address 10.20.20.20
Path 200 status enabled
 0x1: next-address 192.168.1.2
 0x2: next-address 192.168.2.2
 0x3: next-address 10.30.30.30
```
This table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>Pathname or number, followed by the path status.</td>
</tr>
<tr>
<td>1: next-address</td>
<td>First IP address in the path.</td>
</tr>
<tr>
<td>2: next-address</td>
<td>Second IP address in the path.</td>
</tr>
</tbody>
</table>

The following shows a sample output from the `show explicit-paths` command using a specific path name:

```
RP/0/RP0/CPU0:router# show explicit-paths name ToR3
Path ToR3 status enabled
 0x1: next-address 192.168.1.2
 0x2: next-address 192.168.2.2
 0x3: next-address 10.30.30.30
```

The following shows a sample output from the `show explicit-paths` command using a specific path number:

```
RP/0/RP0/CPU0:router# show explicit-paths identifier 200
Path 200 status enabled
 0x1: next-address 192.168.1.2
 0x2: next-address 192.168.2.2
 0x3: next-address 10.30.30.30
```
show interfaces tunnel-te accounting

To display IPv4 and IPv6 statistics for MPLS traffic engineering (TE) tunnels, use the `show interfaces tunnel-te accounting` command in XR EXEC mode.

```
show interfaces tunnel-te tunnel-number accounting [{location location-id | rates}]
```

**Syntax Description**
- `tunnel-number`: Specifies TE tunnel number. Range is from 0 to 6553.
- `location location-id`: Specifies fully qualified location of the TE tunnel.
- `rates`: Displays interface accounting rates.

**Command Default**
None

**Command Modes**
XR EXEC mode

**Command History**
- Release 6.2.1: This command was introduced.

**Usage Guidelines**
No specific guidelines impact the use of this command.

**Task ID**
- Task ID: mpls-te
- Operation ID: read

This example displays accounting information from tunnel-te interface 1:

```
RP/0/RP0/CPU0:router#show interface tunnel-te 1 accounting
```

```
tunnel-te1
 Protocol Pkts In Chars In Pkts Out Chars Out
 IPV4_UNICAST 0 0 5 520
 IPV6_UNICAST 0 0 15 1560
```
show mpls traffic-eng affinity-map

To display the color name-to-value mappings configured on the router, use the show mpls traffic-eng affinity-map command in XR EXEC mode.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

No default behavior or values

**Command Modes**

XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the affinity value of an affinity associated with an affinity constraint is unknown, the show mpls traffic-eng affinity-map command output displays: "(refers to undefined affinity name)"

**Examples**

The following shows a sample output from the show mpls traffic-eng affinity-map command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng affinity-map

<table>
<thead>
<tr>
<th>Affinity Name</th>
<th>Bit-position</th>
<th>Affinity Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcdgabcdefgghabcgdefgha</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>red1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>red2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>red3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>red4</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>red5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>red6</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>red7</td>
<td>7</td>
<td>80</td>
</tr>
<tr>
<td>red8</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>red9</td>
<td>9</td>
<td>200</td>
</tr>
<tr>
<td>red10</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>red11</td>
<td>11</td>
<td>800</td>
</tr>
<tr>
<td>red12</td>
<td>12</td>
<td>1000</td>
</tr>
<tr>
<td>red13</td>
<td>13</td>
<td>2000</td>
</tr>
<tr>
<td>red14</td>
<td>14</td>
<td>4000</td>
</tr>
<tr>
<td>red15</td>
<td>15</td>
<td>8000</td>
</tr>
<tr>
<td>red16</td>
<td>16</td>
<td>10000</td>
</tr>
<tr>
<td>cdefgabcdefgghabcgdefghab</td>
<td>17</td>
<td>20000</td>
</tr>
<tr>
<td>red18</td>
<td>18</td>
<td>40000</td>
</tr>
<tr>
<td>red19</td>
<td>19</td>
<td>80000</td>
</tr>
</tbody>
</table>
```
show mpls traffic-eng affinity-map

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affinity Name</td>
<td>Affinity name associated with the tunnel affinity constraints.</td>
</tr>
<tr>
<td>Bit-position</td>
<td>Bit position set in the 32-bit affinity value</td>
</tr>
<tr>
<td>Affinity Value</td>
<td>Affinity value associated with the affinity name.</td>
</tr>
</tbody>
</table>

Table 2: show mpls traffic-eng affinity-map Field Descriptions

<table>
<thead>
<tr>
<th>Affinity Name</th>
<th>Bit-position</th>
<th>Affinity Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>red20</td>
<td>20</td>
<td>100000</td>
</tr>
<tr>
<td>red21</td>
<td>21</td>
<td>200000</td>
</tr>
<tr>
<td>red22</td>
<td>22</td>
<td>400000</td>
</tr>
<tr>
<td>red23</td>
<td>23</td>
<td>800000</td>
</tr>
<tr>
<td>red24</td>
<td>24</td>
<td>1000000</td>
</tr>
<tr>
<td>red25</td>
<td>25</td>
<td>2000000</td>
</tr>
<tr>
<td>red26</td>
<td>26</td>
<td>4000000</td>
</tr>
<tr>
<td>red27</td>
<td>27</td>
<td>8000000</td>
</tr>
<tr>
<td>black28</td>
<td>28</td>
<td>10000000</td>
</tr>
<tr>
<td>red28</td>
<td>29</td>
<td>20000000</td>
</tr>
<tr>
<td>red30</td>
<td>30</td>
<td>40000000</td>
</tr>
<tr>
<td>abcdefgabcdefg</td>
<td>31</td>
<td>80000000</td>
</tr>
</tbody>
</table>

Table 2: show mpls traffic-eng affinity-map Field Descriptions, on page 122 describes the significant fields shown in the display.
show mpls traffic-eng attribute-set

To display the attribute set for MPLS-TE, use the show mpls traffic-eng attribute-set command in XR EXEC mode.

show mpls traffic-eng attribute-set [{auto-backup | auto-mesh | path-option | xro[attribute-set-name]}]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto-backup</td>
<td>Displays information for the auto-backup attribute type.</td>
</tr>
<tr>
<td>auto-mesh</td>
<td>Displays information for the auto-mesh attribute type.</td>
</tr>
<tr>
<td>path-option</td>
<td>Displays information for the path-option attribute type.</td>
</tr>
<tr>
<td>xro</td>
<td>Displays information for the XRO attribute type.</td>
</tr>
<tr>
<td>attribute-set-name</td>
<td>Specifies the name of the attribute set to be displayed.</td>
</tr>
</tbody>
</table>

Command Default

Displays information about all types of attribute sets.

Command Modes

XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To use this command, first enable the MPLS-TE application.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

Example

The following command shows the attribute set for auto-backup attribute type.

RP/0/RP0/CPU0:router# show mpls traffic-eng attribute-set auto-backup auto1

Attribute Set Name: auto1 (Type: auto-backup)
  Affinity: 0x0/0xffff (Default)
  Priority: 7 7 (Default)
  Record-route: Enabled
  Policy-class: 0 (Not configured)
  Logging: None
  List of protected interfaces (count 0)
  List of tunnel IDs (count 0)
The following command shows the attribute set for auto-mesh attribute type.

```plaintext
RP/0/RP0/CPU0:router# show mpls traffic-eng attribute-set auto-mesh mesh1
```

Attribute Set Name: mesh1 (Type: auto-mesh)
Bandwidth: 0 kbps (CT0) (Default)
Affinity: 0x0/0xffff (Default)
Priority: 7 7 (Default)
Interface Bandwidth: 0 kbps (Default)
AutoRoute Announce: Disabled
Auto-bw: Disabled
Soft Preemption: Disabled
Fast Reroute: Disabled, Protection Desired: None
Record-route: Disabled
Policy-class: 0 (Not configured)
Logging: None
List of Mesh Groups (count 0)

The following command shows the attribute set for path-option attribute type.

```plaintext
RP/0/RP0/CPU0:router# show mpls traffic-eng attribute-set path-option path1
```

Attribute Set Name: path1 (Type: path option)
Bandwidth: 0 kbps (CT0) (Default)
Affinity: 0x0/0xffff (Default)
List of tunnel IDs (count 0)

The following command shows the attribute set for xro.

```plaintext
RP/0/RP0/CPU0:router# show mpls traffic-eng attribute-set xro
```

Attribute Set Name: foo (Type: XRO)
Number of XRO constraints : 2
LSP, best-effort, LSP-id used
    Specified by FEC: tunnel-id 55, LSP-id 88, ext. id 10.10.10.10
    source 10.10.10.10, destination 20.20.20.20
LSP, strict, LSP-id ignored
    Specified by FEC: tunnel-id 3, LSP-id 0, ext. id 1.1.1.1
    source 1.1.1.1, destination 2.2.2.2
show mpls traffic-eng autoroute

To display tunnels that are announced to the Interior Gateway Protocol (IGP), including information about next hop and destinations, use the `show mpls traffic-eng autoroute` command in XR EXEC mode.

`show mpls traffic-eng autoroute [name tunnel-name][IP-address]`

**Syntax Description**

- **IP-address** (Optional) Tunnel leading to this address.
- **name tunnel-name** Specifies a tunnel by name.

**Command Default**

None

**Command Modes**

XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>6.2.1</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The traffic-engineering tunnels are taken into account for the enhanced shortest path first (SPF) calculation of the IGP. The `show mpls traffic-eng autoroute` command displays those tunnels that IGP is currently using in its enhanced SPF calculation (that is, those tunnels that are up and have autoroute configured).

Tunnels are organized by destination. All tunnels to a destination carry a share of the traffic tunneled to that destination.

**Examples**

The following shows a sample output from the `show mpls traffic-eng autoroute` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng autoroute

Destination 103.0.0.3 has 2 tunnels in OSPF 0 area 0
tunnel-te1 (traffic share 1, nexthop 103.0.0.3)
tunnel-te2 (traffic share 1, nexthop 103.0.0.3)
```

This table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Multiprotocol Label Switching (MPLS) TE tail-end router ID.</td>
</tr>
</tbody>
</table>
A factor, based on bandwidth, indicating how much traffic this tunnel should carry, relative to other tunnels, to the same destination. If two tunnels go to a single destination, one with a traffic share of 200 and the other with a traffic share of 100, the first tunnel carries two-thirds of the traffic.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic share</td>
<td>A factor, based on bandwidth, indicating how much traffic this tunnel should carry, relative to other tunnels, to the same destination. If two tunnels go to a single destination, one with a traffic share of 200 and the other with a traffic share of 100, the first tunnel carries two-thirds of the traffic.</td>
</tr>
<tr>
<td>Nexthop</td>
<td>Next-hop router ID of the MPLS-TE tunnel.</td>
</tr>
<tr>
<td>absolute metric</td>
<td>Metric with mode absolute for the MPLS-TE tunnel.</td>
</tr>
<tr>
<td>relative metric</td>
<td>Metric with mode relative for the MPLS-TE tunnel.</td>
</tr>
</tbody>
</table>

This sample output displays *Signalled-Name* information:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng autoroute
Destination 192.168.0.4 has 1 tunnels in OSPF ring area 0
tunnel-te1 (traffic share 0, nexthop 192.168.0.4)
Signalled-Name: rtrA_t1
```

This sample output displays IS-IS autoroute information:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng autoroute
Destination 192.168.0.1 has 1 tunnels in IS-IS ring level 1
tunnel-te1 (traffic share 0, nexthop 192.168.0.1)
 (IS-IS ring level-1, IPV4 Unicast)
 (IS-IS ring level-1, IPV6 Unicast)
```
show mpls traffic-eng auto-tunnel backup

To display information about automatically build MPLS-TE backup tunnels, use the `show mpls traffic-eng auto-tunnel backup` command in XR EXEC mode.

```plaintext
show mpls traffic-eng auto-tunnel {backup [{private | summary | unused}]}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup</td>
<td>Displays information about auto-tunnel backup.</td>
</tr>
<tr>
<td>private</td>
<td>(Optional) Displays private information about the automatically build MPLS-TE backup tunnels.</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays the automatically build MPLS-TE backup tunnels summary information.</td>
</tr>
<tr>
<td>unused</td>
<td>(Optional) Displays only unused MPLS-TE backup tunnels.</td>
</tr>
</tbody>
</table>

**Command Default**

No default behavior or values

**Command Modes**

XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

**Example**

This is sample output from the `show mpls traffic-eng auto-tunnel backup` command:

```
AutoTunnel Backup Configuration:
 Interfaces count: 4
 Unused removal timeout: 1h 0m 0s
 Configured tunnel number range: 2000-2500

AutoTunnel Backup Summary:
 AutoTunnel Backups:
 1 created, 1 up, 0 down, 0 unused
 1 NHOP, 0 NNHOP, 0 SRLG strict, 0 SRLG preferred
 Protected LSPs:
 1 NHOP, 0 NHOP+SRLG
 0 NNHOP, 0 NNHOP+SRLG
 Protected S2L Sharing Families:
```
show mpls traffic-eng auto-tunnel backup

0 NHOP, 0 NHOP+SRLG
0 NNHOP, 0 NNHOP+SRLG
Protected S2Ls:
0 NHOP, 0 NHOP+SRLG
0 NNHOP, 0 NNHOP+SRLG

Cumulative Counters (last cleared 05:17:19 ago):

<table>
<thead>
<tr>
<th>Total</th>
<th>NHOP</th>
<th>NNHOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Created:</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Connected:</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Removed (down):</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Removed (unused):</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Removed (in use):</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Range exceeded:</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

AutoTunnel Backups:

<table>
<thead>
<tr>
<th>Tunnel Name</th>
<th>State</th>
<th>Protection</th>
<th>Prot. Flows*</th>
<th>Protected Interface</th>
<th>Protected Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel-te2000</td>
<td>up NHOP</td>
<td>1</td>
<td>G10/2/0/2</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

*Prot. Flows = Total Protected LSPs, S2Ls and S2L Sharing Families

This is sample output from the show mpls traffic-eng auto-tunnel mesh command:

RP/0/RP0/CPU0:router#show mpls traffic-eng auto-tunnel mesh

Auto-tunnel Mesh Global Configuration:
Unused removal timeout: 2h
Configured tunnel number range: 10000-12000

Auto-tunnel Mesh Groups Summary:
Mesh Groups count: 5
Mesh Groups Destinations count: 50

Mesh Group 40 (2 Destinations, 1 Up, 1 Down):
Destination-list: dl-40
Attribute-set: ta_name
Destination: 40.40.40.40, tunnel-id: 10000, State: Up
Destination: 10.10.10.10, tunnel-id: 10001, State: Down

Mesh Group 41 (3 Destinations, 2 Up, 1 Down):
Destination-list: dl-40
Attribute-set: ta_name
Destination: 4.4.4.4, tunnel-id: 10005, State: Up
Destination: 3.3.3.3, tunnel-id: 10006, State: Up
Destination: 1.1.1.1, tunnel-id: 10007, State: Down

Mesh Group 51 (0 Destinations, 0 Up, 0 Down):
Destination-list: Not configured
Attribute-set: Not configured

Mesh Group 52 (0 Destinations, 0 Up, 0 Down):
Destination-list: NAME1 (Not defined)
Attribute-set: NAME2 (Not defined)

Mesh Group 53 (2 Destinations, 1 Up, 1 Down):
Destination-list: dl-53
Attribute-set: Not configured
Destination: 40.40.40.40, tunnel-id: 10000, State: Up
Destination: 10.10.10.10, tunnel-id: 10001, State: Down

Cumulative Counters (last cleared 7h ago):

<table>
<thead>
<tr>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Created:</td>
</tr>
<tr>
<td>Connected:</td>
</tr>
<tr>
<td>Removed (unused):</td>
</tr>
</tbody>
</table>
This is sample output from the `show mpls traffic-eng auto-tunnel private` command:

Auto-tunnel Mesh Private Information:
ID allocator overall maximum ID: 4096
ID allocator last allocated ID: 50999
ID allocator number IDs allocated: 1000
show mpls traffic-eng auto-tunnel mesh

To display information about automatically built MPLS-TE mesh tunnels, use the `show mpls traffic-eng auto-tunnel mesh` command in XR EXEC mode.

```
show mpls traffic-eng auto-tunnel mesh {mesh-value | unused | summary | attribute-set name | destination address | destination-list name | down | up | tunnel {created | not-created} | onehop}
```

**Syntax Description**

- **mesh mesh-value**: Displays the tunnels that belong to the specified auto-tunnel mesh group. The range of mesh group ID is from 0 to 4294967295.
- **attribute-set name**: Displays mesh-groups configured with a specific attribute set.
- **destination address**: Displays only the destinations with a specified address.
- **destination-list name**: Displays mesh-groups configured with a specified prefix-list.
- **down**: Displays only those tunnels that are down.
- **up**: Displays only those tunnels that are up.
- **summary**: Displays auto-tunnel mesh summary information.
- **unused**: Displays only the down tunnels with no destination in the topology.
- **tunnel created | not-created**: Specifies either created destinations with tunnels, or not-created destinations without tunnels.
- **onehop**: Displays onehop enabled mesh groups.

**Command Default**

None

**Command Modes**

XR EXEC mode

**Command History**

```
Release Modification
---------- -------------------
6.2.1 This command was introduced.
```

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

```
Task ID Operation
---------- ----------
MPLS-TE read
```

This is sample output from the `show mpls traffic-eng auto-tunnel mesh` command:

```
RP/0/RP0/CPU0:router show mpls traffic-eng auto-tunnel mesh

Auto-tunnel Mesh Global Configuration:
 Unused removal timeout: 1h 0m 0s
```
Configured tunnel number range: 1000-1200

Auto-tunnel Mesh Groups Summary:
Mesh Groups count: 1
Mesh Groups Destinations count: 3
Mesh Groups Tunnels count:
  3 created, 0 up, 3 down, 0 FRR enabled

Mesh Group: 65 (3 Destinations)
Status: Enabled
Attribute-set: am-65
Destination-list: dl-65 (Not a prefix-list)
Recreate timer: Not running

<table>
<thead>
<tr>
<th>Destination</th>
<th>Tunnel ID</th>
<th>State</th>
<th>Unused timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.2</td>
<td>1000</td>
<td>up</td>
<td>Not running</td>
</tr>
<tr>
<td>192.168.0.3</td>
<td>1001</td>
<td>up</td>
<td>Not running</td>
</tr>
<tr>
<td>192.168.0.4</td>
<td>1002</td>
<td>up</td>
<td>Not running</td>
</tr>
</tbody>
</table>

Displayed 3 tunnels, 0 up, 3 down, 0 FRR enabled

Auto-mesh Cumulative Counters:
Total
Created: 3
Connected: 0
Removed (unused): 0
Removed (in use): 0
Range exceeded: 0

This shows how to configure the auto-tunnel mesh command with destination-list and attribute-set keywords:

```
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# auto-tunnel mesh
RP/0/RP0/CPU0:router(config-te-auto-mesh)# group 65
RP/0/RP0/CPU0:router(config-te-mesh-group)# disable
RP/0/RP0/CPU0:router(config-te-mesh-group)# destination-list dl-65
RP/0/RP0/CPU0:router(config-te-mesh-group)# attribute-set am-65
```
This **attribute-set** is an optional configuration. Without this configuration, all tunnels use default tunnel attribute values. If you configure an non-existent attribute-set, this mesh group does not create any tunnel.

This **destination-list** configuration is mandatory. If there is no IPv4 prefix-list by this name on the router, this mesh group create tunnels with all routers in the network.

This sample output displays information about one-hop tunnels:

```
RP/0/RP0/CPU0:router#show mpls traffic-eng auto-tunnel mesh onehop

Auto-tunnel Mesh Onehop Groups Summary:
 Mesh Groups count: 1
 Mesh Groups Destinations count: 2
 Mesh Groups Tunnels count:
 2 created, 2 up, 0 down, 0 FRR enabled

Mesh Group: 25 (2 Destinations) Onehop
Status: Enabled
Attribute-set: Not configured
Destination-list: dest_list (Not a prefix-list)
Recreate timer: Not running

<table>
<thead>
<tr>
<th>Destination</th>
<th>Tunnel ID</th>
<th>State</th>
<th>Unused timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.2</td>
<td>3500</td>
<td>up</td>
<td>Not running</td>
</tr>
<tr>
<td>11.11.11.2</td>
<td>3501</td>
<td>up</td>
<td>Not running</td>
</tr>
</tbody>
</table>

Displayed 2 tunnels, 2 up, 0 down, 0 FRR enabled

Auto-mesh Onehop Cumulative Counters:
Total
Created: 2
Connected: 2
Removed (unused): 0
Removed (in use): 0
Range exceeded: 0
```
show mpls traffic-eng collaborator-timers

To display the current status of the MPLS-TE collaborator timers, use the show mpls traffic-eng collaborator-timers command in XR EXEC mode.

**show mpls traffic-eng collaborator-timers**

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
No default behavior or values

**Command Modes**
XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The MPLS-TE process maintains the timers for all of the collaborators such as RSVP, LSD, and so forth. The show mpls traffic-eng collaborator-timers command shows the status of these timers.

**Task ID**

<table>
<thead>
<tr>
<th>Task</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**
The following sample output shows the current status of the collaborator timers:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng collaborator-timers

Collaborator Timers

Timer Name: [LMRIB Restart] Index:[0]
 Duration: [60] Is running: NO
 Last start time: 02/09/2009 11:57:59
 Last stop time: 02/09/2009 11:58:00
 Last expiry time: Never expired
Timer Name: [LMRIB Recovery] Index:[1]
 Duration: [60] Is running: YES
 Last start time: 02/09/2009 11:58:00
 Last stop time: Never Stopped
 Last expiry time: 19/08/2009 17:45:24
Timer Name: [RSVP Restart] Index:[2]
 Duration: [180] Is running: NO
 Last start time: 26/08/2009 18:59:18
 Last stop time: 26/08/2009 18:59:20
 Last expiry time: Never expired
Timer Name: [RSVP Recovery] Index:[3]
 Duration: [1800] Is running: NO
 Last start time: 26/08/2009 18:59:20
 Last stop time: 26/08/2009 19:03:19
 Last expiry time: 19/08/2009 18:12:39
```
Timer Name: [LSD Restart] Index:[4]
  Duration: [60] Is running: NO
  Last start time: 19/08/2009 17:44:26
  Last stop time: 19/08/2009 17:44:26
  Last expiry time: Never expired
Timer Name: [LSD Recovery] Index:[5]
  Duration: [600] Is running: NO
  Last start time: 19/08/2009 17:44:26
  Last stop time: Never Stopped
  Last expiry time: 19/08/2009 17:53:44
Timer Name: [Clearing in progress BW for the whole topology] Index:[6]
  Duration: [60] Is running: YES
  Last start time: 02/09/2009 11:57:50
  Last stop time: Never Stopped
  Last expiry time: 02/09/2009 11:57:50

This table describes the significant fields shown in the display.

Table 4: show mpls traffic-eng collaborator-timers Command Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer Name</td>
<td>Timer name that is associated to a collaborator.</td>
</tr>
<tr>
<td>Index</td>
<td>Identification number of the timer.</td>
</tr>
<tr>
<td>Duration</td>
<td>Expiry delay of the timer, in seconds. For example, the duration indicates the timer interval.</td>
</tr>
<tr>
<td>Is running</td>
<td>Timer is running low or not.</td>
</tr>
<tr>
<td>Last start time</td>
<td>Last time that the collaborator process for MPLS LSD was restarted.</td>
</tr>
<tr>
<td>Last stop time</td>
<td>Time TE was able to reconnect to the MPLS LSD process.</td>
</tr>
<tr>
<td>Last expiry time</td>
<td>Time that timer expired.</td>
</tr>
</tbody>
</table>
show mpls traffic-eng counters signaling

To display tunnel signaling statistics, use the `show mpls traffic-eng counters signaling` command in XR EXEC mode.

`show mpls traffic-eng counters signaling {signaling | soft-preemption} {tunnel-number | all | {heads | mids | tails} | name tunnel-name | summary}`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>signaling</code></td>
<td>Displays signaling counters.</td>
</tr>
<tr>
<td><code>soft-preemption</code></td>
<td>Displays the statistics for the soft-preemption.</td>
</tr>
<tr>
<td><code>tunnel-number</code></td>
<td>Statistics for the input tunnel number. The range is from 0 to 65535.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Displays statistics for all tunnels.</td>
</tr>
<tr>
<td><code>heads</code></td>
<td>(Optional) Displays statistics for all tunnel heads.</td>
</tr>
<tr>
<td><code>mids</code></td>
<td>(Optional) Displays statistics for all tunnel midpoints.</td>
</tr>
<tr>
<td><code>tails</code></td>
<td>(Optional) Displays statistics for all tunnel tails.</td>
</tr>
<tr>
<td><code>name</code></td>
<td>Displays statistics for a specified tunnel.</td>
</tr>
<tr>
<td><code>tunnel-name</code></td>
<td>Name of the specified tunnel.</td>
</tr>
<tr>
<td><code>summary</code></td>
<td>Displays a summary of signaling statistics.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command Modes**

XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.
Examples

This is a sample output from the `show mpls traffic-eng counters signaling` command, using the `all` keyword, which displays tunnel signaling statistics for all tunnels:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng counters signaling all
```

Tunnel Head: tunnel-te100
Cumulative Tunnel Counters:

<table>
<thead>
<tr>
<th>Signalling Events</th>
<th>Recv</th>
<th>Xmit</th>
<th>Recv</th>
<th>Xmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathCreate</td>
<td>1</td>
<td>1</td>
<td>ResvCreate</td>
<td>1</td>
</tr>
<tr>
<td>PathChange</td>
<td>0</td>
<td>0</td>
<td>ResvChange</td>
<td>0</td>
</tr>
<tr>
<td>PathError</td>
<td>0</td>
<td>0</td>
<td>ResvError</td>
<td>0</td>
</tr>
<tr>
<td>PathTear</td>
<td>0</td>
<td>18</td>
<td>ResvTear</td>
<td>0</td>
</tr>
<tr>
<td>BackupAssign</td>
<td>0</td>
<td>1</td>
<td>BackupError</td>
<td>0</td>
</tr>
<tr>
<td>PathQuery</td>
<td>0</td>
<td>0</td>
<td>Unknown</td>
<td>0</td>
</tr>
</tbody>
</table>

Destination 100.0.0.4
Cumulative counters

<table>
<thead>
<tr>
<th>Signalling Events</th>
<th>Recv</th>
<th>Xmit</th>
<th>Recv</th>
<th>Xmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathCreate</td>
<td>1</td>
<td>1</td>
<td>ResvCreate</td>
<td>1</td>
</tr>
<tr>
<td>PathChange</td>
<td>0</td>
<td>0</td>
<td>ResvChange</td>
<td>0</td>
</tr>
<tr>
<td>PathError</td>
<td>0</td>
<td>0</td>
<td>ResvError</td>
<td>0</td>
</tr>
<tr>
<td>PathTear</td>
<td>0</td>
<td>18</td>
<td>ResvTear</td>
<td>0</td>
</tr>
<tr>
<td>BackupAssign</td>
<td>0</td>
<td>1</td>
<td>BackupError</td>
<td>0</td>
</tr>
<tr>
<td>PathQuery</td>
<td>0</td>
<td>0</td>
<td>Unknown</td>
<td>0</td>
</tr>
</tbody>
</table>

S2L LSP ID: 2 Sub-Grp ID: 0 Destination: 100.0.0.4
Cumulative counters

<table>
<thead>
<tr>
<th>Signalling Events</th>
<th>Recv</th>
<th>Xmit</th>
<th>Recv</th>
<th>Xmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathCreate</td>
<td>1</td>
<td>1</td>
<td>ResvCreate</td>
<td>1</td>
</tr>
<tr>
<td>PathChange</td>
<td>0</td>
<td>0</td>
<td>ResvChange</td>
<td>0</td>
</tr>
<tr>
<td>PathError</td>
<td>0</td>
<td>0</td>
<td>ResvError</td>
<td>0</td>
</tr>
<tr>
<td>PathTear</td>
<td>0</td>
<td>18</td>
<td>ResvTear</td>
<td>0</td>
</tr>
<tr>
<td>BackupAssign</td>
<td>0</td>
<td>1</td>
<td>BackupError</td>
<td>0</td>
</tr>
<tr>
<td>PathQuery</td>
<td>0</td>
<td>0</td>
<td>Unknown</td>
<td>0</td>
</tr>
</tbody>
</table>

Signaling Counter Summary:

<table>
<thead>
<tr>
<th>Signalling Events</th>
<th>Recv</th>
<th>Xmit</th>
<th>Recv</th>
<th>Xmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathCreate</td>
<td>11</td>
<td>7</td>
<td>ResvCreate</td>
<td>11</td>
</tr>
<tr>
<td>PathChange</td>
<td>0</td>
<td>0</td>
<td>ResvChange</td>
<td>0</td>
</tr>
<tr>
<td>PathError</td>
<td>0</td>
<td>0</td>
<td>ResvError</td>
<td>0</td>
</tr>
<tr>
<td>PathTear</td>
<td>0</td>
<td>38</td>
<td>ResvTear</td>
<td>0</td>
</tr>
<tr>
<td>BackupAssign</td>
<td>0</td>
<td>3</td>
<td>BackupError</td>
<td>0</td>
</tr>
<tr>
<td>PathQuery</td>
<td>0</td>
<td>0</td>
<td>Unknown</td>
<td>0</td>
</tr>
</tbody>
</table>

This is a sample output from the `show mpls traffic-eng counters signaling` command using the `tunnel number` argument, which displays statistics for the input tunnel number:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng counters signaling 200
```

Tunnel Head: tunnel-te200
Cumulative Tunnel Counters:

<table>
<thead>
<tr>
<th>Signalling Events</th>
<th>Recv</th>
<th>Xmit</th>
<th>Recv</th>
<th>Xmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathCreate</td>
<td>4</td>
<td>4</td>
<td>ResvCreate</td>
<td>4</td>
</tr>
<tr>
<td>PathChange</td>
<td>0</td>
<td>0</td>
<td>ResvChange</td>
<td>0</td>
</tr>
<tr>
<td>PathError</td>
<td>0</td>
<td>0</td>
<td>ResvError</td>
<td>0</td>
</tr>
</tbody>
</table>
This table describes the significant fields shown in the display.

**Table 5: show mpls traffic-eng counters signaling Command Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel Head</td>
<td>Tunnel head identifier.</td>
</tr>
<tr>
<td>Match Resv Create</td>
<td>Number of RSVP Reservation create messages received.</td>
</tr>
<tr>
<td>Sender Create</td>
<td>Number of Sender Create messages sent by TE to RSVP.</td>
</tr>
<tr>
<td>Path Error</td>
<td>Number of RSVP Path Error messages received.</td>
</tr>
<tr>
<td>Match Resv Change</td>
<td>Number of RSVP Reservation change messages received.</td>
</tr>
<tr>
<td>Sender Modify</td>
<td>Number of Sender Modify messages sent by TE to RSVP.</td>
</tr>
<tr>
<td>Path Change</td>
<td>Number of RSVP Path Change messages received.</td>
</tr>
<tr>
<td>Match Resv Delete</td>
<td>Number of RSVP Reservation delete messages received.</td>
</tr>
<tr>
<td>Sender Delete</td>
<td>Number of Sender Delete messages sent by TE to RSVP.</td>
</tr>
<tr>
<td>Path Delete</td>
<td>Number of RSVP Path Delete messages received.</td>
</tr>
<tr>
<td>Total</td>
<td>Total signaling messages received from RSVP.</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown messages include fast reroute events and internal messages related to process restart.</td>
</tr>
</tbody>
</table>

This is sample output from the `show mpls traffic-eng counters soft-preemption` command, which displays statistics for the soft preempted LSPs:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng counters soft-preemption
```
Soft Preemption Global Counters:
Last Cleared: Never
Preemption Node Stats:
Number of soft preemption events: 1
Number of soft preempted LSPs: 1
Number of soft preempted LSPs that timed out: 0
Number of soft preempted LSPs that were torn down: 0
Number of soft preempted LSPs that were fast rerouted: 0
Minimum Time in Soft Preemption Pending State (sec): 0
Maximum Time in Soft Preemption Pending State (sec): 0
Average Time in Soft Preemption Pending State (sec): 0
Headend Stats:
Number of soft preempted LSPs: 1
Number of reoptimized soft preempted headend-LSPs: 0
Number of path protected switchover soft preempted headend-LSPs: 0
Number of torn down soft preempted headend-LSPs: 0

This is sample output from the `show mpls traffic-eng counters signaling all` command that displays the `Signalled-Name` information:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng counters signaling all
Tunnel Head: tunnel-te1
Signalled-Name: rtrA_t1
Cumulative Tunnel Counters:

<table>
<thead>
<tr>
<th>Signalling Events</th>
<th>Recv</th>
<th>Xmit</th>
<th>Signalling Events</th>
<th>Recv</th>
<th>Xmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathCreate</td>
<td></td>
<td></td>
<td>ResvCreate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
```
### show mpls traffic-eng forwarding

To display forwarding information on tunnels that were admitted locally, use the `show mpls traffic-eng forwarding` command in XR EXEC mode.

```
show mpls traffic-eng forwarding [backup-name tunnel-name] [source source-address][tunnel-id tunnel-id] [interface {in | inout | out} type interface-path-id][{p2p}] {p2p} [detail]
```

#### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup-name tunnel-name</td>
<td>(Optional) Restrictions tunnels with this backup tunnel name.</td>
</tr>
<tr>
<td>source source-address</td>
<td>(Optional) Restrictions tunnels for this specified tunnel source IPv4 address.</td>
</tr>
<tr>
<td>tunnel-id tunnel-id</td>
<td>(Optional) Restrictions tunnels for this tunnel identifier. Range for the tunnel-id argument is from 0 to 65535.</td>
</tr>
<tr>
<td>interface</td>
<td>(Optional) Displays information on the specified interface.</td>
</tr>
<tr>
<td>type</td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>interface-path-id</td>
<td>Physical interface or a virtual interface.</td>
</tr>
</tbody>
</table>

**Note**
- Use the `show interfaces` command to see a list of all possible interfaces currently configured on the router.
- For more information about the syntax for the router, use the question mark (?) online help function.

in	Displays information for the input interface.
inout	Displays information for either the input or output interface.
out	Displays information for the output interface.
p2p	(Optional) Displays only Point-to-Point (P2P) information.
detail	(Optional) Displays detailed forwarding information.

#### Command Default
No default behavior or values

#### Command Modes
XR EXEC mode
**show mpls traffic-eng forwarding**

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

No specific guidelines impact the use of this command.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

### Examples

The following shows a sample output from the `show mpls traffic-eng forwarding` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng forwarding
Tue Sep 15 14:22:39.609 UTC P2P tunnels

Tunnel ID Backup tunnel Ingress IF Egress IF In lbl Out lbl

2.2.2.2 2_2 unknown HundredGigE0/0/0/3 HundredGigE0/0/0/4 16004 16020
6.6.6.6 1_23 tt1300 - HundredGigE0/0/0/3 16000 3
6.6.6.6 1100_9 unknown - HundredGigE0/0/0/3 16002 16001
6.6.6.6 1200_9 unknown - HundredGigE0/0/0/3 16001 16000
6.6.6.6 1300_2 unknown - HundredGigE0/0/0/4 16005 16021
6.6.6.6 1400_9 unknown - HundredGigE0/0/0/3 16003 16002
```

This table describes the significant fields shown in the display.

**Table 6: show mpls traffic-eng forwarding Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUNNEL ID</td>
<td>Tunnel identification.</td>
</tr>
<tr>
<td>Ingress IF</td>
<td>Ingress interface of the tunnel.</td>
</tr>
<tr>
<td>Egress IF</td>
<td>Egress interface of the tunnel.</td>
</tr>
<tr>
<td>In lbl</td>
<td>Incoming label associated with the tunnel.</td>
</tr>
<tr>
<td>Out lbl</td>
<td>Outgoing label associated with the tunnel.</td>
</tr>
<tr>
<td>Backup tunnel</td>
<td>Fast Reroute backup tunnel</td>
</tr>
</tbody>
</table>
show mpls traffic-eng forwarding-adjacency

To display forwarding-adjacency information for an IPv4 address, use the `show mpls traffic-eng forwarding-adjacency` command in XR EXEC mode.

```
show mpls traffic-eng forwarding-adjacency [IP-address]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-address</td>
<td>(Optional) Destination IPv4 address for forwarding adjacency.</td>
</tr>
</tbody>
</table>

**Command Default**

No default behavior or values

**Command Modes**

XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>6.2.1</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

This is a sample output from the `show mpls traffic-eng forwarding-adjacency` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng forwarding-adjacency

destination 3.3.3.3 has 1 tunnels
tunnel-te1 (traffic share 0, next-hop 3.3.3.3)
(Adjacency Announced: yes, holdtime 0)
```

This sample output displays information on IPv6 autoroute forwarding adjacency information for IS-IS IGP:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng forwarding-adjacency

destination 3.3.3.3 has 1 tunnels
tunnel-te10 (traffic share 0, next-hop 3.3.3.3)
(Adjacency Announced: yes, holdtime 0)
(IS-IS 100, IPv4 unicast)
(IS-IS 100, IPv6 unicast)
```
show mpls traffic-eng igp-areas

To display MPLS-TE internal area storage, use the `show mpls traffic-eng igp-areas` command in XR EXEC mode.

```
show mpls traffic-eng igp-areas [detail]
```

**Syntax Description**
- `detail` (Optional) Displays detailed information about the configured MPLS-TE igp-areas and communication statistics with IGPs.

**Command Default**
No default behavior or values

**Command Modes**
XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
No specific guidelines impact the use of this command.

**Examples**
The following shows a sample output from the `show mpls traffic-eng igp-areas` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng igp-areas

MPLS-TE IGP Areas

Global router-id: 10.144.144.144
Global optical router-id: Not available

IS-IS 100

IGP ID: 0000.0000.0044
TE router ID configured: 10.144.144.144
in use: 10.144.144.144
Link connection: up
Topology/tunnel connection: up
level 2
TE index: 1
IGP config for TE: complete
Local links flooded in this IGP level: 1
Flooding beacon sent and received
P2P tunnel heads running over this IGP level: 1
 1 AA, 0 FA
```
Tunnel loose-hops expanded over this IGP level: 0

OSPF 100

IGP ID: 10.144.144.144
TE router ID configured: 10.144.144.144
in use: 10.144.144.144
Link connection: up
Topology/tunnel connection: up

area 0
TE index: 0
IGP config for TE: complete
Local links flooded in this IGP area: 2
Flooding beacon sent and received
P2P tunnel heads running over this IGP area: 3
1 AA, 0 FA
Tunnel loose-hops expanded over this IGP area: 0

The following shows a sample output from the `show mpls traffic-eng igp-areas` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng igp-areas

MPLS-TE IGP Areas
Global router-id: 0.0.0.0
Global optical router-id: Not available
OSPF 0
IGP ID: 101.0.0.1
TE router ID configured: 101.0.0.1
in use: 101.0.0.1
Link connection: up
Topology/tunnel connection: up
area 4
TE index: 0
IGP config for TE: complete
Number of links in this IGP area: 1
Number of tunnel heads running over this IGP area: 0
Number of tunnel loose-hops expanded over this IGP area: 0
area 3
TE index: 1
IGP config for TE: complete
Number of links in this IGP area: 1
Number of tunnel heads running over this IGP area: 0
Number of tunnel loose-hops expanded over this IGP area: 0
area 2
TE index: 2
IGP config for TE: complete
Number of links in this IGP area: 1
Number of tunnel heads running over this IGP area: 0
Number of tunnel loose-hops expanded over this IGP area: 0
area 1
TE index: 3
IGP config for TE: complete
Number of links in this IGP area: 1
Number of tunnel heads running over this IGP area: 0
Number of tunnel loose-hops expanded over this IGP area: 0
area 0
TE index: 4
IGP config for TE: complete
Number of links in this IGP area: 2
Number of tunnel heads running over this IGP area: 1
Number of tunnel loose-hops expanded over this IGP area: 0
```
This table describes the significant fields shown in the display.

Table 7: show mpls traffic-eng igp-areas Command Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global router-id</td>
<td>Global router ID on this node.</td>
</tr>
<tr>
<td>IGP ID</td>
<td>IGP System ID.</td>
</tr>
<tr>
<td>area</td>
<td>IGP area.</td>
</tr>
<tr>
<td>TE index</td>
<td>Internal index in the IGP area table.</td>
</tr>
<tr>
<td>IGP config for TE</td>
<td>Whether the IGP configuration is complete or missing.</td>
</tr>
</tbody>
</table>
**show mpls traffic-eng link-management admission-control**

To display which tunnels were admitted locally and their parameters, use the `show mpls traffic-eng link-management admission-control` command in XR EXEC mode.

```plaintext
show mpls traffic-eng link-management admission-control [interface type interface-path-id]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>interface</strong></td>
</tr>
<tr>
<td>(Optional) Displays information on the specified interface.</td>
</tr>
<tr>
<td><strong>type</strong></td>
</tr>
<tr>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td><strong>interface-path-id</strong></td>
</tr>
<tr>
<td>Physical interface or virtual interface.</td>
</tr>
</tbody>
</table>

**Note** Use the `show interfaces` command to see a list of all possible interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

**Command Default**

No default behavior or values

**Command Modes**

XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following shows a sample output from the `show mpls traffic-eng link-management admission-control` command:

```plaintext
RP/0/RP0/CPU0:router# show mpls traffic-eng link-management admission-control

S System Information:
 Tunnels Count : 2
 Tunnels Selected : 2
Bandwidth descriptor legend:
 B0 = bw from pool 0, B1 = bw from pool 1, R = bw locked, H = bw held

+-----------------+-----------------+-----------------+------------------+-----------------+-------------------+
| TUNNEL ID | UP IF | DOWN IF | PRI STATE | BW (kbits/sec) |
+-----------------+-----------------+-----------------+------------------+-------------------+
+-----------------+-----------------+-----------------+------------------+-------------------+
```

MPLS Traffic Engineering Commands
This table describes the significant fields shown in the display.

Table 8: show mpls traffic-eng link-management admission-control Command Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnels Count</td>
<td>Total number of tunnels admitted.</td>
</tr>
<tr>
<td>Tunnels Selected</td>
<td>Number of tunnels displayed.</td>
</tr>
<tr>
<td>Bandwidth descriptor legend</td>
<td>BW pool type and status displayed with the tunnel entry. Shown as RG (Locked BW in global pool) in the preceding sample output.</td>
</tr>
<tr>
<td>TUNNEL ID</td>
<td>Tunnel identification.</td>
</tr>
<tr>
<td>UP IF</td>
<td>Upstream interface used by the tunnel.</td>
</tr>
<tr>
<td>DOWN IF</td>
<td>Downstream interface used by the tunnel.</td>
</tr>
<tr>
<td>PRI</td>
<td>Tunnel setup priority and hold priority.</td>
</tr>
<tr>
<td>STATE</td>
<td>Tunnel admission status.</td>
</tr>
<tr>
<td>BW (kbps)</td>
<td>Tunnel bandwidth in kilobits per second. If an R follows the bandwidth number, the bandwidth is reserved. If an H follows the bandwidth number, the bandwidth is temporarily being held for a Path message. If a G follows the bandwidth number, the bandwidth is from the global pool. If an S follows the bandwidth number the bandwidth is from the sub-pool.</td>
</tr>
</tbody>
</table>

The following shows a sample output from the `show mpls traffic-eng link-management interface` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng link-management interface HundredGigE 0/0/0/3

System Information::
 Links Count : 1

Link ID:: HundredGigE 0/0/0/3 (35.0.0.5)
 Local Intf ID: 7
 Link Status:
 Link Label Type : PSC (inactive)
 Physical BW : 155520 kbits/sec
 BCID : RDM
 Max Reservable BW : 0 kbits/sec (reserved: 100% in, 100% out)
 BC0 (Res. Global BW) : 0 kbits/sec (reserved: 100% in, 100% out)
 BC1 (Res. Sub BW) : 0 kbits/sec (reserved: 100% in, 100% out)
 MPLS-TE Link State : MPLS-TE on, RSVP on
 Inbound Admission : allow-all
 Outbound Admission : allow-if-room
 IGP Neighbor Count : 0
 Max Res BW (RDM) : 0 kbits/sec
```
This table describes the significant fields shown in the display.

### Table 9: show mpls traffic-eng link-management interface Command Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links Count</td>
<td>Number of links configured for MPLS-TE.</td>
</tr>
<tr>
<td>Link ID</td>
<td>Index of the link described.</td>
</tr>
<tr>
<td>Local Intf ID</td>
<td>Local interface ID.</td>
</tr>
<tr>
<td>Link Label Type</td>
<td>Label type of the link, for instance: PSC&lt;sup&gt;1&lt;/sup&gt;, TDM&lt;sup&gt;2&lt;/sup&gt;, FSC&lt;sup&gt;3&lt;/sup&gt;.</td>
</tr>
<tr>
<td>Physical BW</td>
<td>Link bandwidth capacity (in kilobits per second).</td>
</tr>
<tr>
<td>BCID</td>
<td>Bandwidth constraint model ID (RDM or MAM).</td>
</tr>
<tr>
<td>Max Reseable BW</td>
<td>Maximum reservable bandwidth on this link.</td>
</tr>
<tr>
<td>BC0 (Res. Global BW)</td>
<td>Bandwidth constraint value for class-type 0.</td>
</tr>
<tr>
<td>BC1 (Res. Sub BW)</td>
<td>Bandwidth constraint value for class-type 1.</td>
</tr>
<tr>
<td>MPLS-TE Link State</td>
<td>Status of the link MPLS-TE-related functions.</td>
</tr>
<tr>
<td>Inbound Admission</td>
<td>Link admission policy for incoming tunnels.</td>
</tr>
<tr>
<td>Outbound Admission</td>
<td>Link admission policy for outgoing tunnels.</td>
</tr>
<tr>
<td>IGP Neighbor Count</td>
<td>IGP neighbors directly reachable over this link.</td>
</tr>
<tr>
<td>Max Res BW (RDM)</td>
<td>Maximum reservable bandwidth on this link for RDM.</td>
</tr>
<tr>
<td>BC0 (RDM)</td>
<td>Bandwidth constraint value for RDM.</td>
</tr>
<tr>
<td>BC1 (RDM)</td>
<td>Bandwidth constraint value for RDM.</td>
</tr>
<tr>
<td>Admin Weight</td>
<td>Administrative weight associated with this link.</td>
</tr>
<tr>
<td>Attributes</td>
<td>Interface attributes referring to one or more affinity names.</td>
</tr>
<tr>
<td>IGP Area[1]</td>
<td>IGP type and area and level used for TE flooding.</td>
</tr>
</tbody>
</table>

<sup>1</sup> PSC = Packet switch capable.  
<sup>2</sup> TDM = Time-division multiplexing.
show mpls traffic-eng link-management admission-control

3 FSC = Fiber switch capable.
show mpls traffic-eng link-management advertisements

To display local link information that MPLS-TE link management is currently flooding into the global TE topology, use the `show mpls traffic-eng link-management advertisements` command in XR EXEC mode.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

No default behavior or values.

**Command Modes**

XR EXEC mode.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>6.2.1</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show mpls traffic-eng link-management advertisements` command has two output formats depending on the Diff-Serv TE Mode: one for prestandard mode and one for IETF mode.

The SRLG values are advertised for the link.

**Task ID**

```
Task ID: Operations Task ID
mpls-te read
```

**Examples**

The following shows a sample output from the `show mpls traffic-eng link-management advertisements` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng link-management advertisements

Link ID:: 0 (GigabitEthernet0/2/0/1)
 Link IP Address : 12.9.0.1
 O/G Intf ID : 28
 Designated Router : 12.9.0.2
 TE Metric : 1
 IGP Metric : 1
 Physical BW : 1000000 kbits/sec
 BCID : RDM
 Max Reservable BW : 1000000 kbits/sec
 Res Global BW : 10000 kbits/sec
 Res Sub BW : 0 kbits/sec
 SRLGs : 10, 20

 Downstream::
 Global Pool Sub Pool
 --------- ---------
 Reservable BW[0]: 10000 0 kbits/sec
 Reservable BW[1]: 10000 0 kbits/sec
 Reservable BW[2]: 9800 0 kbits/sec
```
Reservable BW[3]: 9800 0 kbits/sec
Reservable BW[4]: 9800 0 kbits/sec
Reservable BW[5]: 9800 0 kbits/sec
Reservable BW[6]: 9800 0 kbits/sec
Reservable BW[7]: 9800 0 kbits/sec

Attribute Flags: 0x00000004
Attribute Names: red2

Link ID: 1 (GigabitEthernet0/2/0/2)
Link IP Address : 14.9.0.1
O/G Intf ID : 29
Designated Router : 14.9.0.4
TE Metric : 1
IGP Metric : 1
Physical BW : 1000000 kbits/sec
BCID : RDM
Max Reservable BW : 750000 kbits/sec
Res Global BW : 750000 kbits/sec
Res Sub BW : 0 kbits/sec

Downstream:

<table>
<thead>
<tr>
<th>Global Pool</th>
<th>Sub Pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservable BW[0]: 750000 0 kbits/sec</td>
<td></td>
</tr>
<tr>
<td>Reservable BW[1]: 750000 0 kbits/sec</td>
<td></td>
</tr>
<tr>
<td>Reservable BW[2]: 750000 0 kbits/sec</td>
<td></td>
</tr>
<tr>
<td>Reservable BW[3]: 750000 0 kbits/sec</td>
<td></td>
</tr>
<tr>
<td>Reservable BW[4]: 750000 0 kbits/sec</td>
<td></td>
</tr>
<tr>
<td>Reservable BW[5]: 750000 0 kbits/sec</td>
<td></td>
</tr>
<tr>
<td>Reservable BW[6]: 750000 0 kbits/sec</td>
<td></td>
</tr>
<tr>
<td>Reservable BW[7]: 750000 0 kbits/sec</td>
<td></td>
</tr>
</tbody>
</table>

Attribute Flags: 0x00000000
Attribute Names:

This table describes the significant fields shown in the display.

Table 10: show mpls traffic-eng link-management advertisements Command Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link ID</td>
<td>Index of the link described.</td>
</tr>
<tr>
<td>Link IP Address</td>
<td>Local IP address of the link.</td>
</tr>
<tr>
<td>TE Metric</td>
<td>Metric value for the TE link configured under MPLS-TE.</td>
</tr>
<tr>
<td>IGP Metric</td>
<td>Metric value for the TE link configured under IGP.</td>
</tr>
<tr>
<td>Physical BW</td>
<td>Link bandwidth capacity (in kilobits per second).</td>
</tr>
<tr>
<td>BCID</td>
<td>Bandwidth constraint model ID (RDM or MAM).</td>
</tr>
<tr>
<td>Max Reservable BW</td>
<td>Maximum reservable bandwidth on this link.</td>
</tr>
<tr>
<td>Res Global BW</td>
<td>Maximum reservable of global pool/BC0 bandwidth on this link.</td>
</tr>
<tr>
<td>Res Sub BW</td>
<td>Reservable sub-bandwidth for sub-pool/BC1 bandwidth on this link.</td>
</tr>
</tbody>
</table>
### Field | Description
--- | ---
SRLGs\(^4\) | Links that share a common fiber or a common physical attribute. If one link fails, other links in the group may also fail. Links in the group have a shared risk.
Downstream | Direction of the LSP path message.
Reservable BW\([x]\) | Bandwidth available for reservations in the global TE topology and subpools.
Attribute Flags | Link attribute flags being flooded.
Attribute Names | Name of the affinity attribute of a link.
BC0 | Bandwidth constraint value for class-type 0
BC1 | Bandwidth constraint value for class-type 1
TE-class [index] | TE-class configured on this router at given index (mapping of class-type and priority), shows available bandwidth in that class.

\(^4\) SRLGs = Shared Risk Link Groups.
show mpls traffic-eng link-management bandwidth-allocation

To display current local link information, use the `show mpls traffic-eng link-management bandwidth-allocation` command in XR EXEC mode.

`show mpls traffic-eng link-management bandwidth-allocation` [interface type interface-path-id]

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>(Optional) Displays information on the specified interface.</td>
</tr>
<tr>
<td>type</td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>interface-path-id</td>
<td>Physical interface or a virtual interface.</td>
</tr>
</tbody>
</table>

**Note** Use the `show interfaces` command to see a list of all possible interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

**Command Default**

No default behavior or values

**Command Modes**

XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Advertised and current information may differ depending on how flooding is configured.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following shows a sample output from the `show mpls traffic-eng link-management bandwidth-allocation` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng link bandwidth-allocation interface HundredGigE0/0/0/3

System Information::
 Links Count : 4
 Bandwidth Hold time : 15 seconds

 Link ID: HundredGigE0/0/0/3 (7.2.2.1)
 Local Intf ID: 4
 Link Status:
 Link Label Type : PSC
```
Physical BW : 155520 kbits/sec
BCID : MAM
Max Reservable BW : 1000 kbits/sec (reserved: 0% in, 0% out)
BC0 : 600 kbits/sec (reserved: 2% in, 2% out)
BC1 : 400 kbits/sec (reserved: 0% in, 0% out)
MPLS-TE Link State : MPLS-TE on, RSVP on, admin-up, flooded
Inbound Admission : allow-all
Outbound Admission : allow-if-room
IGP Neighbor Count : 2
BW Descriptors : 1 (including 0 BC1 descriptors)
Admin Weight : 1 (OSPF), 10 (ISIS)
Up Thresholds : 15 30 45 60 75 85 90 95 96 98 99 100 (default)
Down Thresholds : 100 99 98 97 96 95 90 85 80 75 60 45 30 15 (default)

Bandwidth Information:

Downstream BC0 (kbits/sec):

<table>
<thead>
<tr>
<th>KEEP PRIORITY</th>
<th>BW HELD</th>
<th>BW TOTAL HELD</th>
<th>BW LOCKED</th>
<th>BW TOTAL LOCKED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Downstream BC1 (kbits/sec):

<table>
<thead>
<tr>
<th>KEEP PRIORITY</th>
<th>BW HELD</th>
<th>BW TOTAL HELD</th>
<th>BW LOCKED</th>
<th>BW TOTAL LOCKED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This table describes the significant fields shown in the display.

Table 11: show mpls traffic-eng link-management bandwidth-allocation Command Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links Count</td>
<td>Number of links configured for MPLS-TE.</td>
</tr>
<tr>
<td>Bandwidth Hold Time</td>
<td>Time, in seconds, that bandwidth can be held.</td>
</tr>
<tr>
<td>Link ID</td>
<td>Interface name and IP address of the link.</td>
</tr>
<tr>
<td>Link Label type</td>
<td>Label type of the link, for example:</td>
</tr>
<tr>
<td>Physical BW</td>
<td>Link bandwidth capacity (in bits per second).</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>BCID</td>
<td>Bandwidth constraint model ID (RDM or MAM).</td>
</tr>
<tr>
<td>Max Reservable BW</td>
<td>Maximum reservable bandwidth on this link.</td>
</tr>
<tr>
<td>BC0</td>
<td>Maximum RSVP bandwidth in BC0.</td>
</tr>
<tr>
<td>BC1</td>
<td>Maximum RSVP bandwidth in BC1.</td>
</tr>
<tr>
<td>BW Descriptors</td>
<td>Number of bandwidth allocations on this link.</td>
</tr>
<tr>
<td>MPLS-TE Link State</td>
<td>Status of the link MPLS-TE-related functions.</td>
</tr>
<tr>
<td>Inbound Admission</td>
<td>Link admission policy for incoming tunnels.</td>
</tr>
<tr>
<td>Outbound Admission</td>
<td>Link admission policy for outgoing tunnels.</td>
</tr>
<tr>
<td>IGP Neighbor Count</td>
<td>IGP neighbors directly reachable over this link.</td>
</tr>
<tr>
<td>BW Descriptors</td>
<td>Internal bandwidth descriptors created when tunnels are admitted.</td>
</tr>
<tr>
<td>Admin Weight</td>
<td>Administrative weight associated with this link.</td>
</tr>
<tr>
<td>Up Thresholds</td>
<td>Threshold values used to determine link advertisement when available bandwidth increases.</td>
</tr>
<tr>
<td>Down Thresholds</td>
<td>Threshold values used to determine link advertisement when available bandwidth decreases.</td>
</tr>
</tbody>
</table>

5 PSC = Packet switch capable.  
6 TDM = Time-division multiplexing.  
7 FSC = Fiber switch capable.
**show mpls traffic-eng link-management igp-neighbors**

To display Interior Gateway Protocol (IGP) neighbors, use the `show mpls traffic-eng link-management igp-neighbors` command in XR EXEC mode.

```
show mpls traffic-eng link-management igp-neighbors [igp-id [isis isis-address | ospf ospf-id] [interface type interface-path-id IP-address]]
```

**Syntax Description**

- `igp-id`  
  (Optional) Displays the IGP neighbors that are using a specified IGP identification.

- `isis isis-address`  
  Displays the specified Intermediate System-to-Intermediate System (IS-IS) neighbor system ID when neighbors are displayed by IGP ID.

- `ospf ospf-id`  
  Displays the specified Open Shortest Path first (OSPF) neighbor OSPF router ID when neighbors are displayed by IGP ID.

- `interface`  
  (Optional) Displays information on the specified interface.

- `type`  
  Interface type. For more information, use the question mark (?) online help function.

- `interface-path-id`  
  Physical interface or a virtual interface.

  **Note**  
  Use the `show interfaces` command to see a list of all possible interfaces currently configured on the router.

  For more information about the syntax for the router, use the question mark (?) online help function.

- `IP-address`  
  (Optional) IGP neighbors that are using a specified IGP IP address.

**Command Modes**

- **XR EXEC mode**

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

- **Task ID**
  mpls-te  
  read

**Examples**

The following shows a sample output from the `show mpls traffic-eng link-management igp-neighbors` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng link igp-neighbors
```
This table describes the significant fields shown in the display.

**Table 12: show mpls traffic-eng link-management igp-neighbors Command Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link ID</td>
<td>Link by which the neighbor is reached.</td>
</tr>
<tr>
<td>Neighbor ID</td>
<td>IGP identification information for the neighbor.</td>
</tr>
</tbody>
</table>
show mpls traffic-eng link-management interfaces

To display interface resources, or a summary of link management information, use the **show mpls traffic-eng link-management interfaces** command in XR EXEC mode.

**show mpls traffic-eng link-management interfaces** [type interface-path-id]

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>type</strong></td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td><strong>interface-path-id</strong></td>
<td>Physical interface or a virtual interface.</td>
</tr>
</tbody>
</table>

**Note** Use the **show interfaces** command to see a list of all possible interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

### Command Default

No default behavior or values

### Command Modes

XR EXEC mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You cannot configure more than 250 links under MPLS-TE.

SRLG values can be configured for the link.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

### Examples

The following sample output is from the **show mpls traffic-eng link-management interfaces** command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng link-management interfaces HundredGigE 0/0/0/3

System Information::
 Links Count : 7 (Maximum Links Supported 250)

Link ID:: HundredGigE0/0/0/3 (12.9.0.1)
 Local Intf ID: 28
 Link Status:
 Link Label Type : PSC
 Physical BW : 1000000 kbits/sec
```
This table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links Count</td>
<td>Number of links configured for MPLS-TE. Maximum number of links supported is 100.</td>
</tr>
<tr>
<td>Link ID</td>
<td>Link identification index.</td>
</tr>
<tr>
<td>Link Label Type</td>
<td>Label type assigned to the link.</td>
</tr>
<tr>
<td>Physical Bandwidth</td>
<td>Link bandwidth capacity (in kilobits per second).</td>
</tr>
<tr>
<td>BCID</td>
<td>Bandwidth constraint model ID (RDM or MAM).</td>
</tr>
<tr>
<td>Max Reservable BW</td>
<td>Maximum reservable bandwidth on this link.</td>
</tr>
<tr>
<td>BC0</td>
<td>Reservable bandwidth (in kbps) on this link in BC0.</td>
</tr>
<tr>
<td>BC1</td>
<td>Reservable bandwidth (in kbps) on this link in BC1.</td>
</tr>
<tr>
<td>Attributes</td>
<td>TE link attribute in hexadecimal.</td>
</tr>
<tr>
<td>Attribute Names</td>
<td>Name of the affinity attribute of a link.</td>
</tr>
<tr>
<td>SRLGs</td>
<td>Links that share a common fiber or a common physical attribute. If one link fails, other links in the group may also fail. Links in the group have a shared risk.</td>
</tr>
<tr>
<td>MPLS-TE Link State</td>
<td>Status of the MPLS link.</td>
</tr>
<tr>
<td>Inbound Admission</td>
<td>Link admission policy for inbound tunnels.</td>
</tr>
<tr>
<td>Outbound Admission</td>
<td>Link admission policy for outbound tunnels.</td>
</tr>
<tr>
<td>IGP Neighbor Count</td>
<td>IGP neighbors directly reachable over this link.</td>
</tr>
</tbody>
</table>
## Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin. Weight</td>
<td>Administrative weight associated with this link.</td>
</tr>
<tr>
<td>Flooding Status</td>
<td>Status for each configured area or Flooding status for the configured area.</td>
</tr>
<tr>
<td>IGP Area</td>
<td>IGP type and area and level used for TE flooding.</td>
</tr>
</tbody>
</table>

---

8. SRLGs = Shared Risk Link Groups.
show mpls traffic-eng link-management statistics

To display interface resources or a summary of link management information, use the show mpls traffic-eng link-management statistics command in XR EXEC mode.

show mpls traffic-eng link-management statistics  [[summary | interface type interface-path-id]]

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>(Optional) Displays the statistics summary.</td>
</tr>
<tr>
<td>interface</td>
<td>(Optional) Displays the interface for which information is requested.</td>
</tr>
<tr>
<td>type</td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>interface-path-id</td>
<td>Physical interface or virtual interface.</td>
</tr>
</tbody>
</table>

Note  Use the show interfaces command to see a list of all possible interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

Command Default

No default behavior or values

Command Modes

XR EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The show mpls traffic-eng link-management statistics command displays resource and configuration information for all configured interfaces.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

The following shows a sample output from the show mpls traffic-eng link-management statistics command using the summary keyword:

RP/0/RP0/CPU0:router# show mpls traffic-eng link-management statistics summary

LSP Admission Statistics:

<table>
<thead>
<tr>
<th>Setup</th>
<th>Setup</th>
<th>Setup</th>
<th>Tear</th>
<th>Tear</th>
<th>Tear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requests</td>
<td>Admits</td>
<td>Rejects</td>
<td>Errors</td>
<td>Requests</td>
<td>Preempts</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
</tbody>
</table>

---------|---------|----------|---------|---------|---------|
Table 14: show mpls traffic-eng link-management statistics summary Command Field Descriptions, on page 161 describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>Path information.</td>
</tr>
<tr>
<td>Resv</td>
<td>Reservation information.</td>
</tr>
<tr>
<td>Setup Requests</td>
<td>Number of requests for a setup.</td>
</tr>
<tr>
<td>Setup Admits</td>
<td>Number of admitted setups.</td>
</tr>
<tr>
<td>Setup Rejects</td>
<td>Number of rejected setups.</td>
</tr>
<tr>
<td>Setup Errors</td>
<td>Number of setup errors.</td>
</tr>
<tr>
<td>Tear Requests</td>
<td>Number of tear requests.</td>
</tr>
<tr>
<td>Tear Preempts</td>
<td>Number of paths torn down due to preemption.</td>
</tr>
<tr>
<td>Tear Errors</td>
<td>Number of tear errors.</td>
</tr>
</tbody>
</table>
show mpls traffic-eng link-management summary

To display a summary of link management information, use the `show mpls traffic-eng link-management summary` command in XR EXEC mode.

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
No default behavior or values

**Command Modes**
XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
You cannot configure more than 250 links for MPLS-TE/FRR.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**
The following sample output is from the `show mpls traffic-eng link-management summary` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng link-management summary

System Information::
 Links Count : 6 (Maximum Links Supported 100)
 Flooding System : enabled
 IGP Areas Count : 2

IGP Areas

IGP Area[1]:: isis level-2
 Flooding Protocol : ISIS
 Flooding Status : flooded
 Periodic Flooding : enabled (every 180 seconds)
 Flooded Links : 4
 IGP System ID : 0000.0000.0002.00
 MPLS-TE Router ID : 20.20.20.20
 IGP Neighbors : 8

IGP Area[2]:: ospf area 0
 Flooding Protocol : OSPF
 Flooding Status : flooded
 Periodic Flooding : enabled (every 180 seconds)
 Flooded Links : 4
```
IGP System ID : 20.20.20.20  
MPLS-TE Router ID : 20.20.20.20  
IGP Neighbors : 8

This table describes the significant fields shown in the display.

**Table 15: show mpls traffic-eng link-management summary Command Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links Count</td>
<td>Number of links configured for MPLS-TE. Maximum number of links supported is 100.</td>
</tr>
<tr>
<td>Flooding System</td>
<td>Enable status of the MPLS-TE flooding system.</td>
</tr>
<tr>
<td>IGP Areas Count</td>
<td>Number of IGP areas described.</td>
</tr>
<tr>
<td>IGP Area</td>
<td>IGP type and area and level used for TE flooding.</td>
</tr>
<tr>
<td>Flooding Protocol</td>
<td>IGP flooding information for this area.</td>
</tr>
<tr>
<td>Flooding Status</td>
<td>Status of flooding for this area.</td>
</tr>
<tr>
<td>Periodic Flooding</td>
<td>Status of periodic flooding for this area.</td>
</tr>
<tr>
<td>Flooded Links</td>
<td>Links that were flooded.</td>
</tr>
<tr>
<td>IGP System ID</td>
<td>IGP for the node associated with this area.</td>
</tr>
<tr>
<td>MPLS-TE Router ID</td>
<td>MPLS-TE router ID for this node.</td>
</tr>
<tr>
<td>IGP Neighbors</td>
<td>Number of reachable IGP neighbors associated with this area.</td>
</tr>
</tbody>
</table>

10 IGP = Interior Gateway Protocol.
show mpls traffic-eng maximum tunnels

To display the maximum number of MPLS-TE tunnels that you can configure, use the `show mpls traffic-eng maximum tunnels` command in XR EXEC mode.

### Syntax Description

This command has no keywords or arguments.

### Command Default

None

### Command Modes

XR EXEC mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

No specific guidelines impact the use of this command.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

### Examples

This is sample output from the `show mpls traffic-eng maximum tunnels` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng maximum tunnels

Maximum Global Tunnel Count:

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Current Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096</td>
<td>2</td>
</tr>
</tbody>
</table>

Maximum Global Destination Count:

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Current Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096</td>
<td>2</td>
</tr>
</tbody>
</table>

Maximum AutoTunnel Backup Count:

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Current Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>122</td>
</tr>
</tbody>
</table>
```
This is sample output of the automatic mesh tunnels from the `show mpls traffic-eng maximum tunnels` command:

```plaintext
RP/0/RP0/CPU0:router# show mpls traffic-eng maximum tunnels

Maximum Global Tunnel Count:

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Current Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096</td>
<td>12</td>
</tr>
</tbody>
</table>

Maximum Static Tunnel Count:

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Current Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096</td>
<td>8</td>
</tr>
</tbody>
</table>

Maximum Auto-tunnel Mesh Count:

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Current Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>3</td>
</tr>
</tbody>
</table>

Maximum Global Destination Count:

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Current Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096</td>
<td>13</td>
</tr>
</tbody>
</table>

Maximum GMPLS-UNI Tunnel Count:

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Current Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>39</td>
</tr>
</tbody>
</table>
```

**Table 16: show mpls traffic-eng maximum tunnels Command Field Descriptions**, on page 165 describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Global Tunnel Count</td>
<td>Maximum number of tunnel interfaces (all TE tunnel types, tunnel-te, tunnel-mte, and tunnel-gte) that can be configured.</td>
</tr>
<tr>
<td>Maximum Global Tunnel Count</td>
<td>Maximum number of tunnel interfaces (all TE tunnel types and tunnel-te) that can be configured.</td>
</tr>
<tr>
<td>Maximum Global Destination Count</td>
<td>Maximum number of tunnel destinations that can be configured.</td>
</tr>
<tr>
<td>Maximum</td>
<td>Table heading for the maximum number in each category.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Current Count</td>
<td>Table heading for the current count in each category.</td>
</tr>
<tr>
<td>Maximum AutoTunnel Backup Count</td>
<td>Maximum number of automatic backup tunnels that can be configured.</td>
</tr>
<tr>
<td>Maximum GMPLS UNI Tunnel Count</td>
<td>Maximum number of Generalized Multiprotocol Label Switching (GMPLS) User-Network Interface (UNI) tunnels that can be configured and the current tunnel count.</td>
</tr>
<tr>
<td>Maximum AutoTunnel Mesh Count</td>
<td>Maximum number of automatic mesh tunnels that can be configured.</td>
</tr>
</tbody>
</table>
show mpls traffic-eng preemption log

To display the log of preemption events, use the `show mpls traffic-eng preemption log` command in XR EXEC mode mode.

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log</td>
<td>Displays a log of preemption events.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command Modes

XR EXEC mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>6.2.1</td>
<td></td>
</tr>
</tbody>
</table>

### Usage Guidelines

No specific guidelines impact the use of this command.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read</td>
</tr>
</tbody>
</table>

This is sample output from the `show mpls traffic-eng preemption log` command displaying the log of preemption events:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng preemption log
Bandwidth Change on GigabitEthernet0/0/0/0
Old BW (BC0/BC1): 200000/100000, New BW (BC0/BC1): 1000/500 kbps
BW Overshoot (BC0/BC1): 1000/0 kbps
Preempted BW (BC0/BC1): 35000/0 kbps; Soft 30000/0 kbps; Hard 5000/0 kbps;
Preempted 2 tunnels; Soft 1 tunnel; Hard 1 tunnel
--
TunID LSP ID Source Destination Preempt Pri Bandwidth BW Type
------ ------ --------------- --------------- ------- ---- ---------- --------
 1 10002 192.168.0.1 1.0.0.0 Hard 7/7 5000 BC0
 1 2 192.168.0.1 192.168.0.4 Soft 7/7 30000 BC0
```

This sample output displays the log of soft-preemption over FRR backup tunnels events:

```
RP/0/RP0/CPU0:router#show mpls traffic-eng preemption log
Thu Apr 25 13:12:04.863 EDT
Bandwidth Change on GigabitEthernet0/0/0/1 at 04/25/2013 12:56:14
Old BW (BC0/BC1): 200000/100000, New BW (BC0/BC1): 100000/0 kbps
BW Overshoot (BC0/BC1): 30000/0 kbps
Preempted BW (BC0/BC1): 130000/0 kbps; Soft 60000/0 kbps; Hard 0/0 kbps; FRRSoft 70000/0
```
Preempted 2 tunnel, 2 LSP; Soft 1 tunnel, 1 LSP; Hard 0 tunnels, 0 LSPs; FRRSoft 1 tunnel, 1 LSP

<table>
<thead>
<tr>
<th>TunID</th>
<th>LSP ID</th>
<th>Source</th>
<th>Destination</th>
<th>Preempt</th>
<th>Pri</th>
<th>Bandwidth</th>
<th>BW Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>192.168.0.1</td>
<td>192.168.0.3</td>
<td>FRRSoft</td>
<td>7/7</td>
<td>70000</td>
<td>BC0</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>192.168.0.1</td>
<td>192.168.0.3</td>
<td>Soft</td>
<td>7/7</td>
<td>60000</td>
<td>BC0</td>
</tr>
</tbody>
</table>
show mpls traffic-eng topology

To display the current MPLS-TE network topology for the node, use the `show mpls traffic-eng topology` command in XR EXEC mode.

```
show mpls traffic-eng topology [IP-address] [affinity] [brief] [exclude-srlg exclude-srlg-interface-address] [explicit-path | identifier explicit-path-id-number | name explicit-path-name] [priority level] [isis nsap-address | ospf ospf-address] [path | destination IP-address | tunnel P2P-tunnel-number] [router | network] [srlg | static]
```

### Syntax Description

- **IP-address**
  - (Optional) Node IP address (router identifier to interface address).

- **destination IP-address**
  - Displays the LSP destination IPv4 address.

- **exclude-srlg**
  - Specifies an IP address to get SRLG values from for exclusion.

- **explicit-path**
  - Displays the explicit LSP path.

- **tunnel**
  - Displays the topology path that is based on the Point-to-Point (P2P) tunnel number.

- **P2P-tunnel-number**
  - P2P tunnel number. Range is 0 to 65535.

- **affinity**
  - (Optional) Displays the attribute values that are required for links carrying this tunnel. A 32-bit decimal number. Range is 0x0 to 0xFFFFFFFF, representing 32 attributes (bits), where the value of an attribute is 0 or 1.

- **priority level**
  - (Optional) Displays the priority used when signaling a LSP for this tunnel, to determine which existing tunnels can be preempted.

- **isis nsap-address**
  - (Optional) Displays the node router identification, if Intermediate System-to-Intermediate System (IS-IS) is enabled.

- **ospf ospf-address**
  - (Optional) Displays the node router identifier, if Open Shortest Path First (OSPF) is enabled.
### show mpls traffic-eng topology

<table>
<thead>
<tr>
<th>path</th>
<th>(Optional) Displays the path to a destination from this router.</th>
</tr>
</thead>
<tbody>
<tr>
<td>router</td>
<td>Displays the given OSPF address type of the router node.</td>
</tr>
<tr>
<td>network</td>
<td>Displays the given OSPF address type of the network node.</td>
</tr>
<tr>
<td>brief</td>
<td>(Optional) Displays the brief form of the output that provides a less detailed version of the topology.</td>
</tr>
<tr>
<td>srlg</td>
<td>(Optional) Displays the SRLG information.</td>
</tr>
<tr>
<td>static</td>
<td>(Optional) Displays the statically configured SRLG.</td>
</tr>
</tbody>
</table>

#### Command Default
No default behavior or values

#### Command Modes
XR EXEC mode

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

#### Usage Guidelines
No specific guidelines impact the use of this command.

#### Task ID
mpls-te read, write

#### Examples
The following shows a sample output from the `show mpls traffic-eng topology` command specifying the tunnel number in brief form:

```plaintext
RP/0/RP0/CPU0:router# show mpls traffic-eng topology path tunnel 160

Tunnel160 Path Setup to 10.10.10.10: FULL_PATH
bw 100 (CT0), min_bw 0, metric: 10
setup_pri 7, hold_pri 7
affinity_bits 0x0, affinity_mask 0xffff
Hop0:10.2.2.1
Hop1:10.10.10.10
```

The following shows a sample output from the `show mpls traffic-eng topology` command specifying the destination IP address:
show mpls traffic-eng topology path destination 10.10.10.10

Path Setup to 10.10.10.10:
bw 0 (CT0), min_bw 999900, metric: 10
setup_pri 7, hold_pri 7
affinity_bits 0x0, affinity_mask 0xffffffff
Hop0:10.2.2.1
Hop1:10.10.10.10

The following shows a sample output from the `show mpls traffic-eng topology` command specifying the topology for the SRLG interfaces:

show mpls traffic-eng topology srlg

Tue Oct 6 13:10:30.342 UTC
My_System_id: 0000.0000.0005.00 (IS-IS 1 level-2)

<table>
<thead>
<tr>
<th>SRLG</th>
<th>Interface Addr</th>
<th>TE Router ID</th>
<th>IGP Area ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51.1.2.1</td>
<td>100.0.0.1</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>2</td>
<td>51.1.2.1</td>
<td>100.0.0.1</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>3</td>
<td>51.1.2.1</td>
<td>100.0.0.1</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>4</td>
<td>51.1.2.1</td>
<td>100.0.0.1</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>5</td>
<td>51.1.2.1</td>
<td>100.0.0.1</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>6</td>
<td>51.1.2.1</td>
<td>100.0.0.1</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>7</td>
<td>51.1.2.1</td>
<td>100.0.0.1</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>8</td>
<td>51.1.2.1</td>
<td>100.0.0.1</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>10</td>
<td>50.4.5.5</td>
<td>100.0.0.5</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>30</td>
<td>50.4.5.5</td>
<td>100.0.0.5</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>77</td>
<td>50.4.5.5</td>
<td>100.0.0.5</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>88</td>
<td>50.4.5.5</td>
<td>100.0.0.5</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>1500</td>
<td>50.4.5.5</td>
<td>100.0.0.5</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>100000000</td>
<td>50.4.5.5</td>
<td>100.0.0.5</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>4294967290</td>
<td>50.4.5.5</td>
<td>100.0.0.5</td>
<td>IS-IS 1 level-2</td>
</tr>
<tr>
<td>4294967295</td>
<td>50.4.5.5</td>
<td>100.0.0.5</td>
<td>IS-IS 1 level-2</td>
</tr>
</tbody>
</table>

The following shows a sample output from the `show mpls traffic-eng topology path destination` command specifying the topological path with SRLG exclusion:

show mpls traffic-eng topology path destination 100.0.0.2 exclude-srlg

Path Setup to 100.0.0.2:
bw 0 (CT0), min_bw 0, metric: 20
setupPri 7, holdPri 7
affinity_bits 0x0, affinity_mask 0xffffffff
Exclude SRLG Intf Addr: 50.4.5.5
SRLGs Excluded: 10, 30, 77, 88, 1500, 100000000, 4294967290, 4294967295
Hop0:50.5.1.5
Hop1:50.5.1.1
Hop2:51.1.2.1
Hop3:51.1.2.2
Hop4:100.0.0.2

The following shows a sample output from the `show mpls traffic-eng topology path destination` command specifying the topological path based on a given explicit path:
show mpls traffic-eng topology path destination 100.0.0.2 explicit-path
name exclude-srlg isis 1 level 2

Tue Oct 6 13:16:44.233 UTC
Path Setup to 100.0.0.2:
bw 0 (CT0), min_bw 0, metric: 20
setup_pri 7, hold_pri 7
affinity_bits 0x0, affinity_mask 0xffffffff
SRLGs Excluded: 10, 30, 77, 88, 1500, 1000000
4294967290, 4294967295, 1, 2, 3, 4
5, 6, 7, 8
Hop0:50.5.1.5
Hop1:50.5.1.1
Hop2:50.1.2.1
Hop3:50.1.2.2
Hop4:100.0.0.2
show mpls traffic-eng tunnels

To display information about MPLS-TE tunnels, use the **show mpls traffic-eng tunnels** command in XR EXEC mode.

```plaintext
show mpls traffic-eng tunnels [tunnel-number] [affinity] [all] [auto-bw] [attribute-set {all:tunnel-name}] [auto-tunnel] [backup] [tunnel-number] [auto-tunnel [mesh] mesh-value [name tunnel-name]] [protected-interface type interface-path-id [static auto]] [brief] [destination destination-address] [detail] [down] [interface {in | out | inout} type interface-path-id] [name tunnel-name] [p2p] [property {backup-tunnel | fast-reroute}] [protection [{frr | path | tunnel-id | tunnel-id | tabular}]] [reoptimized within-last interval][role {all | head | tail | middle}] [soft-preemption {desired | triggered}] [source source-address] [suboptimal constraints {current | max | none}] [summary] [tabular] [up] [class-type ct]
```

### Syntax Description

- **tunnel-number**
  - (Optional) Number of the tunnel. Range is from 0 to 65535.

- **attribute-set**
  - (Optional) Restricts the display of tunnels with an attribute set.

- **affinity**
  - (Optional) Displays the affinity attributes for all outgoing links. The links, which are used by the tunnel, display color information.

- **all**
  - (Optional) Displays all MPLS-TE tunnels.

- **auto-bw**
  - (Optional) Restricts the display to tunnels when the automatic bandwidth is enabled.

- **auto-tunnel**
  - (Optional) Restricts the display of automatically created tunnels.

- **mesh mesh-value**
  - Displays the tunnels that belong to the specified auto-tunnel mesh group.

- **backup**
  - (Optional) Displays FRR backup tunnels information. The information includes the physical interface protected by the tunnel, the number of TE LSPs protected, and the bandwidth protected.

- **name tunnel-name**
  - (Optional) Displays the tunnel with given name.

- **protected-interface**
  - (Optional) Displays FRR protected interfaces.

- **static**
  - (Optional) Displays static backup tunnels.

- **auto-tunnel**
  - (Optional) Displays protected automatic backup tunnels.
### show mpls traffic-eng tunnels

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>brief</strong></td>
<td>(Optional) Displays the brief form of this command.</td>
</tr>
<tr>
<td><strong>destination</strong></td>
<td>(Optional) Restricts the display to tunnels destined for the specified IP address.</td>
</tr>
<tr>
<td><strong>detail</strong></td>
<td>(Optional) Displays detail information about headend tunnels.</td>
</tr>
<tr>
<td><strong>down</strong></td>
<td>(Optional) Displays tunnels that are down.</td>
</tr>
<tr>
<td><strong>interface in</strong></td>
<td>(Optional) Displays tunnels that use the specified input interface.</td>
</tr>
<tr>
<td><strong>interface out</strong></td>
<td>(Optional) Displays tunnels that use the specified output interface.</td>
</tr>
<tr>
<td><strong>interface inout</strong></td>
<td>(Optional) Displays tunnels that use the specified interface as an input or output interface.</td>
</tr>
<tr>
<td><strong>type</strong></td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td><strong>interface-path-id</strong></td>
<td>Physical interface or a virtual interface.</td>
</tr>
</tbody>
</table>

**Note** Use the `show interfaces` command to see a list of all possible interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

<p>| <strong>p2p</strong>             | (Optional) Displays only P2P tunnels.                                                                                                                                                                    |
| <strong>property backup-tunnel</strong> | (Optional) Displays tunnels with property of backup tunnel. Selects MPLS-TE tunnels used to protect physical interfaces on this router. A tunnel configured to protect a link against failure is a backup tunnel and has the backup tunnel property. |
| <strong>property fast-reroute</strong> | (Optional) Displays tunnels with property of fast-reroute configured. Selects FRR-protected MPLS-TE tunnels originating on (head), transmitting (router), or terminating (tail) on this router. |</p>
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protection</td>
<td>(Optional) Displays all protected tunnels (configured as fast-reroutable). Displays information about the protection provided to each tunnel selected by other options specified with this command. The information includes whether protection is configured for the tunnel, the protection (if any) provided to the tunnel by this router, and the tunnel bandwidth protected.</td>
</tr>
<tr>
<td>frr</td>
<td>(Optional) Displays all protected tunnels (configured as fast-reroutable).</td>
</tr>
<tr>
<td>path</td>
<td>(Optional) Displays information for the path-protection.</td>
</tr>
<tr>
<td>tunnel-id</td>
<td>(Optional) Displays information for the path-protection for a particular tunnel.</td>
</tr>
<tr>
<td>tunnel-id</td>
<td>(Optional) Tunnel identifier. The range is from 0 to 65535.</td>
</tr>
<tr>
<td>tabular</td>
<td>(Optional) Displays information for the path protection tunnel in tabular format.</td>
</tr>
<tr>
<td>reoptimized within-last interval</td>
<td>(Optional) Displays tunnels reoptimized within the last given time interval.</td>
</tr>
<tr>
<td>role all</td>
<td>(Optional) Displays all tunnels.</td>
</tr>
<tr>
<td>role head</td>
<td>(Optional) Displays tunnels with their heads at this router.</td>
</tr>
<tr>
<td>role middle</td>
<td>(Optional) Displays tunnels at the middle of this router.</td>
</tr>
<tr>
<td>role tail</td>
<td>(Optional) Displays tunnels with their tails at this router.</td>
</tr>
<tr>
<td>soft-preemption</td>
<td>Displays tunnels on which the soft-preemption feature is enabled.</td>
</tr>
<tr>
<td>source source-address</td>
<td>(Optional) Restricts the display to tunnels with a matching source IP address.</td>
</tr>
<tr>
<td>suboptimal constraints current</td>
<td>(Optional) Displays tunnels whose path metric is greater than the current shortest path constrained by the tunnel’s configured options.</td>
</tr>
<tr>
<td>suboptimal constraints max</td>
<td>(Optional) Displays tunnels whose path metric is greater than the current shortest path, constrained by the configured options for the tunnel, and taking into consideration only the network capacity.</td>
</tr>
<tr>
<td>suboptimal constraints none</td>
<td>(Optional) Displays tunnels whose path metric is greater than the shortest unconstrained path.</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays summary of configured tunnels.</td>
</tr>
<tr>
<td>tabular</td>
<td>(Optional) Displays a table showing TE LSPs, with one entry per line.</td>
</tr>
<tr>
<td>up</td>
<td>(Optional) Displays tunnels when the tunnel interface is up.</td>
</tr>
<tr>
<td>class-type ct</td>
<td>(Optional) Displays tunnels using the given class-type value configuration.</td>
</tr>
</tbody>
</table>

11 FRR = Fast Reroute.  
12 LSPs = Label Switched Paths.

**Command Default**  
None

**Command Modes**  
XR EXEC mode

**Command History**  

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>6.2.1</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**  
Use the **brief** form of the `show mpls traffic-eng tunnels` command to display information specific to a tunnel interface. Use the command without the **brief** keyword to display information that includes the destination address, source ID, role, name, suboptimal constraints, and interface.

The **affinity** keyword is available for only the source router.

Selected tunnels would have a shorter path if they were reoptimized immediately.

To display the path-protection summary fields, you must configure the options for the path-protection.

**Examples**  
This sample output is not changed when no area is specified for the active path-option. If the area is specified, it is added on a line of its own after the existing path-option information.

```bash
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels 20 detail

Signalling Summary:
LSP Tunnels Process: running
RSVP Process: running
Forwarding: enabled
Periodic reoptimization: every 3600 seconds, next in 2400 seconds
```
This is a sample output from the `show mpls traffic-eng tunnels` command using the `property` keyword:
show mpls traffic-eng tunnels

RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels property backup interface out HundredGigE0/0/0/3

Signalling Summary:
- LSP Tunnels Process: running, not registered with RSVP
- RSVP Process: not running
- Forwarding: enabled
- Periodic reoptimization: every 3600 seconds, next in 3595 seconds
- Periodic FRR Promotion: every 300 seconds, next in 295 seconds
- Periodic auto-bw collection: disabled

Name: tunnel-te1 Destination: 1.1.1.1
Status:
- Admin: up Oper: up Path: valid Signalling: connected
  - path option 1, type dynamic (Basis for Setup, path weight 1)
  - G-PID: 0x0800 (derived from egress interface properties)

Config Parameters:
- Bandwidth: 1000 kbps (CTO) Priority: 7 7 Affinity: 0x0/0xffff
- Metric Type: TE (default)
- AutoRoute: disabled LockDown: disabled
- Loadshare: 10000 bandwidth-based
- Auto-bw: disabled(0/0) 0 Bandwidth Requested: 0
- Direction: unidirectional
- Endpoint switching capability: unknown, encoding type: unassigned
- Transit switching capability: unknown, encoding type: unassigned
- Backup FRR EXP Demotion: 1 ' 7, 2 ' 1
- Class-Attributes: 1, 2, 7
- Bandwidth-Policer: off

History:
- Tunnel has been up for: 00:00:08
- Current LSP:
  - Uptime: 00:00:08
- Path info (ospf 0 area 0):
  - Hop0: 10.0.0.2
  - Hop1: 102.0.0.2
- Displayed 1 (of 1) heads, 0 (of 0) midpoints, 0 (of 0) tails
- Displayed 0 up, 1 down, 0 recovering, 0 recovered heads

This table describes the significant fields shown in the display.

**Table 17: show mpls traffic-eng tunnels Command Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSP Tunnels Process</td>
<td>Status of the LSP tunnels process.</td>
</tr>
<tr>
<td>RSVP Process</td>
<td>Status of the RSVP process.</td>
</tr>
<tr>
<td>Forwarding</td>
<td>Status of forwarding (enabled or disabled).</td>
</tr>
<tr>
<td>Periodic reoptimization</td>
<td>Time, in seconds, until the next periodic reoptimization.</td>
</tr>
<tr>
<td>Periodic FRR Promotion</td>
<td>Time, in seconds, till the next periodic FRR promotion.</td>
</tr>
<tr>
<td>Periodic auto-bw collection</td>
<td>Time, in seconds, till the next periodic auto-bw collection.</td>
</tr>
</tbody>
</table>
### Field | Description
--- | ---
Name | Interface configured at the tunnel head.
Destination | Tail-end router identifier.
Admin/STATUS | Configured up or down.
Oper/STATE | Operationally up or down.
Signalling | Signaling connected or down or proceeding.
Config Parameters | Configuration parameters provided by tunnel mode MPLS traffic-eng, including those specific to unequal load-balancing functionality (bandwidth, load-share, backup FRR EXP demotion, class-attributes, and bandwidth-policer).

History: Current LSP: Uptime | Time LSP has been up.
Path Info | Hop list of current LSP.

13 **LSP** = Link-State Packet.
14 **FRR** = Fast Reroute.

This sample output shows the link attributes of links that are traversed by the tunnel (color information):

```bash
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels 11 affinity

Signalling Summary:
- LSP Tunnels Process: running
- RSVP Process: running
- Forwarding: enabled
- Periodic reoptimization: every 3600 seconds, next in 2710 seconds
- Periodic FRR Promotion: every 300 seconds, next in 27 seconds

Auto-bw enabled tunnels: 0 (disabled)

Name: tunnel-te11 Destination: 3.3.3.3
Status:
- Admin: up Oper: up Path: valid Signalling: connected

 path option 1, type explicit gige_1_2_3 (Basis for Setup, path weight 2)
 G-PID: 0x0800 (derived from egress interface properties)
 Bandwidth Requested: 200 kbps CT0

Config Parameters:
- Bandwidth: 200 kbps (CT0) Priority: 2 2
- Number of affinity constraints: 1
- Include bit map : 0x4
- Include name : red2

Metric Type: TE (default)
AutoRoute: disabled LockDown: disabled Policy class: not set
Forwarding-Adjacency: disabled
Loadshare: 0 equal loadshares
Auto-bw: disabled
Fast Reroute: Enabled, Protection Desired: Any
```
Path Protection: Not Enabled

History:
Tunnel has been up for: 02:55:27
Current LSP:
  Uptime: 02:02:19
Prior LSP:
  ID: path option 1 [8]
    Removal Trigger: reoptimization completed

Path info (OSPF 100 area 0):
Link0: 12.9.0.1
  Attribute flags: 0x4
  Attribute names: red2
Link1: 23.9.0.2
  Attribute flags: 0x4
  Attribute names: red2

Displayed 1 (of 8) heads, 0 (of 0) midpoints, 0 (of 0) tails
Displayed 1 up, 0 down, 0 recovering, 0 recovered heads

This sample output shows the brief summary of the tunnel status and configuration:

RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels brief

Signalling Summary:
  LSP Tunnels Process: running
  RSVP Process: running
  Forwarding: enabled
  Periodic reoptimization: every 3600 seconds, next in 2538 seconds
  Periodic FRR Promotion: every 300 seconds, next in 38 seconds
  Auto-bw enabled tunnels: 0 (disabled)

<table>
<thead>
<tr>
<th>TUNNEL NAME</th>
<th>DESTINATION</th>
<th>STATUS</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel-te1060</td>
<td>10.6.6.6</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE6_C12406_t607</td>
<td>10.7.7.7</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE6_C12406_t608</td>
<td>10.8.8.8</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE6_C12406_t609</td>
<td>10.9.9.9</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE6_C12406_t610</td>
<td>10.10.10.10</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE6_C12406_t621</td>
<td>10.21.21.21</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE7_C12406_t706</td>
<td>10.6.6.6</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE7_C12406_t721</td>
<td>10.21.21.21</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Tunnel_PE8-PE6</td>
<td>10.6.6.6</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Tunnel_PE9-PE21</td>
<td>10.21.21.21</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Tunnel_PE10-PE6</td>
<td>10.6.6.6</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Tunnel_PE10-PE21</td>
<td>10.21.21.21</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE21_C12406_t2106</td>
<td>10.6.6.6</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE21_C12406_t2107</td>
<td>10.7.7.7</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE21_C12406_t2108</td>
<td>10.8.8.8</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE21_C12406_t2109</td>
<td>10.9.9.9</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE21_C12406_t2110</td>
<td>10.10.10.10</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE6_C12406_t6070</td>
<td>10.7.7.7</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>PE7_C12406_t7060</td>
<td>10.6.6.6</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>tunnel-te1</td>
<td>200.0.0.3</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>HundredGigE0/0/0/3</td>
<td>100.0.0.1</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>HundredGigE0/0/0/4</td>
<td>200.0.0.1</td>
<td>up</td>
<td>up</td>
</tr>
</tbody>
</table>

Displayed 1 (of 1) heads, 20 (of 20) midpoints, 0 (of 0) tails
Displayed 1 up, 0 down, 0 recovering, 0 recovered heads

This section shows a sample output that results when automatic backup tunnels are created:
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels brief

*T = automatically created backup tunnel

This is sample output that shows a summary of configured tunnels by using the summary keyword:

RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels summary

LSP Tunnels Process: not running, disabled
RSVP Process: running
Forwarding: enabled
Periodic reoptimization: every 3600 seconds, next in 2706 seconds
Periodic FRR Promotion: every 300 seconds, next in 81 seconds
Periodic auto-bw collection: disabled

Signalling Summary:
  Head: 1 interfaces, 1 active signalling attempts, 1 established
        0 explicit, 1 dynamic
        1 activations, 0 deactivations
        0 recovering, 0 recovered
  Mids: 0
  Tails: 0

Fast ReRoute Summary:
  Head: 0 FRR tunnels, 0 protected, 0 rerouted
  Mid: 0 FRR tunnels, 0 protected, 0 rerouted
  Summary: 0 protected, 0 link protected, 0 node protected, 0 bw protected

Path Protection Summary:
  20 standby configured tunnels, 15 connected, 10 path protected
  2 link-diverse, 4 node-diverse, 4 node-link-diverse

AutoTunnel Backup Summary:
AutoTunnel Backups:
  50 created, 50 up, 0 down, 8 unused
  25 NHOP, 25 NNHOP, 10 SRLG strict, 10 SRLG pref
Protected LSPs:
  10 NHOP, 20 NHOP+SRLG
  15 NNHOP, 5 NNHOP+SRLG
Protected S2L Sharing Families:
  10 NHOP, 20 NHOP+SRLG
  15 NNHOP, 5 NNHOP+SRLG
Protected S2Ls:
  10 NHOP, 20 NHOP+SRLG
  15 NNHOP, 5 NNHOP+SRLG
This is a sample output from the `show mpls traffic-eng tunnels` command using the `protection` keyword. This command selects every MPLS-TE tunnel, known to the router, that was signaled as an FRR-protected LSP (property fast-reroute), and displays information about the protection this router provides to each selected tunnel.

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels protection

 tunnel160
 LSP Head, Admin: up, Oper: up
 Src: 10.20.20.20, Dest: 10.10.10.10, Instance: 28
 Fast Reroute Protection: None

 tunnel170
 LSP Head, Admin: up, Oper: up
 Src: 10.20.20.20, Dest: 10.10.10.10, Instance: 945
 Fast Reroute Protection: Requested
 Outbound: FRR Ready
 Backup tunnel160 to LSP nhop
 tunnel160: out I/f: HundredGigE0/0/0/3
 LSP signalling info:
 Original: out I/f: HundredGigE0/0/0/4, label: 3, nhop: 10.10.10.10
 With FRR: out I/f: tunnel160, label: 3
 LSP bw: 10 kbps, Backup level: any unlimited, type: CT0

This table describes the significant fields shown in the display.

```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel#</td>
<td>Number of the MPLS-TE backup tunnel.</td>
</tr>
<tr>
<td>LSP Head/router</td>
<td>Node is either head or router for this LSP.</td>
</tr>
<tr>
<td>Instance</td>
<td>LSP ID.</td>
</tr>
<tr>
<td>Backup tunnel</td>
<td>Backup tunnel protection for NHOP/NNHOP.</td>
</tr>
<tr>
<td>out if</td>
<td>Backup tunnel's outgoing interface</td>
</tr>
<tr>
<td>Original</td>
<td>Outgoing interface, label, and next-hop of the LSP when not using backup.</td>
</tr>
<tr>
<td>With FRR</td>
<td>Outgoing interface and label when using backup tunnel.</td>
</tr>
<tr>
<td>LSP BW</td>
<td>Signaled bandwidth of the LSP.</td>
</tr>
<tr>
<td>Backup level</td>
<td>Type of bandwidth protection provided—pool type and limited/unlimited bandwidth.</td>
</tr>
<tr>
<td>LSP Tunnels Process</td>
<td>Status of the TE process.</td>
</tr>
<tr>
<td></td>
<td><img src="image.jpg" alt="Image" /></td>
</tr>
</tbody>
</table>

15 LSP = Link-State Packet.  
16 LSP = Label Switched Path

This is sample output from the `show mpls traffic-eng tunnels` command using the `backup` keyword. This command selects every MPLS-TE tunnel known to the router, and displays information about the FRR protection that each selected tunnel provides for interfaces on this route. The command does not generate output for tunnels that do not provide FRR protection of interfaces on this router:
show mpls traffic-eng tunnels backup

tunnel160
  Admin: up, Oper: up
  Src: 10.20.20.20, Dest: 10.10.10.10, Instance: 28
Fast Reroute Backup Provided:
  Protected I/fs: HundredGigE0/0/0/3
  Protected lsps: 0
  Backup BW: any-class unlimited, Inuse: 0 kbps

This table describes the significant fields shown in the display.

Table 19: show mpls traffic-eng tunnels backup Command Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel#</td>
<td>MPLS-TE backup tunnel number.</td>
</tr>
<tr>
<td>Dest</td>
<td>IP address of backup tunnel destination.</td>
</tr>
<tr>
<td>State</td>
<td>State of the backup tunnel. Values are up, down, or admin-down.</td>
</tr>
<tr>
<td>Instance</td>
<td>LSP ID of the tunnel.</td>
</tr>
<tr>
<td>Protected I/fs</td>
<td>List of interfaces protected by the backup tunnel.</td>
</tr>
<tr>
<td>Protected lsps</td>
<td>Number of LSPs currently protected by the backup tunnel.</td>
</tr>
<tr>
<td>Backup BW</td>
<td>Configured backup bandwidth type and amount. Pool from which bandwidth is acquired. Values are any-class, CT0, and CT1. Amount is either unlimited or a configured limit in kbps.</td>
</tr>
<tr>
<td>Inuse</td>
<td>Backup bandwidth currently in use on the backup tunnel.</td>
</tr>
</tbody>
</table>

This shows a sample output from the show mpls traffic-eng tunnels command using the backup and protected-interface keywords:

show mpls traffic-eng tunnels backup protected-interface

Interface: HundredGigE0/0/0/3
  Tunnel100  UNUSED : out I/f: Admin: down Oper: down
Interface: HundredGigE0/0/0/4
  Tunnel160  NHOP : out I/f: HundredGigE0/0/0/5  Admin: up Oper: up

This table describes the significant fields shown in the display.

Table 20: show mpls traffic-eng tunnels backup protected-interface Command Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>MPLS-TE-enabled FRR protected interface.</td>
</tr>
<tr>
<td>Tunnel#</td>
<td>FRR protected tunnel on the interface.</td>
</tr>
</tbody>
</table>
This shows a sample output from the `show mpls traffic-eng tunnels` command using the `up` within-last keywords:

```plaintext
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels up within-last 200

Signalling Summary:
LSP Tunnels Process: running
RSVP Process: running
Forwarding: enabled
Periodic reoptimization: every 3600 seconds, next in 3381 seconds
Periodic FRR Promotion: every 300 seconds, next in 81 seconds
Periodic auto-bw collection: disabled

Name: tunnel-te11 Destination: 30.30.30.30
Status: Admin: up Oper: up Path: valid Signalling: connected
 path option 1, type explicit back (Basis for Setup, path weight 1)
G-PID: 0x0800 (derived from egress interface properties)

Config Parameters:
Bandwidth: 0 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
Number of configured name based affinities: 2
Name based affinity constraints in use:
 Include bit map : 0x4 (refers to undefined affinity name)
 Include-strict bit map: 0x4
Metric Type: TE (default)
AutoRoute: disabled LockDown: disabled Loadshare: 0 bw-based
Auto-bw: disabled(0/0) 0 Bandwidth Requested: 0
Direction: unidirectional
Endpoint switching capability: unknown, encoding type: unassigned
Transit switching capability: unknown, encoding type: unassigned

History:
 Tunnel has been up for: 00:00:21
 Current LSP:
 Uptime: 00:00:21
 Prior LSP:
 ID: path option 1 [4]
 Removal Trigger: tunnel shutdown
Path info (ospf area 0):
 Hop0: 7.4.4.2
 Hop1: 30.30.30.30
Displayed 1 (of 3) heads, 0 (of 0) midpoints, 0 (of 0) tails
Displayed 1 up, 0 down, 0 recovering, 0 recovered heads
```

This shows a sample output from the `show mpls traffic-eng tunnels` command using the `reoptimized` within-last keywords:

```plaintext
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels reoptimized within-last 600

Signalling Summary:
```
show mpls traffic-eng tunnels

This is a sample output from the `show mpls traffic-eng tunnels` command using the `detail` keyword:

```
Name: tunnel-te1 Destination: 30.30.30.30
Status:
 Admin: up Oper: up Path: valid Signalling: connected

path option 1, type explicit prot1 (Basis for Setup, path weight 1)
G-PID: 0x0800 (derived from egress interface properties)

Config Parameters:
 Bandwidth: 66 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
 Metric Type: IGP (global)
 AutoRoute: enabled LockDown: disabled Loadshare: 66 bw-based
 Auto-bw: disabled(0/0) 0 Bandwidth Requested: 66
 Direction: unidirectional

History:
Tunnel has been up for: 00:14:04
Current LSP:
 Uptime: 00:03:52
 Selection: reoptimization
Prior LSP:
 ID: path option 1 [2017]
 Removal Trigger: reoptimization completed

Path info (ospf area 0):
 Hop0: 7.2.2.2
 Hop1: 7.3.3.2
 Hop2: 30.30.30.30
Displayed 1 (of 1) heads, 0 (of 0) midpoints, 0 (of 0) tails
Displayed 1 up, 0 down, 0 recovering, 0 recovered heads
```
show mpls traffic-eng tunnels

Direction: unidirectional
Endpoint switching capability: unknown, encoding type: unassigned
Transit switching capability: unknown, encoding type: unassigned

History:
Tunnel has been up for: 00:04:06
Current LSP:
  Uptime: 00:04:06
Prior LSP:
  ID: path option 1 [5452]
  Removal Trigger: path verification failed
Current LSP Info:
  Instance: 71, Signaling Area: ospf optical area 0
  Uptime: 00:10:41
  Outgoing Interface: HundredGigE0/0/0/3, Outgoing Label: implicit-null
Path Info:
  Explicit Route:
    Strict, 100.0.0.3
    Strict, 24.24.24.24
  Record Route: None
  Tspec: avg rate=2488320 kbits, burst=1000 bytes, peak rate=2488320 kbits
Resv Info:
  Record Route:
    IPv4 100.0.0.3, flags 0x0
    Fspec: avg rate=2488320 kbits, burst=1000 bytes, peak rate=2488320 kbits
Protecting LSP Info:
  Instance: 72, Signaling Area: ospf optical area 0
  Incoming Label: explicit-null
  Outgoing Interface: HundredGigE0/0/0/4, Outgoing Label: implicit-null
Path Info:
  Explicit Route:
    Strict, 101.0.0.3
    Strict, 24.24.24.24
  Record Route: None
  Tspec: avg rate=2488320 kbits, burst=1000 bytes, peak rate=2488320 kbits
Resv Info:
  Record Route:
    IPv4 101.0.0.3, flags 0x0
    Fspec: avg rate=2488320 kbits, burst=1000 bytes, peak rate=2488320 kbits
Reoptimized LSP Info (Install Timer Remaining 11 Seconds):
Cleaned LSP Info (Cleanup Timer Remaining 19 Seconds):

This is a sample output that shows the path-protection options for tunnel-te 100 using the detail keyword.

RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels 100 detail

Signalling Summary:
  LSP Tunnels Process: running
  RSVP Process: running
  Forwarding: enabled
  Periodic reoptimization: every 60 seconds, next in 31 seconds
  Periodic FRR Promotion: every 300 seconds, next in 299 seconds
  Auto-bw enabled tunnels: 0 (disabled)

Name: tunnel-te100  Destination: 33.3.33.3
Status:
  Admin: up  Oper: up (Up for 02:06:14)
  Path: valid  Signalling: connected
Path options:
path-option 5 explicit name to-gmpls3 verbatim lockdown OSPF 0 area 0

Info: Destination IP address, 1.2.3.4, not found in topology

path-option 10 dynamic
path option 15 explicit name div-wrt-to-gmpls3 verbatim
path option 20 dynamic standby OSPF 0 area 0
(Basis for Standby, path weight 2)
G-PID: 0x0800 (derived from egress interface properties)
Bandwidth Requested: 0 kbps CT0

Config Parameters:
Bandwidth: 0 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
Metric Type: TE (default)
AutoRoute: disabled LockDown: disabled
Loadshare: 0 equal loadshares
Auto-bw: disabled(0/0) # Bandwidth Requested: 0
Direction: unidirectional
Endpoint switching capability: unknown, encoding type: unassigned
Transit switching capability: unknown, encoding type: unassigned
Path Protection: enabled

Reoptimization Info in Inter-area:
Better Path Queries sent = 13; Preferred Path Exists received = 0
Last better path query was sent 00:08:22 ago
Last preferred path exists was received 00:00:00 ago

History:
Tunnel has been up for: 02:15:56
Current LSP:
Uptime: 02:15:56
Prior LSP:
ID: path option 10 [22]
Removal Trigger: path verification failed
Current LSP Info:
Bandwidth: 0 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
Metric Type: TE (default)
AutoRoute: disabled LockDown: disabled Policy class: not set
Loadshare: 0 equal loadshares
Auto-bw: disabled Direction: unidirectional
Endpoint switching capability: unknown, encoding type: unassigned
Transit switching capability: unknown, encoding type: unassigned
Fast Reroute: Disabled Protection Desired: None

Reoptimization Info in Inter-area:
Better Path Queries sent = 13; Preferred Path Exists received = 0
Last better path query was sent 00:08:22 ago
Last preferred path exists was received 00:00:00 ago

Path Protection Info:
Standby Path: Node and Link diverse Last switchover 00:08:22 ago
Switchover Reason: Path delete request
Number of Switchovers 13, Standby Ready 15 times

History:
Prior LSP:
ID: path option 10 [188]
Removal Trigger: path option removed
Tunnel has been up for: 00:03:58
Current LSP:
Uptime: 00:03:58
Reopt. LSP:
Setup Time: 272 seconds
Current LSP Info:
Instance: 1, Signaling Area: OSPF 0 area 0
Uptime: 00:03:58
Outgoing Interface: HundredGigE0/0/0/3, Outgoing Label: implicit-null
Router-IDs: local 222.22.2.2
downstream 33.3.33.3
Path Info:
Outgoing:
Explicit Route:
  Strict, 23.0.0.3
  Strict, 33.3.33.3
Record Route: None
Tspec: avg rate=0 kbits, burst=1000 bytes, peak rate=0 kbits
Session Attributes: Local Prot: Not Set, Node Prot: Not Set, BW Prot: Not Set
Resv Info:
  Record Route: None
  Fspec: avg rate=0 kbits, burst=1000 bytes, peak rate=0 kbits
Standby LSP Info:
Instance: 1, Signaling Area: OSPF 0 area 0
Uptime: 00:03:58
Outgoing Interface: HundredGigE0/0/0/3, Outgoing Label: implicit-null
Router-IDs: local 222.22.2.2
downstream 33.3.33.3
Path Info:
Outgoing:
Explicit Route:
  Strict, 23.0.0.3
  Strict, 33.3.33.3
Record Route: None
Tspec: avg rate=0 kbits, burst=1000 bytes, peak rate=0 kbits
Session Attributes: Local Prot: Not Set, Node Prot: Not Set, BW Prot: Not Set
Resv Info:
  Record Route: None
  Fspec: avg rate=0 kbits, burst=1000 bytes, peak rate=0 kbits
Reoptimized LSP Info:
Instance: 5, Signaling Area: OSPF 0 area 0
Outgoing Interface: HundredGigE0/0/0/4, Outgoing Label: 16000
Path Info:
Outgoing:
Explicit Route:
  Strict, 26.0.0.6
  Strict, 36.0.0.3
  Strict, 33.3.33.3
Record Route: None
Tspec: avg rate=0 kbits, burst=1000 bytes, peak rate=0 kbits
Session Attributes: Local Prot: Not Set, Node Prot: Not Set, BW Prot: Not Set
Resv Info:
  Record Route: None
  Fspec: avg rate=0 kbits, burst=1000 bytes, peak rate=0 kbits
Delayed Clean Standby LSP Info:
Instance: 1, Signaling Area: OSPF 0 area 0
Uptime: 00:03:58
Outgoing Interface: HundredGigE0/0/0/3, Outgoing Label: implicit-null
Router-IDs: local 222.22.2.2
downstream 33.3.33.3
Path Info:
Outgoing:
Explicit Route:
  Strict, 23.0.0.3
  Strict, 33.3.33.3
Record Route: None
Tspec: avg rate=0 kbits, burst=1000 bytes, peak rate=0 kbits
Session Attributes: Local Prot: Not Set, Node Prot: Not Set, BW Prot: Not Set
Resv Info:
  Record Route: None
  Fspec: avg rate=0 kbits, burst=1000 bytes, peak rate=0 kbits
This is a sample output from the `show mpls traffic-eng tunnels` command using the `role mid` keyword:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels role mid
```

Signalling Summary:
- LSP Tunnels Process: running
- RSVP Process: running
- Forwarding: enabled
- Periodic reoptimization: every 3600 seconds, next in 1166 seconds
- Periodic FRR Promotion: every 300 seconds, next in 90 seconds
- Periodic auto-bw collection: disabled

LSP Tunnel 10.10.10.10 1 [5508] is signalled, connection is up
- Tunnel Name: FRR1_t1 Tunnel Role: Mid
- InLabel: HundredGigE0/0/0/3, 33
- OutLabel: HundredGigE0/0/0/4, implicit-null

**Signalling Info:**
- Src 10.10.10.10 Dst 30.30.30.30, Tunnel ID 1, Tunnel Instance 5508
- Path Info:
  - Incoming Address: 7.3.3.1
- **Incoming Explicit Route:**
  - Strict, 7.3.3.1
  - Loose, 30.30.30.30
- **ERO Expansion Info:**
  - ospf 100 area 0, Metric 1 (TE), Affinity 0x0, Mask 0xffff, Queries 0
  - Outgoing Explicit Route:
    - Strict, 7.2.2.1
    - Strict, 30.30.30.30

**Record Route:** None

**Resv Info:**
- **Record Route:**
  - IPv4 30.30.30.30, flags 0x20
  - Label 3, flags 0x1
- IPv4 7.3.3.2, flags 0x0
  - Label 3, flags 0x1

**Fspec:**
- avg rate=10 kbits, burst=1000 bytes, peak rate=10 kbits

This sample output shows a tabular table for TE LSPs by using the `tabular` keyword:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels tabular
```

<table>
<thead>
<tr>
<th>Tunnel Name</th>
<th>LSP ID</th>
<th>Destination Address</th>
<th>Source Address</th>
<th>Tun State</th>
<th>FRR State</th>
<th>LSP Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel-mte100</td>
<td>1</td>
<td>2.2.2.2</td>
<td>60.60.60.60</td>
<td>up</td>
<td>Inact</td>
<td>Mid</td>
</tr>
<tr>
<td>tunnel-mte300</td>
<td>1</td>
<td>2.2.2.2</td>
<td>60.60.60.60</td>
<td>up</td>
<td>Inact</td>
<td>Tail</td>
</tr>
<tr>
<td>tunnel-te1060</td>
<td>2</td>
<td>10.6.6.6</td>
<td>10.1.1.1</td>
<td>up</td>
<td>Inact</td>
<td>Head</td>
</tr>
<tr>
<td>PE6_C12406_t607</td>
<td>2</td>
<td>10.7.7.7</td>
<td>10.6.6.6</td>
<td>up</td>
<td>Inact</td>
<td>Mid</td>
</tr>
<tr>
<td>PE6_C12406_t608</td>
<td>2</td>
<td>10.8.8.8</td>
<td>10.6.6.6</td>
<td>up</td>
<td>Inact</td>
<td>Mid</td>
</tr>
<tr>
<td>PE6_C12406_t609</td>
<td>2</td>
<td>10.9.9.9</td>
<td>10.6.6.6</td>
<td>up</td>
<td>Inact</td>
<td>Mid</td>
</tr>
<tr>
<td>PE6_C12406_t610</td>
<td>2</td>
<td>10.10.10.10</td>
<td>10.6.6.6</td>
<td>up</td>
<td>Inact</td>
<td>Mid</td>
</tr>
<tr>
<td>PE6_C12406_t621</td>
<td>2</td>
<td>10.21.21.21</td>
<td>10.6.6.6</td>
<td>up</td>
<td>Inact</td>
<td>Mid</td>
</tr>
<tr>
<td>PE7_C12406_t706</td>
<td>835</td>
<td>10.6.6.6</td>
<td>10.7.7.7</td>
<td>up</td>
<td>Inact</td>
<td>Mid</td>
</tr>
<tr>
<td>PE7_C12406_t721</td>
<td>603</td>
<td>10.21.21.21</td>
<td>10.7.7.7</td>
<td>up</td>
<td>Inact</td>
<td>Mid</td>
</tr>
<tr>
<td>Tunnel_PE8-PE6</td>
<td>4062</td>
<td>10.6.6.6</td>
<td>10.8.8.8</td>
<td>up</td>
<td>Inact</td>
<td>Mid</td>
</tr>
</tbody>
</table>
This sample output shows a tabular table indicating automatic backup tunnels when using the `tabular` keyword:

```
RP/0/RP0/CPU0# show mpls traffic-eng tunnels tabular

<table>
<thead>
<tr>
<th>Tunnel Name</th>
<th>LSP ID</th>
<th>Destination Address</th>
<th>Source Address</th>
<th>State</th>
<th>FRR State</th>
<th>LSP Role</th>
<th>Prot</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel-te100</td>
<td>1</td>
<td>200.0.0.1</td>
<td>200.0.0.1</td>
<td>up</td>
<td>Inact</td>
<td>Head</td>
<td>InAct</td>
</tr>
<tr>
<td>HundredGigE0/0/0/3</td>
<td>2</td>
<td>100.0.0.1</td>
<td>200.0.0.1</td>
<td>up</td>
<td>Inact</td>
<td>Head</td>
<td>InAct</td>
</tr>
<tr>
<td>HundredGigE0/0/0/4</td>
<td>6</td>
<td>200.0.0.1</td>
<td>100.0.0.1</td>
<td>up</td>
<td>Inact</td>
<td>Tail</td>
<td>InAct</td>
</tr>
</tbody>
</table>
```

* = automatically created backup tunnel

This table describes the significant fields shown in the display.

### Table 21: show mpls traffic-eng tunnels tabular Command Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel Name</td>
<td>MPLS-TE tunnel name.</td>
</tr>
<tr>
<td>LSP ID</td>
<td>LSP ID of the tunnel.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Destination address of the TE tunnel (identified in Tunnel Name).</td>
</tr>
<tr>
<td>Source Address</td>
<td>Source address for the filtered tunnels.</td>
</tr>
<tr>
<td>Tunnel State</td>
<td>State of the tunnel. Values are up, down, or admin-down.</td>
</tr>
<tr>
<td>FRR State</td>
<td>FRR state identifier.</td>
</tr>
<tr>
<td>LSP Role</td>
<td>Role identifier. Values are All, Head, or Tail.</td>
</tr>
</tbody>
</table>

This sample output shows a path protection for tunnel ID 10:
This sample output shows the path protection in a tabular format:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels protection path tabular

<table>
<thead>
<tr>
<th>Tunnel ID</th>
<th>Current LSP ID</th>
<th>Standby LSP ID</th>
<th>Protected State</th>
<th>Standby Diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>10</td>
<td>11</td>
<td>Ready</td>
<td>Node and Link Diverse</td>
</tr>
<tr>
<td>1501</td>
<td>11</td>
<td>12</td>
<td>Ready</td>
<td>Node and Link Diverse</td>
</tr>
<tr>
<td>1502</td>
<td>10</td>
<td>11</td>
<td>Ready</td>
<td>Node and Link Diverse</td>
</tr>
<tr>
<td>1504</td>
<td>10</td>
<td>11</td>
<td>Ready</td>
<td>Node and Link Diverse</td>
</tr>
<tr>
<td>1505</td>
<td>10</td>
<td>11</td>
<td>Ready</td>
<td>Node and Link Diverse</td>
</tr>
</tbody>
</table>
```

This table describes the significant fields shown in the display.

**Table 22: show mpls traffic-eng tunnels protection path tabular Command Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel ID</td>
<td>Identifier of the tunnel.</td>
</tr>
<tr>
<td>Current LSP ID</td>
<td>Identifier of the LSP that is carrying traffic.</td>
</tr>
<tr>
<td>Standby LSP ID</td>
<td>Identifier of the standby LSP that is protecting traffic.</td>
</tr>
<tr>
<td>Protected State</td>
<td>Values are Ready and Not Ready.</td>
</tr>
<tr>
<td>Standby Diversity</td>
<td>Values are Node and Link Diverse along with Node Diverse and Link Diverse. Values that state that the current and standby LSP do not have nodes or links in common. The current and standby LSP do not have nodes in common (but can share a link), or they have no links in common (but can share nodes).</td>
</tr>
</tbody>
</table>

This sample output shows the MPLS-TE tunnel information only for tunnels in which the automatic bandwidth is enabled using the **auto-bw** keyword:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels auto-bw

Signalling Summary:
 LSP Tunnels Process: running
 RSVP Process: running
 Forwarding: enabled
 Periodic reoptimization: every 3600 seconds, next in 636 seconds
 Periodic FRR Promotion: every 300 seconds, next in 276 seconds
 Auto-bw enabled tunnels: 1

Name: tunnel-te1 Destination: 0.0.0.0
```
Status:
- Admin: up
- Oper: down
- Path: not valid
- Signalling: Down
- G-PID: 0x0800 (internally specified)
- Bandwidth Requested: 0 kbps
- CT0

Config Parameters:
- Bandwidth: 0 kbps (CT0)
- Priority: 7
- Affinity: 0x0/0xffffffff
- Metric Type: TE (default)
- AutoRoute: disabled
- LockDown: disabled
- Policy class: not set
- Loadshare: 0 equal loadshares

Auto-bw: (collect bw only)
- Last BW Applied: 500 kbps (CT0)
- BW Applications: 25
- Last Application Trigger: Periodic Application
- Bandwidth Min/Max: 10-10900 kbps
- Application Frequency: 10 min (Cfg: 10 min)
- Collection Frequency: 2 min
- Samples Collected: 2
- Highest BW: 450 kbps
- Next: 1m 34s
- Adjustment Threshold: 5%
- Overflow Threshold: 15%
- Limit: 1/4
- Early BW Applications: 0
- Direction: unidirectional

Endpoint switching capability: unknown, encoding type: unassigned
Transit switching capability: unknown, encoding type: unassigned
Fast Reroute: Disabled
Protection Desired: None

Reason for the tunnel being down: No destination is configured

History:
- Displayed 1 (of 1) heads, 0 (of 0) midpoints, 0 (of 0) tails
- Displayed 0 up, 1 down, 0 recovering, 0 recovered heads

This table describes the significant fields shown in the display.

**Table 23: show mpls traffic-eng tunnels auto-bw Command Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect bw only</td>
<td>Field is displayed only if the bandwidth collection is configured in the tunnel automatic bandwidth configuration.</td>
</tr>
<tr>
<td>Last BW Applied</td>
<td>Last bandwidth change that is requested by the automatic bandwidth for the tunnel. In addition, this field indicates which pool is used for the bandwidth.</td>
</tr>
<tr>
<td>BW Applications</td>
<td>Total number of bandwidth applications that is requested by the automatic bandwidth, which includes the applications triggered by an overflow condition.</td>
</tr>
<tr>
<td>Last Application Trigger</td>
<td>These last application options are displayed:</td>
</tr>
<tr>
<td></td>
<td>• Periodic Application</td>
</tr>
<tr>
<td></td>
<td>• Overflow Detected</td>
</tr>
<tr>
<td></td>
<td>• Manual Application</td>
</tr>
<tr>
<td>Bandwidth Min/Max</td>
<td>Bandwidth configured is either minimum or maximum.</td>
</tr>
<tr>
<td>Application Frequency</td>
<td>Configured application frequency. The Time Left field indicates the time left before the next application executes.</td>
</tr>
<tr>
<td>Collection Frequency</td>
<td>Globally configured collection frequency, which is the same value for all the tunnels.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Samples Collected</td>
<td>Number of samples that are collected during the current application period. This field is replaced by the Collection Disabled field if Collection Frequency is not currently configured.</td>
</tr>
<tr>
<td>Highest BW</td>
<td>Highest bandwidth that is collected for the application period.</td>
</tr>
<tr>
<td>Next</td>
<td>Time left before the next collection event.</td>
</tr>
<tr>
<td>Overflow Threshold</td>
<td>Overflow threshold that is configured. The Overflow field appears only if the overflow detection is configured in the tunnel automatic bandwidth configuration.</td>
</tr>
<tr>
<td>Limit</td>
<td>Consecutive overflow detected or configured limit.</td>
</tr>
<tr>
<td>Early BW Applications</td>
<td>Number of early bandwidth applications that are triggered by an overflow condition.</td>
</tr>
</tbody>
</table>

This is sample output from the `show mpls traffic-eng tunnels` command after the NNHOP SRLG preferred automatic backup tunnel is configured:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels 1

Signalling Summary:
LSP Tunnels Process: running
RSVP Process: running
Forwarding: enabled
Periodic reoptimization: every 3600 seconds, next in 2524 seconds
Periodic FRR Promotion: every 300 seconds, next in 49 seconds
Auto-bw enabled tunnels: 1

Name: tunnel-te1 Destination: 200.0.0.3 (auto backup)
Status: Admin: up Oper: up Path: valid Signalling: connected

 path option 10, type explicit (autob_nnhop_srlg_tunnel1) (Basis for Setup, path weight 11)
 path option 20, type explicit (autob_nnhop_tunnel1)
 G-PID: 0x0800 (derived from egress interface properties)
Bandwidth Requested: 0 kbps CT0
Creation Time: Fri Jul 10 01:53:25.581 PST (1h 25m 17s ago)

Config Parameters:
Bandwidth: 0 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
Metric Type: TE (default)
AutoRoute: disabled LockDown: disabled Policy class: not set
Forwarding-Adjacency: disabled

Loadshare: 0 equal loadshares
Auto-bw: disabled
Fast Reroute: Disabled, Protection Desired: None
Path Protection: Not Enabled
Auto Backup:
 Protected LSPs: 4
 Protected S2L Sharing Families: 0
 Protected S2Ls: 0
 Protected i/f: HundredGigE0/0/0/2 Protected node: 20.0.0.2
 Protection: NNHOP+SRLG
Unused removal timeout: not running

History:
Tunnel has been up for: 00:00:08
```
Current LSP:
- Uptime: 00:00:08

Prior LSP:
- ID: path option 1 [545]
- Removal Trigger: configuration changed

Path info (OSPF 0 area 0):
- Hop0: 10.0.0.2
- Hop1: 100.0.0.2
- Hop2: 100.0.0.3
- Hop3: 200.0.0.3

This table describes the significant fields shown in the display.

**Table 24: show mpls traffic-eng tunnels Command Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Backup</td>
<td>Auto backup section header.</td>
</tr>
<tr>
<td>Creation Time</td>
<td>Time when the tunnel was created and for what period was the tunnel created.</td>
</tr>
<tr>
<td>Protected LSPs</td>
<td>Number of ready and active LSPs protected by this backup.</td>
</tr>
<tr>
<td>Protected S2L Sharing Families</td>
<td>Number of ready and active sharing families protected by this backup.</td>
</tr>
<tr>
<td>Protected S2Ls</td>
<td>Number of ready and active primary tunnels protected by this backup.</td>
</tr>
<tr>
<td>Protected i/f</td>
<td>Interface and NNHOP node protected by this backup.</td>
</tr>
<tr>
<td>Protected node</td>
<td>Type of protection provided by this backup.</td>
</tr>
<tr>
<td>Protection: NNHOP+SRLG</td>
<td>Type of protection provided by this backup.</td>
</tr>
<tr>
<td>Example when backup is in use:</td>
<td>Amount of time left before the unused removal timeout expires. This timer only runs when the backup is in the unused state. After the timer expires, the automatic backup tunnel is removed.</td>
</tr>
</tbody>
</table>

This is sample output from the `show mpls traffic-eng tunnels` command using the `detail` keyword:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels 999 detail

Name: tunnel-te999 Destination: 1.1.1.1
Status:
 Admin: up Oper: up Path: valid Signalling: connected

 path option 1, type dynamic (Basis for Setup, path weight 2)
 Path-option attribute: po
 Number of affinity constraints: 2
 Include bit map : 0x4
 Include name : blue
 Exclude bit map : 0x2
 Exclude name : red
```
Bandwidth: 300 (CT0)
G-PID: 0x0800 (derived from egress interface properties)
Bandwidth Requested: 300 kbps CT0
Creation Time: Fri Jan 14 23:35:58 2017 (00:00:42 ago)
Config Parameters:
Bandwidth: 100 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
Metric Type: TE (default)
Hop-limit: disabled
AutoRoute: disabled LockDown: disabled Policy class: not set
Forwarding-Adjacency: disabled
Loadshare: 0 equal loadshares
Auto-bw: disabled
Fast Reroute: Enabled, Protection Desired: Any
Path Protection: Not Enabled
Soft Preemption: Disabled
SNMP Index: 42

History:
Tunnel has been up for: 00:00:30 (since Fri Jan 14 23:36:10 EST 2017)
Current LSP:
Uptime: 00:00:30 (since Fri Jan 14 23:36:10 EST 2017)
Current LSP Info:
Instance: 2, Signaling Area: OSPF 100 area 16909060
Uptime: 00:00:30 (since Fri Jan 14 23:36:10 EST 2017)
Outgoing Interface: HundredGigE0/0/0/4, Outgoing Label: 16005
Router-IDs: local 3.3.3.3
downstream 2.2.2.2
Soft Preemption: None
Path Info:
Outgoing:
Explicit Route:
Strict, 23.9.0.2
Strict, 12.9.0.2
Strict, 12.9.0.1
Strict, 1.1.1.1
Record Route: Disabled
Tspec: avg rate=300 kbits, burst=1000 bytes, peak rate=300 kbits
Session Attributes: Local Prot: Set, Node Prot: Not Set, BW Prot: Not Set
Soft Preemption Desired: Not Set
Resv Info:
Record Route:
IPv4 2.2.2.2, flags 0x20
Label 16005, flags 0x1
IPv4 23.9.0.2, flags 0x0
Label 16005, flags 0x1
IPv4 1.1.1.1, flags 0x20
Label 3, flags 0x1
IPv4 12.9.0.1, flags 0x0
Label 3, flags 0x1
Fspec: avg rate=300 kbits, burst=1000 bytes, peak rate=300 kbits Displayed 1 (of 8) heads, 0 (of 3) midpoints, 0 (of 0) tails Displayed 1 up, 0 down, 0 recovering, 0 recovered heads

This is sample output from the `show mpls traffic-eng tunnels` command using the `auto-tunnel backup` keywords:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels auto-tunnel backup

AutoTunnel Backup Configuration:
 Interfaces count: 30
 Unused removal timeout: 2h
 Configured tunnel number range: 0-100
```
AutoTunnel Backup Summary:
50 created, 50 up, 0 down, 8 unused
25 NHOP, 25 NNHOP, 10 SRLG strict, 10 SRLG pref

Protected LSPs:
10 NHOP, 20 NHOP+SRLG
15 NNHOP, 5 NNHOP+SRLG

Protected S2L Sharing Families:
10 NHOP, 20 NHOP+SRLG
15 NNHOP, 5 NNHOP+SRLG

Protected S2Ls:
10 NHOP, 20 NHOP+SRLG
15 NNHOP, 5 NNHOP+SRLG

Cumulative Counters (last cleared 1h ago):

<table>
<thead>
<tr>
<th>Total</th>
<th>NHOP</th>
<th>NNHOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Created:</td>
<td>550</td>
<td>300</td>
</tr>
<tr>
<td>Connected:</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>Removed (down):</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Removed (unused):</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Removed (in use):</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Range exceeded:</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This table describes the significant fields shown in the display.

**Table 25: show mpls traffic-eng tunnels auto-tunnel backup Command Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoTunnel Backup Configuration</td>
<td>Header for the automatic tunnel backup configuration.</td>
</tr>
<tr>
<td>Interfaces count</td>
<td>Number of interfaces that have automatic tunnel backup enabled.</td>
</tr>
<tr>
<td>Unused removal timeout</td>
<td>Configured value and time left before expiration of the unused removal timeout attribute.</td>
</tr>
<tr>
<td>Configured tunnel number range</td>
<td>Configured tunnel number range.</td>
</tr>
<tr>
<td>AutoTunnel Backup Summary</td>
<td>Header for the automatic tunnel backup summary information.</td>
</tr>
<tr>
<td>50 created</td>
<td>Number of automatic backup tunnels created.</td>
</tr>
<tr>
<td>50 up</td>
<td>Number of automatic backup tunnels in the up state.</td>
</tr>
<tr>
<td>0 down</td>
<td>Number of automatic backup tunnels in the down state.</td>
</tr>
<tr>
<td>8 unused</td>
<td>Number of automatic backup tunnels in the unused state.</td>
</tr>
<tr>
<td>25 NHOP</td>
<td>Number of automatic backup tunnels created for NHOP protection.</td>
</tr>
<tr>
<td>25 NNHOP</td>
<td>Number of automatic backup tunnels created for NNHOP protection.</td>
</tr>
<tr>
<td>10 SRLG strict</td>
<td>Number of automatic backup tunnels created with the SRLG preferred attribute.</td>
</tr>
</tbody>
</table>
### Field | Description
--- | ---
10 SRLG pref | Number of automatic backup tunnels created with the SRLG preferred attribute.
Protected LSPs | Headings for summary information showing current status of LSPs, S2L Sharing Families, and S2Ls that are protected by the automatic tunnel backups. Numbers include primary tunnels in FRR ready and active state.
Protected S2L Sharing Families | 
Protected S2Ls | 
10 NHOP | Number of automatic backup tunnels that are link protected.
20 NHOP+SRLG | Number of automatic backup tunnels that are link protected and using an SRLG diverse backup path.
15 NNHOP | Number of automatic backup tunnels that are node protected.
20 NNHOP+SRLG | Number of automatic backup tunnels that are node protected and use an SRLG diverse backup path.

**Cumulative Counters (last cleared 1h ago):**
- **Total,number counters and breakdown of NHOP and NNHOP counters.**
- **Created:** Cumulative number of created automatic backup tunnels since the last counter was cleared.
- **Connected:** Cumulative number of the connected automatic backup tunnels since the last counter was cleared.
- **Removed(down/unused/in use):** Number of automatic backup tunnels that are removed based on state.
- **Range exceeded:** Number of automatic backup tunnels attempted and later rejected when the total number exceeds the configured range.

This is sample output from the `show mpls traffic-eng tunnels name tunnel-te1 detail` command, which displays the soft preemption information for the tunnel-te1 tunnel:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels name tunnel-te1 detail
Name: tunnel-te1 Destination: 192.168.0.4
Status:
 Admin: up Oper: up Path: valid Signalling: connected
path option 1, type explicit ABC1 (Basis for Setup, path weight 2)
Last FCALC Error [Reopt]: Fri Jan 13 16:40:24 2017
 Info: Can't reach 10.10.10.2 on 192.168.0.2, from node 192.168.0.1 (bw)
```
show mpls traffic-eng tunnels

Last Signalled Error: Fri Jan 13 16:38:53 2017
  Info: [2] PathErr(34,1)-(reroute, flow soft-preempted) at 10.10.10.1
G-PID: 0x0800 (derived from egress interface properties)
Bandwidth Requested: 30000 kbps  CT0
Creation Time: Thu Jan 13 15:46:45 2017 (00:53:14 ago)
Config Parameters:
  Bandwidth: 30000 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
  Metric Type: TE (default) Hop-limit: disabled
  AutoRoute: enabled LockDown: disabled Policy class: not set
  Forwarding-Adjacency: disabled Loadshare: 0 equal loadshares
  Auto-bw: disabled
  Fast Reroute: Enabled, Protection Desired: Any Path Protection: Not Enabled
  Soft Preemption: Enabled
  Soft Preemption:
    Current Status: Preemption pending
    Last Soft Preemption: Fri Jan 13 16:38:53 2017 (00:01:36 ago)
    Addresses of preempting links:
      10.10.10.1: Fri Jan 13 16:38:53 2017 (00:01:36 ago)
    Duration in preemption pending: 96 seconds
    Preemption Resolution: Pending
    Stats:
      Number of preemption pending events: 1
      Min duration in preemption pending: 0 seconds
      Max duration in preemption pending: 0 seconds
      Average duration in preemption pending: 0 seconds
      Resolution Counters: 0 reopt complete, 0 torn down
          0 path protection switchover
  SNMP Index: 9
  History:
    Tunnel has been up for: 00:52:46 (since Thu Jan 13 15:47:43 EDT 2017)
    Current LSP:
      Uptime: 00:52:46 (since Thu Jan 13 15:47:43 EDT 2017)
      Reopt. LSP:
        Last Failure:
          LSP not signalled, has no S2Ls
          Date/Time: Thu Jan 13 16:40:24 EDT 2017 [00:00:05 ago]
    Prior LSP:
      ID: path option 1 [2]
      Removal Trigger: path error
    Current LSP Info:
      Instance: 2, Signaling Area: OSPF ring area 0
      Uptime: 00:52:46 (since Thu Jan 13 15:47:43 EDT 2017)
      Outgoing Interface: HundredGigE0/0/0/3, Outgoing Label: 16002
      Router-IDs: local 192.168.0.1
downstream 192.168.0.2
    Soft Preemption: Pending
      Preemption Link: HundredGigE0/0/0/3; Address: 10.10.10.1
      Preempted at: Fri Jan 13 16:38:53 2017 (00:01:36 ago)
      Time left before hard preemption: 204 seconds
    Path Info:
      Outgoing:
        Explicit Route:
          Strict, 10.10.10.2
          Strict, 14.14.14.4
          Strict, 192.168.0.4
        Record Route: Empty
      Tspec: avg rate=30000 kbits, burst=1000 bytes, peak rate=30000 kbits
      Session Attributes: Local Prot: Set, Node Prot: Not Set, BW Prot: Not Set
          Soft Preemption Desired: Set
    Resv Info:
Record Route:
  IPv4 192.168.0.2, flags 0x20
  Label 16002, flags 0x1
  IPv4 10.10.10.2, flags 0x0
  Label 16002, flags 0x1
  IPv4 192.168.0.4, flags 0x20
  Label 3, flags 0x1
  IPv4 14.14.14.4, flags 0x0
  Label 3, flags 0x1
  Fspec: avg rate=30000 kbits, burst=1000 bytes, peak rate=30000 kbits

Displayed 1 (of 4) heads, 0 (of 0) midpoints, 0 (of 2) tails
Displayed 1 up, 0 down, 0 recovering, 0 recovered heads

This is sample output from the `show mpls traffic-eng tunnels` command with the `mesh` keyword:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels auto-tunnel
Signalling Summary:
 LSP Tunnels Process: running
 RSVP Process: running
 Forwarding: enabled
 Periodic reoptimization: every 3600 seconds, next in 3098 seconds
 Periodic FRR Promotion: every 300 seconds, next in 238 seconds
 Auto-bw enabled tunnels: 1000

Name: tunnel-te9000 Destination: 20.20.20.20 (auto-tunnel mesh)
Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 10, type dynamic (Basis for Setup, path weight 11)
 G-PID: 0x0800 (derived from egress interface properties)
 Bandwidth Requested: 0 kbps CT0
 Creation Time: Fri Jan 14 09:09:31 2010 (01:41:20 ago)
Config Parameters:
 Bandwidth: 0 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
 Metric Type: TE (default)
 AutoRoute: disabled LockDown: disabled Policy class: not set
 Forwarding-Adjacency: disabled
 Loadshare: 0 equal loadshares
 Auto-bw: disabled
 Fast Reroute: Disabled, Protection Desired: None
 Path Protection: Not Enabled
 Attribute-set: TA-NAME (type auto-mesh)
Auto-tunnel Mesh:
 Group 40: Destination-list dl-40
 Unused removal timeout: not running
History:
 Tunnel has been up for: 01:40:53 (since Fri Jan 14 09:09:58 EST 2010)
 Current LSP:
 Uptime: 01:41:00 (since Fri Jan 14 09:09:51 EST 2010)
 Reopt. LSP:
 Last Failure:
 LSP not signalled, identical to the [CURRENT] LSP
 Date/Time: Fri Jan 14 09:42:30 EST 2010 [01:08:21 ago]
Path info (OSPF 100 area 0):
 Hop0: 7.0.15.1
 Hop1: 20.20.20.20
```

This shows an auto-tunnel mesh summary sample output from the `show mpls traffic-eng tunnels` command using the `summary` keyword:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels summary
Fri Jan 14 10:46:34.677 EST

LSP Tunnels Process: running
RSVP Process: running
```
Forwarding: enabled
Periodic reoptimization: every 3600 seconds, next in 3354 seconds
Periodic FRR Promotion: every 300 seconds, next in 193 seconds
Periodic auto-bw collection: 1000

Signalling Summary:
  Head: 2000 interfaces, 2000 active signalling attempts, 2000 established
  2000 explicit, 0 dynamic
  9250 activations, 7250 deactivations
  0 recovering, 2000 recovered
  Mids: 0
  Tails: 0

Fast ReRoute Summary:
  Head: 1000 FRR tunnels, 1000 protected, 0 rerouted
  Mid: 0 FRR tunnels, 0 protected, 0 rerouted
  Summary: 1000 protected, 500 link protected, 500 node protected, 0 bw protected

Auto-tunnel Mesh Summary:
  Auto-mesh Tunnels:
    50 created, 50 up, 0 down, 25 FRR, 20 FRR enabled
  Mesh Groups:
    4 groups, 50 destinations

This sample output displays the Signalled-Name information:

RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels
Name: tunnel-te1  Destination: 192.168.0.4
Signalled-Name: rtrA_t1
Status:
  Admin: up  Oper: up  Path: valid  Signalling: connected

This sample output displays the cost-limit configuration information:

RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels detail
Name: tunnel-te1
  Signalled-Name: ios_t1
  Status:
    Admin: up  Oper: down  Path: not valid  Signalling: Down
    G-PID: 0x0800 (derived from egress interface properties)
    Bandwidth Requested: 0 kbps  CT0
    Creation Time: Fri Jan 15 13:00:29 2014 (5d06h ago)
Config Parameters:
  Bandwidth: 0 kbps (CT0)  Priority: 7 7  Affinity: 0x0/0xffffff
  Metric Type: TE (default)
  Hop-limit: disabled
  Cost-limit: 2
  AutoRoute: disabled  LockDown: disabled  Policy class: not set
  Forward class: 0 (default)
  Forwarding-Adjacency: disabled
  Loadshare: 0 equal loadshares
  Auto-bw: disabled
  Fast Reroute: Disabled, Protection Desired: None
  Path Protection: Not Enabled
  BFD Fast Detection: Disabled
  Reoptimization after affinity failure: Enabled
  Soft Preemption: Disabled
Reason for the tunnel being down: No destination is configured
SNMP Index: 10
Displayed 1 (of 1) heads, 0 (of 0) midpoints, 0 (of 0) tails
Displayed 0 up, 1 down, 0 recovering, 0 recovered heads

This sample output displays the 'Traffic switched to FRR backup tunnel' message, when the FRR backup is activated as part of soft-preemption:

RP/0/RP0/CPU0:router#show mpls traffic-eng tunnels detail
.
.
Soft Preemption: Pending
    Preemption Link: HundredGigE0/0/0/3; Address: 14.14.14.2
    Traffic switched to FRR backup tunnel-te 1000
    Preempted at: Fri Jan 27 12:56:14 2017 (00:00:03 ago)
    Time left before hard preemption: 96 seconds
.
.
.

MPLS Traffic Engineering Commands
show mpls traffic-eng tunnels

MPLS Traffic Engineering Commands
show mpls traffic-eng tunnels auto-bw brief

To display the list of automatic bandwidth enabled tunnels, and to indicate if the current signaled bandwidth of the tunnel is identical to the bandwidth that is applied by the automatic bandwidth, use the show mpls traffic-eng tunnels auto-bw brief command in XR EXEC mode.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

No default behavior or values

**Command Modes**

XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the show mpls traffic-eng tunnels auto-bw brief command to determine if the automatic bandwidth application has been applied on a specified tunnel. If a single tunnel is specified, only the information for that tunnel is displayed.

**Examples**

The following sample output shows the list of automatic bandwidth enabled tunnels:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels auto-bw brief

<table>
<thead>
<tr>
<th>Tunnel Name</th>
<th>LSP ID</th>
<th>Last appl BW (kbps)</th>
<th>Requested BW (kbps)</th>
<th>Signalled BW (kbps)</th>
<th>Highest BW (kbps)</th>
<th>Application Time Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel-te0</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>2h 5m</td>
<td></td>
</tr>
<tr>
<td>tunnel-te1</td>
<td>5</td>
<td>500</td>
<td>300</td>
<td>420</td>
<td>1h 10m</td>
<td></td>
</tr>
</tbody>
</table>
```

This table describes the significant fields shown in the display.

**Table 26: show mpls traffic-eng tunnels auto-bw brief Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel Name</td>
<td>Name for the tunnel.</td>
</tr>
<tr>
<td>LSP ID</td>
<td>ID of the Label Switched Path that is used by the tunnel.</td>
</tr>
<tr>
<td>Last appl BW (kbps)</td>
<td>Last bandwidth applied (for example, requested) by the automatic-bandwidth feature for the tunnel.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------------------------------------</td>
</tr>
<tr>
<td>Requested BW (kbps)</td>
<td>Bandwidth that is requested for the tunnel.</td>
</tr>
<tr>
<td>Signalled BW (kbps)</td>
<td>Bandwidth that is actually signalled for the tunnel.</td>
</tr>
<tr>
<td>Highest BW (kbps)</td>
<td>Highest bandwidth measured since the last start of the application interval.</td>
</tr>
<tr>
<td>Application Time Left</td>
<td>Time left until the application period ends for this tunnel.</td>
</tr>
</tbody>
</table>
show mpls traffic-eng link-management soft-preemption

To display information about soft-preemption activity on a MPLS TE link, use the `show mpls traffic-eng link-management soft-preemption` command in XR EXEC mode.

`show mpls traffic-eng link-management soft-preemption [interface type interface-path-id]`

**Syntax Description**

- `interface` Displays information on the specified interface.
- `type` Interface type. For more information, use the question mark (?) online help function.
- `interface-path-id` Physical interface or a virtual interface.

**Note** Use the `show interfaces` command to see a list of all possible interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

**Command Default** None

**Command Modes** XR EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

**Usage Guidelines** No specific guidelines impact the use of this command.

**Task ID**

- `mpls-te read`

**Examples**

This is sample output from the `show mpls traffic-eng link-management soft-preemption` command:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng link-management soft-preemption interface HundredGigE0/0/0/3
```
Name: HundredGigE0/0/0/3; IPv4 Address: 10.2.1.10
Total Soft Preempted Bandwidth (BC0/BC1) kbps: 1500/1000
Currently Soft Preempted Bandwidth (BC0/BC1) kbps: 1200/800
Released Soft Preempted Bandwidth (BC0/BC1) kbps: 300/200
Currently Over-subscribed Bandwidth (BC0/BC1) kbps: 1000/600
Currently Soft Preempted Tunnels: 5 tunnels

<table>
<thead>
<tr>
<th>TunID</th>
<th>LSPID</th>
<th>Source</th>
<th>Destination</th>
<th>Pri</th>
<th>BW</th>
<th>Class</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>10</td>
<td>10.4.4.40</td>
<td>10.1.1.10</td>
<td>2/2</td>
<td>400</td>
<td>BC0</td>
<td>100</td>
</tr>
<tr>
<td>51</td>
<td>11</td>
<td>10.4.4.40</td>
<td>10.1.1.10</td>
<td>2/2</td>
<td>600</td>
<td>BC0</td>
<td>100</td>
</tr>
<tr>
<td>52</td>
<td>12</td>
<td>10.4.4.40</td>
<td>10.1.1.10</td>
<td>3/3</td>
<td>200</td>
<td>BC0</td>
<td>80</td>
</tr>
<tr>
<td>53</td>
<td>11</td>
<td>10.4.4.40</td>
<td>10.1.1.10</td>
<td>3/3</td>
<td>500</td>
<td>BC1</td>
<td>90</td>
</tr>
<tr>
<td>54</td>
<td>12</td>
<td>10.4.4.40</td>
<td>10.1.1.10</td>
<td>4/4</td>
<td>300</td>
<td>BC1</td>
<td>90</td>
</tr>
</tbody>
</table>
show srlg

To show the SRLG interface and configuration information, use the `show srlg` command in XR EXEC mode.

```
show srlg [group group-name] [inherit-location {location}] [interface type interface-path-id] [location {name | mgmt-nodes}] [mapping {locationname}] [name name] [optical-interface {locationinterface-id}] [producers name] [value value-number] [trace{file filename original | hexdump | last entries | reverse | stats | tailf | unique | verbose | wrapping}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>(Optional) Specifies a group.</td>
</tr>
<tr>
<td>inherit-location</td>
<td>(Optional) Specifies a particular location.</td>
</tr>
<tr>
<td>interface</td>
<td>(Optional) Displays information on the specific interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>interface-path-id</td>
<td>Physical interface or virtual interface.</td>
</tr>
<tr>
<td>location</td>
<td>(Optional) Specifies a node.</td>
</tr>
<tr>
<td>node-id</td>
<td>Node ID. The node-id argument is entered in the rack/slot/module notation.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies all locations.</td>
</tr>
<tr>
<td>mgmt-nodes</td>
<td>Specifies all management nodes.</td>
</tr>
<tr>
<td>mapping</td>
<td>(Optional) Specifies a mapping</td>
</tr>
<tr>
<td>location</td>
<td>Node location</td>
</tr>
<tr>
<td>name</td>
<td>Name of the mapping</td>
</tr>
<tr>
<td>name name</td>
<td>(Optional) Specifies an SRLG name</td>
</tr>
<tr>
<td>optical-interface</td>
<td>(Optional) Specifies an optical interface.</td>
</tr>
<tr>
<td>producers</td>
<td>(Optional) Specifies a SRLG producer.</td>
</tr>
<tr>
<td>value</td>
<td>(Optional) Displays SRLG value numbers.</td>
</tr>
<tr>
<td>trace</td>
<td>(Optional) Displays trace information for SRLG.</td>
</tr>
<tr>
<td>file</td>
<td>(Optional) Displays trace information for a specific file name.</td>
</tr>
</tbody>
</table>
### Command Default
No default behavior or values

### Command Modes
XR EXEC mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

### Usage Guidelines
No specific guidelines impact the use of this command.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-services</td>
<td>read</td>
</tr>
</tbody>
</table>

### Example
The following sample output is from the `show srlg` command.

```plaintext
System Information:
Interface Count : 2 (Maximum Interfaces Supported 250)
```
<table>
<thead>
<tr>
<th>Interface</th>
<th>Value Count</th>
<th>SRLG Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>HundredGigE0/0/0/3</td>
<td>2</td>
<td>10,20</td>
</tr>
<tr>
<td>HundredGigE0/0/0/3</td>
<td>2</td>
<td>10,30</td>
</tr>
<tr>
<td>HundredGigE0/0/0/3</td>
<td>2</td>
<td>10,40</td>
</tr>
<tr>
<td>HundredGigE0/0/0/3</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>
signalled-name

To configure the name of the tunnel required for an MPLS-TE tunnel, use the `signalled-name` command in interface configuration mode. To return to the default behavior, use the `no` form of this command.

```
signalled-name name
no signalled-bandwidth name
```

**Syntax Description**

- `name`: Name used to signal the tunnel.

**Command Default**

Default name is the hostname_tID, where ID is the tunnel interface number.

**Command Modes**

- Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to set the tunnel name:

```
RP/0/RP0/CPU0:router(config)# interface tunnel-te 1
RP/0/RP0/CPU0:router(config-if)# signalled-name tunnel-from-NY-to-NJ
```
signalling advertise explicit-null (MPLS-TE)

To specify that tunnels terminating on a router use explicit-null labels, use the **signalling advertise explicit-null** command in MPLS-TE configuration mode. To return to the default behavior, use the **no** form of this command.

```
signalling advertise explicit-null
no signalling advertise explicit-null
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

Implicit-null labels are advertised.

**Command Modes**

MPLS-TE configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the **signalling advertise explicit-null** command to specify that tunnels terminating on this router use explicit-null labels. This command applies to tunnel labels advertised to next to last (penultimate) hop. The explicit label is used to carry quality-of-service (QoS) information up to the terminating-end router of the label switched path (LSP).

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to configure explicit null tunnel labels:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# signalling advertise explicit-null
```
snmp traps mpls traffic-eng

To enable the router to send Multiprotocol Label Switching traffic engineering (MPLS-TE) Simple Network Management Protocol (SNMP) notifications or informs, use the `snmp traps mpls traffic-eng` command in XR Config mode. To disable this behavior, use the `no` form of this command.

```
 snmp traps mpls traffic-eng [notification-option] preempt
 no snmp traps mpls traffic-eng [notification-option]
```

**Syntax Description**

- `notification-option` (Optional) Notification option to enable the sending of notifications to indicate changes in the status of MPLS-TE tunnels. Use one of these values:
  - up
  - down
  - reoptimize
  - reroute
  - cisco-ext

- `preempt` Enables MPLS-TE tunnel preempt trap.

**Command Default**

None

**Command Modes**

XR Config mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the command is entered without the `notification-option` argument, all MPLS-TE notification types are enabled.

SNMP notifications can be sent as either traps or inform requests.

The `snmp-server enable traps mpls traffic-eng` command enables both traps and inform requests for the specified notification types. To specify whether the notifications should be sent as traps or informs, use the `snmp-server host` command and specify the keyword `trap` or `informs`.

If you do not enter the `snmp traps mpls traffic-eng` command, no MPLS-TE notifications controlled by this command are sent. To configure the router to send these MPLS-TE SNMP notifications, you must enter at least one `snmp enable traps mpls traffic-eng` command. If you enter the command with no keywords, all MPLS-TE notification types are enabled. If you enter the command with a keyword, only the notification type related to that keyword is enabled. To enable multiple types of MPLS-TE notifications, you must issue a separate `snmp traps mpls traffic-eng` command for each notification type and notification option.

The `snmp traps mpls traffic-eng` command is used in conjunction with the `snmp host` command. Use the `snmp host` command to specify which host or hosts receive MPLS-TE SNMP notifications. To send notifications, you must configure at least one `snmp host` command.

For a host to receive an MPLS-TE notification controlled by this command, both the `snmp traps mpls traffic-eng` command and the `snmp host` command for that host must be enabled.
### Examples

This example shows how to configure a router to send MPLS-TE tunnel up SNMP notifications when a configured MPLS-TE tunnel leaves the down state and enters the up state:

```
RP/0/RP0/CPU0:router(config)# snmp traps mpls traffic-eng up
```
soft-preemption

To enable soft-preemption with default timeout on a head-end for the MPLS TE tunnel, use the `soft-preemption` command in MPLS TE mode. To disable this feature, use the `no` form of this command.

**soft-preemption timeout seconds**

**no soft-preemption**

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout seconds</td>
<td>Defines the timeout for soft-preempted LSP, in seconds. The default timeout is 60. Range is from 30 to 300.</td>
</tr>
</tbody>
</table>

**Command Default**

The default `timeout seconds` is 60 seconds.

**Command Modes**

- MPLS TE configuration
- Tunnel Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS-TE</td>
<td>write</td>
</tr>
</tbody>
</table>

This example shows how to enable soft-preemption on a specific tunnel:

```
RP/0/RP0/CPU0:router(config)#interface tunnel-te 50
RP/0/RP0/CPU0:router(config-if)#soft-preemption
```

This example shows how to enable soft-preemption on a node:

```
RP/0/RP0/CPU0:router(config)#mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)#soft-preemption
RP/0/RP0/CPU0:router(config-soft-preemption)#
```
soft-preemption frr-rewrite

To enable LSP traffic over backup tunnel, when LSP is soft-preempted, use the `soft-preemption frr-rewrite` command in MPLS TE configuration mode. To disable the LSP traffic over backup tunnel, use the `no` form of this command.

```
soft-preemption frr-rewrite
no soft-preemption frr-rewrite
```

Syntax Description

This command has no keywords or arguments.

Command Default

FRR LSP traffic over backup tunnel is disabled.

Command Modes

MPLS TE configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The fast re-route backup tunnel must be available and ready for the traffic of the preempted LSP to be moved onto the FRR backup. The traffic will not be moved to the backup tunnel, if an LSP is already soft-preempted.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

This example shows how to enable FRR LSP traffic over backup tunnels, when the LSP is soft-preempted.

```
RP/0/RP0/CPU0:router#configure
RP/0/RP0/CPU0:router(config)#mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)#soft-preemption frr-rewrite
```
srlg

To configure an MPLS traffic engineering shared-risk link group (SRLG) value for a link on a given interface, use the srlg command in global configuration mode. To disable this configuration, use the no form of this command.

```
srlg value
no srlg value
```

**Syntax Description**

- `value` Value number that identifies the SRLG. Range is 0 to 4294967295.

**Command Default**

Shared Risk Link Group memberships are not configured.

**Command Modes**

- MPLS-TE interface configuration
- XR Config mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can enter up to 30 SRLG entries on the ingress and egress ports of the interface. SRLG entries configured over 30 are silently dropped.

**Task ID**

- `mpls-te` read, write

**Examples**

The following example shows how to configure an SRLG with 10 member links:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# interface HundredGigE 0/0/0/3
RP/0/RP0/CPU0:router(config-mpls-te-if)# srlg 10

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# srlg
RP/0/RP0/CPU0:router(config-srlg)# interface HundredGigE 0/0/0/3
RP/0/RP0/CPU0:router(config-srlg-if)# value 10
```
timers loose-path (MPLS-TE)

To configure the period between the headend retries after path errors, use the `timers loose-path` command in MPLS-TE configuration mode. To return to the default behavior, use the `no` form of this command.

```
timers loose-path retry-period value
no timers loose-path retry-period value
```

**Syntax Description**
- `retry-period value` Configures the time, in seconds, between retries upon a path error. Range is 30 to 600.

**Command Default**
- `value`: 120

**Command Modes**
- MPLS-TE configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
No specific guidelines impact the use of this command.

**Task ID**
- mpls-te read, write

**Examples**
The following example shows how to set the period between retries after path errors to 300 seconds:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# timers loose-path retry-period 300
```
timers removal unused (auto-tunnel backup)

To configure the frequency at which a timer scans backup autotunnels and removes tunnels that are not in use, use the `timers removal unused (auto-tunnel backup)` command in auto-tunnel backup configuration mode. To return to the default behavior, use the no form of this command.

```
timers removal unused frequency
no timers removal unused frequency
```

**Syntax Description**

- `frequency` Frequency, in minutes, between backup autotunnel scans to remove tunnels that are not used. Range is 0; 5 to 10080 minutes (7 days). A value of 0 disables the scanning and removal of tunnels.

**Command Default**

`frequency`: 60

**Command Modes**

auto-tunnel backup configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `unused` auto-tunnel backup tunnel is the tunnel that is not assigned to protect any FRR tunnel.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls-te</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Example**

The following example shows that unused automatic backup tunnels are removed after the 10 minute timer scan is reached.

```
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# auto-tunnel backup
RP/0/RP0/CPU0:router(config-te-auto-bk)# timers removal unused 10
```
timeout (soft-preemption)

To override the soft-preemption default timeout, use the `timeout` command in MPLS TE mode. To remove this configuration, use the `no` form of this command.

```
soft-preemption timeout seconds

no soft-preemption
```

**Syntax Description**

`timeout seconds` Defines the timeout for soft-preempted LSP, in seconds. The default timeout is 60. Range is from 30 to 300.

**Command Default**

The default `timeout seconds` is 60 seconds.

**Command Modes**

MPLS TE configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS-TE</td>
<td>write</td>
</tr>
</tbody>
</table>

This example shows how to override the soft-preemption default timeout:

```
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# soft-preemption
RP/0/RP0/CPU0:router(config-soft-preemption)# timeout 60
```
topology holddown sigerr (MPLS-TE)

To specify the time that a router should ignore a link in its TE topology database in tunnel path constrained shortest path first (CSPF) computations following a TE tunnel signaling error on the link, use the **topology holddown sigerr** command in MPLS-TE configuration mode. To return to the default behavior, use the **no** form of this command.

```
 topology holddown sigerr seconds
 no topology holddown sigerr seconds
```

**Syntax Description**

- **seconds** Time that the router ignores a link during tunnel path calculations, following a TE tunnel error on the link, specified in seconds. Range is 0 to 300. Default is 10.

**Command Default**

- **seconds**: 10

**Command Modes**

- MPLS-TE configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A router at the headend for TE tunnels can receive a Resource Reservation Protocol (RSVP) No Route error message before the router receives a topology update from the IGP routing protocol announcing that the link is down. When this happens, the headend router ignores the link in subsequent tunnel path calculations to avoid generating paths that include the link and are likely to fail when signaled. The link is ignored until the router receives a topology update from its IGP or a link holddown timeout occurs. Use the **topology holddown sigerr** command to change the link holddown time from its 10-second default value.

**Task ID**

- **Task ID**
  - **mpls-te** read, write

**Examples**

The following example shows how to set the link holddown time for signaling errors at 15 seconds:

```
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# topology holddown sigerr 15
```
tunnel-id (auto-tunnel backup)

To configure the range of tunnel interface numbers to be used for automatic backup tunnels, use the `tunnel-id` command in auto-tunnel backup configuration mode. To delete the automatic backup tunnels, use the `no` form of this command.

```
tunnel-id
min number
max number
no tunnel-id
```

**Syntax Description**

- **min**  (Optional) Minimum number for automatic backup tunnels.
- **number** Valid values are from 0 to 65535.
- **max**  (Optional) Maximum number for automatic backup tunnels.

**Command Default**

No default behavior or values

**Command Modes**

Auto-tunnel backup configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.2.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you increase the tunnel ID range, the automatic backup tunnels that failed earlier will get created the next time automatic backup assignments are processed.

**Restrictions:**

- Command is rejected if the `max` value minus `min` value is \( \geq 1K \).
- Command is rejected if `min` value > `max` value.
- Command is rejected if `min` value is greater than the tunnel ID of an existing automatic backup tunnel.
- Command is rejected if `max` value is smaller than the tunnel ID of an existing automatic backup tunnel.
- Command is rejected if a statically configured tunnel ID matches with the configured `min` and `max` range of values.
- Command is rejected if a static backup assignment is already configured to a tunnel with an ID within the `min` value/`max` value range.

**Task ID**

```
task ID Operation
mple-te read,
 write
```
Example

The following example allows 800 automatic backup tunnels to be created:

```
RP/0/RP0/CPU0:router(config)# mpls traffic-eng
RP/0/RP0/CPU0:router(config-mpls-te)# auto-tunnel backup
RP/0/RP0/CPU0:router(config-te-auto-bk)# tunnel-id min 1200 max 2000
```
tunnel-id (auto-tunnel backup)