
Enhancements to Streaming Telemetry

This section provides an overview of the enhancements made to streaming telemetry data.

• Hardware Timestamp, on page 2
• Stream QoS Statistics Telemetry Data, on page 4
• Enhanced Syslog Notifications for Unresolved Line Card Forwarding Paths, on page 9
• Target-Defined Mode for Cached Generic Counters Data, on page 10
• gNMI Dial-Out via Tunnel Service, on page 13
• Virtual Address as the Source IP Address of gRPC Tunnel, on page 16
• FQDN as the gRPC Tunnel Destination, on page 19
• Stream Telemetry Data about PBR Decapsulation Statistics, on page 21

Enhancements to Streaming Telemetry
1

Hardware Timestamp
Table 1: Feature History Table

DescriptionRelease InformationFeature Name

Telemetry messages carry a timestamp per
interface to indicate the time when data is
collected from the hardware. With this
feature, the support for hardware timestamp
is extended to MPLS Traffic Engineering
(MPLS TE) counters, Segment Routing for
Traffic Engineering (SR-TE) interface
counters, protocol statistics, and bundle
protocol counters.

The interface counters in the following paths
are enhanced for hardware timestamp:

• Cisco-IOS-XR-infra-statsd-oper:infra-

statistics/interfaces/interface/cache

/generic-counters

• Cisco-IOS-XR-infra-statsd-oper:infra-

statistics/interfaces/interface/latest

/generic-counters

• openconfig-network-instance:network-

instances/network-instance/mpls/lsps/

constrained-path/tunnels

• openconfig-interfaces:interfaces/interface

Release 7.3.4Enhancements to Hardware
Timestamp

Whenever periodic statistics are streamed,
the collector reads the data from its internal
cache, instead of fetching the data from the
hardware.

When the data is read from the cache, the
rate at which data is processed shows spikes
because the timestamp from the collector is
off by several seconds. With hardware
timestamping, the inconsistencies that are
observed when reading data from the cache
file is removed.

Release 7.3.1Hardware Timestamp

Whenever periodic stats are streamed, the collector reads the stats from its internal cache, instead of fetching
the stats from the hardware. When the data is read from the sensor paths of Stats manager cache, the rate
calculation shows spikes. This behavior is due to the timestamp from the collector that is off by several seconds.

Enhancements to Streaming Telemetry
2

Enhancements to Streaming Telemetry
Hardware Timestamp

Therefore, timestamp of some other collector takes precedence because timestamps of collectors are not in
synchronization with the current timestamp. This is observed when there are multiple collectors providing
stats updates for the same interface.

The YANG data model for Stats manager Cisco-IOS-XR-infra-statsd-oper.yang is enhanced to enable
the collector to read periodic stats data from the router using hardware timestamp.

The hardware timestamp is taken into account when a primary collector (for generic or proto stats) provides
stats updates from the hardware to the Stats manager. With hardware timestamping in rate computation while
streaming periodic stats, the spikes due to the timestamp issue is resolved.

The hardware timestamp is updated only when the collector attempts to read the counters from hardware.
Else, the value remains 0. The latest stats can be streamed at a minimum cadence of 10 seconds and periodic
stats at a cadence of 30 seconds. The support is available only for physical interfaces and subinterfaces, and
bundle interface and subinterfaces.

When there is no traffic flow on protocols for an interface, the hardware timestamp for the protocols is
published as 0. This is due to non-synchronized timestamps sent by the collector for protocols in traffic as
compared to non-traffic scenarios.

A non-zero value is published for protocols that have stats published by a primary collector for both traffic
and non-traffic scenarios.

The hardware timestamp is supported only for primary collectors. When the hardware has no update, the
timestamp will be same. However generic counters are computed for primary and non-primary collectors.
The non-primary collectors show the latest stats, but not the timestamp.

Note

When the counters are cleared for an interface using clear counters interface command, all counter-related
data including the timestamps for the interface is cleared. After all counter values are cleared and set to 0, the
last data time is updated only when there is a request for it from a collector. For example, last data time gets
updated from a collector:
Router#:Aug 7 09:01:08.471 UTC: statsd_manager_l[168]: Updated last data time for ifhandle
0x02000408,
stats type 2 from collector with node 0x100, JID 250, last data time 1596790868.
INPUT: last 4294967295 updated 1596469986. OUTPUT: last 4294967295 updated 1596469986

All other counter values and hardware timestamp are updated when the counters are fetched from the hardware.
In this case, all counters including the hardware timestamp is 0:
{"node_id_str":"MGBL_MTB_5504","subscription_id_str":"app_TEST_200000001",
"encoding_path":"Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/cache/generic-counters",
"collection_id":"7848",
"collection_start_time":"1596790879567",
"msg_timestamp":"1596790879571","data_json":
[{"timestamp":"1596790879570","keys":[{"interface-name":"FortyGigE0/1/0/11"}],
"content":{"packets-received":"0","bytes-received":"0","packets-sent":"0",
"bytes-sent":"0","multicast-packets-received":"0","broadcast-packets-received":"0",
"multicast-packets-sent":"0","broadcast-packets-sent":"0","output-drops":0,"output-queue-drops":0,
"input-drops":0,"input-queue-drops":0,"runt-packets-received":0,"giant-packets-received":0,
"throttled-packets-received":0,"parity-packets-received":0,"unknown-protocol-packets-received":0,
"input-errors":0,"crc-errors":0,"input-overruns":0,"framing-errors-received":0,"input-ignored-packets":0,
"input-aborts":0,"output-errors":0,"output-underruns":0,"output-buffer-failures":0,"output-buffers-swapped-out":0,
"applique":0,"resets":0,"carrier-transitions":0,"availability-flag":0,
"last-data-time":"1596790868","hardware-timestamp":"0",
"seconds-since-last-clear-counters":15,"last-discontinuity-time":1596469946,"seconds-since-packet-received":0,
"seconds-since-packet-sent":0}}],"collection_end_time":"1596790879571"}

Enhancements to Streaming Telemetry
3

Enhancements to Streaming Telemetry
Hardware Timestamp

Stream QoS Statistics Telemetry Data
Table 2: Feature History Table

DescriptionRelease InformationFeature Name

You can use the
Cisco-IOS-XR-qos-ma-oper.yang

data model to stream telemetry data
on QoS statistics from the route
processor (RP). The bundle
statistics are now stored in the RP,
where data is persistent, and its
retrieval is unaffected by bundle
member or line card failure.

In earlier releases, QoS statistics
was stored on line cards, and any
bundle member or line card failure
caused loss of statistics data.

Release 7.3.3Stream QoS Statistics Telemetry
Data

You can collect QoS statistics for physical, virtual, bundle interfaces and subinterfaces using a push mechanism
where data is streamed out of the router at a cadence. You can also collect data about ingress, egress policy-map
statistics and VoQ statistics of an egress policy-map. When data is collected from the hardware, the statistics
data is time-stamped.

To enable the feature, use the hw-module profile qos qos-stats-push-collection command in XR Config
mode. Youmust reload the router for the configuration to take effect. To clear the QoS statistics on an interface,
use clear qos counters interface interface name command in XR Exec mode. To clear the statistics for all
interfaces, use clear qos counters interface all command.

When the counters are cleared, the counters for SNMP statistics are also cleared.Note

For more information on modular QoS on link bundles, see Modular QoS Command Reference for Cisco
8000 Series Routers.

With this release, the interface statistics can be displayed using Cisco-IOS-XR-qos-ma-oper.yang data model.
You can stream telemetry data from the sensor path:

Cisco-IOS-XR-qos-ma-oper:qos/interface-table/interface/input/service-policy-names/service-policy-instance/statistics

Cisco-IOS-XR-qos-ma-oper:qos/interface-table/interface/output/service-policy-names/service-policy-instance/statistics

Cisco-IOS-XR-qos-ma-oper:qos/interface-table/interface[interface-name=<interface-name>]/input/service-policy-names/service-policy-instance[service-policy-name=egress]/statistics

Cisco-IOS-XR-qos-ma-oper:qos/interface-table/interface[interface-name=<interface-name>]/output/service-policy-names/service-policy-instance[service-policy-name=egress]/statistics

Enhancements to Streaming Telemetry
4

Enhancements to Streaming Telemetry
Stream QoS Statistics Telemetry Data

This feature is not supported for all rate counters like matched-rate, transmitted-rate, dropped-rate in the QoS
statistics. The bundle member statistics, location-based SPI statistics, sensor path for bundle members statistics,
are not supported.

Note

The following steps show the configuration to stream data about bundle statistics to the collector.

Step 1 Configure QoS on link bundles.

Example:

QoS Profile:

Router(config)# hw-module profile qos qos-stats-push-collection
Wed Dec 22 06:35:48.251 UTC
In order to activate this new qos profile, you must manually reload the chassis/all line cards
Router(config)#commit

Class-map:

Router(config)#class-map TC3
Router(config-cmap)#match traffic-class 1
Router(config-cmap)#commit

Policy-map:

Router(config)#policy-map egress
Router(config-pmap)#class TC3
Router(config-pmap-c)#shape average 1 mbps
Router(config-pmap-c)#commit

Step 2 Attach the service policy to an interface.

Example:
Router(config)#int hundredGigE 0/0/1/0.5
Router(config-if)#service-policy output egress
Router(config-if)#commit

Step 3 Configure telemetry subscription.

Example:
Router#show run telemetry model-driven
Wed Dec 22 10:27:10.846 UTC
telemetry model-driven
destination-group destination-4
address-family ipv4 5.16.4.114 port 51023
encoding json
protocol grpc no-tls
!
!
sensor-group qos-grp
sensor-path Cisco-IOS-XR-qos-ma-oper:qos/interface-table/interface
[interface-name=HundredGigE0/0/1/0.5]/output/service-policy-names/service-policy-instance
[service-policy-name=egress]/statistics
!
subscription qos-subs
sensor-group-id qos-grp sample-interval 10000
destination-id destination-4

Enhancements to Streaming Telemetry
5

Enhancements to Streaming Telemetry
Stream QoS Statistics Telemetry Data

!
!

Verification
Verify the QoS telemetry configuration.

Policy Map:

Router#show policy-map pmap-name egress detail
Wed Dec 22 06:50:53.779 UTC
class-map match-any TC3
match traffic-class 1
end-class-map
!
policy-map egress
class TC3
shape average 1 mbps
!
class class-default
!
end-policy-map
!

Statistics Data:

Router#show policy-map interface HundredGigE0/0/1/0.5 output
Wed Dec 22 08:29:18.603 UTC

HundredGigE0/0/1/0.5 output: egress

Class TC3
Classification statistics (packets/bytes) (rate - kbps)
Matched : 55563/55563000 0
Transmitted : 55401/55401000 0
Total Dropped : 162/162000 0

Queueing statistics
Queue ID : 1377
High watermark (Unknown)
Inst-queue-len (Unknown)
Avg-queue-len (Unknown)
Taildropped(packets/bytes) : 162/162000
Queue(conform) : 0/0 0
Queue(exceed) : 0/0 0

Class class-default
Classification statistics (packets/bytes) (rate - kbps)
Matched : 1077710/1077710000 0
Transmitted : 1077710/1077710000 0
Total Dropped : 0/0 0

Queueing statistics
Queue ID : 1376
High watermark (Unknown)
Inst-queue-len (Unknown)
Avg-queue-len (Unknown)
Taildropped(packets/bytes) : 0/0
Queue(conform) : 0/0 0
Queue(exceed) : 0/0 0

Policy Bag Stats time: 1637137751027 [Local Time: 12/22/21 08:29:11.027]

QoS Statistics Using Telemetry:

Enhancements to Streaming Telemetry
6

Enhancements to Streaming Telemetry
Verification

The sample output shows the telemetry data streamed from the router:
{

"node_id_str": "R1",
"subscription_id_str": "qos-subs",
"encoding_path":

"Cisco-IOS-XR-qos-ma-oper:qos/interface-table/interface/output/service-policy-names/service-policy-instance/statistics",

"collection_id": "21226",
"collection_start_time": "1637144915201",
"msg_timestamp": "1637144915203",
"data_json": [

{
"timestamp": "1637144891032",
"keys": [

{
"interface-name": "HundredGigE0/0/1/0.5"

},
{

"service-policy-name": "egress"
}

],
"content": {

"policy-name": "egress",
"state": "active",
"class-stats": [

{
"counter-validity-bitmask": "270532608",
"class-name": "TC3",
"cac-state": "unknown",
"general-stats": {

"transmit-packets": "239519",
"transmit-bytes": "239519000",
"total-drop-packets": "798",
"total-drop-bytes": "798000",
"total-drop-rate": 0,
"match-data-rate": 0,
"total-transmit-rate": 0,
"pre-policy-matched-packets": "240317",
"pre-policy-matched-bytes": "240317000"

},
"queue-stats-array": [

{
"queue-id": 1377,
"tail-drop-packets": "798",
"tail-drop-bytes": "798000",
"queue-drop-threshold": 0

"forced-wred-stats-display": false,
"random-drop-packets": "0",
"random-drop-bytes": "0",
"max-threshold-packets": "0",
"max-threshold-bytes": "0",
"conform-packets": "0",
"conform-bytes": "0",
"exceed-packets": "0",
"exceed-bytes": "0",
"conform-rate": 0,
"exceed-rate": 0

}
]

},
{

"counter-validity-bitmask": "270532608",
"class-name": "class-default",

Enhancements to Streaming Telemetry
7

Enhancements to Streaming Telemetry
Verification

"cac-state": "unknown",
"general-stats": {

"transmit-packets": "4661952",
"transmit-bytes": "4661952000",
"total-drop-packets": "0",
"total-drop-bytes": "0",
"total-drop-rate": 0,
"match-data-rate": 0,
"total-transmit-rate": 0,
"pre-policy-matched-packets": "4661952",
"pre-policy-matched-bytes": "4661952000"

},
"queue-stats-array": [

{
"queue-id": 1376,
"tail-drop-packets": "0",
"tail-drop-bytes": "0",
"queue-drop-threshold": 0,
"forced-wred-stats-display": false,
"random-drop-packets": "0",
"random-drop-bytes": "0",
"max-threshold-packets": "0",
"max-threshold-bytes": "0",
"conform-packets": "0",
"conform-bytes": "0",
"exceed-packets": "0",
"exceed-bytes": "0",

"conform-rate": 0,
"exceed-rate": 0

}
]

}
],
"satid": 0,
"policy-timestamp": "1637144891032"

}
}

],
"collection_end_time": "1637144915203"

}

Enhancements to Streaming Telemetry
8

Enhancements to Streaming Telemetry
Verification

Enhanced Syslog Notifications for Unresolved Line Card
Forwarding Paths

Table 3: Feature History Table

DescriptionRelease InformationFeature Name

This feature notifies you of Line
Card and Route Processor paths not
resolving in the Forwarding
Information Base. Both
Model-Driven Telemetry (MDT)
and Event Driven Telemetry (EDT)
notifications are supported. In
earlier releases, notifications for
route processors were supported.
This feature provides for improved
diagnostics.

Release 7.5.2Release 7.3.3Enhanced Syslog Notifications for
Unresolved Line Card Forwarding
Paths

Telemetry now supports syslog notification from line cards. This is in addition to the existing notification
support from route processors. You will be notified of line card and route processor paths not resolving in the
Forwarding Information Base (FIB), through MDT and EDT notifications.

MDT is configured for cadence-based telemetry, while EDT is configured for event-based notification.
Notifications are generated only when the device goes into error or OOR state, and during device recovery.
Errors and OOR are tracked for a device as a whole, and not for individual nodes. The IPv4 Error, IPv6 Error,
IPv4 OOR, and IPv6 OOR telemetry notifications are supported.

The following notification is an example of IPv4 error state, if a line card and route processor paths do not
resolve in the FIB:
GPB(common) Message
[5.13.9.177:38418(PE1)/Cisco-IOS-XR-fib-common-oper:oc-aft-l3/protocol/ipv4/error/state msg
len: 168]
{

"Source": "5.13.9.177:38418",
"Telemetry": {

"node_id_str": "PE1",
"subscription_id_str": "Sub2",

"encoding_path": "Cisco-IOS-XR-fib-common-oper:oc-aft-l3/protocol/ipv4/error/state",

"collection_id": 243,
"collection_start_time": 1637858634881,
"msg_timestamp": 1637858634881,
"collection_end_time": 1637858634883

},
"Rows": [

{
"Timestamp": 1637858634882,
"Keys": null,
"Content": {

"is-in-error-state": "true"
}

}

Enhancements to Streaming Telemetry
9

Enhancements to Streaming Telemetry
Enhanced Syslog Notifications for Unresolved Line Card Forwarding Paths

]
}

The parameters denote"Content": {"is-in-error-state": "true"} that the system is in error state.Note

The following notification is an example of IPv4 OOR, if a line card and route processor are in OOR state:
GPB(common) Message
[5.13.9.177:50146(PE1)/Cisco-IOS-XR-fib-common-oper:oc-aft-l3/protocol/ipv4/oor/state msg
len: 163]
{

"Source": "5.13.9.177:50146",
"Telemetry": {

"node_id_str": "PE1",
"subscription_id_str": "Sub1",
"encoding_path": "Cisco-IOS-XR-fib-common-oper:oc-aft-l3/protocol/ipv4/oor/state",
"collection_id": 11,
"collection_start_time": 1637815892624,
"msg_timestamp": 1637815892624,
"collection_end_time": 1637815892626

},
"Rows": [

{
"Timestamp": 1637815892625,
"Keys": null,
"Content": {

"is-in-oor-state": "true"
}

}
]

}

The parameters denote"Content": {"is-in-oor-state": "true"} that the system is in OOR state.Note

Target-Defined Mode for Cached Generic Counters Data
Table 4: Feature History Table

DescriptionRelease
Information

Feature Name

This feature streams telemetry data for cached generic counters
using a TARGET_DEFINED subscription. This subscription ensures
that any change to the cache streams the latest data to the collector
as an event-driven telemetry notification.

This feature introduces support for the following sensor path:

Cisco-IOS-XR-infra-statsd-oper:infra-

statistics/interfaces/interface/cache/generic-counters

Release
7.5.1

Release
7.3.3

Target-Defined Mode for
CachedGeneric Counters
Data

Enhancements to Streaming Telemetry
10

Enhancements to Streaming Telemetry
Target-Defined Mode for Cached Generic Counters Data

Streaming telemetry pushes the subscribed data from the router to one or more collectors. The telemetry
infrastructure retrieves the data from the system database when you send a subscription request. Based on the
subscription request or the telemetry configuration the cached generic counters data can be retrieved periodically
based on the sample-interval. Data, such as interface statistics, is cached and refreshed at certain intervals.
The TARGET_DEFINED subscription mode can be used to retrieve data when the cache gets updated, and is not
based on a timer.

The application can register as a data producer with the telemetry library and the SysdB paths it supports. One
of the data producers, Statsd, uses the library with a TARGET_DEFINED subscription mode. As part of this mode,
the producer registers the sensor paths. The statistics infrastructure streams the incremental updates for statsd
cache sensor path
Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/cache/generic-counters.
With this path in the subscription, whenever cache is updated, the statsd application pushes the updates to the
telemetry daemon. The daemon sends these incremental updates to the collector. The cache updates are pushed
for physical interfaces, physical subinterfaces, bundle interfaces, and bundle subinterfaces. You can subscribe
to the sensor path for the cached generic counters with TARGET_DEFINED mode instead of the sensor path for
the latest generic counters
(Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters)
to reduce the system load.

Configure the router to stream telemetry data from cache for generic counters using the following instructions:

Create a TARGET_DEFINED subscription mode for cached generic counters using one of the two options:

• Option 1: gRPC Network Management Interface (gNMI) subscribe request

{
"name": "SubscribeRequest",
"subscribe": {

"prefix": {"origin":
"Cisco-IOS-XR-infra-statsd-oper"

},
"mode": "STREAM", "encoding": "PROTO", "updates_only": "false",
"subscription": [
{ "path": {"elem": [{"name":"infra-statistics"},

{"name":"interfaces"},
{"name":"interface"},
{"name":"cache"},
{"name":"generic-counters"}

]
},

"mode": "TARGET_DEFINED"
}

]
}

}

• Option 2: Model-driven telemetry configuration for non-gNMI requests
Router(config)#telemetry model-driven
Router(config-model-driven)#subscription sub1
Router(config-model-driven-subs)#sensor-group-id grp1 mode target-defined
Router(config-model-driven-subs)#source-interface Interface1
Router(config-model-driven-subs)#commit

After the subscription is triggered, updates to the stats cache are monitored. The statsd application pushes the
cached generic counters to the client (collector).

Enhancements to Streaming Telemetry
11

Enhancements to Streaming Telemetry
Target-Defined Mode for Cached Generic Counters Data

View the number of incremental updates for the sensor path.
Router#show telemetry model-driven subscription .*
Fri Nov 12 23:36:27.212 UTC
Subscription: GNMI__16489080148754121540

Collection Groups:

Id: 1
Sample Interval: 0 ms (Incremental Updates)
Heartbeat Interval: NA
Heartbeat always: False
Encoding: gnmi-proto
Num of collection: 1
Incremental updates: 12
Collection time: Min: 5 ms Max: 5 ms
Total time: Min: 6 ms Avg: 6 ms Max: 6 ms
Total Deferred: 1
Total Send Errors: 0
Total Send Drops: 0
Total Other Errors: 0
No data Instances: 0
Last Collection Start:2021-11-12

23:34:27.1362538876 +0000
Last Collection End: 2021-11-12 23:34:27.1362545589

+0000
Sensor Path: Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/

interface/cache/generic-counters

In this example, the incremental updates of 12 indicates that the cache is updated 12 times.

You can also retrieve the detailed operational data about the subscription using the following command. In
this example, statsd-target is the subscription name.
Router#show telemetry model-driven subscription statsd-target internal
Fri Nov 12 08:51:16.728 UTC
Subscription: statsd-target

State: ACTIVE
Sensor groups:
Id: statsd
Sample Interval: 0 ms (Incremental Updates)
Heartbeat Interval: NA
Sensor Path: Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/cache/

generic-counters
Sensor Path State: Resolved

Destination Groups:
Group Id: statsd-target
Destination IP: 192.0.2.1
Destination Port: 56000
Encoding: json
Transport: grpc
State: Active
TLS : False
Total bytes sent: 623656
Total packets sent: 13
Last Sent time: 2021-08-16 08:51:15.1304821089 +0000

Collection Groups:

Id: 2
Sample Interval: 0 ms (Incremental Updates)
Heartbeat Interval: NA
Heartbeat always: False

Enhancements to Streaming Telemetry
12

Enhancements to Streaming Telemetry
Target-Defined Mode for Cached Generic Counters Data

Encoding: json
Num of collection: 1
Incremental updates: 3
Collection time: Min: 94 ms Max: 94 ms
Total time: Min: 100 ms Avg: 100 ms Max: 100 ms
Total Deferred: 0
Total Send Errors: 0
Total Send Drops: 0
Total Other Errors: 0
No data Instances: 0
Last Collection Start:2021-08-16 08:51:04.1293895665 +0000
Last Collection End: 2021-08-16 08:51:04.1293996284 +0000

The sample interval of 0 indicates that the data is streamedwhenever an event occurs. Here, the event represents
the updates to the cache state.

Related Commands:

• show tech telemetry model-driven

• show running-config telemetry model-driven

• show telemetry producers trace producer name info

• show telemetry producers trace producer name err

gNMI Dial-Out via Tunnel Service
Table 5: Feature History Table

DescriptionRelease InformationFeature Name

This feature uses the tunnel service
to allow the router (tunnel client)
to dial out to a collector (tunnel
server). After the session is
established, the server-client switch
directions where a server can act as
a client to request gNMI services
without altering the gNMI
semantics. With this feature, the
management software automatically
learns when a new device is
introduced in the network.

This feature introduces the keyword
tunnel to the grpc command.

Release 7.5.1gNMI Dial-Out via Tunnel Service

gNMI supports a dial-in session where a client connects to the router via gRPC server with the gNMI
specification. This feature introduces support to use a tunnel service for gNMI dial-out connections based on
the recommendation from OpenConfig forum.

With the gNMI dial-out through tunnel service, the router (tunnel client) dials out to a collector (tunnel server).
Once the session is established, the tunnel server can act as a client and request gNMI services and gNMI
Subscribe RPCs over the tunnel session. This feature allows a change in direction of session establishment

Enhancements to Streaming Telemetry
13

Enhancements to Streaming Telemetry
gNMI Dial-Out via Tunnel Service

and data collection without altering the gNMI semantics. Using gRPC tunnel dial-out session, the router
initiates the connection to external collector so that the management software is automatically aware when a
new device is introduced into the network.

For more information about gNMI dial-out via gRPC tunnel, see the Github repository.

Only the gNMI Subscribe RPC over the tunnel is supported.Note

The tunnel service supports only Transport Layer Security (TLS) session.Note

Perform the following steps to configure gNMI dial-out via tunnel service:

Step 1 Configure a third-party application (TPA) source address. This address sets a source hint for Linux applications, so that
the traffic originating from the applications can be associated to any reachable IP (IPv4 or IPv6) address on the router.

Example:
Router(config)#tpa
Router(config)#vrf default
Router(config-vrf)#address-family ipv4
Router(config-vrf)#update-source dataports TenGigE0/6/0/0/1

A default route is automatically gained in the Linux shell.

Step 2 Configure the gNMI tunnel service on the router.

Example:
Router(config)#grpc tunnel destination ipv4
port 59510 source-interface TenGigE0/6/0/0/1 target Target-1 vrf default

Where—

• source-interface: Source ethernet interface

• target: Target name to register the tunnel service

• vrf: Virtual Routing and Forwarding (VRF) instance for the dial-out session. If VRF and source-interface are
configured, VRF takes precedence over the source-interface.

Step 3 Verify that the gRPC tunnel configuration is successful on the router.

Example:
Router#show run grpc
Wed Nov 24 19:37:21.015 UTC
grpc
port 57500
no-tls
tunnel
destination 5.0.0.2 port 59510
target Target-1
source-interface GigabitEthernet0/0/0/1

!
destination 2002::1:2 port 59510

source-interface GigabitEthernet0/0/0/0

Enhancements to Streaming Telemetry
14

Enhancements to Streaming Telemetry
gNMI Dial-Out via Tunnel Service

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmignoissh-dialout-grpctunnel.md

!
destination 192.0.0.1 port 59500
!
destination 192.0.0.1 port 59600
!

!
!

Step 4 View the status of tunnel destination.

Example:
Router#show grpc tunnel sessions
Wed Nov 24 19:41:38.863 UTC
5.0.0.2:59510
Target: Target-1
Status: Not connected
Error: Source Interface is down
Source interface: GigabitEthernet0/0/0/1
Source address: 5.0.0.1
Source VRF: default

[2002::1:2]:59510
Target: Target-2
Status: Connected
Source interface: GigabitEthernet0/0/0/0
Source address: 2002::1:1
Source VRF: default
Last Connected: 2021-11-24 19:41:23

192.168.122.1:59500
Target: Target-2
Status: Connected
Last Connected: 2021-11-24 19:40:15

192.168.122.1:59600
Target: Target-2
Status: Not connected
Error: cert missing /misc/config/grpc/192.0.0.1:59600.pem
Last Attempted: 2021-11-24 19:41:15

Step 5 Copy the public certificate for the collector to /misc/config/grpc/<ip-addr>:<port>.pem directory. The
router uses this certificate to verify the tunnel server, and establish a dial-out session.

Step 6 Run the collector.

Enhancements to Streaming Telemetry
15

Enhancements to Streaming Telemetry
gNMI Dial-Out via Tunnel Service

Virtual Address as the Source IP Address of gRPC Tunnel
Table 6: Feature History Table

DescriptionRelease InformationFeature Name

You can now configure a virtual
address as the source IP address of
gRPC tunnel. Since the virtual
address refers to whichever
management interface is currently
active, a route processor (RP) card
fail-over is managed with ease and
disruptions are minimized.

Model-driven telemetry and
Event-driven telemetry are
supported.

The feature introduces these
changes:

CLI:

• The keywords source ipv4
virtual address and source
ipv6 virtual address are
introduced in the gRPC
tunnel command.

Release 7.10.1Virtual Address as the Source IP
Address of gRPC Tunnel

A virtual IP address from the address family is used as the source IP address to establish a gRPC tunnel. A
new tunnel client would be created and used to dial to the tunnel server with the source address as the configured
virtual IP address. The Cisco IOS-XR gRPC server would listen on the established tunnel for incoming gNMI
connections. You can configure the address-family of the virtual IP address to be used as the source address
of a gRPC tunnel. The address-family can be IPv4, IPv6, or both. You can configure one IPv4 and one IPv6
virtual address per VRF in Cisco IOS-XR. Later, the virtual IP address of the specific VRF and the
address-family shall be looked up and used as the source IP address to establish a gRPC tunnel.

For more information about gNMI dial-out via gRPC tunnel, see the Github repository.

If both virtual IP address and source-interface are configured, then virtual IP address takes precedence.Note

Configure Virtual Address as the Source IP Address of gRPC Tunnel
Perform the following steps to configure virtual IP as source address of gRPC tunnel:

Step 1 Configure virtual IP as source address of gRPC tunnel.

Enhancements to Streaming Telemetry
16

Enhancements to Streaming Telemetry
Virtual Address as the Source IP Address of gRPC Tunnel

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp2834182384
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp2834182384
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmignoissh-dialout-grpctunnel.md

Example:

In this example, you set up a virtual IPv4 as source address.
Router#config

Router(config)#grpc
Router(config-grpc)#tunnel
Router(config-grpc-tunnel)#destination 192.168.0.1 port 59500
Router(config-grpc-tunnel-dest)#target xr
Router(config-grpc-tunnel-dest)#source ipv4 virtual address
Router(config-grpc-tunnel-dest)#source-interface MgmtEth 0/RP0/CPU0/0
Router(config-grpc-tunnel-dest)#commit
Tue Jul 25 05:29:35.933 UTC
Router(config-grpc-tunnel-dest)#end

In this example, you set up a virtual IPv6 as source address.
Router#config

Router(config)#grpc
Router(config-grpc)#tunnel
Router(config-grpc-tunnel)#destination 2001:DB8:A:B::1 port 59500
Router(config-grpc-tunnel-dest)#target xr
Router(config-grpc-tunnel-dest)#source ipv6 virtual address
Router(config-grpc-tunnel-dest)#source-interface MgmtEth 0/RP0/CPU0/0
Router(config-grpc-tunnel-dest)#commit
Tue Jul 25 05:30:46.104 UTC
Router(config-grpc-tunnel-dest)#end

Step 2 Verify that the gRPC tunnel configuration is successful on the router.
Router#show running-config grpc

grpc
tunnel
destination 192.168.0.1 port 59500
target xr
source ipv4 virtual address
source-interface MgmtEth0/RP0/CPU0/0
!
destination 2001:DB8:A:B::1 port 59500
target xr
source ipv6 virtual address
source-interface MgmtEth0/RP0/CPU0/0
!

!
!

Step 3 Verify the configured virtual IP address.

The virtual address takes effect once the VRF contains a management interface. Ensure the virtual address is on the same
network as the management IP addresses.

Example:

The following example shows how to display the configured virtual IPv4 address:
Router#show ipv4 virtual address status vrf all

VRF Name: default
Virtual IP: 192.168.0.2/24
Active Interface Name: MgmtEth0/RP0/CPU0/0
Active Interface MAC Address: 02bf.4615.55aa

Enhancements to Streaming Telemetry
17

Enhancements to Streaming Telemetry
Configure Virtual Address as the Source IP Address of gRPC Tunnel

VRF Node Create Timestamp : .1022
ARP Add Timestamp : .1042
RIB Add Timestamp : .1042
SNMAC Add Timestamp : N/A

The following example shows how to display the configured virtual IPv6 address:
Router#show ipv6 virtual address status vrf all

VRF Name: default
Virtual IP: 2001:DB8:A:B::11/64
Active Interface Name: MgmtEth0/RP0/CPU0/0
Active Interface MAC Address: 02bf.4615.55aa

VRF Node Create Timestamp : .8426
ND Add Timestamp : .8626
RIB Add Timestamp : .8526
SNMAC Add Timestamp : .8626

Step 4 Copy the public certificate for the collector to /misc/config/grpc/<ipv4 address>:<port>.pem or
/misc/config/grpc/[<ipv6 address>]:<port>.pem directory. The router uses this certificate to verify
the tunnel server and establish a dial-out session.

Step 5 Run the collector.
Step 6 View the status of tunnel sessions.

Example:

The following example shows how to display the status of the tunnel sessions:
Router#show grpc tunnel sessions

192.168.0.1:59500
Target: xr
Status: Connected
Source address: 192.168.0.2
Source VRF: default
Virtual IP status: Active
Last connected: 2023-02-07 03:05:14

[2001:DB8:A:B::1]:59500
Target: xr
Status: Connected
Source address: 2001:DB8:A:B::11
Source VRF: default
Virtual IP status: Active
Last connected: 2023-02-07 03:11:15

Enhancements to Streaming Telemetry
18

Enhancements to Streaming Telemetry
Configure Virtual Address as the Source IP Address of gRPC Tunnel

FQDN as the gRPC Tunnel Destination
Table 7: Feature History Table

DescriptionRelease InformationFeature Name

You can now specify a fully
qualified domain name (FQDN) as
gRPC tunnel destination. FQDNs
are easy to remember compared to
numeric IP addresses and helps to
resolve the domain names to IPv4
or IPv6 address and establish tunnel
towards the destination.

Model-driven telemetry and
Event-driven telemetry are
supported.

The feature introduces these
changes:

CLI:

• The keywords address-family
ipv4 and address-family ipv6
are introduced in the gRPC
tunnel command.

Release 7.10.1FQDN as the gRPC Tunnel
Destination

Starting Cisco IOS XR Software Release 7.10.1, you can configure a FQDN as the gRPC tunnel destination.
A FQDN can be associated with multiple IP addresses of IPv4 and IPv6. Configuration address-family specifies
the desired address-family for the returned addresses from DNS. This configuration is applicable only to
FQDN as gRPC tunnel destination. The get addr-info returns the corresponding address(es) of the FQDN.
If the address-family ipv4 is configured, then only IPv4 address(es) are used to establish gRPC tunnel(s).
Similarly, if the address-family ipv6 is configured, only IPv6 address(es) are used to establish gRPC tunnel(s).
If address-family configuration is not present, then IP addresses of both IPv4 and IPv6 address-family are
considered for establishing gRPC tunnel(s).

For more information about gNMI dial-out via gRPC tunnel, see the Github repository.

Configure FQDN as the gRPC Tunnel Destination
Perform the following steps to configure FQDN as gRPC tunnel destination:

Step 1 Configure FQDN as gRPC tunnel destination.

Example:

In this example, you set up FQDN as gRPC tunnel destination (IPv4):
Router#config
Router(config)#grpc

Enhancements to Streaming Telemetry
19

Enhancements to Streaming Telemetry
FQDN as the gRPC Tunnel Destination

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp2834182384
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp2834182384
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmignoissh-dialout-grpctunnel.md

Router(config-grpc)#tunnel
Router(config-grpc-tunnel)#destination test.tunnel.dn port 59500
Router(config-grpc-tunnel-dest)#address-family ipv4
Router(config-grpc-tunnel-dest)#target xr
Router(config-grpc-tunnel-dest)#commit

Example:

In this example, you set up FQDN as gRPC tunnel destination (IPv6):
Router#config
Router(config)#grpc
Router(config-grpc)#tunnel
Router(config-grpc-tunnel)#destination test.tunnel.dn port 59500
Router(config-grpc-tunnel-dest)#address-family ipv6
Router(config-grpc-tunnel-dest)#target xr
Router(config-grpc-tunnel-dest)#commit

Step 2 Verify that the gRPC tunnel configuration is successful on the router.

Example:

The following example shows how to display the successful gRPC tunnel configuration (IPv4):
Router#show running-config grpc

grpc
tunnel
destination test.tunnel.dn port 59500
target xr
address-family ipv4
!

!
!

Example:

The following example shows how to display the successful gRPC tunnel configuration (IPv6):
Router#show running-config grpc

grpc
tunnel
destination test.tunnel.dn port 59500
target xr
address-family ipv6
!

!
!

Step 3 Verify the configured FQDN.

Example:

The following example shows how to display the successful FQDN configuration (IPv4 and IPv6):
Router#show host

Default domain is not set
Name/address lookup uses domain service
Name servers: 255.255.255.255
Host Flags Age(hr) Type Address(es)
test.tunnel.dn (perm, OK) 0 IP 192.168.0.2
test.tunnel.dn (perm, OK) 0 IPV6 2001:DB8:A:B::1

Router#show running-config domain

Enhancements to Streaming Telemetry
20

Enhancements to Streaming Telemetry
Configure FQDN as the gRPC Tunnel Destination

domain ipv4 host test.tunnel.dn 192.168.0.2
domain ipv6 host test.tunnel.dn 2001:DB8:A:B::1

Step 4 Copy the public certificate for the collector to /misc/config/grpc/<domain name>:<port>.pem directory.
The router uses this certificate to verify the tunnel server, and establish a dial-out session.

Step 5 Run the collector.
Step 6 View the status of tunnel sessions.

Example:

The following example shows how to display the status of the tunnel sessions:
Router#show grpc tunnel sessions

test.tunnel.dn:59500
Target: xr
Status: Connected
Listen address: 192.168.0.25:59500
Last connected: 2023-02-06 07:14:36

test.tunnel.dn:59500
Target: xr
Status: Connected
Listen address: [2001:DB8:A:B::11]:59500
Last connected: 2023-02-06 07:15:23

Stream Telemetry Data about PBR Decapsulation Statistics
Table 8: Feature History Table

DescriptionRelease InformationFeature Name

This feature streams telemetry data
about header decapsulation
statistics for traffic that uses the
Policy-Based Routing (PBR)
functionality to bypass a routing
table lookup for egress. You use the
Cisco-IOS-XR-infra-policymgr-oper.yang

data model to capture the
decapsulation data for Generic
Routing Encapsulation (GRE) and
Generic UDPEncapsulation (GUE)
tunneling protocols. Decapsulation
data helps you understand if all
encapsulated packets are
decapsulated and alerts you to
issues if there is a mismatch in the
number of packets.

Release 7.3.2Stream Telemetry Data about PBR
Decapsulation Statistics

You can stream telemetry data about PBR decapsulation statistics for GRE and GUE encapsulation protocols
that deliver packets using IPv4 or IPv6. The encapsulated data has source and destination address that must

Enhancements to Streaming Telemetry
21

Enhancements to Streaming Telemetry
Stream Telemetry Data about PBR Decapsulation Statistics

match with the source and destination address in the classmap. Both encapsulation and decapsulation interfaces
collect statistics periodically. The statistics can be displayed on demand using show policy-map type pbr
[vrf vrf-name] address-family ipv4/ipv6 statistics command. For more information on PBR-based
decapsulation, see Interface and Hardware Component Configuration Guide for Cisco 8000 Series Routers.

With this release, the decapsulation statistics can be displayed using
Cisco-IOS-XR-infra-policymgr-oper.yang data model and telemetry data. You can stream telemetry data
from the sensor path:

Cisco-IOS-XR-infra-policymgr-oper:policy-manager/global/policy-map/policy-map-types/policy-map-type/vrf-table/vrf/afi-table/afi/stats

The following steps show the PBR configuration and the decapsulation statistics that is streamed as telemetry
data to the collector.

Step 1 Check the running configuration to view the configured PBR per VRF.

Example:
Router#show running-config
Building configuration...
!! IOS XR Configuration 0.0.0
!!
vrf vrf1
address-family ipv4 unicast
!
address-family ipv6 multicast
!
!
netconf-yang agent
ssh
!
!
class-map type traffic match-all cmap1
match protocol gre
match source-address ipv4 161.0.1.1 255.255.255.255
match destination-address ipv4 161.2.1.1 255.255.255.255
end-class-map
!
policy-map type pbr gre-policy
class type traffic cmap1
decapsulate gre
!
class type traffic class-default
!
end-policy-map
!
interface GigabitEthernet0/0/0/1
vrf vrf1
ipv4 address 2.2.2.2 255.255.255.0
shutdown
!
vrf-policy
vrf vrf1 address-family ipv4 policy type pbr input gre-policy
!
end

Step 2 View the output of the VRF statistics.

Example:

Enhancements to Streaming Telemetry
22

Enhancements to Streaming Telemetry
Stream Telemetry Data about PBR Decapsulation Statistics

Router#show policy-map type pbr vrf vrf1 addr-family ipv4 statistics

VRF Name: vrf1
Policy-Name: gre-policy
Policy Type: pbr
Addr Family: IPv4

Class: cmap1
Classification statistics (packets/bytes)
Matched : 13387587/1713611136

Transmitted statistics (packets/bytes)
Total Transmitted : 13387587/1713611136

Class: class-default
Classification statistics (packets/bytes)
Matched : 0/0

Transmitted statistics (packets/bytes)
Total Transmitted : 0/0

After you have verified that the statistics are displayed correctly, stream telemetry data and check the streamed data at
the collector. For more information about collectors, see Operate on Telemetry Data for In-depth Analysis of the Network
section in the Monitor CPU Utilization Using Telemetry Data to Plan Network Infrastructure chapter.
ios.0/0/CPU0/ $ mdt_exec -s Cisco-IOS-XR-infra-policymgr-oper:policy-manager
/global/policy-map/policy-map-types/policy-map-type/vrf-table/vrf/afi-table/afi/stats -c 100
{"node_id_str":"ios","subscription_id_str":"app_TEST_200000001","encoding_path":
"Cisco-IOS-XR-infra-policymgr-oper:policy-manager/global/policy-map/policy-map-types/policy-map-type
/vrf-table/vrf/afi-table/afi/stats","collection_id":"1","collection_start_time":"1601361558157",
"msg_timestamp":"1601361559179","data_json":[{"timestamp":"1601361559178","keys":[{"type":"ipv6"},
{"vrf-name":"vrf_gue_ipv4"},{"type":"ipv4"}],"content":{"pmap-name":"gre-policy","vrf-name":
"vrf1","appln-type":2,"addr-family":1,"rc":0,"plmgr-vrf-stats":[{"pmap-name":"gre-policy",
"cmap-stats-arr":[{"cmap-name":"cmap1","matched-bytes":"1713611136","matched-packets":"13387587",
"transmit-bytes":"1713611136","transmit-packets":"13387587"}]}]}}],
"collection_end_time":"1601361559183"}
--------------------------------- snipped for brevity -------------------------------------

Enhancements to Streaming Telemetry
23

Enhancements to Streaming Telemetry
Stream Telemetry Data about PBR Decapsulation Statistics

b-telemetry-cg-8000-24xx_chapter4.pdf#nameddest=unique_25

Enhancements to Streaming Telemetry
24

Enhancements to Streaming Telemetry
Stream Telemetry Data about PBR Decapsulation Statistics

	Enhancements to Streaming Telemetry
	Hardware Timestamp
	Stream QoS Statistics Telemetry Data
	Verification

	Enhanced Syslog Notifications for Unresolved Line Card Forwarding Paths
	Target-Defined Mode for Cached Generic Counters Data
	gNMI Dial-Out via Tunnel Service
	Virtual Address as the Source IP Address of gRPC Tunnel
	Configure Virtual Address as the Source IP Address of gRPC Tunnel

	FQDN as the gRPC Tunnel Destination
	Configure FQDN as the gRPC Tunnel Destination

	Stream Telemetry Data about PBR Decapsulation Statistics

