
Configuring and Managing Embedded Event
Manager Policies

The Cisco IOS XR Software Embedded Event Manager (EEM) functions as the central clearing house for the
events detected by any portion of the Cisco IOS XR Software processor failover services. The EEM is
responsible for detection of fault events, fault recovery, and process reliability statistics in a Cisco IOS XR
Software system. The EEM events are notifications that something significant has occurred within the system,
such as:

• Operating or performance statistics outside the allowable values (for example, free memory dropping
below a critical threshold).

• Online insertion or removal (OIR).

• Termination of a process.

The EEM relies on software agents or event detectors to notify it when certain system events occur. When
the EEM has detected an event, it can initiate corrective actions. Actions are prescribed in routines called
policies. Policies must be registered before an action can be applied to collected events. No action occurs
unless a policy is registered. A registered policy informs the EEM about a particular event that is to be detected
and the corrective action to be taken if that event is detected.When such an event is detected, the EEM enables
the corresponding policy. You can disable a registered policy at any time.

The EEM monitors the reliability rates achieved by each process in the system, allowing the system to detect
the components that compromise the overall reliability or availability.

This module describes the tasks you need to perform to configure and manage EEM policies on your network
and write and customize the EEM policies using Tool Command Language (Tcl) scripts to handle faults and
events.

• Prerequisites for Configuring and Managing Embedded Event Manager Policies, on page 2
• Information About Configuring and Managing Embedded Event Manager Policies, on page 2
• How to Configure and Manage Embedded Event Manager Policies, on page 10
• Configuration Examples for Writing Embedded Event Manager Policies Using Tcl , on page 28
• Embedded Event Manager Policy Tcl Command Extension Reference, on page 29

Configuring and Managing Embedded Event Manager Policies
1

Prerequisites for Configuring and Managing Embedded Event
Manager Policies

You must be in a user group associated with a task group that includes the proper task IDs. The command
reference guides include the task IDs required for each command. If you suspect user group assignment is
preventing you from using a command, contact your AAA administrator for assistance.

Information About Configuring and Managing Embedded Event
Manager Policies

Event Management
Embedded Event Manager (EEM) in the Cisco IOS XR Software system essentially involves system event
management. An event can be any significant occurrence (not limited to errors) that has happened within the
system. The Cisco IOS XR Software EEM detects those events and implements appropriate responses.

The EEM enables a system administrator to specify appropriate action based on the current state of the system.
For example, a system administrator can use EEM to request notification by e-mail when a hardware device
needs replacement.

The EEM interacts with routines, “event detectors,” that actively monitor the system for events. The EEM
relies on an event detector that it has provided to syslog to detect that a certain system event has occurred. It
uses a pattern match with the syslog messages and also relies on a timer event detector to detect that a certain
time and date has occurred.

When the EEM has detected an event, it can initiate actions in response. These actions are contained in routines
called policy handlers. Policies are defined by Tcl scripts (EEM scripts) written by the user through a Tcl
API. While the data for event detection is collected, no action occurs unless a policy for responding to that
event has been registered. At registration, a policy informs the EEM that it is looking for a particular event.
When the EEM detects the event, it enables the policy.

The EEM monitors the reliability rates achieved by each process in the system. These metrics can be used
during testing to determine which components do not meet their reliability or availability goals so that corrective
action can be taken.

System Event Processing
When the EEM receives an event notification, it takes these actions:

• Checks for established policy handlers and if a policy handler exists, the EEM initiates callback routines
(EEM handlers) or runs Tool Command Language (Tcl) scripts (EEM scripts) that implement policies.
The policies can include built-in EEM actions.

• Notifies the processes that have subscribed for event notification.

• Records reliability metric data for each process in the system.

• Provides access to EEM-maintained system information through an application program interface (API).

Configuring and Managing Embedded Event Manager Policies
2

Configuring and Managing Embedded Event Manager Policies
Prerequisites for Configuring and Managing Embedded Event Manager Policies

Embedded Event Manager Scripts
When the EEM has detected an event, it can initiate corrective actions prescribed in routines called policies.
Policies must be registered before any action can be applied to collected events. No action occurs unless a
policy is registered. A registered policy informs the EEM about a particular event to detect and the corrective
action to take if that event is detected.When such an event is detected, the EEM runs the policy. Tool Command
Language (Tcl) is used as the scripting language to define policies and all Embedded Event Manager scripts
are written in Tcl. EEM scripts are identified to the EEM using the event manager policy configuration
command. An EEM script remains available to be scheduled by the EEM until the no event manager policy
command is entered.

In addition the onboard Tcl scripts that come with the IOS XR operating system, users may write their own
TCL-based policies. Cisco provides enhancements to the Tcl language in the form of Tcl command extensions
that facilitate the writing of EEM policies. For more information about EEM Tcl command extensions, see
Embedded Event Manager Policy Tcl Command Extension Categories, on page 3.

Writing an EEM script includes the following steps:

• Selecting the event Tcl command extension that establishes the criteria used to determine when the policy
is run.

• Defining the event detector options associated with detecting the event.

• Choosing the actions to implement recovery or respond to the detected event.

Regular Embedded Event Manager Scripts
Regular EEM scripts are used to implement policies when an EEM event is published. EEM scripts are
identified to the EEM using the event manager policy configuration command. An EEM script remains
available to be scheduled by the EEM until the no event manager policy command is entered.

The first executable line of code within an EEM script must be the eem event register keyword. This keyword
identifies the EEM event for which that script should be scheduled. The keyword is used by the event manager
policy configuration command to register to handle the specified EEM event.

When an EEM script exits, it is responsible for setting a return code that is used to tell the EEM whether to
run the default action for this EEM event (if any) or no other action. If multiple event handlers are scheduled
for a given event, the return code from the previous handler is passed into the next handler, which can leave
the value as is or update it.

An EEM script cannot register to handle an event other than the event that caused it to be scheduled.Note

Embedded Event Manager Policy Tcl Command Extension Categories
This table lists the different categories of EEM policy Tcl command extensions.

Configuring and Managing Embedded Event Manager Policies
3

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Scripts

Table 1: Embedded Event Manager Tcl Command Extension Categories

DefinitionCategory

These Tcl command extensions are represented by the
event_register_xxx family of event-specific commands. There is a
separate event information Tcl command extension in this category as
well: event_reqinfo. This is the command used in policies to query the
EEM for information about an event. There is also an EEM event
publish Tcl command extension event_publish that publishes an
application-specific event.

EEM event Tcl command
extensions(three types: event
information, event registration, and
event publish)

These Tcl command extensions (for example, action_syslog) are used
by policies to respond to or recover from an event or fault. In addition
to these extensions, developers can use the Tcl language to implement
any action desired.

EEM action Tcl command
extensions

These Tcl command extensions are used to retrieve, save, set, or modify
application information, counters, or timers.

EEM utility Tcl command
extensions

These Tcl command extensions are represented by the sys_reqinfo_xxx
family of system-specific information commands. These commands
are used by a policy to gather system information.

EEM system information Tcl
command extensions

These Tcl command extensions are used to store and retrieve a Tcl
context (the visible variables and their values).

EEM context Tcl command
extensions

Cisco File Naming Convention for Embedded Event Manager
All EEM policy names, policy support files (for example, e-mail template files), and library filenames are
consistent with the Cisco file-naming convention. In this regard, EEM policy filenames adhere to the following
specifications:

• An optional prefix—Mandatory.—indicating, if present, that this is a system policy that should be
registered automatically at boot time if it is not already registered; for example, Mandatory.sl_text.tcl.

• A filename body part containing a two-character abbreviation (see table below) for the first event specified;
an underscore part; and a descriptive field part that further identifies the policy.

• A filename suffix part defined as .tcl.

EEM e-mail template files consist of a filename prefix of email_template, followed by an abbreviation that
identifies the usage of the e-mail template.

EEM library filenames consist of a filename body part containing the descriptive field that identifies the usage
of the library, followed by _lib, and a filename suffix part defined as .tcl.

Table 2: Two-Character Abbreviation Specification

SpecificationTwo-Character Abbreviation

event_register_applap

event_register_noneno

Configuring and Managing Embedded Event Manager Policies
4

Configuring and Managing Embedded Event Manager Policies
Cisco File Naming Convention for Embedded Event Manager

SpecificationTwo-Character Abbreviation

event_register_oiroi

event_register_processpr

event_register_syslogsl

event_register_timertm

event_register_timer_subscriberts

Embedded Event Manager Built-in Actions
EEM built-in actions can be requested from EEM handlers when the handlers run.

This table describes each EEM handler request or action.

Table 3: Embedded Event Manager Built-In Actions

DescriptionEmbedded Event Manager Built-In
Action

Sends a message to the syslog. Arguments to this action are priority
and the message to be logged.

Log a message to syslog

Writes the command to the specified channel handler to execute
the command by using the cli_exec command extension.

Execute a CLI command

Logs amessage by using the action_syslogTcl command extension.Generate a syslog message

Runs an EEM policy within a policy while the event manager run
command is running a policy in XR EXEC mode.

Manually run an EEM policy

Publishes an application-specific event by using the event_publish
appl Tcl command extension.

Publish an application-specific event

Causes a router to be reloaded by using the EEM action_reload
command.

Reload the Cisco IOS software

Represents the sys_reqinfo_xxx family of system-specific
information commands by a policy to gather system information.

Request system information

Sends the e-mail out using SimpleMail Transfer Protocol (SMTP).Send a short e-mail

Modifies a counter value.Set or modify a counter

EEM handlers require the ability to run CLI commands. A command is available to the Tcl shell to allow
execution of CLI commands from within Tcl scripts.

Configuring and Managing Embedded Event Manager Policies
5

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Built-in Actions

Application-specific Embedded Event Management
AnyCisco IOSXRSoftware application can define and publish application-defined events. Application-defined
events are identified by a name that includes both the component name and event name, to allow application
developers to assign their own event identifiers. Application-defined events can be raised by a Cisco IOS XR
Software component even when there are no subscribers. In this case, the EEM dismisses the event, which
allows subscribers to receive application-defined events as needed.

An EEM script that subscribes to receive system events is processed in the following order:

1. This CLI configuration command is entered: event manager policy scriptfilename username username.

2. The EEM scans the EEM script looking for an eem event event_type keyword and subscribes the EEM
script to be scheduled for the specified event.

3. The Event Detector detects an event and contacts the EEM.

4. The EEM schedules event processing, causing the EEM script to be run.

5. The EEM script routine returns.

Event Detection and Recovery
EEM is a flexible, policy-driven framework that supports in-box monitoring of different components of the
system with the help of software agents known as event detectors. Event detectors are separate programs that
provide an interface between other Cisco IOS XR Software components and the EEM. Event detectors (event
publishers) screen events and publish them when there is a match on an event specification that is provided
by event subscribers (policies). Event detectors notify the EEM server when an event of interest occurs.

An EEM event is defined as a notification that something significant has happened within the system. Two
categories of events exist:

• System EEM events

• Application-defined events

System EEM events are built into the EEM and are grouped based on the fault detector that raises them. They
are identified by a symbolic identifier defined within the API.

Some EEM system events are monitored by the EEMwhether or not an application has requested monitoring.
These are called built-in EEM events. Other EEM events are monitored only if an application has requested
EEM event monitoring. EEM event monitoring is requested through an EEM application API or the EEM
scripting interface.

Some event detectors can be distributed to other hardware cards within the same secure domain router (SDR)
or within the administration plane to provide support for distributed components running on those cards.

These event detectors are supported:

System Manager Event Detector
The System Manager Event Detector has four roles:

• Records process reliability metric data.

• Screens for processes that have EEM event monitoring requests outstanding.

Configuring and Managing Embedded Event Manager Policies
6

Configuring and Managing Embedded Event Manager Policies
Application-specific Embedded Event Management

• Publishes events for those processes that match the screening criteria.

• Asks the System Manager to perform its default action for those events that do not match the screening
criteria.

The System Manager Event Detector interfaces with the System Manager to receive process startup and
termination notifications. The interfacing is made through a private API available to the System Manager. To
minimize overhead, a portion of the API resides within the System Manager process space. When a process
terminates, the SystemManager invokes a helper process (if specified in the process.startup file) before calling
the Event Detector API.

Processes can be identified by component ID, System Manager assigned job ID, or load module pathname
plus process instance ID. Process instance ID is an integer assigned to a process to differentiate it from other
processes with the same pathname. The first instance of a process is assigned an instance ID value of 1, the
second 2, and so on.

The System Manager Event Detector handles EEM event monitoring requests for the EEM events shown in
this table.

Table 4: System Manager Event Detector Event Monitoring Requests

DescriptionEmbedded Event Manager Event

Occurs when a process matching the screening criteria
terminates.

Normal process termination EEM event—built in

Occurs when a process matching the screening criteria
terminates abnormally.

Abnormal process termination EEM event—built
in

Occurs when a process matching the screening criteria
starts.

Process startup EEM event—built in

When SystemManager Event Detector abnormal process termination events occur, the default action restarts
the process according to the built-in rules of the System Manager.

The relationship between the EEM and System Manager is strictly through the private API provided by the
EEM to the System Manager for the purpose of receiving process start and termination notifications. When
the System Manager calls the API, reliability metric data is collected and screening is performed for an EEM
event match. If a match occurs, a message is sent to the System Manager Event Detector. In the case of
abnormal process terminations, a return is made indicating that the EEM handles process restart. If a match
does not occur, a return is made indicating that the System Manager should apply the default action.

Timer Services Event Detector
The Timer Services Event Detector implements time-related EEM events. These events are identified through
user-defined identifiers so that multiple processes can await notification for the same EEM event.

The Timer Services Event Detector handles EEM event monitoring requests for the Date/Time Passed EEM
event. This event occurs when the current date or time passes the specified date or time requested by an
application.

Configuring and Managing Embedded Event Manager Policies
7

Configuring and Managing Embedded Event Manager Policies
Timer Services Event Detector

Syslog Event Detector
The syslog Event Detector implements syslogmessage screening for syslog EEM events. This routine interfaces
with the syslog daemon through a private API. To minimize overhead, a portion of the API resides within the
syslog daemon process.

Screening is provided for the message severity code or the message text fields.

The Syslog Event Detector handles EEM event monitoring requests for the events are shown in this table.

Table 5: Syslog Event Detector Event Monitoring Requests

DescriptionEmbedded Event Manager Event

Occurs for a just-logged message. It occurs when there is a match for
either the syslog message severity code or the syslog message text
pattern. Both can be specified when an application requests a syslog
message EEM event.

Syslog message EEM event

Occurs when the event-processed count for a specified process is either
greater than or equal to a specified maximum or is less than or equal
to a specified minimum.

Process event manager EEM
event—built in

None Event Detector
The None Event Detector publishes an event when the Cisco IOS XR7 software event manager run CLI
command executes an EEM policy. EEM schedules and runs policies on the basis of an event specification
that is contained within the policy itself. An EEM policy must be identified and registered to be permitted to
run manually before the event manager run command will execute.

Event manager none detector provides user the ability to run a tcl script using the CLI. The script is registered
first before running. Cisco IOS XR7 software version provides similar syntax with Cisco IOS EEM (refer to
the applicable EEM Documentation for details), so scripts written using Cisco IOS EEM is run on
Cisco IOS XR7 software with minimum change.

Distributed Event Detectors
Cisco IOS XR Software components that interface to EEM event detectors and that have substantially
independent implementations running on a distributed hardware card should have a distributed EEM event
detector. The distributed event detector permits scheduling of EEM events for local processes without requiring
that the local hardware card to the EEM communication channel be active.

These event detectors run on a Cisco IOS XR Software line card:

• System Manager Fault Detector

Embedded Event Manager Event Scheduling and Notification
When an EEM handler is scheduled, it runs under the context of the process that creates the event request (or
for EEM scripts under the Tcl shell process context). For events that occur for a process running an EEM
handler, event scheduling is blocked until the handler exits. The defined default action (if any) is performed
instead.

Configuring and Managing Embedded Event Manager Policies
8

Configuring and Managing Embedded Event Manager Policies
Syslog Event Detector

The EEM Server maintains queues containing event scheduling and notification items across client process
restarts, if requested.

Reliability Statistics
Reliability metric data for the system is maintained by the EEM. The data is periodically written to checkpoint.
Reliability metric data is kept for each hardware card and for each process handled by the System Manager.

Hardware Card Reliability Metric Data

Hardware card reliability metric data is recorded in a table indexed by disk ID.

Data maintained by the hardware card is as follows:

• Most recent start time

• Most recent normal end time (controlled switchover)

• Most recent abnormal end time (asynchronous switchover)

• Most recent abnormal type

• Cumulative available time

• Cumulative unavailable time

• Number of times hardware card started

• Number of times hardware card shut down normally

• Number of times hardware card shut down abnormally

Process Reliability Metric Data

Reliability metric data is kept for each process handled by the System Manager. This data includes standby
processes running on either the primary or backup hardware card. Data is recorded in a table indexed by
hardware card disk ID plus process pathname plus process instance for those processes that have multiple
instances.

Process terminations include the following cases:

• Normal termination—Process exits with an exit value equal to 0.

• Abnormal termination by process—Process exits with an exit value not equal to 0.

• Abnormal termination by Linux—Linux operating system terminates the process.

• Abnormal termination by kill process API—API kill process terminates the process.

Data to be maintained by process is as follows:

• Most recent process start time

• Most recent normal process end time

• Most recent abnormal process end time

• Most recent abnormal process end type

Configuring and Managing Embedded Event Manager Policies
9

Configuring and Managing Embedded Event Manager Policies
Reliability Statistics

• Previous ten process end times and types

• Cumulative process available time

• Cumulative process unavailable time

• Cumulative process run time (the time when the process is actually running on the CPU)

• Number of times started

• Number of times ended normally

• Number of times ended abnormally

• Number of abnormal failures within the past 60 minutes

• Number of abnormal failures within the past 24 hours

• Number of abnormal failures within the past 30 days

How to Configure and Manage Embedded Event Manager
Policies

Configuring Environmental Variables
EEM environmental variables are Tcl global variables that are defined external to the policy before the policy
is run. The EEM policy engine receives notifications when faults and other events occur. EEM policies
implement recovery, based on the current state of the system and actions specified in the policy for a given
event. Recovery actions are triggered when the policy is run.

By convention, the names of all environment variables defined by Cisco begin with an underscore character
to set them apart; for example, _show_cmd.

You can configure the environment variable and values by using the event manager environmentvar-name
var-value command.

Use the show event manager environment command to display the name and value of all EEM environment
variables before and after they have been set using the event manager environment command.

Configuration Example

This example shows how to define a set of EEM environment variables.

RP/0/RP0/CPU0:Router# configure
RP/0/RP0/CPU0:Router(config)# event manager environment _cron_entry 0-59/2 0-23/1 * * 0-7
RP/0/RP0/CPU0:Router(config)# event manager environment _email_from beta@cisco.com
RP/0/RP0/CPU0:Router(config)# event manager environment _email_to beta@cisco.com
RP/0/RP0/CPU0:Router(config)# commit
RP/0/RP0/CPU0:Router(config)# end
RP/0/RP0/CPU0:Router# show event manager environment

No. Name Value
1 _email_to beta@cisco.com
2 _cron_entry 0-59/2 0-23/1 * * 0-7

Configuring and Managing Embedded Event Manager Policies
10

Configuring and Managing Embedded Event Manager Policies
How to Configure and Manage Embedded Event Manager Policies

3 _email_from beta@cisco.com
RP/0/RP0/CPU0:Router#

Registering Embedded Event Manager Policies
You should register an EEM policy to run a policy when an event is triggered. Registering an EEM policy is
performed with the event manager policy command. An EEM script is available to be scheduled by the EEM
until the no form of this command is entered. Prior to registering a policy, display EEM policies that are
available to be registered with the show event manager policy available command.

The EEM schedules and runs policies on the basis of an event specification that is contained within the policy
itself. When the event manager policy command is invoked, the EEM examines the policy and registers it
to be run when the specified event occurs.

You need to specify the following while registering the EEM policy.

• username—Specifies the username that runs the script
• persist-time—Defines the number of seconds the username authentication is valid. This keyword is
optional. The default persist-time is 3600 seconds (1 hour).

• system or user—Specifies the policy as a system defined or user defined policy. This keyword is optional.

AAA authorization (such as the aaa authorization eventmanager command) must be configured before
EEM policies can be registered. See the Configuring AAA Services module of Configuring AAA Services on
Cisco IOS XR7 software for more information about AAA authorization configuration.

Note

Once policies have been registered, their registration can be verified through the show event manager policy
registered command.

Configuration Example

This example shows how to register a user defined EEM policy.

RP/0/RP0/CPU0:Router# show event manager policy available
RP/0/RP0/CPU0:Router# configure
RP/0/RP0/CPU0:Router(config)# event manager policy cron.tcl username tom type user
RP/0/RP0/CPU0:Router# show event manager policy registered

How to Write Embedded Event Manager Policies Using Tcl
This section provides information on how to write and customize Embedded Event Manager (EEM) policies
using Tool Command Language (Tcl) scripts to handle Cisco IOS XR7 software faults and events.

This section contains these tasks:

Registering and Defining an EEM Tcl Script
Perform this task to configure environment variables and register an EEM policy. EEM schedules and runs
policies on the basis of an event specification that is contained within the policy itself. When an EEM policy
is registered, the software examines the policy and registers it to be run when the specified event occurs.

Configuring and Managing Embedded Event Manager Policies
11

Configuring and Managing Embedded Event Manager Policies
Registering Embedded Event Manager Policies

A policy must be available that is written in the Tcl scripting language. Sample policies are stored in the
system policy directory.

Note

Configuration Example

This example shows how to register and define an EEM policy.

RP/0/RP0/CPU0:Router# show event manager environment all
RP/0/RP0/CPU0:Router# configure
RP/0/RP0/CPU0:Router(config)# event manager environment _cron_entry 0-59/2 0-23/1 * * 0-7
RP/0/RP0/CPU0:Router(config)# event manager policy tm_cli_cmd.tcl username user_a type
system
RP/0/RP0/CPU0:Router(config)# commit
RP/0/RP0/CPU0:Router# show event manager policy registered system

To unregister an EEM policy, use the no event manager policy command. This command removes an EEM
policy from the running configuration file.

Note

Displaying EEM Registered Policies
Perform this optional task to display EEM registered policies.

SUMMARY STEPS

1. show event manager policy registered [event-type type] [system | user] [time-ordered |
name-ordered]

DETAILED STEPS

PurposeCommand or Action

Displays information about currently registered policies.show event manager policy registered [event-type type
] [system | user] [time-ordered | name-ordered]

Step 1

• The event-type keyword displays the registered
policies for a specific event type.Example:

Router# show event manager policy registered system • The time-ordered keyword displays information about
currently registered policies sorted by time.

• The name-ordered keyword displays the policies in
alphabetical order by the policy name.

Unregistering EEM Policies
Perform this task to remove an EEM policy from the running configuration file. Execution of the policy is
canceled.

Configuring and Managing Embedded Event Manager Policies
12

Configuring and Managing Embedded Event Manager Policies
Displaying EEM Registered Policies

SUMMARY STEPS

1. show event manager policy registered [event-type type] [system | user] [time-ordered |
name-ordered]

2. configure
3. no event manager policy policy-name

4. Use the commit or end command.
5. Repeat step 1 to ensure that the policy has been removed.

DETAILED STEPS

PurposeCommand or Action

Displays information about currently registered policies.show event manager policy registered [event-type type
] [system | user] [time-ordered | name-ordered]

Step 1

• The event-type keyword displays the registered
policies for a specific event type.Example:

Router# show event manager policy registered system • The time-ordered keyword displays information about
currently registered policies sorted by time.

• The name-ordered keyword displays the policies in
alphabetical order by the policy name.

Enters mode.configure

Example:

Step 2

RP/0/RP0/CPU0:router# configure

Removes the EEM policy from the configuration, causing
the policy to be unregistered.

no event manager policy policy-name

Example:

Step 3

Router(config)# no event manager policy
tm_cli_cmd.tcl

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

—Repeat step 1 to ensure that the policy has been removed.Step 5

Configuring and Managing Embedded Event Manager Policies
13

Configuring and Managing Embedded Event Manager Policies
Unregistering EEM Policies

Suspending EEM Policy Execution
Suspending policies, instead of unregistering them, might be necessary for reasons of temporary performance
or security. If required, you can immediately suspend the execution of all EEM policies by using the event
manager scheduler suspend command.

Configuration Example

This example shows how to suspend the execution of all EEM policies.

RP/0/RP0/CPU0:Router# show event manager policy registered system
RP/0/RP0/CPU0:Router# configure
RP/0/RP0/CPU0:Router(config)# event manager scheduler suspend
RP/0/RP0/CPU0:Router(config)# commit

Specifying a Directory for Storing EEM Policies
A directory is essential to store the user-defined policy files or user library files. If you do not plan to write
EEM policies, you do not have to create the directory. The EEM searches the user policy directory when you
enter the event manager policy policy-name usercommand. To create a user policy directory before identifying
it to the EEM, use the mkdir command. After creating the user policy directory, use the copy command to
copy the policy files into the user policy directory. You can use the show event manager directory user [
library | policy] command to display the directory to use for EEM user library files or user-defined policy
files.

Configuration Example

This example shows how to specify a directory to use for storing user-library files .

RP/0/RP0/CPU0:Router# show event manager directory user library
RP/0/RP0/CPU0:Router# configure
RP/0/RP0/CPU0:Router(config)# event manager directory user library disk0:/usr/lib/tcl
RP/0/RP0/CPU0:Router(config)# commit

Sample EEM Policies
Cisco IOS XR7 software contains some sample policies in the images that contain the EEM. Developers of
EEM policies may modify these policies by customizing the event for which the policy is to be run and the
options associated with logging and responding to the event. In addition, developers may select the actions
to be implemented when the policy runs.

The Cisco IOS XR7 software includes a set of sample policies (see Sample EEM Policy Descriptions table).
The sample policies can be copied to a user directory and then modified. Tcl is currently the only scripting
language supported by Cisco for policy creation. Tcl policies can be modified using a text editor such as
Emacs. Policies must execute within a defined number of seconds of elapsed time, and the time variable can
be configured within a policy. The default is 20 seconds.

Sample EEM policies can be seen on the router using the CLI
Show event manager policy available system

Configuring and Managing Embedded Event Manager Policies
14

Configuring and Managing Embedded Event Manager Policies
Suspending EEM Policy Execution

This table describes the sample EEM policies.

Table 6: Sample EEM Policy Descriptions

DescriptionName of Policy

This policy is triggered when the _cron_entry_diag cron entry expires.Then, the
output of this fixed set is collect for the fixed set of commands and the output is sent
by email.

periodic_diag_cmds.tcl

This policy is triggered when the _cron_entry_procavail cron entry expires. Then
the output of this fixed set is collect for the fixed set of commands and the output
is sent by email.

periodic_proc_avail.tcl

This policy is triggered when the _cron_entry_log cron entry expires, and collects
the output for the show log command and a few other commands. If the environment
variable _log_past_hours is configured, it collects the logmessages that are generated
in the last _log_past_hours hours. Otherwise, it collects the full log.

periodic_sh_log.tcl

This policy is triggered when the script looks for the sysdb timeout ios_msgs and
obtains the output of the show commands. The output is written to a file named after
the blocking process.

sl_sysdb_timeout.tcl

This policy runs using a configurable CRON entry. It executes a configurable CLI
command and e-mails the results.

tm_cli_cmd.tcl

This policy runs at midnight each day and e-mails a process crash history report to
a specified e-mail address.

tm_crash_hist.tcl

SUMMARY STEPS

1. show event manager policy available [system | user]
2. configure
3. event manager directory user {library path | policy path}
4. event manager policy policy-name username username [persist-time [seconds | infinite] | type [system

| user]]
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Displays EEM policies that are available to be registered.show event manager policy available [system | user]

Example:

Step 1

Router# show event manager policy available

Enters mode.configure

Example:

Step 2

RP/0/RP0/CPU0:router# configure

Configuring and Managing Embedded Event Manager Policies
15

Configuring and Managing Embedded Event Manager Policies
Sample EEM Policies

PurposeCommand or Action

Specifies a directory to use for storing user library files or
user-defined EEM policies.

event manager directory user {library path | policy path}

Example:

Step 3

Router(config)# event manager directory user
library disk0:/user_library

Registers the EEMpolicy to be run when the specified event
defined within the policy occurs.

event manager policy policy-name username username
[persist-time [seconds | infinite] | type [system | user]]

Example:

Step 4

Router(config)# event manager policy test.tcl
username user_a type user

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Programming EEM Policies with Tcl
Perform this task to help you program a policy using Tcl command extensions. We recommend that you copy
an existing policy and modify it. There are two required parts that must exist in an EEM Tcl policy: the
event_register Tcl command extension and the body. For detailed information about the Tcl policy structure
and requirements, see EEM Policies Using TCL: Details, on page 25

Procedure

PurposeCommand or Action

Displays EEM policies that are available to be registered.show event manager policy available [system | user]

Example:

Step 1

RP/0/RP0/CPU0:Router# show event manager policy
available

—Cut and paste the contents of the sample policy displayed
on the screen to a text editor.

Step 2

Choose the appropriate event_register Tcl command
extension for the event that you want to detect, and add it

Define the required event_register Tcl command extension.Step 3

to the policy. The following are valid Event Registration
Tcl Command Extensions:

Configuring and Managing Embedded Event Manager Policies
16

Configuring and Managing Embedded Event Manager Policies
Programming EEM Policies with Tcl

PurposeCommand or Action

• event_register_appl

• event_register_oir

• event_register_process

• event_register_syslog

• event_register_timer

• event_register_timer_subscriber

• event_register_none

Policy developers can use the new namespace ::cisco in
Tcl policies to group all the extensions used by Cisco IOS

Add the appropriate namespace under the ::cisco hierarchy.Step 4

XR EEM. There are two namespaces under the ::cisco
hierarchy. The following are the namespaces and the EEM
Tcl command extension categories that belongs under each
namespace:

• ::cisco::eem

• EEM event registration

• EEM event information

• EEM event publish

• EEM action

• EEM utility

• EEM context library

• EEM system information

• CLI library

• ::cisco::lib

• SMTP library

Ensure that the appropriate namespaces
are imported, or use the qualified
command names when using the
preceding commands.

Note

This is an optional step. Must defines is a section of the
policy that tests whether any EEM environment variables

Program the must defines section to check for each
environment variable that is used in this policy.

Step 5

that are required by the policy are defined before the
recovery actions are taken. The must defines section is not
required if the policy does not use any EEM environment
variables. EEM environment variables for EEM scripts
are Tcl global variables that are defined external to the

Configuring and Managing Embedded Event Manager Policies
17

Configuring and Managing Embedded Event Manager Policies
Programming EEM Policies with Tcl

PurposeCommand or Action

policy before the policy is run. To define an EEM
environment variable, use the EEM configuration
command event manager environment . By convention,
all Cisco EEM environment variables begin with "_" (an
underscore). To avoid future conflict, customers are urged
not to define new variables that start with "_".

You can display the Embedded Event
Manager environment variables set on your
system by using the show event manager
environment command.

Note

For example, EEM environment variables defined by the
sample policies include e-mail variables. The sample
policies that send e-mail must have the following variables
set in order to function properly. The following are the
e-mail-specific environment variables used in the sample
EEM policies.

• _email_server—A Simple Mail Transfer Protocol
(SMTP)mail server used to send e-mail (for example,
mailserver.example.com)

• _email_to—The address to which e-mail is sent (for
example, engineering@example.com)

• _email_from—The address from which e-mail is
sent (for example, devtest@example.com)

• _email_cc—The address to which the e-mail must
be copied (for example, manager@example.com)

In this section of the script, you can define any of the
following:

Program the body of the script.Step 6

• The event_reqinfo event information Tcl command
extension that is used to query the EEM for
information about the detected event.

• The action Tcl command extensions, such as
action_syslog, that are used to specify actions specific
to EEM.

• The system information Tcl command extensions,
such as sys_reqinfo_routername, that are used to
obtain general system information.

• The context_save and context_retrieveTcl command
extensions that are used to save Tcl variables for use
by other policies.

Configuring and Managing Embedded Event Manager Policies
18

Configuring and Managing Embedded Event Manager Policies
Programming EEM Policies with Tcl

PurposeCommand or Action

• Use of the SMTP library (to send e-mail notifications)
or the CLI library (to run CLI commands) from a
policy.

If the prior policy is successful, the current policy may or
may not require execution. Entry status designations may

Check the entry status to determine if a policy has
previously run for this event.

Step 7

use one of three possible values: 0 (previous policy was
successful), Not=0 (previous policy failed), and Undefined
(no previous policy was executed).

A value of zero means that the default action should not
be performed. A value of nonzero means that the default

Check the exit status to determine whether or not to apply
the default action for this event, if a default action exists.

Step 8

action should be performed. The exit status is passed to
subsequent policies that are run for the same event.

Some EEM Tcl command extensions set a Cisco Error
Number Tcl global variable _cerrno. Whenever _cerrno

Set Cisco Error Number (_cerrno) Tcl global variables.Step 9

is set, four other Tcl global variables are derived from
_cerrno and are set along with it (_cerr_sub_num,
_cerr_sub_err, , and _cerr_str).

Embedded Event Manager policy filenames adhere to the
following specification:

Save the Tcl script with a new filename, and copy the Tcl
script to the router.

Step 10

• An optional prefix—Mandatory.—indicating, if
present, that this is a system policy that should be
registered automatically at boot time if it is not
already registered. For example:
Mandatory.sl_text.tcl.

• A filename body part containing a two-character
abbreviation (see Table 2: Two-Character
Abbreviation Specification, on page 4) for the first
event specified, an underscore character part, and a
descriptive field part further identifying the policy.

• A filename suffix part defined as .tcl.

For more details, see the Cisco File Naming Convention
for Embedded Event Manager, on page 4.

Copy the file to the flash file system on the
router—typically disk0:.

Enters global configuration mode.configureStep 11

Specifies a directory to use for storing user library files or
user-defined EEM policies.

event manager directory user {library path | policy
path}

Example:

Step 12

RP/0/RP0/CPU0:Router(config)# event manager
directory user library disk0:/user_library

Configuring and Managing Embedded Event Manager Policies
19

Configuring and Managing Embedded Event Manager Policies
Programming EEM Policies with Tcl

PurposeCommand or Action

Registers the EEM policy to be run when the specified
event defined within the policy occurs.

event manager policy policy-name username username
[persist-time [seconds | infinite] | type [system | user]]

Example:

Step 13

RP/0/RP0/CPU0:Router(config)# event manager policy
test.tcl username user_a type user

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 14

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

—Cause the policy to execute, and observe the policy.Step 15

—Use debugging techniques if the policy does not execute
correctly.

Step 16

Creating an EEM User Tcl Library Index
Perform this task to create an index file that contains a directory of all the procedures contained in a library
of Tcl files. This task allows you to test library support in EEM Tcl. In this task, a library directory is created
to contain the Tcl library files, the files are copied into the directory, and an index tclIndex) is created that
contains a directory of all the procedures in the library files. If the index is not created, the Tcl procedures are
not found when an EEM policy that references a Tcl procedure is run.

Procedure

PurposeCommand or Action

The following example files can be used to create a
tclIndex on a workstation running the Tcl shell:

On your workstation (UNIX, Linux, PC, or Mac) create a
library directory and copy the Tcl library files into the
directory.

Step 1

lib1.tcl

proc test1 {} {
puts "In procedure test1"

}
proc test2 {} {
puts "In procedure test2"

}

lib2.tcl

proc test3 {} {

Configuring and Managing Embedded Event Manager Policies
20

Configuring and Managing Embedded Event Manager Policies
Creating an EEM User Tcl Library Index

PurposeCommand or Action
puts "In procedure test3"

}

Enters the Tcl shell.tclsh

Example:

Step 2

workstation% tclsh

Use the auto_mkindex command to create the tclIndex
file. The tclIndex file contains a directory of all the

auto_mkindex directory_name *.tcl

Example:

Step 3

procedures contained in the Tcl library files. We

workstation% auto_mkindex eem_library *.tcl
recommend that you run auto_mkindex inside a directory,
because there can be only a single tclIndex file in any
directory and you may have other Tcl files to be grouped
together. Running auto_mkindex in a directory determines
which Tcl source file or files are indexed using a specific
tclIndex.

The following sample TclIndex is created when the lib1.tcl
and lib2.tcl files are in a library file directory and the
auto_mkindex command is run:

tclIndex

Tcl autoload index file, version 2.0
This file is generated by the "auto_mkindex"
command
and sourced to set up indexing information for
one or
more commands. Typically each line is a command
that
sets an element in the auto_index array, where
the
element name is the name of a command and the
value is
a script that loads the command.
set auto_index(test1) [list source [file join $dir
lib1.tcl]]
set auto_index(test2) [list source [file join $dir
lib1.tcl]]
set auto_index(test3) [list source [file join $dir
lib2.tcl]]

—Copy the Tcl library files from step 1 and the tclIndex file
from step 3 to the directory used for storing user library
files on the target router.

Step 4

The directory can be the same directory used in step 4.Copy a user-defined EEM policy file written in Tcl to the
directory used for storing user-defined EEM policies on
the target router.

Step 5

The following example user-defined EEM policy can be
used to test the Tcl library support in EEM:

libtest.tcl

::cisco::eem::event_register_none
namespace import ::cisco::eem::*

Configuring and Managing Embedded Event Manager Policies
21

Configuring and Managing Embedded Event Manager Policies
Creating an EEM User Tcl Library Index

PurposeCommand or Action
namespace import ::cisco::lib::*
global auto_index auto_path
puts [array names auto_index]
if { [catch {test1} result]} {
puts "calling test1 failed result = $result

$auto_path"
}
if { [catch {test2} result]} {
puts "calling test2 failed result = $result

$auto_path"
}
if { [catch {test3} result]} {
puts "calling test3 failed result = $result

$auto_path"
}

Enters mode.configure

Example:

Step 6

RP/0/RP0/CPU0:router# configure

Specifies the EEM user library directory; this is the
directory to which the files in step 4 were copied.

event manager directory user library path

Example:

Step 7

RP/0/RP0/CPU0:Router(config)# event manager
directory user library disk0:/eem_library

Specifies the EEM user policy directory; this is the
directory to which the file in step 5 was copied.

event manager directory user policy path

Example:

Step 8

RP/0/RP0/CPU0:Router(config)# event manager
directory user policy disk0:/eem_policies

Registers a user-defined EEM policy.event manager policy policy-name username username
[persist-time [seconds | infinite] | type [system | user]]

Step 9

Example:

RP/0/RP0/CPU0:Router(config)# event manager policy
libtest.tcl username user_a

Manually runs an EEM policy.event manager run policy [argument]

Example:

Step 10

RP/0/RP0/CPU0:Router(config)# event manager run
libtest.tcl

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 11

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

Configuring and Managing Embedded Event Manager Policies
22

Configuring and Managing Embedded Event Manager Policies
Creating an EEM User Tcl Library Index

PurposeCommand or Action

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Creating an EEM User Tcl Package Index
Perform this task to create a Tcl package index file that contains a directory of all the Tcl packages and version
information contained in a library of Tcl package files. Tcl packages are supported using the Tcl package
keyword.

Tcl packages are located in either the EEM system library directory or the EEM user library directory. When
a package require Tcl command is executed, the user library directory is searched first for a pkgIndex.tcl
file. If the pkgIndex.tcl file is not found in the user directory, the system library directory is searched.

In this task, a Tcl package directory—the pkgIndex.tcl file—is created in the appropriate library directory
using the pkg_mkIndex command to contain information about all the Tcl packages contained in the directory
along with version information. If the index is not created, the Tcl packages are not found when an EEM
policy that contains a package require Tcl command is run.

Using the Tcl package support in EEM, users can gain access to packages such as XML_RPC for Tcl. When
the Tcl package index is created, a Tcl script can easily make an XML-RPC call to an external entity.

Packages implemented in C programming code are not supported in EEM.Note

Procedure

PurposeCommand or Action

—On your workstation (UNIX, Linux, PC, or Mac) create a
library directory and copy the Tcl package files into the
directory.

Step 1

Enters the Tcl shell.tclsh

Example:

Step 2

workstation% tclsh

Use the pkg_mkindex command to create the pkgIndex
file. The pkgIndex file contains a directory of all the

pkg_mkindex directory_name *.tcl

Example:

Step 3

packages contained in the Tcl library files. We recommend

workstation% pkg_mkindex eem_library *.tcl
that you run the pkg_mkindex command inside a
directory, because there can be only a single pkgIndex file
in any directory and you may have other Tcl files to be
grouped together. Running the pkg_mkindex command
in a directory determines which Tcl package file or files
are indexed using a specific pkgIndex.

Configuring and Managing Embedded Event Manager Policies
23

Configuring and Managing Embedded Event Manager Policies
Creating an EEM User Tcl Package Index

PurposeCommand or Action

The following example pkgIndex is created when some
Tcl package files are in a library file directory and the
pkg_mkindex command is run:

pkgIndex

Tcl package index file, version 1.1
This file is generated by the "pkg_mkIndex"
command
and sourced either when an application starts
up or
by a "package unknown" script. It invokes the
"package ifneeded" command to set up
package-related
information so that packages will be loaded
automatically
in response to "package require" commands. When
this
script is sourced, the variable $dir must
contain the
full path name of this file's directory.
package ifneeded xmlrpc 0.3 [list source [file
join $dir xmlrpc.tcl]]

—Copy the Tcl package files from step 1 and the pkgIndex
file from step 3 to the directory used for storing user library
files on the target router.

Step 4

The directory can be the same directory used in step 4.Copy a user-defined EEM policy file written in Tcl to the
directory used for storing user-defined EEM policies on
the target router.

Step 5

The following example user-defined EEM policy can be
used to test the Tcl library support in EEM:

packagetest.tcl

::cisco::eem::event_register_none maxrun
1000000.000
#
test if xmlrpc available
#
#
Namespace imports
#
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
#
package require xmlrpc
puts "Did you get an error?"

Enters mode.configure

Example:

Step 6

RP/0/RP0/CPU0:router# configure

Specifies the EEM user library directory; this is the
directory to which the files in step 4 were copied.

event manager directory user library path

Example:

Step 7

Configuring and Managing Embedded Event Manager Policies
24

Configuring and Managing Embedded Event Manager Policies
Creating an EEM User Tcl Package Index

PurposeCommand or Action

RP/0/RP0/CPU0:Router(config)# event manager
directory user library disk0:/eem_library

Specifies the EEM user policy directory; this is the
directory to which the file in step 5 was copied.

event manager directory user policy path

Example:

Step 8

RP/0/RP0/CPU0:Router(config)# event manager
directory user policy disk0:/eem_policies

Registers a user-defined EEM policy.event manager policy policy-name username username
[persist-time [seconds | infinite] | type [system | user]]

Step 9

Example:

RP/0/RP0/CPU0:Router(config)# event manager policy
packagetest.tcl username user_a

Manually runs an EEM policy.event manager run policy [argument]

Example:

Step 10

RP/0/RP0/CPU0:Router(config)# event manager run
packagetest.tcl

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 11

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

EEM Policies Using TCL: Details
This section provides detailed conceptual information about programming EEM policies using TCL.

Tcl Policy Structure and Requirements

All EEM policies share the same structure, shown in the below figure. There are two parts of an EEM policy
that are required: the event_register Tcl command extension and the body. The remaining parts of the policy
are optional: environmental must defines, namespace import, entry status, and exit status.

Configuring and Managing Embedded Event Manager Policies
25

Configuring and Managing Embedded Event Manager Policies
EEM Policies Using TCL: Details

Figure 1: Tcl Policy Structure and Requirements

The start of every policy must describe and register the event to detect using an event_register Tcl command
extension. This part of the policy schedules the running of the policy. The following example Tcl code shows
how to register the event_register_timer Tcl command extension:

::cisco::eem::event_register_timer cron name crontimer2 cron_entry $_cron_entry maxrun 240

The following example Tcl code shows how to check for, and define, some environment variables:

Check if all the env variables that we need exist.
If any of them does not exist, print out an error msg and quit.
if {![info exists _email_server]} {
set result \
"Policy cannot be run: variable _email_server has not been set"

error $result $errorInfo
}
if {![info exists _email_from]} {
set result \
"Policy cannot be run: variable _email_from has not been set"

error $result $errorInfo
}
if {![info exists _email_to]} {
set result \
"Policy cannot be run: variable _email_to has not been set"

error $result $errorInfo
)

The namespace import section is optional and defines code libraries. The following example Tcl code shows
how to configure a namespace import section:

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

The body of the policy is a required structure and might contain the following:

• The event_reqinfo event information Tcl command extension that is used to query the EEM for
information about the detected event.

• The action Tcl command extensions, such as action_syslog, that are used to specify actions specific to
EEM.

• The system information Tcl command extensions, such as sys_reqinfo_routername, that are used to
obtain general system information.

Configuring and Managing Embedded Event Manager Policies
26

Configuring and Managing Embedded Event Manager Policies
EEM Policies Using TCL: Details

• Use of the SMTP library (to send e-mail notifications) or the CLI library (to run CLI commands) from
a policy.

• The context_save and con text_retrieve Tcl command extensions that are used to save Tcl variables
for use by other policies.

EEM Entry Status

The entry status part of an EEM policy is used to determine if a prior policy has been run for the same event,
and to determine the exit status of the prior policy. If the _entry_status variable is defined, a prior policy has
already run for this event. The value of the _entry_status variable determines the return code of the prior
policy.

Entry status designations may use one of three possible values:

• 0 (previous policy was successful)

• Not=0 (previous policy failed),

• Undefined (no previous policy was executed).

EEM Exit Status

When a policy finishes running its code, an exit value is set. The exit value is used by the EEM to determine
whether or not to apply the default action for this event, if any. A value of zero means that the default action
should not be performed. A value of nonzero means that the default action should be performed. The exit
status is passed to subsequent policies that are run for the same event.

EEM Policies and Cisco Error Number

Some EEMTcl command extensions set a Cisco Error Number Tcl global variable known as _cerrno.Whenever
the _cerrno variable is set, the other Tcl global variables are derived from _cerrno and are set along with it
(_cerr_sub_num, _cerr_sub_err, and _cerr_str).

The _cerrno variable set by a command can be represented as a 32-bit integer of the following form:

XYSSSSSSSSSSSSSEEEEEEEEPPPPPPPPP

This 32-bit integer is divided up into the variables shown in this table.

Table 7: _cerrno: 32-Bit Error Return Value Variables

DescriptionVariable

The error class (indicates the severity of the error). This variable corresponds to the first
two bits in the 32-bit error return value; 10 in the preceding case, which indicates
CERR_CLASS_WARNING:

See #unique_115 unique_115_Connect_42_tab_1130225 for the four possible error
class encodings specific to this variable.

XY

The subsystem number that generated the most recent error(13 bits = 8192 values). This
is the next 13 bits of the 32-bit sequence, and its integer value is contained in
$_cerr_sub_num.

SSSSSSSSSSSSSS

Configuring and Managing Embedded Event Manager Policies
27

Configuring and Managing Embedded Event Manager Policies
EEM Policies Using TCL: Details

DescriptionVariable

The subsystem specific error number (8 bits = 256 values). This segment is the next 8
bits of the 32-bit sequence, and the string corresponding to this error number is contained
in $_cerr_sub_err.

EEEEEEEE

For example, the following error return value might be returned from an EEM Tcl command extension:

862439AE

This number is interpreted as the following 32-bit value:

10000110001001000011100110101110

The variable, XY, references the possible error class encodings shown in this table.

Table 8: Error Class Encodings

Error ClassError Return
Value

CERR_CLASS_SUCCESS00

CERR_CLASS_INFO01

CERR_CLASS_WARNING10

CERR_CLASS_FATAL11

An error return value of zero means SUCCESS.

Configuration Examples for Writing Embedded Event Manager
Policies Using Tcl

EEM Sample Policy Descriptions
The configuration example features one sample EEM policy. The tm_cli_cmd.tcl runs using a configurable
CRON entry. This policy executes a configurable CLI command and e-mails the results.

Registration of Some EEM Policies
Some EEM policies must be unregistered and then reregistered if an EEM environment variable is modified
after the policy is registered. The event_register_ xxx statement that appears at the start of the policy contains
some of the EEM environment variables, and this statement is used to establish the conditions under which
the policy is run. If the environment variables are modified after the policy has been registered, the conditions
may become invalid. To avoid any errors, the policymust be unregistered and then reregistered. The following
variables are affected:

Configuring and Managing Embedded Event Manager Policies
28

Configuring and Managing Embedded Event Manager Policies
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

• _cron_entry in the tm_cli_cmd.tcl policy

• _syslog_pattern in the sl_intf_down.tcl policy

Basic Configuration Details for All Sample Policies
To allow e-mail to be sent from the Embedded Event Manager (EEM), the hostname and domain-name
commands must be configured. The EEM environment variables must also be set. After a Cisco IOS XR7
software image has been booted, use the following initial configuration, substituting appropriate values for
your network:

hostname cpu
example.com
event manager environment _email_server ms.example.net
event manager environment _email_to username@example.net
event manager environment _email_from engineer@example.net
event manager environment _email_cc projectgroup@example.net
event manager environment _cron_entry 0-59/2 0-23/1 * * 0-7
event manager environment _show_cmd show event manager policy registered
event manager environment _syslog_pattern .*UPDOWN.*FastEthernet0/0
event manager environment _config_cmd1 interface Ethernet1/0
event manager environment _config_cmd2 no shutdown
event manager environment _crash_reporter_debug 1
event manager environment _crash_reporter_url
http://www.example.com/fm/interface_tm.cgi
end

Embedded Event Manager Policy Tcl Command Extension
Reference

This section documents the following EEM policy Tcl command extension categories:

For all EEM Tcl command extensions, if there is an error, the returned Tcl result string contains the error
information.

Note

Arguments for which no numeric range is specified take an integer from -2147483648 to 2147483647, inclusive.Note

The following conventions are used for the syntax documented on the Tcl command extension pages:

• An optional argument is shown within square brackets, for example:

[type ?]

• A question mark ? represents a variable to be entered.

• Choices between arguments are represented by pipes, for example:

Configuring and Managing Embedded Event Manager Policies
29

Configuring and Managing Embedded Event Manager Policies
Basic Configuration Details for All Sample Policies

[queue_priority low|normal|high]

Embedded Event Manager Event Registration Tcl Command Extensions
The following EEM event registration Tcl command extensions are supported:

event_register_appl
Registers for an application event. Use this Tcl command extension to run a policy when an application event
is triggered following another policy's execution of an event_publish Tcl command extension; the event_publish
command extension publishes an application event.

To register for an application event, a subsystem must be specified. Either a Tcl policy or the internal EEM
API can publish an application event. If the event is being published by a policy, the sub_system argument
that is reserved for a policy is 798.

Syntax

event_register_appl [sub_system ?] [type ?] [queue_priority low|normal|high] [maxrun ?]
[nice 0|1]

Arguments

(Optional) Number assigned to the EEM policy that published the application event. The
number is set to 798, because all other numbers are reserved for Cisco use. If this argument
is not specified, all components are matched.

sub_system

(Optional) Event subtype within the specified event. The sub_system and type arguments
uniquely identify an application event. If this argument is not specified, all types are matched.
If you specify this argument, you must choose an integer between 1 and 4294967295,
inclusive.

Theremust be amatch of component and type between the event_publish command extension
and the event_register_appl command extension for the publishing and registration to work.

type

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

If multiple conditions exist, the application event is raised when all the conditions are satisfied.

Result String

None

Configuring and Managing Embedded Event Manager Policies
30

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Event Registration Tcl Command Extensions

Set _cerrno

No

event_register_cli
Registers for a CLI event. Use this Tcl command extension to run a policy when a CLI command of a specific
pattern is entered based on pattern matching performed against an expanded CLI command. This will be
implemented as a new process in IOS-XR which will be dlrsc_tracker. This ED will not do pattern match on
admin commands of XR.

You can enter an abbreviated CLI command, such as sh mem summary, and the parser will expand the
command to show memory summary to perform the matching. The functionality provided in the CLI event
detector only allows a regular expression pattern match on a valid XR CLI command itself. This does not
include text after a pipe character when redirection is used.

Note

Syntax

event_register_cli [tag ?]
[occurs ?] [period ?] pattern ? [default ?] [queue_priority low|normal|high|last] [maxrun
?] [nice 0|1]

Arguments

(Optional) String identifying a tag that can be used with the trigger Tcl command extension to support
multiple event statements within a Tcl script.

tag

(Optional) The number of occurrences before the event is raised. If this argument is not specified,
the event is raised on the first occurrence. If this argument is specified, it must be an integer between
1 and 4294967295, inclusive.

occurs

(Optional) Specifies a backward looking time window in which all CLI events must occur (the occurs
clause must be satisfied) in order for an event to be published (specified in SSSSSSSSSS[.MMM]
format, where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMMmust be an integer representing milliseconds between 0 and 999). If this
argument is not specified, the most recent event is used.

period

(Mandatory) Specifies the regular expression used to perform the CLI command pattern match.pattern

(Optional) The time period during which the CLI event detector waits for the policy to exit (specified
in SSSSSSSSSS[.MMM] format, where SSSSSSSSSS must be an integer representing seconds
between 0 and 4294967295, inclusive, and whereMMMmust be an integer representingmilliseconds
between 0 and 999). If the default time period expires before the policy exits, the default action will
be executed. The default action is to run the command. If this argument is not specified, the default
time period is set to 30 seconds.

default

If multiple conditions are specified, the CLI event will be raised when all the conditions are matched.

Result String

None

Configuring and Managing Embedded Event Manager Policies
31

Configuring and Managing Embedded Event Manager Policies
event_register_cli

Set _cerrno

No

event_register_config
Registers for a change in running configuration. Use this Tcl command extension to trigger a policy when
there is any configuration change. This will be implemented as a new process in IOS-XR which will be
dlrsc_tracker. This ED will not check for admin config changes in XR.

Syntax

event_register_config
[queue_priority low|normal|high|last]
[maxrun ?] [nice 0|1]

Arguments

(Optional) Priority level at which the script will be queued:

• queue_priority low-Specifies that the script is to be queued at the lowest of the three
priority levels.

• queue_priority normal-Specifies that the script is to be queued at a priority level greater
than low priority but less than high priority.

• queue_priority high-Specifies that the script is to be queued at the highest of the three
priority levels.

• queue_priority last-Specifies that the script is to be queued at the lowest priority level.

If more than one script is registered with the "queue_priority_last" argument set, these scripts
will execute in the order in which the events are published.

The queue_priority argument specifies the queuing priority, but not the execution
priority, of the script being registered.

Note

If this argument is not specified, the default queuing priority is normal.

queue_priority

(Optional)Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format, where
SSSSSSSSSSmust be an integer representing seconds between 0 and 4294967295, inclusive,
and where MMM must be an integer representing milliseconds between 0 and 999). If this
argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

If multiple conditions are specified, the syslog event will be raised when all the conditions are matched.

Result String

None

Set _cerrno

No

Configuring and Managing Embedded Event Manager Policies
32

Configuring and Managing Embedded Event Manager Policies
event_register_config

event_register_none
Registers for an event that is triggered by the event manager run command. These events are handled by the
None event detector that screens for this event.

Syntax

event_register_none [queue_priority low|normal|high] [maxrun ?] [nice 0|1]

Arguments

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

Result String

None

Set _cerrno

No

event_register_oir
Registers for an online insertion and removal (OIR) event. Use this Tcl command extension to run a policy
on the basis of an event raised when a hardware card OIR occurs. These events are handled by the OIR event
detector that screens for this event.

Syntax

event_register_oir [queue_priority low|normal|high] [maxrun ?] [nice 0|1]

Arguments

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

Configuring and Managing Embedded Event Manager Policies
33

Configuring and Managing Embedded Event Manager Policies
event_register_none

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

Result String

None

Set _cerrno

No

event_register_process
Registers for a process event. Use this Tcl command extension to run a policy on the basis of an event raised
when a Cisco IOS XR7 software modularity process starts or stops. These events are handled by the system
manager event detector that screens for this event. This Tcl command extension is supported only in software
modularity images.

Syntax

event_register_process abort|term|start
[job_id ?] [instance ?] [path ?] [node ?]
[queue_priority low|normal|high] [maxrun ?] [nice 0|1] [tag?]

Arguments

(Mandatory) Abnormal process termination. Process may terminate because of exiting with
a nonzero exit status, receiving a kernel-generated signal, or receiving a SIGTERM or
SIGKILL signal that is not sent because of user request.

abort

(Mandatory) Normal process termination.term

(Mandatory) Process start.start

(Optional) Number assigned to the EEM policy that published the process event. Number is
set to 798, because all other numbers are reserved for Cisco use.

job_id

(Optional) Process instance ID. If specified, this argument must be an integer between 1 and
4294967295, inclusive.

instance

(Optional) Process pathname (regular expression string).path

(Optional) The node name is a string that consists of the word "node" followed by two fields
separated by a slash (/), using the following format:

node<slot-number>/<cpu-number>

The slot-number is the hardware slot number. The cpu-number is the hardware CPU number.
For example, the SP CPU in a Supervisor card on a Cisco Catalyst 6500 series switch located
in slot 0 would be specified as node0/0. The RP CPU in a Supervisor card on a Cisco Catalyst
6500 series switch located in slot 0 would be addressed as node0/1. If the node argument
is not specified, the default node specification is always the regular expression pattern match
of * representing all applicable nodes.

node

Configuring and Managing Embedded Event Manager Policies
34

Configuring and Managing Embedded Event Manager Policies
event_register_process

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

Tag is acceptable but ignored. Cisco IOS EEM scripts with the tag option can run in an
Cisco IOS XR7 software environment without any error. Since Cisco IOS XR7 software
does not support multiple events, the tag has no effect.

tag

If an optional argument is not specified, the event matches all possible values of the argument. If multiple
arguments are specified, the process event will be raised when all the conditions are matched.

Result String

None

Set _cerrno

No

event_register_snmp_notification
Registers for a Simple NetworkManagement Protocol (SNMP) notification trap event. Use this Tcl command
extension to run a policy when an SNMP trap with the specified SNMP object ID (oid) is encountered on a
specific interface or address. The snmp-server manager CLI command must be enabled for the SNMP
notifications to work using Tcl policies.

Syntax

event_register_snmp_notification [tag ?] oid ? oid_val ?
op {gt|ge|eq|ne|lt|le}
[src_ip_address ?]
[dest_ip_address ?]
[queue_priority {normal|low|high|last}]
[maxrun ?]
[nice {0|1}]
[default ?]
[direction {incoming|outgoing}]
[msg_op {drop|send}]

Argument

(Optional) String identifying a tag that can be used with the trigger Tcl command extension
to support multiple event statements within a Tcl script.

tag

(Mandatory) OID number of the data element in SNMP dot notation (for example,
1.3.6.1.2.1.2.1.0). If the specified OID ends with a dot (.), then all OIDs that start with the
OID number before the dot are matched. It supports all OID supported by SNMP in XR.

oid

Configuring and Managing Embedded Event Manager Policies
35

Configuring and Managing Embedded Event Manager Policies
event_register_snmp_notification

(Mandatory) OID value with which the current OID data value should be compared to
decide if the SNMP event should be raised.

oid_val

(Mandatory) Comparison operator used to compare the current OID data value with the
SNMP Protocol Data Unit (PDU) OID data value; if this is true, an event is raised.

op

(Optional) Source IP address where the SNMP notification trap originates. The default is
all; it is set to receive SNMP notification traps from all IP addresses. This option will not
be supported in XR as src_ip_address is only for incoming trap which is not supported in
EEM XR.

src_ip_address

(Optional) Destination IP address where the SNMP notification trap is sent. The default is
all; it is set to receive SNMP traps from all destination IP addresses.

dest_ip_address

(Optional) Specifies the time period in seconds during which the snmp notification event
detector waits for the policy to exit. Thetime periodis specified in ssssssssss[.mmm] format,
where ssssssssss must be an integer representing seconds between 0 and 4294967295 and
mmm must be an integer representing milliseconds between 0 and 999

default

(Optional) The direction of the incoming or outgoing SNMP trap or inform PDU to filter.
The default value is outgoing. For XR direction incoming will not be supported and policy
registration will fail if user provides direction as incoming.

direction

(Optional) The action to be taken on the SNMP PDU (drop it or send it) once the event is
triggered. The default value is send. For XR msg_op drop will not be supported and policy
registration will fail if user provides msg_op as drop.

msg_op

Result String

None

Set _cerrno

No

event_register_syslog
Registers for a syslog event. Use this Tcl command extension to trigger a policy when a syslog message of a
specific pattern is logged after a certain number of occurrences during a certain period of time.

Syntax

event_register_syslog [occurs ?] [period ?] pattern ?
[priority all|emergencies|alerts|critical|errors|warnings|notifications|
informational|debugging|0|1|2|3|4|5|6|7]
[queue_priority low|normal|high]
[severity_fatal] [severity_critical] [severity_major]
[severity_minor] [severity_warning] [severity_notification]
[severity_normal] [severity_debugging]
[maxrun ?] [nice 0|1]

Configuring and Managing Embedded Event Manager Policies
36

Configuring and Managing Embedded Event Manager Policies
event_register_syslog

Arguments

(Optional) Number of occurrences before the event is raised; if not specified, the event is
raised on the first occurrence. If specified, the value must be greater than 0.

occurs

(Optional) Time interval, in seconds and milliseconds, during which the one or more
occurrences must take place in order to raise an event (specified in SSSSSSSSSS[.MMM]
format where SSSSSSSSSS must be an integer number representing seconds between 0 and
4294967295, inclusive, and where MMM represents milliseconds and must be an integer
number between 0 and 999). If this argument is not specified, no period check is applied.

period

(Mandatory) Regular expression used to perform syslogmessage patternmatch. This argument
is what the policy uses to identify the logged syslog message.

pattern

(Optional) Message priority to be screened. If this argument is specified, only messages that
are at the specified logging priority level, or lower, are screened. If this argument is not
specified, the default priority is 0.

priority

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

If multiple conditions are specified, the syslog event is raised when all the conditions are matched.

Table 9: Severity Level Mapping For Syslog Events

DescriptionSyslog PrioritySeverity Keyword

System is unusable.LOG_EMERG (0)severity_fatal

Critical conditions, immediate attention required.LOG_ALERT (1)severity_critical

Major conditions.LOG_CRIT (2)severity_major

Minor conditions.LOG_ERR (3)severity_minor

Warning conditions.LOG_WARNING(4)severity_warning

Basic notification, informational messages.LOG_NOTICE (5)severity_notification

Normal event, indicates returning to a normal state.LOG_INFO (6)severity_normal

Debugging messages.LOG_DEBUG (7)severity_debugging

Configuring and Managing Embedded Event Manager Policies
37

Configuring and Managing Embedded Event Manager Policies
event_register_syslog

Result String

None

Set _cerrno

No

event_register_timer
Creates a timer and registers for a timer event as both a publisher and a subscriber. Use this Tcl command
extension when there is a need to trigger a policy that is time specific or timer based. This event timer is both
an event publisher and a subscriber. The publisher part indicates the conditions under which the named timer
is to go off. The subscriber part identifies the name of the timer to which the event is subscribing.

Both the CRON and absolute time specifications work on local time.Note

Syntax

event_register_timer watchdog|countdown|absolute|cron
[name ?] [cron_entry ?]
[time ?]
[queue_priority low|normal|high] [maxrun ?]
[nice 0|1]

Arguments

(Mandatory) Watchdog timer.watchdog

(Mandatory) Countdown timer.countdown

(Mandatory) Absolute timer.absolute

(Mandatory) CRON timer.cron

(Optional) Name of the timer.name

Configuring and Managing Embedded Event Manager Policies
38

Configuring and Managing Embedded Event Manager Policies
event_register_timer

(Optional) Entry must be specified if the CRON timer type is specified. Must not be specified
if any other timer type is specified. A cron_entry is a partial UNIX crontab entry (the first
five fields) as used with the UNIX CRON daemon.

A cron_entry specification consists of a text string with five fields. The fields are separated
by spaces. The fields represent the time and date when CRON timer events will be triggered.
The fields are described in Table 10: Time and Date When CRON Events Will Be Triggered
, on page 40.

Ranges of numbers are allowed. Ranges are two numbers separated with a hyphen. The
specified range is inclusive. For example, 8-11 for an hour entry specifies execution at hours
8, 9, 10, and 11.

A field may be an asterisk (*), which always stands for "first-last."

Lists are allowed. A list is a set of numbers (or ranges) separated by commas. Examples:
"1,2,5,9" and "0-4,8-12".

Step values can be used in conjunction with ranges. Following a range with "/<number>"
specifies skips of the number's value through the range. For example, "0-23/2" is used in the
hour field to specify an event that is triggered every other hour. Steps are also permitted after
an asterisk, so if you want to say "every two hours", use "*/2".

Names can also be used for the month and the day of week fields. Use the first three letters
of the particular day or month (case does not matter). Ranges or lists of names are not allowed.

The day on which a timer event is triggered can be specified by two fields: day of month and
day of week. If both fields are restricted (that is, are not *), an event will be triggered when
either field matches the current time. For example, "30 4 1,15 * 5" would cause an event to
be triggered at 4:30 a.m. on the 1st and 15th of each month, plus every Friday.

Instead of the first five fields, one of seven special strings may appear. These seven special
strings are described in Table 11: Special Strings for cron_entry, on page 40

Example 1: "0 0 1,15 * 1" would trigger an event at midnight on the 1st and 15th of each
month, as well as on every Monday. To specify days by only one field, the other field should
be set to *; "0 0 * * 1" would trigger an event at midnight only on Mondays.

Example 2: "15 16 1 * *" would trigger an event at 4:15 p.m. on the first day of each month.

Example 3: "0 12 * * 1-5" would trigger an event at noon on Monday through Friday of each
week.

Example 4: "@weekly" would trigger an event at midnight once a week on Sunday.

cron_entry

(Optional) Time must be specified if a timer type other than CRON is specified. Must not be
specified if the CRON timer type is specified. For watchdog and countdown timers, the
number of seconds andmilliseconds until the timer expires; for the absolute timer, the calendar
time of the expiration time. Time is specified in SSSSSSSSSS[.MMM] format, where
SSSSSSSSSSmust be an integer representing seconds between 0 and 4294967295, inclusive,
andwhereMMMmust be an integer representingmilliseconds between 0 and 999. An absolute
expiration date is the number of seconds and milliseconds since January 1, 1970. If the date
specified has already passed, the timer expires immediately.

time

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

Configuring and Managing Embedded Event Manager Policies
39

Configuring and Managing Embedded Event Manager Policies
event_register_timer

(Optional)Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format, where
SSSSSSSSSSmust be an integer representing seconds between 0 and 4294967295, inclusive,
and where MMM must be an integer representing milliseconds between 0 and 999). If this
argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

Table 10: Time and Date When CRON Events Will Be Triggered

Allowed ValuesField

0-59minute

0-23hour

1-31day of
month

1-12 (or names, see Table 11: Special Strings for cron_entry, on page 40)month

0-7 (0 or 7 is Sun, or names; see Table 11: Special Strings for cron_entry, on page 40)day of week

Table 11: Special Strings for cron_entry

MeaningString

Trigger once a year, "0 0 1 1 *".@yearly

Same as @yearly.@annually

Trigger once a month, "0 0 1 * *".@monthly

Trigger once a week, "0 0 * * 0".@weekly

Trigger once a day, "0 0 * * *".@daily

Same as @daily.@midnight

Trigger once an hour, "0 * * * *".@hourly

Result String

None

Set _cerrno

No

See Also

#unique_131

Configuring and Managing Embedded Event Manager Policies
40

Configuring and Managing Embedded Event Manager Policies
event_register_timer

event_register_timer_subscriber
Registers for a timer event as a subscriber. Use this Tcl command extension to identify the name of the timer
to which the event timer, as a subscriber, wants to subscribe. The event timer depends on another policy or
another process to actually manipulate the timer. For example, let policyB act as a timer subscriber policy,
but policyA (although it does not need to be a timer policy) uses register_timer, timer_arm, or timer_cancel
Tcl command extensions to manipulate the timer referenced in policyB.

Syntax

event_register_timer_subscriber watchdog|countdown|absolute|cron
name ? [queue_priority low|normal|high] [maxrun ?] [nice 0|1]

Arguments

(Mandatory) Watchdog timer.watchdog

(Mandatory) Countdown timer.countdown

(Mandatory) Absolute timer.absolute

(Mandatory) CRON timer.cron

(Mandatory) Name of the timer.name

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

An EEM policy that registers for a timer event or a counter event can act as both publisher and subscriber.Note

Result String

None

Set _cerrno

No

See Also

event_register_timer, on page 38

Configuring and Managing Embedded Event Manager Policies
41

Configuring and Managing Embedded Event Manager Policies
event_register_timer_subscriber

event_register_track
Registers for a report event from the Object Tracking component in XR. Use this Tcl command extension to
trigger a policy on the basis of a Object Tracking component report for a specified track. This will be
implemented as a new process in IOS-XR which will be dlrsc_tracker. Please note that the manageability
package should be installed for the track ED to be functional.

Syntax

event_register_track ? [tag ?] [state up|down|any] [queue_priority low|normal|high|last]
[maxrun ?]
[nice 0|1]

Arguments

(Mandatory) Tracked object name.? (represents a
string)

(Optional) String identifying a tag that can be used with the trigger Tcl command extension
to support multiple event statements within a Tcl script.

tag

(Optional) Specifies that the tracked object transition will cause an event to be raised. If
up is specified, an event will be raised when the tracked object transitions from a down
state to an up state. If down is specified, an event will be raised when the tracked object
transitions from an up state to a down state. If any is specified, an event will be raised when
the tracked object transitions to or from any state.

state

(Optional) Priority level at which the script will be queued:

• queue_priority low-Specifies that the script is to be queued at the lowest of the three
priority levels.

• queue_priority normal-Specifies that the script is to be queued at a priority level greater
than low priority but less than high priority.

• queue_priority high-Specifies that the script is to be queued at the highest of the three
priority levels.

• queue_priority last-Specifies that the script is to be queued at the lowest priority level.

If more than one script is registered with the "queue_priority_last" argument set, these
scripts will execute in the order in which the events are published.

The queue_priority argument specifies the queuing priority, but not the
execution priority, of the script being registered.

Note

If this argument is not specified, the default queuing priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy
is run at a run-time priority that is less than the default priority. The default value is 0.

nice

Configuring and Managing Embedded Event Manager Policies
42

Configuring and Managing Embedded Event Manager Policies
event_register_track

If an optional argument is not specified, the event matches all possible values of the argument.

Result String

None

Set _cerrno

No

Embedded Event Manager Event Information Tcl Command Extension
The following EEM Event Information Tcl Command Extensions are supported:

event_reqinfo
Queries information for the event that caused the current policy to run.

Syntax

event_reqinfo

Arguments

None

Result String

If the policy runs successfully, the characteristics for the event that triggered the policy will be returned. The
following sections show the characteristics returned for each event detector.

For EEM_EVENT_APPLICATION

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"sub_system 0x%x type %u data1 {%s} data2 {%s} data3 {%s} data4 {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

The time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Number assigned to the EEM policy that published the application event.
Number is set to 798 because all other numbers are reserved for Cisco use.

sub_system

Configuring and Managing Embedded Event Manager Policies
43

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Event Information Tcl Command Extension

DescriptionEvent Type

Event subtype within the specified component.type

Argument data that is passed to the application-specific event when the
event is published. The data is character text, an environment variable, or
a combination of the two.

data1data2data3data4

For EEM_EVENT_COUNTER

"event_id %u event_type %u event_type_string {%s} %u event_pub_sec %u event_pub_msec %u"
"name {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

The time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Counter name.name

For EEM_EVENT_NONE

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

For EEM_EVENT_OIR

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"slot %u event %s"

Configuring and Managing Embedded Event Manager Policies
44

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event ID.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Slot number for the affected card.slot

Indicates a string, removed or online, that represents either an OIR removal
event or an OIR insertion event.

event

For EEM_EVENT_PROCESS (Software Modularity Only)

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"sub_system 0x%x instance %u process_name {%s} path {%s} exit_status 0x%x"
"respawn_count %u last_respawn_sec %ld last_respawn_msec %ld fail_count %u"
"dump_count %u node_name {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the
same event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to
the Embedded Event Manager.

event_pub_secevent_pub_msec

Number assigned to the EEM policy that published the
application-specific event. Number is set to 798 because all other
numbers are reserved for Cisco use.

sub_system

Process instance ID.instance

Process name.process_name

Process absolute name including path.path

Process last exit status.exit_status

Number of times that the process was restarted.respawn_count

Calendar time when the last restart occurred.last_respawn_seclast_respawn_msec

Configuring and Managing Embedded Event Manager Policies
45

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionEvent Type

Number of restart attempts of the process that failed. This count will
be reset to 0 when the process is successfully restarted.

fail_count

DescriptionEvent Type

Number of core dumps taken of the process.dump_count

Name of the node that the process is on. The node name is a string that
consists of the word “node” followed by two fields separated by a slash
character using the following format:

node<slot-number>/<cpu-number>

The slot-number is the hardware slot number. The cpu-number is the
hardware CPU number.

node_name

For EEM_EVENT_RF

"event_id %u event_type %u event_type_string {%s} %u event_pub_sec %u event_pub_msec %u"
"event {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

RF progression or status event notification that caused this event to be
published.

event

For EEM_EVENT_SYSLOG_MSG

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"msg {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

Configuring and Managing Embedded Event Manager Policies
46

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionEvent Type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Last syslog message that matches the pattern.msg

For EEM_EVENT_TIMER_ABSOLUTE

EEM_EVENT_TIMER_COUNTDOWN

EEM_EVENT_TIMER_WATCHDOG

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"timer_type %s timer_time_sec %ld timer_time_msec %ld"
"timer_remain_sec %ld timer_remain_msec %ld"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the
same event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to
the Embedded Event Manager.

event_pub_secevent_pub_msec

Type of the timer. Can be one of the following:

• watchdog

• countdown

• absolute

timer_type

Time when the timer expired.timer_time_sectimer_time_msec

Remaining time before the next expiration.timer_remain_sectimer_remain_msec

For EEM_EVENT_TIMER_CRON

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"timer_type {%s} timer_time_sec %ld timer_time_msec %ld"

Configuring and Managing Embedded Event Manager Policies
47

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Type of the timer.timer_type

Time when the timer expired.timer_time_sectimer_time_msec

For EEM_EVENT_TRACK

"event_id %u event_type %u event_type_string {%s} %u event_pub_sec %u event_pub_msec %u"
"track_number {%u} track_state {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event ID.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Number of the tracked object that caused the event to be triggered.track_number

State of the tracked object when the event was triggered; valid states are up
or down.

track_state

For EEM_EVENT_WDSYSMON

"event_id %u event_type %u event_type_string {%s} %u event_pub_sec %u event_pub_msec %u"
"num_subs %u"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Configuring and Managing Embedded Event Manager Policies
48

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionEvent Type

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Subevent number.num_subs

Where the subevent info string is for a deadlock subevent:

"{type %s num_entries %u entries {entry 1, entry 2, ...}}"

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Number of processes and threads in the deadlock.num_entries

Information of processes and threads in the deadlock.entries

Where each entry is:

"{node {%s} procname {%s} pid %u tid %u state %s b_node %s b_procname %s b_pid %u
b_tid %u}"

Assume that the entry describes the scenario in which Process A thread m is blocked on process B thread n:

DescriptionSubevent
Type

Name of the node that process A thread m is on.node

Name of process A.procname

Process ID of process A.pid

Thread ID of process A thread m.tid

Configuring and Managing Embedded Event Manager Policies
49

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionSubevent
Type

Thread state of process A thread m. Can be one of the following:

• STATE_CONDVAR

• STATE_DEAD

• STATE_INTR

• STATE_JOIN

• STATE_MUTEX

• STATE_NANOSLEEP

• STATE_READY

• STATE_RECEIVE

• STATE_REPLY

• STATE_RUNNING

• STATE_SEM

• STATE_SEND

• STATE_SIGSUSPEND

• STATE_SIGWAITINFO

• STATE_STACK

• STATE_STOPPED

• STATE_WAITPAGE

• STATE_WAITTHREAD

state

Name of the node that process B thread is on.b_node

Name of process B.b_procname

Process ID of process B.b_pid

Thread ID of process B thread n; 0 means that process A thread m is blocked on all threads
of process B.

b_tid

For dispatch_mgr Subevent

"{type %s node {%s} procname {%s} pid %u value %u sec %ld msec %ld}"

Configuring and Managing Embedded Event Manager Policies
50

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Name of the node that the POSIX process is on.node

POSIX process name for this subevent.procname

POSIX process ID for this subevent.

The three preceding fields describe the owner process of this dispatch manager.Note

pid

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the number of events processed by the dispatch manager is in the
latest sample. If a time window is specified and is greater than zero in the event registration
Tcl command extension, the total number of events processed by this dispatch manager is
in the given time window.

value

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, the sec and msec variables are the
actual time difference between the time stamps of the oldest and latest samples in this time
window.

secmsec

For cpu_proc Subevent

"{type %s node {%s} procname {%s} pid %u value %u sec %ld msec %ld}"

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Name of the node that the POSIX process is on.node

POSIX process name for this subevent.procname

POSIX process ID for this subevent.

The three preceding fields describe the process whose CPU utilization is being
monitored.

Note

pid

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the process CPU utilization is in the latest sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the
averaged process CPU utilization is in the given time window.

value

Configuring and Managing Embedded Event Manager Policies
51

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionSubevent
Type

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, the sec and msec variables are the
actual time difference between the time stamps of the oldest and latest samples in this time
window.

secmsec

For cpu_tot Subevent

"{type %s node {%s} value %u sec %ld msec %ld}"

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Name of the node on which the total CPU utilization is being monitored.node

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the total CPU utilization is in the latest sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the
averaged total CPU utilization is in the given time window.

value

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, the sec and msec variables are the
actual time difference between the time stamps of the oldest and latest samples in this time
window.

secmsec

For mem_proc Subevent

"{type %s node {%s} procname {%s} pid %u is_percent %s value %u diff %d sec %ld msec %ld}"

DescriptionSubevent Type

Type of wdsysmon subevent.type

Name of the node that the POSIX process is on.node

POSIX process name for this subevent.procname

POSIX process ID for this subevent.

The three preceding fields describe the process whose memory usage is being
monitored.

Note

pid

Can be either TRUE or FALSE. TRUE means that the value is a percentage value; FALSE
means that the value is an absolute value (may be an averaged value).

is_percent

Configuring and Managing Embedded Event Manager Policies
52

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionSubevent Type

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the process used memory is in the latest sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the
averaged process used memory utilization is in the given time window.

value

DescriptionSubevent Type

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the diff is the percentage difference between the first process used
memory sample ever collected and the latest process usedmemory sample. If a timewindow
is specified and is greater than zero in the event registration Tcl command extension, the
diff is the percentage difference between the oldest and latest process used memory
utilization in the specified time window.

diff

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, the sec and msec variables are the
actual time difference between the time stamps of the oldest and latest samples in this time
window.

secmsec

If the is_percent argument is FALSE, and the sec and msec arguments are specified as 0 or are unspecified
in the event registration Tcl command extension:

• value is the process used memory in the latest sample.

• diff is 0.

• sec and msec are both 0.

If the is_percent argument is FALSE, and a time window is specified as greater than zero in the event
registration Tcl command extension:

• value is the averaged process used memory sample value in the specified time window.

• diff is 0.

• sec andmsec are both the actual time difference between the time stamps of the oldest and latest samples
in this time window.

If the is_percent argument is TRUE, and a time window is specified as greater than zero in the event registration
Tcl command extension:

• value is 0.

• diff is the percentage difference between the oldest and latest process used memory samples in the
specified time window.

• sec and msec are the actual time difference between the time stamps of the oldest and latest process used
memory samples in this time window.

If the is_percent argument is TRUE, and the sec and msec arguments are specified as 0 or are unspecified in
the event registration Tcl command extension:

• value is 0.

Configuring and Managing Embedded Event Manager Policies
53

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

• diff is the percentage difference between the first process used memory sample ever collected and the
latest process used memory sample.

• sec and msec are the actual time difference between the time stamps of the first process used memory
sample ever collected and the latest process used memory sample.

For mem_tot_avail Subevent

"{type %s node {%s} is_percent %s used %u avail %u diff %d sec %ld msec %ld}"

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Name of the node for which the total available memory is being monitored.node

Can be either TRUE or FALSE. TRUE means that the value is a percentage value; FALSE
means that the value is an absolute value (may be an averaged value).

is_percent

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the total used memory is in the latest sample. If a time window is
specified and is greater than zero in the event registration Tcl command extension, the
averaged total used memory utilization is in the given time window.

used

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the avail is in the latest total available memory sample. If a time
window is specified and is greater than zero in the event registration Tcl command extension,
the avail is the total available memory utilization in the specified time window.

avail

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the diff is the percentage difference between the first total available
memory sample ever collected and the latest total available memory sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the diff
is the percentage difference between the oldest and latest total available memory utilization
in the specified time window.

diff

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, they are the actual time difference
between the time stamps of the oldest and latest samples in this time window.

secmsec

If the is_percent argument is FALSE, and the sec and msec arguments are specified as 0 or are unspecified
in the event registration Tcl command extension:

• used is the total used memory in the latest sample.

• avail is the total available memory in the latest sample.

• diff is 0.

• sec and msec are both 0.

Configuring and Managing Embedded Event Manager Policies
54

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

If the is_percent argument is FALSE, and a time window is specified as greater than zero in the event
registration Tcl command extension:

• used is 0.

• avail is the averaged total available memory sample value in the specified time window.

• diff is 0.

• sec and msec are both the actual time difference between the time stamps of the oldest and latest total
available memory samples in this time window.

If the is_percent argument is TRUE, and a time window is specified as greater than zero in the event registration
Tcl command extension:

• used is 0.

• avail is 0.

• diff is the percentage difference between the oldest and latest total available memory samples in the
specified time window.

• sec and msec are both the actual time difference between the time stamps of the oldest and latest total
available memory samples in this time window.

If the is_percent argument is TRUE, and the sec and msec arguments are specified as 0 or are unspecified in
the event registration Tcl command extension:

• used is 0.

• avail is 0.

• diff is the percentage difference between the first total available memory sample ever collected and the
latest total available memory sample.

• sec and msec are the actual time difference between the time stamps of the first total available memory
sample ever collected and the latest total available memory sample.

For mem_tot_used Subevent

"{type %s node {%s} is_percent %s used %u avail %u diff %d sec %ld msec %ld}"

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Name of the node for which the total used memory is being monitored.node

Can be either TRUE or FALSE. TRUE means that the value is a percentage value; FALSE
means that the value is an absolute value (may be an averaged value).

is_percent

Configuring and Managing Embedded Event Manager Policies
55

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionSubevent
Type

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the total used memory is in the latest sample. If a time window is
specified and is greater than zero in the event registration Tcl command extension, the
averaged total used memory utilization is in the given time window.

used

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the avail is in the latest total used memory sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the
avail is the total used memory utilization in the specified time window.

avail

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the diff is the percentage difference between the first total used
memory sample ever collected and the latest total used memory sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the diff
is the percentage difference between the oldest and latest total used memory utilization in
the specified time window.

diff

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, the sec and msec variables are the
actual time difference between the time stamps of the oldest and latest samples in this time
window.

secmsec

If the is_percent argument is FALSE, and the sec and msec arguments are specified as 0 or are unspecified
in the event registration Tcl command extension:

• used is the total used memory in the latest sample,

• avail is the total available memory in the latest sample,

• diff is 0,

• sec and msec are both 0,

If the is_percent argument is FALSE, and a time window is specified as greater than zero in the event
registration Tcl command extension:

• used is the averaged total used memory sample value in the specified time window,

• avail is 0,

• diff is 0,

• sec and msec are both the actual time difference between the time stamps of the oldest and latest total
used memory samples in this time window,

If the is_percent argument is TRUE, and a time window is specified as greater than zero in the event registration
Tcl command extension:

• used is 0.

• avail is 0.

Configuring and Managing Embedded Event Manager Policies
56

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

• diff is the percentage difference between the oldest and latest total used memory samples in the specified
time window.

• sec and msec are both the actual time difference between the time stamps of the oldest and latest total
used memory samples in this time window.

If the is_percent argument is TRUE, and the sec and msec arguments are specified as 0 or are unspecified in
the event registration Tcl command extension:

• used is 0.

• avail is 0.

• diff is the percentage difference between the first total used memory sample ever collected and the latest
total used memory sample.

• sec andmsec are the actual time difference between the time stamps of the first total usedmemory sample
ever collected and the latest total used memory sample.

Set _cerrno

Yes

Embedded Event Manager Action Tcl Command Extensions

action_process
Starts, restarts, or kills a Software Modularity process. This Tcl command extension is supported only in
Software Modularity images.

Syntax

action_process start|restart|kill [job_id ?]
[process_name ?] [instance ?]

Arguments

(Mandatory) Specifies that a process is to be started.start

(Mandatory) Specifies that a process is to be restarted.restart

(Mandatory) Specifies that a process is to be stopped (killed).kill

(Optional) System manager assigned job ID for the process. If you specify this argument, it
must be an integer between 1 and 4294967295, inclusive.

job_id

(Optional) Process name. Either job_id must be specified or process_name and instance must
be specified.

process_name

(Optional) Process instance ID. If you specify this argument, it must be an integer between 1
and 4294967295, inclusive.

instance

Configuring and Managing Embedded Event Manager Policies
57

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Action Tcl Command Extensions

Result String

None

Set _cerrno

Yes

(_cerr_sub_err = 14) FH_ENOSUCHACTION (unknown action type)

This error means that the action command requested was unknown.

(_cerr_sub_num = 425, _cerr_sub_err = 1) SYSMGR_ERROR_INVALID_ARGS (Invalid arguments
passed)

This error means that the arguments passed in were invalid.

(_cerr_sub_num = 425, _cerr_sub_err = 2) SYSMGR_ERROR_NO_MEMORY (Could not allocate required
memory)

This error means that an internal SYSMGR request for memory failed.

(_cerr_sub_num = 425, _cerr_sub_err = 5) SYSMGR_ERROR_NO_MATCH (This process is not known
to sysmgr)

This error means that the process name was not known.

(_cerr_sub_num = 425, _cerr_sub_err = 14) SYSMGR_ERROR_TOO_BIG (outside the valid limit)

This error means that an object size exceeded its maximum.

(_cerr_sub_num = 425, _cerr_sub_err = 15) SYSMGR_ERROR_INVALID_OP (Invalid operation for
this process)

This error means that the operation was invalid for the process.

action_program
Allows a Tcl script to run a POSIX process (program), optionally with a given argument string, environment
string, Standard Input (stdin) pathname, Standard Output (stdout) pathname, or Standard Error (stderr)
pathname. This Tcl command extension is supported only in Software Modularity images.

Syntax

action_program path ? [argv ?] [envp ?] [stdin ?] [stdout ?] [stderr ?]

Arguments

(Mandatory) Pathname of a program to run.path

Configuring and Managing Embedded Event Manager Policies
58

Configuring and Managing Embedded Event Manager Policies
action_program

(Optional) Argument string of the program.argv

(Optional) Environment string of the program.envp

(Optional) Pathname for stdin.stdin

(Optional) Pathname for stdout.stdout

(Optional) Pathname for stderr.stderr

Result String

None

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 14) FH_ENOSUCHACTION (unknown action type)

This error means that the action command requested was unknown.

(_cerr_sub_err = 34) FH_EMAXLEN (maximum length exceeded)

This error means that the object length or number exceeded the maximum.

action_script
Allows a Tcl script to enable or disable the execution of all Tcl scripts (enables or disables the script scheduler).

Syntax

action_script [status enable|disable]

Arguments

(Optional) Flag to indicate script execution status. If this argument is set to enable, script execution is
enabled; if this argument is set to disable, script execution is disabled.

status

Result String

None

Configuring and Managing Embedded Event Manager Policies
59

Configuring and Managing Embedded Event Manager Policies
action_script

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 14) FH_ENOSUCHACTION (unknown action type)

This error means that the action command requested was unknown.

(_cerr_sub_err = 52) FH_ECONFIG (configuration error)

This error means that a configuration error has occurred.

action_setnode
Switches to the given node to enable subsequent EEM commands to be performed on that node. The following
EEM commands use action_setnode to set their target node:

• action_process

• sys_reqinfo_proc

• sys_reqinfo_proc_all

• sys_reqinfo_crash_history

• sys_reqinfo_proc_version

Syntax

action_setnode [node ?]

Arguments

(Mandatory)Name of the node.node

Result String

None

Set _cerrno

Yes

action_syslog
Logs a message.

Configuring and Managing Embedded Event Manager Policies
60

Configuring and Managing Embedded Event Manager Policies
action_setnode

Syntax

action_syslog [priority emerg|alert|crit|err|warning|notice|info|debug]
[msg ?]

Arguments

(Optional) Action_syslog message facility level. If this argument is not specified, the default priority
is LOG_INFO.

priority

(Optional) Message to be logged.msg

Result String

None

Set _cerrno

Yes

(_cerr_sub_err = 14) FH_ENOSUCHACTION (unknown action type)

This error means that the action command requested was unknown.

Embedded Event Manager Utility Tcl Command Extensions

appl_read
Reads Embedded Event Manager (EEM) application volatile data. This Tcl command extension provides
support for reading EEM application volatile data. EEM application volatile data can be published by a
Cisco IOS XR7 software process that uses the EEM application publish API. EEM application volatile data
cannot be published by an EEM policy.

Currently there are no Cisco IOS XR software processes that publish application volatile data.Note

Syntax

appl_read name ? length ?

Arguments

(Mandatory) Name of the application published string data.name

(Mandatory) Length of the string data to read.Must be an integer number between 1 and 4294967295,
inclusive.

length

Configuring and Managing Embedded Event Manager Policies
61

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Utility Tcl Command Extensions

Result String

data %s

Where data is the application published string data to be read.

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 7) FH_ENOSUCHKEY (could not find key)

This error means that the application event detector info key or other ID was not found.

(_cerr_sub_err = 9) FH_EMEMORY (insufficient memory for request)

This error means that an internal EEM request for memory failed.

appl_reqinfo
Retrieves previously saved information from the Embedded Event Manager (EEM). This Tcl command
extension provides support for retrieving information from EEM that has been previously saved with a unique
key, which must be specified in order to retrieve the information. Note that retrieving the information deletes
it from EEM. It must be resaved if it is to be retrieved again.

Syntax

appl_reqinfo key ?

Arguments

(Mandatory) String key of the data.key

Result String

data %s

Where data is the application string data to be retrieved.

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

Configuring and Managing Embedded Event Manager Policies
62

Configuring and Managing Embedded Event Manager Policies
appl_reqinfo

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 7) FH_ENOSUCHKEY (could not find key)

This error means that the application event detector info key or other ID was not found.

appl_setinfo
Saves information in the EEM. This Tcl command extension provides support for saving information in the
EEM that can be retrieved later by the same policy or by another policy. A unique key must be specified. This
key allows the information to be retrieved later.

Syntax

appl_setinfo key ? data ?

Arguments

(Mandatory) String key of the data.key

(Mandatory) Application string data to save.data

Result String

None

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 8) FH_EDUPLICATEKEY (duplicate appl info key)

This error means that the application event detector info key or other ID was a duplicate.

(_cerr_sub_err = 9) FH_EMEMORY (insufficient memory for request)

This error means that an internal EEM request for memory failed.

(_cerr_sub_err = 34) FH_EMAXLEN (maximum length exceeded)

This error means that the object length or number exceeded the maximum.

Configuring and Managing Embedded Event Manager Policies
63

Configuring and Managing Embedded Event Manager Policies
appl_setinfo

(_cerr_sub_err = 43) FH_EBADLENGTH (bad API length)

This error means that the API message length was invalid.

counter_modify
Modifies a counter value.

Syntax

counter_modify event_id ? val ? op nop|set|inc|dec

Arguments

(Mandatory) Counter event ID returned by the register_counter Tcl command extension. Must
be an integer between 0 and 4294967295, inclusive.

event_id

(Mandatory)

• If op is set, this argument represents the counter value that is to be set.

• If op is inc, this argument is the value by which to increment the counter.

• If op is dec, this argument is the value by which to decrement the counter.

val

(Mandatory)

• nop—Retrieves the current counter value.

• set—Sets the counter value to the given value.

• inc—Increments the counter value by the given value.

• dec—Decrements the counter value by the given value.

op

Result String

val_remain %d

Where val_remain is the current value of the counter.

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

Configuring and Managing Embedded Event Manager Policies
64

Configuring and Managing Embedded Event Manager Policies
counter_modify

(_cerr_sub_err = 11) FH_ENOSUCHESID (unknown event specification ID)

This error means that the event specification ID could not be matched when the event was being registered
or that an event detector internal event structure is corrupt.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 30) FH_ECTBADOPER (bad counter threshold operator)

This error means that the counter event detector set or modify operator was invalid.

timer_arm
Arms a timer. The type could be CRON, watchdog, countdown, or absolute.

Syntax

timer_arm event_id ? cron_entry ?|time ?

Arguments

(Mandatory)Timer event ID returned by the register_timer command extension. Must be an
integer between 0 and 4294967295, inclusive.

event_id

(Mandatory)Must exist if the timer type is CRON.Must not exist for other types of timer. CRON
timer specification uses the format of the CRON table entry.

cron_entry

(Mandatory) Must exist if the timer type is not CRON. Must not exist if the timer type is CRON.
For watchdog and countdown timers, the number of seconds and milliseconds until the timer
expires; for an absolute timer, the calendar time of the expiration time (specified in
SSSSSSSSSS[.MMM] format, where SSSSSSSSSS must be an integer representing seconds
between 0 and 4294967295, inclusive, and where MMM must be an integer representing
milliseconds between 0 and 999). An absolute expiration date is the number of seconds and
milliseconds since January 1, 1970. If the date specified has already passed, the timer expires
immediately.

time

Result String

sec_remain %ld msec_remain %ld

Where sec_remain and msec_remain are the remaining time before the next expiration of the timer.

A value of 0 is returned for the sec_remain and msec_remain arguments if the timer type is CRON.Note

Configuring and Managing Embedded Event Manager Policies
65

Configuring and Managing Embedded Event Manager Policies
timer_arm

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 6) FH_EBADEVENTTYPE (unknown EEM event type)

This error means that the event type specified in the internal event specification was invalid.

(_cerr_sub_err = 9) FH_EMEMORY (insufficient memory for request)

This error means that an internal EEM request for memory failed.

(_cerr_sub_err = 11) FH_ENOSUCHESID (unknown event specification ID)

This error means that the event specification ID could not be matched when the event was being registered
or that an event detector internal event structure is corrupt.

(_cerr_sub_err = 12) FH_ENOSUCHEID (unknown event ID)

This error means that the event ID could not be matched when the event was being registered or that an event
detector internal event structure is corrupt.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 27) FH_ETMDELAYZR (zero delay time)

This error means that the time specified to arm a timer was zero.

(_cerr_sub_err = 42) FH_ENOTREGISTERED (request for event spec that is unregistered)

This error means that the event was not registered.

(_cerr_sub_err = 54) FH_EFDUNAVAIL (connection to event detector unavailable)

This error means that the event detector was unavailable.

(_cerr_sub_err = 56) FH_EFDCONNERR (event detector connection error)

This error means that the EEM event detector that handles this request is not available.

Configuring and Managing Embedded Event Manager Policies
66

Configuring and Managing Embedded Event Manager Policies
timer_arm

timer_cancel
Cancels a timer.

Syntax

timer_cancel event_id ?

Arguments

(Mandatory) Timer event ID returned by the register_timer command extension. Must be an
integer between 0 and 4294967295, inclusive.

event_id

Result String

sec_remain %ld msec_remain %ld

Where sec_remain and msec_remain are the remaining time before the next expiration of the timer.

A value of 0 will be returned for sec_remain and msec_remain if the timer type is CRON.Note

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 6) FH_EBADEVENTTYPE (unknown EEM event type)

This error means that the event type specified in the internal event specification was invalid.

(_cerr_sub_err = 7) FH_ENOSUCHKEY (could not find key)

This error means that the application event detector info key or other ID was not found.

(_cerr_sub_err = 11) FH_ENOSUCHESID (unknown event specification ID)

This error means that the event specification ID could not be matched when the event was being registered
or that an event detector internal event structure is corrupt.

(_cerr_sub_err = 12) FH_ENOSUCHEID (unknown event ID)

This error means that the event ID could not be matched when the event was being registered or that an event
detector internal event structure is corrupt.

Configuring and Managing Embedded Event Manager Policies
67

Configuring and Managing Embedded Event Manager Policies
timer_cancel

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 54) FH_EFDUNAVAIL (connection to event detector unavailable)

This error means that the event detector was unavailable.

(_cerr_sub_err = 56) FH_EFDCONNERR (event detector connection error)

This error means that the EEM event detector that handles this request is not available.

Embedded Event Manager System Information Tcl Command Extensions

All EEM system information commands—sys_reqinfo _xxx—have the Set _cerrno section set to yes.Note

sys_reqinfo_cpu_all
Queries the CPU utilization of the top processes (both POSIX processes and IOS processes) during a specified
time period and in a specified order. This Tcl command extension is supported only in Software Modularity
images.

Syntax

sys_reqinfo_cpu_all order cpu_used [sec ?] [msec ?] [num ?]

Arguments

(Mandatory) Order used for sorting the CPU utilization of processes.order

(Mandatory) Specifies that the average CPU utilization, for the specified time window, will be
sorted in descending order.

cpu_used

(Optional) Time period, in seconds and milliseconds, during which the average CPU utilization
is calculated. Must be integers in the range from 0 to 4294967295. If not specified, or if both sec
and msec are specified as 0, the most recent CPU sample is used.

secmsec

(Optional) Number of entries from the top of the sorted list of processes to be displayed. Must be
an integer in the range from 1 to 4294967295. Default value is 5.

num

Result String

rec_list {{process CPU info string 0},{process CPU info string 1}, ...}

Where each process CPU info string is:

Configuring and Managing Embedded Event Manager Policies
68

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager System Information Tcl Command Extensions

pid %u name {%s} cpu_used %u

Marks the start of the process CPU information list.rec_list

Process ID.pid

Process name.name

Specifies that if sec and msec are specified with a number greater than zero, the average percentage
is calculated from the process CPU utilization during the specified time period. If sec and msec
are both zero or not specified, the average percentage is calculated from the process CPU utilization
in the latest sample.

cpu_used

Set _cerrno

Yes

sys_reqinfo_crash_history
Queries the crash information of all processes that have ever crashed. This Tcl command extension is supported
only in Software Modularity images.

Syntax

sys_reqinfo_crash_history

Arguments

None

Result String

rec_list {{crash info string 0},{crash info string 1}, ...}

Where each crash info string is:

job_id %u name {%s} respawn_count %u fail_count %u dump_count %u
inst_id %d exit_status 0x%x exit_type %d proc_state {%s} component_id 0x%x
crash_time_sec %ld crash_time_msec %ld

System manager assigned job ID for the process. An integer between 1 and 4294967295,
inclusive.

job_id

Process name.name

Total number of restarts for the process.respawn_count

Number of restart attempts of the process. This count is reset to zero when the process is
successfully restarted.

fail_count

Number of core dumps performed.dump_count

Process instance ID.inst_id

Configuring and Managing Embedded Event Manager Policies
69

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_crash_history

Last exit status of the process.exit_status

Last exit type.exit_type

Sysmgr process states. One of the following: error, forced_stop, hold, init, ready_to_run,
run, run_rnode, stop, waitEOltimer, wait_rnode, wait_spawntimer, wait_tpl.

proc_state

Version manager assigned component ID for the component to which the process belongs.component_id

Seconds and milliseconds since January 1, 1970, which represent the last time the process
crashed.

crash_time_sec

crash_time_msec

Set _cerrno

Yes

sys_reqinfo_mem_all
Queries the memory usage of the top processes (both POSIX and IOS) during a specified time period and in
a specified order. This Tcl command extension is supported only in Software Modularity images.

Syntax

sys_reqinfo_mem_all order allocates|increase|used [sec ?] [msec ?] [num ?]

Arguments

(Mandatory) Order used for sorting the memory usage of processes.order

(Mandatory) Specifies that the memory usage is sorted by the number of process allocations during
the specified time window, and in descending order.

allocates

(Mandatory) Specifies that the memory usage is sorted by the percentage of process memory
increase during the specified time window, and in descending order.

increase

(Mandatory) Specifies that the memory usage is sorted by the current memory used by the process.used

(Optional) Time period, in seconds and milliseconds, during which the process memory usage is
calculated. Must be integers in the range from 0 to 4294967295. If both sec and msec are specified
and are nonzero, the number of allocations is the difference between the number of allocations in
the oldest and latest samples collected in the time period. The percentage is calculated as the the
percentage difference between the memory used in the oldest and latest samples collected in the
time period. If not specified, or if both sec andmsec are specified as 0, the first sample ever collected
is used as the oldest sample; that is, the time period is set to be the time from startup until the
current moment.

secmsec

(Optional) Number of entries from the top of the sorted list of processes to be displayed. Must be
an integer in the range from 1 to 4294967295. Default value is 5.

num

Configuring and Managing Embedded Event Manager Policies
70

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_mem_all

Result String

rec_list {{process mem info string 0},{process mem info string 1}, ...}

Where each process mem info string is:

pid %u name {%s} delta_allocs %d initial_alloc %u current_alloc %u percent_increase %d

Marks the start of the process memory usage information list.rec_list

Process ID.pid

Process name.name

Specifies the difference between the number of allocations in the oldest and latest samples
collected in the time period.

delta_allocs

Specifies the amount of memory, in kilobytes, used by the process at the start of the time
period.

initial_alloc

Specifies the amount of memory, in kilobytes, currently used by the process.current_alloc

Specifies the percentage difference between the memory used in the oldest and latest
samples collected in the time period. The percentage difference can be expressed as
current_alloc minus initial_alloc times 100 and divided by initial_alloc.

percent_increase

Set _cerrno

Yes

sys_reqinfo_proc
Queries the information about a single POSIX process. This Tcl command extension is supported only in
Software Modularity images.

Syntax

sys_reqinfo_proc job_id ?

Arguments

(Mandatory) System manager assigned job ID for the process. Must be an integer between 1 and
4294967295, inclusive.

job_id

Result String

job_id %u component_id 0x%x name {%s} helper_name {%s} helper_path {%s} path {%s}
node_name {%s} is_respawn %u is_mandatory %u is_hold %u dump_option %d
max_dump_count %u respawn_count %u fail_count %u dump_count %u
last_respawn_sec %ld last_respawn_msec %ld inst_id %u proc_state %s

Configuring and Managing Embedded Event Manager Policies
71

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_proc

level %d exit_status 0x%x exit_type %d

System manager assigned job ID for the process. An integer between
1 and 4294967295, inclusive.

job_id

Version manager assigned component ID for the component to which
the process belongs.

component_id

Process name.name

Helper process name.helper_name

Executable path of the helper process.helper_path

Executable path of the process.path

Systemmanager assigned node name for the node to which the process
belongs.

node_name

Flag that specifies that the process can be respawned.is_respawn

Flag that specifies that the process must be alive.is_mandatory

Flag that specifies that the process is spawned until called by the API.is_hold

Core dumping options.dump_option

Maximum number of core dumping permitted.max_dump_count

Total number of restarts for the process.respawn_count

Number of restart attempts of the process. This count is reset to zero
when the process is successfully restarted.

fail_count

Number of core dumps performed.dump_count

Seconds and milliseconds in POSIX timer units since January 1, 1970,
which represent the last time the process was started.

last_respawn_seclast_respawn_msec

Process instance ID.inst_id

Sysmgr process states. One of the following: error, forced_stop, hold,
init, ready_to_run, run, run_rnode, stop, waitEOltimer, wait_rnode,
wait_spawntimer, wait_tpl.

proc_state

Process run level.level

Last exit status of the process.exit_status

Last exit type.exit_type

Set _cerrno

Yes

Configuring and Managing Embedded Event Manager Policies
72

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_proc

sys_reqinfo_proc_all
Queries the information of all POSIX processes. This Tcl command extension is supported only in Software
Modularity images.

Syntax

sys_reqinfo_proc_all

Arguments

None

Result String

rec_list {{process info string 0}, {process info string 1},...}

Where each process info string is the same as the result string of the sysreq_info_proc Tcl command extension.

Set _cerrno

Yes

sys_reqinfo_proc_version
Queries the version of the given process.

Syntax

sys_reqinfo_proc_version [job_id ?]

Arguments

(Mandatory) System manager assigned job ID for the process.

The integer number must be inclusively between 1 and 2147483647.

job_id

Result String

version_id %02d.%02d.%04d

Where version_id is the version manager that is assigned the version number of the process.

Set _cerrno

Yes

sys_reqinfo_routername
Queries the router name.

Configuring and Managing Embedded Event Manager Policies
73

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_proc_all

Syntax

sys_reqinfo_routername

Arguments

None

Result String

routername %s

Where routername is the name of the router.

Set _cerrno

Yes

sys_reqinfo_syslog_freq
Queries the frequency information of all syslog events.

Syntax

sys_reqinfo_syslog_freq

Arguments

None

Result String

rec_list {{event frequency string 0}, {log freq str 1}, ...}

Where each event frequency string is:

time_sec %ld time_msec %ld match_count %u raise_count %u occurs %u
period_sec %ld period_msec %ld pattern {%s}

Seconds and milliseconds in POSIX timer units since January 1, 1970, which
represent the time the last event was raised.

time_sectime_msec

Number of times that a syslog message matches the pattern specified by this syslog
event specification since event registration.

match_count

Number of times that this syslog event was raised.raise_count

Number of occurrences needed in order to raise the event; if not specified, the event
is raised on the first occurrence.

occurs

Number of occurrences must occur within this number of POSIX timer units in
order to raise the event; if not specified, the period check does not apply.

period_secperiod_msec

Configuring and Managing Embedded Event Manager Policies
74

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_syslog_freq

Regular expression used to perform syslog message pattern matching.pattern

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 9) FH_EMEMORY (insufficient memory for request)

This error means that an internal EEM request for memory failed.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 45) FH_ESEQNUM (sequence or workset number out of sync)

This error means that the event detector sequence or workset number was invalid.

(_cerr_sub_err = 46) FH_EREGEMPTY (registration list is empty)

This error means that the event detector registration list was empty.

(_cerr_sub_err = 54) FH_EFDUNAVAIL (connection to event detector unavailable)

This error means that the event detector was unavailable.

sys_reqinfo_syslog_history
Queries the history of the specified syslog message.

Syntax

sys_reqinfo_syslog_history

Arguments

None

Result String

rec_list {{log hist string 0}, {log hist str 1}, ...}

Where each log hist string is:

Configuring and Managing Embedded Event Manager Policies
75

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_syslog_history

time_sec %ld time_msec %ld msg {%s}

Seconds and milliseconds since January 1, 1970, which represent the time the message was
logged.

time_sec

time_msec

Syslog message.msg

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 44) FH_EHISTEMPTY (history list is empty)

This error means that the history list was empty.

(_cerr_sub_err = 45) FH_ESEQNUM (sequence or workset number out of sync)

This error means that the event detector sequence or workset number was invalid.

(_cerr_sub_err = 54) FH_EFDUNAVAIL (connection to event detector unavailable)

This error means that the event detector was unavailable.

sys_reqinfo_stat
Queries the value of the statistic entity that is specified by name, and optionally the first modifier and the
second modifier.

Syntax

sys_reqinfo_stat [name ?][mod1 ?][mod2 ?]

Arguments

(Mandatory) Statistics data element name.name

(Optional) Statistics data element modifier
1.

mod_1

Configuring and Managing Embedded Event Manager Policies
76

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_stat

(Optional) Statistics data element modifier
2.

mod_2

Result String

name %s value %s

Statistics data element name.name

Value string of the statistics data element.value

Set _cerrno

Yes

sys_reqinfo_snmp
Queries the value of the entity specified by a Simple Network Management Protocol (SNMP) object ID.

Syntax

sys_reqinfo_snmp oid ? get_type exact|next

Arguments

(Mandatory) SNMP OID in dot notation (for example, 1.3.6.1.2.1.2.1.0).oid

(Mandatory) Type of SNMP get operation that needs to be applied to the specified oid. If the
get_type is "exact," the value of the specified oid is retrieved; if the get_type is "next," the value
of the lexicographical successor to the specified oid is retrieved.

get_type

Result String

oid {%s} value {%s}

SNMP OID.oid

Value string of the associated SNMP data element.value

SMTP Library Command Extensions
All Simple Mail Transfer Protocol (SMTP) library command extensions belong to the ::cisco::lib namespace.

To use this library, the user needs to provide an e-mail template file. The template file can include Tcl global
variables so that the e-mail service and the e-mail text can be configured through the
event manager environmentCisco IOSXR7 software command-line interface (CLI) configuration command.
There are commands in this library to substitute the global variables in the e-mail template file and to send
the desired e-mail context with the To address, CC address, From address, and Subject line properly configured
using the configured e-mail server.

Configuring and Managing Embedded Event Manager Policies
77

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_snmp

E-Mail Template

The e-mail template file has the following format:

Mailservername:<space><the list of candidate SMTP server addresses>
From:<space><the e-mail address of sender>
To:<space><the list of e-mail addresses of recipients>
Cc:<space><the list of e-mail addresses that the e-mail will be copied to>
Subject:<subject line>
<a blank line>
<body>

The template normally includes Tcl global variables to be configured.Note

The following is a sample e-mail template file:

Mailservername: $_email_server
From: $_email_from
To: $_email_to
Cc: $_email_cc
Subject: From router $routername: Process terminated

process name: $process_name
subsystem: $sub_system
exit status: $exit_status
respawn count: $respawn_count

Exported Tcl Command Extensions

smtp_send_email
Given the text of an e-mail template file with all global variables already substituted, sends the e-mail out
using SimpleMail Transfer Protocol (SMTP). The e-mail template specifies the candidatemail server addresses,
To addresses, CC addresses, From address, subject line, and e-mail body.

A list of candidate e-mail servers can be provided so that the library will try to connect the servers on the list
one by one until it can successfully connect to one of them.

Note

Syntax

smtp_send_email text

Arguments

(Mandatory) Text of an e-mail template file with all global variables already substituted.text

Result String

None

Configuring and Managing Embedded Event Manager Policies
78

Configuring and Managing Embedded Event Manager Policies
smtp_send_email

Set _cerrno

• Wrong 1st line format—Mailservername:list of server names.

• Wrong 2nd line format—From:from-address.

• Wrong 3rd line format—To:list of to-addresses.

• Wrong 4th line format—CC:list of cc-addresses.

• Error connecting to mail server:—$sock closed by remote server (where $sock is the name of the socket
opened to the mail server).

• Error connecting to mail server:—$sock reply code is $k instead of the service ready greeting (where
$sock is the name of the socket opened to the mail server; $k is the reply code of $sock).

• Error connecting to mail server:—cannot connect to all the candidate mail servers.

• Error disconnecting from mail server:—$sock closed by remote server (where $sock is the name of the
socket opened to the mail server).

Sample Scripts

After all needed global variables in the e-mail template are defined:

if [catch {smtp_subst [file join $tcl_library email_template_sm]} result] {
puts stderr $result
exit 1

}
if [catch {smtp_send_email $result} result] {

puts stderr $result
exit 1

}

smtp_subst
Given an e-mail template file e-mail_template, substitutes each global variable in the file by its user-defined
value. Returns the text of the file after substitution.

Syntax

smtp_subst e-mail_template

Arguments

(Mandatory) Name of an e-mail template file in which global variables need to be substituted
by a user-defined value. An example filename could be /disk0://example.template which
represents a file named example.template in a top-level directory on an ATA flash disk in
slot 0.

e-mail_template

Result String

The text of the e-mail template file with all the global variables substituted.

Configuring and Managing Embedded Event Manager Policies
79

Configuring and Managing Embedded Event Manager Policies
smtp_subst

Set _cerrno

• cannot open e-mail template file

• cannot close e-mail template file

CLI Library Command Extensions
All command-line interface (CLI) library command extensions belong to the ::cisco::eem namespace.

This library provides users the ability to run CLI commands and get the output of the commands in Tcl. Users
can use commands in this library to spawn an exec and open a virtual terminal channel to it, write the command
to execute to the channel so that the command will be executed by exec, and read back the output of the
command.

There are two types of CLI commands: interactive commands and non-interactive commands.

For interactive commands, after the command is entered, there will be a “Q&A” phase in which the router
will ask for different user options, and the user is supposed to enter the answer for each question. Only after
all the questions have been answered properly will the command run according to the user’s options until
completion.

For noninteractive commands, once the command is entered, the command will run to completion. To run
different types of commands using an EEM script, different CLI library command sequences should be used,
which are documented in the Using the CLI Library to Run a Noninteractive Command, on page 85 and in
the Using the CLI Library to Run an Interactive Command, on page 86.

Exported Tcl Command Extensions

cli_close
Closes the exec process and releases the VTY and the specified channel handler connected to the command-line
interface (CLI).

Syntax

cli_close fd tty_id

Arguments

(Mandatory) The CLI channel handler.fd

(Mandatory) The TTY ID returned from the cli_open command extension.tty_id

Result String

None

Set _cerrno

Cannot close the channel.

Configuring and Managing Embedded Event Manager Policies
80

Configuring and Managing Embedded Event Manager Policies
CLI Library Command Extensions

cli_exec
Writes the command to the specified channel handler to execute the command. Then reads the output of the
command from the channel and returns the output.

Syntax

cli_exec fd cmd

Arguments

(Mandatory) The command-line interface (CLI) channel handler.fd

(Mandatory) The CLI command to execute.cmd

Result String

The output of the CLI command executed.

Set _cerrno

Error reading the channel.

cli_get_ttyname
Returns the real and pseudo tty names for a given TTY ID.

Syntax

cli_get_ttyname tty_id

Arguments

(Mandatory) The TTY ID returned from the cli_open command extension.tty_id

Result String

pty %s tty %s

Set _cerrno

None

cli_open
Allocates a vty, creates an EXEC command-line interface (CLI) session, and connects the vty to a channel
handler. Returns an array including the channel handler.

Configuring and Managing Embedded Event Manager Policies
81

Configuring and Managing Embedded Event Manager Policies
cli_exec

Each call to cli_open initiates a Cisco IOS XR7 software EXEC session that allocates a Cisco IOS XR7
software vty. The vty remains in use until the cli_close routine is called. Vtys are allocated from the pool of
vtys that are configured using the line vty vty-pool CLI configuration command. Be aware that the cli_open
routine fails when two or fewer vtys are available, preserving the remaining vtys for Telnet use.

Note

Syntax

cli_open

Arguments

None

Result String

"tty_id {%s} pty {%d} tty {%d} fd {%d}"

DescriptionEvent
Type

TTY ID.tty_id

PTY device name.pty

TTY device name.tty

CLI channel
handler.

fd

Set _cerrno

• Cannot get pty for EXEC.

• Cannot create an EXEC CLI session.

• Error reading the first prompt.

cli_read
Reads the command output from the specified command-line interface (CLI) channel handler until the pattern
of the router prompt occurs in the contents read. Returns all the contents read up to the match.

Syntax

cli_read fd

Arguments

(Mandatory) CLI channel handler.fd

Configuring and Managing Embedded Event Manager Policies
82

Configuring and Managing Embedded Event Manager Policies
cli_read

Result String

All the contents read.

Set _cerrno

Cannot get router name.

This Tcl command extension blocks waiting for the router prompt to show up in the contents read.Note

cli_read_drain
Reads and drains the command output of the specified command-line interface (CLI) channel handler. Returns
all the contents read.

Syntax

cli_read_drain fd

Arguments

(Mandatory) The CLI channel handler.fd

Result String

All the contents read.

Set _cerrno

None

cli_read_line
Reads one line of the command output from the specified command-line interface (CLI) channel handler.
Returns the line read.

Syntax

cli_read_line fd

Arguments

(Mandatory) CLI channel handler.fd

Result String

The line read.

Configuring and Managing Embedded Event Manager Policies
83

Configuring and Managing Embedded Event Manager Policies
cli_read_drain

Set _cerrno

None

This Tcl command extension blocks waiting for the end of line to show up in the contents read.Note

cli_read_pattern
Reads the command output from the specified command-line interface (CLI) channel handler until the pattern
that is to be matched occurs in the contents read. Returns all the contents read up to the match.

The pattern matching logic attempts a match by looking at the command output data as it is delivered from
the Cisco IOS XR7 software command. The match is always done on the most recent 256 characters in the
output buffer unless there are fewer characters available, in which case the match is done on fewer characters.
If more than 256 characters in the output buffer are required for the match to succeed, the pattern will not
match.

Note

Syntax

cli_read_pattern fd ptn

Arguments

(Mandatory) CLI channel handler.fd

(Mandatory) Pattern to be matched when reading the command output from the channel.ptn

Result String

All the contents read.

Set _cerrno

None

This Tcl command extension blocks waiting for the specified pattern to show up in the contents read.Note

cli_write
Writes the command that is to be executed to the specified CLI channel handler. The CLI channel handler
executes the command.

Configuring and Managing Embedded Event Manager Policies
84

Configuring and Managing Embedded Event Manager Policies
cli_read_pattern

Syntax

cli_write fd cmd

Arguments

(Mandatory) The CLI channel handler.fd

(Mandatory) The CLI command to execute.cmd

Result String

None

Set _cerrno

None

Sample Usage

As an example, use configuration CLI commands to bring up Ethernet interface 1/0:

if [catch {cli_open} result] {
puts stderr $result
exit 1
} else {
array set cli1 $result
}
if [catch {cli_exec $cli1(fd) "config t"} result] {
puts stderr $result
exit 1
}
if [catch {cli_exec $cli1(fd) "interface Ethernet1/0"} result] {
puts stderr $result
exit 1
}
if [catch {cli_exec $cli1(fd) "no shut"} result] {
puts stderr $result
exit 1
}
if [catch {cli_exec $cli1(fd) "end"} result] {
puts stderr $result
exit 1
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} } result] {
puts stderr $result
exit 1

Using the CLI Library to Run a Noninteractive Command

To run a noninteractive command, use the cli_exec command extension to issue the command, and then wait
for the complete output and the router prompt. For example, the following shows the use of configuration
CLI commands to bring up Ethernet interface 1/0:

if [catch {cli_open} result] {
error $result $errorInfo
} else {

Configuring and Managing Embedded Event Manager Policies
85

Configuring and Managing Embedded Event Manager Policies
cli_write

set fd $result
}
if [catch {cli_exec $fd "config t"} result] {
error $result $errorInfo
}
if [catch {cli_exec $fd "interface Ethernet1/0"} result] {
error $result $errorInfo
}
if [catch {cli_exec $fd "no shut"} result] {
error $result $errorInfo
}
if [catch {cli_exec $fd "end"} result] {
error $result $errorInfo
}
if [catch {cli_close $fd} result] {
error $result $errorInfo
}

Using the CLI Library to Run an Interactive Command

To run interactive commands, three phases are needed:

• Phase 1: Issue the command using the cli_write command extension.

• Phase 2: Q&A Phase. Use the cli_read_pattern command extension to read the question (the regular
pattern that is specified to match the question text) and the cli_write command extension to write back
the answers alternately.

• Phase 3: Noninteractive phase. All questions have been answered, and the commandwill run to completion.
Use the cli_read command extension to wait for the complete output of the command and the router
prompt.

For example, use CLI commands to do squeeze bootflash: and save the output of this command in the Tcl
variable cmd_output.

if [catch {cli_open} result] {
error $result $errorInfo
} else {
array set cli1 $result
}

Phase 1: issue the command
if [catch {cli_write $cli1(fd) "squeeze bootflash:"} result] {
error $result $errorInfo
}

Phase 2: Q&A phase
wait for prompted question:
All deleted files will be removed. Continue? [confirm]
if [catch {cli_read_pattern $cli1(fd) "All deleted"} result] {
error $result $errorInfo
}
write a newline character
if [catch {cli_write $cli1(fd) "\n"} result] {
error $result $errorInfo
}
wait for prompted question:
Squeeze operation may take a while. Continue? [confirm]
if [catch {cli_read_pattern $cli1(fd) "Squeeze operation"} result] {
error $result $errorInfo
}

Configuring and Managing Embedded Event Manager Policies
86

Configuring and Managing Embedded Event Manager Policies
cli_write

write a newline character
if [catch {cli_write $cli1(fd) "\n"} result] {
error $result $errorInfo
}

Phase 3: noninteractive phase
wait for command to complete and the router prompt
if [catch {cli_read $cli1(fd) } result] {
error $result $errorInfo
} else {
set cmd_output $result
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {
error $result $errorInfo
}

The following example causes a router to be reloaded using the CLI reload command. Note that the EEM
action_reload command accomplishes the same result in a more efficient manner, but this example is presented
to illustrate the flexibility of the CLI library for interactive command execution.

1. execute the reload command
if [catch {cli_open} result] {

error $result $errorInfo
} else {

array set cli1 $result
}
if [catch {cli_write $cli1(fd) "reload"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_read_pattern $cli1(fd) ".*(System configuration has been modified. Save\\\?
\\\[yes/no\\\]:)"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_write $cli1(fd) "no"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_read_pattern $cli1(fd) ".*(Proceed with reload\\\? \\\[confirm\\\])"} result]
{

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_write $cli1(fd) "y"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo
}

Tcl Context Library Command Extensions
All the Tcl context library command extensions belong to the ::cisco::eem namespace.

Configuring and Managing Embedded Event Manager Policies
87

Configuring and Managing Embedded Event Manager Policies
Tcl Context Library Command Extensions

Exported Commands

context_retrieve
Retrieves Tcl variable(s) identified by the given context name, and possibly the scalar variable name, the array
variable name, and the array index. Retrieved information is automatically deleted.

Once saved information is retrieved, it is automatically deleted. If that information is needed by another policy,
the policy that retrieves it (using the context_retrieve command extension) should also save it again (using
the context_save command extension).

Note

Syntax

context_retrieve ctxt [var] [index_if_array]

Arguments

(Mandatory) Context name.ctxt

(Optional) Scalar variable name or array variable name. Defaults to a null string if this
argument is not specified.

var

(Optional) Array index.index_if_array

The index_if_array argument is ignored when the var argument is a scalar variable.Note

If var is unspecified, retrieves the whole variable table saved in the context.

If var is specified and index_if_array is not specified, or if index_if_array is specified but var is a scalar
variable, retrieves the value of var.

If var is specified, and index_if_array is specified, and var is an array variable, retrieves the value of the
specified array element.

Result String

Resets the Tcl global variables to the state that they were in when the save was performed.

Set _cerrno

• A string displaying _cerrno, _cerr_sub_num, _cerr_sub_err, _cerr_posix_err, _cerr_str due to appl_reqinfo
error.

• Variable is not in the context.

Configuring and Managing Embedded Event Manager Policies
88

Configuring and Managing Embedded Event Manager Policies
context_retrieve

Sample Usage

The following examples show how to use the context_save and context_retrieve command extension
functionality to save and retrieve data. The examples are shown in save and retrieve pairs.

Example 1: Save

If var is unspecified or if a pattern if specified, saves multiple variables to the context.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

set testvara 123
set testvarb 345
set testvarc 789
if {[catch {context_save TESTCTX “testvar*”} errmsg]} {

action_syslog msg "context_save failed: $errmsg"
} else {

action_syslog msg "context_save succeeded"
}

Example 1: Retrieve

If var is unspecified, retrieves multiple variables from the context.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

if {[catch {foreach {var value} [context_retrieve TESTCTX] {set $var $value}} errmsg]} {
action_syslog msg "context_retrieve failed: $errmsg"

} else {
action_syslog msg "context_retrieve succeeded"

}
if {[info exists testvara]} {

action_syslog msg "testvara exists and is $testvara"
} else {

action_syslog msg "testvara does not exist"
}
if {[info exists testvarb]} {

action_syslog msg "testvarb exists and is $testvarb"
} else {

action_syslog msg "testvarb does not exist"
}
if {[info exists testvarc]} {

action_syslog msg "testvarc exists and is $testvarc"
} else {

action_syslog msg "testvarc does not exist"
}

Example 2: Save

If var is specified, saves the value of var.

::cisco::eem::event_register_none

Configuring and Managing Embedded Event Manager Policies
89

Configuring and Managing Embedded Event Manager Policies
context_retrieve

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

set testvar 123
if {[catch {context_save TESTCTX testvar} errmsg]} {

action_syslog msg "context_save failed: $errmsg"
} else {

action_syslog msg "context_save succeeded"
}

Example 2: Retrieve

If var is specified and index_if_array is not specified, or if index_if_array is specified but var is a scalar
variable, retrieves the value of var.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

if {[catch {set testvar [context_retrieve TESTCTX testvar]} errmsg]} {
action_syslog msg "context_retrieve failed: $errmsg"

} else {
action_syslog msg "context_retrieve succeeded"

}
if {[info exists testvar]} {

action_syslog msg "testvar exists and is $testvar"
} else {

action_syslog msg "testvar does not exist"
}

Example 3: Save

If var is specified, saves the value of var even if it is an array.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

array set testvar “testvar1 ok testvar2 not_ok”
if {[catch {context_save TESTCTX testvar} errmsg]} {

action_syslog msg "context_save failed: $errmsg"
} else {

action_syslog msg "context_save succeeded"
}

Example 3: Retrieve

If var is specified, and index_if_array is not specified, and var is an array variable, retrieves the entire array.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

Configuring and Managing Embedded Event Manager Policies
90

Configuring and Managing Embedded Event Manager Policies
context_retrieve

if {[catch {array set testvar [context_retrieve TESTCTX testvar]} errmsg]} {
action_syslog msg "context_retrieve failed: $errmsg"

} else {
action_syslog msg "context_retrieve succeeded"

}
if {[info exists testvar]} {

action_syslog msg "testvar exists and is [array get testvar]"
} else {

action_syslog msg "testvar does not exist"
}

Example 4: Save

If var is specified, saves the value of var even if it is an array.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

array set testvar “testvar1 ok testvar2 not_ok”
if {[catch {context_save TESTCTX testvar} errmsg]} {

action_syslog msg "context_save failed: $errmsg"
} else {

action_syslog msg "context_save succeeded"
}

Example 4: Retrieve

If var is specified, and index_if_array is specified, and var is an array variable, retrieves the specified array
element value.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

if {[catch {set testvar [context_retrieve TESTCTX testvar testvar1]} errmsg]} {
action_syslog msg "context_retrieve failed: $errmsg"

} else {
action_syslog msg "context_retrieve succeeded"

}
if {[info exists testvar]} {

action_syslog msg "testvar exists and is $testvar"
} else {

action_syslog msg "testvar doesn't exist"
}

context_save
Saves Tcl variables that match a given pattern in current and global namespaces with the given context name
as identification. Use this Tcl command extension to save information outside of a policy. Saved information
can be retrieved by a different policy using the context_retrieve command extension.

Configuring and Managing Embedded Event Manager Policies
91

Configuring and Managing Embedded Event Manager Policies
context_save

Once saved information is retrieved, it is automatically deleted. If that information is needed by another policy,
the policy that retrieves it (using the context_retrieve command extension) should also save it again (using
the context_save command extension).

Note

Syntax

context_save ctxt [pattern]

Arguments

(Mandatory) Context name.ctxt

(Optional) Glob-style pattern as used by the string match Tcl command. If this argument is not
specified, the pattern defaults to the wildcard *.

There are three constructs used in glob patterns:

• * = all characters

• ? = 1 character

• [abc] = match one of a set of characters

pattern

Result String

None

Set _cerrno

A string displaying _cerrno, _cerr_sub_num, _cerr_sub_err, _cerr_str due to appl_setinfo error.

Sample Usage

For examples showing how to use the context_save and context_retrieve command extension functionality
to save and retrieve data, see the Sample Usage, on page 89.

Configuring and Managing Embedded Event Manager Policies
92

Configuring and Managing Embedded Event Manager Policies
context_save

	Configuring and Managing Embedded Event Manager Policies
	Prerequisites for Configuring and Managing Embedded Event Manager Policies
	Information About Configuring and Managing Embedded Event Manager Policies
	Event Management
	System Event Processing
	Embedded Event Manager Scripts
	Regular Embedded Event Manager Scripts
	Embedded Event Manager Policy Tcl Command Extension Categories
	Cisco File Naming Convention for Embedded Event Manager
	Embedded Event Manager Built-in Actions
	Application-specific Embedded Event Management
	Event Detection and Recovery
	System Manager Event Detector
	Timer Services Event Detector
	Syslog Event Detector
	None Event Detector
	Distributed Event Detectors

	Embedded Event Manager Event Scheduling and Notification
	Reliability Statistics

	How to Configure and Manage Embedded Event Manager Policies
	Configuring Environmental Variables
	Registering Embedded Event Manager Policies
	How to Write Embedded Event Manager Policies Using Tcl
	Registering and Defining an EEM Tcl Script
	Displaying EEM Registered Policies
	Unregistering EEM Policies
	Suspending EEM Policy Execution
	Specifying a Directory for Storing EEM Policies
	Sample EEM Policies
	Programming EEM Policies with Tcl
	Creating an EEM User Tcl Library Index
	Creating an EEM User Tcl Package Index
	EEM Policies Using TCL: Details

	Configuration Examples for Writing Embedded Event Manager Policies Using Tcl
	EEM Sample Policy Descriptions
	Registration of Some EEM Policies
	Basic Configuration Details for All Sample Policies

	Embedded Event Manager Policy Tcl Command Extension Reference
	Embedded Event Manager Event Registration Tcl Command Extensions
	event_register_appl
	event_register_cli
	event_register_config
	event_register_none
	event_register_oir
	event_register_process
	event_register_snmp_notification
	event_register_syslog
	event_register_timer
	event_register_timer_subscriber
	event_register_track

	Embedded Event Manager Event Information Tcl Command Extension
	event_reqinfo

	Embedded Event Manager Action Tcl Command Extensions
	action_process
	action_program
	action_script
	action_setnode
	action_syslog

	Embedded Event Manager Utility Tcl Command Extensions
	appl_read
	appl_reqinfo
	appl_setinfo
	counter_modify
	timer_arm
	timer_cancel

	Embedded Event Manager System Information Tcl Command Extensions
	sys_reqinfo_cpu_all
	sys_reqinfo_crash_history
	sys_reqinfo_mem_all
	sys_reqinfo_proc
	sys_reqinfo_proc_all
	sys_reqinfo_proc_version
	sys_reqinfo_routername
	sys_reqinfo_syslog_freq
	sys_reqinfo_syslog_history
	sys_reqinfo_stat
	sys_reqinfo_snmp

	SMTP Library Command Extensions
	smtp_send_email
	smtp_subst

	CLI Library Command Extensions
	cli_close
	cli_exec
	cli_get_ttyname
	cli_open
	cli_read
	cli_read_drain
	cli_read_line
	cli_read_pattern
	cli_write

	Tcl Context Library Command Extensions
	context_retrieve
	context_save

