CONTENTS

PREFACE

Preface ix
Changes to this Document ix

CHAPTER 1

New and Changed System Management Features 1
System Management Features Added or Modified in IOS XR Release 7.3.x 1

CHAPTER 2

Configuring Physical and Virtual Terminals 3
Prerequisites for Implementing Physical and Virtual Terminals 3
Information About Implementing Physical and Virtual Terminals 3
 Line Templates 3
 Line Template Configuration Mode 4
 Line Template Guidelines 4
 Terminal Identification 5
 vty Pools 5
How to Implement Physical and Virtual Terminals on Cisco IOS XR Software 6
 Modifying Templates 6
 Creating and Modifying vty Pools 7
 Monitoring Terminals and Terminal Sessions 9
Configuration Examples for Implementing Physical and Virtual Terminals 10

CHAPTER 3

Configuring Simple Network Management Protocol 13
Prerequisites for Implementing SNMP 13
Restrictions for SNMP use on Cisco IOS XR Software 13
Information about Implementing SNMP 14
 SNMP Functional Overview 14
 SNMP Manager 14
SNMP Agent 14
MIB 14
SNMP Versions 15
 Comparison of SNMPv1, v2c, and v3 16
 Security Models and Levels for SNMPv1, v2, v3 17
SNMPv3 Benefits 18
SNMPv3 Costs 18
 User-Based Security Model 18
 View-Based Access Control Model 19
IP Precedence and DSCP Support for SNMP 19
Session MIB support on subscriber sessions 19
SNMP Notifications 20
Session Types 21
How to Implement SNMP on Cisco IOS XR Software 21
 Configuring SNMPv3 21
 Configure to Drop Error PDUs 23
 Configuring SNMPv3: Examples 24
 Configuring SNMP Trap Notifications 27
 Configure to Drop Error PDUs 29
 Configuring Trap Notifications: Example 30
Setting the Contact, Location, and Serial Number of the SNMP Agent 31
Defining the Maximum SNMP Agent Packet Size 32
Changing Notification Operation Values 32
Setting IP Precedence and DSCP Values 33
Setting IPv6 Precedence and DSCP Values 34
Setting an IP Precedence Value for SNMP Traffic: Example 35
Setting an IP DSCP Value for SNMP Traffic: Example 35
Displaying SNMP Context Mapping 36
Monitoring Packet Loss 36
Configuring MIB Data to be Persistent 37
Configuring LinkUp and LinkDown Traps for a Subset of Interfaces 38
Polling BRIDGE-MIB 39

CHAPTER 4

Configuring Periodic MIB Data Collection and Transfer 41
Contents

Prerequisites for Periodic MIB Data Collection and Transfer 41
Information About Periodic MIB Data Collection and Transfer 41
 SNMP Objects and Instances 41
 Bulk Statistics Object Lists 42
 Bulk Statistics Schemas 42
 Bulk Statistics Transfer Options 42
 Benefits of Periodic MIB Data Collection and Transfer 42
How to Configure Periodic MIB Data Collection and Transfer 43
 Configuring a Bulk Statistics Object List 43
 Configuring a Bulk Statistics Schema 44
 Configuring Bulk Statistics Transfer Options 45
Periodic MIB Data Collection and Transfer: Example 48

CHAPTER 5

Configuring Cisco Discovery Protocol 51
 Prerequisites for Implementing CDP 51
 Information About Implementing CDP 51
 How to Implement CDP on Cisco IOS XR Software 53
 Enabling CDP 53
 Modifying CDP Default Settings 53
 Monitoring CDP 54
 Examples 55

CHAPTER 6

Configuring Smart Licensing 57
 What Is Smart Licensing 57
 How Does Smart Licensing Works? 58
 Deployment Options for Smart Licensing 59
 About Call Home 61
 Flexible Consumption Model Licenses 61
 Software Innovation Access 64
 Verification 65
 Configure Licenses Using Smart Licensing 66
 Register and Activate Your Device 66
 Check License Consumption Status 68
 Renew Smart Licensing Registration 73
CHAPTER 7

Configuring Call Home 77

About Call Home 77

Benefits of Using Call Home 78

Prerequisites for Call Home 78

How to Configure Call Home 79

Configuring Contact Information 79

Destination Profiles 81

Configuring and Activating Destination Profiles 81

Call Home Alert Groups 83

Call Home Message Levels 84

Associating an Alert Group with a Destination Profile 85

Configuring Email 87

Configuring a HTTPS Proxy Server 88

Sending Call-home Data through an Email 89

Sending Call-home Data through HTTPS 91

Configuring Call Home to use VRF 92

Configuring Call Home Data Privacy 93

Sending Smart License Data 94

CHAPTER 8

Configuring Network Time Protocol 97

Prerequisites for Implementing NTP on Cisco IOS XR Software 97

Information About Implementing NTP 97

How to Implement NTP 99

Configuring Poll-Based Associations 99

Configuring Broadcast-Based NTP Associates 101

Configuring NTP Access Groups 103

Configuring NTP Authentication 104

Disabling NTP Services on a Specific Interface 106

Configuring the Source IP Address for NTP Packets 107
Preface

This guide describes the System Management configuration details for Cisco IOS XR software. This chapter contains details on the changes made to this document.

- Changes to this Document, on page ix

Changes to this Document

Table 1: Changes to this Document

<table>
<thead>
<tr>
<th>Date</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2021</td>
<td>Republished for Release 7.3.15</td>
</tr>
<tr>
<td>February 2021</td>
<td>Initial release of this document.</td>
</tr>
</tbody>
</table>
New and Changed System Management Features

This chapter lists all the features that have been added or modified in this guide. The table also contains references to these feature documentation sections.

- **System Management Features Added or Modified in IOS XR Release 7.3.x**, on page 1

System Management Features Added or Modified in IOS XR Release 7.3.x

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Frequency Synchronization</td>
<td>This feature was introduced.</td>
<td>Release 7.3.1</td>
<td>Configuring Frequency Synchronization, on page 133</td>
</tr>
<tr>
<td>Support for ITU-T G.8264 Standard</td>
<td>This feature was introduced.</td>
<td>Release 7.3.1</td>
<td>Support for ITU-T G.8264 Standard, on page 149</td>
</tr>
<tr>
<td>Support for Precision Time Protocol (PTP)</td>
<td>This feature was introduced.</td>
<td>Release 7.3.1</td>
<td>Configuring PTP , on page 155</td>
</tr>
<tr>
<td>Support for ITU-T G.8263 standard for ITU-T G.8263 Standard</td>
<td>This feature was introduced.</td>
<td>Release 7.3.1</td>
<td>G.8265.1, on page 162 and G.8263 Standard, on page 165</td>
</tr>
<tr>
<td>ITU-T G.8275.1 profile support</td>
<td>This feature was introduced.</td>
<td>Release 7.3.1</td>
<td>G.8275.1, on page 166</td>
</tr>
<tr>
<td>NPU Power Optimization</td>
<td>This feature was introduced.</td>
<td>Release 7.3.15</td>
<td>NPU Power Optimization, on page 117</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Changed in Release</td>
<td>Where Documented</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dynamic Power Management</td>
<td>This feature was introduced.</td>
<td>Release 7.3.15</td>
<td>Dynamic Power Management, on page 121</td>
</tr>
<tr>
<td>Dynamic Power Management</td>
<td>This feature was enhanced to consider power requirement for optics before allocating power to them.</td>
<td>Release 7.3.2</td>
<td>Power Allocation to Optics, on page 125</td>
</tr>
</tbody>
</table>
Configuring Physical and Virtual Terminals

Line templates define standard attribute settings for incoming and outgoing transport over physical and virtual terminal lines (vtys). Vty pools are used to apply template settings to ranges of vtys.

This module describes the tasks you need to implement physical and virtual terminals on your Cisco IOS XR network.

- Prerequisites for Implementing Physical and Virtual Terminals, on page 3
- Information About Implementing Physical and Virtual Terminals, on page 3
- How to Implement Physical and Virtual Terminals on Cisco IOS XR Software, on page 6
- Configuration Examples for Implementing Physical and Virtual Terminals, on page 10

Prerequisites for Implementing Physical and Virtual Terminals

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing Physical and Virtual Terminals

To implement physical and virtual terminals, you need to understand the concepts in this section.

Tip

You can programmatically manage the physical and virtual terminals using `openconfig-system-terminal.yang` OpenConfig data model. To get started with using data models, see the Programmability Configuration Guide for Cisco 8000 Series Routers.

Line Templates

The following line templates are available in the Cisco IOS XR software.

- Default line template—The default line template that applies to a physical and virtual terminal lines.
- Console line template—The line template that applies to the console line.
• User-defined line templates—User-defined line templates that can be applied to a range of virtual terminal lines.

Line Template Configuration Mode

Changes to line template attributes are made in line template configuration mode. To enter line template configuration mode, issue the line command from XR Config mode, specifying the template to be modified. These line templates can be configured with the line command:

• console—console template
• default—default template
• template—user-defined template

After you specify a template with the line command, the router enters line template configuration mode where you can set the terminal attributes for the specified line. This example shows how to specify the attributes for the console:

```
RP/0/RP0/CPU0:router(config)# line console
RP/0/RP0/CPU0:router(config-line)#
```

From line template configuration mode, use the online help feature (?) to view all available options. Some useful options include:

• absolute-timeout—Specifies a timeout value for line disconnection.
• escape-character—Changes the line escape character.
• exec-timeout—Specifies the EXEC timeout.
• length—Sets the number of lines displayed on the screen.
• session-limit—Specifies the allowable number of outgoing connections.
• session-timeout—Specifies an interval for closing the connection if there is no input traffic.
• timestamp—Displays the timestamp before each command.
• width—Specifies the width of the display terminal.

Note

The default session-limit for line template is applicable to Telnet sessions only. It is not applicable for SSH sessions.

Line Template Guidelines

The following guidelines apply to modifying the console template and to configuring a user-defined template:

• Modify the templates for the physical terminal lines on the router (the console port) from line template configuration mode. Use the line console command from XR Config mode to enter line template configuration mode for the console template.
• Modify the template for virtual lines by configuring a user-defined template with the `line template-name`
 command, configuring the terminal attributes for the user-defined template from line template
 configuration, and applying the template to a range of virtual terminal lines using the `vty pool`
 command.

Attributes not defined in the console template, or any virtual template, are taken from the default template.
The default settings for the default template are described for all commands in line template configuration
mode in the `Terminal Services Commands on` module in `System Management Command Reference for
Cisco 8000 Series Routers`.

Note

Before creating or modifying the vty pools, enable the telnet server using the `telnet server`
command in XR Config mode. See `IP Addresses and Services Configuration Guide for Cisco 8000 Series Routers`
and `IP Addresses and Services Command Reference for Cisco 8000 Series Routers` for more information.

Terminal Identification

The physical terminal lines for the console port is identified by its location, expressed in the format of
rack/slot/module, on the active or standby route processor (RP) where the respective console port resides.
For virtual terminals, physical location is not applicable; the Cisco IOS XR software assigns a vty identifier
to vtys according to the order in which the vty connection has been established.

vty Pools

Each virtual line is a member of a pool of connections using a common line template configuration. Multiple
vty pools may exist, each containing a defined number of vtys as configured in the vty pool. The Cisco IOS XR
software supports the following vty pools by default:

- **Default vty pool**—The default vty pool consists of five vtys (vtys 0 through 4) that each reference the
default line template.

- **Default fault manager pool**—The default fault manager pool consists of six vtys (vtys 100 through 105)
 that each reference the default line template.

In addition to the default vty pool and default fault manager pool, you can also configure a user-defined vty
pool that can reference the default template or a user-defined template.

When configuring vty pools, follow these guidelines:

- The vty range for the default vty pool must start at vty 0 and must contain a minimum of five vtys.
- The vty range from 0 through 99 can reference the default vty pool.
- The vty range from 5 through 99 can reference a user-defined vty pool.
- The vty range from 100 is reserved for the fault manager vty pool.
- The vty range for fault manager vty pools must start at vty 100 and must contain a minimum of six vtys.
- A vty can be a member of only one vty pool. A vty pool configuration will fail if the vty pool includes
 a vty that is already in another pool.
- If you attempt to remove an active vty from the active vty pool when configuring a vty pool, the
 configuration for that vty pool will fail.
How to Implement Physical and Virtual Terminals on Cisco IOS XR Software

Modifying Templates

This task explains how to modify the terminal attributes for the console and default line templates. The terminal attributes that you set will modify the template settings for the specified template.

SUMMARY STEPS

1. configure
2. line {console | default}
3. Configure the terminal attribute settings for the specified template using the commands in line template configuration mode.
4. Use one of the following commands:
 - end
 - commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters mode.</td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters line template configuration mode for the specified line template.</td>
</tr>
<tr>
<td>line {console</td>
<td>default}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# line console</td>
<td>or</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# line default</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>Configure the terminal attribute settings for the specified template using the commands in line template configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Saves configuration changes.</td>
</tr>
<tr>
<td>Use one of the following commands:</td>
<td></td>
</tr>
<tr>
<td>• end</td>
<td></td>
</tr>
<tr>
<td>• commit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-line)# end</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-line)# end
Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:
```
Purpose

- **Command or Action**
 - `commit` saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
 - `no` exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
 - `cancel` leaves the router in the current configuration session without exiting or committing the configuration changes.

- **Purpose**
 - Use the **commit** command to save the configuration changes to the running configuration file and remain within the configuration session.

Creating and Modifying vty Pools

This task explains how to create and modify vty pools.

SUMMARY STEPS

1. **configure**
2. `telnet {ipv4 | ipv6} server max-servers limit`
3. `line template template-name`
4. Configure the terminal attribute settings for the specified line template using the commands in line template configuration mode.
5. **exit**
6. `vty-pool {default | pool-name | eem} first-vty last-vty [line-template {default | template-name}]`
7. Use the **commit** or **end** command.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters mode.</td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Specifies the number of allowable Telnet servers. Up to 100 Telnet servers are allowed.</td>
</tr>
<tr>
<td>`telnet {ipv4</td>
<td>ipv6} server max-servers limit`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# telnet ipv4 server max-servers 10</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>By default no Telnet servers are allowed. You must configure this command in order to enable the use of Telnet servers.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>line template template-name</code></td>
<td>Enters line template configuration mode for a user-defined template.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config)# line template 1</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Configure the terminal attribute settings for the specified line template using the commands in line template configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Exits line template configuration mode and returns the router to global configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config-line)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Creates or modifies vty pools.</td>
</tr>
<tr>
<td>`vty-pool [default</td>
<td>pool-name</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config)# vty-pool default 0 5 line-template default</code></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config)# vty-pool pool1 5 50 line-template template1</code></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config)# vty-pool eem 100 105 line-template template1</code></td>
<td></td>
</tr>
</tbody>
</table>

- **default** — Configures the default vty pool.
 - The default vty pool must start at vty 0 and must contain a minimum of five vtys (vtys 0 through 4).
 - You can resize the default vty pool by increasing the range of vtys that compose the default vty pool.
- **pool-name** — Creates a user-defined vty pool.
 - A user-defined pool must start at least at vty 5, depending on whether the default vty pool has been resized.
 - If the range of vtys for the default vty pool has been resized, use the first range value free from the default line template. For example, if the range of vtys for the default vty pool has been configured to include 10 vtys (vtys 0 through 9), the range value for the user-defined vty pool must start with vty 10.
- **eem** — Configures the embedded event manager pool.
 - The default embedded event manager vty pool must start at vty 100 and must contain a minimum of six vtys (vtys 100 through 105).
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• line-template template-name</td>
<td>—Configures the vty pool to reference a user-defined template.</td>
</tr>
</tbody>
</table>

Step 7

Use the **commit** or **end** command.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>commit</th>
<th>Saves the configuration changes and remains within the configuration session.</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>—Prompts user to take one of these actions:</td>
<td></td>
</tr>
<tr>
<td>• Yes</td>
<td>—Saves configuration changes and exits the configuration session.</td>
<td></td>
</tr>
<tr>
<td>• No</td>
<td>—Exits the configuration session without committing the configuration changes.</td>
<td></td>
</tr>
<tr>
<td>• Cancel</td>
<td>—Remains in the configuration session, without committing the configuration changes.</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring Terminals and Terminal Sessions

This task explains how to monitor terminals and terminal sessions using the **show** EXEC commands available for physical and terminal lines.

Note
The commands can be entered in any order.

SUMMARY STEPS

1. (Optional) **show line [aux location node-id | console location node-id | vty number]**
2. (Optional) **show terminal**
3. (Optional) **show users**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Displays the terminal parameters of terminal lines.</td>
</tr>
<tr>
<td>(Optional) **show line [aux location node-id</td>
<td>console location node-id</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# show line</td>
<td></td>
</tr>
</tbody>
</table>

- Specifying the **show line aux location node-id** EXEC command displays the terminal parameters of the auxiliary line.
- Specifying the **show line console location node-id** EXEC command displays the terminal parameters of the console.
 - For the **location node-id** keyword and argument, enter the location of the Route Processor (RP) on which the respective auxiliary or console port resides.
Purpose

- The **node-id** argument is expressed in the format of `rack/slot/module`.

- Specifying the **show line vty number** EXEC command displays the terminal parameters for the specified vty.

### Command or Action	Purpose
Step 2 (Optional) **show terminal**
Example:
RP/0/RP0/CPU0:router# show terminal | Displays the terminal attribute settings for the current terminal line.

Step 3 (Optional) **show users**
Example:
RP/0/RP0/CPU0:router# show users | Displays information about the active lines on the router.

Configuration Examples for Implementing Physical and Virtual Terminals

Modifying the Console Template: Example

This configuration example shows how to modify the terminal attribute settings for the console line template:

```bash
line console  
   exec-timeout 0 0 
   escape-character 0x5a 
   session-limit 10 
   disconnect-character 0x59 
   session-timeout 100 
   transport input telnet 
   transport output telnet
```

In this configuration example, the following terminal attributes are applied to the console line template:

- The EXEC time out for terminal sessions is set to 0 minutes, 0 seconds. Setting the EXEC timeout to 0 minutes and 0 seconds disables the EXEC timeout function; thus, the EXEC session for the terminal session will never time out.

- The escape character is set to the 0x5a hexadecimal value (the 0x5a hexadecimal value translates into the “Z” character).

- The session limit for outgoing terminal sessions is set to 10 connections.

- The disconnect character is set to 0x59 hexadecimal value (the 0x59 hexadecimal character translates into the “Y” character).
• The session time out for outgoing terminal sessions is set to 100 minutes (1 hour and 40 minutes).
• The allowed transport protocol for incoming terminal sessions is Telnet.
• The allowed transport protocol for outgoing terminal sessions is Telnet.

To verify that the terminal attributes for the console line template have been applied to the console, use the `show line` command:

```
RP/0/RP0/CPU0# show line console location 0/0/CPU0
Tty Speed Modem Uses Noise Overruns Acc I/O
* con0/0/CPU0 9600 - - - 0/0 -=-
```

Line con0_0_CPU0, Location "Unknown", Type "Unknown"
Length: 24 lines, Width: 80 columns
Baud rate (TX/RX) is 9600, 1 parity, 2 stopbits, 8 databits
Template: console
Config:
Allowed transports are telnet.

Modifying the Default Template: Example

This configuration example shows how to override the terminal settings for the default line template:

```
line default
  exec-timeout 0 0
  width 512
  length 512
```

In this example, the following terminal attributes override the default line template default terminal attribute settings:

• The EXEC timeout for terminal sessions is set to 0 minutes and 0 seconds. Setting the EXEC timeout to 0 minutes and 0 seconds disables the EXEC timeout function; thus, the EXEC session for the terminal session will never time out (the default EXEC timeout for the default line template is 10 minutes).
• The width of the terminal screen for the terminals referencing the default template is set to 512 characters (the default width for the default line template is 80 characters).
• The length, the number of lines that will display at one time on the terminal referencing the default template, is set to 512 lines (the default length for the default line template is 24 lines).

Configuring a User-Defined Template to Reference the Default vty Pool: Example

This configuration example shows how to configure a user-defined line template (named test in this example) for vty's and to configure the line template test to reference the default vty pool:

```
line template test
  exec-timeout 100 0
  width 100
  length 100
  exit
vty-pool default 0 4 line-template test
```
Configuring a User-Defined Template to Reference a User-Defined vty Pool: Example

This configuration example shows how to configure a user-defined line template (named test2 in this example) for vtys and to configure the line template test to reference a user-defined vty pool (named pool1 in this example):

```
line template test2
   exec-timeout 0 0
   session-limit 10
   session-timeout 100
   transport input all
   transport output all
   exit
vty-pool pool1 5 50 line-template test2
```

Configuring a User-Defined Template to Reference the Fault Manager vty Pool: Example

This configuration example shows how to configure a user-defined line template (named test3 in this example) for vtys and to configure the line template test to reference the fault manager vty pool:

```
line template test3
   width 110
   length 100
   session-timeout 100
   exit
vty-pool eem 100 106 line-template test3
```
CHAPTER 3

Configuring Simple Network Management Protocol

Simple Network Management Protocol (SNMP) is an application-layer protocol that provides a message format for communication between SNMP managers and agents. SNMP provides a standardized framework and a common language used for the monitoring and management of devices in a network.

This module describes the tasks you need to implement SNMP on your Cisco IOS XR network.

• Prerequisites for Implementing SNMP, on page 13
• Restrictions for SNMP use on Cisco IOS XR Software, on page 13
• Information about Implementing SNMP, on page 14
• Session MIB support on subscriber sessions, on page 19
• How to Implement SNMP on Cisco IOS XR Software, on page 21

Prerequisites for Implementing SNMP

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Restrictions for SNMP use on Cisco IOS XR Software

SNMP outputs are only 32-bits wide and therefore cannot display any information greater than 2^{32}. 2^{32} is equal to 4.29 Gigabits.

Note

A 10 Gigabit interface is greater than 2^{32}, so if you are trying to display speed information regarding the interface, you might see concatenated results.

To display correct speed of an interface greater than 10 Gigabit, ifHighSpeed can be used.

The recommended maximum number of object identifiers (OIDs) that can be accommodated in a single SNMP request is 75. A request with more than 75 OIDs can result in SNMP requests being dropped with SNMP polling timeout.
Information about Implementing SNMP

To implement SNMP, you need to understand the concepts described in this section.

SNMP Functional Overview

The SNMP framework consists of three parts:

- SNMP manager
- SNMP agent
- Management Information Base (MIB)

SNMP Manager

The SNMP manager is the system used to control and monitor the activities of network hosts using SNMP. The most common managing system is called a network management system (NMS). The term NMS can be applied to either a dedicated device used for network management, or the applications used on such a device. A variety of network management applications are available for use with SNMP. These features range from simple command-line applications to feature-rich graphical user interfaces (such as the CiscoWorks 2000 line of products).

SNMP Agent

The SNMP agent is the software component within the managed device that maintains the data for the device and reports these data, as needed, to managing systems. The agent and MIB reside on the router. To enable the SNMP agent, you must define the relationship between the manager and the agent.

MIB

The Management Information Base (MIB) is a virtual information storage area for network management information, which consists of collections of managed objects. Within the MIB there are collections of related objects, defined in MIB modules. MIB modules are written in the SNMP MIB module language, as defined in STD 58, RFC 2578, RFC 2579, and RFC 2580. Note that individual MIB modules are also referred to as MIBs; for example, the Interfaces Group MIB (IF-MIB) is a MIB module within the MIB on your system.

The SNMP agent contains MIB variables whose values the SNMP manager can request or change through Get or Set operations. A manager can get a value from an agent or store a value into that agent. The agent gathers data from the MIB, the repository for information about device parameters and network data. The agent can also respond to manager requests to get or set data.

This figure illustrates the communications relationship between the SNMP manager and agent. A manager can send the agent requests to get and set MIB values. The agent can respond to these requests. Independent of this interaction, the agent can send unsolicited notifications (traps) to the manager to notify the manager of network conditions.
IP-MIB Support

RFC4293 IP-MIB was specifically designed to provide IPv4 and IPv6 statistics individually. The `ipIfStatsTable` defined in RFC 4293, lists the interface specific statistics. IPv6 statistics support in `ipIfStatsTable` was added earlier but, IOS-XR implementation of IP-MIB did not support IPv4 statistics as per RFC4293 in earlier releases.

IOS-XR implementation of IP-MIB supports IPv4 statistics as per RFC4293. This will enable you to collect the IPv4 and IPv6 statistics separately for each interface. The `ipIfStatsTable` is indexed by two sub-ids: `address type (IPv4 or IPv6)` and the `interface ifindex[1]`. The implementation of IP-MIB support for IPv4 and IPv6 is separated for better readability and maintainability.

The list of OIDs added to the `ipIfStatsTable` for IPv4 statistics are:

- `ipIfStatsInReceives`
- `ipIfStatsHCInReceives`
- `ipIfStatsInOctets`
- `ipIfStatsHCInOctets`
- `ipIfStatsOutTransmits`
- `ipIfStatsHCOutTransmits`
- `ipIfStatsOutOctets`
- `ipIfStatsHCOutOctets`
- `ipIfStatsDiscontinuityTime`

For more information on the list of new OIDs added for IPv4 statistics, see SNMP OID Navigator.

SNMP Versions

Cisco IOS XR software supports the following versions of SNMP:

- Simple Network Management Protocol Version 1 (SNMPv1)
- Simple Network Management Protocol Version 2c (SNMPv2c)
- Simple Network Management Protocol Version 3 (SNMPv3)

Both SNMPv1 and SNMPv2c use a community-based form of security. The community of managers able to access the agent MIB is defined by an IP address access control list and password.

SNMPv2c support includes a bulk retrieval mechanism and more detailed error message reporting to management stations. The bulk retrieval mechanism supports the retrieval of tables and large quantities of information, minimizing the number of round-trips required. The SNMPv2c improved error handling support...
includes expanded error codes that distinguish different kinds of error conditions; these conditions are reported through a single error code in SNMPv1. Error return codes now report the error type. Three kinds of exceptions are also reported: no such object exceptions, no such instance exceptions, and end of MIB view exceptions.

SNMPv3 is a security model. A **security model** is an authentication strategy that is set up for a user and the group in which the user resides. A **security level** is the permitted level of security within a security model. A combination of a security model and a security level will determine which security mechanism is employed when an SNMP packet is handled. See Security Models and Levels for SNMPv1, v2, v3, on page 17 for a list of security levels available in SNMPv3. The SNMPv3 feature supports RFCs 3411 to 3418.

You must configure the SNMP agent to use the version of SNMP supported by the management station. An agent can communicate with multiple managers; for this reason, you can configure the Cisco IOS-XR software to support communications with one management station using the SNMPv1 protocol, one using the SNMPv2c protocol, and another using SNMPv3.

Comparison of SNMPv1, v2c, and v3

SNMP v1, v2c, and v3 all support the following operations:

- **get-request**—Retrieves a value from a specific variable.

- **get-next-request**—Retrieves the value following the named variable; this operation is often used to retrieve variables from within a table. With this operation, an SNMP manager does not need to know the exact variable name. The SNMP manager searches sequentially to find the needed variable from within the MIB.

- **get-response**—Operation that replies to a get-request, get-next-request, and set-request sent by an NMS.

- **set-request**—Operation that stores a value in a specific variable.

- **trap**—Unsolicited message sent by an SNMP agent to an SNMP manager when some event has occurred.

This table identifies other key SNMP features supported by the SNMP v1, v2c, and v3.

<table>
<thead>
<tr>
<th>Feature</th>
<th>SNMP v1</th>
<th>SNMP v2c</th>
<th>SNMP v3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get-Bulk Operation</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Inform Operation</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>64 Bit Counter</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Textual Conventions</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Authentication</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Privacy (Encryption)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Authorization and Access Controls (Views)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Security Models and Levels for SNMPv1, v2, v3

The security level determines if an SNMP message needs to be protected from disclosure and if the message needs to be authenticated. The various security levels that exist within a security model are as follows:

- noAuthNoPriv—Security level that does not provide authentication or encryption.
- authNoPriv—Security level that provides authentication but does not provide encryption.
- authPriv—Security level that provides both authentication and encryption.

Three security models are available: SNMPv1, SNMPv2c, and SNMPv3. The security model combined with the security level determine the security mechanism applied when the SNMP message is processed.

The below table identifies what the combinations of security models and levels mean.

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v2c</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>authNoPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>No</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA.</td>
</tr>
<tr>
<td>v3</td>
<td>authPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>DES</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms.</td>
</tr>
<tr>
<td>v3</td>
<td>authPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>3DES</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms.</td>
</tr>
<tr>
<td>v3</td>
<td>authPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>AES</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms.</td>
</tr>
</tbody>
</table>

1 Hash-Based Message Authentication Code
2 Message Digest
3 Secure Hash Algorithm
4 Data Encryption Standard
5 Cipher Block Chaining
6 Triple Data Encryption Standard
7 Advanced Encryption Standard

Use of 3DES and AES encryption standards requires that the security package be installed. For information on installing software packages, see Upgrading and Managing Cisco IOS XR Software.
SNMPv3 Benefits

SNMPv3 provides secure access to devices by providing authentication, encryption and access control. These added security benefits secure SNMP against the following security threats:

- Masquerade—The threat that an SNMP user may assume the identity of another SNMP user to perform management operations for which that SNMP user does not have authorization.
- Message stream modification—The threat that messages may be maliciously reordered, delayed, or replayed (to an extent that is greater than can occur through the natural operation of a subnetwork service) to cause SNMP to perform unauthorized management operations.
- Disclosure—The threat that exchanges between SNMP engines could be eavesdropped. Protecting against this threat may be required as a matter of local policy.

In addition, SNMPv3 provides access control over protocol operations on SNMP managed objects.

SNMPv3 Costs

SNMPv3 authentication and encryption contribute to a slight increase in the response time when SNMP operations on MIB objects are performed. This cost is far outweighed by the security advantages provided by SNMPv3.

This table shows the order of response time (from least to greatest) for the various security model and security level combinations.

<table>
<thead>
<tr>
<th>Security Model</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMPv2c</td>
<td>noAuthNoPriv</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>noAuthNoPriv</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authNoPriv</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authPriv</td>
</tr>
</tbody>
</table>

User-Based Security Model

SNMPv3 User-Based Security Model (USM) refers to SNMP message-level security and offers the following services:

- Message integrity—Ensures that messages have not been altered or destroyed in an unauthorized manner and that data sequences have not been altered to an extent greater than can occur nonmaliciously.
- Message origin authentication—Ensures that the claimed identity of the user on whose behalf received data was originated is confirmed.
- Message confidentiality—Ensures that information is not made available or disclosed to unauthorized individuals, entities, or processes.

SNMPv3 authorizes management operations only by configured users and encrypts SNMP messages.
USM uses two authentication protocols:

- HMAC-MD5-96 authentication protocol
- HMAC-SHA-96 authentication protocol

USM uses Cipher Block Chaining (CBC)-DES (DES-56) as the privacy protocol for message encryption.

View-Based Access Control Model

The View-Based Access Control Model (VACM) enables SNMP users to control access to SNMP managed objects by supplying read, write, or notify access to SNMP objects. It prevents access to objects restricted by views. These access policies can be set when user groups are configured with the `snmp-server group` command.

MIB Views

For security reasons, it is often valuable to be able to restrict the access rights of some groups to only a subset of the management information within the management domain. To provide this capability, access to a management object is controlled through MIB views, which contain the set of managed object types (and, optionally, the specific instances of object types) that can be viewed.

Access Policy

Access policy determines the access rights of a group. The three types of access rights are as follows:

- **read-view access**—The set of object instances authorized for the group when objects are read.
- **write-view access**—The set of object instances authorized for the group when objects are written.
- **notify-view access**—The set of object instances authorized for the group when objects are sent in a notification.

IP Precedence and DSCP Support for SNMP

SNMP IP Precedence and differentiated services code point (DSCP) support delivers QoS specifically for SNMP traffic. You can change the priority setting so that SNMP traffic generated in a router is assigned a specific QoS class. The IP Precedence or IP DSCP code point value is used to determine how packets are handled in weighted random early detection (WRED).

After the IP Precedence or DSCP is set for the SNMP traffic generated in a router, different QoS classes cannot be assigned to different types of SNMP traffic in that router.

The IP Precedence value is the first three bits in the type of service (ToS) byte of an IP header. The IP DSCP code point value is the first six bits of the differentiate services (DiffServ Field) byte. You can configure up to eight different IP Precedence markings or 64 different IP DSCP markings.

Session MIB support on subscriber sessions

SNMP monitoring requires information about subscribers of all types. The CISCO-SUBSCRIBER-SESSION-MIB is defined to model per-subscriber data as well as aggregate subscriber (PPPoE) data. It is required to support notifications (traps) for aggregate session counts crossing configured
thresholds. Generic MIB Data Collector Manager (DCM) support for CISCO-SUBSCRIBER-SESSION-MIB, helps faster data collection and also better handling of parallel data.

SNMP Notifications

A key feature of SNMP is the ability to generate notifications from an SNMP agent. These notifications do not require that requests be sent from the SNMP manager. On Cisco IOS XR software, unsolicited (asynchronous) notifications can be generated only as *traps*. Traps are messages alerting the SNMP manager to a condition on the network. Notifications can indicate improper user authentication, restarts, the closing of a connection, loss of connection to a neighbor router, or other significant events.

Note
Inform requests (inform operations) are supported in Cisco IOS XR software.

Traps are less reliable than informs because the receiver does not send any acknowledgment when it receives a trap. The sender cannot determine if the trap was received. An SNMP manager that receives an inform request acknowledges the message with an SNMP response protocol data unit (PDU). If the manager does not receive an inform request, it does not send a response. If the sender never receives a response, the inform request can be sent again. Thus, informs are more likely to reach their intended destination.

However, traps are often preferred because informs consume more resources in the router and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request must be held in memory until a response is received or the request times out. Also, traps are sent only once, and an inform may be retried several times. The retries increase traffic and contribute to a higher overhead on the network. Thus, traps and inform requests provide a trade-off between reliability and resources.

Figure 2: Trap Received by the SNMP Manager

In this illustration, the agent router sends a trap to the SNMP manager. Although the manager receives the trap, it does not send any acknowledgment to the agent. The agent has no way of knowing that the trap reached its destination.

Figure 3: Trap Not Received by the SNMP Manager

In this illustration, the agent sends a trap to the manager, but the trap does not reach the manager. Because the agent has no way of knowing that the trap did not reach its destination, the trap is not sent again. The manager never receives the trap.
Session Types

The supported session types are:

- PPPoE
- IP SUB PKT
- IP SUB DHCP

How to Implement SNMP on Cisco IOS XR Software

This section describes how to implement SNMP.

The `snmp-server` commands enable SNMP on Management Ethernet interfaces by default. For information on how to enable SNMP server support on other inband interfaces, see the Implementing Management Plane Protection on Cisco IOS XR Software module in System Security Configuration Guide for Cisco 8000 Series Routers.

Configuring SNMPv3

This task explains how to configure SNMPv3 for network management and monitoring.

Note: No specific command enables SNMPv3; the first `snmp-server` global configuration command (config), that you issue enables SNMPv3. Therefore, the sequence in which you issue the `snmp-server` commands for this task does not matter.

Step 1
configure
Example:
RP/0/RP0/CPU0:router# configure
Enters mode.

Step 2 (Optional)
`snmp-server engineid local engine-id`
Example:
RP/0/RP0/CPU0:router# snmp-server engineID local 00:00:00:09:00:00:00:a1:61:6c:20:61
Specifies the identification number of the local SNMP engine.

Step 3
`snmp-server view view-name oid-tree {included | excluded}`
Example:
RP/0/RP0/CPU0:router# snmp-server view view_name 1.3.6.1.2.1.1.5 included
Creates or modifies a view record.

Step 4

```bash
snmp-server group name {v1 | v2c | v3 {auth | noauth | priv}} [read view] [write view] [notify view] [access-list-name]
```

Example:

```
RP/0/RP0/CPU0:router# snmp-server group
  group_name v3 noauth read view_name1 write view_name2
```

Step 4 configures a new SNMP group or a table that maps SNMP users to SNMP views.

Step 5

```bash
snmp-server user username groupname {v1 | v2c | v3 [auth {md5 | sha} {clear | encrypted} auth-password [priv des56 {clear | encrypted} priv-password]]} [access-list-name]
```

Example:

```
RP/0/RP0/CPU0:router# snmp-server user
  noauthuser group_name v3
```

Step 5 configures a new user to an SNMP group.

Step 6

Use the `commit` or `end` command.

- **commit** — Saves the configuration changes and remains within the configuration session.
- **end** — Prompts user to take one of these actions:
 - **Yes** — Saves configuration changes and exits the configuration session.
 - **No** — Exits the configuration session without committing the configuration changes.
 - **Cancel** — Remains in the configuration session, without committing the configuration changes.

Step 7 (Optional)

```bash
show snmp
```

Example:

```
RP/0/RP0/CPU0:router# show snmp
```

Displays information about the status of SNMP.

Step 8 (Optional)

```bash
show snmp engineid
```

Example:

```
RP/0/RP0/CPU0:router# show snmp engineid
```

Displays information about the local SNMP engine.

Step 9 (Optional)

```bash
show snmp group
```

Example:

```
RP/0/RP0/CPU0:router# show snmp group
```

Displays information about each SNMP group on the network.

Step 10 (Optional)

```bash
show snmp users
```

Example:
RP/0/RP0/CPU0:router# show snmp users

Displays information about each SNMP username in the SNMP users table.

Step 11 (Optional) show snmp view

Example:

RP/0/RP0/CPU0:router# show snmp view

Displays information about the configured views, including the associated MIB view family name, storage type, and status.

Configure to Drop Error PDUs

Perform this configuration to avoid error PDUs being sent out of router when polled with incorrect SNMPv3 user name. If the configuration is not set, it will respond with error PDUs by default. After applying this configuration, when router is polled with unknown SNMPv3 user name, the NMS will get time out instead of getting unknown user name error code.

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 snmp-server drop unknown-user

Example:

RP/0/RP0/CPU0:router(config)# snmp-server drop unknown-user

Drop the error PDUs when the router is polled with incorrect SNMPv3 user name.

Step 3 Use the **commit** or **end** command.

commit — Saves the configuration changes and remains within the configuration session.

end — Prompts user to take one of these actions:

- **Yes** — Saves configuration changes and exits the configuration session.
- **No** — Exits the configuration session without committing the configuration changes.
- **Cancel** — Remains in the configuration session, without committing the configuration changes.
Configuring SNMPv3: Examples

Setting an Engine ID

This example shows how to set the identification of the local SNMP engine:

```
snmp-server engineID local 00:00:00:09:00:00:a1:61:6c:20:61
```

Note: After the engine ID has been configured, the SNMP agent restarts.

Verifying the Identification of the Local SNMP Engines

This example shows how to verify the identification of the local SNMP engine:

```
config
  show snmp engineid

  SNMP engineID 00000009000000a1ffffffff
```

Creating a View

There are two ways to create a view:

- You can include the object identifier (OID) of an ASN.1 subtree of a MIB family from a view by using the `included` keyword of the `snmp-server view` command.
- You can exclude the OID subtree of the ASN.1 subtree of a MIB family from a view by using the `excluded` keyword of the `snmp-server view` command.

This example shows how to create a view that includes the sysName (1.3.6.1.2.1.1.5) object:

```
config
  snmp-server view SNMP_VIEW1 1.3.6.1.2.1.1.5 included
```

This example shows how to create a view that includes all the OIDs of a system group:

```
config
  snmp-server view SNMP_VIEW1 1.3.6.1.2.1.1 included
```

This example shows how to create a view that includes all the OIDs under the system group except the sysName object (1.3.6.1.2.1.1.5), which has been excluded:

```
config
  snmp-server view SNMP_VIEW1 1.3.6.1.2.1.1 included
  snmp-server view SNMP_VIEW1 1.3.6.1.2.1.1.5 excluded
```
Verifying Configured Views

This example shows how to display information about the configured views:

```
RP/0/RP0/CPU0:router# show snmp view

v1default 1.3.6.1  - included nonVolatile active
SNMP_VIEW1 1.3.6.1.2.1.1  - included nonVolatile active
SNMP_VIEW1 1.3.6.1.2.1.1.5  - excluded nonVolatile active
```

Creating Groups

If you do not explicitly specify a notify, read, or write view, the Cisco IOS XR software uses the v1 default (1.3.6.1). This example shows how to create a group that utilizes the default view:

```
RP/0/RP0/CPU0:router# snmp-server group group-name v3 auth
```

The following configuration example shows how to create a group that has read access to all the OIDs in the system except the sysUpTime object (1.3.6.1.2.1.1.3), which has been excluded from the view applied to the group, but write access only to the sysName object (1.3.6.1.2.1.1.5):

```
snmp-server view view_name1 1.3.6.1.2.1.1 included
snmp-server view view_name1 1.3.6.1.2.1.1.3 excluded
snmp-server view view_name2 1.3.6.1.2.1.1.5 included
snmp-server group group_name1 v3 auth read view_name1 write view_name2
```

Verifying Groups

This example shows how to verify the attributes of configured groups:

```
RP/0/RP0/CPU0:router# show snmp group

groupname: group_name1  security model:usm
readview : view_name1  writeview: view_name2
notifyview: v1default
row status: nonVolatile
```

Creating and Verifying Users

Given the following SNMPv3 view and SNMPv3 group configuration:

```
!
```

```
! snmp-server view view_name 1.3.6.1.2.1.1 included
snmp-server group group_name v3 noauth read view_name write view-name
```
This example shows how to create a noAuthNoPriv user with read and write view access to a system group:

```
config
    snmp-server user noauthuser group_name v3
```

Note The user must belong to a noauth group before a noAuthNoPriv user can be created.

This example shows how to verify the attributes that apply to the SNMP user:

```
RP/0/RP0/CPU0:router# show snmp user

User name: noauthuser
Engine ID: localSnmpID
storage-type: nonvolatile active
```

Given the following SNMPv3 view and SNMPv3 group configuration:

```
!
    snmp-server view SNMP_VIEW1 1.3.6.1.2.1.1 included
    snmp-server group SNMP_GROUP1 v3 auth notify SNMP_VIEW1 read SNMP_VIEW1 write SNMP_VIEW1
```

This example shows how to create a user with authentication (including encryption), read, and write view access to a system group:

```
config
    snmp-server user userv3authpriv SNMP_GROUP1 v3 auth md5 password123 priv aes 128 password123
```

Given the following SNMPv3 view and SNMPv3 group configuration:

```
!
    snmp-server view view_name 1.3.6.1.2.1.1 included
    snmp group group_name v3 priv read view_name write view_name
```

This example shows how to create authNoPriv user with read and write view access to a system group:

```
RP/0/RP0/CPU0:router# snmp-server user authuser group_name v3 auth md5 clear auth_passwd
```
As the group is configured at a security level of Auth, the user must be configured as “auth” at a minimum to access this group (“priv” users could also access this group). The authNoPriv user configured in this group, authuser, must supply an authentication password to access the view. In the example, auth_passwd is set as the authentication password string. Note that clear keyword is specified before the auth_passwd password string. The clear keyword indicates that the password string being supplied is unencrypted.

This example shows how to verify the attributes that apply to SNMP user:

```
RP/0/RP0/CPU0:router# show snmp user
User name: authuser
   Engine ID: localSnmpID
   storage-type: nonvolatile active
```

Given the following SNMPv3 view and SNMPv3 group configuration:

```
!  snmp view view_name 1.3.6.1.2.1.1 included
  snmp group group_name v3 priv read view_name write view_name
! 
```

This example shows how to create an authPriv user with read and write view access to a system group:

```
config
  snmp-server user privuser group_name v3 auth md5 clear auth_passwd priv des56 clear priv_passwd
```

As the group has a security level of Priv, the user must be configured as a “priv” user to access this group. In this example, the user, privuser, must supply both an authentication password and privacy password to access the OIDs in the view.

This example shows how to verify the attributes that apply to the SNMP user:

```
RP/0/RP0/CPU0:router# show snmp user
User name: privuser
   Engine ID: localSnmpID
   storage-type: nonvolatile active
```

Configuring SNMP Trap Notifications

The following example shows how to configure the router to send SNMP trap notifications.
Configuring Simple Network Management Protocol

Configuring SNMP Trap Notifications

Step 1 configure
Example:
RP/0/RP0/CPU0:router# configure
Enters mode.

Step 2 snmp-server group name {v1 v2v3 {auth | noauth | priv} } [{readview | writeview | notifyview} [access-list-name]]
Example:
RP/0/RP0/CPU0:router# snmp-server group group_name v3 noauth read view_name1 writer view_name2
Configures a new SNMP group or a table that maps SNMP users to SNMP views.

Step 3 snmp-server user username group name {v1 v2cv3 {auth | md5 | sha} {clear | encrypted} auth-password} [priv des56 {clear | access-list-name}]
Example:
RP/0/RP0/CPU0:router# snmp-server user noauthuser group_name v3
Configures a new SNMP group or a table that maps SNMP users to SNMP views.

Step 4 snmp-server host address [traps] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [notification-type]
Example:
RP/0/RP0/CPU0:router(config)# snmp-server host 12.26.25.61 traps version 3 noauth userV3 noauth
Specifies SNMP trap notifications, the version of SNMP to use, the security level of the notifications, and the recipient (host) of the notifications.

Step 5 snmp-server traps [notification-type]
Example:
RP/0/RP0/CPU0:router(config)# snmp-server traps bgp
Enables the sending of trap notifications and specifies the type of trap notifications to be sent.

Step 6 Use the commit or end command.
commit — Saves the configuration changes and remains within the configuration session.
end — Prompts user to take one of these actions:
 • Yes — Saves configuration changes and exits the configuration session.
• **No** — Exits the configuration session without committing the configuration changes.
• **Cancel** — Remains in the configuration session, without committing the configuration changes.

Step 8
(Optional) **show snmp host**

Example:

```
RP/0/RP0/CPU0:router# show snmp host
```

Displays information about the configured SNMP notification recipient (host), port number, and security model.

Configure to Drop Error PDUs

Perform this configuration to avoid error PDUs being sent out of router when polled with incorrect SNMPv3 user name. If the configuration is not set, it will respond with error PDUs by default. After applying this configuration, when router is polled with unknown SNMPv3 user name, the NMS will get time out instead of getting unknown user name error code.

Step 1

configure

Example:

```
RP/0/RP0/CPU0:router# configure
```

Enters mode.

Step 2

snmp-server drop unknown-user

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server drop unknown-user
```

Drop the error PDUs when the router is polled with incorrect SNMPv3 user name.

Step 3

Use the **commit** or **end** command.

- **commit** — Saves the configuration changes and remains within the configuration session.
- **end** — Prompts user to take one of these actions:
 - **Yes** — Saves configuration changes and exits the configuration session.
 - **No** — Exits the configuration session without committing the configuration changes.
 - **Cancel** — Remains in the configuration session, without committing the configuration changes.
Configuring Trap Notifications: Example

The following example configures an SNMP agent to send out different types of traps. The configuration includes a v2c user, a noAuthNoPriv user, anauthNoPriv user, and an AuthPriv user.

```config
snmp-server host 10.50.32.170 version 2c public udp-port 2345
snmp-server host 10.50.32.170 version 3 auth userV3auth udp-port 2345
snmp-server host 10.50.32.170 version 3 priv userV3priv udp-port 2345
snmp-server host 10.50.32.170 version 3 noauth userV3noauth udp-port 2345
snmp-server user userv2c groupv2c v2c
snmp-server user userV3auth groupV3auth v3 auth md5 encrypted 140F0A13
snmp-server user userV3priv groupV3priv v3 auth md5 encrypted 021E1C43 priv des56 encrypted 1110001C
snmp-server user userV3noauth groupV3noauth v3 LROwner
snmp-server view view_name 1.3 included
snmp-server community public RW
snmp-server group groupv2c v2c read view_name
snmp-server group groupV3auth v3 auth read view_name
snmp-server group groupV3priv v3 priv read view_name
snmp-server group groupV3noauth v3 noauth read view_name
```

This example shows how to verify the configuration SNMP trap notification recipients host, the recipients of SNMP trap notifications. The output displays the following information:

- IP address of the configured notification host
- UDP port where SNMP notification messages are sent
- Type of trap configured
- Security level of the configured user
- Security model configured

```config
show snmp host
```

```
Notification host: 10.50.32.170 udp-port: 2345 type: trap
user: userV3auth security model: v3 auth

Notification host: 10.50.32.170 udp-port: 2345 type: trap
user: userV3noauth security model: v3 noauth

Notification host: 10.50.32.170 udp-port: 2345 type: trap
user: userV3priv security model: v3 priv

Notification host: 10.50.32.170 udp-port: 2345 type: trap
user: userv2c security model: v2c
```
Setting the Contact, Location, and Serial Number of the SNMP Agent

This task explains how to set the system contact string, system location string, and system serial number of the SNMP agent.

Note The sequence in which you issue the `snmp-server` commands for this task does not matter.

Step 1

`configure

*Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Step 2 (Optional) `snmp-server contact system-contact-string

*Example:

RP/0/RP0/CPU0:router(config)# snmp-server contact
Dial System Operator at beeper # 27345

Sets the system contact string.

Step 3 (Optional) `snmp-server location system-location

*Example:

RP/0/RP0/CPU0:router(config)# snmp-server location
Building 3/Room 214

Sets the system location string.

Step 4 (Optional) `snmp-server chassis-id serial-number

*Example:

RP/0/RP0/CPU0:router(config)# snmp-server chassis-id 123456

Sets the system serial number.

Step 5

Use the `commit` or `end` command.

- `commit` — Saves the configuration changes and remains within the configuration session.
- `end` — Prompts user to take one of these actions:
 - `Yes` — Saves configuration changes and exits the configuration session.
 - `No` — Exits the configuration session without committing the configuration changes.
 - `Cancel` — Remains in the configuration session, without committing the configuration changes.
Defining the Maximum SNMP Agent Packet Size

This task shows how to configure the largest SNMP packet size permitted when the SNMP server is receiving a request or generating a reply.

Note
The sequence in which you issue the `snmp-server` commands for this task does not matter.

Step 1
configure

Example:

```
RP/0/RP0/CPU0:router# configure
```
Enters mode.

Step 2
(Optional) `snmp-server packetsize byte-count`

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server packetsize 1024
```
Sets the maximum packet size.

Step 3
Use the `commit` or `end` command.

- `commit` — Saves the configuration changes and remains within the configuration session.
- `end` — Prompts user to take one of these actions:
 - `Yes` — Saves configuration changes and exits the configuration session.
 - `No` — Exits the configuration session without committing the configuration changes.
 - `Cancel` — Remains in the configuration session, without committing the configuration changes.

Changing Notification Operation Values

After SNMP notifications have been enabled, you can specify a value other than the default for the source interface, message queue length, or retransmission interval.

This task explains how to specify a source interface for trap notifications, the message queue length for each host, and the retransmission interval.

Note
The sequence in which you issue the `snmp-server` commands for this task does not matter.

Step 1
configure
Example:

```
RP/0/RP0/CPU0:router# configure
Enters mode.
```

Step 2 (Optional) **snmp-server trap-source** *type interface-path-id*

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server trap-source POS 0/0/1/0
Specifies a source interface for trap notifications.
```

Step 3 (Optional) **snmp-server queue-length** *length*

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server queue-length 20
Establishes the message queue length for each notification.
```

Step 4 (Optional) **snmp-server trap-timeout** *seconds*

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server trap-timeout 20
Defines how often to resend notifications on the retransmission queue.
```

Step 5 Use the **commit** or **end** command.

- **commit** — Saves the configuration changes and remains within the configuration session.
- **end** — Prompts user to take one of these actions:
 - **Yes** — Saves configuration changes and exits the configuration session.
 - **No** — Exits the configuration session without committing the configuration changes.
 - **Cancel** — Remains in the configuration session, without committing the configuration changes.

Setting IP Precedence and DSCP Values

This task describes how to configure IPv4 Precedence or IPv4 DSCP for SNMP traffic.

Before you begin

SNMP must be configured.

Step 1 **configure**

Example:

```
RP/0/RP0/CPU0:router# configure
```
Enters mode.

Step 2 Use one of the following commands:

- `snmp-server ipv4 precedence value`
- `snmp-server ipv4 dscp value`

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server dscp 24
```

Configures an IPv4 precedence or IPv4 DSCP value for SNMP traffic.

Step 3 Use the `commit` or `end` command.

- `commit` — Saves the configuration changes and remains within the configuration session.
- `end` — Prompts user to take one of these actions:
 - Yes — Saves configuration changes and exits the configuration session.
 - No — Exits the configuration session without committing the configuration changes.
 - Cancel — Remains in the configuration session, without committing the configuration changes.

Setting IPv6 Precedence and DSCP Values

This task describes how to configure IPv6 Precedence or IPv6 DSCP for SNMP traffic.

Before you begin

SNMP must be configured.

Step 1 `configure`

Example:

```
RP/0/RP0/CPU0:router# configure
```

Enters mode.

Step 2 Use one of the following commands:

- `snmp-server ipv6 precedence value`
- `snmp-server ipv6 dscp value`

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server dscp 24
```

Configures an IPv6 precedence or IPv6 DSCP value for SNMP traffic.

Step 3 Use the `commit` or `end` command.

- `commit` — Saves the configuration changes and remains within the configuration session.
Setting an IP Precedence Value for SNMP Traffic: Example

The following example shows how to set the SNMP IPv4 Precedence value to 7:

```
configure
snmp-server ipv4 precedence 7
exit
```

Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: y

The following example shows how to set the SNMP IPv6 Precedence value to 7:

```
configure
snmp-server ipv6 precedence 7
exit
```

Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: y

Setting an IP DSCP Value for SNMP Traffic: Example

The following example shows how to set the IPv4 DSCP value of SNMP traffic to 45:

```
configure
snmp-server ipv4 dscp 45
exit
```

Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: y

The following example shows how to set the IPv6 DSCP value of SNMP traffic to 45:

```
configure
snmp-server ipv6 dscp 45
exit
```

Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: y
Displaying SNMP Context Mapping

The SNMP agent serves queries based on SNMP contexts created by the client features. There is a context mapping table. Each entry in the context mapping table includes a context name, the name of the feature that created the context, and the name of the specific instance of the feature.

```
show snmp context-mapping
```

Example:

```
RP/0/RP0/CPU0:router# show snmp context-mapping
```

Displays the SNMP context mapping table.

Monitoring Packet Loss

It is possible to monitor packet loss by configuring the generation of SNMP traps when packet loss exceeds a specified threshold. The configuration described in this task enables the creation of entries in the MIB tables of the EVENT-MIB. This can then be monitored for packet loss using SNMP GET operations.

Before you begin

Note

Entries created in the EVENT-MIB MIB tables using the configuration described in this task cannot be altered using an SNMP SET.

Entries to the EVENT-MIB MIB tables created using an SNMP SET cannot be altered using the configuration described in this task.

```
snmp-server mibs eventmib packet-loss type interface-path-id falling lower-threshold interval sampling-interval rising upper-threshold
```

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server mibs eventmib packet-loss falling 1 interval 5 rising 2
```

Generates SNMP EVENT-MIB traps for the interface when the packet loss exceeds the specified thresholds. Up to 100 interfaces can be monitored.

falling lower-threshold — Specifies the lower threshold. When packet loss between two intervals falls below this threshold and an mteTriggerRising trap was generated previously, a SNMP mteTriggerFalling trap is generated. This trap is not generated until the packet loss exceeds the upper threshold and then falls back below the lower threshold.

interval sampling-interval — Specifies how often packet loss statistics are polled. This is a value between 5 and 1440 minutes, in multiples of 5.
Configuring MIB Data to be Persistent

Many SNMP MIB definitions define arbitrary 32-bit indices for their object tables. MIB implementations often do a mapping from the MIB indices to some internal data structure that is keyed by some other set of data. In these MIB tables the data contained in the table are often other identifiers of the element being modelled. For example, in the ENTITY-MIB, entries in the entPhysicalTable are indexed by the 31-bit value, entPhysicalIndex, but the entities could also be identified by the entPhysicalName or a combination of the other objects in the table.

Because of the size of some MIB tables, significant processing is required to discover all the mappings from the 32-bit MIB indices to the other data which the network management station identifies the entry. For this reason, it may be necessary for some MIB indices to be persistent across process restarts, switchovers, or device reloads. The ENTITY-MIB entPhysicalTable and CISCO-CLASS-BASED-QOS-MIB are two such MIBs that often require index values to be persistent.

Also, because of query response times and CPU utilization during CISCO-CLASS-BASED-QOS-MIB statistics queries, it is desirable to cache service policy statistics.

Step 1 (Optional) `snmp-server mibs cbqosmib persist`

Example:

```bash
RP/0/RP0/CPU0:router(config)# snmp-server mibs cbqosmib persist
```

Enables persistent storage of the CISCO-CLASS-BASED-QOS-MIB data.

Step 2 (Optional) `snmp-server cbqosmib cache refresh time time`

Example:

```bash
RP/0/RP0/CPU0:router(config)# snmp-server mibs cbqosmib cache refresh time 45
```

Enables QoS MIB caching with a specified cache refresh time.

Step 3 (Optional) `snmp-server cbqosmib cache service-policy count count`

Example:

```bash
RP/0/RP0/CPU0:router(config)# snmp-server mibs cbqosmib cache service-policy count 50
```

Enables QoS MIB caching with a limited number of service policies to cache.

Step 4 `snmp-server ifindex persist`

Example:

```bash
RP/0/RP0/CPU0:router(config)# snmp-server ifindex persist
```
Enables if Index persistence globally on all Simple Network Management Protocol (SNMP) interfaces.

Configuring LinkUp and LinkDown Traps for a Subset of Interfaces

By specifying a regular expression to represent the interfaces for which you are interested in setting traps, you can enable or disable linkUp and linkDown traps for a large number of interfaces simultaneously.

Before you begin

SNMP must be configured.

Step 1

configure
Example:

```
RP/0/RP0/CPU0:router# configure
```

Enters mode.

Step 2

```
snmp-server interface subset subset-number regular-expression expression
```

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server interface subset 10 regular-expression "^Gig[a-zA-Z]+[0-9/]+\." 
RP/0/RP0/CPU0:router(config-snmp-if-subset)#
```

Enters snmp-server interface mode for the interfaces identified by the regular expression.

The subset-number argument identifies the set of interfaces, and also assigns a priority to the subset in the event that an interface is included in more than one subset. Lower numbers have higher priority and their configuration takes precedent over interface subsets with higher numbers.

The `expression` argument must be entered surrounded by double quotes.

Step 3

```
notification linkupdown disable
```

Example:

```
RP/0/RP0/CPU0:router(config-snmp-if-subset)# notification linkupdown disable
```

Disables linkUp and linkDown traps for all interfaces being configured. To enable previously disabled interfaces, use the `no` form of this command.

Step 4

Use the `commit` or `end` command.

- `commit` — Saves the configuration changes, and remains within the configuration session.
- `end` — Prompts user to take one of these actions:
 - `Yes` — Saves configuration changes and exits the configuration session.
 - `No` — Exits the configuration session without committing the configuration changes.
 - `Cancel` — Remains in the configuration mode, without committing the configuration changes.
Step 5 (Optional) show snmp interface notification subset subset-number

Example:

RP/0/RP0/CPU0:router# show snmp interface notification subset 10

Displays the linkUp and linkDown notification status for all interfaces identified by the subset priority.

Step 6 (Optional) show snmp interface notification regular-expression expression

Example:

RP/0/RP0/CPU0:router# show snmp interface notification regular-expression "^Gig[a-zA-Z]+[0-9/]+\."

Displays the linkUp and linkDown notification status for all interfaces identified by the regular expression.

Step 7 (Optional) show snmp interface notification type interface-path-id

Example:

RP/0/RP0/CPU0:router# show snmp interface notification tengige 0/4/0/3.10

Displays the linkUp and linkDown notification status for the specified interface.

Polling BRIDGE-MIB

BRIDGE-MIB defines the managed objects for MAC-bridges between LAN segments, based on the IEEE802.1d standard. This MIB also supports managing Transparent Bridges, which includes Control-Ethernet and VPLS bridges.

To poll this MIB, do one of the following:

- For SNMPv2: Use a community and map to the context with proper name
- For SNMPv3: Use a group attached to the context

To display the SNMP context mapping table, use the show snmp context-mapping command:

```
RP/0/RP0/CPU0:router# show snmp context-mapping
Context-name          Feature-name          Feature
ControlEthernet0 RP0 CPU0 S0       ControlEthernet0 RP0 CPU0 S0       BRIDGEINST
ControlEthernet0 RP1 CPU0 S0       ControlEthernet0 RP1 CPU0 S0       BRIDGEINST
```

RP/0/RP0/CPU0:router# show running-config snmp-server
snmp-server community cebridge1 RW SystemOwner
snmp-server context ControlEthernet0 RP0 CPU0 S0
snmp-server community-map cebridge1 context ControlEthernet0 RP0 CPU0 S0

In the above example, the community name is cebridge1, and the context name is ControlEthernet0 RP0 CPU0 S0.

The format of the context name is as follows:

- Control-Ethernet bridges – ControlEthernetrack_slot_module_[S0/S1]
• VPLS bridges – vpls_bridge_domain_name

To configure the recipient of an SNMP notification operation, use the snmp-server host command:

```
RP/0/RSP0/CPU0:router(config)# snmp-server host 223.255.254.249 traps version 2c cebridge1 udp-port 1567
```

To enable BRIDGE-MIB trap notifications, use the snmp-server traps bridgemib command:

```
RP/0/RSP0/CPU0:router(config)# snmp-server traps bridgemib
```
CHAPTER 4

Configuring Periodic MIB Data Collection and Transfer

This document describes how to periodically transfer selected MIB data from your router to a specified Network Management System (NMS). The periodic MIB data collection and transfer feature is also known as bulk statistics.

- Prerequisites for Periodic MIB Data Collection and Transfer, on page 41
- Information About Periodic MIB Data Collection and Transfer, on page 41
- How to Configure Periodic MIB Data Collection and Transfer, on page 43
- Periodic MIB Data Collection and Transfer: Example, on page 48

Prerequisites for Periodic MIB Data Collection and Transfer

To use periodic MIB data collection and transfer, you should be familiar with the Simple Network Management Protocol (SNMP) model of management information. You should also know what MIB information you want to monitor on your network devices, and the OIDs or object names for the MIB objects to be monitored.

Information About Periodic MIB Data Collection and Transfer

SNMP Objects and Instances

A type (or class) of SNMP management information is called an object. A specific instance from a type of management information is called an object instance (or SNMP variable). To configure a bulk statistics collection, you must specify the object types to be monitored using a bulk statistics object list and the specific instances of those objects to be collected using a bulk statistics schema.

MIBs, MIB tables, MIB objects, and object indices can all be specified using a series of numbers called an object identifier (OID). OIDs are used in configuring a bulk statistics collection in both the bulk statistics object lists (for general objects) and in the bulk statistics schemas (for specific object instances).
Bulk Statistics Object Lists

To group the MIB objects to be polled, you need to create one or more object lists. A bulk statistics object list is a user-specified set of MIB objects that share the same MIB index. Object lists are identified using a name that you specify. Named bulk statistics object lists allow the same configuration to be reused in different bulk statistics schemas.

All the objects in an object list must share the same MIB index. However, the objects do not need to be in the same MIB and do not need to belong to the same MIB table. For example, it is possible to group ifInOctets and a CISCO-IF-EXTENSION-MIB object in the same schema, because the containing tables for both objects are indexed by the ifIndex.

Bulk Statistics Schemas

Data selection for the Periodic MIB Data Collection and Transfer Mechanism requires the definition of a schema with the following information:

- Name of an object list.
- Instance (specific instance or series of instances defined using a wild card) that needs to be retrieved for objects in the specified object list.
- How often the specified instances need to be sampled (polling interval). The default polling interval is 5 minutes.

A bulk statistics schema is also identified using a name that you specify. This name is used when configuring the transfer options.

Bulk Statistics Transfer Options

After configuring the data to be collected, a single virtual file (VFile or bulk statistics file) with all collected data is created. This file can be transferred to a network management station using FTP or TFTP. You can specify how often this file should be transferred. The default transfer interval is once every 30 minutes. You can also configure a secondary destination for the file to be used if, for whatever reason, the file cannot be transferred to the primary network management station.

The value of the transfer interval is also the collection period (collection interval) for the local bulk statistics file. After the collection period ends, the bulk statistics file is frozen, and a new local bulk statistics file is created for storing data. The frozen bulk statistics file is then transferred to the specified destination.

By default, the local bulk statistics file is deleted after successful transfer to an network management station.

Benefits of Periodic MIB Data Collection and Transfer

Periodic MIB data collection and transfer (bulk statistics feature) allows many of the same functions as the bulk file MIB (CISCO-BULK-FILE-MIB.my), but offers some key advantages. The main advantage is that this feature can be configured through the CLI and does not require an external monitoring application.

Periodic MIB data collection and transfer is mainly targeted for medium to high-end platforms that have sufficient local storage (volatile or permanent) to store bulk statistics files. Locally storing bulk statistics files helps minimize loss of data during temporary network outages.
This feature also has more powerful data selection features than the bulk file MIB; it allows grouping of MIB objects from different tables into data groups (object lists). It also incorporates a more flexible instance selection mechanism, where the application is not restricted to fetching an entire MIB table.

How to Configure Periodic MIB Data Collection and Transfer

Configuring a Bulk Statistics Object List

The first step in configuring the Periodic MIB Data Collection and Transfer Mechanism is to configure one or more object lists.

Step 1: configure

Example:

RP/0/RP0/CPU0:router# configure
Enters mode.

Step 2: snmp-server mib bulkstat object-list list-name

Example:

snmp-server mib bulkstat object-list ifMib
Defines an SNMP bulk statistics object list and enters bulk statistics object list configuration mode.

Step 3: add {oid | object-name}

Example:

RP/0/RP0/CPU0:router(config-bulk-objects)# add 1.3.6.1.2.1.2.2.1.11
RP/0/RP0/CPU0:router(config-bulk-objects)# add ifAdminStatus
RP/0/RP0/CPU0:router(config-bulk-objects)# add ifDescr

Adds a MIB object to the bulk statistics object list. Repeat as desired until all objects to be monitored in this list are added.

Note: All the objects in a bulk statistics object list have to be indexed by the same MIB index. However, the objects in the object list do not need to belong to the same MIB or MIB table.

When specifying an object name instead of an OID (using the add command), only object names with mappings shown in the show snmp mib object command output can be used.

Step 4: Use the commit or end command.

commit — Saves the configuration changes and remains within the configuration session.

end — Prompts user to take one of these actions:

- Yes — Saves configuration changes and exits the configuration session.

- No — Exits the configuration session without committing the configuration changes.
• **Cancel** —Remains in the configuration session, without committing the configuration changes.

Configuring a Bulk Statistics Schema

The second step in configuring periodic MIB data collection and transfer is to configure one or more schemas.

Before you begin

The bulk statistics object list to be used in the schema must be defined.

Step 1

configure

Example:

```
RP/0/RP0/CPU0:router# configure
```

Enters mode.

Step 2

snmp-server mib bulkstat schema *schema-name*

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server mib bulkstat schema intE0
RP/0/RP0/CPU0:router(config-bulk-sc)#
```

Names the bulk statistics schema and enters bulk statistics schema mode.

Step 3

object-list *list-name*

Example:

```
RP/0/RP0/CPU0:router(config-bulk-sc)# object-list
ifMib
```

Specifies the bulk statistics object list to be included in this schema. Specify only one object list per schema. If multiple object-list commands are executed, the earlier ones are overwritten by newer commands.

Step 4

Do one of the following:

- **instance exact** *(interface interface-id [sub-if] | oid oid)*
- **instance wild** *(interface interface-id [sub-if] | oid oid)*
- **instance range** *oid start oid end oid*
- **instance repetition** *oid max repeat-number*

Example:

```
RP/0/RP0/CPU0:router(config-bulk-sc)# instance
wild oid 1
```

or

```
RP/0/RP0/CPU0:router(config-bulk-sc)# instance
exact interface TenGigE 0/1.25
```

or
The instance information for objects in this schema:

- The **instance exact** command indicates that the specified instance, when appended to the object list, represents the complete OID.

- The **instance wild** command indicates that all subindices of the specified OID belong to this schema. The wild keyword allows you to specify a partial, “wild carded” instance.

- The **instance range** command indicates a range of instances on which to collect data.

- The **instance repetition** command indicates data collection to repeat for a certain number of instances of a MIB object.

Note

Only one instance command can be configured per schema. If multiple instance commands are executed, the earlier ones are overwritten by new commands.

Step 5
poll-interval minutes

Example:

```
RP/0/RP0/CPU0:router(config-bulk-sc)# poll-interval 10
```

Sets how often data should be collected from the object instances specified in this schema, in minutes. The default is once every 5 minutes. The valid range is from 1 to 20000.

Step 6
Use the **commit** or **end** command.

- **commit** — Saves the configuration changes and remains within the configuration session.

- **end** — Prompts user to take one of these actions:
 - **Yes** — Saves configuration changes and exits the configuration session.
 - **No** — Exits the configuration session without committing the configuration changes.
 - **Cancel** — Remains in the configuration session, without committing the configuration changes.

Configuring Bulk Statistics Transfer Options

The final step in configuring periodic MIB data collection and transfer is to configure the transfer options. The collected MIB data are kept in a local file-like entity called a VFile (virtual file, referred to as a bulk statistics file in this document). This file can be transferred to a remote network management station at intervals you specify.

Before you begin

The bulk statistics object lists and bulk statistics schemas must be defined before configuring the bulk statistics transfer options.
Configuring Bulk Statistics Transfer Options

Step 1
configure

Example:

```
RP/0/RP0/CPU0:router# configure
```
Enters mode.

Step 2
snmp-server mib bulkstat transfer-id transfer-id

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server mib bulkstat transfer bulkstat1
```
Identifies the transfer configuration with a name (transfer-id argument) and enters bulk statistics transfer configuration mode.

Step 3
buffer-size bytes

Example:

```
RP/0/RP0/CPU0:router(config-bulk-tr)# buffer-size 3072
```
(Optional) Specifies the maximum size for the bulk statistics data file, in bytes. The valid range is from 1024 to 2147483647 bytes. The default buffer size is 2048 bytes.

Note
If the maximum buffer size for a bulk statistics file is reached before the transfer interval time expires, all additional data received is deleted. To correct this behavior, you can decrease the polling frequency, or increase the size of the bulk statistics buffer.

Step 4

Example:

(Optional) Specifies the format of the bulk statistics data file (VFile). The default is schemaASCII.

Note
Transfers can only be performed using schemaASCII (cdcSchemaASCII) format. SchemaASCII is a human-readable format that contains parser-friendly hints for parsing data values.

Step 5
schema schema-name

Example:

```
RP/0/RP0/CPU0:router(config-bulk-tr)# schema TenGigE 0/5/0/11/1
RP/0/RP0/CPU0:router(config-bulk-tr)# schema TenGigE/0-CAR
RP/0/RP0/CPU0:router(config-bulk-tr)# schema TenGigE 0/5/0/11/1
```
Specifies the bulk statistics schema to be transferred. Repeat this command as desired. Multiple schemas can be associated with a single transfer configuration; all collected data are placed in a single bulk data file (VFile).

Step 6
transfer-interval minutes

Example:

```
RP/0/RP0/CPU0:router(config-bulk-tr)# transfer-interval 20
```
(Optional) Specifies how often the bulk statistics file are transferred, in minutes. The default value is once every 30 minutes. The transfer interval is the same as the collection interval.

Step 7
url primary url
Example:
RP/0/RP0/CPU0:router(config-bulk-tr)# url primary
ftp://user:password@host/folder/bulkstat1

Specifies the network management system (host) that the bulk statistics data file is transferred to, and the protocol to use for transfer. The destination is specified as a Uniform Resource Locator (URL). FTP or TFTP can be used for the bulk statistics file transfer.

Step 8 url secondary url

Example:
RP/0/RP0/CPU0:router(config-bulk-tr)# url secondary
tftp://10.1.0.1/tftpboot/user/bulkstat1

(Optional) Specifies a backup transfer destination and protocol for use in the event that transfer to the primary location fails. FTP or TFTP can be used for the bulk statistics file transfer.

Step 9 retry number

Example:
RP/0/RP0/CPU0:router(config-bulk-tr)# retry 1

(Optional) Specifies the number of transmission retries. The default value is 0 (in other words, no retries). If an attempt to send the bulk statistics file fails, the system can be configured to attempt to send the file again using this command.

One retry includes an attempt first to the primary destination then, if the transmission fails, to the secondary location. For example, if the retry value is 1, an attempt is made first to the primary URL, then to the secondary URL, then to the primary URL again, then to the secondary URL again. The valid range is from 0 to 100.

If all retries fail, the next normal transfer occurs after the configured transfer-interval time.

Step 10 retain minutes

Example:
RP/0/RP0/CPU0:router(config-bulk-tr)# retain 60

(Optional) Specifies how long the bulk statistics file should be kept in system memory, in minutes, after the completion of the collection interval and a transmission attempt is made. The default value is 0. Zero (0) indicates that the file is deleted immediately after the transfer is attempted. The valid range is from 0 to 20000.

Note If the retry command is used, you should configure a retain interval larger than 0. The interval between retries is the retain interval divided by the retry number. For example, if retain 10 and retry 2 are configured, two retries are attempted once every 5 minutes. Therefore, if retain 0 is configured, no retries are attempted.

Step 11 enable

Example:
RP/0/RP0/CPU0:router(config-bulk-tr)# enable

Begins the bulk statistics data collection and transfer process for this configuration.

- For successful execution of this action, at least one schema with non-zero number of objects must be configured.
- Periodic collection and file transfer begins only if this command is configured. Conversely, the no enable command stops the collection process. A subsequent enable starts the operations again.
- Each time the collection process is started using the enable command, data is collected into a new bulk statistics file. When the no enable command is used, the transfer process for any collected data immediately begins (in other words, the existing bulk statistics file is transferred to the specified management station).
Step 12

commit minutes

Example:

RP/0/RP0/CPU0#router(config-bulk-tr)# retain 60

If the maximum buffer size for a bulk statistics file is reached before the transfer interval time expires, the transfer operation is still initiated, but any bulk statistics data received after the file was full, and before it was transferred, are deleted. To correct this behavior, you can decrease the polling frequency, or increase the size of the bulk statistics buffer.

If **retain 0** is configured, no retries are attempted. This is because the interval between retries is the retain value divided by the retry value. For example, if **retain 10** and **retry 2** are configured, retries are attempted once every 5 minutes. Therefore, if you configure the retry command, you should also configure an appropriate value for the retain command.

Periodic MIB Data Collection and Transfer: Example

This example shows how to configure periodic MIB data collection and transfer:

```
snmp-server mib bulkstat object-list cempo
   add cempMemPoolName
   add cempMemPoolType
!
snmp-server mib bulkstat schema cempWild
   object-list cempo
   instance wild oid 8695772
   poll-interval 1
!
snmp-server mib bulkstat schema cempRepeat
   object-list cempo
   instance repetition 8695772.1 max 4294967295
   poll-interval 1
!
snmp-server mib bulkstat transfer-id cempt1 enable
   schema cempWild
   schema cempRepeat
   transfer-interval 2
!
```

This example shows sample bulk statistics file content:

```
Schema-def cempt1.cempWild "%u, %s, %s, %d" Epochtime instanceoid
  1.3.6.1.4.1.9.9.221.1.1.1.1.3 1.3.6.1.4.1.9.9.221.1.1.1.1.2
  cemp1.cempWild: 139491515, 8695772.1, processor, 2
  cemp1.cempWild: 139491515, 8695772.2, reserved, 11
  cemp1.cempWild: 139491515, 8695772.3, image, 12
  cemp1.cempWild: 139491515, 8695772.4, reserved, 11
  cemp1.cempWild: 139491515, 8695772.5, image, 12
Schema-def cemp1.cempRepeat "%u, %s, %s, %d" Epochtime instanceoid
  1.3.6.1.4.1.9.9.221.1.1.1.1.3 1.3.6.1.4.1.9.9.221.1.1.1.1.2
  cemp1.cempRepeat: 139491515, 8695772.1, processor, 2
  cemp1.cempRepeat: 139491515, 8695772.2, processor, 2
  cemp1.cempRepeat: 139491515, 8695772.3, image, 12
```
Periodic MIB Data Collection and Transfer: Example

cempt1.cempRepeat: 1339491515, 26932192.1, processor, 2

cempt1.cempRepeat: 1339491515, 26932192.2, reserved, 11

cempt1.cempRepeat: 1339491515, 26932192.3, image, 12

cempt1.cempRepeat: 1339491515, 35271015.1, processor, 2

cempt1.cempRepeat: 1339491515, 35271015.2, reserved, 11

cempt1.cempRepeat: 1339491515, 35271015.3, image, 12

cempt1.cempRepeat: 1339491515, 36631989.1, processor, 2

cempt1.cempRepeat: 1339491515, 36631989.2, reserved, 11

cempt1.cempRepeat: 1339491515, 36631989.3, image, 12

cempt1.cempRepeat: 1339491515, 52690955.1, processor, 2

cempt1.cempRepeat: 1339491515, 52690955.2, reserved, 11

cempt1.cempRepeat: 1339491515, 52690955.3, image, 12
Periodic MIB Data Collection and Transfer: Example
Configuring Cisco Discovery Protocol

Cisco Discovery Protocol (CDP) is a media- and protocol-independent protocol that runs on all Cisco-manufactured equipment including routers, bridges, access and communication servers, and switches. Using CDP, you can view information about all the Cisco devices that are directly attached to the device.

- Prerequisites for Implementing CDP, on page 51
- Information About Implementing CDP, on page 51
- Enabling CDP, on page 53
- Modifying CDP Default Settings, on page 53
- Monitoring CDP, on page 54

Prerequisites for Implementing CDP

To enable CDP, you must install the CDP package on your router.

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing CDP

CDP is primarily used to obtain protocol addresses of neighboring devices and discover the platform of those devices. CDP can also be used to display information about the interfaces your router uses. CDP is media- and protocol-independent, and runs on all equipment manufactured by Cisco, including routers, bridges, access servers, and switches.

Use of SNMP with the CDP MIB allows network management applications to learn the device type and the SNMP agent address of neighboring devices and to send SNMP queries to those devices. CDP uses the CISCO-CDP-MIB.

CDP runs on all media that support Subnetwork Access Protocol (SNAP), including LAN, Frame Relay, and ATM physical media. CDP runs over the data link layer only. Therefore, two systems that support different network-layer protocols can learn about each other.

Each device configured for CDP sends periodic messages, known as advertisements, to a multicast address. Each device advertises at least one address at which it can receive SNMP messages. The advertisements also contain time-to-live, or hold-time, information, which indicates the length of time a receiving device holds
CDP information before discarding it. Each device also listens to the periodic CDP messages sent by others to learn about neighboring devices and determine when their interfaces to the media go up or down.

CDP Version-2 (CDPv2) is the most recent release of the protocol and provides more intelligent device tracking features. These features include a reporting mechanism that allows for more rapid error tracking, thereby reducing costly downtime. Reported error messages can be sent to the console or to a logging server, and can cover instances of unmatching native VLAN IDs (IEEE 802.1Q) on connecting ports, and unmatching port duplex states between connecting devices.

CDPv2 show commands can provide detailed output on VLAN Trunking Protocol (VTP) management domain and duplex modes of neighbor devices, CDP-related counters, and VLAN IDs of connecting ports.

Type-length-value fields (TLVs) are blocks of information embedded in CDP advertisements. This table summarizes the TLV definitions for CDP advertisements.

<table>
<thead>
<tr>
<th>TLV</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device-ID TLV</td>
<td>Identifies the device name in the form of a character string.</td>
</tr>
<tr>
<td>Address TLV</td>
<td>Contains a list of network addresses of both receiving and sending devices.</td>
</tr>
<tr>
<td>Port-ID TLV</td>
<td>Identifies the port on which the CDP packet is sent.</td>
</tr>
<tr>
<td>Capabilities TLV</td>
<td>Describes the functional capability for the device in the form of a device type; for example, a switch.</td>
</tr>
<tr>
<td>Version TLV</td>
<td>Contains information about the software release version on which the device is running.</td>
</tr>
<tr>
<td>Platform TLV</td>
<td>Describes the hardware platform name of the device, for example, Cisco 4500.</td>
</tr>
<tr>
<td>VTP Management Domain TLV</td>
<td>Advertises the system’s configured VTP management domain name-string. Used by network operators to verify VTP domain configuration in adjacent network nodes.</td>
</tr>
<tr>
<td>Native VLAN TLV</td>
<td>Indicates, per interface, the assumed VLAN for untagged packets on the interface. CDP learns the native VLAN for an interface. This feature is implemented only for interfaces that support the IEEE 802.1Q protocol.</td>
</tr>
<tr>
<td>Full/Half Duplex TLV</td>
<td>Indicates status (duplex configuration) of CDP broadcast interface. Used by network operators to diagnose connectivity problems between adjacent network elements.</td>
</tr>
</tbody>
</table>
How to Implement CDP on Cisco IOS XR Software

Enabling CDP

To enable CDP, you must first enable CDP globally on the router and then enable CDP on a per-interface basis. This example explains how to enable CDP globally on the router and then enable CDP on an interface.

Router:# configure
Router(config):# cdp
Router(config):# commit

Router:# configure
Router(config):# interface hundredGigE 0/0/0/4
Router(config-if):# cdp
Router(config-if):# commit

Modifying CDP Default Settings

This task explains how to modify the default version, hold-time setting, and timer settings.

Note
The commands can be entered in any order.

Step 1 configure
Example:
RP/0/RP0/CPU0:router# configure
Enters mode.

Step 2 cdp advertise v1
Example:
RP/0/RP0/CPU0:router(config)# cdp advertise v1
Configures CDP to use only version 1 (CDPv1) in communicating with neighboring devices.

• By default, when CDP is enabled, the router sends CDPv2 packets. CDP also sends and receives CDPv1 packets if the device with which CDP is interacting does not process CDPv2 packets.
• In this example, the router is configured to send and receive only CDPv1 packets.

Step 3 cdp holdtime seconds
Example:
RP/0/RP0/CPU0:router(config)# cdp holdtime 30
Specifies the amount of time that the receiving networking device will hold a CDP packet sent from the router before discarding it.
By default, when CDP is enabled, the receiving networking device holds a CDP packet for 180 seconds before discarding it.

Note: The CDP hold time must be set to a higher number of seconds than the time between CDP transmissions, which is set with the `cdp timer` command.

In this example, the value of hold-time for the `seconds` argument is set to 30.

Step 4
cdp timer seconds

Example:

```
RP/0/RP0/CPU0:router(config)# cdp timer 20
```

Specifies the frequency at which CDP update packets are sent.

- By default, when CDP is enabled, CDP update packets are sent at a frequency of once every 60 seconds.

 Note: A lower timer setting causes CDP updates to be sent more frequently.

- In this example, CDP update packets are configured to be sent at a frequency of once every 20 seconds.

Step 5
Use the `commit` or `end` command.

- **commit** — Saves the configuration changes and remains within the configuration session.
- **end** — Prompts user to take one of these actions:
 - **Yes** — Saves configuration changes and exits the configuration session.
 - **No** — Exits the configuration session without committing the configuration changes.
 - **Cancel** — Remains in the configuration session, without committing the configuration changes.

Step 6
(Optional)
show cdp

Example:

```
RP/0/RP0/CPU0:router# show cdp
```

Displays global CDP information.

The output displays the CDP version running on the router, the hold time setting, and the timer setting.

Monitoring CDP

This task shows how to monitor CDP.

Note: The commands can be entered in any order.
Step 1
show cdp entry {* | entry-name} [protocol | version]

Example:

RP/0/RP0/CPU0:router# show cdp entry *
Displays information about a specific neighboring device or all neighboring devices discovered using CDP.

Step 2
show cdp interface [type interface-path-id | location node-id]

Example:

RP/0/RP0/CPU0:router# show cdp interface pos 0/0/0/1
Displays information about the interfaces on which CDP is enabled.

Step 3
show cdp neighbors [type interface-path-id | location node-id] [detail]

Example:

RP/0/RP0/CPU0:router# show cdp neighbors
Displays detailed information about neighboring devices discovered using CDP.

Step 4
show cdp traffic [location node-id]

Example:

RP/0/RP0/CPU0:router# show cdp traffic
Displays information about the traffic gathered between devices using CDP.

Examples

The following is sample output for the show cdp neighbors command:

RP/0/RP0/CPU0:router# show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater

Device ID Local Intf Holdtime Capability Platform Port ID
NCS5500 Hu0/0/0/4 15 R NCS-5500 Hu0/0/0/4

The following is sample output for the show cdp neighbors command. In this example, the optional type instance arguments are used in conjunction with the detail optional keyword to display detailed information about a CDP neighbor. The output includes information on both IPv4 and IPv6 addresses.

RP/0/RP0/CPU0:router# show cdp neighbors hundredGigE 0/0/0/4 detail

Device ID: NCS5500
SysName : NCS5500
Entry address(es):
IPv4 address: 40.0.0.2
IPv6 address: 10:10:10:10::1
Platform: cisco NCS-5500, Capabilities: Router
Interface: HundredGigE0/0/0/4
Port ID (outgoing port): HundredGigE0/0/0/4
Holdtime : 13 sec

Version :
7.1.1.112I

advertisement version: 2
Duplex: full

The following is sample output for the `show cdp entry` command. In this example, the optional `entry` argument is used to display entry information related to a specific CDP neighbor.

```
RP/0/RP0/CPU0:router# show cdp entry NCS5500
-------------------------
Device ID: NCS5500
SysName : NCS5500
Entry address(es):
  IPv4 address: 40.0.0.2
  IPv6 address: 10:10:10:10::1
Platform: cisco NCS-5500, Capabilities: Router
Interface: HundredGigE0/0/0/4
Port ID (outgoing port): HundredGigE0/0/0/4
Holdtime : 11 sec

Version :
7.1.1.112I

advertisement version: 2
Duplex: full
```

The following is sample output for the `show cdp interface` command. In this example, CDP information related to interface 0/0/0/4 is displayed.

```
RP/0/RP0/CPU0:router# show cdp interface hundredGigE 0/0/0/4

HundredGigE0/0/0/4 is Up
Encapsulation ether
Sending CDP packets every 60 seconds
Holdtime is 180 seconds
```

The following is sample output for the `show cdp traffic` command:

```
RP/0/RP0/CPU0:router# show cdp traffic

CDP counters :
  Packets output: 10, Input: 39
  Hdr syntax: 0, Chksum error: 0, Encaps failed: 0
  No memory: 0, Invalid packet: 0, Truncated: 0
  CDP version 1 advertisements output: 0, Input: 0
  CDP version 2 advertisements output: 10, Input: 39
  Unrecognize Hdr version: 0, File open failed: 0
```
CHAPTER 6

Configuring Smart Licensing

This module describes the configuration related to the Smart Licensing.

Table 6: Feature History for Smart License

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 7.0.11</td>
<td>Smart Licensing was introduced</td>
</tr>
</tbody>
</table>

This model contains the following topics:

- What Is Smart Licensing, on page 57
- How Does Smart Licensing Works?, on page 58
- Deployment Options for Smart Licensing, on page 59
- About Call Home, on page 61
- Flexible Consumption Model Licenses, on page 61
- Configure Licenses Using Smart Licensing, on page 66
- Smart Licensing Workflow, on page 73
- Licenses, Product Instances, and Registration Tokens, on page 74
- Virtual Accounts, on page 74
- Compliance reporting, on page 75

What Is Smart Licensing

Smart Licensing is a cloud-based, software license management solution that enables you to automate time-consuming, manual licensing tasks. The solution allows you to easily track the status of your license and software usage trends.

Smart Licensing helps simplify three core functions:

- **Purchasing**—The software that you have installed in your network can automatically self-register themselves.

- **Management**—You can automatically track activations against your license entitlements. Also, there is no need to install the license file on every node. You can create license pools (logical grouping of licenses) to reflect your organization structure. Smart Licensing offers you Cisco Smart Software Manager, a centralized portal that enables you to manage all your Cisco software licenses from one centralized website. *Cisco Smart Software Manager*provides details.
Reporting—Through the portal, Smart Licensing offers an integrated view of the licenses you have purchased and what has been deployed in your network. You can use this data to make better purchase decisions, based on your consumption.

Note

• By default Smart Licensing is enabled.
• Supports only Flexible Consumption model Smart Licensing.

For more information on Smart Licensing and related documentation, see https://www.cisco.com/c/en_in/products/software/smart-accounts/software-licensing.html.

How Does Smart Licensing Works?

Smart Licensing involves the three steps that are shown in the following illustration, that depicts the working model of the Smart Licensing.

Figure 4: Smart Licensing - Example
• **Setting up Smart Licensing**—You can place the order for Smart Licensing, to manage licenses on Cisco.com portal. You agree to the terms and conditions governing the use and access of Smart Licensing in the Smart Software Manager portal.

• **Enabling and Use Smart Licensing**— Follow the steps to enable Smart Licensing. *Smart Licensing Workflow* provides an illustration.

After you enable Smart Licensing, you can use either of the following options to communicate:

• **Smart Call Home**—The Smart Call Home feature is automatically configured after the router starts. Smart Call Home is used by Smart Licensing as a medium for communication with the Cisco license service. Call Home feature allows Cisco products to periodically call-home and perform an audit and reconciliation of your software usage information. This information helps Cisco efficiently track your install base, keep them up and running, and more effectively pursue service and support contract renewals, without much intervention from your end. For more information on Smart Call Home feature, see the *Smart Call Home Deployment Guide*.

• **Smart Licensing Satellite**—The Smart licensing satellite option provides an on-premises collector that can be used to consolidate and manage Smart license usage, as well facilitate communications back to Cisco License Service at Cisco.com.

• **Manage and Report Licenses**—You can manage and view reports about your overall software usage in the Smart Software Manager portal.

Deployment Options for Smart Licensing

The following illustration shows the various options available for deploying Smart Licensing:
1. **Direct cloud access**—In direct cloud access deployment method, Cisco products send usage information directly over the internet to Cisco.com (Cisco license service); no additional components are needed for deployment.

2. **Direct cloud access through an HTTPs proxy**—In direct cloud access through an HTTPs proxy deployment method, Cisco products send usage information over the internet through a proxy server - either a Smart Call Home Transport Gateway or off-the-shelf Proxy (such as Apache) to Cisco License Service on http://www.cisco.com.

3. **Mediated access through an on-premises collector-connected**—In mediated access through an on-premises collector-connected deployment method, Cisco products send usage information to a locally-connected collector, which acts as a local license authority. Periodically, the information is exchanged to keep the databases in synchronization.

4. **Mediated access through an on-premises collector-disconnected**—In the mediated access through an on-premises collector-disconnected deployment method, Cisco products send usage information to a local disconnected collector, which acts as a local license authority. Exchange of human-readable information is performed occasionally (maybe once a month) to keep the databases in synchronization.

Options 1 and 2 provide an easy deployment option, and options 3 and 4 provide a secure environment deployment option. Smart Software Satellite provides support for options 3 and 4.

The communication between Cisco products and Cisco license service is facilitated by the Smart Call Home software.
About Call Home

Call Home provides an email and http/https based notification for critical system policies. A range of message formats are available for compatibility with pager services or XML-based automated parsing applications. You can use this feature to page a network support engineer, email a Network Operations Center, or use Cisco Smart Call Home services to generate a case with the Technical Assistance Center. The Call Home feature can deliver alert messages containing information about diagnostics and environmental faults and events.

The Call Home feature can deliver alerts to multiple recipients, referred to as Call Home destination profiles. Each profile includes configurable message formats and content categories. A predefined destination is provided for sending alerts to the Cisco TAC, but you also can define your own destination profiles. When you configure Call Home to send messages, the appropriate CLI show command is executed and the command output is attached to the message. Call Home messages are delivered in the following formats:

- Short text format which provides a one or two line description of the fault that is suitable for pagers or printed reports.
- Full text format which provides fully formatted message with detailed information that is suitable for human reading.

Flexible Consumption Model Licenses

Table 7: Feature History Table

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release Information</th>
<th>Description</th>
</tr>
</thead>
</table>
| Cisco Smart Licensing on QDD-400G-ZR-S and QDD-400G-ZRP-S optics | Release 7.9.1 | Support for Smart Licensing is now extended to the hardware having following optics:
- QDD-400G-ZR-S
- QDD-400G-ZRP-S |

Smart Licensing uses Flexible Consumption licensing model. This model of licensing is available at low initial investment, provides easy scalability, and allows customers to increase consumption of licenses as they expand. Flexible Consumption model licenses are checked for usage on a daily basis. The daily license usage is reported to the Smart Licensing Manager at Cisco.com.

The Flexible Consumption model licensing for your hardware or software is enabled by default.

There are three types of licenses in this model:

- Essential licenses are the licenses that are required by every active port, for example ESS-CA-400G-RTU-2. These licenses support the pay as you grow model of flexible consumption model of licensing.
• Advantage (earlier known as Advanced) licenses are the licenses that are required for ports that use advanced features like L3VPN. Example of an advantage license is ADV-CA-400G-RTU-2. These licenses support the pay as you grow model of flexible consumption model of licensing.

• Tracking licenses, for example 8201-TRK. These licenses support systems and line cards and help you to understand the number of systems or line cards in use in a network.

The following table provides the supported hardware for different Flexible Consumption model licenses for Cisco 8000:

Note

These licenses are platform dependent.

<table>
<thead>
<tr>
<th>License Name</th>
<th>Hardware Supported</th>
<th>Consumption Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential and Advantage Licenses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ESS-CA-400G-RTU-2</td>
<td>Fixed port router:</td>
<td>The number of essential or advantage licenses consumed depends on the number of active ports and is reported on per chassis basis.</td>
</tr>
<tr>
<td>• ESS-CA-100G-RTU-2</td>
<td>Cisco 8201 Router</td>
<td></td>
</tr>
<tr>
<td>• ADV-CA-400G-RTU-2</td>
<td>Modular port router:</td>
<td></td>
</tr>
<tr>
<td>• ADV-CA-100G-RTU-2</td>
<td>Cisco 8812 Router</td>
<td></td>
</tr>
<tr>
<td>Hardware Tracking Licenses that support chassis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 8201-TRK</td>
<td>These Tracking licenses are named on the basis of the hardware supported. For example, 8201-TRK licenses support Cisco 8201 Router.</td>
<td>The number of licenses consumed depends on the number of line cards in use.</td>
</tr>
<tr>
<td>• 8812-TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 8808-TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 8818-TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 8202-TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 8800-LC-48H-TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 8800-LC-36FH-TRK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>License Name</td>
<td>Hardware Supported</td>
<td>Consumption Pattern</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Optics Tracking License</td>
<td>Fixed Boxes</td>
<td>The number of licenses used depends on different coherent modes. For example, 4 licenses will be used to enable 400G transponder and 4x100G Mux-ponder modes. These licenses shall not apply to existing 100G/200G optics.</td>
</tr>
<tr>
<td>• 100G-DCO-RTU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Software Innovation Access

Table 9: Feature History Table

<table>
<thead>
<tr>
<th>Feature Description</th>
<th>Release Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIA license grants you access to the latest software upgrades which contain new features, bug fixes, and security enhancements for devices on your network. Also, it enables the consumption of Advantage and Essential Right-to-Use (RTU) licenses on your device, and allows portability of these RTU licenses from one device to another.</td>
<td>Release 7.3.1</td>
</tr>
</tbody>
</table>

Overview

Software Innovation Access (SIA) subscription, a type of FCM licensing, provides access to the latest software upgrades and features for your network. SIA licenses enable the consumption of Right-to-Use (RTU) licenses for your devices to access software innovation and avail support for your devices throughout the term of subscription.

The benefits of SIA subscription are:

- **Access to software innovation**: SIA subscription provides access to continuous software upgrades which contain latest features, security enhancements, and bug fixes for all your devices at a network level.

- **Pooling of licenses**: SIA subscription enables Right-to-Use (RTU) licenses to be shared across your FCM network from a common license pool through the virtual account.

- **Protects your investment**: SIA subscription enables the portability of perpetual RTU licenses purchased for your current device to a next-generation router when you expand or upgrade your network.

The initial term of a SIA subscription is for a term of three years. You can renew the subscription by contacting your Cisco account representative. An equal number of SIA licenses and corresponding RTU licenses are required to enjoy the benefits, and ensure that your network is in compliance. There are two types of SIA licenses available:

- To utilize Advantage RTU licenses, you need Advantage SIA licenses.

- Essential SIA licenses are required to utilise Essential RTU on your device.

If your device is in a state of SIA Out-of-Compliance (OOC) the benefits cease.

SIA Out-of-compliance (OOC) state

When your device is in a SIA Out-of-compliance state, support for major software version upgrades in your network devices are restricted. However, you can continue to perform minor updates, SMU installations, and RPM installations, and continue to utilize the RTU licenses without support for porting.

A device can get into a SIA Out-of-compliance (OOC) state in the following instances:

- The SIA License EVAL period of 90 days has expired.
• The number of SIA licenses consumed has exceeded the number of SIA licenses purchased. This can also occur when the RTU licenses consumed is higher than the number of SIA licenses purchased.

• The term of the SIA license has expired and you haven’t renewed the subscription.

• The license authorization status is:
 • Not Authorized: The license authorization code installed doesn’t contain sufficient counts for the request. This can occur when you attempt to use more licenses than the licenses available in your Virtual Account.
 • Authorization expired: The device hasn’t been able to connect to CSSM for an extended period, due to which the authorization status couldn’t be verified.

Note
The CSSM smart license hierarchy applies to the Right-to-Use (RTU) license only. Therefore, if there is an insufficient RTU 100G license, CSSM can convert the RTU 400G license into four RTU 100G licenses. This is not applicable for SIA license.

In order to bring your device to In-Compliance state, perform one of the following steps:
 • Register your device with CSSM if the SIA license EVAL period has expired.
 • If the SIA license has expired or the number of SIA licenses consumed is more than the number of SIA licenses purchased, contact your Cisco Account Representative to purchase or renew the required licenses.
 • If the authorization code has insufficient counts for the request, generate the code with sufficient counts.
 • If the authorization has expired, connect the device with CSSM.

Note
Up to Cisco IOS XR Release 7.3.1, Cisco 8000 series routers consume one 400G license per one 400G interface.

From Cisco IOS XR Release 7.3.2 onwards, Cisco 8000 series routers consume four 100G licenses per one 400G interface. If necessary, contact your Cisco Account Representative to convert SIA 400G license into four SIA 100G licenses.

When the device enters an OOC state, a grace period of 90 days (cumulative of all the previous occurrences) begins. During this period, SIA license benefits can still be availed. The system attempts to renew the authorization period by connecting with the CSSM during the grace period, or even after the grace period has expired. If an attempt isn’t successful, it remains in an OOC state. If the attempt is successful, a new authorization period begins and the device is In-Compliance.

Verification
To verify the device compliance status, use the `show license platform summary` command:

Examples
Status: In-Compliance
Configure Licenses Using Smart Licensing

Register and Activate Your Device

Smart Licensing components are packaged into the 8000-x64-7.0.11.iso image. The https client that is required for configuring the Smart Call Home is packaged into the cisco8k-k9sec RPM. Use the steps described here to register and activate your device, and associate the device with your virtual account.
To register and activate your device, you must:

- Use the registration token to register your device using CLI.

Generate Product Registration Token from the Portal

You must have purchased the product for which you are adding the license. When you purchase the product, you are provided with a username and password to the Cisco Smart Software Manager portal, from where you can generate the product instance registration tokens.

1. Log in to Cisco Smart Software Manager at **Smart Software Licensing**.
2. Under **Inventory** menu, click **General** tab.
3. Click **New Token** to generate a product registration token.

 Copy the new token value, which is used to register and activate your device, and associate the device to your virtual account.

Note

This token is valid for 365 days and can be used to register any number of Cisco routers. There is no need to create token every time for a new device.

Register New Product in CLI

In the CLI, use the registration token to activate the device.

```
RP/0/RP0/CPU0:router#license smart register idtoken token_ID
```

On successful registration, the device receives an identity certificate. This certificate is saved on your device and automatically used for all future communications with Cisco. Every 290 days, Smart Licensing automatically renews the registration information with Cisco. If registration fails, an error is logged. Also, license usage data is collected and a report is sent to you every month. If necessary, you can configure your Smart Call Home settings such that sensitive information (like hostname, username and password) are filtered out from the usage report.
In a Cisco 8000 distributed platform, you might see the following message when one or more line cards are shutdown using the `hw-module` command:

```
RP/0/RP0/CPU0:router#: smartlicserver[324]: %LICENSE-SMART_LIC-2-PLATFORM_ERROR : Smart Licensing has encountered an internal software error.
Contact TAC: Unable to retrieve current TS path

RP/0/RP0/CPU0:router#: smartlicserver[324]: %LICENSE-SMART_LIC-2-PLATFORM_ERROR : Smart Licensing has encountered an internal software error.
Contact TAC: INVALID SysDataList: No storage path for first device

RP/0/RP0/CPU0:router#: smartlicserver[324]: %LICENSE-SMART_LIC-2-PLATFORM_ERROR : Smart Licensing has encountered an internal software error.
Contact TAC: Incorrect Data List detected.
```

The messages are logged only once, and they are short-lived. The messages are not service impacting, and can be ignored.

Check License Consumption Status

Use the `show license` commands to display the Smart Licensing status and consumption states.

Step 1
`show license status`

Example:

```
RP/0/RP0/CPU0:router# show license status
```

Displays the compliance status of Smart Licensing. Following are the possible status:

- **Waiting**—Indicates the initial state after your device has made a license entitlement request. The device establishes communication with Cisco and successfully registers itself with the Cisco Smart Software Manager.

- **Authorized**—Indicates that your device is able to communicate with the Cisco Smart Software Manager, and is authorised to initiate requests for license entitlements.

- **Out-Of-Compliance**—Indicates that one or more of your licenses are out-of-compliance. You must buy additional licenses.

 Note

 A warning message appears when a license is out-of-compliance. A log message is also saved in the syslog.

- **Eval Period**—Indicates that Smart Licensing is consuming the evaluation period. The eval period is valid until 90 days. You must register the device with the Cisco Smart Software Manager, else your license expires.

- **Disabled**—Indicates that Smart Licensing is disabled.

- **Invalid**—Indicates that Cisco does not recognize the entitlement tag as it is not in the database.

Step 2
`show license all`

Example:
RP/0/RP0/CPU0:router#show license all
Tue Sep 24 02:53:42.729 UTC

Smart Licensing Status

Smart Licensing is ENABLED

Registration:
Status: REGISTERED
Smart Account: BU Production Test 1
Virtual Account: NCS550 Testing
Export-Controlled Functionality: ALLOWED
Initial Registration: SUCCEEDED on Sep 24 2019 02:49:34 UTC
Last Renewal Attempt: None
Next Renewal Attempt: Mar 22 2020 02:49:34 UTC
Registration Expires: Sep 23 2020 02:44:45 UTC

License Authorization:
Status: AUTHORIZED on Sep 24 2019 02:49:48 UTC
Last Communication Attempt: SUCCEEDED on Sep 24 2019 02:49:48 UTC
Next Communication Attempt: Oct 24 2019 02:49:47 UTC
Communication Deadline: Dec 23 2019 02:44:58 UTC

Export Authorization Key:
Features Authorized:
<none>

Utility:
Status: DISABLED

Data Privacy:
Sending Hostname: yes
Callhome hostname privacy: DISABLED
Smart Licensing hostname privacy: DISABLED
Version privacy: DISABLED

Transport:
Type: Callhome

License Usage
==============

8201 Base HW Tracking PID (8201-TRK):
 Description: 8201 Base HW Tracking PID
 Count: 1
 Version: 1.0
 Status: AUTHORIZED
 Export status: NOT RESTRICTED

8000 Software Tracking PID 7.0 (XR-8K-7.0-TRK):
 Description: 8000 Software Tracking PID 7.0
 Count: 1
 Version: 1.0
 Status: AUTHORIZED
 Export status: NOT RESTRICTED

Core & Aggr Essentials SW Right-to-Use per 100G for Cisco 8000 series (ESS-CA-100G-RTU-2):
 Description: Core & Aggr Essentials SW Right-to-Use per 100G for Cisco 8000 series
 Count: 1
 Version: 1.0
 Status: AUTHORIZED
 Export status: NOT RESTRICTED
Core & Aggr Advance SW Right-to-Use per 100G for Cisco 8000 series (ADV-CA-100G-RTU-2):

Description: Core & Aggr Advance SW Right-to-Use per 100G for Cisco 8000 series

Count: 1
Version: 1.0
Status: AUTHORIZED
Export status: NOT RESTRICTED

Product Information

UDI: PID:8201-SYS,SN:FOC2245N7D8

Agent Version

Smart Agent for Licensing: 4.9.6_rel/41

Reservation Info

License reservation: DISABLED

Displays all entitlements in use. Additionally, it shows associated licensing certificates, compliance status, UDI, and other details.

Step 3

show license status

Example:

RP/0/RP0/CPU0:router#show license status
Tue Sep 24 03:00:49.103 UTC

Smart Licensing is ENABLED

Utility:
Status: DISABLED

Data Privacy:
Sending Hostname: yes
Callhome hostname privacy: DISABLED
Smart Licensing hostname privacy: DISABLED
Version privacy: DISABLED

Transport:
Type: Callhome

Registration:
Status: REGISTERED
Smart Account: BU Production Test 1
Virtual Account: NCS550 Testing
Export-Controlled Functionality: ALLOWED
Initial Registration: SUCCEEDED on Sep 24 2019 02:49:34 UTC
Last Renewal Attempt: None
Next Renewal Attempt: Mar 22 2020 02:49:34 UTC
Registration Expires: Sep 23 2020 02:44:45 UTC

License Authorization:
Status: AUTHORIZED on Sep 24 2019 02:49:48 UTC
Last Communication Attempt: SUCCEEDED on Sep 24 2019 02:49:48 UTC
Next Communication Attempt: Oct 24 2019 02:49:48 UTC
Communication Deadline: Dec 23 2019 02:44:59 UTC

Export Authorization Key:
Features Authorized:
<none>
Displays the status of all entitlements in use.

Step 4

show license summary

Example:

```
RP/0/RP0/CPU0:router#show license summary
Tue Sep 24 02:54:28.659 UTC

Smart Licensing is ENABLED

Registration:
Status: REGISTERED
Smart Account: BU Production Test 1
Virtual Account: NCS550 Testing
Export-Controlled Functionality: ALLOWED
Last Renewal Attempt: None
Next Renewal Attempt: Mar 22 2020 02:49:34 UTC

License Authorization:
Status: AUTHORIZED
Last Communication Attempt: SUCCEEDED
Next Communication Attempt: Oct 24 2019 02:49:47 UTC

License Usage:

| License Entitlement tag Count Status |
|--------------------------------------|-------------------------------------|
| 8201 Base HW Tracking... (8201-TRK) 1 AUTHORIZED |
| 8000 Software Tracking... (XR-8K-7.0-TRK) 1 AUTHORIZED |
| Core & Aggr Essentials... (ESS-CA-100G-RTU-2) 1 AUTHORIZED |
| Core & Aggr Advance... (ADV-CA-100G-RTU-2) 1 AUTHORIZED |
```

```
RP/0/RP0/CPU0:ios#show license udi
Tue Sep 24 02:54:34.082 UTC
UDI: PID:8201-SYS,SN:FOC2245N7D8
```

Step 5

show license platform summary

Example:

```
RP/0/RP0/CPU0:router#show license platform summary
Tue Sep 24 02:58:29.102 UTC
Current state: REGISTERED

Collection: LAST: Tue Sep 24 2019 02:57:32 UTC
NEXT: Tue Sep 24 2019 02:58:32 UTC
Reporting: LAST: Tue Sep 24 2019 02:57:32 UTC
NEXT: Tue Sep 24 2019 02:58:32 UTC

<table>
<thead>
<tr>
<th>Feature/Area Entitlement</th>
<th>Count Last Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible Consumption Model Core &amp; Aggr Essentials SW Right-to-Use per 100G</td>
<td>1 0</td>
</tr>
<tr>
<td>Flexible Consumption Model Core &amp; Aggr Advance SW Right-to-Use per 100G fo</td>
<td>1 0</td>
</tr>
<tr>
<td>Flexible Consumption Model Cisco 8201 Base Hardware Tracking PID</td>
<td>1 0</td>
</tr>
<tr>
<td>Flexible Consumption Model 8000 Router IOS XR 7.0 SW Version Tracking PID</td>
<td>1 0</td>
</tr>
</tbody>
</table>
```

Displays a summary of all entitlements in use.

Step 6

show license platform detail

Example:

```
```

Displays the registration status and provides a detailed information regarding the number of essential, advanced and tracking license consumption in generic or Flexible Consumption Model license model.
RP/0/RP0/CPU0:router#show license platform detail
Tue Sep 24 02:58:32.730 UTC
Current state: REGISTERED

Collection: LAST: Tue Sep 24 2019 02:58:32 UTC
NEXT: Tue Sep 24 2019 02:59:32 UTC
Reporting: LAST: Tue Sep 24 2019 02:58:32 UTC
NEXT: Tue Sep 24 2019 02:59:32 UTC

Parameters: Collection interval: 1 minute(s)
Reporting interval: 1 minute(s)
Throughput gauge: 1000000 Kbps

Feature/Area 'Flexible Consumption Model'
Name: Flexible Consumption Model
Status: ACTIVE
Flags:

[1] Name: Core & Aggr Essentials SW Right-to-Use per 400G for Cisco 8000 series
Entitlement Tag:
regid.2019-03.com.cisco.ESS-CA-400G-RTU-2,1.0_015f335a-e7cd-4d5c-aec5-b9a0ee2df9b
Count: Last reported: 0
Next report: 0

[2] Name: Core & Aggr Essentials SW Right-to-Use per 100G for Cisco 8000 series
Entitlement Tag:
regid.2019-03.com.cisco.ESS-CA-100G-RTU-2,1.0_48bddd7b-c17a-42fe-908a-9ed16d242b84
Count: Last reported: 1
Next report: 0

[3] Name: Core & Aggr Advance SW Right-to-Use per 400G for Cisco 8000 series
Entitlement Tag:
regid.2019-03.com.cisco.ADV-CA-400G-RTU-2,1.0_c1bb53dc-64e5-f251-b362-baf87b0f7eb3
Count: Last reported: 0
Next report: 0

[4] Name: Core & Aggr Advance SW Right-to-Use per 100G for Cisco 8000 series
Entitlement Tag:
regid.2019-03.com.cisco.ADV-CA-100G-RTU-2,1.0_f7ea7ca75-0b9b-4705-9e21-252dd1e2e5cd
Count: Last reported: 1
Next report: 0

Displays the detailed licenses that can be consumed in particular platform in both generic and Flexible Consumption Model models. Also displays the current and the next consumption count of a particular license. Displays information of the active model, whether is it generic or Flexible Consumption Model license model.

Step 7 show call-home smart-licensing statistics
Displays the statistics of communication between the Smart Licensing manager and the Cisco back-end using Smart Call Home. In case communication fails or drops, check your call home configuration for any errors.

The following example shows sample output from the show call-home smart-licensing statistics command:

RP/0/RP0/CPU0:router#show call-home smart-licensing statistics
Tue Sep 24 03:00:56.895 UTC
Success: Successfully sent and response received.
Failed: Failed to send or response indicated error occurred.
Inqueue: In queue waiting to be sent.
Dropped: Dropped due to incorrect call-home configuration.

Msg Subtype Success Failed Inqueue Dropped Last-sent (GMT+00:00)
Renew Smart Licensing Registration

In general, your registration is automatically renewed every six months. Use this option to make an on-demand manual update of your registration. Thus, instead of waiting six months for the next registration renewal cycle, you can issue this command to instantly find out the status of your license.

Before you begin

You must ensure that the following conditions are met to renew your smart license:

- The device is registered.

license smart renew {auth | id}

Example:

RP/0//CPU0:#license smart renew auth
Tue Apr 22 09:12:37.086 PST
license smart renew auth: Authorization process is in progress.
Please check the syslog for the authorization status and result.

Renew your ID or authorization with Cisco smart licensing. If ID certification renewal fails, then the product instance goes to an unidentified state and starts consuming the evaluation period.

Note

- The warning message that the smart licensing evaluation period has expired is displayed in the console every hour. There is, however, no functionality impact on the device. The issue is seen on routers that do not have the Flexible Consumption licensing model enabled. To stop the repetitive messaging, register the device with the smart licensing server and enable the Flexible Consumption model. Later load a new registration token.

- Authorization periods are renewed by the Smart Licensing system every 30 days. As long as the license is in an 'Authorized' or 'Out-of-compliance' (OOC), the authorization period is renewed. Grace period starts when an authorization period expires. During the grace period or when the grace period is in the 'Expired' state, the system continues to try renew the authorization period. If a retry is successful, a new authorization period starts.

Smart Licensing Workflow

The Smart Licensing workflow is depicted in this flowchart.
Licenses, Product Instances, and Registration Tokens

Licenses

Depending on the product, all Cisco products licenses are any one of the following two types:

- Perpetual licenses—Licenses that do not expire.
- Term licenses—Licenses that automatically expire after a set amount of time: one year, three years, or whatever term was purchased.

All product licenses reside in a virtual account.

Product Instances

A product instance is an individual device with a unique device identifier (UDI) that is registered using a product instance registration token (or registration token). You can register any number of instances of a product with a single registration token. Each product instance can have one or more licenses residing in the same virtual account. Product instances must periodically connect to the Cisco Smart Software Manager servers during a specific renewal period. If a product instance fails to connect, it is marked as having a license shortage, but continues to use the license. If you remove the product instance, its licenses are released and made available within the virtual account.

Product Instance Registration Tokens

A product requires a registration token until you have registered the product. Registration tokens are stored in the Product Instance Registration Token Table associated with your enterprise account. Once the product is registered the registration token is no longer necessary and can be revoked and removed from the table without effect. Registration tokens can be valid from 1 to 365 days.

Virtual Accounts

Smart Licencing allows you to create multiple license pools or virtual accounts within the Smart Software Manager portal. Using the Virtual Accounts option you can aggregate licenses into discrete bundles associated with a cost center so that one section of an organization cannot use the licenses of another section of the organization. For example, if you segregate your company into different geographic regions, you can create a virtual account for each region to hold the licenses and product instances for that region.
All new licenses and product instances are placed in the default virtual account in the Smart Software Manager, unless you specify a different one during the order process. Once in the default account, you may choose to transfer them to any other account as desired, provided you have the required access permissions.

Use the Smart Software Manager portal at https://software.cisco.com/ to create license pools or transfer licenses.

Compliance reporting

On a periodic basis, as described by the terms of the Smart Licensing contract, reports are automatically sent to you containing inventory and license compliance data. These reports will take one of three forms:

- **Periodic Record**—This record is generated on a periodic (configurable) basis with relevant inventory data saved at a given point of time. This report is saved within the Cisco cloud for archival.

- **Manual Record**—You can manually generate this record with relevant inventory data saved at any given point of time. This report will be saved within the Cisco cloud for archival.

- **Compliance Warning Report**—This report is automatically or manually generated when a license compliance event occurs. This report does not contain a full inventory data, but only any shortfalls in entitlements for a given software license.

Note
A warning message appears when a license is out-of-compliance. A log message is also saved in the syslog.

You can view these reports from the Smart Software Manager portal at https://software.cisco.com/.
CHAPTER 7

Configuring Call Home

This module describes the configuring of the Call Home feature.

Table 10: Feature History for Configuring Call Home

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 7.0.11</td>
<td>Call Home was introduced</td>
</tr>
</tbody>
</table>

This model contains the following topics:

- About Call Home, on page 77
- Benefits of Using Call Home, on page 78
- Prerequisites for Call Home, on page 78
- How to Configure Call Home, on page 79
- Configuring Contact Information, on page 79
- Destination Profiles, on page 81
- Call Home Alert Groups, on page 83
- Configuring Email, on page 87
- Configuring a HTTPS Proxy Server, on page 88
- Sending Call-home Data through an Email, on page 89
- Sending Call-home Data through HTTPS, on page 91
- Configuring Call Home to use VRF, on page 92
- Configuring Call Home Data Privacy, on page 93
- Sending Smart License Data, on page 94

About Call Home

Call Home provides an email and HTTPS based notification for critical system policies. A range of message formats are available for compatibility with pager services or XML-based automated parsing applications. You can use this feature to page a network support engineer, or email a Network Operations Center. You can also use Cisco Smart Call Home services to generate a case with the Technical Assistance Center. The Call Home feature can deliver alert messages containing information about diagnostics and environmental faults and events.

The Call Home feature can deliver alerts to multiple recipients, referred to as Call Home destination profiles. Each profile includes configurable message formats and content categories. A predefined destination is...
Benefits of Using Call Home

The Call Home feature offers the following benefits:

- Multiple message-format options:
 - Short Text—Suitable for pagers or printed reports.
 - Plain Text—Full formatted message information suitable for human reading.
 - XML—Matching readable format using Extensible Markup Language (XML) and Adaptive Markup Language (AML) document type definitions (DTDs). The XML format enables communication with the Cisco Smart Call Home server.

- Multiple concurrent message destinations.
- Multiple message categories, including configuration, environmental conditions, inventory, syslog, and crash events.
- Filtering of messages by severity and pattern matching.
- Scheduling of periodic message sending.

Prerequisites for Call Home

How you configure Call Home depends on how you intend to use the feature. Consider the following requirements before you configure Call Home:

- Obtain e-mail, phone, and street address information for the Call Home contact to be configured so that the receiver can determine the origin of messages received.

- Identify the name or IPv4 address of a primary Simple Mail Transfer Protocol (SMTP) server and any backup servers, if using e-mail message delivery.
• Verify IP connectivity from the router to the e-mail server(s) or the destination HTTP server.
• If Cisco Smart Call Home is used, an active service contract covering the device is required to provide full SCH service.

How to Configure Call Home

To configure the sending of Call Home messages, do the following:

1. Assign contact information.
2. Configure and enable one or more destination profiles.
3. Associate one or more alert groups to each profile.
4. Configure the email server options, if using e-mail message delivery.
5. Enable Call Home.

The above tasks are described in detail in the below procedures.

![Note]

Before enabling Call-Home, you must configure the source interface for HTTPS over IPv6. However, for HTTPS over IPv4, Call-Home works without the source interface.

In case of a dual-stack call-home configuration on the device, the IPv4 address is preferred over the IPv6 address. This may result in IPv6 resolution failure. Due to this limitation, the IPv6 device registration with the licensing server may only be done with a single mode, that is, IPv6 only configuration.

Use the `http client source-interface ipv6` command to configure the source interface.

Configuring Contact Information

Each router must include a contact e-mail address. You can optionally include other identifying information for your system installation.

Step 1

```configure
RP/0/RP0/CPU0:router# configure
```

Enables mode.

Step 2

```call-home
RP/0/RP0/CPU0:router(config)# call-home
```

Example:
Enters call home configuration mode.

Step 3

```plaintext
contact-email-addr  email-address
```

Example:

```
RP/0/RP0/CPU0:router(config-call-home)# contact-email-addr
user1@cisco.com
```

Configures the customer email address. Enter up to 200 characters in email address format with no spaces.

Step 4

(Optional) ```plaintext
contract-id contract-id-string
```

**Example:**

```
RP/0/RP0/CPU0:router(config-call-home)# contract-id
Contract-identifier
```

Configures the contract ID. Enter up to 64 characters. If you include spaces, you must enclose the entry in quotes ("").

**Step 5**

(Optional) ```plaintext
customer-id  customer-id-string
```

Example:

```
RP/0/RP0/CPU0:router(config-call-home)# customer-id Customer1
```

Configures the customer ID. Enter up to 64 characters. If you include spaces, you must enclose the entry in quotes ("").

Step 6

(Optional) ```plaintext
phone-number phone-number-string
```

**Example:**

```
RP/0/RP0/CPU0:router(config-call-home)# phone-number +405-123-4567
```

Configures the customer phone number. The number must begin with a plus (+) prefix, and may contain only dashes (-) and numbers. Enter up to 16 characters.

**Step 7**

(Optional) ```plaintext
street-address  street-address
```

Example:

```
RP/0/RP0/CPU0:router(config-call-home)# street-address "300 E. Tasman Dr.
San Jose, CA 95134"
```

Configures the customer street address where RMA equipment can be shipped. Enter up to 200 characters. If you include spaces, you must enclose the entry in quotes ("").

Step 8

(Optional) ```plaintext
site-id site-id-string
```

**Example:**

```
RP/0/RP0/CPU0:router(config-call-home)# site-id SJ-RouterRoom1
```

Configures the site ID for the system. Enter up to 200 characters. If you include spaces, you must enclose the entry in quotes ("").

**Step 9**

Use the `commit` or `end` command.

`commit` — Saves the configuration changes and remains within the configuration session.

`end` — Prompts user to take one of these actions:
• Yes — Saves configuration changes and exits the configuration session.
• No — Exits the configuration session without committing the configuration changes.
• Cancel — Remains in the configuration session, without committing the configuration changes.

Step 10  show call-home

Example:

RP/0/RP0/CPU0:router# show call-home

Displays information about the system contacts.

Destination Profiles

A destination profile includes the following information:

• One or more alert groups—The group of alerts that trigger a specific Call Home message if the alert occurs.

• One or more e-mail or HTTPS destinations—The list of recipients for the Call Home messages generated by alert groups assigned to this destination profile.

• Message format—The format for the Call Home message (short text, full text, or XML).

• Message severity level—The Call Home severity level that the alert must meet before a Call Home message is sent to all e-mail and HTTPS URL addresses in the destination profile. An alert is not generated if the Call Home severity level of the alert is lower than the message severity level set for the destination profile. The inventory and configuration alert groups do not have concept of severity level. They are generated directly.

You can also configure a destination profile to allow periodic inventory update messages by using the inventory alert group that will send out periodic messages daily, weekly, or monthly.

The following predefined destination profiles are supported:

• CiscoTAC-1—Supports the Cisco-TAC alert group in XML message format.

Configuring and Activating Destination Profiles

You must have at least one activated destination profile for Call Home messages to be sent. The CiscoTAC-1 profile exists by default but is not active.

Step 1  configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.
Configuring Call Home

Configuring and Activating Destination Profiles

Step 2

call-home

Example:

RP/0/RP0/CPU0:router(config)# call-home
RP/0/RP0/CPU0:router(config-call-home)#

Enters call home configuration mode.

Step 3

profile profile-name

Example:

RP/0/RP0/CPU0:router(config-call-home)# profile my_profile
RP/0/RP0/CPU0:router(config-call-home-profile)#

Enters call home profile configuration mode to configure a new or existing profile.

Step 4

destination address email email-address

Example:

RP/0/RP0/CPU0:router(config-call-home-profile)# destination address email support_me@cisco.com

Configures an email address to which Call Home messages are sent for this profile.

Step 5

destination message-size-limit max-size

Example:

RP/0/RP0/CPU0:router(config-call-home-profile)# destination message-size-limit 1000

Configures the maximum size of Call Home messages for this profile. Values can be between 50 and 3145728 characters.

Step 6

destination preferred-msg-format {short-text | long-text | xml}

Example:

RP/0/RP0/CPU0:router(config-call-home-profile)# destination preferred-msg-format xml

Configures the message format for this profile. The default is xml.

Step 7

destination transport-method [ email | http ]

Example:

RP/0/RP0/CPU0:router(config-call-home-profile)# destination transport-method email

Configures the transport method for this profile.

Step 8

active

Example:

RP/0/RP0/CPU0:router(config-call-home-profile)# active

Activates the destination profile.
At least one destination profile must be active for Call Home messages to be sent.

**Step 9**

Use the `commit` or `end` command.

**commit** — Saves the configuration changes and remains within the configuration session.

**end** — Prompts user to take one of these actions:

- **Yes** — Saves configuration changes and exits the configuration session.
- **No** — Exits the configuration session without committing the configuration changes.
- **Cancel** — Remains in the configuration session, without committing the configuration changes.

**Step 10**

```
show call-home profile {all | profile-name}
```

**Example:**

```
RP/0/RP0/CPU0:router# show call-home profile all
Displayss information about the destination profile.
```

---

## Call Home Alert Groups

An alert group is a predefined subset of alerts or events that Call Home detects and reports to one or more destinations. Alert groups allow you to select the set of alerts that you want to send to a predefined or custom destination profile. Alerts are sent to e-mail destinations in a destination profile only if that alert belongs to one of the alert groups associated with that destination profile and if the alert has a Call Home message severity at or above the message severity set in the destination profile.

The following table lists supported alert groups and the default CLI command output included in Call Home messages generated for the alert group.

**Table 11: Alert Groups and Executed Commands**

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Description</th>
<th>Executed Commands</th>
</tr>
</thead>
</table>
| Environmental| Events related to power, fan, and environment-sensing elements such as temperature alarms. | • `show environment`
|              |                                                                             | • `show logging`
|              |                                                                             | • `show inventory`
|              |                                                                             | • `show environment trace`
|              |                                                                             | • `show diag`                                      |
| Inventory    | Inventory status that is provided whenever a unit is cold booted, or when FRUs are inserted or removed. This alert is considered a noncritical event, and the information is used for status and entitlement. | • `show platform`
|              |                                                                             | • `show version`
|              |                                                                             | • `show diag`
|              |                                                                             | • `show inventory oid`                             |
### Call Home Message Levels

Call Home allows you to filter messages based on their level of urgency. You can associate each destination profile (predefined and user-defined) with a Call Home message level threshold. The Call Home message level ranges from 0 (lowest level of urgency) to 9 (highest level of urgency). Call Home messages are generated if they have a severity level equal to or greater than the Call Home message level threshold for the destination profile.

Call Home messages that are sent for syslog alert groups have the syslog severity level mapped to the Call Home message level.

**Note**

Call Home does not change the syslog message level in the message text.

The following table lists each Call Home message level keyword and the corresponding syslog level for the syslog port alert group.

<table>
<thead>
<tr>
<th>Call Home Level</th>
<th>Keyword</th>
<th>syslog Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Catastrophic</td>
<td>Not-Applicable</td>
<td>Network-wide catastrophic failure.</td>
</tr>
<tr>
<td>8</td>
<td>Disaster</td>
<td>Not-Applicable</td>
<td>Significant network impact.</td>
</tr>
</tbody>
</table>
### Associating an Alert Group with a Destination Profile

An alert is sent only to destination profiles that have subscribed to the Call Home alert group.

**Before you begin**

Use the `show call-home alert-group` command to view available alert groups.

---

#### Step 1

configure

**Example:**

```
RP/0/RP0/CPU0:router# configure
```

Enters mode.

#### Step 2

call-home

**Example:**

```
RP/0/RP0/CPU0:router(config)# call-home
RP/0/RP0/CPU0:router(config-call-home)#
```

Enters call home configuration mode.

#### Step 3

**profile** *profile-name*

**Example:**

```
RP/0/RP0/CPU0:router(config-call-home)# profile my_profile
RP/0/RP0/CPU0:router(config-call-home-profile)#
```
Enters call home profile configuration mode to configure a new or existing profile.

**Step 4**

`subscribe-to-alert-group inventory [periodic [daily | monthly day-of-month | weekly day-of-week] hh:mm`

**Example:**

```
RP/0/RP0/CPU0:router(config-call-home-profile)# subscribe-to-alert-group
inventory periodic monthly 1 10:00
```

Configures a destination profile to receive messages for the inventory alert group. Either alerts are sent periodically, or any non-normal event triggers an alert.

**Step 5**

`subscribe-to-alert-group syslog severity severity-level pattern string`

**Example:**

```
RP/0/RP0/CPU0:router(config-call-home-profile)# subscribe-to-alert-group
syslog severity major pattern
```

Configures a destination profile to receive messages for the syslog alert group. Alerts with a severity the same or greater than the specified severity level are sent.

- **catastrophic**—Includes network-wide catastrophic events in the alert. This is the highest severity.
- **critical**—Includes events requiring immediate attention (system log level 1).
- **disaster**—Includes events with significant network impact.
- **fatal**—Includes events where the system is unusable (system log level 0).
- **major**—Includes events classified as major conditions (system log level 2).
- **minor**—Includes events classified as minor conditions (system log level 3)
- **normal**—Specifies the normal state and includes events classified as informational (system log level 6). This is the default.
- **notification**—Includes events informational message events (system log level 5).
- **warning**—Includes events classified as warning conditions (system log level 4).

You can specify a pattern to be matched in the syslog message. If the pattern contains spaces, you must enclose it in quotes (" ").

**Step 6**

`subscribe-to-alert-group snapshot severity severity-level pattern string`

**Example:**

```
RP/0/RP0/CPU0:router(config-call-home-profile)# subscribe-to-alert-group
snapshot severity major pattern
```

Configures a destination profile to receive messages for the snapshot alert group. Alerts with a severity the same or greater than the specified severity level are sent.

You can specify a pattern to be matched in the syslog message. If the pattern contains spaces, you must enclose it in quotes (" ").

**Step 7**

`subscribe-to-alert-group configuration severity severity-level pattern string`

**Example:**

```
```
Configuring Call Home

RP/0/RP0/CPU0:router(config-call-home-profile)# subscribe-to-alert-group configuration severity major pattern

Configures a destination profile to receive messages for the configuration alert group. Alerts with a severity the same or greater than the specified severity level are sent.

You can specify a pattern to be matched in the syslog message. If the pattern contains spaces, you must enclose it in quotes ("").

Step 8

Use the **commit** or **end** command.

- **commit** — Saves the configuration changes and remains within the configuration session.
- **end** — Prompts user to take one of these actions:
  - **Yes** — Saves configuration changes and exits the configuration session.
  - **No** — Exits the configuration session without committing the configuration changes.
  - **Cancel** — Remains in the configuration session, without committing the configuration changes.

What to do next

Use the **show call-home profile** command to view the profile configurations.

Configuring Email

If Call Home messages are sent via email, the you must configure your email server before Call Home messages can be sent.

Step 1

**configure**

Example:

```
RP/0/RP0/CPU0:router# configure
```

Enters mode.

Step 2

**call-home**

Example:

```
RP/0/RP0/CPU0:router(config)# call-home
RP/0/RP0/CPU0:router(config-call-home)#
```

Enters call home configuration mode.

Step 3

(Optional) **sender from email-address**

Example:

```
RP/0/RP0/CPU0:router(config-call-home)# sender from my_email@cisco.com
```
Specifies the email message “from” address.

**Step 4**  
(Optional) **sender reply-to email-address**  
**Example:**  
```
RP/0/RP0/CPU0:router(config-call-home)# sender reply-to
my_email@cisco.com
```
Specifies the email message “reply-to” address.

**Step 5**  
**Required:** **mail-server address priority priority**  
**Example:**  
```
RP/0/RP0/CPU0:router(config-call-home)# mail-server
198.61.170.16 priority 1
```
Specifies the mail server to use to send Call Home messages. You can specify an IP address or mail server name. You can specify up to five mail servers to use. The server with the lower priority is tried first.

**Step 6**  
Use the **commit** or **end** command.  
**commit** — Saves the configuration changes and remains within the configuration session.  
**end** — Prompts user to take one of these actions:  
  • **Yes** — Saves configuration changes and exits the configuration session.  
  • **No** — Exits the configuration session without committing the configuration changes.  
  • **Cancel** — Remains in the configuration session, without committing the configuration changes.

**Step 7**  
**show call-home mail-server status**  
**Example:**  
```
RP/0/RP0/CPU0:router# show call-home mail-server status
```
Displays the status of the specified mail server.

---

**Configuring a HTTPS Proxy Server**

This task enables the user to configure a HTTPS Proxy Server.

**Step 1**  
**configure**  
**Example:**  
```
RP/0/RP0/CPU0:router# configure
```
Enters mode.

**Step 2**  
**call-home**
Sending Call-home Data through an Email

This task enables the user to configure sending Call-home data using email as the transport method:

**Step 1**
`configure`

**Example:**
```
RP/0/RP0/CPU0:router# configure
```
Enters mode.

**Step 2**
`call-home`

**Example:**
```
RP/0/RP0/CPU0:router (config) # call-home
```
Enters Call Home configuration mode.

**Step 3**
`profile name`

**Example:**
```
RP/0/RP0/CPU0:router (config-call-home) # profile user1
```
Enters call home destination profile configuration mode for the specified destination profile name. If the specified destination profile does not exist, it is created.

**Step 4**
`active`

**Example:**
```
RP/0/RP0/CPU0:router (config-call-home-profile) # active
```
Enables the destination profile. By default, a user-defined profile is enabled when it is created.

**Step 5**
`destination transport-method email`

**Example:**
```
RP/0/RP0/CPU0:router (config-call-home-profile) # destination transport-method email
```
Configures the message transport method for email. This is the default.

**Step 6**
`destination address email  email-address`
Example:
RP/0/RP0/CPU0:router (config-call-home-profile) # destination address email xyz@cisco.com

Configures the destination e-mail address to which Call Home messages are sent.

**Step 7**  
**destination preferred-msg-format {long-text |short-text| xml}**

**Example:**
RP/0/RP0/CPU0:router (config-call-home-profile) # destination preferred-msg-format xml

(Optional) Configures a preferred message format. The default is XML.

**Step 8**  
**subscribe-to-alert-group syslog severity severity-level pattern string**

**Example:**
RP/0/RP0/CPU0:router (config-call-home-profile) # subscribe-to-alert-group syslog severity normal pattern COUNT

Configures a destination profile to receive messages for the syslog alert group. Alerts with a severity the same or greater than the specified severity level are sent.

- **critical**—Includes events requiring immediate attention (system log level 1).
- **disaster**—Includes events with significant network impact.
- **fatal**—Includes events where the system is unusable (system log level 0).
- **major**—Includes events classified as major conditions (system log level 2).
- **minor**—Includes events classified as minor conditions (system log level 3).
- **normal**—Specifies the normal state and includes events classified as informational (system log level 6).
  This is the default.
- **notification**—Includes events informational message events (system log level 5).
- **warning**—Includes events classified as warning conditions (system log level 4).

You can specify a pattern to be matched in the syslog message. If the pattern contains spaces, you must enclose it in quotes (""").

**Step 9**  
Use the **commit** or **end** command.

- **commit**—Saves the configuration changes and remains within the configuration session.
- **end**—Prompts user to take one of these actions:
  - **Yes**—Saves configuration changes and exits the configuration session.
  - **No**—Exits the configuration session without committing the configuration changes.
  - **Cancel**—Remains in the configuration session, without committing the configuration changes.
Sending Call-home Data through HTTPS

This task enables the user to configure sending Call-home data using HTTPS as the transport method:

Note
For the HTTPS function to work you should use the `crypto ca trustpoint` command to declare a CA, followed by the `crl option` command. This ensures that the certificates of other peers are accepted without trying to obtain the appropriate CRL. For example:

```
RP/0/RP0/CPU0:ios(config)#crypto ca trustpoint Trustpool
RP/0/RP0/CPU0:ios(config-trustp)#crl optional
```

---

Step 1  configure
Example:

```
RP/0/RP0/CPU0:router# configure
```
Enters mode.

Step 2  call-home
Example:

```
RP/0/RP0/CPU0:router (config) # call-home
```
Enters Call Home configuration mode.

Step 3  profile name
Example:

```
RP/0/RP0/CPU0:router (config-call-home) # profile user1
```
Enters call home destination profile configuration mode for the specified destination profile name. If the specified destination profile does not exist, it is created.

Step 4  active
Example:

```
RP/0/RP0/CPU0:router (config-call-home-profile) # active
```
Enables the destination profile. By default, a user-defined profile is enabled when it is created.

Step 5  destination transport-method http
Example:

```
RP/0/RP0/CPU0:router (config-call-home-profile) # destination transport-method http
```
Configures the message transport method for HTTPS.

Step 6  destination address http url
Example:

```
RP/0/RP0/CPU0:router (config-call-home-profile) # destination address http https://example.com
```
Configures the destination URL address to which Call Home messages are sent.
Step 7  
*destination preferred-msg-format {long-text |short-text| xml}*

**Example:**
```
RP/0/RP0/CPU0:router (config-call-home-profile) # destinationpreferred-msg-format xml
```

(Optional) Configures a preferred message format. The default is XML.

**Step 8**  
*subscribe-to-alert-group syslog severity severity-level pattern string*

**Example:**
```
RP/0/RP0/CPU0:router (config-call-home-profile) # subscribe-to-alert-group syslog severity normal pattern COUNT
```

Configures a destination profile to receive messages for the syslog alert group. Alerts with a severity the same or greater than the specified severity level are sent.

- **critical**—Includes events requiring immediate attention (system log level 1).
- **disaster**—Includes events with significant network impact.
- **fatal**—Includes events where the system is unusable (system log level 0).
- **major**—Includes events classified as major conditions (system log level 2).
- **minor**—Includes events classified as minor conditions (system log level 3).
- **normal**—Specifies the normal state and includes events classified as informational (system log level 6).
  
  This is the default.

- **notification**—Includes events informational message events (system log level 5).

- **warning**—Includes events classified as warning conditions (system log level 4).

You can specify a pattern to be matched in the syslog message. If the pattern contains spaces, you must enclose it in quotes ("").

**Step 9**  
Use the **commit** or **end** command.

- **commit**—Saves the configuration changes and remains within the configuration session.

- **end**—Prompts user to take one of these actions:
  - **Yes**—Saves configuration changes and exits the configuration session.
  - **No**—Exits the configuration session without committing the configuration changes.
  - **Cancel**—Remains in the configuration session, without committing the configuration changes.

---

**Configuring Call Home to use VRF**

**Step 1**  
*configure*

**Example:**
Configuring Call Home

Step 2  call-home
Example:
RP/0/RP0/CPU0:router (config) # call-home
Enters Call Home configuration mode.

Step 3  vrf vrf-name
Example:
RP/0/RP0/CPU0:router (config-call-home) # vrf v1
Configures call home for the specified VRF. VRF works only for the http transport method. It does not work for the email transport method.

Configuring Call Home Data Privacy

Step 1  configure
Example:
RP/0/RP0/CPU0:router# configure
Enters mode.

Step 2  call-home
Example:
RP/0/RP0/CPU0:router(config) # call-home
Enters the call home configuration submode.

Step 3  data-privacy { level { normal | high } | hostname }
Example:
RP/0/RP0/CPU0:router(config-call-home) # data-privacy level high
Scrubs data from call-home message to protect the privacy of the user. The default data-privacy level is normal.

- **normal** - scrubs all normal level commands, such as, password/username/ip/destination.
- **high** - scrubs all normal level commands plus the IP domain name and IP address commands.
- **hostname** - scrubs all high-level or normal-level commands plus the hostname command. It may cause Smart Call Home processing failure.

**Note**  Enabling the data-privacy command can affect CPU utilization when scrubbing a large amount of data.
Sending Smart License Data

This task enables the user to configure sending Smart License data through HTTPS transport method in TAC or user-defined profile:

Step 1  configure
Example:

```
RP/0/RP0/CPU0:router# configure
```

Enters mode.

Step 2  call-home
Example:

```
RP/0/RP0/CPU0:router (config) # call-home
```

Enters Call Home configuration mode.

Step 3  profile name
Perform either one of the below actions:
- For sending Smart License data in TAC profile:
  
  ```
 RP/0/RP0/CPU0:router (config-call-home) # profile CiscoTAC-1
  ```

- For sending Smart License data in user-defined profile:
  
  ```
 RP/0/RP0/CPU0:router (config-call-home) # profile user1
  ```

Step 4  active
Example:

```
RP/0/RP0/CPU0:router (config-call-home-profile) # active
```

Enables the destination profile. By default, a user-defined profile is enabled when it is created.

Step 5  reporting smart-licensing-data
Example:

```
RP/0/RP0/CPU0:router (config-call-home-profile) # reporting smart-licensing-data
```

Enables sending Smart Licensing data.

Step 6  destination transport-method http
Example:

```
RP/0/RP0/CPU0:router (config-call-home-profile) # destination transport-method http
```

Configures the message transport method for HTTPS.

Step 7  destination address http url
Example:

```
RP/0/RP0/CPU0:router (config-call-home-profile) # destination address http https://example.com
```
Configures the destination HTTPS address to which Smart License data is sent.

**Step 8** destination preferred-msg-format {long-text | short-text | xml}

**Example:**
RP/0/RP0/CPU0:router (config-call-home-profile) # destination preferred-msg-format xml

(Optional) Configures a preferred message format. The default is XML.

**Step 9** Use the **commit** or **end** command.

**commit** — Saves the configuration changes and remains within the configuration session.

**end** — Prompts user to take one of these actions:

- **Yes** — Saves configuration changes and exits the configuration session.
- **No** — Exits the configuration session without committing the configuration changes.
- **Cancel** — Remains in the configuration session, without committing the configuration changes.
CHAPTER 8

Configuring Network Time Protocol

- Prerequisites for Implementing NTP on Cisco IOS XR Software, on page 97
- Information About Implementing NTP, on page 97
- How to Implement NTP, on page 99
- Configuration Examples for Implementing NTP, on page 112

Prerequisites for Implementing NTP on Cisco IOS XR Software

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing NTP

NTP synchronizes timekeeping among a set of distributed time servers and clients. This synchronization allows events to be correlated when system logs are created and other time-specific events occur.

NTP uses the User Datagram Protocol (UDP) as its transport protocol. All NTP communication uses Coordinated Universal Time (UTC). An NTP network usually receives its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP distributes this time across the network. NTP is extremely efficient; no more than one packet per minute is necessary to synchronize two machines to within a millisecond of each other.

NTP uses the concept of a “stratum” to describe how many NTP “hops” away a machine is from an authoritative time source. A “stratum 1” time server typically has an authoritative time source (such as a radio or atomic clock, or a GPS time source) directly attached, a “stratum 2” time server receives its time via NTP from a “stratum 1” time server, and so on.

NTP avoids synchronizing to a machine whose time may not be accurate, in two ways. First, NTP never synchronizes to a machine that is not synchronized itself. Second, NTP compares the time reported by several machines and does not synchronize to a machine whose time is significantly different than the others, even if its stratum is lower. This strategy effectively builds a self-organizing tree of NTP servers.

The Cisco implementation of NTP does not support stratum 1 service; in other words, it is not possible to connect to a radio or atomic clock (for some specific platforms, however, you can connect a GPS time-source device). We recommend that time service for your network be derived from the public NTP servers available in the IP Internet.
If the network is isolated from the Internet, the Cisco implementation of NTP allows a machine to be configured so that it acts as though it is synchronized via NTP, when in fact it has determined the time using other means. Other machines can then synchronize to that machine via NTP.

Several manufacturers include NTP software for their host systems, and a publicly available version for systems running UNIX and its various derivatives is also available. This software also allows UNIX-derivative servers to acquire the time directly from an atomic clock, which would subsequently propagate time information along to Cisco routers.

The communications between machines running NTP (known as associations) are usually statically configured; each machine is given the IP address of all machines with which it should form associations. Accurate timekeeping is made possible by exchanging NTP messages between each pair of machines with an association.

In a LAN environment, NTP can be configured to use IP broadcast messages. As compared to polling, IP broadcast messages reduce configuration complexity, because each machine can simply be configured to send or receive broadcast or multicast messages. However, the accuracy of timekeeping is marginally reduced because the information flow is one-way only.

An NTP broadcast client listens for broadcast messages sent by an NTP broadcast server at a designated IPv4 address. The client synchronizes the local clock using the first received broadcast message.

The time kept on a machine is a critical resource, so we strongly recommend that you use the security features of NTP to avoid the accidental or malicious setting of incorrect time. Two mechanisms are available: an access list-based restriction scheme and an encrypted authentication mechanism.

When multiple sources of time (VINES, hardware clock, manual configuration) are available, NTP is always considered to be more authoritative. NTP time overrides the time set by any other method.

**Preventing Issues due to GPS Week Number Rollover (WNRO)**

- If there are no GPS sources in the NTP source chain or server chain, there is no impact of GPS Week Number Rollover (WNRO).

- GPS WNRO affects only the system clock and not user traffic.

- Contact your GPS manufacturer to fix the GPS source for this condition.

To mitigate impact of GPS sources that are subject to GPS WNRO perform the following optional workarounds:

- If the GPS source has been identified to be a cause of potential disruption on April 6, 2019 (or after), configure ntp master in the Cisco that is device connected to this source, and its clock on the Stratum 1 device to preventively isolate it. This configuration enables the device to present its own clock for synchronization to downstream NTP clients.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The usage of ntp master command as mentioned above is only a workaround to this condition. Use this command until the GPS source-related conditions are resolved, and to prevent the distribution of incorrect clock values throughout the network.</td>
</tr>
</tbody>
</table>

- Configure multiple NTP servers (ideally 4, but more than 3) at Stratum 2 level of the network, to enable NTP clients at Stratum 2 level to get clock from more than one Stratum 1 server. This way, WNRO affected Stratum 1 servers are staged to be marked as ‘false ticker’ or ‘outlier’ clock sources as compared to other non-WNRO affected Stratum 1 servers.
How to Implement NTP

Configuring Poll-Based Associations

Note  No specific command enables NTP; the first NTP configuration command that you issue enables NTP.

You can configure the following types of poll-based associations between the router and other devices (which may also be routers):

- Client mode
- Symmetric active mode

The client and the symmetric active modes should be used when NTP is required to provide a high level of time accuracy and reliability.

When a networking device is operating in the client mode, it polls its assigned time serving hosts for the current time. The networking device then picks a host from all the polled time servers to synchronize with. Because the relationship that is established in this case is a client-host relationship, the host does not capture or use any time information sent by the local client device. This mode is most suited for file-server and workstation clients that are not required to provide any form of time synchronization to other local clients. Use the `server` command to individually specify the time-serving hosts that you want your networking device to consider synchronizing with and to set your networking device to operate in the client mode.

When a networking device is operating in the symmetric active mode, it polls its assigned time-serving hosts for the current time and it responds to polls by its hosts. Because this is a peer-to-peer relationship, the host also retains time-related information about the local networking device that it is communicating with. This mode should be used when there are several mutually redundant servers that are interconnected via diverse network paths. Most stratum 1 and stratum 2 servers on the Internet today adopt this form of network setup. Use the `peer` command to individually specify the time-serving hosts that you want your networking device to consider synchronizing with and to set your networking device to operate in the symmetric active mode.

When the router polls several other devices for the time, the router selects one device with which to synchronize.

Note  To configure a peer-to-peer association between the router and another device, you must also configure the router as a peer on the other device.

You can configure multiple peers and servers, but you cannot configure a single IP address as both a peer and a server at the same time.

To change the configuration of a specific IP address from peer to server or from server to peer, use the `no` form of the `peer` or `server` command to remove the current configuration before you perform the new configuration. If you do not remove the old configuration before performing the new configuration, the new configuration does not overwrite the old configuration.

Step 1  configure
Configuring Poll-Based Associations

Example:

RP/0/RP0/CPU0:router# configure
Enters mode.

Step 2  ntp
Example:

RP/0/RP0/CPU0:router(config)# ntp
Enters NTP configuration mode.

Step 3  server ip-address [version number] [key key-id] [minpoll interval] [maxpoll interval] [source type interface-path-id] [prefer] [burst] [iburst]
Example:

RP/0/RP0/CPU0:router(config-ntp)# server 172.16.22.44 minpoll 8 maxpoll 12
Forms a server association with another system. This step can be repeated as necessary to form associations with multiple devices.

Step 4  peer ip-address [version number] [key key-id] [minpoll interval] [maxpoll interval] [source type interface-path-id] [prefer]
Example:

RP/0/RP0/CPU0:router(config-ntp)# peer 192.168.22.33 minpoll 8 maxpoll 12 source hundredGigE 0/0/0/1
Forms a peer association with another system. This step can be repeated as necessary to form associations with multiple systems.

Note  To complete the configuration of a peer-to-peer association between the router and the remote device, the router must also be configured as a peer on the remote device.

Step 5  Use one of the following commands:
  • end
  • commit
Example:

RP/0/RP0/CPU0:router(config-ntp)# end
or
RP/0/RP0/CPU0:router(config-ntp)# commit

Saves configuration changes.
  • When you issue the end command, the system prompts you to commit changes:

    Uncommitted changes found, commit them before exiting(yes/no/cancel)?
    [cancel]:

System Management Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 7.3.x
• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.

• Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.

• Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.

Configuring Broadcast-Based NTP Associates

In a broadcast-based NTP association, an NTP server propagates NTP broadcast packets throughout a network. Broadcast clients listen for the NTP broadcast packets propagated by the NTP server and do not engage in any polling.

Broadcast-based NTP associations should be used when time accuracy and reliability requirements are modest and if your network is localized and has a large number of clients (more than 20). Broadcast-based NTP associations also are recommended for use on networks that have limited bandwidth, system memory, or CPU resources. Time accuracy is marginally reduced in broadcast-based NTP associations because information flows only one way.

Use the broadcast client command to set your networking device to listen for NTP broadcast packets propagated through a network. For broadcast client mode to work, the broadcast server and its clients must be located on the same subnet. The time server that is transmitting NTP broadcast packets must be enabled on the interface of the given device using the broadcast command.

Use the broadcast command to set your networking device to send NTP broadcast packets.

Note  No specific command enables NTP; the first NTP configuration command that you issue enables NTP.

Step 1  configure

Example:

```
RP/0/RP0/CPU0:router# configure
```

Enters mode.

Step 2  ntp

Example:

```
RP/0/RP0/CPU0:router(config)# ntp
```

Enters NTP configuration mode.

Step 3  (Optional) broadcastdelay microseconds
Example:

RP/0/RP0/CPU0:router(config-ntp)# broadcastdelay 5000

Adjusts the estimated round-trip delay for NTP broadcasts.

Step 4  
interface type interface-path-id

Example:

RP/0/RP0/CPU0:router(config-ntp)# interface POS 0/1/0/0

Enters NTP interface configuration mode.

Step 5  
broadcast client

Example:

RP/0/RP0/CPU0:router(config-ntp-int)# broadcast client

Configures the specified interface to receive NTP broadcast packets.

Note  Go to next step to configure the interface to send NTP broadcast packets.

Step 6  
broadcast [destination ip-address] [key key-id] [version number]

Example:

RP/0/RP0/CPU0:router(config-ntp-int)# broadcast destination 10.50.32.149

Configures the specified interface to send NTP broadcast packets.

Note  Go to previous step to configure the interface to receive NTP broadcast packets.

Step 7  
Use one of the following commands:
  • end
  • commit

Example:

RP/0/RP0/CPU0:router(config-ntp-int)# end

or

RP/0/RP0/CPU0:router(config-ntp-int)# commit

Saves configuration changes.

  • When you issue the end command, the system prompts you to commit changes:

    Uncommitted changes found, commit them before exiting(yes/no/cancel)?
    [cancel]:

    • Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
    • Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
• Entering **cancel** leaves the router in the current configuration session without exiting or committing the configuration changes.

• Use the **commit** command to save the configuration changes to the running configuration file and remain within the configuration session.

---

# Configuring NTP Access Groups

**Note**  No specific command enables NTP; the first NTP configuration command that you issue enables NTP.

The access list-based restriction scheme allows you to grant or deny certain access privileges to an entire network, a subnet within a network, or a host within a subnet.

The access group options are scanned in the following order, from least restrictive to most restrictive:

1. **peer**—Allows time requests and NTP control queries and allows the system to synchronize itself to a system whose address passes the access list criteria.
2. **serve**—Allows time requests and NTP control queries, but does not allow the system to synchronize itself to a system whose address passes the access list criteria.
3. **serve-only**—Allows only time requests from a system whose address passes the access list criteria.
4. **query-only**—Allows only NTP control queries from a system whose address passes the access list criteria.

If the source IP address matches the access lists for more than one access type, the first type is granted. If no access groups are specified, all access types are granted to all systems. If any access groups are specified, only the specified access types are granted.

For details on NTP control queries, see RFC 1305 (NTP version 3).

---

**Step 1**  **configure**

**Example:**

```plaintext
RP/0/RP0/CPU0:router# configure
Enters mode.
```

**Step 2**  **ntp**

**Example:**

```plaintext
RP/0/RP0/CPU0:router(config)# ntp
Enters NTP configuration mode.
```

**Step 3**  **access-group** `{peer | query-only | serve | serve-only}` **access-list-name**

**Example:**
Configuring NTP Authentication

This task explains how to configure NTP authentication.

The encrypted NTP authentication scheme should be used when a reliable form of access control is required. Unlike the access-list-based restriction scheme that is based on IP addresses, the encrypted authentication scheme uses authentication keys and an authentication process to determine if NTP synchronization packets sent by designated peers or servers on a local network are deemed as trusted, before the time information that it carries along is accepted.

The authentication process begins from the moment an NTP packet is created. A message authentication code (MAC) is computed using the MD5 Message Digest Algorithm and the MAC is embedded into an NTP synchronization packet. The NTP synchronization packet together with the embedded MAC and key number are transmitted to the receiving client. If authentication is enabled and the key is trusted, the receiving client computes the MAC in the same way. If the computed MAC matches the embedded MAC, the system is allowed to sync to the server that uses this key in its packets.
After NTP authentication is properly configured, your networking device only synchronizes with and provides synchronization to trusted time sources.

**Step 1**  
configure  
Example:  
RP/0/RP0/CPU0:router# configure  
Enters mode.

**Step 2**  
ntp  
Example:  
RP/0/RP0/CPU0:router(config)# ntp  
Enters NTP configuration mode.

**Step 3**  
authenticate  
Example:  
RP/0/RP0/CPU0:router(config-ntp)# authenticate  
Enables the NTP authentication feature.

**Step 4**  
authentication-key key-number md5 [clear | encrypted] key-name  
Example:  
RP/0/RP0/CPU0:router(config-ntp)# authentication-key 42 md5 clear key1  
Defines the authentication keys.  
- Each key has a key number, a type, a value, and, optionally, a name. Currently the only key type supported is md5.

**Step 5**  
trusted-key key-number  
Example:  
RP/0/RP0/CPU0:router(config-ntp)# trusted-key 42  
Defines trusted authentication keys.  
- If a key is trusted, this router only synchronizes to a system that uses this key in its NTP packets.

**Step 6**  
Use one of the following commands:  
- end  
- commit  
Example:  
RP/0/RP0/CPU0:router(config-ntp)# end  
or
RP/0/RP0/CPU0:router(config-ntp)# commit
Saves configuration changes.

- When you issue the `end` command, the system prompts you to commit changes:

  Uncommitted changes found, commit them before exiting(yes/no/cancel)?
  [cancel]:

  - Entering `yes` saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
  - Entering `no` exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
  - Entering `cancel` leaves the router in the current configuration session without exiting or committing the configuration changes.

- Use the `commit` command to save the configuration changes to the running configuration file and remain within the configuration session.

---

**Disabling NTP Services on a Specific Interface**

NTP services are disabled on all interfaces by default.

NTP is enabled globally when any NTP commands are entered. You can selectively prevent NTP packets from being received through a specific interface by turning off NTP on a given interface.

---

**Step 1** `configure`

**Example:**

RP/0/RP0/CPU0:router# configure
Enters mode.

**Step 2** `ntp`

**Example:**

RP/0/RP0/CPU0:router(config)# ntp
Enters NTP configuration mode.

**Step 3** Use one of the following commands:

  - `no interface type interface-path-id`
  - `interface type interface-path-id disable`

**Example:**

RP/0/RP0/CPU0:router(config-ntp)# no interface pos 0/0/0/1
Configuring Network Time Protocol

or

RP/0/RP0/CPU0:router(config-ntp)# interface POS 0/0/0/1 disable
Disables NTP services on the specified interface.

Step 4 Use one of the following commands:

- end
- commit

Example:

RP/0/RP0/CPU0:router(config-ntp)# end
or

RP/0/RP0/CPU0:router(config-ntp)# commit
Saves configuration changes.

- When you issue the end command, the system prompts you to commit changes:

    Uncommitted changes found, commit them before exiting(yes/no/cancel)?
    [cancel]:

    • Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
    • Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
    • Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.

    • Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.

Configuring the Source IP Address for NTP Packets

By default, the source IP address of an NTP packet sent by the router is the address of the interface through which the NTP packet is sent. Use this procedure to set a different source address.

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure
Enters mode.

Step 2 ntp

System Management Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 7.3.x
Example:

```
RP/0/RP0/CPU0:router(config)# ntp
```
Enters NTP configuration mode.

**Step 3** source type interface-path-id

Example:

```
RP/0/RP0/CPU0:router(config-ntp)# source POS 0/0/0/1
```
Configures an interface from which the IP source address is taken.

**Note** This interface is used for the source address for all packets sent to all destinations. If a source address is to be used for a specific association, use the source keyword in the peer or server command shown in Configuring Poll-Based Associations, on page 99.

**Step 4** Use one of the following commands:

- `end`
- `commit`

Example:

```
RP/0/RP0/CPU0:router(config-ntp)# end
```

or

```
RP/0/RP0/CPU0:router(config-ntp)# commit
```

Saves configuration changes.

- When you issue the **end** command, the system prompts you to commit changes:

```
Uncommitted changes found, commit them before exiting(yes/no/cancel)?
[cancel]:
```

- Entering **yes** saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
- Entering **no** exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
- Entering **cancel** leaves the router in the current configuration session without exiting or committing the configuration changes.

- Use the **commit** command to save the configuration changes to the running configuration file and remain within the configuration session.
Configuring the System as an Authoritative NTP Server

You can configure the router to act as an authoritative NTP server, even if the system is not synchronized to an outside time source.

Step 1  configure
Example:

```
RP/0/RP0/CPU0:router# configure
Enters mode.
```

Step 2  ntp
Example:

```
RP/0/RP0/CPU0:router(config)# ntp
Enters NTP configuration mode.
```

Step 3  master stratum
Example:

```
RP/0/RP0/CPU0:router(config-ntp)# master 9
Makes the router an authoritative NTP server.
```

Note  Use the `master` command with caution. It is very easy to override valid time sources using this command, especially if a low stratum number is configured. Configuring multiple machines in the same network with the `master` command can cause instability in time keeping if the machines do not agree on the time.

Step 4  Use one of the following commands:
  - `end`
  - `commit`

Example:

```
RP/0/RP0/CPU0:router(config-ntp)# end
```

or

```
RP/0/RP0/CPU0:router(config-ntp)# commit
```

Saves configuration changes.

- When you issue the `end` command, the system prompts you to commit changes:

  Uncommitted changes found, commit them before exiting(yes/no/cancel)?
  [cancel]:

  - Entering `yes` saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
• Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.

• Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.

### Updating the Hardware Clock

On devices that have hardware clocks (system calendars), you can configure the hardware clock to be periodically updated from the software clock. This is advisable for devices using NTP, because the time and date on the software clock (set using NTP) is more accurate than the hardware clock. The time setting on the hardware clock has the potential to drift slightly over time.

#### Step 1
configure

Example:

```
RP/0/RP0/CPU0:router# configure
Enters mode.
```

#### Step 2
ntp

Example:

```
RP/0/RP0/CPU0:router(config)# ntp
Enters NTP configuration mode.
```

#### Step 3
update-calendar

Example:

```
RP/0/RP0/CPU0:router(config-ntp)# update-calendar
Configures the router to update its system calendar from the software clock at periodic intervals.
```

#### Step 4
Use one of the following commands:

• end
• commit

Example:

```
RP/0/RP0/CPU0:router(config-ntp)# end
or
RP/0/RP0/CPU0:router(config-ntp)# commit
```
Saves configuration changes.

- When you issue the **end** command, the system prompts you to commit changes:

  Uncommitted changes found, commit them before exiting(yes/no/cancel)?
  [cancel]:

  - Entering **yes** saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
  - Entering **no** exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
  - Entering **cancel** leaves the router in the current configuration session without exiting or committing the configuration changes.

- Use the **commit** command to save the configuration changes to the running configuration file and remain within the configuration session.

---

**Verifying the Status of the External Reference Clock**

This task explains how to verify the status of NTP components.

- **Note** The commands can be entered in any order.

  **Step 1**  
  `show ntp associations [detail] [location node-id]`

  **Example:**
  
  RP/0/RP0/CPU0:router# show ntp associations
  
  Displays the status of NTP associations.

  **Step 2**  
  `show ntp status [location node-id]`

  **Example:**
  
  RP/0/RP0/CPU0:router# show ntp status
  
  Displays the status of NTP.

---

**FQDN for NTP Server**

NTP on Cisco IOS XR Software supports configuration of servers and peers using their Fully Qualified Domain Names (FQDN). While configuring, the FQDN is resolved via DNS into its corresponding IPv4 or
IPv6 address and is stored in the running-configuration of the system. NTP supports FQDN for both IPv4 and IPv6 protocols. You can configure FQDN on default vrf.

Configure FQDN for NTP server

Configuration Example for FQDN on NTP Server on Default VRF

Use the `ntp server` command with the FQDN name to configure FQDN on default VRF. You don't need to specify VRF name. In the following example, `time.cisco.com` is the FQDN.

```
Router# configure
Router(config)# ntp server time.cisco.com
Router(config)# commit
```

Running Configuration

Use the `show running-config ntp` command to see the ntp running configuration.

```
Router# show running-config ntp
ntp
 server 192.0.2.1
!
```

Verification

Use the `show ntp associations` command to verify that an NTP association has come up.

```
Router# show ntp associations
address ref clock st when poll reach delay offset disp
-192.0.2.1 173.38.201.67 2 42 128 3 196.06 -14.25 3949.4
* sys_peer, # selected, + candidate, - outlayer, x falseticker, ~ configured
```

Configuration Examples for Implementing NTP

Configuring Poll-Based Associations: Example

The following example shows an NTP configuration in which the router's system clock is configured to form a peer association with the time server host at IP address 192.168.22.33, and to allow the system clock to be synchronized by time server hosts at IP address 10.0.2.1 and 172.19.69.1:

```
ntp
 server 10.0.2.1 minpoll 5 maxpoll 7
 peer 192.168.22.33
server 172.19.69.1
```

Configuring Broadcast-Based Associations: Example

The following example shows an NTP client configuration in which interface 0/2/0/0 is configured to receive NTP broadcast packets, and the estimated round-trip delay between an NTP client and an NTP broadcast server is set to 2 microseconds:
The following example shows an NTP server configuration where interface 0/2/0/2 is configured to be a broadcast server:

```plaintext
tp
 interface hundredGigE 0/2/0/2
 broadcast
 exit
 broadcastdelay 2
```

### Configuring NTP Access Groups: Example

The following example shows a NTP access group configuration where the following access group restrictions are applied:

- Peer restrictions are applied to IP addresses that pass the criteria of the access list named peer-acl.
- Serve restrictions are applied to IP addresses that pass the criteria of access list named serve-acl.
- Serve-only restrictions are applied to IP addresses that pass the criteria of the access list named serve-only-acl.
- Query-only restrictions are applied to IP addresses that pass the criteria of the access list named query-only-acl.

```plaintext
ntp
 peer 10.1.1.1
 peer 10.1.1.1
 peer 10.2.2.2
 peer 10.3.3.3
 peer 10.4.4.4
 peer 10.5.5.5
 peer 10.6.6.6
 peer 10.7.7.7
 peer 10.8.8.8
 access-group peer peer-acl
 access-group serve serve-acl
 access-group serve-only serve-only-acl
 access-group query-only query-only-acl
 exit
ipv4 access-list peer-acl
10 permit ip host 10.1.1.1 any
20 permit ip host 10.8.8.8 any
exit
ipv4 access-list serve-acl
10 permit ip host 10.4.4.4 any
20 permit ip host 10.5.5.5 any
exit
ipv4 access-list query-only-acl
10 permit ip host 10.2.2.2 any
20 permit ip host 10.3.3.3 any
exit
ipv4 access-list serve-only-acl
```

10 permit ip host 10.6.6.6 any
20 permit ip host 10.7.7.7 any
exit

Configuring NTP Authentication: Example

The following example shows an NTP authentication configuration. In this example, the following is configured:

• NTP authentication is enabled.
• Two authentication keys are configured (key 2 and key 3).
• The router is configured to allow its software clock to be synchronized with the clock of the peer (or vice versa) at IP address 10.3.32.154 using authentication key 2.
• The router is configured to allow its software clock to be synchronized with the clock by the device at IP address 10.32.154.145 using authentication key 3.
• The router is configured to synchronize only to systems providing authentication key 3 in their NTP packets.

ntp
 authenticate
   authentication-key 2 md5 encrypted 06120A2D40031D1008124
   authentication-key 3 md5 encrypted 1311121E074110232621
   trusted-key 3
   server 10.3.32.154 key 3
   peer 10.32.154.145 key 2

Disabling NTP on an Interface: Example

The following example shows an NTP configuration in which 0/2/0/0 interface is disabled:

ntp
 interface hundredGigE 0/2/0/0
   disable
   exit
   authentication-key 2 md5 encrypted 06120A2D40031D1008124
   authentication-key 3 md5 encrypted 1311121E074110232621
   authenticate
   trusted-key 3
   server 10.3.32.154 key 3
   peer 10.32.154.145 key 2

Configuring the Source IP Address for NTP Packets: Example

The following example shows an NTP configuration in which Ethernet management interface 0/0/CPU0/0 is configured as the source address for NTP packets:

ntp
Configuring Network Time Protocol

The following example shows a NTP configuration in which the router is configured to use its own NTP master clock to synchronize with peers when an external NTP source becomes unavailable:

```
ntp
 master 6
```

Updating the Hardware Clock: Example

The following example shows an NTP configuration in which the router is configured to update its hardware clock from the software clock at periodic intervals:

```
ntp
 server 10.3.32.154
 update-calendar
```
CHAPTER 9

Managing Router Hardware

This chapter describes the concepts and tasks used to manage and configure the hardware components of a router running the Cisco IOS XR software.

This module contains the following topics:

- NPU Power Optimization, on page 117
- Dynamic Power Management, on page 121
- Upgrading FPD for PSU, on page 128
- Storage Media Sanitization, on page 129

NPU Power Optimization

Table 13: Feature History Table

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPU Power Optimization</td>
<td>Release 7.3.15</td>
<td>This feature lets you choose a predefined NPU power mode based on your network's individual requirements, and consequently reducing NPU power consumption. The <code>hw-module npu-power-profile</code> command is introduced for this feature.</td>
</tr>
</tbody>
</table>

Cisco 8000 series routers are powered by Cisco Silicon One Q200 and Q100 series processors. Cisco Silicon One processors offer high performance, flexible, and power-efficient routing silicon in the market.

NPU Power Optimization feature helps to reduce NPU power consumption by running a processor in a predefined mode. There are three NPU power modes—high, medium, and low. Based on your network traffic and power consumption requirements, you can choose to run the processor in any one of the three NPU power modes.

We recommend that you work with your Cisco account representatives before implementing this feature in your network.

On a Q200-based Cisco 8200 series chassis, you can configure an NPU power mode on the entire router.
On a Q200-based Cisco 8800 series chassis, you can configure an NPU power mode only on fabric cards and line cards.

The following table lists the supported hardware, and their default NPU power mode:

**Table 14: Supported Hardware and Default Modes**

<table>
<thead>
<tr>
<th>Supported Hardware</th>
<th>Default NPU Power Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 8200 32x400 GE 1RU fixed chassis (8201-32FH)</td>
<td>High</td>
</tr>
<tr>
<td>88-LC0-36FH without MACSec, based on Q200 Silicon Chip</td>
<td>Medium</td>
</tr>
<tr>
<td>88-LC0-36FH-M with MACSec, based on Q200 Silicon Chip</td>
<td>Medium</td>
</tr>
<tr>
<td>8808-FC0 Fabric Card, based on Q200 Silicon Chip</td>
<td>Medium</td>
</tr>
</tbody>
</table>

**Caution**

We recommend that you use the default NPU power mode on your router.

**Limitations**

The NPU power optimization is not supported on the Q100-based systems.

The NPU Power Profile mode is not supported on the following Q200-based line cards:

**Table 15: Limitation on Hardware and Power Profile Modes**

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Power Profile Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-LC0-36FH-M</td>
<td>High</td>
</tr>
<tr>
<td>88-LC0-34H14FH</td>
<td>High</td>
</tr>
</tbody>
</table>

**Configuring NPU Power Mode**

**Configuring NPU power mode on a fixed chassis:**

The following example shows how to configure an NPU power mode on a fixed chassis:

```
RP/0/RP0/CPU0:ios(config)#hw-module npu-power-profile high
RP/0/RP0/CPU0:ios(config)#commit
RP/0/RP0/CPU0:ios(config)#reload
```

**Note**

Note: Reload the chassis for the configurations changes to take effect.
Verifying NPU power mode configuration on a fixed chassis:

Use the `show controllers npu driver` command to verify the NPU power mode configuration:

```
RP/0/RP0/CPU0#show controllers npu driver location 0/RP0/CPU0
Mon Aug 24 23:29:34.302 UTC
==
NPU Driver Information
==
Driver Version: 1
SDK Version: 1.32.0.1
Functional role: Active, Rack: 8203, Type: lcc, Node: 0
Driver ready : Yes
NPU first started : Mon Aug 24 23:07:41 2020
Fabric Mode:
NPU Power profile: High
Driver Scope: Node
Respawn count : 1
Availability masks :
 card: 0x1, asic: 0x1, exp asic: 0x1
...```

Configuring NPU power mode on a modular chassis

The following example shows how to configure an NPU power mode on a fabric card and a line card:

```
RP/0/RP0/CPU0#hw-module npu-power-profile card-type FC high
RP/0/RP0/CPU0#hw-module npu-power-profile card-type LC low location 0/1/cpu0
RP/0/RP0/CPU0#commit
```

Note For the configurations to take effect, you must:

- Reload a line card if the configuration is applied on the line card.
- Reload a router if the configuration is applied on a fabric card.

Verifying the NPU power mode configuration on a modular chassis

Use the `show controllers npu driver location` command to verify the NPU power mode configuration:

```
RP/0/RP0/CPU0#show controllers npu driver location 0/1/CPU0
```

```
RP/0/RP0/CPU0#show controllers npu driver location 0/1/CPU0
```

```
<table>
<thead>
<tr>
<th>Process</th>
<th>Connection</th>
<th>Registration</th>
<th>Connection</th>
<th>DLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/Lib</td>
<td>status</td>
<td>status</td>
<td>requests</td>
<td>registration</td>
</tr>
<tr>
<td>FSDB</td>
<td>Active</td>
<td>Active</td>
<td>1</td>
<td>n/a</td>
</tr>
<tr>
<td>FGID</td>
<td>Active</td>
<td>Active</td>
<td>1</td>
<td>n/a</td>
</tr>
</tbody>
</table>
```
Asics:
HP - HotPlug event, PON - Power On reset
HR - Hard Reset, WB - Warm Boot

<table>
<thead>
<tr>
<th>ASIC inst.</th>
<th>fap</th>
<th>HP</th>
<th>Slice</th>
<th>Asic</th>
<th>Admin</th>
<th>Oper</th>
<th>Asic state</th>
<th>Last</th>
<th>PON</th>
<th>HR</th>
<th>FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/FC1/2</td>
<td>202</td>
<td>1</td>
<td>UP</td>
<td>s123</td>
<td>UP</td>
<td>UP</td>
<td>NRML</td>
<td>PON</td>
<td>1</td>
<td>0</td>
<td>0x0000</td>
</tr>
<tr>
<td>0/FC1/3</td>
<td>203</td>
<td>1</td>
<td>UP</td>
<td>s123</td>
<td>UP</td>
<td>UP</td>
<td>NRML</td>
<td>PON</td>
<td>1</td>
<td>0</td>
<td>0x0000</td>
</tr>
<tr>
<td>0/FC3/6</td>
<td>206</td>
<td>1</td>
<td>UP</td>
<td>s123</td>
<td>UP</td>
<td>UP</td>
<td>NRML</td>
<td>PON</td>
<td>1</td>
<td>0</td>
<td>0x0000</td>
</tr>
<tr>
<td>0/FC4/7</td>
<td>207</td>
<td>1</td>
<td>UP</td>
<td>s123</td>
<td>UP</td>
<td>UP</td>
<td>NRML</td>
<td>PON</td>
<td>1</td>
<td>0</td>
<td>0x0000</td>
</tr>
<tr>
<td>0/FC4/8</td>
<td>208</td>
<td>1</td>
<td>UP</td>
<td>s123</td>
<td>UP</td>
<td>UP</td>
<td>NRML</td>
<td>PON</td>
<td>1</td>
<td>0</td>
<td>0x0000</td>
</tr>
<tr>
<td>0/FC4/9</td>
<td>209</td>
<td>1</td>
<td>UP</td>
<td>s123</td>
<td>UP</td>
<td>UP</td>
<td>NRML</td>
<td>PON</td>
<td>1</td>
<td>0</td>
<td>0x0000</td>
</tr>
<tr>
<td>0/FC5/10</td>
<td>210</td>
<td>1</td>
<td>UP</td>
<td>s123</td>
<td>UP</td>
<td>UP</td>
<td>NRML</td>
<td>PON</td>
<td>1</td>
<td>0</td>
<td>0x0000</td>
</tr>
<tr>
<td>0/FC5/11</td>
<td>211</td>
<td>1</td>
<td>UP</td>
<td>s123</td>
<td>UP</td>
<td>UP</td>
<td>NRML</td>
<td>PON</td>
<td>1</td>
<td>0</td>
<td>0x0000</td>
</tr>
<tr>
<td>0/FC7/14</td>
<td>214</td>
<td>1</td>
<td>UP</td>
<td>s123</td>
<td>UP</td>
<td>UP</td>
<td>NRML</td>
<td>PON</td>
<td>1</td>
<td>0</td>
<td>0x0000</td>
</tr>
<tr>
<td>0/FC7/15</td>
<td>215</td>
<td>1</td>
<td>UP</td>
<td>s123</td>
<td>UP</td>
<td>UP</td>
<td>NRML</td>
<td>PON</td>
<td>1</td>
<td>0</td>
<td>0x0000</td>
</tr>
</tbody>
</table>

SI Info:

Card	Board	SI Board	SI Param	Retimer SI	Retimer SI	Front Panel
	0.22	1	6	NA	NA	NA
	0.21	1	6	NA	NA	NA
	0.21	1	6	NA	NA	NA
	0.21	1	6	NA	NA	NA
	0.21	1	6	NA	NA	NA

Functional role: Active, Rack: 8808, Type: lcc, Node: 0/1/CP00
Driver ready : Yes
NPU first started: Mon Apr 12 09:58:10 2021
Fabric Mode: FABRIC/8FC

NPU Power profile: Low
Driver Scope: Node
Respawn count : 1
Availability masks:
card: 0x1, asic: 0x7, exp asic: 0x7
Weight distribution:
 Unicast: 80, Multicast: 20

Asics:
HP - HotPlug event, PON - Power On reset
Dynamic Power Management

Table 16: Feature History Table

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release Information</th>
<th>Description</th>
</tr>
</thead>
</table>
| Dynamic Power Management | Release 7.3.15 | The Dynamic Power Management feature considers certain dynamic factors before allocating power to the fabric and line cards. This feature has the following benefits:
• Reduces number of PSUs required by accurately representing the maximum power consumption
• Improves PSU efficiency by providing more accurate power allocation.

This feature thus optimizes power allocation and avoids overprovisioning power to a router.

| Dynamic Power Management | Release 7.3.2 | Previously available for fabric and line cards, this feature that helps avoid excess power allocation by considering dynamic factors before allocating power to them is now available for optical modules. To view the power allocation on a per port basis, a new command “show environment power allocated [details]” is introduced. |
The Dynamic Power Management feature is now supported on the following Cisco 8100 and 8200 series routers:

- Cisco 8201
- Cisco 8202
- Cisco 8201-32-FH
- Cisco 8101-32-FH

Prior to Cisco IOS XR Release 7.3.15, when Cisco 8000 series routers were powered on or reloaded, the power management feature reserved power to fabric cards and allocated maximum power to line cards. The power management feature wouldn’t consider dynamic factors, such as the type of fabric or line cards in the chassis, or whether a fabric or line card was present in a slot.

The Dynamic Power Management feature considers such dynamic factors before allocating power to the fabric and line cards.

This feature has the following benefits:

- Reduces number of PSUs required by accurately representing the maximum power consumption
- Improves PSU efficiency by providing more accurate power allocation

This feature thus optimizes power allocation and avoids overprovisioning power to a router.

This feature is supported on the following Cisco 8000 series routers:

- Cisco 8804, 8808, 8812, and 8818 routers
- Cisco 8201, 8202, 8201-32-FH routers
- Cisco 8101-32-FH

By default, this feature is enabled on the router.

The Dynamic Power Management feature allocates the total power to a router and its fabric card or line card based on the following parameters:

- Number and type of fabric cards installed on the router
- Fabric cards operating modes (5FC or 8FC)
- Number and type of line cards installed on the router
- Combination of line card and fabric card types installed
- NPU power mode configured on a fabric card
- Number and type of optics installed (supported in Cisco IOS XR Software Release 7.3.2 and later)
- MACSec-enabled ports (supported from Cisco IOS XR Software Release 7.3.3 and later)

For details, see Dynamic Power Management for MACSec-Enabled Ports section in the Configuring MACSec chapter in the System Security Configuration Guide for Cisco 8000 Series Routers.
We recommend you work with your Cisco account representatives to calculate power requirements for the Cisco 8000 series router.

Power Allocation to Empty Card Slot

This feature allocates a minimum required power for all empty LC or FC slots. This minimum power is required to boot the CPU and FPGAs immediately when a card is inserted. The feature doesn't control booting up the CPU and FPGAs. Also, the minimum power is required to detect the card type before the feature decides if there's enough power to power up the data path.

For example, the following `show environment power` command output displays various LC or FC card statuses, and also shows allocated and used power.

```
Router# show environment power
Thu Apr 22 12:03:06.754 UTC
================================================================================
CHASSIS LEVEL POWER INFO: 0
================================================================================
Total output power capacity (N + 1) : 9600W + 6300W
Total output power required : 9241W
Total power input : 6146W
Total power output : 5826W
================================================================================
Power Supply -------Input-------- -----Output--- Status
Module Type Volts A/B Amps A/B Volts Amps
================================================================================
0/PT0-PM0 PSU6.3KW-HV 245.5/245.7 5.1/5.0 54.7 43.1 OK
0/PT0-PM1 PSU6.3KW-HV 0.0/245.2 0.0/7.4 54.3 31.7 OK
0/PT0-PM2 PSU6.3KW-HV 0.0/246.9 0.0/7.5 54.1 32.3 OK
Total of Power Modules: 6146W/25.0A 5826W/107.1A
================================================================================
Location Card Type Power Power Status
Location Watts Watts
Allocated Used
================================================================================
0/RP0/CPU0 8800-RP 95 69 ON
0/RP1/CPU0 - 95 - RESERVED
0/0/CPU0 88-LC0-36FH 796 430 ON
0/1/CPU0 - 102 - RESERVED
0/2/CPU0 88-LC0-36FH 796 430 ON
0/3/CPU0 - 102 - RESERVED
0/4/CPU0 - 102 - RESERVED
0/5/CPU0 - 102 - RESERVED
0/6/CPU0 - 102 - RESERVED
0/7/CPU0 - 102 - RESERVED
0/8/CPU0 - 102 - RESERVED
0/9/CPU0 88-LC0-36FH 102 - OFF
0/10/CPU0 - 102 - RESERVED
0/11/CPU0 - 102 - RESERVED
```

Note: The allocated power capacity shown in the following `show` command output isn’t standard capacity. The allocated power capacity varies depending on various other factors.
This table describes the card slot statuses:

Table 17: Router Card Slot Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESERVED</td>
<td>When a slot is empty</td>
</tr>
<tr>
<td>OFF</td>
<td>When a card is inserted in a slot but power isn’t allocated to the card</td>
</tr>
<tr>
<td>ON</td>
<td>When a card is allocated power and the card is in operational state</td>
</tr>
</tbody>
</table>

Low-Power Condition

When you insert an LC or FC in a card slot at the time when the router doesn't have enough power available to allocate to the new card, the dynamic power management feature doesn't provision power to the card. It raises the `ev_power_budget_not_ok` alarm, and gracefully shuts down the card.

In the following `show` command output, an FC inserted in the card slot location 0/FC6 is gracefully shut down due to lack of power:

```
Router# show shelfmgr history events location 0/FC6
Thu Apr 22 12:03:11.763 UTC
NODE NAME : 0/FC6
CURRENT STATE : CARD_SHUT_POWERED_OFF
TIME STAMP : Apr 20 2021 16:49:52

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME (UTC)</th>
<th>EVENT</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 20 2021 16:49:52</td>
<td>ev_powered_off</td>
<td>CARD_SHUT_POWERED_OFF</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:49:52</td>
<td>ev_device_offline</td>
<td>STATE_NOT_CHANGED</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:49:52</td>
<td>ev_unmapped_event</td>
<td>STATE_NOT_CHANGED</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:49:48</td>
<td>transient_condition</td>
<td>CARD_SHUTDOWN</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:49:48</td>
<td>ev_check_card_down_reason</td>
<td>CHECKING_DOWN_REASON</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:49:48</td>
<td>ev_timer_expiry</td>
<td>CARD_SHUTDOWN_IN_PROGRESS</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:48:46</td>
<td>ev_power_budget_not_ok</td>
<td>CARD_SHUTDOWN_IN_PROGRESS</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:48:45</td>
<td>transient_condition</td>
<td>POWER_BUDGET_CHECK</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:48:45</td>
<td>ev_fpd_upgrade_not_reqd</td>
<td>CARD_STATUS_CHECK_COMPLETE</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:47:45</td>
<td>ev_card_status_check</td>
<td>CARD_STATUS_CHECK</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:47:45</td>
<td>ev_card_info_rcvd</td>
<td>CARD_INFO_RCVD</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:47:44</td>
<td>ev_device_online</td>
<td>DEVICE_ONLINE</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:47:43</td>
<td>ev_timer_expiry</td>
<td>CARDPOWERED_ON</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:47:33</td>
<td>ev_powered_on</td>
<td>CARDPOWERED_ON</td>
<td></td>
</tr>
<tr>
<td>Apr 20 2021 16:47:33</td>
<td>init</td>
<td>CARD_DISCOVERED</td>
<td></td>
</tr>
</tbody>
</table>
```
However, after an LC, FC, or chassis reload, the dynamic power management feature can’t ensure that the same LCs, FCs, optics, or interfaces, which were operational earlier (before the reload), would become active again.

Note During a low-power condition, this feature doesn’t borrow power from a redundant power supply.

Power Allocation to Optics

From Cisco IOS XR Release 7.3.2 onwards, power requirement for optics is also considered before allocating power to them.

To identify the power allocated for a particular interface, use the `show environment power allocated [details] location location` command.

When the optical modules are inserted, power is automatically allocated for that interface. If power has been allocated to the interface, then use the “no shut” command to enable the interface.

```
Router# show environment power allocated location 0/3/CPU0
Thu Oct 7 22:27:35.732 UTC

+-------------------------------+-------------------+-------------------+
<table>
<thead>
<tr>
<th>Location</th>
<th>Components</th>
<th>Power Allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/3/CPU0</td>
<td>Data-path</td>
<td>772</td>
</tr>
<tr>
<td></td>
<td>OPTICS</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>910</td>
</tr>
</tbody>
</table>

Router# show environment power allocated details location 0/3/CPU0
Thu Oct 7 22:27:42.221 UTC

+-------------------------------+-------------------+-------------------+
<table>
<thead>
<tr>
<th>Location</th>
<th>Components</th>
<th>Power Allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/3/CPU0</td>
<td>Data-path</td>
<td>772</td>
</tr>
<tr>
<td>0/3/0/0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/13</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/14</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/15</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/3/0/17</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
```

System Management Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 7.3.x
When the power is not allocated to the interface, the following syslog error and alarms are displayed:

<table>
<thead>
<tr>
<th>Location</th>
<th>Severity</th>
<th>Group</th>
<th>Set Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/3/CPU0</td>
<td>Major</td>
<td>Software</td>
<td>10/07/2021 22:46:48 UTC</td>
<td>Optics0/3/0/44 - hw_optics: Lack of available power to enable the optical module</td>
</tr>
<tr>
<td>0/3/CPU0</td>
<td>Major</td>
<td>Software</td>
<td>10/07/2021 22:47:06 UTC</td>
<td>Optics0/3/0/46 - hw_optics: Lack of available power to enable the optical module</td>
</tr>
</tbody>
</table>

If power is not allocated to an interface and you attempt to enable that interface using the “no shut” command, the following syslog error is displayed:
Power Allocation to Fixed-Port Routers

The following `show environment power` command output displays power information for fixed-port routers and components.

Router# `show environment power`
Wed Feb 16 21:05:10.001 UTC

CHASSIS LEVEL POWER INFO: 0

Total output power capacity (Group 0 + Group 1)	1400W + 1400W
Total output power required	1033W
Total power input	390W
Total power output	255W

Power Group 0:

Power Supply	-----Input-----	-----Output---	Status		
Module Type	Volts	Amps	Volts	Amps	
0/PM0 PSU1.4KW-ACPE	244.5	0.8	12.0	11.1	OK

Total of Group 0: 195W/0.8A 133W/11.1A

Power Group 1:

Power Supply	-----Input-----	-----Output---	Status		
Module Type	Volts	Amps	Volts	Amps	
0/PM1 PSU1.4KW-ACPE	244.2	0.8	12.0	10.2	OK

Total of Group 1: 195W/0.8A 122W/10.2A

Location Card Type Power Power Status
Location	Card Type	Power	Power	Status
Location	Card Type	Watts	Watts	
0/RP0/CPU0	8201	893	-	ON
0/FT0	FAN-1RU-PE	28	-	ON
0/FT1	FAN-1RU-PE	28	-	ON
0/FT2	FAN-1RU-PE	28	-	ON
0/FT3	FAN-1RU-PE	28	-	ON
0/FT4	FAN-1RU-PE	28	-	ON

To identify the power allocated for a particular interface, use the `show environment power allocated [details] location location` command.

Router# `show environment power allocated location 0/RP0/CPU0`
Wed Feb 16 21:05:21.360 UTC

Location	Components	Power Allocated Watts
Location	Components	Power Allocated Watts
0/RP0/CPU0	Data-path	858
0/RP0/CPU0	OPTICS	35

Total 893
Disabling Dynamic Power Management

By default, the dynamic power management is enabled on a router. The following example shows how to disable dynamic power management:

```
RP/0/RP0/CPU0:ios(config)# power-mgmt action disable
RP/0/RP0/CPU0:ios(config)# commit
```

⚠️ Caution
After disabling the dynamic power management feature, you must manage the router power on your own. So, use this command with caution.

Note
To reenable dynamic power management, use the `no power-mgmt action disable` command.

Upgrading FPD for PSU

Automatic FPD Upgrade for PSU

During the installation and Power Supply Unit (PSU) insertion process, the Field-Programmable Devices (FPD) associated with the PSUs are automatically upgraded.

Note
The PSUs are upgraded sequentially, hence the PSU FPD upgrades take longer. You can choose to exclude PSUs from the auto upgrade flow. This restricts the PSUs from being upgraded either upon insertion, or during system upgrade.

To exclude the PSU FPDs from auto upgrading, use the following CLI:

```
fpd auto-upgrade exclude pm
```

When you upgrade from an earlier unsupported version to a version that supports Automatic FPD upgrade for PSU, the PSU upgrade might happen on bootup.

Storage Media Sanitization

Table 18: Feature History Table

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release Information</th>
<th>Feature Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Media Sanitization</td>
<td>Release 7.3.4</td>
<td>To comply with NIST SP 800-88 guidelines for Media Sanitization, it is important that your organization ensures that no easily reconstructible data is stored in the router and associated devices after it has left the control of your organization or is no longer protected by confidentiality categorization. With this feature, you can erase and overwrite any sensitive data, configuration, or keys present in the route processor or line card, ensuring media sanitization and preventing unauthorized data retrieval.</td>
</tr>
</tbody>
</table>

When you identify an RP or line card for RMA, or you require to ship it outside your organization, a service personnel may not be available on-site to remove the card immediately. However, you can reset your RP or line card to erase customer-sensitive data and let the RP or line card remain in the slot.

Guidelines

- We recommend using **factory-reset** without performing **commit replace** for securely removing the files in the misc/config folder.

- The RP or line card shuts down automatically if the factory reset takes more than 30 minutes, you can perform the factory reset again. The console displays the following log message during automatic shutdown:


  ```
  [ !! ] Forcibly powering off as result of failure.
  ```

- If your router has dual RPs, and to perform the factory reset on both the RPs, first reset the standby RP from the active RP. After the reset is complete, you can then reset the active RP.
Prerequisites
The RP or line card must be operational to perform factory reset.

Commands
Use the `factory-reset` command for erasing the following folders of RP or line card:

- `/misc/disk1`
- `/misc/scratch`
- `/var/log`
- `/misc/config`

Run the following command through the console port of the router to erase customer-sensitive data in the RP or line card:

```
factory-reset { reload | shutdown } location <location-id> - erases customer-sensitive data in the specified location. Use the reload option in the command to reload the RP or line card after the factory reset and use the shutdown option to shut down the RP or line card after the factory reset.
```

Note
Factory-reset logs are displayed on the console port of the node where the reset is performed.

The following steps explain how to reset your RP or line card to factory settings:

1. Erasing the RP or line card folder contents: Run the `factory-reset { reload | shutdown } location` command to delete the encryption keys and erase the customer-sensitive data from the RP or line card.

The following example shows how to perform the factory-reset shutdown command on an RP:

```
Router# factory-reset shutdown location 0/RP1/CPU0
Factory reset requested
Started punching watchdog
Started cleaning up mount point: /misc/scratch
Started syncing folder: /misc/scratch
Finished syncing folder: /misc/scratch
Finished cleaning up mount point: /misc/scratch
factory_reset_stop.sh
+++++++++++++++++++++++++++++++++++++++++++++++
Started cleaning up mount point: /var/log
Started syncing folder: /var/log
Finished syncing folder: /var/log
Finished cleaning up mount point: /var/log
factory_reset_stop.sh
+++++++++++++++++++++++++++++++++++++++++++++++
Started cleaning up mount point: /misc/disk1
Started syncing folder: /misc/disk1
Finished syncing folder: /misc/disk1
Finished cleaning up mount point: /misc/disk1
factory_reset_stop.sh
+++++++++++++++++++++++++++++++++++++++++++++++
Started cleaning up folder: /misc/config
UTC 2022 Started syncing folder: /misc/config
Finished syncing folder: /misc/config
Finished cleaning up folder: /misc/config
factory_reset_stop.sh
```
The following example shows how to perform the factory-reset reload command on an RP:

```
Router# factory-reset reload location 0/RP1/CPU0
Factory reset requested
Started punching watchdog
Started cleaning up mount point: /misc/scratch
Started syncing folder: /misc/scratch
Finished syncing folder: /misc/scratch
Finished cleaning up mount point: /misc/scratch
+++++++++++++++++++++++++++++++++++++++++++++++
Started cleaning up mount point: /var/log
Started syncing folder: /var/log
Finished syncing folder: /var/log
Finished cleaning up mount point: /var/log
+++++++++++++++++++++++++++++++++++++++++++++++
Started cleaning up mount point: /misc/disk1
Started syncing folder: /misc/disk1
Finished syncing folder: /misc/disk1
Finished cleaning up mount point: /misc/disk1
+++++++++++++++++++++++++++++++++++++++++++++++
Encrypted logical volume does not exist. Nothing to remove.
Finished cleaning up folder: /var/xr/enc/misc/config
/var/xr/enc/misc/config not present
Finished cleaning up folder: /var/xr/enc/misc/config
factory_reset_stop.sh
+++++++++++++++++++++++++++++++++++++++++++++++
Encrypted logical volume does not exist. Nothing to remove.
Finished cleaning up folder: /mnt/rootfs/misc/config
/mnt/rootfs/misc/config not present
Finished cleaning up folder: /mnt/rootfs/misc/config
factory_reset_stop.sh
```

2. Verifying factory reset: Use the `show shelfmgr history events location` command to verify the successful completion of the factory-reset in the standby RP or line card.

The following example shows how to verify the factory-reset shutdown command:

```
RP/0/RP0/CPU0:Router# show shelfmgr history events location 0/RP1/CPU0
Tue Mar 15 01:45:56.402 UTC
NODE NAME : 0/RP1/CPU0
CURRENT STATE : CARD_SHUT_POWERED_OFF
```
Storage Media Sanitization

The following example shows how to verify the factory-reset reload command:

```
RP/0/RP0/CPU0#show shelfmgr history events location 0/RP0/CPU0
Tue Mar 15 01:45:56.402 UTC
NODE NAME : 0/RP0/CPU0
CURRENT STATE : CARD_SHUT_POWERED_OFF
TIME STAMP : Mar 15 2022 01:44:47
```

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME (UTC)</th>
<th>EVENT</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 29 2022 13:48:34</td>
<td>ev_xr_ready</td>
<td>XR_RUN</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:48:10</td>
<td>ev_card_info_rcvd</td>
<td>CARD_INFO_RCVD</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:47:52</td>
<td>ev_xr_init</td>
<td>XR_INITIALIZING</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:47:44</td>
<td>ev_kernel_booting</td>
<td>STATE_NOT_CHANGED</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:47:14</td>
<td>ev_kernel_booting</td>
<td>KERNEL_BOOTING</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:46:53</td>
<td>ev_unmapped_event</td>
<td>STATE_NOT_CHANGED</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:46:53</td>
<td>ev_bios_started</td>
<td>BIOS_STARTED</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:46:51</td>
<td>ev_bios_ready</td>
<td>BIOS_READY</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:46:10</td>
<td>ev_unmapped_event</td>
<td>STATE_NOT_CHANGED</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:46:10</td>
<td>ev_powered_on</td>
<td>CARDPOWERED_ON</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:46:05</td>
<td>ev_card_reset_done</td>
<td>CARD_RESET</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:46:05</td>
<td>transient_condition</td>
<td>CARD_RESETTING</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:46:05</td>
<td>ev_check_card_down_reaso</td>
<td>CHECKING_DOWN_REASON</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:46:05</td>
<td>ev_os_halted</td>
<td>OS_HALTED</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:45:50</td>
<td>ev_factory_reset_done</td>
<td>FACTORY_RESET_DONE</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:34:09</td>
<td>ev_factory_reset_started</td>
<td>FACTORY_RESET_IN_PROGRESS</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:33:59</td>
<td>ev_os_halting</td>
<td>OS_HALTED_IN_PROGRESS</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:33:58</td>
<td>ev_xr_shut</td>
<td>START_OS_HALT</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 13:33:56</td>
<td>ev_graceful_reload</td>
<td>CARD_SHUTDOWN_IN_PROGRESS</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 09:18:43</td>
<td>ev_xr_ready</td>
<td>XR_RUN</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 09:17:37</td>
<td>ev_card_info_rcvd</td>
<td>CARD_INFO_RCVD</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 09:17:32</td>
<td>ev_powered_on</td>
<td>CARDPOWERED_ON</td>
<td></td>
</tr>
<tr>
<td>Jun 29 2022 09:17:31</td>
<td>init</td>
<td>CARD_DISCOVERED</td>
<td></td>
</tr>
</tbody>
</table>

System Management Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 7.3.x
Configuring Frequency Synchronization

Table 19: Feature History Table

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Release Information</th>
<th>Feature Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Frequency Synchronization</td>
<td>Release 7.3.1</td>
<td>Based on the ITU-T G.8262 recommendations, precision frequency is enabled on timing devices to deliver frequency synchronization for bandwidth, frequency accuracy, holdover, and measure noise generation. This support allows for correct network operations when synchronous equipment is timed from either another synchronous equipment clock or a higher-quality clock.</td>
</tr>
</tbody>
</table>

- Overview, on page 133
- Enabling Frequency Synchronization on the Router, on page 135
- Configuring Frequency Synchronization on an Interface, on page 138
- Configuring Frequency Synchronization on a Clock Interface, on page 141
- Verifying the Frequency Synchronization Configuration, on page 145
- Support for ITU-T G.8264 Standard, on page 149

Overview

Frequency synchronization is the ability to distribute precision frequency around a network. In this context, timing refers to precision frequency, not an accurate time of day. Precision frequency is required in next generation networks for applications such as circuit emulation.

To achieve compliance to ITU specifications for TDM, differential method circuit emulation must be used, which requires a known, common precision frequency reference at each end of the emulated circuit. This is used in conjunction with an external timing technology to provide synchronization of precision timing across the network.

SDH equipments are widely replaced by Ethernet equipments and synchronized frequency is required over such Ethernet ports. Synchronous Ethernet (SyncE) is used to accurately synchronize frequency in devices.
connected by Ethernet in a network. SyncE provides level frequency distribution of known common precision frequency references to a physical layer Ethernet network.

To maintain SyncE links, a set of operational messages are required. These messages ensure that a node is always deriving timing information from the most reliable source and then transfers the timing source quality information to clock the SyncE link.

Source and Selection Points

Frequency Synchronization implementation involves Sources and Selection Points.

A Source inputs frequency signals into a system or transmits them out of a system. There are four types of sources:

- Line interfaces. This includes SyncE interfaces.
- Clock interfaces. These are external connectors for connecting other timing signals, such as BITS and GPS.
- PTP clock. If IEEE 1588 version 2 is configured on the router, a PTP clock may be available to frequency synchronization as a source of the time-of-day and frequency.
- Internal oscillator. This is a free-running internal oscillator chip.

Each source has a Quality Level (QL) associated with it which gives the accuracy of the clock. This provides information about the best available source the devices in the system can synchronize to. To define a predefined network synchronization flow and prevent timing loops, you can assign priority values to the sources on each router. The combination of QL information and user-assigned priority levels allow each router to choose a source to synchronize its SyncE interfaces, as described in the ITU standard G.781.

A Selection Point is any point where a choice is made between several frequency signals and possibly one or many of them are selected. Selection points form a graph representing the flow of timing signals between different cards in a router running Cisco IOS XR software. For example, there can be one or many selection points between different Synchronous Ethernet inputs available on a single line card. This information is forwarded to a selection point on the router, to choose between the selected source from each card.

The input signals to the selection points can be:

- Received directly from a source.
- Received as the output from another selection point on the same card.
- Received as the output from a selection point on a different card.

The output of a selection point can be used in a number of ways, like:

- To drive the signals sent out of a set of interfaces.
- As input into another selection point on a card.
- As input into a selection point on another card.

Use `show frequency synchronization selection` command to see a detailed view of the different selection points within the system.
Note

- We recommend you to configure, and enable Frequency Synchronization selection input on two interfaces per line card.
- For link aggregation, you must configure and enable Frequency Synchronization selection input on a single bundle member.

SyncE Profiles Support Matrix

This table provides information on the SyncE profiles that are supported on the Cisco 8000 series routers and line cards.

Table 20: SyncE Profiles Support Matrix

<table>
<thead>
<tr>
<th>Hardware Module</th>
<th>Supported SyncE profiles</th>
<th>Cisco IOS XR Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 88-LC0-36FH-M line card
• 8202-32FH-M router</td>
<td>G.8262
G.8264</td>
<td>Release 7.5.2</td>
</tr>
<tr>
<td>• 8201-32FH router
• 88-LC-34H14FH line card
• 88-LC0-36FH line card</td>
<td>G.8262
G.8264</td>
<td>Release 7.3.3</td>
</tr>
<tr>
<td>• 8800-LC-36FH line card
• 8800-LC-48FH line card
• 8202 router
• 8201 router</td>
<td>G.8262
G.8264</td>
<td>Release 7.3.1</td>
</tr>
</tbody>
</table>

SyncE Restrictions

This section lists a restriction in configuring frequency synchronization.
- SyncE is not supported on 8800-RP 1588 ports.

Enabling Frequency Synchronization on the Router

This task describes the router-level configuration required to enable frequency synchronization.

Note

If timing mode system is not configured, the major alarm T4 PLL is in FREERUN mode is raised. This alarm has no functional impact to the system behavior.
SUMMARY STEPS

1. configure
2. frequency synchronization
3. clock-interface timing-mode {independent | system}
4. quality itu-t option {1 | 2 generation {1 | 2}}
5. log selection {changes | errors}
6. Use one of these commands:
 • end
 • commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure</td>
<td>Enters mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>frequency synchronization</td>
<td>Enables frequency synchronization on the router.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# frequency synchronization</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
</tbody>
</table>
| **clock-interface timing-mode {independent | system** | Configures the type of timing sources that can be used to drive the output from a clock interface. If this command is not used, the default quality mode is used. In the default mode, the clock interface output is driven only by input from line interfaces and the internal oscillator; it is never driven by input from another clock interface. In addition, some heuristic tests are run to detect if the signal being sent out of one clock interface can be looped back by some external box and sent back in via the same, or another clock interface.
| **Example:** | | | |
| Router(config-freqsync)# clock-interface timing-mode system | |
| **Step 4** | |
| **quality itu-t option {1 | 2 generation {1 | 2}}** | (Optional) Specifies the quality level for the router. The default is option 1. |
| **Example:** | |
| Router(config-freqsync)# quality itu-t option 2 generation 1 | |

• independent—Specifies that the output of clock interfaces is driven only by the line interfaces (SyncE), as in the default mode. Loopback detection is disabled.

• system—Specifies that the output of a clock interface is driven by the system-selected timing source (the source used to drive all SyncE interfaces), including clock interfaces. Loopback detection is disabled.

• option 1—Includes PRC, ePRTC, PRTC, SSU-A, SSU-B, SEC, eEEC, and DNU.
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• option 2 generation 1 — Includes PRS, ePRTC, PRTC, STU, ST2, ST3, SMC, ST4, eEEC, and DUS.</td>
</tr>
<tr>
<td>• option 2 generation 2 — Includes PRS, ePRTC, PRTC, STU, ST2, ST3, ST3E, SMC, ST4,XeEEC, and DUS.</td>
</tr>
</tbody>
</table>

Note

The quality option configured here must match the quality option specified in the **quality receive** and **quality transmit** commands in interface frequency synchronization configuration mode.

Step 5

log selection \{changes | errors\}

Example:

```
Router(config-freqsync)# log selection changes
```

Enables logging to frequency synchronization.

- **changes** — Logs every time there is a change to the selected source, in addition to errors.
- **errors** — Logs only when there are no available frequency sources, or when the only available frequency source is the internal oscillator.

Step 6

Use one of these commands:

- **end**
- **commit**

Example:

```
Router(config-freqsync)# end
```

Saves configuration changes.

- When you issue the **end** command, the system prompts you to commit changes:

```
Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:
```

- Entering **yes** saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
- Entering **no** exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
- Entering **cancel** leaves the router in the current configuration session without exiting or committing the configuration changes.

- Use the **commit** command to save the configuration changes to the running configuration file, and remain within the configuration session.

What to do next

Configure frequency synchronization on any interfaces that should participate in frequency synchronization.
Configuring Frequency Synchronization on an Interface

By default, there is no frequency synchronization on line interfaces. Use this task to configure an interface to participate in frequency synchronization.

Before you begin
You must enable frequency synchronization globally on the router.

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. frequency synchronization
4. selection input
5. priority priority-value
6. wait-to-restore minutes
7. ssm disable
8. time-of-day-priority priority
9. quality transmit {exact | highest | lowest} itu-t option ql-option
10. quality receive {exact | highest | lowest} itu-t option ql-option
11. Use one of these commands:
 • end
 • commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure</td>
<td>Enters mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>interface type interface-path-id</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface HundredGigE 0/1/1/0</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>frequency synchronization</td>
<td>Enables frequency synchronization on the interface and enters interface frequency synchronization mode to configure the various options. By default, this causes the system selected frequency signal to be used for clocking transmission, but does not enable the use of the interface as an input.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# frequency synchronization</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>selection input</td>
<td>(Optional) Specifies the interface as a timing source to be passed to the selection algorithm.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>Router(config-if-freqsync)# selection input</code></td>
<td>(Optional) Configures the priority of the frequency source on a controller or an interface. Values can range from 1 (highest priority) to 254 (lowest priority). The default value is 100. This command is used to set the priority for an interface or clock interface. The priority is used in the clock-selection algorithm to choose between two sources that have the same quality level (QL). Lower priority values are preferred.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>priority priority-value</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-freqsync)# priority 100</td>
</tr>
<tr>
<td><code>wait-to-restore minutes</code></td>
<td>(Optional) Configures the wait-to-restore time, in minutes, for frequency synchronization on an interface. This is the amount of time after the interface comes up before it is used for synchronization. Values can range from 0 to 12. The default value is 5.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>wait-to-restore 300</code></td>
<td></td>
</tr>
<tr>
<td><code>ssm disable</code></td>
<td>(Optional) Disables Synchronization Status Messages (SSMs) on the interface.</td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>ssm disable</code></td>
<td></td>
</tr>
<tr>
<td><code>time-of-day-priority priority</code></td>
<td>(Optional) Specifies the priority of this time source as the time-of-day (ToD) source. The priority is used as the first criterion when selecting between sources for a time-of-day selection point. Values can range from 1 (highest priority) to 254 (lowest priority); the default value is 100.</td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td><code>time-of-day-priority 50</code></td>
<td></td>
</tr>
<tr>
<td>`quality transmit {exact</td>
<td>highest</td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td><code>quality transmit exact highest lowest itu-t option 1 prc</code></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>For clock interfaces that do not support SSM, only the lowest QL can be specified. In this case, rather than sending DNU, the output is squelched, and no signal is sent.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>quality receive {exact</td>
<td>highest</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-clk-freqsync)# quality receive highest itu-t option 1 prc</td>
<td>- exact ql—Specifies the exact QL regardless of the value received, unless the received value is DNU.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>The quality option specified in this command must match the globally-configured quality option in the quality itu-t option command.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>For clock interfaces that do not support SSM, only the exact QL can be specified.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 11</th>
<th>Use one of these commands:</th>
<th>Saves configuration changes.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• end</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td></td>
<td>• commit</td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>- Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if-freqsync)# end or</td>
<td>- Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if-freqsync)# commit</td>
<td>- Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the commit command to save the configuration changes to the running configuration file, and remain within the configuration session.</td>
</tr>
</tbody>
</table>
Configuring Frequency Synchronization on a Clock Interface

External Timing Source

Clock interfaces are external connectors for connecting other timing signals, such as, GPS, BITS.

GPS

The router can receive 1PPS, 10 MHz, and ToD signals from an external clocking and timing source. The three inputs are combined as a Sync-2 interface to form the external timing source or the GPS input.

The GPS front panel connector details are:

- ToD—RS422 format as input
- 1PPS—RS422 or DIN connector as input
- 10MHz—DIN connector as input

GPS input starts only when all the three signals – 1PPS, 10MHz, and ToD are UP.

Note

Unlike the Ethernet interface, the Sync-2 interface cannot receive or transmit QL. Ensure that you assign a QL value to the Sync-2 interface.

By default, 1PPS and 10MHz are in output mode. ToD output mode is not configurable.

For the variant, 8800-RP, 10MHZ and 1PPS can operate in output mode only when PTP Slave or BC mode are configured.

Note

Both RP0 and RP1 should have identical configurations and should be connected to same external reference for sync 0 and sync 2 to meet phase transient response compliance standards during RP failover.

Configuring GPS Settings for the Grandmaster Clock

```bash
Router# configure
Router(config)# clock-interface sync 2 location 0/RP0/CPU0
Router(config-clock-if)# port-parameters
Router(config-clk-parms)# gps-input tod-format cisco pps-input ttl
Router(config-clk-parms)# exit
Router(config-clock-if)# frequency synchronization
Router(config-clk-freqsync)# selection input
Router(config-clk-freqsync)# wait-to-restore 0
Router(config-clk-freqsync)# quality receive exact itu-t option 1 PRC
Router(config-clk-freqsync)# exit
Router(config-clock-if)# frequency synchronization
Router(config-clk-freqsync)# quality itu-t option 1
Router(config-clk-freqsync)# clock-interface timing-mode system
Router(config-clk-freqsync)# end
```
Verifying the GPS Input

Router# show controllers timing controller clock

SYNCC Clock-Setting: -1 -1 6 -1

<table>
<thead>
<tr>
<th>Port 0</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config: No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mode : -</td>
<td>-</td>
<td>GPS</td>
<td>-</td>
</tr>
<tr>
<td>Submode1 : -</td>
<td>-</td>
<td>CISCO</td>
<td>-</td>
</tr>
<tr>
<td>Submode2 : -</td>
<td>-</td>
<td>UTC</td>
<td>-</td>
</tr>
<tr>
<td>Submode3 : 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shutdown : 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Direction : RX/TX</td>
<td>RX/TX</td>
<td>RX</td>
<td>RX/TX</td>
</tr>
<tr>
<td>Baud-Rate : -</td>
<td>-</td>
<td>9600</td>
<td>-</td>
</tr>
<tr>
<td>QL Option : O1</td>
<td>O1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RX_ssm(raw) : -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TX_ssm : -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>If_state : DOWN</td>
<td>DOWN</td>
<td>UP</td>
<td>DOWN <= Port 2 is UP when GPS input is valid.</td>
</tr>
</tbody>
</table>

When the front panel timing LED is Green, it indicates that the GPS is configured and 1PPS, ToD, and 10M inputs are valid.

Timing GPS LED Behavior:
- Timing GPS LED is off: Indicates no GPS is configured or the GPS port is down.
- Timing GPS LED is green: Indicates the GPS port is up.

SYNC LED Behavior:
- SYNC LED is green: Indicates that time core is synchronized to either external source, or SyncE or 1588.
- SYNC LED is amber: Indicates a Holdover or Acquiring state.
- SYNC LED is off: Indicates synchronization in disable or free-running state.

The following table describes the implication of LED light status of GPS, BITS port, and SYNC LEDs.

Table 21: LED Light States

<table>
<thead>
<tr>
<th>LED Type</th>
<th>LED State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>Green</td>
<td>The GPS interface is provisioned and frequency, time of day, and phase input is operating accurately.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The GPS interface is not provisioned or the GPS input is not operating accurately.</td>
</tr>
<tr>
<td>BITS port</td>
<td>Green</td>
<td>The BITS interface is provisioned and frequency is operating accurately.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The BITS interface is not provisioned or the BITS input is not operating accurately.</td>
</tr>
</tbody>
</table>
LED State

<table>
<thead>
<tr>
<th>LED Type</th>
<th>LED State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNC</td>
<td>Green</td>
<td>The frequency, time, and phase are synchronized to an external interface. The external interface can be:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BITS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Recovered RX clock</td>
</tr>
<tr>
<td>Amber</td>
<td></td>
<td>The system is running in holdover or free-run mode and based on user configuration it is not synchronized to an external interface, as expected.</td>
</tr>
<tr>
<td>Off</td>
<td></td>
<td>The centralized frequency or time and phase distribution is not enabled. Therefore, all clocking is based on the local oscillator on the RSP.</td>
</tr>
</tbody>
</table>

Building Integrated Timing Supply

Router supports receiving (Rx) and transmitting (Tx) of frequency via BITS interface. To receive and transmit BITS signals, configuration is done under the clock-interface sync 0 on the route processor (RP).

Note

Both RP0 and RP1 should have identical configurations and should be connected to the same external reference for sync 0 and sync 2 to meet phase transient response compliance standards during RP failover.

Prerequisite for BITS

Frequency synchronization must be configured with the required quality level option at the global level.

```
Router# show running-config frequency synchronization
Wed Aug 21 12:37:32.524 UTC
frequency synchronization
    quality itu-t option 1
```

Note

BITS-In and BITS-Out on the peer nodes must be configured with the same mode and format.

Configuring BITS-IN

```
Router# configure
Wed Aug 21 12:29:59.162 UTC
Router(config)# clock-interface sync 0 location 0/RP0/CPU0
Router(config-clock-if)# port-parameters
```
Configuring BITS-OUT

Based on the quality level chosen in global configuration, E1/T1 modes can be changed as required. But in all the cases, both TX and RX side modes and submodes must be the same.

For non-CRC-4/D4 modes, SSM is not present in BITS and manual receive quality level must be configured.

Verifying BITS-IN Configuration

Router# show controllers timing controller clock
Wed Aug 21 12:38:20.394 UTC
SYNCC Clock-Setting: 1 -1 -1 -1

<table>
<thead>
<tr>
<th>Port 0</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mode</td>
<td>E1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Submode1</td>
<td>CRC-4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Submode2</td>
<td>AMI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Submode3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shutdown</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Direction</td>
<td>RX</td>
<td>RX/TX</td>
<td>RX/TX</td>
</tr>
</tbody>
</table>
Verifying BITS-OUT Configuration

Router# show controllers timing controller clock
Wed Aug 21 12:49:32.923 UTC
SYNCC Clock-Setting: 1 -1 -1 -1

<table>
<thead>
<tr>
<th>Port 0</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config : Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mode : E1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Submode1 : CRC-4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Submode2 : AMI</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Submode3 : 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shutdown : 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Direction : TX</td>
<td>RX/TX</td>
<td>RX/TX</td>
<td>RX/TX</td>
</tr>
<tr>
<td>Baud-Rate : -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>QL Option : O1</td>
<td>O1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RX_ssm(raw): -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TX_ssm : 22</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>If_state : UP</td>
<td>DOWN</td>
<td>DOWN</td>
<td>DOWN</td>
</tr>
</tbody>
</table>

Verifying the Frequency Synchronization Configuration

After performing the frequency synchronization configuration tasks, use this task to check for configuration errors and verify the configuration.

SUMMARY STEPS

1. show frequency synchronization configuration-errors
2. show frequency synchronization interfaces brief
3. show frequency synchronization interfaces node-id
4. `show processes fsyncmgr location node-id`

DETAILED STEPS

Step 1
show frequency synchronization configuration-errors

Example:

```
Router# show frequency synchronization configuration-errors

Node 0/2/CPU0:
----------------------------------------------
interface HundredGigE 0/2/0/0 frequency synchronization
  * Frequency synchronization is enabled on this interface, but isn't enabled globally.

interface HundredGigE 0/2/0/0 frequency synchronization quality transmit exact itu-t option 2
generation 1 PRS
  * The QL that is configured is from a different QL option set than is configured globally.
```

Displays any errors that are caused by inconsistencies between shared-plane (global) and local-plane (interface) configurations. There are two possible errors that can be displayed:

- Frequency Synchronization is configured on an interface (line interface or clock-interface), but is not configured globally. Refer to Enabling Frequency Synchronization on the Router, on page 135
- The QL option configured on some interface does not match the global QL option. Under an interface (line interface or clock interface), the QL option is specified using the `quality transmit` and `quality receive` commands. The value specified must match the value configured in the global `quality itu-t option` command, or match the default (option 1) if the global `quality itu-t option` command is not configured.

Once all the errors have been resolved, meaning there is no output from the command, continue to the next step.

Step 2
show frequency synchronization interfaces brief

Example:

```
Router# show frequency synchronization interfaces brief

Flags: > - Up  D - Down  S - Assigned for selection
d - SSM Disabled  x - Peer timed out  i - Init state

Fl  Interface  QLrcv  QLuse  Pri  QLsnd  Source
====  ===============  =====  =====  ===  =======  ===============
>S  HundredGigE 0/2/0/0 Fail Fail 100  DNU  None
Dd  HundredGigE 0/2/0/1 n/a Fail 100 n/a None

Router# show frequency synchronization clock-interfaces brief

Flags: > - Up  D - Down  S - Assigned for selection
d - SSM Disabled  s - Output squelched  l - Looped back

Node 0/0/CPU0:
-------------------------------
Fl  Clock Interface  QLrcv  QLuse  Pri  QLsnd  Source
====  ===========  =======  =====  ===  =======  ===============
>S  Sync0 PRC Fail 100 SSU-B Internal0 [0/0/CPU0]
>S  Internal0 n/a SSU-B 255 n/a None
```
Configuring Frequency Synchronization

Verifying the Frequency Synchronization Configuration

Node 0/1/CPU0:

<table>
<thead>
<tr>
<th>Fl</th>
<th>Clock Interface</th>
<th>QLrcv</th>
<th>QLuse</th>
<th>Pri</th>
<th>QLsnd</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Sync0</td>
<td>None</td>
<td>Fail</td>
<td>100</td>
<td>SSU-B</td>
<td>Internal0 [0/1/CPU0]</td>
</tr>
<tr>
<td>>S</td>
<td>Internal0</td>
<td>n/a</td>
<td>SSU-B</td>
<td>255</td>
<td>n/a</td>
<td>None</td>
</tr>
</tbody>
</table>

Verifies the configuration. Note the following points:

- All line interface that have frequency synchronization configured are displayed.
- All clock interfaces and internal oscillators are displayed.
- Sources that have been nominated as inputs (in other words, have selection input configured) have ‘S’ in the Flags column; sources that have not been nominated as inputs do not have ‘S’ displayed.

Note Internal oscillators are always eligible as inputs.

- ‘>’ or ‘D’ is displayed in the flags field as appropriate.

If any of these items are not true, continue to the next step.

Step 3

show frequency synchronization interfaces node-id

Example:

Router# show frequency synchronization interfaces HundredGigE 0/2/0/2

Interface HundredGigE 0/2/0/2 (shutdown)
Assigned as input for selection
SSM Enabled
Input:
 Down
Last received QL: Failed
Effective QL: Failed, Priority: 100
Output:
 Selected source: Sync0 [0/0/CPU0]
 Selected source QL: Opt-I/PRC
 Effective QL: Opt-I/PRC
 Next selection points: LC_INGRESS

Router# show frequency synchronization clock-interfaces location 0/1/CPU0

Node 0/1/CPU0:

<table>
<thead>
<tr>
<th>Fl</th>
<th>Clock interface</th>
<th>QLrcv</th>
<th>QLuse</th>
<th>Pri</th>
<th>QLsnd</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sync0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSM supported and enabled
Input:
 Down
Last received QL: Opt-I/PRC
Effective QL: Failed, Priority: 100
Output:
 Selected source: Internal0 [0/1/CPU0]
 Selected source QL: Opt-I/SSU-B
 Effective QL: Opt-I/SSU-B
 Next selection points: RP_SYSTEM

Clock interface Internal0 (Up)
Assigned as input for selection
Input:
 Default QL: Opt-I/SSU-B
Verifying the Frequency Synchronization Configuration

Investigates issues within individual interfaces. If the clock interface is down, a reason is displayed. This may be because there is missing or conflicting platform configuration on the clock interface.

Step 4

show processes fsyncmgr location *node-id*

Example:

Router# show processes fsyncmgr location 0/0/CPU0

 Job Id: 134
 PID: 30202
 Executable path: /pkg/bin/fsyncmgr
 Instance #: 1
 Version ID: 00.00.0000
 Respawn: ON
 Respawn count: 1
 Max. spawns per minute: 12
 Last started: Mon Mar 9 16:30:43 2009
 Process state: Run
 Package state: Normal
 Started on config: cfg/gl/freqsync/g/a/enable
 core: MAINMEM
 Max. core: 0
 Placement: None
 startup_path: /pkg/startup/fsyncmgr.startup
 Ready: 0.133s
 Process cpu time: 1730768.741 user, -133848.-361 kernel, 1596920.380 total

Verifies that the fsyncmgr process is running on the appropriate nodes.
Support for ITU-T G.8264 Standard

Table 22: Feature History Table

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Release Information</th>
<th>Feature Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for ITU-T G.8264 Standard</td>
<td>Release 7.3.1</td>
<td>The Ethernet Synchronization Message Channel (ESMC) protocol is specified in the ITU-T G.8264 performance compliance standard. It provides recommendations on synchronizing clock frequency across a network over an Ethernet port, along with the ability to select quality levels. The G.8264 standard provides a new extended Quality Level (QL) of Type Length Value (TLV). As Ethernet equipment gradually replace SONET and SDH equipment in service provider networks, frequency synchronization provides high-quality clock synchronization over Ethernet ports.</td>
</tr>
</tbody>
</table>

The Ethernet Synchronization Message Channel (ESMC) protocol specified in the ITU-T G.8264 enables the synchronization of clock frequency across a network over Ethernet ports with the ability to select enhanced quality levels. Enhanced quality levels lead to improved bandwidth, frequency accuracy, and holdover along with reduced noise generation in a network.

As part of the ESMC protocol, the quality level (QL) of timing signals is distributed through Synchronization Status Messages (SSMs). The updated G.8264 standard provides a new and enhanced Quality Level (QL) of Type Length Value (TLV) that allows more precise quality to provide accurate clocks.

The new and enhanced QL of TLV that is part of the updated G.8264 standard is known as enhanced SyncE (eSyncE). The enhanced QL of TLV enables support for more QL values. You can configure a router to send or receive the enhanced TLV. The enhanced QL of TLV results in more precise synchronization of clocks across a network. To enable this feature, the local clock ID is configured. The clock ID is used, when appropriate, in the extended QL TLVs.

Note

Default clock ID is based on the MAC address of the chassis.

Restrictions

There may be devices in a network that do not support eSyncE and also do not support enhanced ESMC. If a router does not support eSyncE, it ignores any enhanced TLVs it receives and does not support enhanced quality to provide accurate clocks. Such routers at ingress nodes drop the QL TLV received from the previous node supporting eSyncE. If the next node supports enhanced ESMC, then the extended QL TLV is applied afresh to that node.
Configuration

1. Configure frequency synchronization on the router.
2. Configure the MAC address of the device clock that can transmit the enhanced QL TLV in the network.
3. Configure frequency synchronization on an interface.
4. Configure the quality level options to be transmitted by the device clock.

Configuration Example

/* Configure frequency synchronization on the router. */
Router# configure
Router(config)# frequency synchronization

/* Configure the MAC address of the clock that can transmit the enhanced QL TLV in the network. */
Router(config-freqsync)# clock-id mac-address 0000.0001.0003
Router(config-freqsync)# commit
Router(config-freqsync)# exit

/* Configure frequency synchronization on an interface. */
Router(config)# interface HundredGigE 0/1/0/0
Router(config-if)# frequency synchronization

/* Configure the quality level options to be transmitted by the device clock. */
Router(config-if-freqsync)# quality transmit exact itu-t option 1 ePRTC

Running Configuration

Router# show running-config
frequency synchronization
clock-identity mac-address 0000.0001.0003
!
interface preconfigure HundredGigE 0/1/0/0
frequency synchronization
quality transmit exact itu-t option 1 ePRTC
!
!

Verification

To verify if eSyncE is configured, use the show frequency synchronization interfaces command.

Router# show frequency synchronization interfaces
Interface HundredGigE 0/1/0/1 (up)
 Assigned as input for selection
 Wait-to-restore time 0 minutes
 SSM Enabled
 Peer Up for 00:00:54, last SSM received 0.741s ago
 Peer has come up 1 times and timed out 0 times
 ESMC SSMs Total Information Event DNU/DUS
 Sent: 55 53 2 45
 Received: 55 55 0 0
 Input:
 Up
 Last received QL: Opt-I/ePRTC
 Effective QL: Opt-I/ePRTC, Priority: 30, Time-of-day Priority 100
 Originator clock ID: aaaaabfffeebbcddd
 SyncE steps: 1, eSyncE steps: 1
All steps run eSyncE; Chain of extended ESMC data is complete
Supports frequency
Output:
Selected source: HundredGigE 0/11/0/1
Selected source QL: Opt-I/ePRTC
Effective QL: DNU
Originator clock ID: aaaabbfffebbcccc
SyncE steps: 2, eSyncE steps: 2
All steps run eSyncE; Chain of extended ESMC data is complete
Next selection points: ETH_RXMUX
Support for ITU-T G.8264 Standard
Synchronizing the Filesystems

Table 23: Feature History Table

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronizing Filesystems</td>
<td>Release 7.3.4</td>
<td>This feature helps you to synchronize filesystems, by using a utility called Rsync. Instead of transferring the complete file, Rsync transfers only the changes in the files.</td>
</tr>
</tbody>
</table>

- Overview of Filesystem-Synchronization, on page 153
- Synchronize Files and Directories, on page 153
- Verifying the File Transfer, on page 154
- Configuration Examples for Synchronizing Filesystems, on page 154

Overview of Filesystem-Synchronization

A filesystem is a data structure and method, where files and data are named and stored logically and retrieved by the operating systems. Typically, filesystems have files and filenames, directories, metadata, utilities, and so on.

For synchronizing filesystems, Cisco IOS XR uses a utility that is called Rsync. Rsync helps in transferring and synchronizing files between two filesystems. It can be between a computer and an external hard drive or across networked computers. Rsync compares the modification time and the size of files, and transfers only the changes in the files. In secure copying (scp) or any other synchronizing methods, the process transfers the complete file.

You must be a privileged user to run the Rsync tool.

Rsync is enabled by default in Cisco servers and is supported only on Cisco IOS XR software.

You cannot disable Rsync.

Synchronize Files and Directories

You can copy or synchronize files and directories in local and remote servers.
Linux clients support the following command for copying and synchronizing the files and directories with the router:

\texttt{Rsync \langle filename/dir name\rangle \langle user\rangle@\langle ip\rangle:\langle path\rangle}

If the file transfer fails, an error message appears on the screen. Following are a few examples of the error messages:

rsync: connection unexpectedly closed (0 bytes received so far) [sender]
rsync error: unexpected EOF [sender=3.1.2]

rsync error: some files/attrs were not transferred (see previous errors) (code 23) at main.c(1178) [sender=3.1.2]

rsync: --lock: unknown option
rsync error: syntax or usage error (code 1) at main.c(1567) [client=3.1.2]

rsync error: unexplained error (code 255) at rsync.c(638) [sender=3.1.2]

rsync: [sender] write error: Broken pipe (32)

To restore directories to its previous state, you can use the Linux commands. For example: \texttt{rsync -av --delete dir-A.bak/ dir-A/}

\section*{Verifying the File Transfer}

Use the \texttt{--checksum} parameter to verify the file synchronization:

\texttt{rsync -av -r --checksum --delete --timeout=600 \{source_path\} \{username\}@\{ipaddress\}:@{destination_path\}}

\section*{Configuration Examples for Synchronizing Filesystems}

The following example shows the command to transfer a file using the Rsync utility:

\texttt{rsync -v sim-config.xml admin@192.0.2.3:/harddisk:/}

Warning: Permanently added '192.0.2.3' (ECDSA) to the list of known hosts.
Password: sim-config.xml

sent 907 bytes received 35 bytes 110.82 bytes/sec
total size is 812 speedup is 0.86

The following example shows the command to verify the transferring of files:

\texttt{rsync -av -r --checksum --delete --timeout=600 rsync_temp/ admin@192.0.2.3:/harddisk:/}

Password: sim-config.xml

sent 907 bytes received 35 bytes 110.82 bytes/sec
total size is 812 speedup is 0.86
CHAPTER 12

Configuring PTP

Table 24: Feature History Table

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Release Information</th>
<th>Feature Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Precision Time Protocol (PTP)</td>
<td>Release 7.3.1</td>
<td>Precision Time Protocol (PTP) is based on the IEEE 1588-2008 clock synchronization standard and enables clocks in a distributed system to be synched with highly precise clocks. The precision in time synchronization is achieved through packets that are transmitted and received in a session between the primary clock and secondary clock. PTP also ensures that the best clock is selected as a timing source (the primary clock) and all other clocks are synchronized with the primary clock.</td>
</tr>
</tbody>
</table>

Precision Time Protocol (PTP) is a protocol that defines a method to distribute time around a network. PTP support is based on the IEEE 1588-2008 standard. This module describes the concepts around this protocol and details the various configurations involved.

- PTP Overview, on page 155
- ITU-T Telecom Profiles for PTP, on page 162
- ITU-T Telecom Profile Examples:, on page 172

PTP Overview

The Precision Time Protocol (PTP), as defined in the IEEE 1588 standard, synchronizes with nanosecond accuracy the real-time clocks of the devices in a network. The clocks are organized into a master-slave hierarchy. PTP identifies the port that is connected to a device with the most precise clock. This clock is referred to as the master clock. All the other devices on the network synchronize their clocks with the master and are referred to as members. Constantly exchanged timing messages ensure continued synchronization.
PTP ensures that the best available clock is selected as the source of time (the grandmaster clock) for the network and that other clocks in the network are synchronized to the grandmaster.

Table 25: PTP Clocks

<table>
<thead>
<tr>
<th>Network Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grandmaster (GM)</td>
<td>A network device physically attached to the primary time source. All clocks are synchronized to the grandmaster clock.</td>
</tr>
<tr>
<td>Ordinary Clock (OC)</td>
<td>An ordinary clock is a 1588 clock with a single PTP port that can operate in one of the following modes:</td>
</tr>
<tr>
<td></td>
<td>• Master mode—Distributes timing information over the network to one or more slave clocks, thus allowing the slave to synchronize its clock to the master.</td>
</tr>
<tr>
<td></td>
<td>• Slave mode—Synchronizes its clock to a master clock. You can enable the slave mode on up to two interfaces simultaneously in order to connect to two different master clocks.</td>
</tr>
<tr>
<td>Boundary Clock (BC)</td>
<td>The device participates in selecting the best master clock and can act as the master clock if no better clocks are detected.</td>
</tr>
<tr>
<td></td>
<td>Boundary clock starts its own PTP session with a number of downstream slaves. The boundary clock mitigates the number of network hops and packet delay variations in the packet network between the Grand Master and Slave.</td>
</tr>
<tr>
<td>Transparent Clock (TC)</td>
<td>A transparent clock is a device or a switch that calculates the time it requires to forward traffic and updates the PTP time correction field to account for the delay, making the device transparent in terms of time calculations.</td>
</tr>
</tbody>
</table>

PTP consists of two parts:

- The port State machine and Best Master Clock Algorithm: This provides a method to determine state of the ports in the network that will remain passive (neither master nor slave), run as a master (providing time to other clocks in the network), or run as slaves (receiving time from other clocks in the network).
- Delay-Request/Response mechanism and a Peer-delay mechanism: This provides a mechanisms for slave ports to calculate the difference between the time of their own clocks and the time of their master clock.

Note

Transparent Clock (TC) is not supported.
Frequency and Time Selection

The selection of the source to synchronize the device clock frequency is made by frequency synchronization, and is outside of the scope of PTP. The Announce, Sync, and Delay-request frequencies must be the same on the master and slave.

Delay Request-Response Mechanism

The Delay Request-response mechanism (defined in section 11.3 of IEEE Std 1588-2008) lets a slave port estimate the difference between its own clock-time and the clock-time of its master. The following options are supported:

- One-step mechanism - The timestamp for a Sync message is sent in the Sync message itself.
- Two-step mechanism - The timestamp for a Sync message is sent later in a Follow-up message.

When running a port in Slave state, a router can send Delay-request messages and handle incoming Sync, Follow-up, and Delay-response messages. The timeout periods for both Sync and Delay-response messages are individually configurable.

Hybrid Mode

Your router allows the ability to select separate sources for frequency and time-of-day (ToD). Frequency selection can be between any source of frequency available to the router, such as: BITS, GPS, SyncE or IEEE 1588 PTP. The ToD selection is between the source selected for frequency and PTP, if available (ToD selection is from GPS, or PTP). This is known as hybrid mode, where a physical frequency source (BITS or SyncE) is used to provide frequency synchronization, while PTP is used to provide ToD synchronization.

Frequency selection uses the algorithm described in ITU-T recommendation G.781. The ToD selection is controlled using the time-of-day priority configuration. This configuration is found under the clock interface frequency synchronization configuration mode and under the global PTP configuration mode. It controls the order for which sources are selected for ToD. Values in the range of 1 to 254 are allowed, with lower numbers indicating higher priority.

The steps involved in section Configuring PTP Hybrid Mode of the topic G.8275.1, on page 166.

Time of Day (ToD) Support

The router receives GPS ToD messages in serial ASCII stream through the RS422 interface in one of the following configurable formats:

- NTP Type 4
- Cisco

Port States for PTP

State machine indicates the behavior of each port. The possible states are:

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>Port is not ready to participate in PTP.</td>
</tr>
<tr>
<td>LISTENING</td>
<td>First state when a port becomes ready to participate in PTP: In this state, the port listens to PTP masters for a (configurable) period of time.</td>
</tr>
</tbody>
</table>
State Description

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-MASTER</td>
<td>Port is ready to enter the MASTER state.</td>
</tr>
<tr>
<td>MASTER</td>
<td>Port provides timestamps for any Slave or boundary clocks that are listening.</td>
</tr>
<tr>
<td>UNCALIBRATED</td>
<td>Port receives timestamps from a Master clock but, the router’s clock is not yet synchronized to the Master.</td>
</tr>
<tr>
<td>SLAVE</td>
<td>Port receives timestamps from a Master clock and the router’s clock is synchronized to the Master.</td>
</tr>
<tr>
<td>PASSIVE</td>
<td>Port is aware of a better clock than the one it would advertise if it was in MASTER state and is not a Slave clock to that Master clock.</td>
</tr>
</tbody>
</table>

Restrictions for PTP

The following PTP restrictions apply to the Cisco 8000 Series Router:

- Sync2 interface is supported only if 10 MHz, 1 Pulse per Second (PPS) and time-of-day (ToD) ports are configured.
- PTP is not supported with MACSec.
- Transparent Clock is not supported. One-step clock is supported. It can receive follow-up PTP packets, that is, it can support a two-step peer primary but it cannot send follow-up PTP packets.

PTP Support Information

This table lists different types of support information related to PTP:

<table>
<thead>
<tr>
<th>Transport Media</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• UDP over IPv4</td>
</tr>
<tr>
<td></td>
<td>• UDP over IPv6</td>
</tr>
<tr>
<td></td>
<td>• Ethernet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Signaling</td>
</tr>
<tr>
<td></td>
<td>• Announce</td>
</tr>
<tr>
<td></td>
<td>• Sync</td>
</tr>
<tr>
<td></td>
<td>• Follow-up</td>
</tr>
<tr>
<td></td>
<td>• Delay-request</td>
</tr>
<tr>
<td></td>
<td>• Delay-response</td>
</tr>
<tr>
<td></td>
<td>• Management</td>
</tr>
</tbody>
</table>
Transport Modes

• Unicast: This is the default mode. All packets are sent as unicast messages. Unicast is applicable only for PTP over IP profiles.
• Multicast: All packets are sent as multicast messages. Multicast is the only mode for PTP over ethernet profiles.

Timing Profile and Class Support Matrix

This table provides a detailed information on the timing features that are supported on the Cisco 8000 series routers and line cards.

Table 26: Timing Profile and Class Support Matrix

<table>
<thead>
<tr>
<th>Hardware Module</th>
<th>Supported Profile</th>
<th>Supported G.8273.2 Class</th>
<th>Cisco IOS XR Release</th>
</tr>
</thead>
</table>
| • 88-LC0-36FH-M line card
 • 8202-32FH-M router | G.8273.2
 G.8275.1 | Class C
 NA | Release 7.5.2 |
| • 88-LC0-36FH line card
 • 88-LC0-34H14FH line card
 • 8201-32FH router | G.8273.2
 G.8275.1 | Class C
 NA | Release 7.3.3 |
| • 8201 router
 • 8202 router
 • 8800-LC-48H line card
 • 8800-LC-36FH line card | G.8273.2
 G.8275.1
 G.8265.1
 G.8263 | Class C
 NA
 NA
 NA | Release 7.3.1 |
Configuring PTP Delay Asymmetry

Table 27: Feature History Table

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTP Delay Asymmetry</td>
<td>Release 7.3.2</td>
<td>Any delays on Precision Time Protocol (PTP) paths can impact PTP accuracy and in turn impact clock settings for all devices in a network. This feature allows you to configure the static asymmetry such that the delay is accounted for and the PTP synchronization remains accurate. The <code>delay-symmetry</code> command is introduced for this feature.</td>
</tr>
</tbody>
</table>

Configure PTP delay asymmetry to offset the static delays on a PTP path that occur due to different route selection for forward and reverse PTP traffic. Delays can also be due to any node having different delay for ingress or egress path. These delays can impact PTP accuracy due to the asymmetry in PTP. With this feature, you can enable a higher degree of accuracy in the PTP server performance leading to better synchronization between real-time clocks of the devices in a network.

Configuration of this delay asymmetry provides an option to configure static delays on a client clock for every server clock. You can configure this delay value in microseconds and nanoseconds. Configured PTP delay asymmetry is also synchronized with the Servo algorithm.

Note

- If you configure multiple PTP delay asymmetries for the same PTP profile, the latest PTP delay asymmetry that you configure is applied to the PTP profile.
- For G8275.1 and G8275.2 PTP profiles, PTP delay asymmetry is supported for both, client port and dynamic port that act as a client.
- Fixed delay can be measured by using any test and measurement tool. Fixed delay can be compensated by using the positive or negative values. For example, if the fixed delay is +10 nanoseconds, configure -10 nanoseconds to compensate the fixed delay.

A positive value indicates that the server-to-client propagation time is longer than the client-to-server propagation time, and conversely for negative values.

Supported PTP Profiles

The following PTP profiles support the configuration of PTP delay asymmetry:

- PTP over IP (G8275.2 or default profile)
- PTP over L2 (G8275.1)
Restrictions

- PTP delay asymmetry can be configured only on the PTP port of the grandmaster clock, which can either be a boundary clock or an ordinary clock.
- PTP delay asymmetry is supported for delay compensation of fixed cables and not for variable delay in the network.
- PTP delay asymmetry can be configured within the range of 3 microseconds and -3 microseconds or 3000 nanoseconds and -3000 nanoseconds.

Configuration

To configure PTP delay asymmetry:

1. Configure an interface with PTP.
2. Configure PTP delay asymmetry on the client side.

Configuration Example

/* Configure an interface with PTP. */
Router# configure
Router(config)# interface HundredGigE 0/1/0/0
Router(config-if)# ptp

/* Configure PTP delay asymmetry on the client side. */
Router(config-if-ptp)# delay-asymmetry 3 microseconds
Router(config-if-ptp)# commit

Running Configuration

interface preconfigure HundredGigE 0/1/0/0
ptp
 delay-asymmetry 3 microseconds

Verification

To verify if PTP delay asymmetry is applied, use the show ptp foreign-masters command:

Router# show ptp foreign-masters
Sun Nov 1 10:19:21.874 UTC
Interface HundredGigE0/1/0/0 (PTP port number 1)
IPV4, Address 209.165.200.225, Unicast
Configured priority: 1
Configured clock class: None
Configured delay asymmetry: 3 microseconds <- configured variable delay asymmetry value
Announce granted: every 2 seconds, 300 seconds
Sync granted: 16 per-second, 300 seconds
Delay-resp granted: 16 per-second, 300 seconds
Qualified for 2 minutes, 45 seconds
Clock ID: 80e01dffe8ab73f
Received clock properties:
 Domain: 0, Priority1: 128, Priority2: 128, Class: 6
 Accuracy: 0x22, Offset scaled log variance: 0xcd70
 Steps-removed: 1, Time source: GPS, Timescale: PTP
 Frequency-traceable, Time-traceable
 Current UTC offset: 37 seconds (valid)
 Parent properties:
To validate the approximate compensated delay value, use the `show ptp platform servo` command:

```
Router# show ptp platform servo
Mon Jun 27 22:32:44.912 UTC
Servo status: Running
Servo stat_index: 2
Device status: PHASE_LOCKED
Servo Mode: Hybrid
Servo log level: 0
Phase Alignment Accuracy: -2 ns
Sync timestamp updated: 18838
Sync timestamp discarded: 0
Delay timestamp updated: 18837
Delay timestamp discarded: 0
Previous Received Timestamp T1: 1657002314.031435081 T2: 1657002314.031436686 T3: 1657002314.026815770 T4: 1657002314.026814372
Last Received Timestamp T1: 1657002314.031435081 T2: 1657002314.031436686 T3: 1657002314.088857790 T4: 1657002314.088856392
Offset from master: 0 secs, 1502 nsecs <<<--compensated value shows 1.5 microseconds because the asymmetry configured under the interface is 3 microseconds.-->>
Mean path delay : 0 secs, 103 nsecs
setTime():0 stepTime():0 adjustFreq():2
Last setTime: 0.000000000 flag:0 Last stepTime:0 Last adjustFreq:-5093
```

ITU-T Telecom Profiles for PTP

Cisco IOS XR software supports ITU-T Telecom Profiles for PTP as defined in the ITU-T recommendations. A profile is a specific selection of PTP configuration options that are selected to meet the requirements of a particular application.

PTP lets you define separate profiles to adapt itself for use in different scenarios. A telecom profile differs in several ways from the default behavior defined in the IEEE 1588-2008 standard and the key differences are mentioned in the subsequent sections.

The following sections describe the ITU-T Telecom Profiles that are supported for PTP.

G.8265.1

G.8265.1 profile fulfills specific frequency-distribution requirements in telecom networks. Features of G.8265.1 profile are:

- **Clock advertisement**: G.8265.1 profile specifies changes to values used in Announce messages for advertising PTP clocks. The clock class value is used to advertise the quality level of the clock, while the other values are not used.

- **Clock Selection**: G.8265.1 profile also defines an alternate Best Master Clock Algorithm (BMCA) to select port states and clocks is defined for the profile. This profile also requires to receive Sync messages (and optionally, Delay-Response messages) to qualify a clock for selection.

- **Port State Decision**: The ports are statically configured to be Master or Slave instead of using state machines to dynamically set port states.

- **Packet Rates**: The packet rates higher than rates specified in the IEEE 1588-2008 standard are used. They are:
• Sync/Follow-Up Packets: Rates from 128 packets-per-second to 16 seconds-per-packet.
• Delay-Request/Delay-Response Packets: Rates from 128 packets-per-second to 16 seconds-per-packet.
• Announce Packets: Rates from 8 packets-per-second to 64 packets-per-second.

• Transport Mechanism: G.8265.1 profile only supports IPv4 PTP transport mechanism.
• Mode: G.8265.1 profile supports transport of data packets only in unicast mode.
• Clock Type: G.8265.1 profile only supports Ordinary Clock-type (a clock with only one PTP port).
• Domain Numbers: The domain numbers that can be used in a G.8265.1 profile network ranges from 4 to 23.
• Port Numbers: All PTP port numbers can only be one (1) because all clocks in this profile network are Ordinary Clocks.
• G.8261 class-specification standard is supported.

G.8265.1 profile defines an alternate algorithm to select between different master clocks based on the local priority given to each master clock and their quality levels (QL). This profile also defines Packet Timing Signal Fail (PTSF) conditions to identify the master clocks that do not qualify for selection. They are:

• PTSF-lossSync condition: Raised for master clocks that do not receive a reliable stream of Sync and Delay-Resp messages. Cisco IOS XR software requests Sync and Delay-Resp grants for each configured master clock to track the master clock with this condition.
• PTSF-lossAnnounce condition: Raised for master clocks that do not receive a reliable stream of Announce messages.
• PTSF-unusable condition: Raised for master clocks that receives a reliable stream of Announce, Sync, and Delay-Resp messages, but not usable by slave clocks. Cisco IOS XR software does not use this condition.

Configuring Global G.8265.1 Master Profile

The following configuration describes the steps involved to create a global configuration profile for a PTP interface that can then be assigned to any interface as required. It uses G.8265.1 profile as an example:

```
Router# config terminal
Router(config)# ptp
Router(config-ptp)# clock
Router(config-ptp-clock)# domain 4
Router(config-ptp-clock)# profile g.8265.1 clock-type master
Router(config-ptp-clock)# exit
Router(config-ptp)# profile master
Router(config-ptp-profile)# transport ipv4
Router(config-ptp-profile)# sync frequency 32
Router(config-ptp-profile)# announce frequency 1
Router(config-ptp-profile)# delay-request frequency 32
Router(config-ptp-profile)# exit
```

Verification

To display the configured PTP profile details, use `show run ptp` command.
Router# show run ptp

Wed Feb 28 11:16:05.943 UTC
ptp
clock domain 4
profile g.8265.1 clock-type master
profile master
transport ipv4
sync frequency 32
announce frequency 1
delay-request frequency 32

Configuring Global G.8265.1 Slave Profile

The following configuration describes the steps involved to create a global configuration profile for a PTP interface that can then be assigned to any interface as required. It uses G.8265.1 profile as an example:

Router/# config terminal
Router(config)# ptp
Router(config-ptp)# clock
Router(config-ptp-clock)# domain 4
Router(config-ptp-clock)# profile g.8265.1 clock-type slave
Router(config-ptp-clock)# exit
Router(config-ptp)# profile slave
Router(config-ptp-profile)# transport ipv4
Router(config-ptp-profile)# sync frequency 32
Router(config-ptp-profile)# announce frequency 1
Router(config-ptp-profile)# delay-request frequency 32
Router(config-ptp-profile)# exit

Verification

To display the configured PTP profile details, use show run ptp command.

Router# show run ptp

Wed Feb 28 11:16:05.943 UTC
ptp
clock domain 4
profile g.8265.1 clock-type slave
profile slave
transport ipv4
sync frequency 32
announce frequency 1
delay-request frequency 32

Configuring PTP Master Interface

The following configuration describes the steps involved to configure a PTP interface to be a Master.

Router# configure terminal
Router(config)# interface HundredGigE 0/0/0/0
Router(config-if)# ipv4 address 18.1.1.1/24
Router(config-if)# ptp
Router(config-if-ptp)# profile master
Router(config-if-ptp)# port state master-only
Router(config-if-ptp)# commit
G.8263 Standard

Table 28: Feature History Table

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release Information</th>
<th>Feature Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for ITU-T G.8263 standard for secondary clock with ITU-T G.8265.1 profile</td>
<td>Release 7.3.1</td>
<td>ITU-T G.8263 is a performance compliance standard for secondary clocks configured with ITU-T G.8265.1 profiles. These clocks drive frequency synchronization based on the PTP packets received at the secondary devices, from traceable primary devices.</td>
</tr>
</tbody>
</table>

G.8263 is the performance compliance standard for the clocks with G.8265.1 profile configured. These clocks drive frequency synchronization based on the PTP packets that are received at the secondary devices from traceable primary device. To handle excess PDV in the network, special servo mode is enabled by configuring the `network-type high-pdv` command in the PTP configuration.

Configuration

To configure high PDV mode on the slave clock, use the following steps:

1. Configure telecom profile G.8265.1 and clock-type as slave.
2. Configure network type as high PDV.

Configuration Example

```*/ Configure telecom profile G.8265.1 and clock-type as slave. */
Router# configure
Router(config)# ptp
Router(config-ptp)# clock
Router(config-ptp-clock)# domain 4
Router(config-ptp-clock)# profile g.8265.1 clock-type slave
Router(config-ptp-clock)# commit
Router(config-ptp-clock)# exit

*/ Configure network type as high PDV. */
Router(config-ptp)# network-type high-pdv
Router(config-ptp)# commit
```

Running Configuration

```ptp
  clock
    domain 4
      profile g.8265.1 clock-type slave

  network-type high-pdv
  !
```
G.8275.1

Table 29: Feature History Table

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release Information</th>
<th>Feature Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-T G.8275.1 profile support</td>
<td>Release 7.3.1</td>
<td>This feature supports the architecture defined in ITU-T G.8275 for systems requiring accurate phase and time synchronisation, phase or time-of-day synchronization is required, and where each network device participates in the PTP protocol. Support of this capability is extended on the Cisco 8000 Series router, in this release.</td>
</tr>
</tbody>
</table>

G.8275.1 profile fulfills the time-of-day and phase synchronization requirements in telecom networks with all network devices participating in the PTP protocol. G.8275.1 profile provides better frequency stability for the time-of-day and phase synchronization.

Features of G.8275.1 profile are:

- Synchronization Model: G.8275.1 profile adopts hop-by-hop synchronization model. Each network device in the path from master to slave synchronizes its local clock to upstream devices and provides synchronization to downstream devices.

- Clock Selection: G.8275.1 profile also defines an alternate BMCA that selects a clock for synchronization and port state for the local ports of all devices in the network is defined for the profile. The parameters defined as a part of the BMCA are:
 - Clock Class
 - Clock Accuracy
 - Offset Scaled Log Variance
 - Priority 2
 - Clock Identity
 - Steps Removed
 - Port Identity
 - notSlave flag
 - Local Priority

- Port State Decision: The port states are selected based on the alternate BMCA algorithm. A port is configured to a master-only port state to enforce the port to be a master for multicast transport mode.

- Packet Rates: The nominal packet rate for Announce packets is 8 packets-per-second and 16 packets-per-second for Sync/Follow-Up and Delay-Request/Delay-Response packets.

- Transport Mechanism: G.8275.1 profile only supports Ethernet PTP transport mechanism.
• Mode: G.8275.1 profile supports transport of data packets only in multicast mode. The forwarding is done based on forwardable or non-forwardable multicast MAC address.

• Clock Type: G.8275.1 profile supports the following clock types:
 - Telecom Grandmaster (T-GM): Provides timing for other network devices and does not synchronize its local clock to other network devices.
 - Telecom Time Slave Clock (T-TSC): A slave clock synchronizes its local clock to another PTP clock, but does not provide PTP synchronization to any other network devices.
 - Telecom Boundary Clock (T-BC): Synchronizes its local clock to a T-GM or an upstream T-BC clock and provides timing information to downstream T-BC or T-TSC clocks.

• Domain Numbers: The domain numbers that can be used in a G.8275.1 profile network ranges from 24 to 43. The default domain number is 24.

The G.8275.1 supports the following:
• T-GM: The telecom grandmaster (T-GM) provides timing to all other devices on the network. It does not synchronize its local clock with any other network element other than the Primary Reference Time Clock (PRTC).

• T-BC: The telecom boundary clock (T-BC) synchronizes its local clock to a T-GM or an upstream T-BC, and provides timing information to downstream T-BCs or T-TSCs. If at a given point in time there are no higher-quality clocks available to a T-BC to synchronize to, it may act as a grandmaster.

• T-TSC: The telecom time slave clock (T-TSC) synchronizes its local clock to another PTP clock (in most cases, the T-BC), and does not provide synchronization through PTP to any other device.

The following figure describes a sample G.8275.1 topology.

Figure 6: A Sample G.8275.1 Topology

![Sample G.8275.1 Topology Diagram]

Configuring Global G.8275.1 Profile

The following configuration describes the steps involved to create a global PTP configuration profile that can be applied at an interface level. It uses G.8275.1 profile as an example:

```plaintext
Router# config terminal
Router(config)# ptp
Router(config-tp)+ clock
Router(config-tp-clock)# domain 24
Router(config-tp-clock)# profile g.8275.1 clock-type T-BC
Router(config-tp-clock)# exit
Router(config-tp)# profile slave
```
Router(config-ptp-profile)# multicast target-address ethernet 01-1B-19-00-00-00
Router(config-ptp-profile)# transport ethernet
Router(config-ptp-profile)# sync frequency 16
Router(config-ptp-profile)# announce frequency 8
Router(config-ptp-profile)# delay-request frequency 16
Router(config-ptp-profile)# exit
Router(config-ptp)# profile master
Router(config-ptp-profile)# multicast target-address ethernet 01-1B-19-00-00-00
Router(config-ptp-profile)# transport ethernet
Router(config-ptp-profile)# sync frequency 16
Router(config-ptp-profile)# announce frequency 8
Router(config-ptp-profile)# delay-request frequency 16
Router(config-ptp-profile)# exit
Router(config-ptp)# physical-layer-frequency
Router(config-ptp)# log
Router(config-ptp-log)# servo events
Router(config-ptp-log)# commit

Verification

To display the configured PTP profile details, use **show run ptp** command.

Router# show run ptp

Wed Feb 28 11:16:05.943 UTC
ptp
 clock
 domain 24
 profile g.8275.1 clock-type T-BC
! profile slave
 multicast target-address ethernet 01-1B-19-00-00-00
 transport ethernet
 sync frequency 16
 announce frequency 8
 delay-request frequency 16
!
profile master
 multicast target-address ethernet 01-1B-19-00-00-00
 transport ethernet
 sync frequency 16
 announce frequency 8
 delay-request frequency 16
!
physical-layer-frequency
log
 servo events
!

Configuring PTP Master Interface

The below configuration describes the steps involved to configure a PTP interface to be a Master.

Router# configure terminal
Router(config)# interface HundredGigE0/0/0/0
Router(config-if)# ptp
Router(config-if-tp)# profile master
Router(config-if-tp)# port state master-only
Router(config-if-tp)# commit

Verification
To verify the port state details, use `show run interface interface-name` command.

```
Router# show run interface HundredGigE0/0/0/0
interface HundredGigE0/0/0/0
  ptp
    profile master
    port state master-only
```

Configuring PTP Slave Interface

This procedure describes the steps involved to configure a PTP interface to be a Slave.

```
Router# configure terminal
Router(config)# interface HundredGigE0/0/0/1
Router(config-if)# ptp
Router(config-if-ptp)# profile slave
Router(config-if-ptp)# port state slave-only
Router(config-if-ptp)# commit
```

Verification

To verify the port state details, use `show run interface interface-name` command.

```
Router# show run interface HundredGigE0/0/0/1
interface HundredGigE0/0/0/1
  ptp
    profile slave
    port state slave-only
```

Configuring PTP Hybrid Mode

This procedure describes the steps involved to configure router in a hybrid mode. You configure hybrid mode by selecting PTP for phase and time-of-day (ToD) and another source for the frequency.

Note

- G.8275.1 PTP profile supports only the hybrid mode. It is mandatory to have hybrid mode for G8275.1 profile for T-BC and T-TSC clock types. By default, the hybrid mode is used, regardless of the physical-layer-frequency configuration.

To configure PTP Hybrid mode:

1. **Configure Global Frequency Synchronization**

   ```
   Router(config)# frequency synchronization
   Router(config)# commit
   ```

2. **Configure Frequency Synchronization for an Interface.** The time-of-day-priority setting specifies that SyncE to be used as a ToD source if there is no source available with a lower priority.

   ```
   Router(config)# interface HundredGigE 0/0/0/0
   Router(config-if)# frequency synchronization
   Router(config-if-freqsync)# selection input
   Router(config-if-freqsync)# time-of-day-priority 100
   Router(config-if-freqsync)# commit
   ```
Verification

Router # show frequency synchronization selection location 0/RP0/CP

Tue Feb 6 06:34:17.627 UTC
Node 0/RP0/CP/0:

Selection point: T0-SEL-B (3 inputs, 1 selected)
Last programmed 00:01:04 ago, and selection made 00:00:24 ago
Next selection points
SPA scoped : None
Node scoped : CHASSIS-TOD-SEL
Chassis scoped : LC_TX_SELECT
Router scoped : None
Uses frequency selection
Used for local line interface output

<table>
<thead>
<tr>
<th>S Input</th>
<th>Last Selection Point</th>
<th>QL</th>
<th>Pri</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HundredGigE 0/0/0/0</td>
<td>0/2/CPU0 ETH_RXMUX 1 ePRTC 1</td>
<td>Locked</td>
<td></td>
</tr>
<tr>
<td>PTP [0/RP0/CPU0] n/a PRS 254 Available</td>
<td>Internal10 [0/RP0/CPU0] n/a ST3E 255 Available</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selection point: T4-SEL (3 inputs, 1 selected)
Last programmed 00:01:04 ago, and selection made 00:00:24 ago
Next selection points
SPA scoped : None
Node scoped : None
Chassis scoped: None
Router scoped : None
Uses frequency selection
Used for local clock interface output

<table>
<thead>
<tr>
<th>S Input</th>
<th>Last Selection Point</th>
<th>QL</th>
<th>Pri</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HundredGigE 0/0/0/0</td>
<td>0/2/CPU0 ETH_RXMUX 1 ePRTC 1</td>
<td>Locked</td>
<td></td>
</tr>
<tr>
<td>PTP [0/RP0/CPU0] n/a PRS 254 Available</td>
<td>Internal10 [0/RP0/CPU0] n/a ST3E 255 Available</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selection point: 1588-SEL (2 inputs, 1 selected)
Last programmed 00:01:04 ago, and selection made 00:00:24 ago
Next selection points
SPA scoped : None
Node scoped : None
Chassis scoped: None
Router scoped : None
Uses frequency selection

<table>
<thead>
<tr>
<th>S Input</th>
<th>Last Selection Point</th>
<th>Pri</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PTP [0/RP0/CPU0] n/a</td>
<td>100 Yes Available</td>
<td></td>
</tr>
<tr>
<td>HundredGigE 0/0/0/0 0/RP0/CPU0 T0-SEL-B 1 100 No Available</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RP/0/RP0/CPU0:SF-D#
Selection point: T0-SEL-B (3 inputs, 1 selected)
Last programmed 00:01:09 ago, and selection made 00:00:29 ago

<table>
<thead>
<tr>
<th>S Input</th>
<th>Last Selection Point</th>
<th>QL</th>
<th>Pri</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 HundredGigE 0/0/0/0 0/2/CPU0 ETH_RXMUX 1 ePRTC</td>
<td>Locked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTP [0/RP0/CPU0] n/a PRS 254</td>
<td>Available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal0 [0/RP0/CPU0] n/a ST3E</td>
<td>255 Available</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selection point: T4-SEL (3 inputs, 1 selected)
Last programmed 00:01:09 ago, and selection made 00:00:29 ago

<table>
<thead>
<tr>
<th>S Input</th>
<th>Last Selection Point</th>
<th>QL</th>
<th>Pri</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 HundredGigE 0/0/0/0 0/2/CPU0 ETH_RXMUX 1 ePRTC</td>
<td>Locked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTP [0/RP0/CPU0] n/a PRS 254</td>
<td>Available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal0 [0/RP0/CPU0] n/a ST3E</td>
<td>255 Available</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selection point: 1588-SEL (2 inputs, 1 selected)
Last programmed 00:01:09 ago, and selection made 00:00:29 ago

<table>
<thead>
<tr>
<th>S Input</th>
<th>Last Selection Point</th>
<th>QL</th>
<th>Pri</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 HundredGigE 0/0/0/0 0/2/CPU0 ETH_RXMUX 1 ePRTC</td>
<td>Locked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTP [0/RP0/CPU0] n/a PRS 254</td>
<td>Available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal0 [0/RP0/CPU0] n/a ST3E</td>
<td>255 Available</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selection point: CHASSIS-TOD-SEL (2 inputs, 1 selected)
Last programmed 00:00:57 ago, and selection made 00:00:56 ago

<table>
<thead>
<tr>
<th>S Input</th>
<th>Last Selection Point</th>
<th>Pri</th>
<th>Time</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PTP [0/RP0/CPU0]</td>
<td>n/a</td>
<td>100 Yes</td>
<td>Available</td>
<td></td>
</tr>
<tr>
<td>HundredGigE 0/0/0/0 0/RP0/CPU0 T0-SEL-B</td>
<td>1 100 No</td>
<td>Available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ITU-T Telecom Profile Examples:

G.8265.1 Profile Configuration Examples

Master Global Configuration:

frequency synchronization
quality itu-t option 1
log selection changes
!
ptp
clock
domain 4
profile g.8265.1 clock-type master
!
profile master
transport ipv4
sync frequency 64
announce frequency 1
delay-request frequency 64
interface HundredGigE 0/2/0/4
ptp
profile master
port state master-only
!
ipv4 address 18.1.1.1 255.255.255.0
!

For G.8265.1 PTP master clock, either SyncE or BITS reference source configuration is recommended. Otherwise, the device uses its own internal clock.

Slave Global Configuration:

frequency synchronization
quality itu-t option 1
log selection changes
!
ptp
clock
domain 4
profile g.8265.1 clock-type slave
!
profile slave
transport ipv4
sync frequency 64
announce interval 1
delay-request frequency 64
interface HundredGigE 0/1/0/0
ptp
profile slave
Master ipv4 18.1.1.1
port state slave-only
!
ipv4 address 18.1.1.2/24
G.8275.1 Profile Configuration Examples

Master Global Configuration:

```plaintext
frequency synchronization
  quality itu-t option 1
  log selection changes
!
ptp
clock
domain 24
profile g.8275.1 clock-type T-GM
!
profile master
transport ethernet
  sync frequency 16
  announce frequency 8
  delay-request frequency 16
interface HundredGigE 0/2/0/4
  ptp
  profile master
  multicast target-address ethernet 01-1B-19-00-00-00
!
ipv4 address 17.1.1.1/24
```

Note For T-GM clocks, sync2 clock interface has to be configured and it should be UP.

Configuring With Clock Type as Slave Clock (T-TSC):

```plaintext
frequency synchronization
  quality itu-t option 1
  log selection changes
!
ptp
clock
domain 24
physical layer frequency
profile g.8275.1 clock-type T-TSC
!
profile slave
transport ethernet
  sync frequency 16
  announce frequency 8
  delay-request frequency 16
interface HundredGigE 0/1/0/0
  ptp
  profile slave
  multicast target-address ethernet 01-1B-19-00-00-00
!
ipv4 address 18.1.1.2/24
```

Configuring With Clock Type as Boundary Clock (T-BC)

```plaintext
frequency synchronization
  quality itu-t option 1
  log selection changes
!
ptp
```
clock
domain 24
physical layer frequency
profile g.8275.1 clock-type T-BC
!
profile master
transport ethernet
sync frequency 16
announce frequency 8
delay-request frequency 16
exit
profile slave
transport ethernet
sync frequency 16
announce frequency 8
delay-request frequency 16
exit
interface HundredGigE 0/2/0/4
frequency synchronization
selection input
priority 2
wait-to-restore 0
ptp
profile slave
multicast target-address ethernet 01-1B-19-00-00-00
!
ipv4 address 17.1.1.2/24
interface HundredGigE 0/2/0/0
ptp
profile master
multicast target-address ethernet 01-1B-19-00-00-00
!
ipv4 address 18.1.1.1/24
The Network Configuration Protocol

The Network Configuration Protocol (Netconf) provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages, as defined in RFC6241. Yang is a data modeling language used with Netconf, as defined in RFC6020.

Netconf uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate communication between a client and a server. The client can be a script or application typically running as part of a network manager. The server is typically a network device.

Netconf runs within a Secure Shell (SSH) session as an SSH subsystem, as defined in RFC6242.

The configuration of features need not be done the traditional way (using CLIs), the client application (controller) reads the Yang model and communicates with the Netconf server (IOS XR) accordingly.

- Netconf Sessions and Operations, on page 175
- The Yang data model, on page 176
- Netconf and Yang, on page 177
- Supported Yang Models, on page 178
- Denial of Services Defense for Netconf-Yang, on page 178
- Enabling NETCONF over SSH, on page 179

Netconf Sessions and Operations

A Netconf session is the logical connection between a network configuration application and a network device. A device should be capable of supporting multiple sessions and at least one Netconf session.

Characteristics of a netconf session:

- Netconf is connection-oriented - SSH is the underlying transport.
- The netconf client establishes session with the server.
- Netconf sessions are established with the hello message. Features and capabilities are announced.
- Sessions can be terminated using the close or kill messages.

Basic Netconf operations:

- Get configuration <get-config>
- Get all information <get>
• Edit configuration <edit-config>
• Copy configuration <copy-config>

Note
<copy-config> does not support source attribute with “data store” at present.

• <lock>, <unlock>
• <kill-session>
• <close-session>
• Commit configuration <commit>

The Yang data model

Each feature has a defined Yang Model which is synthesized from the schemas. A model is published in a tree format and includes:

• Top level nodes and their subtrees
• Subtrees that augment nodes in other yang models

Example: The aaa Yang model
(exec-19.42.10) bash-4.2$ pyang -f tree Cisco-IOS-XR-aaa-lib-cfg.yang
module: Cisco-IOS-XR-aaa-lib-cfg
 +-rw aaa
 +-rw accountings
 | +-rw type* [type listname]
 | +-rw listname xr:Cisco-ios-xr-string
 | +-rw rp-failover? dt1:Aaa-accounting-rp-failover
 | +-rw broadcast? dt1:Aaa-accounting-broadcast
 | +-rw type-xr? dt1:Aaa-accounting
 | +-rw method1? dt1:Aaa-method-accounting
 | +-rw method2? dt1:Aaa-method-accounting
 | +-rw method3? dt1:Aaa-method-accounting
 | +-rw method4? dt1:Aaa-method-accounting
 | +-rw server-group-name1? string
 | +-rw server-group-name2? string
 | +-rw server-group-name3? string
 | +-rw server-group-name4? string
 +-rw authorizations
 | +-rw type* [type listname]
 | +-rw listname xr:Cisco-ios-xr-string
 | +-rw method1? dt1:Aaa-method
 | +-rw method2? dt1:Aaa-method
 | +-rw method3? dt1:Aaa-method
 | +-rw method4? dt1:Aaa-method
 | +-rw server-group-name1? string
 | +-rw server-group-name2? string
 | +-rw server-group-name3? string
 | +-rw server-group-name4? string
 +-rw accounting-update!
 | +-rw type dt1:Aaa-accounting-update
 | +-rw periodic-interval? uint32
Advantages of using the Yang model are:

• Yang supports programmatic interfaces.
• Yang supports simplified network management applications.
• Yang supports interoperability that provides a standard way to model management data.

Netconf and Yang

The workflow displayed here, will help the user to understand how Netconf-Yang can configure and control the network with minimal user intervention. The required components:

• Cisco 8000 Series Router with Netconf capability
• Netconf Client Application with connection to the router

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Device / component</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cisco router</td>
<td>Login/ access the router.</td>
</tr>
</tbody>
</table>
| 2 | Cisco router | Prerequisites for enabling Netconf:
• Crypto keys must be generated. |
| 3 | Cisco router | Enable Netconf agent. Use the `netconf-yang agent ssh` and `ssh server netconf` command. The port can be selected. By default, it is set as 830. |
| 4 | Cisco router | Yang models are a part of the software image. The models can be retrieved from the router, using the `<get-schema>` operation. |
Supported Yang Models

The Yang models can be downloaded from a prescribed location (ftp server) or can also be retrieved directly from the router using the get-schema operation.

For a feature, separate Yang models are available for configuring the feature and to get operational statistics (show commands). The -cfg.yang suffix denotes configuration and -oper*.yang is for operational data statistics. In some cases, -oper is followed by -sub, indicating that a submodule(s) is available.

For a list of supported Yang models, see https://github.com/YangModels/yang/tree/master/vendor/cisco/xr

Denial of Services Defense for Netconf-Yang

In case of a DoS (Denial of Service) attack on Netconf, wherein, Netconf receives numerous requests in a short span of time, the router may become irresponsive if Netconf consumes most of the bandwidth or CPU processing time. This can be prevented, by limiting the traffic directed at the Netconf agent. This is achieved using the **netconf-yang agent rate-limit** and **netconf-yang agent session** commands.

If rate-limit is set, the Netconf processor measures the incoming traffic from the SSH server. If the incoming traffic exceeds the set rate-limit, the packets are dropped.

If session-limit is set, the Netconf processor checks for the number of open sessions. If the number of current sessions is greater than or equal to, the set limit, no new sessions are opened.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Device / component</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Netconf client (application)</td>
<td>Installs and processes the Yang models. The client can offer a list of supported yang models; else the user will have to browse and locate the required yang file. There is a yang model file for each configuration module; for instance if the user wants to configure CDP, the relevant yang model is Cisco-IOS-XR-cdp-cfg. Note Refer the table which lists all the supported yang models Supported Yang Models, on page 178</td>
</tr>
<tr>
<td>5</td>
<td>Netconf client</td>
<td>Sends Netconf operation request over SSH to the router. A configuration request could include Yang-based XML data to the router. Currently, SSH is the only supported transport method.</td>
</tr>
<tr>
<td>6</td>
<td>Cisco router</td>
<td>Understands the Yang-based XML data and the network is configured accordingly (in case of configuration request from the client). The interactions between the client and the router happens until the network is configured as desired.</td>
</tr>
</tbody>
</table>
Session idle-timeout and absolute-timeout also prevent DoS attacks. The Netconf processor closes the sessions, even without user input or intervention, as soon at the time out session is greater than or equal to the set time limit.

The relevant commands are discussed in detail, in the System Security Command Reference for Cisco 8000 Series Routers

Enabling NETCONF over SSH

This task enables NETCONF over SSH. SSH is currently the only supported transport method.

If the client supports, Netconf over ssh can utilize the multi-channeling capabilities of IOS XR ssh server.

Prerequisite:
- Crypto keys must be generated prior to this configuration.

Step 1
configure

Example:

```
RP/0/RP0/CPU0:router# configure
```

Enters mode.

Step 2
netconf-yang agent ssh

Example:

```
RP/0/RP0/CPU0:router (config) # netconf agent ssh
```

Enables NETCONF agent over SSH connection. After NETCONF is enabled, the Yang model in the controller, can configure the relevant models.

Note The Yang models can be retrieved from the router via NETCONF <get-schema> operation.

Step 3
`ssh server netconf [vrf vrf-name [ipv4 access-list ipv4 access list name] [ipv6 access-list ipv6 access list name]]`

Example:

```
RP/0/RP0/CPU0:router (config) # ssh server netconf vrf netconfvrf ipv4 access-list InternetFilter
```

Brings up the netconf subsystem support with SSH server using a specified VRF of up to 32 characters. If no VRF is specified, the default VRF is used. To stop the SSH server from receiving any further connections for the specified VRF, use the no form of this command.

Optionally ACLs for IPv4 and IPv6 can be used to restrict access to the netconf subsystem of the ssh server before the port is opened.

Note The netconf subsystem support with SSH server can be configured for use with multiple VRFs.

Step 4
`ssh server netconf port port-number`

Example:

```
RP/0/RP0/CPU0:router (config) # ssh server netconf port 830
```

Configures a port for the netconf ssh server. This command is optional. If no port is specified, port 830 is uses by default.
830 is the IANA-assigned TCP port for NETCONF over SSH, but it can be changed using this command.

What to do next

The `show netconf-yang statistics` command and `show netconf-yang clients` command can be used to verify the configuration details of the netconf agent.

The `clear netconf-yang agent session` command clears the specified Netconf session (on the Netconf server side).

Examples: Netconf over SSH

This section illustrates some examples relevant to Netconf:

Enabling netconf-yang for ssh transport and netconf subsystem for default vrf with default port (830)

```
config
netconf-yang agent ssh
ssh server netconf vrf default
!
```

Enabling netconf-yang for ssh transport and netconf subsystem for vrf `green` and `vrf red` with netconf port (831)

```
config
netconf-yang agent ssh
!
ssh server netconf vrf green
ssh server netconf vrf red
ssh server netconf port 831
!
```

Show command outputs

```
show netconf-yang statistics
Summary statistics requests| total time| min time per request| max
other 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
close-session 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
kll-session 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
get-schema 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
get 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
get-config 1| 0h 0m 0s 1ms| 0h 0m 0s 1ms|
edit-config 3| 0h 0m 0s 2ms| 0h 0m 0s 0ms|
commit 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
cancel-commit 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
```
The Network Configuration Protocol

Examples: Netconf over SSH

<table>
<thead>
<tr>
<th>Operation</th>
<th>Client Session ID</th>
<th>Netconf-Yang Clients</th>
<th>Operation Type</th>
<th>Client Connect Time</th>
<th>Last OP Time</th>
<th>Last OP Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>lock</td>
<td>22969</td>
<td></td>
<td></td>
<td>0d 0h 0m 2s</td>
<td>11:11:24</td>
<td>close-session</td>
</tr>
<tr>
<td>unlock</td>
<td>15389</td>
<td></td>
<td></td>
<td>0d 0h 0m 1s</td>
<td>11:11:25</td>
<td>get-config</td>
</tr>
<tr>
<td>discard-changes</td>
<td>0</td>
<td></td>
<td></td>
<td>0d 0h 0m 0s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>validate</td>
<td>0</td>
<td></td>
<td></td>
<td>0d 0h 0m 0s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Management Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 7.3.x
Examples: Netconf over SSH
CHAPTER 14

Configuration and File System Management

This module describes methods for configuration management and file transfer enhancements.

- Auto-Save Configuration, on page 183

Auto-Save Configuration

You can configure the router to automatically take the backup of the running configuration by using configuration commit auto-save command. This auto-save feature saves the configuration to the specified location on the router after every commit is made. These auto-save files are stored in the form of Linux files.

Configure Auto-Save

Use the configuration commit auto-save command to auto save the configuration.

```
Router#configure
Router(config)#configuration commit auto-save
Router(config-cfg-autosave)#commit
```
Configure Auto-Save