

Implementing TI-LFA for SRv6

This chapter details Topology Independent Loop-Free Alternate (TI-LFA) for SRv6, a mechanism ensuring rapid network recovery and service continuity.

- Topology-Independent Loop-Free Alternates for SRv6, on page 1
- Usage Guidelines for SRv6 Ti-LFA, on page 3
- How SRv6 TI-LFA works, on page 3
- Configure TI-LFA, on page 5

Topology-Independent Loop-Free Alternates for SRv6

A Topology-Independent Loop-Free Alternate (TI-LFA) is a network protection mechanism for SRv6 deployments that:

- provides link, node, and Shared Risk Link Groups (SRLG) protection
- ensures rapid failure repair using pre-calculated optimal SRv6 backup paths, and
- reduces packet loss during router convergence after a topology change.

Key concepts for SRv6 TI-LFA

- Optimal Repair Path (Post-Convergence Path): This is the path that traffic will eventually follow after the Interior Gateway Protocol (IGP) has fully converged following a failure. SRv6 TI-LFA's pre-calculated backup paths are designed to be these optimal post-convergence paths, ensuring seamless transition and minimal traffic oscillation. This approach is preferred for capacity planning, operational simplicity and reduced traffic transitions.
- TI-LFA protection types: SRv6 TI-LFA supports comprehensive protection against various failure modes:
 - Link protection: Excludes the failed link during backup path calculation.
 - Node protection: Excludes the neighbor node during backup path calculation.
- Shared Risk Link Group (SRLG): A Shared Risk Link Group (SRLG) is a situation in a network where links share a common fiber or physical attribute, these links have a shared risk, and if one fails, others in the group might also fail

Benefits of TI-LFA

- Overcoming traditional LFA limitations: SRv6 TI-LFA addresses the topology dependency and suboptimal path issues of classic LFA, and the incomplete coverage and operational complexity of remote LFA, providing robust protection where older methods fall short in SRv6 networks.
- Maximized network uptime and availability: SRv6 TI-LFA's sub-50ms failure repair drastically reduces
 the duration of service interruptions and minimizes downtime, leading to near-instantaneous recovery.
 Its comprehensive protection against link, node, and SRLG failures ensures network-wide resilience in
 SRv6 infrastructures.
- Reduced packet loss: By pre-calculating and immediately activating loop-free SRv6 backup paths, SRv6
 TI-LFA ensures that traffic is quickly steered around failures, preventing packet drops during router
 convergence.
- Optimized network performance: The SRv6 backup paths are pre-computed to align with the
 post-convergence path, meaning traffic is routed efficiently even during a failure, avoiding suboptimal
 detours. This leads to greater stability and less oscillation in the network, as traffic only shifts once.
- Simplified network operations and management: SRv6 TI-LFA streamlines fast reroute configuration
 and management compared to older methods, reducing operational complexity. It automates best-path
 selection, eliminating the need for manual intervention or case-by-case adjustments in SRv6 networks.
- Efficient resource utilization and capacity planning: Knowing that traffic will follow optimal paths even during failures allows for more accurate and efficient network capacity planning and resource allocation within SRv6 deployments.

Comparison with other Loop-Free Alternate (LFA) techniques for SRv6

The table below highlights the key differences between TI-LFA and other LFA techniques, specifically in the context of SRv6 deployments

Table 1: Comparison with other Loop-Free Alternate (LFA) techniques for SRv6

Feature	Classic Loop-Free Alternate (LFA)	Remote LFA (RLFA	Topology-Independent Loop-Free Alternate (TI-LFA) for SRv6
Topology dependency	Topology dependent	Extends coverage but remains topology dependent	Topology independent
Protection coverage	Cannot protect all destinations in all networks.	Extends coverage to 90-95% of destinations.	Provides link, node, and SRLG protection in any SRv6 topology.
Repair Path Optimality	May not always provide the optimal LFA	Does not always provide the most desired repair path.	Provides optimal repair paths (post-convergence paths) using SRv6 SIDs
Operational complexity	Simpler, but limited coverage	Adds operational complexity by requiring a targeted LDP session for LDP traffic	Maintains the simplicity of the IPFRR solution within SRv6

Feature	Classic Loop-Free Alternate (LFA)	Remote LFA (RLFA	Topology-Independent Loop-Free Alternate (TI-LFA) for SRv6
Mechanism	Relies on local topology for backup path calculation	Uses tunnels (for example, LDP, GRE) to reach a remote LFA.	Uses SRv6 Segment Identifiers (SIDs) to steer packets along a pre-calculated post-convergence path.

Usage Guidelines for SRv6 Ti-LFA

Node and SRLG protection

- TI-LFA node protection functionality provides protection from node failures. The neighbor node is excluded during the post convergence backup path calculation.
- Shared Risk Link Groups (SRLG) refer to situations in which links in a network share a common fiber (or a common physical attribute). These links have a shared risk: when one link fails, other links in the group might also fail. TI-LFA SRLG protection attempts to find the post-convergence backup path that excludes the SRLG of the protected link. All local links that share any SRLG with the protecting link are excluded.
- When you enable link protection, you can also enable node protection, SRLG protection, or both, and specify a tiebreaker priority in case there are multiple LFAs.
- Valid priority values are from 1 to 255. The lower the priority value, the higher the priority of the rule. Link protection always has a lower priority than node or SRLG protection.

Link Protection

• TI-LFA provides link protection by default. Additional tiebreaker configuration is required to enable node or SRLG protection.

How SRv6 TI-LFA works

SRv6 TI-LFA operates by proactively computing optimal, loop-free backup paths that traffic can immediately use upon a failure. This ensures rapid restoration of connectivity and minimal disruption, allowing the network's Interior Gateway Protocol (IGP) to converge to a new primary path without significant packet loss.

Summary

SRv6 TI-LFA is a mechanism that ensures rapid network connectivity restoration and minimal disruption by proactively computing and activating optimal, loop-free backup paths. It involves routers (acting as Points of Local Repair - PLRs) that pre-compute these backup paths for potential failures. Upon rapid failure detection (often via BFD), the PLR immediately activates the pre-computed backup path, encapsulating traffic with SRv6 Segment Identifiers (SIDs) to steer it around the failure. Concurrently, the Interior Gateway Protocol (IGP) re-converges the network, and traffic seamlessly transitions from the temporary SRv6 TI-LFA backup path to the newly established optimal primary paths.

Workflow

Figure 1: TI-LFA Repair Path

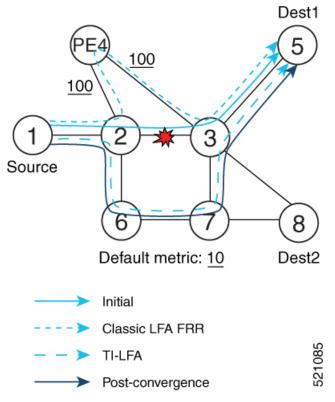


Figure 2: TI-LFA Protection Types

Post-convergence

These stages describe how SRv6 TI-LFA works within a network:

- 1. Initial network state and primary path calculation: The Interior Gateway Protocol (IGP) establishes the primary forwarding paths across the network. Each router maintains its routing information base (RIB) and forwarding information base (FIB) based on the current network topology.
- 2. SRv6 TI-LFA backup path pre-computation: Each router, acting as a Point of Local Repair (PLR), proactively computes one or more optimal, loop-free backup paths that represent the "post-convergence path"—the exact path traffic would eventually take after the IGP fully re-converges. This pre-computation is done for every potential primary path failure, including link protection (where the failed link is excluded), node protection (where the neighbor node is excluded), and Shared Risk Link Group (SRLG) protection (where all local links sharing any SRLG with the protecting link are excluded during backup path calculation). This optimal path is preferred because it is optimal for capacity planning, simple to operate by avoiding case-by-case adjustments, and results in fewer traffic transitions since the repair path is equal to the post-convergence path. The PLR uses SRv6 segment routing principles to ensure these backup paths are safe and avoid the specific failed component. When enabling link protection, node protection, SRLG protection, or both can also be enabled, and a tiebreaker priority can be specified for multiple LFAs. For example, in a topology, Node2 can apply different protection models to protect traffic to Node7.
- 3. Failure detection: A link or node failure occurs in the network. The PLR rapidly detects this failure, often through mechanisms like Bidirectional Forwarding Detection (BFD), which provide sub-50ms detection times
- 4. Fast reroute activation and traffic steering with SRv6 SIDs: Upon detecting the failure, the PLR immediately activates the pre-computed SRv6 TI-LFA backup path. TI-LFA calculates a post-convergence path and derives the segment list required to steer packets along this path without looping back. It encapsulates the traffic destined for the failed primary path with an SRv6 Segment Identifier (SID) list that explicitly directs the packets along the calculated backup path. For example, if Node 2 protects traffic to destination Node 5 and the protected link fails, the shortest post-convergence path might be Node2 → Node6 → Node7 → Node3 → Node5. If Node7 is the PQ-node for destination Node5, TI-LFA encodes a single segment (prefix SID of Node7) in the header of the packets on this repair path. This steering ensures traffic continues to flow around the failure without looping back or being dropped, unlike classic LFA which might steer traffic to a suboptimal path like Node 4 that is routed over edge nodes with lower capacity links.
- 5. Network-wide IGP convergence: IGP reacts to the detected failure. It floods updated topology information throughout the network, and all routers perform a full re-convergence, calculating new optimal primary paths that reflect the changed topology. This process typically takes longer than the initial fast reroute.
- **6.** Traffic restoration to new primary path: Once the IGP has fully converged and new optimal primary paths are established, traffic naturally switches from the temporary SRv6 TI-LFA backup path to these newly converged primary paths. This transition is seamless, as the SRv6 TI-LFA backup path was designed to be the post-convergence path, minimizing further traffic shifts.

Configure TI-LFA

Procedure

Step 1 Configure different types of TI-LFA protection for SRv6 IS-IS.

Example:

```
Router(config) # router isis core
Router(config-isis) # interface bundle-ether 1201
Router(config-isis-if) # address-family ipv6 unicast
Router(config-isis-if-af) # fast-reroute per-prefix
Router(config-isis-if-af) # fast-reroute per-prefix ti-lfa
Router(config-isis-if-af) # exit
Router(config-isis-if) # exit
Router(config-isis) # interface bundle-ether 1301
Router(config-isis) # interface bundle-ether 1301
Router(config-isis-if) # address-family ipv6 unicast
Router(config-isis-if-af) # fast-reroute per-prefix
Router(config-isis-if-af) # fast-reroute per-prefix ti-lfa
Router(config-isis-if-af) # fast-reroute per-prefix tiebreaker node-protecting index 100
Router(config-isis-if-af) # fast-reroute per-prefix tiebreaker srlg-disjoint index 200
Router(config-isis-if-af) # exit
```

You can configure SRv6 IS-IS TI-LFA with Flexible Algorithm. TI-LFA backup paths for particular Flexible Algorithm are computed using the same constraints as the calculation of the primary paths for such Flexible Algorithm. These paths use the locator prefix advertised specifically for such Flexible Algorithm in order to enforce a backup path. By default, LFA/TI-LFA for SRv6 Flexible Algorithm uses the LFA/TI-LFA configuration of Algo 0.

```
Router(config) # router isis core
Router(config-isis) # flex-algo 128
Router(config-isis-flex-algo) # fast-reroute disable
```

Step 2 Verify the SRv6 IS-IS TI-LFA configuration.

Example:

This example shows how to verify the SRv6 IS-IS TI-LFA configuration using the **show isis ipv6 fast-reroute** *ipv6-prefix* **detail** command.

```
Router# show isis ipv6 fast-reroute cafe:0:2::2/128 detail

L2 cafe:0:2::2/128 [20/115] Label: None, medium priority
    via fe80::e00:ff:fe3a:c700, HundredGigE0/0/0/0, Node2, Weight: 0
    Backup path: TI-LFA (link), via fe80::1600:ff:feec:fe00, HundredGigE0/0/0/1 Node3, Weight: 0,
Metric: 40
    P node: Node4.00 [cafe:0:4::4], SRv6 SID: cafe:0:4:: uN (PSP/USD)
    Backup-src: Node2.00
    P: No, TM: 40, LC: No, NP: No, D: No, SRLG: Yes
    src Node2.00-00, cafe:0:2::2
```

This example shows how to verify the SRv6 IS-IS TI-LFA configuration using the **show route ipv6** *ipv6-prefix* **detail** command.

```
Router# show route ipv6 cafe:0:2::2/128 detail
Tue Feb 23 23:08:48.151 UTC
Routing entry for cafe:0:2::2/128
 Known via "isis 1", distance 115, metric 20, type level-2
  Installed Feb 23 22:57:38.900 for 00:11:09
  Routing Descriptor Blocks
    fe80::1600:ff:feec:fe00, from cafe:0:2::2, via HundredGigE0/0/0/1, Backup (TI-LFA)
      Repair Node(s): cafe:0:4::4
      Route metric is 40
      Label: None
      Tunnel ID: None
      Binding Label: None
      Extended communities count: 0
      Path id:65
                              Path ref count:1
      NHID:0x20002(Ref:19)
      SRv6 Headend: H.Encaps.Red, SID-list {cafe:0:4::}
    fe80::e00:ff:fe3a:c700, from cafe:0:2::2, via HundredGigE0/0/0/0, Protected
      Route metric is 20
```

```
Label: None
    Tunnel ID: None
    Binding Label: None
    Extended communities count: 0
    Path id:1
                Path ref count:0
    NHID:0x20001 (Ref:19)
   Backup path id:65
Route version is 0x4 (4)
No local label
IP Precedence: Not Set
QoS Group ID: Not Set
Flow-tag: Not Set
Fwd-class: Not Set
Route Priority: RIB PRIORITY NON RECURSIVE MEDIUM (7) SVD Type RIB SVD TYPE LOCAL
Download Priority 1, Download Version 66
No advertising protos.
```

This example shows how to verify the SRv6 IS-IS TI-LFA configuration using the **show cef ipv6** *ipv6-prefix* **detail location** *location* command.

```
Router# show cef ipv6 cafe:0:2::2/128 detail location 0/0/cpu0
Tue Feb 23 23:09:07.719 UTC
cafe:0:2::2/128, version 66, SRv6 Headend, internal 0x1000001 0x210 (ptr 0x8e96fd2c) [1], 0x0
(0x8e93fae0), 0x0 (0x8f7510a8)
Updated Feb 23 22:57:38.904
local adjacency to HundredGigE0/0/0/0
 Prefix Len 128, traffic index 0, precedence n/a, priority 1
 gateway array (0x8e7b5c78) reference count 1, flags 0x500000, source rib (7), 0 backups
                [2 type 3 flags 0x8401 (0x8e86ea40) ext 0x0 (0x0)]
 LW-LDI[type=3, refc=1, ptr=0x8e93fae0, sh-ldi=0x8e86ea40]
 gateway array update type-time 1 Feb 23 22:57:38.904
LDI Update time Feb 23 22:57:38.913
LW-LDI-TS Feb 23 22:57:38.913
  via fe80::1600:ff:feec:fe00/128, HundredGigE0/0/0/1, 9 dependencies, weight 0, class 0, backup
(TI-LFA) [flags 0xb00]
   path-idx 0 NHID 0x20002 [0x8f5850b0 0x0]
   next hop fe80::1600:ff:feec:fe00/128, Repair Node(s): cafe:0:4::4
   local adjacency
   SRv6 H.Encaps.Red SID-list {cafe:0:4::}
  via fe80::e00:ff:fe3a:c700/128, HundredGigE0/0/0/0, 6 dependencies, weight 0, class 0, protected
 [flags 0x400]
   path-idx 1 bkup-idx 0 NHID 0x20001 [0x8f8420b0 0x0]
   next hop fe80::e00:ff:fe3a:c700/128
   Load distribution: 0 (refcount 2)
   Hash OK Interface
                                       fe80::e00:ff:fe3a:c700
         Y HundredGigE0/0/0/0
```

Configure TI-LFA