

Configure Segment Routing for IS-IS Protocol

Integrated Intermediate System-to-Intermediate System (IS-IS), Internet Protocol Version 4 (IPv4), is a standards-based Interior Gateway Protocol (IGP). The Cisco IOS XR software implements the IP routing capabilities described in International Organization for Standardization (ISO)/International Engineering Consortium (IEC) 10589 and RFC 1995, and adds the standard extensions for single topology and multitopology IS-IS for IP Version 6 (IPv6).

This module provides the configuration information used to enable segment routing for IS-IS.

Note

For additional information on implementing IS-IS on your Cisco 8000 Series Router, see the *Implementing IS-IS* module in the *Routing Configuration Guide for Cisco 8000 Series Routers*.

- Enabling Segment Routing for IS-IS Protocol, on page 1
- Configuring a Prefix-SID on the IS-IS Enabled Loopback Interface, on page 4
- Configuring an Adjacency SID, on page 7
- IS-IS Prefix Attributes for Extended IPv4 and IPv6 Reachability, on page 13
- IS-IS Unreachable Prefix Announcement, on page 16
- IS-IS Partition Detection and Leakage of Specific Route Advertisement, on page 19
- Conditional Prefix Advertisement, on page 23

Enabling Segment Routing for IS-IS Protocol

Segment routing on the IS-IS control plane supports the following:

- IPv4 and IPv6 control plane
- Level 1, level 2, and multi-level routing
- Prefix SIDs for host prefixes on loopback interfaces
- Adjacency SIDs for adjacencies
- MPLS penultimate hop popping (PHP) and explicit-null signaling

This task explains how to enable segment routing for IS-IS.

Before you begin

Your network must support the MPLS Cisco IOS XR software feature before you enable segment routing for IS-IS on your router.

Note

You must enter the commands in the following task list on every IS-IS router in the traffic-engineered portion of your network.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. address-family { ipv4 | ipv6 } [unicast]
- **4.** metric-style wide [level { 1 | 2 }]
- **5.** router-id loopback loopback interface used for prefix-sid
- **6.** segment-routing mpls [sr-prefer]
- 7. exit
- **8.** Use the **commit** or **end** command.

DETAILED STEPS

· · · · · ·	Command or Action	Purpose	
Step 1	configure	Enters mode.	
	Example:		
	RP/0/RP0/CPU0:router# configure		
Step 2	router isis instance-id	Enables IS-IS routing for the specified routing instance,	
	Example:	and places the router in router configuration mode.	
	RP/0/RP0/CPU0:router(config)# router isis isp	Note You can change the level of routing to be performed by a particular routing instance by using the is-type router configuration command.	
Step 3	address-family { ipv4 ipv6 } [unicast]	Specifies the IPv4 or IPv6 address family, and enters ro	
	Example:	address family configuration mode.	
	<pre>RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast</pre>		
Step 4	metric-style wide [level { 1 2 }]	Configures a router to generate and accept only wide l	
	Example:	metrics in the Level 1 area.	
	<pre>RP/0/RP0/CPU0:router(config-isis-af)# metric-style wide level 1</pre>		

	Command or Action	Purpose
Step 5	router-id loopback loopback interface used for prefix-sid	Configures router ID for each address-family (ipv4/ipv6).
	Example:	
	RP/0/(config-isis-af)#router-id loopback0	
Step 6	segment-routing mpls [sr-prefer]	Segment routing is enabled by the following actions:
	Example:	• MPLS forwarding is enabled on all interfaces where IS-IS is active.
	<pre>RP/0/RP0/CPU0:router(config-isis-af)# segment-routing mpls</pre>	All known prefix-SIDs in the forwarding plain are programmed, with the prefix-SIDs advertised by remote routers or learned through local or remote mapping server.
		The prefix-SIDs locally configured are advertised.
		Use the sr-prefer keyword to set the preference of segment routing (SR) labels over label distribution protocol (LDP) labels.
Step 7	exit	
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-isis-af)# exit RP/0/RP0/CPU0:router(config-isis)# exit</pre>	
Step 8	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		• Yes — Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

What to do next

Configure the prefix SID.

Configuring a Prefix-SID on the IS-IS Enabled Loopback Interface

Table 1: Feature History Table

Feature Name	Release Information	Feature Description
Disable Penultimate Hop Popping	Release 7.5.4	You can now disable the penultimate hop popping (PHP) without adding an explicit-Null label. In earlier releases, you could disable PHP only by adding an explicit-Null label using the explicit-null keyword.
		The feature introduces the php-disable keyword under the prefix-sid command.

A prefix segment identifier (SID) is associated with an IP prefix. The prefix SID is manually configured from the segment routing global block (SRGB) range of labels. A prefix SID is configured under the loopback interface with the loopback address of the node as the prefix. The prefix segment steers the traffic along the shortest path to its destination.

A prefix SID can be a node SID or an Anycast SID. A node SID is a type of prefix SID that identifies a specific node. An Anycast SID is a type of prefix SID that identifies a set of nodes, and is configured with n-flag clear. The set of nodes (Anycast group) is configured to advertise a shared prefix address and prefix SID. Anycast routing enables the steering of traffic toward multiple advertising nodes. Packets addressed to an Anycast address are forwarded to the topologically nearest nodes.

Strict-SPF SIDs are used to forward traffic strictly along the SPF path. IS-IS advertises the SR Algorithm sub Type Length Value (TLV) (in the SR Router Capability SubTLV) to include both algorithm 0 (SPF) and algorithm 1 (Strict-SPF). Strict-SPF SIDs are also used to program the backup paths for prefixes, node SIDs, and adjacency SIDs.

Penultimate-Hop-Popping (PHP) can be disabled for the Prefix SID. In this case, the penultimate hop does not pop the Prefix-SID before delivering the packet to the node that advertised the Prefix-SID; it is forwarded intact to the next hop. This can be useful in situations where the label needs to be retained for certain purposes, such as for traffic engineering or QoS policies.

The prefix SID is globally unique within the segment routing domain.

This task explains how to configure prefix segment identifier (SID) index or absolute value on the IS-IS enabled Loopback interface.

Before you begin

Ensure that segment routing is enabled on the corresponding address family.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id

- 3. interface Loopback instance
- 4. address-family { ipv4 | ipv6 } [unicast]
- **5. prefix-sid** [**algorithm** algorithm-number] {**index** SID-index | **absolute** SID-value} [**n-flag-clear**] [**explicit-null**] [**php-disable**]
- **6.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose	
Step 1	configure	Enters XR Config mode.	
	Example:		
	RP/0/RP0/CPU0:router# configure		
Step 2	router isis instance-id	Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.	
	Example:		
	<pre>RP/0/RP0/CPU0:router(config)# router isis 1</pre>	• You can change the level of routing to be performed by a particular routing instance by using the is-type router configuration command.	
Step 3	interface Loopback instance	Specifies the loopback interface and instance.	
	Example:		
	<pre>RP/0/RP0/CPU0:router(config-isis)# interface Loopback0</pre>		
Step 4	address-family { ipv4 ipv6 } [unicast]	Specifies the IPv4 or IPv6 address family, and enters route	
	Example:	address family configuration mode.	
	The following is an example for ipv4 address family:		
	<pre>RP/0/RP0/CPU0:router(config-isis-if)# address-family ipv4 unicast</pre>		
Step 5	prefix-sid [algorithm algorithm-number] {index SID-index absolute SID-value} [n-flag-clear] [explicit-null]	Configures the prefix-SID index or absolute value for the interface.	
	[php-disable]	Specify algorithm algorithm-number to configure SR	
	<pre>RP/0/RP0/CPU0:router(config-isis-if-af)# prefix-sid index 1001 RP/0/RP0/CPU0:router(config-isis-if-af)# prefix-sid</pre>	Flexible Algorithm. See Enabling Segment Routing Flexib Algorithm.	
		Specify index <i>SID-index</i> for each node to create a prefix SID based on the lower boundary of the SRGB + the index.	
		Specify absolute <i>SID-value</i> for each node to create a specific prefix SID within the SRGB.	
	absolute 17001	By default, the n-flag is set on the prefix-SID, indicating that it is a node SID. For specific prefix-SID (for example, Anycast prefix-SID), enter the n-flag-clear keyword. IS-IS does not set the N flag in the prefix-SID sub Type Length Value (TLV).	

	Command or Action	Purpose
		To disable penultimate-hop-popping (PHP) and add explicit-Null label, enter explicit-null keyword. IS-IS sets the E flag in the prefix-SID sub TLV. Any upstream neighbor of the Prefix-SID originator replaces the Prefix-SID with a Prefix-SID having an Explicit NULL value.
		To disable penultimate-hop-popping (PHP), enter php-disable keyword. IS-IS sets the P flag in the prefix-SID sub TLV. The penultimate hop will not pop the Prefix-SID before delivering the packet to the node that advertised the Prefix-SID.
Step 6	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		• Yes — Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Verify the prefix-SID configuration:

$\label{eq:rp0/RP0/CPU0:nouter} \texttt{RP/0/RP0/CPU0:} \texttt{router} \# \textbf{ show isis database verbose}$

```
IS-IS 1 (Level-2) Link State Database
                   LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL * 0x0000039b 0xfc27 1079 0/0/0
LSPID
router.00-00
 Area Address: 49.0001
 NLPID: 0xcc
 NLPID:
              0x8e
              Standard (IPv4 Unicast)
 MT:
 MT:
               IPv6 Unicast
                                                                  0/0/0
               router
 Hostname:
 IP Address: 10.0.0.1
 IPv6 Address: 2001:0db8:1234::0a00:0001
 Router Cap: 10.0.0.1, D:0, S:0
   Segment Routing: I:1 V:1, SRGB Base: 16000 Range: 8000
   SR Algorithm:
     Algorithm: 0
     Algorithm: 1
<...>
 Metric: 0
                    IP-Extended 10.0.0.1/32
   Prefix-SID Index: 1001, Algorithm:0, R:0 N:1 P:0 E:0 V:0 L:0
   Prefix-SID Index: 101, Algorithm:1, R:0 N:1 P:0 E:0 V:0 L:0
<...>
```

Configuring an Adjacency SID

An adjacency SID (Adj-SID) is associated with an adjacency to a neighboring node. The adjacency SID steers the traffic to a specific adjacency. Adjacency SIDs have local significance and are only valid on the node that allocates them.

An adjacency SID can be allocated dynamically from the dynamic label range or configured manually from the segment routing local block (SRLB) range of labels.

Adjacency SIDs that are dynamically allocated do not require any special configuration, however there are some limitations:

- A dynamically allocated Adj-SID value is not known until it has been allocated, and a controller will not know the Adj-SID value until the information is flooded by the IGP.
- Dynamically allocated Adj-SIDs are not persistent and can be reallocated after a reload or a process restart.
- Each link is allocated a unique Adj-SID, so the same Adj-SID cannot be shared by multiple links.

Manually allocated Adj-SIDs are persistent over reloads and restarts. They can be provisioned for multiple adjacencies to the same neighbor or to different neighbors. You can specify that the Adj-SID is protected. If the Adj-SID is protected on the primary interface and a backup path is available, a backup path is installed. By default, manual Adj-SIDs are not protected.

Adjacency SIDs are advertised using the existing IS-IS Adj-SID sub-TLV. The S and P flags are defined for manually allocated Adj-SIDs.

```
0 1 2 3 4 5 6 7
+-+-+-+-+-+
|F|B|V|L|S|P| |
+-+-+-+-+-+
```

Table 2: Adjacency Segment Identifier (Adj-SID) Flags Sub-TLV Fields

Field	Description	
S (Set)	This flag is set if the same Adj-SID value has been provisioned on multiple interfaces.	
P (Persistent)	This flag is set if the Adj-SID is persistent (manually allocated).	

Manually allocated Adj-SIDs are supported on point-to-point (P2P) interfaces.

This task explains how to configure an Adj-SID on an interface.

Before you begin

Ensure that segment routing is enabled on the corresponding address family.

Use the **show mpls label table detail** command to verify the SRLB range.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- **3. interface** *type interface-path-id*
- 4. point-to-point
- 5. address-family $\{ ipv4 \mid ipv6 \} [unicast]$
- **6.** adjacency-sid {index adj-SID-index | absolute adj-SID-value } [protected]
- **7.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	router isis instance-id	Enables IS-IS routing for the specified routing instance,
	Example:	and places the router in router configuration mode.
	RP/0/RP0/CPU0:router(config)# router isis 1	• You can change the level of routing to be performed by a particular routing instance by using the is-type router configuration command.
Step 3	interface type interface-path-id	Specifies the interface and enters interface configuration
-	Example:	mode.
	<pre>RP/0/RP0/CPU0:router(config-isis)# interface GigabitEthernet0/0/0/7</pre>	
Step 4	point-to-point	Specifies the interface is a point-to-point interface.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-isis-if)# point-to-point</pre>	
Step 5	address-family { ipv4 ipv6 } [unicast]	Specifies the IPv4 or IPv6 address family, and enters router
	Example:	address family configuration mode.
	The following is an example for ipv4 address family:	
	<pre>RP/0/RP0/CPU0:router(config-isis-if)# address-family ipv4 unicast</pre>	
Step 6	adjacency-sid {index adj-SID-index absolute adj-SID-value } [protected]	Configures the Adj-SID index or absolute value for the interface.
	Example:	Specify index <i>adj-SID-index</i> for each link to create an Ajd-SID based on the lower boundary of the SRLB + the
	RP/0/RP0/CPU0:router(config-isis-if-af)#	index.

	Command or Action	Purpose
	adjacency-sid index 10	Specify absolute <i>adj-SID-value</i> for each link to create a specific Ajd-SID within the SRLB.
	<pre>RP/0/RP0/CPU0:router(config-isis-if-af)# adjacency-sid absolute 15010</pre>	Specify if the Adj-SID is protected . For each primary path, if the Adj-SID is protected on the primary interface and a backup path is available, a backup path is installed. By default, manual Adj-SIDs are not protected.
Step 7	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		 Yes — Saves configuration changes and exits the configuration session.
		 No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Verify the Adj-SID configuration:

```
\label{localization} $$RP/0/RP0/CPU0:$ router \# $$ show is is segment-routing label adjacency persistent $$Mon Jun 12 02:44:07.085 PDT$
```

IS-IS 1 Manual Adjacency SID Table

15010 AF IPv4

GigabitEthernet0/0/0/3: IPv4, Protected 1/65/N, Active GigabitEthernet0/0/0/7: IPv4, Protected 2/66/N, Active

15100 AF IPv6

GigabitEthernet0/0/0/3: IPv6, Not protected 255/255/N, Active

Verify the labels are added to the MPLS Forwarding Information Base (LFIB):

$\label{eq:reduced_reduced_reduced} \texttt{RP/0/RP0/CPU0:} \texttt{router\# show mpls forwarding labels 15010}$

Mon Jun 12 02:50:12.172 PDT

Local Label	Outgoing Label	Prefix or ID	Outgoing Interface	Next Hop	Bytes Switched	
15010	Pop	SRLB (idx 10)	Gi0/0/0/3	10.0.3.3	0	
	Pop	SRLB (idx 10)	Gi0/0/0/7	10.1.0.5	0	
	16004	SRLB (idx 10)	Gi0/0/0/7	10.1.0.5	0	(!)
	16004	SRLB (idx 10)	Gi0/0/0/3	10.0.3.3	0	(!)

Manually Configure a Layer 2 Adjacency SID

Typically, an adjacency SID (Adj-SID) is associated with a Layer 3 adjacency to a neighboring node, to steer the traffic to a specific adjacency. If you have Layer 3 bundle interfaces, where multiple physical interfaces form a bundle interface, the individual Layer 2 bundle members are not visible to IGP; only the bundle interface is visible.

You can configure a Layer 2 Adj-SID for the individual Layer 2 bundle interfaces. This configuration allows you to track the availability of individual bundle member links and to verify the segment routing forwarding over the individual bundle member links, for Operational Administration and Maintenance (OAM) purposes.

A Layer 2 Adj-SID can be allocated dynamically or configured manually.

- IGP dynamically allocates Layer 2 Adj-SIDs from the dynamic label range for each Layer 2 bundle member. A dynamic Layer 2 Adj-SID is not persistent and can be reallocated as the Layer 3 bundle link goes up and down.
- Manually configured Layer 2 Adj-SIDs are persistent if the Layer 3 bundle link goes up and down. Layer 2 Adj-SIDs are allocated from the Segment Routing Local Block (SRLB) range of labels. However, if the configured value of Layer 2 Adj-SID does not fall within the available SRLB, a Layer 2 Adj-SID will not be programmed into forwarding information base (FIB).

Restrictions

- Adj-SID forwarding requires a next-hop, which can be either an IPv4 address or an IPv6 address, but not both. Therefore, manually configured Layer 2 Adj-SIDs are configured per address-family.
- Manually configured Layer 2 Adj-SID can be associated with only one Layer 2 bundle member link.
- A SID value used for Layer 2 Adj-SID cannot be shared with Layer 3 Adj-SID.
- SR-TE using Layer 2 Adj-SID is not supported.

This task explains how to configure a Layer 2 Adj-SID on an interface.

Before you begin

Ensure that segment routing is enabled on the corresponding address family.

Use the **show mpls label table detail** command to verify the SRLB range.

SUMMARY STEPS

- 1. configure
- 2. segment-routing
- 3. adjacency-sid
- **4. interface** type interface-path-id
- 5. address-family { ipv4 | ipv6 } [unicast]
- **6. 12-adjacency sid** {**index** *adj-SID-index* | **absolute** *adj-SID-value* } [**next-hop** {*ipv4_address* | *ipv6_address* }]
- **7.** Use the **commit** or **end** command.
- 8. end
- **9. router isis** *instance-id*
- **10**. address-family { ipv4 | ipv6 } [unicast]

11. segment-routing bundle-member-adj-sid

DETAILED STEPS

	Command or Action	Purpose	
Step 1	configure	Enters mode.	
	Example:		
	RP/0/RP0/CPU0:router# configure		
Step 2	segment-routing	Enters segment routing configuration mode.	
	Example:		
	RP/0/RP0/CPU0:Router(config)# segment-routing		
Step 3	adjacency-sid	Enters adjacency SID configuration mode.	
	Example:		
	RP/0/RP0/CPU0:Router(config-sr)# adjacency-sid		
Step 4	interface type interface-path-id	Specifies the interface and enters interface configuration	
	Example:	mode.	
	<pre>RP/0/RP0/CPU0:Router(config-sr-adj)# interface GigabitEthernet0/0/0/3</pre>		
Step 5	address-family { ipv4 ipv6 } [unicast]	Specifies the IPv4 or IPv6 address family, and enters router	
	Example:	address family configuration mode.	
	<pre>RP/0/RP0/CPU0:Router(config-sr-adj-intf)# address-family ipv4 unicast</pre>		
Step 6	12-adjacency sid {index adj-SID-index absolute adj-SID-value } [next-hop {ipv4_address	Configures the Adj-SID index or absolute value for the interface.	
	<pre>ipv6_address }] Example:</pre>	Specify index <i>adj-SID-index</i> for each link to create an Ajd-SID based on the lower boundary of the SRLB + the index.	
	<pre>RP/0/RP0/CPU0:Router(config-sr-adj-intf-af)# 12-adjacency sid absolute 15015 next-hop 10.1.1.4</pre>	Specify absolute <i>adj-SID-value</i> for each link to create a specific Ajd-SID within the SRLB.	
		For point-to-point interfaces, you are not required to specify a next-hop. However, if you do specify the next-hop, the Layer 2 Adj-SID will be used only if the specified next-hop matches the neighbor address.	
		For LAN interfaces, you must configure the next-hop IPv4 or IPv6 address. If you do not configure the next-hop, the Layer 2 Adj-SID will not be used for LAN interface.	
Step 7	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.	

	Command or Action	Purpose
		 end —Prompts user to take one of these actions: Yes — Saves configuration changes and exits the configuration session.
		 No —Exits the configuration session without committing the configuration changes. Cancel —Remains in the configuration session, without committing the configuration changes.
Step 8	end	
Step 9	router isis instance-id Example:	Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.
	<pre>RP/0/RP0/CPU0:Router(config)# router isis isp</pre>	
Step 10	address-family { ipv4 ipv6 } [unicast] Example:	Specifies the IPv4 or IPv6 address family, and enters router address family configuration mode.
	<pre>RP/0/RP0/CPU0:Router(config-isis)# address-family ipv4 unicast</pre>	
Step 11	segment-routing bundle-member-adj-sid Example:	Programs the dynamic Layer 2 Adj-SIDs, and advertises both manual and dynamic Layer 2 Adj-SIDs.
	<pre>RP/0/RP0/CPU0:Router(config-isis-af)# segment-routing bundle-member-adj-sid</pre>	Note This command is not required to program manual L2 Adj-SID, but is required to program the dynamic Layer 2 Adj-SIDs and to advertise both manual and dynamic Layer 2 Adj-SIDs.

Verify the configuration:

```
Router# show mpls forwarding detail | i "Pop|Outgoing Interface|Physical Interface"
Tue Jun 20 06:53:51.876 PDT
15001 Pop
                  SRLB (idx 1)
                                     BE1
                                                   10.1.1.4
     Outgoing Interface: Bundle-Ether1 (ifhandle 0x000000b0)
     Physical Interface: GigabitEthernet0/0/0/3 (ifhandle 0x000000b0)
Router# show running-config segment-routing
Tue Jun 20 07:14:25.815 PDT
segment-routing
 adjacency-sid
 interface GigabitEthernet0/0/0/3
  address-family ipv4 unicast
   12-adjacency-sid absolute 15001
   !
```

!

Associated Commands

- 12-adjacency sid
- segment-routing bundle-member-adj-sid

IS-IS Prefix Attributes for Extended IPv4 and IPv6 Reachability

The following sub-TLVs support the advertisement of IPv4 and IPv6 prefix attribute flags and the source router ID of the router that originated a prefix advertisement, as described in RFC 7794.

- Prefix Attribute Flags
- IPv4 and IPv6 Source Router ID

Prefix Attribute Flags

The Prefix Attribute Flag sub-TLV supports the advertisement of attribute flags associated with prefix advertisements. Knowing if an advertised prefix is directly connected to the advertising router helps to determine how labels that are associated with an incoming packet should be processed.

This section describes the behavior of each flag when a prefix advertisement is learned from one level to another.

Note

Prefix attributes are only added when wide metric is used.

Prefix Attribute Flags Sub-TLV Format

Prefix Attribute Flags Sub-TLV Fields

Field	Description
X (External Prefix Flag)	This flag is set if the prefix has been redistributed from another protocol. The value of the flag is preserved when the prefix is propagated to another level.
R (Re-advertisement Flag)	This flag is set to 1 by the Level 1-2 router when the prefix is propagated between IS-IS levels (from Level 1 to Level 2, or from Level 2 to Level 1).
	This flag is set to 0 when the prefix is connected locally to an IS-IS-enabled interface (regardless of the level configured on the interface).

Field	escription		
N (Node Flag)	For prefixes that are propagated from another level:		
	1. Copy the N-flag from the prefix attribute sub-TLV, if present in the source level.		
	2. Copy the N-flag from the prefix-SID sub-TLV, if present in the source level.		
	3. Otherwise, set to 0.		
	For connected prefixes:		
	1. Set to 0 if prefix-attributes n-flag-clear is configured (see Configuring Prefix Attribute N-flag-clear, on page 15).		
	2. Set to 0 if prefix-sid { index SID-index absolute SID-value} { n-flag-clear] is configured (see Configuring a Prefix-SID on the IS-IS Enabled Loopback Interface, on page 4).		
	3. Otherwise, set to 1 when the prefix is a host prefix (/32 for IPV4, /128 for IPv6) that is associated with a loopback address.		
	Note If the flag is set and the prefix length is not a host prefix, then the flag must be ignored.		

IPv4 and IPv6 Source Router ID

The Source Router ID sub-TLV identifies the source of the prefix advertisement. The IPv4 and IPv6 source router ID is displayed in the output of the **show isis database verbose** command.

The Source Router ID sub-TLV is added when the following conditions are met:

- **1.** The prefix is locally connected.
- 2. The N-flag is set to 1 (when it's a host prefix and the **n-flag-clear** configuration is not used).
- **3.** The router ID is configured in the corresponding address family.

The source router ID is propagated between levels.

Table 3: Source Router Sub-TLV Format

IPv4 Source Router ID	Type: 11	
	Length: 4	
	Value: IPv4 Router ID of the source of the prefix advertisement	
IPv6 Source Router ID	Type: 12	
	Length: 16	
	Value: IPv6 Router ID of the source of the prefix advertisement	

Configuring Prefix Attribute N-flag-clear

The N-flag is set to 1 when the prefix is a host prefix (/32 for IPV4, /128 for IPv6) that is associated with a loopback address. The advertising router can be configured to not set this flag. This task explains how to clear the N-flag.

SUMMARY STEPS

- 1. configure
- 2. router isis instance-id
- 3. interface Loopback instance
- 4. prefix-attributes n-flag-clear [Level-1 | Level-2]
- **5.** Use the **commit** or **end** command.

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters mode.
	Example:	
	RP/0/RP0/CPU0:router# configure	
Step 2	router isis instance-id	
	Example:	
	RP/0/RP0/CPU0:router(config)# router isis 1	
Step 3	interface Loopback instance	Specifies the loopback interface.
	Example:	
	RP/0/RP0/CPU0:router(config)# interface Loopback0	
Step 4	prefix-attributes n-flag-clear [Level-1 Level-2]	Clears the prefix attribute N-flag explicitly.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-if)# isis prefix-attributes n-flag-clear</pre>	
Step 5	Use the commit or end command.	commit —Saves the configuration changes and remains within the configuration session.
		end —Prompts user to take one of these actions:
		 Yes — Saves configuration changes and exits the configuration session.
		• No —Exits the configuration session without committing the configuration changes.
		• Cancel —Remains in the configuration session, without committing the configuration changes.

Verify the prefix attribute configuration:

```
RP/0/RP0/CPU0:router# show isis database verbose
IS-IS 1 (Level-2) Link State Database
LSPID
                   LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL
                   * 0x0000039b 0xfc27
router.00-00
                                            1079
                                                                0/0/0
 Area Address: 49.0001
 NLPID: 0xcc
 NLPID:
               0x8e
 MT:
               Standard (IPv4 Unicast)
                                                                 0/0/0
              IPv6 Unicast
 Hostname: router IP Address: 10.0.0.1
  IPv6 Address: 2001:0db8:1234::0a00:0001
  Router Cap: 10.0.0.1, D:0, S:0
   Segment Routing: I:1 V:1, SRGB Base: 16000 Range: 8000
    SR Algorithm:
     Algorithm: 0
     Algorithm: 1
                    IP-Extended 10.0.0.1/32
  Metric: 0
   Prefix-SID Index: 1001, Algorithm: 0, R:1 N:0 P:1 E:0 V:0 L:0
   Prefix Attribute Flags: X:0 R:1 N:0
                   IP-Extended 10.0.0.2/32
  Metric: 10
   Prefix-SID Index: 1002, Algorithm: 0, R: 0 N:1 P: 0 E: 0 V: 0 L: 0
    Prefix Attribute Flags: X:0 R:0 N:1
   Source Router ID: 10.0.0.2
```

IS-IS Unreachable Prefix Announcement

Table 4: Feature History Table

Feature Name	Release	Description
IS-IS Unreachable Prefix Announcement	Release 7.8.1	The Unreachable Prefix Announcement (UPA) notifies the loss of prefix reachability between areas or domains, for prefixes that are covered by the summary address range during inter-area or inter-domain summarization. This feature helps in identifying the routers that are facing prefix unreachability issues faster and fix it. The new commands introduced for this feature are: • summary-prefix • prefix-unreachable

The organization of networks into levels or areas and/or IGP domains helps to limit the scope of link-state information within certain boundaries. However, the state that is related to prefix reachability often requires propagation across these areas (Level1/Level2) or domains (Autonomous System Boundary Router (ASBR)). An Autonomous System Boundary Router (ASBR) is a router that is running multiple protocols and serves

as a gateway to routers outside the Open Shortest Path First (OSPF) domain and those operating with different protocols.

Route summarization, also known as route aggregation, is a method to minimize the number of routing tables in an IP network. It consolidates selected multiple routes into a single route advertisement.

Techniques such as summarization address the scale challenges associated with the advertizement of the individual prefix state outside of local area/domain. MPLS architecture did not allow for the effective use of the summarization due to its end-to-end Label Switched Path (LSP) requirement. With the introduction of the SRv6, which does not have such requirement, the use of summarization has become important again.

Summarization results in suppression of the individual prefix state that is useful for triggering fast-convergence mechanisms outside of the Interior Gateway Routing Protocols (IGPs (for example - Border Gateway Protocol - Prefix Independent Convergence (BGP PIC) Edge).

This feature enables the notification of the individual prefixes becoming unreachable in its area/domain, when the summarization is used between areas/domains to advertise the reachability for these prefixes.

There are existing SRv6 deployments that use summarization and require fast detection of the egress Provider Edge (PE) going down. To address these deployments in timely manner, we use the existing Protocol Data Units (PDUs) and Tag-Length-Values (TLVs), which is based on the Prefix Unreachability Advertisement (UPA).

Configuration Steps

The configuration steps that are required to set up the Unreachable Prefix Announcement (UPA) feature are as follows:

• UPA Advertisement

An existing IS-IS address-family submode **summary-prefix** command was extended for UPA advertisement.

```
Router(config) #router isis 1
Router(config-isis) #address-family ipv6 unicast
Router(config-isis-af) #summary-prefix beef:10::/32 level 2 adv-unreachable
Router(config-isis-af) #summary-prefix beef:11::/32 level 2 algorithm 128 adv-unreachable
unreachable-component-tag 777
Router(config-isis-af) #commit
```

· Prefix Unreachable

The new **prefix-unreachable** command includes new commands that control the UPA advertisement such as, lifetime, metric, limit the maximum number if UPAs and UPA processing. For more details see, prefix-unreachable

```
Router(config) #router isis 1
Router(config-isis) #address-family ipv6
Router(config-isis-af) #prefix-unreachable
Router(config-isis-prefix-unreachable) #adv-lifetime 500
Router(config-isis-prefix-unreachable) #adv-metric 4261412866
Router(config-isis-prefix-unreachable) #adv-maximum 77
Router(config-isis-prefix-unreachable) #rx-process-enable
Router(config-isis-prefix-unreachable) #commit
```

Running Configuration

Execute the following show commands to review the L1/L2 (area) or ASBR (domain) running configuration:

Run the **show run router isis 1 address-family ipv6 unicast** command to view the summary prefix under as well as UPA parameters under it.

```
Router#sh run router isis 1 address-family ipv6 unicast
router isis 1
address-family ipv6 unicast
 advertise application lfa link-attributes srlg
  advertise link attributes
 prefix-unreachable
  adv-lifetime 300
 !
 summary-prefix 10::/64
 summary-prefix beef:10::/32 adv-unreachable
  summary-prefix beef:11::/32 algorithm 128 adv-unreachable
 summary-prefix ceef:10::/32 adv-unreachable
 propagate level 2 into level 1 route-policy L2 TO L1
  segment-routing srv6
  locator USID ALG0
  locator USID_ALG128
 !
```

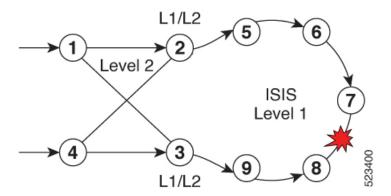

IS-IS Partition Detection and Leakage of Specific Route Advertisement

Table 5: Feature History Table

Feature Name	Release	Description
IS-IS Partition Detection and Leakage of Specific Route Advertisements	Release 7.10.1	In an open ring topology, a single fiber cut may partition the area or domain into two pieces. With summarization enabled, the area (domain) partition may result in traffic drops. Depending on the configuration in the Area Border Routers (ABRs) or Autonomous System Boundary Routers (ASBRs) that is picked as an entry point to the partitioned area (domain), the traffic is delivered to its destination or dropped as unreachable at ABR or ASBR.
		IS-IS partition detection and leakage of specific route advertisements features are introduced to retain connectivity for the partitioned area (domain) when summarization is used.
		The ABRs or ASBRs detect a network partition within an area (domain) and upon detection, ensure that the summary route is replaced with specific route advertisements in IS-IS.
		The following command and keyword are introduced:
		The feature introduces these changes:
		New Command:
		• partition-detect
		Modified Command:
		• The partition-repair keyword is introduced in the summary-prefix command.
		YANG Data Model:
		• New XPaths for Cisco-IOS-XR-um-router-isis-cfg.yang (see GitHub, YANG Data Models Navigator)

In service provider networks, the Layer 1 (L1) area is often represented by a set of routers connected in a ring. Sometimes the ring is not closed (for example, Area Border Routers (ABRs) are not connected directly inside the L1 area). In such cases, a single fiber cut partitions the area into two pieces. Route Summarization is basically advertising many routes into one route, also called route aggregation. When the partition is detected, summarization is suppressed, and all previously summarized prefixes are advertised in IS-IS. The individual prefix advertisements preserve the connectivity end-to-end.

Figure 1: Interarea Topology with L1 Area in an Open Ring

This feature addresses the following summarization problems:

• Area Partition Detection and Avoidance: Area partition detection only works for summarization from L1 to L2. It is not supported for summarization from L2 to L1. Ensure you have router-id that is configured for the address-family (IPv4 or IPv6) for which you are enabling the partition detection and avoidance.

Note

Router-id must be enabled for this feature to work. Area partition is tracked for each algorithm, algo 0, and any enabled flex-algo, independently. For flex-algo, the Area Border Router must participate in the algo for the tracking to work for such flex-algo

• **Domain Partition Detection and Avoidance**: Networks use muti-domain design, where they split their network into multiple IGP domains. They redistribute between domains and summarize during the redistribution. An IGP domain may represent an open ring and a single link cut may split it into two parts.

Configuration Steps

Configure IS-IS Partition Detection and Leakage of Specific as follows:

- Area Partition Detection and Avoidance: To configure the area partition detection and avoidance there are two configuration steps:
- 1. For each summary prefix that you want the area partition and avoidance to work, enable it with the summary-prefix command:

```
Router(config) #router isis 1
Router(config-isis) #address-family ipv6 unicast
Router(config-isis-af) #summary-prefix 2001:DB8::/32 level 2 partition-repair
Router(config-isis-af) #summary-prefix 2001:DB9::/32 level 2 algorithm 128
partition-repair
Router(config-isis-af) #commit
```

2. Configure the tracking of the Area Border Router (ABR) reachability. Here, the example is for two ABRs, but you can enable the partition for as many ABRs in the area.

```
Router(config) #router isis 1
Router(config-isis) #address-family ipv6 unicast
```

```
Router(config-isis-af) #router-id 2001:DB8:1::1
Router(config-isis-af) #summary-prefix 2001:DB8::/32 level 2 partition-repair
Router(config-isis-af) #summary-prefix 2001:DB9::/32 level 2 algorithm 128
partition-repair
Router (config-isis-af) #partition-detect
Router(config-isis-af) #track 2001:DB8:4::4
Router(config-isis-af)#commit
Router (config) #router isis 1
Router(config-isis) #address-family ipv6 unicast
Router(config-isis-af) #router-id 2001:DB8:4::4
Router(config-isis-af) #summary-prefix 2001:DB8::/32 level 2 partition-repair
Router(config-isis-af) #summary-prefix 2001:DB9::/32 level 2 algorithm 128
partition-repair
Router (config-isis-af) #partition-detect
Router(config-isis-af) #track 2001:DB8:1::1
Router(config-isis-af) #commit
```

- **Domain Partition Detection and Avoidance**: It is similar to Area Partition and requires two configuration steps:
- For each summary prefix that you want the area partition and avoidance to work, enable it with the summary-prefix command:

```
Router(config) #router isis 1
Router(config-isis) #address-family ipv6 unicast
Router(config-isis-af) #summary-prefix 2001:DB8::/32 level 2 partition-repair
Router(config-isis-af) #summary-prefix 2001:DB9::/32 level 2 algorithm 128
partition-repair
Router(config-isis-af) #commit
```

2. Configure the tracking of the Area Border Router reachability. The example is for two ABRs, but you can enable the partition for as many ABRs in the area.

To track ASBR, two identifiers are required:

- First is the internal router-id in the instance under which the configuration is done (similar to area partition).
- Second is the address of the ASBR in the other domain that is redistributed to the instance where the configuration is done.

Noto

The implementation of the feature ensures that the reachability of the external-address is only tracked in algorithm 0. The loss of the external-address is used for algo 0 and all flex-algos. The reachability of the internal address is kept per flex-algo.

```
Router(config) #router isis 2
Router(config-isis) #address-family ipv6 unicast
Router(config-isis-af) #router-id 2001:DB8:1::1
Router(config-isis-af) #summary-prefix 2001:DB8::/32 level 2 partition-repair
Router(config-isis-af) #summary-prefix 2001:DB9::/32 level 2 algorithm 128
partition-repair
Router(config-isis-af) #partition-detect
```

```
Router(config-isis-af) #track 2001:DB8:4::4 external-address 2001:DB8:10::4
Router(config-isis-af) #commit

Router(config) #router isis 2
Router(config-isis) #address-family ipv6 unicast
Router(config-isis-af) #router-id 2001:DB8:4::4
Router(config-isis-af) #summary-prefix 2001:DB8::/32 level 2 partition-repair
Router(config-isis-af) #summary-prefix 2001:DB9::/32 level 2 algorithm 128
partition-repair
Router(config-isis-af) #partition-detect
Router(config-isis-af) #track 2001:DB8:1::lexternal-address 2001:DB8:10::1
Router(config-isis-af) #commit
```

Verification

• For Area Partition Detection and Avoidance

Use the show command **show isis instance 1 flex-algo 128** to check if the area partition is detected:

```
Router# show isis instance 1 flex-algo 128
IS-IS 1 Flex-Algo Database
Flex-Algo 128:
Level-2:
Definition Priority: 128
Definition Source: plzen.00, (Local)
Definition Equal to Local: Yes
Definition Metric Type: IGP
Definition Flex-Algo Prefix Metric: No
Exclude Any Affinity Bit Positions:
Include Any Affinity Bit Positions:
Include All Affinity Bit Positions:
Reverse Exclude Any Affinity Bit Positions:
Reverse Include Any Affinity Bit Positions:
Reverse Include All Affinity Bit Positions:
Exclude SRLGs:
Disabled: No
Level-1:
Definition Priority: 128
Definition Source: plzen.00, (Local)
Definition Equal to Local: Yes
Definition Metric Type: IGP
Definition Flex-Algo Prefix Metric: No
Exclude Any Affinity Bit Positions:
Include Any Affinity Bit Positions:
Include All Affinity Bit Positions:
Reverse Exclude Any Affinity Bit Positions:
Reverse Include Any Affinity Bit Positions:
Reverse Include All Affinity Bit Positions:
Exclude SRLGs:
Disabled: No
Topologies supported:
IPv4 Unicast
Partition-Detect:
ABR: Internal-Address: 10.4.4.4
ASBR: Internal-Address: 10.4.4.4 External-Address: 10.10.10.4
ABR: Internal-Address: 10.5.5.5
IPv6 Unicast
Partition-Detect:
ABR: Internal-Address: 2001:DB8:4::4
```

```
Local Priority: 128
FRR Disabled: No
Microloop Avoidance Disabled: No
Data Plane Segment Routing: Yes
Data Plane IP: No
```

Domain Partition Detection and Avoidance

Use the show command show is instance 1 flex-algo 128 to check if the domain partition is detected:

```
Router# show isis instance 1 flex-algo 128
IS-IS 1 Flex-Algo Database
Flex-Algo 128:
Level-2:
Definition Priority: 128
Definition Source: plzen.00, (Local)
Definition Equal to Local: Yes
Definition Metric Type: IGP
Definition Flex-Algo Prefix Metric: No
Exclude Any Affinity Bit Positions:
Include Any Affinity Bit Positions:
Include All Affinity Bit Positions:
Reverse Exclude Any Affinity Bit Positions:
Reverse Include Any Affinity Bit Positions:
Reverse Include All Affinity Bit Positions:
Exclude SRLGs:
Disabled: No
Level-1:
Definition Priority: 128
Definition Source: plzen.00, (Local)
Definition Equal to Local: Yes
Definition Metric Type: IGP
Definition Flex-Algo Prefix Metric: No
Exclude Any Affinity Bit Positions:
Include Any Affinity Bit Positions:
Include All Affinity Bit Positions:
Reverse Exclude Any Affinity Bit Positions:
Reverse Include Any Affinity Bit Positions:
Reverse Include All Affinity Bit Positions:
Exclude SRLGs:
Disabled: No
Topologies supported:
IPv4 Unicast
Partition-Detect:
ABR: Internal-Address: 10.4.4.4 (Active)
ASBR: Internal-Address: 10.4.4.4 External-Address: 10.10.10.4 (Active)
ABR: Internal-Address: 10.5.5.5
IPv6 Unicast
Partition-Detect:
ABR: Internal-Address: 2001:DB8:4::4 (Active)
ASBR: Internal-Address: 2001:DB8:4::4 External-Address: 2001:DB8:10::4 (Active)
```

Conditional Prefix Advertisement

In some situations, it's beneficial to make the IS-IS prefix advertisement conditional. For example, an Area Border Router (ABR) or Autonomous System Boundary Router (ASBR) that has lost its connection to one of the areas or autonomous systems (AS) might keep advertising a prefix. If an ABR or ASBR advertises the

Segment Routing (SR) SID with this prefix, the label stack of the traffic routed toward the disconnected area or AS might use this SID, which would result in dropped traffic at the ABR or ASBR.

ABRs or ASBRs are often deployed in pairs for redundancy and advertise a shared Anycast prefix SID. Conditional Prefix Advertisement allows an ABR or an ASBR to advertise its Anycast SID only when connected to a specific area or domain. If an ABR or ASBR becomes disconnected from the particular area or AS, it stops advertising the address for a specified interface (for example, Loopback).

Configure the conditional prefix advertisement under a specific interface. The prefix advertisement on this interface is associated with the route-policy that tracks the presence of a set of prefixes (prefix-set) in the Routing Information Base (RIB).

For faster convergence, the route-policy used for conditional prefix advertisement uses the new event-based **rib-has-route async** condition to notify IS-IS of the following situations:

- When the last prefix from the prefix-set is removed from the RIB.
- When the first prefix from the prefix-set is added to the RIB.

Configuration

To use the conditional prefix advertisement in IS-IS, create a prefix-set to be tracked. Then create a route policy that uses the prefix-set.

```
Router(config) # prefix-set prefix-set-name
Router(config-pfx) # prefix-address-1/length[, prefix-address-2/length,,,
prefix-address-16/length]
Router(config-pfx) # end-set

Router(config) # route-policy rpl-name
Router(config-rpl) # if rib-has-route async prefix-set-name then
Router(config-rpl-if) # pass
Router(config-rpl-if) # endif
Router(config-rpl) # end-policy
```

To advertise the loopback address in IS-IS conditionally, use the **advertise prefix route-policy** command under IS-IS interface address-family configuration sub-mode.

```
Router(config) # router isis 1
Router(config-isis) # interface Loopback0
Router(config-isis-if) # address-family ipv4 unicast
Router(config-isis-if-af) # advertise prefix route-policy rpl-name
Router(config-isis-if-af) # commit
```

Example

```
Router(config) # prefix-set domain_2
Router(config-pfx) # 2.3.3.3/32, 2.4.4.4/32
Router(config-pfx) # end-set
Router(config) # route-policy track_domain_2
Router(config-rpl) # if rib-has-route async domain_2 then
Router(config-rpl-if) # pass
Router(config-rpl-if) # endif
Router(config-rpl) # end-policy
Router(config) # router isis 1
Router(config-isis) # interface Loopback0
Router(config-isis-if) # address-family ipv4 unicast
Router(config-isis-if-af) # advertise prefix route-policy track_domain-2
```

```
Router(config-isis-if-af) # commit
```

Running Configuration

```
prefix-set domain_2
  2.3.3.3/32,
  2.4.4.4/32
end-set
!
route-policy track_domain_2
  if rib-has-route async domain_2 then
    pass
  endif
end-policy
!
router isis 1
  interface Loopback0
  address-family ipv4 unicast
    advertise prefix route-policy track_domain_2
  !
!
```

Conditional Prefix Advertisement