

Configure Segment Routing for BGP

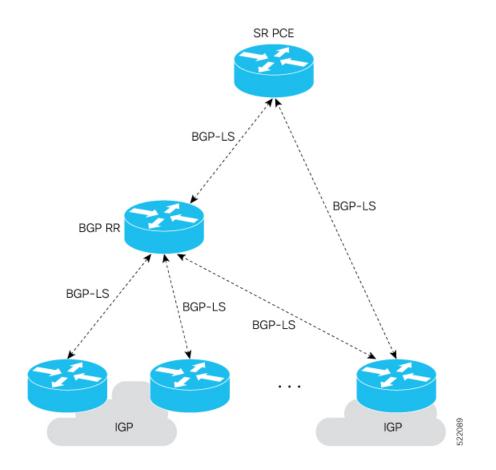
Border Gateway Protocol (BGP) is an Exterior Gateway Protocol (EGP) that allows you to create loop-free inter-domain routing between autonomous systems. An autonomous system is a set of routers under a single technical administration. Routers in an autonomous system can use multiple Interior Gateway Protocols (IGPs) to exchange routing information inside the autonomous system and an EGP to route packets outside the autonomous system.

This module provides the configuration information used to enable Segment Routing for BGP.

Note

For additional information on implementing BGP on your router, see the *BGP Configuration Guide for Cisco* 8000 Series Routers.

Configure BGP Link-State, on page 1


Configure BGP Link-State

BGP Link-State (LS) is an Address Family Identifier (AFI) and Sub-address Family Identifier (SAFI) originally defined to carry interior gateway protocol (IGP) link-state information through BGP. The BGP Network Layer Reachability Information (NLRI) encoding format for BGP-LS and a new BGP Path Attribute called the BGP-LS attribute are defined in RFC7752. The identifying key of each Link-State object, namely a node, link, or prefix, is encoded in the NLRI and the properties of the object are encoded in the BGP-LS attribute.

The BGP-LS Extensions for Segment Routing are documented in RFC9085.

BGP-LS applications like an SR Path Computation Engine (SR-PCE) can learn the SR capabilities of the nodes in the topology and the mapping of SR segments to those nodes. This can enable the SR-PCE to perform path computations based on SR-TE and to steer traffic on paths different from the underlying IGP-based distributed best-path computation.

The following figure shows a typical deployment scenario. In each IGP area, one or more nodes (BGP speakers) are configured with BGP-LS. These BGP speakers form an iBGP mesh by connecting to one or more route-reflectors. This way, all BGP speakers (specifically the route-reflectors) obtain Link-State information from all IGP areas (and from other ASes from eBGP peers).

Usage Guidelines and Limitations

- BGP-LS supports IS-IS and OSPFv2.
- The identifier field of BGP-LS (referred to as the Instance-ID) identifies the IGP routing domain where the NLRI belongs. The NLRIs representing link-state objects (nodes, links, or prefixes) from the same IGP routing instance must use the same Instance-ID value.
- When there is only a single protocol instance in the network where BGP-LS is operational, we recommend configuring the Instance-ID value to **0**.
- Assign consistent BGP-LS Instance-ID values on all BGP-LS Producers within a given IGP domain.
- NLRIs with different Instance-ID values are considered to be from different IGP routing instances.
- Unique Instance-ID values must be assigned to routing protocol instances operating in different IGP domains. This allows the BGP-LS Consumer (for example, SR-PCE) to build an accurate segregated multi-domain topology based on the Instance-ID values, even when the topology is advertised via BGP-LS by multiple BGP-LS Producers in the network.
- If the BGP-LS Instance-ID configuration guidelines are not followed, a BGP-LS Consumer may see duplicate link-state objects for the same node, link, or prefix when there are multiple BGP-LS Producers deployed. This may also result in the BGP-LS Consumers getting an inaccurate network-wide topology.

• The following table defines the supported extensions to the BGP-LS address family for carrying IGP topology information (including SR information) via BGP. For more information on the BGP-LS TLVs, refer to Border Gateway Protocol - Link State (BGP-LS) Parameters.

Table 1: IOS XR Supported BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs
--

TLV Code Point	Description	Produced by IS-IS	Produced by OSPFv2	Produced by BGP
256	Local Node Descriptors	Х	Х	—
257	Remote Node Descriptors	X	Х	_
258	Link Local/Remote Identifiers	X	X	_
259	IPv4 interface address	Х	Х	_
260	IPv4 neighbor address	X		
261	IPv6 interface address	X	—	_
262	IPv6 neighbor address	X	_	
263	Multi-Topology ID	X	_	_
264	OSPF Route Type		Х	—
265	IP Reachability Information	Х	Х	_
266	Node MSD TLV	X	Х	_
267	Link MSD TLV	X	Х	—
512	Autonomous System	_	_	Х
513	BGP-LS Identifier			X
514	OSPF Area-ID	_	Х	_
515	IGP Router-ID	X	Х	_
516	BGP Router-ID TLV			X
517	BGP Confederation Member TLV	_	—	Х
1024	Node Flag Bits	Х	Х	_
1026	Node Name	X	Х	_
1027	IS-IS Area Identifier	X	_	_
1028	IPv4 Router-ID of Local Node	Х	Х	_
1029	IPv6 Router-ID of Local Node	X	_	_
1030	IPv4 Router-ID of Remote Node	Х	X	—
1031	IPv6 Router-ID of Remote Node	Х	_	_
1034	SR Capabilities TLV	X	X	—
1035	SR Algorithm TLV	Х	Х	—
1036	SR Local Block TLV	X	Х	_

TLV Code Point	Description	Produced by IS-IS	Produced by OSPFv2	Produced by BGP
1039	Flex Algo Definition (FAD) TLV	Х	X	—
1044	Flex Algorithm Prefix Metric (FAPM) TLV	X	X	_
1088	Administrative group (color)	Х	X	—
1089	Maximum link bandwidth	Х	Х	_
1090	Max. reservable link bandwidth	Х	Х	_
1091	Unreserved bandwidth	Х	Х	_
1092	TE Default Metric	Х	Х	_
1093	Link Protection Type	Х	X	_
1094	MPLS Protocol Mask	Х	X	_
1095	IGP Metric	Х	X	_
1096	Shared Risk Link Group	Х	X	_
1099	Adjacency SID TLV	Х	X	—
1100	LAN Adjacency SID TLV	X	X	_
1101	PeerNode SID TLV	_	_	X
1102	PeerAdj SID TLV	_	_	X
1103	PeerSet SID TLV	_	<u> </u>	X
1114	Unidirectional Link Delay TLV	X	X	_
1115	Min/Max Unidirectional Link Delay TLV	Х	X	—
1116	Unidirectional Delay Variation TLV	X	X	_
1117	Unidirectional Link Loss	Х	X	_
1118	Unidirectional Residual Bandwidth	Х	X	—
1119	Unidirectional Available Bandwidth	Х	X	_
1120	Unidirectional Utilized Bandwidth	Х	X	_
1122	Application-Specific Link Attribute TLV	Х	X	—
1152	IGP Flags	Х	X	_
1153	IGP Route Tag	Х	X	<u> </u>
1154	IGP Extended Route Tag	Х	<u> </u>	_
1155	Prefix Metric	X	X	_
1156	OSPF Forwarding Address	_	X	
1158	Prefix-SID	X	X	—
1159	Range	X	X	_

TLV Code Point	Description	Produced by IS-IS	Produced by OSPFv2	Produced by BGP
1161	SID/Label TLV	Х	Х	_
1170	Prefix Attribute Flags	Х	Х	_
1171	Source Router Identifier	Х	—	—
1172	L2 Bundle Member Attributes TLV	Х		_
1173	Extended Administrative Group	Х	Х	

Exchange Link State Information with BGP Neighbor

The following example shows how to exchange link-state information with a BGP neighbor:

```
Router# configure
Router(config)# router bgp 1
Router(config-bgp)# neighbor 10.0.0.2
Router(config-bgp-nbr)# remote-as 1
Router(config-bgp-nbr)# address-family link-state link-state
Router(config-bgp-nbr-af)# exit
```

IGP Link-State Database Distribution

A given BGP node may have connections to multiple, independent routing domains. IGP link-state database distribution into BGP-LS is supported for both OSPF and IS-IS protocols in order to distribute this information on to controllers or applications that desire to build paths spanning or including these multiple domains.

To distribute IS-IS link-state data using BGP-LS, use the **distribute link-state** command in router configuration mode.

```
Router# configure
Router(config)# router isis isp
Router(config-isis)# distribute link-state instance-id 32
```

To distribute OSPFv2 link-state data using BGP-LS, use the **distribute link-state** command in router configuration mode.

```
Router# configure
Router(config)# router ospf 100
Router(config-ospf)# distribute link-state instance-id 32
```

I