
Implementing Trustworthy Systems

This chapter describes the key components that form the trustworthy security system in Cisco 8000 Series
Routers.

• Need for Trustworthy Systems, on page 1
• Enable Trust in Hardware, on page 2
• Enable Trust in Software, on page 4
• Establish and Maintain Trust at Steady State, on page 6
• How Trustworthiness is Implemented, on page 17
• Understanding Key Concepts in Security, on page 18

Need for Trustworthy Systems
Global service providers, enterprises, and government networks rely on the unimpeded operation of complex
computing and communications networks. The integrity of the data and IT infrastructure is foundational to
maintaining the security of these networks and user trust. With the evolution to anywhere, anytime access to
personal data, users expect the same level of access and security on every network. The threat landscape is
also changing, with adversaries becoming more aggressive. Protecting networks from attacks by malevolent
actors and from counterfeit and tampered products becomes even more crucial.

Routers are the critical components of the network infrastructure and must be able to protect the network and
report on system integrity. A “trustworthy solution” is one that does what it is expected to do in a verifiable
way. Building trustworthy solutions requires that security is a primary design consideration. Routers that
constitute trustworthy systems are a function of security, and trust is about preventing as well as knowing
whether systems have been tampered with.

In trustworthy systems, trust starts at the lowest levels of hardware and is carried through the boot process,
into the operating system (OS) kernel, and finally into runtime in the OS.

The main components of implementing a trustworthy system are:

• Enabling trust in hardware with Hardware root-of-trust and secure JTag

• Enabling trust in software with secure boot and secure iPXE

• Enabling and maintaining trust at steady state with SELinux, Secure install, and SSD Encryption

Implementing Trustworthy Systems
1

Figure 1: Ecosystem of Trustworthy Systems

Trustworthy systems must have methods to securely measure hardware, firmware, and software components
and to securely attest to these secure measurements.

For information on key concepts used in this chapter, see the Understanding Key Concepts in Security.

Enable Trust in Hardware
Trust in the hardware in enabled through:

Enable Trust in Hardware
Because software alone can’t prove a system's integrity, truly establishing trust must also be done in the
hardware using a hardware-anchored root of trust. Without a hardware root of trust, no amount of software
signatures or secure software development can protect the underlying system from becoming compromised.
To be effective, this root of trust must be based on an immutable hardware component that establishes a chain
of trust at boot-time. Each piece of code in the boot process measures and checks the signature of the next
stage of the boot process before the software boots.

A hardware-anchored root of trust is achieved through:

• Anti-counterfeit chip: All modules that include a CPU, as well as the chassis, are fitted with an
anti-counterfeit chip, which supports co-signed secure boot, secure storage, and boot-integrity-visibility.
The chip ensures that the device's software and hardware are authentic and haven’t been tampered with
or modified in any way. It also helps to prevent unauthorized access to the device's sensitive data by
enforcing strong authentication and access control policies.

• Secure Unique Device Identifier (SUDI): The X.509 SUDI certificate installed at manufacturing provides
a unique device identifier. SUDI helps to enable anti-counterfeit checks along with authentication and
remote provisioning. The SUDI is generated using a combination of the device's unique hardware identifier
(such as its serial number or MAC address) and a private key that is securely stored within the device.
This ensures that each SUDI is unique and cannot be easily duplicated or forged. When a device attempts
to connect to a network, the network uses the SUDI to authenticate the device, and ensure that it’s
authorized to connect. This helps to prevent unauthorized access to the network and ensures that only
trusted devices are allowed to connect.

Implementing Trustworthy Systems
2

Implementing Trustworthy Systems
Enable Trust in Hardware

• Secure JTag: The secure JTAG interface is used for debugging and downloading firmware. This interface
with asymmetric-key based authentication and verification protocols prevents attackers from modifying
firmware or stealing confidential information. Secure JTAG typically involves a combination of hardware
and software-based securitymeasures. For example, it may include the use of encryption and authentication
protocols to secure communications between the JTAG interface and the debugging tool. It may also
involve the use of access control policies and permissions to restrict access to the JTAG interface to
authorized users only.

Hardware-anchored root of trust is enabled by default on Cisco 8000 Series routers.Note

Chip Guard
Attacks can come from various sources – starting from the CPUs or ASICs containing Trojan or malware.
Sometimes, the chips may have a Trojan in form of an added die in the package assembly.

Cisco’s Chip Guard feature mitigates this threat with the use of unique identifiers buried inside the Trusted
Anchor module (TAm) devices as a way to identify and track components throughout the lifecycle of products.

During the manufacturing phase, hashes of known good values (KGV) of the components are burnt into the
TAm. At every boot of the system, the components are validated by matching their observed values with the
KGV of that component present on the TAm.

If the values do not match, the system fails to boot up. In which case, the operator must perform a remote
attestation to query the TAm and identify the cause of bootup failure.

Attestation
Proof of hardware integrity is recorded in the TAm as part of Chip Guard. This proof is made available through
the following commands:

The same data is also available through NETCONF for a remote attestation server:
Cisco-IOS-XR-remote-attestation-act.yang.

Note

RP/0/RP0/CPU0:ios# show platform security ?
attest Attest the information
health Match and report any inconsistencies in secure variables across nodes
integrity System Integrity
tam Tam Device Details
variable Show secure variables from secure certificate storage

RP/0/RP0/CPU0:ios# show platform security integrity ?
dossier Ask me anything dossier
hardware Fetch System Hardware integrity
log Integrity Logs

RP/0/RP0/CPU0:ios# show platform security attest ?
PCR PCR quotes and value
certificate Fetch System Certificates

RP/0/RP0/CPU0:ios# show platform security attest PCR ?
WORD PCR register number. Specify multiple PCRs seperated by ','

Implementing Trustworthy Systems
3

Implementing Trustworthy Systems
Chip Guard

RP/0/RP0/CPU0:ios# show platform security attest PCR 0 ?
location Certificates from which location
trustpoint CiscoSUDI/CiscoAIK to be used for PCR quote
| Output Modifiers

RP/0/RP0/CPU0:ios# show platform security attest PCR 0 location ?
0/RP0/CPU0 Fully qualified location specification
WORD Fully qualified location specification
all all locations

RP/0/RP0/CPU0:ios# show platform security attest PCR 0 location 0/RP0/CPU0 trustpoint locaion
0/RP0/CPU0 tr
CiscoAIK Cisco AIK Certificate
CiscoSUDI Cisco SUDI Certificate

RP/0/RP0/CPU0:ios# show platform security attest certificate ?
CiscoAIK Cisco AIK Certificate
CiscoSUDI Cisco SUDI Certificate

Enable Trust in Software
In Cisco IOS XR7, trust in the software is enabled through:

Secure Boot
Table 1: Feature History Table

Feature DescriptionRelease InformationFeature Name

You can now verify whether the router is
securely booted up with an authentic Cisco
software image. We have introduced a
show command to verify the secure boot
status of the router. If the software image
was tampered with, then the secure boot
fails, and the router does not boot up.
Before this release, there was no provision
on the router to verify the secure boot
status.

The feature introduces these:

• CLI: show platform security
integrity log secure-boot status
command.

• YANG Data Model:
Cisco-IOS-XR-attestation-agent-oper.yang

Cisco native model (see GitHub)

Release 7.8.1Secure Boot Status

Cisco Secure Boot helps to ensure that the code that executes as part of the software image boot up on Cisco
routers is authentic and unmodified. Cisco IOS XR7 platforms support the hardware-anchored secure boot
which is based on the standard Unified Extensible Firmware Interface (UEFI). This UEFI-based secure boot

Implementing Trustworthy Systems
4

Implementing Trustworthy Systems
Enable Trust in Software

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/trustworthy-systems-commands.html#wp4655013340
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/trustworthy-systems-commands.html#wp4655013340
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr

protects the microloader (the first piece of code that boots) in tamper-resistant hardware, establishing a root
of trust that helps prevent Cisco network devices from executing tainted network software.

Figure 2: Secure Boot

The intent of Secure Boot is to have a trust anchor module (TAm) in hardware that verifies the bootloader
code. A fundamental feature of secure boot is the barrier it provides that makes it that it is extremely difficult
or nearly impossible to bypass these hardware protections.

Secure boot ensures that the bootloader code is a genuine, unmodified Cisco piece of code and that code is
capable of verifying the next piece of code that is loaded onto the system. It is enabled by default.

When secure boot authenticates the software as genuine Cisco in a Cisco device with the TAm, the operating
system then queries the TAm to verify whether the hardware is authentic. It verifies by cryptographically
checking the TAm for a secure unique device identifier (SUDI) that comes only from Cisco.

The SUDI is permanently programmed into the TAm and logged by Cisco during Cisco’s closed, secured,
and audited manufacturing processes.

Booting the System with Trusted Software

In Cisco IOSXR7, the router supports the UEFI-based secure boot with Cisco-signed boot artifact verification.
The following takes place:

Step 1: At bootup, the system verifies every artifact using the keys in the TAm.

Step 2: The following packages are verified and executed:

• Bootloader (Grand Unified Bootloader (GRUB), GRUB configuration, Preboot eXecution Environment
(PXE), netboot)

• Initial RAM disk (Initrd)

• Kernel (operating system)

Step 3: Kernel is launched.

Step 4: Init process is launched.

Step 5: All Cisco IOS XR RPMs are installed with signature verification.

Step 6: All required services are launched.

Implementing Trustworthy Systems
5

Implementing Trustworthy Systems
Secure Boot

Secure iPXE – Secure Boot Over the Network
The iPXE server is an HTTP server discovered using DHCP that acts as an image repository server. Before
downloading the image from the server, the Cisco router must authenticate the iPXE server.

A secure iPXE server must support HTTPS with self-signed certificates.Note

The Cisco router uses certificate-based authentication to authenticate the iPXE server. The router:

• Downloads the iPXE self-signed certificates

• Uses the Simple Certificate Enrollment Protocol (SCEP)

• Acquires the root certificate chain and checks if it’s self-signed

The root certificate chain is used to authenticate the iPXE server. After successful authentication, a secure
HTTPS channel is established between the Cisco router and the iPXE server. Bootstrapper protocol (Bootp),
ISO, binaries, and scripts can now be downloaded on this secure channel.

Verify Secure Boot Status

Verify Secure Boot Status

Use the show platform security integrity log secure-boot status command to verify the secure boot status
of the router. If the router boots up securely, then the show command output displays the status as Enabled.
If the router does not support this secure boot verification functionality, then the status is displayed as Not
Supported.

Router#show platform security integrity log secure-boot status
Wed Aug 10 15:39:17.871 UTC

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
Secure Boot Status: Enabled
Router#

If the software image was tampered, then the secure boot fails and the router does not come up. The system
displays corresponding error logs at various stages of boot up process. For example,

Bad signature file...
/initrd.img verification using Pkcs7 signature failed.
error: Security Violation: /initrd.img failed to load.
System halting...

Establish and Maintain Trust at Steady State
Attackers are seeking long-term compromise of systems and using effective techniques to compromise and
persist within critical infrastructure devices. Hence, it is critical to establish and maintain trust within the
network infrastructure devices at all points during the system runtime.

Implementing Trustworthy Systems
6

Implementing Trustworthy Systems
Secure iPXE – Secure Boot Over the Network

In Cisco IOS XR7, trust is established and maintained in a steady state through:

SELinux
Security-Enhanced Linux (SELinux) is a Linux kernel securitymodule that provides amechanism for supporting
access control security policies, including mandatory access controls (MAC).

A kernel integrating SELinux enforces MAC policies that confine user programs and system servers to the
minimum amount of privileges they require to do their jobs. This reduces or eliminates the ability of these
programs and daemons to cause harm when compromised (for example, through buffer overflows or
misconfigurations). This confinement mechanism operates independently of the traditional Linux access
control mechanisms. SELinux has no concept of a "root" super-user and does not share the well-known
shortcomings of the traditional Linux security mechanisms (such as a dependence on setuid/setgid binaries).

On Cisco IOS XR7 software, only Targeted SELinux policies are used, so that only third-party applications
are affected by the policies; all Cisco IOS XR programs can run with full root permission.

With Targeted SELinux, using targeted policies, processes that are targeted run in a confined domain. For
example, the httpd process runs in the httpd_t domain. If a confined process is compromised by an attacker,
depending on the SELinux policy configuration, the attacker's access to resources and the possible damage
that can result is limited.

Processes running in unconfined domains fall back to using discretionary access control (DAC) rules.Note

DAC is a type of access control defined as a means of restricting access to objects based on the identity of
the subjects or the groups (or both) to which they belong.

Confined and Unconfined Users
Each Linux user is mapped to an SELinux user through an SELinux policy. This allows Linux users to inherit
the restrictions placed on SELinux users.

If an unconfined Linux user executes an application, which an SELinux policy defines as an application that
can transition from the unconfined_t domain to its own confined domain, the unconfined Linux user is subject
to the restrictions of that confined domain. The security benefit is that, even though a Linux user is running
in unconfined mode, the application remains confined. Therefore, the exploitation of a flaw in the application
is limited by the policy.

A confined Linux user is restricted by a confined user domain against the unconfined_t domain. The SELinux
policy can also define a transition from a confined user domain to its own target confined domain. In such a
case, confined Linux users are subject to the restrictions of that target confined domain.

SELinux Mode
There are three SELinux modes:

• Enforcing: When SELinux is running in enforcing mode, it enforces the SELinux policy and denies
access based on SELinux policy rules.

SELinux security policy is configured as enforcing by default.

• Permissive: In permissive mode, the SELinux does not enforce policy, but logs any denials. Permissive
mode is used for debugging and policy development.

Implementing Trustworthy Systems
7

Implementing Trustworthy Systems
SELinux

• Disabled: In disabled mode, no SELinux policy is loaded. The mode may be changed in the boot loader,
SELinux config, or at runtime with setenforce.

To view security policy mode:
[node0_RP0_CPU0:~]$getenforce
Enforcing

Role of the SELinux Policy in Boot Process
SELinux plays an important role during system startup. Because all processes must be labeled with their
proper domain, the init process performs essential actions early in the boot process that synchronize labeling
and policy enforcement.

After the kernel is loaded during boot, the initial process is assigned the predefined initial SID kernel_t. Initial
SIDs are used for bootstrapping before the policy is loaded. The init process scans the /etc/selinux/config
directory for the active policies, such as the targeted policy, and loads the associated file.

After the policy is loaded, the initial SIDs are mapped to security contexts in the policy. In the case of the
targeted policy, the new domain is "user_u:system_r:unconfined_t". The kernel begins to get security contexts
dynamically from the in-kernel security server.

The init process then re-executes itself so that it can transition to a different domain, if the policy defines it.
For the targeted policy, there is no transition defined and the init process remains in the unconfined_t domain.
At this point, the init process continues with its normal boot process.

Secure Install
The Cisco IOS XR software is shipped as RPMs. Each RPM consists of one or more processes, libraries, and
other files. An RPM represents a collection of software that performs a similar functionality; for example,
packages of BGP, OSPF, as well as the Cisco IOS XR Infra libraries and processes.

RPMs can also be installed into the base Linux system outside the Cisco IOS XR domain; however, those
RPMs must also be appropriately signed.

All RPMs shipped from Cisco are secured using digitally signed Cisco private keys.

There are three types of packages that can be installed:

• Packages shipped by Cisco (open source or proprietary)

• Customer packages that replace Cisco provided packages

• Customer packages that do not replace Cisco provided packages

RPM Signing and Validation
RPMs are signed during the build process, when the different RPMs are "constructed" using the packaging
instructions of the build process. Any package - process, library, or file - can exist in only one RPM. For
example, if BGP is packaged as a separate RPM, then any artifacts related to BGP are present only in the BGP
RPM and not, for example, in the Routing RPM.

The install component of the Cisco IOS XR performs various actions on the RPMs, such as verification,
activation, deactivation, and removal. Many of these actions invoke the underlying DNF installer. During
each of these actions, the DNF verifies the signature of the RPM to ensure that it operates on a legitimate
package.

Implementing Trustworthy Systems
8

Implementing Trustworthy Systems
Role of the SELinux Policy in Boot Process

Third-Party RPMs
The XR Install enforces signature validation using the ‘gpgcheck’ option of DNF. Thus, any Third-Party RPM
packages installation fails if done through the XR Install (which uses the DNF). However, Third-Party RPMs
can still be installed using the rpm command.

SSD Encryption
Table 2: Feature History Table

Feature DescriptionRelease InformationFeature Name

This feature enables trust and
security in the system’s steady state
by encrypting data at the disk level.
The encrypted data can be accessed
only with a specific key stored in
the TAm.

Release 7.3.1SSD Encryption

Customers are concerned about the security of sensitive data present on persistent storagemedia. User passwords
are limited in their capability to protect data against attackers who can bypass the software systems and directly
access the storage media.

In this case, only encryption can guarantee data confidentiality.

Cisco IOSXRSoftware introduces SSD encryption that allows encrypting data at the disk level. SSD encryption
also ensures that the encrypted data is specific to a system and is accessible only with a specific key to decrypt
them.

Data that can be encrypted is sensitive information such as, topology data, configuration data, and so on.

Encryption can be achieved through the following:

• DM-Crypt

• CPU with AES-NI support

• CryptSetup

DM-Crypt
DM-Crypt is a Linux kernel module that provides disk encryption. The module takes advantage of the Linux
kernel’s device-mapper (DM) infrastructure. The DM provides a way to create virtual layers of block devices.

DM-crypt is a device-mapper target and provides transparent encryption of block devices using the kernel
crypto API. Data written to the block device is encrypted; whereas, data to be read is decrypted. See the
following figure.

Implementing Trustworthy Systems
9

Implementing Trustworthy Systems
Third-Party RPMs

Figure 3: DM-Crypt Encryption

AES-NI Support
Intel's Advanced Encryption Standard New Instructions (AES-NI) is a hardware-assisted engine that enables
high-speed hardware encryption and decryption. This process leaves the CPU free to do other tasks.

When the input-output operations are started, the read-write requests that are directed at the encrypted block
device are passed to the DM-Crypt. DM-Crypt then sends multiple cryptographic requests to the Cryptographic
Framework. The crypto framework is designed to take advantage of off-chip hardware accelerators and
provides software implementations when accelerators are not available. See the following image.

Implementing Trustworthy Systems
10

Implementing Trustworthy Systems
AES-NI Support

Figure 4: AES-NI Support

CryptSetup
DM-Crypt relies on user space tools, such as cryptsetup to set up cryptographic volumes. Cryptsetup is a
command-line-interface (CLI) tool that interacts with DM-Crypt for creating, accessing, and managing
encrypted devices.

Encrypted Logical Volume
An encrypted logical volume (LV) can be created during software installation

You can activate or deactivate the encrypted disk partition on demand. In addition to being activated, all
sensitive files are also migrated from the unencrypted disk partition to the encrypted disk partition. The
encrypted files can be migrated back during deactivation.

You can activate the data encryption by using the disk encryption activate location command.

The encrypted logical volume capacity is 150MB of disk space and is available as /var/xr/enc for applications
to access.

Although applications can choose to use this space for storage, that data is not be part of the data migration
if the software image is downgraded to a version that does not support encryption.

Note

Implementing Trustworthy Systems
11

Implementing Trustworthy Systems
CryptSetup

SSD Binding
When encryption is activated on a system, each card generates a random encryption key and stores it in its
own secure storage—the Trust Anchor module (TAm). During successive reboots, the encryption key is read
from the TAm and applied to unlock the encrypted device. Since each card stores its encryption key locally
on the TAm, an SSD that is removed from one card and inserted into another cannot be unlocked by the key
stored on that card, thereby making the SSD unusable.

If encryption is activated, the encrypted LV can only be unlocked by using the key stored in the TAm. So, if
an encrypted SSD is removed and moved to another line card, the SSD cannot be unlocked. In other words,
when you activate encryption, the SSD is bound to the card it is inserted in.

Data Zeroization
Zeroization refers to the process of deleting sensitive data from a cryptographic module.

In case of a Return Material Authorization (RMA), you must factory reset the data.Note

You can perform zeroization by using the factory reset location command from the XR prompt.

Running this command while encryption is activated, deletes the master encryption key from the TAm and
renders the motherboard unusable after the subsequent reload.

Caution

Runtime Defences (RTD)
Run TimeDefenses (RTD) are a collection of tools used at runtime to mitigate common security vulnerabilities.
RTD is classified into three groups:

Address Space Layout Randomization (ASLR)
ASLR is a technique that stops an attacker from getting access to a vulnerable program function, by preventing
the attacker from finding out the memory address of the program function within the running process. To
make this possible, ASLR randomly distributes the fundamental parts of the process (like the executable base,
stack pointers, libraries, etc.) within the memory address space assigned to it by the operating system. Hence,
attackers will never know the exact memory address of the program function and will be unable to exploit it.
If they try to exploit by brute force, the process will crash.

Kernel Address Space Layout Randomization (KASLR)
Kernel Address Space Layout Randomization (KASLR) is a technique which is very similar to ASLR but it
is applicable at the Linux kernel level. KASLR protects the Linux kernel by randomizing the fundamental
parts of the kernel process within the kernel memory when the system boots. This stops an attacker from
getting a pointer to the kernel memory distribution table in order to exploit it.

Implementing Trustworthy Systems
12

Implementing Trustworthy Systems
SSD Binding

Built-in Object Size Checker (BOSC)
BOSC is a limited buffer overflow protection mechanism provided by the compiler. BOSC helps in avoiding
buffer-overflow related security vulnerabilities on common SafeC library functions such as, strcpy_s and
memcpy_s.

Executable Space Protection (XSpace)
XSpace mitigates malicious code injection attacks by protecting the data and code portions of the program
memory. The basic approach of such attacks is to overflow a buffer in the program stack and cause the transfer
of control to injected code. Once in the injected code, the application behaves in an unexpected manner.

X-space ensures that the area of the memory where the authentic code exists is write-protected and the area
of memory where the data is present is execution-protected. Illegal execution-attempts in the data-portion or
write-attempts in the code-portion results in the application crashing.

The XSpace functionality should not disabled at any time.Note

RTD Monitor
The RTD Monitor monitors all RTD functionalities on the router.

Boot Integrity and Trust Visibility
The secure boot first stage is rooted in the chip and all subsequent boot stages are anchored to the first successful
boot. The system is, therefore, capable of measuring the integrity of the boot chain. The hash of each software
boot image is recorded before it is launched. These integrity records are protected by the TAm. The boot chain
integrity measurements are logged and these measurements are extended into the TAm.

Use the show platform boot-integrity [sign [nonce <nonce>] [trustpoint <AIK trustpoint name>]]
command to view the boot integrity and boot-chain measurements.

You can also use Cisco-IOS-XR-remote-attestation-act.yang to fetch the boot integrity over the NETCONF
protocol.

The command displays both, the integrity log values and the assurance that these values have not been tampered.
These measurements include the following parameters:

• Micro loader hash

• Boot loader hash

• Image signing and management key hashes

• Operating system image hash

platform-pid string Platform ID
Event log [key: event_number]: Ordered list of TCG described event log

that extended the PCRs in the order they
were logged

+-- event_number uint32 Unique event number of this even
+-- event_type uint32 log event type
+-- PCR_index uint16 PCR index that this event extended
+-- digest hex-string The hash of the event data

Implementing Trustworthy Systems
13

Implementing Trustworthy Systems
Built-in Object Size Checker (BOSC)

+-- event_size uint32 Size of the event data
+-- event_data uint8[] event data, size determined by event_size

PCR [index] - List of relevant PCR contents
+-- index uint16 PCR register number
+-- value uint8[] 32 bytes - PCR register content

PCR Quote binary TPM 2.0 PCR Quote
PCR Quote Signature binary Signature of the PCR quote using TAM-held ECC or RSA restricted
key with the optional nonce if supplied

• PCR 0-9 are used for secure boot.

• Signature version designates the format of the signed data.

• The signature digest is SHA256.

• The signing key is in a TCG compliant format.

Note

RP/0/RP0/CPU0:ios# show platform security attest PCR 15 trustpoint CiscoAIK nonce 4567
location 0/RP0/CPU0

Sun Jun 21 03:07:18.394 UTC
Nonce: 4567

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
Uptime: 495270
pcr-quote:
/1RDR4AYACCBG/wltf4TEwfdUjtjun7S3rXC90eAb0G0ytrYRv3ExwACRWcAAAAAAD8hUwAAAEf/////AQAAACQAAAALAAAAAQALAwCAAAAgae1J8QIYe06nS2RUx0JYeoG8tM3bqeVdpW7CObwBt+g=
pcr-quote-signature:
EZbzSUge89jSjH8ZqTgKJrZJBopEbd818C+h1Ec780qi7Li1WfCZQPIP6KCDV6HsRCVzLoFijgmlMLoZE2rakQq+/1TgZOWSLjMY7RbjSFr8z/zbpVI+YLnOG+wytVYWuY33uKHBn/YWokHwo+qVf7u9aLGhnrXKvRUaFknBiZtQGiyAdis6GbPTToqn0WSN1y6DPh4UHZj1vLVwJsI48mbQUrAyCZrz/XBHLM38tVJjqSrC0jw/6LF2DDoT5ks0VUFT7sqbysw4F56y+z/IlDBrrRW3GFOY46MOxDxLwSl1/n6zdoVjiKKeqKOnmhpBh72bJQAdeu/GVOYTrOSy4Q==
pcr-index pcr-value
15 oYk8yqrzudIpGB4H++SaV0wMv6ugDSUIuUfeSqbJvbY=

RP/0/RP0/CPU0:ios# show platform security integrity hardware digest-algorithm SHA1 trustpoint
CiscoAIK nonce 4567 location 0/RP0/CPU0

Sun Jun 21 03:09:14.594 UTC
Nonce: 4567

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
TPM Name: node0_RP0_CPU0_aikido
Uptime: 495385
Known-good-digests:
Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

observed-digests:
Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

PCRs:
Index value
15 1Y3uKqNv1UJQUNZQxmZkiuG4blk=

RP/0/RP0/CPU0:ios# show platform security integrity hardware digest-algorithm SHA256
trustpoint CiscoAIK nonce 4567 location 0/RP0/CPU0

Sun Jun 21 03:09:31.110 UTC
Nonce: 4567

Implementing Trustworthy Systems
14

Implementing Trustworthy Systems
Boot Integrity and Trust Visibility

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
TPM Name: node0_RP0_CPU0_aikido
Uptime: 495401
Known-good-digests:
Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

observed-digests:
Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

PCRs:
Index value
15 1Y3uKqNv1UJQUNZQxmZkiuG4blk=

RP/0/RP0/CPU0:ios# show platform security integrity hardware digest-algorithm SHA256
trustpoint CiscoAIK nonce 4567 location 0/RP0/CPU0

Sun Jun 21 03:09:43.782 UTC
Nonce: 4567

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
TPM Name: node0_RP0_CPU0_aikido
Uptime: 495414
Known-good-digests:
Index value
0 y3n/SsvyNb8g3o7FFRGCZwfbs8EGxvMZg/PeN0NA71k=

observed-digests:
Index value
0 y3n/SsvyNb8g3o7FFRGCZwfbs8EGxvMZg/PeN0NA71k=

PCRs:
Index value
15 oYk8yqrzudIpGB4H++SaV0wMv6ugDSUIuUfeSqbJvbY=

Cisco AIK Certificate used for signing PCR
pcr-quote:
/1RDR4AYACCBG/wltf4TEwfdUjtjun7S3rXC90eAb0G0ytrYRv3ExwACRWcAAAAAAD8hywAAAEf/////AQAAACQAAAALAAAAAQALAwCAAAAgae1J8QIYe06nS2RUx0JYeoG8tM3bqeVdpW7CObwBt+g=
pcr-quote-signature:
qyKbK7ndJbrgxeVnOodLWQzT7++NzrxJ9ERRvJzvTe4+8r6p0HGSepHUhZHzYkXw4DbniHAK0Cs3dwg/hGKGe4M8Lz+/k682yIjaFYYip0DHMaV2ny/lT7RSqM/6u3j/JZrZv39MaeHa3MyjjonzRf9oe7EBSFAKsa/D54eTR0eFtaxFy/XdtM0VVQe2JRdoBVxnIBLGiVmGRlVVlmHvwwgX1lAN6e3/soC1Vk3I5gjLldPHUYuJ/7PTGyAwZsbdeigx8d4ViUUUjSMzK7JISwXa8k4GiPQVLBHtqqR+RA9scmMZTbKLsG3luIWKQeyCtXMYE1VOeW8WQlAvioMICw==
RP/0/RP0/CPU0:ios#show platform security integrity hardware digest-algorith$
Sun Jun 21 03:09:56.794 UTC
Nonce: 4567

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
TPM Name: node0_RP0_CPU0_aikido
Uptime: 495427
Known-good-digests:
Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

observed-digests:
Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

PCRs:
Index value
15 1Y3uKqNv1UJQUNZQxmZkiuG4blk=

RP/0/RP0/CPU0:ios#

Implementing Trustworthy Systems
15

Implementing Trustworthy Systems
Boot Integrity and Trust Visibility

Use the show platform security tam command to view the TAm device details.Note

Boot integrity verification consists of the following steps:

1. Report Boot 0 version and look up the expected integrity value for this platform and version.

2. Report bootloader version and look up the expected integrity value for this platform and version.

3. Report OS version and look up the expected integrity value for this platform and version.

4. Using the integrity values obtained from steps 1-3, compute the expected PCR 0 and PCR 8 values

5. Compare the expected PCR values against the actual PCR values.

6. Verify the nonced signature to ensure the liveliness of the response data.

7. (Optional) Verify the software image (IOS XR) version is with what is expected to be installed on this
platform.

A failure of any of the above steps indicates either a compromised system or an incomplete integrity value
database.

Secure gRPC
gRPC (gRPC Remote Procedure Calls) is an open source remote procedure call (RPC) system that provides
features such as, authentication, bidirectional streaming and flow control, blocking or nonblocking bindings,
and cancellation and timeouts. For more information, see https://opensource.google.com/projects/grpc.

TLS (Transport Layer Security) is a cryptographic protocol that provides end-to-end communications security
over networks. It prevents eavesdropping, tampering, and message forgery.

In Cisco IOS XR7, by default, TLS is enabled in gRPC to provide a secure connection between the client and
server.

Integrity Measurement Architecture (IMA)
The goals of the Linux kernel integrity subsystem are to:

• detect whether files are accidentally or maliciously altered, both remotely and locally

• measure the file by calculating the hash of the file content

• appraise a file's measurement against a known good value stored as an extended attribute

• enforce local file integrity

These goals are complementary to the Mandatory Access Control (MAC) protections provided by SElinux.Note

IMA maintains a runtime measurement list and—because it is also anchored in the hardware Trusted Anchor
module (TAm)—an aggregate integrity value over this list. The benefit of anchoring the aggregate integrity
value in the TAm is that the measurement list cannot be compromised by any software attack without being

Implementing Trustworthy Systems
16

Implementing Trustworthy Systems
Secure gRPC

https://opensource.google.com/projects/grpc

detectable. As a result, on a trusted boot system, IMA-measurement can be used to attest to the system's
runtime integrity.

For more information about IMA, download the IMA whitepaper, An Overview of The Linux Integrity
Subsystem.

IMA Signatures
The IMA appraisal provides local integrity, validation, and enforcement of the measurement against a known
good value stored as an extended attribute—security.ima. The method for validating file data integrity is based
on a digital signature, which in addition to providing file data integrity also provides authenticity. Each file
(RPM) shipped in the image is signed by Cisco during the build and packaging process and validated at runtime
using the IMA public certificate stored in the TAm.

All RPMs contain Cisco IMA signatures of the files packaged in the RPM, which are embedded in the RPM
header. The IMA signature of the individual file is stored in its extended attribute during RPM installation.
This protects against modification of the Cisco RPMs.

The IMA signature format used for IMA can have multiple lines and every line has comma-separated fields.
Each line entry will have the filename, hash, and signature as illustrated below.

• File – Filename with the full path of the file hashed and signed

• Hash – SHA256 hash of the file

• Signature – RSA2048 key-based signature

How Trustworthiness is Implemented
The following sequence of events takes place when the Cisco routers that support IOS XR7 operating system
are powered up:

1. At power UP, the micro-loader in the chip verifies the digital signature of BIOS using the keys stored
in the TAm. The BIOS signature verification is logged and the measurement is extended into a PCR.

2. The BIOS then verifies the signature of the boot-loader using keys stored in TAm. The boot-loader
signature verification is logged and the measurement is extended into the PCR.

3. If the validation is successful, the BIOS launches the bootloader. The bootloader uses the keys loaded
by the BIOS to verify the sanctity of the kernel, initrd file system, and grub-config file. Each verification
operation is logged, and the PCR in TAm is extended.

4. The initrd is exploded to create the initial file system.

5. The kernel is launched and the kernel keyrings are populated with the appropriate keys from the TAm.

6. Kernel modules are verified. Module verification results are logged and TAm PCR is extended.

7. The init process is launched. Whenever an executable or a shared library is invoked, the IMA kernel
hook validates the signature using the certificates in IMA keyring, which is then used to validate the
signature attached to the file.

8. The Cisco IOS XR7 RPM is installed with the signed verification. The results of RPM verification are
logged.

9. Cisco IOS XR7 processes are launched with IMA measurement.

Implementing Trustworthy Systems
17

Implementing Trustworthy Systems
IMA Signatures

http://downloads.sf.net/project/linux-ima/linux-ima/Integrity_overview.pdf
http://downloads.sf.net/project/linux-ima/linux-ima/Integrity_overview.pdf

10. TAm services are launched.

11. Cisco IOSXR7 application runs the initial admin user configuration and stores the credentials into TAm
secure storage.

Manual provisioning of user credentials is now complete.

After the sequence is successfully completed, the router is considered trustworthy.

Understanding Key Concepts in Security
Attestation

Attestation is a mechanism used to attest the software’s integrity. The verifier trusts that the attested data is
accurate because it is signed by a TPM whose key is certified by the CA.

Attestation Identity Key

An Attestation Identity Key (AIK) is a restricted key that is used for signing attestation requests.

Bootloader

The bootloader is a piece of code that runs before any operating system begins to run. Bootloaders contain
several ways to boot the OS kernel and also contain commands for debugging and modifying the kernel
environment.

Certificates and Keys in TAm

All database keys are signed by the KEK. Any update to the keys requires the KEK or PK to sign in, using
time-based authentic variables. Some of the keys on the database are:

• Image signing certificate: This is the X.509 certificate corresponding to the public key and is used for
validating the signature of grub, initrd, kernel, and kernel modules.

• IOS-XR Key: A public key certificate signed by the KEK. This key is common to all Cisco 8000 Series
routers and is used to sign GRUB, initrd, kernel and kernel modules.

• RPM key: Used for signing RPMs.

• IMA public key certificate: Used for Integrity Measurement Architecture (IMA), and used to validate
the IMA signature of the files.

• BIOS or Firmware Capsule Update key: Used to sign the outer capsule for BIOS or firmware updates.
It is the same as the secure boot key.

• Platform key (PK) and Key Enrollment Key (KEK): These are public keys and certificates used to manage
other keys in the TAM.

• LDWM Key: In the Cisco IOS XR7, the LDWM key is stored in the hardware trust anchor module and
is used for validating the BIOS.

Golden ISO (GISO)

A GISO image includes a base binary artifact (an ISO) for the Linux distribution that is used on the server
fleet, packages, and configuration files that can be used as a base across all servers.

The GISO image for Cisco IOS XR7 software contains the IOS XR RPMs, third-party RPMs, ztp.ini, and
secure ZTP certificates .

Implementing Trustworthy Systems
18

Implementing Trustworthy Systems
Understanding Key Concepts in Security

GRand Unified Bootloader (GRUB)

GNU GRUB (or just GRUB) is a boot loader package that loads the kernel and supports multiple operating
systems on a device. It is the first software that starts at a system boot.

Hash Function

A hash function is any function that is used to map data of arbitrary size onto data of a fixed size.

Initramfs

Initramfs, a complete set of directories on a normal root filesystem, is bundled into a single cpio archive and
compressed with one of the several compression algorithms. At boot time, the boot loader loads the kernel
and the initramfs image into memory and starts the kernel.

initrd

initial RAM disk is an initial root file system that is mounted before the real root file system is made available.
The initrd is bound to the kernel and loaded as part of the kernel boot procedure.

JTAG

JTAG is a common hardware interface that provides a system with a way to communicate directly with the
chips on a board. JTAG is used for debugging, programming, and testing on embedded devices.

Nonce Value

A nonce value is an arbitrary number that can be used only once in a cryptographic communication. It is a
random or pseudo-random number that is issued in an authentication protocol to ensure that the old
communications are not reused in replay attacks.

Platform Configuration Register (PCR)

PCR is a 256-bit storage location for discrete integrity measurements. It is designed to hold an unlimited
number of measurements in the register. It does this by using a cryptographic hash and hashing all updates
to a PCR.

Trust Anchor module (TAm)

The Cisco Trust Anchor module (TAm) helps verify that Cisco hardware is authentic and provides additional
security services.

Implementing Trustworthy Systems
19

Implementing Trustworthy Systems
Understanding Key Concepts in Security

Implementing Trustworthy Systems
20

Implementing Trustworthy Systems
Understanding Key Concepts in Security

	Implementing Trustworthy Systems
	Need for Trustworthy Systems
	Enable Trust in Hardware
	Enable Trust in Hardware
	Chip Guard
	Attestation

	Enable Trust in Software
	Secure Boot
	Secure iPXE – Secure Boot Over the Network
	Verify Secure Boot Status

	Establish and Maintain Trust at Steady State
	SELinux
	Confined and Unconfined Users
	SELinux Mode
	Role of the SELinux Policy in Boot Process

	Secure Install
	RPM Signing and Validation
	Third-Party RPMs

	SSD Encryption
	DM-Crypt
	AES-NI Support
	CryptSetup
	Encrypted Logical Volume
	SSD Binding
	Data Zeroization

	Runtime Defences (RTD)
	Address Space Layout Randomization (ASLR)
	Kernel Address Space Layout Randomization (KASLR)
	Built-in Object Size Checker (BOSC)
	Executable Space Protection (XSpace)
	RTD Monitor

	Boot Integrity and Trust Visibility
	Secure gRPC
	Integrity Measurement Architecture (IMA)
	IMA Signatures

	How Trustworthiness is Implemented
	Understanding Key Concepts in Security

