Implementing Secure Shell

Secure Shell (SSH) is an application and a protocol that provides a secure replacement to the Berkeley r-tools.
The protocol secures sessions using standard cryptographic mechanisms, and the application can be used
similarly to the Berkeley rexec and r sh tools.

Two versions of the SSH server are available: SSH Version 1 (SSHv1) and SSH Version 2 (SSHv2). SSHv1
uses Rivest, Shamir, and Adelman (RSA) keys and SSHv2 uses either Digital Signature Algorithm (DSA)
keys or RSA keys, or Elliptic Curve Digital Signature Algorithm (ECDSA) keys. Cisco IOS XR software
supports both SSHv1 and SSHv2.

This module describes how to implement Secure Shell on Cisco 8000 Series Routers.

\}

Note Cisco IOS XR does not support X11 forwarding through an SSH connection.

)

Note Any reference to CiscoSSH in this chapter implies OpenSSH-based implementation of SSH that is available
on this platform from Cisco IOS XR Software Release 7.3.2 and later. CiscoSSH replaces Cisco IOS XR
SSH, which is the older SSH implementation that existed prior to this release.

\}

Note Foracomplete description of the Secure Shell commands used in this chapter, see the Secure Shell and Secure
Socket Layer Commands chapter in System Security Command Reference for Cisco 8000 Series Routers.

Release Modification

Release 7.3.2 | Introduced CiscoSSH.

Release 7.3.2 | Introduced SSH port forwarding feature with CiscoSSH.

Release Introduced SSH port forwarding feature with Cisco IOS XR SSH.
7.3.15

Implementing Secure Shell [

Implementing Secure Shell |

. Information About Implementing Secure Shell

Release Modification

Release 7.3.1 | Introduced these features:
* Ed25519 Public-Key Algorithm Support for SSH

+ User Configurable Maximum Authentication Attempts for
SSH

* X.509v3 Certificate-based Authentication for SSH

Release This chapter was introduced.
7.0.12

* Information About Implementing Secure Shell, on page 2

* Prerequisites for Implementing Secure Shell, on page 12

* Guidelines and Restrictions for Implementing Secure Shell, on page 13
* How to Implement Secure Shell, on page 14

Information About Implementing Secure Shell

SSH Server

SSH Client

To implement SSH, you should understand the following concepts:

The SSH server feature enables an SSH client to make a secure, encrypted connection to a Cisco router. This
connection provides functionality that is similar to that of an inbound Telnet connection. Before SSH, security
was limited to Telnet security. SSH allows a strong encryption to be used with the Cisco IOS XR software
authentication. The SSH server in Cisco I0OS XR software works with publicly and commercially available
SSH clients.

The SSH client feature is an application running over the SSH protocol to provide device authentication and
encryption. The SSH client enables a Cisco router to make a secure, encrypted connection to another Cisco
router or to any other device running the SSH server. This connection provides functionality that is similar
to that of an outbound Telnet connection except that the connection is encrypted. With authentication and
encryption, the SSH client allows for a secure communication over an insecure network.

The SSH client in the Cisco IOS XR software works with publicly and commercially available SSH servers.
The SSH client supports the ciphers of AES, 3DES, the hash algorithm SHA1, and password authentication.
The user authentication mechanisms supported for SSH are RADIUS, TACACS+, and the use of locally
stored usernames and passwords.

The SSH client supports setting DSCP value in the outgoing packets using this command:
ssh client dscp dscp-value

The dscp-value ranges from 0 to 63. If not configured, 16 is set as the default DSCP value in the packets (for
both client and server).

You can use the ssh client command in the XR Config mode to configure various SSH client options.

[l 'mplementing Secure Shell

| Implementing Secure Shell

SFTP Feature Overview .

SSH also supports remote command execution as follows:

Router#ssh 192.0.2.1 username admin command "show redundancy sum"
Password:

Wed Jan 9 07:05:27.997 PST
Active Node Standby Node
0/4/CPUO 0/5/CPUO (Node Ready, NSR: Not Configured)
Router#

SFTP Feature Overview

SSH includes support for secure file transfer protocol (SFTP) , a new standard file transfer protocol introduced
in SSHv2. This feature provides a secure and authenticated method for copying router configuration or router
image files.

The SFTP client functionality is provided as part of the SSH component and is always enabled on the router.
Therefore, a user with the appropriate level can copy files to and from the router. Like the copy command,
the sftp command can be used only in XR EXEC mode.

The SFTP client is VRF-aware, and you may configure the secure FTP client to use the VRF associated with
a particular source interface during connections attempts. The SFTP client also supports interactive mode,
where the user can log on to the server to perform specific tasks via the Unix server.

The SFTP Server is a sub-system of the SSH server. In other words, when an SSH server receives an SFTP
server request, the SFTP API creates the SFTP server as a child process to the SSH server. A new SFTP server
instance is created with each new request.

The SFTP requests for a new SFTP server in the following steps:
* The user runs the sftp command with the required arguments
» The SFTP API internally creates a child session that interacts with the SSH server
» The SSH server creates the SFTP server child process
» The SFTP server and client interact with each other in an encrypted format

* The SFTP transfer is subject to LPTS policer "SSH-Known". Low policer values will affect SFTP transfer
speeds

\}

Note The default policer value for SSH-Known is set to 300pps. Slower transfers are expected due to this. You can

adjust the Ipts policer value for this punt cause to higher values that allows faster transfers.

You can increase the throughput of SCP or SFTP over inband using the ssh server tcp-window-scale command.

When the SSH server establishes a new connection with the SSH client, the server daemon creates a new SSH
server child process. The child server process builds a secure communications channel between the SSH client
and server via key exchange and user authentication processes. If the SSH server receives a request for the
sub-system to be an SFTP server, the SSH server daemon creates the SFTP server child process. For each
incoming SFTP server subsystem request, a new SSH server child and SFTP server instances are created. The

Implementing Secure Shell [

Implementing Secure Shell |
. RSA Based Host Authentication

SSH server authenticates the user session and initiates a connection. It sets the environment for the client and
the default directory for the user.

Once the initialization occurs, the SFTP server waits for the SSH FXP_INIT message from the client, which
is essential to start the file communication session. This message may then be followed by any message based
on the client request. Here, the protocol adopts a 'request-response' model, where the client sends a request
to the server; the server processes this request and sends a response.

The SFTP server displays the following responses:

* Status Response
* Handle Response
* Data Response

* Name Response

\}

Note The server must be running in order to accept incoming SFTP connections.

RSA Based Host Authentication

Verifying the authenticity of a server is the first step to a secure SSH connection. This process is called the
host authentication, and is conducted to ensure that a client connects to a valid server.

The host authentication is performed using the public key of a server. The server, during the key-exchange
phase, provides its public key to the client. The client checks its database for known hosts of this server and
the corresponding public-key. If the client fails to find the server's IP address, it displays a warning message
to the user, offering an option to either save the public key or discard it. If the server’s IP address is found,
but the public-key does not match, the client closes the connection. If the public key is valid, the server is
verified and a secure SSH connection is established.

The IOS XR SSH server and client had support for DSA based host authentication. But for compatibility with
other products, like IOS, RSA based host authentication support is also added.

RSA Based User Authentication

One of the method for authenticating the user in SSH protocol is RSA public-key based user authentication.
The possession of a private key serves as the authentication of the user. This method works by sending a
signature created with a private key of the user. Each user has a RSA key pair on the client machine. The
private key of the RSA key pair remains on the client machine.

The user generates an RSA public-private key pair on a unix client using a standard key generation mechanism
such as ssh-keygen. The max length of the keys supported is 4096 bits, and the minimum length is 512 bits.
The following example displays a typical key generation activity:

bash-2.05b$ ssh-keygen -b 1024 -t rsa
Generating RSA private key, 1024 bit long modulus

The public key must be in base64 encoded (binary) format for it to be imported correctly into the box. You
can use third party tools available on the Internet to convert the key to the binary format.

[l 'mplementing Secure Shell

| Implementing Secure Shell
SSHv2 Client Keyboard-Interactive Authentication .

Once the public key is imported to the router, the SSH client can choose to use the public key authentication
method by specifying the request using the “-0” option in the SSH client. For example:

client$ ssh -o PreferredAuthentications=publickey 1.2.3.4

If a public key is not imported to a router using the RSA method, the SSH server initiates the password based
authentication. If a public key is imported, the server proposes the use of both the methods. The SSH client
then chooses to use either method to establish the connection. The system allows only 10 outgoing SSH client
connections.

Currently, only SSH version 2 supports the RSA based authentication. For more information on how to import
the public key to the router, see the Implementing Certification Authority Interoperability chapter in this
guide.

N

Note The preferred method of authentication would be as stated in the SSH RFC. The RSA based authentication
support is only for local authentication, and not for TACACS/RADIUS servers.

Authentication, Authorization, and Accounting (AAA) is a suite of network security services that provides
the primary framework through which access control can be set up on your Cisco router or access server. For
more information on AAA, the Configuring AAA Services chapter in this guide.

SSHv2 Client Keyboard-Interactive Authentication

An authentication method in which the authentication information is entered using a keyboard is known as
keyboard-interactive authentication. This method is an interactive authentication method in the SSH protocol.
This type of authentication allows the SSH client to support different methods of authentication without having
to be aware of their underlying mechanisms.

Currently, the SSHv2 client supports the keyboard-interactive authentication. This type of authentication
works only for interactive applications.

\}

Note The password authentication is the default authentication method. The keyboard-interactive authentication
method is selected if the server is configured to support only the keyboard-interactive authentication.

SSH and SFTP in Baseline Cisco 10S XR Software Image

The SSH and SFTP components are present in the baseline Cisco IOS XR software image. The management
and control plane components (such as the IPSec control plane) are also present in the base package. However,
the data plane components (such as the MACSec and the IPSec data plane) are part of the security package

as per the export compliance regulations. This segregation of package components makes the software more
modular. It also gives you the flexibility of including or excluding the security package as per your requirements.

The base package and the security package allow FIPS, so that the control plane can negotiate FIPS-approved
algorithms.

Implementing Secure Shell [

B ciscossH

CiscoSSH

Implementing Secure Shell |

Table 1: Feature History Table

Feature Name Release Information Feature Description

CiscoSSH Release 7.3.2 This release introduces CiscoSSH,
anewer implementation of SSH on
this platform.

CiscoSSH leverages OpenSSH
implementation, by using the Linux
TCP/IP stack to transmit and
receive SSH packets over the
management Ethernet interface and
line card interfaces on the router.
CiscoSSH provides additional
security features like FIPS
compliance and X.509 digital
certification. It supports packet path
features like MPP, ACL and VRF
support, and ensures
interoperability with various
existing SSH implementations.

Note

Cisco IOS XR SSH, the SSH
implementation that existed prior
to this release, is now deprecated.

\}

Note

Any reference to CiscoSSH in this chapter implies OpenSSH-based implementation of SSH that is available
on this platform from Cisco IOS XR Software Release 7.3.2 and later. CiscoSSH replaces Cisco IOS XR

SSH, which is the older SSH implementation that existed prior to this release.

OpenSSH is a stable, widely deployed open-source implementation of SSH. CiscoSSH implementation
leverages the key features of openSSH such as strong authentication, cryptography, encryption, port forwarding,
and so on, to provide secured management access to the router. CiscoSSH provides additional security features
like FIPS compliance and support for X.509 digital certificate.

For more details on SSH in general, see Information About Implementing Secure Shell, on page 2 and How
to Implement Secure Shell, on page 14.

The CiscoSSH implementation also ensures backward compatibility for all the existing Cisco IOS XR SSH
configuration and management. You can continue to use SSH the way it was existing before. The functionality
and configuration commands of CiscoSSH and Cisco IOS XR SSH remain the same for majority of the part.
However, certain behavioral changes exist between CiscoSSH and Cisco IOS XR SSH. For details, see the
subsequent sections.

This table lists the behavioral changes introduced by CiscoSSH as compared to Cisco IOS XR SSH. Also,
see Guidelines for Using CiscoSSH, on page 8.

[l 'mplementing Secure Shell

| Implementing Secure Shell

ciscosSH [l

Table 2: Behavioral Changes Introduced by CiscoSSH in Comparison to Cisco 10S XR SSH

Functionality

CiscoSSH

Cisco 10S XR SSH

Port number for Netconf
server

The system uses the port numbers 830
(the default IANA-assigned TCP port
number for Netconf over SSH) or 22
(the default port number for SSH) for
the Netconf server. You cannot
configure this value.

You can explicitly configure the desired
port number for Netconf server using
the ssh server netconf port command.

Username syntax

Because CiscoSSH considers ":' (colon)
as a delimiter in certain types of user
authentication, it does not support
authentication of usernames having "'
(colon) in it.

No restriction for using "' (colon) in
username syntax.

Configuring unsupported
algorithms

You cannot enable unsupported
algorithms using any configuration
command.

You can explicitly enable unsupported
algorithms using the ssh server enable
cipher command.

SSH session timeout

The SSH session initiated from the
router to an unreachable host times out
after 120 seconds.

The SSH session initiated from the
router to an unreachable host times out
after 60 seconds.

SSH session timeout
criteria

The SSH timeout configuration
considers the total timeout value for the
maximum number of login attempts
allowed.

The SSH timeout configuration
considers the timeout value for
individual login attempt.

Time-based rekey of SSH
sessions

The router triggers time-based rekey of
SSH sessions only when it receives a
packet after the timer expiry.

The router triggers time-based rekey of
SSH sessions immediately after the
timer expiry.

LPTS policer rate for
port-forwarded SSH
sessions

When using SSH port forwarding
feature, the router considers the traffic
flows corresponding to port-forwarded
SSH sessions as third party
applications. Hence, the LPTS polices
those traffic flows at a medium rate.

The LPTS polices the traffic flows
corresponding to port-forwarded SSH
sessions at a high rate.

Port-forwarded channels

No limit to the number of
port-forwarded channels supported with
CiscoSSH. But, the show ssh
command displays a maximum of only
16 entries.

Supports a maximum of 16
port-forwarded channels.

File transfer through SCP

While using SCP with CiscoSSH, the
router checks for the presence of system
files after authentication.

The router checks for the presence of
system files before authentication.

Implementing Secure Shell [

Implementing Secure Shell |
. Guidelines for Using CiscoSSH

Functionality CiscoSSH Cisco 10S XR SSH
File transfer through SFTP | With non-interactive SFTP session You can transfer files from an external
initiated from the router, you can device to the router, and the other way

transfer files from an external device to | round.
the router; not from the router to
external device.

Restrictions for Cisco SSH
* Does not support SSH version 1
* Does not support back up SSH server
* Does not support management access to the router over the standby management Ethernet interface.
* Does not allow to use secondary IPv4 addresses because they are not currently synchronized to Linux
* Does not support BVI interfaces as source or destination for the SSH connections
* Does not support these algorithms:
* The cipher algorithms, aes128-chc, aes192-cbc, aes256-cbc, and 3des-cbe
* The key-exchange algorithm, diffie-hellman-groupl-shal

* Does not support these commands:
* show ssh history
« show ssh history details
* clear ssh stale sessions
* If you configure ingress ACLs only under the management interface and do not configure them under

the ssh server configuration mode, then those ingress ACLs do not have any impact on the SSH, or
Netconf traffic. This behavior is applicable only to ingress ACLs attached to management interface.

Guidelines for Using CiscoSSH
The following section lists certain functionality aspects and guidelines for using CiscoSSH.

* Netconf Request: You must follow a specific syntax when you send Netconf request over CLI. Add the
subsystem (netconf or sftp) name as the last argument while issuing an SSH command.

For example,
ssh username@ipaddress -p 830 -s netconf ---> Correct usage

ssh username@ipaddress netconf -p 830 -s ---> Incorrect usage

« Configuring unsupported algorithms: Configuring CiscoSSH server only with unsupported algorithms
(3des-chc or diffie-hellman-groupl-shal) results in commit failure. Hence, you must remove such
configurations on your router as a part of the pre-upgrade procedure.

For example,

[l 'mplementing Secure Shell

| Implementing Secure Shell

Guidelines for Using CiscoSSH .

Router (config) #ssh server algorithms cipher 3des-cbc

1'1% Operation not permitted: 3des-cbc is not supported in ciscossh, SSH cannot work
with this option only

Similarly, if you configure CiscoSSH server with both supported and unsupported algorithms, then the
router issues the following warning and removes the unsupported algorithm:

Router (config) #ssh server algorithms cipher aesl28-ctr aesl92-ctr 3des-cbc

ssh conf proxy([1193]: $SECURITY-SSHD CONF PRX-3-ERR GENERAL : 3des-cbc is not supported,
will be removed

SSH session keep alive: By default, the SSH session keep alive functionality is enabled in CiscoSSH,
to detect and terminate unresponsive sessions. The default keep alive time is 60 seconds, with a maximum
of three attempts allowed, so that the detection time for unresponsive sessions is 180 seconds. These
keep alive parameters are not configurable.

TCP window scale: Although the router accepts the configuration to change the TCP window scale
parameter, the configuration does not have any effect with CiscoSSH. This is because, CiscoSSH uses
Linux TCP/IP stack that has dynamic window scaling, and hence it does not require applications to
specify the window scale.

SSH session limit and ratelimit: Although the configuration for SSH session limit and rate limit applies
to all VRFs where SSH is enabled, the router enforces the limit for each VRF. However, the maximum
number of virtual teletype (VTY) sessions across all VRFs still remains as 200. This in turn limits the
total number of SSH sessions that require a VTY interface, across all VRFs. As a result, when upgrading
from a release version having Cisco IOS XR SSH to a version having CiscoSSH, the system applies the
session limit and rate limit configurations to all VRFs where SSH is enabled. Hence, as part of the
post-upgrade procedure, you must reconfigure these limits to achieve the same limit as that of Cisco IOS
XR SSH.

SSH session limit enforcement: Information on the number of active SSH sessions on the router is not
persistent across SSH server process restarts. Hence, SSH session limit enforcement does not consider
the existing sessions after an SSH server restart.

SSH with ACL or M PP configuration: With SSH ACL or MPP configured on the router, the attempt
for client connection that is not allowed as per that configuration times out. The router does not send
TCP reset for such blocked SSH connections. This implementation is to enhance security.

Ingress ACL : To filter out the ingress SSH and Netconf traffic, we recommend to configure the ingress
ACL under the ssh server configuration mode instead of configuring under the management interface.

For SSH:
ssh server vrf vrf-name ipv4 access-list ipv4-access-list-name ipv6 access-list i pv6-access-list-name
For Netconf:

ssh server netconf vrf vrf-name ipv4 access-list ipv4-access-list-name ipv6 access-list i pv6-access-list-name
Default VRFs: Configuring the default SSH VRF using the ssh vrf default command enables only
version 2 of CiscoSSH, because version 1 is not supported.

Non-default VRFs: If SSH service is enabled on any of the non-default VRFs that is configured on the
router, and if you restart the ssh_conf_proxy process, there might be a delay in allowing incoming SSH
sessions on that non-default VRF. The session establishment might even timeout in such a scenario. This
behavior is due to the delay in programming the LPTS entries for those sessions.

Implementing Secure Shell [

Implementing Secure Shell |

. Guidelines for Using CiscoSSH

Public key-based authentication: In CiscoSSH, the router negotiates public key-based authentication
even if there is no public key imported on to the router. So, the authentication attempt from the client
using public key fails in such scenarios. The router displays a syslog on the console for this authentication
failure. However, the client and server proceed with subsequent authentication methods like
keyboard-interactive and password methods. If the router does not have a public key imported, you may
choose to disable public key-based authentication from the client side. For details on public key-based
authentication, see the Implementing Certification Authority Interoperability chapter in this guide.

M odifying SSH configuration: Any change to the SSH configuration results in process restart of SSH
server process. However, it does not impact the existing SSH, SCP, SFTP, or Netconf sessions.

Clearing SSH sessions: The clear ssh all command clears all incoming sessions.

Line-feed option: Adding a line-feed option for Gossh-based clients results in SSH session establishment
failure. This is because, the SSH client checks for non-zero window size for session establishment.
Whereas CiscoSSH sends window size as 0. The workaround for this issue is to use the option to ignore
the window size while initiating an SSH connection from such clients.

Virtual | P addresses: After a process restart of XIncd or ip_smiap, there might be a delay in restoring
the virtual IP addresses.

M or e-specific Routes: Routes that are more specific than a connected route will not be available through
Linux.

For example:

XR routing table:

10.0.0.0/24 via 10.0.0.2 (connected route)
10.0.0.192/28 via 20.0.0.1 (static route)

The expected behavior is as follows:

Table 3: Expected Behavior of More-specific Routes with CiscoSSH

Destination IP Range Cisco 10S XR 0S Sends | Linux Sends to: Match
to: (Yes/No)
10.0.0.1 - 10.0.0.191 10.0.0.2 10.0.0.2 Yes
10.0.0.193 - 10.0.0.206 20.0.0.1 10.0.0.2 No
10.0.0.207 - 10.0.0.255 10.0.0.2 10.0.0.2 Yes

Verification commands: During stress test on the router, certain show commands like show ssh, show
ssh session details, and show ssh rekey might time out. The console displays the following error message
in such cases:

"Error: Timed out to obtain information about one or more incoming/outgoing session.
please retry."

Processrestart:

* You cannot restart the CiscoSSH server process using the processrestart ssh_server command,
because it is a Linux process. Use the Kill command on the Linux shell to restart the process.

[l 'mplementing Secure Shell

Implementing Secure Shell

Guidelines for Using CiscoSSH .

* CiscoSSH has ssh_conf_proxy and ssh_syslog_proxy processes that are responsible for processing
the SSH configuration and logging syslog messages respectively. You can restart these processes
using the processrestart command.

* A restart of XR-TCP process does not have any impact on CiscoSSH functionality, because CiscoSSH

uses Linux TCP.

« Debuggability:

* You can enable 3 levels of debugs for CiscoSSH using the debug ssh server |1/12/I3 command.
Similarly, you can use the debug ssh client 11/12/13 command for CiscoSSH client.

» The SSH server process restarts every time you enable or disable the debugs, because enabling the
debugs results in updating the LOGLEVEL in the internal sshd_config file.

Syslogs for CiscoSSH

CiscoSSH introduces new syslogs for various SSH session events. The following table gives a comparison
of syslogs between CiscoSSH and Cisco IOS XR SSH:

Table 4: Syslogs for CiscoSSH and Cisco 10S XR SSH

Session Event

Syslogs on CiscoSSH

Syslogs on Cisco 10S XR SSH

Session login

RP/0/RP0O/CPUO:Sep 22
11:06:33.467 IST:
ssh syslog proxy[1204]:
SSECURTTY-SSHD SYSLOG PRX-6-INFO GENERAL
: sshd[32504]: Accepted
authentication/pam for admin
from 203.0.113.1 port 62015
ssh2
RP/0/RP0O/CPUO:Sep 22
11:06:33.472 IST:
ssh _syslog proxy[1204]:
SSECURTTY-SSHD SYSLOG PRX-6-INFO GENERAL
: sshd[32504]: User child is
on pid 32564
RP/0/RP0O/CPUO:Sep 22
11:06:33.519 IST:
ssh _syslog proxy[1204]:
SSECURTTY-SSHD SYSLOG PRX-6-INFO GENERAL
: sshd[32564]: Starting
session: shell on pts/1 for
admin from 203.0.113.1 port
62015 id 0

RP/0/RP0O/CPUO:Sep 22
11:46:13.475 IST:
SSHD_ [67274]:
$SECURITY-SSHD-6-INFO_ SUCCESS
: Successfully authenticated
user 'root' from '192.0.2.1"'
on 'vtyO' (cipher
'aesl28-ctr', mac
'hmac-sha2-256")

Imp

lementing Secure Shell .

. Prerequisites for Inplementing Secure Shell

Implementing Secure Shell |

Session Event

Syslogs on CiscoSSH

Syslogs on Cisco 10S XR SSH

Session logout

RP/0/RPO/CPUO:Sep 22
11:11:27.394 IST:
ssh_syslog proxy[1204]:
SSECURTTY-SSHD SYSLOG PRX-6-INFO GENERAL

sshd[32564]: Received
disconnect from 203.0.113.1
port 62015:11: disconnected by
user
RP/0/RPO/CPUO:Sep 22
11:11:27.394 IST:
ssh_syslog proxy[1204]:
SSECURTTY-SSHD SYSLOG PRX-6-INFO GENERAL

sshd[32564]: Disconnected
from user admin 203.0.113.1
port 62015

RP/0/RP0O/CPUO:Sep 22
11:46:48.439 IST:
SSHD_[67274]:
$SECURITY-SSHD-6-INFO USER LOGOUT

User 'root' from
'192.0.2.1" logged out on
'vty0'

Session login failure

RP/0/RPO/CPUO:Sep 22
19:47:06.211 IST:
ssh syslog proxy[1204]:
SSECURTTY-SSHD SYSLOG PRX-6-TNFO GENFRAL
sshd[31103]: Failed
authentication/pam for admin
from 203.0.113.1 port 60189
ssh2

RP/0/RPO/CPUO:Sep 22
11:47:55.909 IST:
SSHD_[67369] :
%SECURITY—SSHD—4—INFOiFAILURE
Failed authentication
attempt by user 'root' from
'192.0.2.1" on 'vty0'

Session rekey

ssh_syslog proxy[1204]:

SSECURTTY-SSHD SYSLOG PRX—6-INFO GENERAL
sshd[24919]: Server

initiated time rekey for

session=21,

session_rekey count =1

RP/0/RP0O/CPUO:Sep 22
19:07:45.435 IST:
SSHD_[65640] :
$SECURITY-SSHD-6-INFO_ REKEY
Server initiated time rekey
for session 4 ,
session_rekey count =1

Prerequisites for Implementing Secure Shell

The following prerequisites are required to implement Secure Shell:

* You must be in a user group associated with a task group that includes the proper task IDs. The command
reference guides include the task IDs required for each command. If you suspect user group assignment
is preventing you from using a command, contact your AAA administrator for assistance.

* To run an SSHv?2 server, you must have a VRF. This may be the default VRF or a specific VRF. VRF
changes are applicable only to the SSH v2 server.

» Configure user authentication for local or remote access. You can configure authentication with or without
authentication, authorization, and accounting (AAA). For more information, see the Configuring AAA
Services chapter in the this guide.

» AAA authentication and authorization must be configured correctly for Secure Shell File Transfer Protocol

(SFTP) to work.

[l 'mplementing Secure Shell

| Implementing Secure Shell

Guidelines and Restrictions for Implementing Secure Shell .

Guidelines and Restrictions for Implementing Secure Shell

The following are some basic SSH guidelines, restrictions, and limitations of the SFTP feature:

Y

In order for an outside client to connect to the router, the router needs to have an RSA (for SSHv2) or
DSA (for SSHv2) or ECDSA (for SSHv2) key pair configured. ECDSA, DSA and RSA keys are not
required if you are initiating an SSH client connection from the router to an outside routing device. The
same is true for SFTP: ECDSA, DSA and RSA keys are not required because SFTP operates only in
client mode.

Note

The RSA, DSA and ECDSA keys are auto-generated during the boot if there is
no key present.

If you delete all the default crypto keys (the keys with the_default label) on the router, the SSH clients
cannot establish sessions with the router. Hence, for clients to successfully establish SSH sessions with
the router, ensure that at least one default crypto key is always present on the router. In FIPS mode, it is
mandatory to have at least one default crypto key of type RSA or ECDSA.

For SSH sessions, the router supports key-exchange algorithms (diffie-hellman-groupl-shal and
curve25519) and cipher algorithms (3des-cbc and chacha20-poly1305@openssh.com) only in non-FIPS
mode. The SSH session fails to connect if any of these algorithms is pre-configured prior to enabling
FIPS mode though.

In order for SFTP to work properly, the remote SSH server must enable the SFTP server functionality.
For example, the SSHv2 server is configured to handle the SFTP subsystem with a line such as
/etc/ssh2/sshd2_config:

subsystem-sftp /usr/local/sbin/sftp-server

The SFTP server is usually included as part of SSH packages from public domain and is turned on by
default configuration.

SFTP is compatible with sftp server version OpenSSH_2.9.9p2 or higher.

RSA-based user authentication is supported in the SSH, SFTP and SCP servers. The support however,
is not extended to the SSH client.

Execution shell, SFTP, SCP and Netconf are the only applications supported.

The cipher preference for the SSH server follows the order AES128, AES192, AES256, aes128-gcm,
aes256-gem, and chacha20-poly1305. The server rejects any requests by the client for an unsupported
cipher, and the SSH session does not proceed.

Use of a terminal type other than vt100 is unsupported, and the software generates a warning message
in this case.

Password messages of “none” are unsupported on the SSH client.

Because the router infrastructure does not provide support for UNIX-like file permissions, files created
on the local device lose the original permission information. For files created on the remote file system,
the file permission adheres to the umask on the destination host and the modification and last access
times are the time of the copy.

Implementing Secure Shell [

Implementing Secure Shell |
. How to Implement Secure Shell

How to Implement Secure Shell
To configure SSH, perform the tasks described in the following sections:
Configure SSH
A\

Note For SSHvI configuration, Step 1 to Step 4 are required. For SSHv2 configuration, these steps are optional.

Perform this task to configure SSH.

Procedure

Step 1 configure

Example:

RP/0/RP0O/CPUO:router# configure

Enters mode.

Step 2 hostname hostname

Example:

Router (config) # hostname routerl

Configures a hostname for your router.

Step 3 domain name domain-name

Example:

Router (config) # domain name cisco.com

Defines a default domain name that the software uses to complete unqualified host names.

Step 4 Use the commit or end command.
commit —Saves the configuration changes and remains within the configuration session.
end —Prompts user to take one of these actions:

* Yes— Saves configuration changes and exits the configuration session.
* No —Exits the configuration session without committing the configuration changes.

» Cancel —Remains in the configuration session, without committing the configuration changes.

Step 5 configure
Step 6 ssh server tep-window-scale scale

[l 'mplementing Secure Shell

| Implementing Secure Shell

Step 7

Step 8

Step 9

Step 10

Configure SSH .

Example:

Router (config)# ssh server tcp-window-scale 10

(Optional) Configures the TCP window scale for increased throughput for SCP or SFTP.

ssh timeout seconds

Example:

Router (config)# ssh timeout 60
(Optional) Configures the timeout value for user authentication to AAA.

« If the user fails to authenticate itself to AAA within the configured time, the connection is terminated.

* If no value is configured, the default value of 30 seconds is used. The range is from 5 to 120.

Do one of the following:

* ssh server [vrf vrf-name [ipv4 access-list ipv4-access-list name] [ipv6 access-list ipv6-access-list name]]
* ssh server v2

Example:

Router (config) # ssh server v2

* (Optional) Brings up an SSH server using a specified VRF of up to 32 characters. If no VRF is specified, the
default VRF is used. To stop the SSH server from receiving any further connections for the specified VREF, use
the no form of this command. If no VREF is specified, the default is assumed. Optionally ACLs for [Pv4 and IPv6
can be used to restrict access to the server before the port is opened. To stop the SSH server from receiving any
further connections for the specified VRF, use the no form of this command. If no VRF is specified, the default
is assumed.

Note
The SSH server can be configured for multiple VRF usage.

* (Optional) Forces the SSH server to accept only SSHv2 clients if you configure the SSHv2 option by using the
ssh server v2 command. If you choose the ssh server v2 command, only the SSH v2 client connections are
accepted.

ssh {client | server} dscp dscp-value

Example:

Router (config)# ssh server dscp 63

Router (config)# ssh client dscp 63

(optional) Sets the DSCP value in the outgoing packets. If not configured, 16 is set as the default DSCP value for the
packets (for both client and server).

Use the commit or end command.
commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

Implementing Secure Shell [

Implementing Secure Shell |
. Configure SSH

* Yes— Saves configuration changes and exits the configuration session.
* No —Exits the configuration session without committing the configuration changes.

» Cancel —Remains in the configuration session, without committing the configuration changes.

Step 11 show ssh

Example:

Router# show ssh

(Optional) Displays all of the incoming and outgoing SSHv1 and SSHv2 connections to the router.

Step 12 show ssh session details

Example:

Router# show ssh session details

(Optional) Displays a detailed report of the SSHv2 connections to and from the router.

Step 13 show ssh history

Example:
Router# show ssh history
(Optional) Displays the last hundred SSH connections that were terminated.

Step 14 show ssh history details

Example:

Router# show ssh history details

(Optional) Displays the last hundred SSH connections that were terminated with additional details. This command is
similar to show ssh session details command but also mentions the start and end time of the session.

Step 15 show tech-support ssh

Example:

Router# show tech-support ssh

(Optional) Automatically runs the show commands that display system information.

[l 'mplementing Secure Shell

| Implementing Secure Shell
Automatic Generation of SSH Host-Key Pairs .

\)

Note The order of priority while doing negotiation for a SSH connection is as follows:

1. ecdsa-nistp-521
2. ecdsa-nistp-384
3. ecdsa-nistp-256
4. rsa
5

dsa

Automatic Generation of SSH Host-Key Pairs

This feature brings in the functionality of automatically generating the SSH host-key pairs for the DSA,
ECDSA (such as ecdsa-nistp256, ecdsa-nistp384, and ecdsa-nistp521) and RSA algorithms. This in turn
eliminates the need for explicitly generating each SSH host-key pair after the router boots up. Because the
keys are already present in the system, the SSH client can establish connection with the SSH server soon after
the router boots up with the basic SSH configuration. This is useful especially during zero touch provisioning
(ZTP) and Golden ISO boot up scenarios.

Although the host keys are auto-generated with the introduction of this feature, you still have the flexibility
to select only the required algorithms on the SSH server. You can use the ssh server algorithms host-key
command in XR Config mode to achieve the same. Alternatively, you can also use the crypto key zeroize
command in XR EXEC mode to remove the algorithms that are not required.

\}

Note In asystem upgrade scenario from version 1 to version 2, the system does not generate the SSH host-key pairs
automatically if they were already generated in version 1. The host-key pairs are generated automatically only
if they were not generated in version 1.

If the SSH host-key pairs are not present in some scenarios, you can execute the crypto key gener ate command
in XR EXEC mode to generate the required host-key pairs.

Configure the Allowed SSH Host-Key Pair Algorithms

When the SSH client attempts a connection with the SSH server, it sends a list of SSH host-key pair algorithms
(in the order of preference) internally in the connection request. The SSH server, in turn, picks the first matching
algorithm from this request list. The server establishes a connection only if that host-key pair is already
generated in the system, and if it is configured (using the ssh server algorithms host-key command) as the
allowed algorithm.

N

Note If this configuration of allowed host-key pairs is not present in the SSH server, then you can consider that the
SSH server allows all host-key pairs. In that case, the SSH client can connect with any one of the host-key
pairs. Not having this configuration also ensures backward compatibility in system upgrade scenarios.

Implementing Secure Shell [

Implementing Secure Shell |
. Configure the Allowed SSH Host-Key Pair Algorithms

Configuration Example

You may perform this (optional) task to specify the allowed SSH host-key pair algorithm (in this example,
ecdsa) from the list of auto-generated host-key pairs on the SSH server:

/* Example to select the ecdsa algorithm */
Router (config) #ssh server algorithms host-key ecdsa-nistp521

Similarly, you may configure other algorithms.

Running Configuration

ssh server algorithms host-key ecdsa-nistpb521
|

Verify the SSH Host-Key Pair Algorithms

N

Note With the introduction of the automatic generation of SSH host-key pairs, the output of the show crypto key
mypubkey command displays key information of all the keys that are auto-generated. Before its introduction,
the output of this show command displayed key information of only those keys that you explicitly generated
using the crypto key generate command.

Router#show crypto key mypubkey ecdsa
Mon Nov 19 12:22:51.762 UTC
Key label: the default

Type : ECDSA General Curve Nistp256
Degree : 256

Created : 10:59:08 UTC Mon Nov 19 2018
Data

04AC7533 3ABE7874 43F024C1l 9C24CC66 490E83BE 76CEF4E2 51BBEF11 170CDB26
14289D03 6625FC4F 3ET7F8F45 0DA730C3 31E960FE CF511A05 2BOAA63E 9C022482
6E

Key label: the default

Type : ECDSA General Curve Nistp384
Degree : 384

Created : 10:59:08 UTC Mon Nov 19 2018
Data

04B70BAF CO096E2CA D848EE72 6562F3CC 9F12FA40 BEO9BFE6 AFOCA179 F29F6407
FEE24A43 84C5A5DE D7912208 CB67EE41 58CB9640 05E9421F 2DCDC41C EED31288
6CACC8DD 861DC887 98E535C4 893CB19F S5ED3F6BC 2C90C39B 10EAEDS57 87E96F78
B6

Key label: the default

Type : ECDSA General Curve Nistpb521
Degree : 521

Created : 10:59:09 UTC Mon Nov 19 2018
Data

0400BA39 E3B35E13 810D8AE5 260B8047 84E8087B 5137319A C2865629 8455928F
D3D9CE39 00E097FF 6CA369C3 EE63BA57 A4C49C02 B408F682 C2153B7F AAES3EFS8
A2926001 EF113896 5F1DA056 2D62F292 B860FDEFB 0314CE72 F87AA2CY9 D5DD29F4
DA85AE4D 1CA453AC 412E911A 419E9B43 OA13DAD3 7B7E88E4 7D96794B 369D6247
E3DA7B8A 5E

The following example shows the output for ed25519:

[l 'mplementing Secure Shell

| Implementing Secure Shell

Router#show crypto key mypubkey ed25519

Wed Dec 16 16:12:21.464 IST

Key label: the default

Type : ED25519

Size : 256

Created : 15:08:28 IST Tue Oct 13 2020
Data

Ed25519 Public-Key Signature Algorithm Support for SSH .

649CC355 40F85479 AE9BE26F B5B59153 78D171B6 F40AA53D B2E48382 BA30ES5A9

Router#

Related Topics

Automatic Generation of SSH Host-Key Pairs, on page 17

Associated Commands

* ssh server algorithms host-key

« show crypto key mypubkey

Ed25519 Public-Key Signature Algorithm Support for SSH

Table 5: Feature History Table

Feature Name

Release Information

Feature Description

Ed25519 Public-Key Signature
Algorithm Support for SSH

Release 7.3.1

This algorithm is now supported on
Cisco I0S XR 64-bit platforms
when establishing SSH sessions. It
is a modern and secure public-key
signature algorithm that provides
several benefits, particularly
resistance against several
side-channel attacks. Prior to this
release, DSA, ECDSA, and RSA
public-key algorithms were
supported.

This command is modified for this
feature:

ssh server algorithms host-key

This feature introduces the support for Ed25519 public-key algorithm, when establishing SSH sessions, on
Cisco IOS XR 64-bit platforms. This algorithm offers better security with faster performance when compared
to DSA or ECDSA signature algorithms.

The order of priority of public-key algorithms during SSH negotiation between the client and the server is:

* ecdsa-sha2-nistp256
* ecdsa-sha2-nistp384

Implementing Secure Shell [

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/secure-shell-and-secure-sockets-layer-commands.html#wp2059743426

Implementing Secure Shell |

. How to Generate Ed25519 Public Key for SSH

* ecdsa-sha2-nistp521
* ssh-ed25519
* ssh-rsa

* ssh-dsa

Restrictions for ED25519 Public Key for SSH

The Ed25519 public key algorithm is not FIPS-certified. That is, if FIPS mode is enabled on the router, the
list of public-key algorithms sent during the SSH key negotiation phase does not contain the Ed25519 key.
This behavior is applicable only for new SSH connections. Any existing SSH session that has already negotiated
Ed25519 public-key algorithm remains intact and continues to execute until the session is disconnected.

Further, if you have configured the router to negotiate only the Ed25519 public-key algorithm (using the ssh
server algorithms host-key command), and if FIPS mode is also enabled, then the SSH connection to the
router fails.

How to Generate Ed25519 Public Key for SSH

To generate Ed25519 public key for SSH, see Generate Crypto Key for Ed25519 Signature Algorithm.

You must also specify Ed25519 as the permitted SSH host-key pair algorithm from the list of auto-generated
host-key pairs on the SSH server. For details, see Configure the Allowed SSH Host-Key Pair Algorithms, on
page 17.

To remove the Ed25519 key from the router, use the crypto key zeroize ed25519 command in XR EXEC
mode.

Configure the SSH Client

Procedure

Step 1

Step 2

configure

Example:

Perform this task to configure an SSH client.

RP/0/RPO/CPUO:router# configure

Enters mode.

ssh client knownhost device : /filename

Example:

Router (config)# ssh client knownhost slotl:/server pubkey

(Optional) Enables the feature to authenticate and check the server public key (pubkey) at the client end.

Note

The complete path of the filename is required. The colon (:) and slash mark (/) are also required.

[l 'mplementing Secure Shell

b-system-security-cg-cisco8000-75x_chapter4.pdf#nameddest=unique_180

| Implementing Secure Shell
Configure the SSH Client [

Step 3 Use the commit or end command.
commit —Saves the configuration changes and remains within the configuration session.
end —Prompts user to take one of these actions:
* Yes— Saves configuration changes and exits the configuration session.
» No —Exits the configuration session without committing the configuration changes.

 Cancel —Remains in the configuration session, without committing the configuration changes.

Step 4 ssh {ipv4d-address | hosthame} [username user-id | cipher des | source-interface typeinstance]

Example:

Router# ssh remotehost username userl234

Enables an outbound SSH connection.

* To run an SSHv?2 server, you must have a VRF. This may be the default or a specific VRF. VRF changes are
applicable only to the SSH v2 server.

* The SSH client tries to make an SSHv2 connection to the remote peer. If the remote peer supports only the SSHv1
server, the peer internally spawns an SSHv1 connection to the remote server.

* The cipher desoption can be used only with an SSHv1 client.

» The SSHv1 client supports only the 3DES encryption algorithm option, which is still available by default for those
SSH clients only.

» If the hostname argument is used and the host has both [Pv4 and IPv6 addresses, the IPv6 address is used.

* If you are using SSHv1 and your SSH connection is being rejected, the reason could be that the RSA
key pair might have been zeroed out. Another reason could be that the SSH server to which the user is
connecting to using SSHv1 client does not accept SSHv1 connections. Make sure that you have specified
a hostname and domain. Then use the crypto key generate rsa command to generate an RSA key pair,
and then enable the SSH server.

* If you are using SSHv2 and your SSH connection is being rejected, the reason could be that the DSA or
RSA or ECDSA key pair might have been zeroed out. Make sure you follow similar steps as mentioned
above to generate the required key pairs, and then enable the SSH server.

» When configuring the ECDSA, RSA or DSA key pair, you might encounter the following error messages:

* No hostname specified

You must configure a hostname for the router using the hostname command in that case.

* No domain specified

You must configure a host domain for the router using the domain-name command in that case.

* The number of allowable SSH connections is limited to the maximum number of virtual terminal lines
configured for the router. Each SSH connection uses a vty resource. The default number of VTYs is 5.

Implementing Secure Shell [

Implementing Secure Shell |
. Configure Secure Shell: Example

So, you must configure the number of VTYs in the VTY pool. The default value for the maximum number
of SSH sessions is 64.

* For FIPS compliance,the weaker ciphers like 3DES and AES CBC are not supported; only AES-CTR
cipher is supported.

* SSH uses either local authentication or remote authentication that is configured through AAA on your
router for user authentication. When configuring AAA, you must ensure that the console is not running
under AAA by applying a keyword in the global configuration mode to disable AAA on the console.

N

Note If you are using Putty version 0.63 or higher to connect to the SSH client, set the
'Chokes on PuTTYs SSH2 winadj request' option under SSH > Bugs in your
Putty configuration to 'On.' This helps avoid a possible breakdown of the session
whenever some long output is sent from IOS XR to the Putty client.

Configure Secure Shell: Example

This example shows how to configure SSHv2 by creating a hostname, defining a domain name, enabling the
SSH server for local and remote authentication on the router by generating a DSA key pair, bringing up the
SSH server, and saving the configuration commands to the running configuration file.

After SSH has been configured, the SFTP feature is available on the router.

configure

hostname routerl
domain name cisco.com
exit

configure

ssh server

end

Multi-channeling in SSH

The multi-channeling (also called multiplexing) feature on the Cisco IOS XR software server allows you to
establish multiple channels over the same TCP connection from the SSH clients originating from the same
host. Thus, rather than opening a new TCP socket for each SSH connection, all the SSH connections are
multiplexed into one TCP connection and a single SSH session. For example, with multiplexing support on
your XR software server, on a single SSH connection you can simultaneously open a pseudo terminal, remotely
execute a command and transfer a file using any file transfer protocol. Multiplexing offers the following
benefits:

* You are required to authenticate only once at the time of creating the session. After that, all the SSH
clients associated with a particular session use the same TCP socket to communicate to the server.

* Saves time consumed otherwise wasted in creating a new connection each time.
Multiplexing is enabled by default in the Cisco IOS XR software server. If your client supports multiplexing,

you must explicitly set up multiplexing on the client for it to be able to send multi-channel requests to the
server. You can use OpenSSH, Perl, WinSCP, FileZilla, TTSSH, Cygwin or any other SSH-based tool to set

[l 'mplementing Secure Shell

| Implementing Secure Shell
Restrictions for Multi-channeling Over SSH .

up multiplexing on the client. See Configure Client for Multiplexing, on page 23 provides an example of how
you can configure the client for multiplexing using OpenSSH.

Restrictions for Multi-channeling Over SSH

* Do not use client multiplexing for heavy transfer of data as the data transfer speed is limited by the TCP
speed limit. Hence, for a heavy data transfer it is advised that you run multiple SSH sessions, as the TCP
speed limit is per connection.

* Client multiplexing must not be used for more than 15 concurrent channels per session simultaneously.

Client and Server Interaction Over Multichannel Connection

The figure below provides an illustration of a client-server interaction over a SSH multichannel connection.

55H
Client
Terminal

xR
SSH
Server

S5FTP
Client
Terminal L

55H
Client
Terminal

AGIHAE

OpenSSH client

As depicted in the illustration,

* The client multiplexes the collection of channels into a single connection. This allows different operations
to be performed on different channels simultaneously. The dotted lines indicate the different channels
that are open for a single session.

* After receiving a request from the client to open up a channel, the server processes the request. Each
request to open up a channel represents the processing of a single service.

S

Note The Cisco 10X software supports server-side multiplexing only.

Configure Client for Multiplexing

The SSH client opens up one TCP socket for all the connections. In order to do so, the client multiplexes all
the connections into one TCP connection. Authentication happens only once at the time of creating the session.
After that, all the SSH clients associated with the particular session uses the same TCP socket to communicate
to the server. Use the following steps to configure client multiplexing using OpenSSH:

Procedure

Step 1 Edit the ssh_config file.

Implementing Secure Shell [

Implementing Secure Shell |

. SSH Configuration Option to Restrict Cipher Public Key and HMAC Algorithm

Step 2

Step 3

Open the ssh_config file with your favorite text editor to configure values for session multiplexing. The system-wide
SSH configuration file is located under /etc/ssh/ssh_config. The user configuration file is located under ~/.ssh/config or
$HOME/.ssh/config.

Add entries ControlMaster auto and ControlPath
Add the entry ControlMaster auto and ControlPath to the ssh_config file, save it and exit.
* ControlMaster determines whether SSH will listen for control connections and what to do about them. Setting the

ControlMaster to 'auto' creates a primary session automatically but if there is a primary session already available,
subsequent sessions are automatically multiplexed.

* ControlPath is the location for the control socket used by the multiplexed sessions. Specifying the ControlPath
ensures that any time a connection to a particular server uses the same specified primary connection.
Example:
Host *
ControlMaster auto
ControlPath ~/.ssh/tmp/%$r@%h:%p
Create a temporary folder.

Create a temporary directory inside the /.ssh folder for storing the control sockets.

SSH Configuration Option to Restrict Cipher Public Key and HMAC Algorithm

The Cisco IOS XR software provides a new configuration option to control the key algorithms to be negotiated
with the peer while establishing an SSH connection with the router. With this feature, you can enable the
insecure SSH algorithms on the SSH server, which are otherwise disabled by default. A new configuration
option is also available to restrict the SSH client from choosing the HMAC, or hash-based message
authentication codes algorithm while trying to connect to the SSH server on the router.

You can also configure a list of ciphers as the default cipher list, thereby having the flexibility to enable or
disable any particular cipher.

A

Caution Use caution in enabling the insecure SSH algorithms to avoid any possible security attack.

To disable the HMAC algorithm, use the ssh client disable hmac command or ssh server disable hmac
command in XR Config mode.

To enable the required cipher, use the ssh client enable cipher command or the ssh server enable cipher
command in XR Config mode.

The supported encryption algorithms (in the order of preference) are:

aes128-ctr
aes192-ctr

aes256-ctr

1

2

3

4. aesl28-gcm@openssh.com
5. aes256-gecm@openssh.com
6

aes128-cbc

[l 'mplementing Secure Shell

| Implementing Secure Shell
Disable HMAC Algorithm]

~

aes192-cbe

8. aes256-cbc

9. 3des-cbc

In SSH, the CBC-based ciphers are disabled by default. To enable these, you can use the ssh client enable

cipher command or the ssh server enable cipher command with the respective CBC options (aes-cbc or
3des-cbc). All CTR-based and GCM-based ciphers are enabled by default.

Disable HMAC Algorithm

Configuration Example to Disable HMAC Algorithm

Router (config) # ssh server disable hmac hmac-shal
Router (config) #commit

Router (config) # ssh client disable hmac hmac-shal
Router (config) #commit

Running Configuration

ssh server disable hmac hmac-shal
|

ssh client disable hmac hmac-shal
|

Related Topics
SSH Configuration Option to Restrict Cipher Public Key and HMAC Algorithm, on page 24

Associated Commands
« ssh client disable hmac

» ssh server disable hmac

Enable Cipher Public Key

Configuration Example to Enable Cipher Public Key
To enable all ciphers on the client and the server:

Router 1:

Router (config) # ssh client algorithms cipher aes256-cbc aes256-ctr aesl92-ctr aesl92-cbc
aesl28-ctr aesl28-cbc aesl28-gcm@openssh.com aes256-gcm@openssh.com 3des-cbe

Router 2:

Implementing Secure Shell [

Implementing Secure Shell |
[l Enable Cipher Public Key

Router (config) # ssh server algorithms cipher aes256-cbc aes256-ctr aesl92-ctr aesl92-cbc
aesl28-ctr aesl28-cbc aesl28-gcm@openssh.com aes256-gcm@openssh.com 3des-cbc

To enable the CTR cipher on the client and the CBC cipher on the server:

Router 1:

Router (config) # ssh client algorithms cipher aesl28-ctr aesl92-ctr aes256-ctr

Router 2:

Router (config) # ssh server algorithms cipher aesl28-cbc aes256-cbc aesl92-cbc 3des-cbc

Without any cipher on the client and the server:

Router 1:
Router (config) # no ssh client algorithms cipher
Router 2:
Router (config) # no ssh server algorithms cipher

Enable only deprecated algorithms on the client and the server:

Router 1:
Router (config) # ssh client algorithms cipher aesl28-cbc aesl92-cbc aes256-cbc 3des-cbc
Router 2:
Router (config) # ssh server algorithms cipher aesl28-cbc aesl92-cbc aes256-cbc 3des-cbc

Enable deprecated algorithm (using enable cipher command) and enable the CTR cipher (using algorithms
cipher command) on the client and the server:

Router 1:

Router (config) # ssh client enable cipher aes-cbc 3des-cbc
Router (config) # ssh client algorithms cipher aesl28-ctr aesl92-ctr aes256-ctr

Router 2:

Router (config) # ssh server enable cipher aes-cbc 3des-cbc
Router (config) # ssh server algorithms cipher aesl28-ctr aesl92-ctr aes256-ctr

Running Configuration

All ciphers enabled on the client and the server:

[l 'mplementing Secure Shell

| Implementing Secure Shell
User Configurable Maximum Authentication Attempts for SSH .

Router 1:

ssh client algorithms cipher aes256-cbc aes256-ctr aesl92-ctr aesl92-cbc aesl28-ctr aesl28-cbc

aesl28-gcm@openssh.com aes256-gcm@openssh.com 3des-cbc
|

Router 2:

ssh client algorithms cipher aes256-cbc aes256-ctr aesl92-ctr aesl92-cbc aesl28-ctr aesl28-cbc

aesl28-gcm@openssh.com aes256-gcm@openssh.com 3des-cbc
|

Related Topics
SSH Configuration Option to Restrict Cipher Public Key and HMAC Algorithm, on page 24

Associated Commands
» ssh client enable cipher
» ssh server enable cipher
» ssh client algorithms cipher

« ssh server algorithms cipher

User Configurable Maximum Authentication Attempts for SSH

Table 6: Feature History Table

Feature Name Release Information Feature Description
User Configurable Maximum Release 7.3.1 This feature allows you to set a
Authentication Attempts for SSH limit on the number of user

authentication attempts allowed for
SSH connection, using the three
authentication methods that are
supported by Cisco IOS XR. The
limit that you set is an overall limit
that covers all the authentication
methods together. If the user fails
to enter the correct login credentials
within the configured number of
attempts, the connection is denied
and the session is terminated.

This command is introduced for
this feature:

ssh server max-auth-limit

The three SSH authentication methods that are supported by Cisco IOS XR are public-key (which includes
certificate-based authentication), keyboard-interactive, and password authentication. The limit count that you
set as part of this feature comes into effect whichever combination of authentication methods you use. The

Implementing Secure Shell [

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/secure-shell-and-secure-sockets-layer-commands.html#wp2574225528

Implementing Secure Shell |
. Configure Maximum Authentication Attempts for SSH

limit ranges from 3 to 20; default being 20 (prior to Cisco IOS XR Software Release 7.3.2, the limit range
was from 4 to 20).

Restrictions for Configuring Maximum Authentication Attempts for SSH
These restrictions apply to configuring maximum authentication attempts for SSH:

* This feature is available only for Cisco IOS XR routers functioning as SSH server; not for the ones
functioning as SSH clients.

* This configuration is not user-specific; the limit remains same for all the users.

* Due to security reasons, the SSH server limits the number of authentication attempts that explicitly uses
the password authentication method to a maximum of 3. You cannot change this particular limit of 3 by
configuring the maximum authentication attempts limit for SSH.

For example, even if you configure the maximum authentication attempts limit as 5, the number of
authentication attempts allowed using the password authentication method still remain as 3.

Configure Maximum Authentication Attempts for SSH

You can use the ssh server max-auth-limit command to specify the maximum number of authentication
attempts allowed for SSH connection.

Configuration Example

Router#configure
Router (config) #ssh server max-auth-limit 5
Router (config) #commit

Running Configuration

Router#show running-configuration ssh
ssh server max-auth-limit 5

ssh server v2
|

Verification

The system displays the following SYSLOG on the router console when maximum authentication attempts
is reached:

RP/0/RPO/CPUO:Oct 6 10:03:58.029 UTC: SSHD [68125]: %$SECURITY-SSHD-3-ERR GENERAL : Max
authentication tries reached-exiting

Associated Commands

« ssh server max-auth-limit

[l 'mplementing Secure Shell

| Implementing Secure Shell

X.509v3 Certificate-based Authentication for SSH

Table 7: Feature History Table

X.509v3 Certificate-based Authentication for SSH .

Feature Name

Release Information

Feature Description

X.509v3 Certificate-based
Authentication for SSH

Release 7.3.1

This feature adds new public-key
algorithms that use X.509v3 digital
certificates for SSH authentication.
These certificates use a chain of
signatures by a trusted certification
authority to bind a public key to the
digital identity of the user who is
authenticating with the SSH server.
These certificates are tough to
falsify and are therefore used for
identity management and access
control across many applications
and networks.

Commands introduced for this
feature are:

ssh server certificate
ssh server trustpoint

This command is modified for this
feature:

ssh server algorithms host-key

This feature support is available for the SSH server for the server authentication and the user authentication.

The X.509v3 certificate-based authentication for SSH feature supports the following public-key algorithms:

*» x509v3-ssh-dss
* x509v3-ssh-rsa
* x509v3-ecdsa-sha2-nistp256
* x509v3-ecdsa-sha2-nistp384
» x509v3-ecdsa-shaz-nistp521

\}

Note While user authentication by using X.509v3 certificate-based authentication for the SSH server is supported
using all algorithms listed above, server authentication is supported only with the X509v3-ssh-r sa algorithm.

There are two SSH protocols that use public-key cryptography for authentication:

* Transport Layer Protocol (TLP) described in RFC4253—this protocol mandates that you use a digital
signature algorithm (called the public-key algorithm) to authenticate the server to the client.

Implementing Secure Shell [

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/secure-shell-and-secure-sockets-layer-commands.html#wp2285421510
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/secure-shell-and-secure-sockets-layer-commands.html#wp2285421510
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/secure-shell-and-secure-sockets-layer-commands.html#wp2059743426

Implementing Secure Shell |
. X.509v3 Certificate-based Authentication for SSH

* User Authentication Protocol (UAP) described in RFC4252—this protocol allows the use of a digital
signature to authenticate the client to the server (public-key authentication).

For TLP, the Cisco IOS XR SSH server provides its server certificate to the client, and the client verifies the
certificate. Similarly, for UAP, the client provides an X.509 certificate to the server. The peer checks the
validity and revocation status of the certificate. Based on the result, access is allowed or denied.

Server Authentication using X.509v3 Certificate

Certificate Authority

.

Procuring Identity D (2 : N ;
Certificate 1) Cﬂ -/ | — :

i Centificate H

i Rewocation List

i {Optional)

. @ e '
4
ldentity Certificate @ll s

— > CA (Root) Certificate
SSH Server @/I SSH Client
: . e 1 Public Key exchange through X.50%3 certificate
CA (Root) Certificate : — :
i Certificate i -
i Revocation List § =
v [Optional) b

The server authentication process involves these steps:

1. The SSH server procures a valid identity certificate from a well-known certificate authority. This certificate
can be obtained manually (through cut-and-paste mechanism) or through protocol implementations such
as Simple Certificate Enrollment Protocol (SCEP).

2. The certificate authority provides valid identity certificates and associated root certificates. The requesting
device stores these certificates locally.

3. The SSH server presents the certificate to the SSH client for verification.

4. The SSH client validates the certificate and starts the next phase of the SSH connection.

[l 'mplementing Secure Shell

| Implementing Secure Shell
X.509v3 Certificate-based Authentication for SSH .

User Authentication using X.509v3 Certificate

Certificate Authority

[

i i] o, Procuring ldentity

: — : '\J/ \e/ Certificate

i Certificate i a

+ Revocation List PR e
i [Optional) ;

User & User B

. . i P !

_________________ @ " E H : .

i GO i ldenity i Identty |

_ u | Certificate 1 & Certificate |

hl P '] i

SSH Server @ SSH Client | = .

Public Key exchange through X.509w3 certificate H . .
CA (Root) v CA(Root) ¢ ¢+ CA{Root) |
Certificate(s) \ =~~~ < e e mem e mmme e eeeed Crificate 1 Certificate | B
)

User & authenticated through certificate-based user eI EL L Ch it bt
authentication mechanism

The user authentication phase starts after the SSH transport layer is established. At the beginning of this phase,
the client sends the user authentication request to the SSH server with required parameters. The user
authentication process involves these steps:

1. The SSH client requests a valid identity certificate from a well-known certificate authority.

2. The certificate authority provides valid identity certificates and associated root certificates. The requesting
device stores these certificates locally.

3. The SSH client presents the certificate to the SSH server for verification.

4. The SSH server validates the certificate and starts the next phase of the SSH connection.

The certificate-based authentication uses public key as the authentication method. The certificate validation
process by the SSH server involves these steps:

» The SSH server retrieves the user authentication parameters, verifies the certificate, and also checks for
the certificate revocation list (CRL).

» The SSH server extracts the username from the certificate attributes, such as subject hame or subject
alternate name (SAN) and presents them to the AAA server for authorization.

» The SSH server then takes the extracted username and validates it against the incoming USername string
present in the SSH connection parameter list.

Restrictions for X.509v3 Certificate-based Authentication for SSH
These restrictions apply to the X.509v3 certificate-based authentication feature for SSH:

* Supported only for Cisco IOS XR devices acting as the SSH server; not for the Cisco IOS XR devices
acting as the SSH client.

* Supported only for local users because TACACS and RADIUS server do not support public-key
authentication. As a result, you must include the local option for AAA authentication configuration.

Implementing Secure Shell [

Implementing Secure Shell |
. Configure X.509v3 Certificate-based Authentication for SSH

A

Note Although this feature supports only local authentication, you can enforce remote
authorization and accounting using the TACACS server.

* Certificate verification using the Online Certificate Status Protocol (OCSP) is currently not supported.
The revocation status of certificates is checked using a certificate revocation list (CRL).

* To avoid user authentication failure, the chain length of the user certificate must not exceed the maximum
limit of 9.

Configure X.509v3 Certificate-based Authentication for SSH

Perform this task to enable X.509v3 certificate-based server and user authentication for SSH.
Server Authentication:

* Configure the list of host key algorithms—With this configuration, the SSH server decides the list of
host keys to be offered to the client. In the absence of this configuration, the SSH server sends all available
algorithms to the user as host key algorithms. The SSH server sends these algorithms based on the
availability of the key or the certificate.

* Configure the SSH trust point for server authentication—With this configuration, the SSH server uses
the given trust point certificate for server authentication. In the absence of this configuration, the SSH
server does not send X509v3-ssh-rsa as a method for server verification. This configuration is not
VRF-specific; it is applicable to SSH running in all VRFs.

The above two tasks are for server authentication and the following ones are for user authentication.

User Authentication:

* Configure the trust points for user authentication—With this configuration, the SSH server uses the given
trust point for user authentication. This configuration is not user-specific; the configured trust points are
used for all users. In the absence of this configuration, the SSH server does not authenticate using
certificates. This configuration is not specific to a VRF; it is applicable to SSH running in all VRFs.

You can configure up to ten user trust points.

* Specify the username to be picked up from the certificate—This configuration specifies which field in
the certificate is to be considered as the username. The common-name from the subject name or the
user-principle-name(othername) from the subject alternate name, or both can be configured.

* Specify the maximum number of authentication attempts allowed by the SSH server—The value ranges
from 4 to 20. The default value is 20. The server closes the connection if the number of user attempts
exceed the configured value.

* AAA authentication configuration—The AAA configuration for public key is the same as that for the
regular or keyboard-interactive authentication, except that it mandates local method in the authentication
method list.

Configuration Example

In this example, the X509v3-ssh-rsa is specified as the allowed host key algorithm to be sent to the client.
Similarly, you can configure other algorithms, such as ecdsa-sha2-nistp521, ecdsa-sha2-nistp384,
ecdsa-sha2-nistp256, ssh-rsa, and ssh-dsa.

[l 'mplementing Secure Shell

| Implementing Secure Shell
Configure X.509v3 Certificate-based Authentication for SSH .

/* Configure the lits of host key algorithms */
Router#configure

Router (config) #ssh server algorithms host-key x509v3-ssh-rsa
Router (config) #commit

/* Configure the SSH trustpoint for server authentication */
Router#configure

Router (config) #ssh server certificate trustpoint host tpl
Router (config) #fcommit

/* Configure the trustpoints to be used for user authentication */
Router#configure

Router (config) #ssh server trustpoint user tpl

Router (config) #ssh server trustpoint user tp2

Router (config) #commit

/* Specifies the username to be picked up from the certificate.

In this example, it specifies the user common name to be picked up from the subject name
field */

Router#configure

Router (config) #ssh server certificate username common-name

Router (config) #commit

/* Specifies the maximum authentication limit for the SSH server */
Router#configure

Router (config) #ssh server max-auth-limit 5

Router (config) #commit

/* AAA configuration for local authentication with certificate and
remote authorization with TACACS+ or RADIUS */

Router#configure

Router (config) faaa authentication login default group tacacs+ local
Router (config) #aaa authorization exec default group radius group tacacs+
Router (config) #commit

Running Configuration

ssh server algorithms host-key x509v3-ssh-rsa
!

ssh server certificate trustpoint host tpl
!

ssh server trustpoint user tpl

ssh server trustpoint user tp2
!

ssh server certificate username common-name
|

ssh server max-auth-limit 5
|

Verification of Certificate-based Authentication for SSH

You can use the show ssh server command to see various parameters of the SSH server. For certificate-based
authentication for SSH, the Certificate Based field displays Yes. Also, the two new fields, Host Trustpoint
and User Trustpoints, display the respective trust point names.

Router#show ssh server

Implementing Secure Shell [

Implementing Secure Shell |
Configure X.509v3 Certificate-based Authentication for SSH

Wed Feb 19 15:23:38.752 IST

Current supported versions := v2
SSH port := 22
SSH vrfs := vrfname:=default (vd-acl:=, vo6-acl:=)
Netconf Port := 830
Netconf Vrfs := vrfname:=default (vd-acl:=, v6-acl:=)
Algorithms
Hostkey Algorithms := x509v3-ssh-rsa,

ecdsa-sha2-nistpb521,ecdsa-sha2-nistp384,ecdsa-sha2-nistp256, ssh-rsa, ssh-dsa
Key-Exchange Algorithms :=
ecdh-sha2-nistp521,ecdh-sha2-nistp384,ecdh-sha2-nistp256,diffie-hellman-groupl4-shal
Encryption Algorithms :=
aesl28-ctr,aesl92-ctr,aes256-ctr,aesl28-gcml@openssh.com, aes256-gcm@openssh.com
Mac Algorithms := hmac-sha2-512,hmac-sha2-256,hmac-shal

Authetication Method Supported

PublicKey := Yes
Password := Yes
Keyboard-Interactive := Yes
Certificate Based := Yes
Others
DSCP := 16
Ratelimit := 60
Sessionlimit := 100
Rekeytime := 60
Server rekeyvolume := 1024
TCP window scale factor :=1
Backup Server := Enabled, vrf:=default, port:=11000
Host Trustpoint := tpl
User Trustpoints = tpl tp2

You can use the show ssh session details command to see the chosen algorithm for an SSH session:

Routerf#show ssh session details
Wed Feb 19 15:33:00.405 IST
SSH version : Cisco-2.0

id key-exchange pubkey incipher outcipher inmac
outmac

Incoming Sessions
1 ecdh-sha2-nistp256 x509v3-ssh-rsa aesl28-ctr aesl28-ctr hmac-sha2-256
hmac-sha2-256

Similarly, you can use the show ssh command to verify the authentication method used. In this example, it
shows as X509-rsa-pubkey:

Routert#show ssh
Sun Sep 20 18:14:04.122 UTC
SSH version : Cisco-2.0

[l 'mplementing Secure Shell

| Implementing Secure Shell
Configure X.509v3 Certificate-based Authentication for SSH .

id chan pty location state userid host ver authentication connection
type

Incoming sessions
4 1 vty0 0/RPO/CPUO SESSION OPEN 9chainuser 10.105.230.198 v2 x509-rsa-pubkey
Command-Line-Interface

Outgoing sessions

SYSLOGS
You can observe relevant SYSLOGS on the router console in various scenarios listed here:

* On successful verification of peer certificate:

RP/0/RPO/CPUO:Aug 10 15:01:34.793 UTC: locald DLRSC[133]: $SECURITY-PKI-6-LOG_INFO
Peer certificate verified successfully

When user certificate CA is not found in the trust point:

RP/0/RPO/CPUO:Aug 9 22:06:43.714 UTC: locald DLRSC[260]: %$SECURITY-PKI-3-ERR GENERAL
issuer not found in trustpoints configured

RP/0/RPO/CPUO:Aug 9 22:06:43.714 UTC: locald DLRSC[260]: %$SECURITY-PKI-3-ERR ERRNO

Error:='Crypto Engine' detected the 'warning' condition 'Invalid trustpoint or trustpoint

not exist' (0x4214c000), cert verificationn failed

When there is no CA certificate or host certificate in the trust point:

RP/0/RP1/CPUO:Aug 10 00:23:28.053 IST: SSHD_[69552]: $SECURITY-SSHD-4-WARNING X509

could not get the host cert chain, 'sysdb' detected the 'warning' condition 'A SysDB

client tried to access a nonexistent item or list an empty directory', x509 host auth

will not be used

RP/0/RP1/CPUO:Aug 10 00:23:30.442 IST: locald DLRSC[326]: %$SECURITY-PKI-3-ERR_ERRNO

Error:='Crypto Engine' detected the 'warning' condition 'Invalid trustpoint or trustpoint
not exist' (0x4214c000), Failed to get trustpoint name from

How to Disable X.509v3 Certificate-based Authentication for SSH

* Server Authentication — You can disable X.509v3 certificate-based server authentication for SSH by
using the ssh server algorithms host-key command. From the list of auto-generated host-key pairs
algorithms on the SSH server, this command configures allowed SSH host-key pair algorithms. Hence,
if you have this configuration without specifying the X509-ssh-r sa option in the preceding command, it
is equivalent to disabling the X.509v3 certificate-based server authentication for the SSH server.

* User Authentication — You can remove the user trust point configuration (ssh server trustpoint user)
so that the SSH server does not allow the X.509v3 certificate-based authentication.

Failure Modes for X.509v3 Certificate-based Authentication for SSH

If the ssh server certificate trustpoint host configuration is missing, or if the configuration is present, but
the router certificate is not present under the trust point, then the SSH server does not add x509-ssh-r sa to
the list of supported host key methods during key exchange.

Also, the user authentication fails with an error message if:

« User certificate is in an incorrect format.

Implementing Secure Shell [

Implementing Secure Shell |
. OpenSSH Certificate based Authentication for Router

* The chain length of the user certificate is more than the maximum limit of 9.

* Certificate verification fails due to any reason.

Related Topics
* X.509v3 Certificate-based Authentication for SSH, on page 29

Associated Commands
« ssh server algorithms hostkey
* ssh server certificate username
» ssh server max-auth-limit
* ssh server trustpoint host
* ssh server trustpoint user
* show ssh server

« show ssh session details

OpenSSH Certificate based Authentication for Router

Table 8: Feature History Table

Feature Name Release Information Feature Description
OpenSSH Certificate based Release 7.5.3 You can now use OpenSSH
Authentication for Router certificates to authenticate to the

remote routers from a client
machine. This feature uses the
ssh-keygen utility, a standard SSH
component to generate and manage
authentication keys, available in
OpenSSH to create a CA
(Certificate Authority) like
infrastructure for logging into the
router.

In this feature, the certificates that
are used to authenticate router and
client are both signed by the same
CA. This automatically establishes
trust between router and client, and
eliminates the need to establish
trust, while using the client for
remote logging to router for the first
time.

[l 'mplementing Secure Shell

| Implementing Secure Shell

OpenSSH Certificate based Authentication for Router .

OpenSSH is the open-source implementation of the SSH Protocol. In OpenSSH certificate-based authentication,
you can use the ssh-keygen utility to create a certificate signing infrastructure. A digital certificate with public
and private key pair, created using the ssh-keygen utility, authenticates the host and the user certificates. The
user certificate authenticates the client machine to the router. The client machine is a system that the user
utilizes to establish remote access to the router. When a user attempts to log in to the router using the client
machine, the client machine presents its certificate to the router. The router checks for the identity and validity
of the certificate to decide whether to allow or deny the connection request. The host certificate in the router
authenticates the router to the client. Overall, the host and user certificates together establish a two-way secure
communication channel.

The OpenSSH based authentication for the router has the following major phases:

Establishing the trustpoints: In the router, you must create a trustpoint and configure the router to use this
trustpoint for the host and user authentication. You can have a same or different trustpoints for these entities.
While the router can have only one trustpoint, the user can have up to ten trustpoints.

Creating the CA: Any system with the OpenSSH feature acts like the CA. The ssh-keygen creates the CA
certificate and utilizes it to sign the router and user certificate.

Router authentication: You must copy the CA public key in the CA server to the router and ensure to create
a CSR (Certificate Signing Request) in the router. The CSR file is further copied to the CA server and signed
using the CA certificate. The CA signed certificate is copied back to the router to complete its authentication
with CA.

Certificate Authority

Procuring 2. | 1.
Identity

Certificate

B

5 & > =
Root < \
Certificate Host/Router 3. ClientfUser CA
5. Certificate
CA :
Certificate Revoked list

User authentication: You must create a digital certificate for the user using the ssh-keygen utility and sign
the public key using the CA certificate. The CA signed user certificate must be copied to the client system
using which you would log into the router using the specified user.

Implementing Secure Shell [

522822

Implementing Secure Shell |

. Feature Highlights

Certificate Authority

Procuring |2. | 1.

Identity
Certificate E
Identity
a Certificate
S ' >
Host/Router 3. Client/User CA
5. Certificate
CA :
Certificate Revoked list

Remote accessto therouter: After the host and user authentication, you can access the router using SSH in
the client system that is used to authenticate the user.

Feature Highlights
* OpenSSH certificates use the Certificate Authority (CA) infrastructure to act as a trusted entity while
signing the host or user certificates.

* OpenSSH certificates contain a public and private key pair, including identity and validity information.
These are signed using a standard SSH public key using the ssh-keygen utility.

* The router certificate includes information such as the host public key, public key of the signing CA,
type (host), certificate validity, Key ID, serial number of the certificate, and so on.

* The user certificate contains the user's public key, the public key of the signing CA, Key ID, type (user),
serial number, certificate validity, principals matched against the login username, and so forth.

* The CA is just another SSH key created using the ssh-keygen utility. However, rather than utilizing it
for authenticating the router or user directly, it's used to sign and validate the other keys that are used for

authenticating the router and the user.
* You can view the router and user certificate properties using the ssh-keygen.
» The OpenSSH certificates support the following encryptions:
* RSA
* DSA
* ECDSA
* ED25519

[l 'mplementing Secure Shell

522823

| Implementing Secure Shell

Prerequisites

Prerequisites .

* You must have a client machine which has OpenSSH feature with the ssh-keygen utility to act as CA.

Configuration Example

The following high-level steps help you set up OpenSSH based Authentication:

1

5.

Create a trustpoint in the router and configure the router to use this trustpoint for the host and user
authentication.

Creating CA, the CA here is a dedicated system with OpenSSH feature that provides a certificate signing
infrastructure using the ssh-keygen utility.

Host authentication, the host here is the Cisco IOS XR router.

User authentication, a user is any entity attempting to access the router. Generally refers to system to
access the router CLI remotely. User is also referred to as client.

Access the router in the client using the OpenSSH authentication

This section contains the detailed procedure to enable this feature in your router.

1

Create a trustpoint in the router and configure the router to use this trustpoint for the host and user
authentication.

a. [Router Config mode] Create a trustpoint in the router.

Router# config
Router (config)# crypto ca openssh trustpoint test
Router (config) # commit

b. [Router Config mode] Configure the trustpoint for host authentication.

Router# config
Router (config)# ssh server openssh trustpoint host test
Router (config) # commit

c. [Router Config mode] Configure the trustpoint for user authentication

Router# config
Router (config) # ssh server openssh trustpoint user test
Router (config) # commit

Creating CA

a. [CA Server] In the dedicated machine with OpenSSH feature to act as CA, generate a certificate using
the ssh-keygen utility:

[root@CAServer testl# ssh-keygen -t rsa -f cacert
Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in cacert.
Your public key has been saved in cacert.pub.

The key fingerprint is:
SHA256:/B2b8V7jKXwGphf75fk074U/mpulHgDHmvEF4okexdKhY root@CAServer
The key's randomart image is:

+---[RSA 2048]----+

\

\

\

Implementing Secure Shell [

. Configuration Example

A

| Lot

| ES +.0 |
| +=+o0 X . |
| = +0.0 O.+]|
| 0... B+@~*|
| . =XBX|
+----[SHA256] ———-- +

[root@CAServer test]# 1ls
cacert cacert.pub

Implementing Secure Shell |

Note

Leave the passphrase empty.

3. Host (Router) authentication

a.

[CA Server] Open the CA public key from CA server and copy it contents.

[root@CAServer test]# cat cacert.pub

ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQCigl/zhyjuGOBYz5bu+GL76
HBaROVOpVS4Lx3pfljcjrFkVibPKKkVeX/1E7sZ2IJ0anU9vYSJZW8zr18z06G
gzmnJgRRaXa9vEwNmjvNdRwxuBA3Uk/GlsbmcusMXBXoY6z0IEMh1VNOhCgE4
cIFgLxgHpYAaqyl2hISaomTCNhkbD7700t8zbyRj16GO0Ps0ggYHWmELZE/tbF
IBPWpuuuA3LvpZIiTaztevQaWYSyK22h3tp3K62I0BX3gUd4Yr+Gvo4PNAZ6e
21cUE2aVJsl6J9MeFITR2NzY1cmZ44KWi6bglkP1E4KBiRsbHCvs4wlaUaO5qg
hNj1BdH3/Hhad4x root@CAServer

[Router EXEC mode] Add the contents of the CA public key to router trustpoint.

Router#crypto ca openssh authenticate test

Enter the CA pubkey.

End with a blank line or the word "quit" on a line by itself
ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQCigl/zhyjuGOBYz5bu+GL7
6HBaROVOpVS4Lx3pfljcjrFkVibPKKkVeX/1E7s21J0anU9vYSJZW8zr18z0
6GgzmnJgRRaXa 9vEiwNmjvNdRwxuBA3Uk /Gl sbmcusMXBXoY6z0IEMh1VNOhC
qE4cIFgLxgHpYAaqyl2hISaomTCNhkbD7700t8zbyRj16G0PsOggYHWmELZE
/tbFIBPWpuuuA3LvpZIiTaztevQaWYSyK22h3tp3K62I0BX3gUd4Yr+Gvo4P
NA26e21cUE2aVJsl16J9MeFITR2NzY1cmZ44KWi6bglkP1E4KBiRsbHCvs4wl
alaO5ghNj1BdH3/Hhad4x root@CAServer

Do you accept this certificate? [yes/nol: yes

[Router EXEC mode] Validate the copied CA public key by viewing the OpenSSH certificates in the

CA trustpoint configured in the router.

Router#show crypto ca openssh certificates
Fri Sep 16 06:59:38.347 UTC

Trustpoint : test

CA certificate

ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQCigl/zhyjuGOBYz5bu+GL76HBa
ROVOpVS4Lx3pfljcjrFkVibPKKkVeX/1E7s2I1J0anU9vYSJZW8zr18z06Ggzmndg
RRaXa9vEiwNmjvNdRwxuBA3Uk/GlsbmcusMXBXoY6z0IEMh1VNOhCgE4cIFgLxgHp
YAaqyl2hISaomTCNhkbD7700t8zbyRj16G0Ps0ggYHWmELZEf/tbFIBPWpuuuA3Ly
pzIiTaztevQaWYSyK22h3tp3K62I0BX3gUd4Yr+GvvecjdvjweviodPNA26e21cUE
2aVJsl6J9eFITR2NzY1cmZ44KWi6bglkP1E4KBiRsbHCvs4wlalaO5ghNj1BdH3/

Hha4x root@CAServer

[Router EXEC mode] Generate a CSR for the CA public key in the router.

[l 'mplementing Secure Shell

| Implementing Secure Shell

Configuration Example .

Router#crypto ca openssh enroll test

Fri Sep 16 06:34:41.230 UTC

Display Certificate Request to terminal? [yes/nol: yes
---Hostkey follows---

ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQCaXgjc45LohfiHJlig8sSpadmdR
00Jo6bRMhkdxY1pbjEYrwjPTn5SnCINZYwsTPSHIDYBxQRLBHLV80GbbOv+uJd1TOT
4tAmLgSYPXaHqYIyepCeMKSkSKLgZ0Pf+0oGBMt £3uUuLgCgnFAw] rzDBXJYfF+bd/
1eXMwKKNH3YiceLOge4BAYRU6Gm+wiuZ8is+bIfy32Eq7gWuPUz8XpxaCt3icpgfr]
7/vm7amKf1GpiheaRIHO0Cg4JAMIPAQkuPIx+Y9SZw2yTIP+IKr9tSoSWyiHo2B/Yg

3yERA7M8dQEsvrGy5KIf92x+eLP1G15gB9ykEPDUpXeaYTuSwtDR/Jd

---End - This line not part of hostkey---
Redisplay enrollment request? [yes/nol: n

[Router EXEC mode] Select the hostkey contents of the CSR file and copy the hostkey of the CSR.

[CA server] Create a .pub file in the CA server for the CSR hostkey and paste the copied hostkey

contents in this file.

[root@CAServer test]l# vim host.pub

/* Here we are using the vim text editor to create the host.pub file */
/* You can use any text editor of your choice */

[CA server]| Execute the following block to sign the CSR file using the CA certificate

[root@CAServer test]l# ssh-keygen -h -s cacert -I "server" -V +10w -z 10 host.pub

Signed host key host-cert.pub: id "server"
to 2022-11-25T12:27:17

serial 10 valid from 2022-09-16T12:26:00

Note

Use the following command to sign the CSR file using the CA certificate:

ssh-keygen -h -s <CACert> -I <IdentityOfCSRSys> -V <CertValidity> -z

<CertSerialNo> <CopiedCSRFile>

Parameter Description

CACert Specify the filename of the CA Server private key

CertValidity Specify the validity period for the certificate.

CertSerialNo Specify a serial number for the certificate.

CopiedCSRFile Specify the name of the file created to copy the
contents of CSR in the router.

[CA server]| Open the signed host certificate and copy the contents.

[root@CAServer test]# cat host-cert.pub

ssh-rsa-cert-v0l@openssh.com AAAAHHNzaClyc2EtY2VydC12MDFAb3BlbnNza
C57b20AAAAgzVvOOX142NNKOC4PtLZniRwBk5jbeS8quNhzVKsRpO7UAAAADAQABAAA
BAQCaXqgjc45LohfiHJ1ig8sSpadmdRQQJo6bRMhkdxY1pbjEYrwjPTn5SnCINZYwsT
PSH1bYBxQRLBHLvV80GbbOv+uJlTO0T4tAmMLgSYPXaHgYIyepCeMKSkSKLgZ0Pf+0GBM
tf£3uUuLgCgnFAw]j rzDBXJYfF+bd/ieXMwKKNH3YiceLOged4BAYRUGmM+wiuz8is+bIf
y32Eq7gWuPUz8XpxaCt3icpgfrj7/vm7amKf1GpiheaRIJHOCg4JAMIPAQkuPjx+Y9S
Zw2yTJIP+IKr9tSoSWyiHo2B/Yg3yERA7M8dQEsvrGy5SKIf92x+eLP1G15gBOykEPDU
pXeaYTubwtDR/JJAAAAAAAAAAOAAAACAAAABNNlcnZ1cgAAAAAAAAAAYYQeARAAAAB
JgGANAAAAAAAAAAAAAAAAAAABFWAAAAdzZCc2gtcnNhAAAAAWEAAQARAAQEA00JE84c0o7
hjgWM+W7vhi++hwWkT1dKVUuC8d6X9Y3I6xZFYmzyipFX1/5RO7GSCAGplPb2EiWVY

Implementing Secure Shell [

Implementing Secure Shell |
. Configuration Example

M65fM90hgs5pyakUWl2vb38DZ07zXUcMbgON1JIPxtbG5nLrDFwV6GOs9CBDIZVTAIQ
ghOHCBYC8YB6WAGgspdoSEmgJIkw]jYZGw++9DrfM28kY5ehtD7NIIGBlpny2X/ TWxSA
TlgbrrgNy76WSIk2s7Xr0GlmEsittod7adyutiDgVI4FHeGK/hr60DzQNunt tXFBNm
1SbJeifTHhSE0d]jc2NXJmeOCloum4JZD5ROCGYkbGxwr70MIW1GIuaoTY 90XRY/ x4W
UMQAAAQ8AAAAHC3NOLXJZzYQAAAQATIywc9020WzFg32MnE9IZVVRR1ItdXaMVEIEvVYu
G92JK7wnMJId50M6QDyfkNmMGF4ramF90/bVQpl3UYJzVxCISE0dAq60m1G3zx/MVayT
unMwV2Fq75PpaoZVpyEKx4kLKA6rNUSTmbht 20fMOKFvIWyxTDmeLFMvnpt8R0Yrz4
SGSEP1+4E3WthfzZr42Mg2LQJt6aBeYHZDZSp++3 7RpA7+T/6nlaGtAjtDIKprOQuUE
1higCZmdI+kUZDOXjMJI1PmJANV8fdtnnEpYCyzYeD+rSSF7d1DVrTaiFdgrfCXh+uY
JR1E621sP7UEJOWeiBgSDTIxSRARBNZg9TLmgJH host.pub

i. [Router EXEC mode] Import the signed host certificate to the router.

Router# crypto ca openssh import test certificate

/* This command opens the CA trustpoint and you must paste the contents of signed
certificate copied from the CA server */

Fri Sep 16 07:00:27.573 UTC

Enter the OpenSSH certificate.
End with a blank line

ssh-rsa-cert-v0l@openssh.com AAAAHHNzaClyc2EtY2VydC12MDFAb3BlbnNzaC
5jb20AAAAGzVOOX142NNKIC4PtLZniRwBk5jbeS8quNhzVKsRpO7UAARAADAQABARAABA
QCaXgjc45LohfiHJ11g8sSpadmdROQJo6bRMhkdxY1pbiEYrwjPTn5SnCINZYwsTPSH
1bYBxQRLBHLv80Gbb0v+uJ1lTO0T4tAmMLgSYPXaHgYIyepCeMKSkSKLgZ0Pf+oGBMt £3u
UuLgCgnFAw]jrzDBXJYfF+bd/ieXMwKKNH3YiceLOge4BAYRUGm+wiuZ8is+bIfy32Eqg
TgWuPUz8XpxaCt3icpqfrj7/vm7amKf1GpiheaRJHOCg4JAMIPAQkuPIx+Y9SZw2yTJ
P+IKr9tSoSWyiHo2B/Yg3yERA7M8dQEsvrGy5KIf92x+eLP1G15gB9ykEPDUpXeaYTu
5wtDR/JAAAAAAAAAAAOAAAACAAAABNN1cNnZ1cgAAAAARAAAAAYYQeAAAAAAB)gGANAAA
AAAAAAAAAAAAAAAABFWAAAAdzCc2gtcnNhAAAAAWEAAQAAAQEAOCOJE84co7hjgWM+WT7v
hi++hwWkT1dKVUuUC8d6X9Y3I6xZFYmzyipFX1/5RO7GSCAGplPb2EiWVvM65£fMI0hgs
S5pyakUWl2vb38DZ07zXUcMbgON1JIPxtbG5onLrDFwV6GOs9CBDIZVTAIQqhOHCBYC8YRB
6WAGqspdoSEmqIkw]YZGw++9DrfM28kY5ehtD7NIIGBlpny2X/ TWxSAT1qbrrgNy76W
SIk2s7Xr0GlmEsittod7adyutiDgV94FHeGK/hr60DzQNunttXFBNmlSbJei fTHhSEQ
djc2NXJmeOCloum4 JZD5ROCGYkbGxwr 70MIW1GiuaoTYIQXRY/x4AWuMQAAAQ8AAAAHC
3NoLXJzYQAAAQATIywCc9020WzFg32MnE9IZVVRR1 ItdXaMVE1EvYuUG92JK7wnMJId50M6
ODyfkNmGF4ramF90/bVQpl3UYJzVxCISEodAg60m1G3zx/MVayTunMwV2Fq75PpaozZV
PpYEKx4KkLKA6rNUSTmbht 20fMOKFvIWyxXTDmeLEMvnpt8ROYrz4sG5EP1+4E3WthfzZr
42Mg2LQJt6aBeYHZDZSp++]j 7RpA7+T/6nl1aGtAjtDIKprOQuE1higCZmdI+kUZDOXIM
J1PmJANV8fdtnnEpYCyzYeD+rSSF7d1DVrTaiFdgqrfCXh+uYjR1E621sP7UEJOWeiBg
SDTJxSRARBNZg9TLmgJH host.pub

j- [Router EXEC mode] Verify the host certificate import in the router.

Router#show crypto ca openssh certificates
Fri Sep 16 07:00:49.488 UTC

Trustpoint : test

CA certificate

ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQCigl/zhyjuGOBYz5bu+GL76HBaROV
0pVS4Lx3pfljcjrFkVibPKKkVeX/1E7s2IJ0anU9vYSJZW8zr18z06GgzmnJgRRaXa9
vEwNmjvNdRwxuBA3Uk /Gl sbmcusMXBXoY6z0IEMh1VNOhCgE4cIFgLxgHpYAaqyl2hT
SaomTCNhkbD7700t8zbyRj16G0Ps0ggYHWmELZf/tbFIBPWpuuuA3LvpZIiTaztevQa
WYSyK22h3tp3K62I0BX3gUd4Yr+Gvo4PNA26e21cUE2aVJs16J9MeFITR2NzY1cmZ44
KWi6bglkPlE4KBiRsbHCvs4wlalUaO5ghNj1BdH3/Hhadx root@CAServer

Router certificate

Type : Host Certificate

Key ID : server

Serial : 10

Valid : from Fri Sep 16 06:56:00 2022 to Fri Nov 25 06:57:17 2022

[l 'mplementing Secure Shell

| Implementing Secure Shell

N

Configuration Example .

User authentication

a.

[Client machine] Generate an SSH key pair in the client system using the ssh-keygen utility for the
user.

[root@userclient test]# ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id rsa): /root/openssh client/test/user
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/openssh_client/test/user.

Your public key has been saved in /root/openssh client/test/user.pub.

The key fingerprint is:

SHA256:rNmS7P0u6llpm75Kb4KhMxZThwad/AMnA9C//Z1GVEY root@userclient.cisco.com
The key's randomart image is:

+---[RSA 2048]----+

[++ . . .E

+*+oo+.
=..=t++=0
++.+X0.
+--—-[SHA256] -~ +
[root@userclient test]# 1s
user user.pub

\
\
\
| +.0=
\
\
\

[Client machine] Open the SSH public key file.

Note

Copy the public key content for the user certificate.

[root@userclient test]# cat user.pub

ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQCspUNwiwlEyO0VXQlRuh2peRnAP12LSICNe9
H76xyBiCIXFLLXHTUZZM+W/Pa97pg3fObxaqyNYaeo]jfwmGeNyPLS9HaOmgRuLmVCT/1got5I
RnlAzhufzz7iz1AdW8DMC//KUnUS/T+cEwGrZ//sbIPTMsQZzhhaQvkIxgFp9ghPMxwar3vaHa
tINL6ThrR+viue9IOY5LKMeRngrf2GFX3L6gHfcgYvIfQOKXI11W)TA645rQyB+NumV1rGeKI
as/xmBCEFHpChGZ1/GSB/atrKeVEWqzsJkpQHXEtE7hwK8gMrL+ad38mbV2Zz6Cc7KHIFEWaZ
sfjFscCP0kzUlgX root@userclient.cisco.com

[CA server] Create a .pub file in the CA server for the user certificate public key and paste the public
key contents from the previous step in this file.

[root@CAServer testl# vim user.pub
/* Here we are using the vim text editor to create the user.pub file */
/* You can use any text editor of your choice */

[CA server] Sign the user public key using the CA certificate private key.

[root@CAServer test]# ssh-keygen -s cacert -I "user" -V +10w -n testuser -z 20 user.pub

Signed user key user-cert.pub: id "user" serial 20 valid from 2022-09-16T12:42:00 to
2022-11-25T12:43:24

Implementing Secure Shell [

Implementing Secure Shell |
. Configuration Example

A

Note The command to sign the CSR file using the CA certificate:

ssh-keygen -s <CACert> -I <IdentityOfSysReqCert> -V <CertValidity> -n
<Username> -z <CertSerialNo> <CopiedUserCertName>

N

Note In addition to the mandatory fields specified for the user certificate, you can also configure critical options
and extensions for the user certificate. For detailed information on the critical options and extensions, refer
ssh-keygen.

Parameter Description

CACert Specify the filename of the CA Server private key/

IdentityOfSysReqCert Specify the identity of the certificate as User

CertValidity Specify the validity period for the certificate.

<Username> Specify the principals that you want to add to the
certificate.

Note

During authentication to the router, the principal
in the user certificate is matched against the login
username and requests with matching principal
and username are permitted for further
communication.

Note

You can have multiple principals that are
associated with the same certificate. The
principals must be separated by commas in the
IdentityOfSysReqCert field in command
to sign the user certificate file using CA
certificate.

CertSerialNo Specify a serial number for the certificate.

CopiedUserCertName Specify the name of the file created to copy the
contents of the user certificate file in the client
machine.

e. [CA server] Open the signed user certificate in the CA server and copy the contents.

[root@CAServer test]# cat user-cert.pub

ssh-rsa-cert-vOl@openssh.com AAAAHHNzaClyc2EtY2VydCl2MDFAb3BlbnNzaC5jb20AA
AAg6x1cZNQTKmUO27dHFcUCk7UzVCPWEFMCep7Ldb4 1BF6MAAARAADAQABAAABAQCspUNwiwlEyO0V
XQ1Ruh2peRnAP12LSICNe9H7 6xyBiCIXFLLXHTUZZM+W/Pa97pg3fObxaqyNYaeo] fwmGeNyPL
S9HaO0mgqRuLmVCT/1got5IRN1AZhufZz7iz1AdW8DMC/ /KUnUS/T+cEwGrZ//sbIPTMsQZhhaQVv
k9xgFp9ghPMxwar3vaHat INL6ThrR+viue9IOY5LKMeRngrf2GFX3L6gHfcgYvIfQOKxI11W)T
A645rQyB+NumV1rG6KIas/xmBCEFHpChGZ1/GSB/atrKeVEWgzsJkpQHXEtE7hwK8gMrL+ad38

[l 'mplementing Secure Shell

http://man.openbsd.org/ssh-keygen.1

| Implementing Secure Shell

A

h.

Configuration Example .

mbV2Zz6Cc7KHIFEWaZsfjFscCPOkzUlgXAAAAAAAAABQARAABAARAABHVZZXIAAAAAAAAAAGMKI
CAAAAAAYABrFAAAAAAAAACCAAAAFXBlcmlpdClYMTEtZmOyd2FyZGluZwARAARAAAAXCGVYbWL
OLWFNZW50LWZvcendhecmRpbmcAAAAAAAAAFNBlcemlpdClwb3J0LWZvendhecmRpbmcAAAAAARAAAC
nBlcmlpdClwdHkAAAAAAAAADNBlcmlpdCl1lc2VyLXJjAAAAAAAAAAAAAAEXAAAAB3NzaClyc2E
AAAADAQABAAABAQCigl/zhyjuGOBYz5bu+GL76HBaROVOPVS4Lx3pflici rFkVibPKKkVeX/1E
7s2I1J0anU9vYSJZW8zr18z06GgzmnIgRRaXa9vEiwNmjvNdRwxuBA3Uk/GlsbmcusMXBXoY6z01
EMh1VNOhCgE4cIFgLxgHpYAaqyl2hISaomTCNhkbD7700t8zbyRj16G0Ps0ggYHWmELZE/tbFI
BPWpuuuA3LvpZIiTaztevQaWYSyK22h3tp3K62I0BX3gUd4Yr+Gvo4PNA26e21cUE2aVJs16J9
MeFITR2NzY1lcmZ44KWi6bglkP1E4KBiRsbHCvs4wlaUaO5ghNj1BdH3/Hha4dxAAABDWAAAAdzZC
2gtcnNhAAABABKOHeuTo90Mg6K+HJASPRXD7rQgiiOdl jKdkpwd FZ1wCOdBegQwPQkFYTNHmrH
frQYY72ZINCAjseq+ZSUCkKCqJ]yXbvY+ZdmRyy76pQviitgolZippdgX38nz3ugz/81A/ZudiF
811sgJF0Loj7XDN9wJF/zBtsxsXPp7R5¢c775dmmFgZWQHbSWDINmnPd9vLZMyBwId//+HV/bCF
LjbgI/nr/amLVvjcI01i0ZXzsH7bcLFBSDZ3Epd6IAgqFEe+URgvscjaaghcvnshvcafdgfaru00
wedsZX53/pEBKhlGacsachFa+S2QuYgTafgqnEtkvJoNKVe7UDg/R4kEXM1s9CclIMOficYIm5L
as+ALR4= root@CAServer.cisco.com

[CA server] Create a .pub file in the client machine fo the CA signed user certificate and past the
signed certificate contents in this file.

[root@CAServer testl# vim user-cert.pub
/* Here we are using the vim text editor to create the user-cert.pub file */
/* You can use any text editor of your choice */

[Client machine] View the user certificate in the client machine.

[root@userclient test]# ssh-keygen -Lf user-cert.pub
user-cert.pub:
Type: ssh-rsa-cert-v0l@openssh.com user certificate
Public key: RSA-CERT SHA256:rNmS7P0u6llpm75Kb4KhMxZThwad/AMnA9C//Z1GVEY
Signing CA: RSA SHA256:/B2b8V7jKXwGphf75fk074U/mpuHgDHmvF4okexdKhY
Key ID: "user"
Serial: 20
Valid: from 2022-09-16T12:44:00 to 2022-11-25T12:45:51
Principals:
testuser
Critical Options: (none)
Extensions:
permit-X1l-forwarding
permit-agent-forwarding
permit-port-forwarding
permit-pty
permit-user-rc

[Client machine] Open the known hosts file in the client system and add the public key of the CA to
this file.

Note

Add the CA public key to the known hosts file in the following format:

@cert-authority <hostname> <CA Public Key>

cat testuser@l192.0.2.2 /root/.ssh/known_hosts

@cert-authority ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQCigl/zhyjuGOBYz5bu
+GL76HBaROVOpVS4Lx3pfljcjrFkVibPKKkVeX/1E7sZ2IJ0anU9vYSJZW8zr18z06Ggzmndg
RRaXa9viwNmjvNdRwxuBA3Uk/GlsbmcusMXBXoY6z0IEMh1VNOhCgE4cIFgLxgHpYAaqyl2h
ISaomTCNhkbD7700t8zbyRj16G0Ps0ggYHWmELZE/tbFIBPWpuuuA3LvpZIiTaztevQaWYSy
K22h3tp3K62I0BX3gUd4Yr+Gvo4PNA26e21cUE2aVIs16J9MeFITR2NzY1cmZ44KWi6bglkP
1E4KBiRsbHCvs4wlaUaO5gqhNj1BdH3/Hhad4x root@CAServer.cisco.com

[Router Config mode] Configure the username in the router

Router# config
Router (config) # username testuser

Implementing Secure Shell [

Implementing Secure Shell |
. SSH Port Forwarding

Router (config-un) # group root-lr
Router (config-un) # commit

5. [Client machine] Access the router in the client using the OpenSSH certificate.

[root@userclient test]# ssh -o CertificateFile=user-cert.pub -i user testuser@192.0.2.2
-0 StrictHostKeyChecking=yes
Router#

N

Note The command to access the router in the client machine remotely:

ssh -o CertificateFile=<CA _Signed User Certificate Name> -i
<User_ Certificate Private Key> <Username >@<Router IP> -o
StrictHostKeyChecking=yes

SSH Port Forwarding

Table 9: Feature History Table

Feature Name Release Information Feature Description
SSH Port Forwarding with Release 7.3.2 This release introduces SSH port
CiscoSSH forwarding with CiscoSSH, an

OpenSSH-based implementation of
SSH. CiscoSSH replaces Cisco I0S
XR SSH, which is the older SSH
implementation that existed prior
to this release.

SSH Port Forwarding with Cisco |Release 7.3.15 With this feature enabled, the SSH
I0S XR SSH client on a local host forwards the
traffic coming on a given port to
the specified host and port on a
remote server, through an encrypted
SSH channel. Legacy applications
that do not otherwise support data
encryption can leverage this
functionality to ensure network
security and confidentiality to the
traffic that is sent to remote
application servers.

This feature introduces the ssh
server port-forwarding local
command.

SSH port forwarding or SSH tunneling is a method of forwarding the otherwise insecure TCP/IP connections
from the SSH client to server, or the other way around, through a secure SSH channel. Since the traffic is
directed to flow through an encrypted SSH connection, it is tough to snoop or intercept this traffic while in
transit. This SSH tunneling provides network security and confidentiality to the data traffic, and hence legacy

[l 'mplementing Secure Shell

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/secure-shell-and-secure-sockets-layer-commands.html#wp1149974546
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/secure-shell-and-secure-sockets-layer-commands.html#wp1149974546

| Implementing Secure Shell

SSH Port Forwarding .

applications that do not otherwise support encryption can mainly benefit out of this feature. You can also use
this feature to implement VPN and to access intranet services across firewalls.

Figure 1: SSH Port Forwarding

Application
Server

—

S55H Client _q-m

Local Host Encrypted SSH Tunnel Remote Host

Consider an application on the SSH client residing on a local host, trying to connect to an application server
residing on a remote host. The remote host can either be a single router where both the SSH server and
application server reside, or, it can host the SSH server on one router and application server on a different
device, like in case of a data center. With port forwarding or tunneling enabled, the application on the SSH
client connects to a port on the local host that the SSH client listens to. The SSH client then forwards the data
traffic of the application to the SSH server over an encrypted tunnel. The SSH server then connects to the
actual application server that is either residing on the same router or on the same data center as the SSH server.
The entire communication of the application is thus secured, without having to modify the application or the
work flow of the end user.

The SSH port forwarding feature is disabled, by default. You can enable the feature by using the ssh server
port-forwarding local command in the XR Config mode.

How Does SSH Port Forwarding Work?
Figure 2: Sample Topology for SSH Port Forwarding

S S
Router-1 Router-2

ssh-L 5678:192.168.0.2:23 admin@®192.168.0.1 IP:192.168.0.1 IP:192.168.0.2
[Secured SSH Tunnel [}

Consider a scenario where port forwarding is enabled on the SSH server running on Router-1, in this topology.
An SSH client running on a local host tries to create a secure tunnel to the SSH server, for a local application
to eventually reach the remote application server running on Router-2.

The client tries to establish an SSH connection to Router-1 using the following command:

ssh -L local-port:remote-server-hostname:remote-port username@sshserver-hostname
where,

local-port is the local port number of the host where the SSH client and the application reside. Port 5678, in
this example.

remote-server-hostname: remote-port is the TCP/IP host name and port number of the remote application
server where the recipient (SSH server) must connect the channel from the SSH client to. 192.168.0.2 and
port 23, in this example.

Implementing Secure Shell .

22062

Implementing Secure Shell |
. How to Enable SSH Port Forwarding

sshserver-hosthame is the domain name or IP address of the SSH server that receives the SSH client request.
It must the SSH IP address or domain name to access the router that hosts the SSH server. That is, 192.168.0.1
of Router-1, in this example.

For example,

ssh -L 5678:192.168.0.2:23 admin@192.168.0.1

When the SSH server receives a TCP/IP packet from the SSH client, it accepts the packet and opens a socket
to the remote server and port specified in that packet. Once the connection between SSH client and server is
established, the SSH server connects that communication channel to the newly created socket. From then
onwards, SSH server forwards all the incoming data from the client on that channel to that socket. This type
of connection is known as port-forwarded local connection. When the client closes the connection, the SSH
server closes the socket and the forwarded channel.

How to Enable SSH Port Forwarding

Guidelines for Enabling SSH Port Forwarding Feature

* The Cisco IOS XR software supports SSH port forwarding only on SSH server; not on SSH client. Hence,
to utilize this feature, the SSH client running at the end host must already have the support for SSH port
forwarding or tunneling.

* The application server must be reachable on the same VRF where the current SSH connection between
the server and the client is established.

* Port numbers need not match for SSH port forwarding to work. You can map any port on the SSH server
to any port on the client.

* If the SSH client tries to do port forwarding without the feature being enabled on the SSH server, the
port forwarding fails, and displays an error message on the console. Similarly the port-forwarded channel
closes in case there is any connectivity issue or if the server receives an SSH packet from the client in
an improper format.

Configuration Example

Router#configure
Router (config) #ssh server port-forwarding local
Router (config) #commit

Running Configuration
Router#show running-configuration
ssh server port-forwarding local

Verification

Use the show ssh command to see the details of the SSH sessions. The connection type field shows as
port-forwarded-local for the port-forwarded session.

Router#show ssh

[l 'mplementing Secure Shell

Implementing Secure Shell
How to Enable SSH Port Forwarding .

Wed Oct 14 11:22:05.575 UTC
SSH version : Cisco-2.0

id chan pty location state userid host ver authentication connection
type

Incoming sessions
15 1 XXX 0/RPO/CPUO SESSION OPEN admin 192.168.122.1 v2 password
port-forwarded-local

Outgoing sessions

Router#

Use the show ssh server command to see the details of the SSH server. The Port Forwar ding column shows
as local for the port-forwarded session. Whereas, for a regular SSH session, the field displays as disabled.

Router#show ssh server
Tue Sep 7 17:43:22.483 IST

Current supported versions := v2
SSH port := 22
SSH vrfs := vrfname:=default (vd-acl:=, vb6-acl:=)
Netconf Port := 830
Netconf Vrfs := vrfname:=default (vd-acl:=, vb6-acl:=)
Algorithms

Hostkey Algorithms :=
x509v3-ssh-rsa, ecdsa-sha2-nistpb21, ecdsa—sha2-nistgo384, ecdsa—sha2-nist?56, rsa-sha2-512, rsa—sha?-256, ssh—rsa, ssh-dsa, ssh-ed?25519

Key-Exchange Algorithms :=
ecdh-sha2-nistp521,ecdh-sha2-nistp384,ecdh-sha2-nistp256,diffie-hellman-groupl4-shal
Encryption Algorithms :=
aesl28-ctr,aesl92-ctr,aes256-ctr,aesl28-gcml@openssh.com, aes256-gcm@openssh.com
Mac Algorithms := hmac-sha2-512,hmac-sha2-256, hmac-shal

Authentication Method Supported

PublicKey := Yes
Password := Yes
Keyboard-Interactive := Yes
Certificate Based := Yes
Others
DSCP := 0
Ratelimit := 600
Sessionlimit := 110
Rekeytime := 30
Server rekeyvolume := 1024
TCP window scale factor := 1
Backup Server := Disabled
Host Trustpoint :=
User Trustpoint := tes,test,x509%user
Port Forwarding := local
Max Authentication Limit := 16
Certificate username := Common name (CN) User principle name (UPN)
Router#

Implementing Secure Shell [

Implementing Secure Shell |
How to Enable SSH Port Forwarding

Syslogs for SSH Port Forwarding Feature
The router console displays the following syslogs at various SSH session establishment events.
* When SSH port forwarding session is successfully established:
RP/0/RP0O/CPUO:Aug 24 13:10:15.933 IST: SSHD [66632]:
%SECURITY-SSHD-6-PORT FWD_ INFO GENERAL : Port Forwarding, Target:=10.105.236.155,
Port:=22, Originator:=127.0.0.1,Port:=41590, Vrf:=0x60000000, Connection forwarded
* If SSH client tries to establish a port forwarding session without SSH port forwarding feature being

enabled on the SSH server:

RP/0/RPO/CPUO:Aug 24 13:20:31.572 IST: SSHD_ [65883]: %SECURITY-SSHD-3-PORT FWD ERR GENERAL
Port Forwarding, Port forwarding is not enabled

Associated Command

» ssh server port-forwarding local

[l 'mplementing Secure Shell

	Implementing Secure Shell
	Information About Implementing Secure Shell
	SSH Server
	SSH Client
	SFTP Feature Overview
	RSA Based Host Authentication
	RSA Based User Authentication
	SSHv2 Client Keyboard-Interactive Authentication
	SSH and SFTP in Baseline Cisco IOS XR Software Image
	CiscoSSH
	Guidelines for Using CiscoSSH

	Prerequisites for Implementing Secure Shell
	Guidelines and Restrictions for Implementing Secure Shell
	How to Implement Secure Shell
	Configure SSH
	Automatic Generation of SSH Host-Key Pairs
	Configure the Allowed SSH Host-Key Pair Algorithms

	Ed25519 Public-Key Signature Algorithm Support for SSH
	How to Generate Ed25519 Public Key for SSH

	Configure the SSH Client
	Configure Secure Shell: Example
	Multi-channeling in SSH
	Restrictions for Multi-channeling Over SSH
	Client and Server Interaction Over Multichannel Connection
	Configure Client for Multiplexing

	SSH Configuration Option to Restrict Cipher Public Key and HMAC Algorithm
	Disable HMAC Algorithm
	Enable Cipher Public Key

	User Configurable Maximum Authentication Attempts for SSH
	Configure Maximum Authentication Attempts for SSH

	X.509v3 Certificate-based Authentication for SSH
	Configure X.509v3 Certificate-based Authentication for SSH

	OpenSSH Certificate based Authentication for Router
	Feature Highlights
	Prerequisites
	Configuration Example

	SSH Port Forwarding
	How to Enable SSH Port Forwarding

