Implementing UCMP

The unequal cost multipath (UCMP) load-balancing provides the capability to load balance traffic proportionally
across multiple paths, with different cost. Generally, higher bandwidth paths have lower Interior Gateway
Protocol (IGP) metrics configured, so that they form the shortest IGP paths.

With the UCMP load-balancing enabled, protocols can use even lower bandwidth paths or higher cost paths
for traffic, and can install these paths to the forwarding information base (FIB). These protocols still install
multiple paths to the same destination in FIB, but each path will have a 'load metric/weight' associated with
it. FIB uses this load metric/weight to decide the amount of traffic that needs to be sent on a higher bandwidth
path and the amount of traffic that needs to be sent on a lower bandwidth path.

In the following example, there are 3 paths to get to Network X as follows:

Figure 1: Topology for UCMP

Router B

S & -

S ES el router A
¥
Routar D B
Paths Cost from Router E to Net -X
E-B-A 40
E-C-A 50
E-D-A 40

Implementing UCMP  [Ji]



Implementing UCMP |
. ECMP vs. UCMP Load Balancing

IGP selects the lowest path links, i.e E-B-A and E-D-A. The path E-C-A is not considered for load balancing
because of higher cost. The lowest path link E-D (5) is not a tie breaker, as the end to end cost to the Network
X is considered.

* ECMP vs. UCMP Load Balancing, on page 2
+ UCMP Minimum Integer Ratio, on page 2

* Configuring IS-IS With Weight, on page 3

* Configuring IS-IS With Metric, on page 4

* Configuring BGP With Weights, on page 5

ECMP vs. UCMP Load Balancing

Load balancing is a forwarding mechanism that distributes traffic over multiple links based on certain
parameters. Equal Cost Multi Path (ECMP) is a forwarding mechanism for routing packets along multiple
paths of equal cost with the goal to achieve almost equally distributed link load sharing. This significantly
impacts a router's next-hop (path) decision.

In ECMP, it is assumed that all links available are of similar speed which inherently means that the hash
values that are computed are equally shared over the multiple paths available.

For instance, if we have two paths available, the buckets (which in the end identify the links to be chosen)
will be assigned in a 50% / 50% loadsharing. This can be problematic when one path is say a 10G link and
the other link is a 1G link. In this case, you probably want to assign a (near) 90/10 type deviation, but
considering that BGP is not bandwidth aware, the 10G path is still chosen 50% of the time as much as the 1G
link. In this scenario, not all paths are of equal cost path.

What UCMP does in this case is apply a weight to a path which means that we are giving more hash buckets
to one path that has a higher weight. The weight applied is static in the sense that it is derived by the DMZ
bandwidth extended community either assigned to a peer or as configured via the Route Policy Language
(RPL) route manipulation functionality.

In general, a routing protocol decides a best path to a destination based on a metric. This metric is generally
driven by the bandwidth of the circuit. When we have 3 paths available, say 1G/10G/100G, routing protocols
generally discard the 1G/10G paths available. In defined cases, one may want to spread the load over the
circuits based on the load they can carry. In this example, one may want to distribute traffic in a 1%/10%/89%
fashion over the 1G/10G/100G paths available.

UCMP Minimum Integer Ratio

The UCMP Minimum Integer Ratio feature saves hardware resources when programming UCMP, by using
optimized number of buckets.

To calculate the UCMP minimum integer ratio, find the greatest common divisor (GCD) and divide all the
calculated normalized weights.

In the following Figure, we have three configured weights 40, 50, and 40, with GCD as 10. To calculate the
normalized weight, divide the configured weight by GCD. In this example, we need to divide 40 by 10, 50
by 10, and 40 by 10, which is 4, 5, and 4 respectively. Therefore 4, 5, and 4 are the new normalized weights.

Il 'mplementing UCMP



| Implementing UCMP
Configuring IS-1S With Weight .

Normalized weight = 4

Router B

Router D
Normalized weight = 4

367324

New normalized weights are: 40/10 =4, 50/10 =5, and 40/10 =4
If GCD is 1, then Normalized Weight = (Path weight/Total weight) * Maximum bucket size

Configuring IS-IS With Weight

The following example shows the IS-IS weight configuration with IPv4. The same can be done for [Pv6, with
or without SR.

CPUO:router (config) # router isis 1

RP/0/RSPO/CPUQ:router (config-isis)# interface HundredGigE 0/3/0/8
RP/0/RSP0O/CPUO:router (config-isis-if) # address-family ipv4 unicast
RP/0/RSP0O/CPUO:router (config-isis-if-af)# weight 200
RP/0/RSPO/CPUQO:router (config-isis)# interface HundredGigE 0/3/0/9
RP/0/RSPO/CPUO:router (config-isis-if) # address-family ipv4 unicast
RP/0/RSP0O/CPUO:router (config-isis-if-af)# weight 300

Verification

The following example verifies CEF entry. Then, for two paths with weights of 200 and 300 respectively,
and GCD of 100; the expected normalized weights are 2 and 3.

Router# show cef ipv4 97.0.0.0 detail

97.0.0.0/24, version 537, internal 0x1000001 0x0 (ptr Ox7lbcaee0) [1], 0x0 (0x71b98870),
0x0 (0x0)
Updated Oct 16 06:34:46.197
remote adjacency to HundredGigE 0/3/0/8
Prefix Len 24, traffic index 0, precedence n/a, priority 2
gateway array (0x71la6delO) reference count 13, flags 0x0, source rib (7), 0 backups
[14 type 3 flags 0x8401 (0x71b02d90) ext 0x0 (0x0)]
LW-LDI[type=3, refc=1l, ptr=0x71b98870, sh-1di=0x71b02d90]
gateway array update type-time 1 Oct 16 06:34:46.196
LDI Update time Oct 16 06:34:46.197

Implementing UCMP  [Ji]



Implementing UCMP |
. Configuring IS-IS With Metric

LW-LDI-TS Oct 16 06:34:46.197
via 1.0.0.2/32, HundredGigE0/3/0/8, 4 dependencies, weight 200, class 0 [flags 0x0]
path-idx 0 NHID O0x0 [0x7244d2a4 0x0]
next hop 1.0.0.2/32
remote adjacency
via 2.0.0.2/32, HundredGigE0/3/0/9, 4 dependencies, weight 300, class 0 [flags 0x0]
path-idx 1 NHID O0x0 [0x7244d2f8 0x0]
next hop 2.0.0.2/32
remote adjacency

Weight distribution:
slot 0, weight 200, normalized weight 2, class 0
slot 1, weight 300, normalized weight 3, class 0

Load distribution: 0 1 0 1 1 (refcount 14)

Hash OK 1Interface Address
0 Y HundredGigE0/3/0/8 remote
1 Y HundredGigE0/3/0/9 remote
2 Y HundredGigE0/3/0/8 remote
3 Y HundredGigE0/3/0/9 remote
4 Y HundredGigE0/3/0/9 remote

Configuring IS-IS With Metric

The following example shows IS-IS metric configuration with IPv4. The same can be done with IPvo6.

Router# enable

RP/0/RSP0O/CPUO:router (config) # router isis 1

RP/0/RSP0O/CPUO:router (config-isis)# interface HundredGigEO/3/0/8
RP/0/RSPO/CPUO:router (config-isis-if) # address-family ipv4 unicast
RP/0/RSPO/CPUO:router (config-isis-if-af)# metric 1
RP/0/RSPO/CPUO:router (config-isis)# interface HundredGigEO/3/0/9
RP/0/RSP0O/CPUO:router (config-isis-if) # address-family ipv4 unicast
RP/0/RSPO/CPUO:router (config-isis-if-af)# metric 100

Verification

The following example verifies CEF entry, and checks for the two paths with metric values of 1 and 100,
respectively. In this example, the best path route metric is 21 and the UCMP path route metric is 120. Therefore,
the calculation is as follows:

The best path route metric, 21 = (1 configured + 20 added by IS-IS), weight OXFFFFFFFF (4294967295)
The UCMP path route metric, 120 = (100 + 20), weight = (21/120) * 4294967295 = 751619276

GCD is one. So Normalized Weight is:

(4294967295 * 64) / (4294967295 + 751619276) = 54

(751619276 * 64) / (4294967295 + 751619276) =9

Router# show cef ipv4 97.0.0.0 detail

97.0.0.0/24, version 773, internal 0x1000001 0x0 (ptr Ox7lbcaee0) [1], 0x0 (0x71b98870),
0x0 (0x0)
Updated Oct 16 06:36:08.632
remote adjacency to HundredGigE0/3/0/8
Prefix Len 24, traffic index 0, precedence n/a, priority 2
gateway array (0x71a6d9d0) reference count 2, flags 0x0, source rib (7), 0 backups

Il 'mplementing UCMP



| Implementing UCMP
Configuring BGP With Weights .

[3 type 3 flags 0x8401 (0x71b02b90) ext 0xO0
LW-LDI [type=3, refc=1l, ptr=0x71b98870, sh-1di=0x71b02b90]
gateway array update type-time 1 Oct 16 06:36:08.632
LDI Update time Oct 16 06:36:08.632
LW-LDI-TS Oct 16 06:36:08.632

(0x0) ]

via 1.0.0.2/32, HundredGigE0/3/0/8, 14 dependencies, weight 4294967295, class 0 [flags
0x0]
path-idx 0 NHID O0x0 [0x7244d2a4 0x0]
next hop 1.0.0.2/32
remote adjacency
via 2.0.0.2/32, HundredGigE0/3/0/9, 14 dependencies, weight 751619276, class 0 [flags

0x0]
path-idx 1 NHID 0x0
next hop 2.0.0.2/32
remote adjacency

[0x7244d2£8 0x0]

Weight distribution:
slot 0, weight 4294967295, normalized weight 54, class 0
slot 1, weight 751619276, normalized weight 9, class 0

Configuring BGP With Weights

The following example shows BGP configuration with weights.

RP/0/RSP0O/CPUO
RP/0/RSPO/CPUO
RP/0/RSPO/CPUO
RP/0/RSPO/CPUO
RP/0/RSP0O/CPUO
RP/0/RSP0O/CPUO
RP/0/RSPO/CPUO
RP/0/RSPO/CPUO
RP/0/RSPO/CPUO
RP/0/RSP0O/CPUO
RP/0/RSP0O/CPUO
RP/0/RSP0O/CPUO
RP/0/RSPO/CPUO
RP/0/RSPO/CPUO
RP/0/RSP0O/CPUO
RP/0/RSP0O/CPUO
RP/0/RSP0O/CPUO
RP/0/RSPO/CPUO
RP/0/RSPO/CPUO
RP/0/RSP0O/CPUO
RP/0/RSPO/CPUO
RP/0/RSP0O/CPUO
RP/0/RSPO/CPUO
RP/0/RSP0O/CPUO
RP/0/RSP0O/CPUO
RP/0/RSPO/CPUO
RP/0/RSP0O/CPUO
RP/0/RSP0O/CPUO
RP/0/RSP0O/CPUO
RP/0/RSP0O/CPUO
RP/0/RSPO/CPUO
RP/0/RSP0O/CPUO
RP/0/RSP0O/CPUO
RP/0/RSP0O/CPUO

:router (config-bgp-nbr-af) #
:router (config-bgp-nbr) # remote-as 2

:router (config-bgp-nbr) # ebgp-multihop 255

:router (config-bgp-nbr) # dmz-link-bandwidth

:router (config-bgp-nbr) # address-family ipv4 unicast
:router (config-bgp-nbr-af) # multipath

:router (config-bgp-nbr-af)# route-policy BW2 in
:router (config-bgp-nbr-af) # route-policy pass-all out

:router (config) # route-policy BW1

:router (config-rpl) # set extcommunity bandwidth
:router (config-rpl) # end-policy

:router (config) # !

:router (config) # route-policy BW2

:router (config-rpl) # set extcommunity bandwidth
:router (config-rpl) # end-policy

:router (config) # !

:router (config) # route-policy pass-all

:router (config-rpl) # pass

:router (config-rpl) # end-policy

:router (config) # !

:router (config) # router bgp 1

:router (config-bgp) # bgp bestpath as-path multipath-relax
:router (config-bgp) # address-family ipv4 unicast

:router (config-bgp-af) # maximum-paths eibgp 64

:router
:router
:router (config-bgp-nbr) # remote-as 2

:router (config-bgp-nbr) # ebgp-multihop 255

:router (config-bgp-nbr) # dmz-link-bandwidth

:router (config-bgp-nbr) # address-family ipv4 unicast
:router (config-bgp-nbr-af) #
:router (config-bgp-nbr-af) #
:router (config-bgp-nbr-af) #
:router (config-bgp-nbr-af) # !

(2906:45750000)

(2906:47250000)

config-bgp-af) # !
config-bgp-af)# neighbor 1.0.0.2

multipath
route-policy BW1l in
route-policy pass-all out

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
( neighbor 2.0.0.2
(

(

(

(

(

(

(

Implementing UCMP  [Ji]



Implementing UCMP |
. Configuring BGP With Weights

Verification
Step 1: Verify CEF entry:

Via 1.0.0.2: set extcommunity bandwidth (2906:45750000) — Weight = 45750000/125=366000 (125 ratio
because baud)

Via 2.0.0.2: set extcommunity bandwidth (2906:47250000) — Weight = 47250000/125=378000
GCD is 6, so norm_weight =61 and 63. Though 61 + 63 > 64.

Step 2: GCD of weights 61 and 63 is 1. Therefore, Normalised Weight = (Path weight/Total weight) *
Maximum bucket size. The maximum bucket size value is 64. Total weight = 61+63 = 124.

norm_weightl = (61/124) * 64 =31, norm_weight2 = (63/124) * 64 =32
You can verify the weight distribution in BGP, using the following command:

Router # show cef vrf default ipv4 97.0.0.0 detail

97.0.0.0/24, version 1965, internal 0x5000001 0xO (ptr Ox71bcb620) [1], 0x0 (0x0), 0xO0 (0x0)
Updated Oct 16 08:15:02.958
Prefix Len 24, traffic index 0, precedence n/a, priority 4
gateway array (0x72a5e2f8) reference count 10, flags 0x2010, source rib (7), 0 backups
[1 type 3 flags 0x48441 (0x71b02cd0) ext 0x0 (0x0)]
LW-LDI[type=0, refc=0, ptr=0x0, sh-1di=0x0]
gateway array update type-time 1 Oct 16 08:15:02.958
LDI Update time Oct 16 08:15:02.959

Weight distribution:
slot 0, weight 366000, normalized weight 31
slot 1, weight 378000, normalized weight 32

Level 1 - Load distribution: 0 1 01 0 1 O

1010101010101 010101010101010101010D101T0C1TO0O1LO0O0O1TO0T1
01010101011

[0] via 1.0.0.2/32, recursive

[1] via 2.0.0.2/32, recursive

Il 'mplementing UCMP



	Implementing UCMP
	ECMP vs. UCMP Load Balancing
	UCMP Minimum Integer Ratio
	Configuring IS-IS With Weight
	Configuring IS-IS With Metric
	Configuring BGP With Weights


