

Configure Priority Flow Control

- Priority Flow Control Overview, on page 1
- View Priority Flow Control TX Frames Per Traffic Class, on page 10
- Configurable ECN Threshold and Maximum Marking Probability Values, on page 12
- Priority Flow Control Watchdog Overview, on page 17
- Global Statistics Counters for Priority Flow Control and Priority Flow Control Watchdog, on page 20
- PFC Watchdog Statistics to Monitor Traffic Drops, on page 23
- Detect High Bandwidth Memory Congestion, on page 25

Priority Flow Control Overview

Table 1: Feature History Table

Priority Flow Control on Cisco 8808 and Cisco 8812 Modular Chassis Line Cards Release 7.5.3 Priority Flow Control is now supported on the following line card in the buffer-internal mode: • 88-LC0-34H14FH The feature is supported in the buffer-internal and buffer-extended modes on: • 88-LC0-36FH Apart from the buffer-external mode, support for this feature now extends to the buffer-internal mode on the following line cards: • 88-LC0-36FH-M • 8800-LC-48H	Feature Name	Release Information	Feature Description
1	8808 and Cisco 8812 Modular	Release 7.5.3	supported on the following line card in the buffer-internal mode: • 88-LC0-34H14FH The feature is supported in the buffer-internal and buffer-extended modes on: • 88-LC0-36FH Apart from the buffer-external mode, support for this feature now extends to the buffer-internal mode on the following line cards: • 88-LC0-36FH-M

Feature Name	ature Name Release Information Feature Description			
Shortlink Priority Flow Control	Release 7.3.3	This feature and the hw-module profile priority-flow-control command are supported on 88-LC0-36FH line card.		
Priority Flow Control Support on Cisco 8800 36x400 GbE QSFP56-DD Line Cards (88-LC0-36FH-M)	Release 7.3.15	This feature and the hw-module profile priority-flow-control command are supported on 88-LC0-36FH-M and 8800-LC-48H line cards.		
		All previous functionalities and benefits of this feature are available on these line cards. However, the buffer-internal mode is not supported.		
		In addition, to use the buffer-extended mode on these line cards, you are required to configure the performance capacity or headroom values. This configuration requirement ensures that you can better provision and balance workloads to achieve lossless behavior, which in turn ensures efficient use of bandwidth and resources.		
Priority Flow Control	Release 7.3.1	This feature and the hw-module profile priority-flow-control command are not supported.		

Priority-based Flow Control (IEEE 802.1Qbb), which is also referred to as Class-based Flow Control (CBFC) or Per Priority Pause (PPP), is a mechanism that prevents frame loss that is due to congestion. PFC is similar to 802.x Flow Control (pause frames) or link-level flow control (LFC). However, PFC functions on a per class-of-service (CoS) basis.

During congestion, PFC sends a pause frame to indicate the CoS value to pause. A PFC pause frame contains a 2-octet timer value for each CoS that indicates the length of time to pause the traffic. The unit of time for the timer is specified in pause quanta. A quanta is the time required for transmitting 512 bits at the speed of the port. The range is from 0 through 65535 quanta.

PFC asks the peer to stop sending frames of a particular CoS value by sending a pause frame to a well-known multicast address. This pause frame is a one-hop frame and isn't forwarded when received by the peer. When the congestion mitigates, the router stops sending the PFC frames to the upstream node.

You can configure PFC for each line card using the **hw-module profile priority-flow-control** command in one of two modes:

- buffer-internal
- · buffer-extended

Note

PFC threshold configurations are deprecated in pause command. Use the hw-module profile priority-flow-control command to configure PFC threshold configurations.

Related Topics

- Configure Priority Flow Control, on page 5
- Priority Flow Control Watchdog Overview, on page 17

buffer-internal mode

Use this mode if PFC-enabled devices aren't more than 1 km apart.

You can set values for pause-threshold, headroom (both related to PFC), and ECN for the traffic class using the **hw-module profile priority-flow-control** command in this mode. The buffer-internal configuration applies to all ports that the line card hosts, which mean that you can configure a set of these values per line card.

The existing queue limit and ECN configuration in the queueing policy attached to the interface has no impact in this mode.

The effective queue limit for this mode = pause-threshold + headroom (in bytes)

Restrictions and Guidelines

The following restrictions and guidelines apply while configuring the PFC threshold values using the buffer-internal mode.

- The PFC feature isn't supported on fixed chassis systems.
- Ensure that there's no breakout configured on a chassis that has the PFC configured. Configuring PFC and breakout on the same chassis may lead to unexpected behavior, including traffic loss.
- The feature isn't supported on bundle and non-bundle sub-interface queues.
- The feature is supported on 40GbE, 100 GbE, and 400 GbE interfaces.
- The feature isn't supported in the 4xVOQ queueing mode.
- The feature isn't supported when sharing of VOQ counters is configured.

buffer-extended mode

Use this mode for PFC-enabled devices with long-haul connections.

You can set the value for pause-threshold using the **hw-module profile priority-flow-control** command in this mode. You must, however, configure the queuing policy attached to the interface to set the ECN and queueing limits. The buffer-extended configuration applies to all ports that the line card hosts, which mean that you can configure a set of these values per line card.

Configuration Guidelines

- Important points while configuring the buffer-extended mode on 88-LC0-36FH-M line cards:
 - Apart from pause-threshold, you must also configure values for headroom.
 - The headroom value range is from 4 through 75000.
 - Specify pause-threshold and headroom values in units of kilobytes (KB) or megabytes (MB).
- Important points while configuring the buffer-extended mode on 8800-LC-48H line cards:
 - Configure values only for pause-threshold. Don't configure headroom values.
 - Configure **pause-threshold** in units of milliseconds (ms) or microseconds.
 - Don't use units of kilobytes (KB) or megabytes (MB) units, even though the CLI displays them as options. Only use units of milliseconds (ms) or microseconds.

(Also see Configure Priority Flow Control, on page 5)

Important Considerations

- If you configure PFC values in the buffer-internal mode, then the ECN value for the line card is derived from the buffer-internal configuration. If you configure PFC values in the buffer-extended mode, then the ECN value is derived from the policy map. (For details on the ECN feature, see Explicit Congestion Notification.)
- The buffer-internal and buffer-extended modes can't coexist on the same line card.
- If you add or remove traffic-class actions on a line card, you must reload the line card.
- When using the buffer-internal mode, you can change values of the following parameters without having to reload the line card. However, if you add a new traffic class and configure these values for the first time on that traffic class, you must reload the line card for the values to come into effect.
 - · pause-threshold
 - headroom
 - ECN
- If you add or remove ECN configuration using the **hw-module profile priority-flow-control** command, you must reload the line card for the ECN changes to take effect.
- The PFC threshold value ranges for the buffer-internal mode are as follows.

Threshold	Configured (bytes)
pause (min)	307200
pause (max)	422400
headroom (min)	345600
headroom (max)	537600

Threshold	Configured (bytes)
ecn (min)	153600
ecn (max)	403200

- For a traffic-class, the ECN value must always be lesser than the configured pause-threshold value.
- The combined configured values for pause-threshold and headroom must not exceed 844800 bytes. Else, the configuration is rejected.
- The pause-threshold value range for buffer-extended mode is from 2 milliseconds (ms) through 25 ms and from 2000 microseconds through 25000 microseconds.

Hardware Support for Priority Flow Control

The table lists the PIDs that support PFC per release and the PFC mode in which the support is available.

Table 2: PFC Hardware Support Matrix

Release	PID	PFC Mode
Release 7.5.3	88-LC0-36FH	buffer-extended and buffer-internal
	88-LC0-36FH-M	buffer-extended and buffer-internal
	8800-LC-48H	buffer-extended and buffer-internal
	88-LC0-34H14FH	buffer-internal
Release 7.3.15	• 88-LC0-36FH-M • 88-LC0-36FH	buffer-extended
Release 7.0.11	8800-LC-48H	buffer-internal

Configure Priority Flow Control

You can configure PFC to enable the no-drop behavior for the CoS as defined by the active network QoS policy.

Note

The system enables shortlink PFC by default when you enable PFC.

Configuration Example

You must accomplish the following to complete the PFC configuration:

- 1. Enable PFC at the interface level.
- **2.** Configure ingress classification policy.

- 3. Attach the PFC policy to the interface.
- **4.** Configure PFC threshold values using either the buffer-internal or buffer-extended mode.

```
Router# configure
Router(config)# priority-flow-control mode on
/*Configure ingress classification policy*/
Router(config)# class-map match-any prec7
Router(config-cmap)# match precedence
Router(config)# class-map match-any tc7
/*Ingress policy attach*/
Router(config-if)# service-policy input QOS_marking
/*Egress policy attach*/
Router(config-if)# service-policy output qos_queuing
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)#show controllers npu priority-flow-control location <loc>
```

Running Configuration

```
*Interface Level*
interface HundredGigE0/0/0/0
   priority-flow-control mode on
*Ingress:*
class-map match-any prec7
match precedence 7
end-class-map
class-map match-any prec6
match precedence 6
end-class-map
class-map match-any prec5
match precedence 5
 end-class-map
class-map match-any prec4
match precedence 4
 end-class-map
class-map match-any prec3
match precedence 3
end-class-map
class-map match-any prec2
```

```
match precedence 2
end-class-map
class-map match-any prec1
match precedence 1
end-class-map
!
policy-map QOS MARKING
class prec7
 set traffic-class 7
 set qos-group 7
class prec6
 set traffic-class 6
 set qos-group 6
class prec5
 set traffic-class 5
 set qos-group 5
class prec4
 set traffic-class 4
 set qos-group 4
class prec3
 set traffic-class 3
 set qos-group 3
class prec2
 set traffic-class 2
 set qos-group 2
class prec1
 set traffic-class 1
 set qos-group 1
class class-default
 set traffic-class 0
  set qos-group 0
*Egress:*
class-map match-any tc7
match traffic-class 7
end-class-map
class-map match-any tc6
match traffic-class 6
 end-class-map
class-map match-any tc5
match traffic-class 5
 end-class-map
!
class-map match-any tc4
 match traffic-class 4
 end-class-map
!
```

```
class-map match-any tc3
match traffic-class 3
end-class-map
class-map match-any tc2
match traffic-class 2
end-class-map
class-map match-any tc1
match traffic-class 1
end-class-map
policy-map QOS_QUEUING
class tc7
 priority level 1
 shape average percent 10
class tc6
 bandwidth remaining ratio 1
 queue-limit 100 ms
class tc5
 bandwidth remaining ratio 20
  queue-limit 100 ms
class tc4
 bandwidth remaining ratio 20
 random-detect ecn
 random-detect 6144 bytes 100 mbytes
class tc3
 bandwidth remaining ratio 20
 random-detect ecn
 random-detect 6144 bytes 100 mbytes
class tc2
 bandwidth remaining ratio 5
 queue-limit 100 ms
class tc1
 bandwidth remaining ratio 5
 queue-limit 100 ms
class class-default
 bandwidth remaining ratio 20
  queue-limit 100 ms
[buffer-extended]
hw-module profile priority-flow-control location 0/0/CPU0
buffer-extended traffic-class 3 pause-threshold 10 ms
buffer-extended traffic-class 4 pause-threshold 10 ms
[buffer-internal]
hw-module profile priority-flow-control location 0/1/CPU0
buffer-internal traffic-class 3 pause-threshold 403200 bytes headroom 441600 bytes ecn
224640 bytes
```

buffer-internal traffic-class 4 pause-threshold 403200 bytes headroom 441600 bytes ecn 224640 bytes

Verification

```
Router#sh controllers hundredGigE0/0/0/22 priority-flow-control
Priority flow control information for interface HundredGigE0/0/0/22:
Priority Flow Control:
Total Rx PFC Frames : 0
Total Tx PFC Frames : 313866
Rx Data Frames Dropped: 0
CoS Status Rx Frames
--- ----- ------
0 on
         0
1
   on
          Ω
2.
  on
3 on
         0
4
  on
          0
   on
6
   on
          0
7
          0
   on
/*[buffer-internal]*/
Router#show controllers hundredGigE 0/9/0/24 priority-flow-control
Priority flow control information for interface HundredGigE0/9/0/24:
Priority Flow Control:
Total Rx PFC Frames: 0
Total Tx PFC Frames : 313866
Rx Data Frames Dropped: 0
CoS Status Rx Frames
0 on
         0
         0
1
  on
2
   on
3
   on
          Ω
4
          0
   on
5
  on
6
  on
         0
7
   on
/*[buffer-internal, tc3 & tc4 configured. TC4 doesn't have ECN]*/
Router#show controllers npu priority-flow-control location <loc>
Location Id:
                                   0/1/CPU0
PFC:
                                   Enabled
PFC-Mode:
                                  buffer-internal
TC Pause
                   Headroom
                                   ECN
    86800 bytes 120000 bytes 76800 bytes
86800 bytes 120000 bytes Not-configur
3
                   120000 bytes
    86800 bytes
                                  Not-configured
/*[buffer-extended PFC, tc3 & tc4 configured]*/
Router#show controllers npu priority-flow-control location <loc>
Location Id:
                                   0/1/CPU0
PFC:
                                   Enabled
PFC-Mode:
                                   buffer-extended
TC Pause
```

3 5000 us 4 10000 us /*[No PFC]*/

Router#show controllers npu priority-flow-control location <loc>
Location Id: 0/1/CPU0

PFC: Disabled

Related Topics

• Priority Flow Control Overview, on page 1

Related Commands

hw-module profile priority-flow-control location

View Priority Flow Control TX Frames Per Traffic Class

Table 3: Feature History Table

You can now view an estimation of the transmission (Tx) of Priority Flow Control
(PFC) frames per traffic class, which informs you that the traffic flow has crossed configured PFC pause thresholds. This information allows you to rebalance traffic flows to ensure that network resources are efficiently used. Such verification is possible because we've added counters for PFC Tx frames. This functionality modifies the following to add the PFC Tx frame counters: • YANG data model (at Github under the 754 folder): Cisco-IOS-XR-ofa-npu-pfc-oper • show controllers

Beginning Cisco IOS XR Release 7.5.4, we have added an additional counter for PFC Tx pause frames per traffic class in the **show controllers priority-flow-control statistics** command form. With this counter, you receive timely information that the traffic flow has exceeded the configured PFC pause thresholds and hence that PFC Tx frames are sent out of the PFC-enabled interfaces sourcing such traffic on that network processing core. You can use this information to investigate and analyze why such traffic flows are causing congestion and improve traffic distribution across interfaces to utilize network resources efficiently.

Run the **show controllers priority-flow-control statistics** to view an estimation of the statistics for PFC Tx frames per traffic class (**Tx Frames**):

 ${\tt Router\#show\ controllers\ hundredGigE\ 0/0/0/4\ priority-flow-control\ statistics}$

Priority flow control information for interface HundredGigEO/0/0/4:

```
Priority Flow Control:
    Total Rx PFC Frames: 0
    Total Tx PFC Frames: 4832680
    Rx Data Frames Dropped: 1442056 (possible overflow)
    {\tt CoS} \quad {\tt Status} \quad {\tt Rx} \ {\tt Frames} \qquad {\tt Tx} \ {\tt Frames}
      0 on
                         0
                         0
      1 on
                                         0
                        0 0
0 2416374
0 2416306
0 0
      2 on
      3 on
      4 on
      5 on
      6 on
      7 on
```

Guidelines and Limitations for Viewing Priority Flow Control TX Frames Per Traffic Class

This functionality is supported on:

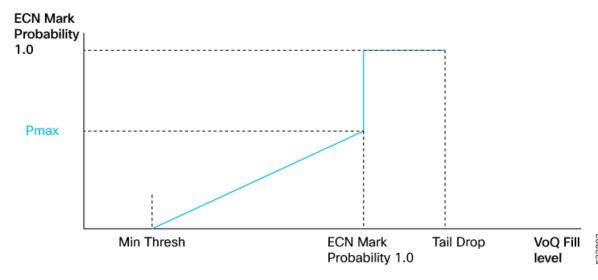
- 8800-LC-36FH-M
- 8800-LC-36FH
- 88-LC0-34H14FH

Configurable ECN Threshold and Maximum Marking Probability Values

Table 4: Feature History Table

Feature Name	Release Information	Feature Description
Configurable ECN Threshold and Maximum Marking Probability Values	Release 7.5.4Release 7.3.6	While configuring PFC in the buffer-internal mode, you can now optimize congestion notification from the end router to the transmitting router, thus preventing the aggressive throttle of the source traffic. This optimization is possible because we've provided the flexibility to configure the minimum and maximum values for the ECN threshold and the maximum value for marking probability. With these values configured, the probability percentage marking is applied linearly, starting at the ECN minimum threshold till the ECN Max threshold.
		Earlier releases fixed the maximum ECN marking probability at 100% at the maximum ECN threshold. This functionality adds the following options to the
		hw-module profile priority-flow-control command:
		max-thresholdprobability-percentage
		- probability-percentage

ECN Threshold and Maximum Marking Probability Values


So far, the maximum ECN marking probability was not configurable and was fixed at 100%. You couldn't configure the ECN maximum threshold value either. Such an arrangement of preset marking probabilities and fixed maximum threshold values meant traffic rates began to drop as a function of the queue length. Because of the linear increase in the ECN marking probability—and the consequent congestion signaling from the end host to the transmitting host—traffic rates could begin slowing down even if your link had the necessary bandwidth.

With this feature, you can configure the minimum and maximum ECN threshold values and, depending on your link capability and traffic requirements, configure a marking probability such that the number of packets being marked between the minimum and maximum thresholds is reduced.

The figure depicts the feature implementation visually, where:

- Pmax denotes the configurable maximum marking probability.
- The ECN mark probability is 1 from the maximum threshold to the tail drop threshold.
- Mark probability increases linearly from 0 at the minimum threshold to Pmax at the maximum threshold.

Figure 1: ECN Mark Probability vs. Queue Length (VOQ Fill Levels)

You configure the **max-threshold** and **probability-percentage** options for this feature in the **hw-module profile priority-flow-control** command. We have provided you the flexibility to choose one of these configuration options:

- Default max-threshold and probability-percentage values.
- Configurable max-threshold and probability-percentage values.
- PFC in the buffer-internal mode without the new options, as you did before Release 7.5.4Release 7.3.6.

See Configure ECN Threshold and Maximum Marking Probability Values, on page 15 for details.

Benefits of Configurable ECN Threshold and Maximum Marking Probability Values

A lower mark probability allows the end host to better identify the aggressor flow in the queue and only throttle it without impacting other well-behaved flows. This in turn leads to optimized and efficient deployment and usage of bandwidth.

ECN Threshold and Maximum Marking Probability Values: FAQs

• What if I set the ECN marking probability percentage to 100%?

ECN Marking is linear once queue length exceeds the ECN minimum value. The tail drop comes into play when the average queue size reaches the marking probability percentage of 100%.

• How does traffic behave beyond my configured value of maximum ECN marking probability?

Let us say you've set the maximum ECN marking probability to 5%. Any more increase in the average queue length beyond 5% shifts the marking probability to 100%, and Tail Drop and the FIFO Queue comes into effect.

Guidelines and Limitations

- This functionality is available only when you configure PFC in the buffer-internal mode.
- If you configure PFC values in the buffer-internal mode, the ECN value for the line card is derived from
 the buffer-internal configuration, unlike in the buffer-extended mode where the ECN value is derived
 from the policy map.
- Line Cards that support this functionality:
 - 88-LC0-36FH
 - 88-LC0-36FH-M
- The following interface types support this functionality:
 - · Physical interfaces
 - Bundle interfaces
 - · Subinterfaces
 - · Bundle subinterfaces
- This functionality is supported for all interface speeds.
- If you have a policy map with one or multiple classes with maximum ECN marking probability enabled, you can:
 - Apply the map to any of the supported interface types.
 - Remove the map from any of the supported interface types.
 - Modify the map while you're attaching it to multiple interfaces.
- The probability percentage option is supported only with **random-detect ecn** configured in the same class. Else, the policy is rejected when applied on an interface.
- Ensure that the probability percentage configuration is the same for all traffic classes because this is a device-level configuration.

Table 5: Useful Tips

If you	you must
Want to switch from the default configuration mode to the custom configuration mode OR Want to switch from the custom configuration mode to the default configuration	 Use the no form of the hw-module profile priority-flow-control command to remove the existing configuration. Configure the new mode and settings using the hw-module profile priority-flow-control command. Reload the line card
Configured PFC in buffer-internal mode without configuring the max-threshold and probability-percentage parameters, but now want to configure them	 Configure the max-threshold and probability-percentage parameters using the hw-module profile priority-flow-control command. Reload the line card.
Want to change the buffer-internal parameters in the custom mode	Configure the buffer-internal parameters using the hw-module profile priority-flow-control command. You needn't reload the line card.
Want to continue configuring PFC in buffer-internal mode the way you did in releases prior toRelease 7.5.4.	Configure the buffer-internal parameters using the hw-module profile priority-flow-control command, but ensure that you only configure values for pause-threshold, headroom, and ecn. If you don't configure values for max-threshold, the router takes the ecn value as the ECN maximum threshold value.
	See Option 3 under Configure ECN Threshold and Maximum Marking Probability Values, on page 15 for details.

Configure ECN Threshold and Maximum Marking Probability Values

To configure the ECN maximum threshold and maximum probability values:

1. Enable PFC at the interface level.

```
Router(config) #int fourHundredGigE 0/6/0/1
Router(config-if) #priority-flow-control mode on
```

2. [Option 1: Default configuration mode] Configure PFC in buffer-internal mode with pre-defined buffer values enabled along with default **max-threshold** and **probability-percentage** values.

```
Router(config) #hw-module profile priority-flow-control location 0/6/0/1
Router(config-pfc-loc) #buffer-extended traffic-class 3
Router(config-pfc-loc) #buffer-extended traffic-class 4
Router(config-pfc-loc) #commit
```

[Option 2: Custom configuration mode] Configure PFC in buffer-internal mode with custom values for all parameters including **max-threshold** and **probability-percentage**.

```
Router(config) #hw-module profile priority-flow-control location 0/6/0/1
Router(config-pfc-loc) #buffer-internal traffic-class 3 pause-threshold 1574400 bytes headroom 1651200 bytes ecn 629760 bytes max-threshold 1416960 bytes probability-percentage 50
Router(config-pfc-loc) #buffer-internal traffic-class 4 pause-threshold 1574400 bytes headroom 1651200 bytes ecn 629760 bytes max-threshold 1416960 bytes probability-percentage 50
Router(config-pfc-loc) #commit
```

[Option 3: Without **max-threshold** and **probability-percentage** parameters] Based on your requirements, you can also configure PFC in buffer-internal mode without these parameters.

```
Router(config) #hw-module profile priority-flow-control location 0/6/0/1
Router(config-pfc-loc) #buffer-internal traffic-class 3 pause-threshold 1574400 bytes
headroom 1651200 bytes ecn 629760 bytes
Router(config-pfc-loc) #buffer-internal traffic-class 4 pause-threshold 1574400 bytes
headroom 1651200 bytes ecn 629760 bytes
Router(config-pfc-loc) #commit
```


Note

See **Useful Tips** at ECN Threshold and Maximum Marking Probability Values: FAQs, on page 13 to know more about the nuances of switching between configuration modes.

Running Configuration

[Option 1: Default configuration mode]

```
/*Interface Level*/
priority-flow-control mode on
!
/*Line card*/
hw-module profile priority-flow-control location 0/6/0/1
buffer-extended traffic-class 3
buffer-extended traffic-class 4
!
```

[Option 2: Custom configuration mode]

```
/*Interface Level*/
priority-flow-control mode on
!
/*Line card*/

hw-module profile priority-flow-control location 0/6/0/1
buffer-internal traffic-class 3 pause-threshold 1574400 bytes headroom 1651200 bytes ecn
629760 bytes max-threshold 1416960 bytes probability-percentage 50
buffer-internal traffic-class 4 pause-threshold 1574400 bytes headroom 1651200 bytes ecn
629760 bytes max-threshold 1416960 bytes probability-percentage 50
```

[Option 3: Without max-threshold and probability-percentage parameters]

```
/*Interface Level*/
priority-flow-control mode on
!
/*Line card*/
buffer-internal traffic-class 3 pause-threshold 1574400 bytes headroom 1651200 bytes ecn
629760 bytes
```

buffer-internal traffic-class 4 pause-threshold 1574400 bytes headroom 1651200 bytes ecn 629760 bytes

Verification

Togation.

Location:

[Option 1: Default configuration mode]

Router#show controllers npu priority-flow-control location all

0/6/CDII0

шоса	CIOII.	0/0/CF00			
PFC:		Enabled			
PFC	Mode:	buffer-internal			
TC	Pause-threshold	Headroom	ECN	ECN-MAX	Prob-per
3	1574400 bytes 1574400 bytes	1651200 bytes 1651200 bytes	629760 bytes 629760 bytes	1416960 bytes 1416960 bytes	5 5

[Option 2: Custom configuration mode]

Router#show controllers npu priority-flow-control location all

Loc	ation:	0/6/CPUU			
PFC	:	Enabled			
PFC	Mode:	buffer-internal	-		
TC	Pause-threshold	Headroom ECN ECN-MAX			Prob-per
3	1574400 bytes	1651200 bytes	629760 bytes	1416960 bytes	50
4	1574400 bytes	1651200 bytes	629760 bytes	1416960 bytes	50

[Option 3: Without **max-threshold** and **probability-percentage** parameters]

Router#show controllers npu priority-flow-control location all

0/6/CPU0

PFC: PFC TC	Mode:	Enabled buffer-internal Headroom	ECN	ECN-MAX	Prob-per
3	1574400 bytes 1574400 bytes	1651200 bytes 1651200 bytes	629760 bytes 629760 bytes	not-configured not-configured	_

Priority Flow Control Watchdog Overview

PFC Watchdog is a mechanism to identify any PFC storms (queue-stuck condition) in the network. It also prevents the PFC from propagating on the network and running in a loop. You can configure a PFC watchdog interval to detect whether packets in a no-drop queue are drained within a specified time period. When the time period is exceeded, all outgoing packets are dropped on interfaces that match the PFC queue that is not being drained.

This requires monitoring PFC receiving on each port and detecting ports seeing an unusual number of sustained pause frames. Once detected, the watchdog module can enforce several actions on such ports, which include generating a syslog message for network management systems, shutting down the queue, and autorestoring the queue (after the PFC storm stops).

Here's how the PFC Watchdog works:

- 1. The Watchdog module monitors the PFC-enabled queues to determine the reception of an unusual amount of PFC pause frames in a given interval (Watchdog interval.)
- 2. Your hardware notifies the Watchdog module when too many PFC frames are received and traffic on the corresponding queues is halted for a time interval.

- **3.** On receiving such notifications, the Watchdog module starts the shutdown timer and moves the queue state to wait-to-shutdown state.
- **4.** At regular intervals during the shutdown interval, the queue is checked for PFC frames and if the traffic in the queue is stuck. If the traffic isn't stuck because the queue didn't receive any PFC frames, the queue moves back to the monitored state.
- **5.** If the traffic is stuck for a longer time and the shutdown-timer expires, the queue switches to a drop state and the PFC Watchdog begins to drop all packets.
- **6.** At regular intervals, the Watchdog checks the queue for PFC frames and whether the traffic in the queue is still stuck. If traffic is stuck in the queue as PFC packets keep arriving, the queue remains in the drop or shutdown state.
- 7. When the traffic's no longer stuck, the autorestore timer starts. At regular intervals, the module checks if the queue is stuck because of PFC frames.
- **8.** If the queue receives PFC frames during the last autorestore interval, the auto-restore timer is reset upon expiry.
- **9.** If the queue receives no PFC frames during the last autorestore interval, the Watchdog module restores the queue, and traffic resumes.

Related Topics

Priority Flow Control Overview, on page 1

Configure a Priority Flow Control Watchdog Interval

You can configure PFC Watchdog parameters (Watchdog interval, shutdown multiplier, auto-restore multiplier) at the global or interface levels. Note that:

- When global Watchdog mode is disabled or off, Watchdog is disabled on all interfaces. This condition is regardless of the interface level Watchdog mode settings.
- When global Watchdog mode is enabled or on, the interface level Watchdog mode configuration settings override the global Watchdog mode values.
- When you configure interface level Watchdog attributes such as interval, shutdown multiplier, and auto-restore multiplier, they override the global Watchdog attributes.

Note

Configuring the PFC mode and its policies is a prerequisite for PFC Watchdog.

Configuration Example

You can configure the Watchdog at the global or at the interface level.

Note

Watchdog is enabled by default, with system default values of:

Watchdog interval = 100 ms

Shutdown multiplier = 1

Auto-restart multiplier = 10

P/0/RP0/CPU0:ios#show controllers hundredGigE 0/2/0/0 priority-flow-control

Priority flow control information for interface HundredGigE0/2/0/0:

Priority flow control watchdog configuration:

(D) : Default value
U : Unconfigured

Configuration Item	Global	Interface	Effective	
PFC watchdog state :	U	U	Enabled(D)	
Poll interval :	U	U	100(D)	
Shutdown multiplier :	U	U	1(D)	
Auto-restore multiplier :	U	U	10(D)	
RP/0/RP0/CPU0:ios#config				
RP/0/RP0/CPU0:ios(config) #priority-flow-control watchdog mode off				

RP/0/RP0/CPU0:ios(config)#commit

 ${\tt RP/0/RP0/CPU0:ios\,(config)\,\#do\ show\ controllers\ hundredGigE\ 0/2/0/0\ priority-flo\$}$

Priority flow control information for interface HundredGigE0/2/0/0:

Priority flow control watchdog configuration:

(D) : Default value
U : Unconfigured

Configuration Item	Global	Interface	Effective
PFC watchdog state :	Disabled	. U	Disabled
Poll interval :	U	U	100(D)
Shutdown multiplier :	U	U	1(D)
Auto-restore multiplier :	U	U	10(D)

RP/0/RP0/CPU0:ios(config) #interface hundredGigE 0/2/0/0 priority-flow-control \$
RP/0/RP0/CPU0:ios(config) #commit

RP/0/RP0/CPU0:ios(config)#do show controllers hundredGigE 0/2/0/0 priority-flo\$

Priority flow control information for interface HundredGigE0/2/0/0:

Priority flow control watchdog configuration:

(D) : Default value
U : Unconfigured

Configuration Item	Global	Interface	Effective	
PFC watchdog state :	Disabled	Enabled	Disabled	
Poll interval :	U	U	100(D)	
Shutdown multiplier :	U	U	1(D)	
Auto-restore multiplier :	U	U	10(D)	

```
RP/0/RP0/CPU0:ios(config) #interface hundredGigE 0/2/0/1 priority-flow-control $
RP/0/RP0/CPU0:ios(config) #commit

RP/0/RP0/CPU0:ios(config) #do show controllers hundredGigE 0/2/0/1 priority-flo$

Priority flow control information for interface HundredGigE0/2/0/1:

Priority flow control watchdog configuration:

(D): Default value

U: Unconfigured

Configuration Item Global Interface Effective

PFC watchdog state: Enabled Disabled Disabled
Poll interval: U U 100(D)

Shutdown multiplier: U U 1 1(D)
Auto-restore multiplier: U U 10(D)
```

Related Topics

• Priority Flow Control Watchdog Overview, on page 17

Global Statistics Counters for Priority Flow Control and Priority Flow Control Watchdog

Table 6: Feature History Table

Feature Name	Release Information	Feature Description
Global Statistics Counters for Priority Flow Control and Priority Flow Control Watchdog	Release 7.5.5	You can now view statistics for Priority Flow Control (PFC) and PFC Watchdog for all interfaces in a consolidated, compact, tabular, and easy-to-read format.
		We've also made the display of these global statistics faster by ensuring data is collected from all line cards for their interfaces and cumulatively sent to the local statistics infrastructure from where the show commands collect the data.
		Previously, you could view statistics only per interface for PFC and PFC Watchdog, wherein the show commands get the data from each interface.
		This feature modifies the following command:
		• show controllers

Previously, you could view per interface statistics using the following command forms:

• PFC: show controllers priority-flow-control statistics

• PFC Watchdog: show controllers priority-flow-control watchdog statistics

With Release 7.5.5, you can view the statistics for all interfaces using the following command forms:

- PFC: show controllers all priority-flow-control statistics location all
- PFC Watchdog: show controllers all priority-flow-control watchdog-stats location all

Running the clear controller priority-flow-control statistics and clear controller priority-flow-control watchdog-stats commands also clears the counters for the corresponding interfaces that the show controllers all priority-flow-control statistics location all and show controllers all priority-flow-control watchdog-stats location all commands display.

View Global Statistics for Priority Flow Control and Priority Flow Control Watchdog

Run the **show controllers all priority-flow-control statistics location all** command to view the following PFC details for all interfaces:

- Interface: Interface name
- TC: Traffic Class
- Rx PFC: PFC frames received for the traffic class
- Tx PFC: PFC frames transmitted for the traffic class
- Rx Dropped: Received PFC frames that are dropped. (0 indicates no frames were dropped, while NA indicates the information is 'Not Available'— the line card hasn't sent the data.

Router#show controllers all priority-flow-control statistics location all

Interface	TC	Rx PFC	TxPFC	RxDropped
FourHundredGigE0/0/0/0	0	0	0	NA
FourHundredGigE0/0/0/0	7	0	0	NA
FourHundredGigE0/0/0/0	all	0	0	0
FourHundredGigE0/0/0/1	0	0	0	NA
FourHundredGigE0/0/0/1	7	0	0	NA
FourHundredGigE0/0/0/1	all	0	0	0
FourHundredGigE0/0/0/2	0	0	0	NA
FourHundredGigE0/0/0/2	7	0	0	NA
FourHundredGigE0/0/0/2	all	0	0	0
FourHundredGigE0/0/0/3	0	0	0	NA

Run the **show controllers all priority-flow-control watchdog-stats location all** command to view the following PFC Watchdog details for all interfaces:

- Interface: interface name
- TC: traffic class
- Watchdog events: the number of times the Watchdog module receives notifications that excess PFC frames are received.
- Shutdown events: The number of times the PFC Watchdog moves the queue to the shutdown state.
- Auto restore Events: The number of times the PFC Watchdog sets the auto-restore timer.
- Total Dropped: Cumulative VOQ drops + output drops in all the watchdog events from the time you ran the clear controllers priority-flow-control watchdog statistics command to clear the statistics counter.
- Dropped: Cumulative VOQ drops + output queue drops in the most recent Watchdog shutdown event.

${\tt Router\#show\ controllers\ all\ priority-flow-control\ watchdog-stats\ location\ all\ }$

Interface	TC	Watchdog	Shutdown	Auto Restore	SAR SAR	Instantaneous
Total Dropped Dropped						
Events	3	Events	Events	Events	Events	Events
FourHundredGigE0/0/0/0	0	0	0	0	0	0
0 0						
FourHundredGigE0/0/0/0	7	0	0	0	0	0
0 0						
FourHundredGigE0/0/0/1	0	0	0	0	0	0
0 0						
FourHundredGigE0/0/0/1	7	0	0	0	0	0
0 0						
FourHundredGigE0/0/0/2	0	0	0	0	0	0
0 0						
FourHundredGigE0/0/0/2	7	0	0	0	0	0
0 0						
FourHundredGigE0/0/0/3	0	0	0	0	0	0
0 0						
FourHundredGigE0/0/0/3	7	0	0	0	0	0
0 0						
FourHundredGigE0/0/0/4	0	0	0	0	0	0
0 0						

Note

Disregard the SAR Events and SAR Instantaneous Events entries because those numbers have no bearing on your operations.

PFC Watchdog Statistics to Monitor Traffic Drops

Table 7: Feature History Table

Feature Name	Release Information	Feature Description
PFC Watchdog Statistics to Monitor Traffic Drops	Release 7.5.4	We have enhanced the PFC Watchdog counters to ensure you get an accurate view of the packets dropped across queues. You now get separate statistic counters for the number of packets dropped and the total number of packets dropped.
		By providing deeper insights into Watchdog packet drops, we aim to help you plan your traffic flows better and avoid potential PFC storms.
		Earlier releases didn't support counters for packet drops.
		You can view the counters using:
		• YANG data model (at Github under the 753 folder): Cisco-IOS-XR-ofa-npu-pfc-oper
		CLI: show controllers priority-flow-control watchdog-stats command form.

Here's how the PFC Watchdog works when it detects that a queue has stalled:

- 1. It begins dropping packets that arrive at the stalled queue. (See Priority Flow Control Watchdog Overview, on page 17 for details.)
- 2. After the congestion clears and no more PFC frames arrive at the queue, the Watchdog restores the queue and flushes all packets that are stuck in the Virtual Output Queue (VOQ) and the output queue.

This functionality with an enhanced statistics view provides two new counters for all the dropped packets.

PFC Watchdog Statistics for Two Counters

With Release 7.5.4, the PFC Watchdog statistics account for two counters:

• Dropped Packets = Cumulative VOQ drops + output queue drops in the most recent Watchdog shutdown event

• Total Dropped Packets = Cumulative VOQ drops + output drops in all the watchdog events from the time you ran the **clear controller priority-flow-control watchdog-stats** command to clear the statistics counter.

Thus, when you run the **show controllers priority-flow-control watchdog-stats** command, the output displays the statistics for dropped packets and total dropped packets.

PFC Watchdog Statistics Benefits

- With the additional insights the two counters provide, you can study traffic drop patterns across longer timelines.
- You can analyze traffic drops for every congestion recovery that a queue makes.
- With access to such deep analysis, you can plan your traffic flows better. You can adjust your traffic flow rates and prevent potential PFC storms based on previous drop patterns and trends.

View PFC Watchdog Statistics

Router#show controllers hundredGigE 0/1/0/43 priority-flow-control watchdog-stats

Priority flow control information for interface HundredGigEO/1/0/43:

Priority flow control watchdog statistics:

SAR: Auto restore and shutdown

Traffic Class	:	0	1	2	3	4	5	6
Watchdog Events	:	0	0	0	3	3	0	0
Shutdown Events	:	0	0	0	3	3	0	0
Auto Restore Events	:	0	0	0	3	3	0	0
SAR Events	:	0	0	0	3510	3510	0	0
SAR Instantaneous Events	:	0	0	0	1172	1172	0	0
Total Dropped Packets	:	0	0	0 941	1505767 94	41488166	0	0
Dropped Packets	:	0	0	0 314	1855466 33	14887161	0	0

Note

Disregard the **SAR Events** and **SAR Instantaneous Events** entries because those numbers have no bearing on your operations.

Detect High Bandwidth Memory Congestion

Table 8: Feature History Table

Feature Name	Release Information	Feature Description
Detect High Bandwidth Memory Congestion	Release 7.5.3	We provide detailed insights into congestion on the High Bandwidth Memory (HBM), such as the devices on which congestion has occurred, the time stamps, and when the device returned to its normal state. With such details, you can investigate the cause of congestion and identify the source ports causing congestion for future preventive actions.
		You must configure PFC in the buffer-extended mode for this option.
		The feature introduces the following to enable the option to detect HBM congestion:
		YANG data model (at Github under the 753 folder): Cisco-IOS-XR-um-8000-hw-module-profile-cfg
		• CLI: hw-module profile npu memory buffer-extended location bandwidth-congestion-detection enable
		It also introduces the following to view the congestion and memory usage details:
		YANG data model (at Github under the 753 folder): Cisco-IOS-XR-8000-platforms-npu-memory-oper
		CLI: show controllers npu packet-memory

Here's how congestion build-up in queues drives the usage of memory on your router:

- 1. Under normal queue conditions, packets egressing from an interface are enqueued into the Shared Memory System (SMS) or internal buffer memory.
- 2. When congestion occurs, the SMS remains the buffer for packets until the congestion exceeds the per-queue usage criteria. This usage criterion is a combination of the threshold buffer space per VOQ and the age of the packet (defined in units of milliseconds).
- **3.** At this stage, the packets are evicted to the High Bandwidth Memory (HBM) or external buffer memory. This provides additional buffer memory to absorb short bursts of congestion.
- **4.** However, when packets from multiple VOQs are evicted to the HBM, the HBM bandwidth begins to experience congestion. The HBM congestion causes data loss for lossless traffic classes.

It's for insights into these extreme events that we've provided the option to detect congestion in the HBM. This information is meant for post-event analysis and reporting. You can enable this functionality by configuring the command **hw-module profile npu memory buffer-extended bandwidth-congestion-detection enable**. By doing so, you can view information such as:

- Devices on which congestion has occurred and the time stamps
- The current buffer memory usage and the highest memory usage watermark reached since the last reading

Benefits of Detecting High Bandwidth Memory Congestion

When you enable the ability to detect HBM congestion, the **show controllers npu packet-memory** command displays:

- Details of congestion along with the affected devices.
- A snapshot of the maximum memory usage with time stamps.

Using this information, you can conduct post-event analysis such as:

- investigate the cause of the congestion.
- identify the ports and flows that are the source of this congestion.

High Bandwidth Memory Congestion Detection: Guidelines and Limitations

- You must configure PFC in the buffer-extended mode for this functionality.
- There's no requirement for a line card reload after you configure hw-module profile npu memory buffer-extended bandwidth-congestion-detection enable.
- This functionality is supported on:
 - Cisco Silicon One Q200-based routers and line cards
 - 8201-32FH routers
 - 88-LC0-48TH-MO line cards
 - 88-LC0-36FH line cards
 - 88-LC0-36FH-M line cards

Configure High Bandwidth Memory Congestion Detection

To enable the detection of HBM congestion, configure the **hw-module profile npu memory buffer-extended bandwidth-congestion-detection enable** command.

```
Router#config
Router(config)#hw-module profile npu buffer-extended location 0/6/CPU0
bandwidth-congestion-detection enable
Router(config)#commit
Router(config)#exit
```


Note

There's no requirement to reload the line card after the configuration.

Verification

The following table lists the various verification commands you can run depending on your required information. The outputs for these commands are available after the table.

Table 9: Verification Commands

Type of Information	Commands	Details
Buffer usage	show controllers npu packet-memory usage instance all location all show controllers npu packet-memory usage verbose instance all location all	 These commands provide data for the current use and the highest watermark reached since the last reading for both SMS and HBM. The refresh interval for the information is 30 seconds.
HBM bandwidth congestion	show controllers npu packet-memory congestion instance all location all show controllers npu packet-memory congestion detail instance all location all show controllers npu packet-memory congestion verbose instance all location all	 These commands provide data for when the HBM congestion occurred or is about to happen. The output maintains a history of the last 120 events regardless of the elapsed time. The refresh interval for new events to be added is 30 seconds.

Run the **show controllers npu packet-memory usage instance all location all** command to view the following details:

- the timestamp at which data is sampled
- the network processor name (Device)
- packet memory usage for that timestamp for SMS (**Buff-int Usage** in units of buffers) and HBM (**Buff-ext Usage** in units of 8 KB blocks)
- highest maximum watermark reached for SMS (Buff-int Max WM) and HBM (Buff-ext Max WM) since the last reading

Router#show controllers npu packet-memory usage instance all location all

HW memory Information For Location: 0/6/CPU0

Timestamp(msec) | Device | Buff-int | Buff-ext | Buff-ext

				Usage	Max WM	Usage	Max WM
Wed 2022-09-21	01:54:11.154	UTC	0	7	8	0	0
Wed 2022-09-21	01:54:12.154	UTC	0	7	8	0	0
Wed 2022-09-21	01:54:24.023	UTC	1	22	22	0	0
Wed 2022-09-21	01:54:34.088	UTC	2	11	12	0	0
Wed 2022-09-21	01:54:35.088	UTC	2	11	12	0	0
Wed 2022-09-21	01:54:36.088	UTC	2	11	12	0	0
Wed 2022-09-21	01:54:37.088	UTC	2	11	12	0	0
Wed 2022-09-21	01:54:38.089	UTC	2	11	12	0	0
Wed 2022-09-21	01:54:39.089	UTC	2	11	12	0	0
Wed 2022-09-21	01:54:40.089	UTC	2	11	12	0	0

In addition, the **show controllers npu packet-memory usage verbose instance all location all** command displays timestamp in milliseconds:

 $\label{eq:rp0/CPU0:Router} $$RP/0/RP0/CPU0:$Router $$\#$ show controllers npu packet-memory usage verbose instance all location all $$$$

HW memory Information For Location: 0/RP0/CPU0

* Option 'verbose' formatted data is for internal consumption.

Timestamp(msec)	Device	Buff-int Usage	Buff-int Max WM	Buff-ext Usage	Buff-ext Max WM
1663958881006	0	2455	2676	637	640
1663958882007	0	2461	2703	635	640
1663958883007	0	2364	2690	635	640
1663958884007	0	71603	75325	3183	18336
1663958885008	0	2458	2852	1275	1279
1663958886008	0	2484	2827	1275	1279

Run the **show controllers npu packet-memory congestion instance all location all** command to view if HBM congestion has occurred and the timestamp of the congestion state.

- Each row indicates:
 - the timestamp at which data is sampled
 - the network processor name (**Device**)
 - the event type (**Normal** or **Congest**)
- The data displayed is for the last 120 events, and new events get added every 30 seconds. To view the updated data, re-run the command.
- After 120 events, the latest entry replaces the oldest entry. You can't clear the events from the list.

Router#show controllers npu packet-memory congestion instance all location all HW memory Information For Location: 0/6/CPU0

Timestamp (msec)	 	Buff-ext Event Type	Device
Wed 2022-09-21 02:14:41.70 Wed 2022-09-21 02:14:41.95 Wed 2022-09-21 02:14:42.96 Wed 2022-09-21 02:14:43.96 Wed 2022-09-21 02:14:45.21	9 UTC 0 UTC 0 UTC	Congest Congest Congest Congest Congest	1 1 1 1

```
Wed 2022-09-21 02:14:45.710 UTC Congest 1
Wed 2022-09-21 02:14:47.711 UTC Normal 1
```

Run the **show controllers npu packet-memory congestion detail instance all location all** command to view the following details:

- the timestamp at which data is sampled
- the event type (**Normal** or **Congest**)
- the network processor name (**Device**) and the slice number (**Slice**) for that device. Every network processor has a fixed number of slices, and each slice, in turn, has a set number of ports.
- single VOQ buffer and aggregated SMS VOQ buffers
- packet memory usage for that timestamp for SMS (**Buff-int Usage** in units of buffers) and HBM (**Buff-ext Usage** in units of 8 KB blocks)
- highest maximum watermark reached for SMS (**Buff-int Max WM**) and HBM (**Buff-ext Max WM**) since the last reading

RRP/0/RP0/CPU0:ios#show controllers npu packet-memory congestion detail instance all location all

```
Fri Sep 23 18:49:50.640 UTC HW memory Information For Location: 0/RP0/CPU0
```

* Option 'detail' formatted data is for internal consumption.

Timestamp(msec) Buff-ext Device Slice Evicted-buff Buff-int Buff-int Buff-ext Buff-ext						VOQ VO	Q-buff		
	int-WM	UC-WM	Usage	Event Type	sage	Max WM			int-WM
Fri	2022-09-23	18:42:30.349	UTC	Congest	5	0	5	534	16011
	63969	65451	70410	70410	34405	34405			
Fri	2022-09-23	18:42:31.101	UTC	Normal	L	0	5	534	0
	0	900	2440	2440	0	0			
Fri	2022-09-23	18:42:37.354	UTC	Congest	5	0	5	534	16011
	63984	65493	70573	70573	34408	34408			
Fri	2022-09-23	18:42:38.354	UTC	Normal	L	0	5	534	0
	0	915	2455	2455	0	0			
Fri	2022-09-23	18:42:44.606	UTC	Congest	-	0	5	534	16011
	64002	65520	70081	70081	34532	34532			

Run the **show controllers npu packet-memory congestion verbose instance all location all** command to view the following details:

- timestamp in milliseconds when the data is sampled
- the network processor name (**Device**) and the slice number (**Slice**) for that device. Every network processor has a fixed number of slices, and each slice, in turn, has a set number of ports
- event type, where 0 = single VOQ-based congestion and 1 = single VOQ-based congestion backoff
 (VOQ-buff int-WM), 2 = congestion in aggregated SMS buffers for VOQ and 3 = congestion backoff
 in aggregated SMS buffers for VOQ (Evicted-buff int-WM)
- buffer internal for unicast, which is for information only.
- packet memory usage for that timestamp for SMS (**Buff-int Usage** in units of buffers) and HBM (**Buff-ext Usage** in units of 8 KB blocks)

• highest maximum watermark reached for SMS (**Buff-int Max WM**) and HBM (**Buff-ext Max WM**) since the last reading

Router#show controllers npu packet-memory congestion verbose instance all location all HW memory Information For Location: 0/RP0/CPU0 * Option 'verbose' formatted data is for internal consumption.

Timestamp(msec) Event Device Slice VOQ VOQ-buff Evicted-buff Buff-int Buff-int Buff-int Buff-ext Buff-ext								
Dull life L	Juli IIIC	Type	C	Dull ext		int-WM	int-WM	UC-WM
Usage M	Max WM	Usage	-	Max WM		IIIC WII	THE WH	OC WIT
1663958550349		0	0	5	534	16011	63969	65451
70410	70410	34405		34405				
1663958551101		1	0	5	534	0	0	900
2440	2440	0		0				
1663958557354		0	0	5	534	16011	63984	65493
70573	70573	34408		34408				
1663958558354		1	0	5	534	0	0	915
2455	2455	0		0				
1663958564606		0	0	5	534	16011	64002	65520
70081	70081	34532		34532				
1663958565356		1	0	5	534	0	0	915
2417	2417	0		0				

Available Shared Memory System and High Bandwidth Memory

Table 10: Feature History Table

Feature Name	Release Information	Feature Description
Available Shared Memory System and High Bandwidth Memory Buffers	Release 7.5.5	You can now view buffer availability for Shared Memory System (SMS) and High Bandwidth Memory (HBM) with higher accuracy without any lag between the minimum and maximum watermark readings, especially when the packet buffers are used and released rapidly. This is possible because we've enabled the instantaneous display of available or free SMS and HBM. Previously, you could view details only for the highest watermark readings for SMS and HBM. You must configure PFC in the buffer-extended mode for this option, and this functionality is available only for Cisco Silicon One Q200-based routers and line cards. This functionality modifies the following: • CLI: show controllers npu packet-memory • YANG Data Model: Cisco-IOS-XR-8000-platforms-npu-memory-oper

From Release 7.5.5 onwards, you can additionally view details of the buffer available for SMS (**Buff-int-free Min WM**) and HBM (**Buff-ext-free Min WM**) when you run the **show controllers npu packet-memory usage instance all location all** command.

These counters are accounted for as follows:

- Available SMS buffer (**Buff-int-free Min WM**) at a given instant= Maximum SMS buffer highest maximum watermark reached for SMS (**Buff-int Max WM**)
- Available HBM buffer (**Buff-ext-free Min WM**) at a given instant = Maximum HBM buffer highest maximum watermark reached for HBM (**Buff-ext Max WM**)

This additional detail, available only for Cisco Silicon One Q200-based routers and line cards, provides even better insights to analyze the congestion affecting buffer occupancy, especially when packet buffers are used and released quickly.

Router#show controller npu packet-memory usage instance all location all HW memory Information For Location: 0/6/CPU0

Timestamp (msec) Buff-int-free		Dev	ice Buff-i	nt Buff-ir	nt Buff-ex	xt Buff-ex	t
	n WM		Usage	Max WM	Usage	Max WM	Min
Wed 2023-08-30 293394	23:47:40.918 UTC 982846	; (0 1518	6668	17154	17656	
Wed 2023-08-30 293685	23:47:41.918 UTC 983990	. (0 1227	5631	16010	16427	
Wed 2023-08-30 293514	23:47:42.919 UTC 984959	;	0 1398	8295	15041	15734	
Wed 2023-08-30 293147	23:47:43.919 UTC 985256	;	0 1765	8892	14744	15678	
Wed 2023-08-30 284532	23:47:41.011 UTC 962468	:	1 10380	12419	37532	38165	
	23:47:42.011 UTC 962685	:	1 10463	11977	37315	38326	
Wed 2023-08-30 285767	23:47:43.013 UTC 962286	:	1 9145	12604	37714	38242	
Wed 2023-08-30 283916	23:47:44.013 UTC 962571	;	1 10996	13272	37429	38051	

Global Pause Frames for High Bandwidth Memory Congestion

Table 11: Feature History Table

Feature Name	Release Information	Feature Description
Global Pause Frames for High Bandwidth Memory Congestion	Release 7.5.4	We ensure no packet drops on PFC-enabled queues due to High Bandwidth Memory (HBM) congestion. Such prevention of drops is possible because we have enabled the triggering of global pause frames (X-Off) whenever there's HBM congestion.
		This functionality is disabled by default. You have the following options to enable it:
		• CLI: hw-module profile npu memory buffer-extended bandwidth-congestion-protect enable
		• YANG Data Model: Cisco-IOS-XR-um-8000-hw-module-profile-cfg (see GitHub, YANG Data Models Navigator)
		This feature introduces the show hw-module bandwidth-congestion-protect command to view the status of the global X-Off configuration.

When High Bandwidth Memory congestion occurs (see Detect High Bandwidth Memory Congestion, on page 25 for details), global pause frames (X-Off) are triggered for all PFC-enabled queues, regardless of whether those queues are the aggressor queues, hence the name 'global.' The only queues that don't transmit the X-Off trigger are those that don't receive any traffic. Such action ensures no packet drops on lossless queues, allowing you to meet your traffic bandwidth commitments for specific customers and requirements. It also ensures that the X-Off isn't triggered prematurely, which would have affected uncongested queues as well, causing a drop in performance.

To enable this functionality, configure the **hw-module profile npu memory buffer-extended bandwidth-congestion-protect enable** command.

Global Pause Frames for High Bandwidth Memory Congestion: Guidelines and Limitations

- This functionality isn't supported for the buffer-extended mode where the devices are more than 0.5 km apart.
- Configuring the **hw-module profile npu memory buffer-extended bandwidth-congestion-protect enable** command for line cards where you've configured headroom values exceeding 6144000 bytes could result in a commit error or the feature not being enabled.
- You must reload the line card for the hw-module profile npu memory buffer-extended bandwidth-congestion-protect enable command to take effect.
- This functionality is supported on:
 - 88-LC0-36FH line cards

• 88-LC0-36FH-M line cards

Configure Global Pause Frames for High Bandwidth Memory Congestion

To enable triggering of global pause frames (X-off) whenever there's HBM congestion in the buffer-extended mode, configure the **hw-module profile npu memory buffer-extended bandwidth-congestion-protect enable** command.

Router#config
Router(config)#hw-module profile npu buffer-extended location 0/1/CPU0
bandwidth-congestion-protect enable
Router(config)#commit

Verification

Run the **show hw-module bandwidth-congestion-protect** command to view details about global X-off.

RP/0/RP1/CPU0:router#show hw-module bandwidth-congestion-protect location 0/1/CPU0

Location	Configured	Applied	Action
0/1/CPU0	Yes	No	Reload

The table lists the various possibilities for the command output based on your activity.

If you	Configured field displays	Applied field displays	Action field displays
Configure the hw-module profile npu memory buffer-extended command	Yes	No	Reload
Use the no form of the hw-module profile npu memory buffer-extended command after configuring it, but before reloading the line card	No	No	N/A

If you	Configured field displays	Applied field displays	Action field displays N/A	
Configure the hw-module	Yes	Yes, Active		
profile npu memory buffer-extended command for a supported variant and reload the line card		Note Yes indicates that the configuration is programmed to the hardware, Active indicates that the global X-off functionality is active on the hardware.		
Use the no form of the	No	No	Reload	
hw-module profile npu memory buffer-extended command when it is active, and commit the no form but don't reload the line card	Note At this stage, the output displays the user action and not the hardware status.	Note At this stage, the output displays the user action and not the hardware status.		
Reload the line card after committing the no form of the hw-module profile npu memory buffer-extended command	Note At this stage, the output displays the hardware status.	Note At this stage, the output displays the hardware status.	N/A	