Precommit Scripts

* Precommit scripts, on page 1

* Restrictions of precommit script, on page 2

* Run the precommit script, on page 2

Precommit scripts

A precommit script is a configuration management tool that

* executes custom python logic automatically during configuration commit operations,

» validates proposed configuration changes against administrator-defined policies, and

* determines whether to allow or block the commit based on script evaluation results.

Table 1: Feature History Table

Feature Name

Release Information

Description

Precommit script to validate
configuration change

Release 7.5.4

With this feature, you can deploy
custom Python scripts. These
scripts are executed automatically
during a configuration commit
operation. They process the
configuration change and act as a
deciding factor to either proceed
with applying the configuration or
stop the commit operation in the
event of an error.

Cisco IOS XR precommit scripts play a crucial role in validating configurations during commit operations.
These scripts are invoked automatically when a configuration change is committed. Device administrators
use them to enforce custom validation rules and simplify repetitive configuration tasks.

During a configuration commit, precommit scripts are automatically initiated to validate changes. If the
changes are valid, the script permits the commit. If not, it alerts the administrator to the mismatch and blocks

the commit, maintaining device parameters and reducing human error.

Precommit Scripts]

Precommit Scripts |
. Restrictions of precommit script

Functions of precommit script
Precommit scripts are automatically invoked during a commit operation and can perform several functions.

* The system automatically invokes precommit scripts during a commit operation to validate configuration
changes.

* The precommit scripts validate your proposed configuration to ensure it meets the required standards.
* These scripts ensure that any changes to the target configuration stay within system or software boundaries.

* The scripts can estimate the number of Ternary Content Addressable Memory (TCAM) slots that your
configuration will require.

* The scripts verify that TCAM usage does not exceed the defined threshold.

* The scripts check that your commit operation follows the required execution rules, such as allowing
configuration changes that affect traffic only during specified time intervals.

* If your configuration is invalid, the scripts block the commit operation and display a detailed error
message.

* The scripts generate system log messages to help you analyze and troubleshoot failed commit operations.

Restrictions of precommit script

These restrictions apply when using precommit scripts.

* Precommiit scripts cannot modify a configuration.

* Configuration validation before a commit operation is supported only using CLI commands. Operations
using NETCONF, gNMI and XML are not supported even if the precommit script is enabled.

Run the precommit script

The following image shows a workflow diagram representing the steps involved in using a precommit script:

l Precommit Scripts

| Precommit Scripts
Run the precommit script .

Figure 1: Workflow to run precommit scripts

Precommit Scripts]

Precommit Scripts |
. Download the script to the router

Before you begin

Precommit scripts can be written in Python 3.9 (and earlier) programming language using the packages that
Cisco supports. For more information about the supported packages, see Script Infrastructure and Sample
Templates.

This chapter gets you started with provisioning your precommit automation scripts on the router.

\)

Note This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section walks you through the process involved in deploying and using
the precommit scripts on the router.

Procedure
Step 1 Download the script to the router.
Step 2 Configure checksum for precommit script.
Step 3 Activate precommit script.

A precommit script is invoked automatically when you commit a configuration change to modify the router configuration.
You can view the result from the script execution on the console.

Download the script to the router

Store the precomit script on a remote server or copy to the harddisk of the router. Add the precommit script
from the server to the script management repository (hardisk:/mirror/script-mgmt) on the router using the
script add precommit command.

Before you begin

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Script Download Location
Type

precommit | harddisk:/mirror/script-mgmt/precommit

config harddisk:/mirror/script-mgmt/config

exec harddisk:/mirror/script-mgmt/exec

process | harddisk:/mirror/script-mgmt/process

eem harddisk:/mirror/script-mgmt/eem

l Precommit Scripts

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/script-infrastructure-sample-templates.html#Cisco_Concept.dita_30112795-7f30-4424-80fe-4a93ed9528ae
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/script-infrastructure-sample-templates.html#Cisco_Concept.dita_30112795-7f30-4424-80fe-4a93ed9528ae

| Precommit Scripts

Step 1

Step 2

Download the script to the router .

Procedure

Add the script to the script management repository on the router using one of the two options:

* Add the script from a server.
* Copy the script from an external repository.

a) Add the script from a configured remote server (HTTP, HTTPS, FTP or SCP) or the harddisk location in the router.

Example:

Router#script add precommit script-location script.py

You can add a maximum of 10 scripts simultaneously. You can also specify the checksum value while downloading the
script. This value ensures that the file being copied is genuine. You can fetch the checksum of the script from the server
from where you are downloading the script. However, specifying checksum while downloading the script is optional.

Note
Only SHA256 checksum is supported.
For multiple scripts, use the following syntax to specify the checksum:

Router#script add precommit http://192.0.2.0/scripts scriptl.py scriptl-checksum script2.py
script2-checksum... scriptlO.py scriptlO-checksum

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.
a) Copy the script from a remote location to harddisk using scp or copy command.

Example:
Router#scp userx@192.0.2.0:/scripts/precommit-bgp.py /harddisk:/

b) Add the script from the harddisk to the script management repository.

Example:

Router#script add precommit /harddisk:/ precommit-bgp.py
Copying script from /harddisk:/precommit-bgp.py
precommit-bgp.py has been added to the script repository

Verify that the script is downloaded to the script management repository on the router.

Example:

Router#show script status

Name | Type | Status | Last Action | Action Time

precommit-bgp.py | precommit | Config Checksum | NEW | Tue Jan 24 05:10:18 2023

Script precommit-bgp.py is copied to harddisk:/mirror/script-mgmt/precommit directory on the router.

Precommit Scripts]

Precommit Scripts |

. Configure checksum for the precommit script

Configure checksum for the precommit script

Step 1

Step 2

Step 3

The checksum is a string of numbers and letters that act as a fingerprint for script. The checksum of the script
is compared with the configured checksum. If the values do not match, the script is not run and a syslog
warning message is displayed. Every script is associated with a checksum hash value. This value ensures the
integrity of the script, and that the script is not tampered with.

It is mandatory to configure the checksum to run the script.

\}

Note Precommit scripts support SHA256 checksum.

Procedure

Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.
However, if the router is secure, you can retrieve the checksum hash value from the IOS XR Linux bash shell.
Example:

Router#run

[node0 RPO CPUO:~]$sha256sum /harddisk:/mirror/script-mgmt/precommit/precommit-bgp.py
6bb460920a694a0f91a27892£457203090e7a6391ab7d2£f8656f477af17f9%edl
/harddisk:/mirror/script-mgmt/precommit/precommit-bgp.py

Make note of the checksum value.

View the status of the script.

Example:

Router#show script status detail

Name | Type | Status | Last Action | Action Time

precommit-bgp.py | precommit | Config Checksum | NEW | Tue Jan 24 05:19:41

2023

Script Name : precommit-bgp-script.py

History:

1. Action : NEW
Time : Tue Jan 24 05:19:41 2021
Description : User action IN _CLOSE WRITE

The status shows that the checksum is not configured.

You can view the details of the specific script using the show script status name script detail command.

Configure the checksum and set the priority.

Example:

l Precommit Scripts

| Precommit Scripts

Activate precommit scripts .

Router#configure

Router (config) #script precommit precommit-bgp.py checksum SHA256
6bb460920a694a0£91a27892£f457203090e7a6391ab7d2£8656£477af17f9%9edl priority 20
Router (config) #commit

If you are configuring multiple scripts, the system decides an appropriate order to run the scripts. However, you can
control the order in which scripts execute using a priority value. For more information on configuring the priority value,
see Control Priority When Running Multiple Scripts.

Step 4 Verify the status of the script.

Example:

Routerf#show script status detail

Name | Type | Status | Last Action | Action Time
precommit-bgp.py | precommit | Ready | NEW | Tue Jan 24 06:17:41 2023
Script Name : precommit-bgp.py
Checksum : 6bb460920a694a0f91a27892f457203090e7a6391ab7d2f8656f477af17£f9%edl
History:
1. Action : NEW

Time : Tue Jan 24 06:17:41 2023

Checksum : 6bb460920a694a0f91a27892£f457203090e7a6391ab7d2f8656f477af17f9%edl

Description : User action IN_CLOSE _WRITE

The status rReady indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script is not
run, and the commit operation that triggered the script is rejected. It is mandatory for the checksum values to match for
the script to run.

Activate precommit scripts

Activate the precommit script to validate a configuration change on the set of active configuration including
any scripts newly activated as part of the configuration change before committing the changes.

)

Note If the precommit script rejects one or more items in the configuration change, the entire configuration is
rejected before committing the change.

Before you begin
Ensure that the following prerequisites are met before you run the script:

1. Download the Script to the Router

2. Configure Checksum for Precommit Script

Precommit Scripts]

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/config-scripts.html#Cisco_Task.dita_ef19580b-fb3a-4833-9e35-69a2122c79e5
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/precommit-scripts.html#t-copy-script-to-router-precommit
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/precommit-scripts.html#t-configure-precommit-checksum

Precommit Scripts |

. Activate precommit scripts

Step 1

Step 2

Procedure

Activate the precommit script for the configuration validation to take effect.

Example:

Router (config) #script precommit precommit-bgp.py activate

Commit the changes and verify that the precommit script is automatically initiated. You can choose to perform one of
the following options based on the requirement:

» Commit the changes to automatically initiate the precommit verification script.

Router (config-bgp-nbr) #commit
Precommit Script Report Start

Pre-commit Verification Result: Pass
Pre-commit Verification Script precommit-bgp.py (reg id 1656378102): Pass

Precommit Script Report Done

* Ignore the result of the precommit script execution and proceed to the next step in the commit process using
ignore-results keyword. Use this keyword if you want to bypass the commit verification. The precommit script is
still executed, but the result is ignored.

Router (config-bgp-nbr) #commit script-verification ignore-results

* View all the logs generated by the commit script on the console using ver bose keyword. If this keyword is not
specified, only the result of the script verification is displayed on the console.

Router (config-bgp-nbr) #commit script-verification verbose

An execution report from the script is displayed on the console. If the script displays an error message, rectify the error
and rerun the commit operation. If there are no validation errors, the commit operation is successful indicating that the
configuration change is valid.

l Precommit Scripts

	Precommit Scripts
	Precommit scripts
	Restrictions of precommit script
	Run the precommit script
	Download the script to the router
	Configure checksum for the precommit script
	Activate precommit scripts

