
gRPC Fundamentals

• gRPC operations, on page 1
• gRPC over UNIX domain sockets, on page 2
• IANA port numbers for gRPC services, on page 4
• Multiple gRPC servers, on page 6
• Transceiver optics resets, on page 13
• gNOI RemoveContainer RPC, on page 16

gRPC operations
gRPC operations are a set of remote procedure calls that enable clients to interact with Cisco IOS XR devices
for configuration and operational data retrieval.

• They support configuration retrieval and modification.

• They provide access to operational and model data.

• They allow CLI-based and structured output retrieval.

These operations are essential for automating and managing network devices programmatically using gRPC
clients.

Manageability service gRPC operations

This table defines the manageability service gRPC operations for Cisco IOS XR.

DescriptiongRPC Operation

Retrieves the configuration from the router.GetConfig

Gets the supported Yang models on the routerGetModels

Merges the input config with the existing device configuration.MergeConfig

Deletes one or more subtrees or leaves of configuration.DeleteConfig

Replaces part of the existing configuration with the input configuration.ReplaceConfig

Replaces all existing configurationwith the new configuration provided.CommitReplace

gRPC Fundamentals
1

DescriptiongRPC Operation

Retrieves operational data.GetOper

Invokes the input CLI configuration.CliConfig

Returns the output of a show command in the text formShowCmdTextOutput

Returns the output of a show command in JSON form.ShowCmdJSONOutput

gRPC operation to Get configuration

The gRPC example shows how a gRPC GetConfig request works for feature.

The client initiates a message to get the current configuration of running on the router. The router responds
with the current configuration.

gRPC response (Router to Client)gRPC request (Client to Router)

{
"Cisco-IOS-XR-cdp-cfg:cdp": {
"timer": 50,
"enable": true,
"log-adjacency": [
null
],
"hold-time": 180,
"advertise-v1-only": [
null
]
}
}

{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": {
"timer": 60,
"enable": true,
"reinit": 3,
"holdtime": 150

}
}

rpc GetConfig
{
"Cisco-IOS-XR-cdp-cfg:cdp": [
"cdp": "running-configuration"
]

}

rpc GetConfig
{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": [
"lldp": "running-configuration"
]

}

gRPC over UNIX domain sockets
gRPC over UNIX domain sockets is a method that allows establishing gRPC connections using local containers
without the need for password rotations.

• Extends gRPC TCP-based connections to UNIX domain sockets for local communication.

• Eliminates the need for username/password authentication for local containers.

• Improves security and control using UNIX file permissions.

This method enhances inter-process communication and simplifies secure local access to gRPC services on
Cisco routers.

gRPC Fundamentals
2

gRPC Fundamentals
gRPC over UNIX domain sockets

Feature History Table

gRPC server initialization and service registration

When gRPC is configured on the router, the gRPC server starts and then registers services such as gNMI and
gNOI. After all the gRPC server registrations are complete, the listening socket is opened to listen to incoming
gRPC connection requests. Currently, a TCP listen socket is created with the IP address, VRF, or gRPC
listening port.

UNIX domain sockets and dual socket listening for gNMI

With this feature, the gRPC server listens over UNIX domain sockets that must be accessible from within the
container through a local connection by default. With the UNIX socket enabled, the server listens on both
TCP and UNIX sockets. However, if the UNIX socket is disabled, the server listens only on the TCP socket.
The socket file is located at the directory.

Configure gRPC over UNIX domain sockets
You can use local containers and scripts on the router to establish gRPC connections over UNIX domain
sockets.

Before you begin

Ensure that the router supports gRPC and that you have access to the CLI in configuration mode.

Procedure

Step 1 Configure the gRPC server

Example:

Router(config)#grpc
Router(config-grpc)#local-connection
Router(config-grpc)#commit

To disable the UNIX socket use the no form of the command.

Router(config-grpc)#no local-connection

The gRPC server restarts after you enable or disable the UNIX socket. If you disable the socket, any active gRPC sessions
are dropped and the gRPC data store is reset.

The scale of gRPC requests remains the same and is split between the TCP and Unix socket connections. The maximum
session limit is 256. If you utilize the 256 sessions on Unix sockets, further connections on either TCP or UNIX sockets
are rejected.

Step 2 Verify that the local-connection is successfully enabled

Example:

Router#show grpc status

gRPC Fundamentals
3

gRPC Fundamentals
Configure gRPC over UNIX domain sockets

Thu Nov 25 16:51:30.382 UTC
*************************show gRPC status**********************

transport : grpc
access-family : tcp4
TLS : enabled
trustpoint :
listening-port : 57400
local-connection : enabled
max-request-per-user : 10
max-request-total : 128
max-streams : 32
max-streams-per-user : 32
vrf-socket-ns-path : global-vrf
min-client-keepalive-interval : 300

A gRPC client must dial into the socket to send connection requests.

Here is an example of a Go client connecting to a UNIX socket.

const sockAddr =
" /misc/app_host/ems/grpc.sock" // for ncs_5500
" /var/lib/docker/ems/grpc.sock" // for cisco8000

...

func UnixConnect(addr string, t time.Duration) (net.Conn, error) {
unix_addr, err := net.ResolveUnixAddr("unix", sockAddr)
conn, err := net.DialUnix("unix", nil, unix_addr)
return conn, err

}

func main() {
...
opts = append(opts, grpc.WithTimeout(time.Second*time.Duration(*operTimeout)))
opts = append(opts, grpc.WithDefaultCallOptions(grpc.MaxCallRecvMsgSize(math.MaxInt32)))
...
opts = append(opts, grpc.WithDialer(UnixConnect))
conn, err := grpc.Dial(sockAddr, opts...)
...

}

The gRPC server is configured to accept connections over UNIX domain sockets, and clients can connect
using the specified socket path.

What to do next

Monitor the gRPC sessions and ensure that the session count does not exceed the maximum limit of 256.

IANA port numbers for gRPC services
IANA port numbers for gRPC services is a configuration capability that

• enables assignment of standardized ports to gRPC-based services like gNMI, gRIBI, and P4RT

• supports both IANA-assigned and user-defined port numbers for service-level customization

gRPC Fundamentals
4

gRPC Fundamentals
IANA port numbers for gRPC services

• improves service isolation, routing accuracy, and protocol compliance across IPv4 and IPv6 networks.

This feature ensures secure and efficient communication by allowing precise control over port assignments
for each gRPC service.

Table 1: Feature History Table

DescriptionRelease InformationFeature Name

You can now efficientlymanage and customize
port assignments for gNMI, gRIBI, and P4RT
services without port conflicts. This is possible
because Cisco IOS XR now supports the
Internet Assigned Numbers Authority
(IANA)-assigned specific ports for P4RT (Port
9559), gRIBI (Port 9340), and gNMI (Port
9339). You can now use both IANA-assigned
and user-specified ports for these gRPC
services across any specified IPv4 or IPv6
addresses. As part of this support, a new
submode for gNMI in gRPC is introduced.

CLI:

• port (gRPC)

• gnmi

Release 24.1.1IANA Port Numbers For gRPC
Services

IANA port allocation and service identification

The Internet Assigned Numbers Authority (IANA) port numbers for gRPC services is a crucial aspect of
network management that manages the allocation of port numbers for various protocols. These port numbers
help in distinguishing different services on a network. Service names and port numbers are used to distinguish
between different services that run over transport protocols such as TCP, UDP, DCCP, and SCTP. Port numbers
are allocated in:

• System ports (0–1023)

• User ports (1024–49151)

• Dynamic or private ports (49152–65535)

Earlier, the gRPC server configuration on IOS-XR allowed a usable port range of 10000–57999, with a default
listening port of 57400 and all services registered to the gRPC server utilized this port for connectivity.
Service-based filtering of requests on any of the ports was unavailable. Hence, the request for a specific service
sent on a port designated to another service (for example, gRIBI request on gNMI port) was accepted.

Service-level port customization

From Cisco IOS XR release 24.1.1, a new submode for gNMI is introduced in the configuration model to
allow for service-level port customization. The existing gRPC configuration model includes submodes for
P4RT and gRIBI. This submode enables you to configure specific ports for gNMI, gRIBI, and P4RT services
independently. You can configure gNMI, gRIBI, and P4RT services using the gRPC submode command to

gRPC Fundamentals
5

gRPC Fundamentals
IANA port numbers for gRPC services

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3687650536
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3117631680

set the default port for each service. The port command under service submode, allows you to modify the
port as needed, while adhering to the defined port range.

Disabling the port command causes the service to use the default or IANA port.

Service port customization

You can set custom ports for gNMI, gRIBI, and P4RT services within the defined range, including default
IANA ports like 9339, 9340, and 9559 (respectively). The gRPC service will continue to maintain its default
port within the specified range (57344–57999). Any changes made to the gRPC default port do not impact
the service port configurations for gNMI, gRIBI, and P4RT. Requests which are sent on a port designated for
a specific service (example, gRIBI request on gNMI port) are accepted. This flexibility allows for seamless
communication across different service ports and the general gRPC port.

Multiple gRPC servers
The Extensible Manageability Services daemon (EMSd) is a mechanism that

• enables support for both OpenConfig and proprietary gRPC services

• handles network device management services, particularly streaming telemetry and gRPC, and

• provides the infrastructure to exchange configuration and operational data between a client and the
network device using standardized data models.

Table 2: Feature History Table

EMSd can now host up to 16 independently configurable gRPC servers within the same process. Each server
can have its own services, ports, TLS profiles, VRF assignments, DSCP settings, and listener types such as
TCP or UDS. Earlier, the EMSd supported only one gRPC server. All services—OpenConfig, proprietary
services, and various telemetry protocols—had to coexist on this single server, which limited flexibility. You
could not isolate services with different security needs, VRFs, DSCP values, or listener types. Incompatible
services could not be separated cleanly.

Benefits of multiple gRPC servers
Multiple gRPC servers within a single EMSd process provide significant benefits. This setup enables highly
flexible and isolated configurations.

• Tailored service grouping: Configure specific sets of gRPC services on individual servers, allowing
flexible grouping based on operational needs or compatibility rules.

• Independent network contexts: Assign each gRPC server to a distinct virtual routing and forwarding
(VRF) instance, enabling simultaneous in-band paths and out-of-band communication paths.

• Granular QoS and security: Apply unique DSCP values and separate SSL profiles to each server. This
enables fine-tuned traffic prioritization and robust security management.

• Flexible client connectivity: You can support diverse client requirements by configuring independent
listening addresses, ports, and transport types (TCP or Unix Domain Sockets) for each server.

• Enhanced operational isolation: Isolate services, security, and network contexts on distinct gRPC servers
and manage them in a single EMSd process to meet deployment needs.

gRPC Fundamentals
6

gRPC Fundamentals
Multiple gRPC servers

Best practices for deploying multiple gRPC servers
Strategic Server Creation: Create a dedicated gRPC server in these situations:

• Services are incompatible: Separate services that cannot coexist on the same server (such as gNMI and
P4RT).

• Security requirements differ: If different client groups or applications need distinct SSL profiles, certificate
chains, or mutual TLS configurations, create a separate server.

• Network contexts vary: If services need to operate in different Virtual Routing and Forwarding (VRF)
instances (such as in-band and out-of-band management), use separate servers.

• QoS prioritization is required: If different DSCP values are necessary for traffic prioritization, apply
DSCP settings at the server level.

• Client connectivity needs differ: When varied client connection types or unique listening addresses or
ports are required, create a separate server.

• Group compatible services: To improve efficiency and management, group compatible gRPC services
that share operational requirements onto a single server.

• Plan for scalability:When planning your deployment, keep in mind that you can configure up to 16 gRPC
servers.

• Migration from legacy: When transitioning from a single default gRPC server, use the
disable-default-server option to prevent its creation and adopt the named server configuration model.

• Naming convention: Do not use DEFAULT as a name for any custom gRPC server because it is reserved
for the legacy default server.

Restrictions for deploying multiple gRPC servers
• Maximum server count: You can configure up to 16 gRPC servers within a single EMSd process.

• Incompatible service combinations: These gRPC services cannot be configured together on the same
server:

• gNMI, gNOI, and cNMI

• gRIBI, SL-API, and SR

• P4RT and gNPSI

• Deprecated configurations: Do not use the legacy default gRPC server configuration that registers all
services. Define services explicitly for each new server configuration.

• Deprecated commands: Do not use the following deprecated commands:

• config grpc gribi port

• config grpc gnmi port

• config grpc p4rt port

gRPC Fundamentals
7

gRPC Fundamentals
Best practices for deploying multiple gRPC servers

• Default server naming: Starting with Cisco IOS XR Release 25.4.1, do not use the config grpc name
command for the default server because it performs no operation.

Configure multiple gRPC servers
Starting with Cisco IOS XR Release 25.4.1, you can deploy and manage multiple gRPC servers within a
single EMSd process. This feature enables these capabilities:

• You have granular control and isolation for each gRPC server.

• You can independently configure listening ports, TLS profiles, network instances (VRFs), and DSCP
values.

• Enhanced operational flexibility and security for telemetry services.

The primary configuration attributes that can be customized include:

• Services: Select which telemetry or gRPC services each server supports.

• Listener types: Configure TCP, TLS, or other listener types per server.

• Network contexts: Assign servers to specific VRFs or network instances.

• Ports: Define listening ports individually per server.

• Security: Specify distinct TLS profiles and authentication settings per server.

This capability supports advanced deployment scenarios and improvesmaintainability compared to single-server
models.

To configure multiple gRPC servers, follow these configuration tasks:

• Configure a new gRPC server with compatible services

• Configure a new gRPC server with incompatible services

• Disable the default gRPC server for migration

• Configure UDS and TCP listeners for gRPC servers

• Configure only UDS listeners for gRPC servers

Configure a new gRPC server with compatible services
Configure a new gRPC server by defining it under the grpc configuration mode, specifying its services, and
assigning a listening port. You can create multiple named servers, each tailored to specific operational
requirements.

Use this task to add a new named gRPC server. You can specify compatible services and the port. The default
server remains available.

Use these steps to configure a new gRPC server with compatible services.

gRPC Fundamentals
8

gRPC Fundamentals
Configure multiple gRPC servers

Procedure

Step 1 Enter configuration mode for gRPC.

Example:
Router#config
Router(config)#grpc

Step 2 Create new named servers and add services.

You can specify compatible services and the port for each server. The system allows for multiple distinct servers.

Example:

Configure server1 and server2

ROUTER(config-grpc)#server server1
ROUTER(config-grpc-server)#services P4RT
ROUTER(config-grpc-server)#services gNPSI
ROUTER(config-grpc-server)#port 9559
ROUTER(config-grpc-server)#exit

ROUTER(config-grpc)#server server2
ROUTER(config-grpc-server)#services gNMI
ROUTER(config-grpc-server)#port 9340
ROUTER(config-grpc-server)#exit

This configuration assigns P4RT and gNPSI services to server1 on port 9559 and assigns gNMI to server2 on port
9340.

Example:

Configure server3 with a specific VRF

To assign a gRPC server to a distinct Virtual Routing and Forwarding (VRF) instance, use the network-instance
command within the server's configuration mode.
ROUTER(config-grpc)#server server3
ROUTER(config-grpc-server)#services gNMI
ROUTER(config-grpc-server)#port 9341
ROUTER(config-grpc-server)#vrf Mgmt-VRF
ROUTER(config-grpc-server)#exit

This example configures server3 for gNMI on port 9341 within the Mgmt-VRF instance.

Step 3 Commit the configuration.

Example:
ROUTER(config-grpc)#commit

Step 4 Verify the configuration.

Example:
ROUTER(config-grpc)#show running-config grpc

Your device now hosts the configured gRPC servers. Each server is ready to receive compatible service
requests on its specified port.

gRPC Fundamentals
9

gRPC Fundamentals
Configure a new gRPC server with compatible services

Configure a new gRPC server with incompatible services
The system does not allow you to configure incompatible gRPC services on a server.

Certain gRPC services cannot coexist on the same server due to functional conflicts. If you configure
incompatible services, the system returns an error. Some examples of incompatible service combinations
include the following:

• gNMI, gNOI, and cNMI

• gRIBI, SL-API, and SR

• P4RT and gNPSI

Use these steps to configure a new gRPC server with incompatible services.

Procedure

Step 1 Enter configuration mode for gRPC.

Example:
Router#config
ROUTER(config)#grpc

Step 2 Create a new server with incompatible services.

Example:
ROUTER(config-grpc)#server server-incompatible
ROUTER(config-grpc-server)#services P4RT
ROUTER(config-grpc-server)#services gNMI

You receive an error because P4RT and gNMI services cannot coexist. When you add a new service or service
list in the OpenConfig model, it replaces the existing one. If the new list contains incompatible services, the
system returns an error.

What to do next

Review the error details and remove incompatible services as needed to complete the configuration.

Disable the default gRPC server for migration
When you transition to a named server configuration model from a single default gRPC server, disable the
automatic creation of the legacy default server. This action ensures only your configured gRPC servers are
active.

Create a new server and remove the default server using these steps.

Procedure

Step 1 Enter configuration mode for gRPC.

gRPC Fundamentals
10

gRPC Fundamentals
Configure a new gRPC server with incompatible services

Example:
ROUTER(config)#grpc

Step 2 Disable the default server.

Example:
ROUTER(config-grpc)#disable-default-server

Step 3 Create your new named server.

Example:
ROUTER(config-grpc)#server server1
ROUTER(config-grpc-server)#services gNMI
ROUTER(config-grpc-server)#port 9340
ROUTER(config-grpc-server)#exit

Step 4 Commit the configuration.

Example:
ROUTER(config-grpc-server)#commit

The system creates only server1 (or any named servers you configure). The default gRPC server is not active.

Configure UDS and TCP listeners for gRPC servers
Configure gRPC servers to listen on Transmission Control Protocol (TCP) and Unix Domain Sockets (UDS),
or only on UDS. This configuration supports a range of client connectivity requirements.

Enable both TCP and UDS listeners for gRPC servers using these steps.

Procedure

Step 1 Enter configuration mode for gRPC.

Example:
ROUTER(config)#grpc

Step 2 Enable global local connection (UDS).

Example:
ROUTER(config-grpc)#local-connection

Step 3 Create a server, or select an existing one, and configure the server’s services and port.

Example:
ROUTER(config-grpc)#server server1
ROUTER(config-grpc-server)#services gNMI
ROUTER(config-grpc-server)#port 9340

Step 4 Enable local connection specifically for this server.

Example:
ROUTER(config-grpc-server)#local-connection

gRPC Fundamentals
11

gRPC Fundamentals
Configure UDS and TCP listeners for gRPC servers

Step 5 Commit the configuration.

Example:
ROUTER(config-grpc-server)#commit

This configuration creates both TCP and UDS listeners for server1. The UDS listener for server1 will use
the socket at /var/lib/docker/ems/server1.

Configure only UDS listeners for gRPC servers
You configure a gRPC server to use only UDS.

Procedure

Step 1 Enter configuration mode for gRPC.

Example:
ROUTER(config)#grpc

Step 2 Enable global local connection (UDS).

Example:
ROUTER(config-grpc)#local-connection

Step 3 Disable global remote connection (TCP).

Example:
ROUTER(config-grpc)#remote-connection disable

Step 4 Create a server or select an existing server. Then configure the server’s services and port.

Example:
ROUTER(config-grpc)#server server1
ROUTER(config-grpc-server)#services gNMI
ROUTER(config-grpc-server)#port 9340

Step 5 Enable local connection and disable remote connection specifically for this server.

Example:
ROUTER(config-grpc-server)#local-connection
ROUTER(config-grpc-server)#remote-connection disable

Step 6 Commit the configuration.

Example:
ROUTER(config-grpc-server)#commit

When you complete the configuration, server1 with the gNMI service becomes available. Only UDS listeners
remain active.

gRPC Fundamentals
12

gRPC Fundamentals
Configure only UDS listeners for gRPC servers

Transceiver optics resets
Transceiver optics reset is a optics management operation that

• remotely power-cycles an optical transceiver module on a Cisco router

• restores normal operation or resolves faults without manual intervention, and

• allows execution using a single CLI command or remotely using gNOI RPC.

Table 3: Feature History Table

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: Fixed
Systems (8200 [ASIC: Q200,
P100], 8700 [ASIC: P100, K100],
8010 [ASIC: A100]); Centralized
Systems (8600 [ASIC: Q200]);
Modular Systems (8800 [LCASIC:
Q100, Q200, P100])

You can now achieve rapid,
automated recovery of optical
modules, significantly reducing
manual intervention and improving
network uptime. With this feature,
you can remotely power-cycle
transceiver optics using a single
gNOI Reboot RPC API call or CLI
command, ensuring optimal
performance and quick fault
resolution at scale.

Release 25.4.1Transceiver optics resets

Restoring optimal operation in optical modules

Optical transceivers in modern routers, especially those operating at 400G and above, can experience degraded
performance or errors due to their complex internal components. These issues may occasionally require
resetting the optics modules to restore optimal operation. Providing the capability to reset optics modules with
a single command or through network automation interfaces enables operators to troubleshoot and maintain
transceivers.

Usage guidelines for optics reset
Preconditions
Do not attempt an optics reset using the CLI action or gNOI reboot if the transceiver is disabled from the
config namespace, as the operation will fail.

Removal Procedure

gRPC Fundamentals
13

gRPC Fundamentals
Transceiver optics resets

• Use the Optics R/S/I/P naming convention to reload transceivers through the CLI.

• For gNOI-based optics reload, use the Speed R/S/I/P naming convention for grey optics and the Optics
R/S/I/P naming convention for ZR/ZRP optics.

Request Scope
Submit a gNOI reboot request for only one optic at a time.

Transceiver optics reset using gNOI Reboot RPC
Remotely reset an optical transceiver module using the gNOI Reboot RPC API for automation or integration
with network management systems.

Use this method for automated, large-scale, or remote operations where CLI access is not practical.

Before you begin

• Ensure the correct optics module is installed in the desired port.

Procedure

Step 1 Send the RebootRequest using your gNOI client or automation system to the router.

Example:
> python src/gnoi_DT_client.py reboot 172.26.228.212 9589 --user ***** --passwd ******
--slot=Optics0/0/0/6 --rebootmethod COLD --reboot_message "GNOI demo" --reboot_delay 1000000000
###############################
RPC to 172.26.228.212:9589
RPC start time: 10:27:59.755231
========Reboot Request=============
RPC start time: 10:27:59.755309
Reboot method set is 1
method: COLD
delay: 1000000000
message: "GNOI demo"
subcomponents {
elem {
name: "openconfig-platform"

}
elem {
name: "components"

}
elem {
name: "component"
key {
key: "name"
value: "Optics0/0/0/6"

}
}
elem {
name: "state"

}
elem {
name: "location"

}
}

gRPC Fundamentals
14

gRPC Fundamentals
Transceiver optics reset using gNOI Reboot RPC

False
========Reboot Response=============
RPC end time: 10:28:00.513444

Step 2 Use the gNOI RebootStatus RPC with the transceiver path/identifier to check the progress or result.

Example:
> python src/gnoi_DT_client.py rebootstatus 172.26.228.212 9589 --user ***** --passwd *****
--slot=Optics0/0/0/6
###############################
RPC to 172.26.228.212:9589
RPC start time: 10:30:51.100883
RPC start time: 10:30:51.100945
========Reboot-Status Request==============
subcomponents {
elem {
name: "openconfig-platform"

}
elem {
name: "components"

}
elem {
name: "component"
key {
key: "name"
value: "Optics0/0/0/6"

}
}
elem {
name: "state"

}
elem {
name: "location"

}
}

RPC end time: 10:30:51.819921
========Reboot-status Response=============
Active : False
Wait : 0
When : 1765256281641617310
Reason : GNOI demo
Count : 1
Method : COLD
Status : STATUS_SUCCESS

Transceiver optics reset using CLI
Restore normal operation or recover from a fault by power-cycling an optical transceiver module directly
from the command line.

Use this task if a transceiver module is not functioning correctly or as part of standard troubleshooting
procedures.

gRPC Fundamentals
15

gRPC Fundamentals
Transceiver optics reset using CLI

Procedure

Step 1 Identify the controller-name (r/s/i/p) of the transceiver you want to reset and enter the reset controller command.

Example:
Router#reload transceiver optics 0/0/0/4

Step 2 Verify the reload from the syslog.

Example:
RP/0/RP0/CPU0:Dec 9 04:58:01.644 UTC: optics_driver[349]: %L2-OPTICS-6-TRANS_RELOAD_STATUS :
Transceiver reload started for Optics0/0/0/6
RP/0/RP0/CPU0:Dec 9 04:58:01.644 UTC: optics_driver[349]: %L2-OPTICS-6-TRANSCEIVER_DISABLED : Optics
module FourHundredGigE0/0/0/6 type QSFPDD 400G ZRP serial number 201800148 disabled
RP/0/RP0/CPU0:Dec 9 04:58:07.007 UTC: optics_driver[349]: %L2-OPTICS-6-TRANSCEIVER_ENABLED : Optics
module FourHundredGigE0/0/0/6 type QSFPDD 400G ZRP serial number 201800148 enabled
RP/0/RP0/CPU0:Dec 9 04:58:07.054 UTC: optics_driver[349]: %L2-OPTICS-6-TRANS_RELOAD_STATUS :
Transceiver reload done for Optics0/0/0/6

gNOI RemoveContainer RPC
The RemoveContainer RPC is a remote procedure call that

• allows users to remove containers managed by App Manager through the Containerz workflow

• supports both standard and forced removal of containers, and

• integrates with the gNOI protocol for automation and remote operations.

Users can use this RPC to remove containers that are no longer needed or to automate container lifecycle
management in integration with external systems.

gRPC Fundamentals
16

gRPC Fundamentals
gNOI RemoveContainer RPC

Table 4: Feature History Table

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: Fixed
Systems (8200 [ASIC: Q200,
P100], 8700 [ASIC: P100, K100],
8010 [ASIC: A100]); Centralized
Systems (8600 [ASIC: Q200]);
Modular Systems (8800 [LCASIC:
Q100, Q200, P100])

We have introduced support for
RemoveContainer RPC to give you
direct, automated control over the
removal of application containers
managed by App Manager,
allowing you to efficiently
decommission unneeded or
malfunctioning containers and
maintain a clean,
resource-optimized system.

Release 25.4.1gNOI RemoveContainer RPC

Usage guidelines for removing containers
Identification and Selection

• Always specify the container name when removing containers; do not use image IDs or other identifiers.

• Always use the ListContainer RPC to retrieve the correct container name before performing a removal.

Removal Procedure
• Do not attempt to remove a running container unless you specify the force option; otherwise, removal
will fail and the RPC returns an error.

• Always review the status codes andmessages returned by the RemoveContainer RPC to diagnose removal
issues.

• You cannot remove Docker images directly by image ID using the RemoveContainer RPC.

CLI guidelines
• The App Manager CLI has been updated to support additional sub-configuration and new sensitive host
paths under the unified docker hierarchy.

• The allow-sensitive-paths CLI grants containers managed by the Containerz workflow access to
sensitive host paths, including the Docker socket (for example, /var/run/docker.sock or
/misc/app_host/docker.sock, depending on the platform), as well as other paths such as /tmp and
/var/run.

gRPC Fundamentals
17

gRPC Fundamentals
Usage guidelines for removing containers

• The appmgr docker vrf <vrf-name> CLI starts the Docker daemon in the specified non-default VRF,
so previously running containers and any new containers managed by AppMgr/Containerz use that VRF
for their network connectivity.

Containerz.proto restrictions
• Plugin support defined in the v0.6.1 containerz.proto is not available for this feature. Plugin-related
fields and workflows are not supported.

• The devices field in StartContainerRequest is not supported. If you use this field, the RPC returns an
error indicating this option is not available.

Configure RemoveContainer RPC
Remove a running or stopped container using the RemoveContainer RPC workflow.

Use this task to manage the lifecycle of third-party, partner, or customer application containers using the gNOI
API.

Before you begin

• Ensure that the container is stopped before removing. If the container is running, set the force option to
true to forcibly stop and remove it

Procedure

Step 1 Use the ListContainer RPC to verify the name and status of the target container.

Example:
[user@host ~]$ ContZ_Client --addr 192.168.122.254:57400 container list
ID Name Image State Labels HASH
14d12 alp-1 alpine:3.20 RUNNING map[] method:SHA256 hash:"..."
15e35 alp-2 alpine:3.20 RUNNING map[] method:SHA256 hash:"..."

Step 2 Specify the container name using RemoveContainer RPC.

Example:
[user@host ~]$ ContZ_Client --addr 192.168.122.254:57400 container remove --instance alp-2 --force
Successfully removed alp-2

Step 3 Use ListContainer RPC to verify that the container is removed from the list.

Example:
[user@host ~]$ ContZ_Client --addr 192.168.122.254:57400 container list
ID Name Image State Labels HASH
14d12 alp-1 alpine:3.20 RUNNING map[] method:SHA256 hash:"..."

gRPC Fundamentals
18

gRPC Fundamentals
Configure RemoveContainer RPC

Configure Docker access for Containerz containers
Configure App Manager to grant containers managed by the Containerz workflow access to sensitive host
paths, including the Docker socket, and optionally run Docker in a non-default VRF.

Use this task to enable access to host resources such as /var/run/docker.sock, /misc/app_host/docker.sock,
/tmp, and /var/run for trusted containers, and to place the Docker daemon in a non-default VRF.

Procedure

Step 1 Enter App Manager docker configuration mode.

Example:
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# appmgr
RP/0/RP0/CPU0:router(config-appmgr)# docker

Step 2 Enable access to sensitive host paths for Containerz-managed containers.

Example:
RP/0/RP0/CPU0:router(config-appmgr-docker)# allow-sensitive-paths

The allow-sensitive-paths CLI grants containers managed by the Containerz workflow access to sensitive host paths,
including the Docker socket (for example, /var/run/docker.sock or /misc/app_host/docker.sock, depending on the
platform), as well as other paths such as /tmp and /var/run.

Step 3 Optionally, start the Docker daemon in a non-default VRF.

Example:
RP/0/RP0/CPU0:router(config-appmgr-docker)# vrf <vrf-name>

The appmgr docker vrf <vrf-name> command starts the Docker daemon in the specified non-default VRF instead of
the default global VRF.When this configuration is present, previously running containers and any new containers managed
by AppMgr/Containerz use that VRF for their network connectivity.

gRPC Fundamentals
19

gRPC Fundamentals
Configure Docker access for Containerz containers

gRPC Fundamentals
20

gRPC Fundamentals
Configure Docker access for Containerz containers

	gRPC Fundamentals
	gRPC operations
	gRPC over UNIX domain sockets
	Configure gRPC over UNIX domain sockets

	IANA port numbers for gRPC services
	Multiple gRPC servers
	Benefits of multiple gRPC servers
	Best practices for deploying multiple gRPC servers
	Restrictions for deploying multiple gRPC servers
	Configure multiple gRPC servers
	Configure a new gRPC server with compatible services
	Configure a new gRPC server with incompatible services
	Disable the default gRPC server for migration
	Configure UDS and TCP listeners for gRPC servers
	Configure only UDS listeners for gRPC servers

	Transceiver optics resets
	Usage guidelines for optics reset
	Transceiver optics reset using gNOI Reboot RPC
	Transceiver optics reset using CLI

	gNOI RemoveContainer RPC
	Usage guidelines for removing containers
	Configure RemoveContainer RPC
	Configure Docker access for Containerz containers

