
gRPC Applications and Configuration

• gRPC operations, on page 1
• Certificate common-name for dial-in using gRPC protocol, on page 11
• gRPC over UNIX domain sockets, on page 14
• gRPC network management interface, on page 16
• gRPC network packet sampling interface, on page 76
• gRIBI default route resolution without recirculation, on page 79

gRPC operations
gRPC operations are a set of remote procedure calls that enable clients to interact with Cisco IOS XR devices
for configuration and operational data retrieval.

• They support configuration retrieval and modification.

• They provide access to operational and model data.

• They allow CLI-based and structured output retrieval.

These operations are essential for automating and managing network devices programmatically using gRPC
clients.

Manageability service gRPC operations

This table defines the manageability service gRPC operations for Cisco IOS XR.

DescriptiongRPC Operation

Retrieves the configuration from the router.GetConfig

Gets the supported Yang models on the routerGetModels

Merges the input config with the existing device configuration.MergeConfig

Deletes one or more subtrees or leaves of configuration.DeleteConfig

Replaces part of the existing configuration with the input configuration.ReplaceConfig

Replaces all existing configurationwith the new configuration provided.CommitReplace

gRPC Applications and Configuration
1

DescriptiongRPC Operation

Retrieves operational data.GetOper

Invokes the input CLI configuration.CliConfig

Returns the output of a show command in the text formShowCmdTextOutput

Returns the output of a show command in JSON form.ShowCmdJSONOutput

gRPC operation to Get configuration

The gRPC example shows how a gRPC GetConfig request works for feature.

The client initiates a message to get the current configuration of running on the router. The router responds
with the current configuration.

gRPC response (Router to Client)gRPC request (Client to Router)

{
"Cisco-IOS-XR-cdp-cfg:cdp": {
"timer": 50,
"enable": true,
"log-adjacency": [
null
],
"hold-time": 180,
"advertise-v1-only": [
null
]
}
}

{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": {
"timer": 60,
"enable": true,
"reinit": 3,
"holdtime": 150

}
}

rpc GetConfig
{
"Cisco-IOS-XR-cdp-cfg:cdp": [
"cdp": "running-configuration"
]

}

rpc GetConfig
{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": [
"lldp": "running-configuration"
]

}

gRPC authentication modes
A gRPC authentication mode is a security mechanism for gRPC communication that

• provides different methods to verify the identity of clients and servers,
• supports both metadata-based and certificate-based approaches for authentication, and
• enables compliance with varying security requirements through configurable settings such as TLS,Mutual
TLS, and non-TLS options.

This section details the authentication modes supported by gRPC to secure communication and ensure
authorized access to services.

gRPC supports multiple authentication modes to secure communication between clients and servers. These
modes ensure that only authorized entities can access gRPC services such as gNOI, gRIBI, and P4RT. Upon
receiving a gRPC request, the device authenticates the user and performs authorization checks.

gRPC Applications and Configuration
2

gRPC Applications and Configuration
gRPC authentication modes

The following table lists the authentication types and their configuration requirements:

Table 1: gRPC authentication modes and configuration requirements

Requirement From
Client

Configuration
Requirement

Authorization
Method

Authentication
Method

Type

username, password,
and CA

grpcusernameusername, passwordMetadata with TLS

username, passwordgrpc no-tlsusernameusername, passwordMetadata without
TLS

username, password,
client certificate,
client key, and CA

grpc tls-mutualusernameusername, passwordMetadata with
Mutual TLS

client certificate,
client key, and CA

grpc tls-mutual

and

grpc certificate
authentication

username from
client certificate's
common name field

client certificate's
common name field

Certificate based
Authentication

Certificate-based authentication

In Extensible Manageability Services (EMS) gRPC, certificates play a vital role in ensuring secure and
authenticated communication. The EMS gRPC utilizes these certificates for authentication:
/misc/config/grpc/ems.pem

/misc/config/grpc/ems.key
/misc/config/grpc/ca.cert

For clients to use the certificates, ensure to copy the certificates from /misc/config/grpc/Note

Generation of certificates

These certificates are typically generated using a Certificate Authority (CA) by the device. The EMS certificates,
including the server certificate (ems.pem), public key (ems.key), and CA certificate (ca.cert), are generated
with specific parameters like the common name ems.cisco.com to uniquely identify the EMS server and
placed in the /misc/config/grpc/ location.

The default certificates that are generated by the server are Server-only TLS certificates and by using these
certificates you can authenticate the identity of the server.

Usage of certificates

These certificates are used for enabling secure communication through Transport Layer Security (TLS) between
gRPC clients and the EMS server. The client should use ems.pem and ca.cert to initiate the TLS authentication.

To update the certificates, ensure to copy the new certificates that have been generated earlier to the location
and restart the server.

Custom certificates

gRPC Applications and Configuration
3

gRPC Applications and Configuration
gRPC authentication modes

If you want to use your own certificates for EMS gRPC communication, then you can follow a workflow to
generate custom certificates with the required parameters and then configure the EMS server to use these
custom certificates. This process involves replacing the default EMS certificates with the custom ones and
ensuring that the gRPC clients also trust the customCA certificate. For more information on how to customize
the common-name, see Certificate Common-Name For Dial-in Using gRPC Protocol.

Configure authentication for gRPC services
This task explains how to configure different types of authentication for gRPC services, including TLS and
AAA-based authentication.

Before you begin

Ensure that the router supports gRPC and that you have access to the CLI in configuration mode. TLS and
AAA configurations must be available if required by the authentication method.

Procedure

Step 1 Configure your preferred authentication method:

• Configure authentication using metadata with TLS
Router#config
Router(config)#grpc
Router(config-grpc)#commit

• Configure authentication using metadata without TLS
Router#config
Router(config)#grpc
Router(config-grpc)#no-tls
Router(config-grpc)#commit

• Configure authentication using metadata with mutual TLS
Router#config
Router(config)#grpc
Router(config-grpc)#tls-mutual
Router(config-grpc)#commit

• Configure certificate-based authentication
Router(config)#grpc
Router(config-grpc)#tls-mutual
Router(config-grpc)#certificate-authentication
Router(config-grpc)#commit

Step 2 Verify the configuration.

Example:
Router# show grpc
Tue Jul 30 09:54:23.001 UTC

Server name : DEFAULT
Address family : dual
Port : 57400

Service ports

gRPC Applications and Configuration
4

gRPC Applications and Configuration
Configure authentication for gRPC services

gNMI : none
P4RT : none
gRIBI : none

DSCP : Default
TTL : 64
VRF : global-vrf
Server : enabled
TLS : enabled
TLS mutual : disabled
Trustpoint : none
Certificate Authentication : disabled
Certificate common name : ems.cisco.com
TLS v1.0 : enabled
Maximum requests : 128
Maximum requests per user : 10
Maximum streams : 32
Maximum streams per user : 32
Maximum concurrent streams : 32
Memory limit (MB) : 1024
Keepalive time : 30
Keepalive timeout : 20
Keepalive enforcement minimum time : 300

TLS cipher suites
Default : none
Default TLS1.3 : aes_128_gcm_sha256

: aes_256_gcm_sha384
: chacha20_poly1305_sha256

Enable : none
Disable : none

Operational enable : ecdhe-rsa-chacha20-poly1305
: ecdhe-ecdsa-chacha20-poly1305
: ecdhe-rsa-aes128-gcm-sha256
: ecdhe-ecdsa-aes128-gcm-sha256
: ecdhe-rsa-aes256-gcm-sha384
: ecdhe-ecdsa-aes256-gcm-sha384
: ecdhe-rsa-aes128-sha
: ecdhe-ecdsa-aes128-sha
: ecdhe-rsa-aes256-sha
: ecdhe-ecdsa-aes256-sha
: aes128-gcm-sha256
: aes256-gcm-sha384
: aes128-sha
: aes256-sha

Operational disable : none
Listen addresses : ANY

The gRPC service is configured with the selected authentication method and is ready to accept secure client
connections.

What to do next

Verify the gRPC connection and monitor authentication logs to ensure proper access control.

gRPC Applications and Configuration
5

gRPC Applications and Configuration
Configure authentication for gRPC services

gRPC servers with TLS version 1.3 support
gRPC servers with TLS version 1.3 support are network security solutions that

• provide end-to-end encrypted communication between clients and servers,

• use modern cryptographic protocols for stronger security and performance, and

• allow administrators to configure minimum and maximum TLS versions for compliance and
interoperability.

Table 2: Feature History Table

DescriptionRelease
Information

Feature Name

You can now enhance the security of your network
connections with stronger protection against vulnerabilities
by enabling TLS 1.3 support over gRPC services. This update
improves performance with faster connection times and
reduced latency by reducing the number of round trips
required to establish a connection and removing outdated
ciphers. Additionally, it complies with internal security
mandates, providing a more robust and future-proof solution
for your network management needs.

Previously, gRPC server supported TLS version 1.2.

The feature introduces these changes:

CLI:

• tls-min-version

• tls-max-version

Release 24.4.1gRPC Server TLS
Version 1.3 Support

Security benefits of TLS 1.3

The gRPC Remote Procedure Calls (gRPC) server Transport Layer Security (TLS) version 1.3 support is a
security feature that:

• Provides end-to-end communications security over networks

• Prevents unauthorized access and eavesdropping

• Protects against tampering and message forgery

The TLS private key is encrypted before being stored on the disk. For more details on SSL or TLS version
certificates, keys, and communication parameters, see Manage certificates using Certz.proto.

Guidelines and limitations for TLS configuration

TLS version configuration limitations

• Ensure that the tls-min-version value is not greater than the tls-max-version value.

gRPC Applications and Configuration
6

gRPC Applications and Configuration
gRPC servers with TLS version 1.3 support

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4080366908
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1060638259
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#concept_C66C0E5371BF46E8937AB14F7D25EE11

• Starting in Release 2.4.4.1, the tlsv1-disable command is deprecated. Avoid using this command in
new configurations.

• If you use the tlsv1-disable command, do not use the tls-min-version or tls-max-version commands.

• If you use the tls-min-version and tls-max-version commands, do not use the tlsv1-disable
command.

Best practice for disabling TLS 1.0

To disable TLS version 1.0, set the tlsv1-disable command. Alternatively, you can set the tls-min-version
to a value greater than 1.0.

Configure gRPC TLS version

Configuring gRPC TLS version enables you to control which TLS protocol versions are permitted for secure
gRPC communication between the router and clients. This can be important for maintaining compatibility
and achieving desired security standards.

Before you begin

• Verify that gRPC is enabled on the router.

• Determine which TLS versions (1.0, 1.1, 1.2, or 1.3) your environment and clients require.

Procedure

Step 1 Configure gRPC TLS minimum, maximum, or both versions.

Example:

• Configure gRPC TLS maximum version.
Router# config

Router(config)# grpc
Router(config-grpc)# tls-max-version 1.2
Router(config-grpc)# commit

tls-max-version can be 1.0, 1.1, 1.2, or 1.3. The default maximum version for TLS is 1.3.

Step 2 Verify the gRPC TLS minimum and maximum versions.

Example:
Router# show grpc

Thu Aug 29 00:49:24.428 UTC

Server name : DEFAULT
Address family : dual
Port : 57400

Service ports
gNMI : none
P4RT : none
gRIBI : none

DSCP : Default

gRPC Applications and Configuration
7

gRPC Applications and Configuration
Configure gRPC TLS version

TTL : 64
VRF : global-vrf
Server : disabled (Unknown)
TLS : enabled
TLS mutual : disabled
Trustpoint : none
Certificate Authentication : disabled
Certificate common name : ems.cisco.com
TLS v1.0 : enabled
Maximum requests : 128
Maximum requests per user : 10
Maximum streams : 32
Maximum streams per user : 32
Maximum concurrent streams : 32
Memory limit (MB) : 1024
Keepalive time : 30
Keepalive timeout : 20
Keepalive enforcement minimum time : 300
TLS Minimum Version : TLS 1.0

TLS Maximum Version : TLS 1.2

TLS cipher suites
Default : none
Default TLS1.3 : aes_128_gcm_sha256
: aes_256_gcm_sha384
: chacha20_poly1305_sha256

Enable : none
Disable : none

Operational enable : ecdhe-rsa-chacha20-poly1305
: ecdhe-ecdsa-chacha20-poly1305
: ecdhe-rsa-aes128-gcm-sha256
: ecdhe-ecdsa-aes128-gcm-sha256
: ecdhe-rsa-aes256-gcm-sha384
: ecdhe-ecdsa-aes256-gcm-sha384
: ecdhe-rsa-aes128-sha
: ecdhe-ecdsa-aes128-sha
: ecdhe-rsa-aes256-sha
: ecdhe-ecdsa-aes256-sha
: aes128-gcm-sha256
: aes256-gcm-sha384
: aes128-sha
: aes256-sha
Operational disable : none
Listen addresses : ANY

The TLS 1.3 cipher suites are not configurable, they are either fixed or static.

After completing this task, the router will use the specified TLS version for gRPC communication.

Example

For example, enabling only TLS 1.3 ensures that gRPC connections use the most secure protocol
version supported by the router.

gRPC Applications and Configuration
8

gRPC Applications and Configuration
Configure gRPC TLS version

What to do next

After configuring the TLS version, verify the gRPC server status and test connectivity using a gRPC client
to ensure compatibility.

SPIFFE ID-based authentication and authorization services for gRPC services
A SPIFFE ID (Secure Production Identity Framework for Everyone) based authentication and authorization
service is a standardized framework that:

• enables secure identification and authorization of services communicating over gRPC,
• provides interoperability for authentication and access control across diverse and distributed environments,
and

• leverages SPIFFE IDs and Verifiable Identity Documents (SVIDs) to enforce mutual TLS (mTLS) and
authorization policies.

SPIFFE ID-Based authentication and authorization services for gRPC services uses SPIFFE IDs and SPIFFE
Verifiable Identity Documents (SVIDs) to authenticate and authorize gRPC traffic. This is especially useful
in distributed systems where workloads span multiple platforms.

• Authentication: Performed via mutual TLS (mTLS) using SVIDs

• Authorization: Based on mapping SPIFFE IDs to XR usernames

• Identity format: SVIDs can be encoded as X.509 certificates or JWTs

• Integration: Enables EMS and gRPC services to enforce access control

Workflow for SPIFFE ID-based authentication and authorization for gRPC services

Mapping initialization and configuration

1. The EMS starts searching for the spiffe-user-map.json file at the location
/misc/config/grpc/gnsi/credentialz/spiffe-user-map.json.

2. If the file exists, it is parsed, and the mapping is stored globally in the aaa/auth package.

3. If the file does not exist or parsing is unsuccessful, the mapping will be empty.

4. The EMS registers with the configuration manager to receive updates for the aaa configuration.

Authentication and authorization Flow

1. When processing requests in the Authentication interceptor, the spiffe-user mapping API checks for the
SPIFFE ID mapping.

2. If the mapping exists, the API responds with the corresponding username.

3. If the mapping does not exist but the aaa configuration exists, the API responds with the configured
username.

4. If neither the mapping nor the aaa configuration is present, the API responds with an empty string.

5. Upon a client connecting to the server, the server interceptor extracts the SPIFFE ID from the client's
certificate and uses themapping stored in theaaa/auth package to find the corresponding username.

6. The username identifies it and then includes the metadata into the context.

gRPC Applications and Configuration
9

gRPC Applications and Configuration
SPIFFE ID-based authentication and authorization services for gRPC services

7. gRPC services that require XRAuthorization will later verify the access rights for the username identified
in the previous step when handling the request.

8. If the mapping is unsuccessful, the request is passed to the relevant service, such as gNMI, which then
decides whether to grant or deny access based on its authorization requirements.

Authenticate and authorize gRPC service requests using the SPIFFE standard
This task describes how to authenticate and authorize gRPC service requests using the SPIFFE standard by
mapping SPIFFE IDs to usernames and evaluating authorization policies.

Before you begin

Before authenticating and authorizing gRPC service requests using the SPIFFE standard, ensure the following
prerequisites are met:

• Enable mutual TLS authentication with the tls-mutual command.

• Enable certificate authentication with the certificate-authentication command to facilitate SPIFFE
ID recognition. For more information, see Configure authentication for gRPC services, on page 4.

• Configure the gNSI Authz policy by setting the principal to the SPIFFE-ID for service-level authorization
(gNSI AuthZ).

After establishing the connection, the gRPC server extracts the SPIFFE ID from the client's certificate.

To authenticate and authorize gRPC service requests using the SPIFFE standard, follow these steps:

Procedure

Step 1 Configure the username in the system.

Example:

Router#show running-config aaa
Thu Oct 12 11:43:15.771 UTC
username cisco
group root-lr
group cisco-support
password 7 104D000A061843595F
!

Step 2 Map the SPIFFE ID to a username using the aaa map-to username command. This command assigns a default username
to any SPIFFE ID.
Router(config)#aaa map-to username cisco spiffe-id any

Router(config)#commit

Note
Each SPIFFE ID supports only one username.

Step 3 Evaluate the client's SPIFFE ID against the service-level authorization policy (gNSI AuthZ).

gRPC Applications and Configuration
10

gRPC Applications and Configuration
Authenticate and authorize gRPC service requests using the SPIFFE standard

The gRPC service request is authenticated and authorized using the SPIFFE ID mapped to a system username
and evaluated against the gNSI AuthZ policy.

Example

For example, after mapping the SPIFFE ID to the username cisco, the system uses this identity to
authorize access based on the configured gNSI AuthZ policy.

What to do next

After completing this task:

• Monitor gRPC logs to verify successful authentication and authorization events using SPIFFE IDs.

Certificate common-name for dial-in using gRPC protocol
A certificate common-name for dial-in using gRPC protocol is a security configuration that:

• allows the router to generate certificates with a user-defined common-name,
• enables gRPC clients to verify the server identity using a matching hostname, and
• prevents certificate verification failures caused by fixed or mismatched common-names.

This feature enhances TLS authentication flexibility and supports secure, hostname-based validation for gRPC
dial-in sessions.

gRPC Applications and Configuration
11

gRPC Applications and Configuration
Certificate common-name for dial-in using gRPC protocol

Table 3: Feature History Table

DescriptionRelease InformationFeature Name

You can now specify a
common-name for the certificate
generated by the router while using
gRPC dial-in. Earlier, the
common-name in the certificate
was fixed as ems.cisco.com andwas
not configurable. Using a specified
common-name avoids potential
certification failures where youmay
specify a hostname different from
the fixed common name to connect
to the router.

The feature introduces these
changes:

CLI:

• grpc certificate
common-name

YANG Data Model:

• New XPath for
Cisco-IOS-XR-um-grpc-cfg.yang

• New XPath for
Cisco-IOS-XR-man-ems-cfg

(see GitHub, YANG Data Models
Navigator)

Release 24.1.1Certificate common-name for
dial-in using gRPC protocol

gRPC dial-in certificate common-name configuration

When using gRPC dial-in on Cisco IOS-XR routers, the common-name associated with the certificate generated
by the router was previously fixed as ems.cisco.com, causing failures during certificate verification if a different
hostname was used. From Cisco IOS XR 24.11, you can now specify the common-name in the certificate
using the grpc certificate common-name command, allowing gRPC clients to more flexibly and securely
verify the server’s domain name.

Configure certificate common name for dial-in
Configure a common name to be used in EMSD certificates for gRPC dial-in.

Before you begin

Before you begin, ensure the following:

• The router is running with the correct OS image.

gRPC Applications and Configuration
12

gRPC Applications and Configuration
Configure certificate common name for dial-in

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3441271847
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3441271847
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

• gRPC is enabled and properly configured on the device.

Procedure

Step 1 Configure a common name.

Example:
Router#config

Router(config)#grpc
Router(config-grpc)#certificate common-name cisco.com
Router(config-grpc)#commit

Use the show command to verify the common name:
Router#show grpc

Certificate common name : cisco.com

Note
For the above configuration to be successful, ensure to regenerate the certificate so that the new EMSD certificates include
the configured common name.

To regenerate the self-signed certificate, perform the following steps.

Step 2 Remove the certificates: /misc/config/grpc/ems.pem, /misc/config/grpc/ems.key, and /misc/config/grpc/ca.cert
from /misc/config/grpc file.

Example:
Router#run ls -ltr /misc/config/grpc/

total 16
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 10:58 ems.pem
-rw-------. 1 root root 1675 Feb 14 10:58 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#run rm -rf /misc/config/grpc/ems.pem /misc/config/grpc/ems.key

Router#run ls -ltr /misc/config/grpc/

total 8
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Step 3 Restart gRPC server by toggling the TLS configuration.

Configure gRPC with non TLS and then re-configure with TLS.

Example:
Router#config

Router(config)#grpc
Router(config-grpc)#no-tls
Router(config-grpc)#commit

Router#run ls -ltr /misc/config/grpc/

total 8
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

gRPC Applications and Configuration
13

gRPC Applications and Configuration
Configure certificate common name for dial-in

Router#config
Router(config)#grpc
Router(config-grpc)#no no-tls
Router(config-grpc)#commit

Router#run ls -ltr /misc/config/grpc/

total 16
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 14:23 ems.pem
-rw-------. 1 root root 1675 Feb 14 14:23 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 14:23 ca.cert

Copy the newly generated /misc/config/grpc/ems.pem certificate in this path (from the device) to the gRPC client.

The common name is successfully configured and reflected in the regenerated EMSD certificate used for
gRPC dial-in.

Example

For example, after configuring certificate common-name cisco.com and regenerating the certificate,
the output of show grpc displays: Certificate common name : cisco.com.

What to do next

After completing this task:

• Ensure the gRPC client trusts the new certificate and can establish a secure connection using the updated
common name.

gRPC over UNIX domain sockets
gRPC over UNIX domain sockets is a method that allows establishing gRPC connections using local containers
without the need for password rotations.

• Extends gRPC TCP-based connections to UNIX domain sockets for local communication.

• Eliminates the need for username/password authentication for local containers.

• Improves security and control using UNIX file permissions.

This method enhances inter-process communication and simplifies secure local access to gRPC services on
Cisco routers.

Feature History Table

gRPC server initialization and service registration

When gRPC is configured on the router, the gRPC server starts and then registers services such as gNMI and
gNOI. After all the gRPC server registrations are complete, the listening socket is opened to listen to incoming
gRPC connection requests. Currently, a TCP listen socket is created with the IP address, VRF, or gRPC
listening port.

gRPC Applications and Configuration
14

gRPC Applications and Configuration
gRPC over UNIX domain sockets

UNIX domain sockets and dual socket listening for gNMI

With this feature, the gRPC server listens over UNIX domain sockets that must be accessible from within the
container through a local connection by default. With the UNIX socket enabled, the server listens on both
TCP and UNIX sockets. However, if the UNIX socket is disabled, the server listens only on the TCP socket.
The socket file is located at the directory.

Configure gRPC over UNIX domain sockets
You can use local containers and scripts on the router to establish gRPC connections over UNIX domain
sockets.

Before you begin

Ensure that the router supports gRPC and that you have access to the CLI in configuration mode.

Procedure

Step 1 Configure the gRPC server

Example:

Router(config)#grpc
Router(config-grpc)#local-connection
Router(config-grpc)#commit

To disable the UNIX socket use the no form of the command.

Router(config-grpc)#no local-connection

The gRPC server restarts after you enable or disable the UNIX socket. If you disable the socket, any active gRPC sessions
are dropped and the gRPC data store is reset.

The scale of gRPC requests remains the same and is split between the TCP and Unix socket connections. The maximum
session limit is 256. If you utilize the 256 sessions on Unix sockets, further connections on either TCP or UNIX sockets
are rejected.

Step 2 Verify that the local-connection is successfully enabled

Example:

Router#show grpc status
Thu Nov 25 16:51:30.382 UTC
*************************show gRPC status**********************

transport : grpc
access-family : tcp4
TLS : enabled
trustpoint :
listening-port : 57400
local-connection : enabled
max-request-per-user : 10
max-request-total : 128

gRPC Applications and Configuration
15

gRPC Applications and Configuration
Configure gRPC over UNIX domain sockets

max-streams : 32
max-streams-per-user : 32
vrf-socket-ns-path : global-vrf
min-client-keepalive-interval : 300

A gRPC client must dial into the socket to send connection requests.

Here is an example of a Go client connecting to a UNIX socket.

const sockAddr =
" /misc/app_host/ems/grpc.sock" // for ncs_5500
" /var/lib/docker/ems/grpc.sock" // for cisco8000

...

func UnixConnect(addr string, t time.Duration) (net.Conn, error) {
unix_addr, err := net.ResolveUnixAddr("unix", sockAddr)
conn, err := net.DialUnix("unix", nil, unix_addr)
return conn, err

}

func main() {
...
opts = append(opts, grpc.WithTimeout(time.Second*time.Duration(*operTimeout)))
opts = append(opts, grpc.WithDefaultCallOptions(grpc.MaxCallRecvMsgSize(math.MaxInt32)))
...
opts = append(opts, grpc.WithDialer(UnixConnect))
conn, err := grpc.Dial(sockAddr, opts...)
...

}

The gRPC server is configured to accept connections over UNIX domain sockets, and clients can connect
using the specified socket path.

What to do next

Monitor the gRPC sessions and ensure that the session count does not exceed the maximum limit of 256.

gRPC network management interface
The gRPC Network Management Interface (gNMI) is a gRPC-based network management protocol used to
modify, install or delete configuration from network devices. It is also used to view operational data, control
and generate telemetry streams from a target device to a data collection system. It uses a single protocol to
manage configurations and stream telemetry data from network devices.

• Supports configuration management and telemetry streaming.

• Uses gRPC as the transport protocol.

• Enables real-time data collection without prior sensor path configuration.

gRPC Applications and Configuration
16

gRPC Applications and Configuration
gRPC network management interface

gNMI subscription model and transport protocol

The subscription in gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.
gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gNMI operations
gNMI (gRPC Network Management Interface) operations define how clients interact with network devices
to retrieve or modify configuration and operational data. These operations are part of the gNMI specification
and are supported in Cisco IOS XR.

The gNMI operations include:

• Capabilities: Retrieves metadata about the network device

• Get: Retrieves state, configuration, and operational data

• Set: Modifies or deletes configuration data

• Subscribe: Subscribes to real-time updates for specific data paths

• Release support:Most operations are supported from release 7.0.1; Subscribe is supported from release
24.2.1

The following table lists the gNMI operations and their support in Cisco IOS XR:

Table 4: gNMI operations and their support in Cisco IOS XR

Additional DetailsDescriptionSupported
Release

gNMI
Operation

—Retrieves the metadata of the
network device.

Release 7.0.1Capabilities

—Retrieve state data, configuration,
and operational information from a
network device

Release 7.0.1Get

—You can modify the state of a
network device such as router's
configuration, replace router's entire
configuration sections, or delete
specific parts of the configuration
using the Set operation.

Release 7.0.1Set

Stream Telemetry Data for LLDP
Statistics

Subscribes to a stream of updates for
specific paths within the device's
data model.

Release 24.2.1Subscribe

The gNMI Get operation is not supported for Sysadmin YANG models.Note

gRPC Applications and Configuration
17

gRPC Applications and Configuration
gNMI operations

https://www-author3.cisco.com/content/en/us/td/docs/iosxr/cisco8000/telemetry/24xx/configuration/guide/b-telemetry-cg-8000-24xx/enhancements-to-streaming-telemetry.html#lldp-using-gnmi
https://www-author3.cisco.com/content/en/us/td/docs/iosxr/cisco8000/telemetry/24xx/configuration/guide/b-telemetry-cg-8000-24xx/enhancements-to-streaming-telemetry.html#lldp-using-gnmi

gNMI wildcards in schema path
gNMI wildcard schema is a method that supports the use of wildcards to represent all elements within a given
subtree in the schema.

The gNMI wildcards are used for telemetry subscriptions or gNMI Get requests. The path is encoded in a
structured format consisting of elements such as the path name and keys, which are represented as string
values regardless of their type within the schema.

gNMI Wildcard Search Types

The table shows the gNMI wildcard search types.

Table 5: Single and multi-level wildcards

Multi-level wildcardSingle-level wildcard

The name of the path element is specified as an ellipsis
(…). The example shows a wildcard search that
returns all fields with a description available under
/interfaces path.
path {
elem {
name: "interfaces"

}
elem {
name: "..."

}
elem {
name: "description"

}
}

The name of a path element is specified as an asterisk
(*). The sample shows a wildcard as the key name.
This operation returns the description for all interfaces
on a device.
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "*"

}
}
elem {
name: “config"

}
elem {
name: "description"

}
}

gNMI Get request path to a leaf

The table shows the gNMI Get request and response messages in the schema path to fetch the operational
state of an interface.

gRPC Applications and Configuration
18

gRPC Applications and Configuration
gNMI wildcards in schema path

gNMI Get ResponsegNMI Get RequestMessage Type

notification: <
timestamp:

1597974202517298341
update: <
path: <
origin:

"Cisco-IOS-XR-pfi-im-cmd-oper"

elem: <
name:

"interfaces"
>
elem: <

name:
"interface-xr"

>
elem: <
name:

"interface"
key: <
key:

"interface-name"
value:

"\"GigabitEthernet0/0/0/0\""

>
>
elem: <
name: "state"
>

>
val: <

json_ietf_val:
im-state-admin-down

>
>

>
error: <
>

path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"

elem: <
name: "interfaces"

>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""
>

>
elem: <

name: "state"
>

>
type: OPERATIONAL
encoding: JSON_IETF

gNMI operation to
fetch operational
state of an interface

gRPC Applications and Configuration
19

gRPC Applications and Configuration
gNMI wildcards in schema path

gNMI Get ResponsegNMI Get RequestMessage Type

path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"

elem: <
name: "interfaces"

>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
>
elem: <

name: "state"
>

>
type: OPERATIONAL
encoding: JSON_IETF

gNMI operation
without a key
specified in the
schema path

gRPC Applications and Configuration
20

gRPC Applications and Configuration
gNMI wildcards in schema path

gNMI Get ResponsegNMI Get RequestMessage Type

path: <
origin:

"Cisco-IOS-XR-pfi-im-cmd-oper"

elem: <
name:

"interfaces"
>
elem: <

name:
"interface-xr"

>
elem: <

name:
"interface"

>
elem: <

name: "state"

>
>
type: OPERATIONAL
encoding: JSON_IETF
notification: <
timestamp:

1597974202517298341
update: <
path: <
origin:

"Cisco-IOS-XR-pfi-im-cmd-oper"

elem: <
name:

"interfaces"
>
elem: <
name:

"interface-xr"
>
elem: <
name: "interface"

key: <
key:

"interface-name"
value:

"\"GigabitEthernet0/0/0/0\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val:

im-state-admin-down
>

>
update: <
path: <
origin:

gRPC Applications and Configuration
21

gRPC Applications and Configuration
gNMI wildcards in schema path

gNMI Get ResponsegNMI Get RequestMessage Type

"Cisco-IOS-XR-pfi-im-cmd-oper"

elem: <
name:

"interfaces"
>
elem: <
name:

"interface-xr"
>
elem: <
name: "interface"

key: <
key:

"interface-name"
value:

"\"GigabitEthernet0/0/0/1\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val:

im-state-admin-down
>

>
update: <
path: <
origin:

"Cisco-IOS-XR-pfi-im-cmd-oper"

elem: <
name:

"interfaces"
>
elem: <
name:

"interface-xr"
>
elem: <
name: "interface"

key: <
key:

"interface-name"
value:

"\"GigabitEthernet0/0/0/2\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val:

im-state-admin-down
>

gRPC Applications and Configuration
22

gRPC Applications and Configuration
gNMI wildcards in schema path

gNMI Get ResponsegNMI Get RequestMessage Type

>
update: <
path: <
origin:

"Cisco-IOS-XR-pfi-im-cmd-oper"

elem: <
name:

"interfaces"
>
elem: <
name:

"interface-xr"
>
elem: <
name: "interface"

key: <
key:

"interface-name"
value:

"\"MgmtEth0/RP0/CPU0/0\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val:

im-state-admin-down
>

>

gRPC Applications and Configuration
23

gRPC Applications and Configuration
gNMI wildcards in schema path

gNMI Get ResponsegNMI Get RequestMessage Type

path: <
origin: "cli"
elem: <

name: "show
version"

>
>
type: ALL
...
...
[
{
"source":

"unix:///var/run/test_env.sock",

"timestamp":
1730123328800447525,

"time":
"2024-10-28T06:48:48.800447525-07:00",

"updates": [
{

"Path": "show
version",

"values": {
"show version":

"--------------------------------
show version

Cisco IOS XR Software,
Version 24.4.1.37I
Copyright (c) 2013-2024
by Cisco Systems, Inc.
Build Information:\n
Built By : swtools
Built On : Mon Oct 21
03:16:32 PDT 2024
Built Host :
iox-lnx-121\n Workspace
:
/auto/iox-lnx-121-san2/prod/24.4.1.37I.SIT_IMAGE/ncs5500/ws
Version : 24.4.1.37I\n
Location :
/opt/cisco/XR/packages/
Label :
24.4.1.37I-EFT2LabOnly
cisco NCS-5500 ()
processor
System uptime is 3 days
22 hours 54
minutes\n\n\n"

}
}

]
}

]

path: <
origin: "cli"
elem: <

name: "show version"
>

>
type: ALL
encoding: ASCII

gNMI operation with
unique path to a CLI

gRPC Applications and Configuration
24

gRPC Applications and Configuration
gNMI wildcards in schema path

gNMI bundling of telemetry updates
The gNMI bundling of telemetry updates is a method that

• optimizes bandwidth, and

• bundles multiple gNMI Update messages for the same client and sends them together.

Table 6: Feature History Table

DescriptionRelease
Information

Feature Name

With gRPCNetworkManagement Interface (gNMI) bundling,
the router internally bundles multiple gNMI Updatemessages
meant for the same client into a single gNMI Notification
message and sends it to the client over the interface.

You can now optimize the interface bandwidth utilization by
accommodating more gNMI updates in a single notification
message to the client. We have now increased the gNMI
bundling size from 32768 to 65536 bytes, and enabled gNMI
bundling size configuration through Cisco native data model.

Prior releases allowed only a maximum bundling size of
32768 bytes, and you could configure only through CLI.

The feature introduces new XPaths to the
Cisco-IOS-XR-telemetry-model-driven-cfg.yang Cisco
native data model to configure gNMI bundling size.

To view the specification of gNMI bundling, see Github
repository.

Release 7.8.1gNMI bundling size
enhancement

The router internally bundles multiple gNMI Update messages into a single gNMI Notification message
within a gNMI SubscribeResponsemessage. This approach reduces the number of bytes sent over the gNMI
interface. IOS-XR software release Release 7.8.1 supports gNMI bundling size up to 65536 bytes.

Bundling instances of the client

This table shows how the router handles bundling instances for the same or different clients.

Bundling instances of the different clientBundling instances of the same client

The router does not bundle messages of different
clients into a single gNMI Notification message. For
example:

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/protocol

The router bundles multiple instances of the same
client. For example, a router bundles interfaces
MgmtEth0/RP0/CPU0/0, FourHundredGigE0/0/0/0,
FourHundredGigE0/0/0/1, and so on, of this path.

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters

Data under the container of the client path cannot be split into different bundles.

gRPC Applications and Configuration
25

gRPC Applications and Configuration
gNMI bundling of telemetry updates

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates

Timestamp assignment in gNMI notification messages

The gNMI Notification message contains a timestamp indicating when an event occurred or a sample was
taken. The bundling process assigns a single timestamp for all bundled Update values, which is the timestamp
of the first message in the bundle.

Exceptions to gNMI bundling size enforcement

The ON-CHANGE subscription mode does not support gNMI bundling.

The router does not enforce the bundling size in these scenarios:

• At the end of (N-1) message processing, if the notification message size is less than the configured
bundling size, the router allows one extra instance, which could result in exceeding the bundling size.

• Data of a single instance exceeding the bundling size.

• The XPath network-instances/network-instance/afts does not support bundling.

Configure gNMI bundling size
Use this task to enable gNMI bundling and configure the bundling size for all gNMI subscribe sessions.

gNMI bundling is disabled by default and the default bundling size is 32,768 bytes. gNMI bundling size ranges
from 1024 to 65536 bytes. Prior to IOS-XR software release Release 7.8.1 the range was 1024 to 32768 bytes.
You can enable gNMI bundling to all gNMI subscribe sessions and specify the bundling size.

Before you begin

Ensure that you are in configurationmode and have access to the telemetrymodel-driven configuration context.

Procedure

Step 1 Enable gNMI bundling and configure bundling size

Example:

Router# configure
Router(config)# telemetry model-driven
Router(config-model-driven)# gnmi
Router(config-gnmi)# bundling
Router(config-gnmi-bdl)# size 2000
Router(config-gnmi-bdl)# commit

Step 2 Verify the running configuration

Example:

Router# show running-config
telemetry model-driven
gnmi
bundling
size 2000
!

gRPC Applications and Configuration
26

gRPC Applications and Configuration
Configure gNMI bundling size

!
!

gNMI bundling is enabled and the bundling size is set as configured. The configuration is visible in the running
configuration.

Example

This configuration is useful when optimizing telemetry data transmission by controlling the size of
gNMI message bundles.

What to do next

Monitor the gNMI telemetry performance to ensure the configured bundling sizemeets operational requirements.

Replace router configurations at sub-tree level using gNMI
The gNMI replace operation at the sub-tree level is a configurationmanagement capability that enables targeted
updates to specific sections of a router’s configuration hierarchy. This operation uses a SetRequest RPC
message to replace existing configurations with new ones, offering a model-aware and efficient approach to
configuration management.

The gNMI replace operation provides:

• Granular scope: Operates at the sub-tree level within the same YANGmodel, allowing precise updates.

• Structured targeting: Accepts a structured path (with elements and key values) to define the root of the
replace operation.

• Behavioral logic:

• Reverts omitted elements with default values to their defaults.

• Deletes omitted elements without defaults, returning them to an unconfigured state.

Table 7: Feature History Table

DescriptionRelease InformationFeature Name

Using the gNMI SetRequest message, you can replace
the router's existing configuration with a new set of
configurations at the subtree level within the samemodel.
Earlier you could replace router configurations at the
data tree root level.

To view the specification of gNMI replace, see Github
repository.

Release 7.8.1Replace Router
Configuration at Sub-tree
Level Using gNMI

The replace operation either includes all the path elements which are defined under the root or only a few of
them. If the omitted path elements are configured with default values, they are reverted to their default values

gRPC Applications and Configuration
27

gRPC Applications and Configuration
Replace router configurations at sub-tree level using gNMI

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

during the replace operation. If the omitted path elements are not configured with default values, they are
deleted from the data tree during the replace operation and returned to their original unconfigured state.

gNMI replace operation in data tree schema

root +
|
+ a --+
| |
| +-- b
| |
| +-- c
|
|
+ d --+

+-- e
|
+-- f

In this data tree schema, b has a default value of true and c has no default value. Both b and c are set as False.

When a replace operation is performed with e and f as set, and all other elements are omitted, b is reverted to
its default setting true, and c is deleted from the tree, and returned to its original unconfigured state.

gNMI replace example

This example shows the gNMI replace request and response messages.

gNMI Replace ResponsegNMI Replace Request

Response Message:
path: <
elem: <
name: "system"

>
elem: <
name: "config"

>
elem: <
name: "hostname"

>
>
op: REPLACE

>
message: <
>
timestamp: 1662873319202107537

Request Message:
replace: <
path: <
elem: <
name: "system"

>
elem: <
name: "config"

>
elem: <
name: "hostname"

>
>
val: <
json_ietf_val: "\"testing123\""

>
>

gNMI union replace operations
gNMI union replace operations are a category of configuration update methods that:

• allow full replacement of router configurations in a single operation,

• support merging of multiple schema types including OpenConfig, CLI, and native YANG, and

• ensure alignment between intended and actual router configurations using a unified SetRequest RPC
message.

gRPC Applications and Configuration
28

gRPC Applications and Configuration
gNMI union replace operations

Supported schema types

The gNMI union replace operation is a method that allows you to update your router's entire configuration in
one go, ensuring that the actual settings of your network operating system align with the intended setup. To
directly replace the existing router settings, this operation enables the merging of different schemas including:

• native YANG models,

• command-line interface (CLI), and

• OpenConfig YANG models.

Feature History Table

Table 8: Feature History Table

DescriptionRelease
Information

Feature Name

You can now update your router's entire configuration in one
go to ensure that the actual settings of your network operating
system align with the intended setup. The update includes
OpenConfig (OC), Native YANG (NY), and CLI
configurations and is done using the gRPC Network
Management Interface (gNMI). The update is possible with
the gNMI union-replace operation in a gNMI SetRequestRPC
message which supports mixing of the configuration schemas.
The supported schema combinations are:

• OpenConfig (OC) and CLI

• OC and native YANG (NY)

To view the specification of gNMI union-replace, see the
Github repository.

Release 24.2.11gNMI Union Replace
Operation

Supported schema combinations

gNMI union-replace operation in a gNMI SetRequestRPCmessage supports these two schema combinations:

• OC and CLI

• OC and NY

gNMI union-replace operation guidelines and limitations
gNMI union-replace operation guidelines are a category of configuration rules that:

• ensure the target router's state is updated only after all changes are successfully accepted,

• define how path-values are replaced, deleted, or defaulted based on their presence in the request and
schema, and

• restrict the use of delete, replace, and update operations in union_replace RPC messages.

gRPC Applications and Configuration
29

gRPC Applications and Configuration
gNMI union-replace operation guidelines and limitations

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-union_replace.md

Operational behavior and constraints

Using gNMIwhen a client sends the gNMI SetRequestRPCmessage with union-replace operations to a target
router:

• The state of the target router must not be changed until all the changes have been accepted successfully.

• If a particular path-value is specified in the gNMI request, the value replaces the current value in the
target router.

• If a particular path-value isn’t specified in the gNMI request and the path doesn’t have a default value
in the corresponding schema, it’s deleted.

• If a path-value isn’t specified in the gNMI request and the path does have a default value, the default
value is applied on the target router.

• A gNMI SetRequestRPCmessage containing union_replace operations must not contain delete, replace,
and update operations.

Origin field handling

The origin field in the path message of a gNMI union-replace operation is set to one of these options:

• openconfig: Path and content are part of OC YANG models.

• cisco_native: Path and content are part of Cisco’s network operating system YANG models.

• cisco_cli: This origin represents an ASCII text or CLI configuration defined as command-line interface
(CLI) text.

If the origin field is unspecified, the origin value is set to OpenConfig.

gNMI union replace operation examples
gNMI union replace operation examples are a category of schema combination use cases that:

• demonstrate how union_replace operations are structured in gNMI SetRequest RPC messages,

• illustrate the use of different origin schemas such as CLI, OC, and native YANG, and

• serve as references for implementing configuration merging strategies across schema types.

Schema combination examples

The schema combination examples show the union_replace operation in the gNMI SetRequest RPCmessage:

• OC and CLI origin, on page 30

• OC and NY origin, on page 32

OC and CLI origin

OC and CLI origin configurations are a category of gNMI union_replace schema combinations that:

• allow merging of configuration data from both OC and CLI origins,

• replace the router's existing configuration with the merged result, and

gRPC Applications and Configuration
30

gRPC Applications and Configuration
gNMI union replace operation examples

• prioritize CLI configuration values when overlapping with OC values.

Example of union_replace with OC and CLI origin

gNMI union_replace operation in gNMI SetRequestRPCmessagewith OC andCLI origin schema combination
example is as follows:

union_replace: {
path: {
origin: "cisco_cli"
}
val: {
ascii_val: "hostname myhost"
}
}
union_replace: {
path: {
elem: {
name: "interfaces"
}
elem: {
name: "interface"
key: {
key: "name"
value: "FourHundredGigE0/0/0/0"
}
}
elem: {
name: "config"
}
elem: {
name: "description"
}
}
val: {
json_ietf_val: "\"true\""
}
}

Replacement sequence for the OC and CLI origin schema combination

The configurations from both the schemas are merged and the merged configuration replaces the router's
existing configuration.

If the CLI and OC configuration values overlap, the CLI configuration takes higher precedence and overwrites
the value set by OC.

Note

Guidelines for OC and CLI origin

Ensure that you don't use a union-replace operation with an empty path under OC or CLI origins. Doing so
removes all the content of the respective origin on the target router.

A union-replace operationwith OC and CLI schema combination containing bootz configuration, the processing
order of the configuration application on the target router is as follows: OC→ CLI→ bootz.

gRPC Applications and Configuration
31

gRPC Applications and Configuration
OC and CLI origin

OC and NY origin

OC and NY origin configurations are a category of gNMI union_replace schema combinations that:

• merge configuration data from both OC and Cisco native YANG origins,

• replace the router's existing configuration with the merged result, and

• prioritize NY configuration values when overlapping with OC values.

Example of union_replace with OC and NY origin

A gNMI union_replace operation in the gNMI SetRequest RPC message with OC and NY origin schema
combination example is as follows.

union_replace: {
path: {
origin: "cisco_native"
elem: {
name: "Cisco-IOS-XR-shellutil-cfg:host-names"
}
elem: {
name: "host-name"
}
}
val: {
json_ietf_val: "\"abc\""
}
}
union_replace: {
path: {
elem: {
name: "interfaces"
}
elem: {
name: "interface"
key: {
key: "name"
value: "FourHundredGigE0/0/0/0"
}
}
elem: {
name: "config"
}
elem: {
name: "description"
}
}
val: {
json_ietf_val: "\"true\""
}
}

Guidelines for OC and NY origin

The configurations from both the schemas are merged and the merged configuration replaces the router's
existing configuration.

If the OC and NY schema configuration values overlap, the NY configuration takes higher precedence and
overwrites the value set by OC.

gRPC Applications and Configuration
32

gRPC Applications and Configuration
OC and NY origin

If an OC and NY union-replace request explicitly sets configuration items that are overlapping, the RPC
doesn't return INVALID_ARGUMENT.

RPC error scenarios

RPC error scenarios are a category of gNMI SetRequest validation conditions that:

• occur when one of the origins from the supported schema combinations is missing or when the
union_replace operation lacks a specified path value for one of the origins,

• arise when union-replace operations for all three origins (“cisco_native”, “cisco_cli”, and “openconfig”)
are present in the gNMI SetRequest RPC message, and

• result from a gNMI SetRequestRPCmessage with union_replace operations that contain delete, replace,
or update operations.

These conditions must be avoided to ensure successful processing of the RPC message.

gNMI XPath-based authorizations
A gNMI XPath-based authorization is a process where, upon receiving a gNMI SetRequest message for a
configuration change, the router applies an XPath-based pathz policy to determine the request's authorization.
The pathz policy originates from a gNSI RPC within the router. The policy configurations can be established
during the router's boot process or dynamically adjusted while the router is operational.

• Authorization is based on XPath rules defined per user or group.

• Policies can be loaded securely during boot or dynamically.

• Authorization decisions result in PERMIT or DENY outcomes.

The router securely receives the initial pathz policy either through Secure Zero Touch Provisioning (sZTP)
or a secure bootstrapping protocol like bootz when booting up. The policy includes the user or group name
and a list of rules defining XPaths and their associated access permissions. The policy is enforced before
processing any gNMI requests.

Authorization by the gNSI pathz policy is granted or denied based on user or group credentials, permitting
or declining the gNMI SetRequest accordingly.

gRPC Applications and Configuration
33

gRPC Applications and Configuration
RPC error scenarios

Table 9: Feature History Table

DescriptionRelease
Information

Feature Name

We’ve introduced gNMI authorization through the gNSI pathz
policy which is adding authorization of a user or a group to
access a specified YANG XPath through gNMI. The policy
configurations can be done on the router either when the router
boots up or dynamically when the router is up and running.
When a user or a group sends a gNMI SetRequest message
using a certain XPath, the system validates the request against
the permissions specified in the policies associated with that
user or the group.

To view the specification of gNSI for the OpenConfig
XPath-based Authorization, see the Github repository.

This feature introduces these changes:

CLI:

• show gnsi path authorization policy

• show gnsi path authorization counters

• show gnsi trace pathz

• show gnsi path authorization statistics

• show tech-support gnsi

• clear gnsi path authorization counters

Release 24.2.11gNMI XPath-based
authorization

The router securely receives the initial pathz policy either through Secure Zero Touch Provisioning (sZTP)
or a secure bootstrapping protocol like bootz when booting up. The policy includes the user or group name
and a list of rules defining XPaths and their associated access permissions. The policy is enforced before
processing any gNMI requests.

Authorization by the gNSI pathz policy is granted or denied based on user or group credentials, permitting
or declining the gNMI SetRequest accordingly.

gNMI authorization using gNSI pathz policy

Starting from release 24.2.11, you can perform gNMI XPath-based authorization using gNSI pathz policies.

The gnsi-pathz YANGmodel defines these counters and timestamps for each configured rule READ,WRITE,
PERMIT, and DENY:

• access-rejects: 64-bit

• last-access-reject: timestamp

• access-accepts: 64-bit

• last-access-accept: timestamp

The counters get incremented per accepted or rejected XPath (e.g., per gNMI request).

gRPC Applications and Configuration
34

gRPC Applications and Configuration
gNMI XPath-based authorizations

https://github.com/openconfig/gnsi/blob/main/pathz/pathz.proto
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3523621590
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp6319799690
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1425306918
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1800459808
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1590368878
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1987264608

Define Authorization Policy for a gNSI Pathz

The authorization policy for gNSI Pathz consists of three components.

The table lists the gNSI authorization policy components.

Table 10: Authorization Policy Components

DetailsAuthorization Policy
Component

Individuals named in rules or group definitions.Users

A group of users in the administrative domain, such as operators or administrators.

• The matching policy gives precedence to a specific user over a group.

• Match rules enable authorization against either a user or a group, but not
both simultaneously.

Groups of users

Each rule defines a single authorization policy.

• Authorization (how the policy is defined) is performed for a specific user
in a predefined group of users on a specific gNMI path and a specific access
methodology (example: READ or WRITE).

• The wildcard character (*):

• Replaces the missing keys in keyed path elements. Absence of
keys implies a wildcard by default.

• Masks all the values entirely, it doesn’t permit partial value
masking (Example: /this/is/a/keyed[name=Ethernet1/*/3]/things
is invalid).

Policy rules

How Authorization Policy Matching Rules Work

DescriptionPolicy Matching Rule

The authorization process evaluates the rule with the longest
match when granting access, rather than defaulting to the
first rule encountered.

Multiple rules

The defined KEY in the keyed path is preferred over the
wildcard.

For example, the router prefers /a/b[key=FOO]/c/d over
/a/b[key=*]/c/d due to its more precise key match.

A defined KEY and wildcard in a keyed path

The rule that corresponds to a specific user is prioritized
over the one that matches with a user's group.

A user-specific rule and a corresponding group
rule for the same user

A mode that matches with the request (READ or WRITE)
is considered.

Permission mode

gRPC Applications and Configuration
35

gRPC Applications and Configuration
gNMI XPath-based authorizations

DescriptionPolicy Matching Rule

DENY takes priority over PERMIT when other conditions
are equal, and multiple matching rules are present.

DENY or PERMIT

Policy evaluation results with a single best match rule for the provided {user, path, or mode}. If multiple best
matches emerge, an error is logged, and the evaluation fails.

If no matching rule is found, an implicit DENY is applied and detailed in a log entry.

The authorization evaluation process results in a PERMIT or DENY decision, along with the version of the
policy and the identifier of the rule applied.

Scenario for Authorization Policy Rules

ModeActionPathGroupUserRule

READPERMIT/interfaces/interface[FourHundredGigE0/0/0/0]—Bob1

WRITEPERMIT/interfaces/interface[FourHundredGigE0/0/0/0]—Bob2

WRITEDENY/interfaces/interface[FourHundredGigE1/1/1/1]—Bob3

WRITEPERMIT/interfaces/interface[*]Admin—4

READPERMIT/interfaces—Bob5

WRITEPERMIT/interfaces/interface[FourHundredGigE0/0/0/0]Admin—6

WRITEDENY/interfaces/interface[FourHundredGigE0/0/0/0]—Jim7

For user Bob, these authorization ruless apply:

• READ or WRITE (gNMI request) access to the XPath /interfaces/interface[FourHundredGigE0/0/0/0]
is granted under rules 1 and 2.

• READ access to the XPath /interfaces/interface[FourHundredGigE1/1/1/1] is granted under rule 5 due
to the longest match criterion, which specifies READmode. WRITE access to this path is denied by rule
3.

• WRITE access to the XPath /interfaces/interface[FourHundredGigE2/2/2/2] is granted being a member
of the Admins group as specified by rule 4. Without the Admin membership, access is denied by the
default deny all rule.

• READ access to the XPath /interfaces/interface[FourHundredGigE2/2/2/2] is granted under rule 5,
independent of group affiliation.

For user Jim, these authorization rules apply:

• Access to the XPath /interfaces/interface[FourHundredGigE0/0/0/0] is controlled by a policy that favors
personal user permissions over group permissions. As a result, although the admins group is allowed
access, Jim is individually denied access because the policy emphasizes user-specific rules.

gRPC Applications and Configuration
36

gRPC Applications and Configuration
gNMI XPath-based authorizations

gNSI Pathz authorization policy configuration
The gNSI pathz authorization policy configuration defines how access control policies are applied to gRPC
services using the gNSI pathz mechanism. These policies determine which users or groups are permitted or
denied access to specific RPCs or data paths.

• Policy-based access control: Enables fine-grained authorization for gRPC services based on user or
group identity.

• Flexible deployment: Policies can be configured either during initial setup or dynamically through
rotation.

• gNSI integration: Uses the gNSI pathz service to enforce authorization rules across the network
infrastructure.

Configuration methods

To set a gNSI pathz authorization policy, you can perform either of these methods:

• Initial policy loading

• Policy rotation

Load gNSI Pathz policies at boot-time

gNSI Pathz policy boot-time loading is a configuration mechanism that enables routers to apply authorization
policies automatically during system startup.

• Supports loading via Secure Zero Touch Provisioning (sZTP).

• Supports loading via bootstrapping configuration workflows.

This ensures that path authorization policies are enforced immediately after boot, improving security and
automation in deployment workflows.

To load gNSI pathz policies at boot-time into the router, you can use either sZTP or bootstrapping.

For details on loading gNSI pathz policy through sZTP, refer to Secure Zero Touch Provisioning section of
Cisco IOS XR Setup and Upgrade Guide for Cisco 8000 Series Routers guide.

Rotate, finalize, and get the gNSI Pathz policy

gNSI Pathz policy rotation overview

gNSI Pathz policy rotation is a mechanism that allows dynamic management of authorization policies on a
running router using gRPC operations.

• Supports rotating (updating) a candidate policy instance for testing.

• Allows finalizing (committing) the candidate policy to become the active policy.

• Enables retrieving (getting) the current active or candidate policy for inspection.

This mechanism ensures secure and flexible policy updates without requiring router reloads.

gRPC Applications and Configuration
37

gRPC Applications and Configuration
gNSI Pathz authorization policy configuration

When the router is up and running, you can rotate (update), finalize (commit), and get (read) the gNSI pathz
policy using the gNSI pathz gRPC operations. To view the specification of gNSI pathz policy rotation, see
the Github repository.

gNSI pathz supports these policy instances:

• Active policy—Used for authorizing gNMI requests.

• Potential or candidate policy—Used to test a policy before rotation.

Rules for authorization policy rotation

• The node holds on to the candidate policy indefinitely until either:

• The candidate is committed or again rotated, or

• The RPC session is closed (this event removes the candidate instance).

• A single policy rotation RPC can be active at any given time. Concurrent RPC requests for policy rotation
is rejected with the gRPC error code UNAVAILABLE.

• gNMI allows different encodings, including JSON. IOS XR applies the gNSI pathz policy based
on each leaf of the flattened JSON model for authorizing the gNMI request.

OpenConfig metadata for configuration annotations
OpenConfig metadata for configuration annotations is a YANG extension mechanism that:

• Allows tagging of configuration elements with metadata such as status, support, or intent.

• Enables tooling and documentation systems to interpret and display annotations.

• Improves clarity and consistency across OpenConfig models.

This extension enhances the semantic richness of YANG models by enabling structured metadata tagging.

Table 11: Feature History Table

DescriptionReleaseFeature Name

You can annotate the OpenConfig-metadata as
part of the OpenConfig edit-config request to the
Cisco IOS XR router and later fetch using the
OpenConfig get-config request or delete through
gNMI request only.

The Set or Get operations can be performed
through gNMI only; not through Netconf RPCs.

Release 7.10.1OpenConfig metadata for
configuration annotations

An OpenConfig Metadata feature allows you to set or delete OpenConfig-metadata at the root level node
through gNMI requests only, and it can be read back while retrieving or verifying the device configuration.
Netconf RPC requests are not supported.

gRPC Applications and Configuration
38

gRPC Applications and Configuration
OpenConfig metadata for configuration annotations

https://github.com/openconfig/gnsi/blob/main/pathz/pathz.proto

The usage guidelines in this document provides the OpenConfig YANG support for a specific metadata
annotation based on RFC7952 requirements for configuration commits only.

This solution is intended for the requirements of theOpenConfig-metadata annotation use case only and not
intended to be changed for any other use beyond the scope of this document.

Note

Here is an example for the item.
{
"@": {
"openconfig-metadata:config-metadata": "xyz" // xyz is base64 encoded string per RFC7951

encoding rules
}
// Rest of configurations

}

The OpenConfig-metadata annotation is persistent across system restart. The latest OpenConfig-metadata
annotation is preserved and it overwrites all the previous data. Also, the previous or oldOpenConfig-metadata
annotations cannot be retrieved with any operation (including configuration rollback). If the commit action
fails, then the OpenConfig-metadata annotation is not updated. During startup failures resulting in removal
of running configurations, the OpenConfig-metadata annotation at the time of last commit shall persist.

Example: Set request

This is a sample Set request for OpenConfig-metadata:
Request:

update: {
path: {
}
val: {
json_ietf_val: "{\"openconfig-lldp:lldp\":{\"config\":{

\"enabled\":true,\"system-description\":\"test-replace\"}},
\"@\":{\"openconfig-metadata:protobuf-metadata\":
\"012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789\"}}"
}

}

Response:

response: <
path: <
>
op: UPDATE

>
message: <
>
timestamp: 1662150302538441219

Example: Get request

This is a sample Get request for OpenConfig-metadata:
Request:

path: {

gRPC Applications and Configuration
39

gRPC Applications and Configuration
OpenConfig metadata for configuration annotations

elem: {
name: "@"

}
elem: {
name: "protobuf-metadata"

}
}
type: CONFIG
encoding: JSON_IETF

Response:

notification: <
timestamp: 1662869232324390815
update: <
path: <
origin: "openconfig"
elem: <
name: "@"

>
elem: <
name: "protobuf-metadata"

>
>
val: <
json_ietf_val: "\"0123456789012345678901234567890

12345678901234567890123456789012345678901234567890
1234567890123456789\""

>
>

>
error: <
>

Verification

The OpenConfig-metadata annotations are stored persistently in the router and are opaque (not visible) to
the IOSXR routers. However, the show command displays the presence and size of theOpenConfig-metadata
annotation.

This example displays the show command output:
Router#show cfgmgr commitdb
.
.
.
last-commit-metadata-len
[UINT32] 100000 (Ox186A0)
.
.
.

The show command displays only the presence and size of the OpenConfig-metadata annotation. If there
is noOpenConfig-metadata annotation stored in the persistent database, then the output of the show command
will not contain this entry.

Note

gRPC Applications and Configuration
40

gRPC Applications and Configuration
OpenConfig metadata for configuration annotations

Metrics of gNSI authorization rules
gNSI authorization rule metrics are operational diagnostics that provide visibility into the behavior and
performance of path-based access control in IOS XR.

• They include statistics and counters for policy enforcement and access attempts.

• They provide trace data for debugging authorization flows.

• They support tech support outputs for comprehensive diagnostics.

Thesemetrics help administrators monitor, troubleshoot, and validate gNSI-based access control configurations.

IOS-XR pathz supports these statistics, counters, diagnostics, and trace data commands for the gNSI
authorization rules:

• Pathz Policy and Statistics

• Path Authorization Counters

• Traces for Pathz

• gNSI Tech Support

gNSI path authorization counters

gNSI path authorization counters are diagnostic statistics that help monitor access control decisions for
gRPC-based network services.

• They display read and write access attempts for all or specific XPaths on a gRPC server.

• They include accept and reject counts for each path, along with timestamps of the last access attempts.

• They support optional filtering by server name and XPath for targeted inspection.

These counters are useful for auditing authorization behavior and verifying policy enforcement across network
paths.

The gNSI path authorization counters show the counters for a given gRPC server-name for all XPaths, or the
specified XPath. Providing the XPath and server-name is optional. To view the gNSI Path Authorization
counters, use the show gnsi path authorization counters command.

• Router# show gnsi path authorization counters
Mon Apr 1 08:05:46.297 UTC
----------------Pathz Counters Info--------------
/system/config/hostname:
Read Write
Rejects : 0 0
Last : N/A N/A
Accepts : 0 3
Last : N/A Mon, 01 Apr 2024 08:05:25 +0000
Total path records received 1

Router# show gnsi path authorization counters server-name 64.103.223.33
Mon Apr 1 08:33:25.194 UTC
----------------Pathz Counters Info--------------
/:
Read Write
Rejects : 0 2
Last : N/A Mon, 01 Apr 2024 08:32:37 +0000

gRPC Applications and Configuration
41

gRPC Applications and Configuration
Metrics of gNSI authorization rules

Accepts : 0 0
Last : N/A N/A
/system/config/hostname:
Read Write
Rejects : 0 6
Last : N/A Mon, 01 Apr 2024 08:32:36 +0000
Accepts : 0 0
Last : N/A N/A
Total path records received 2
Router#

Router# show gnsi path authorization counters path /system/config/hostname
Mon Apr 1 08:32:46.468 UTC
----------------Pathz Counters Info--------------
/system/config/hostname:
Read Write
Rejects : 0 6
Last : N/A Mon, 01 Apr 2024 08:32:36 +0000
Accepts : 0 0
Last : N/A N/A
Total path records received 1
Router#

• To clear the gNSI path authorization counters, use the clear gnsi path authorization counters command.
Router# clear gnsi path authorization counters

Router#

gNSI Pathz policy and statistics

gNSI Pathz policy and statistics are operational tools used to inspect and monitor path-based authorization
behavior in gRPC-enabled systems.

• They allow you to view the active and sandbox policies configured for gNSI path authorization.

• They provide detailed counters and error metrics related to policy evaluation, gNMI path access, and
internal engine operations.

• They help in troubleshooting and validating policy enforcement through CLI-based inspection commands.

These tools are essential for administrators to verify policy deployment and monitor authorization activity in
real time.

To display the configured gNSI policy and statistics, use these commands:

• show gnsi path authorization policy — Shows the running gNSI path authorization policy.

• show gnsi path authorization statistics — Shows gNSI path authorization statistics.

Router# show gnsi path authorization policy
Mon Apr 1 04:29:37.905 UTC
version:"1" created_on:1711946719670313 policy:{rules:{user:"cafyauto"

path:{origin:"openconfig" elem:{name:"system"} elem:{name:"config"} elem:{name:"hostname"}}
action:ACTION_PERMIT mode:MODE_WRITE}}

Router#

Router# show gnsi path authorization statistics
Mon Apr 1 04:29:23.259 UTC
----------------Pathz Info--------------

gRPC Applications and Configuration
42

gRPC Applications and Configuration
gNSI Pathz policy and statistics

Engine:

State:
Active Policy:
Version : 1
Created On (UTC) : Wed, 09 Dec 54251401 07:58:33 +0000
Sandbox Policy:
Version : N/A
Created On (UTC) : N/A
Policy Rotation in Progress: False

Stats:
Rotations in Progress Count: 0
Policy Rotations : 0
Policy Rotation Errors : 0
Policy Upload Requests : 0
Policy Upload Errors : 0
Policy Finalize : 0
Policy Finalize Errors : 0
Probe Requests : 0
Probe Errors : 0
Get Requests : 0
Get Errors : 0
Policy Unmarshall Errors : 0
Sandbox Policy Errors : 0

Counters:
No Policy Auth Requests : 0
gNMI Path Leaves : 0
gNMI Authorizations : 0
gNMI Set Path Permit : 0
gNMI Set Path Deny : 0
gNMI Get Path Permit : 0
gNMI Get Path Deny : 0

Errors:
Path To String : 0
Origin Type : 0
Bad Mode : 0
Bad Action : 0
JSON Flatten : 0
String To Path : 0
Join Paths : 0
Nil Path : 0
Nil SetRequest : 0
Empty User : 0
Probe Internal : 0
Path Counters:
Increment : 0
Find : 0
Clear : 0
Walk : 0

gNSI Pathz trace data

gNSI Pathz trace data is a diagnostic output that captures real-time authorization events and policy evaluations
for gNSI path-based access control.

• Provides visibility into policy loading, sandboxing, and activation events.

• Logs authorization decisions including denied and permitted paths.

• Helps troubleshoot issues related to policy application and access control enforcement.

gRPC Applications and Configuration
43

gRPC Applications and Configuration
gNSI Pathz trace data

This trace data is essential for auditing and debugging gNSI path authorization behavior on IOS XR devices.

To trace the configured gNSI policy, use the show gnsi trace pathz command.

Router# show gnsi trace pathz all
Mon Apr 1 04:31:26.689 UTC
61 wrapping entries (21760 possible, 512 allocated, 0 filtered, 61

total)
Apr 1 04:07:09.681 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(178) 'Trying

to load policy' '/mnt/rdsfs/ems/gnsi/pathz_policy.txt'
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(173) 'Set

Sandbox policy' '1(54251382-02-18 11:34:58 +0000 UTC)'
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(179) 'Set

Policy from' '/mnt/rdsfs/ems/gnsi/pathz_policy.txt'
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(249) 'Pathz

Policy Clearing Counters' ' '
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code (79): 'Engine

Initialized'
Apr 1 04:08:05.761 gnsi/pathz 0/RP0/CPU0 t11794 Pathz: Code(63)

'Pathz.Get()' '5.38.4.111:52126'
Apr 1 04:08:05.761 gnsi/pathz_err 0/RP0/CPU0 t11794 Pathz ERROR: Code

(65): 'Nil Policy'
Apr 1 04:08:05.788 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(63)

'Pathz.Get()' '5.38.4.111:52126'
Apr 1 04:08:05.788 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(176) 'Get'

'POLICY_INSTANCE_ACTIVE 1(1711946094752098)'
Apr 1 04:08:05.791 gnsi/pathz_deny 0/RP0/CPU0 t11481 Pathz DENY: Code(235)

'Upd/Rep Denied path' 'cafyauto@/system/config/hostname, 1,1711946094752098'
Apr 1 04:08:05.808 gnsi/pathz_deny 0/RP0/CPU0 t11383 Pathz DENY: Code(234)

'Del Denied path' 'cafyauto@/system/config/hostname, 1,1711946094752098'
Apr 1 04:08:05.821 gnsi/pathz_deny 0/RP0/CPU0 t11480 Pathz DENY: Code(235)

'Upd/Rep Denied path' 'cafyauto@/system/config/hostname, 1,1711946094752098'
Apr 1 04:08:07.348 gnsi/pathz_deny 0/RP0/CPU0 t11383 Pathz DENY: Code(235)

'Upd/Rep Denied path' 'cafyauto@/lldp/config/enabled, 1,1711946094752098'
Apr 1 04:08:08.205 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(63)

'Pathz.Get()' '5.38.4.111:52126'
Apr 1 04:08:08.205 gnsi/pathz_err 0/RP0/CPU0 t11383 Pathz ERROR: Code

(65): 'Nil Policy'
Apr 1 04:08:08.221 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(63)

'Pathz.Get()' '5.38.4.111:52126'
Apr 1 04:08:08.221 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(176) 'Get'

'POLICY_INSTANCE_ACTIVE 1(1711946094752098)'
Apr 1 04:08:08.238 gnsi/pathz_deny 0/RP0/CPU0 t11481 Pathz DENY: Code(235)

'Upd/Rep Denied path' 'cafyauto@/system/config/hostname, 1,1711946094752098'
Apr 1 04:08:08.281 gnsi/pathz_deny 0/RP0/CPU0 t11480 Pathz DENY: Code(234)

'Del Denied path' 'cafyauto@/system/config/hostname, 1,1711946094752098'
Router#

gNSI state details

The show tech-support gnsi command is used to collect diagnostic information related to the gRPCNetwork
Security Interface (gNSI). This command helps in troubleshooting and analyzing the state of gNSI services
on the router.

• Purpose: Gathers detailed technical data for gNSI diagnostics.

• Output: Saves the collected data in a compressed file on the router's storage.

• Usage: Useful for support and debugging purposes during gNSI-related issues.

gRPC Applications and Configuration
44

gRPC Applications and Configuration
gNSI state details

Command usage

To collect diagnostic information of gNSI, use the following command:

Router# show tech-support gnsi
Mon Apr 1 06:55:51.482 UTC
++ Show tech start time: 2024-Apr-01.065551.UTC ++
Mon Apr 1 06:55:52 UTC 2024 Waiting for gathering to complete
...
Mon Apr 1 06:56:01 UTC 2024 Compressing show tech output
Show tech output available at Router#:

/harddisk:/showtech/showtech-mtb_sf2-gnsi-2024-Apr-01.065551.UTC.tgz
++ Show tech end time: 2024-Apr-01.065601.UTC ++

The show tech-support gnsi command places the collected diagnostic information in a file, for example:

Router#: /harddisk:/showtech/showtech-mtb_sf2-gnsi-2024-Apr-01.065551.UTC.tgz

gRPC network operations interface
The gRPCNetworkOperations Interface (gNOI) is a set of gRPC-basedmicroservices for executing operational
commands on network devices. These services are used in conjunction with the gRPC Network Management
Interface (gNMI) to manage both target and operational state across the network.

• Modular services: gNOI provides modular services for specific operational tasks such as rebooting,
certificate management, and file operations.

• RPC-driven operations: Each gNOI service is implemented as a Remote Procedure Call (RPC), enabling
precise and efficient execution of operational commands.

• Integration with gNMI: gNOI complements gNMI by handling operational state and actions, while
gNMI manages configuration and telemetry.

• Transport via gRPC: gNOI uses gRPC as its transport protocol, ensuring secure, high-performance
communication.

• OpenConfig standard compliance: gNOI services andmessages are defined using OpenConfig protocol
buffers (proto files), ensuring interoperability and vendor neutrality.

For more information about gNOI, see the GitHub repository.

gNOI RPCs
To send gNOI RPC requests, you need a client that implements the gNOI client interface for each RPC.

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gNOI OpenConfig
proto files are located in the Github repository.

Table 12: Feature History Table

DescriptionRelease InformationFeature Name

You can now avail the services of CancelReboot
to terminate outstanding reboot request, and
KillProcess RPCs to restart the process on
device.

Release 7.8.1gNOI System Proto

gRPC Applications and Configuration
45

gRPC Applications and Configuration
gRPC network operations interface

https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi

gNOI supports these remote procedure calls (RPCs).

Table 13: gNOI RPC Types, RPC Names, and Description

DescriptionRPC NamePurposeRPC Type

Reboots the target. The router
supports these reboot options:

• COLD = 1; Shutdown and
restart OS and all hardware

• POWERDOWN = 2; Halt and
power down

• HALT = 3; Halt

• POWERUP = 7; Apply power

RebootSystem RPCs
e n a b l e
s y s t e m - l e v e l
o p e r a t i o n s
including software
upgrades, device
reboots, and
n e t w o r k
troubleshooting.
For more details on
thesystem.proto,
see the Github
repository.

System

Returns the status of the target
reboot.

RebootStatus

Places a software package including
bootable images on the target
device.

SetPackage

Pings the target device and streams
the results of the ping operation.

Ping

Runs the traceroute command on the
target device and streams the result.
The default hop count is 30.

Traceroute

Returns the current time on the
target device.

Time

Switches from the current route
processor to the specified route
processor. If the target does not
exist, the RPC returns an error
message.

SwitchControlProcessor

Cancels any pending reboot request.CancelReboot

Stops an OS process and optionally
restarts it.

KillProcess

gRPC Applications and Configuration
46

gRPC Applications and Configuration
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/system/system.proto

DescriptionRPC NamePurposeRPC Type

Reads and streams the contents of a
file from the target device. The RPC
streams the file as sequential
messages with 64 KB of data.

GetFile RPCs facilitate
f i l e - l e v e l
o p e r a t i o n s ,
including reading
file contents and
metadata.

For more details on
the file.proto, see
t h e G i t hub
repository.

File

Removes the specified file from the
target device. The RPC returns an
error if the file does not exist or
permission is denied to remove the
file.

Remove

Returns metadata about a file on the
target device.

Note
gNOI File.Stat returns only the
filename in the response, which can
cause incorrect handling, especially
during recursive processing, as the
file might be mistakenly treated as
a directory.

Stat

Streams data into a file on the target
device.

Put

Transfers the contents of a file from
the target device to a specified
remote location. The response
contains the hash of the transferred
data. The RPC returns an error if the
file does not exist, the file transfer
fails or an error when reading the
file. This is a blocking call until the
file transfer is complete.

TransferToRemote

gRPC Applications and Configuration
47

gRPC Applications and Configuration
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/file/file.proto

DescriptionRPC NamePurposeRPC Type

Replaces an existing certificate on
the target device by creating a new
CSR request and placing the new
certificate on the target device. If
the process fails, the target rolls
back to the original certificate.

RotateC e r t i f i c a t e
ManagementRPCs
handle certificate
operations on the
target device.

For more details on
the cert.proto, see
t h e G i t hub
repository.

Certificate
Management
(Cert)

Installs a new certificate on the
target by creating a new CSR
request and placing the new
certificate on the target based on the
CSR.

Install

Gets the certificates on the target.GetCertificates

Revokes specific certificates.RevokeCertificates

Asks a target if the certificate can
be generated.

CanGenerateCSR

Loads a bundle of CA certificates
on the target. This CA certificate
bundle is used to verify the client
certificate when mutual TLS is
enabled.

LoadCertificateAuthorityBundle

Sets the loopback mode on an
interface.

SetLoopbackModeInterface RPCs
manage operations
on the interfaces.

Fore more details
o n t h e
interface.proto,
see the Github
repository.

Interface

Gets the loopback mode on an
interface.

GetLoopbackMode

Resets the counters for the specified
interface.

ClearInterfaceCounters

Clears all the LLDP adjacencies on
the specified interface.

ClearLLDPInterfaceLayer2 RPCs
f a c i l i t a t e
operations on the
L ink Laye r
Discovery Protocol
(LLDP) for layer 2
n e i g h b o r
discovery.

For more details on
the layer2.proto,
see the Github
repository.

Layer2

gRPC Applications and Configuration
48

gRPC Applications and Configuration
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/cert/cert.proto
https://github.com/openconfig/gnoi/blob/cc419f3696d3a6d3e1a3999b75c51231b4773ace/interface/interface.proto
https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto

DescriptionRPC NamePurposeRPC Type

Clears a BGP session.ClearBGPNeighborBGPRPCsmanage
operations for the
L ink Laye r
Discovery Protocol
(LLDP) and layer
2 n e i g h b o r
discovery

For more details on
the bgp.proto, see
t h e G i t hub
repository.

BGP

Starts BERT on a pair of connected
ports between devices in the
network.

StartBERTDiagnostic RPCs
execute diagnostic
tests on the target
device, utilizing
unique IDs to
manage each bit
error rate test
(BERT) operation.

For more details on
the diag.proto, see
t h e G i t hub
repository.

Diagnostic
(Diag)

Stops an already in-progress BERT
on a set of ports.

StopBERT

Gets the BERT results during the
BERT or after the operation is
complete.

GetBERTResult

Checks basic connectivity using
MPLS ping operation. See RFC
4379.

In Cisco IOS XR Release 7.5.4, the
RPC supports ldp_fec and
rsvpte_lsp_name destination types.
The destination types fec129_pwe
and rsvpte_lsp are not supported.

MPLSPingMPLS RPCs
e x e c u t e
MPLS - r e l a t e d
operations on the
target device.

For more details on
thempls.proto, see
t h e G i t hub
repository.

MPLS

Clears a single tunnel.ClearLSP

Clears the MPLS counters for the
specified Label Switched Path (LSP)

ClearLSPCounters

gRPC Applications and Configuration
49

gRPC Applications and Configuration
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/bgp/bgp.proto
https://github.com/openconfig/gnoi/blob/main/diag/diag.proto
https://github.com/openconfig/gnoi/blob/main/mpls/mpls.proto

DescriptionRPC NamePurposeRPC Type

Transfers an OS package onto the
target.

Note
Only Golden ISO installation is
supported; RPM installation is not
supported.

InstallThe OS service
offers an interface
for installing the
OS on a target
device, with RPCs
used to update the
router software and
upgrade the
system.

C o n c u r r e n t
installations on the
same target are not
permitted.

For more details on
the os.proto, use
t h e G i t hub
repository.

Operating
System
(OS)

Sets the requested OS version as the
version that is used at the next
reboot. If booting up the requested
OS version fails, the system
recovers by rolling back to the
previously running OS package.

Activate

Verifies the running OS version.Verify

These examples shows the gNOI supported RPCs.

Table 14: gNOI RPC Name, Purpose, and Example

ExamplePurposeRPC Name

RPC to 10.105.57.106:57900
RPC start time: 20:58:27.513638
---------------------File Get
Request---------------------
RPC start time: 20:58:27.513668
remote_file:
"harddisk:/giso_image_repo/test.log"

---------------------File Get
Response---------------------
RPC end time: 20:58:27.518413
contents: "GNOI \n\n"

hash {
method: MD5
hash:
"D\002\375h\237\322\024\341\370\3619k\310\333\016\343"
}

Streams the contents of a file from the
target.

Get

gRPC Applications and Configuration
50

gRPC Applications and Configuration
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/os/os.proto

ExamplePurposeRPC Name

RPC to 10.105.57.106:57900
RPC start time: 21:07:57.089554
---------------------File Remove
Request---------------------
remote_file:
"harddisk:/sample.txt"

---------------------File Remove
Response---------------------
RPC end time: 21:09:27.796217
File removal
harddisk:/sample.txt successful

Remove the specified file from the target.Remove

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
---------------------Reboot
Request---------------------
RPC start time: 21:12:49.811561
method: COLD
message: "Test Reboot"
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {
name: "state"
}
elem {
name: "location"
}
}

Reloads a requested target.Reboot

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
---------------------Set Package
Request---------------------
RPC start time: 15:33:34.378745
Sending SetPackage RPC
package {
filename:
"harddisk:/giso_image_repo/<platform-version>-giso.iso"
activate: true
}
method: MD5
hash:
"C\314\207\354\217\270=\021\341y\355\240\274\003\034\334"
RPC end time: 15:47:00.928361

Places software package on the target.Set Package

gRPC Applications and Configuration
51

gRPC Applications and Configuration
gNOI RPCs

ExamplePurposeRPC Name

RPC to 10.105.57.106:57900
RPC start time: 22:27:34.209473
---------------------Reboot
Status
Request---------------------
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {
name: "state"
}
elem
name: "location"
}
}

RPC end time: 22:27:34.319618

---------------------Reboot
Status
Response---------------------
Active : False
Wait : 0
When : 0
Reason : Test Reboot
Count : 0
CancelReboot RPC

Cancels any outstanding reboot

Request :
CancelRebootRequest
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0/CPU0"
}
}
elem {
name: "state"
}
elem {
name: "location"
}
}

Returns the status of reboot for the target.Reboot Status

gRPC Applications and Configuration
52

gRPC Applications and Configuration
gNOI RPCs

ExamplePurposeRPC Name

(rhel7-22.24.10) -bash-4.2$Cancels any outstanding rebootCancelRebootResponse

KillProcessRequest
pid: 3451
signal: SIGNAL_TERM

KillProcessResponse
-bash-4.2$

Kills the executing process. Either a PID
or process name must be specified, and a
termination signal must be specified.

KillProcess

gNOI packet link qualifications
The gRPC network operations interface (gNOI) packet link qualification is a link qualification service which
provides a way to certify link quality between a generator and a reflector device.

• Provides a method to check link quality using test traffic between generator and reflector devices.

• Supports RPC-based diagnostics to assess packet transmission and reception metrics.

• Includes capabilities to fetch transmission rate and link capacity via gNSI RPCs.

Additional information such as supported roles, timing configurations, and RPC specifications are available
through the gNOI protocol documentation.

Table 15: Feature History Table

Feature DescriptionRelease
Information

Feature Name

You can now check and assess the reliability of the link speed
and packet drops between the two network devices (generator
and the reflector) by performing the gNOI packet-based link
qualification service.

This can be achieved by sending the packets from the generator
to the reflector, and receiving the looped back packets from
the reflector within a certain tolerance limit.

Release 24.2.11gNOI Packet Link
Qualification

Packet link qualification overview

The gRPC network operations interface (gNOI) packet link qualification provides a method to check the link
quality between a generator and a reflector device. The generator device generates test traffic and sends it out
of the requested interface, maintaining counters of the sent, received, errored, and dropped packets. The
reflector device loops back the traffic on the requested interface. The packet-based link qualification service
verifies that the packets are sent and received on the requested interface. You can obtain the transmission rate
and the link's capacity range for that interface from the gNSI Packet Link Qualification RPC messages:
Capabilities and Get.

To view the packet link qualification specification, see the Github repository.

This table lists the packet link qualification RPCs.

gRPC Applications and Configuration
53

gRPC Applications and Configuration
gNOI packet link qualifications

https://github.com/openconfig/gnoi/blob/main/packet_link_qualification/packet_link_qualification.proto

Table 16: Packet link qualification (PLQ) RPCs

DescriptionRPC

Fetches the capabilities of the device as a link qualification service. The
capabilities result includes:

• The roles supported on the device (Packet generator, Physical Medium
Dependent (PMD) loopback reflector)

• Information on whether the NTP synchronization is supported or not

• Information on whether the current device time is synchronized through
NTP or not.

• The Maximum number of results stored per interface

Capabilities

Creates a set of link qualifications on the device.

Each element in a Create message specifies these parameters:

• A unique qualification ID

• The interface on which to run the qualification

• The endpoint type (the role of the device)

• Role-specific configuration

• Timing information in the form of either NTP-based or RPC-based
timing For more information, see Link Qualifications Based on

Timing table.

Note
Packet generator and PMD loopback roles are supported

The packet injector and ASIC loopback roles are not supported.

Create

Deletes a set of qualifications by their IDs.

Stops all the running qualification tests listed and deletes their records from
the device.

The qualifications are automatically deleted from the device 24 hours either
after successful completion or in the event of any error.

Delete

Gets the status of each of the unique qualification IDs that you specify. For
generator qualifications, it returns the number of packets sent, received,
errored, dropped, and the expected and achieved rate in bytes per second.
This data isn’t present for reflector qualifications.

Get

This RPC lists all the qualifications on the device.List

Link qualifications based on timing

When you run the Create RPC (see table Packet Link Qualification (PLQ) RPCs), it creates a set of link
qualifications based on either it’s NTP-based or RPC-based timing.

gRPC Applications and Configuration
54

gRPC Applications and Configuration
gNOI packet link qualifications

For both NTP-based and RPC-based timings, the qualification start time must be set no earlier than the
minimum setup duration from the current time, as specified in the CapabilitiesRPC (see table Packet Link

Qualification (PLQ) RPCs) response message.

The table lists the NTP-based and RPC-based link qualification timing.

Table 17: Link qualification timing

RPC-based TimingNTP-based Timing

RPC-based timing specifies:

• Presync duration (duration from the current time to when
the setup should start)

• Setup duration

• Qualification duration

• Postsync duration (duration from the end of the
qualification to when the teardown should start)

• Teardown duration

NTP-based timing specifies:

• Specific start time

• Specific end time

• Teardown time

gNOI Healthz
The gRPC Network Operations Interface (gNOI) Healthz is a gRPC service that focuses on the health check
and monitoring of the network devices. It determines whether all the nodes of a network are fully functional,
degraded, or must be replaced. The gNOI Healthz process involves:

• Waiting for the health status data from various subsystem components

• Inspecting and analyzing health status data to identify any unhealthy entities

• Collecting logs

Table 18: Feature History Table

Feature DescriptionRelease InformationFeature Name

With gNOI Healthz, you can
monitor and troubleshoot device
health by collecting logs and
conducting root-cause analysis on
detected issues. This proactive
approach enables early
identification and resolution of
system health problems, thereby
reducing downtime and enhancing
reliability.

For the specification on
gNOI.healthz, see the GitHub
repository.

Release 24.4.1gNOI Healthz

gRPC Applications and Configuration
55

gRPC Applications and Configuration
gNOI Healthz

https://github.com/openconfig/gnoi/tree/main/healthz

Health Monitoring with gNOI Healthz

gNOI Healthz, in conjunction with gNMI telemetry, monitors the health of network components.

When a component becomes HEALTHY or UNHEALTHY, a telemetry update is sent for that health event.
For more details about the health event, see gNOI Healthz RPCs. When a system component changes its state
to UNHEALTHY, the intended artifacts (debug logs, core file, and so on) are generated automatically at the
time of the health event.

Router Health Status Updates Workflow

1. The client subscribes to the component's OpenConfig path with an ON_CHANGE request and waits for
a health event to occur. When a health event is detected in the router for that component, the client receives
a notification. The client monitors these parameters:

• status: Health, Unhealthy, or Unknown

• last-unhealthy time: Timestamp of last known healthy state

• unhealthy-count: Number of times the particular component is reported unhealthy

2. When the router receives gNOI Healthz RPCs from gNOI client, it performs these actions and responds
to the gNOI client.

Table 19: gNOI healthz RPCs

The Router...When the gNOI client sends...

Retrieves the latest set of health statuses that are associated with a specific
component and its subcomponents.

Get RPC

Returns all events that are associated with a device.List RPC

Retrieves specific artifacts that are listed by the target system in the List()
or Get() RPC.

Artifact RPC

Acknowledges a series of artifacts that are listed by the Acknowledge()
RPC.

Acknowledge RPC

Performs intensive health checks that may impact the service, ensuring
they are done intentionally to avoid disruptions.

Check RPC

Verify router health using gNOI RPCs

Monitor health status telemetry of a router using gNOI healthz RPC.

Procedure

Step 1 Monitor health state of the router.

Example:
Router# show health status

SNo Component name Health status

gRPC Applications and Configuration
56

gRPC Applications and Configuration
Verify router health using gNOI RPCs

http://For%20the%20specification%20on%20gNOI.healthz,%20see%20GitHub%20repository.

----- -- --------------------
1 0_RP0_CPU0-appmgr healthy
2 0_RP0_CPU0-ownershipd healthy

Step 2 Monitor router health with gNOI List RPC by tracking all the events.

Example:

Router# /auto/appmgr/xrhealth/bin/gnoic -a ${MGMT_IP} --port 57400 --insecure -u
cisco -p <password> healthz

list --path "openconfig:/components/component[name=${OC_COMP}]"
WARN[0000] "192.0.1.0" could not lookup hostname: lookup

198.51.100.0.in-addr.arpa. on
171.70.168.183:53: no such host
target "192.0.1.0:57400":

+-----------------------+---------------------+---+-----------------+

|Target Name | ID |
Path | Status |

|

+-----------------------+---------------------+---+-----------------

| 192.0.1.0:57400 | 1721815320614225976 |
openconfig:components/component[name=0_RP0_CPU0-appmgr] | STATUS_UNHEALTHY |

| 192.0.1.0:57400 | 1721815320614225976 |
openconfig:components/component[name=0_RP0_CPU0-appmgr] | STATUS_UNHEALTHY |

| 192.0.1.0:57400 | 1721815321290718105 |
openconfig:components/component[name=0_RP0_CPU0-appmgr] | STATUS_HEALTHY |

+-----------------------+---------------------+---+-----------------+

+---+---+

Created At |
Artifact ID |

+-----------------------+---------------------+---+

2024-07-24 10:02:00.614225976 +0000 UTC |
0_RP0_CPU0-appmgr-1721815320614225976-58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568|

2024-07-24 10:02:00.614225976 +0000 UTC |
0_RP0_CPU0-appmgr-1721815320614225976-85f9ab33eccf4e48373865f00d8fd24f4e8e4901b49b7809297694f7b57864ea|

2024-07-24 10:02:01.290718105 +0000 UTC |
|

+-----------------------+---------------------+---+

gRPC Applications and Configuration
57

gRPC Applications and Configuration
Verify router health using gNOI RPCs

Step 3 Monitor router health with gNOI Get RPC for specific components.

Example:

Router# /auto/appmgr/xrhealth/bin/gnoic -a ${MGMT_IP} --port 57400 --insecure -u
cisco -p <password>

healthz get --path "openconfig:/components/component[name=${OC_COMP}]"

WARN[0000] "192.0.1.0" could not lookup hostname: lookup
198.51.100.0.in-addr.arpa.

on 171.70.168.183:53: no such host
target "192.0.1.0:57400":
path : openconfig:components/component[name=0_RP0_CPU0-appmgr]
status : STATUS_HEALTHY
id : 1721815321290718105
acked : false
created : 2024-07-24 10:02:01.290718105 +0000 UTC
expires : 2024-07-31 10:02:01.000290718 +0000 UTC
Router# cd /tmp/
Router/tmp#

Router/tmp# /auto/appmgr/xrhealth/bin/gnoic -a ${MGMT_IP} --port 57400
--insecure -u cisco -p <password>

healthz artifact --id 0_RP0_CPU0-appmgr-1721815320614225976-
58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568
WARN[0000] "192.0.1.0" could not lookup hostname: lookup

198.51.100.0.in-addr.arpa.
on 171.70.168.183:53: no such host
INFO[0000] 192.0.1.0:57400: received file header for artifactID:

0_RP0_CPU0-appmgr-1721815320614225976-
58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568
id:

"0_RP0_CPU0-appmgr-1721815320614225976-58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568"

file: {
name: "procmgr_event_20240724100205.tar.gz"
path:

"/harddisk:/eem_ac_logs/xrhealth/artifacts/procmgr_event_20240724100205.tar.gz"
mimetype: "application/gzip"
size: 3825
hash: {
method: SHA256
hash:

"\xf5\xa5\xfe]\xc1~Y\xbc-\xe4\xfcJ\xe9r\xb4\x8e\xd2\xe6\x0fvk\x90\xf52\r\xe6\xda\x94\x83\x80\xc9\xff"

}
}
INFO[0000] received 3825 bytes for artifactID:

0_RP0_CPU0-appmgr-1721815320614225976-58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568

INFO[0000] 192.0.1.0:57400: received trailer for artifactID:

gRPC Applications and Configuration
58

gRPC Applications and Configuration
Verify router health using gNOI RPCs

0_RP0_CPU0-appmgr-1721815320614225976-58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568

INFO[0000] 192.0.1.0:57400: received 3825 bytes in total
INFO[0000] 192.0.1.0:57400: comparing file HASH
INFO[0000] 192.0.1.0:57400: HASH OK

The router health status is successfully monitored using gNOI healthz RPCs including List, Get, and artifact
retrieval.

Example

For example, use the gNOI healthz artifact RPC to retrieve logs related to a specific health event
using the artifact ID.

What to do next

After completing this task:

• Review the health status and logs to identify and resolve any component issues.

gRIBI
The gRPC Routing Information Base Interface (gRIBI) is a gRPC service that allows an external client to
programmatically manage the routes in the Routing Information Base (RIB) of the router.

• Traffic engineering: Enables route control independent of traditional routing protocols.

• External client support: Clients can be local or remote and interact with the router via gRIBI RPCs.

• OpenConfig integration: Uses OpenConfig AFT YANG models and protobufs for route management.

• Telemetry support: Supports Event-driven Telemetry (EDT) for route monitoring.

Using he external client application, programatically you can add, edit, or remove the routing entries in the
routing table. The client can be local to the router or hosted externally in the network management station.

gRIBI and OpenConfig protobuf files

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gRIBI OpenConfig
proto file gribi.proto is located in the Github repository.

gRIBI's use of OpenConfig AFT for RIB management

The OpenConfig Abstract Forwarding Table (openconfig-aft.yang) data model defines a common abstraction
of the RIB information and describes the forwarding entries installed on a network element. The AFT definitions
are auto-generated from the OpenConfig AFT YANG schema. The protocol buffer (protobuf) representation
of the OpenConfig AFT schema is available as the gribi_aft.proto file in the Github repository. gRIBI leverages
this data model and the proto file to manage the RIB entries. This data model supports streaming Event-driven
telemetry (EDT) data to check the installed routes in the Forwarding Information Base (FIB).

gRPC Applications and Configuration
59

gRPC Applications and Configuration
gRIBI

https://github.com/openconfig/gribi/blob/master/v1/proto/service/gribi.proto
https://github.com/openconfig/gribi/blob/master/v1/proto/gribi_aft/gribi_aft.proto

Routing preference hierarchy in gRIBI

The routes configured using static configuration have the highest preference, followed by routes configured
using gRIBI, and then those configured using other protocols such as BGP or ISIS.

gRIBI RPCs

gRIBI supports these remote procedure calls (RPCs) to manage the routes in the RIB:

• Modify Operation: Provides a bidirectional streaming RPC that is used to issue modifications to the
AFT in the form of a ModifyRequest message. The network element responds asynchronously with a
ModifyResponse message based on each request.

Messages:

Supports route modifications on IPv4Entry, next hop group (NHG), next hop (NH) key objects. The
traffic engineering controller ensures that specific ordering of gRIBI transactions is met—NH and NHG
entries are sent before IPv4Entries. The NHGs and NHs are sent in a single ModifyRequest as repeated
AFTOperation messages. The controller expects that the NHG or NH transactions are acknowledged
before programming the corresponding IPv4Entry transactions. In the next hop entries,
decapsulate_header, encapsulate_header, interface_ref, ip_address, ip_in_ip and
network_instance attributes are supported.

IP forwarding, encapsulation and decapsulation operations are supported. MPLS
operations are not supported.

Note

SessionParameters:

• For client redundancy, only SINGLE_PRIMARY is supported. The primary client is designated based
on the client with the highest election ID. Each AFTOperation carries an election ID. The server
processes the AFTOperation if the election ID is the last advertised ID and is the highest ID on the
server. If the election ID is less than the current election ID, the ID is ignored. If the election ID is
equal, the client sending the message is accepted as a new master.

For client persistence, only the PRESERVE option is supported, wherein the network device preserves
the routes programmed by the gRIBI server's RIB, the system RIB, and the system FIB when the
primary client disconnects.

When gRIBI restarts, the configuration in the gRIBI server’s cache are sent to the router to reprogram
the RIB. The election ID is reset to 0 upon restart.

The table shows the request and response messages exchanged between the client and server for the
Modify RPCs.

Table 20: Request and Response Messages of Client-Server Exchange for Modify RPCs

Response (Server to Client)Request (Client to Server)Operation

Message ModifyResponse{
SessionParametersResult
}

Message ModifyResponse {
SessionParameters
}

Session setup

Message Modify Request {
election_id (int128)
}

Message Modify Request {
election_id (int128)
}

Election ID

gRPC Applications and Configuration
60

gRPC Applications and Configuration
gRIBI

Response (Server to Client)Request (Client to Server)Operation

Message ModifyResponse{
repeated AFTResult result

}

Message ModifyResponse {
repeated AFTOperation operation
}

AFTOperation

• Get Operation: Retrieves the content of the installed AFTs from the gRIBI daemon. The client requests
for information using a GetRequest message, and the server responds with the set of currently installed
entries via the GetResponse message. Once all entries have been sent, the server closes the RPC.

Supports all operations defined in the gribi.proto file.

IPv4Entry.metdata is supported only in Get RPC, and not in AFT telemetry.Note

The table shows the request and response messages exchanged between the client and server for the Get
RPCs.

Table 21: Request and Response Messages of Client-Server Exchange for Get RPCs

Response (Server to Client)Request (Client to Server)Operation

Message GetResponse {
repeated AFTEntry entry
}

Message GetRequest {
network_instance
name [string]
all
AFTType aft
}

Get entries

• Flush Operation: Removes all AFT entries that are currently installed on the server using gRIBI RPCs.
The client sends a FlushRequest message to remove all the entries, and the server responds with a
FlushResponse message after the operation is complete.

Supports all operations defined in the gribi.proto file.

The table shows the request and response exchanged between the client and server for the Flush RPCs.

Table 22: Request and Response Messages of Client-Server Exchange for Flush RPCs

Response (Server to Client)Request (Client to Server)Operation

Message FlushResponse {
timestamp [int64]
}

Message FlushRequest {
election
id [uint 128]
override [bool]
network_instance
name [string]
all

}

Flush entries

gRIBI configuration to modify routing entries
Configure gRIBI protocol to directly interact with the routers' RIB using RPCs. The gRIBI client sends
messages to the RIB to add a route, delete a route, register next hop and next hop groups to manage the routes.

gRPC Applications and Configuration
61

gRPC Applications and Configuration
gRIBI configuration to modify routing entries

Before you begin

Ensure that you have configured the gRIBI client application.

Procedure

Step 1 Enable gRPC protocol on the router.

Example:
Router#configure

Router(config)#grpc

Step 2 Configure the port number and address family.

Example:
Router(config-grpc)#port 57345

Router(config-grpc)#address-family ipv4

The port number ranges from 57344 to 57999. The default port is 57400. If a port number is unavailable, an error is
displayed.

Step 3 Verify that gRPC is enabled on the router.

Example:
Router#show grpc

Thu Feb 2 22:03:17.004 UTC

Address family : dual
Port : 57777
DSCP : Default
TTL : 64
VRF : global-vrf
Server : enabled
TLS : enabled
TLS mutual : disabled
Trustpoint : none
Certificate Authentication : disabled
TLS v1.0 : enabled
Maximum requests : 128
Maximum requests per user : 10
Maximum streams : 32
Maximum streams per user : 32

TLS cipher suites
Default : none
Enable : none
Disable : none

Operational enable : ecdhe-rsa-chacha20-poly1305
: ecdhe-ecdsa-chacha20-poly1305
: ecdhe-rsa-aes128-gcm-sha256
: ecdhe-ecdsa-aes128-gcm-sha256
: ecdhe-rsa-aes256-gcm-sha384
: ecdhe-ecdsa-aes256-gcm-sha384
: ecdhe-rsa-aes128-sha
: ecdhe-ecdsa-aes128-sha
: ecdhe-rsa-aes256-sha
: ecdhe-ecdsa-aes256-sha
: aes128-gcm-sha256
: aes256-gcm-sha384

gRPC Applications and Configuration
62

gRPC Applications and Configuration
gRIBI configuration to modify routing entries

: aes128-sha
: aes256-sha
Operational disable : none

Listen address suites
Listen to Address : ANY

Step 4 Manage the routing entries using gRIBI RPCs. In this example, you use the Modify RPC to add a next hop entry with IP
address 192.0.2.0.
a) Configure the next hop parameters for the AFT message.

Example:
NextHop {

ip_address 192.0.2.0;
InterfaceRef {
interface [string]
subinterface [uint]
}
IPnIP {
dst_ip [string]
src_ip [string]
}
}

b) Set the next hop entry in the AFTOperation. In this example, you add the next hop IP address.

Example:
Message AFTOperation {

id
network_instance
Operation op
ADD
entry
Afts.NextHopKey next_hop
}

c) Initiate the ModifyRequest RPC using the AFTOperation message.

Example:
Message ModifyRequest {

repeated AFTOperation operation
}

The NHs are sent in a single ModifyRequest RPC as repeated AFTOperation messages.

d) View that the request is acknowledged in the gRIBI client.

Example:
gRIBIClient sent Modify message operation:{id:1 network_instance:"DEFAULT"

op:ADD next_hop:{index:1000
next_hop:{ip_address:{value:"192.0.2.0"}}} election_id:{low:3}}

Step 5 Verify the configuration performed using gRIBI RPC.

Example:

In this example, you verify the next hop IP address that you sent to the server through the Modify RPC is configured
successfully.
Router#show gribi aft next-hop-groups

Thu Feb 2 00:34:08.104 UTC
100, Backup NHG: 1111

gRPC Applications and Configuration
63

gRPC Applications and Configuration
gRIBI configuration to modify routing entries

[100, 2]: 192.0.2.40
[200, 2]: 192.0.2.42
[1111, 100]: (vrf REPAIR) (!)

1000
[1100, 30]: 192.0.2.10
[1200, 10]: 192.0.2.14
[1000, 60]: 192.0.2.0

1111
[1111, 100]: (vrf REPAIR)

2000
[2000, 50]: 192.0.2.18
[2100, 50]: 192.0.2.22

3000
[3000, 10]: 192.0.2.26

4000
[4000, 10]: Decapsulate IPv4(vrf DEFAULT)

After completing this task, the gRIBI service is configured and operational. You can verify its status using
CLI commands.

Example

For example, after enabling the gRIBI service and configuring the port, you can use the 'show gribi'
command to verify the service is running and listening on the expected port.

What to do next

After configuration, monitor the gRIBI service periodically to ensure it remains active and reachable. Adjust
port settings or restart the service if issues are detected.

P4Runtime
P4Runtime is a protocol and framework that provides a control plane API for

• programming, and

• managing network devices.

A P4Runtime to manage traffic operations is a control plane specification to manage the data plane elements
of a device. It defines the navigation and management of packets through data plane blocks using P4Runtime
APIs. These data plane blocks can be managed to perform a set of traffic operations between the P4Runtime
controller and the router:

• Send or receive packets using PacketOut and PacketIn I/O messages—StreamMessageRequest,
StreamMessageResponse and StreamError messages.

• Elect the primary controller using the MasterArbitrationUpdate message.

• Read and write forwarding table entries, protocol headers, counters, and other P4 entities.

For more information about how controllers can connect to the router and program P4-defined functionalities,
see P4RT specification.

gRPC Applications and Configuration
64

gRPC Applications and Configuration
P4Runtime

https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120.html

Configure P4RT to manage packets
Configure P4RT to send or receive packets between one or more controllers and the router.

Before you begin

Ensure that the device supports P4RT and that you have administrative access to the CLI.

Procedure

Step 1 Enable P4Runtime.

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#p4rt
Router(config-grpc-p4rt)#commit

Step 2 Assign a unique P4 numeric identifier to the required physical port on the router. The controller uses this port ID as an
alias to identify the interface through which the packets are sent or received with ingress or egress metadata.

Example:
Router(config-grpc-p4rt)#interface HundredGigE0/0/0/24 port-id 3
Router(config-grpc-p4rt)#interface HundredGigE0/0/0/25 port-id 6
Router(config-grpc-p4rt)#interface HundredGigE0/0/0/26 port-id 7

The port-id is a unique 32-bit identifier. The range is 1 to 4294967039.

Step 3 Assign a unique P4 device identifier to each Network Processing Unit (NPU) in the system.

Example:
Router(config-grpc-p4rt)#location 0/0/CPU0 npu-id 0 device-id 1000000
Router(config-grpc-p4rt)#location 0/0/CPU0 npu-id 1 device-id 1000001
Router(config-grpc-p4rt)#location 0/1/CPU0 npu-id 0 device-id 1000002
Router(config-grpc-p4rt)#location 0/1/CPU0 npu-id 1 device-id 1000011
Router(config-grpc-p4rt)#commit
Router(config-grpc-p4rt)#end

The device-id is a unique 64-bit identifier. The range is 1 to 18446744073709551615. The npu-id represents a NPU
identifier within a line card and the value ranges from 0 to 7.

The controller or the P4Runtime agent, which can be external or internal to the router, can use the port-id and device-id
to inject packets and request to send certain packet types. For example, P4Runtime supports the ability to configure
Access Control Lists (ACLs) in order to redirect packets with TTL value 1 to the controller. When the router receives a
packet with that TTL value, the packet is sent to the controller with the details such as packet received from device-id

x, port-id y and the packet is being sent to port-id z.

For more information about programming the router using P4Runtime, see P4RT specification.

P4RT is successfully configured and operational on the device.

What to do next

Verify P4RT telemetry and monitor the session status to ensure continued operation.

gRPC Applications and Configuration
65

gRPC Applications and Configuration
Configure P4RT to manage packets

https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120.html

gNSI Acctz loggings
The gNSI accounting (Acctz) protocol collects and transfers AAA accounting records from a router to a remote
collection service over a gRPC transport connection. It enhances visibility into user activity and service usage
for improved network performance and security.

• Protocol: gNSI Acctz over gRPC

• Purpose: Logs CLI and gRPC service activity for AAA accounting

• Transport: gRPC-based streaming to remote collectors

• Monitoring: Real-time and historical record tracking

Table 23: Feature History Table

Feature DescriptionRelease
Information

Feature
Name

You can now log and monitor AAA (Authentication, Authorization, and
Accounting) accounting of gRPC operations and CLI accounting data through
gNSI Acctz for effective management of network for better performance and
resource utilization. You can also configure the number of gNSI accounting
records that can be streamed.

Previously, you could monitor the AAA accounting data through syslog only.

The feature introduces these changes:

CLI:

•
•

To view the specification of gNSI Accounting (Acctz) RPCs and messages,
see the Github repository.

Release 24.3.1gNSI
Acctz
Logging

Starting from IOS XR software release 24.3.1, you can log gRPC AAA accounting data through gNSI
accounting (Acctz). The gNSI Acctz data is logged, stored in accounting records, and send to gNSI client for
monitoring purposes. These gNSI Acctz accounting records contain

• users' login or logout times,

• network access resources such as interface IP and port, and

• duration of each session.

The gNSI Acctz logging can be done using the RecordSubscribe() gRPC request to a router. For more
information on the RecordSubscribe() RPC, see the GitHub repository.

gNSI Acctz Logging Stream Capacity

The gNSI Acctz logs are recorded in a queue, maintaining a history of the 10 most recent records. When the
accounting queue is full and no gNSI Acctz collectors are connected, the stream drops the records. Besides
the 10 records stored for streaming, up to 512 additional records are stored during processing. As new records
arrive, the data stream continues until the gNSI session ends or an error occurs, such as a client disconnection

gRPC Applications and Configuration
66

gRPC Applications and Configuration
gNSI Acctz loggings

https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto
https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto

due to network issues or the server going down. If the server's output buffer remains full for an extended
period, new records are dropped until the collector starts receiving them.

When the queue reaches its full capacity, the system automatically replaces the oldest records with the newest
ones. The router then transmits this logged information through gNSI to gNSI client for real-time monitoring
purposes. You can configure the queue size using the grpc aaa accounting queue-size command.

Supported Records for gNSI Acctz Logging

gNSI Acctz logging system supports Command and gRPC service records.

Table 24: CLI and gRPC Accounting Records

gRPC Services Accounting RecordsCommand Services Accounting Records

The gRPC accounting records are generated for the
RPCs executed by gRPC services and sent to gNSI
Acctz collectors. The details logged include:

• Session Info: remote/local IP addresses,
remote/local ports, and channel ID.

• Authentication details: Identity and privilege
level.

• RPC Service Request: Service type, RPC name,
payload, and configuration metadata.

• gRPC Service Status: PERMIT/DENY.

• Timestamp: The time at which the event was
generated.

The command accounting records are generated for
the commands executed in CLImode and sent to gNSI
Acctz collectors. The details logged include:

• Session Info: remote/local IP addresses,
remote/local ports, and channel ID.

• Authentication details: Identity, privilege level,
authentication status (PERMIT/DENY), and the
cause of denial (if applicable).

• Command andCommand status: authentication
status (PERMIT/DENY).

• Timestamp: The time when the event was
generated.

Default Behavior and Verification of gNSI Acctz Logging

By default, gNSI Acctz records are logged when the configuration is enabled. You can verify the gNSI Acctz
using show gnsi state, show gnsi acctz statistics, and show aaa accounting statistics commands.

Configure gNSI Acctz logging
Monitor AAA information through gNSI Acctz logs.

Procedure

Step 1 Monitor gNSI state in the router.

Example:
Router# show gnsi state

Wed Jun 26 09:26:39.035 UTC
----------------GNSI state--------------
Global:
Main Thread cerrno : Success
Acctz Thread cerrno : Success
State : Active

gRPC Applications and Configuration
67

gRPC Applications and Configuration
Configure gNSI Acctz logging

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/authentication-authorization-and-accounting-commands.html#wp2834182384

RDSFS State : Active

Step 2 Obtain gRPC port number.

Example:
show grpc

Tue Aug 13 14:21:50.995 IST

Server name : DEFAULT
Address family : dual
Port : 57400

Service ports
gNMI : none
P4RT : none
gRIBI : none

DSCP : Default
TTL : 64
VRF :
Server : enabled
TLS : disabled
TLS mutual : disabled
Trustpoint : none
Certificate Authentication : disabled
Certificate common name : ems.cisco.com
TLS v1.0 : disabled
Maximum requests : 128
Maximum requests per user : 10
Maximum streams : 32
Maximum streams per user : 32
Maximum concurrent streams : 32
Memory limit (MB) : 1024
Keepalive time : 30
Keepalive timeout : 20
Keepalive enforcement minimum time : 300

TLS cipher suites
Default : none
Default TLS1.3 : aes_128_gcm_sha256
: aes_256_gcm_sha384
: chacha20_poly1305_sha256

Enable : none
Disable : none

Operational enable : none
Operational disable : none
Listen addresses : ANY

Step 3 Configure gNSI queue size.

Example:
Router# configure

Router(config)# grpc aaa accounting queue-size 30
Router(config)# end

Step 4 Monitor gNSI Acctz statistics in the router.

Example:
Router# show gnsi acctz statistics

Tue Aug 13 05:57:24.210 UTC

gRPC Applications and Configuration
68

gRPC Applications and Configuration
Configure gNSI Acctz logging

SentToAAA Queue:
Grpc services:
GNMI: 4998 sent, 0 dropped
GNOI: 0 sent, 0 dropped
GNSI: 2 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped
Stats:
Total Sent: 5000
Total Drops: 0

Streams:
Grpc services:
GNMI: 4996 sent, 2 dropped
GNOI: 0 sent, 0 dropped
GNSI: 1 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped
Stats:
Total Sent: 4997
Total Drops: 2
Cmd services:
CLI: 3 sent, 0 dropped
Stats:
Total Sent: 3
Total Drops: 0
Router#

Step 5 Provide port and IP address to the Acctz gNSI client.

Example:
acctz_collector -server_addr 192.0.2.111:57400 -username <user name> -password <passwod> -dieafter
600

--------------- gSNI Remote Collector ---------------
2024/08/25 22:59:13 Connecting to gNSI Server.
2024/08/25 22:59:13 gNSI Server connected.
2024/08/25 22:59:13 Started new acctz client.
2024/08/25 22:59:13 Initiate Acctz RecordSubscribe with server .
2024/08/25 22:59:13 Stream started
2024/08/25 22:59:13 Waiting for response from server.

Step 6 Verify the accounting record from the router.

Example:

gNSI Acctz RPC RecordSubscribe() response to the Acctz gRPC client

session_info:
{
local_address:"192.0.2.111"
local_port:57400
remote_address:"192.0.2.1"
remote_port:44374
ip_proto:6
user:
{
identity:"lab"
}
}

gRPC Applications and Configuration
69

gRPC Applications and Configuration
Configure gNSI Acctz logging

timestamp:
{
seconds:1718971022 nanos:105825300
}
grpc_service:
{
service_type:GRPC_SERVICE_TYPE_GNSI
rpc_name:"/gnsi.acctz.v1.AcctzStream/RecordSubscribe" payload_istruncated:true
authz:
{
status:AUTHZ_STATUS_PERMIT
}
}

AAA Accounting Statistics

Router# show aaa accounting statistics
Sat Aug 17 17:10:43.055 UTC
Successfully logged events:
Total events: 0
XR CLI: 0
XR SHELL: 0
GRPC:
GNMI: 0
GNSI: 2
GNOI: 0
GRIBI: 0
P4RT: 0
SLAPI: 0
NETCONF: 0
SysAdmin:
CLI: 0
SHELL: 0
Host:
SHELL: 0

Errors:
Invalid requests: 0

Max. records in buffer: 100
Total records in buffer: 0
Router#

After completing this task, gNSI Acctz logging is enabled and operational. The router streams accounting
records to the Acctz gNSI client, and you can verify successful transmission and logging using CLI and gRPC
responses.

Example

For example, after configuring the queue size and starting the Acctz client, the router streams
accounting records such as user login sessions. You can verify this using the show gnsi acctz
statistics and show aaa accounting statistics commands.

What to do next

After completing the configuration, monitor the gNSI Acctz logs periodically to ensure accounting records
are being received without drops.

gRPC Applications and Configuration
70

gRPC Applications and Configuration
Configure gNSI Acctz logging

• Adjust the queue size if you observe dropped records in the statistics.

• Ensure the Acctz client remains connected and responsive.

Data logging with gNSI AcctzStream service
The data logging with gNSI AcctzStream is a service that allows clients to receive a continuous stream of
accounting records from a target network device to track the changes made on that device.

• Replaces the existing bi-directional data streaming service,Acctz, with the new server-streaming service,
AcctzStream.

• Ensures effective network optimization and resource utilization.

• Allows configuration of maximum memory allocated for cached accounting history records using the
grpc aaa accounting history-memomy command.

Provides CLI enhancements and integration with gNSI AcctzStream RPCs and messages.

gNSI AcctzStream service

Starting from Cisco IOSXRRelease 24.4.1, the gNSI AcctzStream server-streaming service is used to collect
and transfer accounting records from a router to a remote collection service over a gRPC transport connection,
similar to the deprecated gNSI Acctz protocol.

The collectors request for logs using the RecordSubscribe() gRPC from the gNSI AcctzSteam service running
on the router. The logs are sent to the collectors through the RecordResponse() gRPC.

This feature has introduced the new grpc aaa accounting history-memomy command used to configure the
maximum memory allocated for cached accounting history records. Use this command with the grpc aaa
accounting queue-size configuration to effectively limit the EMSD memory used by cached accounting
history records.

Configure gNSI AcctzStream logging
Monitor AAA information through gNSI AcctzStream logs.

Procedure

Step 1 Monitor gNSI state in the router.

Example:
Router# show gnsi state

Thu Sep 12 12:06:44.035 UTC
----------------GNSI state--------------
Global:
Main Thread cerrno : Success
Acctz Thread cerrno : Success
State : Active
RDSFS State : Active

Step 2 Obtain gRPC port number.

gRPC Applications and Configuration
71

gRPC Applications and Configuration
Data logging with gNSI AcctzStream service

https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto
https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto#L256

Example:
show grpc

Thu Sep 12 13:23:06.022 UTC

Server name : DEFAULT
Address family : dual
Port : 57400

Service ports
gNMI : none
P4RT : none
gRIBI : none

DSCP : Default
TTL : 64
VRF :
Server : enabled
TLS : disabled
TLS mutual : disabled
Trustpoint : none
Certificate Authentication : disabled
Certificate common name : ems.cisco.com
TLS v1.0 : disabled
Maximum requests : 128
Maximum requests per user : 10
Maximum streams : 32
Maximum streams per user : 32
Maximum concurrent streams : 32
Memory limit (MB) : 1024
Keepalive time : 30
Keepalive timeout : 20
Keepalive enforcement minimum time : 300

TLS cipher suites
Default : none
Default TLS1.3 : aes_128_gcm_sha256
: aes_256_gcm_sha384
: chacha20_poly1305_sha256

Enable : none
Disable : none

Operational enable : none
Operational disable : none
Listen addresses : ANY

Step 3 Configure gNSI history memory.

Example:
Router# configure

Router(config)# grpc aaa accounting history-memory 20
Router(config)# end

Step 4 Configure gNSI queue size.

Example:
Router# configure

Router(config)# grpc aaa accounting queue-size 30
Router(config)# end

Step 5 Monitor gNSI Acctz statistics in the router.

gRPC Applications and Configuration
72

gRPC Applications and Configuration
Configure gNSI AcctzStream logging

Example:
Router# show gnsi acctz statistics

Thu Sep 12 13:56:18.043 UTC
SentToAAA Queue:
Grpc services:
GNMI: 4998 sent, 0 dropped
GNOI: 0 sent, 0 dropped
GNSI: 2 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped
Stats:
Total Sent: 5000
Total Drops: 0

Streams:
Grpc services:
GNMI: 4996 sent, 2 dropped
GNOI: 0 sent, 0 dropped
GNSI: 1 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped
Stats:
Total Sent: 4997
Total Drops: 2
Cmd services:
CLI: 3 sent, 0 dropped
Stats:
Total Sent: 3
Total Drops: 0
Router#

Step 6 Provide port and IP address to the Acctz gNSI client.

Example:
acctz_collector -server_addr 192.0.2.111:57400 -username <user name> -password <passwod> -dieafter
600

--------------- gSNI Remote Collector ---------------
2024/08/25 22:59:13 Connecting to gNSI Server.
2024/08/25 22:59:13 gNSI Server connected.
2024/08/25 22:59:13 Started new acctz client.
2024/08/25 22:59:13 Initiate Acctz RecordSubscribe with server .
2024/08/25 22:59:13 Stream started
2024/08/25 22:59:13 Waiting for response from server.

Step 7 Verify the accounting record from the router.

Example:

gNSI AcctzStream RPC RecordSubscribe() response to the Acctz gRPC client

session_info:
{
local_address:"192.0.2.111"
local_port:57400
remote_address:"192.0.2.1"
remote_port:44374
ip_proto:6
user:
{

gRPC Applications and Configuration
73

gRPC Applications and Configuration
Configure gNSI AcctzStream logging

identity:"lab"
}
}
timestamp:
{
seconds:1718971022 nanos:105825300
}
grpc_service:
{
service_type:GRPC_SERVICE_TYPE_GNSI
rpc_name:"/gnsi.acctz.v1.AcctzStream/RecordSubscribe" payload_istruncated:true
authz:
{
status:AUTHZ_STATUS_PERMIT
}
}

AAA Accounting Statistics

Router# show gnsi accounting statistics
Acctz History Buffer:
Total record: 200
Total history truncation: 10

Cmd service records:
Shell: 0
Cli: 0
Netconf: 0
Grpc service records:
GNMI: 0
GNOI: 0
GNSI: 0
GRIBI: 0
P4RT: 0
History Snapshot:
Max Memory size: 200 MB
Memory used: 8 MB
Max number of records: 100
Total number of records present: 16

gRPC Accounting Queue:
Grpc services:
GNMI: 0 sent, 0 dropped, 0 truncated
GNOI: 0 sent, 0 dropped, 0 truncated
GNSI: 0 sent, 0 dropped, 0 truncated
GRIBI: 0 sent, 0 dropped, 0 truncated
P4RT: 0 sent, 0 dropped, 0 truncated
Stats:
Queue buffer size: 100 MB
Queue buffer used: 0 MB
Queue size: 1
Queue used: 0
Queue enqueue: 0
Queue dequeue: 0
Queue drops: 0
Queue max time: 0 usec
Queue min time: 0 usec
Queue avg time: 0 usec
Errors:
Queue init failure: 0
Queue update failure: 0
Queue dequeue failure: 0
Queue invalid parameters: 0
Queue memory limit: 0
Queue size limit: 0

gRPC Applications and Configuration
74

gRPC Applications and Configuration
Configure gNSI AcctzStream logging

SendtoAAA Accounting Queue:
Grpc services:
GNMI: 0 sent, 0 dropped, 0 truncated
GNOI: 0 sent, 0 dropped, 0 truncated
GNSI: 0 sent, 0 dropped, 0 truncated
GRIBI: 0 sent, 0 dropped, 0 truncated
P4RT: 0 sent, 0 dropped, 0 truncated
Stats:
Queue buffer size: 100 MB
Queue buffer used: 0 MB
Queue size: 1
Queue used: 0
Queue enqueue: 0
Queue dequeue: 0
Queue drops: 0
Queue max time: 0 usec
Queue min time: 0 usec
Queue avg time: 0 usec
Errors:
Queue init failure: 0
Queue update failure: 0
Queue dequeue failure: 0
Queue invalid parameters: 0
Queue memory limit: 0
Queue size limit: 0
Cmd Accounting Queue:
Cmd services:
Shell: 0 sent, 0 dropped, 0 truncated
Cli: 0 sent, 0 dropped, 0 truncated
Netconf: 0 sent, 0 dropped, 0 truncated
Stats:
Queue buffer size: 100 MB
Queue buffer used: 0 MB
Queue size: 1
Queue used: 0
Queue enqueue: 0
Queue dequeue: 0
Queue drops: 0
Queue max time: 0 usec
Queue min time: 0 usec
Queue avg time: 0 usec
Errors:
Queue init failure: 0
Queue update failure: 0
Queue dequeue failure: 0
Queue invalid parameters: 0
Queue memory limit: 0
Queue size limit: 0

After completing this task, the router streams accounting records to the Acctz gNSI client. You can verify
successful transmission and logging using CLI and gRPC responses.

Example

For example, after configuring the queue size and starting the Acctz client, the router streams
accounting records such as user login sessions. You can verify this using the 'show gnsi acctz statistics'
and 'show aaa accounting statistics' commands.

gRPC Applications and Configuration
75

gRPC Applications and Configuration
Configure gNSI AcctzStream logging

What to do next

After completing the configuration, monitor the gNSI Acctz logs periodically to ensure accounting records
are being received without drops.

• Adjust the queue size if you observe dropped records in the statistics.

• Ensure the Acctz client remains connected and responsive.

gRPC network packet sampling interface
The gNPSI (gRPC Network Packet Sampling Interface) protocol is a network protocol that

• replaces UDP transport for flow data

• uses gRPC for reliable and secure transmission, and

• improves flow data reliability and security.

Table 25: Feature History Table

Challenges with traditional methods

Traditional UDP-based flow-data transport has several challenges:

• UDP transport can cause packet loss during network stress.

• UDP channels lack encryption and authentication, which can cause security risks.

• Discovery using VIP affects a large area if issues occur.

• The dial-out approach does not work when security policies require the collector to initiate connections.

• Encryption and proxy deployment are complex with UDP and multiple wire protocols.

Improved flow export with the gNPSI streaming model

Flow data was exported using traditional UDP-basedmechanisms before the introduction of the gRPCNetwork
Packet Sampling Interface (gNPSI) feature. These mechanisms can lose packets under network stress and do
not provide built-in encryption or authentication.

This complexity makes secure deployment more difficult, especially when you use proxies, and reduces
flexibility because dial-out models conflict with environments where collectors need to initiate connections.

With gNPSI, you can carry flow data over encrypted and authenticated gRPC sessions. This approach provides
better reliability and security, lets your collectors initiate connections, and helps you deploy secure solutions
with proxies more easily.

The new workflow uses a controller-driven streaming model. In this model, EMSd coordinates with your
linecard export processes to give you more control, resiliency, and visibility for flow data delivery.

Only version 0.1.0 of the gNPSI protocol is supported.Note

gRPC Applications and Configuration
76

gRPC Applications and Configuration
gRPC network packet sampling interface

Benefits of gNPSI
gNPSI provides these benefits:

• Reduces packet loss during network stress.

• Encrypts and authenticates the data channel.

• Limits the impact area during failures or changes.

• Supports secure, collector-initiated connections.

• Simplifies the deployment of encrypted and proxy based solutions.

Usage guidelines for gNPSI
To use gNPSI effectively, follow these best practices:

• Apply the NetFlow or sFlow configuration with explicit gNPSI settings on the router.

• Use the correct export process (nfsvr).

• Ensure that controllers connect with the gNPSI protocol to start streaming.

• Monitor your controller connections for streaming status.

• Use supported show commands to view export and drop statistics.

Restrictions for gNPSI
gNPSI has these limitations:

• You can use only version 0.1.0 of the gNPSI protocol.

• Use the trace commands and the show commands. You cannot use the debug commands.

• You can use only the published OpenConfig gNPSI telemetry model.

How gNPSI data and control flow work

Summary

Use the gNPSI data and control flow process to collect, manage, and stream network flow data from routers
to controllers efficiently. Configure routers for NetFlow or sFlow using gNPSI. Initiate export and streaming
operations.

Establish communication between linecards and the Route Processor (RP), and manage packet flow through
the EMSd service to external controllers. You can start and stop streaming based on controller connections
and system events. This approach provides reliable and controlled data delivery for your network monitoring
and analysis tasks.

Workflow

1. The gNPSI protocol processes flow data using these steps:

gRPC Applications and Configuration
77

gRPC Applications and Configuration
Benefits of gNPSI

• The router applies NetFlow or sFlow configuration with gNPSI settings.

• The export process (nfsvr) starts on the linecards.

• The export process establishes a TCP connection to the EMSd process on the RP using a new
backplane VLAN.

• Sampling begins, but packets are dropped until a gNPSI request is received.

• When EMSd on the RP receives a gNPSI streaming request from a controller, it instructs the NetFlow
process on the linecards to start streaming.

• The NetFlow process streams packets to EMSd.

• EMSd encapsulates the packets in gNPSI gRPC messages and streams them to all connected
controllers.

• If all controllers disconnect, EMSd tells the NetFlow process to stop streaming.

• After a RP failover or EMSd restart, the NetFlow process re-establishes the session.

2. Use gNPSI to manage code and control flow in these ways:

• EMSd creates new external gNPSI gRPC Service code to encapsulate flow packets.

• EMSd creates new internal gNPSI TCP Service code to listen for flow packets from linecards.

• NetFlow or sFlow configuration triggers the appropriate export and control processes.

• EMSd and NetFlow processes coordinate the start and stop of packet streaming based on controller
connections.

Configure gNPSI
Collect and export traffic data using NetFlow or sFlowwith gNPSI. After enabling the required router services,
apply your flow-export settings, confirm that the export process is active, and verify that EMSd and controller
connections are operating correctly.

gNPSI allows you to monitor and export traffic on routers with NetFlow and sFlow. You can manage
configurations by using CLI or YANG models. EMSd and controller integration support efficient streaming
and telemetry.

Before you begin

• Decide whether to use the CLI or YANG models for configuration.

• Confirm EMSd process is running and that the appropriate port is available for NetFlow or sFlow packets.

Follow these steps to configure gNPSI:

Procedure

Step 1 Configure NetFlow or sFlow with gNPSI settings by using the CLI or supported YANG models.
a) Apply your required gRPC configuration.

gRPC Applications and Configuration
78

gRPC Applications and Configuration
Configure gNPSI

Example:
Add/edit any other grpc config required

b) Define the flow exporter, sampler, and monitor maps.

Example:
flow exporter-map EXP-1
version sflow v5
export protocol gnpsi
exit
sampler-map Sample
random 1 out-of 8000
exit
flow monitor-map fmm
record sflow
exporter EXP-1

c) Apply the monitor and sampler to the intended interface.

Example:
int FourHundredGigE0/0/0/0

! link towards peer where netflow is enabled
no shutdown
ipv4 address 192.0.2.1/24
ipv6 address 2001:DB8::20:0:0:1/120
flow datalink monitor fmm sampler Sample ingress

Refer to the OpenConfig gNPSI (OC-gNPSI) model if telemetry support is needed.

Step 2 Apply and activate the configuration on the router.
Step 3 Verify that the export process starts successfully on the router linecards.
Step 4 Ensure the EMSd process is running and listens for incoming export packets.
Step 5 Establish a controller connection to the router to initiate streaming if required by your architecture.
Step 6 Use available show commands on the RP and linecards to monitor export statistics and packet drop counts.

• show flow gnpsi session

• show flow gnpsi statistics

• show gnpsi connections

• show gnpsi sessions

• show gnpsi stats

Step 7 Extend trace in EMSd and NetFlow or sFlow processes as needed for monitoring.

gNPSI is configured and operational. The router exports monitored traffic data using NetFlow or sFlow. You
canmonitor export and drop statistics with show commands. Telemetry is enabled based on your configuration.
EMSd and controller processes run as required.

gRIBI default route resolution without recirculation
A gRIBI default route resolution without recirculation is a routing mechanism that

gRPC Applications and Configuration
79

gRPC Applications and Configuration
gRIBI default route resolution without recirculation

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/netflow/command/reference/b-netflow-cr-cisco8k/book_sprkbd_m_digital-signage_chapter_00.html#wp5841540520
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/netflow/command/reference/b-netflow-cr-cisco8k/book_sprkbd_m_digital-signage_chapter_00.html#wp3949064320
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4064608290
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3988301244
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1547055992

• maintains default route behavior within the same VRF

• eliminates bandwidth impact by removing the recycle process, and

• uses controller-driven programming instead of configuration changes.

Table 26: Feature History Table

Benefits of gRIBI default route resolution without recirculation
These are the benefits of gRIBI default route resolution without recirculation:

• Prevents bandwidth reduction that previously resulted from the recycle process.

• Maintains the original behavior of default routing in your network.

• Enables control by moving from static configuration to controller-driven programming.

• Requires only minimal additional memory for an action type attribute.

Usage guidelines for gRIBI default route resolution without recirculation
• Use controller-driven programming to manage default routes.

• Use controller-driven programming to remove bandwidth impact instead of configuration-based changes.

Restrictions for gRIBI default route resolution without recirculation
• This feature is not supported on Q100 hardware due to lack of VRF redirect support.

• The Platform Independent (PI) Forwarding Information Base (FIB) applies the special LOOKUP action
only when the LOOKUP next hop is the primary path.

• The PI FIB does not apply the special LOOKUP action if the LOOKUP next hop is a backup path, even
after a switchover.

How gRIBI default route resolution without recirculation works
When default route lookups cross VRF boundaries, you may experience reduced bandwidth and degraded
performance due to recirculation. You can use static route or VRF fallback configurations to look up default
routes without recirculation, but these options do not provide flexibility at runtime.

Summary

gRIBI default route resolution enhances routing performance. It eliminates the need for packet recirculation
when default route lookups cross VRF boundaries. This process uses a controller-driven architecture and
runtime flags to achieve bandwidth-efficient default routing.

This process involves these key components:

• The initial VRF: This VRF contains the packet’s prefix and is the initial point of route lookup.

gRPC Applications and Configuration
80

gRPC Applications and Configuration
Benefits of gRIBI default route resolution without recirculation

• The user network uses default routes that previously required a recirculation step, leading to bandwidth
degradation.

• Controller (gRIBI): Manages routing behavior through events and runtime programming.

• PI FIB handles prefix and next-hop group (NHG) creation or update events. It also programs flags and
manages LOOKUP actions.

• PD FIB: Processes static and controller-driven configurations to manage VRF resolution and redirect
objects.

• SHLDI (Shared Local Device Interface) facilitates the transfer of action types, attributes, and VRF
information to PD FIB.

• TEP (Tunnel End Point) delivers redirect VRF information and is involved in LOOKUP actions.

• RIB (Routing Information Base) initiates prefix and NHG events for processing via the Service Layer
Application Programming Interface (SL-API).

Workflow

The process includes these stages:

1. Prefix lookup and default route evaluation:

• The system checks the incoming packet’s prefix in the initial VRF.

• If no route exists for the prefix, the default route is used, which triggers a lookup into another
VRF.

2. User requirement identification:

• The user setup uses default routes that previously required a recycle step and that suffered bandwidth
degradation.

• The user’s objective is to maintain default routing efficiency and ensure the solution is
controller-driven.

3. Controller-driven architecture deployment:

• The design employs controller-driven programming using gRIBI to manage routing behavior.

• Runtime flags and actions replace the previous static configuration approach.

4. PI FIB event processing:

• PI FIB receives prefix and NHG creation/update events from RIB via the SL API and the gRIBI
controller.

• PI FIB sends flags for prefix and NHG events to PD FIB.

• The system sets an explicit DEFAULT flag for default routes.

• If an NHG is marked with a LOOKUP action, the LOOKUP next hop becomes the primary path.

5. PD FIB handling for VRF resolution:

gRPC Applications and Configuration
81

gRPC Applications and Configuration
How gRIBI default route resolution without recirculation works

• In static configurations, PD FIB identifies parent objects with a table resolution flag, saves the VRF
table value, and creates or resolves VRF redirect objects in hardware.

• In controller-driven flows, PD FIB obtains equivalent information via SHLDI and TEP.

• If SHLDI uses a TEP with a LOOKUP action, PD FIB replicates the behavior of the static
configuration in hardware.

6. Runtime action and memory impact:

• The action type variable is stored in SHLDI FIB HAL attribute and uses only 8 bits, resulting in minimal
memory impact.

7. Detailed controller-driven route programming:

• PD FIB receives the SHLDI object instead of LWLDI.

• After PI FIB programs SHLDI, PD FIB stores the action type. It then retrieves redirect VRF
information from the next-hop TEP.

• During route programming, PD FIB accesses the action type and redirect VRF from SHLDI only if
the route is a default route and the SHLDI action is LOOKUP.

• During SDK operation, PD FIB programs the default route to use the redirect VRF, avoiding the
recycle process.

Configure gRIBI default route resolution without recirculation
Set up gRIBI to resolve default routes without using recirculation.

This task shows you how to configure gRIBI to resolve default routes without using recycle. The configuration
works with supported platforms and programs both routes and next-hop groups (NHG).

Before you begin

• Verify that your platform supports VRF redirect.

• Make sure your system does not use Q100 hardware.

• Make sure you can access the gRIBI controller and SDK.

Follow these steps to configure gRIBI default route resolution without recirculation:

Procedure

Step 1 Program a default route using the gRIBI controller.

Example:
! Enable gRIBI on the device
router static
gribi
admin-state enable
mode all-primary
persistence true

gRPC Applications and Configuration
82

gRPC Applications and Configuration
Configure gRIBI default route resolution without recirculation

fib-ack true
exit
!

! Configure gRIBI controller session
grpc
service-layer
gribi
controller GRIBI-CTRL
address 203.0.113.10 port 57400
admin-state enable
exit
exit
exit
!

! (Optional) Ensure interface is ready for next-hop reachability
interface HundredGigE0/0/0/1
ipv4 address 192.0.2.254 255.255.255.0
no shutdown
exit
!

This default route should point to a primary NHG.

Step 2 Configure the next-hop within this primary NHG to include a LOOKUP action.

Example:
grpc

service-layer
gribi
admin-state enable
mode all-primary
fib-ack true
exit
exit
!

! Optional: ensure local interface for recursion/lookup
interface HundredGigE0/0/0/0
ipv4 address 192.0.2.254 255.255.255.0
no shutdown
exit
!

This LOOKUP action should specify the target VRF where the default route resolution should occur.

Step 3 Validate the configuration to ensure that the default route resolves to the specified redirect VRFwithout packet recirculation.

Example:
Router#show fib vrf Blue 203.0.113.0/24 detail
FIB entry for VRF: Blue
Prefix: 203.0.113.0/24
Route State: Active
Route Type: Connected
Flags: 0x0

Nexthop(s):
• Nexthop 1:
• IP Address: 203.0.113.1
• Interface: GigabitEthernet0/0/0/0
• Afi: IPv4
• Weight: 0
• Flags: Direct, Hardware-Programmed

gRPC Applications and Configuration
83

gRPC Applications and Configuration
Configure gRIBI default route resolution without recirculation

• Nexthop 2:
• IP Address: 198.51.100.1
• Interface: GigabitEthernet0/0/0/1
• Afi: IPv4
• Weight: 0
• Flags: Direct, Hardware-Programmed

Load-split: 1/1
Packets Forwarded: 0
Bytes Forwarded: 0
Updated: 00:03:17 ago

You configure gRIBI default routing to resolve default routes without recirculation by using redirect VRF on
compatible hardware and software.

What to do next

• Confirm that the VRF redirect is functioning and that no recirculation path is used.

• Review any logs or system reports to ensure that configuration changes have taken effect.

gRPC Applications and Configuration
84

gRPC Applications and Configuration
Configure gRIBI default route resolution without recirculation

	gRPC Applications and Configuration
	gRPC operations
	gRPC authentication modes
	Configure authentication for gRPC services
	gRPC servers with TLS version 1.3 support
	Guidelines and limitations for TLS configuration
	Configure gRPC TLS version

	SPIFFE ID-based authentication and authorization services for gRPC services
	Authenticate and authorize gRPC service requests using the SPIFFE standard

	Certificate common-name for dial-in using gRPC protocol
	Configure certificate common name for dial-in

	gRPC over UNIX domain sockets
	Configure gRPC over UNIX domain sockets

	gRPC network management interface
	gNMI operations
	gNMI wildcards in schema path
	gNMI bundling of telemetry updates
	Configure gNMI bundling size

	Replace router configurations at sub-tree level using gNMI
	gNMI union replace operations
	gNMI union-replace operation guidelines and limitations
	gNMI union replace operation examples
	OC and CLI origin
	OC and NY origin
	RPC error scenarios

	gNMI XPath-based authorizations
	gNSI Pathz authorization policy configuration
	Load gNSI Pathz policies at boot-time
	Rotate, finalize, and get the gNSI Pathz policy

	OpenConfig metadata for configuration annotations
	Metrics of gNSI authorization rules
	gNSI path authorization counters
	gNSI Pathz policy and statistics
	gNSI Pathz trace data
	gNSI state details

	gRPC network operations interface
	gNOI RPCs
	gNOI packet link qualifications
	gNOI Healthz
	Verify router health using gNOI RPCs

	gRIBI
	gRIBI configuration to modify routing entries

	P4Runtime
	Configure P4RT to manage packets

	gNSI Acctz loggings
	Configure gNSI Acctz logging

	Data logging with gNSI AcctzStream service
	Configure gNSI AcctzStream logging

	gRPC network packet sampling interface
	Benefits of gNPSI
	Usage guidelines for gNPSI
	Restrictions for gNPSI
	How gNPSI data and control flow work
	Configure gNPSI

	gRIBI default route resolution without recirculation
	Benefits of gRIBI default route resolution without recirculation
	Usage guidelines for gRIBI default route resolution without recirculation
	Restrictions for gRIBI default route resolution without recirculation
	How gRIBI default route resolution without recirculation works
	Configure gRIBI default route resolution without recirculation

