gRPC Applications and Configuration

» gRPC operations, on page 1

* Certificate common-name for dial-in using gRPC protocol, on page 11
* gRPC over UNIX domain sockets, on page 14

» gRPC network management interface, on page 16

* gRPC network packet sampling interface, on page 76

+ gRIBI default route resolution without recirculation, on page 79

gRPC operations

gRPC operations are a set of remote procedure calls that enable clients to interact with Cisco IOS XR devices
for configuration and operational data retrieval.

* They support configuration retrieval and modification.
* They provide access to operational and model data.

* They allow CLI-based and structured output retrieval.

These operations are essential for automating and managing network devices programmatically using gRPC
clients.

Manageability service gRPC operations

This table defines the manageability service gRPC operations for Cisco I0S XR.

gRPC Operation Description

GetConfig Retrieves the configuration from the router.

GetModels Gets the supported Yang models on the router

MergeConfig Merges the input config with the existing device configuration.
DeleteConfig Deletes one or more subtrees or leaves of configuration.
ReplaceConfig Replaces part of the existing configuration with the input configuration.
CommitReplace Replaces all existing configuration with the new configuration provided.

gRPC Applications and Configuration [JJjj

. gRPC authentication modes

gRPC Applications and Configuration |

gRPC Operation Description

GetOper Retrieves operational data.

CliConfig Invokes the input CLI configuration.
ShowCmdTextOutput Returns the output of a show command in the text form
ShowCmdJSONOutput Returns the output of a show command in JSON form.

gRPC operation to Get configuration

The gRPC example shows how a gRPC GetConfig request works for feature.

The client initiates a message to get the current configuration of running on the router. The router responds

with the current configuration.

gRPC request (Client to Router)

gRPC response (Router to Client)

rpc GetConfig
{
"Cisco-I0S-XR-cdp-cfg:cdp": [
"cdp": "running-configuration"

]

rpc GetConfig
{
"Cisco-I0S-XR-ethernet-11ldp-cfg:11dp":
"1ldp": "running-configuration"

]

[

{
"Cisco-IOS-XR-cdp-cfg:cdp": {
"timer": 50,
"enable": true,
"log-adjacency": [
null
:| ’
"hold-time": 180,
"advertise-vl-only": [
null
]
}
}

{
"Cisco-I0S-XR-ethernet-11ldp-cfg:11dp": {
"timer": 60,
"enable": true,
"reinit": 3,
"holdtime": 150

gRPC authentication modes

A gRPC authentication mode is a security mechanism for gRPC communication that

» provides different methods to verify the identity of clients and servers,
* supports both metadata-based and certificate-based approaches for authentication, and
* enables compliance with varying security requirements through configurable settings such as TLS, Mutual

TLS, and non-TLS options.

This section details the authentication modes supported by gRPC to secure communication and ensure

authorized access to services.

gRPC supports multiple authentication modes to secure communication between clients and servers. These
modes ensure that only authorized entities can access gRPC services such as gNOI, gRIBI, and P4RT. Upon
receiving a gRPC request, the device authenticates the user and performs authorization checks.

Il 9RPC Applications and Configuration

g pplications and Configuration
RPC Applicati d Confi i
gRPC authentication modes .

The following table lists the authentication types and their configuration requirements:

Table 1: gRPC authentication modes and configuration requirements

Type Authentication Authorization Configuration Requirement From
Method Method Requirement Client

Metadata with TLS |username, password | username grpc username, password,

and CA

Metadata without | username, password | username grpc no-tls username, password

TLS

Metadata with username, password | username grpc tlsmutual username, password,

Mutual TLS client certificate,

client key, and CA

Certificate based client certificate's | username from grpc tlsmutual client certificate,
Authentication common name field | client certificate's client key, and CA
common name field and

grpc certificate
authentication

Certificate-based authentication
In Extensible Manageability Services (EMS) gRPC, certificates play a vital role in ensuring secure and
authenticated communication. The EMS gRPC utilizes these certificates for authentication:

/misc/config/grpc/ems.pem
/misc/config/grpc/ems.key
/misc/config/grpc/ca.cert

N\

Note For clients to use the certificates, ensure to copy the certificates from /misc/config/grpc/

Generation of certificates

These certificates are typically generated using a Certificate Authority (CA) by the device. The EMS certificates,
including the server certificate (ems.pem), public key (ems.key), and CA certificate (ca.cert), are generated
with specific parameters like the common name ems.cisco.com to uniquely identify the EMS server and
placed in the /misc/config/grpc/ location.

The default certificates that are generated by the server are Server-only TLS certificates and by using these
certificates you can authenticate the identity of the server.

Usage of certificates

These certificates are used for enabling secure communication through Transport Layer Security (TLS) between
gRPC clients and the EMS server. The client should use ems.pem and ca.cert to initiate the TLS authentication.

To update the certificates, ensure to copy the new certificates that have been generated earlier to the location
and restart the server.

Custom certificates

gRPC Applications and Configuration [JJjj

. Configure authentication for gRPC services

gRPC Applications and Configuration |

If you want to use your own certificates for EMS gRPC communication, then you can follow a workflow to
generate custom certificates with the required parameters and then configure the EMS server to use these
custom certificates. This process involves replacing the default EMS certificates with the custom ones and
ensuring that the gRPC clients also trust the custom CA certificate. For more information on how to customize
the common-name, see Certificate Common-Name For Dial-in Using gRPC Protocol.

Configure authentication for gRPC services

This task explains how to configure different types of authentication for gRPC services, including TLS and

AAA-based authentication.

Before you begin

Ensure that the router supports gRPC and that you have access to the CLI in configuration mode. TLS and
AAA configurations must be available if required by the authentication method.

Procedure

Step 1 Configure your preferred authentication method:

* Configure authentication using metadata with TLS

Router#config
Router (config) #grpc
Router (config-grpc) #commit

Router#config

Router (config) #grpec

Router (config-grpc) #no-tls
Router (config-grpc) #commit

Router#config

Router (config) #grpec

Router (config-grpc) #tls-mutual
Router (config-grpc) #commit

Configure certificate-based authentication

Router (config) #grpc

Router (config-grpc) #tls-mutual
(
(

Router (config-grpc) #certificate-authentication

Router (config-grpc) #commit

Step 2 Verify the configuration.

Example:

Router# show grpc
Tue Jul 30 09:54:23.001 UTC

Server name
Address family
Port

Service ports

Il 9RPC Applications and Configuration

Configure authentication using metadata without TLS

Configure authentication using metadata with mutual TLS

| 9RPC Applications and Configuration

gNMI
P4RT
gRIBI

DSCP

TTL

VRF

Server

TLS

TLS mutual

Trustpoint

Certificate Authentication
Certificate common name
TLS v1.0

Maximum requests

Maximum requests per user
Maximum streams

Maximum streams per user
Maximum concurrent streams
Memory limit (MB)
Keepalive time

Keepalive timeout
Keepalive enforcement minimum time

TLS cipher suites
Default
Default TLS1.3

Enable
Disable

Operational enable

Operational disable
Listen addresses

Configure authentication for gRPC services .

none
none
none

Default

64
global-vrf
enabled
enabled
disabled
none
disabled
ems.cisco.com
enabled
128

10

32

32

32

1024

30

20

300

none
aes_ 128 gcm sha256
aes_256_gcm sha384
chacha20 polyl305 sha256

none
none

ecdhe-rsa-chacha20-polyl1305
ecdhe-ecdsa-chacha20-polyl1305
ecdhe-rsa-aesl28-gcm-sha256
ecdhe-ecdsa-aesl28-gcm-sha256
ecdhe-rsa-aes256-gcm-sha384
ecdhe-ecdsa-aes256-gcm-sha384
ecdhe-rsa-aesl28-sha
ecdhe-ecdsa-aesl28-sha
ecdhe-rsa-aes256-sha
ecdhe-ecdsa-aes256-sha
aesl28-gcm-sha256
aes256-gcm-sha384

aesl28-sha

aes256-sha

none

ANY

The gRPC service is configured with the selected authentication method and is ready to accept secure client

connections.

What to do next

Verify the gRPC connection and monitor authentication logs to ensure proper access control.

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |
. gRPC servers with TLS version 1.3 support

gRPC servers with TLS version 1.3 support
gRPC servers with TLS version 1.3 support are network security solutions that
* provide end-to-end encrypted communication between clients and servers,
* use modern cryptographic protocols for stronger security and performance, and
» allow administrators to configure minimum and maximum TLS versions for compliance and

interoperability.

Table 2: Feature History Table

Feature Name Release Description
Information

gRPC Server TLS Release 24.4.1 You can now enhance the security of your network

Version 1.3 Support connections with stronger protection against vulnerabilities
by enabling TLS 1.3 support over gRPC services. This update
improves performance with faster connection times and
reduced latency by reducing the number of round trips
required to establish a connection and removing outdated
ciphers. Additionally, it complies with internal security
mandates, providing a more robust and future-proof solution
for your network management needs.

Previously, gRPC server supported TLS version 1.2.
The feature introduces these changes:
CLI:

* tlssmin-version

* tlssmax-version

Security benefits of TLS 1.3

The gRPC Remote Procedure Calls (gRPC) server Transport Layer Security (TLS) version 1.3 support is a
security feature that:

* Provides end-to-end communications security over networks
* Prevents unauthorized access and eavesdropping

* Protects against tampering and message forgery

The TLS private key is encrypted before being stored on the disk. For more details on SSL or TLS version
certificates, keys, and communication parameters, see Manage certificates using Certz.proto.

Guidelines and limitations for TLS configuration

TLS version configuration limitations

* Ensure that the t1s-min-version value is not greater than the t1s-max-version value.

Il 9RPC Applications and Configuration

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4080366908
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1060638259
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#concept_C66C0E5371BF46E8937AB14F7D25EE11

| 9RPC Applications and Configuration
Configure gRPC TLS version .

* Starting in Release 2.4.4.1, the t1sv1-disable command is deprecated. Avoid using this command in
new configurations.

* If you use the t1sv1-disable command, do not use the t1s-min-version Of t1s-max-version commands.

* [f you use the t1s-min-version and t1s-max-version commands, do not use the t1svi-disable
command.

Best practice for disabling TLS 1.0
To disable TLS version 1.0, set the t 1sv1-disable command. Alternatively, you can set the t 1s-min-version
to a value greater than 1.0.

Configure gRPC TLS version

Configuring gRPC TLS version enables you to control which TLS protocol versions are permitted for secure
gRPC communication between the router and clients. This can be important for maintaining compatibility
and achieving desired security standards.

Before you begin

* Verify that gRPC is enabled on the router.

* Determine which TLS versions (1.0, 1.1, 1.2, or 1.3) your environment and clients require.

Procedure

Step 1 Configure gRPC TLS minimum, maximum, or both versions.
Example:
* Configure gRPC TLS maximum version.

Router# config
Router (config) # grpc
Router (config-grpc) # tls-max-version 1.2
Router (config-grpc) # commit

tlss-max-version can be 1.0, 1.1, 1.2, or 1.3. The default maximum version for TLS is 1.3.

Step 2 Verify the gRPC TLS minimum and maximum versions.

Example:

Router# show grpc
Thu Aug 29 00:49:24.428 UTC

Server name : DEFAULT
Address family : dual
Port : 57400

Service ports

gNMI : none
P4RT : none
gRIBI : none
DSCP : Default

gRPC Applications and Configuration [JJjj

. Configure gRPC TLS version

TTL

VRF

Server

TLS

TLS mutual

Trustpoint

Certificate Authentication
Certificate common name
TLS v1.0

Maximum requests

Maximum requests per user
Maximum streams

Maximum streams per user
Maximum concurrent streams
Memory limit (MB)
Keepalive time

Keepalive timeout

Keepalive enforcement minimum time

TLS Minimum Version
TLS Maximum Version

TLS cipher suites

Default

Default TLS1.3
aes_256_gcm_sha384
chacha20_polyl305_sha256

Enable
Disable

Operational enable

: ecdhe-ecdsa-chacha20-polyl1305
ecdhe-rsa-aesl28-gcm-sha256
ecdhe-ecdsa-aesl28-gcm-sha256
ecdhe-rsa-aes256-gcm-sha384
ecdhe-ecdsa-aes256-gcm-sha384
ecdhe-rsa-aesl28-sha
ecdhe-ecdsa-aesl28-sha
ecdhe-rsa-aes256-sha
ecdhe-ecdsa-aes256-sha
aesl28-gcm-sha256
aes256-gcm-sha384
aesl28-sha

: aes256-sha

Operational disable

Listen addresses

gRPC Applications and Configuration |

64
global-vrf
disabled (Unknown)
enabled
disabled
none
disabled
ems.cisco.com
enabled
128
10
32
32
32
1024
30
20
300
TLS 1.0
TLS 1.2

none
aes_128 gcm_sha256

none
none

ecdhe-rsa-chacha20-polyl305

none
ANY

The TLS 1.3 cipher suites are not configurable, they are either fixed or static.

After completing this task, the router will use the specified TLS version for gRPC communication.

Example

For example, enabling only TLS 1.3 ensures that gRPC connections use the most secure protocol
version supported by the router.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
SPIFFE ID-based authentication and authorization services for gRPC services .

What to do next

After configuring the TLS version, verify the gRPC server status and test connectivity using a gRPC client
to ensure compatibility.

SPIFFE ID-based authentication and authorization services for gRPC services

A SPIFFE ID (Secure Production Identity Framework for Everyone) based authentication and authorization
service is a standardized framework that:

* enables secure identification and authorization of services communicating over gRPC,

* provides interoperability for authentication and access control across diverse and distributed environments,
and

» leverages SPIFFE IDs and Verifiable Identity Documents (SVIDs) to enforce mutual TLS (mTLS) and
authorization policies.

SPIFFE ID-Based authentication and authorization services for gRPC services uses SPIFFE IDs and SPIFFE
Verifiable Identity Documents (SVIDs) to authenticate and authorize gRPC traffic. This is especially useful
in distributed systems where workloads span multiple platforms.

« Authentication: Performed via mutual TLS (mTLS) using SVIDs
* Authorization: Based on mapping SPIFFE IDs to XR usernames
« Identity format: SVIDs can be encoded as X.509 certificates or JWTs

* Integration: Enables EMS and gRPC services to enforce access control

Workflow for SPIFFE ID-based authentication and authorization for gRPC services
Mapping initialization and configuration

1. The EMS starts searching for the spiffe-user-map.json file at the location
/misc/config/grpc/gnsi/credentialz/spiffe-user-map.json.

2. Ifthe file exists, it is parsed, and the mapping is stored globally in the aaa/auth package.
3. [Ifthe file does not exist or parsing is unsuccessful, the mapping will be empty.

4. The EMS registers with the configuration manager to receive updates for the aaa configuration.

Authentication and authorization Flow

1. When processing requests in the Authentication interceptor, the spiffe-user mapping API checks for the
SPIFFE ID mapping.

2. If the mapping exists, the API responds with the corresponding username.

3. If the mapping does not exist but the aaa configuration exists, the API responds with the configured
username.

4. If neither the mapping nor the aaa configuration is present, the API responds with an empty string.

5. Upon a client connecting to the server, the server interceptor extracts the SPIFFE ID from the client's
certificate and uses the mapping stored in the aaa/auth package to find the corresponding username.

6. The username identifies it and then includes the metadata into the context.

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |

. Authenticate and authorize gRPC service requests using the SPIFFE standard

7. gRPCservices that require XR Authorization will later verify the access rights for the username identified
in the previous step when handling the request.

8. If the mapping is unsuccessful, the request is passed to the relevant service, such as gNMI, which then
decides whether to grant or deny access based on its authorization requirements.

Authenticate and authorize gRPC service requests using the SPIFFE standard

Step 1

Step 2

Step 3

This task describes how to authenticate and authorize gRPC service requests using the SPIFFE standard by
mapping SPIFFE IDs to usernames and evaluating authorization policies.

Before you begin

Before authenticating and authorizing gRPC service requests using the SPIFFE standard, ensure the following
prerequisites are met:

» Enable mutual TLS authentication with the t1s-mutual command.

* Enable certificate authentication with the certificate-authentication command to facilitate SPIFFE
ID recognition. For more information, see Configure authentication for gRPC services, on page 4.

* Configure the gNSI Authz policy by setting the principal to the SPIFFE-ID for service-level authorization
(gNSI AuthZ).

After establishing the connection, the gRPC server extracts the SPIFFE ID from the client's certificate.

To authenticate and authorize gRPC service requests using the SPIFFE standard, follow these steps:

Procedure

Configure the username in the system.

Example:

Router#show running-config aaa
Thu Oct 12 11:43:15.771 UTC
username cisco
group root-lr
group cisco-support
password 7 104D000A061843595F
|

Map the SPIFFE ID to a username using the aaa map-to user name command. This command assigns a default username
to any SPIFFE ID.

Router (config) #aaa map-to username cisco spiffe-id any
Router (config) #commit

Note
Each SPIFFE ID supports only one username.

Evaluate the client's SPIFFE ID against the service-level authorization policy (gNSI AuthZ).

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
Certificate common-name for dial-in using gRPC protocol .

The gRPC service request is authenticated and authorized using the SPIFFE ID mapped to a system username
and evaluated against the gNSI AuthZ policy.

Example

For example, after mapping the SPIFFE ID to the username cisco, the system uses this identity to
authorize access based on the configured gNSI AuthZ policy.

What to do next
After completing this task:

* Monitor gRPC logs to verify successful authentication and authorization events using SPIFFE IDs.

Certificate common-name for dial-in using gRPC protocol

A certificate common-name for dial-in using gRPC protocol is a security configuration that:

« allows the router to generate certificates with a user-defined common-name,
* enables gRPC clients to verify the server identity using a matching hostname, and
* prevents certificate verification failures caused by fixed or mismatched common-names.

This feature enhances TLS authentication flexibility and supports secure, hostname-based validation for gRPC
dial-in sessions.

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |
. Configure certificate common name for dial-in

Table 3: Feature History Table

Feature Name Release Information Description
Certificate common-name for Release 24.1.1 You can now specify a
dial-in using gRPC protocol common-name for the certificate

generated by the router while using
gRPC dial-in. Earlier, the
common-name in the certificate
was fixed as ems.cisco.comand was
not configurable. Using a specified
common-name avoids potential
certification failures where you may
specify a hostname different from
the fixed common name to connect
to the router.

The feature introduces these
changes:

CLI:
* grpc certificate
common-name
YANG Data Model:

* New XPath for
Cisco-IOS-XR-um-grpc-cfg. yang

* New XPath for

Cisco-IOS-XR-man-ems-cfg

(see GitHub, YANG Data Models
Navigator)

gRPC dial-in certificate common-name configuration

When using gRPC dial-in on Cisco IOS-XR routers, the common-name associated with the certificate generated
by the router was previously fixed as ems.cisco.com, causing failures during certificate verification if a different
hostname was used. From Cisco IOS XR 24.11, you can now specify the common-name in the certificate
using the grpc certificate common-name command, allowing gRPC clients to more flexibly and securely
verify the server’s domain name.

Configure certificate common name for dial-in

Configure a common name to be used in EMSD certificates for gRPC dial-in.

Before you begin
Before you begin, ensure the following:

* The router is running with the correct OS image.

Il 9RPC Applications and Configuration

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3441271847
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3441271847
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

| 9RPC Applications and Configuration

Step 1

Step 2

Step 3

Configure certificate common name for dial-in .

* gRPC is enabled and properly configured on the device.

Procedure

Configure a common name.

Example:

Router#config
Router (config) #grpc
Router (config-grpc) #certificate common-name cisco.com
Router (config-grpc) #commit

Use the show command to verify the common name:

Router#show grpc
Certificate common name : cisco.com

Note
For the above configuration to be successful, ensure to regenerate the certificate so that the new EMSD certificates include
the configured common name.

To regener ate the self-signed certificate, perform the following steps.

Remove the certificates: /misc/config/grpc/ems.pem, /misc/config/grpc/ems.key, and /misc/config/grpc/ca.cert
from /misc/config/grpc file.

Example:

Router#run 1ls -ltr /misc/config/grpc/

total 16

drwx------ . 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 10:58 ems.pem
—rw--————--- . 1 root root 1675 Feb 14 10:58 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#run rm -rf /misc/config/grpc/ems.pem /misc/config/grpc/ems.key

Router#run 1ls -ltr /misc/config/grpc/

total 8
drwx------ . 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Restart gRPC server by toggling the TLS configuration.
Configure gRPC with non TLS and then re-configure with TLS.

Example:

Router#config
Router (config) #grpc
Router (config-grpc) #no-tls
Router (config-grpc) #commit

Router#run 1ls -ltr /misc/config/grpc/

total 8
drwx------ . 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |

. gRPC over UNIX domain sockets

Router#config

Router (config) #grpe
Router (config-grpc) #no no-tls
Router (config-grpc) #commit

Router#run 1ls -ltr /misc/config/grpc/

total 16

drwx------ . 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 14:23 ems.pem
—rW-—————— . 1 root root 1675 Feb 14 14:23 ems.key
-rw-r--r—--. 1 root root 1505 Feb 14 14:23 ca.cert

Copy the newly generated /misc/config/grpc/ems.pen certificate in this path (from the device) to the gRPC client.

gRPC over

The common name is successfully configured and reflected in the regenerated EMSD certificate used for
gRPC dial-in.

Example

For example, after configuring certificate common-name cisco.comand regenerating the certificate,
the output of show grpc displays: Certificate common name: cisco.com.

What to do next
After completing this task:

* Ensure the gRPC client trusts the new certificate and can establish a secure connection using the updated
common name.

UNIX domain sockets

gRPC over UNIX domain sockets is a method that allows establishing gRPC connections using local containers
without the need for password rotations.

*» Extends gRPC TCP-based connections to UNIX domain sockets for local communication.
* Eliminates the need for username/password authentication for local containers.

* Improves security and control using UNIX file permissions.

This method enhances inter-process communication and simplifies secure local access to gRPC services on
Cisco routers.

Feature History Table

gRPC server initialization and service registration

When gRPC is configured on the router, the gRPC server starts and then registers services such as gNMI and
gNOI. After all the gRPC server registrations are complete, the listening socket is opened to listen to incoming
gRPC connection requests. Currently, a TCP listen socket is created with the IP address, VRF, or gRPC
listening port.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

Configure gRPC over UNIX domain sockets .

UNIX domain sockets and dual socket listening for gNMI

With this feature, the gRPC server listens over UNIX domain sockets that must be accessible from within the
container through a local connection by default. With the UNIX socket enabled, the server listens on both
TCP and UNIX sockets. However, if the UNIX socket is disabled, the server listens only on the TCP socket.
The socket file is located at the directory.

Configure gRPC over UNIX domain sockets

Step 1

Step 2

You can use local containers and scripts on the router to establish gRPC connections over UNIX domain
sockets.

Before you begin

Ensure that the router supports gRPC and that you have access to the CLI in configuration mode.

Procedure

Configure the gRPC server

Example:

Router (config) #grpc
Router (config-grpc) #local-connection
Router (config-grpc) #commit

To disable the UNIX socket use the no form of the command.

Router (config-grpc) #no local-connection

The gRPC server restarts after you enable or disable the UNIX socket. If you disable the socket, any active gRPC sessions
are dropped and the gRPC data store is reset.

The scale of gRPC requests remains the same and is split between the TCP and Unix socket connections. The maximum
session limit is 256. If you utilize the 256 sessions on Unix sockets, further connections on either TCP or UNIX sockets
are rejected.

Verify that the local-connection is successfully enabled

Example:

Router#show grpc status
Thu Nov 25 16:51:30.382 UTC

*************************Show gRPC Status**********************
transport : grpc

access—-family : tcp4

TLS : enabled

trustpoint :

listening-port : 57400

local-connection : enabled

max-request-per-user : 10

max-request-total : 128

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |
. gRPC network management interface

max-streams : 32
max-streams-per-user : 32
vrf-socket-ns-path : global-vrf
min-client-keepalive-interval : 300

A gRPC client must dial into the socket to send connection requests.

Here is an example of a Go client connecting to a UNIX socket.

const sockAddr =
" /misc/app_host/ems/grpc.sock" // for ncs_ 5500
/var/lib/docker/ems/grpc.sock" // for cisco8000

"

func UnixConnect (addr string, t time.Duration) (net.Conn, error) {
unix_addr, err := net.ResolveUnixAddr ("unix", sockAddr)
conn, err := net.DialUnix("unix", nil, unix_ addr)

return conn, err

}

func main() {

opts = append(opts, grpc.WithTimeout (time.Second*time.Duration (*operTimeout)))
opts = append(opts, grpc.WithDefaultCallOptions (grpc.MaxCallRecvMsgSize (math.MaxInt32)))

opts = append(opts, grpc.WithDialer (UnixConnect))
conn, err := grpc.Dial (sockAddr, opts...)

The gRPC server is configured to accept connections over UNIX domain sockets, and clients can connect
using the specified socket path.
What to do next

Monitor the gRPC sessions and ensure that the session count does not exceed the maximum limit of 256.

gRPC network management interface

The gRPC Network Management Interface (gNMI) is a gRPC-based network management protocol used to
modify, install or delete configuration from network devices. It is also used to view operational data, control
and generate telemetry streams from a target device to a data collection system. It uses a single protocol to
manage configurations and stream telemetry data from network devices.

* Supports configuration management and telemetry streaming.
* Uses gRPC as the transport protocol.

* Enables real-time data collection without prior sensor path configuration.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

gNMI operations .

gNMI subscription model and transport protocol

The subscription in gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.
gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gNMI operations

gNMI (gRPC Network Management Interface) operations define how clients interact with network devices
to retrieve or modify configuration and operational data. These operations are part of the gNMI specification
and are supported in Cisco IOS XR.

The gNMI operations include:
« Capabilities: Retrieves metadata about the network device
* Get: Retrieves state, configuration, and operational data
* Set: Modifies or deletes configuration data

* Subscribe: Subscribes to real-time updates for specific data paths

» Release support: Most operations are supported from release 7.0.1; Subscribe is supported from release

24.2.1

The following table lists the gNMI operations and their support in Cisco IOS XR:

Table 4: gNMI operations and their support in Cisco 10S XR

gNMI
Operation

Supported
Release

Description

Additional Details

Capabilities

Release 7.0.1

Retrieves the metadata of the
network device.

Get

Release 7.0.1

Retrieve state data, configuration,
and operational information from a
network device

Set

Release 7.0.1

You can modify the state of a
network device such as router's
configuration, replace router's entire
configuration sections, or delete
specific parts of the configuration
using the Set operation.

Subscribe

Release 24.2.1

Subscribes to a stream of updates for
specific paths within the device's
data model.

Stream Telemetry Data for LLDP
Statistics

)

Note

The gNMI Get operation is not supported for Sysadmin YANG models.

gRPC Applications and Configuration [JJjj

https://www-author3.cisco.com/content/en/us/td/docs/iosxr/cisco8000/telemetry/24xx/configuration/guide/b-telemetry-cg-8000-24xx/enhancements-to-streaming-telemetry.html#lldp-using-gnmi
https://www-author3.cisco.com/content/en/us/td/docs/iosxr/cisco8000/telemetry/24xx/configuration/guide/b-telemetry-cg-8000-24xx/enhancements-to-streaming-telemetry.html#lldp-using-gnmi

. gNMI wildcards in schema path

gNMI wildcards in schema path

gRPC Applications and Configuration |

gNMI wildcard schema is a method that supports the use of wildcards to represent all elements within a given

subtree in the schema.

The gNMI wildcards are used for telemetry subscriptions or gNMI cet requests. The path is encoded in a
structured format consisting of elements such as the path name and keys, which are represented as string

values regardless of their type within the schema.

gNMI Wildcard Search Types
The table shows the gNMI wildcard search types.

Table 5: Single and multi-level wildcards

Single-level wildcard

Multi-level wildcard

The name of a path element is specified as an asterisk
(*). The sample shows a wildcard as the key name.
This operation returns the description for all interfaces
on a device.

path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "*"
}
}
elem {
name: “config"
}
elem {
name: "description"

}
}

The name of the path element is specified as an ellipsis
(...). The example shows a wildcard search that
returns all fields with a description available under
/interfaces path.

path {

elem {
name:

}

elem {
name:

}

elem {
name:

}

"interfaces"

"description"

}

gNMI Get request path to a leaf

The table shows the gNMI Get request and response messages in the schema path to fetch the operational

state of an interface.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

gNMI wildcards in schema path .

Message Type

gNMI Get Request

gNMI Get Response

gNMI operation to
fetch operational
state of an interface

path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""
>
>
elem: <
name: "state"
>
>

type: OPERATIONAL
encoding: JSON_ IETF

notification: <
timestamp:
1597974202517298341
update: <
path: <
origin:
"Cisco-I0S-XR-pfi-im—cmd-oper"

elem: <
name:
"interfaces"
>
elem: <
name:
"interface-xr"
>
elem: <
name:
"interface"
key: <
key:
"interface-name"
value:
"\"GigabitEthernet0/0/0/0\""

>
>
elem: <
name: "state"
>
>
val: <
json_ietf val:
im-state-admin-down

>
>
>
error: <
>

gRPC Applications and Configuration [JJjj

. gNMI wildcards in schema path

gRPC Applications and Configuration |

Message Type gNMI Get Request gNMI Get Response
gNMI operation path: <
Vvﬂhoulzikey origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
. . elem: <
SpeCIﬁedlnthe name: "interfaces"
schema path >
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
>
elem: <
name: "state"
>
>
type: OPERATIONAL
encoding: JSON_ IETF

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

gNMI wildcards in schema path .

Message Type

gNMI Get Request

gNMI Get Response

path: <
origin:
"Cisco-IOS-XR-pfi-im-cmd-oper"

elem: <
name:
"interfaces"
>
elem: <
name:
"interface-xr"
>
elem: <
name:
"interface"
>
elem: <

name: "state"

>
>
type: OPERATIONAL
encoding: JSON_IETF
notification: <
timestamp:
1597974202517298341
update: <
path: <
origin:
"Cisco-I0S-XR-pfi-im-cmd-oper",

elem: <
name:
"interfaces"
>
elem: <
name:
"interface-xr"
>
elem: <

name: "interface"

key: <
key:
"interface-name"
value:
"\"GigabitEthernet0/0/0/0\""

>
>
elem: <
name: "state"
>
>
val: <
json ietf val:
im-state-admin-down

>
>
update: <
path: <
origin:

gRPC Applications and Configuration [JJjj

. gNMI wildcards in schema path

gRPC Applications and Configuration |

Message Type

gNMI Get Request

gNMI Get Response

"Cisco-IOS-XR-pfi-im-cmd-oper"

elem: <
name:
"interfaces"
>
elem: <
name:
"interface-xr"
>
elem: <

name: "interface"

key: <
key:
"interface-name"
value:
"\"GigabitEthernet0/0/0/1\""

>
>
elem: <
name: "state"
>
>
val: <
json ietf val:
im-state-admin-down

>

>

update: <
path: <

origin:
"Cisco-IOS-XR-pfi-im-cmd-oper"

elem: <
name:
"interfaces"
>
elem: <
name:
"interface-xr"
>
elem: <

name: "interface"

key: <
key:
"interface-name"
value:
"\"GigabitEthernet0/0/0/2\""

>
>
elem: <
name: "state"
>
>
val: <
json ietf val:
im-state-admin-down
>

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

gNMI wildcards in schema path .

Message Type

gNMI Get Request

gNMI Get Response

>
update: <
path: <
origin:
"Cisco-IOS-XR—pfi-im-cmd-oper"

elem: <
name:
"interfaces"
>
elem: <
name:
"interface-xr"
>
elem: <

name: "interface"

key: <
key:
"interface-name"
value:
"\"MgmtEth0/RP0/CPUO/O\""

>
>
elem: <
name: "state"
>
>
val: <
json ietf wval:
im-state-admin-down
>
>

gRPC Applications and Configuration [JJjj

. gNMI wildcards in schema path

gRPC Applications and Configuration |

Message Type

gNMI Get Request

gNMI Get Response

gNMI operation with
unique path to a CLI

path: <
origin: "cli"
elem: <
name: "show version"
>
>
type: ALL

encoding: ASCII

path: <
origin: "cli"
elem: <
name: "show
version"
>
>
type: ALL
[
{
"source":

"unix:///var/run/test env.sock",

"timestamp":
1730123328800447525,

"time":
"2024-10-28106:48:48.800447525-07:00",

"updates": [
{
"Path": "show
version",
"values": {

"show version":
”

show version

Cisco I0S XR Software,
Version 24.4.1.371I
Copyright (c) 2013-2024
by Cisco Systems, Inc.
Build Information:\n
Built By : swtools
Built On : Mon Oct 21
03:16:32 PDT 2024

Built Host
iox-1nx-121\n Workspace

Ao rsdhai %41 3T MAE =
Version : 24.4.1.37I\n
Location
/opt/cisco/XR/packages/
Label
24.4.1.37I-EFT2LabOnly
cisco NCS-5500 ()
processor

System uptime is 3 days
22 hours 54
minutes\n\n\n"

Gr

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
gNMI bundling of telemetry updates .

gNMI bundling of telemetry updates

The gNMI bundling of telemetry updates is a method that
* optimizes bandwidth, and

* bundles multiple gNMI update messages for the same client and sends them together.

Table 6: Feature History Table

Feature Name Release Description
Information

gNMI bundling size Release 7.8.1 With gRPC Network Management Interface (gNMI) bundling,
enhancement the router internally bundles multiple gNMI update messages
meant for the same client into a single gNMI notification
message and sends it to the client over the interface.

You can now optimize the interface bandwidth utilization by
accommodating more gNMI updates in a single notification
message to the client. We have now increased the gNMI

bundling size from 32768 to 65536 bytes, and enabled gNMI
bundling size configuration through Cisco native data model.

Prior releases allowed only a maximum bundling size of
32768 bytes, and you could configure only through CLI.

The feature introduces new XPaths to the
Cisco-I0S-XR-telemetry-model-driven-cfg.yang Cisco
native data model to configure gNMI bundling size.

To view the specification of gNMI bundling, see Github
repository.

The router internally bundles multiple gNMI update messages into a single gNMI Notification message
within a gNMI subscribeResponse message. This approach reduces the number of bytes sent over the gNMI
interface. I0S-XR software release Release 7.8.1 supports gNMI bundling size up to 65536 bytes.

Bundling instances of the client

This table shows how the router handles bundling instances for the same or different clients.

Bundling instances of the same client Bundling instances of the different client

The router bundles multiple instances of the same | The router does not bundle messages of different
client. For example, a router bundles interfaces clients into a single gNMI Notification message. For
MgmtEthO0/RP0O/CPU0/0, FourHundredGigE0/0/0/0, example:

FourHundredGigE0/0/0/1, and so on, of this path.

Data under the container of the client path cannot be split into different bundles.

gRPC Applications and Configuration [JJjj

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates

. Configure gNMI bundling size

gRPC Applications and Configuration |

Timestamp assignment in gNMI notification messages

The gNMI Notification message contains a timestamp indicating when an event occurred or a sample was
taken. The bundling process assigns a single timestamp for all bundled update values, which is the timestamp
of the first message in the bundle.

Exceptions to gNMI bundling size enforcement
The ON-CHANGE subscription mode does not support gNMI bundling.

The router does not enforce the bundling size in these scenarios:

+ At the end of (N-1) message processing, if the notification message size is less than the configured
bundling size, the router allows one extra instance, which could result in exceeding the bundling size.

* Data of a single instance exceeding the bundling size.

* The XPath network-instances/network-instance/afts does not support bundling.

Configure gNMI bundling size

Procedure

Use this task to enable gNMI bundling and configure the bundling size for all gNMI subscribe sessions.
gNMI bundling is disabled by default and the default bundling size is 32,768 bytes. gNMI bundling size ranges
from 1024 to 65536 bytes. Prior to IOS-XR software release Release 7.8.1 the range was 1024 to 32768 bytes.
You can enable gNMI bundling to all gNMI subscribe sessions and specify the bundling size.

Before you begin

Ensure that you are in configuration mode and have access to the telemetry model-driven configuration context.

Step 1 Enable gNMI bundling and configure bundling size

Example:

Router# configure

Router (config) # telemetry model-driven
Router (config-model-driven) # gnmi
Router (config-gnmi) # bundling

Router (config-gnmi-bdl) # size 2000
Router (config-gnmi-bdl) # commit

Step 2 Verify the running configuration

Example:

Router# show running-config
telemetry model-driven

gnmi

bundling

size 2000
|

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
Replace router configurations at sub-tree level using gNMI .

gNMI bundling is enabled and the bundling size is set as configured. The configuration is visible in the running
configuration.

Example

This configuration is useful when optimizing telemetry data transmission by controlling the size of
gNMI message bundles.

What to do next

Monitor the gNMI telemetry performance to ensure the configured bundling size meets operational requirements.

Replace router configurations at sub-tree level using gNMI

The gNMI replace operation at the sub-tree level is a configuration management capability that enables targeted
updates to specific sections of a router’s configuration hierarchy. This operation uses a SetRequest RPC
message to replace existing configurations with new ones, offering a model-aware and efficient approach to
configuration management.

The gNMI replace operation provides:

 Granular scope: Operates at the sub-tree level within the same YANG model, allowing precise updates.

* Structured targeting: Accepts a structured path (with elements and key values) to define the root of the
replace operation.

* Behavioral logic:

* Reverts omitted elements with default values to their defaults.

* Deletes omitted elements without defaults, returning them to an unconfigured state.

Table 7: Feature History Table

Feature Name Release Information | Description

Replace Router Release 7.8.1 Using the gNMI setRequest message, you can replace
Configuration at Sub-tree the router's existing configuration with a new set of
Level Using gNMI configurations at the subtree level within the same model.

Earlier you could replace router configurations at the
data tree root level.

To view the specification of gNMI replace, see Github
repository.

The replace operation either includes all the path elements which are defined under the root or only a few of
them. If the omitted path elements are configured with default values, they are reverted to their default values

gRPC Applications and Configuration [JJjj

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

. gNMI union replace operations

gRPC Applications and Configuration |

during the replace operation. If the omitted path elements are not configured with default values, they are
deleted from the data tree during the replace operation and returned to their original unconfigured state.

gNMI replace operation in data tree schema

root +
|
+ a -——-+
| |
| +-- b
| |
| +-- ¢
|
|
+ d --+
+-- e
|
+-- f

In this data tree schema, b has a default value of true and ¢ has no default value. Both b and c are set as False.

When a replace operation is performed with e and f as set, and all other elements are omitted, b is reverted to
its default setting true, and c is deleted from the tree, and returned to its original unconfigured state.

gNMI replace example

This example shows the gNMI replace request and response messages.

gNMI Replace Request

gNMI Replace Response

Request Message:
replace: <

path: <
elem: <
name: "system"
>
elem: <
name: "config"
>
elem: <

name: "hostname"
>
>
val: <

>

json_ietf val: "\"testingl23\""

Response Message:

path: <
elem: <
name: "system"
>
elem: <
name: "config"
>
elem: <

name: "hostname"
>

>

op: REPLACE
>
message: <
>
timestamp: 1662873319202107537

gNMiI union replace operations

gNMI union replace operations are a category of configuration update methods that:

« allow full replacement of router configurations in a single operation,

* support merging of multiple schema types including OpenConfig, CLI, and native YANG, and

* ensure alignment between intended and actual router configurations using a unified SetRequest RPC

message.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

Supported schema types

gNMI union-replace operation guidelines and limitations .

The gNMI union replace operation is a method that allows you to update your router's entire configuration in
one go, ensuring that the actual settings of your network operating system align with the intended setup. To
directly replace the existing router settings, this operation enables the merging of different schemas including:

* native YANG models,

» command-line interface (CLI), and

* OpenConfig YANG models.

Feature History Table

Table 8: Feature History Table

Feature Name

Release
Information

Description

gNMI Union Replace
Operation

Release 24.2.11

You can now update your router's entire configuration in one
go to ensure that the actual settings of your network operating
system align with the intended setup. The update includes
OpenConfig (OC), Native YANG (NY), and CLI
configurations and is done using the gRPC Network
Management Interface (gNMI). The update is possible with
the gNMI union-replace operation in a gN\MI SetRequest RPC
message which supports mixing of the configuration schemas.
The supported schema combinations are:

* OpenConfig (OC) and CLI
* OC and native YANG (NY)

To view the specification of gNMI union-replace, see the
Github repository.

Supported schema combinations

gNMI union-replace operation in a gN\MI setRequest RPC message supports these two schema combinations:

* OC and CLI
* OC and NY

gNMI union-replace operation guidelines and limitations

gNMI union-replace operation guidelines are a category of configuration rules that:

« ensure the target router's state is updated only after all changes are successfully accepted,

* define how path-values are replaced, deleted, or defaulted based on their presence in the request and

schema, and

» restrict the use of delete, replace, and update operations in union_replace RPC messages.

gRPC Applications and Configuration [JJjj

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-union_replace.md

gRPC Applications and Configuration |
. gNMI union replace operation examples

Operational behavior and constraints

Using gNMI when a client sends the ghMT setRequest RPC message with union-replace operations to a target
router:

* The state of the target router must not be changed until all the changes have been accepted successfully.

» If a particular path-value is specified in the gNMI request, the value replaces the current value in the
target router.

* If a particular path-value isn’t specified in the gNMI request and the path doesn’t have a default value
in the corresponding schema, it’s deleted.

» If a path-value isn’t specified in the gNMI request and the path does have a default value, the default
value is applied on the target router.

* A gnMT setRequest RPC message containing union_replace operations must not contain delete, replace,
and update operations.

Origin field handling
The origin field in the path message of a gNMI union-replace operation is set to one of these options:

» openconfig: Path and content are part of OC YANG models.
* cisco_native: Path and content are part of Cisco’s network operating system YANG models.

» cisco_cli: This origin represents an ASCII text or CLI configuration defined as command-line interface
(CLI) text.

If the origin field is unspecified, the origin value is set to OpenConfig.

gNMI union replace operation examples
gNMI union replace operation examples are a category of schema combination use cases that:

 demonstrate how union_replace operations are structured in gNMI SetRequest RPC messages,
* illustrate the use of different origin schemas such as CLI, OC, and native YANG, and

serve as references for implementing configuration merging strategies across schema types.
. fi f 1 t fi t trat h t

Schema combination examples
The schema combination examples show the union_replace operation in the gNMI setRequest RPC message:

* OC and CLI origin, on page 30
* OC and NY origin, on page 32

0C and CLI origin
OC and CLI origin configurations are a category of gNMI union_replace schema combinations that:

+ allow merging of configuration data from both OC and CLI origins,

» replace the router's existing configuration with the merged result, and

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

* prioritize CLI configuration values when overlapping with OC values.

Example of union_replace with 0C and CLI origin

0C and CLI origin .

gNMI union_replace operation in gNMI SetRequest RPC message with OC and CLI origin schema combination

example is as follows:

union replace:

path: {

origin: "cisco cli"

}

val: {

ascii val: "hostname myhost"

}

}

union replace:
path: {

elem: {

{

{

name: "interfaces"

}

elem: {

name: "interface"

key: |
key: "name"

value: "FourHundredGigE0/0/0/0"

}
}

elem: {

name: "config"

}

elem: {

name: "description"
}

}

val: {

json_ietf val:
}
}

Replacement sequence for the OC and CLI origin schema combination

"\"true\""

The configurations from both the schemas are merged and the merged configuration replaces the router's

existing configuration.

\)

Note Ifthe CLI and OC configuration values overlap, the CLI configuration takes higher precedence and overwrites

the value set by OC.

Guidelines for OC and CLI origin

Ensure that you don't use a union-replace operation with an empty path under OC or CLI origins. Doing so

removes all the content of the respective origin on the target router.

A union-replace operation with OC and CLI schema combination containing bootz configuration, the processing

order of the configuration application on the target router is as follows: OC — CLI — bootz.

gRPC Applications and Configuration [JJjj

. 0C and NY origin

0C and NY origin

gRPC Applications and Configuration |

OC and NY origin configurations are a category of gNMI union_replace schema combinations that:

» merge configuration data from both OC and Cisco native YANG origins,

» replace the router's existing configuration with the merged result, and

* prioritize NY configuration values when overlapping with OC values.

Example of union_replace with OC and NY origin

A gNMI union_replace operation in the gnMr setRequest RPC message with OC and NY origin schema

combination example is as follows.

union_replace: {
path: {

origin: "cisco_native"

elem: {

name: "Cisco-IOS-XR-shellutil-cfg:host-names"

}

elem: {

name: "host-name"

}

}

val: {

json ietf wval: "\"abc\""

}

}

union_replace: {
path: {

elem: {

name: "interfaces"
}

elem: {

name: "interface"
key: {

key: "name"

value: "FourHundredGigE0/0/0/0"

}
}

elem: {

name: "config"

}

elem: {

name: "description"

}

}

val: {

json_ietf val: "\"true\""

}
}

Guidelines for 0C and NY origin

The configurations from both the schemas are merged and the merged configuration replaces the router's

existing configuration.

If the OC and NY schema configuration values overlap, the NY configuration takes higher precedence and

overwrites the value set by OC.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
RPC error scenarios .

If an OC and NY union-replace request explicitly sets configuration items that are overlapping, the RPC
doesn't return INVALID ARGUMENT.

RPC error scenarios
RPC error scenarios are a category of gNMI SetRequest validation conditions that:

* occur when one of the origins from the supported schema combinations is missing or when the
union_replace operation lacks a specified path value for one of the origins,

EEINTY

» arise when union-replace operations for all three origins (“cisco_native”, “cisco_cli”, and “openconfig”)
are present in the gNMI setRequest RPC message, and

* result from a gnm1 SsetrRequest RPC message with union_replace operations that contain delete, replace,

or update operations.

These conditions must be avoided to ensure successful processing of the RPC message.

gNMI XPath-based authorizations

A gNMI XPath-based authorization is a process where, upon receiving a gNMI SetRequest message for a
configuration change, the router applies an XPath-based pathz policy to determine the request's authorization.
The pathz policy originates from a gNSI RPC within the router. The policy configurations can be established
during the router's boot process or dynamically adjusted while the router is operational.

* Authorization is based on XPath rules defined per user or group.

* Policies can be loaded securely during boot or dynamically.

* Authorization decisions result in PERMIT or DENY outcomes.
The router securely receives the initial pathz policy either through Secure Zero Touch Provisioning (sZTP)
or a secure bootstrapping protocol like bootz when booting up. The policy includes the user or group name

and a list of rules defining XPaths and their associated access permissions. The policy is enforced before
processing any gNMI requests.

Authorization by the gNSI pathz policy is granted or denied based on user or group credentials, permitting
or declining the gNMI SetRequest accordingly.

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |
. gNMI XPath-based authorizations

Table 9: Feature History Table

Feature Name Release Description
Information

gNMI XPath-based Release 24.2.11 We’ve introduced gNMI authorization through the gNSI pathz
authorization policy which is adding authorization of a user or a group to
access a specified YANG XPath through gNMI. The policy
configurations can be done on the router either when the router
boots up or dynamically when the router is up and running.
When a user or a group sends a gNMI SetRequest message
using a certain XPath, the system validates the request against
the permissions specified in the policies associated with that
user or the group.

To view the specification of gNSI for the OpenConfig
XPath-based Authorization, see the Github repository.

This feature introduces these changes:

CLI:
* show gnsi path authorization policy
+ show gnsi path authorization counters
* show gnsi trace pathz
* show gnsi path authorization statistics
* show tech-support gnsi

* clear gnsi path authorization counters

The router securely receives the initial pathz policy either through Secure Zero Touch Provisioning (sZTP)
or a secure bootstrapping protocol like bootz when booting up. The policy includes the user or group name
and a list of rules defining XPaths and their associated access permissions. The policy is enforced before
processing any gNMI requests.

Authorization by the gNSI pathz policy is granted or denied based on user or group credentials, permitting
or declining the gNMI SetRequest accordingly.

gNMI authorization using gNSI pathz policy
Starting from release 24.2.11, you can perform gNMI XPath-based authorization using gNSI pathz policies.

The gnsi-pathz YANG model defines these counters and timestamps for each configured rule READ, WRITE,
PERMIT, and DENY:

* access-rejects: 64-bit
* last-access-reject: timestamp
* access-accepts: 64-bit

» last-access-accept: timestamp

The counters get incremented per accepted or rejected XPath (e.g., per gNMI request).

Il 9RPC Applications and Configuration

https://github.com/openconfig/gnsi/blob/main/pathz/pathz.proto
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3523621590
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp6319799690
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1425306918
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1800459808
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1590368878
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1987264608

| 9RPC Applications and Configuration

gNMI XPath-based authorizations .

Define Authorization Policy for a gNSI Pathz

The authorization policy for gNSI Pathz consists of three components.

The table lists the gNSI authorization policy components.

Table 10: Authorization Policy Components

Authorization Policy
Component

Details

Users

Individuals named in rules or group definitions.

Groups of users

A group of users in the administrative domain, such as operators or administrators.
» The matching policy gives precedence to a specific user over a group.

» Match rules enable authorization against either a user or a group, but not
both simultaneously.

Policy rules

Each rule defines a single authorization policy.

* Authorization (how the policy is defined) is performed for a specific user
in a predefined group of users on a specific gNMI path and a specific access
methodology (example: READ or WRITE).

¢ The wildcard character (*):

* Replaces the missing keys in keyed path elements. Absence of
keys implies a wildcard by default.

» Masks all the values entirely, it doesn’t permit partial value

masking (Example: /this/is/a/keyed[name=Ethernet1/*/3]/things
is invalid).

How Authorization Policy Matching Rules Work

Policy Matching Rule

Description

Multiple rules

The authorization process evaluates the rule with the longest
match when granting access, rather than defaulting to the
first rule encountered.

A defined KEY and wildcard in a keyed path | The defined KEY in the keyed path is preferred over the

wildcard.

For example, the router prefers /a/b[key=FOQ]/c/d over
/a/b[key="*]/c/d due to its more precise key match.

A user-specific rule and a corresponding group | The rule that corresponds to a specific user is prioritized
rule for the same user

over the one that matches with a user's group.

Permission mode

A mode that matches with the request (READ or WRITE)
is considered.

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |
. gNMI XPath-based authorizations

Policy Matching Rule Description

DENY or PERMIT DENY takes priority over PERMIT when other conditions
are equal, and multiple matching rules are present.

Policy evaluation results with a single best match rule for the provided {user, path, or mode}. If multiple best
matches emerge, an error is logged, and the evaluation fails.

If no matching rule is found, an implicit DENY is applied and detailed in a log entry.

The authorization evaluation process results in a PERMIT or DENY decision, along with the version of the
policy and the identifier of the rule applied.

Scenario for Authorization Policy Rules

Rule |User Group Path Action Mode

1 Bob — /interfaces/interface[FourHundredGigE0/0/0/0] | PERMIT |READ
2 Bob — /interfaces/interface[FourHundredGigE0/0/0/0] | PERMIT | WRITE
3 Bob — /interfaces/interface[FourHundredGigE1/1/1/1] | DENY WRITE
4 — Admin /interfaces/interface[*] PERMIT | WRITE
5 Bob — /interfaces PERMIT |READ
6 — Admin /interfaces/interface[FourHundredGigE0/0/0/0] | PERMIT | WRITE
7 Jim — /interfaces/interface[FourHundredGigE0/0/0/0] | DENY WRITE

For user Bob, these authorization ruless apply:

* READ or WRITE (gNMI request) access to the XPath /interfaces/interface[FourHundredGigE0/0/0/0]
is granted under rules 1 and 2.

* READ access to the XPath /interfaces/interface[FourHundredGigE1/1/1/1] is granted under rule 5 due
to the longest match criterion, which specifies READ mode. WRITE access to this path is denied by rule
3.

» WRITE access to the XPath /interfaces/interface[FourHundredGigE2/2/2/2] is granted being a member
of the Admins group as specified by rule 4. Without the Admin membership, access is denied by the
default deny all rule.

* READ access to the XPath /interfaces/interface[FourHundredGigE2/2/2/2] is granted under rule 5,
independent of group affiliation.
For user Jim, these authorization rules apply:

* Access to the XPath /interfaces/interface[FourHundredGigE0/0/0/0] is controlled by a policy that favors
personal user permissions over group permissions. As a result, although the admins group is allowed
access, Jim is individually denied access because the policy emphasizes user-specific rules.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
gNSI Pathz authorization policy configuration .

gNSI Pathz authorization policy configuration

The gNSI pathz authorization policy configuration defines how access control policies are applied to gRPC
services using the gNSI pathz mechanism. These policies determine which users or groups are permitted or
denied access to specific RPCs or data paths.

» Policy-based access control: Enables fine-grained authorization for gRPC services based on user or
group identity.

* Flexible deployment: Policies can be configured either during initial setup or dynamically through
rotation.

» gNSI integration: Uses the gNSI pathz service to enforce authorization rules across the network
infrastructure.

Configuration methods
To set a gNSI pathz authorization policy, you can perform either of these methods:
* Initial policy loading

* Policy rotation

Load gNSI Pathz policies at boot-time

gNSI Pathz policy boot-time loading is a configuration mechanism that enables routers to apply authorization
policies automatically during system startup.

* Supports loading via Secure Zero Touch Provisioning (sZTP).

* Supports loading via bootstrapping configuration workflows.

This ensures that path authorization policies are enforced immediately after boot, improving security and
automation in deployment workflows.

To load gNSI pathz policies at boot-time into the router, you can use either sZTP or bootstrapping.

For details on loading gNSI pathz policy through sZTP, refer to Secure Zero Touch Provisioning section of
Cisco 10S XR Setup and Upgrade Guide for Cisco 8000 Series Routers guide.

Rotate, finalize, and get the gNSI Pathz policy

gNSI Pathz policy rotation overview

gNSI Pathz policy rotation is a mechanism that allows dynamic management of authorization policies on a
running router using gRPC operations.

* Supports rotating (updating) a candidate policy instance for testing.
* Allows finalizing (committing) the candidate policy to become the active policy.

* Enables retrieving (getting) the current active or candidate policy for inspection.

This mechanism ensures secure and flexible policy updates without requiring router reloads.

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |
. OpenConfig metadata for configuration annotations

When the router is up and running, you can rotate (update), finalize (commit), and get (read) the gNSI pathz
policy using the gNSI pathz gRPC operations. To view the specification of gNSI pathz policy rotation, see
the Github repository.

gNSI pathz supports these policy instances:
* Active policy—Used for authorizing gNMI requests.

* Potential or candidate policy—Used to test a policy before rotation.

Rules for authorization policy rotation
* The node holds on to the candidate policy indefinitely until either:

* The candidate is committed or again rotated, or

» The RPC session is closed (this event removes the candidate instance).

* A single policy rotation RPC can be active at any given time. Concurrent RPC requests for policy rotation
is rejected with the gRPC error code UNAVAILABLE.

» gNMI allows different encodings, including JSON. IOS XR applies the gNSI pathz policy based
on each leaf of the flattened JSON model for authorizing the gNMI request.

OpenConfig metadata for configuration annotations
OpenConfig metadata for configuration annotations is a YANG extension mechanism that:
* Allows tagging of configuration elements with metadata such as status, support, or intent.
* Enables tooling and documentation systems to interpret and display annotations.

* Improves clarity and consistency across OpenConfig models.

This extension enhances the semantic richness of YANG models by enabling structured metadata tagging.

Table 11: Feature History Table

Feature Name Release Description
OpenConfig metadata for | Release 7.10.1 You can annotate the OpenConfig-metadata as
configuration annotations part of the OpenConfig edit-config request to the

Cisco IOS XR router and later fetch using the
OpenConfig get-config request or delete through
gNMI request only.

The set or Get operations can be performed
through gNMI only; not through Netconf RPCs.

An OpenConfig Metadata feature allows you to set or delete OpenConfig-metadata at the root level node
through gNMI requests only, and it can be read back while retrieving or verifying the device configuration.
Netconf RPC requests are not supported.

Il 9RPC Applications and Configuration

https://github.com/openconfig/gnsi/blob/main/pathz/pathz.proto

| 9RPC Applications and Configuration

OpenConfig metadata for configuration annotations .

\)

Note The usage guidelines in this document provides the OpenConfig YANG support for a specific metadata
annotation based on RFC7952 requirements for configuration commits only.

This solution is intended for the requirements of the OpenConfig-metadata annotation use case only and not

intended to be changed for any other use beyond the scope of this document.

Here is an example for the item.

{
"@": {
"openconfig-metadata:config-metadata": "xyz" // xyz is base64 encoded string per RFC7951
encoding rules
}
// Rest of configurations
}

The OpenConfig-metadata annotation is persistent across system restart. The latest OpenConfig-metadata
annotation is preserved and it overwrites all the previous data. Also, the previous or old OpenConfig-metadata
annotations cannot be retrieved with any operation (including configuration rollback). If the commit action
fails, then the OpenConfig-metadata annotation is not updated. During startup failures resulting in removal
of running configurations, the OpenConfig-metadata annotation at the time of last commit shall persist.

Example: Set request

This is a sample set request for OpenConfig-metadata:

Request:
update: {

path: {

}

val: {

json_ietf val: "{\"openconfig-1lldp:1ldp\":{\"config\":{

\"enabled\":true, \"system-description\":\"test-replace\"}},
\"@\":{\"openconfig-metadata:protobuf-metadata\":
\"012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789\"}}"

}
}

Response:

response: <
path: <
>
op: UPDATE
>
message: <
>
timestamp: 1662150302538441219

Example: Get request

This is a sample cet request for OpenConfig-metadata:

Request:

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |

. OpenConfig metadata for configuration annotations

elem: {
name: "@"
}
elem: {
name: "protobuf-metadata"

}

}
type: CONFIG
encoding: JSON_IETF

Response:

notification: <
timestamp: 1662869232324390815
update: <
path: <
origin: "openconfig"
elem: <
name: "@"
>
elem: <
name: "protobuf-metadata"
>
>
val: <
json_ietf wval: "\"0123456789012345678901234567890
12345678901234567890123456789012345678901234567890
1234567890123456789\""

Verification

The OpenConfig-metadata annotations are stored persistently in the router and are opaque (not visible) to
the IOS XR routers. However, the show command displays the presence and size of the OpenConfig-metadata
annotation.

This example displays the show command output:

Router#show cfgmgr commitdb

last-commit-metadata-len
[UINT32] 100000 (Ox186A0)

)

Note The show command displays only the presence and size of the OpenConfig-metadata annotation. If there
is no OpenConfig-metadata annotation stored in the persistent database, then the output of the show command
will not contain this entry.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
Metrics of gNSI authorization rules .

Metrics of gNSI authorization rules

gNSI authorization rule metrics are operational diagnostics that provide visibility into the behavior and
performance of path-based access control in IOS XR.

* They include statistics and counters for policy enforcement and access attempts.
* They provide trace data for debugging authorization flows.

* They support tech support outputs for comprehensive diagnostics.

These metrics help administrators monitor, troubleshoot, and validate gNSI-based access control configurations.

10S-XR pathz supports these statistics, counters, diagnostics, and trace data commands for the gNSI
authorization rules:

* Pathz Policy and Statistics
 Path Authorization Counters
* Traces for Pathz

* gNSI Tech Support

gNSI path authorization counters

gNSI path authorization counters are diagnostic statistics that help monitor access control decisions for
gRPC-based network services.

* They display read and write access attempts for all or specific XPaths on a gRPC server.
* They include accept and reject counts for each path, along with timestamps of the last access attempts.

* They support optional filtering by server name and XPath for targeted inspection.

These counters are useful for auditing authorization behavior and verifying policy enforcement across network
paths.

The gNSI path authorization counters show the counters for a given gRPC server-name for all XPaths, or the
specified XPath. Providing the XPath and server-name is optional. To view the gNSI Path Authorization
counters, use the show gnsi path authorization counters command.

®* Router# show gnsi path authorization counters
Mon Apr 1 08:05:46.297 UTC

/system/config/hostname:

Read Write

Rejects : 0 0

Last : N/A N/A

Accepts : 0 3

Last : N/A Mon, 01 Apr 2024 08:05:25 +0000
Total path records received 1

Router# show gnsi path authorization counters server-name 64.103.223.33
Mon Apr 1 08:33:25.194 UTC

Read Write
Rejects : 0 2
Last : N/A Mon, 01 Apr 2024 08:32:37 +0000

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |
. gNSI Pathz policy and statistics

Accepts : 0 0

Last : N/A N/A

/system/config/hostname:

Read Write

Rejects : 0 6

Last : N/A Mon, 01 Apr 2024 08:32:36 +0000
Accepts : 0 0

Last : N/A N/A

Total path records received 2

Router#

Router# show gnsi path authorization counters path /system/config/hostname
Mon Apr 1 08:32:46.468 UTC

/system/config/hostname:

Read Write

Rejects : 0 6

Last : N/A Mon, 01 Apr 2024 08:32:36 +0000
Accepts : 0 0

Last : N/A N/A

Total path records received 1

Router#

* To clear the gNSI path authorization counters, use the clear gnsi path authorization counterscommand.

Router# clear gnsi path authorization counters
Router#

gNSI Pathz policy and statistics

gNSI Pathz policy and statistics are operational tools used to inspect and monitor path-based authorization
behavior in gRPC-enabled systems.

* They allow you to view the active and sandbox policies configured for gNSI path authorization.

* They provide detailed counters and error metrics related to policy evaluation, gNMI path access, and
internal engine operations.

* They help in troubleshooting and validating policy enforcement through CLI-based inspection commands.
These tools are essential for administrators to verify policy deployment and monitor authorization activity in
real time.

To display the configured gNSI policy and statistics, use these commands:
* show gnsi path authorization policy — Shows the running gNSI path authorization policy.

* show gnsi path authorization statistics— Shows gNSI path authorization statistics.

Router# show gnsi path authorization policy
Mon Apr 1 04:29:37.905 UTC
version:"1" created on:1711946719670313 policy:{rules:{user:"cafyauto"
path:{origin:"openconfig" elem:{name:"system"} elem: {name:"config"} elem:{name:"hostname"}}
action:ACTION PERMIT mode:MODE WRITE} }
Router#

Router# show gnsi path authorization statistics
Mon Apr 1 04:29:23.259 UTC

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

gNSI Pathz trace data

Engine:

State:

Active Policy:
Version : 1
Created On
Sandbox
Version N/A
Created On (UT
Policy Rotatio

(UT

Stats:
Rotations in P
Policy Rotatio
Policy Rotatio
Policy Upload
Policy Upload
Policy Finaliz
Policy Finaliz
Probe Requests
Probe Errors
Get Requests
Get Errors : 0
Policy Unmarsh
Sandbox Policy

Counters:

No Policy Auth
gNMI Path Leav
gNMI Authoriza
gNMI Set Path

gNMI Set Path

gNMI Get Path

gNMI Get Path

Errors:

Path To String
Origin Type
Bad Mode : O
Bad Action : O
JSON Flatten
String To Path
Join Paths : 0
Nil Path : O
Nil SetRequest
Empty User : 0
Probe Internal
Path Counters:

Increment : O
Find : O
Clear : 0
Walk : O

gNSI Pathz trace data .

C) Wed, 09 Dec 54251401 07:58:33 +0000

Policy:

C) N/A

n in Progress: False

rogress Count: 0O
ns : 0
n Errors : 0
Requests : 0
Errors : O
e : 0
e Errors : 0
0

0

0
all Errors : O
Errors : O

Requests : 0
es : 0

tions : O
Permit : O
Deny : 0
Permit : O
Deny : 0

0
0

0

gNSI Pathz trace data is a diagnostic output that captures real-time authorization events and policy evaluations
for gNSI path-based access control.

* Provides visibility into policy loading, sandboxing, and activation events.

* Logs authorization decisions including denied and permitted paths.

* Helps troubleshoot issues related to policy application and access control enforcement.

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |
. gNSl state details

This trace data is essential for auditing and debugging gNSI path authorization behavior on IOS XR devices.

To trace the configured gNSI policy, use the show gnsi trace pathz command.

Router# show gnsi trace pathz all
Mon Apr 1 04:31:26.689 UTC
61 wrapping entries (21760 possible, 512 allocated, 0 filtered, 61
total)
Apr 1 04:07:09.681 gnsi/pathz 0/RPO/CPUO t11383 Pathz: Code(178) 'Trying
to load policy' '/mnt/rdsfs/ems/gnsi/pathz policy.txt'
Apr 1 04:07:09.685 gnsi/pathz 0/RPO/CPUO t11383 Pathz: Code(173) 'Set
Sandbox policy' '1(54251382-02-18 11:34:58 +0000 UTC) "'
Apr 1 04:07:09.685 gnsi/pathz 0/RPO/CPUO t11383 Pathz: Code(179) 'Set
Policy from' '/mnt/rdsfs/ems/gnsi/pathz policy.txt'
Apr 1 04:07:09.685 gnsi/pathz 0/RPO/CPUO t11383 Pathz: Code(249) 'Pathz
Policy Clearing Counters' ' '
Apr 1 04:07:09.685 gnsi/pathz 0/RPO/CPUO t11383 Pathz: Code (79): 'Engine
Initialized’
Apr 1 04:08:05.761 gnsi/pathz 0/RPO/CPUO t11794 Pathz: Code (63)
'Pathz.Get ()" '5.38.4.111:52126"'
Apr 1 04:08:05.761 gnsi/pathz _err 0/RPO/CPUO t11794 Pathz ERROR: Code
(65): 'Nil Policy'
Apr 1 04:08:05.788 gnsi/pathz 0/RPO/CPUO t11480 Pathz: Code (63)
'Pathz.Get ()" '5.38.4.111:52126"'
Apr 1 04:08:05.788 gnsi/pathz 0/RPO/CPUO t11480 Pathz: Code(176) 'Get'
'POLICY INSTANCE ACTIVE 1(1711946094752098)"'
Apr 1 04:08:05.791 gnsi/pathz deny 0/RP0O/CPUO t11481 Pathz DENY: Code (235)
'Upd/Rep Denied path' 'cafyauto@/system/config/hostname, 1,1711946094752098"'
Apr 1 04:08:05.808 gnsi/pathz deny 0/RP0O/CPUO t11383 Pathz DENY: Code (234)
'Del Denied path' 'cafyauto@/system/config/hostname, 1,1711946094752098"'
Apr 1 04:08:05.821 gnsi/pathz deny 0/RP0O/CPUO t11480 Pathz DENY: Code (235)
'Upd/Rep Denied path' 'cafyauto@/system/config/hostname, 1,1711946094752098"'
Apr 1 04:08:07.348 gnsi/pathz deny 0/RP0O/CPUO t11383 Pathz DENY: Code (235)
'Upd/Rep Denied path' 'cafyauto@/lldp/config/enabled, 1,1711946094752098"'
Apr 1 04:08:08.205 gnsi/pathz 0/RPO/CPUO t11383 Pathz: Code (63)
'Pathz.Get ()" '5.38.4.111:52126"'
Apr 1 04:08:08.205 gnsi/pathz_err 0/RPO/CPUO t11383 Pathz ERROR: Code
(65): 'Nil Policy'
Apr 1 04:08:08.221 gnsi/pathz 0/RPO/CPUO t11480 Pathz: Code (63)
'Pathz.Get ()" '5.38.4.111:52126"'
Apr 1 04:08:08.221 gnsi/pathz 0/RPO/CPUO t11480 Pathz: Code(176) 'Get'
'POLICY INSTANCE ACTIVE 1(1711946094752098)"'
Apr 1 04:08:08.238 gnsi/pathz deny 0/RP0O/CPUO t11481 Pathz DENY: Code (235)
'Upd/Rep Denied path' 'cafyauto@/system/config/hostname, 1,1711946094752098"'
Apr 1 04:08:08.281 gnsi/pathz deny 0/RP0O/CPUO t11480 Pathz DENY: Code (234)
'Del Denied path' 'cafyauto@/system/config/hostname, 1,1711946094752098"'
Router#

gNSI state details

The show tech-support gnsi command is used to collect diagnostic information related to the gRPC Network
Security Interface (gNSI). This command helps in troubleshooting and analyzing the state of gNSI services
on the router.

* Purpose: Gathers detailed technical data for gNSI diagnostics.
*» Output: Saves the collected data in a compressed file on the router's storage.

» Usage: Useful for support and debugging purposes during gNSI-related issues.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

gRPC network operations interface .

Command usage

To collect diagnostic information of gNSI, use the following command:

Router# show tech-support gnsi

Mon Apr 1 06:55:51.482 UTC

++ Show tech start time: 2024-Apr-01.065551.UTC ++

Mon Apr 1 06:55:52 UTC 2024 Waiting for gathering to complete

Mon Apr 1 06:56:01 UTC 2024 Compressing show tech output

Show tech output available at Router#:
/harddisk:/showtech/showtech-mtb sf2-gnsi-2024-Apr-01.065551.UTC.tgz

++ Show tech end time: 2024-Apr-01.065601.UTC ++

The show tech-support gnsi command places the collected diagnostic information in a file, for example:
Router#: /harddisk:/showtech/showtech-mtb_sf2-gnsi-2024-Apr-01.065551.UT C.tgz

gRPC network operations interface

gNOI RPCs

The gRPC Network Operations Interface (gNOI) is a set of gRPC-based microservices for executing operational
commands on network devices. These services are used in conjunction with the gRPC Network Management
Interface (gNMI) to manage both target and operational state across the network.

» Modular services: gNOI provides modular services for specific operational tasks such as rebooting,
certificate management, and file operations.

* RPC-driven operations. Each gNOI service is implemented as a Remote Procedure Call (RPC), enabling
precise and efficient execution of operational commands.

* Integration with gNM1: gNOI complements gNMI by handling operational state and actions, while
gNMI manages configuration and telemetry.

* Transport via gRPC: gNOI uses gRPC as its transport protocol, ensuring secure, high-performance
communication.

» OpenConfig standard compliance: gNOI services and messages are defined using OpenConfig protocol
buffers (proto files), ensuring interoperability and vendor neutrality.

For more information about gNOI, see the GitHub repository.

To send gNOI RPC requests, you need a client that implements the gNOI client interface for each RPC.

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gNOI OpenConfig
proto files are located in the Github repository.

Table 12: Feature History Table

Feature Name Release Information | Description

gNOI System Proto Release 7.8.1 You can now avail the services of cancelReboot
to terminate outstanding reboot request, and
KillProcess RPCs to restart the process on
device.

gRPC Applications and Configuration [JJjj

https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi

Bl onoirees

gNOI supports these remote procedure calls (RPCs).

Table 13: gNOI RPC Types, RPC Names, and Description

gRPC Applications and Configuration |

RPC Type |Purpose RPC Name Description

System System RPCs | Reboot Reboots the target. The router
e n a b 1l e supports these reboot options:
(S)};Set er r:t— lieovnei *« COLD = 1; Shutdown and
including software restart OS and all hardware
upgrades, device * POWERDOWN = 2; Halt and
reboots, and power down
network
troubleshooting. * HALT = 3; Halt
For more details on « POWERUP = 7; Apply power
thesystem.proto,
see the Github
repository. RebootStatus Returns the status of the target

reboot.

SetPackage Places a software package including
bootable images on the target
device.

Ping Pings the target device and streams
the results of the ping operation.

Traceroute Runs the traceroute command on the
target device and streams the result.
The default hop count is 30.

Time Returns the current time on the

target device.

SwitchControlProcessor

Switches from the current route
processor to the specified route
processor. If the target does not
exist, the RPC returns an error
message.

CancelReboot

Cancels any pending reboot request.

KillProcess

Stops an OS process and optionally
restarts it.

Il 9RPC Applications and Configuration

https://github.com/openconfig/gnoi/blob/main/system/system.proto

| 9RPC Applications and Configuration

gnoirees I

RPC Type | Purpose RPC Name Description
File File RPCs facilitate | Get Reads and streams the contents of a
file-level file from the target device. The RPC
operations, streams the file as sequential
including reading messages with 64 KB of data.
file contents and
metadata. Remove Removes the specified file from the
target device. The RPC returns an
For more details on error if the file does not exist or
the file.proto, see permission is denied to remove the
the Github file.
repository.
Stat Returns metadata about a file on the
target device.
Note
gNOI File.Stat returns only the
filename in the response, which can
cause incorrect handling, especially
during recursive processing, as the
file might be mistakenly treated as
a directory.
Put Streams data into a file on the target
device.
TransferToRemote Transfers the contents of a file from

the target device to a specified
remote location. The response
contains the hash of the transferred
data. The RPC returns an error if the
file does not exist, the file transfer
fails or an error when reading the
file. This is a blocking call until the
file transfer is complete.

gRPC Applications and Configuration [JJjj

https://github.com/openconfig/gnoi/blob/main/file/file.proto

Bl onoirees

gRPC Applications and Configuration |

RPC Type | Purpose RPC Name Description
Certificate [Certificate|Rotate Replaces an existing certificate on
Management | Management RPCs the target device by creating a new
(Cert) handle certificate CSR request and placing the new
operations on the certificate on the target device. If
target device. the process fails, the target rolls
. back to the original certificate.
For more details on
the cert.proto, see | fgtall Installs a new certificate on the
the] Github target by creating a new CSR
repository. request and placing the new
certificate on the target based on the
CSR.
GetCertificates Gets the certificates on the target.
RevokeCertificates Revokes specific certificates.
CanGenerateCSR Asks a target if the certificate can
be generated.
LoadCertificateAuthorityBundle Loads a bundle of CA certificates
on the target. This CA certificate
bundle is used to verify the client
certificate when mutual TLS is
enabled.
Interface Interface RPCs | SetLoopbackMode Sets the loopback mode on an
manage operations interface.
on the interfaces.
GetLoopbackMode Gets the loopback mode on an
Fore more details interface.
o n the
inter face.proto, | ClearInterfaceCounters Resets the counters for the specified
see the Github interface.
repository.
Layer2 Layer2 RPCs | ClearLLDPInterface Clears all the LLDP adjacencies on
facilitate the specified interface.
operations on the
Link Layer
Discovery Protocol
(LLDP) for layer 2
neighbor
discovery.
For more details on
the layer2.proto,
see the Github
repository.

Il 9RPC Applications and Configuration

https://github.com/openconfig/gnoi/blob/main/cert/cert.proto
https://github.com/openconfig/gnoi/blob/cc419f3696d3a6d3e1a3999b75c51231b4773ace/interface/interface.proto
https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto

| 9RPC Applications and Configuration

gnoirees I

RPC Type |Purpose RPC Name Description

BGP BGP RPCs manage | ClearBGPNeighbor Clears a BGP session.
operations for the
Link Layer
Discovery Protocol
(LLDP) and layer
2 neighbor
discovery
For more details on
the bgp.proto, see
the Github
repository.

Diagnostic | Diagnostic RPCs | StartBERT Starts BERT on a pair of connected

(Diag) execute diagnostic ports between devices in the
tests on the target network.
device, utilizing
unique IDs to | StopBERT Stops an already in-progress BERT
manage each bit on a set of ports.
error _ rate .test GetBERTResult Gets the BERT results during the
(BERT) operation. .

BERT or after the operation is
For more details on complete.
the diag.proto, see
the Github
repository.

MPLS MPLS RPCs | MPLSPing Checks basic connectivity using
execute MPLS ping operation. See RFC
MPLS-related 4379.

?;)re?[tld(gsicgn the In Cisco IOS XR Release 7.5.4, the
& ‘ RPC supports 1dp_fec and
For more details on rsvpte_ lsp_name destination types.
the mpls.proto, see The destination types fec129 pwe
the Github and rsvpte 1sp are not supported.
repository.
ClearLSP Clears a single tunnel.
ClearLSPCounters Clears the MPLS counters for the
specified Label Switched Path (LSP)

gRPC Applications and Configuration [JJjj

https://github.com/openconfig/gnoi/blob/main/bgp/bgp.proto
https://github.com/openconfig/gnoi/blob/main/diag/diag.proto
https://github.com/openconfig/gnoi/blob/main/mpls/mpls.proto

Bl onoirees

gRPC Applications and Configuration |

RPC Type |Purpose RPC Name Description
Operating |The OS service | Install Transfers an OS package onto the
System offers an interface target.
(0S) for installing the Note
0S ona target Only Golden ISO installation is
device, with RPCs) . .
supported; RPM installation is not
used to update the supported
router software and '
upgrade the - -
system. Activate Sets the requested OS version as the
version that is used at the next
C oncurren t reboot. If booting up the requested
installations on the OS version fails, the system
same target are not recovers by rolling back to the
permitted. previously running OS package.
Formore details on Verify Verifies the running OS version.
the os.proto, use
the Github
repository.

These examples shows the gNOI supported RPCs.

Table 14: gNOI RPC Name, Purpose, and Example

RPC Name

Purpose

Example

Get

Streams the contents of a file from the
target.

RPC to 10.105.57.106:57900
RPC start time: 20:58:27.513638

Request-—-——-==-=====-—=————-—-
RPC start time: 20:58:27.513668
remote file:

"harddisk:/giso_image repo/test.log'|

Response-—-—-=-=--—-—--——-———————-
RPC end time: 20:58:27.518413
contents: "GNOI \n\n"

hash {

method: MD5

hash:
"DORASTNNZEAZ\RAAINSTONGLHK\IO\ZB\OL6\3A3)
}

Il 9RPC Applications and Configuration

https://github.com/openconfig/gnoi/blob/main/os/os.proto

| 9RPC Applications and Configuration
gnoirees I

RPC Name Purpose Example

Remove Remove the specified file from the target. | RPC to 10.105.57.106:57900
RPC start time: 21:07:57.089554

_____________________ File Remove
Request—-—-———————————————————
remote file:
"harddisk:/sample.txt"

Response—-—-—-—-—=-——-—————-—----
RPC end time: 21:09:27.796217
File removal
harddisk:/sample.txt successful

Reboot Reloads a requested target. RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
————————————————————— Reboot
Request--—---—--------———————-

RPC start time: 21:12:49.811561
method: COLD

message: "Test Reboot"
subcomponents {
origin: "openconfig-platform"
elem {

name: "components"

}

elem {

name: "component"

key {

key: "name"

value: "O/RPO"

}

}

elem {

name: "state"

}

elem {

name: "location"

}

}

Set Package Places software package on the target. RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536

————————————————————— Set Package]
Request----———7-——---"—--"---—-
RPC start time: 15:33:34.378745

Sending SetPackage RPC

package {

filename:

"rerdtisk: /giso dnege repo/<platfomersia-giso.isd|
activate: true

}

method: MD5

hash:

"C\ZIAIABAZINZ IBAZINAIAENANZ7AN OB\ BA A
RPC end time: 15:47:00.928361

gRPC Applications and Configuration [JJjj

Bl onoirees

gRPC Applications and Configuration |

RPC Name

Purpose

Example

Reboot Status

Returns the status of reboot for the target.

RPC to 10.105.57.106:57900

RPC start time: 22:27:34.209473
————————————————————— Reboot
Status
Request---———-----------———-
subcomponents {

origin: "openconfig-platform"
elem {

name: "components"
}

elem {

name: "component"
key {

key: "name"
value: "O/RPO"
}

}

elem {

name: "state"

}

elem

name: "location"

RPC end time: 22:27:34.319618

Status
Response--————-----------——————
Active : False

Wait : O

When : O

Reason : Test Reboot

Count : O

CancelReboot RPC

Cancels any outstanding reboot

Request

CancelRebootRequest
subcomponents {

origin: "openconfig-platform"
elem {

name: "components"
}

elem {

name: "component"
key {

key: "name"

value: "O0/RPO/CPUO"
}

}

elem {

name: "state"

elem {
name: "location"

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
gNOI packet link qualifications .

RPC Name Purpose Example
CancelRebootResponse | Cancels any outstanding reboot (rhel7-22.24.10) -bash-4.25%
KillProcess Kills the executing process. Either a PID | KillProcessRequest

pid: 3451

or process name must be specified, and a | "
signal: SIGNAL TERM

termination signal must be specified.

KillProcessResponse
-bash-4.2$

gNOI packet link qualifications

The gRPC network operations interface (gNOI) packet link qualification is a link qualification service which
provides a way to certify link quality between a generator and a reflector device.

* Provides a method to check link quality using test traffic between generator and reflector devices.
* Supports RPC-based diagnostics to assess packet transmission and reception metrics.

* Includes capabilities to fetch transmission rate and link capacity via gNSI RPCs.

Additional information such as supported roles, timing configurations, and RPC specifications are available
through the gNOI protocol documentation.

Table 15: Feature History Table

Feature Name Release Feature Description
Information

gNOI Packet Link Release 24.2.11 | You can now check and assess the reliability of the link speed
Qualification and packet drops between the two network devices (generator
and the reflector) by performing the gNOI packet-based link
qualification service.

This can be achieved by sending the packets from the generator
to the reflector, and receiving the looped back packets from
the reflector within a certain tolerance limit.

Packet link qualification overview

The gRPC network operations interface (gNOI) packet link qualification provides a method to check the link
quality between a generator and a reflector device. The generator device generates test traffic and sends it out
of the requested interface, maintaining counters of the sent, received, errored, and dropped packets. The
reflector device loops back the traffic on the requested interface. The packet-based link qualification service
verifies that the packets are sent and received on the requested interface. You can obtain the transmission rate
and the link's capacity range for that interface from the gNSI Packet Link Qualification RPC messages:
Capabilities and Get.

To view the packet link qualification specification, see the Github repository.

This table lists the packet link qualification RPCs.

gRPC Applications and Configuration [JJjj

https://github.com/openconfig/gnoi/blob/main/packet_link_qualification/packet_link_qualification.proto

. gNOI packet link qualifications

gRPC Applications and Configuration |

Table 16: Packet link qualification (PLQ) RPCs

RPC

Description

Capabilities

Fetches the capabilities of the device as a link qualification service. The
capabilities result includes:

* The roles supported on the device (Packet generator, Physical Medium
Dependent (PMD) loopback reflector)

* Information on whether the NTP synchronization is supported or not

* Information on whether the current device time is synchronized through
NTP or not.

» The Maximum number of results stored per interface

Create

Creates a set of link qualifications on the device.
Each element in a create message specifies these parameters:
* A unique qualification ID
* The interface on which to run the qualification
* The endpoint type (the role of the device)
* Role-specific configuration

* Timing information in the form of either NTP-based or RPC-based
timing For more information, see Link Qualifications Based on
Timing table.

Note
Packet generator and PMD loopback roles are supported

The packet injector and ASIC loopback roles are not supported.

Delete

Deletes a set of qualifications by their IDs.

Stops all the running qualification tests listed and deletes their records from
the device.

The qualifications are automatically deleted from the device 24 hours either
after successful completion or in the event of any error.

Get

Gets the status of each of the unique qualification IDs that you specify. For
generator qualifications, it returns the number of packets sent, received,
errored, dropped, and the expected and achieved rate in bytes per second.
This data isn’t present for reflector qualifications.

List

This RPC lists all the qualifications on the device.

Link qualifications based on timing

When you run the create RpC (see table Packet Link Qualification (PLQ) RPCs), it creates a set of link
qualifications based on either it’s NTP-based or RPC-based timing.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

gNOI Healthz

gNoI Healthz [Jj

For both NTP-based and RPC-based timings, the qualification start time must be set no earlier than the
minimum setup duration from the current time, as specified in the capabilities RPC (see table packet Link
Qualification (PLQ) RPCs)response message.

The table lists the NTP-based and RPC-based link qualification timing.

Table 17: Link qualification timing

NTP-based Timing RPC-based Timing
NTP-based timing specifies: RPC-based timing specifies:
* Specific start time * Presync duration (duration from the current time to when

)) the setup should start)
* Specific end time

. * Setup duration
» Teardown time

* Qualification duration

* Postsync duration (duration from the end of the
qualification to when the teardown should start)

» Teardown duration

The gRPC Network Operations Interface (gNOI) Healthz is a gRPC service that focuses on the health check
and monitoring of the network devices. It determines whether all the nodes of a network are fully functional,
degraded, or must be replaced. The gNOI Healthz process involves:

» Waiting for the health status data from various subsystem components
* Inspecting and analyzing health status data to identify any unhealthy entities

* Collecting logs

Table 18: Feature History Table

Feature Name Release Information Feature Description

gNOI Healthz Release 24.4.1 With gNOI Healthz, you can
monitor and troubleshoot device
health by collecting logs and
conducting root-cause analysis on
detected issues. This proactive
approach enables early
identification and resolution of
system health problems, thereby
reducing downtime and enhancing
reliability.

For the specification on
gNOL healthz, see the GitHub
repository.

gRPC Applications and Configuration [JJjj

https://github.com/openconfig/gnoi/tree/main/healthz

gRPC Applications and Configuration |
. Verify router health using gNOI RPCs

Health Monitoring with gNOI Healthz
gNOI Healthz, in conjunction with gNMI telemetry, monitors the health of network components.

When a component becomes HEALTHY or UNHEALTHY, a telemetry update is sent for that health event.

For more details about the health event, see gNOI Healthz RPCs. When a system component changes its state
to UNHEALTHY, the intended artifacts (debug logs, core file, and so on) are generated automatically at the
time of the health event.

Router Health Status Updates Workflow

1. The client subscribes to the component's OpenConfig path with an ON_CHANGE request and waits for
a health event to occur. When a health event is detected in the router for that component, the client receives
a notification. The client monitors these parameters:

* status: Health, Unhealthy, or Unknown
« last-unhealthy time: Timestamp of last known healthy state

* unhealthy-count: Number of times the particular component is reported unhealthy

2. When the router receives gNOI Healthz RPCs from gNOI client, it performs these actions and responds
to the gNOI client.

Table 19: gNOI healthz RPCs

When the gNOI client sends... | The Router...

Get RPC Retrieves the latest set of health statuses that are associated with a specific
component and its subcomponents.

List RPC Returns all events that are associated with a device.

Artifact RPC Retrieves specific artifacts that are listed by the target system in the List()
or Get() RPC.

Acknowledge RPC Acknowledges a series of artifacts that are listed by the Acknowledge()
RPC.

Check RPC Performs intensive health checks that may impact the service, ensuring

they are done intentionally to avoid disruptions.

Verify router health using gNOI RPCs
Monitor health status telemetry of a router using gNOI healthz RPC.

Procedure

Step 1 Monitor health state of the router.

Example:

Router# show health status
SNo Component name Health status

Il 9RPC Applications and Configuration

http://For%20the%20specification%20on%20gNOI.healthz,%20see%20GitHub%20repository.

g pplications and Configuration
RPC Applicati d Confi i
Verify router health using gNOI RPCs .

1 0 RPO_CPUO-appmgr healthy
2 0_RPO_CPUO-ownershipd healthy

Step 2 Monitor router health with gNOI List RPC by tracking all the events.

Example:

Router# /auto/appmgr/xrhealth/bin/gnoic -a ${MGMT_IP} --port 57400 --insecure -u
cisco -p <password> healthz

list --path "openconfig:/components/component[name=3${OC_COMP}]"

WARN[0000] "192.0.1.0" could not lookup hostname: lookup
198.51.100.0.in-addr.arpa. on

171.70.168.183:53: no such host

target "192.0.1.0:57400":

| Target Name \ ID
Path | Status |

| 192.0.1.0:57400 | 1721815320614225976 |
openconfig:components/component [name=0 RPO CPUO-appmgr] | STATUS_ UNHEALTHY |

| 192.0.1.0:57400 | 1721815320614225976 |
openconfig:components/component [name=0 RPO CPUO-appmgr] | STATUS_UNHEALTHY |

| 192.0.1.0:57400 | 1721815321290718105 |
openconfig:components/component [name=0 RP0 CPUO-appmgr] | STATUS HEALTHY \

Created At
Artifact ID

2024-07-24 10:02:00.614225976 +0000 UTC |
0 RPO CPUO-appmgr-1721815320614225976-58c4d59%¢caf2e8bd971715eea491048673bflaf290fade]l12ad0ece654e285568 |

2024-07-24 10:02:00.614225976 +0000 UTC |
0 RPO CPUO-appmgr-1721815320614225976-85f%ab33ecct4ed8373865£00d8£d24£4e8e49014%0 78092976941 7b57864ea |

2024-07-24 10:02:01.290718105 +0000 UTC |

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |

. Verify router health using gNOI RPCs

Step 3

Monitor router health with gNOI Get RPC for specific components.

Example:

Router# /auto/appmgr/xrhealth/bin/gnoic -a ${MGMT_IP} --port 57400 --insecure -u
cisco -p <password>
healthz get --path "openconfig:/components/component[name=${0OC_COMP}]"

WARN[0000] "192.0.1.0" could not lookup hostname: lookup
198.51.100.0.in-addr.arpa.

on 171.70.168.183:53: no such host

target "192.0.1.0:57400":

path : openconfig:components/component [name=0 RPO CPUO-appmgr]
status : STATUS_HEALTHY

id :1721815321290718105

acked : false

created : 2024-07-24 10:02:01.290718105 +0000 UTC

expires : 2024-07-31 10:02:01.000290718 +0000 UTC

Router# cd /tmp/

Router/tmp#

Router/tmp# /auto/appmgr/xrhealth/bin/gnoic -a ${MGMT IP} --port 57400
--insecure -u cisco -p <password>
healthz artifact --id 0 RPO CPUO-appmgr-1721815320614225976-
58c4d59caf2e8bd971715eea491048673bflaf290fadell2adlece654e285568
WARN[0000] "192.0.1.0" could not lookup hostname: lookup
198.51.100.0.in-addr.arpa.
on 171.70.168.183:53: no such host
INFO[0000] 192.0.1.0:57400: received file header for artifactID:
0 RPO_CPUO-appmgr-1721815320614225976-
58c4d59caf2e8bd971715eea491048673bflaf290fadell2adlece654e285568
id:
"0 RPO_CPUO-appmgr-1721815320614225976-58c4d59caf2e80d971715eea491048673bf1af290fadel 12ad0ece654e285568"

file: {
name: "procmgr event 20240724100205.tar.gz"
path:
"/harddisk:/eem ac logs/xrhealth/artifacts/procmgr event 20240724100205.tar.gz"
mimetype: "application/gzip"
size: 3825
hash: {
method: SHA256
hash:

"M\ xf5\xa5\xfe] \xcl~Y\xbc-\xed \xfcI\xe9r\xbd \x8e\xd2\xe6\x0fvk\x90\x£52\r\xe6\xda\x94\x83\x80\xc\x "

}
}
INFO[0000] received 3825 bytes for artifactID:
0 RPO_CPUO-appmgr-1721815320614225976-58c4d59caf2e8bd971715eea491048673of1af290fadel12adlece654e285568

INFO[0000] 192.0.1.0:57400: received trailer for artifactID:

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

griBl i

0 RPO_CPUO-appmgr-1721815320614225976-58c4d59caf2e8bd971715eea491048673bf1af290fadel12ad0ece654e285568

INFO[0000] 192.0.1.0:57400: received 3825 bytes in total
INFO[0000] 192.0.1.0:57400: comparing file HASH
INFO[0000] 192.0.1.0:57400: HASH OK

The router health status is successfully monitored using gNOI healthz RPCs including List, Get, and artifact
retrieval.

Example

For example, use the gNOI healthz artifact RPC to retrieve logs related to a specific health event
using the artifact ID.

What to do next
After completing this task:

* Review the health status and logs to identify and resolve any component issues.

The gRPC Routing Information Base Interface (gRIBI) is a gRPC service that allows an external client to
programmatically manage the routes in the Routing Information Base (RIB) of the router.

« Traffic engineering: Enables route control independent of traditional routing protocols.

« External client support: Clients can be local or remote and interact with the router via gRIBI RPCs.

» OpenConfigintegration: Uses OpenConfig AFT YANG models and protobufs for route management.
* Telemetry support: Supports Event-driven Telemetry (EDT) for route monitoring.

Using he external client application, programatically you can add, edit, or remove the routing entries in the
routing table. The client can be local to the router or hosted externally in the network management station.

gRIBI and OpenConfig protobuf files

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gRIBI OpenConfig
proto file gribi.proto is located in the Github repository.

gRIBI's use of OpenConfig AFT for RIB management

The OpenConfig Abstract Forwarding Table (openconfig-aft.yang) data model defines a common abstraction
of the RIB information and describes the forwarding entries installed on a network element. The AFT definitions
are auto-generated from the OpenConfig AFT YANG schema. The protocol buffer (protobuf) representation
of the OpenConfig AFT schema is available as the gribi_aft.proto file in the Github repository. gRIBI leverages
this data model and the proto file to manage the RIB entries. This data model supports streaming Event-driven
telemetry (EDT) data to check the installed routes in the Forwarding Information Base (FIB).

gRPC Applications and Configuration [JJjj

https://github.com/openconfig/gribi/blob/master/v1/proto/service/gribi.proto
https://github.com/openconfig/gribi/blob/master/v1/proto/gribi_aft/gribi_aft.proto

B =

gRPC Applications and Configuration |

Routing preference hierarchy in gRIBI

The routes configured using static configuration have the highest preference, followed by routes configured
using gRIBI, and then those configured using other protocols such as BGP or ISIS.

gRIBI RPCs

gRIBI supports these remote procedure calls (RPCs) to manage the routes in the RIB:

» Modify Operation: Provides a bidirectional streaming RPC that is used to issue modifications to the
AFT in the form of a Modi fyRequest message. The network element responds asynchronously with a
ModifyResponse message based on each request.

M essages:

Supports route modifications on IPv4Entry, next hop group (NHG), next hop (NH) key objects. The
traffic engineering controller ensures that specific ordering of gRIBI transactions is met—NH and NHG
entries are sent before IPv4Entries. The NHGs and NHs are sent in a single Modi fyRequest as repeated
AFTOperation messages. The controller expects that the NHG or NH transactions are acknowledged
before programming the corresponding IPv4Entry transactions. In the next hop entries,

decapsulate header, encapsulate header, interface ref, ip address, ip in ip and

network instance attributes are supported.

Note

IP forwarding, encapsulation and decapsulation operations are supported. MPLS
operations are not supported.

SessionPar ameters:

* For client redundancy, only sTNGLE PRIMARY is supported. The primary client is designated based
on the client with the highest election ID. Each AFTOperation carries an election ID. The server
processes the AFTOperation if the election ID is the last advertised ID and is the highest ID on the
server. If the election ID is less than the current election ID, the ID is ignored. If the election ID is
equal, the client sending the message is accepted as a new master.

For client persistence, only the PRESERVE option is supported, wherein the network device preserves
the routes programmed by the gRIBI server's RIB, the system RIB, and the system FIB when the
primary client disconnects.

When gRIBI restarts, the configuration in the gRIBI server’s cache are sent to the router to reprogram
the RIB. The election ID is reset to 0 upon restart.

The table shows the request and response messages exchanged between the client and server for the
Modify RPCs.

Table 20: Request and Response Messages of Client-Server Exchange for Modify RPCs

Operation Request (Client to Server) Response (Server to Client)

Session setup Message ModifyResponse { Message ModifyResponse {
SessionParameters SessionParametersResult
} }

Election ID Message Modify Request { Message Modify Request ({
election id (intl128) election id (intl128)
} }

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
gRIBI configuration to modify routing entries .

Operation Request (Client to Server) Response (Server to Client)

[\FT()peraﬁon Message ModifyResponse { Message ModifyResponse{
repeated AFTOperation operation repeated AFTResult result
} }

 Get Operation: Retrieves the content of the installed AFTs from the gRIBI daemon. The client requests
for information using a GetRequest message, and the server responds with the set of currently installed
entries via the GetrResponse message. Once all entries have been sent, the server closes the RPC.

Supports all operations defined in the gribi.proto file.

~

Note IPv4Entry.metdata is supported only in cet RPC, and not in AFT telemetry.

The table shows the request and response messages exchanged between the client and server for the cet
RPCs.

Table 21: Request and Response Messages of Client-Server Exchange for Get RPCs

Operation Request (Client to Server) Response (Server to Client)
Get entries Message GetRequest { Message GetResponse {
network instance repeated AFTEntry entry
name [string] }
all
AFTType aft
}

* Flush Operation: Removes all AFT entries that are currently installed on the server using gRIBI RPCs.
The client sends a FlushRequest message to remove all the entries, and the server responds with a
FlushResponse message after the operation is complete.

Supports all operations defined in the gribi.proto file.

The table shows the request and response exchanged between the client and server for the F1ush RPCs.

Table 22: Request and Response Messages of Client-Server Exchange for Flush RPCs

Operation Request (Client to Server) Response (Server to Client)
Flush entries Message FlushRequest { Message FlushResponse {
election timestamp [int64]

id [uint 128] }
override [bool]
network_instance
name [string]
all

gRIBI configuration to modify routing entries

Configure gRIBI protocol to directly interact with the routers' RIB using RPCs. The gRIBI client sends
messages to the RIB to add a route, delete a route, register next hop and next hop groups to manage the routes.

gRPC Applications and Configuration [JJjj

. gRIBI configuration to modify routing entries

Step 1

Step 2

Step 3

Before you begin

gRPC Applications and Configuration |

Ensure that you have configured the gRIBI client application.

Procedure

Enable gRPC protocol on the router.

Example:

Router#configure

Router (config) #grpc

Configure the port number and address family.

Example:

Router (config-grpc) #port 57345
Router (config-grpc) #address-family ipv4

The port number ranges from 57344 to 57999. The default port is 57400. If a port number is unavailable, an error is

displayed.

Verify that gRPC is enabled on the router.

Example:

Router#show grpc

Thu Feb 2 22:03:17.004 UTC

Address family

Port

DSCP

TTL

VRF

Server

TLS

TLS mutual

Trustpoint

Certificate Authentication
TLS v1.0

Maximum requests

Maximum requests per user
Maximum streams

Maximum streams per user

TLS cipher suites
Default
Enable
Disable

Operational enable

dual
57777
Default
64
global-vrf
enabled
enabled
disabled
none
disabled
enabled
128

10

32

32

none
none
none

ecdhe-rsa-chacha20-polyl1305

ecdhe-ecdsa-chacha20-polyl1305
ecdhe-rsa-aesl28-gcm-sha256
ecdhe-ecdsa-aesl28-gcm-sha256
ecdhe-rsa-aes256-gcm-sha384
ecdhe-ecdsa-aes256-gcm-sha384

ecdhe-rsa-aesl28-sha
ecdhe-ecdsa-aesl28-sha
ecdhe-rsa-aes256-sha
ecdhe-ecdsa-aes256-sha
aesl28-gcm-sha256
aes256-gcm-sha384

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
gRIBI configuration to modify routing entries .

: aesl28-sha
: aes256-sha
Operational disable : none

Listen address suites
Listen to Address : ANY

Step 4 Manage the routing entries using gRIBI RPCs. In this example, you use the Modi fy RPC to add a next hop entry with IP
address 192.0.2.0.

a) Configure the next hop parameters for the AFT message.

Example:

NextHop {
ip address 192.0.2.0;
InterfaceRef {
interface [string]
subinterface [uint]
}
IPnIP {
dst_ip [string]
src_ip [string]
}
}

b) Set the next hop entry in the AFTOperation. In this example, you add the next hop IP address.

Example:

Message AFTOperation {
id
network instance
Operation op
ADD
entry
Afts.NextHopKey next hop
}

c) Initiate the Modi fyrRequest RPC using the AFTOperation message.

Example:

Message ModifyRequest {
repeated AFTOperation operation

}

The NHs are sent in a single Modi fyrequest RPC as repeated AFTOperation messages.

d) View that the request is acknowledged in the gRIBI client.

Example:

gRIBIClient sent Modify message operation:{id:1 network instance:"DEFAULT"
op:ADD next hop:{index:1000
next hop:{ip_address:{value:"192.0.2.0"}}} election id:{low:3}}

Step 5 Verify the configuration performed using gRIBI RPC.

Example:

In this example, you verify the next hop IP address that you sent to the server through the modify RPC is configured
successfully.

Router#show gribi aft next-hop-groups
Thu Feb 2 00:34:08.104 UTC
100, Backup NHG: 1111

gRPC Applications and Configuration [JJjj

. P4Runtime

P4Runtime

gRPC Applications and Configuration |

[100, 2]: 192.0.2.40
[200, 2]: 192.0.2.42
[1111, 100]: (vrf REPAIR) (!)
1000
[1100, 30]: 192.0.2.10
[1200, 10]: 192.0.2.14
[1000, 60]: 192.0.2.0
1111
[1111, 100]: (vrf REPAIR)
2000
[2000, 50]: 192.0.2.18
[2100, 50]: 192.0.2.22
3000
[3000, 10]: 192.0.2.26
4000
[4000, 10]: Decapsulate IPv4 (vrf DEFAULT)

After completing this task, the gRIBI service is configured and operational. You can verify its status using
CLI commands.

Example

For example, after enabling the gRIBI service and configuring the port, you can use the 'show gribi'
command to verify the service is running and listening on the expected port.

What to do next

After configuration, monitor the gRIBI service periodically to ensure it remains active and reachable. Adjust
port settings or restart the service if issues are detected.

P4Runtime is a protocol and framework that provides a control plane API for

* programming, and

» managing network devices.
A P4Runtime to manage traffic operations is a control plane specification to manage the data plane elements
of a device. It defines the navigation and management of packets through data plane blocks using PARuntime

APIs. These data plane blocks can be managed to perform a set of traffic operations between the PARuntime
controller and the router:

* Send or receive packets using PacketOut and PacketIn I/O messages—streamMessageRequest,
StreamMessageResponse and StreamError IMeSsSages.

* Elect the primary controller using the MasterArbitrationUpdate message.

* Read and write forwarding table entries, protocol headers, counters, and other P4 entities.

For more information about how controllers can connect to the router and program P4-defined functionalities,
see PART specification.

Il 9RPC Applications and Configuration

https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120.html

| 9RPC Applications and Configuration

Configure P4RT to manage packets .

Configure P4RT to manage packets

Step 1

Step 2

Step 3

Configure PART to send or receive packets between one or more controllers and the router.

Before you begin

Ensure that the device supports P4RT and that you have administrative access to the CLI.

Procedure

Enable P4Runtime.

Example:

Router#config

Router (config) #grpc

Router (config-grpc) #pért

Router (config-grpc-p4rt) #commit

Assign a unique P4 numeric identifier to the required physical port on the router. The controller uses this port ID as an
alias to identify the interface through which the packets are sent or received with ingress or egress metadata.

Example:

Router (config-grpc-p4rt) #interface HundredGigE0/0/0/24 port-id 3
Router (config-grpc-p4drt) #interface HundredGigE0/0/0/25 port-id 6
Router (config-grpc-pdrt) #interface HundredGigE0/0/0/26 port-id 7

The port-id is a unique 32-bit identifier. The range is 1 to 4294967039.

Assign a unique P4 device identifier to each Network Processing Unit (NPU) in the system.

Example:

Router (config-grpc-p4rt) #location 0/0/CPUO npu-id 0 device-id 1000000
Router (config-grpc-p4rt) #location 0/0/CPUO npu-id 1 device-id 1000001
Router (config-grpc-p4rt) #location 0/1/CPUO npu-id 0 device-id 1000002
Router (config-grpc-p4rt) #location 0/1/CPUO npu-id 1 device-id 1000011
Router (config-grpc-p4rt) #commit

Router (config-grpc-p4rt) #end

The device-id is a unique 64-bit identifier. The range is 1 to 18446744073709551615. The npu-id represents a NPU
identifier within a line card and the value ranges from 0 to 7.

The controller or the PARuntime agent, which can be external or internal to the router, can use the port-id and device-id
to inject packets and request to send certain packet types. For example, P4Runtime supports the ability to configure
Access Control Lists (ACLs) in order to redirect packets with TTL value 1 to the controller. When the router receives a
packet with that TTL value, the packet is sent to the controller with the details such as packet received from device-id
x, port-id y and the packet is being sent to port-id z.

For more information about programming the router using P4Runtime, see P4RT specification.

P4RT is successfully configured and operational on the device.

What to do next

Verify P4RT telemetry and monitor the session status to ensure continued operation.

gRPC Applications and Configuration [JJjj

https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120.html

. gNSI Acctz loggings

gRPC Applications and Configuration |

gNSI Acctz loggings

The gNSI accounting (Acctz) protocol collects and transfers AAA accounting records from a router to a remote
collection service over a gRPC transport connection. It enhances visibility into user activity and service usage
for improved network performance and security.

* Protocol: gNSI Acctz over gRPC
* Purpose: Logs CLI and gRPC service activity for AAA accounting
» Transport: gRPC-based streaming to remote collectors

» Monitoring: Real-time and historical record tracking

Table 23: Feature History Table

Feature |Release Feature Description
Name |Information

gNSI |Release 24.3.1 You can now log and monitor AAA (Authentication, Authorization, and
Acctz Accounting) accounting of gRPC operations and CLI accounting data through
Logging gNSI Acctz for effective management of network for better performance and
resource utilization. You can also configure the number of gNSI accounting
records that can be streamed.

Previously, you could monitor the AAA accounting data through syslog only.
The feature introduces these changes:

CLI:

To view the specification of gNSI Accounting (Acctz) RPCs and messages,
see the Github repository.

Starting from IOS XR software release 24.3.1, you can log gRPC AAA accounting data through gNSI
accounting (Acctz). The gNSI Acctz data is logged, stored in accounting records, and send to gNSI client for
monitoring purposes. These gNSI Acctz accounting records contain

* users' login or logout times,
* network access resources such as interface IP and port, and
* duration of each session.

The gNSI Acctz logging can be done using the RecordSubscribe() gRPC request to a router. For more
information on the RecordSubscribe() RPC, see the GitHub repository.

gNSI Acctz Logging Stream Capacity

The gNSI Acctz logs are recorded in a queue, maintaining a history of the 10 most recent records. When the
accounting queue is full and no gNSI Acctz collectors are connected, the stream drops the records. Besides

the 10 records stored for streaming, up to 512 additional records are stored during processing. As new records
arrive, the data stream continues until the gNSI session ends or an error occurs, such as a client disconnection

Il 9RPC Applications and Configuration

https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto
https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto

| 9RPC Applications and Configuration

Configure gNSI Acctz logging .

due to network issues or the server going down. If the server's output buffer remains full for an extended
period, new records are dropped until the collector starts receiving them.

When the queue reaches its full capacity, the system automatically replaces the oldest records with the newest
ones. The router then transmits this logged information through gNSI to gNSI client for real-time monitoring
purposes. You can configure the queue size using the grpc aaa accounting queue-size command.

Supported Records for gNSI Acctz Logging

gNSI Acctz logging system supports Command and gRPC service records.

Table 24: CLI and gRPC Accounting Records

Command Services Accounting Records

gRPC Services Accounting Records

The command accounting records are generated for
the commands executed in CLI mode and sent to gNSI
Acctz collectors. The details logged include:

« Session Info: remote/local IP addresses,
remote/local ports, and channel ID.

+ Authentication details: Identity, privilege level,
authentication status (PERMIT/DENY), and the
cause of denial (if applicable).

» Command and Command status: authentication
status (PERMIT/DENY).

» Timestamp: The time when the event was
generated.

The gRPC accounting records are generated for the
RPCs executed by gRPC services and sent to gNSI
Acctz collectors. The details logged include:

« Session I nfo: remote/local IP addresses,
remote/local ports, and channel ID.

+ Authentication details: Identity and privilege
level.

* RPC ServiceReguest: Service type, RPC name,
payload, and configuration metadata.

* gRPC Service Status: PERMIT/DENY.

» Timestamp: The time at which the event was
generated.

Default Behavior and Verification of gNSI Acctz Logging

By default, gNSI Acctz records are logged when the configuration is enabled. You can verify the gNSI Acctz
using show gnsi state, show gnsi acctz statistics, and show aaa accounting statistics commands.

Configure gNSI Acctz logging

Step 1

Monitor AAA information through gNSI Acctz logs.

Monitor gNSI state in the router.

Router# show gnsi state

Wed Jun 26 09:26:39.035 UTC

Global:

Main Thread cerrno : Success
Acctz Thread cerrno : Success
State : Active

gRPC Applications and Configuration [JJjj

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/authentication-authorization-and-accounting-commands.html#wp2834182384

. Configure gNSI Acctz logging

Step 2

Step 3

Step 4

RDSFS State

Obtain gRPC port number.

Example:

show grpc

Tue Aug 13 14:21:50.995 IST

Server name
Address family
Port

Service ports
gNMI
P4RT
gRIBI

DSCP

TTL

VRF

Server

TLS

TLS mutual

Trustpoint

Certificate Authentication
Certificate common name
TLS v1.0

Maximum requests

Maximum requests per user
Maximum streams

Maximum streams per user
Maximum concurrent streams
Memory limit (MB)
Keepalive time

Keepalive timeout

Keepalive enforcement minimum time

TLS cipher suites

Default

Default TLS1.3
aes_256_gcm sha384
chacha20 polyl305 sha256

Enable
Disable

Operational enable
Operational disable
Listen addresses

Configure gNSI queue size.

Example:

Router# configure
Router (config) # grpc aaa accounting queue-size 30

Router (config) # end

Monitor gNSI Acctz statistics in the router.

Example:

Router# show gnsi acctz statistics

Tue Aug 13 05:57:24.210 UTC

Il 9RPC Applications and Configuration

DEFAULT
dual
57400

none
none
none

Default
64

enabled
disabled
disabled
none
disabled
ems.cisco.com
disabled
128

10

32

32

32

1024

30

20

300

none
aes_128 gcm sha256

none
none

none
none
ANY

gRPC Applications and Configuration |

| 9RPC Applications and Configuration
Configure gNSI Acctz logging .

SentToAAA Queue:
Grpc services:

GNMT : 4998 sent, 0 dropped
GNOTI: 0 sent, 0 dropped
GNSI: 2 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped
Stats:

Total Sent: 5000
Total Drops: O

Streams:

Grpc services:

GNMT : 4996 sent, 2 dropped
GNOTI: 0 sent, 0 dropped
GNSI: 1 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped
Stats:

Total Sent: 4997

Total Drops: 2

Cmd services:

CLI: 3 sent, 0 dropped
Stats:

Total Sent: 3

Total Drops: O

Router#

Step 5 Provide port and IP address to the Acctz gNSI client.

Example:
acctz collector -server addr 192.0.2.111:57400 -username <user name> -password <passwod> -dieafter
600
——————————————— gSNI Remote Collector —--—----————---——-
2024/08/25 22:59:13 Connecting to gNSI Server.
2024/08/25 22:59:13 gNSI Server connected.
2024/08/25 22:59:13 Started new acctz client.
2024/08/25 22:59:13 Initiate Acctz RecordSubscribe with server
2024/08/25 22:59:13 Stream started
2024/08/25 22:59:13 Waiting for response from server.
Step 6 Verify the accounting record from the router.
Example:

NSl Acctz RPC RecordSubscribe() response to the Acctz grRPC client

session info:

{

local address:"192.0.2.111"
local port:57400

remote address:"192.0.2.1"
remote port:44374

ip proto:6

user:

{

identity:"lab"

}

}

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |
. Configure gNSI Acctz logging

timestamp:

{

seconds:1718971022 nanos:105825300
}

grpc_service:

{

service type:GRPC_SERVICE TYPE GNSI
rpc_name:"/gnsi.acctz.vl.AcctzStream/RecordSubscribe" payload istruncated:true
authz:

{

status:AUTHZ STATUS_ PERMIT

}

}

AAA Accounting Statistics

Router# show aaa accounting statistics
Sat Aug 17 17:10:43.055 UTC
Successfully logged events:
Total events: 0
XR CLI: O
XR SHELL: O
GRPC:

GNMI: O
GNSI: 2
GNOI: 0
GRIBI: 0
P4RT: O
SLAPI: O
NETCONF: 0
SysAdmin:
CLI: O
SHELL: O
Host:
SHELL: O

Errors:
Invalid requests: 0

Max. records in buffer: 100

Total records in buffer: 0
Router#

After completing this task, gNSI Acctz logging is enabled and operational. The router streams accounting
records to the Acctz gNSI client, and you can verify successful transmission and logging using CLI and gRPC
responses.

Example

For example, after configuring the queue size and starting the Acctz client, the router streams
accounting records such as user login sessions. You can verify this using the show gnsi acctz
statistics and show aaa accounting statistics commands.

What to do next

After completing the configuration, monitor the gNSI Acctz logs periodically to ensure accounting records
are being received without drops.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
Data logging with gNSI AcctzStream service .

* Adjust the queue size if you observe dropped records in the statistics.

* Ensure the Acctz client remains connected and responsive.

Data logging with gNSI AcctzStream service

The data logging with gNSI AcctzStream is a service that allows clients to receive a continuous stream of
accounting records from a target network device to track the changes made on that device.

* Replaces the existing bi-directional data streaming service, Acctz, with the new server-streaming service,
AcctzStream.

* Ensures effective network optimization and resource utilization.

* Allows configuration of maximum memory allocated for cached accounting history records using the
grpc aaa accounting history-memomy command.

Provides CLI enhancements and integration with gNSI AcctzStream RPCs and messages.

gNSI AcctzStream service

Starting from Cisco IOS XR Release 24.4.1, the gNSI AcctzStream server-streaming service is used to collect
and transfer accounting records from a router to a remote collection service over a gRPC transport connection,
similar to the deprecated gNSI Acctz protocol.

The collectors request for logs using the RecordSubscribe() gRPC from the gNSI AcctzSteam service running
on the router. The logs are sent to the collectors through the RecordResponse() gRPC.

This feature has introduced the new gr pc aaa accounting history-memomy command used to configure the
maximum memory allocated for cached accounting history records. Use this command with the grpc aaa
accounting queue-size configuration to effectively limit the EMSD memory used by cached accounting
history records.

Configure gNSI AcctzStream logging
Monitor AAA information through gNSI AcctzStream logs.

Procedure

Step 1 Monitor gNSI state in the router.

Example:

Router# show gnsi state
Thu Sep 12 12:06:44.035 UTC

———————————————— GNSI state---—————-------
Global:

Main Thread cerrno ¢ Success
Acctz Thread cerrno : Success
State : Active
RDSFS State : Active

Step 2 Obtain gRPC port number.

gRPC Applications and Configuration [JJjj

https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto
https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto#L256

. Configure gNSI AcctzStream logging

Example:

show grpc
Thu Sep

12 13:23:06.022 UTC

Server name

Address
Port

family

Service ports

gNMI
P4RT
gRIBI

DSCP
TTL
VRF
Server
TLS

TLS mutual

Trustpoint

Certificate Authentication
Certificate common name

TLS v1.0

Maximum
Maximum
Maximum
Maximum
Maximum

requests

requests per user
streams

streams per user
concurrent streams

Memory limit (MB)
Keepalive time
Keepalive timeout

Keepalive enforcement minimum time

TLS cipher suites

Default

Default TLS1.3
aes_ 256 _gcm sha384
chacha20 polyl305 sha256

Enable
Disable

Operational enable
Operational disable
Listen addresses

Step 3 Configure gNSI history memory.

Example:

Router# configure

DEFAULT
dual
57400

none
none
none

Default
64

enabled
disabled
disabled
none
disabled
ems.cisco.com
disabled
128

10

32

32

32

1024

30

20

300

none

aes_ 128 gcm sha256

none
none

none
none
ANY

Router (config)# grpc aaa accounting history-memory 20
Router (config) # end

Step 4 Configure gNSI queue size.

Example:

Router# configure

Router (config) # grpc aaa accounting queue-size 30
Router (config) # end

Step 5 Monitor gNSI Acctz statistics in the router.

Il 9RPC Applications and Configuration

gRPC Applications and Configuration |

g P Pp ications an on |gurat|0|'|
COIIiIgme gNSI AcctzStream Iogglng .

Example:

Router# show gnsi acctz statistics
Thu Sep 12 13:56:18.043 UTC
SentToAAA Queue:
Grpc services:

GNMT : 4998 sent, 0 dropped
GNOTI: 0 sent, 0 dropped
GNSI: 2 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped
Stats:

Total Sent: 5000
Total Drops: 0

Streams:

Grpc services:

GNMT : 4996 sent, 2 dropped
GNOTI: 0 sent, 0 dropped
GNSI: 1 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: O sent, 0 dropped
Stats:

Total Sent: 4997

Total Drops: 2

Cmd services:

CLI: 3 sent, 0 dropped
Stats:

Total Sent: 3

Total Drops: O

Router#

Step 6 Provide port and IP address to the Acctz gNSI client.

Example:
acctz collector -server addr 192.0.2.111:57400 -username <user name> -password <passwod> -dieafter
600
——————————————— gSNI Remote Collector —--—--—-—-——-—-—----
2024/08/25 22:59:13 Connecting to gNSI Server.
2024/08/25 22:59:13 gNSI Server connected.
2024/08/25 22:59:13 Started new acctz client.
2024/08/25 22:59:13 Initiate Acctz RecordSubscribe with server
2024/08/25 22:59:13 Stream started
2024/08/25 22:59:13 Waiting for response from server.
Step 7 Verify the accounting record from the router.
Example:

NSl AcctzStream RPC RecordSubscribe() response to the Acctz grRPC client

session info:

{

local address:"192.0.2.111"
local port:57400

remote address:"192.0.2.1"
remote port:44374

ip proto:6

user:

{

gRPC Applications and Configuration [JJjj

. Configure gNSI AcctzStream logging

identity:"lab"

}
}

timestamp:

{

seconds:1718971022 nanos:105825300

}

grpc_service:

{

service type:GRPC_SERVICE TYPE GNSI
rpc_name:"/gnsi.acctz.vl.AcctzStream/RecordSubscribe" payload istruncated:true

authz:

{

status:AUTHZ STATUS_ PERMIT

}
}

AAA Accounting Statistics

Router# show gnsi
Acctz
Total
Total

accounting statistics
History Buffer:
record: 200

history truncation: 10

Cmd service records:

Shell:

Cli:

0
0

Netconf: 0
Grpc service records:

GNMTI : 0
GNOTI: 0
GNSTI: 0
GRIBI: 0
P4RT: 0

History Snapshot:

Max Memory size: 200 MB
Memory used: 8 MB

Max number of records: 100

Total number of records present: 16

gRPC Accounting Queue:
Grpc services:

GNMI : 0 sent, 0 dropped,
GNOTI: 0 sent, 0 dropped,
GNSI: 0 sent, 0 dropped,
GRIBI: 0 sent, 0 dropped,
P4RT: 0 sent, 0 dropped,
Stats:

Queue buffer size: 100 MB
Queue buffer used: 0 MB
Queue size: 1

Queue used: 0

Queue enqueue: 0

Queue dequeue: 0

Queue drops: 0

Queue max time: 0 usec
Queue min time: 0 usec
Queue avg time: 0 usec
Errors:

Queue init failure: 0
Queue update failure: 0
Queue dequeue failure: 0
Queue invalid parameters: 0
Queue memory limit: O
Queue size limit: O

Il 9RPC Applications and Configuration

O O O O o

truncated
truncated
truncated
truncated
truncated

gRPC Applications and Configuration |

| 9RPC Applications and Configuration

SendtoAAA Accounting Queue:
Grpc services:

GNMI :
GNOTI:
GNSTI:
GRIBI:
P4RT:
Stats:
Queue
Queue
Queue
Queue
Queue
Queue
Queue
Queue
Queue
Queue

Queue
Queue
Queue
Queue
Queue
Queue

Shell:
Cli:

0

0
0
0
0

sent,
sent,
sent,
sent,
sent,

O O O O o

buffer size:
buffer used:

size:
used:

1
0

enqueue: 0
dequeue: 0
drops: O
max time:
min time:
avg time:
Errors:
init failure:
update failure:

dequeue failure:
invalid parameters:

0 usec
0 usec
0 usec

memory limit:
size limit: O
Cmd Accounting Queue:
Cmd services:

0
0

Netconf: 0

Stats:
Queue
Queue
Queue
Queue
Queue
Queue
Queue
Queue
Queue
Queue

Queue
Queue
Queue
Queue
Queue
Queue

sent,
sent,
sent,

dropped,
dropped,
dropped,
dropped,
dropped,

100 MB
0 MB

0

0

0
0

0

0 dropped,
0 dropped,
0 dropped,

buffer size:
buffer used:

size:
used:

1
0

enqueue: 0
dequeue: 0
drops: O
max time:
min time:
avg time:
Errors:
init failure:
update failure:

dequeue failure:
invalid parameters:

0 usec
0 usec
0 usec

memory limit:
size limit: O

100 MB
0 MB

0

0

0
0

0

O O O O o

0
0
0

truncated
truncated
truncated
truncated
truncated

truncated
truncated
truncated

Configure gNSI AcctzStream logging .

After completing this task, the router streams accounting records to the Acctz gNSI client. You can verify
successful transmission and logging using CLI and gRPC responses.

Example

For example, after configuring the queue size and starting the Acctz client, the router streams
accounting records such as user login sessions. You can verify this using the 'show gnsi acctz statistics'
and 'show aaa accounting statistics' commands.

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |
. gRPC network packet sampling interface

What to do next

After completing the configuration, monitor the gNSI Acctz logs periodically to ensure accounting records
are being received without drops.

* Adjust the queue size if you observe dropped records in the statistics.

* Ensure the Acctz client remains connected and responsive.

gRPC network packet sampling interface

The gNPSI (gRPC Network Packet Sampling Interface) protocol is a network protocol that
» replaces UDP transport for flow data
* uses gRPC for reliable and secure transmission, and

* improves flow data reliability and security.

Table 25: Feature History Table

Challenges with traditional methods
Traditional UDP-based flow-data transport has several challenges:
» UDP transport can cause packet loss during network stress.
» UDP channels lack encryption and authentication, which can cause security risks.
* Discovery using VIP affects a large area if issues occur.
* The dial-out approach does not work when security policies require the collector to initiate connections.

* Encryption and proxy deployment are complex with UDP and multiple wire protocols.

Improved flow export with the gNPSI streaming model

Flow data was exported using traditional UDP-based mechanisms before the introduction of the gRPC Network
Packet Sampling Interface (gNPSI) feature. These mechanisms can lose packets under network stress and do
not provide built-in encryption or authentication.

This complexity makes secure deployment more difficult, especially when you use proxies, and reduces
flexibility because dial-out models conflict with environments where collectors need to initiate connections.

With gNPSI, you can carry flow data over encrypted and authenticated gRPC sessions. This approach provides
better reliability and security, lets your collectors initiate connections, and helps you deploy secure solutions
with proxies more easily.

The new workflow uses a controller-driven streaming model. In this model, EMSd coordinates with your
linecard export processes to give you more control, resiliency, and visibility for flow data delivery.

Y

Note Only version 0.1.0 of the gNPSI protocol is supported.

Il 9RPC Applications and Configuration

g pplications and Configuration
RPC Applications and Configurati
Benefits of gNPSI]

Benefits of gNPSI

gNPSI provides these benefits:
* Reduces packet loss during network stress.
* Encrypts and authenticates the data channel.
* Limits the impact area during failures or changes.
* Supports secure, collector-initiated connections.

« Simplifies the deployment of encrypted and proxy based solutions.

Usage guidelines for gNPSI
To use gNPSI effectively, follow these best practices:
* Apply the NetFlow or sFlow configuration with explicit gNPSI settings on the router.
* Use the correct export process (nfsvr).
* Ensure that controllers connect with the gNPSI protocol to start streaming.
* Monitor your controller connections for streaming status.

* Use supported show commands to view export and drop statistics.

Restrictions for gNPSI

gNPSI has these limitations:
* You can use only version 0.1.0 of the gNPSI protocol.
* Use the trace commands and the show commands. You cannot use the debug commands.

* You can use only the published OpenConfig gNPSI telemetry model.

How gNPSI data and control flow work

Summary

Use the gNPSI data and control flow process to collect, manage, and stream network flow data from routers
to controllers efficiently. Configure routers for NetFlow or sFlow using gNPSI. Initiate export and streaming
operations.

Establish communication between linecards and the Route Processor (RP), and manage packet flow through
the EMSd service to external controllers. You can start and stop streaming based on controller connections
and system events. This approach provides reliable and controlled data delivery for your network monitoring
and analysis tasks.

Workflow

1. The gNPSI protocol processes flow data using these steps:

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |
. Configure gNPSI

* The router applies NetFlow or sFlow configuration with gNPSI settings.
* The export process (nfsvr) starts on the linecards.

* The export process establishes a TCP connection to the EMSd process on the RP using a new
backplane VLAN.

» Sampling begins, but packets are dropped until a gNPSI request is received.

* When EMSd on the RP receives a gNPSI streaming request from a controller, it instructs the NetFlow
process on the linecards to start streaming.

*» The NetFlow process streams packets to EMSd.

* EMSd encapsulates the packets in gNPSI gRPC messages and streams them to all connected
controllers.

« If all controllers disconnect, EMSd tells the NetFlow process to stop streaming.

* After a RP failover or EMSd restart, the NetFlow process re-establishes the session.

2. Use gNPSI to manage code and control flow in these ways:
* EMSd creates new external gNPSI gRPC Service code to encapsulate flow packets.
* EMSd creates new internal gNPSI TCP Service code to listen for flow packets from linecards.
* NetFlow or sFlow configuration triggers the appropriate export and control processes.

» EMSd and NetFlow processes coordinate the start and stop of packet streaming based on controller
connections.

Configure gNPSI

Collect and export traffic data using NetFlow or sFlow with gNPSI. After enabling the required router services,
apply your flow-export settings, confirm that the export process is active, and verify that EMSd and controller
connections are operating correctly.

gNPSI allows you to monitor and export traffic on routers with NetFlow and sFlow. You can manage
configurations by using CLI or YANG models. EMSd and controller integration support efficient streaming
and telemetry.

Before you begin
* Decide whether to use the CLI or YANG models for configuration.

* Confirm EMSd process is running and that the appropriate port is available for NetFlow or sFlow packets.

Follow these steps to configure gNPSI:

Procedure

Step 1 Configure NetFlow or sFlow with gNPSI settings by using the CLI or supported YANG models.
a) Apply your required gRPC configuration.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
gRIBI default route resolution without recirculation .

Example:
Add/edit any other grpc config required

b) Define the flow exporter, sampler, and monitor maps.

Example:

flow exporter-map EXP-1
version sflow v5

export protocol gnpsi
exit

sampler-map Sample
random 1 out-of 8000
exit

flow monitor-map fmm
record sflow

exporter EXP-1

¢) Apply the monitor and sampler to the intended interface.

Example:

int FourHundredGigE0/0/0/0
! link towards peer where netflow is enabled
no shutdown
ipv4 address 192.0.2.1/24
ipv6 address 2001:DB8::20:0:0:1/120
flow datalink monitor fmm sampler Sample ingress

Refer to the OpenConfig gNPSI (OC-gNPSI) model if telemetry support is needed.

Step 2 Apply and activate the configuration on the router.

Step 3 Verify that the export process starts successfully on the router linecards.

Step 4 Ensure the EMSd process is running and listens for incoming export packets.

Step 5 Establish a controller connection to the router to initiate streaming if required by your architecture.

Step 6 Use available show commands on the RP and linecards to monitor export statistics and packet drop counts.

» show flow gnpsi session

« show flow gnpsi statistics
« show gnpsi connections

» show gnpsi sessions

« show gnpsi stats

Step 7 Extend trace in EMSd and NetFlow or sFlow processes as needed for monitoring.

gNPSI is configured and operational. The router exports monitored traffic data using NetFlow or sFlow. You
can monitor export and drop statistics with show commands. Telemetry is enabled based on your configuration.
EMSd and controller processes run as required.

gRIBI default route resolution without recirculation

A gRIBI default route resolution without recirculation is a routing mechanism that

gRPC Applications and Configuration [JJjj

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/netflow/command/reference/b-netflow-cr-cisco8k/book_sprkbd_m_digital-signage_chapter_00.html#wp5841540520
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/netflow/command/reference/b-netflow-cr-cisco8k/book_sprkbd_m_digital-signage_chapter_00.html#wp3949064320
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4064608290
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3988301244
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1547055992

gRPC Applications and Configuration |
. Benefits of gRIBI default route resolution without recirculation

* maintains default route behavior within the same VRF
* eliminates bandwidth impact by removing the recycle process, and

* uses controller-driven programming instead of configuration changes.

Table 26: Feature History Table

Benefits of gRIBI default route resolution without recirculation
These are the benefits of gRIBI default route resolution without recirculation:
* Prevents bandwidth reduction that previously resulted from the recycle process.
* Maintains the original behavior of default routing in your network.
* Enables control by moving from static configuration to controller-driven programming.

* Requires only minimal additional memory for an action type attribute.

Usage guidelines for gRIBI default route resolution without recirculation

» Use controller-driven programming to manage default routes.

* Use controller-driven programming to remove bandwidth impact instead of configuration-based changes.

Restrictions for gRIBI default route resolution without recirculation

* This feature is not supported on Q100 hardware due to lack of VRF redirect support.

* The Platform Independent (PI) Forwarding Information Base (FIB) applies the special LOOKUP action
only when the LOOKUP next hop is the primary path.

* The PI FIB does not apply the special LOOKUP action if the LOOKUP next hop is a backup path, even
after a switchover.

How gRIBI default route resolution without recirculation works

When default route lookups cross VRF boundaries, you may experience reduced bandwidth and degraded
performance due to recirculation. You can use static route or VRF fallback configurations to look up default
routes without recirculation, but these options do not provide flexibility at runtime.

Summary

gRIBI default route resolution enhances routing performance. It eliminates the need for packet recirculation
when default route lookups cross VRF boundaries. This process uses a controller-driven architecture and
runtime flags to achieve bandwidth-efficient default routing.

This process involves these key components:

* The initial VRF: This VRF contains the packet’s prefix and is the initial point of route lookup.

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration
How gRIBI default route resolution without recirculation works .

* The user network uses default routes that previously required a recirculation step, leading to bandwidth
degradation.

* Controller (gRIBI): Manages routing behavior through events and runtime programming.

* PI FIB handles prefix and next-hop group (NHG) creation or update events. It also programs flags and
manages LOOKUP actions.

* PD FIB: Processes static and controller-driven configurations to manage VRF resolution and redirect
objects.

» SHLDI (Shared Local Device Interface) facilitates the transfer of action types, attributes, and VRF
information to PD FIB.

* TEP (Tunnel End Point) delivers redirect VRF information and is involved in LOOKUP actions.

* RIB (Routing Information Base) initiates prefix and NHG events for processing via the Service Layer
Application Programming Interface (SL-API).

Workflow
The process includes these stages:
1. Prefix lookup and default route evaluation:
* The system checks the incoming packet’s prefix in the initial VRF.

* If no route exists for the prefix, the default route is used, which triggers a lookup into another
VREF.

2. User requirement identification:

» The user setup uses default routes that previously required a recycle step and that suffered bandwidth
degradation.

* The user’s objective is to maintain default routing efficiency and ensure the solution is
controller-driven.

3. Controller-driven architecture deployment:
* The design employs controller-driven programming using gRIBI to manage routing behavior.

» Runtime flags and actions replace the previous static configuration approach.

4. PIFIB event processing:

* PI FIB receives prefix and NHG creation/update events from RIB via the S API and the gRIBI
controller.

* PI FIB sends flags for prefix and NHG events to PD FIB.
* The system sets an explicit DEFAULT flag for default routes.
* [f an NHG is marked with a LOOKUP action, the LOOKUP next hop becomes the primary path.

5. PD FIB handling for VRF resolution:

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |

. Configure gRIBI default route resolution without recirculation

* In static configurations, PD FIB identifies parent objects with a table resolution flag, saves the VRF
table value, and creates or resolves VRF redirect objects in hardware.

* In controller-driven flows, PD FIB obtains equivalent information via SHLDI and TEP.
 [f SHLDI uses a TEP with a LOOKUP action, PD FIB replicates the behavior of the static
configuration in hardware.
6. Runtime action and memory impact:
* The action type variable is stored in SHLDI FIB HAL attribute and uses only 8 bits, resulting in minimal
memory impact.
7. Detailed controller-driven route programming;:

* PD FIB receives the SHLDI object instead of LWLDI.

« After PI FIB programs SHLDI, PD FIB stores the action type. It then retrieves redirect VRF
information from the next-hop TEP.

* During route programming, PD FIB accesses the action type and redirect VRF from SHLDI only if
the route is a default route and the SHLDI action is LOOKUP.

* During SDK operation, PD FIB programs the default route to use the redirect VRF, avoiding the
recycle process.

Configure gRIBI default route resolution without recirculation

Set up gRIBI to resolve default routes without using recirculation.

This task shows you how to configure gRIBI to resolve default routes without using recycle. The configuration
works with supported platforms and programs both routes and next-hop groups (NHG).

Before you begin
* Verify that your platform supports VRF redirect.
» Make sure your system does not use Q100 hardware.

* Make sure you can access the gRIBI controller and SDK.

Follow these steps to configure gRIBI default route resolution without recirculation:
Procedure

Step 1 Program a default route using the gRIBI controller.

Example:

! Enable gRIBI on the device
router static
gribi
admin-state enable
mode all-primary
persistence true

Il 9RPC Applications and Configuration

| 9RPC Applications and Configuration

Step 2

Step 3

Configure gRIBI default route resolution without recirculation .

fib-ack true
exit
|

! Configure gRIBI controller session
grpc
service-layer
gribi
controller GRIBI-CTRL
address 203.0.113.10 port 57400
admin-state enable
exit
exit
exit
|

! (Optional) Ensure interface is ready for next-hop reachability
interface HundredGigE0/0/0/1
ipv4 address 192.0.2.254 255.255.255.0
no shutdown
exit
|

This default route should point to a primary NHG.

Configure the next-hop within this primary NHG to include a LOOKUP action.

Example:

grpc
service-layer
gribi
admin-state enable
mode all-primary
fib-ack true
exit
exit
|

! Optional: ensure local interface for recursion/lookup
interface HundredGigEO/0/0/0
ipv4 address 192.0.2.254 255.255.255.0
no shutdown
exit
!

This LOOKUP action should specify the target VRF where the default route resolution should occur.

Validate the configuration to ensure that the default route resolves to the specified redirect VRF without packet recirculation.

Example:

Router#show fib vrf Blue 203.0.113.0/24 detail
FIB entry for VRF: Blue

Prefix: 203.0.113.0/24

Route State: Active

Route Type: Connected

Flags: 0x0

Nexthop (s) :
* Nexthop 1:
e IP Address: 203.0.113.1
* Interface: GigabitEthernet0/0/0/0
e Afi: IPv4
e Weight: 0
e Flags: Direct, Hardware-Programmed

gRPC Applications and Configuration [JJjj

gRPC Applications and Configuration |

Configure gRIBI default route resolution without recirculation

¢ Nexthop 2:
e IP Address: 198.51.100.1
* Interface: GigabitEthernet0/0/0/1
e Afi: IPv4
e Weight: 0
e Flags: Direct, Hardware-Programmed

Load-split: 1/1
Packets Forwarded: 0
Bytes Forwarded: 0
Updated: 00:03:17 ago

You configure gRIBI default routing to resolve default routes without recirculation by using redirect VRF on
compatible hardware and software.

What to do next

* Confirm that the VRF redirect is functioning and that no recirculation path is used.

* Review any logs or system reports to ensure that configuration changes have taken effect.

Il 9RPC Applications and Configuration

	gRPC Applications and Configuration
	gRPC operations
	gRPC authentication modes
	Configure authentication for gRPC services
	gRPC servers with TLS version 1.3 support
	Guidelines and limitations for TLS configuration
	Configure gRPC TLS version

	SPIFFE ID-based authentication and authorization services for gRPC services
	Authenticate and authorize gRPC service requests using the SPIFFE standard

	Certificate common-name for dial-in using gRPC protocol
	Configure certificate common name for dial-in

	gRPC over UNIX domain sockets
	Configure gRPC over UNIX domain sockets

	gRPC network management interface
	gNMI operations
	gNMI wildcards in schema path
	gNMI bundling of telemetry updates
	Configure gNMI bundling size

	Replace router configurations at sub-tree level using gNMI
	gNMI union replace operations
	gNMI union-replace operation guidelines and limitations
	gNMI union replace operation examples
	OC and CLI origin
	OC and NY origin
	RPC error scenarios

	gNMI XPath-based authorizations
	gNSI Pathz authorization policy configuration
	Load gNSI Pathz policies at boot-time
	Rotate, finalize, and get the gNSI Pathz policy

	OpenConfig metadata for configuration annotations
	Metrics of gNSI authorization rules
	gNSI path authorization counters
	gNSI Pathz policy and statistics
	gNSI Pathz trace data
	gNSI state details

	gRPC network operations interface
	gNOI RPCs
	gNOI packet link qualifications
	gNOI Healthz
	Verify router health using gNOI RPCs

	gRIBI
	gRIBI configuration to modify routing entries

	P4Runtime
	Configure P4RT to manage packets

	gNSI Acctz loggings
	Configure gNSI Acctz logging

	Data logging with gNSI AcctzStream service
	Configure gNSI AcctzStream logging

	gRPC network packet sampling interface
	Benefits of gNPSI
	Usage guidelines for gNPSI
	Restrictions for gNPSI
	How gNPSI data and control flow work
	Configure gNPSI

	gRIBI default route resolution without recirculation
	Benefits of gRIBI default route resolution without recirculation
	Usage guidelines for gRIBI default route resolution without recirculation
	Restrictions for gRIBI default route resolution without recirculation
	How gRIBI default route resolution without recirculation works
	Configure gRIBI default route resolution without recirculation

