gRPC Authentication

» gRPC authentication modes, on page 1

* Certificate common-name for dial-in using gRPC protocol, on page 7

» SPIFFE ID-based authentication and authorization services for gRPC services, on page 10
* gRPC network security interface , on page 13

gRPC authentication modes

A gRPC authentication mode is a security mechanism for gRPC communication that

» provides different methods to verify the identity of clients and servers,
* supports both metadata-based and certificate-based approaches for authentication, and

* enables compliance with varying security requirements through configurable settings such as TLS, Mutual
TLS, and non-TLS options.

This section details the authentication modes supported by gRPC to secure communication and ensure
authorized access to services.

gRPC supports multiple authentication modes to secure communication between clients and servers. These
modes ensure that only authorized entities can access gRPC services such as gNOI, gRIBI, and P4RT. Upon
receiving a gRPC request, the device authenticates the user and performs authorization checks.

The following table lists the authentication types and their configuration requirements:

Table 1: gRPC authentication modes and configuration requirements

Type Authentication Authorization Configuration Requirement From
Method Method Requirement Client

Metadata with TLS |username, password | username grpc username, password,
and CA

Metadata without | username, password | username grpc no-tls username, password

TLS

Metadata with username, password | username grpc tlsmutual username, password,

Mutual TLS client certificate,
client key, and CA

gRPC Authentication .

gRPC Authentication |
. Configure authentication for gRPC services

Type Authentication Authorization Configuration Requirement From
Method Method Requirement Client

Certificate based client certificate's | username from grpc tlsmutual client certificate,

Authentication common name field | client certificate's and client key, and CA

common name field
grpc certificate
authentication

Certificate-based authentication
In Extensible Manageability Services (EMS) gRPC, certificates play a vital role in ensuring secure and
authenticated communication. The EMS gRPC utilizes these certificates for authentication:

/misc/config/grpc/ems.pem
/misc/config/grpc/ems.key
/misc/config/grpc/ca.cert

)

Note For clients to use the certificates, ensure to copy the certificates from /misc/config/gr pc/

Generation of certificates

These certificates are typically generated using a Certificate Authority (CA) by the device. The EMS certificates,
including the server certificate (ems.pem), public key (ems.key), and CA certificate (ca.cert), are generated
with specific parameters like the common name ems.cisco.com to uniquely identify the EMS server and
placed in the /misc/config/grpc/ location.

The default certificates that are generated by the server are Server-only TLS certificates and by using these
certificates you can authenticate the identity of the server.

Usage of certificates

These certificates are used for enabling secure communication through Transport Layer Security (TLS) between
gRPC clients and the EMS server. The client should use ems.pem and ca.cert to initiate the TLS authentication.

To update the certificates, ensure to copy the new certificates that have been generated earlier to the location
and restart the server.

Custom certificates

If you want to use your own certificates for EMS gRPC communication, then you can follow a workflow to
generate custom certificates with the required parameters and then configure the EMS server to use these
custom certificates. This process involves replacing the default EMS certificates with the custom ones and
ensuring that the gRPC clients also trust the custom CA certificate. For more information on how to customize
the common-name, see Certificate Common-Name For Dial-in Using gRPC Protocol.

Configure authentication for gRPC services

This task explains how to configure different types of authentication for gRPC services, including TLS and
AAA-based authentication.

. gRPC Authentication

| 9RPC Authentication

Step 1

Step 2

Before you begin

Configure authentication for gRPC services .

Ensure that the router supports gRPC and that you have access to the CLI in configuration mode. TLS and
AAA configurations must be available if required by the authentication method.

Starting from release 24.4.1, the gRPC server supports TLS version 1.3

Procedure

Configure your preferred authentication method:

Configure authentication using metadata with TLS

Router#config
Router (config) #grpe
Router (config-grpc) fcommit

Configure authentication using metadata without TLS

Router#config

Router (config) #grpec

Router (config-grpc) #no-tls
Router (config-grpc) #commit

Configure authentication using metadata with mutual TLS

Router#config

Router (config) #grpe

Router (config-grpc) #tls-mutual
Router (config-grpc) fcommit

Configure certificate-based authentication

Router (config) #grpec

Router (config-grpc) #tls-mutual

Router (config-grpc) #certificate-authentication
Router (config-grpc) #commit

Verify the configuration.

Example:

Router# show grpc

Tue Jul 30 09:54:23.001 UTC

Server name : DEFAULT
Address family : dual
Port 57400

Service ports

gNMI . none

P4RT : none

gRIBI . none
DSCP Default
TTL 64
VRF global-vrf
Server : enabled
TLS : enabled
TLS mutual : disabled
Trustpoint : none
Certificate Authentication : disabled

gRPC Authentication .

. gRPC servers with TLS version 1.3 support

Certificate common name
TLS v1.0

Maximum requests

Maximum requests per user
Maximum streams

Maximum streams per user
Maximum concurrent streams
Memory limit (MB)
Keepalive time

Keepalive timeout
Keepalive enforcement minimum time

TLS cipher suites
Default
Default TLS1.3

Enable
Disable

Operational enable

Operational disable
Listen addresses

gRPC Authentication |

ems.cisco.com
enabled
128

10

32

32

32

1024

30

20

300

none
aes_128 gcm sha256
aes_256_gcm sha384
chacha20 polyl305 sha256

none
none

ecdhe-rsa-chacha20-polyl1305
ecdhe-ecdsa-chacha20-polyl1305
ecdhe-rsa-aesl28-gcm-sha256
ecdhe-ecdsa-aesl28-gcm-sha256
ecdhe-rsa-aes256-gcm-sha384
ecdhe-ecdsa-aes256-gcm-sha384
ecdhe-rsa-aesl28-sha
ecdhe-ecdsa-aesl28-sha
ecdhe-rsa-aes256-sha
ecdhe-ecdsa-aes256-sha
aesl28-gcm-sha256
aes256-gcm-sha384

aesl28-sha

aes256-sha

none

ANY

The gRPC service is configured with the selected authentication method and is ready to accept secure client

connections.

What to do next

Verify the gRPC connection and monitor authentication logs to ensure proper access control.

gRPC servers with TLS version 1.3 support

gRPC servers with TLS version 1.3 support are network security solutions that

* provide end-to-end encrypted communication between clients and servers,

* use modern cryptographic protocols for stronger security and performance, and

» allow administrators to configure minimum and maximum TLS versions for compliance and

interoperability.

. gRPC Authentication

| 9RPC Authentication

Table 2: Feature History Table

Guidelines and limitations for TLS configuration .

Feature Name

Release
Information

Description

gRPC Server TLS
Version 1.3 Support

Release 24.4.1

You can now enhance the security of your network
connections with stronger protection against vulnerabilities
by enabling TLS 1.3 support over gRPC services. This update
improves performance with faster connection times and
reduced latency by reducing the number of round trips
required to establish a connection and removing outdated
ciphers. Additionally, it complies with internal security
mandates, providing a more robust and future-proof solution
for your network management needs.

Previously, gRPC server supported TLS version 1.2.
The feature introduces these changes:
CLI:

* tlsmin-version

* tlssmax-version

Security benefits of TLS 1.3

The gRPC Remote Procedure Calls (gRPC) server Transport Layer Security (TLS) version 1.3 support is a

security feature that:

* Provides end-to-end communications security over networks

* Prevents unauthorized access and eavesdropping

* Protects against tampering and message forgery

The TLS private key is encrypted before being stored on the disk. For more details on SSL or TLS version
certificates, keys, and communication parameters, see Manage certificates using Certz.proto.

Guidelines and limitations for TLS configuration

TLS version configuration limitations

* Ensure that the t1s-min-version value is not greater than the t1s-max-version value.

* Starting in Release 2.4.4.1, the t1sv1-disable command is deprecated. Avoid using this command in

new configurations.

* If you use the t1sv1-disable command, do notuse the t1s-min-version Or t1s-max-version commands.

* If you use the t1s-min-version and t1s-max-version commands, do not use the t1svi-disable

command.

gRPC Authentication .

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4080366908
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1060638259
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#concept_C66C0E5371BF46E8937AB14F7D25EE11

. Configure gRPC TLS version

Best practice for disabling TLS 1.0

gRPC Authentication |

To disable TLS version 1.0, set the t 1sv1-disable command. Alternatively, you can set the t1s-min-version
to a value greater than 1.0.

Configure gRPC TLS version

Configuring gRPC TLS version enables you to control which TLS protocol versions are permitted for secure
gRPC communication between the router and clients. This can be important for maintaining compatibility
and achieving desired security standards.

Before you begin

* Verify that gRPC is enabled on the router.

* Determine which TLS versions (1.0, 1.1, 1.2, or 1.3) your environment and clients require.

Procedure

Step 1 Configure gRPC TLS minimum, maximum, or both versions.

Example:

* Configure gRPC TLS maximum version.

Router# config

Router (config) # grpc

Router (config-grpc)# tls-max-version 1.2

Router (config-grpc)# commit

tlssmax-version can be 1.0, 1.1, 1.2, or 1.3. The default maximum version for TLS is 1.3.

Step 2 Verify the gRPC TLS minimum and maximum versions.

Example:

Router# show grpc

. gRPC Authentication

Thu Aug 29 00:49:24.428 UTC

Server name
Address family
Port

Service ports
gNMI
P4RT
gRIBI

DSCP

TTL

VRF

Server

TLS

TLS mutual

Trustpoint

Certificate Authentication
Certificate common name
TLS v1.0

Maximum requests

DEFAULT

: dual

57400

. none
. none
. none

Default
64

: global-vrf

: disabled (Unknown)
: enabled

: disabled

: none

: disabled

: ems.cisco.com

: enabled

128

| 9RPC Authentication

Certificate common-name for dial-in using gRPC protocol .

Maximum requests per user

Maximum streams

Maximum streams per user

Maximum concurrent streams

Memory limit (MB)

Keepalive time

Keepalive timeout

Keepalive enforcement minimum time
TLS Minimum Version

TLS Maximum Version

TLS cipher suites

Default

Default TLS1.3
aes_256_gcm_sha384
chacha20_polyl305_sha256

Enable
Disable

Operational enable

ecdhe-ecdsa-chacha20-polyl1305
ecdhe-rsa-aesl28-gcm-sha256
ecdhe-ecdsa-aesl28-gcm-sha256
ecdhe-rsa-aes256-gcm-sha384
ecdhe-ecdsa-aes256-gcm-sha384
ecdhe-rsa-aesl28-sha
ecdhe-ecdsa-aesl28-sha
ecdhe-rsa-aes256-sha
ecdhe-ecdsa-aes256-sha
aesl28-gcm-sha256
aes256-gcm-sha384

aesl28-sha

aes256-sha

Operational disable
Listen addresses

10
32
32
32
10
30
20
30

24

0

TLS 1.0

none
none

TLS 1.2

none
aes_128 gcm_sha256

ecdhe-rsa-chacha20-polyl305

none

: ANY

The TLS 1.3 cipher suites are not configurable, they are either fixed or static.

What to do next

After completing this task, the router will use the specified TLS version for gRPC communication.

For example, enabling only TLS 1.3 ensures that gRPC connections use the most secure protocol
version supported by the router.

After configuring the TLS version, verify the gRPC server status and test connectivity using a gRPC client
to ensure compatibility.

Certificate common-name for dial-in using gRPC protocol

A certificate common-name for dial-in using gRPC protocol is a security configuration that:

gRPC Authentication .

gRPC Authentication |
. Certificate common-name for dial-in using gRPC protocol

« allows the router to generate certificates with a user-defined common-name,
» enables gRPC clients to verify the server identity using a matching hostname, and
* prevents certificate verification failures caused by fixed or mismatched common-names.

This feature enhances TLS authentication flexibility and supports secure, hostname-based validation for gRPC
dial-in sessions.

Table 3: Feature History Table

Feature Name Release Information Description
Certificate common-name for Release 24.1.1 You can now specify a
dial-in using gRPC protocol common-name for the certificate

generated by the router while using
gRPC dial-in. Earlier, the
common-name in the certificate
was fixed as ems.cisco.comand was
not configurable. Using a specified
common-name avoids potential
certification failures where you may
specify a hostname different from
the fixed common name to connect
to the router.

The feature introduces these
changes:

CLI:
* grpc certificate
common-name
YANG Data Model:

* New XPath for
Cisco-IOS-XR-um-grpc-cfg.yang

* New XPath for

Cisco-I0OS-XR-man-ems-cfg

(see GitHub, YANG Data Models
Navigator)

gRPC dial-in certificate common-name configuration

When using gRPC dial-in on Cisco IOS-XR routers, the common-name associated with the certificate generated
by the router was previously fixed as ems.cisco.com, causing failures during certificate verification if a different
hostname was used. From Cisco IOS XR 24.11, you can now specify the common-name in the certificate
using the grpc certificate common-name command, allowing gRPC clients to more flexibly and securely
verify the server’s domain name.

. gRPC Authentication

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3441271847
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3441271847
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

| 9RPC Authentication

Configure certificate common name for dial-in .

Configure certificate common name for dial-in

Step 1

Step 2

Step 3

Configure a common name to be used in EMSD certificates for gRPC dial-in.

Before you begin
Before you begin, ensure the following:

* The router is running with the correct OS image.

» gRPC is enabled and properly configured on the device.

Procedure

Configure a common name.

Example:

Router#config
Router (config) #grpc
Router (config-grpc) #certificate common-name cisco.com
Router (config-grpc) #commit

Use the show command to verify the common name:

Router#show grpc
Certificate common name : cisco.com

Note
For the above configuration to be successful, ensure to regenerate the certificate so that the new EMSD certificates include
the configured common name.

To regener ate the self-signed certificate, perform the following steps.

Remove the certificates: /misc/config/grpc/ems.pem, /misc/config/grpc/ems.key, and /misc/config/grpc/ca.cert
ﬁonl/misc/config/grpcfﬂe.

Example:

Router#run 1ls -ltr /misc/config/grpc/

total 16

drwx------ . 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 10:58 ems.pem
—rw--————-- . 1 root root 1675 Feb 14 10:58 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#run rm -rf /misc/config/grpc/ems.pem /misc/config/grpc/ems.key

Router#run 1ls -ltr /misc/config/grpc/

total 8
drwx—---—--- . 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Restart gRPC server by toggling the TLS configuration.
Configure gRPC with non TLS and then re-configure with TLS.

Example:

gRPC Authentication .

. SPIFFE ID-based authentication and authorization services for gRPC services

Router#config
Router (config) #grpe

Router (config-grpc) #no-tls
Router (config-grpc) #commit

Router#run 1ls -ltr /misc/config/grpc/

total 8
drwx---—--- . 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#config
Router (config) #grpc

Router (config-grpc) #no no-tls

Router (config-grpc) #commit

Router#run ls -ltr /misc/config/grpc/

total 16

drwx------ . 2 root root
-rw-rw-rw-. 1 root root
—rw——————-— . 1 root root
-rw-r--r--. 1 root root

4096
1505
1675
1505

Feb
Feb
Feb
Feb

14
14
14
14

09:
123
123
123

14
14
14

17

dialout
ems .pem
ems.key
ca.cert

gRPC Authentication |

Copy the newly generated /misc/config/grpc/ems.pen certificate in this path (from the device) to the gRPC client.

The common name is successfully configured and reflected in the regenerated EMSD certificate used for

gRPC dial-in.

Example

For example, after configuring certificate common-name cisco.comand regenerating the certificate,
the output of show grpc displays: Certificate common name : cisco.com.

What to do next

After completing this task:

* Ensure the gRPC client trusts the new certificate and can establish a secure connection using the updated

common name.

SPIFFE ID-based authentication and authorization services for

gRPC services

A SPIFFE ID (Secure Production Identity Framework for Everyone) based authentication and authorization

service is a standardized framework that:

* enables secure identification and authorization of services communicating over gRPC,

* provides interoperability for authentication and access control across diverse and distributed environments,

and

* leverages SPIFFE IDs and Verifiable Identity Documents (SVIDs) to enforce mutual TLS (mTLS) and

authorization policies.

. gRPC Authentication

| 9RPC Authentication

Authenticate and authorize gRPC service requests using the SPIFFE standard .

SPIFFE ID-Based authentication and authorization services for gRPC services uses SPIFFE IDs and SPIFFE
Verifiable Identity Documents (SVIDs) to authenticate and authorize gRPC traffic. This is especially useful
in distributed systems where workloads span multiple platforms.

* Authentication: Performed via mutual TLS (mTLS) using SVIDs
* Authorization: Based on mapping SPIFFE IDs to XR usernames
* Identity format: SVIDs can be encoded as X.509 certificates or JWTs

* Integration: Enables EMS and gRPC services to enforce access control

Workflow for SPIFFE ID-based authentication and authorization for gRPC services

Mapping initialization and configuration

1

2.
3,
4,

The EMS starts searching for the spiffe-user-map.json file at the location
/misc/config/grpc/gnsi/credentialz/spiffe-user-map.json.

If the file exists, it is parsed, and the mapping is stored globally in the aaa/auth package.
If the file does not exist or parsing is unsuccessful, the mapping will be empty.

The EMS registers with the configuration manager to receive updates for the aaa configuration.

Authentication and authorization Flow

1.

When processing requests in the Authentication interceptor, the spiffe-user mapping API checks for the
SPIFFE ID mapping.

If the mapping exists, the API responds with the corresponding username.

If the mapping does not exist but the aaa configuration exists, the API responds with the configured
username.

If neither the mapping nor the aaa configuration is present, the API responds with an empty string.

Upon a client connecting to the server, the server interceptor extracts the SPIFFE ID from the client's
certificate and uses the mapping stored in the aaa/auth package to find the corresponding username.

The username identifies it and then includes the metadata into the context.

gRPC services that require XR Authorization will later verify the access rights for the username identified
in the previous step when handling the request.

If the mapping is unsuccessful, the request is passed to the relevant service, such as gNMI, which then
decides whether to grant or deny access based on its authorization requirements.

Authenticate and authorize gRPC service requests using the SPIFFE standard

This task describes how to authenticate and authorize gRPC service requests using the SPIFFE standard by
mapping SPIFFE IDs to usernames and evaluating authorization policies.

Before you begin

Before authenticating and authorizing gRPC service requests using the SPIFFE standard, ensure the following
prerequisites are met:

gRPC Authentication .

gRPC Authentication |

. Authenticate and authorize gRPC service requests using the SPIFFE standard

Step 1

Step 2

Step 3

» Enable mutual TLS authentication with the t1s-mutual command.

* Enable certificate authentication with the certificate-authentication command to facilitate SPIFFE
ID recognition. For more information, see Configure authentication for gRPC services, on page 2.

* Configure the gNSI Authz policy by setting the principal to the SPIFFE-ID for service-level authorization
(gNSI AuthZ).
After establishing the connection, the gRPC server extracts the SPIFFE ID from the client's certificate.

To authenticate and authorize gRPC service requests using the SPIFFE standard, follow these steps:

Procedure

Configure the username in the system.

Example:

Router#show running-config aaa
Thu Oct 12 11:43:15.771 UTC
username cisco
group root-lr
group cisco-support

password 7 104D000A061843595F
!

Map the SPIFFE ID to a username using the aaa map-to username command. This command assigns a default username
to any SPIFFE ID.

Router (config) #aaa map-to username cisco spiffe-id any
Router (config) #commit

Note
Each SPIFFE ID supports only one username.

Evaluate the client's SPIFFE ID against the service-level authorization policy (gNSI AuthZ). For more information about
gNSI authz policies.

The gRPC service request is authenticated and authorized using the SPIFFE ID mapped to a system username
and evaluated against the gNSI AuthZ policy.

Example

For example, after mapping the SPIFFE ID to the username cisco, the system uses this identity to
authorize access based on the configured gNSI AuthZ policy.

What to do next
After completing this task:

* Monitor gRPC logs to verify successful authentication and authorization events using SPIFFE IDs.

. gRPC Authentication

| 9RPC Authentication
gRPC network security interface .

gRPC network security interface

The gRPC Network Security Interface (gNSI) is a repository that contains essential security infrastructure
services for the safe operation of an OpenConfig platform.

« Authorization protocol buffer: Defines gNSI.authz policies to restrict access to gRPC services based
on client permissions.

» Policy enforcement: Enables configuration of RPC service access on routers and restricts unauthorized
updates to sensitive RPCs.

« Fallback behavior: In the absence of a valid policy, the system defaults to zero-policy mode, allowing
access to all services for configured users.

*» Secure ZTP integration: Default gRPC-level authorization policies can be provisioned using Secure
Zero Touch Provisioning (ZTP).

* CLI support: Includes commands to load and view authorization policies on supported platforms.

Table 4: Feature History Table

Feature Name Release Information Feature Description
Release 7.11.1 This release implements

authorization

mechanisms to restrict

access to gRPC

applications and
services based on client
permissions. This is
made possible by
introducing an
authorization protocol
buffer service for gRPC
Network Security
Interface (gNSI).

Prior to this release, the
gRPC services in the
gNSI systems could be
accessed by
unauthorized users.

This feature introduces
the following change:

CLI:

To view the
specification of gNSI,
see Github repository.

gRPC Authentication .

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates

gRPC Authentication |
. gRPC network security interface

The gRPC network security interface (gNSI) contains security infrastructure services for the OpenConfig
platform operation. These services manage a network device's certificates and authorization policies, including
an authorization protocol buffer.

gNSI authorization protocol buffer under gRPC contains gNSI.authz policies to prevent unauthorized access
to sensitive information and defines an API for configuring RPC services on a router, controlling user access,
and restricting authorization to update specific RPCs

gRPC default and zero-policy mode authorization

By default, gRPC-level authorization policy is provisioned using Secure ZTP. In zero-policy mode, or when
no policy is present, gRPC authorization policy configuration can be used to restrict access to specific users.
The default policy allows access to all RPCs, except for gNSI.authz RPCs.

Policy fallback and management commands

In the absence of a specified policy or if the policy is invalid, the router defaults to zero-policy mode, granting
access to all gRPC services for users with configured profiles. To revert an invalid policy, use the exec
command gnsi load service authorization policy. For creating user profiles and updating authorization
policies. The show gnsi service authorization policy command displays the active policy on a router.

We have introduced these commands in this release :

* gns load service authorization policy: To load and update the gRPC-level authorization policy in a
router.

« show gnsi service authorization policy: To view the active policy in a router.

Precedence of gNSI over gNOI

When both gNSI and gNOI are configured, gNSI takes precedence over gNOI. If niether gNSI nor gNOI is
configured, then tls trsutpoint's data is considered for certificate management.

gNSI RPCs

These RPCs are used to perform key operations at the system level such as updating and displaying the current
status of the authorization policy in a router.

The table lists the gNSI RPC operations and their description.

Table 5: Operations

gNSI RPC Operation Description
gNSl.authz.Rotate() Updates the gRPC-level authorization policy.
gNSIauthz.Probe() Verifies the authenticity of a user based on the defined policy

of the gRPC-level authorization policy engine.

gNSlauthz.Get() Shows the current instance of the gRPC-level authorization
policy, including the version and date of creation of the policy.

. gRPC Authentication

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/b-setup-and-upgrade-cisco8k/secure-ztp.html

| 9RPC Authentication
gRPC-level authorization policies .

gRPC-level authorization policies

gRPC-level authorization policies are configuration rules that control access to gRPC services on the router
based on user identity and permissions.

* Defined during secure ZTP deployment
* Can be updated post-deployment using CLI or configuration

» Affect access to gRPC services like gNMI and gNSI

By default, the gRPC-level authorization policy is configured at the time of router deployment using secure
ZTP. You can update the same gRPC-level authorization policy using any of these two methods:

» gRPC-level authorization policy update using gNSI client, on page 15

» gRPC-level authorization policy update using Exec command, on page 18

gRPC-level authorization policy update using gNSI client

You can update gRPC-level authorization policy using gNSI authz streaming RPCs.

Before you begin
When a router boots for the first time, it should have these prerequisites:
* The gNSI.authz service is up and running.
* The default gRPC-level authorization policy is added for all gRPC services.

* The default gRPC-level authorization policy allows access to all RPCs.

SUMMARY STEPS
1. Initiate the gNS|.authz.Rotate() streaming RPC. This step creates a streaming connection between the
router and management application (client).
2. Upload new gRPC-level authorization policy using the UploadRequest message.
3. The router activates the gRPC-level authorization policy.
4. The router sends the Uploadresponse message back to the client after activating the new policy.
5. The client verifies the new gRPC-level authorization policy using separate gNSI.authz.Probe() RPCs.
6. The client sends the FinalizeRequest message, indicating the previous gRPC-level authorization policy
is replaced.
7. Example
DETAILED STEPS
Procedure
Command or Action Purpose
Step 1 Initiate the gNSl .authz.Rotate() streaming RPC. This step | Note
creates a streaming connection between the router and Only one gNST.authz.Rotate () must be in progress at a
management application (client). time. Any other RPC request is rejected by the server.

gRPC Authentication .

. gRPC-level authorization policy update using gNSI client

gRPC Authentication |

Command or Action Purpose
Step 2 Upload new gRPC-level authorization policy using the Note

UploadRequest message. * There must be only one gRPC-level authorization
policy in the router. All the policies must be defined
in the same gRPC-level authorization policy which
is being updated. As gNST.authz.Rotate () method
replaces all previously defined or used policies once
the finalize message is sent.

* The upgrade information is passed to the version and
the created on fields. These information are not used
by the gNSI.authz service. It is designed to help you
to track the active gRPC-level authorization policy
on a particular router.

Step 3 The router activates the gRPC-level authorization policy.
Step 4 The router sends the UploadResponse message back to the
client after activating the new policy.
Step 5 The client verifies the new gRPC-level authorization policy
using separate gNSI .authz.Probe() RPCs.
Step 6 The client sends the FinalizeRequest message, indicating | Note
the previous gRPC-level authorization policy is replaced. |Itis not recommended to close the stream without sending
the finalize message. It results in the abandoning of the
uploaded policy and rollback to the one that was active
before the gNSI.authz.Rotate () RPC started.
Step 7 Example
Example:

This gRPC-level authorization policy grants admins, V1,
V2, V3, and V4 access to all RPCs defined by the gNSI.ssh
interface, while denying access to all other users.

{

"version": "version-1",
"created on": "1632779276520673693",
"policy": {

"name": "gNSI.ssh policy",

"allow rules": [{

"name": "admin-access",
"source": {
"principals": [

"spiffe://company.com/sa/V1l",
"spiffe://company.com/sa/V2"
1
}/
"request": {
"paths": [
"/gnsi.ssh.Ssh/*"
1
}
1y

"deny rules": [{

. gRPC Authentication

| 9RPC Authentication

gRPC-level authorization policy update using gNSI client .

Command or Action

Purpose

"name": "sales-access",
"source": {
"principals": [

"spiffe://company.com/sa/V3",
"spiffe://company.com/sa/V4"
1
by
"request": {
"paths": [
"/gnsi.ssh.Ssh/MutateAccountCredentials",

"/gnsi.ssh.Ssh/MutateHostCredentials"

Example:
{

"version": "version-1",
"created on": "1632779276520673693",
"policy": {
"name": "gNSI.ssh policy",
"allow_rules": [{
"name": "admin-access",
"source": {

"principals": [
"spiffe://company.com/sa/VvV1l",
"spiffe://company.com/sa/v2"

]

}I
"request": {

"paths": [
"/gnsi.ssh.Ssh/*"

]

}
}]I

"deny rules":

[{

"name": "sales-access",
"source": {
"principals": [

"spiffe://company.com/sa/V3",
"spiffe://company.com/sa/V4"
]
}I
"request": {
"paths": [
"/gnsi.ssh.Ssh/MutateAccountCredentials",

"/gnsi.ssh.Ssh/MutateHostCredentials"

After completing this task, the updated gRPC-level authorization policy is applied to the router configuration.

gRPC Authentication .

. gRPC-level authorization policy update using Exec command

Example

gRPC Authentication |

For example, you can verify the updated policy using the 'show grpc authorization policy' command.

What to do next

After updating the policy, monitor gRPC access logs to ensure the new rules are enforced as expected.

gRPC-level authorization policy update using Exec command

Use this task to update the default gRPC-level authorization policy configured during secure ZTP deployment

using the exec command.

Before you begin

Ensure you have access to the router CLI with sufficient privileges to execute configuration commands.

SUMMARY STEPS
1. Create user profiles for those to be added to the authorization policy.
2. Enable tlsmutual to establish the secure mutual between the client and the router.
3. Define the gRPC-level authorization policy
4. Copy the gRPC-level authorization policy to the router
5. Activate the gRPC-level authorization policy to the router.
6. Verification
DETAILED STEPS
Procedure

Command or Action

Purpose

Step 1 Create user profiles for those to be added to the
authorization policy.
Example:
Router (config) #fusername V1
Router (config-un) #group
root-1lr

Router (config-un) #group
cisco-support
Router (config-un) #secret

x
Router (config-un) #fexit
Router (config) #fusername V2
Router (config-un) #group
root-1lr
Router (config-un) #password
x

Router (config-un) #exit

. gRPC Authentication

You can skip this step if you have already defined the user
profiles.

| 9RPC Authentication
gRPC-level authorization policy update using Exec command .

Command or Action Purpose

Router (config) #username V3|

Router (config-un) #group

root-1lr

Router (config-un) #password|
X

Router (config-un) #commit

Step 2 Enable tlsmutual to establish the secure mutual between

the client and the router.
Example:

Router (config) #grpe

Router (config-grpc) #port
0

Router (config-grpc) #tls-mutual

Router (config-grpc) #certificate-authentication
Router (config-grpc) #commit|

Step 3 Define the gRPC-level authorization policy

Example:

{

"name": "authz",

"allow_rules": [

{

"name": "allow all gNMI
for all users",

"source": {

"principals": [

"wxn

]

}I

"request": {

"paths": [

nmikn
]
}
}
]I

'deny rules": [

{

"name": "deny gNMI set for]
oper users",

"source": {

"principals": [

"Vl "

]

}I

"request": {

"paths": [

"/gnmi.gNMI/Get".
1

}

}/

{

gRPC Authentication .

. gRPC-level authorization policy update using Exec command

gRPC Authentication |

Command or Action

Purpose

"name": "deny gNMI set for]
oper users",

"source": {

"principals": [

nyon

]

by

"request": {

"paths": [

"/gnmi.gNMI/Get"

’

"name": "deny gNMI set for]
oper users",

"source": {

"principals": [

ny3m

]

by

"request": {

"paths": [

"/gnmi.gNMI/Set"

Step 4 Copy the gRPC-level authorization policy to the router
Example:
-bash-4.2$ scp test.json V1@192.0.2.255:/disk0:/
Password:
test.json
100% 993 161.4KB/s 00:00
-bash-4.2$
Step 5 Activate the gRPC-level authorization policy to the router.
Example:
Router (config) #gnsi load
service authorization policy /disk0:/test.json
Successfully loaded policy]
Step 6 Verification In this example, Userl user tries to access the get RPC
request for which the permission is denied in the above
Example:

Router#show gnsi service authorization policy
Wed Jul 19 10:56:14.509
UTC{

"version": "1.0",

. gRPC Authentication

authorization policy.

bash-4.2$./gnmi_cli -address 198.51.100.255
-ca_crt
certs/certs/ca.cert

| 9RPC Authentication

gNSI Credentialz updates .

Command or Action

Purpose

for all users",

oper users",

"created on": 1700816204,
"policy": {
"name": "authz",

"allow_rules": [

{
"name": "allow all gNMI

"request": {
"paths": [

Wk

]

by

"source": {
"principals": [
Wk

]
}
}
1y

'deny rules": [

{

"name": "deny gNMI set for]
"request": {
"paths": [

"/gnmi.gNMI/*"
]
s

"source": {
"principals": [
"Userl"

-client_crt certs/certs/Userl.pem -client_key

certs/certs/Userl.key
-server_name ems.cisco.com -get -proto
get-oper.proto

Output

E0720 14:49:42.277504 26473 gnmi _cli.go:195]
target returned RPC error
for Get ("path:{origin:"openconfig-interfaces"

elem: {name:"interfaces"}

elem: {name:"interface"
key: {key:"name" value:"HundredGigEO0/0/0/0"}}}

type:OPERATIONAL
encoding:JSON_ IETFE") :

rpc error: code =
PermissionDenied desc = unauthorized RPC

request rejected

After completing this task, the gRPC-level authorization policy is updated and active on the router.

Example

For example, after executing the update command, you can verify the policy using the 'show grpc
authorization policy' command.

What to do next

After updating the policy, validate the configuration by checking the gRPC service behavior and authorization

logs.

gNSI Credentialz updates

A gNSI Credentialz update is a process in a network using gNSI that allows you to change or update SSH
credentials while the router is operational. These credentials include:

* Passwords

gRPC Authentication .

gRPC Authentication |
[onsiRotate Credentialz RPC

* Keys

* Certificates

Table 6: Feature History Table

Feature Name Release Description
Information

gNSI Credentialz Update | Release 24.2.11 To improve communication confidentiality and security, you
can now update or rotate account-specific and host-specific
SSH credentials on a router. You can access the latest SSH
credentials through the gNSI credentialz RPC. The updated
SSH credentials encompass passwords, host keys, and
certificates.

To view the specification of gNSI credentialz RPCs and
messages, see the GitHub repository.

This update mechanism improves communication confidentiality and security by enabling real-time credential
rotation without requiring a router reboot.

* Live credential rotation: Credentials can be updated while the router is running.
« Account and host-specific updates: Supports both user account and host-level SSH credential changes.

* gNSI credentialz RPC: Provides the interface to perform credential updates securely.

gNSI Rotate Credentialz RPC

Starting from Release 24.2.1, Cisco IOS XR supports four gNSI RPCs to rotate SSH credentials securely.
These RPCs allow administrators to manage authentication policies and key material on network devices.

* RotateAccountCredentials: Replaces the existing SSH authentication service policy with a new one if
valid.

» RotateHostPar ameters: Updates the Certificate Authority (CA) public key and the SSH server’s key
and certificate.

» CanGenerateKey: Checks whether the target device can generate a public/private key pair.

* GetPublicKeys: Retrieves the current public keys configured on the host.

gNSI Rotate Credentialz RPC support in Cisco 10S XR

Table 7: gNSI Rotate Credentialz RPC support in Cisco 10S XR

gNSI Rotate Credentialz RPC Run This When For More Information

RotateAccountCredentials You want to specify an SSH See RotateAccountCredentials
authentication service policy for the
network element.

If the policy is valid, it replaces the
existing policy.

. gRPC Authentication

https://github.com/openconfig/gnsi/blob/main/credentialz/credentialz.proto

| 9RPC Authentication

Rotate account credentials .

gNSI Rotate Credentialz RPC

Run This When

For More Information

RotateHostParameters

You want to change both the
Certificate Authority (CA) public
key and the key and certificate used
by the SSH server.

See RotateHostParameters

CanGenerateKey

You want to check whether the
target can generate a public or
private key pair.

See CanGenerateKey

GetPublicKeys

You want to get the current public
keys from the host. It returns each
configured key in the provided list.

See GetPublicKey

Rotate account credentials

Credential rotation using gNSI is a security automation feature that updates user credentials on routers through

RPC-based operations.

» Updates user-specific authorized keys and authorized principals for SSH access.

» Invalidates old credentials and logs credential rotation activities.

* Notifies stakeholders and enforces secure access policies across the network.

This enhances overall network security by ensuring credentials are rotated regularly and securely.

Prerequisites

* Configure a user account on your router.

* Configure SSH Version 2.

The table outlines the messages that Rotate Account Credentials RPC supports, along with their descriptions.

Table 8: Rotate Account Credentials RPC Messages

Message

Description

AuthorizedKeysRequest

This message defines the authorized key list for password-less SSH accepted

by the router's SSH service.

The gNSI client dispatches an authorizedkeysRequest to the router to
update or replace credentials on the SSH service. The router responds with
a AuthorizedKeysResponse message to the gNSI client.

It supports these keys:
* RSA 2048, RSA 4096 bits
* ECDSA-p-256, ECDSA-p-521
» Ed25519

gRPC Authentication .

gRPC Authentication |
. Rotate host parameters

Message Description

AuthorizedUsersRequest This message performs a user authorization check. User authorization can
be done using both static and dynamic methods.

Static Authorization: You can perform static authorization based on a
principal name (unique identifier for a user) using Cisco SSH. For static
authorization, use the AuthorizedUsersRequest message.

Dynamic Authorization: For dynamic authorization, use the
AuthorizedPrincipalCheckRequest message. For details, see Rotate host
parameters, on page 24.

CiscoSSH supports the user authorization using AuthorizedPrincipalsFile.
AuthorizedPrincipalsFile contains pairs of account names and their
corresponding principal names that the router recognizes for certificate-based
authentication. For more details, see AuthorizedPrincipalsFile.

Rotate host parameters

Rotate host parameters is a gNSI RPC-based mechanism that manages SSH host credentials and authentication
policies on routers.

* Updates and verifies host account credentials to maintain secure SSH access.
» Automatically reverts to old credentials if validation fails to prevent lockouts.

* Supports dynamic and static authorization using OpenSSH and CiscoSSH mechanisms.

This ensures secure, automated credential rotation and policy enforcement across network devices.

Prerequisites
* Configure a user account on your router.

* Configure SSH Version 2.

The table outlines the messages that Rotate Host Parameters RPC supports, along with their descriptions.

Table 9: Rotate host parameters RPC support in Cisco 10S XR

Message Description

CA public key The SSH server uses the ca public key message to verify the gNSI client
certificates presented during connection establishment.

Without Host Identity Based Authorization (HIBA), these keys are supported:
* RSA 2048, RSA 4096 bits
* ECDSA-p-256, ECDSA-p-521
« Ed25519

. gRPC Authentication

https://man.openbsd.org/sshd_config#AuthorizedPrincipalsFile

| 9RPC Authentication

Rotate host parameters .

Message

Description

Server keys

The server keys message includes host keys and router certificates that
serve as credentialz for the gNSI client.

If the host keys are generated externally, they must be specified in the server
keys request.

It supports these keys:
* RSA 2048, RSA 4096 bits

« ECDSA-p-256, ECDSA-p-521
« Ed25519

It supports these router certificates:
* Router certificates with HIBA Support

* ssh-rsa-cert-v01@openssh.com

* Router certificates without HIBA support:
* ecdsa-sha2-nistp256-cert-v01@openssh.com
* ecdsa-sha2-nistp521-cert-v0 1 @openssh.com
* ssh-ed25519-cert-v01@openssh.com
* rsa-sha2-256-cert-v01@openssh.com

* rsa-sha2-512-cert-v01@openssh.com

Generate key

The Generate Key message is used for host key management in SSH. When
the host keys are generated by the router, this message triggers the creation
of new host keys for SSH host key management. The Generate key message
supports these keys:

* RSA 2048, RSA 4096 bits
* ECDSA-p-256, ECDSA-p-521
* Ed25519

gRPC Authentication .

mailto:ecdsa-sha2-nistp256-cert-v01@openssh.com
mailto:ecdsa-sha2-nistp521-cert-v01@openssh.com
mailto:ssh-ed25519-cert-v01@openssh.com
mailto:rsa-sha2-256-cert-v01@openssh.com
mailto:rsa-sha2-512-cert-v01@openssh.com

. CanGenerateKey

gRPC Authentication |

Message

Description

AllowedAuthenticationRequest

The AllowedauthenticationRequest message specifies the permissible
authentication methods for the gNSI client authentication.

The supported authentication methods are as follows:
» Keyboard interactive
* Password-based
* Pubkey-based
* OpenSSH certificate-based
* Public key-based

By default, the SSH server allows all authentication methods.

AuthorizedPrincipalCheckRequest

The AuthorizedPrincipalCheckRequest message supports the dynamic
authorization of the user against the principal name using the OpenSSH or
CiscoSSH.

Setting the TOOL_HIBA DEFAULT flag prompts the router to use the
HIBA binary for dynamic authorization. Un setting the HIBA DEFAULT
flag switches the router to use a static authorization.

Dynamic Authorization: You can enforce the user for authorization check
using HIBA.

Note
The support is only for ssh-rsa-cert-v01@openssh.com

CiscoSSH supports AuthorizedPrincipalCheck using
AuthorizedPrincipalsCommand and AuthorizedPrincipalsCommandUser
AuthorizedPrincipalsCommand:

This command generates the list of allowed certificate principals by executing
a HIBA binary (By setting the TOOL HIBA DEFAULT flag).
AuthorizedPrincipalsCommandUser:

This command specifies the user account under which the system executes
the authorizedPrincipalsCommand. For more details on the specification,
see AuthorizedPrincipalsCommandUser

CanGenerateKey

The canGeneratekey RPC is a capability check that determines whether a router can generate a public or

private key pair.

* RSA 2048, RSA 4096 bits

« ECDSA-p-256, ECDSA-p-

» Ed25519

. gRPC Authentication

521

http://ssh-rsa-cert-v01@openssh.com
https://man.openbsd.org/sshd_config#AuthorizedPrincipalsCommandUser

| 9RPC Authentication
GetPublickey [Jj

GetPublicKey

The cetrublickey RPC gets the available public keys from the router and displays them. It supports these
keys:

« RSA 2048, RSA 4096 bits
« ECDSA-p-256, ECDSA-p-521
- Ed25519

Manage certificates using Certz.proto

Manage certificates using Certz.proto is a gRPC-based certificate management framework that:

* Provides a single Rotate RPC to upload certificates, keys, CA bundles, and CRLs.
* Supports SSL profile creation, deletion, and listing through dedicated RPCs.

* Enables secure and flexible certificate lifecycle operations using standard cryptographic algorithms.

This approach simplifies certificate handling and enhances security by associating all certificate entities with
unique SSL profiles.

Table 10: Feature History Table

Feature Name Release Information Feature Description
Manage Certificates using Release 24.1.1 Instead of using multiple RPCs,
Certz.proto Certz.proto provides a bidirectional

Rotate RPC to replace, revoke, or
load a certificate. It also provides
additional APIs to install Public
Key Infrastructure (PKI) entities
such as like identity certificates,
trust-bundles, and Certificate
Revocation Lists (CRLs) for a
gRPC Server.

This feature introduces the
following changes:

CLI:

e grpcgnsi servicecertz
sdl-profile-id

« show grpc certificate

Yang Data Models:

* Cisco-IOS-XR-man-ems-cfg.yang
(see Github, YANG Data
Models Navigator)

gRPC Authentication .

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3950747649
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3950747649
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp1437924813
https://github.com/openconfig/gnsi/tree/main/certz
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

gRPC Authentication |
. Manage certificates using Certz.proto

The Manage certificates using Certz.proto handles certificate operations on target devices, utilizing Certz
RPCs. The certz.proto file is available in the Github repository.

Certzs certificate identification and management

cert.proto: A certificate identifier differentiates between leaf certificates. However, the certificate authority
(CA) bundle lacks an identifier, meaning a new request to load a bundle could overwrite the existing one.
Separate RPCs are used to replace, load, and revoke a certificate.

certz.proto: Entities like Certificate, CA bundle, key, CRL, and authentication policy to a unique SSL profile.

A single rotate () RPC uploads all entities at once, including the certificate, the key, the CA bundle, and the
CRL.

These are the supported certz.proto cryptographic algorithms:
* Rivest-Shamir-Adleman (RSA)
* Elliptic Curve Digital Signature Algorithm (ECDSA)

* ED25519, a public-key signature system

Certz.proto offers unified certificate management, unique SSL profile association, and support for multiple
cryptographic algorithms, making it a comprehensive solution for managing SSL profiles.

)

Note If neither cert.proto nor certz.proto is configured, then tls trustpoint data is considered for certificate
management.

The table describes the RPCs supported under Certz.proto.

Table 11: Certz RPCs

RPC Description

AddProfile Addprofile is part of SSL profile management. It allows adding a new SSL
profile. When an SSL profile is added, all its elements, that is, certificate,
CA trusted bundle and a set of certificate revocation lists are NULL or
Empty. So, before an SSL profile can be used these entities have to be
'rotated' using the 'Rotate()” RPC.

Note
An attempt to add an already existing profile is rejected with an error.

Rotate Rotate function replaces or adds an existing device certificate, CA
certificates (trust bundle), or a certificate revocation list (CRL) bundle on
the target.. The new device certificate can be created from a target-generated
or client-generated CSR (Certificate Signing Request). In the latter case,
the client must provide the corresponding private key with the signed
certificate.

. gRPC Authentication

https://github.com/openconfig/gnsi/tree/main/certz

| 9RPC Authentication
Configure gNSI Certz .

RPC Description

DeleteProfile DeleteProfile is part of SSL profile management. It allows for removing
an existing SSL profile.

Note

An attempt to delete a not existing profile results in an error. The profile
used by the gRPC server can’t be deleted and an attempt to remove it will
be rejected with an error.

GetProfileList GetProfileList is part of SSL profile management. It allows for retrieving
a list of IDs of SSL profiles present on the target.

CanGenerateCSR An RPC to ask a target if it can generate a CSR.

SSL profile

An SSL profile is a named set of SSL settings that determine how end-user systems connect to or from
SSL-based applications or interfaces. The settings in an SSL profile include information about the version of
SSL or TLS to be used, certificates, keys, and other parameters related to SSL or TLS communication. By
using profiles, administrators can manage and apply these settings more easily across multiple applications
or connections.

SSL profile characteristics

« Logical Grouping: SSL profiles logically group certificates, private keys, Certificate Authority (CA)
chain of certificates (a.k.a. a CA trust bundle), and a list of Certificate Revocation Lists (CRLs) into a
single set that can be assigned to a gRPC server.

+ Default Profile: There’s at least one profile present on a target—the one used by the gRPC server. Its
ID is gnx1. When the ss1_profile id field in the RotateCertificateRequest message isn’t set (or is
set to an empty string), it refers to this SSL profile by default.

» Non-Removable Profile: You can’t remove the gRPC SSL profile (gnx1).

Configure gNSI Certz

This task guides you through configuring gNSI Certz by creating, rotating, and activating SSL profiles, and
verifying the certificate configuration using gRPC.

Before you begin
Before you begin, ensure the following:

* Ensure you've created and stored SSL-Profile at cd/misc/config/grpc/gnsi/certz/ssl profiles/

Procedure

Step 1 Create SSL-Profile using AddProfile RPC.
Step 2 Rotate SSL-profile using Rotate RPC. You can't rotate SSL-profile using a command line interface.

gRPC Authentication .

. Configure gNSI Certz

Step 3 Activate the profile using grpc gnsi service certz sd-profile-id.

Example:

gRPC Authentication |

Router (config-grpc) #gnsi service certz profile ssl-profile id <ssl-profile-name>

Step 4 Verify that certz.proto is configured using the show grpc certificate.

Example:

Router#show grpc certificate

Certificate:
Data:

Version: 3 (0x2)

Serial Number:

32

(0x20)

Signature Algorithm:
Issuer: CN=localhost,O=OpenConfig, C=US

Validity
Not Before:
Not After

Nov

sha256WithRSAEncryption

8 08:49:38 2023 GMT

Public Key Algorithm:
RSA Public-Key:
Modulus:

00:ea:
3b:
:d8:
tad:
:87:
:de:
tab:
To:
tald:
:cf:
6d:
:43
la:
13:
:b2:

Ob:
e’7
27
71
Se
97:
e3:
8c:
41:
cc:
51
1f:
81:
fa:
ed:
74
Sa:
03:
57:
ds:
12:
2c:
6d:
fc:
lc:
ae
Tf:
93:
de:
dl:
57
ab:
82:
11

26

08:

86

la:
3a:
rac:
0f:
0d:
24:
69:
:68:
8a:
27:
04:
Sa:
ca:
83:
Oa:
a0:
1b:
:f9:
ef:
2b:
:dd:
da:
9d:
4d:
4d:

8e

5b:
:b6:
bO:
66:
:95:

Exponent:

X509v3 extensions:
X509v3 Key Usage:

6a:

de

16

Tc:

20

£5

d9g:
2c:
6a:

96

ce:
37:
tde
:c0
6d:
:avl:
3a:

50
do

f6

bc:
:70
red:
172
9a:
Se:

77
93
06

19

c0:
:23:
6c:
c2:
69:

02

37

6c:
:58
28:
:cf:
40:
: 54

98

el
51
£3

bl

6a:
re7:

£5

fc:
148
HVACH
:c4
83:
98:
126

45

60

14
78

65537

critical

rsaEncryption

(4096 bit)

25

:a8
:35
3c:
Oc:
:5b:
:5f:
:c9
:b3

3e
46

d3

22

176
dé:
81:
:bl

8e

9d:
rae
:ch:
98:

12

66:
22:
:da:
:4b:

(0x10001)

Digital Signature

X509v3 Extended Key Usage:

:be:

HS

:bd:

e3

f4
53

:5d:
HA

:a0
:25
:c4

:35

£8

:a8
c2

£7
03
13

ea:
94 :
0f:
t4f:

3e:
:0f:
83:
rac
02:
37:

14:
:db:
:dc:
:5d:
ab:

9f:
:28
35:
:28:
dd:
:2f:
:3c:
aa:

124
1f:

10

62

06

89

81

15

:b8

60

30

9f:

fl

6d:
:72
:d8:
:b0:
:b7:
72

17
£9
96
6e

£7

46:
15:
fd:
fd:
:45
:b0

14

87
9e

:ab
:b3
db:
de:
:5a:
cel
:c6

58
97
10

:d3
:bd:

:71
:cf:
a7
69:
rea:
19:
a2
eb:
:a9
:db
98:
tde:
:21:
Tc:

re’7
:d6
:3b:
:3e
274
:2b:
d3:
3b:
:5f:
12:
34:

ce

:4b:
8b:
66:

71
fl

:dc:
:be
:79:
83:
:df:
22:
67:
1e6:
:52
90:
rea:
6a:

90

86:
a2
a7
66:
:46:
:e6
:7f:
14d:
:ch:
124

14

66

TLS Web Client Authentication,

. gRPC Authentication

: Mar 22 08:49:38 2025 GMT
Subject: CN=ems,O=OpenConfig, C=US
Subject Public Key Info:

ice
b3:
tde:
9c:
dc:
6f:
:c3:

99

90

:3c:
6b:
1b:
9a:
:30:
raa
0f:
:3f:
fa:
:cl:
89:
:32:
red:
HACH

le

:c4:
3c:
:59:
:bc:
:bd:
:2f:

99
96

:cl:
:a9:

274
82:
277
le:
rca:

£8

22:

40

71:
14:
tad:
:3b:
:53:
fa:
:a6
05:
de:
:bd:
4d:
:7c:
:b8
8e:
:de:
:df:
1f:
:5b:
:54:
:35
:e8
6d:
:20
8f:
:38:

4e

ee

62:

01
13

:29:

£9
87

6f:

72
43
19
06

:a4d
de:
:c4
9f:
rca:
40:
:29

66

£2
83

89:
:b4
02:
:52:
93:
:28:
01:

91

61

f4:
08:
fc:
86:
:98:
:ab:
fb:
32:
cf:

2f

a6

58

03

e3

97

38:

49

cl

£9:
8c:
ab:

36
03

:c8:
re2:
:c3:
:52:

85

24

15

rec:
:5c:

46

00

26
f4

1f

32

TLS Web Server

ef:
42

:5f:

96:

:54:
69:
90:
:d3
65:
:a3
09:
36:
:df:
:d9:
ac:
:60:
37:
:b7:

3d:
la:

Y

3d:

:dc:

08:
1f:

ab6:
30:

tel:
16:
163
le:
Se:
ee:
:78:
:55
17:
91:
0f:
£8:
1a6:
96:
:a0:
96:
:20:
:Te:

98:

tac:

b6:
47:
06:
1b:

:bd:

de:
fl:
8b:
93:
ff:
44 :
4a:
Oe:

Authentication

| 9RPC Authentication

Signature Algorithm:
rec:
:eb:
tda:
dd:
:cf:
:eb:
1f:

b9:
:ba:
: fo6
8d:

97

d7:
48:

81
23

cd:
bf:
cb:
5d:
:d8
1b:
bc:
20:
Ta:
c4d:

72

03:
6c:
11:
38:
8b:
3f:
b8:
61:
:d8
eb:

74

bc:
19:
18:
e3:
b7:
e7:
ab:
65:
64 :

X509v3 Authority Key Identifier:
keyid:0A:A8:9A:6A:23:34:AE:CA:96:00:2C:F3:04:38:14:E3:D4:8D:77:BD

X509v3 Subject Alternative Name:
DNS,

89

55

86:
:db:
el
cf:
rea:
Oe:
:35:
:5f:
6d:
£7:
86:
63:
fc:
:5a:
:a0
:cf:
rea:
83:
148
46:
79:
04:
1d:
ec:
Oa:
65:

89

66:

08

a4
37
75

2e

e3

92

:de:
re2:
Oc:
:7a:
rcd:
:Te:
:21
:3a:
ea:
la:
:e8
:dc:
:4b:

be

91

06:

63
06
e2

60

66

Oe
16
de
37
f9

8f:
8e:

02
73

:52
06:
:d3
6d:
:35
6f:
8e:
:c3
6c:
:e6

66

£7:
:2d:
:b0:
fa:
274
rab:
:5d:
0d:
fc:

58

fc:

IP Address:64.103.223.56
sha256WithRSAEncryption

:3d: :56:

f2
67

70:

88

31

85

83

£f9:
ad:

82

Oa:

86

:2e:
:dd:

74

8d:
148
:5b:
lc:
:70

08

12:
:b4

9e
07

6f:
$4d:
b6:

c5
a6

:b2
92:
ba:
:a0:
:42

3e

22

7d:
:b2

75

9f:
:5a:
:bd:
9f:
:b2:
:21
:df:
cc:
e0:
fc:
:a8
:a8:
:b8:

15
£7
06

274
:53:
:Tb:

b0
£2

:71

9c:
:44:
:e0
Tc:
lc:

2e

8a:
fc:
:bf:

25
67
f1
8e

:e8

£8
27

a0
ab

7f

dc:
8d:
:c0:

al

8d:
:31:
44
3d:

le

:34:
:4d:
re2:
:dd:
tde
:bb:
:bc:
HVACH
:be
:e8
re2:
9a:
b9:
:db:
:28
:3b:
cc:
rac:
:3c:
4d:

Oe

red:
tda:
fb:
ec:

66
17

tab:
16:
:41
:c6
To:

e3

08

db:
Ob:
:Tb:
de:
Oa:
8d:
73:
:bf:
Tf:
:b9
99:
cd:
ref:
Ob:

a7

80:
9a:
:b6
7d:
70:
rab:
rcd:

68

3e:
Tc:
16:
:Se:
:a8
09:
8b:
:31
re2:
:e8:

23
52

aa:
0d:
:a6
2d:
£5:
07:

07

42

95
46

63

9e:

85
12

:de

19
58

8e

89:
:bb:
:51
ab:
:b3:
:c0:
HelS)
09:
fc:
dc:
:c8
124
88:
:5b:
89:
09:
06:
:3b:
:79

e8

24

17:
fl:
:0a:
:b8

40

dd:
9b:
a6:
:32:
:dd:
fb:
:72
93:
:b7
:b4:
:5c:
:b7:
:c7:
:54:
Oe:

f2

99:
:c0:
:36
cel

al

:07

de

06

£f2:
83:
13:

67

:cl
4b:
:bb:

£3

al:
f0:
fa:
:e’7
15:
:2e:

44

05
00

:d3

07

15

24

6cC:
tee:
Oe:
£3:
ff:
:db:
a2
60:

47

:92:
62:
HelS)
rad:
:de:
:3a:
:bb:
: 54
09:
6f:
:56:
124

88
do
75
£2

:d7:

bl

£5
98
66

:c7:
:2f:
77:

e8

35:
9e:
ff:

a3

98:
79:
HIeH
cf:
b9:

38

9e:
rab:
:23:
rec:
:db:
red:
46:
:c4:
49:
:de:
raa:
tea:
fd:
ad:

94

48

:b2
85:
cb:
2a:
:bb
:32:
:£0:

42

60:

45

78:

c7

4c:
04:
:2f:
db:
2f:
de:
9d:
56:
9b:

71

11:
rac:
68:

08

16:
d4:
ch:
:53:
:3b:
To:
94 :
97:
122
:3d:
04:

:b6:
18:
167
eb:
4d:
00:
70:
23:
2d:
99:
le:
Te:
:d2:
36:
Oc:
34:
:2d:
85:
85:
13:
Te:
ba:
c0:
93:
91:
tc4:
07:
89:

gNSI EnroliZ and Attestz [

The gNSI Certz SSL profile is successfully configured, activated, and verified using gRPC certificate inspection.

Example

For example, after activating the profile with gnsi service certz profile ssl-profile id
<ssl-profile-name>,the show grpc certificate command displays the certificate details including

issuer, subject, and validity period.

What to do next

After completing this task:

* Ensure the gNSI client trusts the activated certificate and can securely communicate with the router.

gNSI EnrollZ and AttestZ

gNSI EnrollZ and AttestZ are TPM-based services that enhance device security through cryptographic identity
verification and boot-time integrity checks.

* EnrollZ handles TPM 2.0 enrollment and provisioning of TLS and attestation certificates.

gRPC Authentication .

gRPC Authentication |
. Enroll a TPM 2.0 on network devices

* AttestZ performs TPM 2.0 attestation by validating Platform Configuration Register (PCR) values during
boot.

* These services eliminate the need for vendor Certificate Authorities and align with Trusted Computing
Group (TCGQ) specifications.

They ensure that only verified devices receive sensitive credentials and are fully controlled by the device
owner.

Table 12: Feature History Table

The EnrollZ service handles the TPM 2.0 enrollment workflow, involving cryptographic verification of the
device's TPM-rooted identity and provisioning of attestation and Transport Layer Security (TLS) certificates
by the device owner. This ensures that the device is under the control of the owner and not dependent on
external vendor Certificate Authorities (CAs) during the attestation process.

The AttestZ service manages the TPM 2.0 attestation workflow, confirming the device's integrity throughout
the boot process by comparing observed Platform Configuration Register (PCR) values against expected ones
to verify the device's boot state.

This approach simplifies the TPM enrollment process for device owners, enhances control over certificate
management, and eliminates external dependencies, while aligning with Trusted Computing Group (TCG)
specifications.

Enroll a TPM 2.0 on network devices

The Trusted Platform Module (TPM) 2.0 enrollment workflow is a secure process for network devices to
obtain the necessary credentials and configurations for TPM management.

This workflow is initiated after the device boot process and involves interaction with various gRPC API
endpoints.
Before you begin

* Device has completed the Bootz workflow.

* Device is equipped with a default SSL profile using the Secure Unique Device Identifier (SUDI) key
pair and certificate.

* EnrollZ service is available and ready to enroll the TPM on the control card.

* Router owner has access to the trust bundle/anchor from the router vendor.

Procedure

Step 1 Prepare device for TPM enrollment: Ensure the device has completed the Bootz workflow and is ready to serve TPM
enrollment gRPC API endpoints on the required port.

Step 2 Trigger EnrollZ service: Use the cet1akcert API to retrieve the Initial Attestation Key (IAK) and IDevID certificates.
Step 3 Verify and validate certificates:

» Verify the signature over the IAK certificate using the trust bundle/anchor from the router vendor.

* Root Certificate: Cisco ECC Root CA

. gRPC Authentication

| 9RPC Authentication
Enroll a TPM 2.0 on network devices .

MIIByDCCAU6gAWIBAgIBAZAKBggqhkjOPQQDAZASMQ4wDAYDVQQKEWVDaXNjbzEa
MBgGA1UEAXMRQ21zY28gRUNDIFJvb3QgQO0EwWIBcNMTMwNDAOMDgxNTQOWhgPMjAS
OTA5MDcxNjI0OMDdaMCwxDjAMBgNVBAOTBUNPpc2NVMROWGAYDVQQDExXFDaXNjbyBF
Q0MgUm9vdCBDQTB2MBAGBYyqGSM4 9AgGEGBSUBBAAIA2TIABH7AW72zYG8bzZ5FN1niM
5rV10QR/L/5g0Kx3KtNtAKFFVGewWLczv8y9SzZceluDOOyml00wImGzS4urXgdVv
JJtMiKsCcMkiNwJQdcDV1Eg0x79YU/ 6uy4 9z IPUGWxKHYgNCMEAWDgYDVROPAQH/
BAQDAGEGMA8GALUJEWEB/wQFMAMBAf8wHQYDVROOBBYEFKRFt1i+jMbF2FbAKGDPK
9g1PPSgEMAOGCCgGSM4 9BAMDA2gAMGUCMQDwm3Hce 0BWn/ 9hgqTq6bfEZEERPLiPmA
/6WGbx0JyB110Z40tuiFu58GDQcxEbgAVYsCMAL54FIpj4kUhCjHI4AdmHPglyxr
MeOEt6xIsdZUlUk1VMpmJ4969uKxHjirigXzhg==

MIIDETCCApagAwIBAGIBBTAKBggghkjOPQQDAZASMQ4wDAYDVQQKEWVDaXNjbzEa
MBgGA1UEAXMRQ21zY28gRUNDIFJvb3QgQO0EwWIBcNMTMwNDAOMDgyNjEzWhgPMjAS
OTA5MDcxNjIOMDZaMCsxDjAMBgNVBAOTBUNpc2NVMRkwEFwYDVQQODExXxBBQ1QyIEVD
QyBTVURJIENBMHYWEAYHK0ZIZzj0CAQYFKA4EEACIDYgAEjGHc+nnSMQr4zuARzDxH
F6TD197f7eGgSADK5misVpoBPONwwcmazs+GTiT+Us52/BKuod4Jlaz74cnlzzBIn
kPwtuag2bXSCeYVJIhcB3sVuVvYiSKVEi10Igx85dtXdwo4IBiTCCAYUwDgYDVROP
AQH/BAQDAGEGMBIGAIUJEWEB/wWQIMAYBAf8CAQAWEQYIKwYBBQUHAQEECTBVMD8G
CCsGAQUFBzAChjNodHRwO18vd3d3LmNpc2NvLmNvbS9zZWN1cmlOeS9walkvY2Vy
dHMVZWNFcm9vdC5j ZXIwLAY IKwYBBQUHMAGGIGhOdHA6Ly9wa21jdnMuY21zY28u
Y29tL3BraS9vY3NwMB8GA1UdIWQYMBaAFKRFti+jMbF2FbAKGDPKOqlPPSgEMEFWG
AlUJIARVMFMwUQYKKwYBBAEJFQETADBDMEEGCCsGAQUFBWIBFjVodHRwO18vd3d3
LmNpc2NvLmNvbS9zZWN1lcmlOeS9wa2kveGIsaWNpZXMvaWbkZXguaHRtbDBCBgNV
HR8EOzASMDegNaAzhjFodHRwO18vd3d3LmNpc2NvLmNvbS9zZWN1cmlO0eSOwa2kv
Y3JsL2VjY3Jvb3QuY3JIsMBOGAL1UADgOWBBSWhzrYiYGRQRUzV+AQ]yCPwrvD1jAK
BggghkjOPQODAWNPADBmMAjEAzye9v1h5m/1bAUSUOMQOwShDDCRIHXsc+1TtbgOJR
1cZMmhsIzNNy/AskkBoIgNNtAjEAk3DAKxkBx3DYyZS4Uz3B50MpbrZwpxPTUCQW
m7gqExCM7m1FjIg981tfdltPHggP/

Use these certificates as the trust anchors when verifying the IAK certificate signature for devices using the
ECC P384 algorithm.

* Confirm that the device identity fields in the IAK and IDevID certificates meet the expected criteria.

* Confirm that the device identity fields in the IAK and IDevID certificates meet the expected criteria.

Step 4 Request and install owner certificates:

* Request the router owner CA to issue the Owner IAK (0lAK) and Owner IDevID (oIDevID) certificates based on
the public keys.

 Use the rotateoIakcert API to install the oIAK and oIDevID certificates on the control card.

Step 5 Verify and Store certificates:
* Verify that the public keys in the 0IAK and oIDevID certificates match with respective IAK and SUDI public key.

* Store the ol AK and oIDevID certificates in non-volatile memory for presentation during the TPM attestation (attestz)

workflow.

Step 6 Update SSL profile: Update the SSL profile to use the trust bundle and rotate the certificates to the Owner IDevID
certificate.

Step 7 Enroll secondary control card: Repeat the enrollment workflow for the secondary control card, if present.

gRPC Authentication .

gRPC Authentication |

. TPM 2.0 attestation

Step 8

Obtain the attestation result from the device and verify that the Platform Configuration Register (PCR) values match the
expected known-good values, confirming that the device has securely booted with the approved firmware and software
artifacts.

The TPM 2.0 is successfully enrolled and ready for attestation workflows using the installed certificates.

Example

For example, after enrollment, the device presents the olAK and oIDevID certificates during attestation
to prove its identity and integrity.

What to do next
After completing this task:

* Monitor the attestation logs to ensure the enrolled certificates are used and validated successfully.

TPM 2.0 attestation

Step 1

Step 2

Step 3

Step 4

The TPM 2.0 attestation workflow ensures the integrity and identity of network devices by verifying their
configurations and credentials.

This process involves interaction with gRPC TPM 2.0 attestation endpoints and requires the device to be
booted with the correct OS image and configurations.

Before you begin
* Device must be booted with the correct OS image.

* Correct configurations and credentials must be applied.

* Primary/active control card is responsible for all RPCs directed to the secondary/standby control card.

Procedure

Serve gRPC TPM 2.0 Attestation Endpoints: Ensure the device serves gRPC TPM 2.0 attestation endpoints on port 9339,
the same port as gNOI/gNSI/gNMI.

The device must be booted with the correct OS image and configurations.

Authenticate Standby Control Card: Perform an authentication handshake between the active and standby control cards
using the IDevID key pair/cert.

The active control card is responsible for this handshake as the router owner cannot directly TLS authenticate the standby
card.

Secure Initial Attestation RPCs: Use the active control card’s IDevID private key and oIDevID cert to secure TLS for
the initial attestation RPCs.

Call AttestZ Service: AttestZ service calls the device’s Attest endpoint for a given control card (and a random nonce) to
get back:

. gRPC Authentication

| 9RPC Authentication
TPM 2.0 attestation .

* An olAK cert signed by the router owner’s CA.
» Final observed PCR hashes/values.
* PCR Quote structure and signature over it signed by IAK private key.

* (Optional) oIDevID cert of the standby control card.

Step 5 Verify Certificates and Signatures:

* AttestZ service uses the trust bundle/anchor from the router owner CA to verify the olAK cert and its
validity/revocation status.

» Ensure that the control card serial number in the oIAK cert and oIDevID cert is the same.

Step 6 Compare PCR Values: The AttestZ service compares the PCR values against the known PCR values provided by the
OEM vendor specific to a release.

Step 7 Compare PCR Values and Record Attestation Status: AttestZ service fetches expected final PCR values from its database
and compares them to the observed ones reported by the device.

AttestZ service records a successful attestation status for the given control card and repeats the workflow for the
secondary/standby control card if one is available.

The TPM 2.0 attestation process completes successfully, verifying the device's integrity and recording the
attestation status for each control card.

Example

For example, if the standby control card is present, the AttestZ service will repeat the attestation
steps to verify its identity and configuration using the same process as for the active control card.

What to do next
After completing this task:

* Monitor the attestation logs and ensure that both control cards have passed the verification process.

gRPC Authentication .

gRPC Authentication |
. TPM 2.0 attestation

. gRPC Authentication

	gRPC Authentication
	gRPC authentication modes
	Configure authentication for gRPC services
	gRPC servers with TLS version 1.3 support
	Guidelines and limitations for TLS configuration
	Configure gRPC TLS version

	Certificate common-name for dial-in using gRPC protocol
	Configure certificate common name for dial-in

	SPIFFE ID-based authentication and authorization services for gRPC services
	Authenticate and authorize gRPC service requests using the SPIFFE standard

	gRPC network security interface
	gRPC-level authorization policies
	gRPC-level authorization policy update using gNSI client
	gRPC-level authorization policy update using Exec command

	gNSI Credentialz updates
	gNSI Rotate Credentialz RPC
	Rotate account credentials
	Rotate host parameters
	CanGenerateKey
	GetPublicKey

	Manage certificates using Certz.proto
	Configure gNSI Certz

	gNSI EnrollZ and AttestZ
	Enroll a TPM 2.0 on network devices
	TPM 2.0 attestation

