
Programmability Configuration Guide for Cisco 8000 Series Routers,
Cisco IOS XR Releases
First Published: 2025-11-03

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

© 2025 Cisco Systems, Inc. All rights reserved.

C O N T E N T S

Preface viiP R E F A C E

YANG data models for programmability features 1C H A P T E R 1

Access data models 1

Access data models from router 1

Access data models from Cisco Feature Navigator 2

Access data models from GitHub 3

Get started with IOS XR YANG data models 4

YANG data models 5C H A P T E R 2

YANG data models 6

Access data models 7

YANG action 9

YANG input validators and Get requests 11

YANG input validators usage guidelines and limitations 13

Communication protocols 13

NETCONF protocols 14

gRPC protocols 14

Unified data models 15

Manage automation scripts using Yang RPCs 17C H A P T E R 3

Automation scripts using YANG RPCs 17

Common script actions 18

Add a script 18

Remove a script 20

Stop a script 21

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
iii

Run a script 22

Exec scripts 23

Add an exec script 23

Configure checksum 24

Run an exec script 26

Stop an exec script 27

Remove an exec script 28

View the script execution status 29

EEM scripts using RPCs 30

Configure event actions using the data model 30

Create a policy map for events and actions with a data model 32

Operational model for EEM script 34

Retrieve actions using the operational data model 34

Retrieve a policy map using the operational data model 36

Retrieve events with trigger conditions using the operational data model 37

Precommit Scripts 41C H A P T E R 4

Precommit scripts 41

Restrictions of precommit script 42

Run the precommit script 42

Download the script to the router 44

Configure checksum for the precommit script 46

Activate precommit scripts 47

Config scripts 49C H A P T E R 5

Config scripts 49

Restrictions for config scripts 50

Run config scripts 50

Enable config scripts 52

Download script to the router 52

Configure checksum to the router 54

Configuration change validation 56

Validate or commit configuration to invoke config script 57

Delete config script from the router 59

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
iv

Contents

Set script execution priority 60

Exec Scripts 61C H A P T E R 6

Exec scripts 61

Provision an exec script 61

Download the script to the router 63

Update scripts from a remote server 64

Update scripts from a remote server 65

Invoke scripts from a remote server 68

Configure the checksum for an exec script 68

Run an exec script 70

View the script execution details 71

Delete exec scripts from the router 73

Process Script 75C H A P T E R 7

Process scripts 75

Run the process script 75

Download the script to the router 77

Configure checksum for the process script 79

Register the process script as an application 80

Activate the process script 81

Obtain operational data and logs 82

Manage actions on process script 84

EEM scripts 85C H A P T E R 8

EEM scripts 85

Manage eem scripts on the router 86

Download script to the router 87

Define trigger conditions for events 88

Create actions for events 90

Policy maps 91

Associate events and actions with a policy map 92

View operational status of eem components 93

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
v

Contents

Model Driven Command Line Interface 97C H A P T E R 9

Model-driven CLI features for data model visualization 97

Structure of data model 98

Navigating YANG operational data models via CLI commands 99

Model-Driven CLI to display running configuration in XML and JSON formats 102

XML output for the show run command 104

JSON output for show run command 104

Granular level component output for show run command 105

Unified model output for show run command 106

Automation Scripts 107C H A P T E R 1 0

Operational simplicity using automation scripts 107

Types of automation scripts 108

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
vi

Contents

Preface

This cumulative guide provides a single, continuously updated version that includes all the latest IOS XR
features and release updates. It simplifies your experience by letting you bookmark one link and access the
complete guide, instead of navigating through multiple release-specific versions.

Specific changes or updates tied to individual releases are clearly called out within the relevant sections. For
a list of features introduced in a specific release, refer to the Release Notes or the IOS XR Feature Finder.

The table lists the release numbers for which this document has been updated since its initial publication.

Table 1: Changes to this document

SummaryDate

First published for Release 25.3.1October 2025

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
vii

https://www.cisco.com/c/en/us/support/routers/8000-series-routers/products-release-notes-list.html
https://cfnng.cisco.com/feature-finder/ios-xr

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
viii

Preface
Preface

C H A P T E R 1
YANG data models for programmability features

Cisco IOS XR supports a programmatic way of configuring and collecting operational data of a network
device using YANG data models. Although configurations using CLIs are easier and human-readable,
automating the configuration using model-driven programmability results in scalability.

The data models are available in the release image, and are also published in the Github repository. Navigate
to the release folder of interest to view the list of supported data models and their definitions. Each data model
defines a complete and cohesive model, or augments an existing data model with additional XPaths. To view
a comprehensive list of the data models supported in a release, navigate to the Available-Content.md file in
the repository.

You can also view the data model definitions using the YANG Data Models Navigator tool. This GUI-based
and easy-to-use tool helps you explore the nuances of the data model and view the dependencies between
various containers in the model. You can view the list of models supported across Cisco IOS XR releases and
platforms, locate a specific model, view the containers and their respective lists, leaves, and leaf lists presented
visually in a tree structure. This visual tree form helps you get insights into nodes that can help you automate
your network.

To get started with using the data models, see the Programmability Configuration Guide.

• Access data models, on page 1
• Get started with IOS XR YANG data models, on page 4

Access data models
You can access the data models using one of these options:

Access data models from router
To access data models directly from the router, you can use these steps:

Procedure

Step 1 Enter the global configuration mode.

Example:
Router#configure

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
1

https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Step 2 Configure the NETCONF network management protocol to remotely configure and manage the router using YANG data
models.

Example:
Router(config)#netconf-yang agent ssh

Step 3 Commit the configuration.

Example:
Router(config)#commit

Step 4 Establish a NETCONF session with the device and retrieve the capabilities information.

Example:
Router#show netconf-yang capabilities
Tue Sep 19 22:03:26.305 UTC
[Netconf capabilities]

D: Has deviations

Capability | Revision |D
--+----------+-
urn:ietf:params:netconf:base:1.1 | - |
urn:ietf:params:netconf:capability:candidate:1.0 | - |
urn:ietf:params:netconf:capability:confirmed-commit:1.1 | - |
urn:ietf:params:netconf:capability:interleave:1.0 | - |
urn:ietf:params:netconf:capability:notification:1.0 | - |
urn:ietf:params:netconf:capability:rollback-on-error:1.0 | - |
urn:ietf:params:netconf:capability:validate:1.1 | - |
http://cisco.com/ns/yang/Cisco-IOS-XR-8000-fib-platform-cfg |2019-04-05|
http://cisco.com/ns/yang/Cisco-IOS-XR-8000-lpts-oper |2022-05-05|
http://cisco.com/ns/yang/Cisco-IOS-XR-8000-platforms-npu-resources-oper |2020-10-07|
http://cisco.com/ns/yang/Cisco-IOS-XR-8000-qos-oper |2021-06-28|
http://cisco.com/ns/yang/Cisco-IOS-XR-Ethernet-SPAN-act |2021-03-22|
http://cisco.com/ns/yang/Cisco-IOS-XR-Ethernet-SPAN-cfg |2022-07-13|
http://cisco.com/ns/yang/Cisco-IOS-XR-Ethernet-SPAN-datatypes |2021-10-06|
http://cisco.com/ns/yang/Cisco-IOS-XR-Ethernet-SPAN-oper |2022-09-05|
http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-aaacore-cfg |2019-04-05|
http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-ldapd-cfg |2022-06-22|
http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-ldapd-oper |2022-05-20|
http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-lib-cfg |2020-10-22|
http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-lib-datatypes
---------------------------------- Truncated for brevity --------------------------------------

By examining the capabilities, you can view the available data models for the software version installed on the router.

Access data models from Cisco Feature Navigator
To access data models from Cisco Feature Navigator, you can use these steps:

Procedure

Step 1 Go to Cisco Feature Navigator.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
2

YANG data models for programmability features
Access data models from Cisco Feature Navigator

https://cfnng.cisco.com/

Step 2 If you have a Cisco.com account, click on the Login button and enter your credentials. If you don't have an account, you
can click Continue as Guest.

You will be directed to the Cisco Feature Navigator main page.

Step 3 Click YANG Data Models.
Step 4 Select the Product and Cisco IOS XR Release based on your requirement.

The data models are listed based on type—Cisco XR native models, Unified models and OpenConfig models.

You can use the search field to search for specific data model of interest.

Step 5 Click the specific data model of interest to view more details.

The data model is displayed in a hierarchical tree structure making it easier to navigate and understand the relationships
between different YANGmodules, containers, leaves and leaf lists. You can apply filters to further narrow down the data
model definitions for the selected platform and release based on status such as deprecated, obsolete and unsupported
nodes.

You can also click the Download icon to export the data model information in Excel format.

This visual tree form helps you get insights into the nodes that you can use to automate your network.

The data models on Cisco Feature Navigator is regularly updated based on IOS XR release. If you encounter any problem
or have suggestions for improvements, share your experience using Send us your feedback link.

Access data models from GitHub
To access the data models from GitHub repository, you can use these steps:

Procedure

Step 1 Go to the GitHub repository for data models.

On the repository page, you will find a list of folders based on IOS XR releases.

Step 2 Navigate to the release folder of interest to view the list of supported data models and their definitions. For example, if
you want to access the data models for IOS XR release 7.10.1, click on the folder named 7.10.1.

Inside the folder, you will find a list of YANG files representing different data models.

Step 3 Click on the YANG file you want to access to view its contents.

You can also click on the Raw button to see the raw code or use the Download button to download the file to your
computer.

Each data model defines a complete and cohesive model, or augments an existing data model with additional XPaths. To
view a comprehensive list of the data models supported in a release, navigate to the Available-Content.md file in the
repository. The unsupported sensor paths are documented as deviations. For example, openconfig-acl.yang provides
details about the supported sensor paths, whereas cisco-xr-openconfig-acl-deviations.yang shows the unsupported
sensor paths for openconfig-acl.yang model.

Step 4 Repeat the above steps for other versions or data models of interest.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
3

YANG data models for programmability features
Access data models from GitHub

http://iosxr-yang-dashboard@cisco.com
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr

The GitHub repository for IOS XR data models is regularly updated based on release. You can also contribute to the
repository by submitting pull requests, opening issues if you encounter any problems or have suggestions for improvements.

Get started with IOS XR YANG data models
Here is a generic outline of the steps involved in programmatically configuring your router using YANG data
models:

1. Enable networkmanagement protocol—Manage the router remotely using the protocols such as NETCONF
or gRPC.

2. Install the necessary libraries and tools—Depending on the programming language you are using, you
may need to install libraries or tools to programatically interact with the router. For example, if you are
using Python, you might need to install the ncclient library.

3. Establish a session with the router—Use the programming language of your choice to establish a connection
to the router using NETCONF or gRPC protocols. This involves providing connection parameters such
as device IP address, username, password, and port number.

4. Retrieve the router capabilities—View the supported features and functionalities available on the router.

5. Create or modify configurations—Use YANG data models to create or modify the configuration on the
router.

6. Apply the configuration—Push the updated configuration via the NETCONF or gRPC protocol to modify
the router's running configuration to reflect the desired changes.

7. Validate the configuration—Verify that the changes are successfully applied. You can retrieve the running
configuration or specific configuration parameters to ensure that the device is configured as intended.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
4

YANG data models for programmability features
Get started with IOS XR YANG data models

C H A P T E R 2
YANG data models

A YANG data model is a standardized network modeling language that

• defines the structure and constraints for configuration and operational data on network devices,

• enables automated setup and management of heterogeneous networks, and

• supports communication using protocols such as NETCONF and gRPC for scalable, consistent network
operations.

Model-driven programmability

Model-driven programmability uses YANG data models to provide a flexible, rich framework for device
automation. This framework offers multiple ways to interface with Cisco IOS XR devices via different
transports, protocols, and encodings, which are decoupled from the data models for greater flexibility.

Data model layers

YANG data models organize device functions and configurations into logical layers. For example, one layer
may define device interfaces, while another handles routing protocols. This separation simplifies automation
and standardizes management across device types.

Protocol operations

YANG data models work in conjunction with protocols such as Network Configuration Protocol (NETCONF)
and gRPC. These protocols use YANG models to access device capabilities, automate configuration, and
retrieve operational data across the network.

Benefits of YANG data models

Configuring routers with YANG data models overcomes traditional limitations because these models:

• Provide a common structure for both configuration and operational data, and support NETCONF actions.

• Enable protocols to get, manipulate, and delete network device configuration.

• Automate management and operation of multiple routers throughout a heterogeneous network.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
5

Additional information

Traditional CLI-based configuration is typically proprietary and highly text-based, making bulk configuration
challenging in complex networks. By contrast, YANG data models use industry-standard languages to facilitate
automation, interoperability, and operational consistency.

• YANG data models, on page 6
• Access data models, on page 7
• YANG action, on page 9
• YANG input validators and Get requests, on page 11
• Communication protocols, on page 13
• Unified data models, on page 15

YANG data models
A YANG data model is a data modeling language specification that

• defines a standard, hierarchical structure for the configuration and operational data of network devices,
• enables robust network communication by specifying data relationships, constraints, actions, and
notifications, and

• supports integration with network management protocols such as NETCONF and gRPC for automated
configuration and monitoring.

• YANG module: A file or group of files that together define a single data model. Each module is uniquely
identified by a namespace URL.

• NETCONF/gRPC: Protocols that useYANGdatamodels for configuration and operational data exchange.

YANG data models must be obtained from the router. These models define a valid structure for the data
exchanged between the router and the client, and are consumed by NETCONF and gRPC-enabled applications
(gRPC supported only on 64-bit platforms). YANG models are categorized as follows:

• Cisco-specific models: Proprietary YANGmodels unique to Cisco devices. For details and representation,
see Native models.

• Common models (Open Config/OC): Industry-standard YANG models, typically from organizations
such as IETF and IEEE. OC models have separate YANG modules for configuration data, operational
data, and actions. See OC models for examples.

All YANG data models are stamped with semantic version 1.0.0 as the baseline from release 7.0.1 and later.
For more details on YANG, refer to RFC 6020 and RFC 6087.

Data model requirements

YANG data models handle these types of requirements on routers (RFC 6244):

• Configuration data: A set of writable data required to transform a system from its initial state. For
example, configuring entries in the IP routing table, or setting interface MTU or speed.

• Operational state data: Data obtained by the system at runtime, reflecting its operational status, which
is typically transient and influenced by internal or external events (for example, OSPF routing entries).

• Actions: Supported via NETCONF actions to enable robust network-wide configuration transactions,
ensuring atomic changes across devices.

For more information, see RFC 6244.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
6

YANG data models
YANG data models

https://github.com/openconfig/public/tree/master/release/models

YANG model structure

YANG data models use a tree-based, hierarchical structure with nodes, making the models easy to understand
and navigate. Each feature typically has a synthesized YANG model built from schemas. A model in tree
format includes:

• Top level nodes and their subtrees
• Subtrees that augment nodes in other YANG models
• Custom RPCs

YANG node types

YANG defines these four node types for data modeling:

• Leaf node: Contains a single value of a specific type.
• Leaf-list node: Contains a sequence of leaf nodes.
• List node: Contains a sequence of leaf-list entries, each uniquely identified by one or more key leaves.
• Container node: Contains a grouping of related nodes (which may be any of the four types).

Each node is named and either defines a value or contains child nodes according to its type.

Components of a YANG module

AYANGmodule defines a single data model but can reference other modules or sub-modules. These standard
statements are used:

• Import: Imports external modules.
• Include: Includes one or more sub-modules.
• Augment: Adds new definitions to another module at specified locations.
• When: Sets conditions under which new nodes are valid.
• Prefix: References definitions in an imported module.

The gRPC YANG path or JSON data is based on the YANG module name, not the namespace.Note

Additional reference information

• All data models from release 7.0.1 and later are stamped with semantic version 1.0.0.
• For further reading on YANG, see RFC 6020 and RFC 6087.
• For industry-standard open YANG models, see the OpenConfig public repository.

Access data models
Cisco IOS XR routers ship with YANG files that define supported data models. You can use the NETCONF
protocol and the ietf-netconf-monitoring request to view these models directly from the router.

Before you begin

• Ensure NETCONF is enabled on your router.

• Verify you have credentials for NETCONF client access.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
7

YANG data models
Access data models

https://github.com/openconfig/public/tree/master/release/models

Procedure

Step 1 Connect to your Cisco IOS XR router using a NETCONF client.
Step 2 Send an ietf-netconf-monitoring RPC request to retrieve the list of supported models.

Example:

Example RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>
<filter type="subtree">
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas/>
</netconf-state>
</filter>
</get>
</rpc>

Step 3 Review the RPC response to see the available YANG models and details such as identifier, version, format, namespace,
and location.

Example:

Example RPC response snippet:

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas>
<schema>
<identifier>Cisco-IOS-XR-crypto-sam-oper</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-IOS-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>
</schema>
<schema>
<identifier>openconfig-mpls-ldp</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://openconfig.net/yang/ldp</namespace>
<location>NETCONF</location>
</schema>
<!-- Additional schema entries... -->
</schemas>
</netconf-state>
</data>
</rpc-reply>

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
8

YANG data models
Access data models

YANG action
A YANG action is a network management operation that

• is defined in a YANG model using an RPC statement

• enables execution of specific commands or operations (such as ping or reload) on a network device via
standardized management protocols like NETCONF or gRPC, and

• provides structured responses indicating the outcome of the requested operation.

YANG actions allow remote management systems to execute device-specific operations programmatically.
Each action is modeled as an RPC (Remote Procedure Call) statement within a YANG module, making it
accessible through automation tools and network controllers that communicate over NETCONF (using XML)
or gRPC (using JSON). When an action request is received, the device executes the operation and returns a
protocol-specific response. For example, common actions include "ping," "traceroute," "copy," and process
restart commands.

Supported YANG actions and models

The following table lists common YANG actions and the associated YANG models. For a complete list of
supported actions, refer to the YANG Data Models Navigator.

Table 2: YANG actions and models

YANG ModelsActions

Cisco-IOS-XR-syslog-actlogmsg

Cisco-IOS-XR-snmp-test-trap-actsnmp

Cisco-IOS-XR-cfgmgr-rollback-actrollback

Cisco-IOS-XR-isis-actclear isis

Cisco-IOS-XR-ipv4-bgp-actclear bgp

PING NETCONF action

This example shows the IOS XR NETCONF action request to run the ping command on the router.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ping-act">
<destination>
<destination>1.2.3.4</destination>
</destination>
</ping>
</rpc>

This section shows the NETCONF action response from the router.

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping-response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ping-act">
<ipv4>

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
9

YANG data models
YANG action

https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

<destination>1.2.3.4</destination>
<repeat-count>5</repeat-count>
<data-size>100</data-size>
<timeout>2</timeout>
<pattern>0xabcd</pattern>
<rotate-pattern>0</rotate-pattern>
<reply-list>
<result>!</result>
<result>!</result>
<result>!</result>
<result>!</result>
<result>!</result>
</reply-list>
<hits>5</hits>
<total>5</total>
<success-rate>100</success-rate>
<rtt-min>1</rtt-min>
<rtt-avg>1</rtt-avg>
<rtt-max>1</rtt-max>
</ipv4>
</ping-response>
</rpc-reply>

XR process restart action

This example shows the process restart action sent to NETCONF agent.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<sysmgr-process-restart xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-sysmgr-act">

<process-name>processmgr</process-name>
<location>0/RP0/CPU0</location>

</sysmgr-process-restart>
</rpc>

This example shows the action response received from the NETCONF agent.

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Copy action

This example shows the RPC request and response for copy action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<copy xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-copy-act">
<sourcename>//root:<location>/100MB.txt</sourcename>
<destinationname>/</destinationname>
<sourcefilesystem>ftp:</sourcefilesystem>
<destinationfilesystem>harddisk:</destinationfilesystem>
<destinationlocation>0/RSP1/CPU0</destinationlocation>

</copy>
</rpc>

RPC response:

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
10

YANG data models
YANG action

<response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-copy-act">Successfully
completed copy operation</response>
</rpc-reply>

8.261830565s elapsed

Delete action

This example shows the RPC request and response for delete action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<delete xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-delete-act">

<name>harddisk:/netconf.txt</name>
</delete>

</rpc>

RPC response:

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-delete-act">Successfully
completed delete operation</response>
</rpc-reply>

395.099948ms elapsed

Supported protocols and operational restrictions

• NETCONF actions use XML formatting; gRPC actions use JSON.

• Some actions—such as installing software—may have restrictions (for example, deprecated commands
or maximum parameter limits).

• System admin models support only <get> and <get-config> operations; <edit-config> supports only
merge. Delete, remove, and replace are not supported for system admin models.

YANG actions and data elements

A YANG action acts like a remote control button: when pressed (invoked through a protocol), the device
performs the specified operation and returns the result, similar to how anATMprocesses withdrawal commands
remotely.

Configuration containers or leaves in YANG are not actions—they only represent data to store or retrieve,
not executable operations.

YANG input validators and Get requests
A YANG input validator is a system component that:

• checks the validity of configuration data against OpenConfig YANG models

• verifies Get requests processed through protocols such as NETCONF or gNMI

• ensures that only explicitly configured OpenConfig leaves are returned in response to Get requests.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
11

YANG data models
YANG input validators and Get requests

A Get request is an operation that:

• retrieves configuration or operational data from a network device,

• uses management protocols like NETCONF or gNMI

• returns either OpenConfig leaves or Cisco native model items based on system settings and operational
modes.

YANG input validators and Get requests ensure configuration integrity and accurate state retrieval in Cisco
IOSXR devices. Recent enhancements to these components result in stricter input validation, with OpenConfig
models providing consistent handling of configuration queries. By default, Get requests now return only leaves
explicitly configured via OpenConfig, improving data accuracy and compliance.

Legacy mode remains available for limited releases, preserving previous behaviors where Get requests could
return all convertible Cisco native items.

Table 3: Feature History Table

DescriptionRelease InformationFeature Name

The OpenConfig data models
provide a structure for managing
networks via YANG protocols.
With this release, enhancements to
the configuration architecture
improve input validations and
ensure that the Get requests made
through gNMI or NETCONF
protocols return only explicitly
configured OpenConfig leaves.

Previously, Get requests returned
all the items in the Cisco native
data models that the system could
convert into OpenConfig items,
regardless of whether they were
initially configured via
OpenConfig.We have added a new
legacy mode option for a limited
number of releases which helps you
preserve this behaviour.

Release 7.10.1Improved YANG Input Validator
and Get Requests

Legacy Mode Usage

• NETCONF: Add a legacy mode attribute to the <get-config> request tag:get-config
xmlns:xr-md="http://cisco.com/ns/yang/cisco-xr-metadata" xr-md:mode="legacy"

• gNMI: Set the origin to openconfig-legacy in the request.

By default, OpenConfig leaves now return default values consistently using Explicit BasicMode (see RFC6243).

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
12

YANG data models
YANG input validators and Get requests

YANG input validators usage guidelines and limitations
Use these best practices and follow the warnings when working with YANG input validators and OpenConfig
in Cisco IOS XR:

Usage guidelines

Consider the following usage guidelines:

• After upgrading to Cisco IOS XR Release 7.10.1 or later, always commit OpenConfig changes to ensure
OpenConfig leaves appear in Get requests.

• Use either gNMI or NETCONF as the management agent for OpenConfig, but do not use both
simultaneously. The first successful commit determines the active agent.

• Fully configure each feature via OpenConfig, native model, or CLI. Items overridden in native models
do not appear in the OpenConfig view.

Operational limitations

• Observe the same commitment requirements when downgrading or upgrading the software.

• The non-active agent can only configure native model items or perform Get requests. It cannot modify
OpenConfig items until all OpenConfig leaves are first removed by the active agent.

• Changes made using CLI or Config Scripts are not reflected in OpenConfig system views.

• During commits, you can issue Get requests only on the running datastore. Edits, commits, or Get requests
on candidate datastores belonging to other clients are rejected.

Warnings

• The command show running-config | (xml | json) openconfig displays the running OpenConfig
configuration but cannot be filtered using XR CLI configuration keywords. Starting from Cisco IOS XR
Release 2.4.4.1, this command is not supported.

• Do not use load rollback changes or load commit changes for rollbacks or commits that include
OpenConfig leaves; these operations are not supported for OpenConfig data.

• System events, such as install operations or startup configuration failures, may remove configurations
from the system, leaving OpenConfig views temporarily unsynchronized. Watch for syslog messages
and reapply OpenConfig configurations when needed.

• Performing a Commit Replace operation through CLI removes all OpenConfig entries from the system.

Communication protocols
A communication protocol is a set of rules that

• establishes standardized exchanges of information between network devices,
• enables reliable and secure communication between clients and routers, and
• facilitates automation and programmable operations across different platforms.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
13

YANG data models
YANG input validators usage guidelines and limitations

In YANG-based systems, communication protocols connect the router and the client. These protocols enable
clients to consume YANG data models, automating and programming network operations.

Supported protocols

YANG uses one of these protocols:

• Network Configuration Protocol (NETCONF)

• RPC framework (gRPC) by Google

gRPC is supported only on 64-bit platforms.Note

The transport and encoding mechanisms for these two protocols are shown in the table:

Table 4: Protocols and their supported transport and encoding or decoding mechanisms

Encoding or DecodingTransportProtocol

XMLSSHNETCONF

JSONHTTP/2gRPC

NETCONF protocols
A NETCONF protocol is a network management protocol family that

• enables installation, modification, and deletion of device configuration data,
• uses XML-based data encoding for both configuration and protocol messages, and
• supports client-server communication through a simple RPC (Remote Procedure Call) mechanism.

NETCONF protocols provide standard tools for automating the management of network devices. Clients can
programmatically update or retrieve configuration and operational data by exchanging XML-formatted
messages with servers.

A NETCONF client issues an RPC call to configure a new interface, and the NETCONF server responds with
an XML message confirming the change.

gRPC protocols
A gRPC protocol is a network communication framework that

• is based on Protocol Buffers (Protobuf), an open-source binary serialization format,
• enables flexible, efficient, and automated serialization of structured data for remote procedure calls
(RPCs), and

• requires you to define message types using .proto files, where each message contains a series of
name-value pairs for clear data structure.

Additional reference information: gRPC is open source and offers a lightweight alternative to traditional
protocols like XML for transmitting data. Its design aims for both simplicity and high performance in
exchanging data between systems.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
14

YANG data models
NETCONF protocols

gRPC is supported only on 64-bit platforms.Note

Examples:

• A network management system can use gRPC protocols to issue NETCONF RPCs and configure device
features using data models.

• Developers use .proto files to define the messages and service methods that gRPC clients and servers
exchange.

• REST APIs typically use JSON payloads and HTTP methods and do not rely on Protocol Buffers or
.proto definitions as gRPC does.

Unified data models
CLI-based YANG data models, also known as unified configuration models are introduced in Cisco IOS XR
Software Release 7.0.1. The unified models provide a full coverage of the router functionality, and serves as
a single abstraction for YANG and CLI commands. Unified models are generated from the CLI and replaces
the native schema-based models.

The unified models are available in pkg/yang location. The presence of um in the model name indicates that
the model is a unified model. For example, Cisco-IOS-XR-um-<feature>-cfg.yang.

You can access the models supported on the router using the following command:
Router#run
[node]$cd /pkg/yang
[node:pkg/yang]$ls

The unified models are also available in the Github repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
15

YANG data models
Unified data models

https://github.com/YangModels/yang/blob/master/vendor/cisco/xr/

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
16

YANG data models
Unified data models

C H A P T E R 3
Manage automation scripts using Yang RPCs

• Automation scripts using YANG RPCs, on page 17
• Common script actions, on page 18
• Exec scripts , on page 23
• EEM scripts using RPCs , on page 30
• Operational model for EEM script, on page 34

Automation scripts using YANG RPCs
An automation script is a software tool that

• interacts with network devices using standardized APIs such as NETCONF or gNMI,

• executes remote procedure calls (RPCs) defined by YANG data models to retrieve or edit device
configuration, and

• enables automated, repeatable, and scalable management operations for network infrastructure.

To use automation scripts for remote management, you must establish an SSH session between the client (the
script or application) and the network device (the server). For example, enabling the NETCONF SSH agent
on a router requires these configuration commands:

• ssh server v2

• netconf agent tty

Once connected, the client sends one or more RPC requests such as get-config to retrieve device configuration
or edit-config to modify it. The server processes each request and sends a response.

Table 5: Feature History Table

DescriptionRelease
Information

Feature Name

This feature enables you to use remote procedure calls
(RPCs) on YANG data models to perform the same
automated operations as CLIs, such as edit
configurations or retrieve router information.

Release 7.3.2Manage Automation Scripts
Using YANG RPCs

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
17

A Python script uses the NETCONF protocol to automatically update interface settings on multiple
routers by sending edit-config RPCs. An automation tool retrieves system status from a network
device using gNMI and YANG-defined telemetry models.

Common script actions
A common script action is a network automation operation that

• uses YANG remote procedure calls (RPCs) to manage automation scripts,

• supports multiple script types such as config, exec, process, and Embedded Event Manager (EEM), and

• produces output responses that describe the result of each action and indicate success or failure.

YANG RPCs (Remote Procedure Calls) enable centralized and programmatic management of automation
scripts within a network device or system. The Cisco-IOS-XR-infra-script-mgmt-act.yang model allows
users to add scripts to the repository, remove scripts, execute scripts, and stop running scripts. Each RPC
provides a response that includes an operation status (True for success, False for failure) and a descriptive
message.

Table 6: Feature History Table

DescriptionRelease
Information

Feature Name

This feature enables you to use YANG remote procedure
calls (RPCs) on
Cisco-IOS-XR-infra-script-mgmt-act.yang datamodel
to perform actions on the automation scripts such as add
or remove script from the script repository, run, or stop
script from running.

Release 7.5.1Manage Common Script
Actions Using YANG RPCs

Add a script
Add scripts to the device script repository to automate configuration, execution, or monitoring processes. You
can add up to 10 scripts at a time and specify optional checksum values for script integrity.

Use this procedure to add configuration, exec, process, or EEM scripts to your device repository. Adding
scripts with checksums ensures the integrity and authenticity of scripts before execution.

Before you begin

Before you begin:

• Ensure you have access to the device with the required administrative privileges.

• Prepare your script files and confirm their locations.

• Optionally, compute and have ready the checksum value(s) for your scripts if you want to verify integrity.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
18

Manage automation scripts using Yang RPCs
Common script actions

Procedure

Step 1 To add a single script to the repository, use the following RPC call with the script type, source, and script name:

Example:
<add xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<script-type>exec</script-type>
<vrf></vrf>
<source>/harddisk:/</source>
<script-name>sample.py</script-name>
</add>

The specified script is added to the repository.

Step 2 To add multiple scripts at the same time, list each script name within the same RPC request:

Example:
<add xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<script-type>exec</script-type>
<source>/harddisk:/</source>
<script-name>sample2.py</script-name>
<script-name>sample3.py</script-name>
</add>

All specified scripts are added to the repository in a single operation.

Step 3 To add a script with a checksum value for integrity validation, use the following RPC request:

Example:
<add-checksum xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<script-type>exec</script-type>
<source>/harddisk:/</source>
<script-checksums>
<script-name>sample.py</script-name>
<checksum>e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855</checksum>
</script-checksums>
</add-checksum>

The script is added to the repository with its checksum recorded for future validation.

Step 4 To add multiple scripts with their respective checksum values, include multiple script-checksums blocks:

Example:
<add-checksum xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<script-type>exec</script-type>
<source>/harddisk:/</source>
<script-checksums>
<script-name>sample.py</script-name>
<checksum>e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855</checksum>
</script-checksums>
<script-checksums>
<script-name>sample2.py</script-name>
<checksum>e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855</checksum>
</script-checksums>
</add-checksum>

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
19

Manage automation scripts using Yang RPCs
Add a script

All specified scripts are added with their checksums for verification.

Scripts are successfully added to the repository and are available for management or execution. Scripts with
checksums are validated for integrity.

What to do next

After adding scripts, verify script availability and correct checksum status using the script management tools
or commands available on your device.

Remove a script
Use this task to remove a script or multiple scripts from the repository by sending an RPC request with the
script type and name.

Removing obsolete or unnecessary scripts helps maintain a clean and secure repository environment.

Perform this task when you need to delete scripts that are no longer required or must be replaced in the Cisco
IOS XR script repository. This applies to both single and multiple script removals.

Before you begin

Before you begin, ensure you have the required access privileges to send RPC requests to the device and know
the exact script type and script names you want to remove.

Procedure

Step 1 Provide the script type and script name(s) for each script to remove.

Example:
<remove xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<script-type>exec</script-type>
<script-name>sample.py</script-name>
</remove>

Step 2 If removing multiple scripts, include each script name within the request (up to 10).

Example:
<remove xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<script-type>exec</script-type>
<script-name>sample2.py</script-name>
<script-name>sample3.py</script-name>
</remove>

Step 3 Send the RPC request to the device for processing.
Step 4 Verify the RPC response to ensure the scripts were removed successfully.

Example:
<responses>

<script-name>sample.py</script-name>
<response>sample.py has been removed from the script repository</response>

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
20

Manage automation scripts using Yang RPCs
Remove a script

<status>True</status>
</responses>

The response indicates the status of each script removal.

The specified scripts are removed from the repository. Confirmation is provided in the RPC response.

What to do next

Review the list of scripts in the repository to confirm that only the required scripts remain.

Stop a script
Use this task to halt an active script on the device. This is useful if you need to interrupt a script that is currently
running or if you need to recover from potential script-related issues.

Stopping a script requires the request ID assigned when the script was started. You must send an API request
using the documented XML format to instruct the system to terminate the specific script instance.

Before you begin

Before you begin:

• Identify the request ID for the script you want to stop.

• Ensure you have access and permission to send API requests to the target device.

SUMMARY STEPS

1. Send a stop request using the required XML payload, replacing with the script's actual request ID.
2. Verify that the API response includes <status>True</status>, confirming the script has stopped.

DETAILED STEPS

Procedure

Step 1 Send a stop request using the required XML payload, replacing with the script's actual request ID.

Example:
<stop xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<request-id>1622058854</request-id>
<description></description>
</stop>

Step 2 Verify that the API response includes <status>True</status>, confirming the script has stopped.

Example:
<script-stop-response>

<response></response>
<status>True</status>
</script-stop-response>

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
21

Manage automation scripts using Yang RPCs
Stop a script

If the status is not True, confirm the request ID is correct and that the script is currently running.

The script has successfully stopped when status returns True.

The specified script instance is stopped and can no longer perform any operations.

What to do next

Youmay submit new scripts or manage script instances as needed now that the prior script has been terminated.

Run a script
Execute a specified script file on the device. Optionally, configure logging options for monitoring and
troubleshooting.

Running a script automates management or operational tasks and may require different logging levels for
troubleshooting. Perform this task when you need to automate a workflow, gather data, or perform custom
operations via scripting.

Before you begin

Before you begin, ensure:

• The script file is uploaded and accessible on the device.

• You have the correct permissions to execute scripts.

Procedure

Step 1 Specify the script name to run.

Example:
<run xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<script-name>sample.py</script-name>
</run>

Step 2 (Optional) Set the desired logging level. Available levels include critical, debug, error, info, or warning.

Example:
<log-level>Info</log-level>

Step 3 (Optional) Define other parameters such as log path, maximum runtime, or add script arguments as required.

Example:
<argument-list>--verbose</argument-list>

<log-path>/var/logs</log-path>
<max-runtime>300</max-runtime>

Step 4 Submit the run command to execute the script.

The device schedules and initiates script execution.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
22

Manage automation scripts using Yang RPCs
Run a script

Example:
<run/>

The system displays an RPC response confirming the script has been scheduled. For example:
<script-run-response>

<response>Script run scheduled</response>
<request-id>1622058854</request-id>
<status>True</status>
</script-run-response>

The script runs successfully. Monitor log files and system status as needed to verify completion and review
outputs.

What to do next

After running the script, review its output, address any errors, and archive logs for future reference if necessary.

Exec scripts
An exec script is a network automation feature that

• enables users to execute predefined actions or sequences on network devices,

• makes use of remote procedure calls (RPCs) to interface with device data models, and

• supports integration with configuration, action, and operational data models.

Supported use cases for exec scripts

Exec scripts allow automation for common operational tasks, such as configuration backup, data collection,
or network health monitoring.

Example of an exec script

For instance, an exec script can be triggered to periodically back up the device running configuration
by calling an RPC on the Cisco-IOS-XR-infra-script-mgmt-act data model.

Add an exec script
Use this task to upload an exec script from an external source to the router’s
harddisk:/mirror/script-mgmt/exec script management repository for execution via script management
features.

This task is used when you need to add a new executable script to automate operations or perform custom
actions on a Cisco IOS XR device. You can use either the YANG data model interface or equivalent CLI
commands based on your operational preference.

The script add exec script-location script.py is the equivalent command for
Cisco-IOS-XR-infra-script-mgmt-act.yang.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
23

Manage automation scripts using Yang RPCs
Exec scripts

Before you begin

Before you begin, ensure:

• You have the required exec script (for example, sample1.py) available on your file system or accessible
from your management device.

• You have NETCONF/YANG or CLI access with sufficient privileges to execute script management
operations.

Procedure

Step 1 Use the YANG data model to add the exec script via NETCONF RPC.

Example:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">

<script-add-type-source xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<type>exec</type>
<source>/harddisk:/</source>
<file-name-1>sample1.py</file-name-1>
</script-add-type-source>
</rpc>

Upon completion, the system logs a message indicating that the script has been successfully added.
Router: script_manager[66762]: %OS-SCRIPT_MGMT-6-INFO :

Script-script_manager: sample1.py has been added to the script repository

Step 2 Alternatively, use the CLI to add the exec script directly.

Example:
script add exec harddisk:/sample1.py

The system confirms successful upload in the CLI output.

The exec script is now present in the script repository (harddisk:/mirror/script-mgmt/exec). It can be managed
and executed as required.

What to do next

Optional: Verify the script is available by listing scripts in the repository using appropriate CLI command or
NETCONF get operation.

• To list scripts via CLI:
script list exec

Configure checksum
Ensure the integrity of script files by associating a checksum value, such as SHA-256, with the script.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
24

Manage automation scripts using Yang RPCs
Configure checksum

Associating a checksum with a script protects against file tampering or corruption. You can configure the
checksum using YANG data models or through the CLI, depending on your management preference.

Before you begin

Before you begin, ensure that:

• The script file you want to secure (.py, .sh, etc.) is present on the device.

• The calculated checksum value (for example, SHA-256 digest) is available.

• You have administrative access via CLI or NETCONF/YANG API.

Procedure

Step 1 Calculate the checksum value for your script file using a utility such as sha256sum.

Example:
sha256sum sample1.py

Step 2 Associate the checksum with the script using one of the following methods:

• CLI Method: Enter the following command from configuration mode::
script exec sample1.py checksum SHA256
5103a843032505decc37ff21089336e4bcc6a1061341056ca8add3ac5d6620ef

• NETCONF/YANG Method: Send an edit-config RPC to configure the checksum for the script file:
<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="uuid">

<nc:edit-config>
<nc:target>
<nc:candidate/>
</nc:target>
<nc:config>
<scripts xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-cfg">
<exec-script>
<scripts>
<script>
<script-name>sample1.py</script-name>
<checksum>
<checksum-type>sha256</checksum-type>
<checksum>5103a843032505decc37ff21089336e4bcc6a1061341056ca8add3ac5d6620ef</checksum>

</checksum>
</script>
</scripts>
</exec-script>
</scripts>
</nc:config>
</nc:edit-config>
</rpc>

Step 3 If using NETCONF, verify that the response contains <ok/> to confirm successful configuration.

Example:
<rpc-reply message-id="uuid" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
25

Manage automation scripts using Yang RPCs
Configure checksum

</rpc-reply>

Step 4 Verify that the checksum is applied by displaying the script properties using the appropriate CLI or YANG command.

Example:
Router# show script exec

The selected script now has an associated checksum value, protecting it against unauthorized modification or
corruption.

What to do next

After configuring the checksum, test execution of the script to ensure proper operation and integrity verification.

Run an exec script
Use this task to execute a Python script (such as sample1.py) on the router for automation or system
management functions.

You can run Python scripts from the router using either the CLI command or an RPC request through
NETCONF/YANG interfaces. Successful execution provides operational insights or enables automation
workflows.

Before you begin

• Ensure the Python script (sample1.py) is uploaded to the router's script directory.

• Verify you have sufficient privileges to execute scripts on the router.

Procedure

Step 1 Run the script using the CLI command.

Example:
script run sample1.py

A successful command schedules the script for execution and logs the activity in syslog.

The router executes the script and displays status output.

Step 2 Alternatively, run the script via NETCONF/YANG RPC request.

Example:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-run xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<name>sample1.py</name>
</script-run>
</rpc>

A successful execution returns an <ok/> response in NETCONF.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
26

Manage automation scripts using Yang RPCs
Run an exec script

The script runs and the completion status is returned via RPC reply.

Step 3 Verify execution using syslog messages.

Example:

Router: UTC: script_control_cli[67858]: %OS-SCRIPT_MGMT-6-INFO : Script-control: Script
run scheduled: sample1.py. Request ID: 1631795207

Router: script_agent_main[248]: %OS-SCRIPT_MGMT-6-INFO : Script-script_agent: Script
execution sample1.py (exec) Started : Request ID : 1631795207 :: PID: 18710

Confirm that syslog entries show script scheduling and execution status for traceability.

The selected Python script executes successfully on the router. You can view output and confirmation in CLI,
NETCONF response, or syslog entries.

What to do next

• Review script output and logs to ensure the script completed as intended.

• Address any errors or exceptions recorded in syslog.

Stop an exec script
Terminate a currently running exec script.

Use this task when you need to manually halt a script that is currently executing on the device. This action
helps prevent unintended consequences if a script behaves unexpectedly or must be stopped for operational
reasons.

Before you begin

Ensure you have administrative access to the device via CLI or NETCONF.

Procedure

Step 1 In the CLI, enter the following command to stop the exec script:

Example:
script stop <script-name>

Replace <script-name> with the name or identifier of the running script you want to stop.

Step 2 Alternatively, if you are using NETCONF, send an RPC request as shown:

Example:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">

<script-stop-request xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<request>SCRIPT-ID</request>
</script-stop-request>
</rpc>

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
27

Manage automation scripts using Yang RPCs
Stop an exec script

Replace SCRIPT-ID with the identifier for the script you want to stop.

The specified exec script is stopped.

What to do next

Verify the script has stopped by checking the script status. Restart or perform additional troubleshooting if
required.

Remove an exec script
Remove an exec script from the script management repository to free up space or eliminate scripts that are
no longer needed. This does not delete the script's management or execution history data.

Use this task when you want to remove a specific exec script from the repository. The removed script cannot
be run unless you add it back again. The equivalent CLI for Cisco-IOS-XR-infra-script-mgmt-act.yang
is script remove exec <script_name.py>

Before you begin

Ensure you have administrative access to the device or system where the script repository is managed.

Procedure

Step 1 Access the script management tool or command-line interface.
Step 2 List the available exec scripts to identify the script you want to remove.
Step 3 Remove the target exec script using the appropriate command or menu option.

For command-line removal, use:script remove exec <script_name.py>

Step 4 Verify that the script has been removed from the repository.

Example:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-remove-type xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<type>exec</type>
<file-name-1>load_modules_ut.py</file-name-1>

</script-remove-type>
</rpc>

The selected exec script is removed from the repository and cannot be executed unless re-added.

What to do next

If needed, add a different script to the repository or clean up additional scripts as required.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
28

Manage automation scripts using Yang RPCs
Remove an exec script

View the script execution status
Check the progress and results of script execution on the device to confirm operational status or diagnose
issues.

Network administrators may need to verify the status, logs, and outcomes of scripts that run on the device for
troubleshooting or operational monitoring.

You can use either the CLI command or NETCONF RPC calls to view script execution status.

Before you begin

Ensure you have the required access privileges to run operational commands on the device (CLI or NETCONF),
and that at least one script has been executed.

Procedure

Step 1 Use the CLI command to display script execution status and details.

Example:
show script execution [request-id <value>] [name <filename>] [status {Exception | Executed | Killed
| Started | Stopped | Timed-out}] [reverse] [last <number>]

Replace options in brackets as needed to filter specific execution results by request ID, script name, or status.

The command displays script execution entries, including request ID, script name, current status, execution duration, and
log path.

Step 2 Alternatively, send a NETCONF RPC request to retrieve script execution details programmatically.

Example:
<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="unique-id">

<get>
<filter>
<script xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-oper">
<execution>
<requests>
<request>
<request-id><your-request-id></request-id>
<detail>
<execution-detail/>
</detail>
</request>
</requests>
</execution>
</script>
</filter>
</get>
</rpc>

Replace <your-request-id> with the actual ID of the script execution you want to query.

A successful response returns execution summary, duration, log path, run options, and event history for the specified
script execution.

Step 3 If more detail is needed, review the log path shown in the output.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
29

Manage automation scripts using Yang RPCs
View the script execution status

Use the displayed log file path to access detailed execution logs for troubleshooting.

You have successfully retrieved the script execution status and details, which can now be used for monitoring
or troubleshooting purposes.

What to do next

If issues are detected, use the log files or event details to further diagnose and resolve script execution problems.

EEM scripts using RPCs
EEM scripts using RPCs are automated network management tools that

• leverage Remote Procedure Calls (RPCs) to interact with device configuration and status

• support dynamic, event-based automation through the Cisco IOS XR event manager framework, and

• integrate programmable operations with data models such as
Cisco-IOS-XR-um-event-manager-policy-map-cfg.yang andCisco-IOS-XR-um-event-manager-cfg.yang.

Relevant data models and protocols

The following YANG data models support EEM scripts with RPC functionality:

• Cisco-IOS-XR-um-event-manager-policy-map-cfg.yang

• Cisco-IOS-XR-um-event-manager-cfg.yang (augmented for advanced programmability)

UsingNETCONF or gNMI protocols, EEM scripts can launch device configuration changes or collect telemetry
in response to specific network events.

Example of EEM script using RPCs

A sample EEM script is configured to monitor interface status. When an interface goes down, the
script automatically triggers an RPC call to reset the interface and log the event for future auditing.

Configure event actions using the data model
Configure actions that automatically respond to specific network events by defining triggers and corresponding
scripts using the YANG data model and NETCONF RPC.

Use this process to automate proactive handling of events (like syslog patterns) on NETCONF-enabled Cisco
IOS XR devices. Event triggers and actions ensure operational responses are consistent and timely.

Before you begin

• Confirm NETCONF access and administrative credentials for your device.

• Ensure the device supports Cisco-IOS-XR-um-event-manager features.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
30

Manage automation scripts using Yang RPCs
EEM scripts using RPCs

• Prepare the event criteria (name, trigger pattern, severity) and action details (script, username, timeout,
checksum).

Procedure

Step 1 Access the NETCONF configuration interface for your Cisco IOS XR device.
Step 2 Define an event trigger by setting these parameters.

a) Specify event-name (e.g., "event_1").
b) Set occurrence count and period in seconds.
c) Choose type as syslog, and provide the pattern and severity level.

Step 3 Configure an event action.
a) Enter action-name (e.g., "action_1").
b) Set type to script, with script-name, maxrun (timeout), and checksum values.
c) Provide username for script execution.

Step 4 Send the configuration using a NETCONF edit-config RPC request.

Example:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">

<edit-config>
<target><candidate/></target>
<config>
<event xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-event-manager-cfg">
<manager>
<event-trigger

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-event-manager-policy-map-cfg">
<event>
<event-name>event_1</event-name>
<occurrence>2</occurrence>
<period><seconds>60</seconds></period>
<type>
<syslog>
<pattern>"Syslog for EEM script"</pattern>
<severity><warning/></severity>

</syslog>
</type>

</event>
</event-trigger>

<actions xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-event-manager-policy-map-cfg">

<action>
<action-name>action_1</action-name>
<type>
<script>
<script-name>event_script_1.py</script-name>
<maxrun><seconds>30</seconds></maxrun>

<checksum><sha256>bb19a7a286db72aa7c7bd75ad5f224eea1062b7cdaaeee06f11f0f86f976831d</sha256></checksum>

</script>
</type>
<username>eem_user_1</username>

</action>
</actions>

</manager>

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
31

Manage automation scripts using Yang RPCs
Configure event actions using the data model

</event>
</config>

</edit-config>
</rpc>
```

Step 5 Commit your configuration using the NETCONF commit RPC request.

Example:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">

<commit/>
</rpc>

Step 6 Verify a successful NETCONF response includes <ok/>.

Example:
<rpc-reply message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccd1aefcaf"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>
```

Your event-driven actions are now active and scripts are launched automatically when a matching event
occurs.

What to do next

• Test the configuration by producing a matching syslog event on the device.

• Review system logs to confirm script execution and troubleshoot if needed.

Create a policy map for events and actions with a data model
You use a data model to create a policy map that defines actions for specific network events.

This enables automation and centralized management of event policies on supported devices.

Policy maps provide a reusable model for associating events with actions. By using the YANG data model,
you can configure these policies programmatically and ensure consistent behavior across devices.

Before you begin

Before you begin, ensure the following:

• You have administrator access to the device.

• NETCONF is enabled on the device.

• You have the syntax details for the required YANG module and CLI commands.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
32

Manage automation scripts using Yang RPCs
Create a policy map for events and actions with a data model

Procedure

Step 1 Use the YANG data model Cisco-IOS-XR-um-event-manager-policy-map-cfg or the CLI to define a new policy map
for event management.

Example:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>
</target>
<config>
<event xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-event-manager-cfg">
<manager>

<policy-maps xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-event-manager-policy-map-cfg">

<policy-map>
<policy-map-name>policy_1</policy-map-name>
<trigger>
<event>event_1</event>
</trigger>
<actions>
<action>
<action-name>action_1</action-name>
</action>
</actions>
</policy-map>
</policy-maps>
</manager>
</event>
</config>
</edit-config>
</rpc>

Alternatively, configure the equivalent policy map and event-action relationship using the CLI:

event manager policy-map policy-name

action action-name

trigger event event-name

Step 2 Commit the changes to apply the configuration.

Example:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<commit/>
</rpc>

Step 3 Verify successful configuration.

If the RPC reply contains an <ok/> message, the configuration is successful.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
33

Manage automation scripts using Yang RPCs
Create a policy map for events and actions with a data model

The device is now configured with a policy map that assigns actions to specific events. Event policies are
active and managed according to your definitions in the data model or CLI.

What to do next

Review policy operation and monitor event actions to ensure expected behavior. Adjust policy maps or event
triggers as needed based on operational requirements.

Operational model for EEM script
An operational model is a framework that

• describes how a system, process, or component behaves under various conditions,

• defines the roles, actions, and interactions among different parts or actors during operation, and

• enables prediction, analysis, or management of real-world operational scenarios.

Table 7: Feature History Table

DescriptionRelease
Information

Feature Name

You can programmatically retrieve the operational status of
events, actions, and policy maps using the YANG data model.

In earlier releases, you used the show event manager command
to view the operational status of event scripts.

This release introduces
Cisco-IOS-XR-ha-eem-policy-oper.yang and
Cisco-IOS-XR-event-manager-policy-map-oper.yang data
models.

Release 7.5.2Operational DataModel
for EEM Script

Retrieve actions using the operational data model
The purpose of this task is to allow you to retrieve detailed information about specific IOS XR actions
configured on the router by querying the operational data model with NETCONF. Action details are useful
for validating scripts, troubleshooting, and monitoring operational status.

Actions in IOS XR are RPC statements that trigger operations or execute scripts. By querying the operational
YANG model, you can programmatically view action attributes, recent status, run counts, and associations
with policy maps.

This task is typically performed by network administrators or automation engineers managing IOSXR devices
in programmable environments.

Before you begin

Before you begin, ensure these prerequisites are met:

• NETCONF is enabled and accessible on the IOS XR router.

• You have valid credentials to access the router via NETCONF.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
34

Manage automation scripts using Yang RPCs
Operational model for EEM script

• The target action name (for example, action2) is known.

Procedure

Step 1 Prepare a NETCONF RPC <get> request targeting the YANG module Cisco-IOS-XR-ha-eem-policy-oper and specify
the action name you want to retrieve.

Example:

<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:example-message-id">

<get>
<filter>
<eem xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ha-eem-policy-oper">

<action-names xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-event-manager-policy-map-oper">

<action-name>
<action-name>action2</action-name>
</action-name>
</action-names>
</eem>
</filter>
</get>
</rpc>

Replace action2 with the actual action name you want to query.

Step 2 Send the NETCONF RPC request to your IOS XR device using your preferred NETCONF client or automation tool
(such as ncclient or YANG Suite).

If using command-line tools, ensure the session is authenticated and the device supports the required YANG modules.

Step 3 Review the RPC response details to verify the action attributes and operational status.

Example:

<rpc-reply message-id="urn:uuid:example-message-id"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>
<eem xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ha-eem-policy-oper">

<action-names xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-event-manager-policy-map-oper">

<action-name>
<action-name>action2</action-name>
<action-name-xr>action2</action-name-xr>
<script-name>event_script_2.py</script-name>
<action-type>script</action-type>
<triggered-count>7</triggered-count>
<policy-count>1</policy-count>
<max-run>20</max-run>
<checksum-enabled>SHA256</checksum-enabled>
<last-run-status>Success</last-run-status>
<user-name>eem_user</user-name>

<checksum-string>270b9730e77c9bd6f5784084ed21e29d8d7b8edaf8f98a4513879a1631c493ad</checksum-string>
<action-policy-map>
<policy-name>policy3</policy-name>
</action-policy-map>

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
35

Manage automation scripts using Yang RPCs
Retrieve actions using the operational data model

</action-name>
</action-names>
</eem>
</data>
</rpc-reply>

Verify fields such as script-name, last-run-status, triggered-count, and policy associations for troubleshooting or
validation purposes.

You have successfully retrieved the action details from the operational data model.

The system returns the operational attributes of the specified action in the NETCONF RPC response. This
data allows you to automate monitoring, troubleshooting, or auditing of IOS XR actions and associated scripts.

What to do next

Optionally, repeat the query for other action names or use the retrieved output to update your automation
records or configuration monitoring dashboards.

Retrieve a policy map using the operational data model
Retrieve the configuration and operational status of a policy map by submitting a NETCONF RPC request
based on the Cisco-IOS-XR-ha-eem-policy-oper YANG model.

Use this task when you need to audit, troubleshoot, or verify the state and details of policy maps on Cisco
IOS XR devices programmatically. This method provides a structured XML response containing policy
actions, status, and event triggers.

Before you begin

• Ensure NETCONF is enabled on the target device.

• Have appropriate user credentials with permission to access operational data.

• Know the policy map name you want to retrieve.

Procedure

Step 1 Connect to the device via a NETCONF-capable client.
Connection to the device is established.

Step 2 Submit an RPC request using the Cisco-IOS-XR-ha-eem-policy-oper YANG model with the specific policy map name
in your filter.

Example:

<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:3cec3f3a-395b-4763-b1a1-1053149da60c">

<get>
<filter>
<eem xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ha-eem-policy-oper">
<policy-map-names

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-event-manager-policy-map-oper">

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
36

Manage automation scripts using Yang RPCs
Retrieve a policy map using the operational data model

<policy-map-name>
<policy-name>policy4</policy-name>
</policy-map-name>
</policy-map-names>
</eem>
</filter>
</get>
</rpc>

The device returns a detailed XML response containing the policy map's configuration and operational status.
Step 3 Review the RPC response and verify details for the specified policy map, such as status, event map, action map, and

occurrence counters.

Example:

<rpc-reply message-id="urn:uuid:3cec3f3a-395b-4763-b1a1-1053149da60c"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>
<eem xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ha-eem-policy-oper">
<policy-map-names

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-event-manager-policy-map-oper">
<policy-map-name>
<policy-name>policy4</policy-name>
<policy-status>active</policy-status>
<policy-occurrence>2</policy-occurrence>
<event-count>2</event-count>
<policy-event-map>
<event-name>event5</event-name>
<event-status>active</event-status>
</policy-event-map>
<policy-action-map>
<action-name>action4</action-name>
<checksum-enabled>SHA256</checksum-enabled>
</policy-action-map>
</policy-map-name>
</policy-map-names>
</eem>
</data>
</rpc-reply>

The requested policy map details are available and can be used for verification or troubleshooting purposes.

The specified policy map's operational details are successfully retrieved and displayed in XML format.

What to do next

• Optionally, store or export the policy map details for audit or ongoing monitoring.

• If further analysis is needed, reference the YANG model documentation for available attributes.

Retrieve events with trigger conditions using the operational data model
Retrieve and review event details by using the YANG operational data model to monitor event manager trigger
conditions.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
37

Manage automation scripts using Yang RPCs
Retrieve events with trigger conditions using the operational data model

Use this procedure when you need to verify or troubleshoot event triggers registered via the event manager
subsystem. This enables programmatic monitoring without relying solely on CLI output.

Before you begin

• Ensure you have NETCONF or RESTCONF access enabled on the target Cisco IOS XR device.

• Obtain device credentials with appropriate read privileges.

• Have the desired event trigger name(s) ready.

Procedure

Step 1 Establish a NETCONF session with the device using your preferred YANG management tool.
Step 2 Send a get operation with a filter that targets the event trigger data for the specific event name.

Example filter (replace event4 with your event name):

Example:
<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">

<nc:get>
<filter>
<eem xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ha-eem-policy-oper">
<event-trigger-names

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-event-manager-policy-map-oper">
<event-trigger-name>
<event-name>event4</event-name>
</event-trigger-name>
</event-trigger-names>
</eem>
</filter>
</nc:get>
</rpc>

Step 3 Review the returned RPC response for event status, type, details, and policy mapping.

Key fields: event-status, event-type, event-policy-map, event-triggered-count.

Example:
<event-name>event4</event-name>

<event-status>active</event-status>
<event-type>syslog</event-type>
<event-policy-map>
<policy-name>policy4</policy-name>
</event-policy-map>

Step 4 Optionally, use the CLI for equivalent information if needed.

CLI command:
Router# show event manager event-trigger event-trigger-name detailed

For more details, refer to the View Operational Status of Event Scripts topic.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
38

Manage automation scripts using Yang RPCs
Retrieve events with trigger conditions using the operational data model

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/event-scripts.html#Cisco_Task.dita_3cb0e88c-0227-4501-8d49-88913be272cd

You have retrieved and verified the operational status and configuration of event triggers using the YANG
data model or CLI.

What to do next

• Use the collected data for further troubleshooting, policy adjustment, or monitoring automation as needed.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
39

Manage automation scripts using Yang RPCs
Retrieve events with trigger conditions using the operational data model

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
40

Manage automation scripts using Yang RPCs
Retrieve events with trigger conditions using the operational data model

C H A P T E R 4
Precommit Scripts

• Precommit scripts, on page 41
• Restrictions of precommit script, on page 42
• Run the precommit script, on page 42

Precommit scripts
A precommit script is a configuration management tool that

• executes custom python logic automatically during configuration commit operations,

• validates proposed configuration changes against administrator-defined policies, and

• determines whether to allow or block the commit based on script evaluation results.

Table 8: Feature History Table

DescriptionRelease InformationFeature Name

With this feature, you can deploy
custom Python scripts. These
scripts are executed automatically
during a configuration commit
operation. They process the
configuration change and act as a
deciding factor to either proceed
with applying the configuration or
stop the commit operation in the
event of an error.

Release 7.5.4Precommit script to validate
configuration change

Cisco IOS XR precommit scripts play a crucial role in validating configurations during commit operations.
These scripts are invoked automatically when a configuration change is committed. Device administrators
use them to enforce custom validation rules and simplify repetitive configuration tasks.

During a configuration commit, precommit scripts are automatically initiated to validate changes. If the
changes are valid, the script permits the commit. If not, it alerts the administrator to the mismatch and blocks
the commit, maintaining device parameters and reducing human error.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
41

Functions of precommit script

Precommit scripts are automatically invoked during a commit operation and can perform several functions.

• The system automatically invokes precommit scripts during a commit operation to validate configuration
changes.

• The precommit scripts validate your proposed configuration to ensure it meets the required standards.

• These scripts ensure that any changes to the target configuration stay within system or software boundaries.

• The scripts can estimate the number of Ternary Content Addressable Memory (TCAM) slots that your
configuration will require.

• The scripts verify that TCAM usage does not exceed the defined threshold.

• The scripts check that your commit operation follows the required execution rules, such as allowing
configuration changes that affect traffic only during specified time intervals.

• If your configuration is invalid, the scripts block the commit operation and display a detailed error
message.

• The scripts generate system logmessages to help you analyze and troubleshoot failed commit operations.

Restrictions of precommit script
These restrictions apply when using precommit scripts.

• Precommit scripts cannot modify a configuration.

• Configuration validation before a commit operation is supported only using CLI commands. Operations
using NETCONF, gNMI and XML are not supported even if the precommit script is enabled.

Run the precommit script
The following image shows a workflow diagram representing the steps involved in using a precommit script:

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
42

Precommit Scripts
Restrictions of precommit script

Figure 1: Workflow to run precommit scripts

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
43

Precommit Scripts
Run the precommit script

Before you begin

Precommit scripts can be written in Python 3.9 (and earlier) programming language using the packages that
Cisco supports. For more information about the supported packages, see Script Infrastructure and Sample
Templates.

This chapter gets you started with provisioning your precommit automation scripts on the router.

This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section walks you through the process involved in deploying and using
the precommit scripts on the router.

Note

Procedure

Step 1 Download the script to the router.
Step 2 Configure checksum for precommit script.
Step 3 Activate precommit script.

A precommit script is invoked automatically when you commit a configuration change to modify the router configuration.
You can view the result from the script execution on the console.

Download the script to the router
Store the precomit script on a remote server or copy to the harddisk of the router. Add the precommit script
from the server to the script management repository (hardisk:/mirror/script-mgmt) on the router using the
script add precommit command.

Before you begin

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Download LocationScript
Type

harddisk:/mirror/script-mgmt/precommitprecommit

harddisk:/mirror/script-mgmt/configconfig

harddisk:/mirror/script-mgmt/execexec

harddisk:/mirror/script-mgmt/processprocess

harddisk:/mirror/script-mgmt/eemeem

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
44

Precommit Scripts
Download the script to the router

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/script-infrastructure-sample-templates.html#Cisco_Concept.dita_30112795-7f30-4424-80fe-4a93ed9528ae
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/script-infrastructure-sample-templates.html#Cisco_Concept.dita_30112795-7f30-4424-80fe-4a93ed9528ae

Procedure

Step 1 Add the script to the script management repository on the router using one of the two options:

• Add the script from a server.
• Copy the script from an external repository.

a) Add the script from a configured remote server (HTTP, HTTPS, FTP or SCP) or the harddisk location in the router.

Example:
Router#script add precommit script-location script.py

You can add a maximum of 10 scripts simultaneously. You can also specify the checksum value while downloading the
script. This value ensures that the file being copied is genuine. You can fetch the checksum of the script from the server
from where you are downloading the script. However, specifying checksum while downloading the script is optional.

Note
Only SHA256 checksum is supported.

For multiple scripts, use the following syntax to specify the checksum:
Router#script add precommit http://192.0.2.0/scripts script1.py script1-checksum script2.py
script2-checksum... script10.py script10-checksum

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

a) Copy the script from a remote location to harddisk using scp or copy command.

Example:
Router#scp userx@192.0.2.0:/scripts/precommit-bgp.py /harddisk:/

b) Add the script from the harddisk to the script management repository.

Example:
Router#script add precommit /harddisk:/ precommit-bgp.py
Copying script from /harddisk:/precommit-bgp.py
precommit-bgp.py has been added to the script repository

Step 2 Verify that the script is downloaded to the script management repository on the router.

Example:
Router#show script status
==

Name | Type | Status | Last Action | Action Time
--

precommit-bgp.py | precommit | Config Checksum | NEW | Tue Jan 24 05:10:18 2023

Script precommit-bgp.py is copied to harddisk:/mirror/script-mgmt/precommit directory on the router.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
45

Precommit Scripts
Download the script to the router

Configure checksum for the precommit script
The checksum is a string of numbers and letters that act as a fingerprint for script. The checksum of the script
is compared with the configured checksum. If the values do not match, the script is not run and a syslog
warning message is displayed. Every script is associated with a checksum hash value. This value ensures the
integrity of the script, and that the script is not tampered with.

It is mandatory to configure the checksum to run the script.

Precommit scripts support SHA256 checksum.Note

Procedure

Step 1 Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.
However, if the router is secure, you can retrieve the checksum hash value from the IOS XR Linux bash shell.

Example:
Router#run
[node0_RP0_CPU0:~]$sha256sum /harddisk:/mirror/script-mgmt/precommit/precommit-bgp.py
6bb460920a694a0f91a27892f457203090e7a6391ab7d2f8656f477af17f9ed1
/harddisk:/mirror/script-mgmt/precommit/precommit-bgp.py

Make note of the checksum value.

Step 2 View the status of the script.

Example:
Router#show script status detail
==

Name | Type | Status | Last Action | Action Time
--

precommit-bgp.py | precommit | Config Checksum | NEW | Tue Jan 24 05:19:41
2023
--

Script Name : precommit-bgp-script.py
History:

1. Action : NEW

Time : Tue Jan 24 05:19:41 2021
Description : User action IN_CLOSE_WRITE

===

The Status shows that the checksum is not configured.

You can view the details of the specific script using the show script status name script detail command.

Step 3 Configure the checksum and set the priority.

Example:

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
46

Precommit Scripts
Configure checksum for the precommit script

Router#configure
Router(config)#script precommit precommit-bgp.py checksum SHA256
6bb460920a694a0f91a27892f457203090e7a6391ab7d2f8656f477af17f9ed1 priority 20
Router(config)#commit

If you are configuring multiple scripts, the system decides an appropriate order to run the scripts. However, you can
control the order in which scripts execute using a priority value. For more information on configuring the priority value,
see Control Priority When Running Multiple Scripts.

Step 4 Verify the status of the script.

Example:
Router#show script status detail
==

Name | Type | Status | Last Action | Action Time
--

precommit-bgp.py | precommit | Ready | NEW | Tue Jan 24 06:17:41 2023
--

Script Name : precommit-bgp.py
Checksum : 6bb460920a694a0f91a27892f457203090e7a6391ab7d2f8656f477af17f9ed1
History:

1. Action : NEW

Time : Tue Jan 24 06:17:41 2023
Checksum : 6bb460920a694a0f91a27892f457203090e7a6391ab7d2f8656f477af17f9ed1
Description : User action IN_CLOSE_WRITE

===

The status Ready indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script is not
run, and the commit operation that triggered the script is rejected. It is mandatory for the checksum values to match for
the script to run.

Activate precommit scripts
Activate the precommit script to validate a configuration change on the set of active configuration including
any scripts newly activated as part of the configuration change before committing the changes.

If the precommit script rejects one or more items in the configuration change, the entire configuration is
rejected before committing the change.

Note

Before you begin

Ensure that the following prerequisites are met before you run the script:

1. Download the Script to the Router

2. Configure Checksum for Precommit Script

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
47

Precommit Scripts
Activate precommit scripts

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/config-scripts.html#Cisco_Task.dita_ef19580b-fb3a-4833-9e35-69a2122c79e5
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/precommit-scripts.html#t-copy-script-to-router-precommit
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/precommit-scripts.html#t-configure-precommit-checksum

Procedure

Step 1 Activate the precommit script for the configuration validation to take effect.

Example:
Router(config)#script precommit precommit-bgp.py activate

Step 2 Commit the changes and verify that the precommit script is automatically initiated. You can choose to perform one of
the following options based on the requirement:

• Commit the changes to automatically initiate the precommit verification script.
Router(config-bgp-nbr)#commit
Precommit Script Report Start

Pre-commit Verification Result: Pass
Pre-commit Verification Script precommit-bgp.py (req id 1656378102): Pass

Precommit Script Report Done

• Ignore the result of the precommit script execution and proceed to the next step in the commit process using
ignore-results keyword. Use this keyword if you want to bypass the commit verification. The precommit script is
still executed, but the result is ignored.
Router(config-bgp-nbr)#commit script-verification ignore-results

• View all the logs generated by the commit script on the console using verbose keyword. If this keyword is not
specified, only the result of the script verification is displayed on the console.
Router(config-bgp-nbr)#commit script-verification verbose

An execution report from the script is displayed on the console. If the script displays an error message, rectify the error
and rerun the commit operation. If there are no validation errors, the commit operation is successful indicating that the
configuration change is valid.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
48

Precommit Scripts
Activate precommit scripts

C H A P T E R 5
Config scripts

• Config scripts, on page 49
• Restrictions for config scripts, on page 50
• Run config scripts , on page 50
• Delete config script from the router , on page 59
• Set script execution priority, on page 60

Config scripts
A config script is an automated script that

• validates, enforces rules, and can modify device configuration changes during the commit process,

• analyzes proposed configuration changes, blocks invalid configurations, or issues warnings as needed,
and

• can automatically adjust or supplement configuration items to ensure compliance and reduce repetitive
manual tasks.

Config scripts generate system log messages that aid in auditing and troubleshooting configuration changes.

Functions of config scripts

When you commit or validate a configuration change, the system invokes each of the active scripts to validate
that change. Config scripts can perform these actions:

• Analyze the proposed new configuration.

• If the configuration is invalid, block the commit by returning an error message along with the set of
configuration items to which it relates.

• Return a warning message with the related details but does not block the commit operation.

• Modify the configuration to be included in the commit operation to make the configuration valid, or to
simplify certain repetitive configuration tasks. For example, where a value needs duplicating between
one configuration item and another configuration item.

• Generate system log messages for in-depth analysis of the configuration change. This log also helps in
troubleshooting a failed commit operation.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
49

Restrictions for config scripts
Configuration and software restrictions when using config scripts include:

• Config scripts cannot modify configuration protected by the CCV process. This includes script checksum
configuration and other sensitive security settings, such as AAA configuration.

• Config scripts do not support importing helper modules or custom imports for shared functionality. While
you can configure these imports, theymay introduce a security risk because there is no checksum validation
on imported modules. Changes to these imported modules are not automatically detected. To have scripts
recognize changes, you must manually unconfigure and reconfigure the affected scripts.

Run config scripts
Automate router configuration validation by enabling and executing configuration scripts.

Use this task to provision, validate, and apply Python-based configuration scripts on a router to ensure
configuration changes meet organizational and operational standards.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
50

Config scripts
Restrictions for config scripts

Figure 2: Workflow to run config scripts:

A config script is invoked automatically when you validate or commit a configuration change to modify the
candidate configuration.

Note

Before you begin

• Ensure your configuration script is written in Python 3.5 using only Cisco-supported packages.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
51

Config scripts
Run config scripts

• Store the script on an HTTP server accessible to the router or on the router’s local hard disk.

• Ensure you have privileges to run configuration and validation commands on the router.

Procedure

Step 1 Enable the config scripts feature.
Step 2 Download the script.
Step 3 Configure the checksum.
Step 4 Validate the script.
Step 5 Validate the configuration.
Step 6 View the script execution details.

Enable config scripts
Config scripts are driven by commit operations. To run the config scripts, you must enable the feature on the
router. You must have root user privileges to enable the config scripts.

You must commit the configuration to enable the config scripts feature before committing any script checksum
configuration.

Note

Procedure

Step 1 Enable the config scripts.

Example:
Router(config)#configuration validation scripts

Step 2 Commit the configuration.

Example:
Router(config)#commit

Download script to the router
To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
52

Config scripts
Enable config scripts

Table 9: Script download locations

Download locationScript
type

harddisk:/mirror/script-mgmt/configconfig

harddisk:/mirror/script-mgmt/execexec

harddisk:/mirror/script-mgmt/processprocess

harddisk:/mirror/script-mgmt/eemeem

Procedure

Step 1 Add the script to the script management repository on the router using one of the two options:

• Add script from a server.

• Copy the script from an external repository.

Example:

Add the script from a configured HTTP server or the harddisk location in the router.
Router#script add config <script-location> <script.py>

The following example shows a config script config-script.py downloaded from an external repository
http://192.0.2.0/scripts:
Router#script add config http://192.0.2.0/scripts config-script.py
config-script.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.
Router#script add config <script-location> <script1.py> <script2.py> ... <script10.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied is
genuine. You can fetch the checksum of the script from the server from where you are downloading the script. However,
specifying checksum while downloading the script is optional.
Router#script add config http://192.0.2.0/scripts config-script.py checksum SHA256 <checksum-value>

For multiple scripts, use the following syntax to specify the checksum:
Router#script add config http://192.0.2.0/scripts <script1.py> <script1-checksum> <script2.py>
<script2-checksum>
... <script10.py> <script10-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note
Only SHA256 checksum is supported.

Example:

You can copy the script from the external repository to the routers' harddisk and then add the script to the script management
repository.

a. Copy the script from a remote location to harddisk using scp or copy command.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
53

Config scripts
Download script to the router

Router#scp userx@192.0.2.0:/scripts/config-script.py /harddisk:/

b. Add the script from the harddisk to the script management repository.
Router#script add config /harddisk:/ config-script.py
config-script.py has been added to the script repository

Step 2 Verify that the scripts are downloaded to the script management repository on the router.

Example:
Router#show script status
===

Name | Type | Status | Last Action | Action Time

CpuCheck_Netconf_RPC_Agent.py | process| Ready | NEW | Fri Sep 2 20:24:58 2022

config_ssh_script.py | config | Ready | MODIFY | Tue Aug 30 14:11:25 2022

eem_script_action_gshut.py | eem | N/A | MODIFY | Thu Sep 1 14:37:58 2022
:23 2021

Router# show appmgr process-script CpuCheck_Netconf_RPC_Agent_Process_App info
Application: CpuCheck_Netconf_RPC_Agent_Process_App
Activated configuration:
Executable : CpuCheck_Netconf_RPC_Agent.py
Run arguments : 15
Restart policy : On Failure
Maximum restarts : 3

Execution status and info:
Activated : Yes
Status : Started
Executable Checksum : ee3c32a7d95b398a7eeea9b0d39d4d414338cc9fca739462b8ed49069d28d83c
Restart count : 2
Log location :

/harddisk:/mirror/script-mgmt/logs/CpuCheck_Netconf_RPC_Agent.py_process_CpuCheck_Netconf_RPC_Agent_Process_App

Last started Time : Fri Sep 2 21:13:33 2022
Script config_ssh_script.py is copied to harddisk:/mirror/script-mgmt/config directory on the router.

Configure checksum to the router
Every script is associated with a checksum hash value. This value ensures the integrity of the script, and that
the script is not tampered with. The checksum is a string of numbers and letters that act as a fingerprint for
script. The checksum of the script is compared with the configured checksum. If the values do not match, the
script is not run and a syslog warning message is displayed.

It is mandatory to configure the checksum to run the script.

Config scripts support SHA256 checksum.Note

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
54

Config scripts
Configure checksum to the router

Procedure

Step 1 Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.
However, if the router is secure, you can retrieve the checksum hash value from the IOS XR Linux bash shell.

Example:
Router#run
[node0_RP0_CPU0:~]$sha256sum /harddisk:/mirror/script-mgmt/config/config-script.py
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
/harddisk:/mirror/script-mgmt/config/config-script.py

Make note of the checksum value.

Step 2 View the status of the script.

Example:
Router#show script status detail
==

Name | Type | Status | Last Action | Action Time
--

config-script.py | config | Config Checksum | NEW | Fri Aug 20 05:03:41 2021
--

Script Name : config-script.py
History:

1. Action : NEW

Time : Fri Aug 20 05:03:41 2021
Description : User action IN_CLOSE_WRITE

==

The Status shows that the checksum is not configured.

Step 3 Configure the checksum.

Example:
Router#configure
Router(config)#script config config-script.py checksum SHA256
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Router(config)#commit
Router(config)#end

Note
When you commit this configuration, the script is automatically run to validate the resulting running configuration. If
the script returns any errors, this commit operation fails. This way, the running configuration always remains valid with
respect to all currently active scripts with checksums configured.

If you are configuring multiple scripts, the system decides an appropriate order to run the scripts. However, you can
control the order in which scripts execute using a priority value. For more information on configuring the priority value,
see Control Priority When Running Multiple Scripts.

Step 4 Verify the status of the script.

Example:

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
55

Config scripts
Configure checksum to the router

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/config-scripts.html#Cisco_Task.dita_ef19580b-fb3a-4833-9e35-69a2122c79e5

Router#show script status detail
==

Name | Type | Status | Last Action | Action Time
--

config-script.py | config | Ready | NEW | Fri Aug 20 05:03:41 2021
--

Script Name : config-script.py
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
History:

1. Action : NEW

Time : Fri Aug 20 05:03:41 2021
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Description : User action IN_CLOSE_WRITE

===

The status Ready indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script is not
run, and the commit operation that triggered the script is rejected. It is mandatory for the checksum values to match for
the script to run.

Configuration change validation
A configuration change validation is a network integrity mechanism that

• ensures that changes comply with predefined conditions set in active configuration scripts,

• evaluates both newly activated scripts and those previously active to catch any new or cumulative errors,
and

• helps network administrators refine and update the target configuration before committing changes.

Pre-configuration validation

You can also validate pre-configuration during a commit operation. Pre-configuration is any configuration
specific to a particular hardware resource such as an interface or a line card that is committed before that
resource is present. For example, commit configuration for a line card before it is inserted into the chassis.
Any active config scripts can read and validate (accept, reject or modify) the pre-configuration. However,
when the configuration is committed, the pre-configuration is not applied to the system. Later, when the
relevant hardware resource is available, the pre-configuration becomes active and is applied to the system.
The config scripts are not run to validate the configuration at this point as the scripts have already validated
this configuration.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
56

Config scripts
Configuration change validation

Table 10: Feature History Table

DescriptionRelease InformationFeature Name

Introduced in this release on: 8700
[ASIC: K100](select variants
only*)

*This feature is now supported on
Cisco 8712-MOD-M routers.

Release 25.1.1Validate Pre-configuration Using
Config Scripts

Introduced in this release on: Fixed
Systems (8200 [ASIC: P100], 8700
[ASIC: P100(select variants
only*)Modular Systems (8800 [LC
ASIC: P100])(select variants only*)

*This feature is now supported on:

• 8212-48FH-M

• 8711-32FH-M

• 88-LC1-12TH24FH-E

• 88-LC1-36EH+A8:B12

• 88-LC1-52Y8H-EM

Release 24.1.1Validate Pre-configuration Using
Config Scripts

This feature allows you to use
config scripts to validate
pre-configuration during a commit
or validate operation. Any active
config scripts can read and validate
(accept, reject or modify)
pre-configuration. The
pre-configuration is only applied to
the system later on, when the
relevant hardware is inserted, and
does not require further script
validation at that point. Previously,
config scripts did not allow
validating configuration until the
corresponding hardware was
present.

Release 7.5.1Validate Pre-configuration Using
Config Scripts

If the config script rejects one or more items in the commit operation, the entire commit operation is rejected.Note

Validate or commit configuration to invoke config script
Ensure that configuration changes meet policy conditions and are correctly applied using a config script before
committing them.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
57

Config scripts
Validate or commit configuration to invoke config script

Use this task when you want to validate and commit router configuration changes using a config script on
IOS XR, ensuring modifications are applied as per policy.

Before you begin

• Confirm that your config script is available and properly installed on your device.

• Ensure you know the script’s filename and checksum value if required.

Procedure

Step 1 Validate the configuration with the conditions in the config script.

Example:
Router(config)#validate config-scripts apply-policy-modifications

% Policy modifications were made to target configuration, please issue 'show configuration'
from this session to view the resulting configuration

The output shows that there are no errors in the changed configuration. You can view the modifications made to the target
configuration.

Note
If you do not want the config buffer to be updated with the modifications, omit the apply-policy-modifications keyword
in the command.

The script validates the configuration changes with the conditions set in the script. Based on the configuration, the script
stops the commit operation, or modifies the configuration.

Step 2 View the modified target configuration.

Example:
Router(config)#show configuration
Tue Aug 31 08:30:56.833 UTC
Building configuration...
!! IOS XR Configuration 7.3.2
script config config-script.py checksum SHA256
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b

d342adb35cbc8a0cd4b6ea1063d0eda2d58
......----- configuration details
end

Step 3 Commit the configuration.

Example:
Router(config)#commit

If the script returns an error, use the show configuration failed if-committed command to view the errors. If there are
no validation errors, the commit operation is successful including any modifications that are made by config scripts.

You can view the recent commit operation that the script modified, and display the original configuration changes before
the script modified the values using show configuration commit changes original last-modified command.

If the commit operation is successful, you can check what changes were committed including the script modifications
using show configuration commit changes last 1 command.

Step 4 After the configuration change is successful, view the running configuration and logs for details.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
58

Config scripts
Validate or commit configuration to invoke config script

Example:
Router(config)#show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)

Console logging: Disabled
Monitor logging: level debugging, 0 messages logged
Trap logging: level informational, 0 messages logged
Buffer logging: level debugging, 13 messages logged

Log Buffer (2097152 bytes):
-------------------- snipped for brevity ---------------------------------------
Configuration committed by user 'cisco'. Use 'show configuration commit changes
1000000006' to view the changes.

Delete config script from the router
You can delete a config script from the script management repository using the script remove command.

Before you begin

Verify that you know the name of the script you intend to delete.

Procedure

Step 1 View the active scripts on the router.

Example:
Router#show script status
==

Name | Type | Status | Last Action | Action Time
--

ssh_config_script.py | config | Ready | NEW | Tue Aug 24 09:18:23 2021

==

Ensure the script that you want to delete is present in the repository.

Alternatively you can also view the list of scripts from the IOS XR Linux bash shell.
[node0_RP0_CPU0:/harddisk:/mirror/script-mgmt/config]$ls -lrt
total 1
-rw-rw-rw-. 1 root root 110 Aug 24 10:44 ssh_config_script.py

Step 2 Delete script ssh_config_script.py

Example:
Router#script remove config ssh_config_script.py
ssh_config_script.py has been deleted from the script repository

You can also delete multiple scripts simultaneously.
Router#script remove config sample1.py sample2.py sample3.py

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
59

Config scripts
Delete config script from the router

Step 3 Verify that the script is deleted from the subdirectory.

Example:
Router#show script status
No scripts found

The script is deleted from the script management repository.

If a config script is still configured when it is removed, subsequent commit operations are rejected. So, you must also
undo the configuration of the script:
Router(config)#no script config ssh_config_script.py
Router(config)#commit

Set script execution priority
Ensure multiple scripts modifying the same configuration items are executed in the required order.

Whenmore than one script can change the same configuration item, execution order determines which script's
change is applied last. Using priorities helps prevent unwanted dependencies and ensures correct validation.

Before you begin

Ensure all scripts are loaded and accessible on the router.

Procedure

Step 1 Assign a lower numerical priority value to scripts that should run first.

Example:
Router(config)#script config sample1.py checksum sha256
2b061f11ede3c1c0c18f1ee97269fd342adb35cbc8a0cd4b6ea1063d0eda2d58
priority 10

Step 2 Assign a higher numerical priority value to scripts that should run later.

Example:
Router(config)#script config sample2.py checksum sha256
2fa34b64542f005ed58dcaa1f3560e92a03855223e130535978f8c35bc21290c
priority 20

Step 3 Commit the configuration.

Example:
Router(config)#commit

The system checks the priority values, and runs the one with lower priority first sample1.py, followed by the one with
the higher priority value sample2.py.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
60

Config scripts
Set script execution priority

C H A P T E R 6
Exec Scripts

• Exec scripts, on page 61
• Provision an exec script , on page 61
• Download the script to the router, on page 63
• Update scripts from a remote server, on page 64
• Invoke scripts from a remote server , on page 68
• Configure the checksum for an exec script , on page 68
• Run an exec script, on page 70
• View the script execution details, on page 71
• Delete exec scripts from the router, on page 73

Exec scripts
Exec scripts are on-box scripts that

• automate device configurations throughout the network,

• are written in Python using libraries provided by Cisco with the base package, and

• execute within the Cisco IOS XR operating system.

• A script management repository on the router manages exec scripts and is replicated on both route
processors (RPs).

• In IOS XR, AAA authorization determines user permissions required to run exec scripts; root privileges
are necessary.

This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

Note

Provision an exec script
Set up and execute an exec script on a router to automate administrative or configuration tasks.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
61

Figure 3: Steps involved in provisioning an exec script.

Procedure

Step 1 Download the script.
Step 2 Configure checksum.
Step 3 Run the script.
Step 4 View the script execution details.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
62

Exec Scripts
Provision an exec script

Download the script to the router
To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Table 11: Script download locations

Download LocationScript
Type

harddisk:/mirror/script-mgmt/configconfig

harddisk:/mirror/script-mgmt/execexec

harddisk:/mirror/script-mgmt/processprocess

harddisk:/mirror/script-mgmt/eemeem

Procedure

Step 1 Add the script to the script management repository on the router using one of the two options:

• Add script from a server.
Router#script add exec <script-location> <script.py>

The following example shows a config script exec-script.py downloaded from an external repository
http://192.0.2.0/scripts:
Router#script add config http://192.0.2.0/scripts exec-script.py
Fri Aug 20 05:03:40.791 UTC
exec-script.py has been added to the script repository

Note
The repository can be local to the router, or accessed remotely through TFTP, SCP, FTP, HTTP, or HTTPS protocols.
In addition to the default Virtual Routing and Forwarding (VRF), support is also extended for non-default VRF.

You can add a maximum of 10 scripts simultaneously.
Router#script add exec <script-location> <script1.py> <script2.py> ... <script10.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.
Router#script add exec http://192.0.2.0/scripts exec-script.py checksum SHA256 <checksum-value>

For multiple scripts, use the following syntax to specify the checksum:
Router#script add exec http://192.0.2.0/scripts <script1.py> <script1-checksum> <script2.py>
<script2-checksum>
... <script10.py> <script10-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
63

Exec Scripts
Download the script to the router

• Copy the script from an external repository.

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a) Copy the script from a remote location to harddisk using scp or copy command.

Example:
Router#scp userx@192.0.2.0:/scripts/exec-script.py /harddisk:/

b) Add the script from the harddisk to the script management repository.

Example:
Router#script add exec /harddisk:/ exec-script.py
exec-script.py has been added to the script repository

Step 2 Verify that the scripts are downloaded to the script management repository on the router.

Example:
Router#show script status
==
Name | Type | Status | Last Action | Action Time
--
exec-script.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021
==

Script exec-script.py is copied to harddisk:/mirror/script-mgmt/exec directory on the router.

Update scripts from a remote server
A remote script update capability is a script management feature that

• enables routers to synchronize automation scripts from a master script stored at a remote repository,

• automates the update process by applying changes based on predefined triggers such as manual requests,
scheduled intervals, or execution events, and

• supports multiple transfer protocols and configurable authentication to ensure reliable and secure
distribution of script updates.

You can maintain the latest copy of the scripts in a remote location, and configure the routers to automatically
update the local copy with the latest copy on the server as required.

Table 12: Feature History Table

DescriptionRelease informationFeature Name

Introduced in this release on: 8700
[ASIC: K100](select variants
only*)

*This feature is now supported on
Cisco 8712-MOD-M routers.

Release 25.1.1Update Automation Scripts from
Remote Server

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
64

Exec Scripts
Update scripts from a remote server

DescriptionRelease informationFeature Name

Introduced in this release on: Fixed
Systems (8200 [ASIC: P100], 8700
[ASIC: P100(select variants
only*)Modular Systems (8800 [LC
ASIC: P100])(select variants only*)

*This feature is now supported on:

• 8212-48FH-M

• 8711-32FH-M

• 88-LC1-12TH24FH-E

• 88-LC1-36EH+A8:B12

• 88-LC1-52Y8H-EM

Release 24.4.1Update Automation Scripts from
Remote Server

This feature lets you update
automation scripts across routers
by accessing the master script from
a remote site. This eases script
management, where you make
changes to the master script and
then copy it to routers where it is
deployed.

This feature introduces the
auto-update keyword in the script
exec command.

Release 7.5.1Update Automation Scripts from
Remote Server

Update scripts from a remote server
You can update script from a remote server using one of the following options:

• Config CLI commands

• Exec CLI commands

Exec CLI commands:

When you run the script, the script is downloaded and the checksum is automatically configured on the router.

• If on-run option is configured, running the script run command downloads the script.

• If manual option is configured, then you must run script update Exec command.

• If schedule option is selected, then the script is automatically updated after the specified interval.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
65

Exec Scripts
Update scripts from a remote server

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4173827902
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4173827902

Procedure

Step 1 Update the script on the router with the version on the remote server.

Example:
Router(config)#script exec auto-update sample3.py http://10.23.255.205
condition [manual | on-run | schedule]

In this example, sample3.py script is automatically updated from the remote server at http://10.23.255.205. You can
set conditions when updating the script.

The repository can be accessed remotely through FTP, HTTP, HTTPS, TFTP or SCP protocols.

Table 13: Script update methods and options

DescriptionCondition

Update manually with an Exec CLI (default). The following
option is supported:

• vrf—Specify the non-default Virtual Routing and
Forwarding (VRF) name.

• username—Enter the username.

• password—Enter the password.

manual

Update the exec script during run time. The following
options are supported:

• on-fail—Specify one of the actions on failure.

• do-not-run—Do not run the script on failure.

• run-local—Run the local copy of the script.

• vrf—Specify the non-default VRF name.

• username—Enter the username.

• password—Enter the password.

Note
Only the exec scripts support the on-run option.

on-run

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
66

Exec Scripts
Update scripts from a remote server

DescriptionCondition

Update automatically at specified time intervals. The
following option is supported:

• <60-262800>—Update interval in minutes

• username—Enter the username.

• password—Enter the password.

Note
The schedule option does not support SCP protocol.

schedule

Note
Do not specify the username and password inside the URL of the remote server.

Step 2 Commit the configuration.

Example:
Router(config)#commit

Step 3 Run the script.

Example:
Router#script run sample3.py background
sample3.py has been added to the script repository
Script run scheduled: sample3.py. Request ID: 1624990452

You can specify additional options to the command:

• arguments: Script command-line arguments. The format is strings in single quotes. Escape double quotes inside
string arguments.

• description: Description of script run.

• log-level: Script logging level. Default is INFO.

• log-path: Location to store script logs.

• max-runtime: Maximum run time of script.

Step 4 Update the script on the router with the version on the remote server.

Example:

Router#script update manual exec sample2.py
sample2.py has been added to the script repository

You can set options when updating the script:

Table 14: Description of various keywords

DescriptionOption

Script name.WORD

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
67

Exec Scripts
Update scripts from a remote server

DescriptionOption

Update all scripts in config.all

Invoke scripts from a remote server
Execute a script remotely using a specified protocol URL and checksum for verification.

Use a remote server URL to run Python scripts. The checksum is required to ensure script integrity. Supported
protocols include FTP, HTTP, HTTPS, TFTP, and SCP. Additional command options are available:

• arguments: Script command-line arguments, as strings in single quotes.

• description: Description of the script run.

• log-level: Script logging level (default: INFO).

• log-path: Location to store script logs.

• max-runtime: Maximum runtime for the script.

• vrf: Specify the VRF for the network file system.

Procedure

Run the script from the remote server.

Example:
Router#script run http://10.23.255.205/sample1.py checksum
5103a843032505decc37ff21089336e4bcc6a1061341056ca8add3ac5d6620ef background
Tue Nov 16 12:12:08.614 UTC
Script run scheduled: sample1.py. Request ID: 1624990451

Configure the checksum for an exec script
Ensure the integrity of exec scripts by configuring and verifying a SHA256 checksum, preventing tampering.

Every exec script requires a configured checksum. SHA256 is supported. The router verifies the checksum
before executing the script. If the values do not match, the script will not run and a syslog warning is displayed.

Before you begin

• Ensure that the script is added to the script management repository. See Download the Script to the
Router.

• Retrieve the SHA256 checksum value for your script on a trusted device.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
68

Exec Scripts
Invoke scripts from a remote server

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/exec-scripts.html#Cisco_Task.dita_7dd820fd-0fcf-465e-abe6-8a4d0f6eac94
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/exec-scripts.html#Cisco_Task.dita_7dd820fd-0fcf-465e-abe6-8a4d0f6eac94

Procedure

Step 1 Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.

Example:
Router#sha256sum sample1.py
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b sample1.py

Make note of the checksum value.

Step 2 View the status of the script.

Example:
Router#show script status detail
==

Name | Type | Status | Last Action | Action Time
--

sample1.py | exec | Config Checksum | NEW | Fri Aug 20 05:03:41 2021
--

Script Name : sample1.py
History:

1. Action : NEW

Time : Fri Aug 20 05:03:41 2021
Description : User action IN_CLOSE_WRITE

===

The Status shows that the checksum is not configured.

Step 3 Enter global configuration mode.

Example:
Router#configure

Step 4 Configure the checksum.

Example:
Router(config)#script exec sample1.py checksum SHA256
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b

Router(config)#commit
Router(config)#end

Step 5 Verify the status of the script.

Example:
Router#show script status detail
==

Name | Type | Status | Last Action | Action Time
--

sample1.py | exec | Ready | NEW | Fri Aug 20 05:03:41 2021
--

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
69

Exec Scripts
Configure the checksum for an exec script

Script Name : cpu_load.py
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
History:

1. Action : NEW

Time : Fri Aug 20 05:03:41 2021
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Description : User action IN_CLOSE_WRITE

===

The status Ready indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script fails.
It is mandatory for the checksum values to match for the script to run.

Run an exec script
Execute an exec script on the router using the script run command and receive a unique request ID for tracking
the execution.

Scripts allow automation of functions on your router. You can specify various runtime options such as
arguments, descriptions, logging level, and maximum runtime when running a script.

To run an exec script, use the script run command. After the script is run, a request ID is generated. Each
script run is associated with a unique request ID.

Scripts can be run with more options. This table lists the various options that you can provide at run time:

Table 15: Runtime configuration options

DescriptionKeyword

Script command-line arguments. Syntax: Strings in single quotes. Escape double quotes inside
string arguments (if any).

For example:
Router#script run sample1.py arguments 'hello world' '-r' '-t' 'exec' '--sleep'

'5' description "Sample exec script"

arguments

Run script in background. By default, the script runs in the foreground.

When a script is run in the background, the console is accessible only after the script run is
complete.

background

Description about the script run.
Router#script run sample1.py arguments '-arg1' 'reload' '-arg2' 'all'
'description' "Script reloads the router"

When you provide both the argument and description ensure that the arguments are in single
quote and description is in double quotes.

description

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
70

Exec Scripts
Run an exec script

DescriptionKeyword

Script logging level. The default value is INFO.

You can specifiy what information is to be logged. The log level can be set to one of these
options—Critical, Debug, Error, Info, or Warning.

log-level

Location to store the script logs. The default log file location is in the script management
repository harddisk:/mirror/script-mgmt/logs.

log-path

Maximum run-time of script can be set between 1–3600 seconds. The default value is 300.max-runtime

The script run is complete.

Before you begin

Ensure the following prerequisites are met before you run the script:

1. Download the Script to the Router

2. Configure Checksum for Exec Script

Procedure

Run the exec script.

Example:
Router#script run sample1.py
Script run scheduled: sample1.py. Request ID: 1629800603
Script sample1.py (exec) Execution complete: (Req. ID 1629800603) : Return Value: 0 (Executed)

What to do next

Review the script execution results and logs as needed. Use the request ID to track or troubleshoot any issues
with the script run.

View the script execution details
View the status of the script execution.

Before you begin

Ensure you have completed these tasks.

• Download the script to the router.

• Configure checksum for exec script.

• Run the exec script.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
71

Exec Scripts
View the script execution details

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/exec-scripts.html#Cisco_Task.dita_7dd820fd-0fcf-465e-abe6-8a4d0f6eac94
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/exec-scripts.html#Cisco_Task.dita_f8e8544f-5a0a-4359-b3c3-684cfd7a72a6

Procedure

Step 1 View the status of the script execution.

Example:
Router#show script execution
==

Req. ID | Name (type) | Start | Duration | Return | Status
--

1629800603| sample1.py (exec) | Wed Aug 25 16:40:59 2021 | 60.62s | 0 | Executed
==

You can view detailed or filtered data for every script run.

Step 2 Filter the script execution status to view the detailed output of a specific script run via request ID.

Example:
Router#show script execution request-id 1629800603 detail output
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1629800603| sample1.py (exec) | Wed Aug 25 16:40:59 2021 | 60.62s | 0
| Executed

--

Execution Details:

Script Name : sample1.py
Log location : /harddisk:/mirror/script-mgmt/logs/sample1.py_exec_1629800603
Arguments :
Run Options : Logging level - INFO, Max. Runtime - 300s, Mode - Foreground
Events:

1. Event : New

Time : Wed Aug 25 16:40:59 2021
Time Elapsed : 0.00s Seconds
Description : None

2. Event : Started
Time : Wed Aug 25 16:40:59 2021
Time Elapsed : 0.03s Seconds
Description : Script execution started. PID (20736)

3. Event : Executed
Time : Wed Aug 25 16:42:00 2021
Time Elapsed : 60.62s Seconds
Description : Script execution complete

--

Script Output:

Output File : /harddisk:/mirror/script-mgmt/logs/sample1.py_exec_1629800603/stdout.log
Content :
===

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
72

Exec Scripts
View the script execution details

Table 16: Description of various keywords

DescriptionKeyword

Display detailed script execution history, errors, output and deleted scripts.
Router#show script execution detail [errors | output | show-del]

detail

Show last N (1-100) execution requests.
Router#show script execution last 10

This example will display the list of last 10 script runs with their request IDs, type of script, timestamp,
duration that the script was run, number of errrors, and the status of the script run.

last <number>

Filter operational data based on script name. If not specified, all scripts are displayed.
Router#show script execution name sample1.py

name <filename>

Display summary of the script using request-ID that is generated with each script run.
Router#show script execution request-ID 1629800603

request-id
<value>

Display the request IDs from the script execution in reverse chronological order. For example, the
request-ID from the latest run is displayed first, followed by the descending order of request-IDs.
Router#script script execution reverse

reverse

Filter data based on script status.
Router#[status {Exception,Executed, Killed, Started, Stopped, Timed-out}]

status

Delete exec scripts from the router
Remove exec scripts from the router’s script management repository.

Use this task to delete unwanted exec scripts stored in the script management repository using the script
remove command. The repository stores downloaded scripts available for use on the router.

Procedure

Step 1 View the list of scripts present in the script management repository.

Example:
Router#show script status
==
Name | Type | Status | Last Action | Action Time
--
sample1.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021
sample2.py | exec | Config Checksum | NEW | Wed Aug 25 23:44:53 2021
sample3.py | config | Config Checksum | NEW | Wed Aug 25 23:44:57 2021

Ensure the script you want to delete is present in the repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
73

Exec Scripts
Delete exec scripts from the router

Step 2 Delete the script.

Example:
Router#script remove exec sample2.py
sample2.py has been deleted from the script repository

You can also delete multiple scripts simulataneoulsy.

Step 3 Verify the script is deleted from the subdirectory.

Example:
Router#show script status
==
Name | Type | Status | Last Action | Action Time
--
sample1.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021
sample3.py | config | Config Checksum | NEW | Wed Aug 25 10:44:57 2021

The script is deleted from the script management repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
74

Exec Scripts
Delete exec scripts from the router

C H A P T E R 7
Process Script

• Process scripts, on page 75
• Run the process script, on page 75
• Manage actions on process script , on page 84

Process scripts
A process script is a persistent automation script that

• runs continuously on Cisco IOS XR as long as it is activated,

• is managed by the AppMgr, which controls startup, monitoring, and restart, and

• registers as an application instance for operational monitoring and status retrieval.

Process scripts, also referred to as daemon scripts, are designed to execute on Cisco IOSXR platforms without
manual intervention. The AppMgr is responsible for starting, stopping, monitoring, and retrieving the status
of these scripts. AppMgr ensures that scripts automatically restart if they terminate depending on the configured
restart policy and manages startup dependencies with other processes on the router.

Process scripts support Python 3.5 as their programming language. For information on supported Python
packages, refer to Cisco IOS XR Python Packages.

This chapter gets you started with provisioning your Python automation scripts on the router.

Run the process script
Run a process script to automate a specific set of system tasks.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
75

Figure 4: Workflow of Process script

Before you begin

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
76

Process Script
Run the process script

Procedure

Step 1 Download the script.
Step 2 Configure the checksum.
Step 3 Register the script.
Step 4 Activate the script.
Step 5 View the script execution details.

What to do next

Download the script to the router
Add a script to the script management repository on the router to enable script execution and management.

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Table 17: Location to download the script

Download LocationScript
Type

harddisk:/mirror/script-mgmt/configconfig

harddisk:/mirror/script-mgmt/execexec

harddisk:/mirror/script-mgmt/processprocess

harddisk:/mirror/script-mgmt/eemeem

The scripts are added to the script management repository using two methods:

• Method 1: Add script from a server

• Method 2: Copy script from external repository to harddisk using scp or copy command

Before you begin

• Confirm you have access to the script file(s) and to the router’s CLI.

• If copying from an external repository, ensure required network connectivity and protocol support (HTTP,
HTTPS, FTP, TFTP, SCP).

Procedure

Step 1 Add the script to the script management repository on the router using one of the two options:

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
77

Process Script
Download the script to the router

• Add script from a server

Add the script from any server or the harddisk location in the router.
Router#script add process <script-location> <script.py>

The following example shows a process-script.py downloaded from an external repository http://192.0.2.0/scripts:
Router#script add process http://192.0.2.0/scripts process-script.py
process-script.py has been added to the script repository

The script add process supports the HTTP, HTTPS, FTP, TFTP, and SCP protocols for copying a script.You
can add a maximum of 10 scripts simultaneously.
Router#script add process <script-location> <script1.py> <script2.py> ... <script10.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.
Router#script add process http://192.0.2.0/scripts process-script.py checksum SHA256
<checksum-value>

For multiple scripts, use the following syntax to specify the checksum:
Router#script add process http://192.0.2.0/scripts <script1.py> <script1-checksum> <script2.py>
<script2-checksum>
... <script10.py> <script10-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note
Only SHA256 checksum is supported.

• Copy the Script from an External Repositor

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/process-script.py /harddisk:/

Add the script from the harddisk to the script management repository.
Router#script add process /harddisk:/ process-script.py
process-script.py has been added to the script repository

Step 2 Verify that the scripts are downloaded to the script management repository on the router.

Example:
Router#show script status
==
Name | Type | Status | Last Action | Action Time
--
process-script.py | process | Config Checksum | NEW | Tue Aug 24 10:44:53 2021
==

Script process-script.py is copied to harddisk:/mirror/script-mgmt/process directory on the router.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
78

Process Script
Download the script to the router

Configure checksum for the process script
Ensure script integrity by configuring a checksum that verifies the script has not been tampered with before
execution.

Each process script is associated with a SHA256 checksum value, which acts as a fingerprint to ensure the
script’s integrity. If the configured checksum does not match the calculated value during script execution, the
script will not run, and a warning is displayed. Configuring the checksum is mandatory for running the script.

It is mandatory to configure the checksum to run the script.

Process scripts support the SHA256 checksum hash.Note

Before you begin

Ensure that the script is added to the script management repository. See Download the Script to the Router
for detailed instructions.

Procedure

Step 1 Retrieve the SHA256 checksum hash value for the script from the IOS XR Linux bash shell.

Example:
Router#run
[node0_RP0_CPU0:~]$sha256sum /harddisk:/mirror/script-mgmt/process/process-script.py
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
/harddisk:/mirror/script-mgmt/process/process-script.py

Make note of the checksum value.

Step 2 View the status of the script.

Example:
Router#show script status detail
===
Name | Type | Status | Last Action | Action Time

process-script.py | process | Config Checksum | NEW | Fri Aug 20 05:03:41 2021

Script Name : process-script.py
History:

1. Action : NEW

Time : Fri Aug 20 05:03:41 2021
Description : User action IN_CLOSE_WRITE

===

The Status shows that the checksum is not configured.

Step 3 Configure the checksum.

Example:
Router#configure
Router(config)#script process process-script.py checksum SHA256
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
79

Process Script
Configure checksum for the process script

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/process-scripts.html#Cisco_Task.dita_7dd820fd-0fcf-465e-abe6-8a4d0f6eac94

Router(config)#commit
Router(config)#end

Step 4 Verify the status of the script.

Example:
Router#show script status detail
==
Name | Type | Status | Last Action | Action Time

process-script.py | process | Ready | NEW | Fri Aug 20 05:20:41 2021

Script Name : process-script.py
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
History:

1. Action : NEW

Time : Fri Aug 20 05:20:41 2021
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Description : User action IN_CLOSE_WRITE

The status Ready indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script fails.
It is mandatory for the checksum values to match for the script to run.

Register the process script as an application
Enable and manage a process script on your router by registering it as an application, ensuring it runs under
the app manager and applies the desired execution settings.

Registering the process script with the app manager is a required step before you can use the script on the
router. This process allows you to define application parameters and control restart policies for continuous
operation or error handling.

Before you begin

Ensure that the following prerequisites are met before you register the script:

• Download the Script to the Router

• Configure Checksum for Process Script

Procedure

Step 1 Register the script with an application (instance) name in the app manager.

Example:
Router#configure
Router(config)#appmgr process-script my-process-app
Router(config-process)#executable process-script.py

Here, my-process-app is the application for the executable process-script.py script.

Step 2 Provide the arguments for the script.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
80

Process Script
Register the process script as an application

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/process-scripts.html#Cisco_Task.dita_7dd820fd-0fcf-465e-abe6-8a4d0f6eac94
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/process-scripts.html#Cisco_Task.dita_e0e25a28-f610-4c47-8c04-c1c4ca86c676

Example:
Router(config-process)#run-args --host <host-name> --runtime 3 --log script

Step 3 Set a restart policy for the script if there is an error.

Example:
Router(config-process)#restart on-failure max-retries 3
Router(config-process)#commit

Here, the maximum attempts to restart the script is set to 3. After 3 attempts, the script stops.

Table 18: Options to restart the process

DescriptionKeyword

Always restart automatically. If the process exits, a scheduler queues the script and restarts the script.

Note
This is the default restart policy.

always

Never restart automatically. If the process exits, the script is not rerun unless you provide an action
command to invoke the process.

never

Restart on failure automatically. If the script exits successfully, the script is not scheduled again.on-failure

Restart script automatically unless errored.unless-errored

Restart script automatically unless stopped by the user using an action command.unless-stopped

Step 4 View the status of the registered script.

Example:
Router#show appmgr process-script-table
Name Executable Activated Status Restart Policy Config Pending
--------------- ------------------ --------- ------------- ---------------- --------------
my-process-app process-script.py No Not Started On Failure No

The script is registered but is not active.

Activate the process script
Activate the process script that you registered with the app manager.

Before you begin

Ensure that the following prerequisites are met before you run the script:

• Download the Script to the Router

• Configure Checksum for Process Script

• Register the Process Script as an Application

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
81

Process Script
Activate the process script

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/process-scripts.html#Cisco_Task.dita_7dd820fd-0fcf-465e-abe6-8a4d0f6eac94
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/process-scripts.html#Cisco_Task.dita_e0e25a28-f610-4c47-8c04-c1c4ca86c676
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/process-scripts.html#Cisco_Task.dita_2641b633-f433-4665-a9e1-48d9d7c37e8f

Procedure

Step 1 Activate the process script.

Example:
Router#appmgr process-script activate name my-process-app

The instance my-process-app is activated for the process script.

Step 2 View the status of the activated script.

Example:
Router#show appmgr process-script-table
Name Executable Activated Status Restart Policy Config Pending
--------------- ------------------ --------- ------------- ---------------- --------------
my-process-app process-script.py Yes Running On Failure No

The process script is activated and running.

Note
You can modify the script while the script is running. However, for the changes to take effect, you must deactivate and
activate the script again. Until then, the configuration changes are pending. The status of the modification is indicated in
the Config Pending option. In the example, value No indicates that there are no configuration changes that must be
activated.

Obtain operational data and logs
Retrieve and review operational data and logs for a process script on the router.

Use this task when you need to monitor process script health, analyze performance, or troubleshoot errors on
your router. This ensures accurate status information and supports problem resolution.

Before you begin

Ensure that the following prerequisites are met before you obtain the operational data:

• Download the Script to the Router

• Configure Checksum for Process Script

• Register the Process Script as an Application

• Activate the Process Script

Procedure

Step 1 View the registration information, pending configuration, execution information, and run time of the process script.

Example:

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
82

Process Script
Obtain operational data and logs

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/process-scripts.html#Cisco_Task.dita_7dd820fd-0fcf-465e-abe6-8a4d0f6eac94
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/process-scripts.html#Cisco_Task.dita_e0e25a28-f610-4c47-8c04-c1c4ca86c676
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/process-scripts.html#Cisco_Task.dita_2641b633-f433-4665-a9e1-48d9d7c37e8f
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/25xx/programmability/configuration/guide/b-programmability-cg-8000-25xx/process-scripts.html#Cisco_Task.dita_a7e80c4b-2feb-4fa0-9bca-281536cfdcc5

Router#show appmgr process-script my-process-app info
Application: my-process-app

Registration info:
Executable : process-script.py
Run arguments : --host <host-name> --runtime 3 --log script
Restart policy : On Failure
Maximum restarts : 3

Pending Configuration:
Run arguments : --host <host-name> --runtime 3 --log script
Restart policy : Always

Execution info and status:
Activated : Yes
Status : Running
Executable Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b

Last started time : Fri Aug 20 06:20:21.947
Restarts since last activate : 0/3
Log location :

/harddisk:/mirror/script-mgmt/logs/process-script.py_process_my-process-app
Last exit code : 1

Step 2 View the logs for the process scripts. App manager shows the logs for errors and output.

The following example shows the output logs:

Example:
Router#show appmgr process-script my-process-app logs output
[2021-08-20 06:20:55,609] INFO [sample-process]:: Beginning execution of process..
[2021-08-20 06:20:55,609] INFO [sample-process]:: Connecting to host '<host-name>'
[2021-08-20 06:20:56,610] INFO [sample-process]:: Reading database..
[2021-08-20 06:20:58,609] INFO [sample-process]:: Listening for requests..

The following example shows the error logs with errors:

Example:
Router#show appmgr process-script my-process-app logs errors
----------Run ID:1632914459 Fri Aug 20 06:30:20 2021----------
Traceback (most recent call last):
File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 121, in <module>
main(args)

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 97, in main
printer()

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 37, in wrapper
result = func(*args, **kwargs)

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 88, in printer
time.sleep(1)

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 30, in _handle_timeout
raise TimeoutError(error_message)

__main__.TimeoutError: Timer expired
----------Run ID:1632914460 Fri Aug 20 06:31:03 2021----------

This example shows the log without errors:

Example:
Router#show appmgr process-script my-process-app logs errors
----------Run ID:1624346220 Fri Aug 20 10:46:44 2021----------
----------Run ID:1624346221 Fri Aug 20 10:47:50 2021----------
----------Run ID:1624346222 Fri Aug 20 10:52:39 2021----------
----------Run ID:1624346223 Fri Aug 20 10:53:45 2021----------
----------Run ID:1624346224 Fri Aug 20 11:07:17 2021----------

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
83

Process Script
Obtain operational data and logs

----------Run ID:1624346225 Fri Aug 20 11:08:23 2021----------
----------Run ID:1624346226 Fri Aug 20 11:09:29 2021----------
----------Run ID:1624346227 Fri Aug 20 11:10:35 2021----------
----------Run ID:1624346228 Fri Aug 20 11:11:41 2021----------

Manage actions on process script
The process script runs as a daemon continuously. You can, however, perform these actions on the process
script and its application.

Table 19: Supported actions for process script applications

DescriptionAction

Clears all the resources that the application uses.
Router#appmgr process-script deactivate name
my-process-app

You can modify the script while the script is running.
However, for the changes to take effect, you must
deactivate and activate the script again. Until then,
the configuration changes do not take effect.

Deactivate

Terminates the script if the option to stop the script
is unresponsive.
Router#appmgr process-script kill name
my-process-app

Kill

Restarts the process script.
Router#appmgr process-script restart name
my-process-app

Restart

Starts an application that is already registered and
activated with the app manager.
Router#appmgr process-script start name
my-process-app

Start

Stops an application that is already registered,
activated, and is currently running. Only the
application is stopped; resources that the application
uses is not cleared.
Router#appmgr process-script stop name
my-process-app

Stop

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
84

Process Script
Manage actions on process script

C H A P T E R 8
EEM scripts

• EEM scripts , on page 85
• Manage eem scripts on the router , on page 86
• Download script to the router, on page 87
• Define trigger conditions for events , on page 88
• Create actions for events, on page 90
• Policy maps, on page 91
• View operational status of eem components, on page 93

EEM scripts
A EEM script is an automation tool that

• monitors real-time system activity and events,

• executes defined actions when specific conditions are met, and

• streamlines troubleshooting and operational workflows.

EEM scripts act based on significant system occurrences—such as log messages, interface states, or telemetry
changes—not limited to errors. For example, you can automate actions like enforcing LACP dampening if a
bundle interface flaps multiple times within seconds by temporarily disabling the interface.

Administrators can define events and actions separately, then link them together using policy maps. A single
event and action pair can be reused across multiple policies, and a policy map can contain up to five actions.
EEM scripts may be written in Python 3.5 or TCL; script policies can be configured using either Command
Line Interface (CLI) or NETCONF RPCs.

• Scripts are stored and managed in subdirectories based on type within the router's script management
repository.

• You can map the same event and action in up to 64 policy maps for extensive automation reuse.

• For python scripting, only specific packages are supported; TCL scripts are also an option for event
managers.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
85

Manage eem scripts on the router
Complete these steps to provision eem scripts on the router.

Figure 5: Workflow to run events script

Procedure

Step 1 Download the script.
Step 2 Define events.
Step 3 Create actions to the events.
Step 4 Create policy map.

Note

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
86

EEM scripts
Manage eem scripts on the router

An eem script is invoked automatically when the event occurs. With the event, the event-trigger invokes the corresponding
policy-map to implement the actions in response to the event.

Step 5 View operational status of the event.

Download script to the router
To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Table 20: Script download locations

Download locationScript
type

harddisk:/mirror/script-mgmt/configconfig

harddisk:/mirror/script-mgmt/execexec

harddisk:/mirror/script-mgmt/processprocess

harddisk:/mirror/script-mgmt/eemeem

Procedure

Step 1 Add the script to the script management repository on the router using one of the two options:

• Add script from a server.

• Copy the script from an external repository.

Example:

Add the script from a configured HTTP server or the harddisk location in the router.
Router#script add eem <script-location> <script.py>

The following example shows a config script eem-script.py downloaded from an external repository
http://192.0.2.0/scripts:
Router#script add eem http://192.0.2.0/scripts eem-script.py
eem-script.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.
Router#script add eem <script-location> <script1.py> <script2.py> ... <script10.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied is
genuine. You can fetch the checksum of the script from the server from where you are downloading the script. However,
specifying checksum while downloading the script is optional.
Router#script add eem http://192.0.2.0/scripts eem-script.py checksum SHA256 <checksum-value>

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
87

EEM scripts
Download script to the router

For multiple scripts, use the following syntax to specify the checksum:
Router#script add eem http://192.0.2.0/scripts <script1.py> <script1-checksum> <script2.py>
<script2-checksum>
... <script10.py> <script10-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note
Only SHA256 checksum is supported.

Example:

You can copy the script from the external repository to the routers' harddisk and then add the script to the script management
repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/eem-script.py /harddisk:/

b. Add the script from the harddisk to the script management repository.
Router#script add eem /harddisk:/ eem-script.py
eem-script.py has been added to the script repository

Step 2 Verify that the scripts are downloaded to the script management repository on the router.

Example:
Router#show script status
==
Name | Type | Status | Last Action | Action Time
--
eem-script.py | eem | Config Checksum | NEW | Tue Aug 24 10:44:53 2021
==

Define trigger conditions for events
Configure system criteria so specific events are automatically triggered when defined conditions are met.

• The keywords occurrence (number of matches before event raises) and period (interval for above) can
be used with syslog events only.

• To verify a telemetry sensor path or query before configuring an event trigger, use:
Router# event manager telemetry sensor-path <sensor-path> json-query <query>

• Example for syslog trigger with severity:
Router(config)# event manager event-trigger eventT10 type syslog pattern "L2-BM-6-ACTIVE"
severity info

The event triggers if both pattern and severity match a syslog message.

Before you begin

Ensure the relevant script is added to the script management repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
88

EEM scripts
Define trigger conditions for events

Procedure

Step 1 Register the event.

Example:
Router(config)#event manager event-trigger eventT10

Step 2 Configure the trigger type and its options for the event.
Syslog event

Router(config)# event manager event-trigger eventT10 type syslog pattern "<pattern-to-match>" [severity
<value>]

• Specify a pattern that matches the syslog message.

• Optionally, add a severity value (alert, critical, debug, emergency, error, info, notice, warning).

• The event triggers only when both pattern and severity match, or if severity is not set, any severity matches the
pattern.

Timer event

Watchdog timer
Router(config)# event manager event-trigger <event-name> type timer watchdog value <seconds>

Cron timer
Router(config)# event manager event-trigger <event-name> type timer cron cron-entry "<cron string>

Track event

Router(config)# event manager event-trigger <event-name> type track name <track-name> status {up |
down | any}

Triggers when the specified track object's status changes.

Telemetry event:

Match criteria as exact match
Router(config)# event manager event-trigger <event-name> query json-path <query> match-criteria
exact-match value <value> type telemetry sensor-path <sensor-path> sample-interval <seconds>

Match criteria as threshold
Router(config)# event manager event-trigger <event-name> query json-path <query> match-criteria
threshold {equal-to | greater-equal-to | greater-than | less-equal-to | less-than | not-equal-to}
<value> type telemetry sensor-path <sensor-path> sample-interval <seconds>

Match criteria as rate:
Router(config)# event manager event-trigger <event-name> query json-path <query> match-criteria rate
direction {any | decreasing | increasing} value {equal-to| greater-equal-to | greater-than |
less-equal-to | less-than | not-equal-to} <value> type telemetry sensor-path <sensor-path>
sample-interval <seconds>

Before creating a telemetry event, enable model-driven telemetry:
Router# telemetry model-driven

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
89

EEM scripts
Define trigger conditions for events

The router or system will now automatically trigger the event when the specified conditions are matched.

Create actions for events
Define the actions that must be taken when an event occurs.

Before you begin

• Define trigger conditions for an event.

Procedure

Step 1 Set the event action.

Example:
Router(config)#event manager action action1

Step 2 Define the type of action. For example, the action is a Python script.

Example:
Router(config)#event manager action action1 type script action1.py

Step 3 Configure the maximum run time of the script for the event.

Example:
Router(config)#event manager action action1 type script action1.py maxrun seconds 30

The default value is 20 seconds.

Step 4 Configure the checksum for the script. This configuration is mandatory. Every script is associated with a checksum hash
value. This value ensures the integrity of the script, and that the script is not tampered. The checksum is a string of numbers
and letters that act as a fingerprint for script.
a) Retrieve the SHA256 checksum hash value for the script from the IOS XR Linux bash shell.

Example:
Router#run
[node0_RP0_CPU0:~]$sha256sum /harddisk:/mirror/script-mgmt/eem/action1.py
407ce32678a5fc4b0ad49e83acad6453ad1d47e8dad9501cf139daa75d53e3dd
/harddisk:/mirror/script-mgmt/eem/action1.py

b) Configure the checksum for the script.

Example:
Router(config)#event manager action action1 type script action1.py checksum
sha256 407ce32678a5fc4b0ad49e83acad6453ad1d47e8dad9501cf139daa75d53e3dd

Step 5 Enter the username for the script to execute.

Example:
Router(config)#event manager action action1 username eem_user

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
90

EEM scripts
Create actions for events

If you load the event manager action commands using configuration files, for example, by using the load
harddisk:config.txt command, you must make sure that the commands in the configuration files are properly indented
and aligned with the running configuration.

In this example, the username eem and type script commands in the config.txt configuration file are properly indented
and aligned with the running configuration.
event manager action action_all
username eem
type script script-name eem.py Marx seconds 7200 checksum
sha256fb2e1f7c4b135c296abb7149cf5fb96f052d3876c35a8422d44f78b9b6d3e452

Policy maps
Policy map is a configuration object that

• enables the association of multiple actions with one or more events,

• supports boolean logic (AND or OR) for correlating multiple events, and

• allows conditional triggering based on event occurrences within a specified period.

With a policy map, you can configure the system to execute an EEM (Embedded Event Manager) script only
when certain combinations of events happen, such as requiring both a specific status threshold and a timer
event before taking action. Optional parameters like occurrence and period control how frequently or under
what time constraints the policy is triggered.

Table 21: Feature History Table

DescriptionRelease
Information

Feature Name

Introduced in this release on: 8700 [ASIC: K100](select
variants only*)

*This feature is now supported on Cisco 8712-MOD-M
routers.

Release 25.1.1Add Multiple Events In a
Policy Map With a Single
EEM Script

Introduced in this release on: Fixed Systems (8200 [ASIC:
P100], 8700 [ASIC: P100(select variants only*)Modular
Systems (8800 [LC ASIC: P100])(select variants only*)

*This feature is now supported on:

• 8212-48FH-M

• 8711-32FH-M

• 88-LC1-12TH24FH-E

• 88-LC1-36EH+A8:B12

• 88-LC1-52Y8H-EM

Release 24.4.1Add Multiple Events In a
Policy Map With a Single
EEM Script

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
91

EEM scripts
Policy maps

DescriptionRelease
Information

Feature Name

With this feature, you can add multiple events to a policy
map with boolean (AND or OR) correlation. EEM triggers
the script when the correlation defined in the policy map for
the events is true. Using EEM scripts, you can create a logical
correlation of events in the policymap and configuremultiple
actions for detectors such as timer, object-tracking, and
telemetry events via sensor path.

Release 7.5.1Add Multiple Events In a
Policy Map With a Single
EEM Script

Associate events and actions with a policy map
Configure a policy map to link network events with automated actions using Embedded Event Manager
(EEM).

Policy maps allow you to define which events trigger specific actions on your router. You can use Boolean
logic to correlate multiple events, specify how many occurrences trigger the action, and set a time period for
event evaluation.

Before you begin

• Ensure you are in global configuration mode on the router.

• Identify the EEM events and actions you want to associate.

Procedure

Step 1 Start a policy map configuration.

Example:
Router(config)#event manager policy-map policy1

Step 2 Define event triggers.

For a single event

Example:
Router(config-policy-map)#trigger event event1

For multiple events with Boolean logic, enclose the logic in double quotes:

Example:
Router(config-policy-map)#trigger multi-event "<event1> AND (<event2> OR <event3>

Step 3 (Optional) Set occurrence count.

Specify how many times the total correlation must occur before the event is raised

Example:
Router(config-policy-map)# occurrence 2

• Acceptable values: 1 to 32.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
92

EEM scripts
Associate events and actions with a policy map

• If not specified, the policy map triggers on every occurrence

Step 4 (Optional) Set evaluation period.

Define the time interval (in seconds) during which the events must occur.
Router(config-policy-map)# period 60

Acceptable values: 1 to 429496729.

Step 5 Specify actions.

Map actions to the policy map (maximum of 5).
Router(config-policy-map)# action action-2

The policy map is configured. When defined events occur according to your logic, the router automatically
executes the associated action.

View operational status of eem components
Retrieve the operational status of events, actions and policy maps.

Before you begin

• Define trigger conditions for an event

• Create actions for events

• Create a policy map of events and actions

Procedure

Step 1 Run the show event manager event-trigger all command to view the summary of basic data of all events that are
configured.

Example:
Router#show event manager event-trigger all

No. Name esid Type Occurs Period Trigger-Count Policy-Count Status
1 event1 1008 syslog 2 1800 4 1 active
2 event2 1009 syslog 2 1800 4 1 active
3 event3 1010 syslog 2 1800 4 1 active
4 event4 1011 syslog 2 1800 4 1 active
5 event5 1012 syslog 2 1800 4 1 active
6 event6 1013 syslog 2 1800 4 1 active
7 event7 1014 syslog 2 1800 4 1 active
8 event8 1015 syslog 2 1800 4 1 active
9 event9 1016 syslog 2 1800 4 1 active

Use the show event manager event-trigger all detailed command to view the details about the match criteria that you
configured, severity level, policies mapped to the events and so on.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
93

EEM scripts
View operational status of eem components

Use the show event manager event-trigger <event-name> detailed command to view the details about the individual
events.
Router#show event manager event-trigger event1 detailed

Event trigger name: event1
Event esid: 107
Event type: timer
Event occurrence: NA
Event period: NA
Event rate-limit: NA
Event triggered count: 12861
Event policy reg count: 1
Event status: active
Timer type: watchdog
Timer value: 10

Policy mapping info
1 event1 policy1

Step 2 Run the show event manager policy-map all command to view the summary of all the configured policy maps.

Example:
Router#show event manager policy-map all
No. Name Occurs period Trigger-Count Status
1 policy1 NA NA 1 active
2 policy2 NA NA 1 active
3 policy3 NA NA 1 active
4 policy4 NA NA 1 active

Use the show event manager policy-map all detailed command to view the details about mapping of associated events
and actions in the policy maps.
Router#show event manager policy-map policy1 all detailed

Policy name: policy1
Policy occurrence: 3
Policy period: 120
Policy triggered count: 0
Policy status: active
Multi event policy: FALSE

Events mapped to the policy
No. Name Status
1 event2 active

Actions mapped to the policy
No. Name Checksum
1 action1 SHA256

Use the show event manager policy-map <policy-map-name> detailed command to view the details about the individual
policy maps.
Router#show event manager policy-map policy1 detailed

Policy name: policy1
Policy occurrence: 2
Policy period: 60
Policy triggered count: 0
Policy status: active
Multi event policy: TRUE
Multi event string : "event1 OR (event4 AND event2)"
Current Correlation State : FALSE

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
94

EEM scripts
View operational status of eem components

Events mapped to the policy
No. Name Status Corr Status Reset time(sec)
1 event1 active 0 0
2 event2 active 0 0
3 event4 active 0 0

Actions mapped to the policy
No. Name Checksum
1 action2 SHA256

Step 3 Run the show event manager action <action-name> detailed commad to view the details of an action.

Example:
Router#show event manager action action1 detailed
Tue Aug 24 16:05:44.298 UTC

Action name: action1
Action type: script
EEM Script name: event_script_1.py
Action triggered count: 1
Action policy count: 1
Username: eem_user
Checksum: 407ce32678a5fc4b0ad49e83acad6453ad1d47e8dad9501cf139daa75d53e3dd
Last execution status: Success

Policy mapping info
1 action1 policy1

Use the show event manager action all and show event manager action all detailed command to view the summary
and details about all the configured actions.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
95

EEM scripts
View operational status of eem components

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
96

EEM scripts
View operational status of eem components

C H A P T E R 9
Model Driven Command Line Interface

• Model-driven CLI features for data model visualization, on page 97
• Model-Driven CLI to display running configuration in XML and JSON formats , on page 102

Model-driven CLI features for data model visualization
A model-driven CLI feature is a programmability capability in Cisco IOS XR software that

• enables users to display YANG data model structures and operational data directly via CLI commands,

• provides configuration and operational output in both XML and JSON formats for easier parsing and
automation, and

• introduces specialized CLI commands that help transition between traditional CLI and model-driven
approaches.

Model-driven CLI features are designed to bridge the gap between legacy command-line workflows and
modern, programmatic network management. By leveraging YANG-based models, these features allow
network operators to view, query, and retrieve data in structured formats, streamlining the integration with
external tools and automation systems.

Table 22: Feature History Table

DescriptionRelease
Information

Feature Name

This feature enables you to use a traditional CLI command to
display YANG data model structures on the router console and
also obtain operational data from the router in JSON or XML
formats. The functionality helps you transition smoothly
between CLI and YANG models, easing data retrieval from
your router and network.

This feature introduces the show yang operational command.

Release 7.3.2Model-driven CLI to
Show YANG
Operational Data

Cisco IOS XR Software provides a rich set of show commands and data models to access data from the router
and network. Show commands present unstructured data, while data models provide structured data in XML
or JSON formats; however, both methods can show different views. The model-driven CLI feature addresses

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
97

adoption challenges by allowing operators to use the familiar CLI while accessing structured, model-driven
output. This enables easier integration with parsing scripts and automation tools.

Structure of data model
The structure of a data model organizes configuration and operational data in a hierarchical format. Each data
model consists of these primary components:

• Model: The highest-level YANG file that defines a data schema e.g., ietf-interfaces.yang.

• Module: A logical collection of related definitions within the model e.g., ietf-interfaces.

• Container: A grouping node that organizes related nodes together e.g., interfaces, interfaces-state.

• List/Node: An array or list element within a container, often representing multiple items e.g., interface*
[name].

• Leaf: A single value node containing configuration or state data e.g., name, description, type, enabled,
admin-status.

Table 23: Summary table of data model structure:

ExampleDescriptionComponent

ietf-interfaces.yangYANG file containing schema definitionsModel

ietf-interfacesGroup of related schema nodesModule

interfaces, interfaces-stateGrouping node for related lists and leavesContainer

interface* [name]Multiple entries identified by unique keyList/Node

name, type, enabled, etc.Single data value node under a container or listLeaf

CLI and navigation notes:

• Use the show yang operational command to explore down to the leaf level in a data model, similar to
navigating hierarchical data.

• Data model structure guides how CLI outputs and configurations map to YANG-defined nodes.

The image show a mapping between CLI and data model, and how the structured data is displayed on the
console.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
98

Model Driven Command Line Interface
Structure of data model

Figure 6: Mapping between CLI and Data model

Navigating YANG operational data models via CLI commands
YANG operational data models can be queried and explored using various CLI commands on Cisco network
devices. These commands help you efficiently access operational state data, identify container and node
structures, and retrieve detailed model attributes for troubleshooting and monitoring. Below are the main
features, queries, outputs, and usage instructions for navigating YANG operational data.

Table 24: Key queries for YANG operational data

DescriptionOperational Query

Search and produce the output of keywords from top-level nodes.
Router#show yang operational

Router#show yang operational | include <component>

The following example shows the search result for interfaces:
Router#show yang operational | include interface
drivers-media-eth-oper:ethernet-interface
ifmgr-oper:interface-dampening
ifmgr-oper:interface-properties
interface-cem-oper:cem
l2vpn-oper:generic-interface-list-v2
pfi-im-cmd-oper:interfaces

Search specific
top-level nodes

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
99

Model Driven Command Line Interface
Navigating YANG operational data models via CLI commands

DescriptionOperational Query

Lists all the models at the root level container and its container name.
Router#show yang operational ?

You can also see the containers for a partially typed keyword. For example, keyword
search for mpls- displays all the containers with mpls :
Router#show yang operational mpls-
mpls-io-oper-mpls-ea mpls-io-oper-mpls-ma
mpls-ldp-mldp-oper:mpls-mldp
mpls-lsd-oper:mpls-lsd mpls-lsp-oper:mpls-lsd-nodes
mpls-ldp-mldp-oper:mpls-mldp
mpls-vpn-oper:l3vpn mpls-te-oper:mpls-tp
mpls-te-oper:mpls-te

View the container data. The output of the command is in-line with the structure of the
data model.
Router#show yang operational mpls-static-oper:mpls-static
Request datatree:

filter
mpls-static (ka)

{
"Cisco-IOS-XR-mpls-static-oper:mpls-static": {
"vrfs": {
"vrf": [
{
"vrf-name": "default"
}
]
},
"summary": {
"lsp-count": 0,
"label-count": 0,
"label-error-count": 0,
"label-discrepancy-count": 0,
"vrf-count": 1,
"active-vrf-count": 1,
"interface-count": 0,
"interface-forward-reference-count": 0,
"lsd-connected": true,
"ribv4-connected": false,
"ribv6-connected": false
}

}
}

All the instances
of the container

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
100

Model Driven Command Line Interface
Navigating YANG operational data models via CLI commands

DescriptionOperational Query

Router#show yang operational mpls-static-oper:mpls-static ?
JSON Output in JSON format
XML Output in XML format
local-labels
summary
vrfs
| Output Modifiers
<cr>

Output in JSON Format:

Router#show yang operational man-netconf-oper:netconf-yang clients JSON
Mon Sep 27 11:38:27.158 PST
Request datatree:

filter
netconf-yang (ka)

clients
{
"Cisco-IOS-XR-man-netconf-oper:netconf-yang": {
"clients": {
"client": [
{
"session-id": "1396267443",
"version": "1.1",
"connect-time": "52436839",
"last-op-time": "1545",
"last-op-type": "get",
"locked": "No"
}
]
}

}
}

Output in XML Format:

Router#show yang operational man-netconf-oper:netconf-yang clients XML
Mon Sep 27 11:38:34.218 PST
Request datatree:

filter
netconf-yang (ka)

clients
<netconf-yang
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-man-netconf-oper">
<clients>
<client>
<session-id>1396267443</session-id>
<version>1.1</version>
<connect-time>52443884</connect-time>
<last-op-time>1545</last-op-time>
<last-op-type>get</last-op-type>
<locked>No</locked>
</client>

</clients>
</netconf-yang>

All the nodes of
the container

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
101

Model Driven Command Line Interface
Navigating YANG operational data models via CLI commands

DescriptionOperational Query

Router#show yang operational mpls-static-oper:mpls-static summary ?
JSON Output in JSON format
XML Output in XML format
active-vrf-count
im-connected
interface-count
interface-forward-reference-count
mpls-enbled-interface-count
vrf-count
| Output Modifiers
<cr>

View data specific to the leaf value. The read only (ro) leaves in a YANG model are
considered as the state data (operational).
Router#show yang operational mpls-static-oper:mpls-static summary
active-vrf-count
Request datatree:

filter
mpls-static (ka)

summary
active-vrf-count

{
"Cisco-IOS-XR-mpls-static-oper:mpls-static": {
"summary": {
"active-vrf-count": [
}

}
}

Navigate until
the last leaf level

Model-Driven CLI to display running configuration in XML and
JSON formats

A model-driven CLI display format is a configuration output method that

• presents device running configuration in structured XML and JSON formats,

• leverages native, OpenConfig, and unified YANG data models to organize configuration data, and

• enables granular filtering and flexible retrieval of configuration for specific components or hierarchies.

Table 25: Feature History Table

DescriptionRelease
Information

Feature Name

Introduced in this release on: Fixed Systems (8700
[ASIC: K100])(select variants only*)

*This feature is now supported on Cisco 8712-MOD-M
routers.

Release 25.1.1Model-driven CLI to Display
Running Configuration in XML
and JSON Formats

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
102

Model Driven Command Line Interface
Model-Driven CLI to display running configuration in XML and JSON formats

DescriptionRelease
Information

Feature Name

Introduced in this release on: Fixed Systems (8200
[ASIC: P100], 8700 [ASIC: P100])(select variants
only*); Modular Systems (8800 [LC ASIC:
P100])(select variants only*)

*This feature is now supported on:

• 8212-48FH-M

• 8711-32FH-M

• 88-LC1-12TH24FH-E

• 88-LC1-36EH+A8:B12

• 88-LC1-52Y8H-EM

Release 24.4.1Model-driven CLI to Display
Running Configuration in XML
and JSON Formats

This feature enables you to display the configuration
data for Cisco IOS XR platforms in both JSON and
XML formats.

This feature introduces the show run | [xml | json]
command.

Release 7.3.2Model-driven CLI to Display
Running Configuration in XML
and JSON Formats

The show run | [xml | json] command uses native, OpenConfig and unified models to retrieve and
display data.

Use the following variations of the command to generate output:

• show run | [xml | json] —Shows configuration in YANG XML or JSON tree.

• show run | [xml | json] openconfig —Shows configuration in OpenConfig YANG XML tree.

• show run | [xml | json] unified —Shows configuration in unified model YANG XML tree.

• show run component | [xml | json] —Shows configuration in YANG XML or JSON tree for
the top-level component. For example, show run interface | xml

• show run component | [xml | json] unified —Shows configuration in unified model YANG
XML or JSON tree for the top-level component. For example, show run interface | json unified

• show run component subcomponent | [xml | json] —Shows configuration in YANG XML or
JSON tree for the granular-level component. For example, show run router bgp 12 neighbor
12.12.12.12 | xml

• show run component subcomponent | [xml | json] unified —Shows configuration in unified
model YANG XML or JSON tree for the granular-level component. For example, show run
router bgp 12 neighbor 12.12.12.12 | json unified

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
103

Model Driven Command Line Interface
Model-Driven CLI to display running configuration in XML and JSON formats

XML output for the show run command
The show run | xml command produces the router’s running configuration in XML format. This enables
automation and integration with software that can parse device settings through a standard XML schema.
Router#show run | xml
Building configuration...
<data>
<interface-configurations xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg">
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/0</interface-name>
<shutdown></shutdown>
</interface-configuration>
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/1</interface-name>
<shutdown></shutdown>
</interface-configuration>
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/2</interface-name>
<shutdown></shutdown>
</interface-configuration>
</interface-configurations>
<interfaces xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-interface-cfg">
<interface>
<interface-name>GigabitEthernet0/0/0/0</interface-name>
<shutdown/>
</interface>
<interface>
<interface-name>GigabitEthernet0/0/0/1</interface-name>
<shutdown/>
</interface>
<interface>
<interface-name>GigabitEthernet0/0/0/2</interface-name>
<shutdown/>
</interface>
</interfaces>
</data>

JSON output for show run command
he show run | json command on Cisco IOS XR displays the device's running configuration in JSON format,
making it easier for automation tools, scripts, or APIs to parse and manipulate the configuration data
programmatically.

A typical output includes:

• Interface configuration details, such as interface name, state, and protocol.
• Netconf/YANG agent configuration, such as SSH status.

Router#show run | json
Building configuration...
{
"data": {
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {

"interface-configuration": [
{

"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
104

Model Driven Command Line Interface
XML output for the show run command

"shutdown": [
null

]
},
{

"active": "act",
"interface-name": "GigabitEthernet0/0/0/1",
"shutdown": [

null
]
},
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/2",
"shutdown": [

null
]
}

],
"Cisco-IOS-XR-man-netconf-cfg:netconf-yang": {

"agent": {
"ssh": true
}

},
}

Granular level component output for show run command
The output of the show run router bgp <as-number> neighbor <neighbor-address> | json unified command
provides a structured, highly detailed view of BGP configuration for a specified neighbor in JSON format.
This reference explains how to interpret each component of the output and highlights key attributes.
Router#show run router bgp 12 neighbor 12.12.12.12 | json unified
{
"data": {
"Cisco-IOS-XR-um-router-bgp-cfg:router": {
"bgp": {
"as": [
{
"as-number": 12,
"neighbors": {
"neighbor": [
{
"neighbor-address": "12.12.12.12",
"remote-as": 12,
"address-families": {
"address-family": [
{
"af-name": "ipv4-unicast"
}
]
}
}
]
}
}
]
}
}
}
}

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
105

Model Driven Command Line Interface
Granular level component output for show run command

Unified model output for show run command
The following sample output demonstrates the unified model XML structure produced by the show run router
bgp 12 | xml unified command:
Router#sh run router bgp 12 | xml unified
<data>
<router xmlns=http://cisco.com/ns/yang/Cisco-IOS-XR-um-router-bgp-cfg>
<bgp>
<as>
<as-number>12</as-number>
<bgp>
<router-id>1.1.1.1</router-id>
</bgp>
<address-families>
<address-family>
<af-name>ipv4-unicast</af-name>
</address-family>
</address-families>
<neighbors>
<neighbor>
<neighbor-address>12.12.12.12</neighbor-address>
<remote-as>12</remote-as>
<address-families>
<address-family>
<af-name>ipv4-unicast</af-name>
</address-family>
</address-families>
</neighbor>
</neighbors>
</as>
</bgp>
</router>
</data>

This output helps you identify the XML element hierarchy and data structure when configuring BGP settings
using the unified model on Cisco IOS XR devices.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
106

Model Driven Command Line Interface
Unified model output for show run command

C H A P T E R 10
Automation Scripts

• Operational simplicity using automation scripts , on page 107

Operational simplicity using automation scripts
An automation script is a software program that

• automates configuration and operational tasks on network devices,

• interacts with network operating systems through standard interfaces such as NETCONF, SNMP, and
SSH, and

• can be executed either externally or directly on the network device.

• On-box automation scripts: Scripts that reside and execute directly on the router, eliminating the need
for external controllers.

• Off-box automation scripts: Scripts that run on external controllers and interact with network devices
through APIs over the network.

Table 26: Feature History Table

DescriptionRelease
Information

Feature Name

Introduced in this release on: Fixed Systems (8700 [ASIC:
K100])(select variants only*)

*This feature is now supported on Cisco 8712-MOD-M routers.

Release
25.1.1

Operational Simplicity
Using Automation
Scripts

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
107

DescriptionRelease
Information

Feature Name

Introduced in this release on: Fixed Systems (8200 [ASIC: P100],
8700 [ASIC: P100])(select variants only*); Modular Systems (8800
[LC ASIC: P100])(select variants only*)

*This feature is now supported on:

• 8212-48FH-M

• 8711-32FH-M

• 88-LC1-12TH24FH-E

• 88-LC1-36EH+A8:B12

• 88-LC1-52Y8H-EM

Release
24.4.1

Operational Simplicity
Using Automation
Scripts

This feature lets you host and execute your automation scripts directly
on a router running IOS XR software, instead of managing them on
external controllers. The scripts available on-box can now leverage
Python libraries, access the underlying router information to execute
CLI commands, andmonitor router configurations continuously. This
results in setting up a seamless automation workflow by improving
connectivity, access to resources, and speed of script execution.

The following categories of on-box scripts are used to achieve
operational simplicity:

• Config scripts—Implement custom configuration rules, and
notify the user to take action when the configuration conditions
are not met.

• Exec scripts—Automate operational tasks and network
troubleshooting.

• Process scripts—Monitor the system continuously using
daemons.

• EEM scripts—Respond to a predefined set of events.

Release 7.3.2Operational Simplicity
Using Automation
Scripts

Types of automation scripts
There are four types of on-box automation scripts that you can leverage to automate your network operations:

• Configuration (Config) scripts

• Execution (Exec) scripts

• Process scripts

• EEM scripts

This table provides the scope and benefit of on-box scripts.

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
108

Automation Scripts
Types of automation scripts

Table 27: On-Box Automation Scripts

EEM ScriptsProcess ScriptsExec ScriptsConfig Scripts

Run operational
commands or RPCs,
generate, and determine
the next steps like
logging the root cause
or changing device
configuration. Event
policies can upload the
output of event scripts
to an on-box or off-box
location for further
analysis.

Daemonize to
continuously run as
an agent on the
router to execute
additional checks
outside traditional
ZTP. Daemonized
scripts are similar to
exec scripts but run
continuously. The
script executes
operational
commands on the
router and analyzes
the output.

Run operational
commands or RPCs,
process the output,
generate syslogs,
configure system,
perform system action
commands such as
system reload, process
restarts, and collect
logs for further
evaluation.

Enforce contextual and
conditional changes to
configurations, validate
configurations before
committing the changes
to detect and notify
potential errors. If
configuration does not
comply with the rules that
are defined in the script,
an action can be invoked.
For example, generate a
warning, syslog message,
or halt a commit
operation.

What is
the scope
of the
script?

Event scripts are
invoked by defined
event policies in
response to a system
event and allow for
immediate action to take
effect.

Process script is
activated via
configuration CLI
command.

Exec script is invoked
manually via CLI
command or RPC.

All config scripts are
processed automatically
when commit command
is executed on the router.

How to
invoke
the
script?

Automates log
collection upon
detecting error
conditions that are
defined by event
policies.

Uploads the output of
event scripts to an
on-box or off-box
location for further
analysis.

Runs scripts as a
daemon to
continuously
perform tasks that
are not transient.

Collects operational
information, and
decreases the time that
is involved in
troubleshooting issues.

Provides flexibility in
changing the input
parameters for every
script run. This fosters
dynamic automation of
operational
information.

Simplifies complex
configurations and averts
potential errors before a
configuration is
committed.

Ensures that the network
configuration complies
with rules and policies
that are defined in the
script.

What
are the
main
benefits
of using
the
script?

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
109

Automation Scripts
Types of automation scripts

Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
110

Automation Scripts
Types of automation scripts

	Programmability Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
	Contents
	Preface
	YANG data models for programmability features
	Access data models
	Access data models from router
	Access data models from Cisco Feature Navigator
	Access data models from GitHub

	Get started with IOS XR YANG data models

	YANG data models
	YANG data models
	Access data models
	YANG action
	YANG input validators and Get requests
	YANG input validators usage guidelines and limitations

	Communication protocols
	NETCONF protocols
	gRPC protocols

	Unified data models

	Manage automation scripts using Yang RPCs
	Automation scripts using YANG RPCs
	Common script actions
	Add a script
	Remove a script
	Stop a script
	Run a script

	Exec scripts
	Add an exec script
	Configure checksum
	Run an exec script
	Stop an exec script
	Remove an exec script
	View the script execution status

	EEM scripts using RPCs
	Configure event actions using the data model
	Create a policy map for events and actions with a data model

	Operational model for EEM script
	Retrieve actions using the operational data model
	Retrieve a policy map using the operational data model
	Retrieve events with trigger conditions using the operational data model

	Precommit Scripts
	Precommit scripts
	Restrictions of precommit script
	Run the precommit script
	Download the script to the router
	Configure checksum for the precommit script
	Activate precommit scripts

	Config scripts
	Config scripts
	Restrictions for config scripts
	Run config scripts
	Enable config scripts
	Download script to the router
	Configure checksum to the router
	Configuration change validation
	Validate or commit configuration to invoke config script

	Delete config script from the router
	Set script execution priority

	Exec Scripts
	Exec scripts
	Provision an exec script
	Download the script to the router
	Update scripts from a remote server
	Update scripts from a remote server

	Invoke scripts from a remote server
	Configure the checksum for an exec script
	Run an exec script
	View the script execution details
	Delete exec scripts from the router

	Process Script
	Process scripts
	Run the process script
	Download the script to the router
	Configure checksum for the process script
	Register the process script as an application
	Activate the process script
	Obtain operational data and logs

	Manage actions on process script

	EEM scripts
	EEM scripts
	Manage eem scripts on the router
	Download script to the router
	Define trigger conditions for events
	Create actions for events
	Policy maps
	Associate events and actions with a policy map

	View operational status of eem components

	Model Driven Command Line Interface
	Model-driven CLI features for data model visualization
	Structure of data model
	Navigating YANG operational data models via CLI commands

	Model-Driven CLI to display running configuration in XML and JSON formats
	XML output for the show run command
	JSON output for show run command
	Granular level component output for show run command
	Unified model output for show run command

	Automation Scripts
	Operational simplicity using automation scripts
	Types of automation scripts

