afran]n
CISCO.

L]
g
-
=
S
i
.-
g
=
]
e

Programmability Configuration Guide for Cisco 8000 Series Routers,
10S XR Release 7.11.x

First Published: 2023-12-08

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

©2023 Cisco Systems, Inc. All rights reserved.

CONTENTS

PART | YANG Data Models 9

CHAPTER 1 New and Changed Feature Information 1

New and Changed Programmability Features 1

CHAPTER 2 YANG Data Modelsfor Programmability Features 3
Using YANG Data Models 3

CHAPTER 3 Drive Network Automation Using Programmable YANG Data Models 5
YANG Data Model 6
Access the Data Models 12
CLI to Yang Mapping Tool 14
Prevent Partial Pseudo-Atomic Committed Configurations 15
Communication Protocols 17
NETCONF Protocol 17
gRPC Protocol 18
YANG Actions 18

CHAPTER 4 Use NETCONF Protocol to Define Network Operationswith Data Models 21
NETCONF Operations 24
Retrieve Default Parameters Using with-defaults Capability 28
Retrieve Transaction ID for NSO Operations 34
Set Router Clock Using Data Model in a NETCONF Session 36

CHAPTER 5 Use gRPC Protocol to Define Network Oper ations with Data Models 41
gRPC Operations 44

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Contents

CHAPTER 6

CHAPTER 7

CHAPTER 8

gRPC over UNIX Domain Sockets 45
gRPC Network Management Interface 46
¢NMI Wildcard in Schema Path 47
gNMI Bundling of Telemetry Updates 51
Configure gNMI Bundling Size 52
Replace Router Configuration at Sub-tree Level Using gNMI 53
gRPC Network Operations Interface 54
gNOI RPCs 54
gRPC Network Security Interface 61
How to Use Different Types of Authentication 64
How to Update gRPC-Level Authorization Policy 64
P4Runtime 70
Configure gRPC Service-Level Port 71

Configure Interfaces Using Data Models in a gRPC Session 73

Use Service Layer API to Bring your Controller on Cisco |OS XR Router

Get to Know Service Layer API 81
Enable Service Layer 83
Write Your Service Layer Client APT 84

Enhancementsto Data Models 87

Improved YANG Input Validator and Get Requests 88

OpenConfig Data Model Enhancements 90

Define Power State of Line Card Using Data Model 91

Install Label in oc-platform Data Model 92

OpenConfig YANG Model:SR-TE Policies 94

Aggregate Prefix SID Counters for OpenConfig SR YANG Module 95
OpenConfig YANG Model:MACsec 96

OpenConfig YANG Model:dscp-set 102

OpenConfig YANG Model:procmon 105

Automatic Resynchronization of OpenConfig Configuration 106

Unified Data Models 111

Unified Configuration Models 111

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

81

PART 11

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

Contents .

Automation Scripts 119

Achieve Network Operational Simplicity Using Automation Scripts 121

Explore the Types of Automation Scripts 122

Precommit Scripts 125

Workflow to Run Precommit Scripts 126

Download the Script to the Router 128
Configure Checksum for Precommit Script 129

Activate Precommit Scripts 131

Example: Verify BGP Configuration Using Precommit Script 132

Config Scripts 137
Workflow to Run Config Scripts 138

Enable Config Scripts Feature 139
Download the Script to the Router 140
Configure Checksum for Config Script 142

Validate or Commit Configuration to Invoke Config Script 144

Manage Scripts 146

Delete Config Script from the Router 146

Control Priority When Running Multiple Scripts 147

Example: Validate and Activate an SSH Config Script 148

Scenario 1: Validate the Script Without SSH Configuration 149
Scenario 2: Configure SSH and Validate the Script 150
Scenario 3: Set Rate-limit Value to Default Value in the Script 151

Scenario 4: Delete SSH Server Configuration 152

Exec Scripts 153
Workflow to Run an Exec Script 153

Download the Script to the Router 155
Update Scripts from a Remote Server 156
Configure Checksum for Exec Script 159
Run the Exec Script 161

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Contents

CHAPTER 13

CHAPTER 14

CHAPTER 15

CHAPTER 16

View the Script Execution Details 162

Manage Scripts 164

Delete Exec Script from the Router 164

Example: Exec Script to Verify Bundle Interfaces 165

Process Scripts 171

Workflow to Run Process Scripts 171

Download the Script to the Router 174
Configure Checksum for Process Script 175
Register the Process Script as an Application 176
Activate the Process Script 178

Obtain Operational Data and Logs 178

Managing Actions on Process Script 180

Example: Check CPU Ultilization at Regular Intervals Using Process Script 181

EEM Scripts 185
Workflow to Run Event Scripts 185

Download the Script to the Router 187

Define Trigger Conditions for an Event 188
Create Actions for Events 191

Create a Policy Map of Events and Actions 192

View Operational Status of Event Scripts 193

Example: Shut Inactive Bundle Interfaces Using EEM Script 195

M odel-Driven Command-Line Interface 197
Model-Driven CLI to Display Data Model Structure 197
Model-Driven CLI to Display Running Configuration in XML and JSON Formats

Manage Automation Scripts Using YANG RPCs 205
Manage Common Script Actions Using YANG RPCs 206
Manage Exec Scripts Using RPCs 208
Manage EEM Script Using RPCs 212

Operational Model for EEM Script 215

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

201

|
Contents .

CHAPTER 17 Script Infrastructure and Sample Templates 221
Cisco IOS XR Python Packages 222
Cisco IOS XR Python Libraries 224
Sample Script Templates 225
Use Automation Scripts to Interact with the Router via gNMI RPCs 229

CHAPTER 18 Troubleshoot Automation Scripts 235
Collect Debug Logs 235

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Contents

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

PART I

YANG Data Models

* New and Changed Feature Information, on page 1

* YANG Data Models for Programmability Features , on page 3

* Drive Network Automation Using Programmable YANG Data Models, on page 5

» Use NETCONF Protocol to Define Network Operations with Data Models, on page 21
» Use gRPC Protocol to Define Network Operations with Data Models, on page 41

» Use Service Layer API to Bring your Controller on Cisco IOS XR Router, on page 81
» Enhancements to Data Models, on page 87

* Unified Data Models, on page 111

CHAPTER 1

New and Changed Feature Information

This section lists all the new and changed features for the Programmability Configuration Guide.

* New and Changed Programmability Features, on page 1

New and Changed Programmability Features

Feature Description Changed in Release Where
Documented
gRPC Network Security | This feature was introduced | Release 7.11.1 gRPC Network
Interface Security Interface
, on page 61
Automatic This feature was introduced |Release 7.11.1 Automatic
Resynchronization of Resynchronization
OpenConfig of OpenConfig
Configuration Configuration, on
page 106

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. New and Changed Programmability Features

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 2

YANG Data Models for Programmability Features

This chapter provides information about the YANG data models for Programmability features.

* Using YANG Data Models, on page 3

Using YANG Data Models

Cisco I0S XR supports a programmatic way of configuring and collecting operational data of a network
device using YANG data models. Although configurations using CLIs are easier and human-readable,
automating the configuration using model-driven programmability results in scalability.

The data models are available in the release image, and are also published in the Github repository. Navigate
to the release folder of interest to view the list of supported data models and their definitions. Each data model
defines a complete and cohesive model, or augments an existing data model with additional XPaths. To view
a comprehensive list of the data models supported in a release, navigate to the Available-Content.md file in
the repository.

You can also view the data model definitions using the YANG Data Models Navigator tool. This GUI-based
and easy-to-use tool helps you explore the nuances of the data model and view the dependencies between
various containers in the model. You can view the list of models supported across Cisco IOS XR releases and
platforms, locate a specific model, view the containers and their respective lists, leaves, and leaf lists presented
visually in a tree structure. This visual tree form helps you get insights into nodes that can help you automate
your network.

To get started with using the data models, see the Programmability Configuration Guide.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng-stg.cisco.com/ios-xr/yang-explorer/view-data-model

YANG Data Models |
[l using YANG Data Models

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 3

Drive Network Automation Using Programmable
YANG Data Models

Typically, a network operation center is a heterogeneous mix of various devices at multiple layers of the
network. Such network centers require bulk automated configurations to be accomplished seamlessly. CLIs
are widely used for configuring and extracting the operational details of a router. But the general mechanism
of CLI scraping is not flexible and optimal. Small changes in the configuration require rewriting scripts
multiple times. Bulk configuration changes through CLIs are cumbersome and error-prone. These limitations
restrict automation and scale. To overcome these limitations, you need an automated mechanism to manage
your network.

Cisco IOS XR supports a programmatic way of configuring and collecting operational data of a network
device using data models. They replace the process of manual configuration, which is proprietary, and highly
text-based. The data models are written in an industry-defined language and is used to automate configuration
task and retrieve operational data across heterogeneous devices in a network. Although configurations using
CLIs are easier and human-readable, automating the configuration using model-driven programmability results
in scalability.

Model-driven programmability provides a simple, flexible and rich framework for device programmability.
This programmability framework provides multiple choices to interface with an IOS XR device in terms of
transport, protocol and encoding. These choices are decoupled from the models for greater flexibility.

The following image shows the layers in model-driven programmability:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |

[l YANG Data Model

Figure 1: Model-driven Programmability Layers

Application (client)

APls l Model-Driven APls. YANG Development Kit {YDK) J

Model-Driven

Configuration

Model-Driven Transport { SSH ’ ‘ HTTP J
Telemetry

& o [wermrmmomom |

Device (server)

369803

Data models provides access to the capabilities of the devices in a network using Network Configuration
Protocol (NETCONF Protocol) or google-defined Remote Procedure Calls (gRPC Protocol). The operations
on the router are carried out by the protocols using YANG models to automate and programme operations in
a network.

Benefits of Data Models

Configuring routers using data models overcomes drawbacks posed by traditional router management because
the data models:

* Provide a common model for configuration and operational state data, and perform NETCONF actions.
» Use protocols to communicate with the routers to get, manipulate and delete configurations in a network.

» Automate configuration and operation of multiple routers across the network.

This article describes how you benefit from using data models to programmatically manage your network
operations.

* YANG Data Model, on page 6

* Access the Data Models, on page 12

* CLI to Yang Mapping Tool, on page 14

* Prevent Partial Pseudo-Atomic Committed Configurations, on page 15
» Communication Protocols, on page 17

* YANG Actions, on page 18

YANG Data Model

A YANG module defines a data model through the data of the router, and the hierarchical organization and
constraints on that data. Each module is uniquely identified by a namespace URL. The YANG models describe
the configuration and operational data, perform actions, remote procedure calls, and notifications for network
devices.

. Programmability Configuration Guide for Cisco 8000 Series Routers, 10S XR Release 7.11.x

YANG Data Models
YANG Data Model [

The YANG models must be obtained from the router. The models define a valid structure for the data that is
exchanged between the router and the client. The models are used by NETCONF and gRPC-enabled
applications.

\)

Note gRPC is supported only in 64-bit platforms.

« Cisco-specific models: For a list of supported models and their representation, see Native models.

» Common models: These models are industry-wide standard YANG models from standard bodies, such
as IETF and IEEE. These models are also called Open Config (OC) models. Like synthesized models,
the OC models have separate YANG models defined for configuration data and operational data, and
actions.

YANG models can be: For a list of supported OC models and their representation, see OC models.
All data models are stamped with semantic version 1.0.0 as baseline from release 7.0.1 and later.
For more details about YANG, refer RFC 6020 and 6087.

Data models handle the following types of requirements on routers (RFC 6244):

« Configuration data: A set of writable data that is required to transform a system from an initial default
state into its current state. For example, configuring entries of the IP routing tables, configuring the
interface MTU to use a specific value, configuring an ethernet interface to run at a given speed, and so
on.

» Operational statedata: A set of data that is obtained by the system at runtime and influences the behavior
of the system in a manner similar to configuration data. However, in contrast to configuration data,
operational state data is transient. The data is modified by interactions with internal components or other
systems using specialized protocols. For example, entries obtained from routing protocols such as OSPF,
attributes of the network interfaces, and so on.

« Actions: A set of NETCONF actions that support robust network-wide configuration transactions. When
a change is attempted that affects multiple devices, the NETCONF actions simplify the management of
failure scenarios, resulting in the ability to have transactions that will dependably succeed or fail atomically.

For more information about Data Models, see RFC 6244.

YANG data models can be represented in a hierarchical, tree-based structure with nodes. This representation
makes the models easy to understand.

Each feature has a defined YANG model, which is synthesized from schemas. A model in a tree format
includes:

* Top level nodes and their subtrees
* Subtrees that augment nodes in other YANG models
* Custom RPCs

YANG defines four node types. Each node has a name. Depending on the node type, the node either defines
a value or contains a set of child nodes. The nodes types for data modeling are:

* leaf node - contains a single value of a specific type

* leaf-list node - contains a sequence of leaf nodes

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr/
https://github.com/openconfig/public/tree/master/release/models

[l YANG Data Model

YANG Data Models |

* list node - contains a sequence of leaf-list entries, each of which is uniquely identified by one or more

key leaves

* container node - contains a grouping of related nodes that have only child nodes, which can be any of

the four node types

Structure of LLDP Data Model

The Link Layer Discovery Protocol (LLDP) data model is represented in the following structure:

$ cat Cisco-IOS-XR-ethernet-1lldp-cfg.yang

module Cisco-IOS-XR-ethernet-lldp-cfg {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns"+
"/yang/Cisco-I0S-XR-ethernet-1ldp-cfg";

prefix "ethernet-1lldp-cfg";
/*** LINKAGE (IMPORTS / INCLUDES) ***/
import cisco-semver { prefix "semver"; }
import Cisco-IOS-XR-ifmgr-cfg { prefix "al"; }
/*** META INFORMATION ***/
organization "Cisco Systems, Inc.";
contact

"Cisco Systems, Inc.

Customer Service

Postal: 170 West Tasman Drive
San Jose, CA 95134

Tel: +1 800 553-NETS
E-mail: cs-yanglcisco.com";

description
"This module contains a collection of YANG definitions
for Cisco IOS-XR ethernet-11ldp package configuration.

This module contains definitions
for the following management objects:
lldp: Enable LLDP, or configure global LLDP subcommands

This YANG module augments the
Cisco-IOS-XR-ifmgr-cfg
module with configuration data.

Copyright (c) 2013-2019 by Cisco Systems, Inc.
All rights reserved.";

revision "2019-04-05" {
description
"Establish semantic version baseline.";
semver:module-version "1.0.0";

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

YANG Data Models

revision "2017-05-01" ¢{
description
"Fixing backward compatibility error in module.";

revision "2015-11-09" {
description
"IOS XR 6.0 revision.";

container 1ldp {

description "Enable LLDP, or configure global LLDP subcommands";

’

container tlv-select {
presence "Indicates a tlv-select node is configured.";
description "Selection of LLDP TLVs to disable";

container system-name {
description "System Name TLV";
leaf disable {
type boolean;
default "false";
description "disable System Name TLV";

container port-description {
description "Port Description TLV";
leaf disable {
type boolean;
default "false";
description "disable Port Description TLV";

.......................... (snipped) ..ttt e e
container management-address {
description "Management Address TLV";
leaf disable {
type boolean;
default "false";
description "disable Management Address TLV";

}
leaf tlv-select-enter {
type boolean;
mandatory true;
description "enter 1lldp tlv-select submode";

}
leaf holdtime {
type uint32 {
range "0..65535";
}
description
"Length of time (in sec) that receiver must
keep this packet";

augment "/al:interface-configurations/al:interface-configuration"

{

YANG Data Model [

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

[l YANG Data Model

container 1ldp {
presence "Indicates a 1lldp node is configured.";
description "Disable LLDP TX or RX";

(snipped)

description
"This augment extends the configuration data of
'Cisco-IO0S-XR-ifmgr-cfg'";

}

YANG Data Models |

The structure of a data model can be explored using a YANG validator tool such as pyang and the
data model can be formatted in a tree structure.

LLDP Configuration Data M odel

The following example shows the LLDP interface manager configuration model in tree format.

module: Cisco-IOS-XR-ethernet-1lldp-cfg
+--rw 1lldp

+--rw tlv-select!
| +--rw system-name
| | +--rw disable? boolean
| +--rw port-description
| | +--rw disable? boolean
| +--rw system-description
| | +--rw disable? boolean
| +--rw system-capabilities
| | +--rw disable? boolean
| +--rw management-address
| | +--rw disable? boolean
| +--rw tlv-select-enter boolean
+--rw holdtime? uint32
+--rw enable-priority-addr? boolean
+--rw extended-show-width? boolean
+--rw enable-subintf? boolean
+--rw enable-mgmtintf? boolean
+--rw timer? uint32
+--rw reinit? uint32
+--rw enable? boolean

module: Cisco-IOS-XR-ifmgr-cfg

+--rw global-interface-configuration

| +--rw link-status?

Link-stat

+--rw interface-configurations
+--rw interface-configuration*

+--rw dampening

+--rw args?
+--rw half-life?
+--rw reuse-threshold?

I

I

I

| +t-—rw
| +--rw suppress-time?
| +--rw restart-penalty?
+--rw mtus

| +--rw mtu* [owner]

I

I

+--rw owner

suppress-threshold?

us—enum

[active interface-name]

enumeration

uint32
uint32
uint32
uint32
uint32

xr:Cisco-ios-xr-string

+--rw mtu uint32
+--rw encapsulation
| +--rw encapsulation? string
| +--rw capsulation-options? uint32
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/mbj4668/pyang

| YANG Data Models

+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ethernet-1ldp-cfg:11ldp!

+--rw ethernet-lldp-cfg:transmit

| +--rw ethernet-lldp-cfg:disable? boolean

+--rw ethernet-1ldp-cfg:receive

| +--rw ethernet-lldp-cfg:disable? boolean

+--rw ethernet-1ldp-cfg:1lldp-intf-enter boolean
+--rw ethernet-1lldp-cfg:enable? Boolean
.......................... (snipped) ..ttt e e

LLDP Operational Data M odel

YANG Data Model [

The following example shows the Link Layer Discovery Protocol (LLDP) interface manager

operational model in tree format.

$ pyang -f tree Cisco-IOS-XR-ethernet-1lldp-oper.yang
module: Cisco-IOS-XR-ethernet-1lldp-oper
+--ro 1lldp
+--ro global-11ldp
+--ro lldp-info

|

| +--ro chassis-id? string
| +--ro chassis-id-sub-type? uint8

| +--ro system-name? string
| +--ro timer? uint32
| +--ro hold-time? uint32
| +--ro re-init? uint32
+--ro nodes

+--ro node* [node-name]
+--ro neighbors
| +--ro devices
| | +--ro device*

.......................... (snipped) ..ot e
notifications:
+---n lldp-event
+--ro global-11ldp
| +--ro lldp-info
| +--ro chassis-id? string
| +--ro chassis-id-sub-type? uint8
| +--ro system-name? string
| +--ro timer? uint32
| +--ro hold-time? uint32
| +--ro re-init? uint32
+--ro nodes

+--ro node* [node-name]
+--ro neighbors
+--ro devices
| +--ro device*
| +--ro device-id? string
| +--ro interface-name? xr:Interface-name
| +--ro lldp-neighbor*
| +--ro detail
| | +--ro network-addresses
| | | +--ro lldp-addr-entry*
| | | +--ro address
.......................... (snipped) ..ottt e
+--ro interfaces
+--ro interface* [interface-name]

+--ro interface-name xr:Interface-name

| +--ro lldp-addr-entry*

|
|
| +--ro local-network-addresses
|
| | +--ro address

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Access the Data Models

| +--ro address-type? Lldp-13-addr-protocol

| |

| | | +--ro ipvé4-address? inet:ipv4-address

| | | +--ro ipvé-address? In6-addr

| | +--ro ma-subtype? uint8

| | +--ro if-num? uint32

| +--ro interface-name-xr? xr:Interface-name

| +--ro tx-enabled? uint8

| +--ro rx-enabled? uint8

| +--ro tx-state? string

| +--ro rx-state? string

| +--ro if-index? uint32

| +--ro port-id? string

| +--ro port-id-sub-type? uint8

| +--ro port-description? string
.......................... (snipped) .ttt e e

Components of a YANG Module

A YANG module defines a single data model. However, a module can reference definitions in other modules
and sub-modules by using one of these statements:

The YANG models configure a feature, retrieve the operational state of the router, and perform actions.
* import imports external modules
« include includes one or more sub-modules

 augment provides augmentations to another module, and defines the placement of new nodes in the data
model hierarchy

» when defines conditions under which new nodes are valid

* prefix references definitions in an imported module

\}

Note The gRPC YANG path or JSON data is based on YANG module name and not YANG namespace.

Access the Data Models

You can access the Cisco IOS XR native and OpenConfig data models from GitHub, a software development
platform that provides hosting services for version control.

CLI-based YANG data models, also known as unified configuration models were introduced in Cisco I0S
XR, Release 7.0.1. The new set of unified YANG config models are built in alignment with the CLI commands.

You can also access the supported data models from the router. The router ships with the YANG files that
define the data models. Use NETCONF protocol to view the data models available on the router using
ietf-netconf-monitoring request.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>
<filter type="subtree">
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas/>
</netconf-state>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
https://github.com/openconfig/public/tree/master/release/models

| YANG Data Models

Access the Data Models .

</filter>
</get>
</rpc>

All the supported YANG models are displayed as response to the RPC request.

<rpc-reply message-id="16a79£f87-1d47-4f7a-al6a-9405e6d865b9"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>

<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">

<schemas>

<schema>
<identifier>Cisco-IOS-XR-crypto-sam-oper</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-I0S-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>Cisco-IOS-XR-crypto-sam-oper-subl</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-I0S-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>Cisco-IOS-XR-snmp-agent-oper</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-I0S-XR-snmp-agent-oper</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>openconfig-aft-types</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://openconfig.net/yang/fib-types</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>openconfig-mpls-ldp</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://openconfig.net/yang/ldp</namespace>
<location>NETCONF</location>

</schema>

</schemas>

</netconf-state>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. CLI to Yang Mapping Tool

CLI to Yang Mapping Tool

Table 1: Feature History Table

Feature Name Release Information Description

CLI to YANG Mapping Tool Release 7.4.1 This tool provides a quick reference
for IOS XR CLIs and a
corresponding YANG data model
that could be used.

New command introduced for this
feature: yang describe

CLI commands are widely used for configuring and extracting the operational details of a router. But bulk
configuration changes through CLIs are cumbersome and error-prone. These limitations restrict automation
and scale. To overcome these limitations, you need an automated mechanism to manage your network. Cisco
I0S XR supports a programmatic way of configuring and collecting operational data of a router using Yang
data models. However, owing to the large number of CLI commands, it is cumbersome to determine the
mapping between the CLI command and its associated data model.

The CLI to Yang describer tool is a component in the IOS XR software. It helps in mapping the CLI command
with its equivalent data models. With this tool, network automation using data models can be adapted with
ease.

The tool simulates the CLI command and displays the following data:

* Yang model mapping to the CLI command

* List of the associated sensor paths

To retrieve the Yang equivalent of a CLI, use the following command:

Router#yang-describe ?
configuration Describe configuration commands (cisco-support)
operational Describe operational commands (cisco-support)

The tool supports description of both operational and configurational commands.
Example: Configuration Data

In the following example, the Yang paths for configuring the MPLS label range with minimum and

maximum static values are displayed:

Router#yang-describe configuration mpls label range table 0 34000 749999 static 34000 99999

Mon May 10 12:37:27.192 UTC

YANG Paths:
Cisco-I0S-XR-um-mpls-1lsd-cfg:mpls/label/range/table-0
Cisco-I0S-XR-mpls-1lsd-cfg:mpls-1sd/label-databases/label-database/label-range
Cisco-I0S-XR-mpls-1lsd-cfg:mpls-1lsd/label-databases/label-database/label-range/minvalue
Cisco-I0S-XR-mpls-lsd-cfg:mpls-1sd/label-databases/label-database/label-range/max-value

Cisco-I0S-XR-mpls-1lsd-cfg:mpls-1sd/label-databases/label-database/label-range/min-static-value

Cisco-I0S-XR-mpls-lsd-cfg:mpls-1sd/label-databases/label-database/label-range/max-static-value

In the following example, the Yang paths for configuring the gRPC address are displayed:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

Prevent Partial Pseudo-Atomic Committed Configurations .

Router#yang-describe configuration grpc address-family ipv4
Mon May 10 12:39:56.652 UTC
YANG Paths:
Cisco-IOS-XR-man-ems-cfg:grpc/enable
Cisco-IO0S-XR-man-ems-cfg:grpc/address-family

Example: Operational Data
The operational data includes support for the show CLI commands.

The example shows the Yang paths to retrieve the operational data for MPLS interfaces:

Router#yang-describe operational show mpls interfaces

Mon May 10 12:34:05.198 UTC

YANG Paths:
Cisco-IO0S-XR-mpls-lsd-oper:mpls-1lsd/interfaces/interface

The following example shows the Yang paths to retrieve the operational data for Virtual Router
Redundancy Protocol (VRRP):

Router#yang-describe operational show vrrp brief

Mon May 10 12:34:38.041 UTC

YANG Paths:
Cisco-I0S-XR-ipvd-vrrp-oper:vrrp/ipvé4/virtual-routers/virtual-router
Cisco-I0S-XR-ipv4-vrrp-oper:vrrp/ipv6/virtual-routers/virtual-router

Prevent Partial Pseudo-Atomic Committed Configurations

Table 2: Feature History Table

Feature Name Release Information Description
Prevent Partial Pseudo-Atomic Release 7.10.1 You can now prevent the
Committed Configurations partially-committed configurations

on the router and thus ensure the
system database and OpenConfig
datastore stay in sync.

This feature changes how the
internal rollback error is handled
when a pseudo-atomic commit
fails. In such cases, the system
database always rolls back the
configuration in its datastore
thereby ensuring that there is no
partially-committed configuration.
If there is still inconsistency, the
system displays error messages to
notify you of various internal
rollback failure scenarios based on
which you must take rectification
action to re-synchronize the data.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Prevent Partial Pseudo-Atomic Committed Configurations

Existing Pseudo-Atomic Commit Behavior

The default behavior in pseudo-atomic commit is that all changes must succeed for the entire commit operation
to succeed. If any errors are found, none of the configuration changes take effect.

Thus if an error occurs in one or more of the configurations in a commit, other configurations which were
already successfully processed as part of the commit process are reverted. An internal rollback mechanism
takes effect and reverts the already successful configurations to their original state.

Occasionally, the internal rollback may fail, that is, the verifier process rejects the rollback configuration. To
stay in-sync with the verifier, the system database also does not rollback the configuration. This leads to
commit of the failed-to-rollback configurations and results with system having partial committed configuration.

You can view the partial configuration with show config commit changes[commit_id] and take necessary
action to keep the system database in-sync with verifiers.

Enhanced Pseudo-Atomic Commit Behavior

From IOS XR Software Release 7.10.1 onwards, for XR OpenConfig support, the running configurations in
OpenConfig datastore can only be updated atomically. When the pseudo-atomic commit fails and the verifier
rejects a rollback, OpenConfig datastore and system database would be out of sync in the existing pseudo-atomic
commit behavior. The OpenConfig datastore would contain no changes from the commit, whereas the system
database would contain configurations that failed to be rolled back.

The enhanced pseudo-atomic commit feature changes the way the internal rollback error is handled after a
pseudo-atomic commit fails. This ensures the system database and OpenConfig datastore database stay in
sync.

When the verifier process fails the configuration during an internal rollback, system database displays an ios
error message to warn about the verifier error. You must take rectification action and re-synchronize the
verifier and the system database. A failure to notice the error message or failure to restart the verifier process
results in an inconsistent or deceptive operation of the system. After a while, the rollback error would become
untraceable and could manifest into more problems.

Following are the scenarios with examples, where the internal rollback error appears when a pseudo-atomic
commit fails:

» When the verifier process rejects the configuration during an internal rollback, system database displays
an error message and continues to update system database and instruct the verifier to apply the
configuration.

$MGBL VERIFIER-4-COMMIT ROLLBACK REJECTED

Example shows the name of the process which rejects the internal rollback:

$MGBL-VERIFIER-4-COMMIT ROLLBACK REJECTED : verify process incorrectly rejected rollback
of a failed commit to a previously accepted state. The rollback change has been made
anyway. (/cfg/gl/test/iteml, 0x40828400)

» When there is a timeout in the verify event (system database does not receive response from verifier
within 300 seconds), then system database displays an ios message to warn you about the verifier timeout
error and continue to update system database and instruct the verifier to apply the configuration.

$MGBL VERIFIER-4-COMMIT ROLLBACK TIMEOUT

Example shows the name of the process which timeout for the internal rollback:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models
Communication Protocols .

%MGBL—VERIFIER—3—COMMIT_ROLLBACK_TIMEOUT : verify_process (jid 68368, 0/0/CPUO) took
too long to verify the rollback of a failed commit
(cfg/if/act/GigabitEthernet0 0 0 2/a/test/item3). The rollback change has been made

anyway.

When the verifier process fails to apply the internal rollback configuration or when the apply callback
timeout, then the system database displays an ios message to warn you about the rollback failure and
how to rectify the error by restarting the verifier process.

$MGBL VERIFIER-3-COMMIT ROLLBACK FAILED

Example shows the name of the process which failed the internal rollback:

$MGBL-VERIFIER-3-COMMIT ROLLBACK FAILED : verify process failed to apply the rollback
of a failed commit (/cfg/gl/test/iteml, 0x40828400) and may no longer operate as
configured. The process need to be restarted to rectify the error.

Communication Protocols

Communication protocols establish connections between the router and the client. The protocols help the
client to consume the YANG data models to, in turn, automate and programme network operations.

YANG uses one of these protocols:
* Network Configuration Protocol (NETCONF)

* RPC framework (gRPC) by Google

\}

Note gRPC is supported only in 64-bit platforms.

The transport and encoding mechanisms for these two protocols are shown in the table:

Protocol Transport Encoding/ Decoding
NETCONF ssh xml
gRPC http/2 json

NETCONF Protocol

NETCONF provides mechanisms to install, manipulate, or delete the configuration on network devices. It
uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as well as
protocol messages. You use a simple NETCONF RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. To get started with issuing NETCONF RPCs to configure

network features using data models

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. gRPC Protocol

gRPC Protocol

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automated mechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure by defining protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs. To get started with issuing NETCONF RPCs to configure network features using
data models

\}

Note gRPC is supported only in 64-bit platforms.

YANG Actions

I0S XR actions are RPC statements that trigger an operation or execute a command on the router. Theses
actions are defined as YANG models using RPC statements. An action is executed when the router receives
the corresponding NETCONF RPC request. Once the router executes an action, it replies with a NETCONF
RPC response.

For example, ping command is a supported action. That means, a YANG model is defined for the ping
command using RPC statements. This command can be executed on the router by initiating the corresponding
NETCONF RPC request.

)

Note NETCONTF supports XML format, and gRPC supports JSON format.

The following table shows a list of actions. For the full list of supported actions, query the device or see the
YANG Data Models Navigator.

Actions YANG Models

logmsg Cisco-I0S-XR-syslog-act

snmp Cisco-I0S-XR-snmp-test-trap-act
rollback Cisco-10S-XR-cfgmgr-rollback-act
clear isis Cisco-I0S-XR-isis-act

clear bgp Cisco-10S-XR-ipv4-bgp-act

Example: PING NETCONF Action

This use case shows the IOS XR NETCONF action request to run the ping command on the router.

<rpc message-1d="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ping-act">
<destination>
<destination>1.2.3.4</destination>
</destination>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

| YANG Data Models
YANG Actions [J|]

</ping>
</rpc>

This section shows the NETCONF action response from the router.

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping-response xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ping-act">
<ipv4d>
<destination>1.2.3.4</destination>
<repeat-count>5</repeat-count>
<data-size>100</data-size>
<timeout>2</timeout>
<pattern>0Oxabcd</pattern>
<rotate-pattern>0</rotate-pattern>
<reply-list>
<result>!</result>
<result>!</result>
<result>!</result>
<result>!</result>
<result>!</result>
</reply-list>
<hits>5</hits>
<total>5</total>
<success-rate>100</success-rate>
<rtt-min>1</rtt-min>
<rtt-avg>l</rtt-avg>
<rtt-max>1</rtt-max>
</ipv4>
</ping-response>
</rpc-reply>

Example: XR Process Restart Action

This example shows the process restart action sent to NETCONF agent.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<sysmgr-process-restart xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-sysmgr-act">
<process-name>processmgr</process-name>
<location>0/RP0/CPUO</location>
</sysmgr-process-restart>
</rpc>

This example shows the action response received from the NETCONF agent.

<?xml version="1.0"?>

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Example: Copy Action

This example shows the RPC request and response for copy action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<copy xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-copy-act">
<sourcename>//root:<location>/100MB. txt</sourcename>
<destinationname>/</destinationname>
<sourcefilesystem>ftp:</sourcefilesystem>
<destinationfilesystem>harddisk:</destinationfilesystem>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Il YANG Actions

YANG Data Models |

<destinationlocation>0/RSP1/CPUO</destinationlocation>
</copy>
</rpc>

RPC response:

<?xml version="1.0"?>

<rpc-reply message-1d="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<response xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-copy-act">Successfully
completed copy operation</response>

</rpc-reply>

8.261830565s elapsed

Example: Delete Action
This example shows the RPC request and response for delete action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<delete xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-delete-act">
<name>harddisk:/netconf.txt</name>
</delete>
</rpc>

RPC response:

<?xml version="1.0"?>
<rpc-reply message-1d="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<response xmlns="http://cisco.com/ns/yang/Cisco-I0OS-XR-shellutil-delete-act">Successfully
completed delete operation</response>
</rpc-reply>

395.099948ms elapsed

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 4

Use NETCONF Protocol to Define Network
Operations with Data Models

Table 3: Feature History Table

Feature Name Release Information Description

Unified NETCONF V1.0 and V1.1 | Release 7.3.1 Cisco I0S XR supports NETCONF
1.0 and 1.1 programmable
management interfaces. With this
release, a client can choose to
establish a NETCONF 1.0 or 1.1
session using a separate interface
for both these formats. This
enhancement provides a secure
channel to operate the network with
both interface specifications.

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

Network Configuration Protocol (NETCONF) is a standard transport protocol that communicates with network
devices. NETCONF provides mechanisms to edit configuration data and retrieve operational data from network
devices. The configuration data represents the way interfaces, routing protocols and other network features

are provisioned. The operational data represents the interface statistics, memory utilization, errors, and so on.

NETCONEF uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as
well as protocol messages. It uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. The client can be a script or application that runs as part of a
network manager. The server is a network device such as a router. NETCONF defines how to communicate
with the devices, but does not handle what data is exchanged between the client and the server.

NETCONF Session

A NETCONTF session is the logical connection between a network configuration application (client) and a

network device (router). The configuration attributes can be changed during any authorized session; the effects
are visible in all sessions. NETCONF is connection-oriented, with SSH as the underlying transport. NETCONF
sessions are established with a he11o message, where features and capabilities are announced. At the end of

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |

each message, the NETCONF agent sends the]1>11> marker. Sessions are terminated using close or kill
messages.

Cisco I0S XR supports NETCONF 1.0 and 1.1 programmable management interfaces that are handled using
two separate interfaces. From I0S XR, Release 7.3.1, a client can choose to establish a NETCONF 1.0 or 1.1
session using an interface for both these formats. A NETCONF proxy process waits for the he110 message
from its peer. If the proxy does not receive a hel1o message within the timeout period, it sends a NETCONF
1.1 hel1o message.

<?xml version="1.0" encoding="UTF-8"?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability
--snip--

</capabilities>

<session-id>5</session-id>

</hello>]11>11>

The following examples show the he11o messages for the NETCONF versions:
netconf-xml agent listens on port 22

netconf-yang agent listens on port 830

Version 1.0 The NETCONF XML agent accepts the message.

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
</capabilities>

</hello>

Version 1.1 The NETCONF YANG agent accepts the message.

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.1</capability>
</capabilities>

</hello>

Using NETCONF 1.1, the RPC requests begin with #<number> and end with ##. The number indicates how
many bytes that follow the request.

Example:

#371
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<filter>
<isis xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-clns-isis-oper">
<instances>
<instance>
<neighbors/>
<instance-name/>
</instance>
</instances>
</isis>
</filter>
</get>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

</rpc>

##

Configure NETCONF Agent

To configure a NETCONF TTY agent, use the netconf agent tty command. In this example, you configure
the throttle and session timeout parameters:

netconf agent tty
throttle (memory | process-rate)
session timeout

To enable the NETCONF SSH agent, use the following command:

ssh server v2
netconf-yang agent ssh

NETCONF Layers

NETCONF protocol can be partitioned into four layers:
Figure 2: NETCONF Layers

Lavar Example
Congenl Coadiuration Dala Moilazalion [asa
Opaations =pcil-coadin=
o o=
Messapes ape-raply> sncdilizalions.
Secime Transpor S5H, TLS BEEP/TLS, SOAPMITRLS, . | §
#

+ Content layer: includes configuration and notification data

 Operationslayer: defines a set of base protocol operations invoked as RPC methods with XML-encoded
parameters

» Messages layer: provides a simple, transport-independent framing mechanism for encoding RPCs and
notifications

* Secure Transport layer: provides a communication path between the client and the server

For more information about NETCONF, refer RFC 6241.

This article describes, with a use case to configure the local time on a router, how data models help in a faster
programmatic configuration as compared to CLI.

* NETCONF Operations, on page 24

* Retrieve Default Parameters Using with-defaults Capability, on page 28

* Retrieve Transaction ID for NSO Operations, on page 34

* Set Router Clock Using Data Model in a NETCONF Session, on page 36

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

[l NETCONF Operations

NETCONF Operations

NETCONF defines one or more configuration datastores and allows configuration operations on the datastores.
A configuration datastore is a complete set of configuration data that is required to get a device from its initial
default state into a desired operational state. The configuration datastore does not include state data or executive

commands.

YANG Data Models |

The base protocol includes the following NETCONF operations:

+--get-config
+--edit-Config

+--merge

+--replace

+--create

+--delete

+--remove
+--default-operations

+--replace
+--none
+--get
+--lock

+--unLock

+--close-session
+--kill-session

|
|
|
|
|
|
|
|
| +--merge
|
|
|
|
|
|
|

These NETCONF operations are described in the following table:

NETCONF
Operation

Description

Example

<get-config>

Retrieves all or part of a specified
configuration from a named data
store

Retrieve specific interface configuration details from
running configuration using filter option

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<get-config>

<source>

<running/>

</source>

<filter>

<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-1ifmgr-cfg"\
<interface-configuration>
<active>act</active>
<interface-name>TenGigE0/0/0/2/0</interface-name
</interface-configuration>
</interface-configurations>

</filter>

</get-config>

</rpc>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

NETCONF Operations]

NETCONF
Operation

Description

Example

< get>

Retrieves running configuration
and device state information

Retrieve all acl configuration and device state
information.

Request:

<get>

<filter>

<ipvé4-acl-and-prefix-list
xmlns="http://cisco.can/ns/yang/Cisco-I0S-XR-ipv4-acl-oper"/
</filter>

</get>

<edit-config>

Loads all or part of a specified
configuration to the specified
target configuration

Configure ACL configs using M erge operation

<rpc message-id="101"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

<edit-config>

<target><candidate/></target>

<config

xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0"

<ipvé4-acl-and-prefix-list

xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipv4-acl-cfqg",
xc:operation="merge”>

<accesses>

<access>

<access-list-name>aclv4-1</access-list-name>

<access-list-entries>

<access-list-entry>

<sequence-number>10</sequence-number>

<remark>GUEST</remark>

</access-list-entry>

<access-list-entry>

<sequence-number>20</sequence-number>

<grant>permit</grant>

<source-network>

<source-address>172.0.0.0</source-address>

<source-wild-card-bits>0.0.255.255</source-wild-card-bits

</source-network>

</access-list-entry>

</access-list-entries>

</access>

</accesses>

</ipv4-acl-and-prefix-list>

</config>

</edit-config>

</rpc>

Commit:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<commit/>

</rpc>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

[l NETCONF Operations

YANG Data Models |

NETCONF
Operation

Description

Example

<lock>

Allows the client to lock the
entire configuration datastore
system of a device

Lock the running configuration.

Request:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<lock>

<target>

<running/>

</target>

</lock>

</rpc>

Response
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">|

<ok/>
</rpc-reply>

<Unlock>

Releases a previously locked
configuration.

An <unlock> operation will not
succeed if either of the following
conditions is true:

* The specified lock is not
currently active.

* The session issuing the
<unlock> operation is not
the same session that
obtained the lock.

Lock and unlock the running configuration from the same
session.

Request:

rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<unlock>

<target>

<running/>

</target>

</unlock>

</rpc>

Response -

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

<close-session>

Closes the session. The server
releases any locks and resources
associated with the session and
closes any associated
connections.

Close a NETCONF session.

Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<close-session/>

</rpc>

Response:

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models
NETCONF Operations]

NETCONF Description Example
Operation

<kill-session> | Terminates operations currently | Terminate a session if the ID is other session ID.
in process, releases locks and

K . Request:
resources associated with the <rpc message-id="101"
Sesﬁon,andiﬂoseanyassockned xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
connections. <kill-session>

<session-id>4</session-id>
</kill-session>
</rpc>

Response:

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

N

Note The system admin models support <get> and <get-config> operations, and only <edit-config> operations
with the <merge> operation. The other operations such as <delete>, <remove>, and <replace> are not supported
for the system admin models.

NETCONF Operation to Get Configuration
This example shows how a NETCONF <get-config> request works for LLDP feature.

The client initiates a message to get the current configuration of LLDP running on the router. The
router responds with the current LLDP configuration.

Netconf Request (Client to Router) Netconf Response (Router to Client)
<rpc message-id="101" <?xml version="1.0"?>
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <rpc-reply message-id="101"
<get-config> xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<source><running/></source> <data>
<filter> <lldp
<lldp xlns="http: //cisco.caw/ns/yang/Cisco-I05-XR-ethermet-11do-cfg™|
xrlns="http: //ciso.caw/ns/yang/Cisco-T05-XR-ethermet-11do-cfg"/>|
<timer>60</timer>
</filter> <enable>true</enable>
</get-config> <reinit>3</reinit>
</rpc> <holdtime>150</holdtime>
</1ldp>
</data>

</rpc-reply>
319 bytes received
6.409561ms elapsed

The <rpc> element in the request and response messages enclose a NETCONF request sent between
the client and the router. The message-id attribute in the <rpc> element is mandatory. This attribute
is a string chosen by the sender and encodes an integer. The receiver of the <rpc> element does not
decode or interpret this string but simply saves it to be used in the <rpc-reply> message. The sender

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Retrieve Default Parameters Using with-defaults Capability

must ensure that the message-id value is normalized. When the client receives information from the
server, the <rpc-reply> message contains the same message-id.

Retrieve Default Parameters Using with-defaults Capability

NETCONEF servers report default data nodes in response to RPC requests in the following ways:

» report-all: All data nodes are reported
« trim: Data nodes set to the YANG default aren't reported

» explicit: Data nodes set to the YANG default by the client are reported

Cisco IOS XR routers support only the explicit basic mode. A server that uses this mode must consider any
data node that isn’t explicitly set to be the default data.

As per RFC 6243, the router supports <with-defaults> capability to retrieve the default parameters of
configuration and state data node using a NETCONF protocol operation. The <with-defaults> capability
indicates which default-handling basic mode is supported by the server. It also indicates support for additional
retrieval modes. These retrieval modes allow a NETCONF client to control whether the server returns the
default data.

By default, <with-defaults> capability is disabled. To enable this capability, use the following command in
Config mode:

netconf-yang agent
ssh

with-defaults-support enable
|

Once enabled, the capability is applied to all netconf-yang requests.

After enabling, the router must return the new capability as:

urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults:1.0?basic-mode=explicit
The <get>, <get-config>, <copy-config>and ,<edit-config> operations support with-defaults capability.
Example 1. Create Operation

A valid create operation attribute for a data node that is set by the server to its schema default value must
succeed. It is set or used by the device whenever the NETCONF client does not provide a specific value for
the relevant data node. In the following example, an edit-config request is sent to create a configuration:

<edit-config> request sent to the NET CONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:43efc290-c312-4df0-bblb-a6el0bf8aac50">
<edit-config>

<target>

<candidate/>

</target>

<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>

<name>TenGigE0/0/0/0</name>

<subinterfaces>

<subinterface>

<index>2</index>

<config>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

Retrieve Default Parameters Using with-defaults Capability .

<enabled xc:operation="create">false</enabled>
<index xc:operation="create">2</index>
</config>

</subinterface>

</subinterfaces>

</interface>

</interfaces>

</config>

</edit-config>

</rpc>

Response received from the NETCONF agent:

<?xml version="1.0"?>

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Commit the configuration.

[host 172.x.x.x session-id 2985924161] Requesting 'Commit'

[host 172.x.x.x session-id 2985924161] Sending:

<?xml version="1.0" encoding="UTF-8"?><nc:rpc
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:295eff87-1fb6-4£84-bb7d-c40b268ecablb"><nc:commit/></nc:rpc>

[host 172.x.x.x session-id 2985924161] Received:

<?xml version="1.0"?>

<rpc-reply message-id="urn:uuid:295ef£f87-1fb6-4£84-bb7d-c40b268eablb"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>

</rpc-reply>

CREATE operation completed

A create operation attribute for a data node that has been set by a client to its schema default value must fail
with a data-exists error tag. The client can only create a default node that was not previously created by it.
Else, the operation is rejected with the data-exists message.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:1£29267£-7593-4a3c-8382-6ab9%bec323ca">
<edit-config>
<target>
<candidate/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<enabled xc:operation="create">false</enabled>
<index xc:operation="create">2</index>
</config>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</config>
</edit-config>
</rpc>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Retrieve Default Parameters Using with-defaults Capability

[host 172.x.x.x session-id 2985924161] Received:
<?xml version="1.0"?2>
<rpc-reply message-id="urn:uuid:1£29267£-7593-4a3c-8382-6ab9%bec323ca"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>

<error-type>application</error-type>

<error-tag>data-exists</error-tag>

<error-severity>error</error-severity>

<error-path
xmlns:nsl="http://openconfig.net/yang/interfaces">nsl:interfaces/nsl:interface[name =
'TenGigEO0/0/0/0"']/nsl:subinterfaces/nsl:subinterfacel[index = '2']/nsl:config</error-path>
</rpc-error>
</rpc-reply>

Example 2: Delete Operation

A valid delete operation attribute for a data node set by a client to its schema default value must succeed.
Whereas a valid de1ete operation attribute for a data node set by the server to its schema default value fails
with a data-missing error tag.

<edit-config> request sent to the NET CONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:de95a248-29d7-4030-8351-cef8b8d47cdb">
<edit-config>

<target>

<candidate/>

</target>

<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>

<name>TenGigE0/0/0/0</name>

<subinterfaces>

<subinterface xc:operation="delete">

<index>2</index>

</subinterface>

</subinterfaces>

</interface>

</interfaces>

</config>

</edit-config>

</rpc>

Response received from the NETCONF agent:

<?xml version="1.0"?2>

<rpc-reply message-id="urn:uuid:de95a248-29d7-4030-8351-cef8b8d47cdb"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<rpc-error>

<error-type>application</error-type>

<error-tag>data-missing</error-tag>

<error-severity>error</error-severity>

<error-path xmlns:nsl="http://openconfig.net/yang/interfaces">nsl:interfaces/nsl:
interface[name = 'TenGigE0/0/0/0']/nsl:subinterfaces/nsl:subinterface([index =
'2'"]/nsl:config</error-path></rpc-error>

</rpc-reply>

Example 3: Copy Configuration
In the following example, a copy-config request is sent to copy a configuration.

<copy-config> request sent to the NET CONF agent:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models
Retrieve Default Parameters Using with-defaults Capability .

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<candidate/>
</target>
<source>
<config>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<index>2</index>
</config>
</subinterface>
</subinterfaces>
</interface>

</interfaces>
</config>
</source>
<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
</copy-config>
</rpc>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<commit/>
</rpc>

The show run command shows the copied configuration.

Router#show run

<data and time stamp>

Building configuration...

!'l TOS XR Configuration 7.2.1

'l Last configuration change at <data and time stamp> by root
|

interface TenGigE0/0/0/0.2

|

end
Example 4: Get Configuration

The following example shows a get-config request with explicit mode to query the default parameters
from the oc-interfaces.yang data model. The client gets the configuration values of what it sets.

<get-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:63a49626-9f90-4ebe-89£fd-741410cddf29">
<get-config>
<source>
<running/>
</source>
<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
<filter type="subtree">
<interfaces xmlns="http://openconfig.net/yang/interfaces"/>
</filter>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
Retrieve Default Parameters Using with-defaults Capability

</get-config>
</rpc>

<get-config> response received from the NETCONF agent:

<?xml version="1.0"?2>
<rpc-reply message-id="urn:uuid:99d8b2d0-ab05-474a-bc02-9242ba511308"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<index>2</index>
<enabled>false</enabled>
</config>
<ipv6 xmlns="http://openconfig.net/yang/interfaces/ip">
<config>
<enabled>false</enabled>
</config>
</ipv6>
</subinterface>
</subinterfaces>
</interface>
<interface>
<name>MgmtEth0/RSP0/CPU0/0</name>
<config>
<name>MgmtEth0/RSP0/CPU0/0</name>
<type xmlns:idx="urn:ietf:params:xml:ns:yang:iana-if-type">idx:ethernetCsmacd</type>

</config>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">
<config>
<auto-negotiate>false</auto-negotiate>
</config>
</ethernet>
<subinterfaces>
<subinterface>
<index>0</index>
<ipv4 xmlns="http://openconfig.net/yang/interfaces/ip">
<addresses>
<address>
<ip>172.xx.xx.xx</1ip>
<config>
<ip>172.xx.xx.xx</1ip>
<prefix-length>24</prefix-length>
</config>
</address>
</addresses>
</ipvé>
</subinterface>
</subinterfaces>
</interface>
<interface>
<name>MgmtEth0/RSP1/CPU0/0</name>
<config>
<name>MgmtEth0/RSP1/CPU0/0</name>
<type xmlns:idx="urn:ietf:params:xml:ns:yang:iana-if-type">idx:ethernetCsmacd</type>
<enabled>false</enabled>
</config>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models
Retrieve Default Parameters Using with-defaults Capability .

<config>
<auto-negotiate>false</auto-negotiate>
</config>
</ethernet>
</interface>
</interfaces>
</data>
</rpc-reply>
READ operation completed

Example 5: Get Operation

The following example shows a get request with explicit mode to query the default parameters from the
oc-interfaces.yang data model.

<get-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:d8e52f0f-ceac-4193-89£6-d377ab8292d5">
<get>

<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
<filter type="subtree">

<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>

<name>TenGigE0/0/0/0</name>

<subinterfaces>

<subinterface>

<index>2</index>

<state/>

</subinterface>

</subinterfaces>

</interface>

</interfaces>

</filter>

</get>

</rpc>

<get> response received from the NET CONF agent:

<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:933df011-191f-4£f31-9549-c4f7f6edd291"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<state>
<index>2</index>
<name>TenGigE0/0/0/0.2</name>
<enabled>false</enabled>
<admin-status>DOWN</admin-status>
<oper-status>DOWN</oper-status>
<last-change>0</last-change>
<counters>
<in-unicast-pkts>0</in-unicast-pkts>
<in-pkts>0</in-pkts>
<in-broadcast-pkts>0</in-broadcast-pkts>
<in-multicast-pkts>0</in-multicast-pkts>
<in-octets>0</in-octets>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Retrieve Transaction ID for NSO Operations

<out-unicast-pkts>0</out-unicast-pkts>
<out-broadcast-pkts>0</out-broadcast-pkts>
<out-multicast-pkts>0</out-multicast-pkts>
<out-pkts>0</out-pkts>
<out-octets>0</out-octets>
<out-discards>0</out-discards>
<in-discards>0</in-discards>
<in-unknown-protos>0</in-unknown-protos>
<in-errors>0</in-errors>
<in-fcs-errors>0</in-fcs—-errors>
<out-errors>0</out-errors>
<carrier-transitions>0</carrier-transitions>
<last-clear>2020-03-02T15:35:30.927+00:00</last-clear>
</counters>
<ifindex>92</ifindex>
<logical>true</logical>
</state>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</data>
</rpc-reply>
READ operation completed

Retrieve Transaction ID for NSO Operations

Table 4: Feature History Table

Feature Name Release Information Description
Unique Commit ID for Release 7.4.1 The network orchestrator is a
Configuration State central point of management for the

network and typical workflow
involves synchronizing the
configuration states of the routers
it manages. Loading configurations
for comparing the states involves
unnecessary data and subsequent
comparisons are load intensive.
This feature synchronizes the
configuration states between the
orchestrator and the router using a
unique commit ID that the router
maintains for each configuration
commit. The orchestrator retrieves
this commit ID from the router
using NETCONF Remote
Procedure Calls (RPCs) to identify
whether the router has the latest
configuration.

Cisco Network Services Orchestrator (NSO) is a data model-driven platform for automating your network
orchestration. NSO uses NETCONF-based Network Element Drivers (NED) to synchronize the configuration

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

Retrieve Transaction ID for NSO Operations .

states of the routers it manages. NEDs comprise of the network-facing part of NSO and communicate over
the native protocol supported by the router, such as Network Configuration Protocol (NETCONF).

IOS XR configuration manager maintains commit IDs (also known as the transaction IDs) for each commit
operation. The manageability interfaces use these IDs. Currently, the operational data model provides a list
of up to 100 last commits for NETCONF requests. The YANG client querying the last commit ID collects
the entire list and finds the latest ID. Loading configurations for comparison to the orchestrator's configuration
state can involve huge redundant data. The subsequent comparisons are also load intensive.

To overcome these limitations, the router maintains a unique last commit ID that is ideal for NSO operations.
This ID indicates the latest configuration state on the router. The ID provides a one-step operation and increases
the performance of configuration updates for the orchestrator.

An augmented configuration manageability model cisco-T0S-XR-config-cfgmgr-exec-augmented-oper
provides a single 1ast-commit-id for the unique commit state. This model is available as part of the base
package.

The following table lists the synchronization support between NSO and the IOS XR variants:

Entity XR?7
cfgmgr Yes
sysadmin No
cfgmgr-aug No
Leaf Data cfgmgr
Check synchronization (NSO functionality from Yes
release 7.4.1 and later)

Where:

» commit-id represents

Cisco-I0S-XR-config-cfgmgr-exec—oper:config-manager/global/config-commit/commits/commit/commit-id
» cfgmgr is the XR configuration manager
* sysadmin represents the Cisco-I0S-XR-sysadmin-system data model

* cfgmgr-aug represents the Cisco-I10S-XR-config-cfgmgr-exec-augmented-oper data model

The last commit ID is obtained from the configuration manager. The following example shows a sample
NETCONTF request and response to retrieve the commit ID:

Request:
<rpc message-id="test" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get>
<filter type="subtree">
<config-manager xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-config-cfgmgr-exec-oper">
<global>
<config-commit>
<last-commit-id
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-config-cfgmgr-exec-augmented-oper"/>
</config-commit>
</global>
</config-manager>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Set Router Clock Using Data Model in a NETCONF Session

</filter>
</get>
</rpc>

Response:
<rpc-reply message-id="test" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<config-manager xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-config-cfgmgr-exec-oper">
<global>
<config-commit>
<last-commit-id
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-config-cfgmgr-exec-augmented-oper">
XR:1000000009;Admin:1595-891537-949905</1last-commit-id>
</config-commit>
</global>
</config-manager>
</data>
</rpc-reply>

Set Router Clock Using Data Model in a NETCONF Session

The process for using data models involves:

* Obtain the data models.
* Establish a connection between the router and the client using NETCONF communication protocol.

* Manage the configuration of the router from the client using data models.

N

Note Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

The following image shows the tasks involved in using data models.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

Set Router Clock Using Data Model in a NETCONF Session .

Figure 3: Process for Using Data Models

Router Client Application
Load software image;
data models are
part of image
k.
Enable protocol for Make YANG models available.
transport > Download from Github or
(NETCONF, gRPC) use NETCOMF query

l

Connect to router
over NETCONF

i

: : : For a configuration change
Configuration changes are made;
NETCONE reply s sent (EEEEEE in the fouter, NETCONF request
is sent using <edit-config=

L

. Far aperational data,
NETCONF reply is sent R
i ration - NETCOMF request is sent

using <get= or <get-config=

AEEMN3A

In this section, you use native data models to configure the router clock and verify the clock state using a
NETCONEF session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER?2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper [P addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |

. Set Router Clock Using Data Model in a NETCONF Session

Step 1

Step 2

Figure 4: Network Topology for gRPC session

Controller Out-of-band netwark
[netconf
NETCONF i
198.18.1.127/24
v
198.18.1.11/24 198.18.1.111/24 198.18.1.112/24 198.18.1.12/24
g0/0/0/0 o g0/0/0f2 % g0/0/0/0
60 172.16.1.0/31 lo0 172.16.2.4/31 lo0 172.16.2.0/31 100
LER1 LSR1 LSR2 LER2
2
3
g

You use Cisco IOS XR native models Cisco-I0S-XR-infra-clock-linux-cfg.yang and
Cisco-IOX-XR-shellutil-oper to programmatically configure the router clock. You can explore the structure
of the data model using YANG validator tools such as pyang.

Before you begin

Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information

Explore the native configuration model for the system local time zone.

Example:

controller:netconf$ pyang --format tree Cisco-IO0S-XR-infra-infra-clock-linux-cfg.yang
module: Cisco-IOS-XR-infra-infra-clock-linux-cfg
+--rw clock
+--rw time-zone!
+--rw time-zone-name string
+--rw area-name string

Explore the native operational state model for the system time.

Example:

controller:netconf$ pyang --format tree Cisco-IOS-XR-shellutil-oper.yang
module: Cisco-IOS-XR-shellutil-oper
+--ro system-time
+--ro clock
| +--ro year? uintle
| +--ro month? uint8
| +--ro day? uint8
| +--ro hour? uint8
| +--ro minute? uint8
| +--ro second? uint8
| +--ro millisecond? uintlé6
| +--ro wday? uintlé
| +--ro time-zone? string
| +--ro time-source? Time-source
+--ro uptime

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/mbj4668/pyang

| YANG Data Models

Step 3

Step 4

Step 5

Set Router Clock Using Data Model in a NETCONF Session .

+--ro host-name? string
+--ro uptime? uint32

Retrieve the current time on router LER1.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper"/>
controller:netconf$ netconf get --filter xr-system-time-oper.xml
198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper">
<clock>
<year>2019</year>
<month>8</month>
<day>22</day>
<hour>17</hour>
<minute>30</minute>
<second>37</second>
<millisecond>690</millisecond>
<wday>1</wday>
<time-zone>UTC</time-zone>
<time-source>calendar</time-source>
</clock>
<uptime>
<host-name>lerl</host-name>
<uptime>851237</uptime>
</uptime>
</system-time>

Notice that the timezone vtc indicates that a local timezone is not set.

Configure Pacific Standard Time (PST) as local time zone on LERI.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper"/>
controller:netconf$ get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper">
<clock>
<year>2019</year>
<month>8</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>
</clock>
<uptime>
<host-name>lerl</host-name>
<uptime>852530</uptime>
</uptime>
</system-time>

Verify that the router clock is set to PST time zone.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Set Router Clock Using Data Model in a NETCONF Session

Example:

controller:netconf$ more xr-system-time-oper.xml
<system-time xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper"/>

controller:netconf$ netconf get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-I0OS-XR-shellutil-oper">
<clock>
<year>2018</year>
<month>12</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>
</clock>
<uptime>
<host-name>lerl</host-name>
<uptime>852530</uptime>
</uptime>
</system-time>

In summary, router LER 1, which had no local timezone configuration, is programmatically configured using data models.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 5

Use gRPC Protocol to Define Network Operations
with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automated mechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure using protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf.
The Protobuf binary data object in gRPC is transported over HTTP/2.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server. The structure of the data is defined by YANG models.

N

Note

TCP protocol.

All 64-bit IOS XR platforms support gRPC and TCP protocols. All 32-bit IOS XR platforms support only

Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and
define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent
to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:

syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {
rpc GetConfig(ConfigGetArgs) returns (stream ConfigGetReply) {};
rpc MergeConfig (ConfigArgs) returns (ConfigReply) {};

rpc DeleteConfig (ConfigArgs) returns (ConfigReply) {};

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |

rpc ReplaceConfig(ConfigArgs) returns (ConfigReply) {};
rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};
rpc GetOper (GetOperArgs) returns (stream GetOperReply) {};

rpc CommitReplace (CommitReplaceArgs) returns (CommitReplaceReply) {};
}
message ConfigGetArgs {

int64 ReqId = 1;

string yangpathijson = 2;

message ConfigGetReply {
int64 ResReqgld = 1;
string yangjson = 2;
string errors = 3;

message GetOperArgs {
int64 ReqId = 1;
string yangpathijson = 2;

message GetOperReply {
int64 ResReqId = 1;
2;

string yangjson =
string errors = 3;

}

message ConfigArgs {
int64 ReqId = 1;
string yangjson = 2;

message ConfigReply {
int64 ResReqId = 1;
string errors = 2;

message CliConfigArgs {
int64 ReqId = 1;
string cli = 2;

message CliConfigReply {
int64 ResReqld = 1;
string errors = 2;

message CommitReplaceArgs {
int64 ReqId = 1;
string cli = 2;
string yangjson = 3;

message CommitReplaceReply {
int64 ResReqgld = 1;
string errors = 2;

}

Example for gRPCExec configuration:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

YANG Data Models

service gRPCExec {
rpc ShowCmdTextOutput (ShowCmdArgs) returns(stream ShowCmdTextReply) {};
rpc ShowCmdJSONOutput (ShowCmdArgs) returns(stream ShowCmdJSONReply) {};

message ShowCmdArgs {
int64 ReqId = 1;
string cli = 2;

message ShowCmdTextReply {
int64 ResReqgld =1;
string output = 2;
string errors = 3;

Example for OpenConfiggRPC configuration:

service OpenConfiggRPC {
rpc SubscribeTelemetry (SubscribeRequest) returns (stream SubscribeResponse) {};
rpc UnSubscribeTelemetry (CancelSubscribeReq) returns (SubscribeResponse) {};
rpc GetModels (GetModelsInput) returns (GetModelsOutput) {};

message GetModelsInput {

uint64 requestId = 1;
string name = 2;
string namespace = 3;
string version = 4;

enum MODLE_REQUEST_ TYPE {
SUMMARY = 0;
DETAIL = 1;
}
MODLE_REQUEST TYPE requestType = 5;

message GetModelsOutput {

uint64 requestId = 1;
message ModelInfo {
string name =1;
string namespace = 2;
string version = 3;

GET_MODEL_TYPE modelType = 4;
string modelData = 5;
}
repeated ModelInfo models = 2;
OC_RPC_RESPONSE TYPE responseCode = 3;
string msg = 4;

}

This article describes, with a use case to configure interfaces on a router, how data models helps in a faster
programmatic and standards-based configuration of a network, as comapared to CLI.

* gRPC Operations, on page 44

* gRPC over UNIX Domain Sockets, on page 45

» gRPC Network Management Interface, on page 46

» gNMI Wildcard in Schema Path, on page 47

» gNMI Bundling of Telemetry Updates, on page 51

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. YANG Data Models |
gRPC Operations

* Replace Router Configuration at Sub-tree Level Using gNMI, on page 53
* gRPC Network Operations Interface , on page 54

» gRPC Network Security Interface , on page 61

* P4Runtime, on page 70

* Configure Interfaces Using Data Models in a gRPC Session, on page 73

gRPC Operations

You can issue the following gRPC operations:

gRPC Operation Description

GetConfig Retrieves a configuration

GetModels Gets the supported Yang models on the router
MergeConfig Appends to an existing configuration
DeleteConfig Deletes a configuration

ReplaceConfig Modifies a part of an existing configuration
CommitReplace Replaces existing configuration with the new

configuration file provided

GetOper Gets operational data using JSON

CliConfig Invokes the CLI configuration
ShowCmdTextOutput Displays the output of show command
ShowCmdJSONOutput Displays the JSON output of show command

gRPC Operation to Get Configuration
This example shows how a gRPC GetConfig request works for LLDP feature.

The client initiates a message to get the current configuration of LLDP running on the router. The
router responds with the current LLDP configuration.

gRPC Request (Client to Router) gRPC Response (Router to Client)
rpc GetConfig {
{ "Cisco-I0S-XR-ethernet-1ldp-cfg:11dp": {
"Cisco-I0S-XR-ethernet-1ldp-cfg:11dp": ["timer": 60,
"11ldp": "running-configuration" "enable": true,
] "reinit": 3,
} "holdtime": 150
}
}

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

gRPC over UNIX Domain Sockets .

gRPC over UNIX Domain Sockets

Step 1

Table 5: Feature History Table

Feature Name Release Information Description

gRPC Connections over UNIX Release 7.5.1 This feature allows local containers and scripts
domain sockets for Enhanced on the router to establish gRPC connections
Security and Control over UNIX domain sockets. These sockets

provide better inter-process communication
eliminating the need to manage passwords for
local communications. Configuring
communication over UNIX domain sockets
also gives you better control of permissions
and security because UNIX file permissions
come into force.

This feature introduces the grpc
local-connection command.

You can use local containers to establish gRPC connections via a TCP protocol where authentication using
username and password is mandatory. This functionality is extended to establish gRPC connections over
UNIX domain sockets, eliminating the need to manage password rotations for local communications.

When gRPC is configured on the router, the gRPC server starts and then registers services such as gRPC
Network Management Interface and gRPC Network Operations Interface . After all the gRPC server
registrations are complete, the listening socket is opened to listen to incoming gRPC connection requests.
Currently, a TCP listen socket is created with the IP address, VRF, or gRPC listening port. With this feature,
the gRPC server listens over UNIX domain sockets that must be accessible from within the container via a
local connection by default. With the UNIX socket enabled, the server listens on both TCP and UNIX sockets.
However, if disable the UNIX socket, the server listens only on the TCP socket. The socket file is located at
/var/lib/docker/ems/grpc.sock directory.

The following process shows the configuration changes required to enable or disable gRPC over UNIX domain
sockets.

Configure the gRPC server.

Example:

Router (config) #grpe
Router (config-grpc) #local-connection
Router (config-grpc) #fcommit

To disable the UNIX socket use the following command.
Router (config-grpc) #no local-connection

The gRPC server restarts after you enable or disable the UNIX socket. If you disable the socket, any active gRPC sessions
are dropped and the gRPC data store is reset.

The scale of gRPC requests remains the same and is split between the TCP and Unix socket connections. The maximum
session limit is 256, if you utilize the 256 sessions on Unix sockets, further connections on either TCP or UNIX sockets
is rejected.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/75x/b-programmability-cg-8000-75x/m-grpc-session.html#Cisco_Task.dita_9b042157-1e36-4696-aaec-85f468528ba7
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/75x/b-programmability-cg-8000-75x/m-grpc-session.html#Cisco_Task.dita_9b042157-1e36-4696-aaec-85f468528ba7

. gRPC Network Management Interface

Step 2

Verify that the local-connection is successfully enabled.

Example:

Router#show grpc status
Thu Nov 25 16:51:30.382 UTC

*************************ShOw qRPC Status**********************

transport grpc
access—family tcp4
TLS enabled
trustpoint

listening-port 57400
local-connection enabled
max-request-per-user 10
max-request-total 128
max-streams 32
max-streams-per-user 32
vrf-socket-ns-path : global-vrf
min-client-keepalive-interval : 300

A gRPC client must dial into the socket to send connection requests.

The following is an example of a Go client connecting to UNIX socket:

const sockAddr =
"/var/lib/docker/ems/grpc.sock"

func UnixConnect (addr string, t time.Duration) (net.Conn, error)
unix addr, err := net.ResolveUnixAddr ("unix", sockAddr)
conn, err := net.DialUnix("unix", nil, unix addr)
return conn, err

func main() {

opts = append (opts, grpc.WithTimeout (time.Second*time.Duration (*operTimeout)))

YANG Data Models |

opts = append (opts, grpc.WithDefaultCallOptions (grpc.MaxCallRecvMsgSize (math.MaxInt32)))

opts = append (opts, grpc.WithDialer (UnixConnect))
conn, err := grpc.Dial (sockAddr, opts...)

gRPC Network Management Interface

gRPC Network Management Interface (gNMI) is a gRPC-based network management protocol used to modify,
install or delete configuration from network devices. It is also used to view operational data, control and
generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

configurations and stream telemetry data from network devices.

The subscription in a gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.

gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

| YANG Data Models
gNMI Wildcard in Schema Path .

gNMI Wildcard in Schema Path

Table 6: Feature History Table

Feature Name

Release Information

Description

Use gNMI Get Request With
Wildcard Key to Retrieve Data

Release 7.5.2

You use a gRPC Network
Management Interface (gNMI) cet

request with wildcard key to
retrieve the configuration and
operational data of all the elements
in the data model schema paths. In
earlier releases, you had to specify
the correct key to retrieve data. The
router returned a JSON error
message if the key wasn't specified
in a list node.

For more information about using
wildcard search in gNMI requests,
see the Github repository.

gNMI protocol supports wildcards to indicate all elements at a given subtree in the schema. These wildcards
are used for telemetry subscriptions or gNMI cet requests. The encoding of the path in gNMI uses a structured
format. This format consists of a set of elements such as the path name and keys. The keys are represented as
string values, regardless of their type within the schema that describes the data. gNMI supports the following
options to retrieve data using wildcard search:

* Single-level wildcard: The name of a path element is specified as an asterisk (*). The following sample
shows a wildcard as the key name. This operation returns the description for all interfaces on a device.

path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "*"
}
}
elem {
name: “config"
}
elem {
name: "description"

}
}

» Multi-level wildcard: The name of the path element is specified as an ellipsis (...). The following
example shows a wildcard search that returns all fields with a description available under /interfaces
path.

path {
elem {

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md

YANG Data Models |
. gNMI Wildcard in Schema Path

name: "interfaces"
}
elem {
name: "..."
}
elem {
name: "description"

Example: gNM | Get Request with Unique Path to a L eaf

The following is a sample cet request to fetch the operational state of GigabitEthernet0/0/0/0
interface in particular.

path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""
>
>
elem: <
name: "state"
>
>

type: OPERATIONAL
encoding: JSON_IETF

The following is a sample Get response:

notification: <
timestamp: 1597974202517298341

update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""
>
>
elem: <
name: "state"
>
>
val: <

json_ietf val: im-state-admin-down
>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models
gNMI Wildcard in Schema Path .

>
>
error: <
>

Example: gNM| Get Request Without a Key Specified in the Schema Path

The following is a sample cet request to fetch the operational state of all interfaces.

path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
>
elem: <
name: "state"
>
>

type: OPERATIONAL
encoding: JSON_ IETF

The following is a sample Get response:

path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
>
elem: <
name: "state"
>
>

type: OPERATIONAL

encoding: JSON_ IETF
notification: <
timestamp: 1597974202517298341

update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <

key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. gNMI Wildcard in Schema Path

elem: <
name: "state"
>
>
val: <
json_ietf val: im-state-admin-down
>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/1\""
>
>
elem: <
name: "state"
>
>
val: <
json_ietf val: im-state-admin-down
>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"
>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/2\""
>
>
elem: <
name: "state"
>
>
val: <
json_ietf val: im-state-admin-down
>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"
>
elem: <
name: "interface-xr"

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

>

gNMI Bundling of Telemetry Updates .

elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"MgmtEthO/RP0/CPUQ/0\""
>
>
elem: <
name: "state"
>
>
val: <

json_ietf val: im-state-admin-down

>

gNMI Bundling of Telemetry Updates

Table 7: Feature History Table

Feature Name

Release
Information

Description

gNMI Bundling
Enhancement

Size Release 7.8.1

With gRPC Network Management Interface (gNMI) bundling,
the router internally bundles multiple gNMI update messages
meant for the same client into a single gNMI Notification
message and sends it to the client over the interface.

You can now optimize the interface bandwidth utilization by
accommodating more gNMI updates in a single notification
message to the client. We have now increased the gNMI

bundling size from 32768 to 65536 bytes, and enabled gNMI
bundling size configuration through Cisco native data model.

Prior releases allowed only a maximum bundling size of
32768 bytes, and you could configure only through CLI.

The feature introduces new XPaths to the
Cisco—IOS—XR—telemetry—model—driven—cfg.yang(ﬁSCO
native data model to configure gNMI bundling size.

To view the specification of gNMI bundling, see Github
repository.

To send fewer number of bytes over the gNMI interface, multiple gNMI update messages pertained to the
same client are bundled and sent to the client to achieve optimized bandwidth utilization.

The router internally bundles multiple gNMI update messages in a single gNMI Notification message of
gNMI subscribeResponse message. Cisco IOS XR software Release 7.8.1 supports gNMI bundling size up

to 65536 bytes.

Router bundles multiple instances of the same client. For example, a router bundles interfaces
MgmtEth0/RP0/CPU0/0, FourHundredGigE0/0/0/0, FourHundredGigE0/0/0/1, and so on, of the following

path.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates

YANG Data Models |
. Configure gNMI Bundling Size

® Cisco-I0S-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters

Router does not bundle messages of different client in a single gNMI Notification message. For example,
® Cisco-I0S-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters

®* Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/protocols

Data under the container of the client path cannot be split into different bundles.

The gNMI notification message contains a timestamp at which an event occurred or a sample is taken. The
bundling process assigns a single timestamp for all bundled update values. The notification timestamp is the
first message of the bundle.

N

Note * ON-CHANGE subscription mode does not support gNMI bundling.

* Router does not enforce bundling size in the following scenarios:

+ At the end of (N-1) message processing, if the notification message size is less than the configured
bundling size, router allows one extra instance which could result in exceeding the bundling size.

* Data of a single instance exceeding the bundling size.

» The XPath: network-instances/network-instance/afts does not support bundling.

Configure gNMI Bundling Size

gNMI bundling is disabled by default and the default bundling size is 32,768 bytes. gNMI bundling size ranges
from 1024 to 65536 bytes. Prior to Cisco IOS XR software Release 7.8.1 the range was 1024 to 32768 bytes.
You can enable gNMI bundling to all gNMI subscribe sessions and specify the bundling size.

Configuration Example

This example shows how to enable gNMI bundling and configure bundling size.

Router# configure

Router (config) # telemetry model-driven
Router (config-model-driven) # gnmi
Router (config-gnmi) # bundling

Router (config-gnmi-bdl) # size 2000
Router (config-gnmi-bdl) # commit

Running configuration

This example shows the running configuration of gNMI bundle.

Router# show running-config
telemetry model-driven

gnmi

bundling

size 2000

|

|
|

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models
Replace Router Configuration at Sub-tree Level Using gNMI .

Replace Router Configuration at Sub-tree Level Using gNMI

Table 8: Feature History Table

Feature Name Release Information | Description

Replace Router Release 7.8.1 Using the gNMI setRequest message, you can replace
Configuration at Sub-tree the router's existing configuration with a new set of
Level Using gNMI configurations at the subtree level within the same model.

Earlier you could replace router configurations at the
data tree root level.

To view the specification of gNMI replace, see Github
repository.

The gNMI replace feature replaces the existing configuration on the router with the new configuration using
a setRequest RPC message. It allows you to specify a path (a structured format for path elements, and any
associated key values) as the root prompt to perform a replace operation. Cisco IOS XR software Release
7.8.1 supports subtree-level replace operation. Prior to this release replace operation was performed at
datatree-level.

Replace operation either includes all the path elements which are defined under the root or only few of them.
If the omitted path elements are configured with default values, they are reverted to its default values during
the replace operation. If the omitted path elements are not configured with default values, they are deleted
from the data tree during the replace operation, and returned to its original unconfigured state. Consider the
following example:

In the following data tree schema, b has a default value of true and c has no default value. Both b and c are
sct as False.

root +
|
+a —-+
| |
| +-- Db
| |
[+-- ¢
|
|
+ d --+
+-- e
|
+-- f

When a replace operation is performed with e and £ as set, and all other elements are omitted, b is reverted
to its default setting true, and c is deleted from the tree, and returned to its original unconfigured state.

Following example shows the setrRequest and setResponse of gNMI replace operation.

gNMI Replace Example

This example shows the gNMI replace request and response messages.

Request Message:
replace: <
path: <
elem: <

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

. gRPC Network Operations Interface

name: "system"
>
elem: <
name: "config"
>
elem: <
name: "hostname"
>
>
val: <

json_ietf val: "\"testingl23\""

>
>

Response Message:

path: <
elem: <
name: "system"
>
elem: <
name: "config"
>
elem: <
name: "hostname"

>
>
op: REPLACE
>
message: <
>

timestamp: 1662873319202107537

gRPC Network Operations Interface

gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing

operational commands on network devices. These services are to be used in conjunction with gRPC network
management interface (gNMI) for all target state and operational state of a network. gNOI uses gRPC as the
transport protocol and the configuration is same as that of gRPC. For more information about gNOI, see the

Github repository.

gNOI RPCs

YANG Data Models |

To send gNOI RPC requests, you need a client that implements the gNOI client interface for each RPC.

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gNOI OpenConfig
proto files are located in the Github repository.

Table 9: Feature History Table

Feature Name

Release Information

Description

gNOI MPLS Proto

Release 7.5.4

The RPCs defined in the proto file can be used
to perform Multiprotocol Label Switching
(MPLS) operations on the router.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi

| YANG Data Models
gnoirees I

Feature Name Release Information | Description

gNOI OS Proto Release 7.9.1 The RPCs defined in the proto file can be used
to install the software, activate the software
version and verify that the installation is
successful.

gNOI System Proto Release 7.8.1 You can now avail the services of cancelReboot
to terminate outstanding reboot request, and
Killprocess RPCs to restart the process on
device.

gNOI supports the following remote procedure calls (RPCs):

System RPCs

The RPCs are used to perform key operations at the system level such as upgrading the software, rebooting
the device, and troubleshooting the network. The system.proto file is available in the Github repository.

RPC Description
Reboot Reboots the target. The router supports the following reboot
options:

* COLD = 1; Shutdown and restart OS and all hardware
* POWERDOWN = 2; Halt and power down

*« HALT = 3; Halt

* POWERUP = 7; Apply power

RebootStatus Returns the status of the target reboot.

SetPackage Places a software package including bootable images on the
target device.

Ping Pings the target device and streams the results of the ping
operation.
Traceroute Runs the traceroute command on the target device and streams

the result. The default hop count is 30.

Time Returns the current time on the target device.

SwitchControlProcessor Switches from the current route processor to the specified route
processor. If the target does not exist, the RPC returns an error
message.

CancelReboot Cancels any pending reboot request.

KillProcess Stops an OS process and optionally restarts it.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/openconfig/gnoi/blob/main/system/system.proto

Bl onoirees

File RPCs

YANG Data Models |

The RPCs are used to perform key operations at the file level such as reading the contents if a file and its
metadata. The file.proto file is available in the Github repository.

RPC

Description

Get

Reads and streams the contents of a file from the target device.
The RPC streams the file as sequential messages with 64 KB of
data.

Remove

Removes the specified file from the target device. The RPC
returns an error if the file does not exist or permission is denied
to remove the file.

Stat

Returns metadata about a file on the target device.

Put

Streams data into a file on the target device.

TransferToRemote

Transfers the contents of a file from the target device to a
specified remote location. The response contains the hash of the
transferred data. The RPC returns an error if the file does not
exist, the file transfer fails or an error when reading the file. This
is a blocking call until the file transfer is complete.

Certificate Management (Cert) RPCs

The RPCs are used to perform operations on the certificate in the target device. The cert.proto file is available

in the Github repository.

RPC Description

Rotate Replaces an existing certificate on the target device by creating
anew CSR request and placing the new certificate on the target
device. If the process fails, the target rolls back to the original
certificate.

Install Installs a new certificate on the target by creating a new CSR
request and placing the new certificate on the target based on
the CSR.

GetCertificates Gets the certificates on the target.

RevokeCertificates Revokes specific certificates.

CanGenerateCSR Asks a target if the certificate can be generated.

LoadCertificateAuthorityBundle Loads a bundle of CA certificates on the target. This CA
certificate bundle is used to verify the client certificate when
mutual TLS is enabled.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/openconfig/gnoi/blob/main/file/file.proto
https://github.com/openconfig/gnoi/blob/main/cert/cert.proto

| YANG Data Models

gnoirees I

Interface RPCs

The RPCs are used to perform operations on the interfaces. The interface.proto file is available in the Github
repository.

RPC Description

SetLoopbackMode Sets the loopback mode on an interface.

GetLoopbackMode Gets the loopback mode on an interface.

ClearInterfaceCounters Resets the counters for the specified interface.

Layer2 RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The layer 2.proto file is available in the Github repository.

Feature Name Description

ClearLLDPInterface Clears all the LLDP adjacencies on the specified interface.

BGP RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The bgp.proto file is available in the Github repository.

Feature Name Description

Clears a BGP session.

ClearBGPNeighbor

Diagnostic (Diag) RPCs

The RPCs are used to perform diagnostic operations on the target device. You assign each bit error rate test
(BERT) operation a unique ID and use this ID to manage the BERT operations. The diag.proto file is available
in the Github repository.

Feature Name Description

StartBERT Starts BERT on a pair of connected ports between devices in
the network.

StopBERT Stops an already in-progress BERT on a set of ports.

GetBERTResult Gets the BERT results during the BERT or after the operation
is complete.

MPLS RPCs

The RPCs are used to perform MPLS operations on the target device. The mpls.proto file is available in the
Github repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/openconfig/gnoi/blob/cc419f3696d3a6d3e1a3999b75c51231b4773ace/interface/interface.proto
https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto
https://github.com/openconfig/gnoi/blob/main/bgp/bgp.proto
https://github.com/openconfig/gnoi/blob/main/diag/diag.proto
https://github.com/openconfig/gnoi/blob/main/mpls/mpls.proto

Bl onoirees

YANG Data Models |

Feature Name Description
MPLSPing Checks basic connectivity using MPLS ping operation. See RFC
4379.

In Cisco IOS XR Release 7.5.4, the RPC supports 1dp_fec and
rsvpte_ 1sp name destination types. The destination types
fec129 pwe and rsvpte 1sp are not supported.

ClearLSP Clears a single tunnel.
ClearLSPCounters Clears the MPLS counters for the specified Label Switched Path
(LSP).

Operating System (0S) RPCs

The OS service provides an interface for the OS installation on a target device. The RPCs replace the router
software to upgrade the system. No concurrent installation is allowed on the same target. The os.proto file is
available in the Github repository.

Feature Name Description
Install Transfers an OS package onto the target.
Note Only Golden ISO installation is supported; RPM

installation is not supported.

Activate Sets the requested OS version as the version that is used at the
next reboot. If booting up the requested OS version fails, the
system recovers by rolling back to the previously running OS
package.

Verify Verifies the running OS version.

gNOI RPCs

The following examples show the representation of few gNOI RPCs:
Get RPC

Streams the contents of a file from the target.

RPC to 10.105.57.106:57900
RPC start time: 20:58:27.513638

RPC start time: 20:58:27.513668
remote file: "harddisk:/giso image repo/test.log"
RPC end time: 20:58:27.518413

contents: "GNOI \n\n"

hash {
method: MD5

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/openconfig/gnoi/blob/main/os/os.proto

| YANG Data Models

hash: "D\002\375h\237\322\024\341\370\3619k\310\333\016\343"
}

Remove RPC

Remove the specified file from the target.

RPC to 10.105.57.106:57900

RPC start time: 21:07:57.089554

————————————————————— File Remove Request-—-——-----———-—--——————-—-
remote file: "harddisk:/sample.txt"

RPC end time: 21:09:27.796217
File removal harddisk:/sample.txt successful

Reboot RPC
Reloads a requested target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536

RPC start time: 21:12:49.811561
method: COLD
message: "Test Reboot"

subcomponents {

origin: "openconfig-platform"
elem {

name: "components"

}

elem {

name: "component"

key {

key: "name"
value: "O/RPO"

elem {
name: "state"

elem {
name: "location"

RPC end time: 21:12:50.023604
Set Package RPC

Places software package on the target.

RPC to 10.105.57.106:57900

RPC start time: 21:12:49.811536

————————————————————— Set Package Request--—--—---—--—--—-—-—-—-—-
RPC start time: 15:33:34.378745

Sending SetPackage RPC

package {

filename: "harddisk:/giso image repo/<platform-version>-giso.iso"

activate: true

}
method: MD5

gnoirees I

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Bl onoirees

hash: "C\314\207\354\217\270=\021\341y\355\240\274\003\034\334"
RPC end time: 15:47:00.928361

Reboot Status RPC

Returns the status of reboot for the target.

RPC to 10.105.57.106:57900
RPC start time: 22:27:34.209473

subcomponents {

origin: "openconfig-platform"
elem {

name: "components"

}

elem {

name: "component"

key {

key: "name"
value: "O/RPO"
}

}

elem {

name: "state"

}

elem

name: "location"

RPC end time: 22:27:34.319618

Active : False

Wait : O

When : O

Reason : Test Reboot
Count : O

CancelReboot RPC

Cancels any outstanding reboot

Request

CancelRebootRequest
subcomponents {

origin: "openconfig-platform"
elem {

name: "components"

}

elem {

name: "component"

key {

key: "name"

value: "0/RPO/CPUO"
}

}

elem {

name: "state"

elem {
name: "location"

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

YANG Data Models |

| YANG Data Models

CancelRebootResponse

(rhel7-22.24.10) -bash-4.25S

KillProcess RPC

gRPC Network Security Interface .

Kills the executing process. Either a PID or process name must be specified, and a termination signal

must be specified.

KillProcessRequest
pid: 3451
signal: SIGNAL TERM

KillProcessResponse
-bash-4.2$

gRPC Network Security Interface

Table 10: Feature History Table

Feature Name

Release Information

Feature Description

gRPC Network Security Interface

Release 7.11.1

This release implements
authorization mechanisms to
restrict access to gRPC applications
and services based on client
permissions. This is made possible
by introducing an authorization
protocol buffer service for gRPC
Network Security Interface (gNSI).

Prior to this release, the gRPC
services in the gNSI systems could
be accessed by unauthorized users.

This feature introduces the
following change:

CLI:

* gnsi load service
authorization policy

« show gnsi service
authorization policy

To view the specification of gNSI,
see Github repository.

gRPC Network Security Interface (gNSI) is a repository which contains security infrastructure services
necessary for safe operations of an OpenConfig platform. The services such as authorization protocol buffer

manage a network device's certificates and authorization policies.

This feature introduces a new authorization protocol buffer under gRPC gNSI. It contains gNSI.authz policies
which prevent unauthorized users to access sensitive information. It defines an API that allows the configuration

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp2880688975
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp2880688975
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp1432758676
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp1432758676
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates

YANG Data Models |

. gRPC Network Security Interface

of the RPC service on a router. It also controls the user access and restricts authorization to update specific
RPCs.

By default, gRPC-level authorization policy is provisioned using Secure ZTP. If the router is in zero-policy
mode that is, in the absence of any policy, you can use gRPC authorization policy configuration to restrict
access to specific users. The default authorization policy at the gRPC level can permit access to all RPCs
except for the gNSl.authz RPCs.

If there is no policy specified or the policy is invalid, the router will fall back to zero-policy mode, in which
the default behavior allows access to all gRPC services to all the users if their profiles are configured. If an
invalid policy is configured, you can revert it by loading a valid policy using exec command gnsi load service
authorization policy. For more information on how to create user profiles and update authorization policy
for these user profiles, see How to Update gRPC-Level Authorization Policy, on page 64. Using show gnsi
service authorization policy command, you can see the active policy in a router.

We have introduced the following commands in this release :

* gnsi load service authorization policy: To load and update the gRPC-level authorization policy in a
router.

« show gnsi service authorization policy: To see the active policy applied in a router.

\}

Note
configured, then tls trsutpoint's data is considered for certificate management.

When both gNSI and gNOI are configured, gNSI takes precedence over gNOL. If niether gNSI nor gNOI is

The following RPCs are used to perform key operations at the system level such as updating and displaying
the current status of the authorization policy in a router.

Table 11: Operations

RPC Description

gNSlauthz.Rotate() | Updates the gRPC-level authorization policy.

gNSl.authz.Probe() | Verifies the authenticity of a user based on the defined policy of the gRPC-level
authorization policy engine.

gNSlLauthz.Get() | Shows the current instance of the gRPC-level authorization policy, including the version
and date of creation of the policy.

gRPC Authentication Modes

gRPC supports the following authentication modes to secure communication between clients and servers.
These authentication modes help ensure that only authorized entities can access the gRPC services, like gNOI,
gRIBI, and P4RT. Upon receiving a gRPC request, the device will authenticate the user and perform various
authorization checks to validate the user.

The following table lists the authentication type and configuration requirements:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/b-setup-and-upgrade-cisco8k/secure-ztp.html

| YANG Data Models

gRPC Network Security Interface .

Table 12: Types of Authentication with Configuration

Type Authentication Authorization Configuration Requirement From
Method Method Requirement Client
Metadata with TLS |username, password | username grpc username, password,
and CA
Metadata without | username, password | username grpc no-tls username, password
TLS
Metadata with username, password | username grpc tlsmutual username, password,
Mutual TLS client certificate,
client key, and CA
Certificate based client certificate's | username from grpc tlsmutual client certificate,
Authentication common name field | client certificate's and client key, and CA
common name field
grpc certificate
authentication

)

Note For clients to use the certificates and ensure to copy the certificates from /misc/config/gr pc/

In Extensible Manageability Services (EMS) gRPC, the certificates play a vital role in ensuring secure and
authenticated communication. The EMS gRPC utilizes the following certificates for authentication:
/misc/config/grpc/ems.pem

/misc/config/grpc/ems.key
/misc/config/grpc/ca.cert

Generation of Certificates:

These certificates are typically generated using a Certificate Authority (CA) by the device. The EMS certificates,
including the server certificate (ems.pem), public key (ems.key), and CA certificate (ca.cert), are generated
with specific parameters like the common name ems.cisco.com to uniquely identify the EMS server and
placed in the /misc/config/grpc/ location.

The default certificates that are generated by the server are Server-only TLS certificates and by using these
certificates you can authenticate the identity of the server.

Usage of Certificates:

These certificates are used for enabling secure communication through Transport Layer Security (TLS) between
gRPC clients and the EMS server. The client should use ems.pem and ca.cert to initiate the TLS authentication.

To update the certificates, ensure to copy the new certificates that has been generated earlier to the location
and restart the server.

Custom Certificates:

If you want to use your own certificates for EMS gRPC communication, then you can follow a workflow to
generate a custom certificates with the required parameters and then configure the EMS server to use these
custom certificates. This process involves replacing the default EMS certificates with the custom ones and
ensuring that the gRPC clients also trust the custom CA certificate. For more information on how to customize
the common-name, see Certificate Common-Name For Dial-in Using gRPC Protocol.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. How to Use Different Types of Authentication

For more information about configuring AAA authorization, see the System Security Configuration Guide.

How to Use Different Types of Authentication

Use any one of the following configuration step to authenticate any gRPC service.

\}

Note Typically, gRPC clients include the username and password in the gRPC metadata fields.

Step 1 Metadata with TLS

Example:

Router#config
Router (config) #grpe
Router (config-grpc) #commit

Step 2 Metadata without TLS

Example:

Router#config

Router (config) #grpc

Router (config-grpc) #no-tls
Router (config-grpc) #commit

Step 3 Metadata without Mutual TLS

Example:

Router#config

Router (config) #grpe

Router (config-grpc) #tls-mutual
Router (config-grpc) fcommit

Step 4 Certificate based Authentication

Example:

Router (config) #grpe

Router (config-grpc) #tls-mutual

Router (config-grpc) #certificate-authentication
Router (config-grpc) #commit

How to Update gRPC-Level Authorization Policy

gRPC-level authorization policy is configured by default at the time of router deployment using secure ZTP.
You can update the same gRPC-level authorization policy using any of two the following methods:

* Using gNSI Client.

* Using exec command.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models
How to Update gRPC-Level Authorization Policy .

Updating the gRPC-Level Authorization Policy in the Router Using gNSI Client
Before you start
When a router boots for the first time, it should have the following prerequisites:
* The gNSI.authz service is up and running.
* The default gRPC-level authorization policy is added for all gRPC services.

* The default gRPC-level authorization policy allows access to all RPCs.

The following steps are used to update the gRPC-level authorization policy:

1. Initiate the gNSl.authz.Rotate() streaming RPC. This step creates a streaming connection between the
router and management application (client).

\}

Note Only one gnST.authz.Rotate () must be in progress at a time. Any other RPC request is rejected by the
server.

2. The client uploads new gRPC-level authorization policy using the UploadRequest message.

\}

Note * There must be only one gRPC-level authorization policy in the router. All the policies must be defined
in the same gRPC-level authorization policy which is being updated. As gNST.authz.Rotate () method
replaces all previously defined or used policies once the finalize message is sent.

* The upgrade information is passed to the version and the created on fields. These information are not
used by the gNSl.authz service. It is designed to help you to track the active gRPC-level authorization
policy on a particular router.

The router activates the gRPC-level authorization policy.
The router sends the Uploadresponse message back to the client after activating the new policy.

The client verifies the new gRPC-level authorization policy using separate gNSI.authz.Probe() RPCs.

o o~ w

The client sends the FinalizeRequest message, indicating the previous gRPC-level authorization policy
is replaced.

\)

Note It is not recommended to close the stream without sending the finalize message. It results in the abandoning
of the uploaded policy and rollback to the one that was active before the gNsI.authz.Rotate () RPC started.

Below is an example of a gRPC-level authorization policy that allows admins, V1,V2,V3 and V4, access to
all RPCs that are defined by the gNSI.ssh interface. All the other users won't have access to call any of the

gNSl.ssh RPCs:

{
"version": "version-1",
"created_on": "1632779276520673693",
"policy": {

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |

How to Update gRPC-Level Authorization Policy

"name": "gNSI.ssh policy",
"allow_rules": [{
"name": "admin-access",
"source": {

"principals": [
"spiffe://company.com/sa/vV1l",
"spiffe://company.com/sa/va2"

]

}I
"request": {
"paths": [

"/gnsi.ssh.Ssh/*"
]
}
11y

"deny rules": [{

"name": "sales-access",
"source": {
"principals": [

"spiffe://company.com/sa/V3",
"spiffe://company.com/sa/v4"
]
}I
"request": {
"paths": [
"/gnsi.ssh.Ssh/MutateAccountCredentials",
"/gnsi.ssh.Ssh/MutateHostCredentials"

Updating the gRPC-Level Authorization Policy file Using Exec Command

Use the following steps to update the authorization policy in the router.

1.

Create the users profiles for the users who need to be added in the authorization policy. You can skip this
step if you have already defined the user profiles.

The following example creates three users who are added in the authorization policy.

Router (config) #fusername V1
Router (config-un) #group root-1lr
Router (config-un) #group cisco-support
Router (config-un) #secret x
Router (config-un) fexit

Router (config) #fusername V2
Router (config-un) #group root-lr
Router (config-un) #password x
Router (config-un) fexit

Router (config) fusername V3
Router (config-un) #group root-1lr
Router (config-un) #password x
Router (config-un) #commit

Enable tlssmutual to establish the secure mutual between the client and the router.

Router (config) #grpe
Router (config-grpc) #port 0
Router (config-grpc) #tls-mutual

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

YANG Data Models
How to Update gRPC-Level Authorization Policy .

Router (config-grpc) #certificate-authentication
Router (config-grpc) #commit

3. Define the gRPC-level authorization policy.

The following sample gRPC-level authorization policy defines authorization policy for the users V1, V2
and V3.

"name": "authz",
"allow_rules": [
{
"name": "allow all gNMI for all users",
"source": {
"principals": [
wxn
]
}I
"request": {
"paths": [

nwkn

]

:II
"deny rules": [
{
"name": "deny gNMI set for oper users",
"source": {
"principals": [
nyn
]
}I
"request": {
"paths": [
"/gnmi.gNMI/Get".
]

}I

"name": "deny gNMI set for oper users",
"source": {
"principals": [
IIV2 "
]
}I
"request": {
"paths": [
"/gnmi.gNMI/Get"
]

"name": "deny gNMI set for oper users",
"source": {
"principals": [
IIV3 "
]
}I
"request": {
"paths": [
"/gnmi.gNMI/Set"

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. How to Update gRPC-Level Authorization Policy

4. Copy the gRPC-level authorization policy to the router.
The following example copies the gNSI Authz policy to the router:

-bash-4.2$ scp test.json V1Q@192.0.2.255:/disk0:/
Password:
test.json
100% 993 161.4KB/s 00:00
-bash-4.2$

5. Activate the gRPC-level authorization policy to the router.

The following example loads the policy to the router.

Router (config) #gnsi load service authorization policy /disk0:/test.json
Successfully loaded policy

Verification

YANG Data Models |

Use the show gnsi service authorization policy to verify if the policy is active in the router.

Router#show gnsi service authorization policy
Wed Jul 19 10:56:14.509 UTC({

"version": "1.0",
"created on": 1700816204,
"policy": {

"name": "authz",

"allow_rules": [
{
"name": "allow all gNMI for all users",
"request": {
"paths": [
wxm
]
}!
"source": {
"principals": [

LR

]

]!
"deny rules": [
{
"name": "deny gNMI set for oper users",
"request": {
"paths": [
"/gnmi.gNMI/*"
]
}!

"source": {
"principals": [
"Userl"

]

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models
How to Update gRPC-Level Authorization Policy .

}

In the following example, Userl user tries to access the get RPC request for which the permission is denied
in the above authorization policy.

bash-4.2$./gnmi_cli -address 198.51.100.255 -ca_crt
certs/certs/ca.cert -client crt certs/certs/Userl.pem -client_key
certs/certs/Userl.key -server name ems.cisco.com -get -proto get-oper.proto

Output

E0720 14:49:42.277504 26473 gnmi cli.go:195]

target returned RPC error for Get ("path:{origin:"openconfig-interfaces"
elem: {name:"interfaces"}

elem: {name:"interface" key:{key:"name" value:"HundredGigE0/0/0/0"}}}
type:OPERATIONAL encoding:JSON IETE"):

rpc error: code = PermissionDenied desc = unauthorized RPC request rejected

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. P4Runtime

P4Runtime

Table 13: Feature History Table

YANG Data Models |

Feature Name

Release Information

Description

P4Runtime to Manage Traffic
Operations

Release 7.10.1

With this release, the router supports
Programming Protocol-Independent Packet
Processors Runtime (P4), a gRPC-based
service, to program the data plane elements
for network operations such as sending and
receiving packets between the router and the
P4Runtime controller using packet I/O
messages.

This feature introduces the following
commands:

CLI:
* grpc péart
* grpc p4rt interface
* grpc p4rt location
« show p4rt devices
* show p4rt interfaces
* show pdrt state
* show p4rt stats

* show p4rt trace

YANG Data M odd!:

openconfig-part.yang OpenConfig data
model (see GitHub, YANG Data Models
Navigator)

P4Runtime is a control plane specification to manage the data plane elements of a device. It defines the
navigation and management of packets through data plane blocks using P4Runtime APIs. These blocks can
be managed to perform the following set of traffic operations between the PARuntime controller and the router:

* Send or receive packets using PacketOut and PacketIn I/O messages—streamMessageRequest,

StreamMessageResponse and StreamError messages.

* Elect the primary controller using the MasterArbitrationUpdate message.

* Read and write forwarding table entries, protocol headers, counters, and other P4 entities.

For more information about how controllers can connect to the router and program P4-defined functionalities,

see PART specification.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp2834182384
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp1661347182
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3885356267
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp1706537545
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp5368063180
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp1454069690
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp2726290155
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp3294843104
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120.html

| YANG Data Models
Configure gRPC Service-Level Port .

Configure gRPC Service-Level Port

To configure a default listening port for the gRPC services such as gNMI, gRIBI, and P4RT, use the respective
service command (gnmi, gribi, or p4rt) under the gRPC configuration mode.

To specify a port number for gNMI, gRIBI, and PART services within the defined range, use the port command
under respective submodes.

)

Note The allowed ports within this range are 9339, 9340, 9559 (IANA ratified ports) and 57344-57999 (Linux
application port range).

Configure the port number for a service.
The following examples displays the service-level port configurations.
» For gNMI service:

This configuration creates a gRPC listener with the default or IANA ratified gNMI port of 9339.

Router (config-grpc) #gnmi
Router (config-grpc—-gnmi) #commit

Verify the listening port created for gNMI service.

Router#show running-config grpc
grpc

gnmi
!

The port command under gNMI submode allows the port to be modified in the port range or IANA ratified port.

Router (config-grpc) #gnmi
Router (config-grpc-gnmi) #port 9339
Router (config-grpc-gnmi) #commit

Verify the port number.

Router#show running-config grpc
grpc
gnmi

port 9339
|

For P4RT service:

This configuration creates a gRPC listener with the default or IANA ratified PART port of 9559.

Router (config-grpc) #pdrt
Router (config-grpc-p4rt) fcommit

Verify the listening port created for PART service.
Router#show running-config grpc
grpc

pdrt

|

The port command under P4RT submode allows the port to be modified in the port range or IANA ratified port.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Configure gRPC Service-Level Port

Router (config-grpc) #p4drt
Router (config-grpc-p4rt) #port 9559
Router (config-grpc-p4rt) fcommit

Verify the port number.

Router#show running-config grpc
grpc
pdrt

port 9559
1

For gRIBI service:

This configuration creates a gRPC listener with the default or IANA ratified gRIBI port of 9340.

Router (config-grpc) #gribi
Router (config-grpc-gribi) #commit

Verify the listening port created for gRIBI service.

Router#show running-config grpc
grpc

gribi
!

The port command under gRIBI submode allows the port to be modified in the port range or IANA ratified port.

Router (config-grpc) #gribi
Router (config-grpc-gribi) #port 9340
Router (config-grpc-gribi) #commit

Verify the port number.
Router#show running-config grpc
grpc
gribi
port 9340

Unconfiguring the port command in a service
and
Unconfiguring a service under gRPC
* Unconfiguring the port command will result in using the default port for the respective service.
Example:

Unconfiguring the port command will result in gNMI service using the default gNMI port.

Router (config-grpc) #gnmi
Router (config-grpc-gnmi) #no port
Router (config-grpc-gnmi) #fcommit

Verify the service port configuration.
Router#show running-config grpc
grpc

gnmi
1

* Unconfiguring a service will remove the listener for the respective port and no requests will be accepted on that
port.

Example:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models
Configure Interfaces Using Data Models in a gRPC Session .

Unconfiguring gNMI will disable requests on port 9339.

Router (config-grpc) #no gnmi
Router (config-grpc-gnmi) #commit

Verify the port configuration.

Router#show running-config grpc
grpc
!

Configure Interfaces Using Data Models in a gRPC Session

Google-defined remote procedure call () is an open-source RPC framework. gRPC supports IPv4 and IPv6
address families. The client applications use this protocol to request information from the router, and make
configuration changes to the router.

The process for using data models involves:

* Obtain the data models.
* Establish a connection between the router and the client using gRPC communication protocol.

* Manage the configuration of the router from the client using data models.

N

Note Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

In this section, you use native data models to configure loopback and ethernet interfaces on a router using a
gRPC session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER?2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Configure Interfaces Using Data Models in a gRPC Session

Figure 5: Network Topology for gRPC session

YANG Data Models |

Controller Out-of-band network
i oocc
3
198.18.1.127/24
v
198.18.1.11/24 198.18.1.111/24 198.18.1.112/24 198.18.1.12/24
% g0/0/0/0 % go/0/0f2 % g0/0/0/0 %
172.16.1.0/31 172.16.2.4/31 172.16.2.0/31
LER1 LSR1 LSR2 LER2
lo0 lo0 100 loD
172.16.255.1/32 172.16.255.101/32 172.16.255.102/32 172.16.255.2/32
g0/
172.16.1.2/31 g0/0/0A .
=1
172.16.2.2/31 g

You use Cisco IOS XR native model cisco-10S-XR-ifmgr-cfg.yang to programmatically configure router

LERI.

Before you begin

* Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information

* Configure Transport Layer Security (TLS). Enabling gRPC protocol uses the default HTTP/2 transport
with no TLS. gRPC mandates AAA authentication and authorization for all gRPC requests. If TLS is
not configured, the authentication credentials are transferred over the network unencrypted. Enabling
TLS ensures that the credentials are secure and encrypted. Non-TLS mode can only be used in secure

internal network.

Step 1 Enable gRPC Protocol

To configure network devices and view operational data, gRPC proptocol must be enabled on the server. In this example,

you enable gRPC protocol on LER1, the server.

Note

a) Enable gRPC over an HTTP/2 connection.
Example:
Router#configure

Router (config) #grpc
Router (config-grpc) #port <port-number>

Cisco IOS XR 64-bit platforms support gRPC protocol. The 32-bit platforms do not support gRPC protocol.

The port number ranges from 57344 to 57999. If a port number is unavailable, an error is displayed.

b) Set the session parameters.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

Step 2

Configure Interfaces Using Data Models in a gRPC Session .

Example:

Router (config) #grpc {address-family | certificate-authentication | dscp | max-concurrent-streams
| max-request-per-user | max-request-total | max-streams |

max-streams-per-user | no-tls | tlsvl-disable | tls-cipher | tls-mutual | tls-trustpoint |

service-layer | vrf}

where:

* address-family: set the address family identifier type.

certificate-authentication: enables certificate based authentication

dscp: set QoS marking DSCP on transmitted gRPC.
* max-request-per-user: set the maximum concurrent requests per user.
* max-request-total: set the maximum concurrent requests in total.

* max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription limit is 128
requests. The default is 32 requests.

* max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum subscription
limit is 128 requests. The default is 32 requests.

no-tls: disable transport layer security (TLS). The TLS is enabled by default

tlsvl-disable: disable TLS version 1.0

service-layer: enable the grpc service layer configuration.

This parameter is not supported in Cisco ASR 9000 Series Routers, Cisco NCS560 Series Routers, , and Cisco
NCS540 Series Routers.

tls-cipher: enable the gRPC TLS cipher suites.

tls-mutual: set the mutual authentication.

* tls-trustpoint: configure trustpoint.

server-vrf: enable server vrf.
After gRPC is enabled, use the YANG data models to manage network configurations.

Configure the interfaces.

In this example, you configure interfaces using Cisco IOS XR native model cisco-10S-XR-ifmgr-cfg.yang. You gain
an understanding about the various gRPC operations while you configure the interface. For the complete list of operations,
see gRPC Operations, on page 44. In this example, you merge configurations with merge-config RPC, retreive operational
statistics using get-oper RPC, and delete a configuration using delete-config RPC. You can explore the structure of

the data model using YANG validator tools such as pyang.

LERI1 is the gRPC server, and a command line utility grpcc is used as a client on the controller. This utility does not
support YANG and, therefore, does not validate the data model. The server, LER1, validates the data mode.

Note The OC interface maps all IP configurations for parent interface under a VLAN with index 0. Hence, do not
configure a sub interface with tag 0.

a) Explore the XR configuration model for interfaces and its [Pv4 augmentation.

Example:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/mbj4668/pyang

YANG Data Models |
. Configure Interfaces Using Data Models in a gRPC Session

controller:grpc$ pyang --format tree —--tree-depth 3 Cisco-IOS-XR-ifmgr-cfg.yang
Cisco-I0S-XR-ipv4-io-cfg.yang
module: Cisco-IOS-XR-ifmgr-cfg
+--rw global-interface-configuration
| +--rw link-status? Link-status-enum
+--rw interface-configurations
+--rw interface-configuration* [active interface-name]
+--rw dampening
\
+-—-rw mtus
\
+--rw encapsulation
\
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string
+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ipv4-io-cfg:ipv4-network
\

+--rw ipv4-io-cfg:ipv4-network-forwarding
b) Configure a loopbackO interface on LER1.

Example:

controller:grpc$ more xr-interfaces-lo0-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations":
{ "interface-configuration": [
{
"active": "act",
"interface-name": "LoopbackO",
"description": "LOCAL TERMINATION ADDRESS",
"interface-virtual": [
null
:I 4
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": ({
"addresses": {
"primary": {
"address": "172.16.255.1",
"netmask": "255.255.255.255"

¢) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server addr 198.18.1.11:57400 -json_in file xr-interfaces-giO-cfg.json
emsMergeConfig: Sending RegId 1

emsMergeConfig: Received ReqgId 1, Response '
L}

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models
Configure Interfaces Using Data Models in a gRPC Session .

d) Configure the ethernet interface on LER1.

Example:

controller:grpc$ more xr-interfaces-giO-cfg.json
{
"Cisco-I0S-XR-ifmgr-cfg:interface-configurations": ({
"interface-configuration": [

{

"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"description™: "CONNECTS TO LSR1 (g0/0/0/0)",
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {
"addresses": {
"primary": {
"address": "172.16.1.0",

"netmask": "255.255.255.254"

e) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server _addr 198.18.1.11:57400 -json_in file xr-interfaces-giO-cfg.json
emsMergeConfig: Sending ReqId 1

emsMergeConfig: Received ReqlId 1, Response '

\l

f) Enable the ethernet interface GigabitEthernet 0/0/0/0 on LERI to bring up the interface. To do this, delete shutdown
configuration for the interface.

Example:

controller:grpc$ grpcc -username admin -password admin -oper delete-config
-server addr 198.18.1.11:57400 -yang path "$(< xr-interfaces-giO-shutdown-cfg.json)"
emsDeleteConfig: Sending ReqId 1, yangJson {
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [

{

"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [

null

emsDeleteConfig: Received Regld 1, Response ''

Step 3 Verify that the loopback interface and the ethernet interface on router LER1 are operational.

Example:

controller:grpc$ grpcc -username admin -password admin -oper get-oper

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Configure Interfaces Using Data Models in a gRPC Session

YANG Data Models |

-server addr 198.18.1.11:57400 -oper_yang path "$(< xr-interfaces-briefs-oper-filter.json)"
emsGetOper: Sending ReqId 1, yangPath {
"Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {

"

}

interface-briefs": [
null
]

{ "Cisco-IO0S-XR-pfi-im-cmd-oper:interfaces": ({
"interface-briefs": {

"

{

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

interface-brief": [

"interface-name": "GigabitEthernet0/0/0/0",
"interface": "GigabitEthernet0/0/0/0",
"type": "IFT GETHERNET",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 1000000

}I

"interface-name": "GigabitEthernet0/0/0/1",
"interface": "GigabitEthernet0/0/0/1",
"type": "IFT GETHERNET",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 1000000

}I

"interface-name": "LoopbackO",
"interface": "LoopbackO",

"type": "IFT_ LOOPBACK",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "loopback",
"encapsulation-type-string": "Loopback",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 0

"interface-name": "MgmtEthO/RP0O/CPU0/0",
"interface": "MgmtEthO0/RP0/CPUO/O",
"type": "IFT ETHERNET",

"state": "im-state-up",

"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",

| YANG Data Models
Configure Interfaces Using Data Models in a gRPC Session .

"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,

"l2-transport": false,
"bandwidth": 1000000

"interface-name": "NullO",
"interface": "NullO",

"type": "IFT NULL",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "null",
"encapsulation-type-string": "Null",
mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,

"bandwidth": 0

"

emsGetOper: Reqgld 1, byteRecv: 2325

In summary, router LER1, which had minimal configuration, is now programmatically configured using data models
with an ethernet interface and is assigned a loopback address. Both these interfaces are operational and ready for network
provisioning operations.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Configure Interfaces Using Data Models in a gRPC Session

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 6

Use Service Layer API to Bring your Controller
on Cisco 10S XR Router

Bring your protocol or controller on IOS XR router to interact with the network infrastructure layer components
using Service Layer API.

For example, you can bring your controller to gain control over the BGP Routing Information Base (RIB)
tables and many more use cases.

* Get to Know Service Layer API, on page 81
* Enable Service Layer, on page 83
» Write Your Service Layer Client API, on page 84

Get to Know Service Layer API

Service Layer API is a model-driven API over Google-defined remote procedure call (gRPC).

gRPC enables you to bring your applications, routing protocols, controllers in a rich set of languages including
C++, Python, GO, and many more.

Service Layer API is available out of the box and no extra packages required.

In IOS XR, routing protocols use RIB, the MPLS label manager, BFD, and other modules, to program the
forwarding plane. You can expose these protocols through the service layer API.

Benefits

The Service Layer API gives direct access to the Network Infrastructure Layer (Service-Adaptation Layer).
Therefore, you have the following advantages:

« High Performance: Direct access to the Network Infrastructure Layer, without going through a Network
state database, results in higher performance than equivalent Management APIs

For example, Batch updates straight to the RIB, Label Switch Database (over gRPC)

* Flexibility: The Service Layer API gives you the flexibility to bring your Protocol or Controller over
gRPC.

« Offload low-level tasksto |OS XR: I0S XR infrastructure layer handles the following. Hence, you can
focus on higher-layer protocols and controller logic:

« Conflict resolution

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
Get to Know Service Layer APl

» Transactional notifications

* Data plane abstraction

Components of Service Layer API
The following are the components of the Service Layer API architecture:

« Functionality VerticalgDomains: The verticals define the broader capability categories supported by
the API. The following are the supported verticals. Each vertical supports data structure and RPCs defined
in gpb

« Initialization: Handles global initialization, sets up an event notification channel using GRPC
streaming capabilities.

The initialization RPCs are mandatory. Use the initialization RPCs to connect a client to the gRPC
server on the router. Also, to send heartbeats and termination requests from the server to the client.

* IPv4, |Pv6 Route (RIB): Handles route manipulations (add, update, delete) for a certain VRF.

* MPL S: Handles allocation of label blocks and any incoming MPLS label mapping to a forwarding
function.

* Interface: Handles subscription of the registered clients to the interface state event notifications.
* |Pv4, 1Pv6 BFD: Manages BFD sessions, and corresponding BFD session state notifications.
« Protobuf Schema/M oddl: Use any potential modeling technique to model the service layer API. Currently,
we use the GPB protobuf IDL.

* gRPC: gRPC utilizes GPB protobuf IDL by default to convert the models into bindings in various
languages (ct+, python, golang, and more). The gRPC server (running on the router) and the gRPC client
use the generated bindings to serialize data and encode or decode the request or response between the
server and the client.

« Service Layer gRPC clients: Based on the business needs, the gRPC clients for service layer can exist
in one of the following ways:

* On-box (agents/protocol-stacks running natively or in containers)

* Off-box (within Controllers or other open-source tools)

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

Enable Service Layer .

Figure 6: Components of Service Layer APl

Request
o gRPC [y

stub

Box Client

On-Box Client guererers Python, C++, go
stuby

Python, C++, go

Response

Initialization RIB MPLS Interface BFD
RPCs RPCs RPCs RPCs RPCs =
3
- SL-API Functicnality Verticals R, o

Bring your controller

To bring your controller on IOS XR, first, enable the service layer on the router and then write your Service
Layer Client APIL

1. Enable Service Layer, on page 83

2. Write Your Service Layer Client API

Enable Service Layer

Step 1 Enable the Service Layer.

Example:

Router#configure

Router (config) #grpc

Router (config-grpc) #port 57777
Router (config-grpc) #service-layer
Router (config-grpc) #no-tls

Router (config-grpc) fcommit

Step 2 Verify if the Service Layer is operational:

Example:

Router#show running-config grpc
Mon Nov 4 04:19:14.044 UTC
grpc

port 57777

no-tls

service-layer
|

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Write Your Service Layer Client API

Step 3 Verify the gRPC state.

Example:

Routerf#show service-layer state
Mon Feb 24 04:18:40.055 UTC

config on: YES
standby connected : NO
idt done: NO
blocked on ndt: NO
connected to RIB for IPv4: YES
connected to RIB for IPv6: YES
Initialization state: estab sync
pending requests: 0
BFD Connection: UP
MPLS Connection: UP
Interface Connection: UP
Objects accepted: NO
interface registered: NO
bfd registered for IPv4: NO
bfd registered for IPv6: NO

Write Your Service Layer Client API

You can write a Service Layer API based on your business needs. Follow these steps to write a Service Layer
API client for a particular functionality vertical.

* Import Bindings: After generating the bindings, import the binding in your code.

» Open Natification Channel: Utilize the initialization functionality vertical to create a notification channel
to register the client to the gRPC server running on the router.

* Register against Vertical: Register for a functionality vertical to utilize an RPC using the registration
RPC before making calls. The system rejects any calls without prior registration.

» Use RPCs: Once registered against a vertical, select the RPC of your choice. Then complete the object
fields in the gRPC stub.

To know more about creating a Service Layer API, see. Cisco IOS-XR Service Layer.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://xrdocs.io/cisco-service-layer/

| YANG Data Models

Write Your Service Layer Client API .

Figure 7: Service Layer APl Workflow

Select SL-API
vartical and import
generated bindings

Set up a Notification | Open Notification .
channel to the gRPC Channel Client
server (must stay up)

Import Bindings

Select the RPC of
choice and fill out
the object fields

Register against a
wvertical (RIB, LSD,
BFD etc.)

Use RPCs

GRPC Stub

Register against
. Created in the client code using Vertical

the generated bindings

Response Server

. Used to send requests to the
grpc server (router)

Interface
RPCs

Initialization
RPCs

520431

«€—— 5SL-API Functionality Verticals =~ ——=

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Write Your Service Layer Client API

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 7

Enhancements to Data Models

This section provides an overview of the enhancements made to data models.

* Improved YANG Input Validator and Get Requests, on page 88

* OpenConfig Data Model Enhancements, on page 90

* Define Power State of Line Card Using Data Model, on page 91

* Install Label in oc-platform Data Model, on page 92

* OpenConfig YANG Model:SR-TE Policies, on page 94

» Aggregate Prefix SID Counters for OpenConfig SR YANG Module, on page 95
* OpenConfig YANG Model:MACsec, on page 96

* OpenConfig YANG Model:dscp-set, on page 102

* OpenConfig YANG Model:procmon, on page 105

» Automatic Resynchronization of OpenConfig Configuration, on page 106

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Improved YANG Input Validator and Get Requests

Improved YANG Input Validator and Get Requests

Table 14: Feature History Table

Feature Name Release Information Description
Improved YANG Input Validator |Release 7.10.1 The OpenConfig data models
and Get Requests provide a structure for managing

networks via YANG protocols.
With this release, enhancements to
the configuration architecture
improve input validations and
ensure that the Get requests made
through gNMI or NETCONF
protocols return only explicitly
configured OpenConfig leaves.

Previously, Get requests returned
all the items in the Cisco native
data models that the system could
convert into OpenConfig items,
regardless of whether they were
initially configured via
OpenConfig. We have added a new
legacy mode option for a limited
number of releases which helps you
preserve this behaviour.

In IOS XR Software Release 7.10.1, the following are the enhancements to improve YANG Input Validator
and Get Requests:

* Get requests made via NETCONF or gNMI now return only OpenConfig leaves that were configured
using OpenConfig models.

Use the legacy mode as follows:
NETCONF: Add a legacy mode attribute to the get-config request tag,

Example: get-config xmlIns:xr-md="http://cisco.com/ns/yang/cisco-xr-metadata”
xr-md: mode=" legacy"

gNMI: Set the origin to openconfig-legacy.

* Improved input validation for OpenConfig configurations to provide a more consistent experience across
the schema.

The new validation includes enhanced error reporting, though some errors may include references to XR
configuration schema paths and item values in the message string.

* OpenConfig leaves now return default values consistently.

Get requests use the Explicit Basic M ode (refer RFC6243) to return only the OpenConfig leaves that
were explicitly configured.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x
88

| YANG Data Models
Improved YANG Input Validator and Get Requests .

Usage Guidelines and Limitations
In this release, the following usage guidelines and limitations apply based on the following functionalities:

* Upgrades to Cisco IOS XR Software Release 7.10.1 and later will not show OpenConfig leaves in Get
requests until OpenConfig has been successfully committed.

* Similarly, downgrading from Release 7.10.1 to an earlier version and then upgrading back to Release
7.10.1 will not show OpenConfig leaves in Get requests until OpenConfig has been successfully committed.

* Each feature must be fully configured using OpenConfig or Cisco native data model or CLI.

If configuration items applied to a feature via OpenConfig are overridden by configuring those items
directly via Cisco native data model, this will not be reflected in the system view of currently configured
OpenConfig items.

Use the Cisco native data model to configure features not supported by OpenConfig data model.

* Use either gNMI or NETCONF to manage configuration via OpenConfig. We recommend not to use
both the management agents on the same device simultaneously.

Once a successful commit has been made using gNMI or NETCONF, that management agent is considered
the active agent.

OpenConfig items cannot be configured by the non-active agent. However, the non-active agent can
configure Cisco native data model items and perform Get requests on any configuration items.

All OpenConfig leaves must first be removed by the active agent before a different agent can be used.

* During the commit process (which can take many minutes for large changesets), Get requests can be
made on the running datastore.

Other request types like, Edit request, Commit request from other clients, and Get request on the candidate
datastore of another client are rejected.

» When ACLs are configured via OpenConfig, CLI actions such as resequencing ACLs and copying ACLs
will not be reflected in the system view of the current OpenConfig configuration.

* Configuration modifications made by Config Scripts to features configured through OpenConfig will
not be reflected in the system view of the current OpenConfig configuration which is returned from
Get-config operations.

* Configuration removal from the system may occur as a result of some events, such as install operations
and startup configuration failures during line card insertion.

OpenConfig items currently configured do not reflect this change. In such cases, a syslog will be generated
to remind the user to manually apply OpenConfig configurations to the system.

* All OpenConfig will be removed from the system when a Commit Replace operation is performed
using the CLIL

* By using the show running-config | (xml | json) openconfig command, you can still view the running
OpenConfig. However, you cannot filter the view using XR CLI configuration keywords.

* The load rollback changes and load commit changes commands are not supported for rollback or
commit that include OpenConfig leaves.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. OpenConfig Data Model Enhancements

YANG Data Models |

OpenConfig Data Model Enhancements

Table 15: Feature History Table

Feature Name

Release Information

Description

LACP OpenConfig Model

Release 7.5.3

Use the openconfig-lacp.yang data model to manage
Link Aggregation Control Protocol (LACP) aggregate
interfaces by monitoring the number of LACP timeouts
and the time since the last timeout.

With this release, the data model is revised from
version 1.1.0 to 1.2.0 to introduce the following sensor
paths for the operational state of the bundle member
interface

lacp/interfaces/interface [nare] /menters/menber [interface] /state/:

® last-change

® counters/lacp-timeout-transitions

You can stream Event-driven telemetry data for the
time since the last change of a timeout, and
Model-driven telemetry data for the number of times
the state has transitioned with a timeout. The state
change is monitored since the time the device restarted
or the interface was brought up, whichever is most
recent.

Revised OpenConfig
MPLS Model to Version
3.0.1 for Streaming
Telemetry

Release 7.3.3

The OpenConfig MPLS data model provides data
definitions for Multiprotocol Label Switching (MPLS)
configuration and associated signaling and traffic
engineering protocols. In this release, the following
data models are revised for streaming telemetry from
OpenContfig version 2.3.0 to version 3.0.1:

* openconfig-mpls

* openconfig-mpls-te

* openconfig-mpls-rsvp
* openconfig-mpls-igp

* openconfig-mpls-types

* openconfig-mpls-sr

You can access this data model from the Github
repository.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/openconfig/public/tree/master/release/models/mpls

| YANG Data Models
Define Power State of Line Card Using Data Model .

Define Power State of Line Card Using Data Model

Table 16: Feature History Table

Feature Name Release Information Description
Control Line Card Power Using |Release 7.5.1 The oc-platform.yang YANG
YANG Data Model data model enables or disables

power to the line card and identifies
its slot or chassis.

You can access this data model
from the Github repository.

This feature adds the following component paths to the model to configure and fetch the power state of the
line card, enable/disable the power state, and slot ID of line cards:

* /components/component/linecard/config/power-admin-state
* /components/component/linecard/state/power-admin-state

* /components/component/linecard/state/slot-id

module: openconfig-platform-linecard
augment /oc-platform:components/oc-platform:component:
+--rw linecard

+--rw config

| +--rw power-admin-state? oc-platform-types:component-power-type

+--ro state
+--ro power-admin-state? oc-platform-types:component-power-type
+--ro slot-id? string

The following example shows the configuration to enable the line card in location "0/0" to power up:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>
</target>
<config>
<components xmlns="http://openconfig.net/yang/platform">
<component>
<name>0/0</name>
<linecard xmlns="http://openconfig.net/yang/platform/linecard">
<config>
<power-admin-state>POWER ENABLED</power-admin-state>
</config>
</linecard>
</component>
</components>
</config>
</edit-config>
</rpc>

To disable the line card, use poweR DISABLED in the state field.

In the following example, an RPC request is sent to retrieve the power state of all line cards:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-linecard.yang

YANG Data Models |
. Install Label in oc-platform Data Model

<filter>
<components xmlns="http://openconfig.net/yang/platform">
<component>
<linecard xmlns="http://openconfig.net/yang/platform/linecard">
<state/>
</linecard>
</component>
</components>
</filter>
</get>
</rpc>

The following example shows the RPC response to the request:

<?xml version="1.0"?2>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<components xmlns="http://openconfig.net/yang/platform">
<component>
<name>0/0</name>
<linecard xmlns="http://openconfig.net/yang/platform/linecard">
<state>
<power-admin-state>POWER ENABLED</power-admin-state>
<slot-id>0/0</slot-id>
</state>
</linecard>
</component>
</components>
</data>
</rpc-reply>

Install Label in oc-platform Data Model

Table 17: Feature History Table

Feature Name Release Information Description

Enhancements to Release 7.3.2 The openconfig-platform YANG
openconfig-platform YANG Data data model provides a structure for
Model querying hardware and software

router components via the
NETCONF protocol. This release
delivers an enhanced
openconfig-platform YANG data
model to provide information
about:

* software version
+ golden ISO (GISO) label

« committed IOS XR packages

You can access this data model
from the Github repository.

The openconfig-platform (oc-platform.yang) data model is enhanced to provide the following data:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform.yang

| YANG Data Models

Install Label in oc-platform Data Model .

* IOS XR software version (optionally with GISO label)

* Type, description, operational status of the component. For example, a CPU component reports its
utilization, temperature or other physical properties.

* List of the committed IOS XR packages

To retrieve oc-platform information from a router via NETCONF, ensure you configured the router with the
SH server and management interface:

Router#show run

Building configuration...

'l TOS XR Configuration version = 7.3.2

!'! Last configuration change at Tue Sep 7 16:18:14 2016 by USERL

netconf-yang agent ssh
ssh server netconf vrf default
interface MgmtEth 0/RP0O/CPU0/0
no shut
ipv4 address dhcp

The following example shows the enhanced oPERATING SYSTEM node component (line card or route processor)
of the oc-platform data model:

<component>
<name>IOSXR-NODE 0/RP0/CPUO</name>
<config>
<name>0/RP0/CPUO</name>
</config>
<state>
<name>0/RP0/CPU0O</name>
<type xmlns:idx="http://openconfig.net/yang/platform-types">idx:0PERATING SYSTEM</type>
<location>0/RP0O/CPUO</location>
<description>IOS XR Operating System</description>
<software-version>7.3.2</software-version> —--——-——————————————————— > Label Info
<removable>true</removable>
<oper-status xmlns:idx="http://openconfig.net/yang/platform-types">idx:ACTIVE</oper-status>
</state>
<subcomponents>
<subcomponent>
<name><platform>-af-ea-7.3.2v1.0.0.1</name>
<config>
<name><platform>-af-ea-7.3.2v1.0.0.1</name>
</config>
<state>
<name><platform>-af-ea-7.3.2v1.0.0.1</name>
</state>
</subcomponent>

The following example shows the enhanced oPERATING SYsTEM UPDATE package component (RPMs) of the
oc-platform data model:

<component>

<name>I0SXR-PKG/1 <platform>-isis-2.1.0.0-r732</name>

<config>

<name><platform>-isis-2.1.0.0-r732</name>

</config>

<state>

<name><platform>-isis-2.1.0.0-r732</name>

<type xmlns:idx="http://openconfig.net/yang/platform-types">idx:0PERATING SYSTEM UPDATE</type>
<description>IOS XR Operating System Update</description>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. OpenConfig YANG Model:SR-TE Policies

<software-version>7.3.2</software-version>-——-———-————————————————— > Label Info
<removable>true</removable>

<oper-status xmlns:idx="http://openconfig.net/yang/platform-types">idx:ACTIVE</oper-status>
</state>

</component>

Associated Commands

+ show install committed—Shows the committed IOS XR packages.

« show install committed summary—Shows a summary of the committed packages along with the
committed IOS XR version that is displayed as a label.

OpenConfig YANG Model:SR-TE Policies

Table 18: Feature History Table

Feature Name Release Information Description
OpenConfig YANG Model:SR-TE | Release 7.3.4 This release supports the
Policies OpenConfig (OC) Segment

Routing-Traffic Engineering
(SR-TE) YANG data model that
provides data definitions for SR-TE
policy configuration and associated
signaling and traffic engineering
protocols. Using the model, you can
stream a collection of SR-TE
operational statistics, such as color,
endpoint, and state.

You can access the OC data model
from the Github repository.

The OC SR-TE policies YANG Data Model supports Version 0.22. Subscribe to the following sensor path
to send a pull request to the YANG leaf, list, or container:

openconfig-network-instance:network-instances/network-instance/segment-routing/te-policies
The response from the router is a collection of SR-TE operational statistics, such as color, endpoint, and state.
Limitations

* Segment-list ID

* All locally-configured segment-lists have a unique segment-list ID except for the BGP TE controller.
Instead, the BGP TE controller uses the index of the segment-list as the segment-list ID. This ID
depends on the local position of the segment-list and can change over time. Therefore for BGP TE
controller, you must stream the entire table of the segment-list to ensure that the segment-list ID is
always up-to-date.

* Next-hop index

* The Next-hop container is imported from the openconfig-aft-common.yang module where the
next-hop index is defined as Uint64. However, the AFT OC in the FIB uses a positional value of

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/openconfig/public/tree/master/release/models/mpls

| YANG Data Models
Aggregate Prefix SID Counters for OpenConfig SR YANG Module .

the index and does not identify the next-hop entry separately. Similarly, the next-hop container for
OC-SRTE ais also implemented as a positional value of the entry in the list. Ensure that you stream
the entire table of the next-hop to get a updated index along with the next-hop entry.

Aggregate Prefix SID Counters for OpenConfig SR YANG Module

Table 19: Feature History Table

Feature Name Release Information Description

Aggregate Prefix SID Counters for | Release 7.3.4 The following components are now

OpenConfig SR YANG Module available in the OpenConfig (OC)
Segment-Routing (SR) YANG
model:

* The aggregate-sid-counters
container in the sr-mpls-top
group to aggregate the prefix
segment identifier (SID)
counters across the router
interfaces.

 The aggregate-sid-counter
and the mpls-label key to
aggregate counters across all
the router interfaces
corresponding to traffic
forwarded with a particular
prefix-SID.

You can access the OC data model
from the Github repository.

The OpenConfig SR YANG model supports Version 0.3. Subscribe to the following sensor path:
openconfig-pls/mpls/signaling-protocols/segrent-routing/aggregate-sid-counters/aggregate-sid-counter/mpls-label /state

When a receiver subscribes to the sensor path, the router periodically streams the statistics to telemetry for
each SR-label. The default collection interval is 30 seconds.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/openconfig/public/tree/master/release/models/mpls

YANG Data Models |
. OpenConfig YANG Model:MACsec

OpenConfig YANG Model:MACsec

Table 20: Feature History Table

Feature Name Release Information Description
OpenConfig YANG Release 7.5.2 You can now use the OpenConfig
Model:MACsec YANG data model to define the

MACsec key chain and policy, and
apply MACsec encryption on a
router interface.

You can access the OC data model
from the Github repository.

With the OpenConfig YANG Model:MACsec, you can also retrieve operational data from the NETCONF
agent using gRPC. By automating processes that are repeated across multiple network elements, you can
leverage the YANG models for MACsec.

You can use the following operations to stream Telemetry data by sending a request to the NETCONF agent:
. <get>
* <get-config>

* <edit-config>

Subscribe to the following sensor paths to send a pull request to the YANG leaf, list, or container:

 mka/key-chains/key-chain/mka-keys/mka-key
* interfaces/interface/mka

« interfaces/interface

 mka/policies/policy

* interfaces/interface/scsa-rx/scsa-rx

* interfaces/interface/scsa-tx/scsa-tx

» mka/state/counter

Limitation

* The current implementation of Cisco IOS XR supports only the local time zone configuration in the
YYYY-MM-DDTHH:MM:SS format for the following paths:

* /macsec/mka/key-chains/key-chain/mka-keys/mka-key/config/valid-date-time
* /macsec/mka/key-chains/key-chain/mka-keys/mka-key/config/expiration-date-time
* /macsec/mka/key-chains/key-chain/mka-keys/mka-key/state/valid-date-time

* /macsec/mka/key-chains/key-chain/mka-keys/mka-key/state/expiration-date-time

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/openconfig/public/blob/master/release/models/macsec/openconfig-macsec.yang

| YANG Data Models

OpenConfig YANG Model:MACsec .

 Under the MACsec policy, you can disable the delay-protection and include-icv-indicator leaves only
by using the delete operation. You cannot modify the configuration by updating the default field value,
from true to false. This codeblock shows a sample delete operation:

<config>

<delay-protection nc:operation="delete"/>
<include-icv-indicator nc:operation="delete"/>
</config>

Running Configuration

RP/0/0/CPUO:ios#show running-config
Tue Apr 19 21:36:08.882 IST
Building configuration...
'l TOS XR Configuration 0.0.0
!'l Last configuration change at Thu Apr 14 16:25:17 2022 by UNKNOWN
key chain kc
macsec
key 1234
key-string password
00554155500E5D65157 701E1DEDACS3404ASASES 7 7E 7E 72 TF6B6A7040534355560E08CA00005R554F 4E080A0407070303530A54540C025244 55509585257 71B16
cryptographic-algorithm aes-256-cmac
lifetime 00:01:01 january 01 2021 infinite
netconf-yang agent
ssh
interface GigabitEthernet0/0/0/0
shutdown
interface GigabitEthernet0/0/0/1
macsec psk-keychain kc
interface GigabitEthernet0/0/0/2
macsec psk-keychain kc policy mp
interface GigabitEthernet0/0/0/3
shutdown
interface GigabitEthernet0/0/0/4
shutdown
macsec-policy mp
cipher-suite GCM-AES-XPN-256
key-server-priority 4
ssh server v2
end

RPC Request for get-config

<get-config>
<source>
<running/>
</source>
<filter>
<macsec xmlns="http://openconfig.net/yang/macsec">
</macsec>
</filter>
</get-config>

RPC Response for get-config

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<macsec xmlns="http://openconfig.net/yang/macsec">
<mka>
<policies>
<policy>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
OpenConfig YANG Model:MACsec

<name>mp</name>
<config>
<name>mp</name>
<macsec-cipher-suite>gcm-aes-xpn-256</macsec-cipher-suite>
<key-server-priority>4</key-server-priority>
</config>
</policy>
</policies>
<key-chains>
<key-chain>
<name>kc</name>
<config>
<name>kc</name>
</config>
<mka-keys>
<mka-key>
<id>1234</id>
<config>
<id>1234</id>
<cryptographic-algorithm>AES 256 CMAC</cryptographic-algorithm>
<valid-date-time>2021-01-01T00:01:01</valid-date-time>
<expiration-date-time>NO EXPIRATION</expiration-date-time>
</config>
</mka-key>
</mka-keys>
</key-chain>
</key-chains>
</mka>
<interfaces>
<interface>
<name>GigabitEthernet0/0/0/1</name>
<config>
<name>GigabitEthernet0/0/0/1</name>
</config>
<mka>
<config>
<key-chain>kc</key-chain>
</config>
</mka>
</interface>
<interface>
<name>GigabitEthernet0/0/0/2</name>
<config>
<name>GigabitEthernet0/0/0/2</name>
</config>
<mka>
<config>
<key-chain>kc</key-chain>
<mka-policy>mp</mka-policy>
</config>
</mka>
</interface>
</interfaces>
</macsec>
</data>
</rpc-reply>

RPC Request for get

<get>
<filter>
<macsec xmlns="http://openconfig.net/yang/macsec">
</macsec>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

YANG Data Models

OpenConfig YANG Model:MACsec .

</filter>
</get>

RPC Response for get

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<macsec xmlns="http://openconfig.net/yang/macsec">
<mka>
<policies>
<policy>
<name>mp</name>
<config>
<name>mp</name>
<macsec-cipher-suite>gcm-aes-xpn-256</macsec-cipher-suite>
<key-server-priority>4</key-server-priority>
</config>
<state>
<name>mp</name>
<key-server-priority>4</key-server-priority>
<macsec-cipher-suite>gcm-aes-xpn256</macsec-cipher-suite>
<confidentiality-offset>zero-bytes</confidentiality-offset>
<delay-protection>false</delay-protection>
<include-icv-indicator>false</include-icv-indicator>
<sak-rekey-interval>0</sak-rekey-interval>
</state>
</policy>
<policy>
<name>DEFAULT-POLICY</name>
<state>
<name>DEFAULT-POLICY</name>
<key-server-priority>16</key-server-priority>
<macsec-cipher-suite>gcm-aes-xpn256</macsec-cipher-suite>
<confidentiality-offset>zero-bytes</confidentiality-offset>
<delay-protection>false</delay-protection>
<include-icv-indicator>false</include-icv-indicator>
<sak-rekey-interval>0</sak-rekey-interval>
</state>
</policy>
</policies>
<key-chains>
<key-chain>
<name>kc</name>
<config>
<name>kc</name>
</config>
<mka-keys>
<mka-key>
<id>1234</id>
<config>
<id>1234</id>
<cryptographic-algorithm>AES 256 CMAC</cryptographic-algorithm>
<valid-date-time>2021-01-01T00:01:01</valid-date-time>
<expiration-date-time>NO EXPIRATION</expiration-date-time>
</config>
<state>
<id>1234</id>
<cryptographic-algorithm>AES 256 CMAC</cryptographic-algorithm>
<valid-date-time>2021-01-01T00:01:01</valid-date-time>
<expiration-date-time>NO EXPIRATION</expiration-date-time>
</state>
</mka-key>
</mka-keys>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

OpenConfig YANG Model:MACsec

<state>
<name>kc</name>
</state>
</key-chain>
</key-chains>
</mka>
<interfaces>
<interface>
<name>GigabitEthernet0 0 0 1</name>
<state>
<name>GigabitEthernet0 0 0 1</name>
<counters>
<tx-untagged-pkts>8</tx-untagged-pkts>
<rx-untagged-pkts>0</rx-untagged-pkts>
<rx-badtag-pkts>2</rx-badtag-pkts>
<rx-unknownsci-pkts>3</rx-unknownsci-pkts>
<rx-nosci-pkts>4</rx-nosci-pkts>
</counters>
</state>
<mka>
<state>
<mka-policy>DEFAULT-POLICY</mka-policy>
<key-chain>kc</key-chain>
<counters>
<in-mkpdu>0</in-mkpdu>
<in-sak-mkpdu>0</in-sak-mkpdu>
<out-mkpdu>225271</out-mkpdu>
<out-sak-mkpdu>0</out-sak-mkpdu>
</counters>
</state>
</mka>
<scsa-tx>
<scsa-tx>
<sci-tx>024£88a08c9d0001</sci-tx>
<state>
<sci-tx>024£88a08c9d0001</sci-tx>
<counters>
<sc-encrypted>0</sc-encrypted>
<sa-encrypted>0</sa-encrypted>
</counters>
</state>
</scsa-tx>
</scsa-tx>
</interface>
<interface>
<name>GigabitEthernet0 0 0 2</name>
<state>
<name>GigabitEthernet0 0 0 2</name>
<counters>
<tx-untagged-pkts>8</tx-untagged-pkts>
<rx-untagged-pkts>0</rx-untagged-pkts>
<rx-badtag-pkts>2</rx-badtag-pkts>
<rx-unknownsci-pkts>3</rx-unknownsci-pkts>
<rx-nosci-pkts>4</rx-nosci-pkts>
</counters>
</state>
<mka>
<state>
<mka-policy>mp</mka-policy>
<key-chain>kc</key-chain>
<counters>
<in-mkpdu>0</in-mkpdu>
<in-sak-mkpdu>0</in-sak-mkpdu>
<out-mkpdu>225271</out-mkpdu>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

YANG Data Models |

YANG Data Models

<out-sak-mkpdu>0</out-sak-mkpdu>
</counters>
</state>
</mka>
<scsa-tx>
<scsa-tx>
<sci-tx>0246c822daael0001</sci-tx>
<state>
<sci-tx>0246c822daael0001</sci-tx>
<counters>
<sc-encrypted>0</sc-encrypted>
<sa-encrypted>0</sa-encrypted>
</counters>
</state>
</scsa-tx>
</scsa-tx>
</interface>
<interface>
<name>GigabitEthernet0/0/0/1</name>
<config>
<name>GigabitEthernet0/0/0/1</name>
</config>
<mka>
<config>
<key-chain>kc</key-chain>
</config>
</mka>
</interface>
<interface>
<name>GigabitEthernet0/0/0/2</name>
<config>
<name>GigabitEthernet0/0/0/2</name>
</config>
<mka>
<config>
<key-chain>kc</key-chain>
<mka-policy>mp</mka-policy>
</config>
</mka>
</interface>
</interfaces>
</macsec>
</data>
</rpc-reply>

OpenConfig YANG Model:MACsec .

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. OpenConfig YANG Model:dscp-set

OpenConfig YANG Model:dscp-set

Table 21: Feature History Table

Feature Name Release Information Description
OpenConfig YANG Release 7.5.2 This model allows you to configure
Model:dscp-set a minimum and maximum

Differentiated Services Code Point
(DSCP) value in the dscp-set
leaf-list. When you send these
values in your request to the
NETCONF agent, it filters the
traffic by matching the values in
the list with the incoming packet
header. This ensures that your
network is not vulnerable to
unwanted traffic.

You can access the OC data model
from the Github repository.

You can configure two Differentiated Services Code Point (DSCP) values in the dscp-set leaf-list. You can
enter these values in any order, and they are internally mapped to dscp-min and dscp-max values. The incoming
IPv4 or IPv6 packet header contains the DSCP field. This DSCP field is matched with the range of values
that exist between the specified minimum (dscp-min) and maximum (dscp-max) values. When the DSCP field
contains one of the values specified in the list, the incoming packet is allowed access to your network. You
can add or delete the dscp-set leaf-list in the [Pv4 and IPv6 OpenConfig YANG model by sending a NETCONF
request.

)

Note When you delete one of the values from the dscp-set, the model applies the remaining value for both dscp-min
and dscp-max fields.

Adding the dscp-set in the IPv4 0C YANG Model

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<candidate/>
</target>
<config type="subtree"xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<acl xmlns="http://openconfig.net/yang/acl">
<acl-sets>
<acl-set>
<name>test-dscp-set</name>
<type>ACL IPV4</type>
<config>
<name>test-dscp-set</name>
<type>ACL IPV4</type>
</config>
<acl-entries>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/openconfig/public/blob/master/release/models/acl/openconfig-packet-match.yang

| YANG Data Models

OpenConfig YANG Model:dscp-set .

<acl-entry>

<sequence
<config>
<sequenc
</config>
<actions>
<config>
<forwar
</config
</actions
<ipv4>
<config>
<dscp-s
<dscp-s
</config
</ipv4>
</acl-entr
</acl-entri
</acl-set>
</acl-sets>
</acl>
</config>
</edit-config>
</rpc>

-1d>10</sequence-id>

e-i1d>10</sequence-id>

ding-action>ACCEPT</forwarding-action>
>
>

et>12</dscp-set>
et>15</dscp-set>
>

y>
es>

Deleting the dscp-set in the IPv4 0C YANG Model

<rpc message-id=
<edit-config>
<target>
<candidate/>
</target>
<config type="su
<acl xmlns="htt
<acl-sets>
<acl-set xc:
<name> test
<type>ACL I
</acl-set>
</acl-sets>
</acl>
</config>
</edit-config>
</rpc>

"101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

btree" xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
p://openconfig.net/yang/acl">

operation="delete">
-dscp-set</name>
PV4</type>

Adding the dscp-set in the IPv6 0C YANG Model

<rpc message-id=
<edit-config>
<target>
<candidate/>
</target>
<config type="su
<acl xmlns="htt
<acl-sets>
<acl-set>
<name>test-d
<type>ACL_TIP
<config>
<name>test

"101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

btree" xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
p://openconfig.net/yang/acl">

scp-v6-edit</name>
V6</type>

-dscp-v6-edit</name>

<type>ACL IPV6</type>

</config>
<acl-entries>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
OpenConfig YANG Model:dscp-set

<acl-entry>
<sequence-id>10</sequence-id>
<config>
<sequence-id>10</sequence-id>
</config>
<actions>
<config>
<forwarding-action>ACCEPT</forwarding-action>
</config>
</actions>
<ipv6>
<config>
<dscp-set>22</dscp-set>
<dscp-set>55</dscp-set>
</config>
</ipv6>
</acl-entry>
</acl-entries>
</acl-set>
</acl-sets>
</acl>
</config>
</edit-config>
</rpc>

Deleting the dscp-set in the IPv6 0C YANG Model

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<candidate/>
</target>
<config type="subtree" xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<acl xmlns="http://openconfig.net/yang/acl">
<acl-sets>
<acl-set xc:operation="delete">
<name>test-dscp-v6-edit</name>
<type>ACL IPV6</type>
</acl-set>
</acl-sets>
</acl>
</config>
</edit-config>
</rpc>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

OpenConfig YANG Model:procmon .

OpenConfig YANG Model:procmon

Table 22: Feature History Table

Feature Name Release Information Description
OpenConfig YANG Release 7.5.2 This model provides data
Model:procmon definitions to monitor the health of

one or more processes running on
a system, delivering insights into
the performance of critical
processes and helping remediate
performance bottlenecks.

For example, the stress tool that is
part of the Linux distribution may
be consuming high CPU. The
openconfig-procmon model pulls
this information and sends it to you
when you query the node. As a
remediation measure, you can then
restart the process.

You can access the OC data model
from the Github repository.

Subscribe to the following sensor path:

openconfig-system:system/processes/process

Based on a Process ID (PID), you can stream state parameters, such as name, args, start-time, uptime,
cpu-usage-user, cpu-usage-system, cpu-utilization, memory usage and memory utilization.

When you send the PID to a MDT-capable device requesting state parameters of a process, the PID of the
process acts as a key for the request. If the requested PID is invalid, you will not receive any response.

)

Note The location of the PID is always assumed to be the Active RP. This model does not have any leaf or field
where you can specify the location or node name.
Example

This output shows state parameters that monitor the health of the dhcpd process having PID: 22482 using the
XR built-in mdt_exec tool. You can also use telemetry tools, such as gNMI and gRPC.

RP/0/RP1/CPUO:SF-D#run mdt exec -s openconfig-system:system/processes/process[pid=22482]
Enter any key to exit...

Sub_id 200000001, flag O, len O

Sub id 200000001, flag 4, len 583

{"node_id_str":"SF-D", "subscription_id_str":"app TEST 200000001",
"encoding path":"openconfig-system:system/processes/process","collection_id":"13",
"collection start time":"1648387172382","msg_timestamp":"1648387172384",

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/openconfig/public/blob/master/release/models/system/openconfig-procmon.yang

YANG Data Models |
. Automatic Resynchronization of OpenConfig Configuration

"data_json":[{"timestamp":"1648387172384", "keys":[{"pid":"22482"}],

"content": {"state": {"pid":"22482","name" :"dhcpd", "args":["dhcpd"],
"start-time":"1648385883000000000", "uptime":"1289384179023", "cpu-usage-user":"270000000",
"cpu-usage-system":"180000000", "cpu-utilization":0, "memory-usage":"16641952",
"memory-utilization":0}}}],"collection _end time":"1648387172384"}

Sub id 200000001, flag 8, len O

Automatic Resynchronization of OpenConfig Configuration

Table 23: Feature History Table

Feature Name Release Information Feature Description
Automatic Resynchronization of |Release 7.11.1 OpenConfig infrastructure can now
OpenConfig Configuration reapply all the OpenConfig

configurations automatically if
there are any discrepancies in the
running configuration.

With this feature, there is no need
for manual replacement of the
OpenConfig configuration using
Netconf or gNMI.

The re-sync operation is triggered
if the running configurations and
the OpenConfig configuration go
out of sync after any system event
that removes some running
configurations from the system. A
corresponding system log gets
generated to indicate the re-sync
status.

In the earlier releases, when activities such as interface breakout operations, installation activities or insertion
of a new line card took place, there was a risk of OpenConfig configuration and the running configuration
going out of sync. A full replacement of the OpenConfig configuration was required in order to get the
OpenConfig configurations back in sync using Netconf or gNMI.

From the Cisco IOS XR Software Release 7.11.1, if the OpenConfig configurations and running configurations
go out of sync, or any activities takes place which may result in the two configurations to go out of sync, the
system automatically reapplies all the OpenConfig configurations and resolve the sync issue. If there is a
synchronization issue between the running configuration and the OpenConfig configuration, a corresponding
system log is generated to indicate it. Similarly, a corresponding system log is generated indicating the status
of the re-synchronization attempt.

This feature is enabled by default. This process is completely automated.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

Automatic Resynchronization of OpenConfig Configuration .

Operations that Remove Running Configuration

Here are three types of operation that can have the effect of removing running configuration from the system.
Running configurations are either affected because they directly remove configuration in the system or because
they result in configuration failing to be accepted by the system during start-up.

* Install operations: Running configuration can be removed during non-reload and reload install operations.
During non-reload install, running configuration is removed when it is incompatible with the new software.
In this case, it is directly removed by the Install infra. The configuration is removed during reload install
operations if the attempt to restore the startup configuration is partially successful.

» Breakout interfaces configuration: When breakout interfaces are configured or de-configured, all the
existing configuration on interfaces is affected. The affect may be creation or deletion of the parent and
child interfaces. This results in an inconsistency between the running configuration and the OpenConfig
datastore for any of the removed configurations that was mapped from OpenConfig configuration.

The automatic restoration of OpenConfig configuration resolves this inconsistency by re-adding that
removed configuration.

* New line card insertion: On insertion of a new line card into the system, any pre-configuration for that
card is verified for the first time and may be rejected, causing it to be removed. This results in an
inconsistency between the running configuration and the OpenConfig datastore.

In any of the above scenarios, if there is a sync issue, system logs are generated and the system tries to reapply
all the OpenConfig configurations. If the re-sync attempt is successful, the configurations which were removed
earlier, are re-applied. If the re-sync attempt fails, this means that some of the OpenConfig configuration is
no longer valid.

N

Note The above scenarios are invalid if there are no OpenConfig configuration present in the system.

System Logs Indicating Out-of-Sync Configuration

System log messages are generated due to the above operations that can lead to discrepancies in configurations
on the router. Listed are examples of system log messages raised if any such discrepancies occur.

Table 24: Examples of system log messages generated due to Out-of-Sync Configurations :

Event Name Displayed in the System Log Description

unexpected commit errors When an unexpected commit errors in case of a SysDB server
crash.

config rollback (to acommit ID created | When a configuration rollbacks back to a commit ID created
using a different software version) using a different software version.

inconsistent configuration This system log is generated when an inconsistency alarm is
raised due to failure in restoring the start-up configurations
after activities like system reload or insertion of a new line
card. Re-synchronization of the configuration is triggered
only after the alarm is cleared.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |

. Automatic Resynchronization of OpenConfig Configuration

Event Name Displayed in the System Log Description

configuration removal (triggered on When interface configuration is removed in response to a
0/2/CPUOQ by the last config operation for | change in interface breakout configuration.

interface GigabitEthernet0/2/0/0 and 6
other interfaces)

configuration removal (to preparefor an | Configuration is removed from the system during a non-reload
install operation) install operation due to incompatibility with the new software.

Alarms Related to Out-of-Sync OpenConfig Configuration

Inconsistency alarm: When a there is a failure in restoring the start-up configurations after a system
reload or insertion of a new line card, inconsistency alarm is raised. If the inconsistency alarm is raised,
you can see an informational system log is generated which indicates that the OpenConfig configuration
and running configuration may be out of sync. A re-sync attempt will be made when the configuration
inconsistency alarm is cleared. This system log is an early warning that the system is potentially out of
sync.

Inconsistency alarm message:

NMI OpenConfig configuration is potentially out of sync with the running configuration
(details: system configuration become inconsistent during OIR restore on 0/0/CPUO). An
automatic reapply of the OpenConfig configuration will be performed when the inconsistency

alarm is cleared.

Missing item in the OpenConfig datastore alar m: If there are missing items in the configurations
which could not be added to the OpenConfig datastore while loading in a snapshot from disk, you can
see an error system log is raised which indicates that there are some items which are absent in the running
OpenConfig configuration. This scenario occurs when the yang schema is changed from the time the
snapshot was created.

Item missing alarm message:

gNMI OpenConfig configuration is potentially out of sync with the running configuration:
3 failed to be applied to the system (details: snapshot 2 was created with a different
schema version). The system may contain config items mapped from OC that no longer exist
in the OC datastore. Automatic attempts to reapply OC will not remove these items, even
if they otherwise succeed. Config should be replaced manually using a GNMI Replace

operation.

System Logs Generated During Configuration Resynchronization:

When an attempt to re-apply OpenConfig (resynchronization) is complete, the following informational system
logs are generated to indicate the user that the OpenConfig and running configuration were out of sync, and
whether the attempt to resolve this was successful.

Successful re-sync:

As a result of configuration removal (to prepare for an install operation), the gNMI

OpenConfig configuration has been successfully reapplied.

Unsuccessful re-sync:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

Automatic Resynchronization of OpenConfig Configuration .

As a result of configuration removal (to prepare for an install operation), an attempt
to reapply the gNMI configuration was made, but some items remain out of sync with the
running configuration. The configuration should be reapplied manually using a GNMI

Replace operation.

Re-sync failure during mapping of OpenConfig configurations to XR configurations:

As a result of configuration removal (to prepare for an install operation), the attempt
to reapply the gNMI OpenConfig configuration failed, and the out of sync configuration
could not be updated. gNMI OpenConfig configuration is potentially out of sync with the
running configuration. Configuration should be reapplied manually using a GNMI Replace

operation

Re-sync failure during mapping of OpenConfig configurations to XR configurations is a rare scenario. When
there is a failure in the re-sync process while mapping the OpenConfig configuration to XR items, it causes

the re-sync request to aborted. This scenario is only possible after an install which changes the OpenConfig

mappings such that some configuration is no longer supported.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

YANG Data Models |
. Automatic Resynchronization of OpenConfig Configuration

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 8

Unified Data Models

CLI-based YANG data models, also known as unified configuration models are introduced in Cisco IOS XR
Software Release 7.0.1. The unified models provide a full coverage of the router functionality, and serves as
a single abstraction for YANG and CLI commands. Unified models are generated from the CLI and replaces
the native schema-based models.

The unified models are available in pkg/ yang location. The presence of um in the model name indicates that
the model is a unified model. For example, Cisco-IOS-XR-um-<feature>-cfg.yang.

You can access the models supported on the router using the following command:

Router#run

[node] $ed /pkg/yang

[node:pkg/yang]$ls

The unified models are also available in the Github repository.

* Unified Configuration Models, on page 111

Unified Configuration Models

Table 25: Feature History Table

Feature Name Release Information | Description

Unified Data Model to map script | Release 7.5.3 Use the

file to the custom OID Cisco-I0S-XR-um-script-server-cfg.yang
unified data model to map script file to the custom
OID.

Unified Data Model to Configure | Release 7.5.3 Use the Cisco-I0S-XR-um-script-cfg.yang

checksum in the custom OID unified data model to configure checksum for the

newly added file-name in the Custom OID.

Unified Data Model to Configure | Release 7.5.3 Use the

Encapsulated Ambiguous VLANSs Cisco-I0S-XR-um-if-encap-ambiguous-cfg.yang
unified data model to configure encapsulated
ambiguous VLANs with IEEE802.1ad Provider
Bridging (PB) encapsulation type on an
access-interface.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/YangModels/yang/blob/master/vendor/cisco/xr/

. Unified Configuration Models

YANG Data Models |

Feature Name

Release Information

Description

Unified Data Model to Configure
MAC Address

Release 7.5.3

Use the
Cisco-I0S-XR-um-if-mac-address-cfg.yang
unified data model to set or delete a Media Access
Control (MAC) address of the Management
Ethernet interface, which acts as a unique
identifier for the device in the network.

New Unified Models

Release 7.5.2

Unified models are CLI-based YANG models
that are designed to replace the native
schema-based models. This release introduces
new unified models to configure the Fabric
Interface ASIC (FIA), Link Aggregation Control
Protocol (LACP), Cisco Express Forwarding
(CEF) and controller fabric.

You can access these new unified models from
the Github repository.

Transitioning Native Models to
Unified Models (UM)

Release 7.4.1

Unified models are CLI-based YANG models
that are designed to replace the native
schema-based models. UM models are generated
directly from the IOS XR CLIs and mirror them
in several ways. This results in improved usability
and faster adoption of YANG models.

You can access the new unified models from the
Github repository.

The following table lists the unified models supported on Cisco IOS XR routers.

Table 26: Unified Models

Unified Models

Introduced in Release

Cisco-I0S-XR-um-script-server-cfg

Release 7.5.3

Cisco-I0S-XR-um-script-cfg

Release 7.5.3

Cisco-I0S-XR-um-if-mac-address-cfg

Release 7.5.3

Cisco-I0S-XR-um-if-encap-ambiguous-cfg

Release 7.5.3

Cisco-I0S-XR-um-cont-cpri-cfg

Release 7.5.2

Cisco-I0S-XR-um-lacp-cfg

Release 7.5.2

Cisco-I0S-XR-um-controller-fabric-cfg

Release 7.5.2

Cisco-10S-XR-um-if-ipsubscriber-cfg

Release 7.5.1

Cisco-I0S-XR-um-session-redundancy-cfg

Release 7.5.1

Cisco-IOS-XR-um-subscriber-accounting-cfg

Release 7.5.1

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
https://github.com/YangModels/yang/tree/master/vendor/cisco/xr

| YANG Data Models

Unified Configuration Models .

Unified Models

Introduced in Release

Cisco-IOS-XR-um-subscriber-cfg

Release 7.5.1

Cisco-I0S-XR-um-subscriber-redundancy-cfg

Release 7.5.1

Cisco-I0S-XR-um-dyn-tmpl-opendns-cfg

Release 7.5.1

Cisco-I0S-XR-um-dynamic-template-cfg

Release 7.5.1

Cisco-I0S-XR-um-dynamic-template-cfg

Release 7.5.1

Cisco-IOS-XR-um-Ipts-profiling-cfg

Release 7.5.1

Cisco-I0S-XR-um-ppp-cfg

Release 7.5.1

Cisco-I0S-XR-um-pppoe-cfg

Release 7.5.1

Cisco-I0S-XR-um-vpdn-cfg

Release 7.5.1

Cisco-I0S-XR-um-aaa-subscriber-cfg

Release 7.5.1

Cisco-I0S-XR-um-dynamic-template-ipv4-cfg

Release 7.5.1

Cisco-I0S-XR-um-dynamic-template-ipv6-cfg

Release 7.5.1

Cisco-I0S-XR-um-dynamic-template-vrf-cfg

Release 7.5.1

Cisco-I0S-XR-um-mibs-subscriber-cfg

Release 7.5.1

Cisco-I0S-XR-um-dyn-tmpl-monitor-session-cfg

Release 7.5.1

Cisco-I0S-XR-um-12tp-class-cfg

Release 7.5.1

Cisco-I0S-XR-um-dynamic-template-dhcpv6d-cfg

Release 7.5.1

Cisco-I0S-XR-um-dyn-tmpl-service-policy-cfg

Release 7.5.1

Cisco-10S-XR-um-snmp-server mroutemib send-all-cfg

Release 7.5.1

Cisco-I0S-XR-um-aaa-cfg

Release 7.4.1

Cisco-I0S-XR-um-aaa-diameter-cfg

Release 7.4.1

Cisco-I0S-XR-um-aaa-nacm-cfg

Release 7.4.1

Cisco-I0S-XR-um-aaa-tacacs-server-cfg

Release 7.4.1

Cisco-I0S-XR-um-aaa-task-user-cfg

Release 7.4.1

Cisco-I0OS-XR-um-banner-cfg

Release 7.4.1

Cisco-10S-XR-um-bfd-sbfd-cfg

Release 7.4.1

Cisco-I0S-XR-um-call-home-cfg

Release 7.4.1

Cisco-I0S-XR-um-cdp-cfg

Release 7.4.1

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Unified Configuration Models

YANG Data Models |

Unified Models

Introduced in Release

Cisco-I0S-XR-um-cef-accounting-cfg

Release 7.4.1

Cisco-I0S-XR-um-cfg-mibs-cfg

Release 7.4.1

Cisco-I0S-XR-um-cli-alias-cfg

Release 7.4.1

Cisco-10S-XR-um-clock-cfg

Release 7.4.1

Cisco-I0S-XR-um-config-hostname-cfg

Release 7.4.1

Cisco-I0S-XR-um-cont-breakout-cfg

Release 7.4.1

Cisco-I0S-XR-um-cont-optics-cfg

Release 7.4.1

Cisco-I0S-XR-um-control-plane-cfg

Release 7.4.1

Cisco-I0S-XR-um-crypto-cfg

Release 7.4.1

Cisco-I0S-XR-um-domain-cfg

Release 7.4.1

Cisco-I0S-XR-um-ethernet-cfm-cfg

Release 7.4.1

Cisco-I0S-XR-um-ethernet-oam-cfg

Release 7.4.1

Cisco-IOS-XR-um-exception-cfg

Release 7.4.1

Cisco-I0S-XR-um-flowspec-cfg

Release 7.4.1

Cisco-I0S-XR-um-frequency-synchronization-cfg

Release 7.4.1

Cisco-I0S-XR-um-hostname-cfg

Release 7.4.1

Cisco-I0S-XR-um-hw-module-port-range-cfg

Release 7.4.1

Cisco-I0S-XR-um-hw-module-profile-cfg

Release 7.4.1

Cisco-10S-XR-um-ip-virtual-cfg

Release 7.4.1

Cisco-I0S-XR-um-ipsla-cfg

Release 7.4.1

Cisco-I0S-XR-um-12vpn-cfg

Release 7.4.1

Cisco-I0S-XR-um-line-cfg

Release 7.4.1

Cisco-I0S-XR-um-line-exec-timeout-cfg

Release 7.4.1

Cisco-I0S-XR-um-line-general-cfg

Release 7.4.1

Cisco-IOS-XR-um-line-timestamp-cfg

Release 7.4.1

Cisco-I0S-XR-um-1ldp-cfg

Release 7.4.1

Cisco-IOS-XR-um-location-cfg

Release 7.4.1

Cisco-I0S-XR-um-logging-cfg

Release 7.4.1

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

Unified Configuration Models .

Unified Models

Introduced in Release

Cisco-I0S-XR-um-logging-correlator-cfg

Release 7.4.1

Cisco-I0S-XR-um-Ipts-pifib-cfg

Release 7.4.1

Cisco-I0S-XR-um-Ipts-pifib-domain-cfg

Release 7.4.1

Cisco-10S-XR-um-Ipts-pifib-dynamic-flows-cfg

Release 7.4.1

Cisco-I0S-XR-um-mibs-cbqosmib-cfg

Release 7.4.1

Cisco-IOS-XR-um-mibs-fabric-cfg

Release 7.4.1

Cisco-10S-XR-um-mibs-ifmib-cfg

Release 7.4.1

Cisco-I0S-XR-um-mibs-rfmib-cfg

Release 7.4.1

Cisco-I0S-XR-um-mibs-sensormib-cfg

Release 7.4.1

Cisco-I0S-XR-um-monitor-session-cfg

Release 7.4.1

Cisco-I0S-XR-um-mpls-oam-cfg

Release 7.4.1

Cisco-I0S-XR-um-ntp-cfg

Release 7.4.1

Cisco-IOS-XR-um-pce-cfg

Release 7.4.1

Cisco-I0S-XR-um-pool-cfg

Release 7.4.1

Cisco-I0S-XR-um-priority-flow-control-cfg

Release 7.4.1

Cisco-I0S-XR-um-rce-cfg

Release 7.4.1

Cisco-I0S-XR-um-router-hsrp-cfg

Release 7.4.1

Cisco-IOS-XR-um-router-vrrp-cfg

Release 7.4.1

Cisco-I0S-XR-um-service-timestamps-cfg

Release 7.4.1

Cisco-IOS-XR-um-ssh-cfg

Release 7.4.1

Cisco-I0S-XR-um-tcp-cfg

Release 7.4.1

Cisco-I0S-XR-um-telnet-cfg

Release 7.4.1

Cisco-I0S-XR-um-tpa-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-bridgemib-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-config-copy-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-entity-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-entity-redundancy-cfg

Release 7.4.1

Cisco-10S-XR-um-traps-entity-state-cfg

Release 7.4.1

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Unified Configuration Models

YANG Data Models |

Unified Models

Introduced in Release

Cisco-I0S-XR-um-traps-flash-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-fru-ctrl-cfg

Release 7.4.1

Cisco-IO0S-XR-um-traps-ipsec-cfg

Release 7.4.1

Cisco-10S-XR-um-traps-12tun-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-otn-cfg

Release 7.4.1

Cisco-IOS-XR-um-traps-power-cfg

Release 7.4.1

Cisco-10S-XR-um-traps-selective-vrf-download-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-syslog-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-system-cfg

Release 7.4.1

Cisco-I0S-XR-um-udp-cfg

Release 7.4.1

Cisco-10S-XR-um-vty-pool-cfg

Release 7.4.1

Cisco-I0S-XR-um-xml-agent-cfg

Release 7.4.1

Cisco-IOS-XR-um-conflict-policy-cfg

Release 7.3.1

Cisco-I0S-XR-um-flow-cfg

Release 7.2.1

Cisco-I0S-XR-um-if-access-group-cfg

Release 7.2.1

Cisco-10S-XR-um-if-ipv4-cfg

Release 7.2.1

Cisco-10S-XR-um-if-ipv6-cfg

Release 7.2.1

Cisco-IOS-XR-um-if-service-policy-qos-cfg

Release 7.2.1

Cisco-10S-XR-um-ipv4-access-list-cfg

Release 7.2.1

Cisco-I0S-XR-um-ipv6-access-list-cfg

Release 7.2.1

Cisco-10S-XR-um-12-ethernet-cfg

Release 7.2.1

Cisco-I0S-XR-um-multicast-routing-cfg

Release 7.2.1

Cisco-I0S-XR-um-object-group-cfg

Release 7.2.1

Cisco-I0S-XR-um-policymap-classmap-cfg

Release 7.2.1

Cisco-IOS-XR-um-router-igmp-cfg

Release 7.2.1

Cisco-I0S-XR-um-router-pim-cfg

Release 7.2.1

Cisco-I0S-XR-um-statistics-cfg

Release 7.2.1

Cisco-I0S-XR-um-ethernet-services-access-list-cfg

Release 7.2.1

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| YANG Data Models

Unified Configuration Models .

Unified Models

Introduced in Release

Cisco-I0S-XR-um-if-12transport-cfg

Release 7.2.1

Cisco-I0S-XR-um-ipv4-prefix-list-cfg

Release 7.2.1

Cisco-I0S-XR-um-ipv6-prefix-list-cfg

Release 7.2.1

Cisco-I0S-XR-um-router-amt-cfg

Release 7.2.1

Cisco-I0S-XR-um-router-mld-cfg

Release 7.2.1

Cisco-I0S-XR-um-router-msdp-cfg

Release 7.2.1

Cisco-I0S-XR-um-router-bgp-cfg

Release 7.1.1

Cisco-I0S-XR-um-mpls-te-cfg

Release 7.1.1

Cisco-I0S-XR-um-router-isis-cfg

Release 7.1.1

Cisco-I0S-XR-um-router-ospf-cfg

Release 7.1.1

Cisco-10S-XR-um-router-ospfv3-cfg

Release 7.1.1

Cisco-I0S-XR-um-grpc-cfg

Release 7.0.1

Cisco-I0S-XR-um-if-bundle-cfg

Release 7.0.1

Cisco-I0S-XR-um-if-ethernet-cfg

Release 7.0.1

Cisco-I0S-XR-um-if-ip-address-cfg

Release 7.0.1

Cisco-I0S-XR-um-if-vrf-cfg

Release 7.0.1

Cisco-I0S-XR-um-interface-cfg

Release 7.0.1

Cisco-IOS-XR-um-mpls-13vpn-cfg

Release 7.0.1

Cisco-I0S-XR-um-netconf-yang-cfg

Release 7.0.1

Cisco-I0S-XR-um-router-rib-cfg

Release 7.0.1

Cisco-I0S-XR-um-router-static-cfg

Release 7.0.1

Cisco-I0S-XR-um-snmp-server-cfg

Release 7.0.1

Cisco-I0S-XR-um-telemetry-model-driven-cfg

Release 7.0.1

Cisco-IOS-XR-um-vrf-cfg

Release 7.0.1

Cisco-IOS-XR-um-arp-cfg

Release 7.0.1

Cisco-I0S-XR-um-if-arp-cfg

Release 7.0.1

Cisco-I0S-XR-um-if-mpls-cfg

Release 7.0.1

Cisco-10S-XR-um-if-tunnel-cfg

Release 7.0.1

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Unified Configuration Models

YANG Data Models |

Unified Models

Introduced in Release

Cisco-IOS-XR-um-mpls-ldp-cfg

Release 7.0.1

Cisco-I0S-XR-um-mpls-lsd-cfg

Release 7.0.1

Cisco-I0S-XR-um-rsvp-cfg

Release 7.0.1

Cisco-10S-XR-um-traps-mpls-1dp-cfg

Release 7.0.1

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

PART I I

Automation Scripts

 Achieve Network Operational Simplicity Using Automation Scripts, on page 121
* Precommit Scripts, on page 125

* Config Scripts, on page 137

» Exec Scripts, on page 153

* Process Scripts, on page 171

* EEM Scripts, on page 185

* Model-Driven Command-Line Interface, on page 197

* Manage Automation Scripts Using YANG RPCs, on page 205

* Script Infrastructure and Sample Templates, on page 221

* Troubleshoot Automation Scripts, on page 235

CHAPTER 9

Achieve Network Operational Simplicity Using
Automation Scripts

Table 27: Feature History Table

Feature Name Release Information Description
Operational Simplicity Using Release 7.3.2 This feature lets you host and
Automation Scripts execute your automation scripts

directly on a router running I0S XR
software, instead of managing them
on external controllers. The scripts
available on-box can now leverage
Python libraries, access the
underlying router information to
execute CLI commands, and
monitor router configurations
continuously. This results in setting
up a seamless automation workflow
by improving connectivity, access
to resources, and speed of script
execution.

The following categories of on-box
scripts are used to achieve
operational simplicity:

Network automation is imperative to deploy and manage the networks with large-scale cloud-computing
architectures. The automation can be achieved through standard model-driven data models. To cater to the
automation requirements, you leverage the Cisco IOS XR infrastructure to make API calls and run scripts
from an external controller. These off-box scripts take advantage of the exposed interfaces such as NETCONF,
SNMP, SSH to work on the network element. However, there is need to maintain an external controller to
interact with the router.

To simplify the operational infrastructure, the automation scripts can be run on the router, eliminating the
need for an external controller. The execution of the different types of scripts are faster and reliable as it is
not dependent on the speed or network reachability of the external controller. Most script types interact with
I0S XR Software using standard protocols such as NETCONF. You can download script to the router,
configure scripts, view operational data, and set responses to events in the router.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Explore the Types of Automation Scripts

In summary, on-box scripting is similar to off-box scripting, with the exception that the management software
that runs in an external controller is now part of the router software. The scripts programmatically automate
configuration and operational tasks on the network devices. You can create customized scripts that are based
on your network requirement and execute scripts on routers running Cisco IOS XR operating system. The
packages that support scripting are provided in the software image.

\)

Note You can create scripts using Python 3.5.

* Explore the Types of Automation Scripts, on page 122

Explore the Types of Automation Scripts

There are four types of on-box automation scripts that you can leverage to automate your network operations:
* Configuration (Config) scripts
* Execution (Exec) scripts
* Process scripts

* EEM scripts

The following table provides the scope and benefit of on-box scripts:

Table 28: On-Box Automation Scripts

Config Scripts Exec Scripts Process Scripts EEM Scripts

What is the scope of
the script?

Enforce contextual
and conditional
changes to
configurations,
validate
configurations
before committing
the changes to detect
and notify potential
errors. If
configuration does
not comply with the
rules that are defined
in the script, an
action can be
invoked. For
example, generate a
warning, syslog
message, or halt a
commit operation.

Run operational
commands or RPCs,
process the output,
generate syslogs,
configure system,
perform system
action commands
such as system
reload, process
restarts, and collect
logs for further
evaluation.

Daemonize to
continuously run as
an agent on the
router to execute
additional checks
outside traditional
ZTP. Daemonized
scripts are similar to
exec scripts but run
continuously. The
script executes
operational
commands on the
router and analyzes
the output.

Run operational
commands or RPCs,
generate, and
determine the next
steps like logging
the root cause or
changing device
configuration. Event
policies can upload
the output of event
scripts to an on-box
or off-box location
for further analysis.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Explore the Types of Automation Scripts .

Config Scripts

Exec Scripts

Process Scripts

EEM Scripts

How to invoke the
script?

All config scripts are
processed
automatically when
commit command is
executed on the
router.

Exec script is
invoked manually
via CLI command or
RPC.

Process script is
activated via
configuration CLI
command.

Event scripts are
invoked by defined
event policies in
response to a system
event and allow for
immediate action to
take effect.

What are the main
benefits of using the
script?

Simplifies complex
configurations and
averts potential
errors before a
configuration is
committed.

Ensures that the
network
configuration
complies with rules
and policies that are
defined in the script.

Collects operational
information, and
decreases the time
that is involved in
troubleshooting
issues.

Provides flexibility
in changing the
input parameters for
every script run.
This fosters dynamic
automation of
operational
information.

Runs scripts as a
daemon to
continuously
perform tasks that
are not transient.

Automates log
collection upon
detecting error
conditions that are
defined by event
policies.

Uploads the output
of event scripts to an
on-box or off-box
location for further
analysis.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Explore the Types of Automation Scripts

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 1 0

Precommit Scripts

Table 29: Feature History Table

Feature Name

Release Information

Description

Precommit Script to Validate
Configuration Change

Release 7.5.4

With this feature, you can deploy
custom python scripts to be
executed automatically during a
configuration commit operation.
These scripts process the
configuration change and act as
deciding factor to either proceed
with applying the configuration or
stop the commit operation in the
event of an error.

Cisco IOS XR precommit scripts can validate the configuration during the commit operation. They allow
device administrators to enforce custom configuration validation rules. These scripts are invoked automatically
when you change a configuration and commit the changes. When a configuration commit is in progress, a
precommit script is automatically initaited to validate the changes. If the change is valid, the script allows
committing the new configuration. If the configuration is invalid, or does not adhere to the enforced validation
rules, the script notifies you about the mismatch and blocks the commit operation. Overall, precommit scripts
help to maintain crucial device parameters, and reduce human error in managing the network.

When you commit a configuration, the system automatically invokes the precommit scripts to validate that
change. Precommit scripts can perform the following actions during a commit operation:

* Validate the proposed new configuration, ensure that the changes to the target configuration does not
exceed the boundaries defined for the system or software functionality. For example, you can program
the script to estimate the Ternary Content Addressable Memory (TCAM) slots needed for the target
configuration, and verify that the TCAM usage does not exceed a defined threshold.

* Verify that the commit operation adheres to the predefined execution rules. For example, you can use
the script to ensure that certain configuration changes that impact traffic are allowed only at specified

time intervals.

* Block the commit operation if the configuration is invalid and notify the details in an error message.

* Generate system log messages for in-depth analysis of the configuration change. This log also helps in
troubleshooting a failed commit operation.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Workflow to Run Precommit Scripts

Precommit Script Limitations
The following restrictions apply when using precommit scripts:
* Precommit scripts cannot modify a configuration.

* Configuration validation before a commit operation is supported only using CLI commands. Operations
using NETCONF, gNMI and XML are not supported even if the precommit script is enabled.

Get Started with Precommit Scripts

Precommit scripts can be written in Python 3.9 (and earlier) programming language using the packages that
Cisco supports. For more information about the supported packages, see Script Infrastructure and Sample
Templates, on page 221.

This chapter gets you started with provisioning your precommit automation scripts on the router.

\}

Note This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section walks you through the process involved in deploying and using
the precommit scripts on the router.

» Workflow to Run Precommit Scripts, on page 126
» Example: Verify BGP Configuration Using Precommit Script, on page 132

Workflow to Run Precommit Scripts

The following image shows a workflow diagram representing the steps involved in using a precommit script:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Workflow to Run Precommit Scripts .

Create script and store script in a remote
server or copy to routers’ harddisk

l

Copy script from remote server or harddisk
to the script management repository

‘ script add ‘

v
Verify that the script is added successfully

‘shuw script status name <script> detail ‘

l

Configure checksum

‘ script precommit <script> checksum ‘

i

Activate script

‘ script precommit <script> activate ‘

l

Commit a configuration

‘ commit ‘

,,,,,,,,,,,,,,,,,,,,,,,,,, L

~ Invoke precommit script automatically

,_.“"(I'Zhecksurr;\'*-\:'f‘??_ _______ Precommit script Rectify configuration based
.. match? configuration validation on error displayed at console
successful?

: No

Stop script run ‘ Configuration successful

:] CLI command

! ' Internal operation

523065

Complete the following tasks to provision precommit scripts:

» Download the Script to the Router—Store the precomit script on a remote server or copy to the harddisk
of the router. Add the precommit script from the server to the script management repository
(hardisk:/mirror/script-mgmt) on the router using the script add precommit command.

* Configure Checksum for Precommit Script—Configure the script integrity and authenticity using the
script precommit script checksum command. A script cannot be used unless the checksum is configured.

* Activate Precommit Scripts—Activate the precommit script using script precommit script activate
command to validate the configuration from a commit operation. The script ensures that the configuration
changes comply with the predefined conditions in the script, and uncover potential errors, if any.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Download the Script to the Router

\}

Note A precommit script is invoked automatically when you commit a configuration
change to modify the router configuration. You can view the result from the script
execution on the console.

Download the Script to the Router

Script Type Download Location

precommit harddisk:/mirror/script-mgmt/precommit
config harddisk:/mirror/script-mgmt/config
exec harddisk:/mirror/script-mgmt/exec
process harddisk:/mirror/script-mgmt/process
eem harddisk:/mirror/script-mgmt/eem

The scripts are added to the script management repository using two methods:

* Method 1: Add script from a server

» Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add precommit-bgp.py script to the script management repository.

Before you begin

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Step 1 Add the script to the script management repository on the router using one of the two options:
» Add Script From a Server
Add the script from a configured remote server (HTTP, HTTPS, FTP or SCP) or the harddisk location in the router.
Router#script add precommit script-location script.py

The following example shows a precommit script precommi t-bgp.py downloaded from an external repository
http://192.0.2.0/scripts:

Router#script add precommit http://192.0.2.0/scripts precommit-bgp.py
Tue Jan 24 05:03:40.791 UTC

Copying script from http://192.0.2.0/scripts/precommit-bgp.py
precommit-bgp.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.

Router#script add precommit script-location scriptl.py script2.py ... scriptlO.py

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Step 2

Configure Checksum for Precommit Script .

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Note Only SHA256 checksum is supported.

Router#script add precommit http://192.0.2.0/scripts precommit-bgp.py checksum SHA256 checksum-value
For multiple scripts, use the following syntax to specify the checksum:

Router#script add precommit http://192.0.2.0/scripts scriptl.py scriptl-checksum script2.py
script2-checksum... scriptl0.py scriptlO-checksum

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.
« Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.

Router#scp userx@192.0.2.0:/scripts/precommit-bgp.py /harddisk:/

b. Add the script from the harddisk to the script management repository.

Router#script add precommit /harddisk:/ precommit-bgp.py
Tue Jan 24 05:03:40.791 UTC

Copying script from /harddisk:/precommit-bgp.py
precommit-bgp.py has been added to the script repository

Verify that the script is downloaded to the script management repository on the router.

Example:

Router#show script status
Tue Jan 24 05:10:40.791 UTCC

Name | Type | Status | Last Action | Action Time

precommit-bgp.py | precommit | Config Checksum | NEW | Tue Jan 24 05:10:18 2023

Script precommit-bgp.py is copied to harddisk: /mirror/script-mgmt/precommit directory on the router.

Configure Checksum for Precommit Script

Every script is associated with a checksum hash value. This value ensures the integrity of the script, and that
the script is not tampered with. The checksum is a string of numbers and letters that act as a fingerprint for
script. The checksum of the script is compared with the configured checksum. If the values do not match, the
script is not run and a syslog warning message is displayed.

It is mandatory to configure the checksum to run the script.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |

. Configure Checksum for Precommit Script

Step 1

Step 2

Step 3

Step 4

\)

Note Precommit scripts support SHA256 checksum.

Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.
However, if the router is secure, you can retrieve the checksum hash value from the IOS XR Linux bash shell.
Example:

Router#run

[node0 RPO CPUO:~]$sha256sum /harddisk:/mirror/script-mgmt/precommit/precommit-bgp.py
6bb460920a694a0£91a27892£457203090e7a6391ab7d2£8656£f477af17£9%edl
/harddisk:/mirror/script-mgmt/precommit/precommit-bgp.py

Make note of the checksum value.

View the status of the script.

Example:

Router#show script status detail
Tue Jan 24 05:20:13.539 UTC

Name | Type | Status | Last Action | Action Time

precommit-bgp.py | precommit | Config Checksum | NEW | Tue Jan 24 05:19:41

2023

Script Name : precommit-bgp-script.py

History:

1. Action : NEW
Time : Tue Jan 24 05:19:41 2021
Description : User action IN CLOSE WRITE

The status shows that the checksum is not configured.

You can view the details of the specific script using the show script status name script detail command.

Configure the checksum and set the priority.

Example:

Router#configure

Router (config) #script precommit precommit-bgp.py checksum SHA256
6bb460920a694a0£91a27892£457203090e7a6391ab7d2f8656£477af17f9%edl priority 20
Router (config) #commit

Tue Jan 24 10:23:10.546 UTC

Router (config) #end

If you are configuring multiple scripts, the system decides an appropriate order to run the scripts. However, you can
control the order in which scripts execute using a priority value. For more information on configuring the priority value,
see Control Priority When Running Multiple Scripts, on page 147.

Verify the status of the script.

Example:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Activate Precommit Scripts .

Router#show script status detail
Tue Jan 24 05:06:17.296 UTC

Name | Type | Status | Last Action | Action Time
precommit-bgp.py | precommit | Ready | NEW | Tue Jan 24 06:17:41 2023
Script Name : precommit-bgp.py
Checksum : 6bb460920a694a0£91a27892£457203090e7a6391ab7d2£8656£477af17£9%edl
History:
1. Action : NEW

Time : Tue Jan 24 06:17:41 2023

Checksum : 6bb460920a694a0£91a27892£457203090e7a6391ab7d2£8656£477af17£9%edl

Description : User action IN CLOSE WRITE

The status rReady indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script is not
run, and the commit operation that triggered the script is rejected. It is mandatory for the checksum values to match for
the script to run.

Activate Precommit Scripts

Step 1

Step 2

Activate the precommit script to validate a configuration change on the set of active configuration (including
any scripts newly activated as part of the configuration change) before committing the changes.

N

Note If the precommit script rejects one or more items in the configuration change, the entire configuration is
rejected before committing the change.

Before you begin
Ensure that the following prerequisites are met before you run the script:

1. Download the Script to the Router, on page 128

2. Configure Checksum for Precommit Script, on page 129

Activate the precommit script for the configuration validation to take effect.
Example:

Router (config) #script precommit precommit-bgp.py activate

Commit the changes and verify that the precommit script is automatically initiated. You can choose to perform one of
the following options based on the requirement:

» Commit the changes to automatically initiate the precommit verification script.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Example: Verify BGP Configuration Using Precommit Script

Router (config-bgp-nbr) #commit

Tue Jan 24 00:13:37.050 UTC

Precommit Script Report Start

Pre-commit Verification Result: Pass

Pre-commit Verification Script precommit-bgp.py (reg id 1656378102): Pass

Precommit Script Report Done

Ignore the result of the precommit script execution and proceed to the next step in the commit process using
ignore-results keyword. Use this keyword if you want to bypass the commit verification. The precommit script is
still executed, but the result is ignored.

Router (config-bgp-nbr) #commit script-verification ignore-results

View all the logs generated by the commit script on the console using ver bose keyword. If this keyword is not
specified, only the result of the script verification is displayed on the console.

Router (config-bgp-nbr) #commit script-verification verbose

An execution report from the script is displayed on the console. If the script displays an error message, rectify the error
and rerun the commit operation. If there are no validation errors, the commit operation is successful indicating that the
configuration change is valid.

Example: Verify BGP Configuration Using Precommit Script

In this example, you create a precommit script to validate the following Border Gateway Protocol (BGP)
configuration:

* Check that the autonomous system (AS) value is in the range from 123 to 234

* Check that the remote AS of neighbours is not set to 25

Step 1 Create a precommit script named verify-bgp.py. Store the script on a remote server or copy the script to the harddisk:
location of the router.

Example:

wun

import re

from iosxr.xrcli.xrcli helper import XrcliHelper
from cisco.script mgmt import xrlog

from cisco.script mgmt import precommit

syslog = xrlog.getSysLogger ('precommit verify bgp')
log = xrlog.getScriptLogger ('precommit verify bgp')
helper = XrcliHelper (debug=True)

def verify bgp():
Query for target configs and check if the target configs has bgp configs
Check if the bgp AS is in the range 123-234
Check if remote AS is not 25.
:return: None on pass / Raise exception on failure.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Example: Verify BGP Configuration Using Precommit Script .

[IRIR1]

CLI verification
cfg = precommit.get target configs()
#cfg = "Thu Feb 23 18:54:28.605 UTC\nrouter bgp 100\n neighbor 10.0.0.1\n remote-as 25\n !\n!\n"

#cfg = cfg.split ("\n")
print (cfqg)

for cfg_line in cfg:

bgp cfg start pattern = re.match("“router bgp (.*)", cfg line)
if bgp_cfg start pattern:
log.info ("BGP config found")

bgp_as = int(bgp_cfg start pattern.group(l))
if not bgp_as in range (123, 234):
precommit.config warning ("BGP AS number (%d) " % bgp_as +
"not in recommended range (123-234)")

sysdb verification
cfg = precommit.get target configs(format="sysdb")

cfg = [Item(name='gl/ip-bgp/default/0/100/aya', value=1l, datatype=1),

Item(name='gl/ip-bgp/default/0/100/gbl/edm/ord a/running', value=1, datatype=1l),

#
Item(name="'gl/ip-bgp/default/0/100/ord a/default/nbr/ /edm/ord u/0x3/10.0.0.1/ / /aya',
value=1l, datatype=1l),

#
Item (name="gl/ip-bgp/default/0/100/ord a/default/nbr/ /edm/ord u/0x3/10.0.0.1/ / /ord a/exists’,
value=1l, datatype=1l),

#
Ttem (name="gl/ip-bgp/default/0/100/ord a/default/nbr/ /edm/ord u/0x3/10.0.0.1/ / /ord b/remote-as',
value=(0, 26), datatype=5)]

print (cfqg)

for item in cfg:

remote as pattern = re.match(""gl/ip-bgp/default/0/.*/remote\-as", item.name)
if remote as pattern:
log.info ("BGP remote AS config found")
remote _as = int(item.value[l])
if remote as == 25:
syslog.info ("Attempt to configure BGP remote AS %d" % remote_ as)

)

precommit.config error ("Remote AS (%d) is not permitted" % remote_ as)

log.info ("BGP verification is good")

if name == "'_main_ ':
result = helper.xrcli exec("show version")
match = re.search(r'Version +: (.*)\n*', result['output'])
print ("Image version: %s" % match.group (1))
verify bgp()
Step 2 Add the script from the remote server or the harddisk: location to the script management repository. See Download the
Script to the Router, on page 128.
Step 3 Configure the checksum value to check the script integrity. See Configure Checksum for Precommit Script, on page 129.

Step 4 Activate the script. See Activate Precommit Scripts, on page 131.
Step 5 Configure BGP and commit the configuration.

Example:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |

. Example: Verify BGP Configuration Using Precommit Script

Step 6

Router (config) #router bgp 100
Router (config-bgp) #neighbor 10.0.0.1
Router (config-bgp-nbr) #remote-as 25
Router (config-bgp-nbr) #commit
Wed Jan 25 22:53:21.910 UTC
Precommit Script Report Start
Pre-commit Verification Result: Fail
Pre-commit Verification Script verify-bgp.py (req id 1674671641): Fail
% Script exception return value 1
Errors:
Remote AS (25) is not permitted
Warnings:
BGP AS number (100) not in recommended range (123-234)

Precommit Script Report Done

% Failed to commit .. As an error (Unknown) encountered during commit operation. Changes may not have
been committed:
'SCRIPT MGMT' detected the 'fatal' condition 'One or more Pre-Commit script verifications failed'

The precommit script is automatically initiated when you commit the configuration. The result from the script run is
displayed.

In this example, the precommit script validates the BGP configuration. The AS value limit that is configured in the script
is not within the permissible range of 123 to 234. The script rejects the configuration, and displays the details of the
validation failure on the console.

Verify the script execution details. You can either choose to ignore the script results or view the detailed report of the
script execution.

» Ignore the script results using ignore-results keyword, and proceed to commit the configuration.

Router (config-bgp-nbr) #commit script-verification ignore-results
Wed Jan 25 23:00:02.057 UTC
Precommit Script Report Start
Pre-commit Verification Result: Pass (Failures Ignored)
Pre-commit Verification Script verify-bgp.py (req id 1674671645): Fail (Ignored)
% Script exception return value 1
Errors:
Remote AS (25) is not permitted
Warnings:
BGP AS number (100) not in recommended range (123-234)

Precommit Script Report Done

View the detailed report using ver bose keyword.

Router (config-bgp-nbr) #commit script-verification verbose
Wed Jan 25 22:53:30.881 UTC
Precommit Script Report Start
Pre-commit Verification Result: Fail
Pre-commit Verification Script verify-bgp.py (req id 1674671642): Fail
% Script exception return value 1
Errors:
Remote AS (25) is not permitted
Warnings:
BGP AS number (100) not in recommended range (123-234)

Script output logs:
/harddisk:/mirror/script-mgmt/logs/verify-bgp.py precommit 1674671642/stdout.log
Image version: 7.5.4.291
['"!! IOS XR Configuration 7.5.4.291', 'router bgp 100', ' neighbor 10.0.0.1', ' remote-as 25',

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Step 7

Example: Verify BGP Configuration Using Precommit Script .

vorv, v, tend', "', '']

[2023-01-25 22:53:31,545] INFO [precommit verify bgp]:: BGP config found

1111 1SSSSSCONFIG WARNING: BGP AS number (100) not in recommended range (123-234) $S$$$!!l!l!
[Item(name='gl/ip-bgp/default/0/100/aya', value=1l, datatype=1),
Item(name='gl/ip-bgp/default/0/100/gbl/edm/ord a/running"',
value=1l, datatype=1l),

Item(name='gl/ip-bgp/default/0/100/ord a/default/nbr/ /edm/ord u/0x3/10.0.0.1/ / /aya',
value=1,
datatype=1),
Item(name="'gl/ip-bgp/default/0/100/ord a/default/nbr/ /edm/ord u/0x3/10.0.0.1/ /
ord_a/exists’, value=1l, datatype=1l),
Item(name='gl/ip-bgp/default/0/100/0rd a/default/nbr/ /edm/ord u/0x3/10.0.0.1/
/ /ord b/remote-as', value=(0, 25), datatype=5)]
[2023-01-25 22:53:31,571] INFO [precommit verify bgp]:: BGP remote AS config found

1111 1SSSSSCONFIG ERROR: Remote AS (25) is not permitted $$$$$!!!l!

Script error logs: /harddisk:/mirror/script-mgmt/logs/verify-bgp.py precommit 1674671642/stderr.log

Traceback (most recent call last):
File "/harddisk:/mirror/script-mgmt/precommit/verify-bgp.py", line 107, in <module>
verify bgp()
File "/harddisk:/mirror/script-mgmt/precommit/verify bgp.py", line 97, in verify bgp

precommit.config error ("Remote AS (%d) is not permitted" % remote_ as)
File "infra/script-mgmt/src/Packages/precommit.py"”, line 87, in config error

cisco.script mgmt.precommit.PrecommitConfigError: !!!!!$$$$SSCONFIG ERROR: Remote AS (25) is not

Precommit Script Report Done

% Failed to commit .. As an error (Unknown) encountered during commit operation. Changes may not

have been committed:

'SCRIPT MGMT' detected the 'fatal' condition 'One or more Pre-Commit script verifications failed'

Rectify the errors and commit the configuration.

Example:

Router (config) #router bgp 200

Router (config-bgp) #neighbor 10.0.0.1

Router (config-bgp-nbr) #remote-as 26

Router (config-bgp-nbr) #commit

Wed Jan 25 22:59:06.704 UTC

Precommit Script Report Start

Pre-commit Verification Result: Pass

Pre-commit Verification Script verify-bgp.py (reqg id 1674671644): Pass

Precommit Script Report Done

The precommit script validates the BGP configuration to ensure that the conditions configured in the script are met.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Example: Verify BGP Configuration Using Precommit Script

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 1 1

Config Scripts

Cisco IOS XR config scripts can validate and make modifications to configuration changes. They allow device
administrators to enforce custom configuration validation rules, or to simplify certain repetitive configuration
tasks. These scripts are invoked automatically when you change a configuration and commit the changes.
When a configuration commit is in progress, a config script inserts itself into the commit process. The config
script can modify the current config candidate. For example, consider you want to maintain certain parameters
for routers such as switched off ports or security policies. The config script is triggered to validate the updated
configuration and take appropriate action. If the change is valid, the script allows committing the new
configuration. If the configuration is invalid, or does not adhere to the enforced constraints, the script notifies
you about the mismatch and blocks the commit operation. Overall, config scripts help to maintain crucial
device parameters, and reduce human error in managing the network.

When you commit or validate a configuration change, the system invokes each of the active scripts to validate
that change. Config scripts can perform the following actions:

* Analyze the proposed new configuration.

« If the configuration is invalid, block the commit by returning an error message along with the set of
configuration items to which it relates.

* Return a warning message with the related details but does not block the commit operation.

* Modify the configuration to be included in the commit operation to make the configuration valid, or to
simplify certain repetitive configuration tasks. For example, where a value needs duplicating between
one configuration item and another configuration item.

* Generate system log messages for in-depth analysis of the configuration change. This log also helps in
troubleshooting a failed commit operation.

Config Scripts Limitations
The following are the configuration and software restrictions when using config scripts:
* Config scripts cannot make modifications to configuration that is protected by CCV process, in particular:
* Script checksum configuration.
* Other sensitive security configuration such as AAA configuration.
* Config scripts do not explicitly support importing helper modules or other custom imports to provide

shared functionality. Although such imports appear to function correctly when set up, they can potentially
represent a security risk becaue there is no checksum validation on the imported modules. Modifications

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Workflow to Run Config Scripts

to these imported modules are not automatically detected. To reflect changes to the imported module in
the running scripts, you must manually unconfigure and reconfigure any scripts using the imported
module.

Get Started with Config Scripts

Config scripts can be written in Python 3.5 programming language using the packages that Cisco supports.
For more information about the supported packages

This chapter gets you started with provisioning your Python automation scripts on the router.

)

Note This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

» Workflow to Run Config Scripts, on page 138
* Manage Scripts, on page 146
» Example: Validate and Activate an SSH Config Script, on page 148

Workflow to Run Config Scripts

Complete the following tasks to provision config scripts:

* Enable the config scripts feature—Globally activate the config scripts feature on the router using
configuration validation scripts command.

» Download the script—Store the config script on an HTTP server or copy to the harddisk of the router.
Add the config script from the HTTP server to the script management repository
(hardisk:/mirror/script-mgmt) on the router using the script add config command.

* Validate the script—Check script integrity and authenticity using the script config script.py checksum
command. A script cannot be used unless the checksum is configured. After the checksum is configured,
the script is active.

N

Note A config script is invoked automatically when you validate or commit a
configuration change to modify the candidate configuration.

* Validate the configuration—Ensure that the configuration changes comply with the predefined conditions
in the script and uncover potential errors using validate config-scripts apply-policy-modifications
command.

* View the script execution details—Retrieve the operational data using the show operational Config
Global Validation Script Execution command.

The following image shows a workflow diagram representing the steps involved in using a config script:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Enable Config Scripts Feature .

Enable the config scripts feature

configuration validation scripts

h J

Create script and store the script in a
HTTP server or copy to routers’ harddisk

Y
Add script from HTTP server or harddisk
to the script management repositary

| script add |

Y
Verify that the script is added successfully

| show script status |

- O '
™ ,-"'Fcnecksum oy - Configure checksum
L maten? | script config <script> checksum |
i Yes Validate script

" |va|idat|a config-scripts apply-mlit:y-madiﬁcaﬁonﬂ -

" Config scripts are |
invoked automatically |

Rectify gaps-errors/warnings

show configuration failed if-committed
show configuration

Validation
successful?

Yes
h J

Commit configuration L

| Config scripts are |
invoked automatically |

Mo Rectify errors/blockers
show configuration failed if-commited

Commit
successful?

Yes

i J
View results

show running-config
show configuration commit changes last 1
show configuration commit changes original last-modified

SF050

Script run
CLI command
L kv

Internal operation

Enable Config Scripts Feature

Config scripts are driven by commit operations. To run the config scripts, you must enable the feature on the
router. You must have root user privileges to enable the config scripts.

)

Note You must commit the configuration to enable the config scripts feature before committing any script checksum
configuration.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Download the Script to the Router

Step 1 Enable the config scripts.

Example:

Router (config) #configuration validation scripts
Step 2 Commit the configuration.

Example:

Router (config) #commit

Download the Script to the Router

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Script Type Download Location

config harddisk:/mirror/script-mgmt/config
exec harddisk:/mirror/script-mgmt/exec
process harddisk:/mirror/script-mgmt/process
eem harddisk:/mirror/script-mgmt/eem

The scripts are added to the script management repository using two methods:

» Method 1: Add script from a server

» Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add config-script.py script to the script management repository.

Step 1 Add the script to the script management repository on the router using one of the two options:
» Add Script From a Server

Add the script from a configured HTTP server or the harddisk location in the router.

Router#script add config <script-location> <script.py>

The following example shows a config script config-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Router#script add config http://192.0.2.0/scripts config-script.py
Fri Aug 20 05:03:40.791 UTC
config-script.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.

Router#script add config <script-location> <scriptl.py> <script2.py> ... <scriptlO.py>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Step 2

Download the Script to the Router .

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Router#script add config http://192.0.2.0/scripts config-script.py checksum SHA256 <checksum-value>
For multiple scripts, use the following syntax to specify the checksum:

Router#script add config http://192.0.2.0/scripts <scriptl.py> <scriptl-checksum> <script2.py>
<script2-checksum>
<scriptl0.py> <scriptlO-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note Only SHA256 checksum is supported.

» Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/config-script.py /harddisk:/
b. Add the script from the harddisk to the script management repository.

Router#script add config /harddisk:/ config-script.py
Fri Aug 20 05:03:40.791 UTC
config-script.py has been added to the script repository

Verify that the scripts are downloaded to the script management repository on the router.

Example:

Router#show script status
Fri Sep 2 21:37:05.021 PDT

Name | Type | Status | Last Action | Action Time

CpuCheck Netconf RPC_Agent.py | process| Ready | NEW | Fri Sep 2 20:24:58 2022
config ssh script.py | config | Ready | MODIFY | Tue Aug 30 14:11:25 2022
eem script action gshut.py | eem | N/A | MODIFY | Thu Sep 1 14:37:58 2022
:23 2021

Router# show appmgr process-script CpuCheck Netconf RPC_Agent Process_App info
Fri Sep 2 21:38:27.455 PDT
Application: CpuCheck Netconf RPC Agent Process App

Activated configuration:

Executable : CpuCheck Netconf RPC Agent.py
Run arguments : 15
Restart policy : On Failure
Maximum restarts : 3
Execution status and info:
Activated : Yes
Status : Started
Executable Checksum : ee3c32a7d95b398a7eeea9b0d39d4d414338cc9fca739462b8ed49069d28d83¢c
Restart count I

Log location

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Configure Checksum for Config Script

Automation Scripts |

/harddisk:/mirror/script-mgmt/logs/CpuCheck Netconf RPC Agent.py process CpuCheck Netconf RPC Agent Process App

Last started Time : Fri Sep 2 21:13:33 2022

Script config ssh_script.py is copied to harddisk:/mirror/script-mgmt/config directory on the router.

Configure Checksum for Config Script

Step 1

Step 2

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

Every script is associated with a checksum hash value. This value ensures the integrity of the script, and that
the script is not tampered with. The checksum is a string of numbers and letters that act as a fingerprint for
script. The checksum of the script is compared with the configured checksum. If the values do not match, the

script is not run and a syslog warning message is displayed.

It is mandatory to configure the checksum to run the script.

)

Note Config scripts support SHA256 checksum.

Before you begin

Ensure that the following prerequisites are met before you run the script:

1. Enable Config Scripts Feature, on page 139
2.

Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.
However, if the router is secure, you can retrieve the checksum hash value from the IOS XR Linux bash shell.

Example:

Router#run

[node0 RPO_CPUO:~]$sha256sum /harddisk:/mirror/script-mgmt/config/config-script.py
94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b

/harddisk:/mirror/script-mgmt/config/config-script.py

Make note of the checksum value.

View the status of the script.

Example:

Routerf#show script status detail
Fri Aug 20 05:04:13.539 UTC

| Last Action | Action Time

Name | Type | Status
config-script.py | config | Config Checksum
Script Name : config-script.py

History:

| Automation Scripts

Step 3

Step 4

Configure Checksum for Config Script .

1. Action : NEW
Time : Fri Aug 20 05:03:41 2021
Description : User action IN_CLOSE WRITE

The status shows that the checksum is not configured.

Configure the checksum.

Example:

Router#configure

Router (config) #script config config-script.py checksum SHA256
94336£3997521d6elaeclOee6faab0233562d53d4de7b0092e80b53caed58414b
Router (config) #commit

Tue Aug 24 10:23:10.546 UTC

Router (config) #end

Note When you commit this configuration, the script is automatically run to validate the resulting running
configuration. If the script returns any errors, this commit operation fails. This way, the running configuration
always remains valid with respect to all currently active scripts with checksums configured.

If you are configuring multiple scripts, the system decides an appropriate order to run the scripts. However, you can
control the order in which scripts execute using a priority value. For more information on configuring the priority value,
see Control Priority When Running Multiple Scripts, on page 147.

Verify the status of the script.

Example:

Router#show script status detail
Fri Aug 20 05:06:17.296 UTC

Name | Type | Status | Last Action | Action Time
config-script.py | config | Ready | NEW | Fri Aug 20 05:03:41 2021
Script Name : config-script.py
Checksum : 94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b
History:
1. Action : NEW

Time : Fri Aug 20 05:03:41 2021

Checksum : 94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b

Description : User action IN_CLOSE WRITE

The status rReady indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script is not
run, and the commit operation that triggered the script is rejected. It is mandatory for the checksum values to match for
the script to run.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |

. Validate or Commit Configuration to Invoke Config Script

Validate or Commit Configuration to Invoke Config Script

Table 30: Feature History Table

Feature Name Release Information Description
Validate Pre-configuration Using |Release 7.5.1 This feature allows you to use
Config Scripts config scripts to validate

pre-configuration during a commit
or validate operation. Any active
config scripts can read and validate
(accept, reject or modify)
pre-configuration. The
pre-configuration is only applied to
the system later on, when the
relevant hardware is inserted, and
does not require further script
validation at that point. Previously,
config scripts did not allow
validating configuration until the
corresponding hardware was
present.

You can validate a configuration change on the set of active config scripts (including any scripts newly
activated as part of the configuration change) before committing the changes. This validation ensures that the
configuration complies with predefined conditions defined in the active scripts based on your network
requirements. With validation, you can update the target configuration buffer with any modifications that are
made by the config scripts. You can review the target configuration using the show configuration command,
and further refine the changes to resolve any outstanding errors before revalidating or committing the
configuration.

\}

Note

If the config script rejects one or more items in the commit operation, the entire commit operation is rejected.

You can also validate pre-configuration during a commit operation. Pre-configuration is any configuration
specific to a particular hardware resource such as an interface or a line card that is committed before that
resource is present. For example, commit configuration for a line card before it is inserted into the chassis.
Any active config scripts can read and validate (accept, reject or modify) the pre-configuration. However,
when the configuration is committed, the pre-configuration is not applied to the system. Later, when the
relevant hardware resource is available, the pre-configuration becomes active and is applied to the system.
The config scripts are not run to validate the configuration at this point as the scripts have already validated
this configuration.

Before you begin
Ensure that the following prerequisites are met before you run the script:

1. Enable Config Scripts Feature, on page 139
2. Configure Checksum for Config Script, on page 142

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Step 1

Step 2

Step 3

Step 4

Validate or Commit Configuration to Invoke Config Script .

Validate the configuration with the conditions in the config script.

Example:

Router (config) #validate config-scripts apply-policy-modifications
Tue Aug 31 08:30:38.613 UTC

% Policy modifications were made to target configuration, please issue 'show configuration'
from this session to view the resulting configuration
figuration' from this session to view the resulting configuration

The output shows that there are no errors in the changed configuration. You can view the modifications made to the target
configuration.

Note If you do not want the config buffer to be updated with the modifications, omit the apply-policy-modifications
keyword in the command.

The script validates the configuration changes with the conditions set in the script. Based on the configuration,
the script stops the commit operation, or modifies the configuration.

View the modified target configuration.

Example:

Router (config) #show configuration

Tue Aug 31 08:30:56.833 UTC

Building configuration...

!'l TOS XR Configuration 7.3.2

script config config-script.py checksum SHA256

94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b
d342adb35cbc8alcd4b6eall63d0eda2d58

........... configuration details

Commit the configuration.

Example:

Router (config) #commit
Tue Aug 31 08:31:32.926 UTC

If the script returns an error, use the show configuration failed if-committed command to view the errors. If there are
no validation errors, the commit operation is successful including any modifications that are made by config scripts.

You can view the recent commit operation that the script modified, and display the original configuration changes before
the script modified the values using show configuration commit changes original last-modified command.

If the commit operation is successful, you can check what changes were committed including the script modifications
using show configuration commit changeslast 1 command.

Note If a config script returns a modified value that is syntactically invalid, such as an integer that is out of range,
then the configuration is not converted to CLI format for use in operational commands. This action impacts
the validate config-scripts apply-policy-modifications command and show configuration command to
view the modifications, and show configuration failed [if-committed] command during a failed commit
operation.

After the configuration change is successful, view the running configuration and logs for details.

Example:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |

. Manage Scripts

Router (config) #show logging
Tue Aug 31 08:31:54.472 UTC
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
Console logging: Disabled
Monitor logging: level debugging, 0 messages logged
Trap logging: level informational, 0 messages logged
Buffer logging: level debugging, 13 messages logged

Log Buffer (2097152 bytes):

———————————————————— snipped for brevity -------"-""""""""""""-"--""-"-"°6:/'°"oi-:::
Configuration committed by user 'cisco'. Use 'show configuration commit changes
1000000006"' to view the changes.

Manage Scripts

This section shows the additional operations that you can perform on a script.

Delete Config Script from the Router

Step 1

Step 2

Step 3

You can delete a config script from the script management repository using the script remove command.

View the active scripts on the router.

Example:

Router#show script status
Wed Aug 24 10:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

ssh config script.py | config | Ready | NEW | Tue Aug 24 09:18:23 2021

Ensure the script that you want to delete is present in the repository.

Alternatively you can also view the list of scripts from the IOS XR Linux bash shell.

[node0 RPO_CPUO:/harddisk:/mirror/script-mgmt/config]$ls -lrt
total 1
-rw-rw-rw-. 1 root root 110 Aug 24 10:44 ssh config script.py

Delete script ssh_config_script.py.

Example:

Router#script remove config ssh_config_script.py
Tue Aug 24 10:19:38.170 UTC
ssh _config script.py has been deleted from the script repository

You can also delete multiple scripts simultaneously.

Router#script remove config samplel.py sample2.py sample3.py

Verify that the script is deleted from the subdirectory.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Control Priority When Running Multiple Scripts .

Example:

Router#show script status
Tue Aug 24 10:24:38.170 UTC
No scripts found

The script is deleted from the script management repository.

If a config script is still configured when it is removed, subsequent commit operations are rejected. So, you must also
undo the configuration of the script:

Router (config) #no script config ssh_config_script.py
Router (config) #commit

Control Priority When Running Multiple Scripts

Step 1

Step 2

Step 3

If the set of active scripts includes two (or more) that may attempt to modify the same configuration item but
to different values, whichever script runs last takes precedence. The script that was last run supersedes the
values written by the script (or scripts) that ran before it. It is recommended to avoid such dependencies
between scripts. For example, you can combine such scripts into a single script. If the dependency cannot be
resolved, you can specify which script takes precedence by ensuring it runs last.

Priority can also be used to ensure scripts run in an optimal order, which may be important if scripts consume
resources and impacts performance. For example, consider that script A sets configuration that is validated
by script B. Without a set priority, the system may run script B first, then script A, and then script B a second
time to validate the changes made by script A. With a configured priority, the system ensures that script A
runs first, and script B needs to run only once.

The priority value is an integer between 0-4294967295. The default value is 500.

Consider script samplel.py depends on sample?2.py to validate the configuration that the script sets. The
script samplel.py must be run first, followed by sample2.py. Configure the priority to ensure that the system
runs the scripts in a specified order.

Configure script samplel.py with a lower priority.

Example:

Router (config) #script config samplel.py checksum sha256
2b061lfllede3clcOcl8flee97269£fd342adb35cbc8alcd4b6eal063d0eda2d58
priority 10

Configure script sample2.py with a higher priority.

Example:

Router (config) #script config sample2.py checksum sha256
2fa34b64542f005ed58dcaalf3560e92a03855223e130535978£8¢c35bc21290c¢c
priority 20

Commit the configuration.

Example:

Router (config) #commit

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |

. Example: Validate and Activate an SSH Config Script

The system checks the priority values, and runs the one with lower priority first (samplel.py), followed by the one with
the higher priority value (sample2.py).

Example: Validate and Activate an SSH Config Script

This section presents examples for config script that enforces various constraints related to SSH configuration,
including making modifications to the configuration in some cases. The following sub-sections illustrate the
behaviour of this script in various scenarios.

Before you begin

Ensure you have completed the following prerequisites before you validate the script:

1
2.

Enable config scripts feature on the router. See Enable Config Scripts Feature, on page 139.

Create a config script ssh_config_script.py. Store the script on an HTTP server or copy the script to
the harddisk of the router.

import cisco.config validation as xr
from cisco.script mgmt import xrlog
syslog = xrlog.getSysLogger ('xr cli config')

def check ssh late cb(root):

SSH = "/crypto-ssh-cfg:ssh"
SERVER = "/crypto-ssh-cfg:ssh/server"
SESSION LIMIT = "session-limit"
LOGGING = "logging"
RATE LIMIT = "rate-limit"
v2 = "v2"
server = root.get node (SERVER)
if server is None:
xr.add error (SSH, "SSH must be enabled.")

if server
session limit = server.get node (SESSION LIMIT)
rate limit = server.get node (RATE LIMIT)
ssh logging = server.get node (LOGGING)
ssh v2 = server.get node(V2)

if session limit is None or session limit.value >= 100:
server.set node (SESSION LIMIT, 80)

if rate limit.value == 60:
xr.add warning(rate limit, "RATE LIMIT should not be set to default value")

if not ssh logging:
server.set node (LOGGING)
if not ssh v2:
xr.add error (server, "Server V2 need to be set")

xr.register validate callback(["/crypto-ssh-cfg:ssh/server/*"], check ssh late cb)

The script checks the following actions:

* Check if SSH is enabled. If not, generate an error message SSH must be enabled and stop the commit
operation.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Scenario 1: Validate the Script Without SSH Configuration .

* Check if the rate-limit is set to 60, display a warning message that the RATE LIMIT should not be
set to default value and allow the commit operation.

¢ Check if the session-limit is set. If the limit is 100 sessions or more, set the value to 80 and allow
the commit operation.

* Set the logging if not already enabled.

3. Add the script from HTTP server or harddisk to the script management repository.

Scenario 1: Validate the Script Without SSH Configuration

Step 1

Step 2

Step 3

Step 4

In this example, you validate a script without SSH configuration. The script is programmed to check the SSH
configuration. If not configured, the script instructs the system to display an error message and stop the commit
operation until SSH is configured.

Configure the checksum to verify the authenticity and integrity of the script. See Configure Checksum for Config Script,
on page 142.

Validate the config script.

Example:

Router (config) #validate config-scripts apply-policy-modifications
Wed Sep 1 23:21:34.730 UTC

)

% Validation of configuration items failed. Please issue 'show configuration failed if-committed'
from this
session to view the errors

The validation of the configuration failed.

View the configuration of the failed operation.

Example:

Router#show configuration failed if-committed

Wed Sep 1 22:01:07.492 UTC

!'! SEMANTIC ERRORS: This configuration was rejected by !! the system due to semantic errors.
!l The individual errors with each failed configuration command can be found below.

script config ssh config script.py checksum SHA256
2pb061fllede3clc0cl8flee97269fd342adb35cbc8alcd4bbeal063d0eda2d58
!'1% ERROR: SSH must be enabled.

end

The message for the failure is displayed. Here, the error ssi must be enabled is displayed as programmed in the script.
The script stops the commit operation because the changes do not comply with the rule set in the script.

Check the syslog output for the count of errors, warnings, and modifications.

Example:

Router#show logging | in Error

Wed Sep 1 22:02:05.559 UTC

Router:Wed Sep 1 22:45:05.559 UTC: ccv[394]: SMGBL-CCV-6-CONFIG_SCRIPT CALLBACK EXECUTED :
The function check ssh late cb registered by the config script ssh config script.py was
executed in 0.000 seconds.

Error/Warning/Modification counts: 1/0/0

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |

. Scenario 2: Configure SSH and Validate the Script

In this example, the script displays an error about the missing SSH configuration. When an error is displayed, the warning
and modification count always show 0/0 respectively even if modifications exist on the target buffer.

Scenario 2: Configure SSH and Validate the Script

Step 1

Step 2
Step 3

Step 4

Step 5

Step 6

In this example, you configure SSH to resolve the error displayed in scenario 1, and validate the script again.

Configure SSH.

Example:

Router (config) #ssh server v2
Router (config) #ssh server vrf default
Router (config) #ssh server netconf vrf default

Configure the checksum.

Validate the configuration again.

Example:

Router (config) #validate config-scripts apply-policy-modifications
Wed Sep 1 22:03:05.448 UTC

% Policy modifications were made to target configuration, please issue 'show configuration’
from this session to view the resulting configuration

The script is programmed to display an error and stop the commit operation if the system detects that SSH server is not
configured. After the SSH server is configured, the script is validated successfully.

Commit the configuration.

Example:

Router (config) #commit
Tue Aug 31 08:31:32.926 UTC

View the SSH configuration that is applied or modified after the commit operation.

Example:

Router#show running-config ssh
Wed Sep 1 22:15:05.448 UTC

ssh server logging

ssh server session-limit 80
ssh server v2

ssh server vrf default

ssh server netconf vrf default

In addition, you see the modifications that are made by the script to the target buffer. The session-limit is used to configure
the number of allowable concurrent incoming SSH sessions. In this example, the default limit is set to 80 sessions.
Outgoing connections are not part of the limit. The script is programmed to check the session limit. If the limit is greater
or equal to 100 sessions, the script reconfigures the value to the default 80 sessions. However, if the limit is within 100
sessions, the configuration is accepted without modification.

Check the syslog output for the count of errors, warnings, and modifications.

Example:

Router#show logging | in Error
Wed Sep 1 22:45:05.559 UTC

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Scenario 3: Set Rate-limit Value to Default Value in the Script .

Router:Wed Sep 1 22:45:05.559 UTC: ccv[394]: %MGBL-CCV-6-CONFIG_SCRIPT_ CALLBACK EXECUTED
The function check ssh late cb registered by the config script ssh _config script.py was
executed in 0.000 seconds.

Error/Warning/Modification counts: 0/0/2

In this example, the script did not display an error or warning, but made two modifications for server logging and
session-limit.

Scenario 3: Set Rate-limit Value to Default Value in the Script

Step 1

Step 2

Step 3

Step 4

In this example, you see the response after setting the rate-limit to the default value configured in the script.
The rate-limit is used to limit the incoming SSH connection requests to the configured rate. The SSH server
rejects any connection request beyond the rate-limit. Changing the rate-limit does not affect established SSH
sessions. For example, if the rate-limit argument is set to 60, then 60 requests are allowed per minute. The
script checks if the rate-limit is set to the default value 60. If yes, the script displays a warning message that
the RATE LIMIT should not be set to default value, but allow the commit operation.

Configure rate-limit to the default value of 60.

Example:

Router (config) #ssh server rate-limit 60

Commit the configuration.

Example:

Router (config) #fcommit
Wed Sep 1 22:11:05.448 UTC

)

% Validation warnings detected as a result of the commit operation.
Please issue 'show configuration warnings' to view the warnings

The script displays a warning message but proceeds with the commit operation.

View the warning message.

Example:

Router (config) #show configuration warnings

Wed Sep 1 22:12:05.448 UTC

!'l SEMANTIC ERRORS: This configuration was rejected by the system due to
semantic errors. The individual errors with each failed configuration command
can be found below.

script config ssh config script.py checksum SHA256
2b061fllede3clc0cl8flee97269fd342adb35chbc8alcd4bbeal063d0eda2ds8
!'l% WARNING: RATE LIMIT should not be set to default value

end

The rate limit is default value of 60. The script is programmed to display a warning message if the rate limit is set to the
default value. You can either change the limit or leave the value as is.

View the running configuration.

Example:

Router (config) #do show running-config script

Wed Sep 1 22:15:05.448 UTC

script config ssh config script.py checksum SHA256
2b061fllede3clc0cl8flee97269fd342adb35cbc8alcd4bbeal063d0eda2ds8

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Scenario 4: Delete SSH Server Configuration

The script ssh_config script.py is active.

Scenario 4: Delete SSH Server Configuration

In this example, you delete the SSH server configurations, and see the response when the script is validated.

Step 1 Remove the SSH server configuration.

Example:

Router (config) #no ssh server v2

Step 2 Commit the configuration.

Example:
Router (config) #commit

Wed Sep 1 22:45:05.559 UTC

% Failed to commit one or more configuration items during an atomic operation.
No changes have been made. Please issue 'show configuration failed if-committed' from
this session to view the errors

Step 3 View the error message.

Example:

Router (config) #show configuration failed if-committed

Wed Sep 1 22:47:53.202 UTC

!'l SEMANTIC ERRORS: This configuration was rejected by the system due to semantic errors. The individual
errors with each failed configuration command can be found below.

no ssh server v2
!'1% ERROR: Server V2 need to be set

end

The message is displayed based on the rule set in the script.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 1 2

Exec Scripts

Cisco IOS XR exec scripts are on-box scripts that automate configurations of devices in the network. The
exec scripts are written in Python using the Python libraries that Cisco provides with the base package. For
the list of supported packages

A script management repository on the router manages the exec scripts. This repository is replicated on both
RPs.

In IOS XR, AAA authorization controls the user access and privileges to perform operations. To run the exec
script, you must have root user permissions.

Exec scripts provide the following advantages:
* Provides automation capabilities to simplify complex operations.
* Create customized operations based on the requirement.

* Provide flexibility in changing the input parameters for every script run. This fosters dynamic automation
of operational information.

* Detect and display errors and warnings when executing an operation.

* Run multiple automated operations in parallel without blocking the console.

This chapter gets you started with provisioning your Python automation scripts on the router.

)

Note This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

» Workflow to Run an Exec Script, on page 153
* Manage Scripts, on page 164
» Example: Exec Script to Verify Bundle Interfaces, on page 165

Workflow to Run an Exec Script

Complete the following tasks to provision exec scripts:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |

. Workflow to Run an Exec Script

» Download the script—Add the script to the appropriate exec script directory on the router. using the
script add exec command.

* Configure checksum—Check script integrity and authenticity using the script exec <script.py> checksum
command.

* Run the script—Trigger changes to the router configuration. Include arguments, set the maximum time
for the script to run, setup log levels using the script run command.

* View the script execution details—Validate the script and retrieve the operational data using the show
script execution command.

The following image shows a workflow diagram representing the steps involved in using an exec script:

Stop
script run

Option 1

Y

Add script to script

management repository

.
Create script

Option 2

Y

€=

CLI command

Internal operation

No ,/'/ Checksum ‘\“-\

-.._match found? _/‘""

|

SCP / Copy script
to harddisk

scp

Verify that the script is
added successfully

!

Configure checksum

| script exec <script> checksum ‘

|

Run the script

!

View the status of the script

| show script execution |

Yes

Script
changed
after rectifying
errors?

Script run
complete

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

Rectify errors ‘

A

View the script log ‘

522052

| Automation Scripts
Download the Script to the Router .

Download the Script to the Router

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Script Type Download Location

config harddisk:/mirror/script-mgmt/config
exec harddisk:/mirror/script-mgmt/exec
process harddisk:/mirror/script-mgmt/process
eem harddisk:/mirror/script-mgmt/eem

The scripts are added to the script management repository using two methods:

* Method 1: Add script from a server

» Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add exec-script.py script to the script management repository.

Step 1 Add the script to the script management repository on the router using one of the two options:
» Add Script From a Server

Add the script from a configured HTTP server or the harddisk location in the router.

Router#script add exec <script-location> <script.py>

The following example shows a config script exec-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Routerf#script add config http://192.0.2.0/scripts exec-script.py
Fri Aug 20 05:03:40.791 UTC
exec-script.py has been added to the script repository

Note The repository can be local to the router, or accessed remotely through TFTP, SCP, FTP, HTTP, or
HTTPS protocols. In addition to the default Virtual Routing and Forwarding (VRF), support is also
extended for non-default VRF.

You can add a maximum of 10 scripts simultaneously.

Router#script add exec <script-location> <scriptl.py> <script2.py> ... <scriptlO.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Note Only SHA256 checksum is supported.

Router#script add exec http://192.0.2.0/scripts exec-script.py checksum SHA256 <checksum-value>

For multiple scripts, use the following syntax to specify the checksum:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Update Scripts from a Remote Server

Router#script add exec http://192.0.2.0/scripts <scriptl.py> <scriptl-checksum> <script2.py>
<script2-checksum>
. <scriptl0.py> <scriptlO-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

« Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/exec-script.py /harddisk:/

b. Add the script from the harddisk to the script management repository.

Router#script add exec /harddisk:/ exec-script.py
Fri Aug 20 05:03:40.791 UTC
exec-script.py has been added to the script repository

Step 2 Verify that the scripts are downloaded to the script management repository on the router.

Example:

Router#show script status
Wed Aug 25 23:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

exec-script.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021

Script exec-script.py is copied to harddisk: /mirror/script-mgmt/exec directory on the router.

Update Scripts from a Remote Server

Table 31: Feature History Table

Feature Name Release Information Description
Update Automation Scripts from |Release 7.5.1 This feature lets you update
Remote Server automation scripts across routers

by accessing the master script from
a remote site. This eases script
management, where you make
changes to the master script and
then copy it to routers where it is
deployed.

This feature introduces the
auto-updatekeyword in the script
exec command.

You can maintain the latest copy of the scripts in a remote location, and configure the routers to automatically
update the local copy with the latest copy on the server as required.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/75x/b-programmability-cg-8000-75x/m-ops-exec-scripts.html#Cisco_Task.dita_efcb402a-ff56-4906-96ab-97c0132eb07d
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/75x/b-programmability-cg-8000-75x/m-ops-exec-scripts.html#Cisco_Task.dita_efcb402a-ff56-4906-96ab-97c0132eb07d

| Automation Scripts

Update Scripts from a Remote Server .

You can update the script using one of the following options.

» Config CLI commands:

a.

Update the script on the router with the version on the remote server.

Router (config) #script exec auto-update sample3.py http://10.23.255.205
condition [manual | on-run | schedule]

In this example, sample3.py script is automatically updated from the remote server at nttp://10.23.255.205.
You can set conditions when updating the script.

The repository can be accessed remotely through FTP, HTTP, HTTPS, TFTP or SCP protocols.

Condition

Description

manual

Update manually with an Exec CLI (default). The following option is
supported:

* vrf—Specify the non-default Virtual Routing and Forwarding
(VRF) name.

« username—Enter the username.

* password—Enter the password.

on-run

Update the exec script during run time. The following options are
supported:

+ on-fail—Specify one of the actions on failure.

¢ do-not-run—Do not run the script on failure.

» run-local—Run the local copy of the script.

* vrf—Specify the non-default VRF name.
* username—Enter the username.

* password—Enter the password.

Note Only the exec scripts support the on-run option.

schedule

Update automatically at specified time intervals. The following option
is supported:

* <60-262800>—Update interval in minutes
+ username—Enter the username.

* password—Enter the password.

Note The schedule option does not support SCP protocol.

Note

Do not specify the username and password inside the URL of the remote server.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Invoke Scripts from a Remote Server

b. Commit the configuration.

Router (config) #commit

C. Run the script.

Router#script run sample3.py background

Tue Nov 16 12:50:33.512 UTC

sample3.py has been added to the script repository
Script run scheduled: sample3.py. Request ID: 1624990452
You can specify additional options to the command:

« arguments: Script command-line arguments. The format is strings in single quotes. Escape double quotes
inside string arguments.

« description: Description of script run.
* log-level: Script logging level. Default is INFO.
* log-path: Location to store script logs.

* max-runtime: Maximum run time of script.

» Exec CLI commands:
When you run the script, the script is downloaded and the checksum is automatically configured on the router.
« If on-run option is configured, running the script run command downloads the script.
« If manual option is configured, then you must run script update Exec command.

« If schedule option is selected, then the script is automatically updated after the specified interval.

a. Update the script on the router with the version on the remote server.

Router#script update manual exec sample2.py
Tue Nov 16 12:20:23.058 UTC
sample2.py has been added to the script repository

You can set options when updating the script:

Option Description
WORD Script name.
all Update all scripts in config.

Invoke Scripts from a Remote Server

You can directly run the script using the URL to the remote server and provide the checksum value. The
checksum is a mandatory parameter. The format of the URL is

[protocol]://[user:password@]server[:port]/directory/file name

Run the script from the remote server.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Configure Checksum for Exec Script .

Example:

Router#script run http://10.23.255.205/samplel.py checksum
5103a843032505decc37££21089336e4bcc6al061341056ca8add3ac5d6620ef background
Tue Nov 16 12:12:08.614 UTC

Script run scheduled: samplel.py. Request ID: 1624990451

The repository can be accessed remotely through FTP, HTTP, HTTPS, TFTP or SCP protocols.
You can specify additional options to the command:

» arguments: Script command-line arguments. The format is strings in single quotes. Escape double quotes inside
string arguments.

» description: Description of script run.

* log-level: Script logging level. Default is INFO.
* log-path: Location to store script logs.

* max-runtime: Maximum run time of script.

* vrf: Specify the VRF for the network file system.

Configure Checksum for Exec Script

Step 1

Step 2

Every script is associated with a checksum value. The checksum ensures the integrity of the script that is
downloaded from the server or external repository is intact, and that the script is not tampered. The checksum
is a string of numbers and letters that act as a fingerprint for script. The checksum of the script is compared
with the configured checksum. If the values do not match, the script is not run and a syslog warning message
is displayed.

It is mandatory to configure the checksum to run the script.

\}

Note Exec scripts support SHA256 checksum.

Before you begin

Ensure that the script is added to the script management repository. See Download the Script to the Router,
on page 155.

Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.

Example:

Server$sha256sum samplel.py
94336£3997521d6elaeclee6£faab0233562d53d4de7b0092e80b53caed58414b samplel.py

Make note of the checksum value.

View the status of the script.

Example:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Configure Checksum for Exec Script

Router#show script status detail
Fri Aug 20 05:04:13.539 UTC

Name | Type | Status | Last Action | Action Time
samplel.py | exec | Config Checksum | NEW | Fri Aug 20 05:03:41 2021
Script Name : samplel.py
History:
1. Action : NEW
Time : Fri Aug 20 05:03:41 2021
Description : User action IN_CLOSE WRITE

The status shows that the checksum is not configured.

Step 3 Enter global configuration mode.
Example:
Router#configure

Step 4 Configure the checksum.

Example:

Router (config) #script exec samplel.py checksum SHA256
94336£3997521d6elaeclOeeb6faab0233562d53d4de7b0092e80b53caed58414b
Router (config) #commit

Tue Aug 24 10:23:10.546 UTC

Router (config) #end

Step 5 Verify the status of the script.

Example:

Router#show script status detail
Fri Aug 20 05:06:17.296 UTC

Name | Type | Status | Last Action | Action Time
samplel.py | exec | Ready | NEW | Fri Aug 20 05:03:41 2021
Script Name : cpu_load.py
Checksum : 94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b
History:
1. Action : NEW
Time : Fri Aug 20 05:03:41 2021
Checksum : 94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b
Description : User action IN CLOSE WRITE

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Run the Exec Script .

The status ready indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script fails.
It is mandatory for the checksum values to match for the script to run.

Run the Exec Script

To run an exec script, use the script run command. After the script is run, a request ID is generated. Each
script run is associated with a unique request ID.

Before you begin
Ensure the following prerequisites are met before you run the script:

1. Download the Script to the Router, on page 155

2. Configure Checksum for Exec Script, on page 159

Run the exec script.

Example:

Router#script run samplel.py
Wed Aug 25 16:40:59.134 UTC

Script run scheduled: samplel.py. Request ID: 1629800603
Script samplel.py (exec) Execution complete: (Reqg. ID 1629800603) : Return Value: 0 (Executed)

Scripts can be run with more options. The following table lists the various options that you can provide at run time:

Keyword Description

arguments Script command-line arguments. Syntax: Strings in single quotes. Escape double quotes
inside string arguments (if any).

For example:

Router#script run samplel.py arguments 'hello world' '-r' '-t' 'exec' '--sleep'

'5' description "Sample exec script"

background Run script in background. By default, the script runs in the foreground.
When a script is run in the background, the console is accessible only after the script run is
complete.

description Description about the script run.
Router#script run samplel.py arguments '-argl' 'reload' '-arg2' 'all'

'description' "Script reloads the router"

When you provide both the argument and description ensure that the arguments are in single
quote and description is in double quotes.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |

. View the Script Execution Details

Keyword Description

log-level Script logging level. The default value is 1nFo.

You can specifiy what information is to be logged. The log level can be set to one of these
options—Ceritical, Debug, Error, Info, or Warning.

log-path Location to store the script logs. The default log file location is in the script management
repository harddisk:/mirror/script-mgmt/logs.

max-runtime Maximum run-time of script can be set between 1-3600 seconds. The default value is 300.

The script run is complete.

View the Script Execution Details

Step 1

Step 2

View the status of the script execution.

Before you begin

Ensure the following prerequisites are met before you run the script:
1. Download the Script to the Router, on page 155

2. Configure Checksum for Exec Script, on page 159

3. Run the Exec Script, on page 161

View the status of the script execution.

Example:

Router#show script execution
Wed Aug 25 18:32:12.351 UTC

Reqg. ID | Name (type) | Start | Duration | Return | Status

1629800603 | samplel.py (exec) | Wed Aug 25 16:40:59 2021 | 60.62s | 0 | Executed

You can view detailed or filtered data for every script run.

Filter the script execution status to view the detailed output of a specific script run via request ID.

Example:

Router#show script execution request-id 1629800603 detail output
Wed Aug 25 18:37:12.920 UTC

Reqg. ID | Name (type) | Start | Duration
Return | Status

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
View the Script Execution Details .

1629800603 | samplel.py (exec) | Wed Aug 25 16:40:59 2021 | 60.62s | 0
| Executed

Execution Details:

Script Name
Log location

Arguments
Run Options
Events:
1 Event
Time
Time Elapsed
Description
2. Event
Time
Time Elapsed
Description
3. Event
Time

Time Elapsed

Description

samplel.py
/harddisk:/mirror/script-mgmt/logs/samplel.py exec 1629800603

Logging level - INFO, Max. Runtime - 300s, Mode - Foreground

New

Wed Aug 25 16:40:59 2021
0.00s Seconds

None

Started

Wed Aug 25 16:40:59 2021
0.03s Seconds

Script execution started. PID (20736)
Executed

Wed Aug 25 16:42:00 2021
60.62s Seconds

Script execution complete

Script Output:

Output File

/harddisk:/mirror/script-mgmt/logs/samplel.py exec 1629800603/stdout.log

Content
Keyword Description
detail Display detailed script execution history, errors, output and deleted scripts.

Router#show script execution detail [errors | output | show-del]

last <number>

Show last N (1-100) execution requests.

Router#show script execution last 10

This example will display the list of last 10 script runs with their request IDs, type of script,
timestamp, duration that the script was run, number of errrors, and the status of the script
run.

name <filename>

Filter operational data based on script name. If not specified, all scripts are displayed.

Router#show script execution name samplel.py

request-id <value>

Display summary of the script using request-ID that is generated with each script run.

Router#show script execution request-ID 1629800603

reverse

Display the request IDs from the script execution in reverse chronological order. For example,
the request-ID from the latest run is displayed first, followed by the descending order of
request-1Ds.

Router#script script execution reverse

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |

. Manage Scripts

Keyword Description

status Filter data based on script status.

Router#[status {Exception, Executed, Killed, Started, Stopped, Timed-out}]

Manage Scripts

This section shows the additional operations that you can perform on a script.

Delete Exec Script from the Router

Step 1

Step 2

Step 3

Delete the script from the script management repository using the script remove command. This repository
stores the downloaded scripts.

View the list of scripts present in the script management repository.

Example:

Router#show script status
Wed Aug 25 23:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

samplel.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021
sample2.py | exec | Config Checksum | NEW | Wed Aug 25 23:44:53 2021
sample3.py | config | Config Checksum | NEW | Wed Aug 25 23:44:57 2021

Ensure the script you want to delete is present in the repository.

Delete the script.

Example:

Routerf#script remove exec sample2.py
Wed Aug 25 231:46:38.170 UTC
sample2.py has been deleted from the script repository

You can also delete multiple scripts simulataneoulsy.

Verify the script is deleted from the subdirectory.

Example:

Router#show script status
Wed Aug 25 23:48:50.453 UTC

Name | Type | Status | Last Action | Action Time
samplel.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021
sample3.py | config | Config Checksum | NEW | Wed Aug 25 10:44:57 2021

The script is deleted from the script management repository.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Example: Exec Script to Verify Bundle Interfaces .

Example: Exec Script to Verify Bundle Interfaces

In this example, you create a script to verify the bandwidth usage of bundle interfaces on the router, and check
if it is beyond the defined limit. If usage is above the limit, the script generates a syslog indicating that the
bandwidth is above the limit, and additional interfaces must be added to the bundle.

Before you begin

Ensure you have completed the following prerequisites before you validate the script:

1.

Create an exec script verify bundle.py. Store the script on an HTTP server or copy the script to the

harddisk of the router.

Bundle interfaces bandwidth verification script

Verify bundle interfaces mpls packets per sec is below threshold.
If pkts/sec is greater than threshold then print syslog message
and add list of new interfaces to bundle

Arguments:
-h, --help show this help message and exit
-n NAME, --name NAME Bundle interface name
-t THRESHOLD, --threshold THRESHOLD
Bandwidth threshold
-m MEMBERS, --members MEMBERS

interfaces (coma separated) to add to bundle
import re
import argparse
from iosxr.xrcli.xrcli helper import XrcliHelper
from cisco.script mgmt import xrlog

syslog = xrlog.getSysLogger ('verify bundle')
log = xrlog.getScriptLogger ('verify bundle')

def add bundle members (bundle name, members) :

helper = XrcliHelper ()
bundle pattern = re.compile('[A-Z,a-z,]([0-9]+)")
match = bundle pattern.search(bundle name)
if match:
bundle id = match.group (1)
else:
raise Exception('Invalid bundle name')
cfg = "'
for member in members:

cfg = cfg + 'interface %s \nbundle id %s mode active\nno shutdown\n'

(member.strip (), bundle id)
log.info("Configs to be added : \n%s" % cfqg)
result = helper.xr apply config string(cfg)
if result['status'] == 'success':
msg = "Configuring new bundle members successful”

syslog.info (msqg)
log.info (msqg)
else:
msg = "Configuring new bundle members failed"
syslog.warning (msg)

5\

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Example: Exec Script to Verify Bundle Interfaces

log.warning (msg)

def verify bundle(script_args):

helper = XrcliHelper ()

cmd = "show interfaces %s accounting rates" % script_args.name
cmd_out = helper.xrcli exec(cmd)

if not cmd out['status'] == 'success':

raise Exception('Invalid bundle or error getting interface accounting rates')

log.info ('Command output : \n%s' % cmd_out['output'])

rate pattern = re.compile ("MPLS +[0-9]+ +[0-9]+ +[0-9]+ +([0-9]+)")
match = rate pattern.search(cmd_out['output'])

if match:

pktspersec = int (match.group(l))
if pktspersec > int(script_args.threshold):
msg = 'Bundle %s bandwidth of %d pps is above threshold of %s pps' % \
(script_args.name, pktspersec, script_args.threshold)
log.info (msg)
syslog.info (msg)
return False
else:
msg = 'Bundle %s bandwidth of %d pps is below threshold of %s pps' % \
(script_args.name, pktspersec, script_args.threshold)
log.info (msg)
return True

if name == ' main ':

parser = argparse.ArgumentParser (description="Verify budle")

parser.add_argument ("-n", "--name",

help="Bundle interface name")
parser.add_argument ("-t", "--threshold",

help="Bandwidth threshold")
parser.add_argument ("-m", "--members",

help="interfaces (coma separated) to add to bundle")
args = parser.parse_args()

log.info ('Script arguments :')
log.info (args)
if not verify bundle (args):
syslog.info ("Adding new members (%s) to bundle interfaces %$s" %
(args.members, args.name))
add_bundle members (args.name, args.members.split(',"'))

2. Add the script from HTTP server or harddisk to the script management repository. See Download the
Script to the Router, on page 155.

3. Configure the checksum to verify the authenticity and integrity of the script.

Step 1 View the script status.

Example:

Router#show script status
Sat Sep 25 00:10:11.222 UTC

Name | Type | Status | Last Action | Action Time

verify bundle.py | exec | Ready | MODIFY | Sat Sep 25 00:08:55 2021

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Step 2

Step 3

Example: Exec Script to Verify Bundle Interfaces .

The status indicates that the script is ready to be run.
Run the script.

Example:

Router#script run verify bundle.py arguments '--name' 'Bundle-Ether6432' '-t'
'400000' '-m' 'FourHundredGigE0/0/0/2

Sat Sep 25 00:11:14.183 UTC

Script run scheduled: verify bundle.py. Request ID: 1632528674

[2021-09-25 00:11:14,579] INFO [verify bundle]:: Script arguments

[2021-09-25 00:11:14,579] INFO [verify bundle]:: Namespace (members='FourHundredGigE0/0/0/2,
FourHundredGigEO/0/0/3', name='Bundle-Ether6432', threshold='400000")

[2021-09-25 00:11:14,735] INFO [verify bundle]:: Command output

—————————————— show interfaces Bundle-Ether6432 accounting rates --------------
Bundle-Ether6432

Ingress Egress
Protocol Bits/sec Pkts/sec Bits/sec Pkts/sec
IPV4_UNICAST 22000 40 0 0
MPLS 0 0 1979249000 430742
ARP 0 0 0 0
IPV6 ND 0 0 0 0
CLNS 1000 1 26000 3

[2021-09-25 00:11:14,736] INFO [verify bundle]:: Bundle Bundle-Ether6432 bandwidth
of 430742 pps is above threshold of 400000 pps

[2021-09-25 00:11:14,737] INFO [verify bundle]:: Configs to be added

interface FourHundredGigE0/0/0/2

bundle id 6432 mode active

no shutdown

interface FourHundredGigE0/0/0/3

bundle id 6432 mode active

no shutdown

[2021-09-25 00:11:18,254] INFO [verify bundle]:: Configuring new bundle members successful
Script verify bundle.py (exec) Execution complete: (Req. ID 1632528674) : Return Value: 0 (Executed)

View the detailed output based on request ID. A request ID is generated for each script run.

Example:

Router#show script execution request-id 1632528674 detail output
Sat Sep 25 00:11:58.141 UTC

Reqg. ID | Name (type) | Start | Duration | Return | Status

Script Name : verify bundle.py
Log location : /harddisk:/mirror/script-mgmt/logs/verify bundle.py exec 1632528674
Arguments : '--name', 'Bundle-Ether6432', '-t', '400000', '-m', 'FourHundredGigE0/0/0/2,
FourHundredGigE0/0/0/3"
Run Options : Logging level - INFO, Max. Runtime - 300s, Mode - Foreground
Events:
1. Event : New
Time : Sat Sep 25 00:11:14 2021
Time Elapsed : 0.00s Seconds
Description : None

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Example: Exec Script to Verify Bundle Interfaces

2. Event
Time
Time Elapsed
Description
3. Event
Time
Time Elapsed
Description

Started

Sat Sep 25 00:11:

0.02s Seconds
Script execution
Executed

Sat Sep 25 00:11:

4.06s Seconds
Script execution

14 2021
started.
18 2021

complete

PID

(29768)

Automation Scripts |

Script Output:
Output File
Content

[2021-09-25 00:11:14,579] INFO [verify bundle]::

[2021-09-25 00:11:14,579]

FourHundredGigE0/0/0/3",

name='Bundle-Ether6432"',
[2021-09-25 00:11:14,735]

Bundle-Ether6432

Protocol
IPV4_UNICAST
MPLS

ARP

IPV6_ND

CLNS

[2021-09-25 00:11:14,736]

above threshold
of 400000 pps

[2021-09-25 00:11:14,737]

threshold='400000")
INFO [verify bundle]::

Ingress

Bits/sec
22000

0

0

0

1000

interface FourHundredGigE(0/0/0/2
bundle id 6432 mode active

no shutdown

interface FourHundredGigE0/0/0/3
bundle id 6432 mode active

no shutdown

[2021-09-25 00:11:18,254]

Pkts/s

INFO [verify bundle]::

show interfaces Bundle-Ether6432 accounting rates

ec
40
0

0
0
1

INFO [verify bundle]::

INFO [verify bundle]::

INFO [verify bundle]::

Script arguments

/harddisk:/mirror/script-mgmt/logs/verify bundle.py exec 1632528674/stdout.log

Namespace (members="'FourHundredGigE0/0/0/2,

Command output

Egress
Bits/sec
0
1979249000
0
0
26000

Pkts/sec
0

430742

0

0

3

Bundle Bundle-Ether6432 bandwidth of 430742 pps is

Configs to be added

Configuring new bundle members successful

Step 4

Example:

View the running configuration for the bundle interfaces.

Routerf#show running-config interface FourHundredGigE0/0/0/2
Sat Sep 25 00:12:30.765 UTC
interface FourHundredGigE0/0/0/2
bundle id 6432 mode active

Router#show running-config interface FourHundredGigE0/0/0/3
Sat Sep 25 00:12:38.659 UTC
interface FourHundredGigEO/0/0/3
bundle id 6432 mode active

Step 5

new bundle members is successful.

Example:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

View the latest logs for more details about the script run. Here, the last 10 logs are displayed. The logs show that configuring

| Automation Scripts
Example: Exec Script to Verify Bundle Interfaces .

Router#show logging last 10
Sat Sep 25 00:13:34.383 UTC
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
Console logging: level warnings, 178 messages logged
Monitor logging: level debugging, 0 messages logged
Trap logging: level informational, 0 messages logged
Buffer logging: level debugging, 801 messages logged

Log Buffer (2097152 bytes):

RP/0/RPO/CPUO:Sep 25 00:10:05.763 UTC: config[66385]: $MGBL-CONFIG-6-DB COMMIT : Configuration
committed by user 'cisco'.

Use 'show configuration commit changes 1000000045' to view the changes.

RP/0/RPO/CPUO:Sep 25 00:10:07.971 UTC: config[66385]: $MGBL-SYS-5-CONFIG I : Configured from console
by cisco on vty0 (6.3.65.175)

RP/0/RPO/CPUO:Sep 25 00:11:14.447 UTC: script control cli[66627]: $0S-SCRIPT MGMT-6-INFO
Script-control: Script run scheduled:

verify bundle.py. Request ID: 1632528674

RP/0/RPO/CPUO:Sep 25 00:11:14.453 UTC: script agent main[347]: $0S-SCRIPT MGMT-6-INFO

Script-script agent: Script execution

verify bundle.py (exec) Started : Request ID : 1632528674 :: PID: 29768

RP/0/RPO/CPUO:Sep 25 00:11:14.453 UTC: script agent main[347]: $0S-SCRIPT MGMT-6-INFO

Script-script agent: Starting execution

verify bundle.py (exec) (Req. ID: 1632528674) : Logs directory:
/harddisk:/mirror/script-mgmt/logs/verify bundle.py exec 1632528674

RP/0/RP0O/CPUO:Sep 25 00:11:14.736 UTC: python3 xr[66632]: $0S-SCRIPT MGMT-6-INFO : Script-verify bundle:
Bundle Bundle-Ether6432

bandwidth of 430742 pps is above threshold of 400000 pps

RP/0/RP0O/CPUO:Sep 25 00:11:14.736 UTC: python3 xr[66632]: $0S-SCRIPT MGMT-6-INFO : Script-verify bundle:
Adding new members

(FourHundredGigE0/0/0/2, FourHundredGigEO/0/0/3) to bundle interfaces Bundle-Ether6432

RP/0/RP0O/CPUO:Sep 25 00:11:16.916 UTC: config[66655]: $MGBL-CONFIG-6-DB COMMIT : Configuration
committed by user 'cisco'. Use 'show

configuration commit changes 1000000046' to view the changes.

RP/0/RP0O/CPUO:Sep 25 00:11:18.254 UTC: python3 xr[66632]: $0S-SCRIPT MGMT-6-INFO : Script-verify bundle:
Configuring new bundle members

successful

RP/0/RPO/CPUO:Sep 25 00:11:18.497 UTC: script agent main[347]: $0S-SCRIPT MGMT-6-INFO

Script-script agent: Script verify bundle.py

(exec) Execution complete: (Reqg. ID 1632528674) : Return Value: 0 (Executed)

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Example: Exec Script to Verify Bundle Interfaces

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 1 3

Process Scripts

Cisco I0S XR process scripts are also called daemon scripts. The process scripts are persistent scripts that
continue to run as long as you have activated the scripts. An IOS XR process, Application manager (AppMgr
or app manager), manages the lifecycle of process scripts. The scripts are registered as an application on the
app manager. This application represents the instance of the script that is running on the router.

The app manager is used to:

» Start, stop, monitor, or retrieve the operational status of the script.
* Maintain the startup dependencies between the processes.
* Restart the process if the script terminates unexpectedly based on the configured restart policy.

Process scripts support Python 3.5 programming language. For the list of supported packages, see Cisco I0S
XR Python Packages, on page 222.

This chapter gets you started with provisioning your Python automation scripts on the router.

N

Note This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router. A process script refers to code that runs continuously or endlessly.

» Workflow to Run Process Scripts, on page 171
» Managing Actions on Process Script, on page 180
» Example: Check CPU Utilization at Regular Intervals Using Process Script, on page 181

Workflow to Run Process Scripts

Complete the following tasks to provision process scripts:

» Download the script—Store the script on an external server or copy to the harddisk of the router. Add
the script from the external server or harddisk to the script management repository on the router using
the script add process command.

* Configure the checksum—Check script integrity and authenticity using the script process <script.py>
checksum command.

* Register the script—Register the script as an application in the app manager using appmgr process-script
command.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Workflow to Run Process Scripts

* Activate the script—Activate the registered application using appmgr process-script activate command.

* View the script execution details—Retrieve the operational data using the show appmgr process-script
command.

The following image shows the workflow diagram representing the steps that are involved in using a process
script:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Workflow to Run Process Scripts .

Create script and store the script in an
HTTP server or copy to routers’ harddisk

,

Add script from HTTP server or harddisk
to the script management repository

| script add |

y

Verify that the script is added successfully

| show script status |

y

Configure checksum

‘ script process <script> checksum ‘

y

Register the process as an application

‘ appmgr process-script ‘

y

Activate the registered application

‘ appmgr process-script activate ‘

Investigate and

Checksum
No match?

rectify checksum
mismatch

[| cLlcommand

i i Internal operation

show script status

Activation
successful?

Rectify error

View operational status of the application

show appmgr process-script

522064

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Download the Script to the Router

Download the Script to the Router

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Script Type Download Location

config harddisk:/mirror/script-mgmt/config
exec harddisk:/mirror/script-mgmt/exec
process harddisk:/mirror/script-mgmt/process
eem harddisk:/mirror/script-mgmt/eem

The scripts are added to the script management repository using two methods:

* Method 1: Add script from a server

» Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add process-script.py script to the script management repository.

Step 1 Add the script to the script management repository on the router using one of the two options:
» Add Script From a Server

Add the script from any server or the harddisk location in the router.

Router#script add process <script-location> <script.py>

The following example shows a process script process-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Router#script add process http://192.0.2.0/scripts process-script.py
Fri Aug 20 05:03:40.791 UTC
process-script.py has been added to the script repository

The script add process supports the HTTP, HTTPS, FTP, TFTP, and SCP protocols for copying a script.
You can add a maximum of 10 scripts simultaneously.
Router#script add process <script-location> <scriptl.py> <script2.py> ... <scriptlO.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Router#script add process http://192.0.2.0/scripts process-script.py checksum SHA256
<checksum-value>

For multiple scripts, use the following syntax to specify the checksum:

Router#script add process http://192.0.2.0/scripts <scriptl.py> <scriptl-checksum> <script2.py>
<script2-checksum>
. <scriptlO.py> <scriptlO-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note Only SHA256 checksum is supported.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Step 2

Configure Checksum for Process Script .

 Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@R192.0.2.0:/scripts/process-script.py /harddisk:/
b. Add the script from the harddisk to the script management repository.

Routerf#script add process /harddisk:/ process-script.py
Fri Aug 20 05:03:40.791 UTC
process-script.py has been added to the script repository

Verify that the scripts are downloaded to the script management repository on the router.

Example:

Router#show script status
Wed Aug 25 23:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

process-script.py | process | Config Checksum | NEW | Tue Aug 24 10:44:53 2021

Script process-script.py is copied to harddisk: /mirror/script-mgmt/process directory on the router.

Configure Checksum for Process Script

Step 1

Every script is associated with a checksum hash value. This value ensures the integrity of the script, and that
the script is not tampered. The checksum is a string of numbers and letters that acts as a fingerprint for script.
The checksum of the script is compared with the configured checksum. If the values do not match, the script
is not run and a warning message is displayed.

It is mandatory to configure the checksum to run the script.

\}

Note Process scripts support the SHA256 checksum hash.

Before you begin

Ensure that the script is added to the script management repository. See Download the Script to the Router,
on page 155.

Retrieve the SHA256 checksum hash value for the script from the IOS XR Linux bash shell.

Example:

Router#run

[node0 RPO CPUO:~]$sha256sum /harddisk:/mirror/script-mgmt/process/process-script.py
94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b
/harddisk:/mirror/script-mgmt/process/process-script.py

Make note of the checksum value.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Register the Process Script as an Application

Step 2 View the status of the script.

Example:

Routerf#show script status detail
Fri Aug 20 05:04:13.539 UTC

Name | Type | Status | Last Action | Action Time
process-script.py | process | Config Checksum | NEW | Fri Aug 20 05:03:41 2021
Script Name : process-script.py
History:
1. Action : NEW
Time : Fri Aug 20 05:03:41 2021
Description : User action IN_CLOSE WRITE

The status shows that the checksum is not configured.

Step 3 Configure the checksum.

Example:

Router#configure

Router (config) #script process process-script.py checksum SHA256
94336£3997521d6elaeclOee6faab0233562d53d4de7b0092e80b53caed58414b
Router (config) #commit

Tue Aug 20 05:10:10.546 UTC

Router (config) #end

Step 4 Verify the status of the script.

Example:

Router#show script status detail
Fri Aug 20 05:15:17.296 UTC

Name | Type | Status | Last Action | Action Time
process-script.py | process | Ready | NEW | Fri Aug 20 05:20:41 2021
Script Name : process-script.py
Checksum : 94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b
History:
1. Action : NEW
Time : Fri Aug 20 05:20:41 2021
Checksum : 94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b
Description : User action IN CLOSE WRITE

The status rReady indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script fails.
It is mandatory for the checksum values to match for the script to run.

Register the Process Script as an Application

Register the process script with the app manager to enable the script. The registration is mandatory for using
process script on the router.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Step 1

Step 2

Step 3

Step 4

Register the Process Script as an Application .

Before you begin

Ensure that the following prerequisites are met before you register the script:

» Download the Script to the Router, on page 155

* Configure Checksum for Process Script, on page 175

Register the script with an application (instance) name in the app manager.

Example:

Router#configure

Fri Aug 20 06:10:19.284 UTC
Router (config) #fappmgr process-script my-process-app
Router (config-process) #executable process-script.py

Here, my-process-app is the application for the executable process-script.py script.

Provide the arguments for the script.

Example:

Router (config-process) #run-args --host <host-name> --runtime 3 --log script

Set a restart policy for the script if there is an error.

Example:

Router (config-process) #restart on-failure max-retries 3
Router (config-process) #commit

Here, the maximum attempts to restart the script is set to 3. After 3 attempts, the script stops.

You can set more options to restart the process:

Keyword Description

always Always restart automatically. If the process exits, a scheduler queues the script and restarts
the script.
Note This is the default restart policy.

never Never restart automatically. If the process exits, the script is not rerun unless you provide
an action command to invoke the process.

on-failure Restart on failure automatically. If the script exits successfully, the script is not scheduled

again.

unless-errored

Restart script automatically unless errored.

unless-stopped

Restart script automatically unless stopped by the user using an action command.

View the status of the registered script.

Example:

Router#show appmgr process-script-table
Fri Aug 20 06:15:44.244 UTC

Name

Executable Activated Status Restart Policy Config Pending

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Activate the Process Script

my-process-app process-script.py No Not Started On Failure No

The script is registered but is not active.

Activate the Process Script

Activate the process script that you registered with the app manager.

Before you begin
Ensure that the following prerequisites are met before you run the script:

» Download the Script to the Router, on page 155
* Configure Checksum for Process Script, on page 175

* Register the Process Script as an Application, on page 176

Step 1 Activate the process script.

Example:

Router#appmgr process-script activate name my-process-app
Fri Aug 20 06:20:55.006 UTC

The instance my-process-app is activated for the process script.

Step 2 View the status of the activated script.

Example:

Routerf#show appmgr process-script-table
Fri Aug 20 06:22:03.201 UTC
Name Executable Activated Status Restart Policy Config Pending

my-process-app process-script.py Yes Running On Failure No
The process script is activated and running.

Note You can modify the script while the script is running. However, for the changes to take effect, you must
deactivate and activate the script again. Until then, the configuration changes are pending. The status of the
modification is indicated in the config Pending option. In the example, value No indicates that there are no
configuration changes that must be activated.

Obtain Operational Data and Logs

Retrieve the operational data and logs of the script.

Before you begin

Ensure that the following prerequisites are met before you obtain the operational data:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Step 1

Step 2

Obtain Operational Data and Logs .

» Download the Script to the Router, on page 155
* Configure Checksum for Process Script, on page 175
* Register the Process Script as an Application, on page 176

* Activate the Process Script, on page 178

View the registration information, pending configuration, execution information, and run time of the process script.

Example:

Router#show appmgr process-script my-process-app info
Fri Aug 20 06:20:21.947 UTC
Application: my-process-app

Registration info:

Executable : process-script.py

Run arguments : —-host <host-name> --runtime 3 --log script
Restart policy : On Failure

Maximum restarts : 3

Pending Configuration:
Run arguments : —-host <host-name> --runtime 3 --log script
Restart policy : Always

Execution info and status:

Activated : Yes

Status : Running

Executable Checksum : 94336£3997521d6elaecOeeb6faab0233562d53d4de7b0092e80b53caed58414b
Last started time : Fri Aug 20 06:20:21.947

Restarts since last activate : 0/3

Log location :
/harddisk:/mirror/script-mgmt/logs/process-script.py process my-process-app
Last exit code HE

View the logs for the process scripts. App manager shows the logs for errors and output.

Example:
The following example shows the output logs:

Router#show appmgr process-script my-process-app logs output
Fri Aug 20 06:25:20.912 UTC

[2021-08-20 06:20:55,609] INFO
[2021-08-20 06:20:55,609] INFO
[2021-08-20 06:20:56,610] INFO
[2021-08-20 06:20:58,609] INFO

sample-process
sample-process
sample-process
sample-process

Beginning execution of process..
Connecting to host '<host-name>'
Reading database..

Listening for requests..

]
1::
1::
]

The following example shows the error logs with errors:

Router#show appmgr process-script my-process-app logs errors
Fri Aug 20 06:30:20.912 UTC
—————————— Run ID:1632914459 Fri Aug 20 06:30:20 2021-——-—-—————-
Traceback (most recent call last):
File "/harddisk:/mirror/script-mgmt/process/process-script.py
main (args)
File "/harddisk:/mirror/script-mgmt/process/process-script.py",

", line 121, in <module>

line 97, in main

printer ()
File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 37, in wrapper
result = func(*args, **kwargs)

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 88, in printer

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Managing Actions on Process Script

time.sleep (1)
File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 30, in _handle timeout
raise TimeoutError (error_message)
__main__ .TimeoutError: Timer expired
—————————— Run ID:1632914460 Fri Aug 20 06:31:03 2021--—---—-----

This example shows the log without errors:

Router#show appmgr process-script my-process-app logs errors
Fri Aug 20 06:30:20.912 UTC

—————————— Run ID:1624346220 Fri Aug 20 10:46:44 2021----------
—————————— Run ID:1624346221 Fri Aug 20 10:47:50 2021----==----
—————————— Run ID:1624346222 Fri Aug 20 10:52:39 2021----------
—————————— Run ID:1624346223 Fri Aug 20 10:53:45 2021----=-----
—————————— Run ID:1624346224 Fri Aug 20 11:07:17 2021----===-—=--
—————————— Run ID:1624346225 Fri Aug 20 11:08:23 2021----------
—————————— Run ID:1624346226 Fri Aug 20 11:09:29 2021----------
—————————— Run ID:1624346227 Fri Aug 20 11:10:35 2021----==-----
—————————— Run ID:1624346228 Fri Aug 20 11:11:41 2021----------

Managing Actions on Process Script

The process script runs as a daemon continuously. You can, however, perform the following actions on the
process script and its application:

Table 32: Feature History Table

Action Description

Deactivate Clears all the resources that the application uses.
Router#appmgr process-script deactivate name my-process-app

You can modify the script while the script is running. However, for the changes
to take effect, you must deactivate and activate the script again. Until then, the
configuration changes do not take effect.

Kill Terminates the script if the option to stop the script is unresponsive.

Router#appmgr process-script kill name my-process-app

Restart Restarts the process script.

Router#appmgr process-script restart name my-process-app

Start Starts an application that is already registered and activated with the app manager.

Router#appmgr process-script start name my-process-app

Stop Stops an application that is already registered, activated, and is currently running.
Only the application is stopped; resources that the application uses is not cleared.

Router#appmgr process-script stop name my-process-app

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Example: Check CPU Utilization at Regular Intervals Using Process Script .

Example: Check CPU Utilization at Regular Intervals Using
Process Script

In this example, you use the process script to check CPU utilization at regular intervals. The script does the
following actions:

* Monitor the CPU threshold value.

» If the threshold value equals or exceeds the value passed as argument to the script, log an error message
that the threshold value has exceeded.

Before you begin
Ensure you have completed the following prerequisites before you register and activate the script:

1. Create a process script cpu-utilization-process.py. Store the script on an external server or copy the
script to the harddisk of the router.

import time
import os

import xmltodict
import re

import argparse

from cisco.script mgmt import xrlog
from iosxr.netconf.netconf lib import NetconfClient

log = xrlog.getScriptLogger ('Sample')
syslog = xrlog.getSysLogger ('Sample')

def cpu memory check(threshold) :

Check total routes in router

filter string = """

<system-monitoring xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-wdsysmon-fd-oper">
<cpu-utilization>

<node-name>0/RP0/CPUO</node-name>
<total-cpu-one-minute/>

</cpu-utilization>

</system-monitoring>"""

nc = NetconfClient (debug=True)

nc.connect ()

do get(nc, filter=filter string)

ret dict = xml to dict(nc.reply, 'system-monitoring')
total cpu =
int (ret dict['system-monitoring']['cpu-utilization']['total-cpu-one-minute'])

if total cpu >= threshold:
syslog.error ("CPU utilization is %s, threshold value is %s"
% (str(total cpu),str(threshold)))
nc.close ()

def xml to_dict(xml_ output, xml tag=None) :
convert netconf rpc request to dict
:param xml output:

creturn:
wun

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |

. Example: Check CPU Utilization at Regular Intervals Using Process Script

Step 1

Step 2

Step 3

def

if name == ' main

if xml tag:
pattern = "<data>\s+(<%s.*</%s>).*</data>" % (xml tag, xml tag)
else:
pattern = " (<data>.*</data>)"
xml_output = xml output.replace('\n', ' ')
xml_data match = re.search(pattern, xml output)

ret dict = xmltodict.parse(xml_data match.group (1))
return ret dict

do_get (nc, filter=None, path=None) :
try:
if path is not None:
nc.rpc.get (file=path)
elif filter is not None:
nc.rpc.get (request=filter)
else:
return False
except Exception as e:
return False
return True

parser = argparse.ArgumentParser ()
parser.add argument ("threshold", help="cpu utilization threshold", type=int)

args = parser.parse_args()
threshold = args.threshold
while (1) :

cpu_memory check (threshold)
time.sleep (30)

Configure the script with the desired threshold criteria. This default threshold is configured to alert when
CPU utilization exceeds this value. The script checks the CPU utilization every 30 seconds.

Add the script from the external server or harddisk to the script management repository. See Download
the Script to the Router, on page 155.

Configure the checksum to verify the authenticity and integrity of the script. See Configure Checksum
for Process Script, on page 175.

my-process-app

Register the process script cpu-utilization-process.py with an instance name my-process-app in the app manager.

Router (config) #appmgr process-script my-process-app
Router (config-process) #executable cpu-utilization-process.py
Router (config-process) #run-args <threshold-value>

Activate the registered application.

Router (config-process) #appmgr process-script activate name my-process-app

Check the script status.

Router#show appmgr process-script-table
Thu Sep 30 18:15:03.201 UTC

Executable Activated Status Restart Policy Config Pending

cpu-utilization-process.py Yes Running On Failure No

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Example: Check CPU Utilization at Regular Intervals Using Process Script .

Step 4 View the log.

Example:

Router#show appmgr process-script my-process-app logs errors
RP/0/RPO/CPUO:Sep 30 18:03:54.391 UTC: python3 xr([68378]: %$0S-SCRIPT MGMT-3-ERROR :
Script-test process: CPU utilization is 6, threshold value is 5

An error message is displayed that the CPU utilization has exceeded the configured threshold value, and helps you take
corrective actions.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Example: Check CPU Utilization at Regular Intervals Using Process Script

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 1 4

EEM Scripts

Cisco IOS XR Embedded Event Manager (EEM) scripts are also known as event scripts that are triggered
automatically in response to events on the router. An event can be any significant occurrence, not limited to
errors, that has happened within the system. You can use these scripts to detect issues in the network in real
time, program certain conditions in response to the event, detect and generate an action when those conditions
are met, and execute policy (script) when an event is generated. The script acts in response to the events and
reduces the troubleshooting time involved in resolving the issues. For example, you can enforce LACP
dampening if a bundle interface has flapped 5 times in less than 30 secs, and define the script to disable the
interface for 2 minutes.

You can programmatically define the event and actions separately and map them using a policy map via CLI
or NETCONF RPCs. Whenever the configured event occurs, the action that is mapped to it is executed. The
same event and action can be mapped to multiple policy maps. You can map the same event and action in 64
policy maps, and add a maximum of 5 different actions in a policy map.

You can create event scripts using Python 3.5 programming language. For the list of supported Python packages

This chapter gets you started with provisioning your Python automation scripts on the router.

)

Note This section does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

» Workflow to Run Event Scripts, on page 185
» Example: Shut Inactive Bundle Interfaces Using EEM Script, on page 195

Workflow to Run Event Scripts

Complete the following tasks to provision eem scripts:

» Download the script—Store the eem script on an HTTP server or copy to the harddisk of the router. Add
the eem script from the HTTP server or harddisk to the script management repository on the router using
the script add eem command.

* Define events—Configure the events with the trigger conditions using the event manager event-trigger
command.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Workflow to Run Event Scripts

Automation Scripts |

* Define actions to the events—Setup the actions that must be performed in response to an event using
event manager action command.

* Create policy map—Put together the events and the actions in a policy map using event manager

policy-map command.

\}

Note

An eem script is invoked automatically when the event occurs. With the event,

the event-trigger invokes the corresponding policy-map to implement the actions

in response to the event.

* View operational status of the event—Retrieve the operational data using the show event-manager
action | event-trigger | policy-map command.

The following image shows a workflow diagram representing the steps involved in using an event script:

Create script and store the script in a
HTTP server or copy to routers’ harddisk

'

Add script from HTTP server or harddisk
to the script management repository

script add |

!

Verify that the script is added successfully

show script status type eem |

v

Define conditions that trigger an event

| event manager event-trigger |

‘ Eventl H Event2 H Event3 |

h A

!

Set actions for the events

| event manager action

[Action1 |[Action2 | Action3 |

CLI command

Internal operation

v

Map combinations of the event and the action

event manager policy-map

EERTER N S, SR R N R
Register the syslog with the pattern !
configured in event-trigger .

,,,,,,,,,,,,,,,,,,,,,,, A e S

: 7 lssyslog e
“with the registered pattern it
... generatedin .-

. _router? -~

e

iYes

G, — jToTm T]
Trigger the event - » Invoke the associated
! ' policy map

Execute the action |
for the event !

View operational status of the event

522067

show event manager action | event-trigger | policy-map

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Download the Script to the Router .

Download the Script to the Router

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Script Type Download Location

config harddisk:/mirror/script-mgmt/config
exec harddisk:/mirror/script-mgmt/exec
process harddisk:/mirror/script-mgmt/process
eem harddisk:/mirror/script-mgmt/eem

The scripts are added to the script management repository using two methods:

* Method 1: Add script from a server

» Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add eem-script.py script to the script management repository.

Step 1 Add the script to the script management repository on the router using one of the two options:
» Add Script From a Server
Add the script from a configured HTTP server or the harddisk location in the router.
Router#script add eem <script-location> <script.py>

The following example shows a process script eem-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Routerfscript add eem http://192.0.2.0/scripts eem-script.py
Fri Aug 20 05:03:40.791 UTC
eem-script.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.
Router#script add eem <script-location> <scriptl.py> <script2.py> ... <scriptlO.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Router#script add eem http://192.0.2.0/scripts eem-script.py checksum SHA256 <checksum-value>
For multiple scripts, use the following syntax to specify the checksum:

Router#script add eem http://192.0.2.0/scripts <scriptl.py> <scriptl-checksum> <script2.py>
<script2-checksum>
. <scriptlO.py> <scriptlO-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note Only SHA256 checksum is supported.

« Copy the Script from an External Repository

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |

. Define Trigger Conditions for an Event

Step 2

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/eem-script.py /harddisk:/
b. Add the script from the harddisk to the script management repository.

Router#script add eem /harddisk:/ eem-script.py
Fri Aug 20 05:03:40.791 UTC
eem-script.py has been added to the script repository

Verify that the scripts are downloaded to the script management repository on the router.

Example:

Router#show script status
Wed Aug 25 23:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

eem-script.py | eem | Config Checksum | NEW | Tue Aug 24 10:44:53 2021

Script eem-script.py is copied to harddisk: /mirror/script-mgmt/eem directory on the router.

Define Trigger Conditions for an Event

Step 1

You define the event, and create a set of instructions that trigger a match to this event. You can create multiple
events.

Before you begin

Ensure that the script is added to the script management repository..

Register the event.

Example:

Router (config) #event manager event-trigger eventT10

You can configure more options to trigger an event:

Keyword Description
occurrence Number of occurrences before the event is raised.

Note The occurrence keyword is supported only for syslog events.
period Time interval during which configured occurrence should take place.

Note The period keyword is supported only for syslog events.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Define Trigger Conditions for an Event .

Keyword

Description

type

Configure the type of event.
Note In Cisco I0S XR Release 7.3.2, you can configure only syslog events.

In Cisco IOS XR Release 7.5.1 and later, you can configure the following
events:

* Rate limit—Configure rate limit in seconds or milliseconds. After the
event is triggered, the event trigger does not happen even if the event
occurs any number of times, till this time has elapsed.

* Syslog—Configure syslog pattern, severity.

*» Timer—Configure watch dog timer in seconds; cron timer as a text string
with five fields separated by a space.

*» Track—Configure event-trigger for track (object tracking), track state (ue,
DOWN, or ANY). If event-trigger is configured for track state up, then it gets
triggered when the track state changes from pown to up, and vice-versa.

* Telemetry—Define events based on telemetry data. With this feature, you
can perform the following operations:

a. Monitor any operational state such as interface status, and trigger an
action when the state changes to a specific value.

b. Monitor any counter or statistics in an operational data, and trigger an
action when it reaches a threshold.

C. Monitor rate of change of any operational attribute, and trigger an
action based on threshold.

Note exact match supported on string and threshold or rate limit
is supported only for integer type telemetry data

Configure sensor path for exact match, threshold or rate depending on the
telemetry data type. The exact match is supported on string data type, and
threshold and rate limit is supported only for interger data type. Use the
following command to verify the sensor path or query before configuring
the event trigger.

Router#event manager telemetry sensor-path
<sensor-path> json-query <query>

It is mandatory to enable model-driven telemetry using the command:

Router#telemetry model-driven

Step 2 Configure the type for the event.

* Syslog:

Router (config) #event manager event-trigger eventTl0 type syslog pattern

"L2-BM-6-ACTIVE"

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Define Trigger Conditions for an Event

For syslog, set the pattern to match. In this example, the pattern 1.2-BM-6-ACTIVE is the match value. If a syslog is
generated on the router with a pattern that matches this configured pattern, the event gets triggered.

* Timer:
Watchdog timer—

Router (config) #event manager event-trigger <event-name>
type timer watchdog value <countdown-timer-value-in-seconds>

Cron timer—

Router (config) #event manager event-trigger <event-name>
type timer cron cron-entry “<cron string>”

Track:

Router (config) #event manager event-trigger <event-name>
type track name <track-name> status {up | down | any}

Telemetry:

Match criteria as exact-match—

Router (config) #event manager event-trigger <event-name>

query json-path <query> match-criteria exact-match value <value>
type telemetry sensor-path <telemetry-sensor-path>
sample-interval <sample-interval-in-seconds>

Match criteria as threshold—

Router (config) #event manager event-trigger <event-name> query

json-path <query> match-criteria threshold {equal-to | greater-equal-to |

greater-than | less-equal-to | less-than| not-equal-to} <value>

type telemetry sensor-path <telemetry-sensor-path> sample-interval <sample-interval-in-seconds>

Match criteria as rate—

Router (config) #event manager event-trigger <event-name>

query json-path <query> match-criteria rate direction {any | decreasing | increasing}
value {equal-to| greater-equal-to | greater-than | less-equal-to | less-than | not-equal-to}
<value>

type telemetry sensor-path <telemetry-sensor-path> sample-interval <sample-interval-in-seconds>>

Example

Example: The following example shows the configuration for syslog event type. If severity is
configured, the event gets triggered only if both the syslog severity and the syslog pattern match with
the syslog generated on the router. If severity is not configured, it is set to a11, where only pattern
match is considered for the event to trigger.

Router (config) #event manager event-trigger eventT10
type syslog pattern "<pattern-to-match>" severity <value>

Router (config) #event manager event-trigger eventT10
rate-limit seconds <time-in-seconds>
type syslog pattern "<pattern-to-match>" severity <value>

The severity values are:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Create Actions for Events .

alert Syslog priority 1
critical Syslog priority 2
debug Syslog priority 7 (lowest)
emergency Syslog priority 0 (highest)
error Syslog priority 3
info Syslog priority 6
notice Syslog priority 5
warning Syslog priority 4

The following example shows a syslog pattern 1.2-BM-6-AcTIVE with severity value critical:

Router (config) #event manager event-trigger eventT10
type syslog pattern "L2-BM-6-ACTIVE" severity info

The event gets triggered, if both the syslog pattern 1.2-Bv-6-acTIVE and severity value info match.

Create Actions for Events

Step 1

Step 2

Step 3

Step 4

Define the actions that must be taken when an event occurs.

Before you begin

Ensure that the following prerequisites are met before you configure the action:

* Define Trigger Conditions for an Event, on page 188

Set the event action.

Example:

Router (config) #event manager action actionl

Define the type of action. For example, the action is a Python script.

Example:

Router (config) #event manager action actionl type script actionl.py
Configure the maximum run time of the script for the event.

Example:

Router (config) #event manager action actionl type script actionl.py maxrun seconds 30

The default value is 20 seconds.

Configure the checksum for the script. This configuration is mandatory. Every script is associated with a checksum hash
value. This value ensures the integrity of the script, and that the script is not tampered. The checksum is a string of numbers
and letters that act as a fingerprint for script.

a) Retrieve the SHA256 checksum hash value for the script from the IOS XR Linux bash shell.

Example:

Router#run

[node0 RPO CPUO:~]$sha256sum /harddisk:/mirror/script-mgmt/eem/actionl.py
407ce32678a5fc4b0ad49e83acad6453adld47e8dad9501cf139daa75d53e3dd
/harddisk:/mirror/script-mgmt/eem/actionl.py

b) Configure the checksum for the script.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Create a Policy Map of Events and Actions

Step 5

Example:

Automation Scripts |

Router (config) #event manager action actionl type script actionl.py checksum
sha256 407ce32678a5fc4b0ad49e83acad6453adld47e8dad9501cf139daa75d53e3dd

Enter the username for the script to execute.

Example:

Router (config) #event manager action actionl username eem_user

Create a Policy Map of Events and Actions

Step 1

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

Example:

Table 33: Feature History Table

Feature Name

Release Information

Description

Add Multiple Events In a Policy
Map With a Single EEM Script

Release 7.5.1

With this feature, you can add
multiple events to a policy map
with boolean (AND or OR)
correlation. EEM triggers the script
when the correlation defined in the
policy map for the events is true.
Using EEM scripts, you can create
alogical correlation of events in the
policy map and configure multiple
actions for detectors such as timer,
object-tracking, and telemetry
events via sensor path.

Create a policy to map events and actions. You can configure a policy that associates multiple actions with
an event or use the same action with different events. The policy can be triggered if an event or multiple events
occur at a specified number of times within a specified period of time. The occurrence and period are optional
parameters. You can add multiple events to a policy-map with boolean (AND or OR) correlation. EEM triggers
the script when correlation defined in the policy-map for the events is true. For example, a multi-event
policy-map for eventl and event2 with event1l AND event2 boolean operation is triggered only when both

eventl and event? are true.

Before you begin

Ensure that the following prerequisites are met before you create a policy map:

* Define Trigger Conditions for an Event, on page 188

* Create Actions for Events, on page 191

Create a policy map.

Router (config) #event manager policy-map policyl

| Automation Scripts
View Operational Status of Event Scripts .

Router (config) #event manager policy-map policyl
trigger multi-event [“ (<eventl> AND <event2>) AND (<event3> OR <event4d>)” |
occurrence <count> | period <time in seconds>]

Note Ensure that the operations when configuring multiple events are within double quotes "".

where,

* occurrence: Specifies the number of times the total correlation occurs before an EEM event is raised. If occurrence
is not specified, the policy-map gets triggered on every occurrence of the event. The occurance vale ranges from 1
to 32. An occurrence that is configured with multiple events is considered as only one occurrence if the boolean
logic operations becomes true.

* period: Time interval in seconds, during which the event occurs. The period must be an integer number between 1
to 429496729 seconds.

Step 2 Define the action that must be implemeted when the event occurs. Maximum of 5 actions can be mapped to a policy map.
Example:
Router (config-policy-map) #action actionl

Step 3 Configure the name of the event or multiple events to trigger the policy-map.

Example:

Router (config-policy-map) #trigger event eventlO
The following example shows the policy-map for multiple events:

event manager policy-map policy001

trigger multi-event “eventl OR (event4 AND event2)”
period 60

action action2

occurrence 2

View Operational Status of Event Scripts

Retrieve the operational status of events, actions and policy maps.

Before you begin

Ensure that the following prerequisites are met before you trigger the event:
* Define Trigger Conditions for an Event, on page 188
* Create Actions for Events, on page 191

* Create a Policy Map of Events and Actions, on page 192

Step 1 Run the show event manager event-trigger all command to view the summary of basic data of all events that are
configured.

Example:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. View Operational Status of Event Scripts

Step 2

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

Router#show event manager event-trigger all

Tue Aug 24 14:47:35.803 IST
Thu May 20 20:41:03.690 UTC

No. Name esid Type Occurs
1 eventl 1008 syslog 2
2 event2 1009 syslog 2
3 event3 1010 syslog 2
4 event4 1011 syslog 2
5 event5 1012 syslog 2
6 event6 1013 syslog 2
7 event7 1014 syslog 2
8 event8 1015 syslog 2
9 event9 1016 syslog 2

Period
1800
1800
1800
1800
1800
1800
1800
1800
1800

Trigger-Count

B T S R S S

Policy-Count Status

e N N e

active
active
active
active
active
active
active
active
active

Automation Scripts |

Use the show event manager event-trigger all detailed command to view the details about the match criteria that you
configured, severity level, policies mapped to the events and so on.

Use the show event manager event-trigger <event-name> detailed command to view the details about the individual

events.

Router#show event manager event-trigger eventl detailed
Fri Nov 19 04:21:45.558 UTC

Event trigger name: eventl

Event esid: 107

Event type: timer
Event occurrence: NA
Event period: NA

Event rate-limit: NA
Event triggered count:
Event policy reg count:
Event status: active
Timer type: watchdog
Timer value: 10

Policy mapping info
1 eventl

12861
1

policyl

Run the show event manager policy-map all command to view the summary of all the configured policy maps.

Example:

Router#show event manager policy-map all
Tue Aug 24 14:48:52.153 IST

No. Name Occurs
1 policyl NA
2 policy2 NA
3 policy3 NA
4 policy4 NA

period
NA
NA
NA
NA

Trigger-Count

1

1
1
1

Status
active
active
active
active

Use the show event manager policy-map all detailed command to view the details about mapping of associated events
and actions in the policy maps.

Router#show event manager policy-map policyl all detailed

Fri Nov 19 11:35:40.282 UTC

Policy name: policyl
Policy occurrence: 3
Policy period: 120
Policy triggered count:
Policy status: active

0

Multi event policy: FALSE

Events mapped to the policy

No. Name

Status

| Automation Scripts

Step 3

Example: Shut Inactive Bundle Interfaces Using EEM Script .

1 event?2 active

Actions mapped to the policy
No. Name Checksum
1 actionl SHA256

Use the show event manager policy-map <policy-map-name> detailed command to view the details about the individual
policy maps.

Router#show event manager policy-map policyl detailed
Fri Nov 19 11:05:38.828 UTC

Policy name: policyl

Policy occurrence: 2

Policy period: 60

Policy triggered count: 0

Policy status: active

Multi event policy: TRUE

Multi event string : "eventl OR (event4 AND event2)"
Current Correlation State : FALSE

Events mapped to the policy

No. Name Status Corr Status Reset time (sec)
1 eventl active 0 0
2 event?2 active 0 0
3 event4 active 0 0

Actions mapped to the policy
No. Name Checksum
1 action2 SHA256

Run the show event manager action <action-name> detailed commad to view the details of an action.

Example:

Router#show event manager action actionl detailed
Tue Aug 24 16:05:44.298 UTC

Action name: actionl

Action type: script

EEM Script name: event script l.py

Action triggered count: 1

Action policy count: 1

Username: eem user

Checksum: 407ce32678a5fc4b0ad49e83acad6453adld47e8dad9501cf139daa775d53e3dd
Last execution status: Success

Policy mapping info
1 actionl policyl

Use the show event manager action all and show event manager action all detailed command to view the summary
and details about all the configured actions.

Example: Shut Inactive Bundle Interfaces Using EEM Script

In this example, you use an EEM event to look for a syslog message and trigger a Python script. The script
does two things:

* Triggers an event on the interface inactive log as part of Bundle-Etherl, and shuts down the interface.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Example: Shut Inactive Bundle Interfaces Using EEM Script

Step 1

Step 2
Step 3

Automation Scripts |

* Runs the show tech-support bundles command to collect debug data.

Create an eem script event_script_action bundle shut.py. Store the script on an HTTP server or copy the script to
the harddisk of the router.

Example:
from iosxr.xrcli.xrcli helper import *

from cisco.script mgmt import xrlog

logger = xrlog.getScriptLogger ('sample script')
syslog = xrlog.getSysLogger ('sample script')
helper = XrcliHelper (debug = True)

syslog.info ('Execution of event manager action script event script action bundle shut.py started')

config = """interface Bundle-Etherl
shutdown"""
cmd = "show tech-support bundles"
if name == "' main_ ':
res = helper.xr apply config string(config)
if res['status'] == 'success':
syslog.info ('OPS_EVENT SCRIPT ACTION : Configuration succeeded')
else:

syslog.error ('OPS_EVENT SCRIPT ACTION : Configuration failed')

res = helper.xrcli exec (cmd)
if res['status'] == 'success':

syslog.info ('OPS_EVENT SCRIPT ACTION : show tech started')
else:

syslog.error ('OPS_EVENT SCRIPT ACTION : show tech failed')
syslog.info ('Execution of event manager action script event script action bundle shut.py ended')

Add the script from HTTP server or harddisk to the script management repository..

After the configured type matches the syslog pattern, the script is triggered in response to the detected event. You can
view the running configuration for the event manager.

Example:

Router#show running-config event manager
Mon Aug 30 06:23:32.974 UTC
event manager action actionl
username eem user
type script script-name eem script bundle shut.py maxrun seconds 600 checksum sha256
2386d8f71b2d6f6f6e77a7a39d3b4d38ccal7f9%eaf2ad4de7cd40clb027a4e248
|
event manager policy-map policyl
trigger event eventl
action actionl
|
event manager event-trigger eventl

type syslog pattern "$L2-BM-6-ACTIVE : FortyGigE0/0/0/13 is no longer Active as part of Bundle-Etherl"
|

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 1 5

Model-Driven Command-Line Interface

This section shows the CLI commands that are based on YANG data models and can be used on the router
console.

* Model-Driven CLI to Display Data Model Structure, on page 197
* Model-Driven CLI to Display Running Configuration in XML and JSON Formats, on page 201

Model-Driven CLI to Display Data Model Structure

Table 34: Feature History Table

Feature Name Release Information Description
Model-driven CLI to Show YANG | Release 7.3.2 This feature enables you to use a
Operational Data traditional CLI command to display

YANG data model structures on the
router console and also obtain
operational data from the router in
JSON or XML formats. The
functionality helps you transition
smoothly between CLI and YANG
models, easing data retrieval from
your router and network.

This feature introduces the show
yang oper ational command.

Cisco I0S XR Software provides a rich set of show commands and data models to access data from the router
and network. The show commands present unstructured data, whereas data models are structured data that
can be encoded in XML or JSON formats. However, both the access points do not always present the same
view. Network operators who work on show commands face challenges with adopting the data models when
transitioning to programmatic interfaces.

With this feature, these adoption challenges are overcome using show yang oper ational command that is
driven by data models. The command uses the data model as the base to display the structured data using
traditional CLI command. Using this command, you can simplify parsing scripts via XML and JSON formats.

A data model has a structured hierarchy: model, module, container, and leaf. The following example shows
the structure of ietf-interfaces.yang data model:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Model-Driven CLI to Display Data Model Structure

ietf-interfaces.yang
module: ietf-interfaces
+--rw interfaces
| +--rw interface* [name]

| +--rw name string
| +--rw description? string
| +--rw type identityref
| +--rw enabled? boolean
| +--rw link-up-down-trap-enable? enumeration {if-mib}?
+--ro interfaces-state
+--ro interface* [name]
+--ro name string
+--ro type identityref

+--ro admin-status enumeration {if-mib}
In the example, the hierarchy of the data model is as follows:

* Model—ietf-interfaces.yang

* Module—ietf-interfaces

» Container—interfaces, interface-state

* Node—interface* [name]

» Leaf—name, description, type, enabled, link-up-down-trap-enable, admin-status

You can use the show yang operational command to navigate to the leaf level as you do in a data model.

The image show a mapping between CLI and data model, and how the structured data is displayed on the
console.

RP/0/RSPQ/CPU@:vkg4# show yang 7
aaa
acl
arp

module: Cisco-I0S-XR-invmgr-oper
+—ro inventory
+—ro entities

en +—ro racks
inventory

Yang module: Cisco-I0S-XR-invmgr-oper
+—ro inventory
+—ro entities
+—ro entityx [name]
+—ro attributes
+—ro inv-basic-bag

+—ro description? string

+—ro vendor-type? string

+—ro name? string

+—ro hardware-revision? string

+—ro firmware-revision? string

+—ro software-revision? string

+—r0 chip-hardware-revision? string

+—ro serial-number? string

+—ro manufacturer-name? string
mode l-name? string
asset-id-str? string

+==ro asset-identification? int32

+—ro is-field-replaceable-unit? boolean

+—ro manufacturer-asset-tags? int32

+—ro composite-class-code? int32

+—ro memory-size? int32

+—ro environmental-monitor-path? string

+—ro alias? string

+—ro group-flag? boolean

+—ro new-deviation-number? int32

+=—ro physical-layer-interface-module-type? int32

+—ro0 unrecognized-fru? boolean

+—ro redundancystate? int32

+-—ro ceport? boolean

RP/@/RSP@/CPU@: vkg4#show yang inventory ?
entities Entities Table
racks Rack Table
xml Output in XML format.
| Output Modifiers
<cr>

RP/@/RSPO/CPU@:vkg4# show yang inventory entities 7
enitity Actual entity name

RP/@/RSPO/CPUR: vkgd# show yang inventory entities
[Cisco-I0S-XR-invmgr—oper inventory entities]
entity/name=Rack @
attributes
inv-basic-bag
description: ASR-9984 AC Chassis
vendor-type: 1.3.6.1.4, .12.3.1.3.1301
name: Rack @
hardware-revision: Vel
software-revision: 7.2.1.241
serial-number: FOX2012GA1)
manufacturer-name: CISCO SYSTEMS, INC
model-name: ASR-9904-AC

is-field-replaceable-unit: true
composite-class-code: 65536
unrecognized-fru: false
unique-: 8384513
inv-asset-bag
part-number: E@
manufacturer-assembly-number: 68-4854-01
manufacturer-assembly-revision: E@
manufacturer-common-language-equipment-identifier: IPMWDBBARA

+—ro xr-scoped? boolean
+—ro unique-id?
int32
+—ro inv-asset-bag
+——ro part-number?
+—ro manufacturer-assembly-number?
+—ro manufacturer-assembly-revision?
+==ro manufacturer-firmware-identifier?
+—ro manufacturer-software-identifier?
+—ro manufacturer-common-language-equipment-identifier?
+—ro original-equipment-manufacturer-string?

522068

The table shows various queries that can be used to navigate through the hierarchy of a data model using the
CLI command. The queries are demonstrated using Cisco-I0S-XR-interfaces-oper.yang data model as an
example.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Model-Driven CLI to Display Data Model Structure .

Operational Query

Description

Search specific top-level
nodes

Search and produce the output of keywords from top-level nodes.
Router#show yang operational

Router#show yang operational | include <component>

The following example shows the search result for interfaces:

Router#show yang operational | include interface
Wed Jul 7 00:02:37.982 PDT
drivers-media-eth-oper:ethernet-interface
ifmgr-oper:interface-dampening
ifmgr-oper:interface-properties
interface-cem-oper:cem
12vpn-oper:generic-interface-1list-v2
pfi-im-cmd-oper:interfaces

All the instances of the
container

Lists all the models at the root level container and its container name.
Router#show yang operational ?

You can also see the containers for a partially typed keyword. For example,
keyword search for mp1s- displays all the containers with mp1s :

Router#show yang operational mpls-
mpls-io-oper-mpls-ea mpls-io-oper-mpls-ma
mpls-ldp-mldp-oper:mpls-mldp

mpls-lsd-oper:mpls-1sd mpls-lsp-oper:mpls-lsd-nodes
mpls-ldp-mldp-oper:mpls-mldp

mpls-vpn-oper:13vpn mpls-te-oper:mpls-tp
mpls-te-oper:mpls-te

View the container data. The output of the command is in-line with the structure
of the data model.

Router#show yang operational mpls-static-oper:mpls-static
Request datatree:
filter
mpls-static (ka)
{
"Cisco-IOS-XR-mpls-static-oper:mpls-static": {

"vrfs": {
"vrf": [
{
"vrf-name": "default"
}
]
}!
"summary": {

"lsp-count": O,
"label-count": 0,
"label-error-count": O,
"label-discrepancy-count": 0,
"vrf-count": 1,
"active-vrf-count": 1,
"interface-count": O,
"interface-forward-reference-count": O,
"lsd-connected": true,
"ribv4-connected": false,
"ribvé-connected": false

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Model-Driven CLI to Display Data Model Structure

Automation Scripts |

Operational Query

All the nodes of the
container

Description
Router#show yang operational mpls-static-oper:mpls-static ?
JSON Output in JSON format
XML Output in XML format
local-labels
summary
vrfs

| Output Modifiers
<cr>

Output in JSON For mat:

Router#show yang operational man-netconf-oper:netconf-yang clients
JSON

Mon Sep 27 11:38:27.158 PST

Request datatree:

filter
netconf-yang (ka)
clients
{
"Cisco-IOS-XR-man-netconf-oper:netconf-yang": {
"clients": {
"client": [

{
"session-id": "1396267443",

"version": "1.1",

"connect-time": "52436839",
"last-op-time": "1545",
"last-op-type": "get",

"locked": "No"

Output in XML Format:

Router#show yang operational man-netconf-oper:netconf-yang clients
XML
Mon Sep 27 11:38:34.218 PST
Request datatree:
filter
netconf-yang (ka)
clients

<netconf-yang
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-man-netconf-oper">
<clients>

<client>

<session-1d>1396267443</session-id>

<version>1.1</version>

<connect-time>52443884</connect-time>

<last-op-time>1545</last-op-time>

<last-op-type>get</last-op-type>

<locked>No</locked>

</client>
</clients>
</netconf-yang>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Model-Driven CLI to Display Running Configuration in XML and JSON Formats .

Operational Query

Description

Navigate until the last
leaf level

Router#show yang operational mpls-static-oper:mpls-static summary ?
JSON Output in JSON format
XML Output in XML format
active-vrf-count
im-connected
interface-count
interface-forward-reference-count
mpls-enbled-interface-count
vrf-count
| Output Modifiers
<cr>

View data specific to the leaf value. The read only (r0) leaves in a YANG model
are considered as the state data (operational).

Router#show yang operational mpls-static-oper:mpls-static summary
active-vrf-count
Request datatree:
filter
mpls-static (ka)
summary
active-vrf-count
{
"Cisco-IOS-XR-mpls-static-oper:mpls-static": {
"summary": {
"active-vrf-count": [

}

Model-Driven CLI to Display Running Configuration in XML and

JSON Formats

Table 35: Feature History Table

Feature Name

Release Information Description

and JSON Formats

Model-driven CLI to Display
Running Configuration in XML

Release 7.3.2 This feature enables you to display
the configuration data for Cisco
IOS XR platforms in both JSON

and XML formats.

This feature introduces the show
run | [xml | json] command.

The show run | [xml | json] command uses native, OpenConfig and unified models to retrieve and display

data.

Use the following variations of the command to generate output:

* show run | [xml | json]—Shows configuration in YANG XML or JSON tree.

+ show run | [xml | json] openconfig—Shows configuration in OpenConfig YANG XML tree.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
Model-Driven CLI to Display Running Configuration in XML and JSON Formats

+ show run | [xml | json] unified—Shows configuration in unified model YANG XML tree.

* show run component | [xml | json]—Shows configuration in YANG XML or JSON tree for the top-level
component. For example, show run interface | xml

+ show run component | [xml | json] unified—Shows configuration in unified model YANG XML or
JSON tree for the top-level component. For example, show run interface | json unified

« show run component subcomponent | [xml | json]—Shows configuration in YANG XML or JSON tree
for the granular-level component. For example, show run router bgp 12 neighbor 12.12.12.12 | xml

+ show run component subcomponent | [xml | json] unified—Shows configuration in unified model
YANG XML or JSON tree for the granular-level component. For example, show run router bgp 12
neighbor 12.12.12.12 | json unified

XML Output

Router#show run | xml
Building configuration...
<data>
<interface-configurations xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ifmgr-cfg">
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/0</interface-name>
<shutdown></shutdown>
</interface-configuration>
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/1</interface-name>
<shutdown></shutdown>
</interface-configuration>
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/2</interface-name>
<shutdown></shutdown>
</interface-configuration>
</interface-configurations>
<interfaces xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-um-interface-cfg">
<interface>
<interface-name>GigabitEthernet0/0/0/0</interface-name>
<shutdown/>
</interface>
<interface>
<interface-name>GigabitEthernet0/0/0/1</interface-name>
<shutdown/>
</interface>
<interface>
<interface-name>GigabitEthernet0/0/0/2</interface-name>
<shutdown/>
</interface>
</interfaces>
</data>

JSON Output

Routerf#show run | json
Building configuration...
{
"data": {
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [

"active": "act",

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Model-Driven CLI to Display Running Configuration in XML and JSON Formats .

"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [
null
1
}I
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/1",
"shutdown": [
null
1
}I
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/2",
"shutdown": [
null

]
}
]I
"Cisco-IOS-XR-man-netconf-cfg:netconf-yang": {
"agent": {
"ssh": true
}
}I
}

Granular-L evel Component Output

Router#sh run router bgp 12 neighbor 12.12.12.12 | json unified
{

"data": {
"Cisco-IOS-XR-um-router-bgp-cfg:router": {
"bgp": {
"as": [
{
"as-number": 12,
"neighbors": {
"neighbor": [
{
"neighbor-address™: "12.12.12.12",

"remote-as": 12,
"address-families": {
"address-family": [

{

"af-name": "ipv4-unicast"

Unified Model Output

Router#sh run router bgp 12 | xml unified

<data>

<router xmlns=http://cisco.com/ns/yang/Cisco-IOS-XR-um-router-bgp-cfg>
<bgp>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
Model-Driven CLI to Display Running Configuration in XML and JSON Formats

<as>
<as-number>12</as-number>
<bgp>
<router-id>1.1.1.1</router-id>
</bgp>
<address-families>
<address-family>
<af-name>ipv4-unicast</af-name>
</address-family>
</address-families>
<neighbors>
<neighbor>
<neighbor-address>12.12.12.12</neighbor-address>
<remote-as>12</remote-as>
<address-families>
<address-family>
<af-name>ipv4-unicast</af-name>
</address-family>
</address-families>
</neighbor>
</neighbors>
</as>
</bgp>
</router>
</data>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 1 6

Manage Automation Scripts Using YANG RPCs

Table 36: Feature History Table

Feature Name Release Information Description
Manage Automation Scripts Using | Release 7.3.2 This feature enables you to use
YANG RPCs remote procedure calls (RPCs) on

YANG data models to perform the
same automated operations as CLIs,
such as edit configurations or
retrieve router information.

You can use automation scripts to interact with the router using NETCONF, helper modules or gNMI python
modules.

An SSH session must be established between the client and the server to run RPCs on a device. The client
can be a script or application that runs as part of a network manager. The server is a network device such as
a router. To enable the NETCONF SSH agent, use the following commands:

ssh server v2
netconf agent tty

After a NETCONTF session is established, the client sends one or more RPC requests to the server. The server
processes the requests and sends an RPC response back to the client. For example, the get-config operation
retrieves the configuration of the device and the edit-config operation edits the configuration on the device.

For more information about data models and how to use the models

* Manage Common Script Actions Using YANG RPCs, on page 206
* Manage Exec Scripts Using RPCs, on page 208
* Manage EEM Script Using RPCs, on page 212

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Manage Common Script Actions Using YANG RPCs

Manage Common Script Actions Using YANG RPCs

Table 37: Feature History Table

Feature Name Release Information Description

Manage Common Script Actions |Release 7.5.1 This feature enables you to use

Using YANG RPCs YANG remote procedure calls
(RPCs) on

Cisco-IOS-XR-infra—script-mgmt-act. yang
data model to perform actions on
the automation scripts such as add
or remove script from the script
repository, run, or stop script from
running.

This section provides information about YANG RPC messages for common actions on automation scripts.
The cisco-T0S-XR-infra-script-mgmt-act.yang action YANG model is enhanced to perform the actions
such as adding or removing a script from the repository, and also include output responses. The output response
provides a description about the action and displays the status as True for a successful action, and ralse for
a failed action.

The YANG RPC supports these scripts:
* Config

* Exec
* Process

* EEM

The following section shows the various script actions, sample RPC request, and RPC response.

Add Script

You can add up to a maximum of 10 scripts to the script repository. You can set the script type to config,
exec, process, or eem. The following example shows the RPC to add the exec script to the repository:

<add xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<script-type>exec</script-type>

<vrf></vrf>

<source>/harddisk:/</source>

<script-name>sample.py</script-name>

</add>

You can add more than one script to the repository simultaneously:

<add xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<script-type>exec</script-type>

<source>/harddisk:/</source>

<script-name>sample2.py</script-name>
<script-name>sample3.py</script-name>

</add>

To add a checksum value to the script, use the following RPC request:

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Manage Common Script Actions Using YANG RPCs .

<add-checksum xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<script-type>exec</script-type>
<source>/harddisk:/</source>
<script-checksums>

<script-name>sample.py</script-name>
<checksum>e3b0c44298fclcl49afbf4c8996fb92427ae41e46490934ca495991b7852b855</checksum>
</script-checksums>
</add-checksum>

You can add more than one script with their checksum values:

<add-checksum xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<script-type>exec</script-type>
<source>/harddisk:/</source>
<script-checksums>

<script-name>sample.py</script-name>
<checksum>e3b0c44298fclcl49afbf4c8996fb92427ae41e46490934ca495991b7852b855</checksum>
</script-checksums>
<script-checksums>

<script-name>sample2.py</script-name>
<checksum>e3b0c44298fclcl49afbf4c8996fb92427ae41e46490934ca495991b7852b855</checksum>
</script-checksums>
</add-checksum>

Remove Script

To remove script from the repository, provide the script type and the script name. You can send an RPC
request to remove up to 10 scripts.

<remove xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<script-type>exec</script-type>

<script-name>sample.py</script-name>

</remove>

You can remove more than one script simultaneously:

<remove xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<script-type>exec</script-type>

<script-name>sample2.py</script-name>

<script-name>sample3.py</script-name>

</remove>

The following example shows a sample RPC response indicating that the script samplel.py is removed from
the repository:
<responses>
<script-name>sample.py<script-name>
<response>sample.py has been removed from the script repository</response>

<status>True</status>
<responses>

Stop Script
You must provide the request ID for the script instance to be stopped.

<stop xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<request-1d>1622058854</request-id>

<description></description>

</stop>

The following example shows that the script has stopped:

<script-stop-response>
<response></response>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Manage Exec Scripts Using RPCs

<status>True</status>
</script-stop-response>

Run Script

You must provide the script name to run the script. You can also configure the log levels to one of these
values—Ceritical, Debug, Error, Info, or Warning.
<run xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<script-name>sample.py</script-name>
<argument-list></ argument-list>
<description></description>
<log-level></log-level>
<log-path></log-path>
<max-runtime></max-runtime>
</run>

The following example shows a sample RPC response where the script with the request ID 1622058854 is
run:

<script-run-response>

<response>Script run scheduled</response>
<request-i1d>1622058854</request-id>
<status>True</status>
</script-run-response>

Manage Exec Scripts Using RPCs

The following data models support exec scripts:
* Edit or get configuration—Cisco-IOS-XR-infra-script-mgmt-cfg.yang
* Perform action—Cisco-IOS-XR-infra-script-mgmt-act.yang

* Retrieve operational data—Cisco-IOS-XR-infra-script-mgmt-oper.yang

This section provides examples of using RPC messages on exec scripts, and also the YANG data model and
equivalent CLI command to perform the tasks:

Add Script

You use data model to add an exec script from an external repository to the
harddisk:/mirror/script-mgmt/exec script management repository on the router.

YANG Data Model Equivalent CLI

Cisco-I0S-XR-infra-script-mgmt-act.yang script add exec script-location script.py
See.

RPC Request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-add-type-source xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<type>exec</type>
<source>/harddisk:</source>
<file-name-1>samplel.py</file-name-1>
</script-add-type-source>
</rpc>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Manage Exec Scripts Using RPCs .

Syslog:

Router: script manager[66762]: %0S-SCRIPT_ MGMT-6-INFO

Script-script manager: samplel.py has been added to the script repository
Configure Checksum

Every script is associated with a checksum value for integrity. You can configure the checksum using data

models.
YANG Data Model Equivalent CLI
Cisco-I0S-XR-infra-script-mgmt-act.yang script exec samplel.py checksum SHA256
checksum-value
See, .
RPC Request:

<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccdlaefcaf">
<nc:edit-config>
<nc:target>
<nc:candidate/>
</nc:target>
<nc:config>
<scripts xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-cfg">
<exec-script>
<scripts>
<script>
<script-name>samplel.py</script-name>
<checksum>
<checksum-type>sha256</checksum-type>

<checksum>5103a843032505decc37££21089336e4dbcc6al061341056ca8add3ac5d6620ef</checksum>
</checksum>
</script>
</scripts>
</exec-script>
</scripts>
</nc:config>
</nc:edit-config>
</nc:rpc>

RPC Response:

<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccdlaefcaf"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Run Script

YANG Data Model Equivalent CLI
Cisco-I0S-XR-infra-script-mgmt-act.yang script run samplel.py
RPC Request:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Manage Exec Scripts Using RPCs

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-run xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<name>samplel.py</name>
</script-run>
</rpc>

RPC Response:

<?xml version="1.0" ?>

<rpc-reply message-id="urn:uuid:d54247c7-c£29-42f2-bfb8-517d6458£f77c" xmlns="urn:ietf:

params:xml:ns:netconf:base:1.0" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Syslog:

Router: UTC: script control cli[67858]: %0S-SCRIPT_MGMT-6-INFO : Script-control:
Script run scheduled: samplel.py. Request ID: 1631795207
Router: script agent main[248]: %0S-SCRIPT_MGMT-6-INFO : Script-script agent: Script

execution samplel.py (exec) Started : Request ID : 1631795207 :: PID: 18710
Stop Script

YANG Data Model Equivalent CLI
Cisco-I0S-XR-infra-script-mgmt-act.yang script stop value [short-decription]

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-stop-request xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-act">
<request>1614930988</request>
</script-stop-request>
</rpc>

Remove Script

You can remove scripts from the script management repository. The data about script management and
execution history is not deleted when the script is removed.

YANG Data Model Equivalent CLI
Cisco-IOS-XR-infra-script-mgmt-act.yang Script remove exec script.py
See,.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-remove-type xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<type>exec</type>
<file-name-1>load modules ut.py</file-name-1>
</script-remove-type>
</rpc>

Show Script Execution

View the status of the script execution.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Manage Exec Scripts Using RPCs .

YANG Data Model Equivalent CLI

Cisco-I0S-XR-infra-script-mgmt-oper.yang show script execution [request-id <value>] [name
<filename>] [status {Exception | Executed | Killed |
Sarted | Sopped | Timed-out}] [reverse] [last
<number>]

RPC Request:

—————————————— Sent to NETCONF Agent ------—-—-—-—————-
<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:7£d0d184-0004-4a51-9765-d29bc94c793b">
<get>
<filter>
<script xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-oper">
<execution>
<requests>
<request>
<request-1d>1631795207</request-id>
<detail>
<execution-detail/>
</detail>
</request>
</requests>
</execution>
</script>
</filter>
</get>
</rpc>

RPC Response:

————————————————— Received from NETCONF agent --—--—--——--———-——————
<?xml version="1.0" 72>
<rpc-reply message-id="urn:uuid:7£d0d184-0004-4a51-9765-d29bc94c793b"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<script xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-infra-script-mgmt-oper">
<execution>
<requests>
<request>
<request-1d>1631795207</request-id>
<detail>
<execution-detail>
<execution-summary>
<request-1d>1631795207</request-id>
<return-val>0</return-val>
<script-type>exec</script-type>
<script-name>samplel.py</script-name>
<duration>60.65s</duration>
<event-time>Thu Sep 16 12:26:46 2021</event-time>
<status>Executed</status>
</execution-summary>
<execution-detail>

<log-path>/harddisk:/mirror/script-mgmt/logs/samplel.py exec 1631795207</log-path>
<run-options>Logging level - INFO, Max. Runtime - 300s, Mode -
Background</run-options>
</execution-detail>
<execution-event>
<description>None</description>
<duration>0.00s</duration>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Manage EEM Script Using RPCs

<event>New</event>
<time>Thu Sep 16 12:26:46 2021</time>

</execution-event>

<execution-event>
<description>Script execution started. PID (18710)</description>
<duration>0.03s</duration>
<event>Started</event>
<time>Thu Sep 16 12:26:46 2021</time>

</execution-event>

<execution-event>
<description>Script execution complete</description>
<duration>60.65s</duration>
<event>Executed</event>
<time>Thu Sep 16 12:27:47 2021</time>

</execution-event>

</execution-detail>
</detail>
</request>
</requests>
</execution>
</script>
</data>
</rpc-reply>

Manage EEM Script Using RPCs

The following data model supports eem scripts:

* Edit configuration—Cisco-I0OS-XR-um-event-manager-policy-map-cfg.yang

The model is augmented to Cisco-I0S-XR-um-event-manager-cfg.yang data model.

This section provides examples of using RPC messages on eem scripts, and also the YANG data model and
equivalent CLI command to perform the tasks:

Define Actions for Events Using Data Model

You use data model to create actions for events.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Manage EEM Script Using RPCs .

YANG Data Model Equivalent CLI

Cisco-I0S-XR-um-event-manager-policy-map-cfg | event manager event-trigger event-name
occurance value
period seconds value

period seconds valuetype syslog pattern
"syslog-pattern” severity syslog-severity

See
event manager action action-name
username username

type script script-name python-script-name.py
maxrun seconds value checksum sha256
checksum-value

See.

RPC Request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>
</target>
<config>
<event xmlns="http://cisco.com/ns/yang/Cisco-I0OS-XR-um-event-manager-cfg">
<manager>
<event-trigger
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-um-event-manager-policy-map-cfg">
<event>
<event-name>event 1</event-name>
<occurrence>2</occurrence>
<period>
<seconds>60</seconds>
</period>
<type>
<syslog>
<pattern>"Syslog for EEM script"</pattern>
<severity>
<warning/>
</severity>
</syslog>
</type>
</event>
</event-trigger>
<actions xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-um-event-manager-policy-map-cfg">

<action>
<action-name>action 1</action-name>
<type>
<script>
<script-name>event script 1.py</script-name>
<maxrun>
<seconds>30</seconds>
</maxrun>
<checksum>
<sha256>bbl9%a7a286db72aa7c7bd75ad5f224eeal062b7cdaaceec06£11£f0£86£976831d</sha256>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
Manage EEM Script Using RPCs

</checksum>
</script>
</type>
<username>eem user l</username>
</action>
</actions>
</manager>
</event>
</config>
</edit-config>
</rpc>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<commit>
</rpc>

RPC Response:

<?xml version="1.0" ?>

<rpc-reply message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccdlaefcaf"

xmlns="urn:ietf:params:xml:ns:

netconf:base:1.0" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Create Policy Map for Events and Actions Using Data Model

You use data model to create actions for events.

YANG Data Model Equivalent CLI

Cisco-I0S-XR-um-event-manager-policy-map-cfg | event manager policy-map policy-name
action action-name
trigger event event-name

See, .

RPC Request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>
</target>
<config>
<event xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-um-event-manager-cfg">
<manager>
<policy-maps xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-um-event-manager-policy-map-cfg">

<policy-map>
<policy-map-name>policy 1</policy-map-name>
<trigger>
<event>event 1</event>
</trigger>
<actions>
<action>
<action-name>action 1</action-name>
</action>
</actions>
</policy-map>
</policy-maps>
</manager>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

</config>
</edit-config>
</rpc>

Operational Model for EEM Script .

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">

<commit/>
</rpc>

RPC Response:

<?xml version="1.0" ?>

<rpc-reply message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccdlaefcaf"

xmlns="urn:ietf:params:xml:ns:

netconf:base:1.0" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Operational Model for EEM Script

Table 38: Feature History Table

Feature Name Release Information

Description

Operational Data Model for EEM | Release 7.5.2
Script

You can programmatically retrieve the
operational status of events, actions, and
policy maps using the YANG data model.

In earlier releases, you used the show event
manager command to view the operational
status of event scripts.

This release introduces
Cisco-I0S-XR-ha-eem-policy-oper.yang
and
Cisco-I0S-XR-event-ranager-policy-map-oper. yang
data models.

Operational Data Model to Retrieve Actions

You use data model to view the details of an action. IOS XR actions are RPC statements that trigger an
operation or execute a command on the router. This action is executed when the router receives the
corresponding NETCONF RPC request. Once the router executes an action, it replies with a NETCONF RPC

response.

YANG Data Model Equivalent Command

Cisco-I0S-XR-ha-eem-policy-oper show event manager action action-name detailed
See, View Operational Status of Event Scripts, on
page 193.

RPC Request:

<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:62b%81b-5d%e-44f6-8a5d-d193a0£8b3d3">

<get>
<filter>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Operational Model for EEM Script

<eem xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ha-eem-policy-oper">
<action-names
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-event-manager-policy-map-oper">
<action-name>
<action-name>action2</action-name>
</action-name>
</action-names>
</eem>
</filter>
</get>
</rpc>

RPC Response:

<?xml version="1.0" ?>

<rpc-reply message-id="urn:uuid:62b9%e81lb-5d9%e-44f6-8a5d-d193a0£8b3d3"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>
<eem xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ha-eem-policy-oper">
<action-names
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-event-manager-policy-map-oper">
<action-name>

<action-name>action2</action-name>
<action-name-xr>action2</action-name-xr>
<script-name>event script 2.py</script-name>
<action-type>script</action-type>
<triggered-count>7</triggered-count>
<policy-count>1</policy-count>
<max-run>20</max-run>
<checksum-enabled>SHA256</checksum-enabled>
<last-run-status>Success</last-run-status>
<user-name>eem user</user-name>

<checksum-string>270b9730e77c9bd6£5784084ed21e29d8d7b8edaf8£98a4513879a1631c493ad</checksum-string>

<action-policy-map>
<policy-name>policy3</policy-name>
</action-policy-map>
</action-name>
</action-names>
</eem>
</data>
</rpc-reply>

Operational Data Model to Retrieve Policy Map

You use data model to view the details of a policy map.

YANG Data Model Equivalent Command
Cisco-I0S-XR-ha-eem-policy-oper show event manager policy-map policy-name
detailed

See, View Operational Status of Event Scripts, on
page 193.

RPC Request:

<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:3cec3£f3a-395b-4763-b1al-1053149da60c">
<get>
<filter>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Operational Model for EEM Script .

<eem xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ha-eem-policy-oper">
<policy-map-names
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-event-manager-policy-map-oper">
<policy-map-name>
<policy-name>policy4</policy-name>
</policy-map-name>
</policy-map-names>
</eem>
</filter>
</get>
</rpc>

RPC Response:

<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:3cec3£f3a-395b-4763-blal-1053149da60c"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<eem xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ha-eem-policy-oper">
<policy-map-names
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-event-manager-policy-map-oper">
<policy-map-name>
<policy-name>policy4</policy-name>
<policy-name-xr>policy4</policy-name-xr>
<policy-status>active</policy-status>
<policy-occurrence>2</policy-occurrence>
<policy-period>30</policy-period>
<policy-triggered-count>0</policy-triggered-count>
<event-count>2</event-count>
<action-count>1</action-count>
<policy-event-map>
<event-name>event5</event-name>
<event-status>active</event-status>
<corr-status>false</corr-status>
<reset-time>0</reset-time>
</policy-event-map>
<policy-event-map>
<event-name>eventd4</event-name>
<event-status>active</event-status>
<corr-status>false</corr-status>
<reset-time>0</reset-time>
</policy-event-map>
<policy-action-map>
<action-name>actiond4</action-name>
<checksum-enabled>SHA256</checksum-enabled>
</policy-action-map>
<multi-event-policy>true</multi-event-policy>
<current-correlation-state>false</current-correlation-state>
<multi-event-string>"event4 AND event5"</multi-event-string>
</policy-map-name>
</policy-map-names>
</eem>
</data>
</rpc-reply>

Operational Data Model to Retrieve Events With Trigger Conditions

You use data model to view the details of a event-trigger conditions.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Operational Model for EEM Script

YANG Data Model Equivalent CLI
Cisco-10S-XR-ha-eem-policy-oper show event manager event-trigger event-trigger-name
detailed

See, View Operational Status of Event Scripts, on
page 193.

RPC Request:

<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:77229832-1a44-47e4-b0cf-2c2066ac579%9a"><nc:get>
<filter>
<eem xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ha-eem-policy-oper">
<event-trigger-names
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-event-manager-policy-map-oper">
<event-trigger-name>
<event-name>event4</event-name>
</event-trigger-name>
</event-trigger-names>
</eem>
</filter>
</get>
</rpc>

RPC Response:

<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:77229832-1a44-47e4-b0cf-2c2066ac579%a"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<eem xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ha-eem-policy-oper">
<event-trigger-names
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-event-manager-policy-map-oper">
<event-trigger-name>
<event-name>eventd4</event-name>
<event-name-xr>event4</event-name-xr>
<event-status>active</event-status>
<event-type>syslog</event-type>
<eventesid>16</eventesid>
<event-occurrence>NA</event-occurrence>
<event-period>NA</event-period>
<rate-1limit>0</rate-limit>
<event-triggered-count>2</event-triggered-count>
<event-policy-reg-count>1</event-policy-reg-count>
<event-policy-map>
<policy-name>policy4</policy-name>
</event-policy-map>
<event-syslog-info>
<pattern>%PKT INFRA-LINK-3-UPDOWN : Interface GigabitEthernet0/0/0/4, changed
state to Down</pattern>
<severity>ALL</severity>
</event-syslog-info>
<event-timer-info>
<wd-info>
<timer-value>0</timer-value>
</wd-info>
</event-timer-info>
<event-telemetry-info>
<sample-interval>0</sample-interval>
</event-telemetry-info>
</event-trigger-name>

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Operational Model for EEM Script .

</event-trigger-names>
</eem>
</data>
</rpc-reply>

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Operational Model for EEM Script

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 1 7

Script Infrastructure and Sample Templates

Table 39: Feature History Table

Feature Name Release Information Description

Contextual Script Infrastructure | Release 7.3.2 When you create and run Python
scripts on the router, this feature
enables a contextual interaction
between the scripts, the IOS XR
software, and the external servers.
This context, programmed in the
script, uses Cisco IOS XR Python
packages, modules, and libraries to:

* obtain operational data from
the router

* set configurations and
conditions

* detect events in the network
and trigger an appropriate
action

You can create Python scripts and execute the scripts on routers running Cisco IOS XR software. The software
supports the Python packages, libraries and dictionaries in the software image. For more informtion about the
script types and to run the scripts using CLI commands To run the same actions using NETCONF RPCs,

Cisco IOS XR, Release 7.3.2 supports creating scripts using Python version 3.5.
Cisco IOS XR, Release 7.5.1 supports creating scripts using Python version 3.9.

* Cisco IOS XR Python Packages, on page 222

* Cisco IOS XR Python Libraries, on page 224

» Sample Script Templates, on page 225

* Use Automation Scripts to Interact with the Router via gNMI RPCs, on page 229

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Cisco 10S XR Python Packages

Cisco 10S XR Python Packages

Table 40: Feature History Table

Feature Name Release Information Description
Upgraded IOS XR Python from | Release 7.5.1 This upgrade adds new modules
Version 3.5 to Version 3.9 and capabilities to create Python

scripts and execute the scripts on
routers running Cisco [0S XR
software. Some of the modules
added as part of the upgraded 10S
XR Python 3.9 are: hashlib, idna,
packaging, pyparsing, six, yaml.

With on-box Python scripting, automation scripts that was run from an external controller is now run on the
router. To achieve this functionality, Cisco IOS XR software provides contextual support using SDK libraries
and standard protocols.

The following Python third party application packages are supported by the scripting infrastructure and can
be used to create automation scripts.

Package Description Support Introduced in Release
appdirs Chooses the appropriate Release 7.3.2
platform-specific directories for
user data.
array Defines an object type that can Release 7.3.2

compactly represent an array of
basic values: characters, integers,
floating point numbers.

asnlcrypto Parses and serializes Abstract Release 7.3.2
Syntax Notation One (ASN.1) data
structures.

chardet Universal character encoding Release 7.3.2

auto-detector.

concurrent.futures Provides a high-level interface for | Release 7.3.2
asynchronously executing callables.

ecdsa Implements Elliptic Curve Digital | Release 7.3.2
Signature Algorithm (ECDSA)
cryptography library to create
keypairs (signing key and verifying
key), sign messages, and verify the
signatures.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Cisco 10S XR Python Packages .

Package

Description

Support Introduced in Release

enum

Enumerates symbolic names
(members) bound to unique,
constant values.

Release 7.3.2

email

Manages email messages.

Release 7.3.2

google.protobuf

Supports language-neutral,
platform-neutral, extensible
mechanism for serializing
structured data.

Release 7.3.2

hashlib

Implements a common interface to
many different secure hash and
message digest algorithms.

Release 7.5.1

idna

Supports the Internationalized
Domain Names in Applications
(IDNA) protocol as specified in
RFC 5891.

Release 7.5.1

ipaddress

Provides capability to create,
manipulate and operate on [Pv4 and
IPv6 addresses and networks.

Release 7.3.2

jinja2

Supports adding functionality
useful for templating environments.

Release 7.3.2

json

Provides a lightweight data
interchange format.

Release 7.3.2

markupsafe

Implements a text object that
escapes characters so it is safe to
use in HTML and XML.

Release 7.3.2

netaddr

Enables system-independent
network address manipulation and
processing of Layer 3 network
addresses.

Release 7.3.2

packaging

Add the necessary files and
structure to create the package.

Release 7.5.1

pdb

Defines an interactive source code
debugger for Python programs.

Release 7.3.2

pkg_resources

Provides runtime facilities for
finding, introspecting, activating
and using installed distributions.

Release 7.3.2

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Cisco 10S XR Python Libraries

Automation Scripts |

Package

Description

Support Introduced in Release

psutil

Provides library to retrieve
information on running processes
and system utilization such as CPU,
memory, disks, sensors and
processes.

Release 7.3.2

pyasnl

Provides a collection of ASN.1
modules expressed in form of
pyasnl classes. Includes protocols
PDUs definition (SNMP, LDAP
etc.) and various data structures
(X.509, PKCS).

Release 7.3.2

pyparsing

Provides a library of classes to
construct the grammar directly in
Python code.

Release 7.5.1

requests

Allows sending HTTP/1.1 requests
using Python.

Release 7.3.2

shellescape

Defines the function that returns a
shell-escaped version of a Python
string.

Release 7.3.2

six

Provides simple utilities for
wrapping over differences between
Python 2 and Python 3.

Release 7.5.1

subprocess

Spawns new processes, connects to
input/output/error pipes, and obtain
return codes.

Release 7.3.2

urllib3

HTTP client for Python.

Release 7.3.2

xmltodict

Makes working with XML feel like
you are working with JSON.

Release 7.3.2

yaml

Provides a human-friendly format
for structured data, that is both easy
to write for humans and still
parsable by computers.

Release 7.5.1

Cisco 10S XR Python Libraries

Cisco I0S XR software provides support for the following SDK libraries and standard protocols.

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Sample Script Templates .

Library

Syntax

gnmi

To connect to gnmi client #

from iosxr.gnmi.gnmi lib import GNMIClient
gnmi = GNMIClient ()

For more information, see Use Automation Scripts to
Interact with the Router via gNMI RPCs, on page 229.

xrlog

To generate syslogs
from cisco.script mgmt import xrlog

syslog = xrlog.getSysLogger ('template exec')

netconf

#To connect to netconf client #
from iosxr.netconf.netconf lib import
NetconfClient

nc = NetconfClient (debug=True)

xrclihelper

To run native xr cli and config commands
from iosxr.xrcli.xrcli helper import *

helper = XrcliHelper (debug = True)

config_validation

To validate configuration
import cisco.config validation as xr

ccm

For EEM operations
from iosxr import eem

precommit

For Precommit script operations
from cisco.script mgmt import precommit

Sample Script Templates

Table 41: Feature History Table

Feature Name

Release Information Description

Github Repository for Automation
Scripts

Release 7.5.1

You now have access to sample
scripts and templates published on
the Github repository. You can
leverage these samples to use the
python packages and libraries
developed by Cisco to build your
custom automation scripts for your
network

Use these sample script templates based on script type to build your custom script.

To get familiar with IOS XR Python scripts, see the samples and templates on the Cisco Devnet developer

program and Github repository.

Follow these instructions to download the sample scripts from the Github repository to your router, and run

the scripts:

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://github.com/CiscoDevNet/xr-python-scripts
https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/xr-python-scripts
https://github.com/CiscoDevNet/xr-python-scripts

Automation Scripts |
. Sample Script Templates

1. Clone the Github repository.

$git clone https://github.com/CiscoDevNet/iosxr-ops.git

2. Copy the Python files to the router's harddisk or a remote repository.

Precommit Script
The following example shows the template for precommit scripts

from cisco.script mgmt import precommit

def sample method() :

[IRIRT]

Method documentation

[IRIRT]

cfg = precommit.get target configs()
cfg = precommit.get target configs(format="sysdb") for target config in sysdb format

process and verify target configs here.

precommit.config warning("Print a warning message in commit report")
precommit.config error ("Print an error message in commit report and abort commit
operation™)

if name == ' main ':

sample method ()

Config Script

The following example shows a code snippet for config script. Use this snippet in your script to import the
libraries required to validate configuration and also generate syslogs.

#Needed for config validation
import cisco.config validation as xr

#Used for generating syslogs
from cisco.script mgmt import xrlog
syslog = xrlog.getSysLogger ('Add script name here')

def check config(root):
#Add config validations

pass

xr.register validate callback([<Add config path here>],check config)

Exec Script

Use this sample code snippet in your exec script to import Python libraries to connect to NETCONF client
and also to generate syslogs.

#To connect to netconf client
from iosxr.netconf.netconf lib import NetconfClient

#To generate syslogs
syslog = xrlog.getSysLogger ('template exec')

def test exec():

[IRIRT]

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Sample Script Templates .

Testcase for exec script

wnn

nc = NetconfClient (debug=True)

nc.connect ()

#Netconf or processing operations

nc.close ()

if name == ' main ':

test_exec()

Process Script

Use the following sample code snippet to trigger a process script and perform various actions on the script.
You can leverage this snippet to create your own custom process script. Any exec script can be used as a

process script.

To trigger script
Step 1: Add and configure script as shown in README.MD

Step 2: Register the application with Appmgr

Configuraton:

appmgr process-script my-process-app
executable test process.py
run args --threshold <threshold-value>

Step 3: Activate the registered application
appmgr process-script activate name my-process-app

Step 4: Check script status
show appmgr process-script-table

Router#show appmgr process-script-table

Name

my-process-app

Executable Activated Status Restart Policy Config Pending

test process.py Yes Running On Failure No

Step 5: More operations
Router#appmgr process-script ?

activate
deactivate
kill
restart
start

stop

wun

Activate process script
Deactivate process script
Kill process script
Restart process script
Start process script

Stop process script

#To connect to netconf client
from iosxr.netconf.netconf lib import NetconfClient

#To generate syslogs
syslog = xrlog.getSysLogger ('template exec')

def test process():

wun

Testcase for process script

wun

nc = NetconfClient (debug=True)

nc.connect ()

#Netconf or any other operations

nc.close()

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Sample Script Templates

if name == ' main ':

test process()

EEM Script

You can leverage the following sample code to import Python libraries to create your custom eem script and
also generate syslogs.

Required configuration:
User and AAA configuration

event manager event-trigger <trigger-name>
type syslog pattern "PROC RESTART NAME"

event manager action <action-name>
username <user>
type script script-name <script-name> checksum sha256 <checksum>

event manager policy-map policyl
trigger event <trigger-name>
action <action-name>

To verify:
Check for syslog EVENT SCRIPT EXECUTED: User restarted <process-name>

wun

#Needed for eem operations
from iosxr import eem

#Used to generate syslogs
from cisco.script mgmt import xrlog

syslog = xrlog.getSysLogger (<add your script name here>)

event _dict consists of details of the event
rc, event dict = eem.event reqginfo()

#You can process the information as needed and take action for example: generate a syslog.
#Syslog type can be emergency, alert, critical, error, exception, warning, notification,

info, debug

syslog.info (<Add you syslog here>)

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Use Automation Scripts to Interact with the Router via gNMI RPCs .

Use Automation Scripts to Interact with the Router via gNMI
RPCs

Table 42: Feature History Table

Feature Name Release Information Description

Automation Scripts for gNMI RPCs | Release 7.5.2 You can create automation scripts to connect
to the gRPC Network Management Interface
(gNMI) server and interact with the router
using gNMI services. Based on gNMI-defined
RPCs, you can use the automation script to
connect to the gNMI server, manage the
configuration of network devices, and query
the operational data.

gRPC Network Management Interface (gNMI) is developed by Google. gNMI provides the mechanism to
install, manipulate, and delete the configuration of network devices, and also to view operational data. The
content provided through gNMI can be modeled using YANG. The supported operations are based on the
gNMI defined RPCs:

from iosxr.gnmi.gnmi lib import GNMIClient
gnmi = GNMIClient ()

#Connect
gnmi.connect ()

#Capabilities
cap = gnmi.capabilities/()

#Get
get = gnmi.get (get request)

#Set
set = gnmi.set (set request)

#Disconnect
gnmi.disconnect ()

* gNM| CapabilitiesRPC: This RPC allows the client to retrieve the gNMI capabilities that is supported
by the target (router). This allows the target to validate the service version that is implemented and retrieve
the set of models that the target supports. The models can then be specified in subsequent RPCs to restrict
the set of data that is utilized. The capabilityRequest RPC returns a response CapabilityResponse
RPC.

* gNMI GET RPC: This RPC specifies how to retrieve one or more of the configuration attributes, state
attributes or all attributes associated with a supported mode from a date tree. A GetRequest RPC is sent
from a client to the target to retrieve values from the data tree. A GetResponse RPC is sent in response
to the request.

* gNMI SET RPC: This RPC specifies how to set one or more configurable attributes associated with a
supported model. A setRequest RPC is sent from a client to a target to update the values in the data tree.
The actions contained in a setRequest RPC is treated as a single transaction. If any element of the

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

. Use Automation Scripts to Interact with the Router via gNMI RPCs

Step 1

Automation Scripts |

transaction fails, the entire transaction fails and is rolled back. A setrResponse RPC is sent in response

to the request.

* gNM1 Connect RPC: This RPC specifies how to initiaize a connection to the client.

* gNM 1 Disconnect RPC: This RPC specifies how to end the connection with the client.

Restrictions for the gNM I Protocol
The following restrictions apply to the gNMI protocol:

* Subscribe RPC services are not supported.

* Only JSON_IETF encoding for GET and SET requests is supported

* CLI over GNMI is not supported

Follow the procedure to use automation scripts to interact with the router via gNMI services:

Create script using the enMIclient python module.

Example:

In this example, you create a script to connect with the router using gNMI capabilities.

from iosxr.gnmi.gnmi lib import GNMIClient

gnmi = GNMIClient ()
gnmi.connect ()
print ("Getting capabilities")
cap = gnmi.capabilities()
print ("Get")
get_req = """
path: {
elem: {
name: "network-instances"
}
elem: {
name: "network-instance"
key: {
key: "name"
value: "vrf 1"
}
}

origin: "openconfig-network-instance"

}

type: CONFIG

encoding: JSON_IETF

get = gnmi.get (get_req)

print ("Set")

set_req = """

prefix: <
origin:"openconfig-interfaces"

>
update: <
path: <
elem: <
name: "interfaces"
>
elem: <
name: "interface"

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Step 2

Step 3
Step 4

Step 5

Step 6

Use Automation Scripts to Interact with the Router via gNMI RPCs .

key: <
key: "name"
value: "MgmtEthO/RPO/CPUO/O"

>
>
elem: <
name: "config"
>
>
val: <
json_ietf val: '{"description":"Testing failover case: testrole200"}'
>

>

wnn

set = gnmi.set (set_req)
import pdb;pdb.set trace()

Configure gRPC.

Example:

Router#config

Router (config) #grpc

Router (config-grpc) #local connection
Router (config-grpc) #no-tls

Router (config-grpc) #commit

Copy the script to the router.

Verify that the script is available on the router.

Example:

Router#show script status detail
Tue Apr 12 23:10:50.453 UTC

Name | Type | Status | Last Action | Action Time
gnmi-sample-script.py | exec | Config Checksum | NEW | Tue Apr 12 10:18:23 2021
Script Name : gnmi-sample-scripy.py
Checksum : 94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b
Script Description : View gNMI capabilities
History:
1. Action : NEW
Time : Tue Apr 12 05:03:41 2021
Description : User action IN_CLOSE WRITE

Router (config) #exit

Add the script to the script management repository.

Example:

Router#script add <type> <location> <name>

In this example, you add an Exec script gnmi-sample-script.py to the router.

Router#script add exec /harddisk\: gnmi-sample-scripy.py

Tue Apr 18 16:16:46.427 UTC

Copying script from /harddisk:/gnmi-sample-scripy.py
gnmi-sample-scripy.py has been added to the script repository

Configure the checksum.

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Use Automation Scripts to Interact with the Router via gNMI RPCs

Example:

Router (config) #script <type> <name> checksum SHA 256 <checksum>
In this example, you configure the checksum for the Exec script gnmi-sample-script.py to the router.

Example:

Router (config) #script exec gnmi-sample-script.py checksum SHA 256
94336£3997521d6elaeclee6faab0233562d53d4de7b0092e80b53caed58414b
Router (config) #commit

Router (config) #end

Step 7 Run the script.

Example:

Router#script run gnmi-sample-script.py

Tue Apr 18 16:17:46.427 UTC

Script run scheduled: gnmi-sample-script.py. Request ID: 1634055439
Getting capabilities

The following example shows the output of the gNMI get operation:

notification: <
timestamp: 1649917466577514766

update: <
path: <
origin: "openconfig-interfaces"
elem: <
name: "interfaces"
>
elem: <
name: "interface"
key: <

key: "name"
value: "TenGigEO0/0/0/0"

>
>
>
val: <
json_ietf val: "{\n \"config\": {\n \"name\": \"TenGigE0/0/0/0\",\n \"type\":
\"iana-if-type:ethernetCsmacd\",\n \"enabled\": false\n },\n \"openconfig-if-ethernet:
ethernet\": {\n \"config\": {\n \"auto-negotiate\": false\n }\n }\n}\n"
>
>
update: <
path: <
origin: "openconfig-interfaces"
elem: <
name: "interfaces"
>
elem: <
name: "interface"
key: <
key: "name"
value: "TenGigE0/0/0/1"
>
>
>
val: <
json_ietf val: "{\n \"config\": {\n \"name\": \"TenGigE0/0/0/1\",\n \"type\":
\"iana-if-type:ethernetCsmacd\",\n \"enabled\": false\n },\n \"openconfig-if-ethernet:
ethernet\": {\n \"config\": {\n \"auto-negotiate\": false\n }\n }\n}\n"

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts
Use Automation Scripts to Interact with the Router via gNMI RPCs .

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Use Automation Scripts to Interact with the Router via gNMI RPCs

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

CHAPTER 1 8

Troubleshoot Automation Scripts

This chapter provides information about troubleshooting the automation scripts.

* Collect Debug Logs, on page 235

Collect Debug Logs

Table 43: Feature History Table

Feature Name Release Information Description

Debug Automation Scripts Release 7.5.1 Use this feature to collect logs that
contain debug information for
Itraces and tech-support data. These
logs aid in troubleshooting
whenever the scripts are not
working as expected.

This feature introduces the show
tech-support script command.

To automatically run show commands that display the debugging information specific to automation scripts,
use the show tech-support script command in EXEC mode.

» show version

+ show platform

- show logging

+ show running-config

» show install active

» show processes blocked location all

« show processes script_watcher_main location all
« show processes script_agent_main location all

« show processes checksum_verifier_main location all

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/75x/b-programmability-cg-8000-75x/m-troubleshoot-automation-scripts.html#Cisco_Reference.dita_6162bd3a-14e2-4840-a5b2-9343f52db014
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/75x/b-programmability-cg-8000-75x/m-troubleshoot-automation-scripts.html#Cisco_Reference.dita_6162bd3a-14e2-4840-a5b2-9343f52db014

. Collect Debug Logs

Automation Scripts |

» show memory summary location all

« show tech cfgmgr

« show tech eem

« show tech appmgr

« show script status detail

« show script execution detail

In addition, the debug command collects the following data:

* All the script management log files in /var/log directory

* List all the files under /pkg/1lib/python3/ directroy

* Collects data about top processes consuming high CPU resources

» List all the processes initiated by the script manager

* Collect information about /harddisk:/mirror/script-mgmt directory

Run the debug command to collect information about the automation scripts (in zip format):

Router#show tech-support script

Mon Nov 15

23:28:46.849 UTC

++ Show tech start time: 2021-Nov-15.232847.UTC ++

Mon Nov 15

Mon Nov 15

23:28:47 UTC 2021 Waiting for gathering to complete

23:30:19 UTC 2021 Compressing show tech output

Show tech output available at

0/RP0O/CPUO

/harddisk:/showtech/showtech-script-2021-Nov-15.232847.UTC.tgz

++ Show tech end time: 2021-Nov-15.233019.UTC ++

View the collected debug zip files:

Router#dir
Mon Nov 15

harddisk:/showtech
00:32:17.218 UTC

Directory of harddisk:/showtech

262146 -rw-
262147 -rw-

rw-rw—. 1 1101085 Nov 15 23:24 showtech-script-2021-Nov-15.232322.UTC.tgz
rw-rw—. 1 1143339 Nov 15 23:30 showtech-script-2021-Nov-15.232847.UTC.tgz

70553000 kbytes total (66887640 kbytes free)

Untar the collected zip file to view the list of debug log files:

Router#run
Mon Nov 15

[node0_RPO_
[node0_RPO_

total 2196
—ITW-IrwW-Trw-.
—ITW-IrwW-Trw-.

[node0_RPO_
[node0_RPO_

total 2612
—rw—Irw—Irw-—.
—rw—Irw—Irw-—.

00:32:29.724 UTC
CPUO:~]$cd /harddisk\:/showtech/
CPUO:/harddisk:/showtech] $1ls -1ltr

1 root iosxr 1101085 Nov 15 23:24 showtech-script-2021-Nov-15.232322.UTC.tgz
1 root iosxr 1143339 Nov 15 23:30 showtech-script-2021-Nov-15.232847.UTC.tgz

CPUO:/harddisk:/showtech] $gunzip showtech-script-2021-Nov-15.232847.UTC. tgz
CPUO:/harddisk:/showtech] $ls -1

1 root iosxr 1101085 Nov 15 23:24 showtech-script-2021-Nov-15.232322.UTC.tgz
1 root iosxr 1572864 Nov 15 23:30 showtech-script-2021-Nov-15.232847.UTC.tar

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

| Automation Scripts

Collect Debug Logs .

[node0 RPO CPUO:/harddisk:/showtech]$tar -xvf showtech-script-2021-Nov-15.232847
showtech-script-2021-Nov-15.232847.UTC/
showtech-script-2021-Nov-15.232847.UTC/node0 RPO_ CPUO-ps-grep-python-output
showtech-script-2021-Nov-15.232847.UTC/node0 RPO CPUO-script action log
showtech-script-2021-Nov-15.232847.UTC/node0 RPO_CPUO-script-mgmt/
showtech-script-2021-Nov-15.232847.UTC/node0 RPO_CPUO-script-mgmt/config/
showtech-script-2021-Nov-15.232847.UTC/node0 RPO_ CPUO-script-mgmt/logs/
showtech-script-2021-Nov-15.232847.UTC/node0 RPO_CPUO-script-mgmt/logs/exec sample script.py exec 1625009314/
showtech-script-2021-Nov-15.232847.UIC/node0 RPO CPUO-script-mgmt/logs/exec sample script.py exec 1625009314/stderr.log
showtech-script-2021-Nov-15.232847.UIC/node0 RPO CPUO-script-mgmt/logs/exec sample script.py exec 1625009314/stdout.log
showtech-script-2021-Nov-15.232847.UTC/node0 RPO CPUO-script-mgmt/exec/
showtech-script-2021-Nov-15.232847.UTC/node0 RP0O CPUO-script-mgmt/exec/exec sample script.py
showtech-script-2021-Nov-15.232847.UTC/node0 RPO_ CPUO-script-mgmt/process/
showtech-script-2021-Nov-15.232847.UTC/node0 RPO_CPUO-script-mgmt/eem/
showtech-script-2021-Nov-15.232847.UTC/node0 RPO CPUO-script-mgmt/.script-mgmt/
showtech-script-2021-Nov-15.232847.UTC/node0_RPO CPUO-script-mgmt/.script-mgmt/request queue.json
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPUO-script-mgmt/.script-mgmt/script db.json
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-ps-grep-python-output
showtech-script-2021-Nov-15.232847.UTC/cfg-node0 RPO_CPUO.tar
showtech-script-2021-Nov-15.232847.UTC/node0 RPO CPUO-script watcher log
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-top-output-2
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO.tech.gz
showtech-script-2021-Nov-15.232847.UTC/system.tech.gz
showtech-script-2021-Nov-15.232847.UTC/node0 RP0_CPUO-top-output-2
showtech-script-2021-Nov-15.232847.UTC/node0 RPO_CPUO-script agent log
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-script-mgmt/
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-script-mgmt/config/
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-script-mgmt/logs/
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-script-mgmt/logs/exec sample script.py exec 1625009314/
showtech-script-2021-Nov-15.232847.UIC/node0 RP1 CPUO-script-mgmt/logs/exec sample script.py exec 1625009314/stderr.log
showtech-script-2021-Nov-15.232847.UIC/node0 RP1 CPUO-script-mgmt/logs/exec sample script.py exec 1625009314/stdout.log
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-script-mgmt/exec/
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-script-mgmt/exec/exec sample script.py
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-script-mgmt/process/
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-script-mgmt/eem/
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-script-mgmt/.script-mgmt/
showtech-script-2021-Nov-15.232847.UTC/node0_RP1 CPUO-script-mgmt/.script-mgmt/request queue.json
showtech-script-2021-Nov-15.232847.UTC/node0_RP1 CPUO-script-mgmt/.script-mgmt/script db.json
showtech-script-2021-Nov-15.232847.UTC/node0 RPO_CPUO.tech.gz
showtech-script-2021-Nov-15.232847.UTC/node0 RPO_CPUO-top-output-1
showtech-script-2021-Nov-15.232847.UTC/node0 RPO CPUO-script control log
showtech-script-2021-Nov-15.232847.UTC/node0 RPO CPUO-script manager log
showtech-script-2021-Nov-15.232847.UTC/node0 RP1 CPUO-top-output-1
showtech-script-2021-Nov-15.232847.UTC/node0 RPO_CPUO-script oper log

Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x .

Automation Scripts |
. Collect Debug Logs

. Programmability Configuration Guide for Cisco 8000 Series Routers, I10S XR Release 7.11.x

	Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 7.11.x
	Contents
	YANG Data Models
	New and Changed Feature Information
	New and Changed Programmability Features

	YANG Data Models for Programmability Features
	Using YANG Data Models

	Drive Network Automation Using Programmable YANG Data Models
	YANG Data Model
	Access the Data Models
	CLI to Yang Mapping Tool
	Prevent Partial Pseudo-Atomic Committed Configurations
	Communication Protocols
	NETCONF Protocol
	gRPC Protocol

	YANG Actions

	Use NETCONF Protocol to Define Network Operations with Data Models
	NETCONF Operations
	Retrieve Default Parameters Using with-defaults Capability
	Retrieve Transaction ID for NSO Operations
	Set Router Clock Using Data Model in a NETCONF Session

	Use gRPC Protocol to Define Network Operations with Data Models
	gRPC Operations
	gRPC over UNIX Domain Sockets
	gRPC Network Management Interface
	gNMI Wildcard in Schema Path
	gNMI Bundling of Telemetry Updates
	Configure gNMI Bundling Size

	Replace Router Configuration at Sub-tree Level Using gNMI
	gRPC Network Operations Interface
	gNOI RPCs

	gRPC Network Security Interface
	How to Use Different Types of Authentication
	How to Update gRPC-Level Authorization Policy

	P4Runtime
	Configure gRPC Service-Level Port

	Configure Interfaces Using Data Models in a gRPC Session

	Use Service Layer API to Bring your Controller on Cisco IOS XR Router
	Get to Know Service Layer API
	Enable Service Layer
	Write Your Service Layer Client API

	Enhancements to Data Models
	Improved YANG Input Validator and Get Requests
	OpenConfig Data Model Enhancements
	Define Power State of Line Card Using Data Model
	Install Label in oc-platform Data Model
	OpenConfig YANG Model:SR-TE Policies
	Aggregate Prefix SID Counters for OpenConfig SR YANG Module
	OpenConfig YANG Model:MACsec
	OpenConfig YANG Model:dscp-set
	OpenConfig YANG Model:procmon
	Automatic Resynchronization of OpenConfig Configuration

	Unified Data Models
	Unified Configuration Models

	Automation Scripts
	Achieve Network Operational Simplicity Using Automation Scripts
	Explore the Types of Automation Scripts

	Precommit Scripts
	Workflow to Run Precommit Scripts
	Download the Script to the Router
	Configure Checksum for Precommit Script
	Activate Precommit Scripts

	Example: Verify BGP Configuration Using Precommit Script

	Config Scripts
	Workflow to Run Config Scripts
	Enable Config Scripts Feature
	Download the Script to the Router
	Configure Checksum for Config Script
	Validate or Commit Configuration to Invoke Config Script

	Manage Scripts
	Delete Config Script from the Router
	Control Priority When Running Multiple Scripts

	Example: Validate and Activate an SSH Config Script
	Scenario 1: Validate the Script Without SSH Configuration
	Scenario 2: Configure SSH and Validate the Script
	Scenario 3: Set Rate-limit Value to Default Value in the Script
	Scenario 4: Delete SSH Server Configuration

	Exec Scripts
	Workflow to Run an Exec Script
	Download the Script to the Router
	Update Scripts from a Remote Server
	Invoke Scripts from a Remote Server

	Configure Checksum for Exec Script
	Run the Exec Script
	View the Script Execution Details

	Manage Scripts
	Delete Exec Script from the Router

	Example: Exec Script to Verify Bundle Interfaces

	Process Scripts
	Workflow to Run Process Scripts
	Download the Script to the Router
	Configure Checksum for Process Script
	Register the Process Script as an Application
	Activate the Process Script
	Obtain Operational Data and Logs

	Managing Actions on Process Script
	Example: Check CPU Utilization at Regular Intervals Using Process Script

	EEM Scripts
	Workflow to Run Event Scripts
	Download the Script to the Router
	Define Trigger Conditions for an Event
	Create Actions for Events
	Create a Policy Map of Events and Actions
	View Operational Status of Event Scripts

	Example: Shut Inactive Bundle Interfaces Using EEM Script

	Model-Driven Command-Line Interface
	Model-Driven CLI to Display Data Model Structure
	Model-Driven CLI to Display Running Configuration in XML and JSON Formats

	Manage Automation Scripts Using YANG RPCs
	Manage Common Script Actions Using YANG RPCs
	Manage Exec Scripts Using RPCs
	Manage EEM Script Using RPCs
	Operational Model for EEM Script

	Script Infrastructure and Sample Templates
	Cisco IOS XR Python Packages
	Cisco IOS XR Python Libraries
	Sample Script Templates
	Use Automation Scripts to Interact with the Router via gNMI RPCs

	Troubleshoot Automation Scripts
	Collect Debug Logs

