
Programmability Configuration Guide for Cisco 8000 Series Routers,
IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
First Published: 2024-03-01

Last Modified: 2024-12-17

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

© 2024 Cisco Systems, Inc. All rights reserved.

C O N T E N T S

YANG Data Models 9P A R T I

New and Changed Feature Information 1C H A P T E R 1

Programmability Features Added or Modified in IOS XR Release 24.x.x 1

YANG Data Models for Programmability Features 3C H A P T E R 2

Using YANG Data Models 3

Drive Network Automation Using Programmable YANG Data Models 5C H A P T E R 3

YANG Data Model 6

Access the Data Models 13

CLI to Yang Mapping Tool 14

Prevent Partial Pseudo-Atomic Committed Configurations 16

Communication Protocols 17

NETCONF Protocol 18

gRPC Protocol 18

YANG Actions 18

Use NETCONF Protocol to Define Network Operations with Data Models 23C H A P T E R 4

NETCONF Operations 26

Retrieve Default Parameters Using with-defaults Capability 30

Retrieve Transaction ID for NSO Operations 36

Set Router Clock Using Data Model in a NETCONF Session 38

NETCONF version 1.0 with YANG support 43

Prerequisites 43

Configure NETCONF-YANG Version 1.0 44

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
iii

Use gRPC Protocol to Define Network Operations with Data Models 47C H A P T E R 5

gRPC Operations 50

gRPC Authentication Modes 51

Authenticate gRPC Services 52

gRPC server TLS version 1.3 support 53

Configure gRPC TLS version 54

SPIFFE ID-Based Authentication and Authorization Services for gRPC Services 56

Authenticate and Authorize gRPC Service Requests Using the SPIFFE Standard 57

Certificate Common-Name For Dial-in Using gRPC Protocol 59

Configure Certificate Common Name For Dial-in 59

gRPC over UNIX Domain Sockets 61

gRPC Network Management Interface 63

gNMI Operations 63

gNMI Wildcard in Schema Path 64

gNMI Bundling of Telemetry Updates 69

Configure gNMI Bundling Size 70

Replace Router Configuration at Sub-tree Level Using gNMI 71

gNMI XPath-Based Authorization 73

gNSI Pathz Authorization Policy Configuration 76

Metrics of gNSI Authorization Rules 76

gRPC Network Operations Interface 80

gNOI RPCs 80

gNOI Packet Link Qualification 87

gNOI Healthz 89

Verify router health using gNOI RPCs 90

gRPC Network Security Interface 93

How to Update gRPC-Level Authorization Policy 94

gNSI Acctz Logging 99

Configure gNSI Acctz Logging 100

Data logging with gNSI AcctzStream service 104

Configure gNSI AcctzStream logging 104

gNSI Credentialz Update 109

gNSI Rotate Credentialz RPC 109

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
iv

Contents

Manage certificates using Certz.proto 113

Configure gNSI Certz 115

gNSI EnrollZ and AttestZ 117

Enroll a TPM 2.0 on Network Devices 118

TPM 2.0 Attestation 119

P4Runtime 120

Configure P4RT to Manage Packets 121

IANA Port Numbers For gRPC Services 122

Configure gRPC Service-Level Port 123

Configure Interfaces Using Data Models in a gRPC Session 126

Use Service Layer API to Bring your Controller on Cisco IOS XR Router 133C H A P T E R 6

Get to Know Service Layer API 133

Enable Service Layer 136

Write Your Service Layer Client API 137

Preprogram Backup LSPs Using Service Layer API 138

Verify the Preprogramed Backup Paths 138

Enhancements to Data Models 141C H A P T E R 7

Improved YANG Input Validator and Get Requests 142

OpenConfig Data Model Enhancements 144

Define Power State of Line Card Using Data Model 145

Install Label in oc-platform Data Model 146

OpenConfig YANG Model:SR-TE Policies 148

Aggregate Prefix SID Counters for OpenConfig SR YANG Module 149

OpenConfig YANG Model:MACsec 150

OpenConfig YANG Model:dscp-set 156

OpenConfig YANG Model:procmon 159

Automatic Resynchronization of OpenConfig Configuration 160

Unified Data Models 165C H A P T E R 8

Unified Configuration Models 165

Automation Scripts 173P A R T I I

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
v

Contents

Achieve Network Operational Simplicity Using Automation Scripts 175C H A P T E R 9

Explore the Types of Automation Scripts 177

Precommit Scripts 179C H A P T E R 1 0

Workflow to Run Precommit Scripts 180

Download the Script to the Router 182

Configure Checksum for Precommit Script 183

Activate Precommit Scripts 185

Example: Verify BGP Configuration Using Precommit Script 186

Config Scripts 191C H A P T E R 1 1

Workflow to Run Config Scripts 192

Enable Config Scripts Feature 193

Download the Script to the Router 194

Configure Checksum for Config Script 196

Validate or Commit Configuration to Invoke Config Script 198

Manage Scripts 200

Delete Config Script from the Router 200

Control Priority When Running Multiple Scripts 201

Example: Validate and Activate an SSH Config Script 202

Scenario 1: Validate the Script Without SSH Configuration 203

Scenario 2: Configure SSH and Validate the Script 204

Scenario 3: Set Rate-limit Value to Default Value in the Script 205

Scenario 4: Delete SSH Server Configuration 206

Exec Scripts 209C H A P T E R 1 2

Workflow to Run an Exec Script 209

Download the Script to the Router 211

Update Scripts from a Remote Server 212

Configure Checksum for Exec Script 215

Run the Exec Script 217

View the Script Execution Details 218

Manage Scripts 220

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
vi

Contents

Delete Exec Script from the Router 220

Example: Exec Script to Verify Bundle Interfaces 221

Process Scripts 227C H A P T E R 1 3

Workflow to Run Process Scripts 227

Download the Script to the Router 230

Configure Checksum for Process Script 231

Register the Process Script as an Application 233

Activate the Process Script 234

Obtain Operational Data and Logs 235

Managing Actions on Process Script 237

Example: Check CPU Utilization at Regular Intervals Using Process Script 237

EEM Scripts 241C H A P T E R 1 4

Workflow to Run Event Scripts 241

Download the Script to the Router 243

Define Trigger Conditions for an Event 245

Create Actions for Events 248

Create a Policy Map of Events and Actions 249

View Operational Status of Event Scripts 250

Example: Shut Inactive Bundle Interfaces Using EEM Script 253

Model-Driven Command-Line Interface 255C H A P T E R 1 5

Model-Driven CLI to Display Data Model Structure 255

Model-Driven CLI to Display Running Configuration in XML and JSON Formats 259

Manage Automation Scripts Using YANG RPCs 263C H A P T E R 1 6

Manage Common Script Actions Using YANG RPCs 264

Manage Exec Scripts Using RPCs 266

Manage EEM Script Using RPCs 270

Operational Model for EEM Script 273

Script Infrastructure and Sample Templates 279C H A P T E R 1 7

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
vii

Contents

Cisco IOS XR Python Packages 280

Cisco IOS XR Python Libraries 282

Sample Script Templates 284

Use Automation Scripts to Interact with the Router via gNMI RPCs 287

Xrcli_helper Python Module 291

Xrcli_helper Script APIs 292

Xrlog Python Module 294

getSysLogger Script APIs 295

Script Logger API 300

Troubleshoot Automation Scripts 301C H A P T E R 1 8

Collect Debug Logs 301

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
viii

Contents

P A R T I
YANG Data Models

• New and Changed Feature Information, on page 1
• YANG Data Models for Programmability Features , on page 3
• Drive Network Automation Using Programmable YANG Data Models, on page 5
• Use NETCONF Protocol to Define Network Operations with Data Models, on page 23
• Use gRPC Protocol to Define Network Operations with Data Models, on page 47
• Use Service Layer API to Bring your Controller on Cisco IOS XR Router, on page 133
• Enhancements to Data Models, on page 141
• Unified Data Models, on page 165

C H A P T E R 1
New and Changed Feature Information

This section lists all the new and changed features for the Programmability Configuration Guide.

• Programmability Features Added or Modified in IOS XR Release 24.x.x, on page 1

Programmability Features Added or Modified in IOS XR Release
24.x.x

Table 1: New and Changed Programmability Features

Where DocumentedChanged in ReleaseDescriptionFeature

Data logging with
gNSI AcctzStream
service

Release 24.4.1This feature was introducedData logging with gNSI
AcctzStream service

gRPC server TLS
version 1.3 support,
on page 53

Release 24.4.1This feature was introducedgRPC Server TLS
Version 1.3 Support

gNOI Healthz, on
page 89

Release 24.4.1This feature was introducedgNOI Healthz

gNSI Acctz Logging,
on page 99

Release 24.3.1This feature was introducedgNSI Accounting
Logging

gNSI EnrollZ and
AttestZ, on page 117

Release 24.3.1This feature was introducedTPM Enrollment and
Attestation

SPIFFE ID-Based
Authentication and
Authorization
Services for gRPC
Services, on page 56

Release 24.2.11This feature was introducedSPIFFE ID-Based
Authentication and
Authorization Services
for gRPC Services

gNMIUnion Replace
Operation

Release 24.2.11This feature was introducedgNMI Union Replace
Operation

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
1

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#gnmi-union-replace
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#gnmi-union-replace

Where DocumentedChanged in ReleaseDescriptionFeature

gNMI XPath-Based
Authorization, on
page 73

Release 24.2.11This feature was introducedgNMI XPath-Based
Authorization

gNOI Packet Link
Qualification, on
page 87

Release 24.2.11This feature was introducedgNOI Packet Link
Qualification

gNSI Credentialz
Update, on page 109

Release 24.2.11This feature was introducedgNSIRotate Credentials
Update

NETCONF version
1.0 with YANG
support, on page 43

Release 24.2.11This feature was introducedNETCONFVersion 1.0
with YANG Support

Preprogram Backup
LSPs Using Service
Layer API, on page
138

Release 24.2.11This feature was introducedPreprogram Backup
LSPs Using Service
Layer API

Manage certificates
using Certz.proto, on
page 113

Release 24.1.1This feature was introducedManage certificates
using Certz.proto

Set Limit on
Concurrent Streams
for gRPC Server

Release 24.1.1This feature was introducedSet Limit on Concurrent
Streams for gRPC
Server

IANA Port Numbers
For gRPC Services

Release 24.1.1This feature was introducedIANA Port Numbers
For gRPC Services

View Inconsistent
OpenConfig
Configuration

Release 24.1.1This feature was introducedView Inconsistent
OpenConfig
Configuration

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
2

YANG Data Models
Programmability Features Added or Modified in IOS XR Release 24.x.x

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#id_118948
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#id_118948
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#id_118948
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#concept_smm_143_31c
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#concept_smm_143_31c
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/data-models-enhancements.html#enhanced-openconfig-infrastructure
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/data-models-enhancements.html#enhanced-openconfig-infrastructure
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/data-models-enhancements.html#enhanced-openconfig-infrastructure

C H A P T E R 2
YANG Data Models for Programmability Features

This chapter provides information about the YANG data models for Programmability features.

• Using YANG Data Models, on page 3

Using YANG Data Models
Cisco IOS XR supports a programmatic way of configuring and collecting operational data of a network
device using YANG data models. Although configurations using CLIs are easier and human-readable,
automating the configuration using model-driven programmability results in scalability.

The data models are available in the release image, and are also published in the Github repository. Navigate
to the release folder of interest to view the list of supported data models and their definitions. Each data model
defines a complete and cohesive model, or augments an existing data model with additional XPaths. To view
a comprehensive list of the data models supported in a release, navigate to the Available-Content.md file in
the repository.

You can also view the data model definitions using the YANG Data Models Navigator tool. This GUI-based
and easy-to-use tool helps you explore the nuances of the data model and view the dependencies between
various containers in the model. You can view the list of models supported across Cisco IOS XR releases and
platforms, locate a specific model, view the containers and their respective lists, leaves, and leaf lists presented
visually in a tree structure. This visual tree form helps you get insights into nodes that can help you automate
your network.

To get started with using the data models, see the Programmability Configuration Guide.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
3

https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
4

YANG Data Models
Using YANG Data Models

C H A P T E R 3
Drive Network Automation Using Programmable
YANG Data Models

Typically, a network operation center is a heterogeneous mix of various devices at multiple layers of the
network. Such network centers require bulk automated configurations to be accomplished seamlessly. CLIs
are widely used for configuring and extracting the operational details of a router. But the general mechanism
of CLI scraping is not flexible and optimal. Small changes in the configuration require rewriting scripts
multiple times. Bulk configuration changes through CLIs are cumbersome and error-prone. These limitations
restrict automation and scale. To overcome these limitations, you need an automated mechanism to manage
your network.

Cisco IOS XR supports a programmatic way of configuring and collecting operational data of a network
device using data models. They replace the process of manual configuration, which is proprietary, and highly
text-based. The data models are written in an industry-defined language and is used to automate configuration
task and retrieve operational data across heterogeneous devices in a network. Although configurations using
CLIs are easier and human-readable, automating the configuration using model-driven programmability results
in scalability.

Model-driven programmability provides a simple, flexible and rich framework for device programmability.
This programmability framework provides multiple choices to interface with an IOS XR device in terms of
transport, protocol and encoding. These choices are decoupled from the models for greater flexibility.

The following image shows the layers in model-driven programmability:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
5

Figure 1: Model-driven Programmability Layers

Data models provides access to the capabilities of the devices in a network using Network Configuration
Protocol (NETCONF Protocol) or google-defined Remote Procedure Calls (gRPC Protocol). The operations
on the router are carried out by the protocols using YANG models to automate and programme operations in
a network.

Benefits of Data Models

Configuring routers using data models overcomes drawbacks posed by traditional router management because
the data models:

• Provide a common model for configuration and operational state data, and perform NETCONF actions.

• Use protocols to communicate with the routers to get, manipulate and delete configurations in a network.

• Automate configuration and operation of multiple routers across the network.

This article describes how you benefit from using data models to programmatically manage your network
operations.

• YANG Data Model, on page 6
• Access the Data Models, on page 13
• CLI to Yang Mapping Tool, on page 14
• Prevent Partial Pseudo-Atomic Committed Configurations, on page 16
• Communication Protocols, on page 17
• YANG Actions, on page 18

YANG Data Model
A YANG module defines a data model through the data of the router, and the hierarchical organization and
constraints on that data. Each module is uniquely identified by a namespace URL. The YANGmodels describe
the configuration and operational data, perform actions, remote procedure calls, and notifications for network
devices.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
6

YANG Data Models
YANG Data Model

The YANG models must be obtained from the router. The models define a valid structure for the data that is
exchanged between the router and the client. The models are used by NETCONF and gRPC-enabled
applications.

gRPC is supported only in 64-bit platforms.Note

• Cisco-specific models: For a list of supported models and their representation, see Native models.

• Common models: These models are industry-wide standard YANG models from standard bodies, such
as IETF and IEEE. These models are also called Open Config (OC) models. Like synthesized models,
the OC models have separate YANG models defined for configuration data and operational data, and
actions.

YANG models can be: For a list of supported OC models and their representation, see OC models.

All data models are stamped with semantic version 1.0.0 as baseline from release 7.0.1 and later.

For more details about YANG, refer RFC 6020 and 6087.

Data models handle the following types of requirements on routers (RFC 6244):

• Configuration data: A set of writable data that is required to transform a system from an initial default
state into its current state. For example, configuring entries of the IP routing tables, configuring the
interface MTU to use a specific value, configuring an ethernet interface to run at a given speed, and so
on.

• Operational state data:A set of data that is obtained by the system at runtime and influences the behavior
of the system in a manner similar to configuration data. However, in contrast to configuration data,
operational state data is transient. The data is modified by interactions with internal components or other
systems using specialized protocols. For example, entries obtained from routing protocols such as OSPF,
attributes of the network interfaces, and so on.

• Actions:A set of NETCONF actions that support robust network-wide configuration transactions.When
a change is attempted that affects multiple devices, the NETCONF actions simplify the management of
failure scenarios, resulting in the ability to have transactions that will dependably succeed or fail atomically.

For more information about Data Models, see RFC 6244.

YANG data models can be represented in a hierarchical, tree-based structure with nodes. This representation
makes the models easy to understand.

Each feature has a defined YANG model, which is synthesized from schemas. A model in a tree format
includes:

• Top level nodes and their subtrees

• Subtrees that augment nodes in other YANG models

• Custom RPCs

YANG defines four node types. Each node has a name. Depending on the node type, the node either defines
a value or contains a set of child nodes. The nodes types for data modeling are:

• leaf node - contains a single value of a specific type

• leaf-list node - contains a sequence of leaf nodes

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
7

YANG Data Models
YANG Data Model

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr/
https://github.com/openconfig/public/tree/master/release/models

• list node - contains a sequence of leaf-list entries, each of which is uniquely identified by one or more
key leaves

• container node - contains a grouping of related nodes that have only child nodes, which can be any of
the four node types

Structure of LLDP Data Model

The Link Layer Discovery Protocol (LLDP) data model is represented in the following structure:
$ cat Cisco-IOS-XR-ethernet-lldp-cfg.yang
module Cisco-IOS-XR-ethernet-lldp-cfg {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns"+
"/yang/Cisco-IOS-XR-ethernet-lldp-cfg";

prefix "ethernet-lldp-cfg";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import cisco-semver { prefix "semver"; }

import Cisco-IOS-XR-ifmgr-cfg { prefix "a1"; }

/*** META INFORMATION ***/

organization "Cisco Systems, Inc.";

contact
"Cisco Systems, Inc.
Customer Service

Postal: 170 West Tasman Drive
San Jose, CA 95134

Tel: +1 800 553-NETS

E-mail: cs-yang@cisco.com";

description
"This module contains a collection of YANG definitions
for Cisco IOS-XR ethernet-lldp package configuration.

This module contains definitions
for the following management objects:
lldp: Enable LLDP, or configure global LLDP subcommands

This YANG module augments the
Cisco-IOS-XR-ifmgr-cfg

module with configuration data.

Copyright (c) 2013-2019 by Cisco Systems, Inc.
All rights reserved.";

revision "2019-04-05" {
description
"Establish semantic version baseline.";

semver:module-version "1.0.0";
}

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
8

YANG Data Models
YANG Data Model

revision "2017-05-01" {
description
"Fixing backward compatibility error in module.";

}

revision "2015-11-09" {
description
"IOS XR 6.0 revision.";

}

container lldp {
description "Enable LLDP, or configure global LLDP subcommands";

container tlv-select {
presence "Indicates a tlv-select node is configured.";
description "Selection of LLDP TLVs to disable";

container system-name {
description "System Name TLV";
leaf disable {
type boolean;
default "false";
description "disable System Name TLV";

}
}

container port-description {
description "Port Description TLV";
leaf disable {
type boolean;
default "false";
description "disable Port Description TLV";

}
}

.......................... (snipped)
container management-address {
description "Management Address TLV";
leaf disable {
type boolean;
default "false";
description "disable Management Address TLV";

}
}
leaf tlv-select-enter {
type boolean;
mandatory true;
description "enter lldp tlv-select submode";

}
}
leaf holdtime {
type uint32 {
range "0..65535";

}
description
"Length of time (in sec) that receiver must
keep this packet";

.......................... (snipped)
}

augment "/a1:interface-configurations/a1:interface-configuration" {

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
9

YANG Data Models
YANG Data Model

container lldp {
presence "Indicates a lldp node is configured.";
description "Disable LLDP TX or RX";

.......................... (snipped)
description
"This augment extends the configuration data of
'Cisco-IOS-XR-ifmgr-cfg'";

}
}

The structure of a data model can be explored using a YANG validator tool such as pyang and the
data model can be formatted in a tree structure.

LLDP Configuration Data Model

The following example shows the LLDP interface manager configuration model in tree format.
module: Cisco-IOS-XR-ethernet-lldp-cfg

+--rw lldp
+--rw tlv-select!
| +--rw system-name
| | +--rw disable? boolean
| +--rw port-description
| | +--rw disable? boolean
| +--rw system-description
| | +--rw disable? boolean
| +--rw system-capabilities
| | +--rw disable? boolean
| +--rw management-address
| | +--rw disable? boolean
| +--rw tlv-select-enter boolean
+--rw holdtime? uint32
+--rw enable-priority-addr? boolean
+--rw extended-show-width? boolean
+--rw enable-subintf? boolean
+--rw enable-mgmtintf? boolean
+--rw timer? uint32
+--rw reinit? uint32
+--rw enable? boolean

module: Cisco-IOS-XR-ifmgr-cfg
+--rw global-interface-configuration
| +--rw link-status? Link-status-enum
+--rw interface-configurations

+--rw interface-configuration* [active interface-name]
+--rw dampening
| +--rw args? enumeration
| +--rw half-life? uint32
| +--rw reuse-threshold? uint32
| +--rw suppress-threshold? uint32
| +--rw suppress-time? uint32
| +--rw restart-penalty? uint32
+--rw mtus
| +--rw mtu* [owner]
| +--rw owner xr:Cisco-ios-xr-string
| +--rw mtu uint32
+--rw encapsulation
| +--rw encapsulation? string
| +--rw capsulation-options? uint32
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
10

YANG Data Models
YANG Data Model

https://github.com/mbj4668/pyang

+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ethernet-lldp-cfg:lldp!

+--rw ethernet-lldp-cfg:transmit
| +--rw ethernet-lldp-cfg:disable? boolean
+--rw ethernet-lldp-cfg:receive
| +--rw ethernet-lldp-cfg:disable? boolean
+--rw ethernet-lldp-cfg:lldp-intf-enter boolean
+--rw ethernet-lldp-cfg:enable? Boolean

.......................... (snipped)

LLDP Operational Data Model

The following example shows the Link Layer Discovery Protocol (LLDP) interface manager
operational model in tree format.
$ pyang -f tree Cisco-IOS-XR-ethernet-lldp-oper.yang
module: Cisco-IOS-XR-ethernet-lldp-oper

+--ro lldp
+--ro global-lldp
| +--ro lldp-info
| +--ro chassis-id? string
| +--ro chassis-id-sub-type? uint8
| +--ro system-name? string
| +--ro timer? uint32
| +--ro hold-time? uint32
| +--ro re-init? uint32
+--ro nodes

+--ro node* [node-name]
+--ro neighbors
| +--ro devices
| | +--ro device*

.......................... (snipped)

notifications:
+---n lldp-event

+--ro global-lldp
| +--ro lldp-info
| +--ro chassis-id? string
| +--ro chassis-id-sub-type? uint8
| +--ro system-name? string
| +--ro timer? uint32
| +--ro hold-time? uint32
| +--ro re-init? uint32
+--ro nodes

+--ro node* [node-name]
+--ro neighbors
| +--ro devices
| | +--ro device*
| | +--ro device-id? string
| | +--ro interface-name? xr:Interface-name
| | +--ro lldp-neighbor*
| | +--ro detail
| | | +--ro network-addresses
| | | | +--ro lldp-addr-entry*
| | | | +--ro address

.......................... (snipped)
+--ro interfaces
| +--ro interface* [interface-name]
| +--ro interface-name xr:Interface-name
| +--ro local-network-addresses
| | +--ro lldp-addr-entry*
| | +--ro address

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
11

YANG Data Models
YANG Data Model

| | | +--ro address-type? Lldp-l3-addr-protocol
| | | +--ro ipv4-address? inet:ipv4-address
| | | +--ro ipv6-address? In6-addr
| | +--ro ma-subtype? uint8
| | +--ro if-num? uint32
| +--ro interface-name-xr? xr:Interface-name
| +--ro tx-enabled? uint8
| +--ro rx-enabled? uint8
| +--ro tx-state? string
| +--ro rx-state? string
| +--ro if-index? uint32
| +--ro port-id? string
| +--ro port-id-sub-type? uint8
| +--ro port-description? string

.......................... (snipped)

Components of a YANG Module

A YANG module defines a single data model. However, a module can reference definitions in other modules
and sub-modules by using one of these statements:

The YANG models configure a feature, retrieve the operational state of the router, and perform actions.

• import imports external modules

• include includes one or more sub-modules

• augment provides augmentations to another module, and defines the placement of new nodes in the data
model hierarchy

• when defines conditions under which new nodes are valid

• prefix references definitions in an imported module

The gRPC YANG path or JSON data is based on YANG module name and not YANG namespace.Note

YANG Module Set

You can provide structured, protocol-driven access to a network management configuration and its state
information using YANG models. By default, all YANG models (native and OpenConfig) are accessible.
You can activate a desired module-set using the yang-server module-set command to access a specific set
of YANG modules.

Accessing the deprecated Cisco IOSXRYANGmodels generates a syslogmessage only once until the YANG
agent (NETCONF or Emsd) restarts. After a restart, the message is generated again. For deprecated Cisco
IOS XR data models, see Backward InCompatible (BIC) folder from Deprecated XPaths.

Configure YANG Module Set

To activate a specific set of YANG module, use the yang-server module-set command.
Router# config
Router(config)# yang-server module-set XR-only
Router# end

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
12

YANG Data Models
YANG Data Model

https://github.com/YangModels/yang/tree/main/vendor/cisco/xr

Access the Data Models
You can access the Cisco IOS XR native and OpenConfig data models from GitHub, a software development
platform that provides hosting services for version control.

CLI-based YANG data models, also known as unified configuration models were introduced in Cisco IOS
XR, Release 7.0.1. The new set of unified YANG config models are built in alignment with the CLI commands.

You can also access the supported data models from the router. The router ships with the YANG files that
define the data models. Use NETCONF protocol to view the data models available on the router using
ietf-netconf-monitoring request.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>
<filter type="subtree">
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas/>
</netconf-state>

</filter>
</get>
</rpc>

All the supported YANG models are displayed as response to the RPC request.

<rpc-reply message-id="16a79f87-1d47-4f7a-a16a-9405e6d865b9"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas>
<schema>

<identifier>Cisco-IOS-XR-crypto-sam-oper</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-IOS-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>

</schema>
<schema>

<identifier>Cisco-IOS-XR-crypto-sam-oper-sub1</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-IOS-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>

</schema>
<schema>

<identifier>Cisco-IOS-XR-snmp-agent-oper</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-IOS-XR-snmp-agent-oper</namespace>
<location>NETCONF</location>

</schema>

------------<snipped>--------------
<schema>

<identifier>openconfig-aft-types</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://openconfig.net/yang/fib-types</namespace>
<location>NETCONF</location>

</schema>
<schema>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
13

YANG Data Models
Access the Data Models

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
https://github.com/openconfig/public/tree/master/release/models

<identifier>openconfig-mpls-ldp</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://openconfig.net/yang/ldp</namespace>
<location>NETCONF</location>

</schema>
</schemas>
</netconf-state>
------------<truncated>--------------

CLI to Yang Mapping Tool
Table 2: Feature History Table

DescriptionRelease InformationFeature Name

This tool provides a quick reference
for IOS XR CLIs and a
corresponding YANG data model
that could be used.

New command introduced for this
feature: yang describe

Release 7.4.1CLI to YANG Mapping Tool

Starting fromRelease 7.11.1, the command yang-describe in the Command Line Interface (CLI) is deprecated.Note

CLI commands are widely used for configuring and extracting the operational details of a router. But bulk
configuration changes through CLIs are cumbersome and error-prone. These limitations restrict automation
and scale. To overcome these limitations, you need an automated mechanism to manage your network. Cisco
IOS XR supports a programmatic way of configuring and collecting operational data of a router using Yang
data models. However, owing to the large number of CLI commands, it is cumbersome to determine the
mapping between the CLI command and its associated data model.

The CLI to Yang describer tool is a component in the IOS XR software. It helps in mapping the CLI command
with its equivalent data models. With this tool, network automation using data models can be adapted with
ease.

The tool simulates the CLI command and displays the following data:

• Yang model mapping to the CLI command

• List of the associated sensor paths

To retrieve the Yang equivalent of a CLI, use the following command:
Router#yang-describe ?
configuration Describe configuration commands(cisco-support)
operational Describe operational commands(cisco-support)

The tool supports description of both operational and configurational commands.

Example: Configuration Data

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
14

YANG Data Models
CLI to Yang Mapping Tool

In the following example, the Yang paths for configuring the MPLS label range with minimum and
maximum static values are displayed:
Router#yang-describe configuration mpls label range table 0 34000 749999 static 34000 99999
Mon May 10 12:37:27.192 UTC
YANG Paths:
Cisco-IOS-XR-um-mpls-lsd-cfg:mpls/label/range/table-0
Cisco-IOS-XR-mpls-lsd-cfg:mpls-lsd/label-databases/label-database/label-range
Cisco-IOS-XR-mpls-lsd-cfg:mpls-lsd/label-databases/label-database/label-range/minvalue
Cisco-IOS-XR-mpls-lsd-cfg:mpls-lsd/label-databases/label-database/label-range/max-value

Cisco-IOS-XR-mpls-lsd-cfg:mpls-lsd/label-databases/label-database/label-range/min-static-value

Cisco-IOS-XR-mpls-lsd-cfg:mpls-lsd/label-databases/label-database/label-range/max-static-value

In the following example, the Yang paths for configuring the gRPC address are displayed:
Router#yang-describe configuration grpc address-family ipv4
Mon May 10 12:39:56.652 UTC
YANG Paths:
Cisco-IOS-XR-man-ems-cfg:grpc/enable
Cisco-IOS-XR-man-ems-cfg:grpc/address-family

Example: Operational Data

The operational data includes support for the show CLI commands.

The example shows the Yang paths to retrieve the operational data for MPLS interfaces:
Router#yang-describe operational show mpls interfaces
Mon May 10 12:34:05.198 UTC
YANG Paths:
Cisco-IOS-XR-mpls-lsd-oper:mpls-lsd/interfaces/interface

The following example shows the Yang paths to retrieve the operational data for Virtual Router
Redundancy Protocol (VRRP):
Router#yang-describe operational show vrrp brief
Mon May 10 12:34:38.041 UTC
YANG Paths:
Cisco-IOS-XR-ipv4-vrrp-oper:vrrp/ipv4/virtual-routers/virtual-router
Cisco-IOS-XR-ipv4-vrrp-oper:vrrp/ipv6/virtual-routers/virtual-router

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
15

YANG Data Models
CLI to Yang Mapping Tool

Prevent Partial Pseudo-Atomic Committed Configurations
Table 3: Feature History Table

DescriptionRelease InformationFeature Name

You can now prevent the
partially-committed configurations
on the router and thus ensure the
system database and OpenConfig
datastore stay in sync.

This feature changes how the
internal rollback error is handled
when a pseudo-atomic commit
fails. In such cases, the system
database always rolls back the
configuration in its datastore
thereby ensuring that there is no
partially-committed configuration.
If there is still inconsistency, the
system displays error messages to
notify you of various internal
rollback failure scenarios based on
which you must take rectification
action to re-synchronize the data.

Release 7.10.1Prevent Partial Pseudo-Atomic
Committed Configurations

Existing Pseudo-Atomic Commit Behavior

The default behavior in pseudo-atomic commit is that all changes must succeed for the entire commit operation
to succeed. If any errors are found, none of the configuration changes take effect.

Thus if an error occurs in one or more of the configurations in a commit, other configurations which were
already successfully processed as part of the commit process are reverted. An internal rollback mechanism
takes effect and reverts the already successful configurations to their original state.

Occasionally, the internal rollback may fail, that is, the verifier process rejects the rollback configuration. To
stay in-sync with the verifier, the system database also does not rollback the configuration. This leads to
commit of the failed-to-rollback configurations and results with system having partial committed configuration.

You can view the partial configuration with show config commit changes [commit_id] and take necessary
action to keep the system database in-sync with verifiers.

Enhanced Pseudo-Atomic Commit Behavior

From IOS XR Software Release 7.10.1 onwards, for XR OpenConfig support, the running configurations in
OpenConfig datastore can only be updated atomically. When the pseudo-atomic commit fails and the verifier
rejects a rollback, OpenConfig datastore and system database would be out of sync in the existing pseudo-atomic
commit behavior. The OpenConfig datastore would contain no changes from the commit, whereas the system
database would contain configurations that failed to be rolled back.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
16

YANG Data Models
Prevent Partial Pseudo-Atomic Committed Configurations

The enhanced pseudo-atomic commit feature changes the way the internal rollback error is handled after a
pseudo-atomic commit fails. This ensures the system database and OpenConfig datastore database stay in
sync.

When the verifier process fails the configuration during an internal rollback, system database displays an ios
error message to warn about the verifier error. You must take rectification action and re-synchronize the
verifier and the system database. A failure to notice the error message or failure to restart the verifier process
results in an inconsistent or deceptive operation of the system. After a while, the rollback error would become
untraceable and could manifest into more problems.

Following are the scenarios with examples, where the internal rollback error appears when a pseudo-atomic
commit fails:

• When the verifier process rejects the configuration during an internal rollback, system database displays
an error message and continues to update system database and instruct the verifier to apply the
configuration.

%MGBL_VERIFIER-4-COMMIT_ROLLBACK_REJECTED

Example shows the name of the process which rejects the internal rollback:
%MGBL-VERIFIER-4-COMMIT_ROLLBACK_REJECTED : verify_process incorrectly rejected rollback
of a failed commit to a previously accepted state. The rollback change has been made
anyway. (/cfg/gl/test/item1, 0x40828400)

• When there is a timeout in the verify event (system database does not receive response from verifier
within 300 seconds), then system database displays an iosmessage to warn you about the verifier timeout
error and continue to update system database and instruct the verifier to apply the configuration.

%MGBL_VERIFIER-4-COMMIT_ROLLBACK_TIMEOUT

Example shows the name of the process which timeout for the internal rollback:
%MGBL-VERIFIER-3-COMMIT_ROLLBACK_TIMEOUT : verify_process (jid 68368, 0/0/CPU0) took
too long to verify the rollback of a failed commit
(cfg/if/act/GigabitEthernet0_0_0_2/a/test/item3). The rollback change has been made
anyway.

• When the verifier process fails to apply the internal rollback configuration or when the apply callback
timeout, then the system database displays an ios message to warn you about the rollback failure and
how to rectify the error by restarting the verifier process.

%MGBL_VERIFIER-3-COMMIT_ROLLBACK_FAILED

Example shows the name of the process which failed the internal rollback:
%MGBL-VERIFIER-3-COMMIT_ROLLBACK_FAILED : verify_process failed to apply the rollback
of a failed commit (/cfg/gl/test/item1, 0x40828400) and may no longer operate as
configured. The process need to be restarted to rectify the error.

Communication Protocols
Communication protocols establish connections between the router and the client. The protocols help the
client to consume the YANG data models to, in turn, automate and programme network operations.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
17

YANG Data Models
Communication Protocols

YANG uses one of these protocols:

• Network Configuration Protocol (NETCONF)

• RPC framework (gRPC) by Google

gRPC is supported only in 64-bit platforms.Note

The transport and encoding mechanisms for these two protocols are shown in the table:

Encoding/ DecodingTransportProtocol

xmlsshNETCONF

jsonhttp/2gRPC

NETCONF Protocol
NETCONF provides mechanisms to install, manipulate, or delete the configuration on network devices. It
uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as well as
protocol messages. You use a simple NETCONFRPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. To get started with issuing NETCONF RPCs to configure
network features using data models

gRPC Protocol
gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automatedmechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure by defining protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs. To get started with issuing NETCONF RPCs to configure network features using
data models

gRPC is supported only in 64-bit platforms.Note

YANG Actions
IOS XR actions are RPC statements that trigger an operation or execute a command on the router. Theses
actions are defined as YANG models using RPC statements. An action is executed when the router receives
the corresponding NETCONF RPC request. Once the router executes an action, it replies with a NETCONF
RPC response.

For example, ping command is a supported action. That means, a YANG model is defined for the ping
command using RPC statements. This command can be executed on the router by initiating the corresponding
NETCONF RPC request.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
18

YANG Data Models
NETCONF Protocol

NETCONF supports XML format, and gRPC supports JSON format.Note

The following table shows a list of actions. For the full list of supported actions, query the device or see the
YANG Data Models Navigator.

YANG ModelsActions

Cisco-IOS-XR-syslog-actlogmsg

Cisco-IOS-XR-snmp-test-trap-actsnmp

Cisco-IOS-XR-cfgmgr-rollback-actrollback

Cisco-IOS-XR-isis-actclear isis

Cisco-IOS-XR-ipv4-bgp-actclear bgp

Example: PING NETCONF Action

This use case shows the IOS XR NETCONF action request to run the ping command on the router.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ping-act">
<destination>
<destination>1.2.3.4</destination>
</destination>
</ping>
</rpc>

This section shows the NETCONF action response from the router.

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping-response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ping-act">
<ipv4>
<destination>1.2.3.4</destination>
<repeat-count>5</repeat-count>
<data-size>100</data-size>
<timeout>2</timeout>
<pattern>0xabcd</pattern>
<rotate-pattern>0</rotate-pattern>
<reply-list>
<result>!</result>
<result>!</result>
<result>!</result>
<result>!</result>
<result>!</result>
</reply-list>
<hits>5</hits>
<total>5</total>
<success-rate>100</success-rate>
<rtt-min>1</rtt-min>
<rtt-avg>1</rtt-avg>
<rtt-max>1</rtt-max>
</ipv4>
</ping-response>
</rpc-reply>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
19

YANG Data Models
YANG Actions

https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Example: XR Process Restart Action

This example shows the process restart action sent to NETCONF agent.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<sysmgr-process-restart xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-sysmgr-act">

<process-name>processmgr</process-name>
<location>0/RP0/CPU0</location>

</sysmgr-process-restart>
</rpc>

This example shows the action response received from the NETCONF agent.

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Example: Copy Action

This example shows the RPC request and response for copy action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<copy xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-copy-act">
<sourcename>//root:<location>/100MB.txt</sourcename>
<destinationname>/</destinationname>
<sourcefilesystem>ftp:</sourcefilesystem>
<destinationfilesystem>harddisk:</destinationfilesystem>
<destinationlocation>0/RSP1/CPU0</destinationlocation>

</copy>
</rpc>

RPC response:

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-copy-act">Successfully
completed copy operation</response>
</rpc-reply>

8.261830565s elapsed

Example: Delete Action

This example shows the RPC request and response for delete action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<delete xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-delete-act">

<name>harddisk:/netconf.txt</name>
</delete>

</rpc>

RPC response:

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
20

YANG Data Models
YANG Actions

<response xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-delete-act">Successfully
completed delete operation</response>
</rpc-reply>

395.099948ms elapsed

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
21

YANG Data Models
YANG Actions

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
22

YANG Data Models
YANG Actions

C H A P T E R 4
Use NETCONF Protocol to Define Network
Operations with Data Models

Table 4: Feature History Table

DescriptionRelease InformationFeature Name

Cisco IOSXR supports NETCONF
1.0 and 1.1 programmable
management interfaces. With this
release, a client can choose to
establish a NETCONF 1.0 or 1.1
session using a separate interface
for both these formats. This
enhancement provides a secure
channel to operate the network with
both interface specifications.

Release 7.3.1Unified NETCONFV1.0 andV1.1

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

Network Configuration Protocol (NETCONF) is a standard transport protocol that communicates with network
devices. NETCONF provides mechanisms to edit configuration data and retrieve operational data from network
devices. The configuration data represents the way interfaces, routing protocols and other network features
are provisioned. The operational data represents the interface statistics, memory utilization, errors, and so on.

NETCONF uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as
well as protocol messages. It uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. The client can be a script or application that runs as part of a
network manager. The server is a network device such as a router. NETCONF defines how to communicate
with the devices, but does not handle what data is exchanged between the client and the server.

Accessing the router via NETCONF grants by default write permissions for a user, in spite of read-only access
configured for this user for CLI access, as CLI authorization is bypassed.

Note

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
23

NETCONF Session

A NETCONF session is the logical connection between a network configuration application (client) and a
network device (router). The configuration attributes can be changed during any authorized session; the effects
are visible in all sessions. NETCONF is connection-oriented, with SSH as the underlying transport. NETCONF
sessions are established with a hello message, where features and capabilities are announced. At the end of
each message, the NETCONF agent sends the]]>]]> marker. Sessions are terminated using close or kill
messages.

Cisco IOS XR supports NETCONF 1.0 and 1.1 programmable management interfaces that are handled using
two separate interfaces. From IOS XR, Release 7.3.1, a client can choose to establish a NETCONF 1.0 or 1.1
session using an interface for both these formats. A NETCONF proxy process waits for the hello message
from its peer. If the proxy does not receive a hello message within the timeout period, it sends a NETCONF
1.1 hello message.
<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability
--snip--
</capabilities>
<session-id>5</session-id>
</hello>]]>]]>

The following examples show the hello messages for the NETCONF versions:

netconf-xml agent listens on port 22

netconf-yang agent listens on port 830

Version 1.0 The NETCONF XML agent accepts the message.
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
</capabilities>
</hello>

Version 1.1 The NETCONF YANG agent accepts the message.
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.1</capability>
</capabilities>
</hello>

Using NETCONF 1.1, the RPC requests begin with #<number> and end with ##. The number indicates how
many bytes that follow the request.

Example:
#371
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<filter>
<isis xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-clns-isis-oper">
<instances>
<instance>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
24

YANG Data Models

<neighbors/>
<instance-name/>

</instance>
</instances>

</isis>
</filter>

</get>
</rpc>

##

Configure NETCONF Agent

To configure a NETCONF TTY agent, use the netconf agent tty command. In this example, you configure
the throttle and session timeout parameters:
netconf agent tty

throttle (memory | process-rate)
session timeout

To enable the NETCONF SSH agent, use the following command:
ssh server v2
netconf-yang agent ssh

NETCONF Layers

NETCONF protocol can be partitioned into four layers:

Figure 2: NETCONF Layers

• Content layer: includes configuration and notification data

• Operations layer: defines a set of base protocol operations invoked as RPCmethods with XML-encoded
parameters

• Messages layer: provides a simple, transport-independent framing mechanism for encoding RPCs and
notifications

• Secure Transport layer: provides a communication path between the client and the server

For more information about NETCONF, refer RFC 6241.

This article describes, with a use case to configure the local time on a router, how data models help in a faster
programmatic configuration as compared to CLI.

• NETCONF Operations, on page 26
• Retrieve Default Parameters Using with-defaults Capability, on page 30
• Retrieve Transaction ID for NSO Operations, on page 36

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
25

YANG Data Models

• Set Router Clock Using Data Model in a NETCONF Session, on page 38
• NETCONF version 1.0 with YANG support, on page 43

NETCONF Operations
NETCONF defines one or more configuration datastores and allows configuration operations on the datastores.
A configuration datastore is a complete set of configuration data that is required to get a device from its initial
default state into a desired operational state. The configuration datastore does not include state data or executive
commands.

The base protocol includes the following NETCONF operations:

| +--get-config
| +--edit-Config
| +--merge
| +--replace
| +--create
| +--delete
| +--remove
| +--default-operations
| +--merge
| +--replace
| +--none
| +--get
| +--lock
| +--unLock
| +--close-session
| +--kill-session

These NETCONF operations are described in the following table:

ExampleDescriptionNETCONF
Operation

Retrieve specific interface configuration details from
running configuration using filter option

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter>
<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg"\>
<interface-configuration>
<active>act</active>
<interface-name>TenGigE0/0/0/2/0</interface-name>
</interface-configuration>
</interface-configurations>
</filter>
</get-config>
</rpc>

Retrieves all or part of a specified
configuration from a named data
store

<get-config>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
26

YANG Data Models
NETCONF Operations

ExampleDescriptionNETCONF
Operation

Retrieve all acl configuration and device state
information.

Request:
<get>
<filter>
<ipv4-acl-and-prefix-list
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ipv4-acl-oper"/>
</filter>
</get>

Retrieves running configuration
and device state information

<get>

Configure ACL configs using Merge operation

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target><candidate/></target>
<config
xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ipv4-acl-and-prefix-list
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ipv4-acl-cfg"
xc:operation=”merge”>

<accesses>
<access>
<access-list-name>aclv4-1</access-list-name>
<access-list-entries>
<access-list-entry>
<sequence-number>10</sequence-number>
<remark>GUEST</remark>
</access-list-entry>
<access-list-entry>
<sequence-number>20</sequence-number>
<grant>permit</grant>
<source-network>
<source-address>172.0.0.0</source-address>
<source-wild-card-bits>0.0.255.255</source-wild-card-bits>
</source-network>
</access-list-entry>
</access-list-entries>
</access>
</accesses>
</ipv4-acl-and-prefix-list>
</config>
</edit-config>
</rpc>

Commit:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>
</rpc>

Loads all or part of a specified
configuration to the specified
target configuration

<edit-config>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
27

YANG Data Models
NETCONF Operations

ExampleDescriptionNETCONF
Operation

Lock the running configuration.
Request:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>
</lock>
</rpc>

Response :
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Allows the client to lock the
entire configuration datastore
system of a device

<lock>

Lock and unlock the running configuration from the same
session.
Request:
rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<unlock>
<target>
<running/>
</target>
</unlock>
</rpc>

Response -
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Releases a previously locked
configuration.

An <unlock> operation will not
succeed if either of the following
conditions is true:

• The specified lock is not
currently active.

• The session issuing the
<unlock> operation is not
the same session that
obtained the lock.

<Unlock>

Close a NETCONF session.
Request :
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<close-session/>
</rpc>

Response:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Closes the session. The server
releases any locks and resources
associated with the session and
closes any associated
connections.

<close-session>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
28

YANG Data Models
NETCONF Operations

ExampleDescriptionNETCONF
Operation

Terminate a session if the ID is other session ID.
Request:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<kill-session>
<session-id>4</session-id>
</kill-session>
</rpc>

Response:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Terminates operations currently
in process, releases locks and
resources associated with the
session, and close any associated
connections.

<kill-session>

The system admin models support <get> and <get-config> operations, and only <edit-config> operations
with the <merge> operation. The other operations such as <delete>, <remove>, and <replace> are not supported
for the system admin models.

Note

NETCONF Operation to Get Configuration

This example shows how a NETCONF <get-config> request works for LLDP feature.

The client initiates a message to get the current configuration of LLDP running on the router. The
router responds with the current LLDP configuration.

Netconf Response (Router to Client)Netconf Request (Client to Router)

<?xml version="1.0"?>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<lldp

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ethernet-lldp-cfg">

<timer>60</timer>
<enable>true</enable>
<reinit>3</reinit>
<holdtime>150</holdtime>
</lldp>

</data>
</rpc-reply>
319 bytes received
6.409561ms elapsed

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source><running/></source>
<filter>
<lldp

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ethernet-lldp-cfg"/>

</filter>
</get-config>
</rpc>

The <rpc> element in the request and response messages enclose a NETCONF request sent between
the client and the router. The message-id attribute in the <rpc> element is mandatory. This attribute
is a string chosen by the sender and encodes an integer. The receiver of the <rpc> element does not
decode or interpret this string but simply saves it to be used in the <rpc-reply> message. The sender

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
29

YANG Data Models
NETCONF Operations

must ensure that the message-id value is normalized. When the client receives information from the
server, the <rpc-reply> message contains the same message-id.

Retrieve Default Parameters Using with-defaults Capability
NETCONF servers report default data nodes in response to RPC requests in the following ways:

• report-all: All data nodes are reported

• trim: Data nodes set to the YANG default aren't reported

• explicit: Data nodes set to the YANG default by the client are reported

Cisco IOS XR routers support only the explicit basic mode. A server that uses this mode must consider any
data node that isn’t explicitly set to be the default data.

As per RFC 6243, the router supports <with-defaults> capability to retrieve the default parameters of
configuration and state data node using a NETCONF protocol operation. The <with-defaults> capability
indicates which default-handling basic mode is supported by the server. It also indicates support for additional
retrieval modes. These retrieval modes allow a NETCONF client to control whether the server returns the
default data.

By default, <with-defaults> capability is disabled. To enable this capability, use the following command in
Config mode:
netconf-yang agent
ssh
with-defaults-support enable
!

Once enabled, the capability is applied to all netconf-yang requests.

After enabling, the router must return the new capability as:
urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults:1.0?basic-mode=explicit

The <get>, <get-config>, <copy-config> and ,<edit-config> operations support with-defaults capability.

Example 1: Create Operation

A valid create operation attribute for a data node that is set by the server to its schema default value must
succeed. It is set or used by the device whenever the NETCONF client does not provide a specific value for
the relevant data node. In the following example, an edit-config request is sent to create a configuration:

<edit-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:43efc290-c312-4df0-bb1b-a6e0bf8aac50">
<edit-config>
<target>
<candidate/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
30

YANG Data Models
Retrieve Default Parameters Using with-defaults Capability

<enabled xc:operation="create">false</enabled>
<index xc:operation="create">2</index>
</config>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</config>
</edit-config>
</rpc>

Response received from the NETCONF agent:

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Commit the configuration.

[host 172.x.x.x session-id 2985924161] Requesting 'Commit'
[host 172.x.x.x session-id 2985924161] Sending:
<?xml version="1.0" encoding="UTF-8"?><nc:rpc
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:295eff87-1fb6-4f84-bb7d-c40b268eab1b"><nc:commit/></nc:rpc>

[host 172.x.x.x session-id 2985924161] Received:
<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:295eff87-1fb6-4f84-bb7d-c40b268eab1b"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>
CREATE operation completed

A create operation attribute for a data node that has been set by a client to its schema default value must fail
with a data-exists error tag. The client can only create a default node that was not previously created by it.
Else, the operation is rejected with the data-exists message.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:1f29267f-7593-4a3c-8382-6ab9bec323ca">
<edit-config>
<target>
<candidate/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<enabled xc:operation="create">false</enabled>
<index xc:operation="create">2</index>
</config>

</subinterface>
</subinterfaces>
</interface>
</interfaces>

</config>
</edit-config>
</rpc>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
31

YANG Data Models
Retrieve Default Parameters Using with-defaults Capability

[host 172.x.x.x session-id 2985924161] Received:
<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:1f29267f-7593-4a3c-8382-6ab9bec323ca"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>
<error-type>application</error-type>
<error-tag>data-exists</error-tag>
<error-severity>error</error-severity>
<error-path

xmlns:ns1="http://openconfig.net/yang/interfaces">ns1:interfaces/ns1:interface[name =
'TenGigE0/0/0/0']/ns1:subinterfaces/ns1:subinterface[index = '2']/ns1:config</error-path>
</rpc-error>
</rpc-reply>

Example 2: Delete Operation

A valid delete operation attribute for a data node set by a client to its schema default value must succeed.
Whereas a valid delete operation attribute for a data node set by the server to its schema default value fails
with a data-missing error tag.

<edit-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:de95a248-29d7-4030-8351-cef8b8d47cdb">
<edit-config>
<target>
<candidate/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface xc:operation="delete">
<index>2</index>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</config>
</edit-config>
</rpc>

Response received from the NETCONF agent:

<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:de95a248-29d7-4030-8351-cef8b8d47cdb"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>
<error-type>application</error-type>
<error-tag>data-missing</error-tag>
<error-severity>error</error-severity>
<error-path xmlns:ns1="http://openconfig.net/yang/interfaces">ns1:interfaces/ns1:
interface[name = 'TenGigE0/0/0/0']/ns1:subinterfaces/ns1:subinterface[index =
'2']/ns1:config</error-path></rpc-error>
</rpc-reply>

Example 3: Copy Configuration

In the following example, a copy-config request is sent to copy a configuration.

<copy-config> request sent to the NETCONF agent:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
32

YANG Data Models
Retrieve Default Parameters Using with-defaults Capability

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<candidate/>
</target>
<source>
<config>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<index>2</index>
</config>
</subinterface>
</subinterfaces>
</interface>

</interfaces>
</config>
</source>
<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
</copy-config>
</rpc>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<commit/>

</rpc>

The show run command shows the copied configuration.
Router#show run
<data and time stamp>
Building configuration...
!! IOS XR Configuration 7.2.1
!! Last configuration change at <data and time stamp> by root
!
interface TenGigE0/0/0/0.2
!
end

Example 4: Get Configuration

The following example shows a get-config request with explicit mode to query the default parameters
from the oc-interfaces.yang data model. The client gets the configuration values of what it sets.

<get-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:63a49626-9f90-4ebe-89fd-741410cddf29">
<get-config>
<source>
<running/>
</source>
<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
<filter type="subtree">
<interfaces xmlns="http://openconfig.net/yang/interfaces"/>
</filter>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
33

YANG Data Models
Retrieve Default Parameters Using with-defaults Capability

</get-config>
</rpc>

<get-config> response received from the NETCONF agent:

<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:99d8b2d0-ab05-474a-bc02-9242ba511308"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<index>2</index>
<enabled>false</enabled>
</config>

<ipv6 xmlns="http://openconfig.net/yang/interfaces/ip">
<config>

<enabled>false</enabled>
</config>
</ipv6>

</subinterface>
</subinterfaces>
</interface>

<interface>
<name>MgmtEth0/RSP0/CPU0/0</name>
<config>
<name>MgmtEth0/RSP0/CPU0/0</name>
<type xmlns:idx="urn:ietf:params:xml:ns:yang:iana-if-type">idx:ethernetCsmacd</type>

</config>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">
<config>
<auto-negotiate>false</auto-negotiate>
</config>
</ethernet>

<subinterfaces>
<subinterface>
<index>0</index>
<ipv4 xmlns="http://openconfig.net/yang/interfaces/ip">
<addresses>
<address>
<ip>172.xx.xx.xx</ip>
<config>
<ip>172.xx.xx.xx</ip>
<prefix-length>24</prefix-length>
</config>

</address>
</addresses>
</ipv4>
</subinterface>
</subinterfaces>
</interface>
<interface>
<name>MgmtEth0/RSP1/CPU0/0</name>
<config>
<name>MgmtEth0/RSP1/CPU0/0</name>
<type xmlns:idx="urn:ietf:params:xml:ns:yang:iana-if-type">idx:ethernetCsmacd</type>
<enabled>false</enabled>

</config>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
34

YANG Data Models
Retrieve Default Parameters Using with-defaults Capability

<config>
<auto-negotiate>false</auto-negotiate>

</config>
</ethernet>
</interface>
</interfaces>
</data>
</rpc-reply>
READ operation completed

Example 5: Get Operation

The following example shows a get request with explicit mode to query the default parameters from the
oc-interfaces.yang data model.

<get-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:d8e52f0f-ceac-4193-89f6-d377ab8292d5">
<get>
<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
<filter type="subtree">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<state/>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</filter>
</get>
</rpc>

<get> response received from the NETCONF agent:

<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:933df011-191f-4f31-9549-c4f7f6edd291"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<state>
<index>2</index>
<name>TenGigE0/0/0/0.2</name>
<enabled>false</enabled>
<admin-status>DOWN</admin-status>
<oper-status>DOWN</oper-status>
<last-change>0</last-change>
<counters>
<in-unicast-pkts>0</in-unicast-pkts>
<in-pkts>0</in-pkts>
<in-broadcast-pkts>0</in-broadcast-pkts>
<in-multicast-pkts>0</in-multicast-pkts>
<in-octets>0</in-octets>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
35

YANG Data Models
Retrieve Default Parameters Using with-defaults Capability

<out-unicast-pkts>0</out-unicast-pkts>
<out-broadcast-pkts>0</out-broadcast-pkts>
<out-multicast-pkts>0</out-multicast-pkts>
<out-pkts>0</out-pkts>
<out-octets>0</out-octets>
<out-discards>0</out-discards>
<in-discards>0</in-discards>
<in-unknown-protos>0</in-unknown-protos>
<in-errors>0</in-errors>
<in-fcs-errors>0</in-fcs-errors>
<out-errors>0</out-errors>
<carrier-transitions>0</carrier-transitions>
<last-clear>2020-03-02T15:35:30.927+00:00</last-clear>
</counters>
<ifindex>92</ifindex>
<logical>true</logical>
</state>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</data>
</rpc-reply>
READ operation completed

Retrieve Transaction ID for NSO Operations
Table 5: Feature History Table

DescriptionRelease InformationFeature Name

The network orchestrator is a
central point of management for the
network and typical workflow
involves synchronizing the
configuration states of the routers
it manages. Loading configurations
for comparing the states involves
unnecessary data and subsequent
comparisons are load intensive.
This feature synchronizes the
configuration states between the
orchestrator and the router using a
unique commit ID that the router
maintains for each configuration
commit. The orchestrator retrieves
this commit ID from the router
using NETCONF Remote
Procedure Calls (RPCs) to identify
whether the router has the latest
configuration.

Release 7.4.1Unique Commit ID for
Configuration State

Cisco Network Services Orchestrator (NSO) is a data model-driven platform for automating your network
orchestration. NSO uses NETCONF-based Network Element Drivers (NED) to synchronize the configuration

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
36

YANG Data Models
Retrieve Transaction ID for NSO Operations

states of the routers it manages. NEDs comprise of the network-facing part of NSO and communicate over
the native protocol supported by the router, such as Network Configuration Protocol (NETCONF).

IOS XR configuration manager maintains commit IDs (also known as the transaction IDs) for each commit
operation. The manageability interfaces use these IDs. Currently, the operational data model provides a list
of up to 100 last commits for NETCONF requests. The YANG client querying the last commit ID collects
the entire list and finds the latest ID. Loading configurations for comparison to the orchestrator's configuration
state can involve huge redundant data. The subsequent comparisons are also load intensive.

To overcome these limitations, the router maintains a unique last commit ID that is ideal for NSO operations.
This ID indicates the latest configuration state on the router. The ID provides a one-step operation and increases
the performance of configuration updates for the orchestrator.

An augmented configuration manageability model Cisco-IOS-XR-config-cfgmgr-exec-augmented-oper
provides a single last-commit-id for the unique commit state. This model is available as part of the base
package.

The following table lists the synchronization support between NSO and the IOS XR variants:

XR7Entity

Yescfgmgr

Nosysadmin

Nocfgmgr-aug

cfgmgrLeaf Data

YesCheck synchronization (NSO functionality from
release 7.4.1 and later)

Where:

• commit-id represents
Cisco-IOS-XR-config-cfgmgr-exec-oper:config-manager/global/config-commit/commits/commit/commit-id

• cfgmgr is the XR configuration manager

• sysadmin represents the Cisco-IOS-XR-sysadmin-system data model

• cfgmgr-aug represents the Cisco-IOS-XR-config-cfgmgr-exec-augmented-oper data model

The last commit ID is obtained from the configuration manager. The following example shows a sample
NETCONF request and response to retrieve the commit ID:

Request:
<rpc message-id="test" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get>
<filter type="subtree">
<config-manager xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-config-cfgmgr-exec-oper">
<global>
<config-commit>
<last-commit-id

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-config-cfgmgr-exec-augmented-oper"/>
</config-commit>

</global>
</config-manager>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
37

YANG Data Models
Retrieve Transaction ID for NSO Operations

</filter>
</get>
</rpc>

Response:
<rpc-reply message-id="test" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<config-manager xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-config-cfgmgr-exec-oper">
<global>
<config-commit>
<last-commit-id

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-config-cfgmgr-exec-augmented-oper">
XR:1000000009;Admin:1595-891537-949905</last-commit-id>

</config-commit>
</global>
</config-manager>
</data>
</rpc-reply>

Set Router Clock Using Data Model in a NETCONF Session
The process for using data models involves:

• Obtain the data models.

• Establish a connection between the router and the client using NETCONF communication protocol.

• Manage the configuration of the router from the client using data models.

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

Note

The following image shows the tasks involved in using data models.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
38

YANG Data Models
Set Router Clock Using Data Model in a NETCONF Session

Figure 3: Process for Using Data Models

In this section, you use native data models to configure the router clock and verify the clock state using a
NETCONF session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
39

YANG Data Models
Set Router Clock Using Data Model in a NETCONF Session

Figure 4: Network Topology for gRPC session

You use Cisco IOS XR native models Cisco-IOS-XR-infra-clock-linux-cfg.yang and
Cisco-IOX-XR-shellutil-oper to programmatically configure the router clock. You can explore the structure
of the data model using YANG validator tools such as pyang.

Before you begin

Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information

Procedure

Step 1 Explore the native configuration model for the system local time zone.

Example:

controller:netconf$ pyang --format tree Cisco-IOS-XR-infra-infra-clock-linux-cfg.yang
module: Cisco-IOS-XR-infra-infra-clock-linux-cfg

+--rw clock
+--rw time-zone!
+--rw time-zone-name string
+--rw area-name string

Step 2 Explore the native operational state model for the system time.

Example:

controller:netconf$ pyang --format tree Cisco-IOS-XR-shellutil-oper.yang
module: Cisco-IOS-XR-shellutil-oper

+--ro system-time
+--ro clock
| +--ro year? uint16
| +--ro month? uint8
| +--ro day? uint8
| +--ro hour? uint8
| +--ro minute? uint8
| +--ro second? uint8
| +--ro millisecond? uint16
| +--ro wday? uint16

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
40

YANG Data Models
Set Router Clock Using Data Model in a NETCONF Session

https://github.com/mbj4668/pyang

| +--ro time-zone? string
| +--ro time-source? Time-source
+--ro uptime

+--ro host-name? string
+--ro uptime? uint32

Step 3 Retrieve the current time on router LER1.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper"/>
controller:netconf$ netconf get --filter xr-system-time-oper.xml
198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper">

<clock>
<year>2019</year>
<month>8</month>
<day>22</day>
<hour>17</hour>
<minute>30</minute>
<second>37</second>
<millisecond>690</millisecond>
<wday>1</wday>
<time-zone>UTC</time-zone>
<time-source>calendar</time-source>

</clock>
<uptime>

<host-name>ler1</host-name>
<uptime>851237</uptime>

</uptime>
</system-time>

Notice that the timezone UTC indicates that a local timezone is not set.

Step 4 Configure Pacific Standard Time (PST) as local time zone on LER1.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper"/>
controller:netconf$ get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper">
<clock>

<year>2019</year>
<month>8</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>

</clock>
<uptime>

<host-name>ler1</host-name>
<uptime>852530</uptime>

</uptime>
</system-time>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
41

YANG Data Models
Set Router Clock Using Data Model in a NETCONF Session

Step 5 Verify that the router clock is set to PST time zone.

Example:

controller:netconf$ more xr-system-time-oper.xml
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper"/>

controller:netconf$ netconf get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper">

<clock>
<year>2018</year>
<month>12</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>

</clock>
<uptime>

<host-name>ler1</host-name>
<uptime>852530</uptime>

</uptime>
</system-time>

In summary, router LER1, which had no local timezone configuration, is programmatically configured using data models.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
42

YANG Data Models
Set Router Clock Using Data Model in a NETCONF Session

NETCONF version 1.0 with YANG support
Table 6: Feature History Table

Feature DescriptionRelease
Information

Feature Name

Introduced in this release on: Fixed Systems(8200, 8700)(select variants
only*);Modular Systems (8800 [LCASIC: P100])(select variants only*).

This feature allows you tomonitor andmanage a large number of network
devices on Cisco Silicon One P100 ASIC-based systems thus ensuring
comprehensive oversight and control over your network infrastructure.

*This feature is supported on:

• 8212-48FH-M

• 8711-32FH-M

• 8712-MOD-M

• 88-LC1-12TH24FH-E

• 88-LC1-36EH

• 88-LC1-52Y8H-EM

Release 24.4.1NETCONF
version 1.0 with
YANG support

You can now monitor and manage a larger number of network devices,
ensuring comprehensive oversight and control over your network
infrastructure with NETCONF-YANG version 1.0. This enhancement
is possible because our system has increased the support for NETCONF
YANG sessions from 50 to 128.

Release 24.2.11NETCONF
version 1.0 with
YANG support

NETCONF Version 1.0 and YANG Integration

NETCONF is an XML-based protocol used over Secure Shell (SSH) transport to configure a network. The
client applications use this protocol to request information from the router, and make configuration changes
to the router.

To connect to netconf-yang agent with netconf version 1.0, it’s necessary to configure the netconf-yang agent
netconf version1.0 command, otherwise a client with netconf 1.0 connects to a netconf-xml agent.

Prerequisites
• Install the software package k9sec pie and mgbl pie on the router.

• Generate the crypto keys.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
43

YANG Data Models
NETCONF version 1.0 with YANG support

• NETCONF agent TTY becomes mutually exclusive with netconf-yang agent netconf1.0 [only]
[streaming-disabled] command.

• only—Netconf 1.1 is disabled in which the client supports both 1.0 and 1.1

• streaming-disabled—snetconf-yang 1.0 agent disables sending the large streaming data in multiple
chunks.

• To connect to netconf-yang agent with NETCONF1.0, use a NETCONF client that is compatible with
NETCONF 1.0 standard (RFC-4741 and RFC-4742).

• If a NETCONF client supports both 1.0 and 1.1 versions, the NETCONF client connects with 1.1 as per
the RFC-4741 and RFC-4742.

• To connect with 1.0, enable netconf-yang 1.0 with option only ::: {custom-style=“Block Label”}

netconf-yang agent netconf1.0 only :::

• By default, the netconf-yang 1.0 agent sends a large response data in multiple chunks.

• If a NETCONF client isn’t able to handle receiving multiple data chunks, it can be turned off by
configuring netconf-yang 1.0 with the option streaming-disabled ::: {custom-style=“Block Label”}

netconf-yang agent netconf1.0streaming-disabled :::

Note

Configure NETCONF-YANG Version 1.0

Configuration Example

To configure NETCONF_YANGVersion 1.0 session limit, use the netconf-yang agent session limit command.

To set a netconf-yang agent session limit on a NETCONF-YANG agent, first enable netconf-yang agent
netconf1.0 on the agent.

Note

Router# config
Router(config)# netconf-yang agent netconf1.0
Router(config)# netconf-yang agent session limit 10

/*limit value sets the maximum count for concurrent netconf-yang sessions. The range is
from 1 to 128.*/
Router# end

Verification

To verity the NETCONF YANG statistics and NETCONF YANG clients, use the do show netconf-yang
statistics and do show netconf-yang clients commands.
/*Verify Configuration Using Statistics*/
Router# do show netconf-yang statistics

Summary statistics requests| total time| min time per request| max
time per request| avg time per request|

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
44

YANG Data Models
Configure NETCONF-YANG Version 1.0

https://datatracker.ietf.org/doc/html/rfc4741
https://datatracker.ietf.org/doc/html/rfc4742
https://datatracker.ietf.org/doc/html/rfc4741
https://datatracker.ietf.org/doc/html/rfc4742

other 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|

close-session 4| 0h 0m 0s 3ms| 0h 0m 0s 0ms|
0h 0m 0s 1ms| 0h 0m 0s 0ms|

kill-session 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|

get-schema 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|

get 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s

get-config 1| 0h 0m 0s 1ms| 0h 0m 0s 1ms|
0h 0m 0s 1ms| 0h 0m 0s 1ms|

edit-config 3| 0h 0m 0s 2ms| 0h 0m 0s 0ms|
0h 0m 0s 1ms| 0h 0m 0s 0ms|

commit 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|

cancel-commit 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|

lock 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|

unlock 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|

discard-changes 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|

validate 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
0h 0m 0s 0ms| 0h 0m 0s 0ms|

/*Verify Configuration Using Clients/*

Router# do show netconf-yang clients

client session ID| NC version| client connect time| last OP time| last
OP type| <lock>|

22969| 1.0| 0d 0h 0m 2s| 11:11:24|
close-session| No|

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
45

YANG Data Models
Configure NETCONF-YANG Version 1.0

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
46

YANG Data Models
Configure NETCONF-YANG Version 1.0

C H A P T E R 5
Use gRPC Protocol to Define Network Operations
with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automatedmechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure using protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf.
The Protobuf binary data object in gRPC is transported over HTTP/2.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server. The structure of the data is defined by YANG models.

All 64-bit IOS XR platforms support gRPC and TCP protocols. All 32-bit IOS XR platforms support only
TCP protocol.

Note

Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and
define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent
to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:
syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {

rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};

rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
47

rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};

rpc GetOper(GetOperArgs) returns(stream GetOperReply) {};

rpc CommitReplace(CommitReplaceArgs) returns(CommitReplaceReply) {};
}
message ConfigGetArgs {

int64 ReqId = 1;
string yangpathjson = 2;

}

message ConfigGetReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message GetOperArgs {
int64 ReqId = 1;
string yangpathjson = 2;

}

message GetOperReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message ConfigArgs {
int64 ReqId = 1;
string yangjson = 2;

}

message ConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CliConfigArgs {
int64 ReqId = 1;
string cli = 2;

}

message CliConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CommitReplaceArgs {
int64 ReqId = 1;
string cli = 2;
string yangjson = 3;

}

message CommitReplaceReply {
int64 ResReqId = 1;
string errors = 2;

}

Example for gRPCExec configuration:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
48

YANG Data Models

service gRPCExec {
rpc ShowCmdTextOutput(ShowCmdArgs) returns(stream ShowCmdTextReply) {};
rpc ShowCmdJSONOutput(ShowCmdArgs) returns(stream ShowCmdJSONReply) {};

}

message ShowCmdArgs {
int64 ReqId = 1;
string cli = 2;

}

message ShowCmdTextReply {
int64 ResReqId =1;
string output = 2;
string errors = 3;

}

Example for OpenConfiggRPC configuration:
service OpenConfiggRPC {

rpc SubscribeTelemetry(SubscribeRequest) returns (stream SubscribeResponse) {};
rpc UnSubscribeTelemetry(CancelSubscribeReq) returns (SubscribeResponse) {};
rpc GetModels(GetModelsInput) returns (GetModelsOutput) {};

}

message GetModelsInput {
uint64 requestId = 1;
string name = 2;
string namespace = 3;
string version = 4;
enum MODLE_REQUEST_TYPE {

SUMMARY = 0;
DETAIL = 1;

}
MODLE_REQUEST_TYPE requestType = 5;

}

message GetModelsOutput {
uint64 requestId = 1;
message ModelInfo {

string name = 1;
string namespace = 2;
string version = 3;
GET_MODEL_TYPE modelType = 4;
string modelData = 5;

}
repeated ModelInfo models = 2;
OC_RPC_RESPONSE_TYPE responseCode = 3;
string msg = 4;

}

This article describes, with a use case to configure interfaces on a router, how data models helps in a faster
programmatic and standards-based configuration of a network, as comapared to CLI.

• gRPC Operations, on page 50
• gRPC over UNIX Domain Sockets, on page 61
• gRPC Network Management Interface, on page 63
• gRPC Network Operations Interface , on page 80
• gRPC Network Security Interface , on page 93

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
49

YANG Data Models

• Manage certificates using Certz.proto, on page 113
• gNSI EnrollZ and AttestZ, on page 117
• P4Runtime, on page 120
• IANA Port Numbers For gRPC Services, on page 122
• Configure Interfaces Using Data Models in a gRPC Session, on page 126

gRPC Operations
The following are the defined manageability service gRPC operations for Cisco IOS XR:

DescriptiongRPC Operation

Retrieves the configuration from the router.GetConfig

Gets the supported Yang models on the routerGetModels

Merges the input config with the existing device configuration.MergeConfig

Deletes one or more subtrees or leaves of configuration.DeleteConfig

Replaces part of the existing configuration with the input configuration.ReplaceConfig

Replaces all existing configurationwith the new configuration provided.CommitReplace

Retrieves operational data.GetOper

Invokes the input CLI configuration.CliConfig

Returns the output of a show command in the text formShowCmdTextOutput

Returns the output of a show command in JSON form.ShowCmdJSONOutput

gRPC Operation to Get Configuration

This example shows how a gRPC GetConfig request works for LLDP feature.

The client initiates a message to get the current configuration of LLDP running on the router. The
router responds with the current LLDP configuration.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
50

YANG Data Models
gRPC Operations

gRPC Response (Router to Client)gRPC Request (Client to Router)

{
"Cisco-IOS-XR-cdp-cfg:cdp": {
"timer": 50,
"enable": true,
"log-adjacency": [
null
],
"hold-time": 180,
"advertise-v1-only": [
null
]
}
}

{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": {
"timer": 60,
"enable": true,
"reinit": 3,
"holdtime": 150

}
}

rpc GetConfig
{
"Cisco-IOS-XR-cdp-cfg:cdp": [
"cdp": "running-configuration"
]

}

rpc GetConfig
{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": [
"lldp": "running-configuration"
]

}

gRPC Authentication Modes
gRPC supports the following authentication modes to secure communication between clients and servers.
These authenticationmodes help ensure that only authorized entities can access the gRPC services, like gNOI,
gRIBI, and P4RT. Upon receiving a gRPC request, the device will authenticate the user and perform various
authorization checks to validate the user.

The following table lists the authentication type and configuration requirements:

Table 7: gRPC Authentication Modes and Configuration Requirements

Requirement From
Client

Configuration
Requirement

Authorization
Method

Authentication
Method

Type

username, password,
and CA

grpcusernameusername, passwordMetadata with TLS

username, passwordgrpc no-tlsusernameusername, passwordMetadata without
TLS

username, password,
client certificate,
client key, and CA

grpc tls-mutualusernameusername, passwordMetadata with
Mutual TLS

client certificate,
client key, and CA

grpc tls-mutual

and

grpc certificate
authentication

username from
client certificate's
common name field

client certificate's
common name field

Certificate based
Authentication

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
51

YANG Data Models
gRPC Authentication Modes

Certificate based Authentication

In Extensible Manageability Services (EMS) gRPC, the certificates play a vital role in ensuring secure and
authenticated communication. The EMS gRPC utilizes the following certificates for authentication:
/misc/config/grpc/ems.pem
/misc/config/grpc/ems.key
/misc/config/grpc/ca.cert

For clients to use the certificates, ensure to copy the certificates from /misc/config/grpc/

The gRPC server advertises TLS 1.2 as the maximum TLS version when using a SUDI-based SSL profile.

Note

Generation of Certificates

These certificates are typically generated using a Certificate Authority (CA) by the device. The EMS certificates,
including the server certificate (ems.pem), public key (ems.key), and CA certificate (ca.cert), are generated
with specific parameters like the common name ems.cisco.com to uniquely identify the EMS server and
placed in the /misc/config/grpc/ location.

The default certificates that are generated by the server are Server-only TLS certificates and by using these
certificates you can authenticate the identity of the server.

Usage of Certificates

These certificates are used for enabling secure communication through Transport Layer Security (TLS) between
gRPC clients and the EMS server. The client should use ems.pem and ca.cert to initiate the TLS authentication.

To update the certificates, ensure to copy the new certificates that has been generated earlier to the location
and restart the server.

Custom Certificates

If you want to use your own certificates for EMS gRPC communication, then you can follow a workflow to
generate a custom certificates with the required parameters and then configure the EMS server to use these
custom certificates. This process involves replacing the default EMS certificates with the custom ones and
ensuring that the gRPC clients also trust the customCA certificate. For more information on how to customize
the common-name, see Certificate Common-Name For Dial-in Using gRPC Protocol.

Authenticate gRPC Services

Typically, gRPC clients include the username and password in the gRPC metadata fields.Note

Procedure

Use any one of the following configuration type to authenticate any gRPC service.

• Metadata with TLS

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
52

YANG Data Models
Authenticate gRPC Services

Router#config
Router(config)#grpc
Router(config-grpc)#commit

• Metadata without TLS

Router#config
Router(config)#grpc
Router(config-grpc)#no-tls
Router(config-grpc)#commit

• Metadata with Mutual TLS

Router#config
Router(config)#grpc
Router(config-grpc)#tls-mutual
Router(config-grpc)#commit

• Certificate based Authentication

Router(config)#grpc
Router(config-grpc)#tls-mutual
Router(config-grpc)#certificate-authentication
Router(config-grpc)#commit

gRPC server TLS version 1.3 support
Table 8: Feature History Table

DescriptionRelease
Information

Feature Name

Introduced in this release on: Fixed Systems (8200 [ASIC:
Q200, P100], 8700 [ASIC: P100, K100]); Centralized Systems
(8600 [ASIC:Q200]); Modular Systems (8800 [LC ASIC:
Q100, Q200, P100])

You can now enhance your network security by enabling TLS
1.3 support for your gRPC services. The TLS 1.3 version
offers stronger protection against vulnerabilities, eliminates
outdated ciphers, and ensures forward secrecy in data
encryption by generating a unique session key for each new
network session.

The feature introduces these changes:

CLI:

• tls-min-version

• tls-max-version

Release 24.4.1gRPC server TLS
version 1.3 support

The gRPC Remote Procedure Calls (gRPC) server Transport Layer Security (TLS) version 1.3 support is a
security feature that

• provides end-to-end communications security over networks,

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
53

YANG Data Models
gRPC server TLS version 1.3 support

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4080366908
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1060638259

• prevents unauthorized access and eavesdropping, and

• protects against tampering and message forgery.

The TLS private key is encrypted before being stored on the disk. For more details on SSL or TLS version
certificates, keys, and communication parameters, see Manage certificates using Certz.proto.

Configure gRPC TLS version
You can configure the minimum and maximum TLS versions for gRPC, and view the TLS cipher suites.

Procedure

Step 1 Configure gRPC TLS minimum, maximum, or both versions.

Example:

• Configure gRPC TLS minimum version.
Router# config
Router(config)# grpc
Router(config-grpc)# tls-min-version 1.0
Router(config-grpc)# commit

TLS minimum version can be 1.0, 1.1, 1.2, or 1.3. The default minimum version for TLS is 1.0.

• Configure gRPC TLS maximum version.
Router# config
Router(config)# grpc
Router(config-grpc)# tls-max-version 1.2
Router(config-grpc)# commit

TLS maximum version can be 1.0, 1.1, 1.2, or 1.3. The default maximum version for TLS is 1.3.

Note
• The tls-min-version cannot be greater than tls-max-version.

• To disable the TLS version 1.0, set the tlsv1-disable command. You can also achieve this by setting the
tls-min-version to greater than 1.0.

• From Release 24.4.1, the tlsv1-disable command is deprecated.

If you use the tlsv1-disable command, you cannot use the tls-min-version and the tls-max-version commands.

If you use the tls-min-version and the tls-max-version commands, you cannot use the tlsv1-disable command.

Step 2 Verify the gRPC TLS minimum and maximum versions.

Example:
Router# show grpc
Thu Aug 29 00:49:24.428 UTC

Server name : DEFAULT
Address family : dual
Port : 57400

Service ports

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
54

YANG Data Models
Configure gRPC TLS version

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/24xx/configuration/guide/b-programmability-cg-8000-24xx/use-grpc-protocol-to-define-network-operation-with-data-models.html#concept_C66C0E5371BF46E8937AB14F7D25EE11

gNMI : none
P4RT : none
gRIBI : none

DSCP : Default
TTL : 64
VRF : global-vrf
Server : disabled (Unknown)
TLS : enabled
TLS mutual : disabled
Trustpoint : none
Certificate Authentication : disabled
Certificate common name : ems.cisco.com
TLS v1.0 : enabled
Maximum requests : 128
Maximum requests per user : 10
Maximum streams : 32
Maximum streams per user : 32
Maximum concurrent streams : 32
Memory limit (MB) : 1024
Keepalive time : 30
Keepalive timeout : 20
Keepalive enforcement minimum time : 300
TLS Minimum Version : TLS 1.0
TLS Maximum Version : TLS 1.2

TLS cipher suites
Default : none
Default TLS1.3 : aes_128_gcm_sha256

: aes_256_gcm_sha384
: chacha20_poly1305_sha256

Enable : none
Disable : none

Operational enable : ecdhe-rsa-chacha20-poly1305
: ecdhe-ecdsa-chacha20-poly1305
: ecdhe-rsa-aes128-gcm-sha256
: ecdhe-ecdsa-aes128-gcm-sha256
: ecdhe-rsa-aes256-gcm-sha384
: ecdhe-ecdsa-aes256-gcm-sha384
: ecdhe-rsa-aes128-sha
: ecdhe-ecdsa-aes128-sha
: ecdhe-rsa-aes256-sha
: ecdhe-ecdsa-aes256-sha
: aes128-gcm-sha256
: aes256-gcm-sha384
: aes128-sha
: aes256-sha

Operational disable : none
Listen addresses : ANY

The TLS 1.3 ciphers are not configurable, they are either fixed or static.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
55

YANG Data Models
Configure gRPC TLS version

SPIFFE ID-Based Authentication and Authorization Services for gRPC Services
Table 9: Feature History Table

DescriptionRelease InformationFeature Name

You can now securely manage service
identities for workloads that communicate over
gRPC. This capability is critical for
environments such as distributed systems,
where workloads move across different
platforms.

This security measure is feasible because
workloads can use the Secure Production
Identity Framework for Everyone (SPIFFE)
ID and SPIFFE Verifiable Identity Document
(SVID) to encrypt and authenticate gRPC
traffic.

This feature introduces the following changes:

CLI:

• aaa map-to username

Yang Data Models:

• New XPaths for
Cisco-IOS-XR-um-aaa-task-user-cfg.yang

• New XPaths for
Cisco-IOS-XR-aaa-locald-cfg.yang

(see GitHub, YANG Data Models Navigator)

Release 24.2.11SPIFFE ID-Based Authentication
and Authorization Services for
gRPC Services

The SPIFFE standard specifies a framework that can bootstrap and issue identities to services across diverse
environments and organizational boundaries. SPIFFE assigns a unique identity to each workload with a SPIFFE
ID and securely encapsulates it within a SPIFFE Verifiable Identity Document (SVID). The SVID, which is
short-lived, corresponds exclusively to its SPIFFE ID and can be encoded either as an X.509 certificate or as
a JSON Web Token (JWT). This dual-format capability facilitates robust identity verification.

This feature provides a mechanism for mapping a SPIFFE ID to an XR user for authorization purposes. This
feature enables ExtensibleManageability Services (EMS) to use the SVID, which are certificates that essentially
contain SPIFFE IDs, to perform the following operations:

• Authentication via mTLS

• AuthZ authorization using the SVID

The XR authorization occurs with the XR user which is mapped to the SPIFFE ID. Mapping the SPIFFE ID
to a username is required for gRPC services to perform IOS XR authentication and authorization before
executing any operations on the device. If the authz evaluation is successful then only the connection request
is processed; otherwise, access is denied.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
56

YANG Data Models
SPIFFE ID-Based Authentication and Authorization Services for gRPC Services

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp1516434744
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Workflow for SPIFFE ID-Based Authentication and Authorization for gRPC Services

The high-level workflow of SPIFFE ID-based authentication and authorization for gRPC services involves
the following steps:

1. The EMS starts searching for the spiffe-user-map.json file at the location
/misc/config/grpc/gnsi/credentialz/spiffe-user-map.json.

2. If the file exists, it is parsed, and the mapping is stored globally in the aaa/auth package.

3. If the file does not exist or parsing is unsuccessful, the mapping will be empty.

4. The EMS registers with the configuration manager to receive updates for the aaa configuration.

5. When processing requests in the Authentication interceptor, the spiffe-user mapping API checks for the
SPIFFE ID mapping in the map created in step 2.

6. If the mapping exists, the API responds with the corresponding username.

7. If the mapping does not exist but the aaa configuration exists, the API responds with the configured
username.

8. If neither the mapping nor the aaa configuration is present, the API responds with an empty string.

9. Upon a client connecting to the server, the server interceptor extracts the SPIFFE ID from the client's
certificate and uses themapping stored in theaaa/auth package to find the corresponding username.

10. The username identifies it and then includes the metadata into the context.

11. gRPC services that require XRAuthorization will later verify the access rights for the username identified
in the previous step when handling the request.

12. If the mapping is unsuccessful, the request is passed to the relevant service, such as gNMI, which then
decides whether to grant or deny access based on its authorization requirements.

Authenticate and Authorize gRPC Service Requests Using the SPIFFE Standard

Before you begin

Before authenticating and authorizing gRPC service requests using the SPIFFE standard, ensure the following
prerequisites are met:

• Enable mutual TLS authentication with the tls-mutual command.

• Enable certificate authentication with the certificate-authentication command to facilitate SPIFFE
ID recognition. For more information, see Authenticate gRPC Services, on page 52.

• Configure the gNSI Authz policy by setting the principal to the SPIFFE-ID for service-level authorization
(gNSI AuthZ).

After establishing the connection, the gRPC server extracts the SPIFFE ID from the client's certificate.

To authenticate and authorize gRPC service requests using the SPIFFE standard, follow these steps:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
57

YANG Data Models
Authenticate and Authorize gRPC Service Requests Using the SPIFFE Standard

Procedure

Step 1 Configure the username in the system.

Example:

Router#show running-config aaa
Thu Oct 12 11:43:15.771 UTC
username cisco
group root-lr
group cisco-support
password 7 104D000A061843595F
!

Step 2 Map the SPIFFE ID to a username using the aaa map-to username command. This command assigns a default username
to any SPIFFE ID.
Router(config)#aaa map-to username cisco spiffe-id any
Router(config)#commit

Note
Each SPIFFE ID supports only one username.

Step 3 Evaluate the client's SPIFFE ID against the service-level authorization policy (gNSI AuthZ). For more information about
gNSI authz policies, see gRPC Network Security Interface , on page 93.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
58

YANG Data Models
Authenticate and Authorize gRPC Service Requests Using the SPIFFE Standard

Certificate Common-Name For Dial-in Using gRPC Protocol
Table 10: Feature History Table

DescriptionRelease InformationFeature Name

You can now specify a
common-name for the certificate
generated by the router while using
gRPC dial-in. Earlier, the
common-name in the certificate
was fixed as ems.cisco.com andwas
not configurable. Using a specified
common-name avoids potential
certification failures where youmay
specify a hostname different from
the fixed common name to connect
to the router.

The feature introduces these
changes:

CLI:

• grpc certificate
common-name

YANG Data Model:

• New XPath for
Cisco-IOS-XR-um-grpc-cfg.yang

• New XPath for
Cisco-IOS-XR-man-ems-cfg

(see GitHub, YANG Data Models
Navigator)

Release 24.1.1Certificate Common-Name For
Dial-in Using gRPC Protocol

When using gRPC dial-in on Cisco IOS-XR router, the common-name associated with the certificate generated
by the router is fixed as ems.cisco.com and this caused failure during certificate verification.

From Cisco IOS XR Release 24.1.1, you can now have the flexibility of specifying the common-name in the
certificate using the grpc certifcate common-name command. This allows gRPC clients to verify if the
domain name in the certificate matches the domain name of the gRPC server being accessed.

Configure Certificate Common Name For Dial-in
Configure a common name to be used in EMSD certificates for gRPC dial-in.

Procedure

Step 1 Configure a common name.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
59

YANG Data Models
Certificate Common-Name For Dial-in Using gRPC Protocol

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2846399442
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2846399442
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#certificate common-name cisco.com
Router(config-grpc)#commit

Use the show command to verify the common name:
Router#show grpc
Certificate common name : cisco.com

Note
For the above configuration to be successful, ensure to regenerate the certificate. so that the new EMSD certificates
include the configured common name.

To regenerate the self-signed certificate, perform the following steps.

Step 2 Remove the certificates: /misc/config/grpc/ems.pem, /misc/config/grpc/ems.key, and /misc/config/grpc/ca.cert
from /misc/config/grpc file.

Example:
Router#run ls -ltr /misc/config/grpc/

total 16
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 10:58 ems.pem
-rw-------. 1 root root 1675 Feb 14 10:58 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#run rm -rf /misc/config/grpc/ems.pem /misc/config/grpc/ems.key

Router#run ls -ltr /misc/config/grpc/

total 8
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Step 3 Restart gRPC server by toggling the TLS configuration.

Configure gRPC with non TLS and then re-configure with TLS.

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#no-tls
Router(config-grpc)#commit

Router#run ls -ltr /misc/config/grpc/

total 8
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#config
Router(config)#grpc
Router(config-grpc)#no no-tls
Router(config-grpc)#commit

Router#run ls -ltr /misc/config/grpc/

total 16
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 14:23 ems.pem

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
60

YANG Data Models
Configure Certificate Common Name For Dial-in

-rw-------. 1 root root 1675 Feb 14 14:23 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 14:23 ca.cert

Copy the newly generated /misc/config/grpc/ems.pem certificate in this path (from the device) to the gRPC client.

gRPC over UNIX Domain Sockets
Table 11: Feature History Table

DescriptionRelease InformationFeature Name

This feature allows local containers and scripts
on the router to establish gRPC connections
over UNIX domain sockets. These sockets
provide better inter-process communication
eliminating the need to manage passwords for
local communications. Configuring
communication over UNIX domain sockets
also gives you better control of permissions
and security because UNIX file permissions
come into force.

This feature introduces the grpc
local-connection command.

Release 7.5.1gRPC Connections over UNIX
domain sockets for Enhanced
Security and Control

You can use local containers to establish gRPC connections via a TCP protocol where authentication using
username and password is mandatory. This functionality is extended to establish gRPC connections over
UNIX domain sockets, eliminating the need to manage password rotations for local communications.

When gRPC is configured on the router, the gRPC server starts and then registers services such as gRPC
Network Management Interface and gRPC Network Operations Interface . After all the gRPC server
registrations are complete, the listening socket is opened to listen to incoming gRPC connection requests.
Currently, a TCP listen socket is created with the IP address, VRF, or gRPC listening port. With this feature,
the gRPC server listens over UNIX domain sockets that must be accessible from within the container via a
local connection by default. With the UNIX socket enabled, the server listens on both TCP and UNIX sockets.
However, if disable the UNIX socket, the server listens only on the TCP socket. The socket file is located at
/var/lib/docker/ems/grpc.sock directory.

The following process shows the configuration changes required to enable or disable gRPC over UNIX domain
sockets.

Procedure

Step 1 Configure the gRPC server.

Example:
Router(config)#grpc
Router(config-grpc)#local-connection
Router(config-grpc)#commit

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
61

YANG Data Models
gRPC over UNIX Domain Sockets

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp7259355000
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp7259355000

To disable the UNIX socket use the following command.
Router(config-grpc)#no local-connection

The gRPC server restarts after you enable or disable the UNIX socket. If you disable the socket, any active gRPC sessions
are dropped and the gRPC data store is reset.

The scale of gRPC requests remains the same and is split between the TCP and Unix socket connections. The maximum
session limit is 256, if you utilize the 256 sessions on Unix sockets, further connections on either TCP or UNIX sockets
is rejected.

Step 2 Verify that the local-connection is successfully enabled.

Example:
Router#show grpc status
Thu Nov 25 16:51:30.382 UTC
*************************show gRPC status**********************

transport : grpc
access-family : tcp4
TLS : enabled
trustpoint :
listening-port : 57400
local-connection : enabled
max-request-per-user : 10
max-request-total : 128
max-streams : 32
max-streams-per-user : 32
vrf-socket-ns-path : global-vrf
min-client-keepalive-interval : 300

A gRPC client must dial into the socket to send connection requests.

The following is an example of a Go client connecting to UNIX socket:
const sockAddr =
"/var/lib/docker/ems/grpc.sock"
...
func UnixConnect(addr string, t time.Duration) (net.Conn, error) {

unix_addr, err := net.ResolveUnixAddr("unix", sockAddr)
conn, err := net.DialUnix("unix", nil, unix_addr)
return conn, err

}

func main() {
...

opts = append(opts, grpc.WithTimeout(time.Second*time.Duration(*operTimeout)))
opts = append(opts, grpc.WithDefaultCallOptions(grpc.MaxCallRecvMsgSize(math.MaxInt32)))
...
opts = append(opts, grpc.WithDialer(UnixConnect))
conn, err := grpc.Dial(sockAddr, opts...)
...

}

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
62

YANG Data Models
gRPC over UNIX Domain Sockets

gRPC Network Management Interface
gRPCNetworkManagement Interface (gNMI) is a gRPC-based networkmanagement protocol used to modify,
install or delete configuration from network devices. It is also used to view operational data, control and
generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage
configurations and stream telemetry data from network devices.

The subscription in a gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.
gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gNMI Operations
Additional DetailsDescriptionSupported

Release
gNMI
Operation

—Retrieves the metadata of the
network device.

Release 7.0.1Capabilities

—Retrieve state data, configuration,
and operational information from a
network device

Release 7.0.1Get

—You can modify the state of a
network device such as router's
configuration, replace router's entire
configuration sections, or delete
specific parts of the configuration
using the Set operation.

Release 7.0.1Set

Stream Telemetry Data for LLDP
Statistics

Subscribes to a stream of updates for
specific paths within the device's
data model.

Release 24.2.1Subscribe

The gNMI Get operation is not supported for Sysadmin YANG models.Note

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
63

YANG Data Models
gRPC Network Management Interface

https://www-author3.cisco.com/content/en/us/td/docs/iosxr/cisco8000/telemetry/24xx/configuration/guide/b-telemetry-cg-8000-24xx/enhancements-to-streaming-telemetry.html#lldp-using-gnmi
https://www-author3.cisco.com/content/en/us/td/docs/iosxr/cisco8000/telemetry/24xx/configuration/guide/b-telemetry-cg-8000-24xx/enhancements-to-streaming-telemetry.html#lldp-using-gnmi

gNMI Wildcard in Schema Path
Table 12: Feature History Table

DescriptionRelease InformationFeature Name

You use a gRPC Network
Management Interface (gNMI) Get
request with wildcard key to
retrieve the configuration and
operational data of all the elements
in the data model schema paths. In
earlier releases, you had to specify
the correct key to retrieve data. The
router returned a JSON error
message if the key wasn't specified
in a list node.

For more information about using
wildcard search in gNMI requests,
see the Github repository.

Release 7.5.2Use gNMI Get Request With
Wildcard Key to Retrieve Data

gNMI protocol supports wildcards to indicate all elements at a given subtree in the schema. These wildcards
are used for telemetry subscriptions or gNMI Get requests. The encoding of the path in gNMI uses a structured
format. This format consists of a set of elements such as the path name and keys. The keys are represented as
string values, regardless of their type within the schema that describes the data. gNMI supports the following
options to retrieve data using wildcard search:

• Single-level wildcard: The name of a path element is specified as an asterisk (*). The following sample
shows a wildcard as the key name. This operation returns the description for all interfaces on a device.
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "*"

}
}
elem {
name: “config"

}
elem {
name: "description"

}
}

• Multi-level wildcard: The name of the path element is specified as an ellipsis (…). The following
example shows a wildcard search that returns all fields with a description available under /interfaces
path.
path {
elem {
name: "interfaces"

}

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
64

YANG Data Models
gNMI Wildcard in Schema Path

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md

elem {
name: "..."

}
elem {
name: "description"

}
}

Example: gNMI Get Request with Unique Path to a Leaf

The following is a sample Get request to fetch the operational state of GigabitEthernet0/0/0/0
interface in particular.
path: <

origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
key: <

key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""

>
>
elem: <

name: "state"
>

>
type: OPERATIONAL
encoding: JSON_IETF

The following is a sample Get response:
notification: <
timestamp: 1597974202517298341
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""
>

>
elem: <

name: "state"
>

>
val: <

json_ietf_val: im-state-admin-down
>

>
>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
65

YANG Data Models
gNMI Wildcard in Schema Path

error: <
>

Example: gNMI Get Request Without a Key Specified in the Schema Path

The following is a sample Get request to fetch the operational state of all interfaces.
path: <

origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
>
elem: <

name: "state"
>

>
type: OPERATIONAL
encoding: JSON_IETF

The following is a sample Get response:
path: <

origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
>
elem: <

name: "state"
>

>
type: OPERATIONAL
encoding: JSON_IETF
notification: <
timestamp: 1597974202517298341
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""

>
>
elem: <
name: "state"

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
66

YANG Data Models
gNMI Wildcard in Schema Path

>
>
val: <
json_ietf_val: im-state-admin-down

>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/1\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val: im-state-admin-down

>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/2\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val: im-state-admin-down

>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
67

YANG Data Models
gNMI Wildcard in Schema Path

name: "interface"
key: <
key: "interface-name"
value: "\"MgmtEth0/RP0/CPU0/0\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val: im-state-admin-down

>
>

Example: gNMI Get Request with Unique Path to a CLI

The following is a sample Get request to fetch the system updates through CLI.
path: <
origin: "cli"
elem: <
name: "show version"

>
>
type: ALL
encoding: ASCII

The following is a sample Get response.
path: <
origin: "cli"
elem: <
name: "show version"

>
>

type: ALL
...
...

[
{
"source": "unix:///var/run/test_env.sock",
"timestamp": 1730123328800447525,
"time": "2024-10-28T06:48:48.800447525-07:00",
"updates": [
{
"Path": "show version",
"values": {
"show version":

"-------------------------------- show version ---------------------------------
Cisco IOS XR Software, Version 24.4.1.37I
Copyright (c) 2013-2024 by Cisco Systems, Inc.
Build Information:\n Built By : swtools
Built On : Mon Oct 21 03:16:32 PDT 2024
Built Host : iox-lnx-121\n Workspace :
/auto/iox-lnx-121-san2/prod/24.4.1.37I.SIT_IMAGE/ncs5500/ws
Version : 24.4.1.37I\n Location : /opt/cisco/XR/packages/
Label : 24.4.1.37I-EFT2LabOnly
cisco NCS-5500 () processor
System uptime is 3 days 22 hours 54 minutes\n\n\n"

}
}

]

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
68

YANG Data Models
gNMI Wildcard in Schema Path

}
]

gNMI Bundling of Telemetry Updates
Table 13: Feature History Table

DescriptionRelease
Information

Feature Name

With gRPCNetworkManagement Interface (gNMI) bundling,
the router internally bundles multiple gNMI Updatemessages
meant for the same client into a single gNMI Notification
message and sends it to the client over the interface.

You can now optimize the interface bandwidth utilization by
accommodating more gNMI updates in a single notification
message to the client. We have now increased the gNMI
bundling size from 32768 to 65536 bytes, and enabled gNMI
bundling size configuration through Cisco native data model.

Prior releases allowed only a maximum bundling size of
32768 bytes, and you could configure only through CLI.

The feature introduces new XPaths to the
Cisco-IOS-XR-telemetry-model-driven-cfg.yang Cisco
native data model to configure gNMI bundling size.

To view the specification of gNMI bundling, see Github
repository.

Release 7.8.1gNMI Bundling Size
Enhancement

To send fewer number of bytes over the gNMI interface, multiple gNMI Update messages pertained to the
same client are bundled and sent to the client to achieve optimized bandwidth utilization.

The router internally bundles multiple gNMI Update messages in a single gNMI Notification message of
gNMI SubscribeResponse message. Cisco IOS XR software Release 7.8.1 supports gNMI bundling size up
to 65536 bytes.

Router bundles multiple instances of the same client. For example, a router bundles interfaces
MgmtEth0/RP0/CPU0/0, FourHundredGigE0/0/0/0, FourHundredGigE0/0/0/1, and so on, of the following
path.

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters

Router does not bundle messages of different client in a single gNMI Notification message. For example,

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/protocols

Data under the container of the client path cannot be split into different bundles.

The gNMI Notificationmessage contains a timestamp at which an event occurred or a sample is taken. The
bundling process assigns a single timestamp for all bundled Update values. The notification timestamp is the
first message of the bundle.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
69

YANG Data Models
gNMI Bundling of Telemetry Updates

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates

• ON-CHANGE subscription mode does not support gNMI bundling.

• Router does not enforce bundling size in the following scenarios:

• At the end of (N-1) message processing, if the notification message size is less than the configured
bundling size, router allows one extra instance which could result in exceeding the bundling size.

• Data of a single instance exceeding the bundling size.

• The XPath: network-instances/network-instance/afts does not support bundling.

Note

Configure gNMI Bundling Size
gNMI bundling is disabled by default and the default bundling size is 32,768 bytes. gNMI bundling size ranges
from 1024 to 65536 bytes. Prior to Cisco IOS XR software Release 7.8.1 the range was 1024 to 32768 bytes.
You can enable gNMI bundling to all gNMI subscribe sessions and specify the bundling size.

Configuration Example

This example shows how to enable gNMI bundling and configure bundling size.
Router# configure
Router(config)# telemetry model-driven
Router(config-model-driven)# gnmi
Router(config-gnmi)# bundling
Router(config-gnmi-bdl)# size 2000
Router(config-gnmi-bdl)# commit

Running configuration

This example shows the running configuration of gNMI bundle.
Router# show running-config
telemetry model-driven
gnmi
bundling
size 2000
!
!
!

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
70

YANG Data Models
Configure gNMI Bundling Size

Replace Router Configuration at Sub-tree Level Using gNMI
Table 14: Feature History Table

DescriptionRelease InformationFeature Name

Using the gNMI SetRequest message, you can replace
the router's existing configuration with a new set of
configurations at the subtree level within the samemodel.
Earlier you could replace router configurations at the
data tree root level.

To view the specification of gNMI replace, see Github
repository.

Release 7.8.1Replace Router
Configuration at Sub-tree
Level Using gNMI

The gNMI replace feature replaces the existing configuration on the router with the new configuration using
a SetRequest RPC message. It allows you to specify a path (a structured format for path elements, and any
associated key values) as the root prompt to perform a replace operation. Cisco IOS XR software Release
7.8.1 supports subtree-level replace operation. Prior to this release replace operation was performed at
datatree-level.

Replace operation either includes all the path elements which are defined under the root or only few of them.
If the omitted path elements are configured with default values, they are reverted to its default values during
the replace operation. If the omitted path elements are not configured with default values, they are deleted
from the data tree during the replace operation, and returned to its original unconfigured state. Consider the
following example:

In the following data tree schema, b has a default value of true and c has no default value. Both b and c are
set as False.
root +

|
+ a --+
| |
| +-- b
| |
| +-- c
|
|
+ d --+

+-- e
|
+-- f

When a replace operation is performed with e and f as set, and all other elements are omitted, b is reverted
to its default setting true, and c is deleted from the tree, and returned to its original unconfigured state.

Following example shows the SetRequest and SetResponse of gNMI replace operation.

gNMI Replace Example

This example shows the gNMI replace request and response messages.
Request Message:
replace: <
path: <
elem: <
name: "system"

>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
71

YANG Data Models
Replace Router Configuration at Sub-tree Level Using gNMI

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

elem: <
name: "config"

>
elem: <
name: "hostname"

>
>
val: <
json_ietf_val: "\"testing123\""

>
>

Response Message:
path: <
elem: <
name: "system"

>
elem: <
name: "config"

>
elem: <
name: "hostname"

>
>
op: REPLACE

>
message: <
>
timestamp: 1662873319202107537

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
72

YANG Data Models
Replace Router Configuration at Sub-tree Level Using gNMI

gNMI XPath-Based Authorization
Table 15: Feature History Table

DescriptionRelease
Information

Feature Name

We’ve introduced gNMI authorization through the gNSI pathz
policy which is adding authorization of a user or a group to
access a specified YANG XPath through gNMI. The policy
configurations can be done on the router either when the router
boots up or dynamically when the router is up and running.
When a user or a group sends a gNMI SetRequest message
using a certain XPath, the system validates the request against
the permissions specified in the policies associated with that
user or the group.

To view the specification of gNSI for the OpenConfig
XPath-based Authorization, see the Github repository.

The feature introduces these changes:

CLI:

• show gnsi path authorization policy

• show gnsi path authorization counters

• show gnsi trace pathz

• show gnsi path authorization statistics

• show tech-support gnsi

• clear gnsi path authorization counters

Release 24.2.11gNMI XPath-Based
Authorization

How gNSI pathz Policy Works

Upon receiving a gNMI SetRequest message for a configuration change, the router applies an XPath-based
pathz policy to determine the request's authorization. The pathz policy originates from a gNSI RPC within
the router. The policy configurations can be established during the router's boot process or dynamically adjusted
while the router is operational.

The router securely receives the initial pathz policy either through Secure Zero Touch Provisioning (sZTP)
or a secure bootstrapping protocol like bootz when booting up. The policy includes the user or group name
and a list of rules defining XPaths and their associated access permissions. The policy is enforced before
processing any gNMI requests.

Authorization by the gNSI pathz policy is granted or denied based on user or group credentials, permitting
or declining the gNMI SetRequest accordingly.

gNMI Authorization Using gNSI pathz Policy

Starting from Release 24.2.11, you can perform gNMI XPath-based authorization using gNSI pathz policies.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
73

YANG Data Models
gNMI XPath-Based Authorization

https://github.com/openconfig/gnsi/blob/main/pathz/pathz.proto
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3523621590
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp6319799690
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1425306918
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1800459808
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1590368878
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1987264608

The gnsi-pathz YANGmodel defines the following counters and timestamps for each configured rule READ,
WRITE, PERMIT, and DENY.

• access-rejects: 64-bit

• last-access-reject: timestamp

• access-accepts: 64-bit

• last-access-accept: timestamp

The counters get incremented per accepted or rejected XPath (Example, per gNMI request).

Define Authorization Policy for a gNSI Pathz

The authorization policy for gNSI Pathz consists of three components.

Table 16: Authorization Policy Components

DetailsAuthorization Policy
Component

Individuals named in rules or group definitions.Users

A group of users in the administrative domain, such as operators or administrators.

• The matching policy gives precedence to a specific user over a group.

• Match rules enable authorization against either a user or a group, but not
both simultaneously.

Groups of users

Each rule defines a single authorization policy.

• Authorization (how the policy is defined) is performed for a specific user
in a predefined group of users on a specific gNMI path and a specific access
methodology (example: READ or WRITE).

• The wildcard character (*):

• Replaces the missing keys in keyed path elements. Absence of
keys implies a wildcard by default.

• Masks all the values entirely, it doesn’t permit partial value
masking (Example: /this/is/a/keyed[name=Ethernet1/*/3]/things
is invalid).

Policy rules

How Authorization Policy Matching Rules Work

DescriptionPolicy Matching Rule

The authorization process evaluates the rule with the longest
match when granting access, rather than defaulting to the
first rule encountered.

Multiple rules

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
74

YANG Data Models
gNMI XPath-Based Authorization

https://github.com/openconfig/public/blob/master/release/models/gnsi/openconfig-gnsi-pathz.yang

DescriptionPolicy Matching Rule

The defined KEY in the keyed path is preferred over the
wildcard.

For example, the router prefers /a/b[key=FOO]/c/d over
/a/b[key=*]/c/d due to its more precise key match.

A defined KEY and wildcard in a keyed path

The rule that corresponds to a specific user is prioritized
over the one that matches with a user's group.

A user-specific rule and a corresponding group
rule for the same user

A mode that matches with the request (READ or WRITE)
is considered.

Permission mode

DENY takes priority over PERMIT when other conditions
are equal, and multiple matching rules are present.

DENY or PERMIT

Policy evaluation results with a single best match rule for the provided {user, path, or mode}. If multiple best
matches emerge, an error is logged, and the evaluation fails.

If no matching rule is found, an implicit DENY is applied and detailed in a log entry.

The authorization evaluation process results in a PERMIT or DENY decision, along with the version of the
policy and the identifier of the rule applied.

Scenario for Authorization Policy Rules

ModeActionPathGroupUserRule

READPERMIT/interfaces/interface[FourHundredGigE0/0/0/0]—Bob1

WRITEPERMIT/interfaces/interface[FourHundredGigE0/0/0/0]—Bob2

WRITEDENY/interfaces/interface[FourHundredGigE1/1/1/1]—Bob3

WRITEPERMIT/interfaces/interface[*]Admin—4

READPERMIT/interfaces—Bob5

WRITEPERMIT/interfaces/interface[FourHundredGigE0/0/0/0]Admin—6

WRITEDENY/interfaces/interface[FourHundredGigE0/0/0/0]—Jim7

For user Bob, the following authorization rules apply:

• READ or WRITE (gNMI request) access to the XPath /interfaces/interface[FourHundredGigE0/0/0/0]
is granted under rules 1 and 2.

• READ access to the XPath /interfaces/interface[FourHundredGigE1/1/1/1] is granted under rule 5 due
to the longest match criterion, which specifies READmode. WRITE access to this path is denied by rule
3.

• WRITE access to the XPath /interfaces/interface[FourHundredGigE2/2/2/2] is granted being a member
of the Admins group as specified by rule 4. Without the Admin membership, access is denied by the
default deny all rule.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
75

YANG Data Models
gNMI XPath-Based Authorization

• READ access to the XPath /interfaces/interface[FourHundredGigE2/2/2/2] is granted under rule 5,
independent of group affiliation.

For user Jim, the following authorization rule applies:

• Access to the XPath /interfaces/interface[FourHundredGigE0/0/0/0] is controlled by a policy that favors
personal user permissions over group permissions. As a result, although the admins group is allowed
access, Jim is individually denied access because the policy emphasizes user-specific rules.

gNSI Pathz Authorization Policy Configuration
To set a gNSI pathz authorization policy, you can perform either of the following methods:

• Load gNSI Pathz Policies at Boot-time, on page 76

• Rotate, Finalize, and Get the gNSI Pathz Policy, on page 76

Load gNSI Pathz Policies at Boot-time

To load gNSI pathz policies at boot-time into the router, you can use either sZTP or bootstrapping.

For details on loading gNSI pathz policy through sZTP, refer to Secure Zero Touch Provisioning section of
Cisco IOS XR Setup and Upgrade Guide for Cisco 8000 Series Routers guide.

Rotate, Finalize, and Get the gNSI Pathz Policy

When the router is up and running, you can rotate (update), finalize (commit), and get (read) the gNSI pathz
policy using the gNSI pathz gRPC operations. To view the specification of gNSI pathz policy rotation, see
the Github repository.

gNSI pathz supports the following policy instances:

• Active policy—Used for authorizing gNMI requests.

• Potential or candidate policy—Used to test a policy before rotation.

Rules for Authorization Policy Rotation

• The node holds on to the candidate policy indefinitely until either:

• The candidate is committed or again rotated, or

• The RPC session is closed (this event removes the candidate instance).

• A single policy rotation RPC can be active at any given time. Concurrent RPC requests for policy rotation
is rejected with the gRPC error code UNAVAILABLE.

• gNMI allows different encodings, including JSON. IOS XR applies the gNSI pathz policy based
on each leaf of the flattened JSON model for authorizing the gNMI request.

Metrics of gNSI Authorization Rules
IOS-XR pathz supports the following statistics, counters, diagnostics, and trace data commands for the gNSI
authorization rules:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
76

YANG Data Models
gNSI Pathz Authorization Policy Configuration

https://github.com/openconfig/gnsi/blob/main/pathz/pathz.proto

• gNSI Pathz Policy and Statistics

• gNSI Path Authorization Counters

• gNSI Pathz Trace Data

• gNSI State Details

gNSI Path Authorization Counters

The gNSI path authorization counters show the counters for a given gRPC server-name for all XPaths, or the
specified XPath. Providing the XPath and server-name is optional. To view the gNSI Path Authorization
counters, use the show gnsi path authorization counters command.

• Router# show gnsi path authorization counters
Mon Apr 1 08:05:46.297 UTC
----------------Pathz Counters Info--------------

/system/config/hostname:
Read Write

Rejects : 0 0
Last : N/A N/A

Accepts : 0 3
Last : N/A Mon, 01 Apr 2024 08:05:25 +0000

Total path records received 1

Router# show gnsi path authorization counters server-name 64.103.223.33
Mon Apr 1 08:33:25.194 UTC
----------------Pathz Counters Info--------------

/:
Read Write

Rejects : 0 2
Last : N/A Mon, 01 Apr 2024 08:32:37 +0000

Accepts : 0 0
Last : N/A N/A

/system/config/hostname:
Read Write

Rejects : 0 6
Last : N/A Mon, 01 Apr 2024 08:32:36 +0000

Accepts : 0 0
Last : N/A N/A

Total path records received 2
Router#

Router# show gnsi path authorization counters path /system/config/hostname
Mon Apr 1 08:32:46.468 UTC
----------------Pathz Counters Info--------------

/system/config/hostname:
Read Write

Rejects : 0 6
Last : N/A Mon, 01 Apr 2024 08:32:36 +0000

Accepts : 0 0
Last : N/A N/A

Total path records received 1
Router#

• To clear the gNSI path authorization counters, use the clear gnsi path authorization counters command.
Router# clear gnsi path authorization counters
Router#

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
77

YANG Data Models
gNSI Path Authorization Counters

gNSI Pathz Policy and Statistics

To display the configured gNSI policy and statistics, use the are following commands:

• show gnsi path authorization policy—Shows the running gNSI path authorization policy.

• show gnsi path authorization statistics—Shows gNSI path authorization statistics.

Router# show gnsi path authorization policy
Mon Apr 1 04:29:37.905 UTC
version:"1" created_on:1711946719670313 policy:{rules:{user:"cafyauto"
path:{origin:"openconfig" elem:{name:"system"} elem:{name:"config"} elem:{name:"hostname"}}
action:ACTION_PERMIT mode:MODE_WRITE}}
Router#

Router# show gnsi path authorization statistics
Mon Apr 1 04:29:23.259 UTC
----------------Pathz Info--------------
Engine:

State:
Active Policy:
Version : 1
Created On (UTC) : Wed, 09 Dec 54251401 07:58:33 +0000

Sandbox Policy:
Version : N/A
Created On (UTC) : N/A

Policy Rotation in Progress: False

Stats:
Rotations in Progress Count: 0
Policy Rotations : 0
Policy Rotation Errors : 0
Policy Upload Requests : 0
Policy Upload Errors : 0
Policy Finalize : 0
Policy Finalize Errors : 0
Probe Requests : 0
Probe Errors : 0
Get Requests : 0
Get Errors : 0
Policy Unmarshall Errors : 0
Sandbox Policy Errors : 0

Counters:
No Policy Auth Requests : 0
gNMI Path Leaves : 0
gNMI Authorizations : 0
gNMI Set Path Permit : 0
gNMI Set Path Deny : 0
gNMI Get Path Permit : 0
gNMI Get Path Deny : 0

Errors:
Path To String : 0
Origin Type : 0
Bad Mode : 0
Bad Action : 0
JSON Flatten : 0
String To Path : 0
Join Paths : 0
Nil Path : 0
Nil SetRequest : 0
Empty User : 0

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
78

YANG Data Models
gNSI Pathz Policy and Statistics

Probe Internal : 0
Path Counters:
Increment : 0
Find : 0
Clear : 0
Walk : 0

gNSI Pathz Trace Data

To trace the configured gNSI policy, use the show gnsi trace pathz command.
Router# show gnsi trace pathz all
Mon Apr 1 04:31:26.689 UTC
61 wrapping entries (21760 possible, 512 allocated, 0 filtered, 61 total)
Apr 1 04:07:09.681 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(178) 'Trying to load policy'
'/mnt/rdsfs/ems/gnsi/pathz_policy.txt'
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(173) 'Set Sandbox policy'
'1(54251382-02-18 11:34:58 +0000 UTC)'
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(179) 'Set Policy from'
'/mnt/rdsfs/ems/gnsi/pathz_policy.txt'
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(249) 'Pathz Policy Clearing
Counters' ' '
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code (79): 'Engine Initialized'
Apr 1 04:08:05.761 gnsi/pathz 0/RP0/CPU0 t11794 Pathz: Code(63) 'Pathz.Get()'
'5.38.4.111:52126'
Apr 1 04:08:05.761 gnsi/pathz_err 0/RP0/CPU0 t11794 Pathz ERROR: Code (65): 'Nil Policy'
Apr 1 04:08:05.788 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(63) 'Pathz.Get()'
'5.38.4.111:52126'
Apr 1 04:08:05.788 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(176) 'Get'
'POLICY_INSTANCE_ACTIVE 1(1711946094752098)'
Apr 1 04:08:05.791 gnsi/pathz_deny 0/RP0/CPU0 t11481 Pathz DENY: Code(235) 'Upd/Rep Denied
path' 'cafyauto@/system/config/hostname,|1,1711946094752098'
Apr 1 04:08:05.808 gnsi/pathz_deny 0/RP0/CPU0 t11383 Pathz DENY: Code(234) 'Del Denied
path' 'cafyauto@/system/config/hostname,|1,1711946094752098'
Apr 1 04:08:05.821 gnsi/pathz_deny 0/RP0/CPU0 t11480 Pathz DENY: Code(235) 'Upd/Rep Denied
path' 'cafyauto@/system/config/hostname,|1,1711946094752098'
Apr 1 04:08:07.348 gnsi/pathz_deny 0/RP0/CPU0 t11383 Pathz DENY: Code(235) 'Upd/Rep Denied
path' 'cafyauto@/lldp/config/enabled,|1,1711946094752098'
Apr 1 04:08:08.205 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(63) 'Pathz.Get()'
'5.38.4.111:52126'
Apr 1 04:08:08.205 gnsi/pathz_err 0/RP0/CPU0 t11383 Pathz ERROR: Code (65): 'Nil Policy'
Apr 1 04:08:08.221 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(63) 'Pathz.Get()'
'5.38.4.111:52126'
Apr 1 04:08:08.221 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(176) 'Get'
'POLICY_INSTANCE_ACTIVE 1(1711946094752098)'
Apr 1 04:08:08.238 gnsi/pathz_deny 0/RP0/CPU0 t11481 Pathz DENY: Code(235) 'Upd/Rep Denied
path' 'cafyauto@/system/config/hostname,|1,1711946094752098'
Apr 1 04:08:08.281 gnsi/pathz_deny 0/RP0/CPU0 t11480 Pathz DENY: Code(234) 'Del Denied
path' 'cafyauto@/system/config/hostname,|1,1711946094752098'
Router#

gNSI State Details

To collect diagnostic information of gNSI, use the show tech-support gnsi command.
Router# show tech-support gnsi
Mon Apr 1 06:55:51.482 UTC
++ Show tech start time: 2024-Apr-01.065551.UTC ++
Mon Apr 1 06:55:52 UTC 2024 Waiting for gathering to complete
...
Mon Apr 1 06:56:01 UTC 2024 Compressing show tech output
Show tech output available at Router#:
/harddisk:/showtech/showtech-mtb_sf2-gnsi-2024-Apr-01.065551.UTC.tgz
++ Show tech end time: 2024-Apr-01.065601.UTC ++

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
79

YANG Data Models
gNSI Pathz Trace Data

show tech-support gnsi command places the collected diagnostic information in a file, example Router#:
/harddisk: /showtech/showtech-mtb_sf2-gnsi-2024-Apr-01.065551.

gRPC Network Operations Interface
gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing
operational commands on network devices. These services are to be used in conjunction with gRPC network
management interface (gNMI) for all target state and operational state of a network. gNOI uses gRPC as the
transport protocol and the configuration is same as that of gRPC. For more information about gNOI, see the
Github repository.

gNOI RPCs
To send gNOI RPC requests, you need a client that implements the gNOI client interface for each RPC.

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gNOI OpenConfig
proto files are located in the Github repository.

Table 17: Feature History Table

DescriptionRelease InformationFeature Name

The RPCs defined in the proto file can be used
to perform Multiprotocol Label Switching
(MPLS) operations on the router.

Release 7.5.4gNOI MPLS Proto

The RPCs defined in the proto file can be used
to install the software, activate the software
version and verify that the installation is
successful.

Release 7.9.1gNOI OS Proto

You can now avail the services of CancelReboot
to terminate outstanding reboot request, and
KillProcess RPCs to restart the process on
device.

Release 7.8.1gNOI System Proto

gNOI supports the following remote procedure calls (RPCs):

System RPCs

The RPCs are used to perform key operations at the system level such as upgrading the software, rebooting
the device, and troubleshooting the network. The system.proto file is available in the Github repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
80

YANG Data Models
gRPC Network Operations Interface

https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi/blob/main/system/system.proto

DescriptionRPC

Reboots the target. The router supports the following reboot
options:

• COLD = 1; Shutdown and restart OS and all hardware

• POWERDOWN = 2; Halt and power down

• HALT = 3; Halt

• POWERUP = 7; Apply power

Reboot

Returns the status of the target reboot.RebootStatus

Places a software package including bootable images on the
target device.

SetPackage

Pings the target device and streams the results of the ping
operation.

Ping

Runs the traceroute command on the target device and streams
the result. The default hop count is 30.

Traceroute

Returns the current time on the target device.Time

Switches from the current route processor to the specified route
processor. If the target does not exist, the RPC returns an error
message.

SwitchControlProcessor

Cancels any pending reboot request.CancelReboot

Stops an OS process and optionally restarts it.KillProcess

File RPCs

The RPCs are used to perform key operations at the file level such as reading the contents if a file and its
metadata. The file.proto file is available in the Github repository.

DescriptionRPC

Reads and streams the contents of a file from the target device.
The RPC streams the file as sequential messages with 64 KB of
data.

Get

Removes the specified file from the target device. The RPC
returns an error if the file does not exist or permission is denied
to remove the file.

Remove

Returns metadata about a file on the target device.Stat

Streams data into a file on the target device.Put

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
81

YANG Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/file/file.proto

DescriptionRPC

Transfers the contents of a file from the target device to a
specified remote location. The response contains the hash of the
transferred data. The RPC returns an error if the file does not
exist, the file transfer fails or an error when reading the file. This
is a blocking call until the file transfer is complete.

TransferToRemote

Certificate Management (Cert) RPCs

The RPCs are used to perform operations on the certificate in the target device. The cert.proto file is available
in the Github repository.

DescriptionRPC

Replaces an existing certificate on the target device by creating
a new CSR request and placing the new certificate on the target
device. If the process fails, the target rolls back to the original
certificate.

Rotate

Installs a new certificate on the target by creating a new CSR
request and placing the new certificate on the target based on
the CSR.

Install

Gets the certificates on the target.GetCertificates

Revokes specific certificates.RevokeCertificates

Asks a target if the certificate can be generated.CanGenerateCSR

Loads a bundle of CA certificates on the target. This CA
certificate bundle is used to verify the client certificate when
mutual TLS is enabled.

LoadCertificateAuthorityBundle

Interface RPCs

The RPCs are used to perform operations on the interfaces. The interface.proto file is available in the Github
repository.

DescriptionRPC

Sets the loopback mode on an interface.SetLoopbackMode

Gets the loopback mode on an interface.GetLoopbackMode

Resets the counters for the specified interface.ClearInterfaceCounters

Layer2 RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The layer2.proto file is available in the Github repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
82

YANG Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/cert/cert.proto
https://github.com/openconfig/gnoi/blob/cc419f3696d3a6d3e1a3999b75c51231b4773ace/interface/interface.proto
https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto

DescriptionFeature Name

Clears all the LLDP adjacencies on the specified interface.ClearLLDPInterface

BGP RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The bgp.proto file is available in the Github repository.

DescriptionFeature Name

Clears a BGP session.ClearBGPNeighbor

Diagnostic (Diag) RPCs

The RPCs are used to perform diagnostic operations on the target device. You assign each bit error rate test
(BERT) operation a unique ID and use this ID to manage the BERT operations. The diag.proto file is available
in the Github repository.

DescriptionFeature Name

Starts BERT on a pair of connected ports between devices in
the network.

StartBERT

Stops an already in-progress BERT on a set of ports.StopBERT

Gets the BERT results during the BERT or after the operation
is complete.

GetBERTResult

MPLS RPCs

The RPCs are used to perform MPLS operations on the target device. The mpls.proto file is available in the
Github repository.

DescriptionFeature Name

Checks basic connectivity usingMPLS ping operation. See RFC
4379.

In Cisco IOS XR Release 7.5.4, the RPC supports ldp_fec and
rsvpte_lsp_name destination types. The destination types
fec129_pwe and rsvpte_lsp are not supported.

MPLSPing

Clears a single tunnel.ClearLSP

Clears theMPLS counters for the specified Label Switched Path
(LSP).

ClearLSPCounters

Operating System (OS) RPCs

The OS service provides an interface for the OS installation on a target device. The RPCs replace the router
software to upgrade the system. No concurrent installation is allowed on the same target. The os.proto file is
available in the Github repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
83

YANG Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/bgp/bgp.proto
https://github.com/openconfig/gnoi/blob/main/diag/diag.proto
https://github.com/openconfig/gnoi/blob/main/mpls/mpls.proto
https://github.com/openconfig/gnoi/blob/main/os/os.proto

DescriptionFeature Name

Transfers an OS package onto the target.

Note
Only Golden ISO installation is supported; RPM installation
is not supported.

Install

Sets the requested OS version as the version that is used at the
next reboot. If booting up the requested OS version fails, the
system recovers by rolling back to the previously running OS
package.

Activate

Verifies the running OS version.

The following gNOI OS verify information returns based on the
install state:

• If success, verify returns the installed version.

• If failure, verify the version returned by install and set
the activation_fail_message to the error returned by the
install.

• If in-progress, verify returns version returned by install
and set the activation_fail_message to in-progress.

• If the install state was not retrieved, verify that the version
returned is unknown and set the activaiton_fail_message to
Failed to verify the current version.

Verify

gNOI RPCs

The following examples show the representation of few gNOI RPCs:

Get RPC

Streams the contents of a file from the target.

RPC to 10.105.57.106:57900
RPC start time: 20:58:27.513638
---------------------File Get Request---------------------
RPC start time: 20:58:27.513668
remote_file: "harddisk:/giso_image_repo/test.log"

---------------------File Get Response---------------------
RPC end time: 20:58:27.518413
contents: "GNOI \n\n"

hash {
method: MD5
hash: "D\002\375h\237\322\024\341\370\3619k\310\333\016\343"
}

Remove RPC

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
84

YANG Data Models
gNOI RPCs

Remove the specified file from the target.

RPC to 10.105.57.106:57900
RPC start time: 21:07:57.089554
---------------------File Remove Request---------------------
remote_file: "harddisk:/sample.txt"

---------------------File Remove Response---------------------
RPC end time: 21:09:27.796217
File removal harddisk:/sample.txt successful

Reboot RPC

Reloads a requested target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
---------------------Reboot Request---------------------
RPC start time: 21:12:49.811561
method: COLD
message: "Test Reboot"
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {
name: "state"
}
elem {
name: "location"
}
}
---------------------Reboot Request---------------------
RPC end time: 21:12:50.023604

Set Package RPC

Places software package on the target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
---------------------Set Package Request---------------------
RPC start time: 15:33:34.378745
Sending SetPackage RPC
package {
filename: "harddisk:/giso_image_repo/<platform-version>-giso.iso"
activate: true
}
method: MD5
hash: "C\314\207\354\217\270=\021\341y\355\240\274\003\034\334"
RPC end time: 15:47:00.928361

Reboot Status RPC

Returns the status of reboot for the target.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
85

YANG Data Models
gNOI RPCs

RPC to 10.105.57.106:57900
RPC start time: 22:27:34.209473
---------------------Reboot Status Request---------------------
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {
name: "state"
}
elem
name: "location"
}
}

RPC end time: 22:27:34.319618

---------------------Reboot Status Response---------------------
Active : False
Wait : 0
When : 0
Reason : Test Reboot
Count : 0

CancelReboot RPC

Cancels any outstanding reboot
Request :
CancelRebootRequest
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0/CPU0"
}
}
elem {
name: "state"
}
elem {
name: "location"
}
}

CancelRebootResponse

(rhel7-22.24.10) -bash-4.2$

KillProcess RPC

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
86

YANG Data Models
gNOI RPCs

Kills the executing process. Either a PID or process name must be specified, and a termination signal
must be specified.
KillProcessRequest
pid: 3451
signal: SIGNAL_TERM

KillProcessResponse
-bash-4.2$

gNOI Packet Link Qualification
Table 18: Feature History Table

Feature DescriptionRelease
Information

Feature Name

You can now check and assess the reliability of the link speed
and packet drops between the two network devices (generator
and the reflector) by performing the gNOI packet-based link
qualification service.

This can be achieved by sending the packets from the generator
to the reflector, and receiving the looped back packets from
the reflector within a certain tolerance limit.

The link transimmision rate and the link's capacity range for
that interface can be obtained from the following gNSI Packet
Link Qualification RPC messages:

• Capabilities—Minimum and maximum rate of the
transmission link

• Get—Expected rate and actual rate of link transmission

Release 24.2.11gNOI Packet Link
Qualification

The gRPC Network Operations Interface (gNOI) Packet Link Qualification service provides a way to certify
link quality between a generator and a reflector device. The generator device generates test traffic and sends
it out of the requested interface, maintaining counters of the sent, received, errored, and dropped packets. The
reflector device loops back the traffic on the requested interface. The Packet-Based Link Qualification service
verifies that the packets are sent and received on the requested interface. You can obtain the transmission rate
and the link's capacity range for that interface from the gNSI Packet Link Qualification RPC messages:
Capabilities and Get.

To view the packet link qualification specification, see the Github repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
87

YANG Data Models
gNOI Packet Link Qualification

https://github.com/openconfig/gnoi/blob/main/packet_link_qualification/packet_link_qualification.proto

Table 19: Packet Link Qualification (PLQ) RPCs

DescriptionRPC

Fetches the capabilities of the device as a link qualification service. The
capabilities result includes:

• The roles supported on the device (Packet generator, Physical Medium
Dependent (PMD) loopback reflector)

• Information on whether the NTP synchronization is supported or not.

• Information on whether the current device time is synchronized through
NTP or not.

• The Maximum number of results stored per interface

Capabilities

Creates a set of link qualifications on the device.

Each element in a Create message specifies the following parameters:

• A unique qualification ID

• The interface on which to run the qualification

• The endpoint type (the role of the device)

• Role-specific configuration

• Timing information in the form of either NTP-based or RPC-based
timing For more information, see Link Qualifications Based on

Timing table.

Note
Packet generator and PMD loopback roles are supported

The packet injector and ASIC loopback roles are not supported.

Create

Deletes a set of qualifications by their IDs.

Stops all the running qualification tests listed and deletes their records from
the device.

The qualifications are automatically deleted from the device 24 hours either
after successful completion or in the event of any error.

Delete

Gets the status of each of the unique qualification IDs that you specify. For
generator qualifications, it returns the number of packets sent, received,
errored, dropped, and the expected and achieved rate in bytes per second.
This data isn’t present for reflector qualifications.

Get

This RPC lists all the qualifications on the device.List

Link Qualifications Based on Timing

When you run the Create RPC (see table Packet Link Qualification (PLQ) RPCs), it creates a set of link
qualifications based on either it’s NTP-based or RPC-based timing.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
88

YANG Data Models
gNOI Packet Link Qualification

For both NTP-based and RPC-based timings, the qualification start time must be set no earlier than the
minimum setup duration from the current time, as specified in the CapabilitiesRPC (see table Packet Link

Qualification (PLQ) RPCs) response message.

NTP-based timing specifies:

• Specific start time

• Specific end time

• Teardown time

RPC-based timing specifies:

• Presync duration (duration from the current time to when the setup should start)

• Setup duration

• Qualification duration

• Postsync duration (duration from the end of the qualification to when the teardown should start)

• Teardown duration

gNOI Healthz
Table 20: Feature History Table

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: Fixed
Systems (8200 [ASIC: Q200,
P100], 8700 [ASIC: P100, K100]);
Centralized Systems (8600
[ASIC:Q200]); Modular Systems
(8800 [LC ASIC: Q100, Q200,
P100])

With gNOI Healthz, you can
monitor and troubleshoot device
health by collecting logs and
conducting root-cause analysis on
detected issues. This proactive
approach enables early
identification and resolution of
system health problems, thereby
reducing downtime and enhancing
reliability.

For the specification on
gNOI.healthz, see the GitHub
repository.

Release 24.4.1gNOI Healthz

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
89

YANG Data Models
gNOI Healthz

https://github.com/openconfig/gnoi/tree/main/healthz

The gRPC Network Operations Interface (gNOI) Healthz is gRPC service that focuses on the health check,
and monitoring of the network devices. It determines whether all the nodes of a network are fully functional,
degraded, or must be replaced. The gNOI Healthz process involves

• waiting for the health status data from various subsystem components

• inspecting and analyzing health status data to identify any unhealthy entities, and

• collecting logs.

gNOI Healthz, in conjunction with gNMI telemetry, monitors the health of network components.

When a component becomes HEALTHY or UNHEALTHY, a telemetry update is sent for that health event. For more
details about the health event, see gNOI Healthz RPCs . When a system component changes its state to
UNHEALTHY, the intended artifacts (debug logs, core file, and so on) are generated automatically at the time of
the health event.

Router health status updates workflow

1. The client subscribes to the component's OpenConfig path with an ON_CHANGE request and waits for
a health event to occur. When a health event is detected in the router for that component, the client receives
a notification. The client monitors these parameters:

• status: Health, Unhealthy, or Unknown

• last-unhealthy time: Timetsamp of last known healthy state

• unhealthy-count: Number of times the particular component is reported unhealthy

2. When the router receives gNOI Healthz RPCs from gNOI client, it performs these actions and responds
to the gNOI client.

Table 21: gNOI healthz RPCs

The Router...When the gNOI client sends...

retrieves the latest set of health statuses that are associated with a specific
component and its subcomponents.

Get RPC

returns all events that are associated with a device.List RPC

retrieves specific artifacts that are listed by the target system in the List()
or Get() RPC.

Artifact RPC

acknowledges a series of artifacts that are listed by the Acknowledge()
RPC.

Acknowledge RPC

performs intensive health checks that may impact the service, ensuring
they are done intentionally to avoid disruptions.

Check RPC

Verify router health using gNOI RPCs
Monitor health status telemetry of a router using gNOI healthz RPC.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
90

YANG Data Models
Verify router health using gNOI RPCs

http://For%20the%20specification%20on%20gNOI.healthz,%20see%20GitHub%20repository.

Procedure

Step 1 Monitor health state of the router.

Example:
Router# show health status
SNo Component name Health status
----- -- --------------------
1 0_RP0_CPU0-appmgr healthy
2 0_RP0_CPU0-ownershipd healthy

Step 2 Monitor router health with gNOI List RPC by tracking all the events.

Example:

Router# /auto/appmgr/xrhealth/bin/gnoic -a ${MGMT_IP} --port 57400 --insecure -u
cisco -p <password> healthz
list --path "openconfig:/components/component[name=${OC_COMP}]"
WARN[0000] "192.0.1.0" could not lookup hostname: lookup 198.51.100.0.in-addr.arpa.
on
171.70.168.183:53: no such host
target "192.0.1.0:57400":
+-----------------------+---------------------+---+-----------------+
|Target Name | ID | Path

| Status |
|

+-----------------------+---------------------+---+-----------------
| 192.0.1.0:57400 | 1721815320614225976 |
openconfig:components/component[name=0_RP0_CPU0-appmgr] | STATUS_UNHEALTHY |
| 192.0.1.0:57400 | 1721815320614225976 |
openconfig:components/component[name=0_RP0_CPU0-appmgr] | STATUS_UNHEALTHY |
| 192.0.1.0:57400 | 1721815321290718105 |
openconfig:components/component[name=0_RP0_CPU0-appmgr] | STATUS_HEALTHY |
+-----------------------+---------------------+---+-----------------+

+---+---+

Created At |
Artifact ID |

+-----------------------+---------------------+---+

2024-07-24 10:02:00.614225976 +0000 UTC |
0_RP0_CPU0-appmgr-1721815320614225976-58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568|
2024-07-24 10:02:00.614225976 +0000 UTC |
0_RP0_CPU0-appmgr-1721815320614225976-85f9ab33eccf4e48373865f00d8fd24f4e8e4901b49b7809297694f7b57864ea|
2024-07-24 10:02:01.290718105 +0000 UTC |

|
+-----------------------+---------------------+---+

Step 3 Monitor router health with gNOI Get RPC for specific components.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
91

YANG Data Models
Verify router health using gNOI RPCs

Example:

Router# /auto/appmgr/xrhealth/bin/gnoic -a ${MGMT_IP} --port 57400 --insecure -u
cisco -p <password>
healthz get --path "openconfig:/components/component[name=${OC_COMP}]"

WARN[0000] "192.0.1.0" could not lookup hostname: lookup 198.51.100.0.in-addr.arpa.

on 171.70.168.183:53: no such host
target "192.0.1.0:57400":
path : openconfig:components/component[name=0_RP0_CPU0-appmgr]
status : STATUS_HEALTHY
id : 1721815321290718105
acked : false
created : 2024-07-24 10:02:01.290718105 +0000 UTC
expires : 2024-07-31 10:02:01.000290718 +0000 UTC

Router# cd /tmp/
Router/tmp#
Router/tmp# /auto/appmgr/xrhealth/bin/gnoic -a ${MGMT_IP} --port 57400 --insecure
-u cisco -p <password>
healthz artifact --id 0_RP0_CPU0-appmgr-1721815320614225976-
58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568
WARN[0000] "192.0.1.0" could not lookup hostname: lookup 198.51.100.0.in-addr.arpa.

on 171.70.168.183:53: no such host
INFO[0000] 192.0.1.0:57400: received file header for artifactID:
0_RP0_CPU0-appmgr-1721815320614225976-
58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568
id:
"0_RP0_CPU0-appmgr-1721815320614225976-58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568"
file: {
name: "procmgr_event_20240724100205.tar.gz"
path:

"/harddisk:/eem_ac_logs/xrhealth/artifacts/procmgr_event_20240724100205.tar.gz"
mimetype: "application/gzip"
size: 3825
hash: {
method: SHA256
hash:

"\xf5\xa5\xfe]\xc1~Y\xbc-\xe4\xfcJ\xe9r\xb4\x8e\xd2\xe6\x0fvk\x90\xf52\r\xe6ڔ\x83\x80\xc9\xff"

}
}
INFO[0000] received 3825 bytes for artifactID:
0_RP0_CPU0-appmgr-1721815320614225976-58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568

INFO[0000] 192.0.1.0:57400: received trailer for artifactID:
0_RP0_CPU0-appmgr-1721815320614225976-58c4d59caf2e8bd971715eea491048673bf1af290fade112ad0ece654e285568

INFO[0000] 192.0.1.0:57400: received 3825 bytes in total

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
92

YANG Data Models
Verify router health using gNOI RPCs

INFO[0000] 192.0.1.0:57400: comparing file HASH
INFO[0000] 192.0.1.0:57400: HASH OK

gRPC Network Security Interface
Table 22: Feature History Table

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: Fixed
Systems (8200, 8700)(select
variants only*); Modular Systems
(8800 [LC ASIC: P100])(select
variants only*).

*This feature is now supported on:

• 8212-32FH-M

• 8711-32FH-M

• 88-LC1-12TH24FH-E

Release 24.4.1gRPC Network Security Interface

This release implements
authorization mechanisms to
restrict access to gRPC applications
and services based on client
permissions. This is made possible
by introducing an authorization
protocol buffer service for gRPC
Network Security Interface (gNSI).

Prior to this release, the gRPC
services in the gNSI systems could
be accessed by unauthorized users.

This feature introduces the
following change:

CLI:

To view the specification of gNSI,
see Github repository.

Release 7.11.1gRPC Network Security Interface

gRPC Network Security Interface (gNSI) is a repository which contains security infrastructure services
necessary for safe operations of an OpenConfig platform. The services such as authorization protocol buffer
manage a network device's certificates and authorization policies.

This feature introduces a new authorization protocol buffer under gRPC gNSI. It contains gNSI.authz policies
which prevent unauthorized users to access sensitive information. It defines an API that allows the configuration
of the RPC service on a router. It also controls the user access and restricts authorization to update specific
RPCs.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
93

YANG Data Models
gRPC Network Security Interface

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates

By default, gRPC-level authorization policy is provisioned using Secure ZTP. If the router is in zero-policy
mode that is, in the absence of any policy, you can use gRPC authorization policy configuration to restrict
access to specific users. The default authorization policy at the gRPC level can permit access to all RPCs
except for the gNSI.authz RPCs.

If there is no policy specified or the policy is invalid, the router will fall back to zero-policy mode, in which
the default behavior allows access to all gRPC services to all the users if their profiles are configured. If an
invalid policy is configured, you can revert it by loading a valid policy using exec command gnsi load service
authorization policy. For more information on how to create user profiles and update authorization policy
for these user profiles, see How to Update gRPC-Level Authorization Policy, on page 94. Using show gnsi
service authorization policy command, you can see the active policy in a router.

We have introduced the following commands in this release :

• gnsi load service authorization policy: To load and update the gRPC-level authorization policy in a
router.

• show gnsi service authorization policy: To see the active policy applied in a router.

When both gNSI and gNOI are configured, gNSI takes precedence over gNOI. If niether gNSI nor gNOI is
configured, then tls trsutpoint's data is considered for certificate management.

Note

The following RPCs are used to perform key operations at the system level such as updating and displaying
the current status of the authorization policy in a router.

Table 23: Operations

DescriptionRPC

Updates the gRPC-level authorization policy.gNSI.authz.Rotate()

Verifies the authenticity of a user based on the defined policy of the gRPC-level
authorization policy engine.

gNSI.authz.Probe()

Shows the current instance of the gRPC-level authorization policy, including the version
and date of creation of the policy.

gNSI.authz.Get()

How to Update gRPC-Level Authorization Policy
gRPC-level authorization policy is configured by default at the time of router deployment using secure ZTP.
You can update the same gRPC-level authorization policy using any of two the following methods:

• Using gNSI Client.

• Using exec command.

Updating the gRPC-Level Authorization Policy in the Router Using gNSI Client

Before you start

When a router boots for the first time, it should have the following prerequisites:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
94

YANG Data Models
How to Update gRPC-Level Authorization Policy

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/b-setup-and-upgrade-cisco8k/secure-ztp.html

• The gNSI.authz service is up and running.

• The default gRPC-level authorization policy is added for all gRPC services.

• The default gRPC-level authorization policy allows access to all RPCs.

The following steps are used to update the gRPC-level authorization policy:

1. Initiate the gNSI.authz.Rotate() streaming RPC. This step creates a streaming connection between the
router and management application (client).

Only one gNSI.authz.Rotate() must be in progress at a time. Any other RPC request is rejected by the
server.

Note

2. The client uploads new gRPC-level authorization policy using the UploadRequest message.

• There must be only one gRPC-level authorization policy in the router. All the policies must be defined
in the same gRPC-level authorization policy which is being updated. As gNSI.authz.Rotate()method
replaces all previously defined or used policies once the finalize message is sent.

• The upgrade information is passed to the version and the created_on fields. These information are not
used by the gNSI.authz service. It is designed to help you to track the active gRPC-level authorization
policy on a particular router.

Note

3. The router activates the gRPC-level authorization policy.

4. The router sends the UploadResponse message back to the client after activating the new policy.

5. The client verifies the new gRPC-level authorization policy using separate gNSI.authz.Probe() RPCs.

6. The client sends the FinalizeRequest message, indicating the previous gRPC-level authorization policy
is replaced.

It is not recommended to close the stream without sending the finalize message. It results in the abandoning
of the uploaded policy and rollback to the one that was active before the gNSI.authz.Rotate() RPC started.

Note

Below is an example of a gRPC-level authorization policy that allows admins, V1,V2,V3 and V4, access to
all RPCs that are defined by the gNSI.ssh interface. All the other users won't have access to call any of the
gNSI.ssh RPCs:
{
"version": "version-1",
"created_on": "1632779276520673693",
"policy": {
"name": "gNSI.ssh policy",
"allow_rules": [{
"name": "admin-access",
"source": {
"principals": [
"spiffe://company.com/sa/V1",

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
95

YANG Data Models
How to Update gRPC-Level Authorization Policy

"spiffe://company.com/sa/V2"
]

},
"request": {
"paths": [
"/gnsi.ssh.Ssh/*"

]
}

}],
"deny_rules": [{
"name": "sales-access",
"source": {
"principals": [
"spiffe://company.com/sa/V3",
"spiffe://company.com/sa/V4"

]
},
"request": {
"paths": [
"/gnsi.ssh.Ssh/MutateAccountCredentials",
"/gnsi.ssh.Ssh/MutateHostCredentials"

]
}

}]
}

}

Updating the gRPC-Level Authorization Policy file Using Exec Command

Use the following steps to update the authorization policy in the router.

1. Create the users profiles for the users who need to be added in the authorization policy. You can skip this
step if you have already defined the user profiles.

The following example creates three users who are added in the authorization policy.

Router(config)#username V1
Router(config-un)#group root-lr
Router(config-un)#group cisco-support
Router(config-un)#secret x
Router(config-un)#exit
Router(config)#username V2
Router(config-un)#group root-lr
Router(config-un)#password x
Router(config-un)#exit
Router(config)#username V3
Router(config-un)#group root-lr
Router(config-un)#password x
Router(config-un)#commit

2. Enable tls-mutual to establish the secure mutual between the client and the router.

Router(config)#grpc
Router(config-grpc)#port 0
Router(config-grpc)#tls-mutual
Router(config-grpc)#certificate-authentication
Router(config-grpc)#commit

3. Define the gRPC-level authorization policy.

The following sample gRPC-level authorization policy defines authorization policy for the users V1, V2
and V3.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
96

YANG Data Models
How to Update gRPC-Level Authorization Policy

{
"name": "authz",
"allow_rules": [

{
"name": "allow all gNMI for all users",
"source": {

"principals": [
"*"

]
},
"request": {

"paths": [
"*"

]
}

}
],
"deny_rules": [

{
"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V1"

]
},
"request": {

"paths": [
"/gnmi.gNMI/Get".

]
}

},

{
"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V2"

]
},
"request": {

"paths": [
"/gnmi.gNMI/Get"

]
}

},
{

"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V3"

]
},
"request": {

"paths": [
"/gnmi.gNMI/Set"

]
}

}
]

}

4. Copy the gRPC-level authorization policy to the router.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
97

YANG Data Models
How to Update gRPC-Level Authorization Policy

The following example copies the gNSI Authz policy to the router:
-bash-4.2$ scp test.json V1@192.0.2.255:/disk0:/
Password:
test.json

100% 993 161.4KB/s 00:00
-bash-4.2$

5. Activate the gRPC-level authorization policy to the router.

The following example loads the policy to the router.

Router(config)#gnsi load service authorization policy /disk0:/test.json
Successfully loaded policy

Verification

Use the show gnsi service authorization policy to verify if the policy is active in the router.
Router#show gnsi service authorization policy
Wed Jul 19 10:56:14.509 UTC{

"version": "1.0",
"created_on": 1700816204,
"policy": {

"name": "authz",
"allow_rules": [

{
"name": "allow all gNMI for all users",
"request": {

"paths": [
"*"

]
},
"source": {

"principals": [
"*"

]
}

}
],
"deny_rules": [

{
"name": "deny gNMI set for oper users",
"request": {

"paths": [
"/gnmi.gNMI/*"

]
},
"source": {

"principals": [
"User1"

]
}

}
]

}
}

In the following example, User1 user tries to access the get RPC request for which the permission is denied
in the above authorization policy.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
98

YANG Data Models
How to Update gRPC-Level Authorization Policy

bash-4.2$./gnmi_cli -address 198.51.100.255 -ca_crt
certs/certs/ca.cert -client_crt certs/certs/User1.pem -client_key
certs/certs/User1.key -server_name ems.cisco.com -get -proto get-oper.proto

Output

E0720 14:49:42.277504 26473 gnmi_cli.go:195]
target returned RPC error for Get("path:{origin:"openconfig-interfaces"
elem:{name:"interfaces"}
elem:{name:"interface" key:{key:"name" value:"HundredGigE0/0/0/0"}}}
type:OPERATIONAL encoding:JSON_IETF"):
rpc error: code = PermissionDenied desc = unauthorized RPC request rejected

gNSI Acctz Logging
Table 24: Feature History Table

Feature DescriptionRelease
Information

Feature
Name

Introduced in this release on: Fixed Systems(8200, 8700); Centralized Systems
(8600); Modular Systems (8800 [LC ASIC: Q100, Q200, P100])

You can now log and monitor AAA (Authentication, Authorization, and
Accounting) accounting of gRPC operations and CLI accounting data through
gNSI Acctz for effective management of network for better performance and
resource utilization. You can also configure the number of gNSI accounting
records that can be streamed.

Previously, you could monitor the AAA accounting data through syslog only.

The feature introduces these changes:

CLI:

• grpc aaa accounting queue-size

• show gnsi acctz statistics

To view the specification of gNSI Accounting (Acctz) RPCs and messages,
see the Github repository.

Release 24.3.1gNSI
Acctz
Logging

gNSI Acctz Data Logging

The gNSI accounting (Acctz) is a gNSI accounting protocol that collects and transfers accounting records
from a router to a remote collection service over a gRPC transport connection.

Starting from Release 24.3.1, you can log gRPC AAA accounting data through gNSI accounting (Acctz). The
gNSI Acctz data is logged, stored in accounting records, and sent to gNSI client for monitoring purposes.
These gNSI Acctz accounting records contain

• users' login or logout times,

• network access resources such as interface IP and port, and

• duration of each session.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
99

YANG Data Models
gNSI Acctz Logging

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3134102730
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2296165079
https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto

The gNSI Acctz logging can be done using the RecordSubscribe() gRPC request to a router. For more
information on the RecordSubscribe() RPC, see the GitHub repository.

gNSI Acctz Logging Stream Capacity

The gNSI Acctz logs are recorded in a queue, maintaining a history of the 10 most recent records. When the
accounting queue is full and no gNSI Acctz collectors are connected, the stream drops the records. Besides
the 10 records stored for streaming, up to 512 additional records are stored during processing. As new records
arrive, the data stream continues until the gNSI session ends or an error occurs, such as a client disconnection
due to network issues or the server going down. If the server's output buffer remains full for an extended
period, new records are dropped until the collector starts receiving them.

When the queue reaches its full capacity, the system automatically replaces the oldest records with the newest
ones. The router then transmits this logged information through gNSI to gNSI client for real-time monitoring
purposes. You can configure the queue size using the grpc aaa accounting queue-size command.

Supported Records for gNSI Acctz Logging

gNSI Acctz logging system supports Command and gRPC service records.

Table 25: CLI and gRPC Accounting Records

gRPC Services Accounting RecordsCommand Services Accounting Records

The gRPC accounting records are generated for the
RPCs executed by gRPC services and sent to gNSI
Acctz collectors. The details logged include:

• Session Info: remote/local IP addresses,
remote/local ports, and channel ID.

• Authentication details: Identity and privilege
level.

• RPC Service Request: Service type, RPC name,
payload, and configuration metadata.

• gRPC Service Status: PERMIT/DENY.

• Timestamp: The time at which the event was
generated.

The command accounting records are generated for
the commands executed in CLImode and sent to gNSI
Acctz collectors. The details logged include:

• Session Info: remote/local IP addresses,
remote/local ports, and channel ID.

• Authentication details: Identity, privilege level,
authentication status (PERMIT/DENY), and the
cause of denial (if applicable).

• Command andCommand status: authentication
status (PERMIT/DENY).

• Timestamp: The time when the event was
generated.

Default Behavior and Verification of gNSI Acctz Logging

By default, gNSI Acctz records are logged when the configuration is enabled. You can verify the gNSI Acctz
using show gnsi state, show gnsi acctz statistics, and show aaa accounting statistics commands.

Configure gNSI Acctz Logging
Monitor AAA information through gNSI Acctz logs.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
100

YANG Data Models
Configure gNSI Acctz Logging

https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/authentication-authorization-and-accounting-commands.html#wp2834182384

Procedure

Step 1 Monitor gNSI state in the router.

Example:
Router# show gnsi state
Wed Jun 26 09:26:39.035 UTC
----------------GNSI state--------------
Global:

Main Thread cerrno : Success
Acctz Thread cerrno : Success
State : Active
RDSFS State : Active

Step 2 Obtain gRPC port number.

Example:
show grpc
Tue Aug 13 14:21:50.995 IST

Server name : DEFAULT
Address family : dual
Port : 57400

Service ports
gNMI : none
P4RT : none
gRIBI : none

DSCP : Default
TTL : 64
VRF :
Server : enabled
TLS : disabled
TLS mutual : disabled
Trustpoint : none
Certificate Authentication : disabled
Certificate common name : ems.cisco.com
TLS v1.0 : disabled
Maximum requests : 128
Maximum requests per user : 10
Maximum streams : 32
Maximum streams per user : 32
Maximum concurrent streams : 32
Memory limit (MB) : 1024
Keepalive time : 30
Keepalive timeout : 20
Keepalive enforcement minimum time : 300

TLS cipher suites
Default : none
Default TLS1.3 : aes_128_gcm_sha256

: aes_256_gcm_sha384
: chacha20_poly1305_sha256

Enable : none
Disable : none

Operational enable : none

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
101

YANG Data Models
Configure gNSI Acctz Logging

Operational disable : none
Listen addresses : ANY

Step 3 Configure gNSI queue size.

Example:
Router# configure
Router(config)# grpc aaa accounting queue-size 30
Router(config)# end

Step 4 Monitor gNSI Acctz statistics in the router.

Example:
Router# show gnsi acctz statistics
Tue Aug 13 05:57:24.210 UTC
SentToAAA Queue:
Grpc services:
GNMI: 4998 sent, 0 dropped
GNOI: 0 sent, 0 dropped
GNSI: 2 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped

Stats:
Total Sent: 5000
Total Drops: 0

Streams:
Grpc services:
GNMI: 4996 sent, 2 dropped
GNOI: 0 sent, 0 dropped
GNSI: 1 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped

Stats:
Total Sent: 4997
Total Drops: 2

Cmd services:
CLI: 3 sent, 0 dropped

Stats:
Total Sent: 3
Total Drops: 0

Router#

Step 5 Provide port and IP address to the Acctz gNSI client.

Example:
acctz_collector -server_addr 192.0.2.111:57400 -username <user name> -password <passwod> -dieafter
600

--------------- gSNI Remote Collector ---------------
2024/08/25 22:59:13 Connecting to gNSI Server.
2024/08/25 22:59:13 gNSI Server connected.
2024/08/25 22:59:13 Started new acctz client.
2024/08/25 22:59:13 Initiate Acctz RecordSubscribe with server .
2024/08/25 22:59:13 Stream started
2024/08/25 22:59:13 Waiting for response from server.

Step 6 Verify the accounting record from the router.

Example:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
102

YANG Data Models
Configure gNSI Acctz Logging

gNSI Acctz RPC RecordSubscribe() response to the Acctz gRPC client

session_info:
{
local_address:"192.0.2.111"
local_port:57400
remote_address:"192.0.2.1"
remote_port:44374
ip_proto:6
user:
{
identity:"lab"

}
}
timestamp:
{
seconds:1718971022 nanos:105825300

}
grpc_service:
{
service_type:GRPC_SERVICE_TYPE_GNSI
rpc_name:"/gnsi.acctz.v1.AcctzStream/RecordSubscribe" payload_istruncated:true
authz:
{
status:AUTHZ_STATUS_PERMIT

}
}

AAA Accounting Statistics

Router# show aaa accounting statistics
Sat Aug 17 17:10:43.055 UTC
Successfully logged events:
Total events: 0
XR CLI: 0
XR SHELL: 0
GRPC:
GNMI: 0
GNSI: 2
GNOI: 0
GRIBI: 0
P4RT: 0
SLAPI: 0
NETCONF: 0
SysAdmin:
CLI: 0
SHELL: 0
Host:
SHELL: 0

Errors:
Invalid requests: 0

Max. records in buffer: 100
Total records in buffer: 0
Router#

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
103

YANG Data Models
Configure gNSI Acctz Logging

Data logging with gNSI AcctzStream service
Table 26: Feature History Table

Feature DescriptionRelease
Information

Feature Name

Introduced in this release on: Fixed Systems(8200, 8700); Centralized
Systems (8600); Modular Systems (8800 [LC ASIC: Q100, Q200,
P100]).

This feature replaces the existing bi-directional data streaming service,
Acctz, with the new server-streaming service, AcctzStream. In this
unidirectional data streaming service, while the router continues to send
accounting records to the collector (until the connection is terminated),
the collector, on the other hand, sends only the timestamp on its initial
connection with the router. With this feature, you can configure the
maximummemory allocated for cached accounting history records thus
ensuring effective network optimization and resource utilization.

The feature introduces these changes:

CLI:

• grpc aaa accounting history-memory

For specifications on the gNSI Accounting (AcctzStream) RPCs and
messages, refer to the Github repository.

Release 24.4.1Data logging with
gNSI AcctzStream
service

Starting from Cisco IOSXRRelease 24.4.1, the gNSI AcctzStream server-streaming service is used to collect
and transfer accounting records from a router to a remote collection service over a gRPC transport connection,
similar to the depricated gNSI Acctz Logging protocol.

The collectors request for logs using the RecordSubscribe() gRPC from the gNSI AcctzSteam service running
on the router. The logs are sent to the collectors through the RecordResponse() gRPC.

This feature has introduced the new grpc aaa accounting history-memomycommand used to configure the
maximum memory allocated for cached accounting history records. Use this command with the grpc aaa
accounting queue-size configuration to effectively limit the EMSD memory used by cached accounting
history records.

Configure gNSI AcctzStream logging
Monitor AAA information through gNSI AcctzStream logs.

Procedure

Step 1 Monitor gNSI state in the router.

Example:
Router# show gnsi state
Thu Sep 12 12:06:44.035 UTC
----------------GNSI state--------------

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
104

YANG Data Models
Data logging with gNSI AcctzStream service

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1462164900
https://github.com/openconfig/gnsi/blob/main/acctz/acctz.proto
https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto
https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto#L256

Global:
Main Thread cerrno : Success
Acctz Thread cerrno : Success
State : Active
RDSFS State : Active

Step 2 Obtain gRPC port number.

Example:
show grpc
Thu Sep 12 13:23:06.022 UTC

Server name : DEFAULT
Address family : dual
Port : 57400

Service ports
gNMI : none
P4RT : none
gRIBI : none

DSCP : Default
TTL : 64
VRF :
Server : enabled
TLS : disabled
TLS mutual : disabled
Trustpoint : none
Certificate Authentication : disabled
Certificate common name : ems.cisco.com
TLS v1.0 : disabled
Maximum requests : 128
Maximum requests per user : 10
Maximum streams : 32
Maximum streams per user : 32
Maximum concurrent streams : 32
Memory limit (MB) : 1024
Keepalive time : 30
Keepalive timeout : 20
Keepalive enforcement minimum time : 300

TLS cipher suites
Default : none
Default TLS1.3 : aes_128_gcm_sha256

: aes_256_gcm_sha384
: chacha20_poly1305_sha256

Enable : none
Disable : none

Operational enable : none
Operational disable : none

Listen addresses : ANY

Step 3 Configure gNSI history memory.

Example:
Router# configure
Router(config)# grpc aaa accounting history-memory 20
Router(config)# end

Step 4 Configure gNSI queue size.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
105

YANG Data Models
Configure gNSI AcctzStream logging

Example:
Router# configure
Router(config)# grpc aaa accounting queue-size 30
Router(config)# end

Step 5 Monitor gNSI Acctz statistics in the router.

Example:
Router# show gnsi acctz statistics
Thu Sep 12 13:56:18.043 UTC
SentToAAA Queue:
Grpc services:
GNMI: 4998 sent, 0 dropped
GNOI: 0 sent, 0 dropped
GNSI: 2 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped

Stats:
Total Sent: 5000
Total Drops: 0

Streams:
Grpc services:
GNMI: 4996 sent, 2 dropped
GNOI: 0 sent, 0 dropped
GNSI: 1 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped

Stats:
Total Sent: 4997
Total Drops: 2

Cmd services:
CLI: 3 sent, 0 dropped

Stats:
Total Sent: 3
Total Drops: 0

Router#

Step 6 Provide port and IP address to the Acctz gNSI client.

Example:
acctz_collector -server_addr 192.0.2.111:57400 -username <user name> -password <passwod> -dieafter
600

--------------- gSNI Remote Collector ---------------
2024/08/25 22:59:13 Connecting to gNSI Server.
2024/08/25 22:59:13 gNSI Server connected.
2024/08/25 22:59:13 Started new acctz client.
2024/08/25 22:59:13 Initiate Acctz RecordSubscribe with server .
2024/08/25 22:59:13 Stream started
2024/08/25 22:59:13 Waiting for response from server.

Step 7 Verify the accounting record from the router.

Example:

gNSI AcctzStream RPC RecordSubscribe() response to the Acctz gRPC client

session_info:
{

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
106

YANG Data Models
Configure gNSI AcctzStream logging

local_address:"192.0.2.111"
local_port:57400
remote_address:"192.0.2.1"
remote_port:44374
ip_proto:6
user:
{
identity:"lab"

}
}
timestamp:
{
seconds:1718971022 nanos:105825300

}
grpc_service:
{
service_type:GRPC_SERVICE_TYPE_GNSI
rpc_name:"/gnsi.acctz.v1.AcctzStream/RecordSubscribe" payload_istruncated:true
authz:
{
status:AUTHZ_STATUS_PERMIT

}
}

AAA Accounting Statistics

Router# show gnsi accounting statistics
Acctz History Buffer:

Total record: 200
Total history truncation: 10

Cmd service records:
Shell: 0
Cli: 0
Netconf: 0

Grpc service records:
GNMI: 0
GNOI: 0
GNSI: 0
GRIBI: 0
P4RT: 0

History Snapshot:
Max Memory size: 200 MB
Memory used: 8 MB
Max number of records: 100
Total number of records present: 16

gRPC Accounting Queue:
Grpc services:
GNMI: 0 sent, 0 dropped, 0 truncated
GNOI: 0 sent, 0 dropped, 0 truncated
GNSI: 0 sent, 0 dropped, 0 truncated
GRIBI: 0 sent, 0 dropped, 0 truncated
P4RT: 0 sent, 0 dropped, 0 truncated

Stats:
Queue buffer size: 100 MB
Queue buffer used: 0 MB
Queue size: 1
Queue used: 0
Queue enqueue: 0
Queue dequeue: 0
Queue drops: 0
Queue max time: 0 usec
Queue min time: 0 usec
Queue avg time: 0 usec

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
107

YANG Data Models
Configure gNSI AcctzStream logging

Errors:
Queue init failure: 0
Queue update failure: 0
Queue dequeue failure: 0
Queue invalid parameters: 0
Queue memory limit: 0
Queue size limit: 0

SendtoAAA Accounting Queue:
Grpc services:
GNMI: 0 sent, 0 dropped, 0 truncated
GNOI: 0 sent, 0 dropped, 0 truncated
GNSI: 0 sent, 0 dropped, 0 truncated
GRIBI: 0 sent, 0 dropped, 0 truncated
P4RT: 0 sent, 0 dropped, 0 truncated

Stats:
Queue buffer size: 100 MB
Queue buffer used: 0 MB
Queue size: 1
Queue used: 0
Queue enqueue: 0
Queue dequeue: 0
Queue drops: 0
Queue max time: 0 usec
Queue min time: 0 usec
Queue avg time: 0 usec

Errors:
Queue init failure: 0
Queue update failure: 0
Queue dequeue failure: 0
Queue invalid parameters: 0
Queue memory limit: 0
Queue size limit: 0

Cmd Accounting Queue:
Cmd services:
Shell: 0 sent, 0 dropped, 0 truncated
Cli: 0 sent, 0 dropped, 0 truncated
Netconf: 0 sent, 0 dropped, 0 truncated

Stats:
Queue buffer size: 100 MB
Queue buffer used: 0 MB
Queue size: 1
Queue used: 0
Queue enqueue: 0
Queue dequeue: 0
Queue drops: 0
Queue max time: 0 usec
Queue min time: 0 usec
Queue avg time: 0 usec

Errors:
Queue init failure: 0
Queue update failure: 0
Queue dequeue failure: 0
Queue invalid parameters: 0
Queue memory limit: 0
Queue size limit: 0

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
108

YANG Data Models
Configure gNSI AcctzStream logging

gNSI Credentialz Update
Table 27: Feature History Table

DescriptionRelease
Information

Feature Name

To improve communication confidentiality and security, you
can now update or rotate account-specific and host-specific
SSH credentials on a router. You can access the latest SSH
credentials through the gNMI credentialz RPC. The updated
SSH credentials encompass passwords, host keys, and
certificates.

To view the specification of gNSI credentialz RPCs and
messages, see the Github repository.

Release 24.2.11gNSICredentialzUpdate

Rotation is the process of changing or updating SSH credentials such as passwords, keys, or certificates in a
network. You can now update the account-related and host-related SSH credentials through the gNSI credentialz
RPC when the router is up and running.

gNSI Rotate Credentialz RPC
Starting from Release 24.2.1, Cisco IOS XR supports four RPCs to change the existing SSH credentials.

For More InformationRun This WhengNSI Rotate Credentialz RPC

See, Rotate Account CredentialsYou want to specify an SSH
authentication service policy for the
network element.

If the policy is valid, it replaces the
existing policy.

RotateAccountCredentials

See, Rotate Host ParametersYou want to change both the
Certificate Authority (CA) public
key and the key and certificate used
by the SSH server.

RotateHostParameters

See, CanGenerateKeyYou want to check whether the
target can generate a public or
private key pair.

CanGenerateKey

See, GetPublicKeyYou want to get the current public
keys from the host. It returns each
configured key in the provided list.

GetPublicKeys

Rotate Account Credentials

This RPC automates secure credential rotation on routers, updating passwords and SSH keys to enforce
security and prevent unauthorized access. It updates the user-specific authorized keys, authorized principles,
invalidates old credentials, logs activities, and notifies stakeholders, enhancing overall network security.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
109

YANG Data Models
gNSI Credentialz Update

https://github.com/openconfig/gnsi/blob/main/credentialz/credentialz.proto

Prerequisites

• Configure a user account on your router.

• Configure SSH Version 2.

The following table outlines the messages that Rotate Account Credentials RPC supports, along with their
descriptions.

DescriptionMessage

This message defines the authorized key list for password-less SSH accepted
by the router's SSH service.

The gNSI client dispatches an AuthorizedKeysRequest to the router to
update or replace credentials on the SSH service. The router responds with
a AuthorizedKeysResponse message to the gNSI client.

It supports the following keys:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

AuthorizedKeysRequest

This message performs a user authorization check. User authorization can
be done using both static and dynamic methods.

Static Authorization: You can perform static authorization based on a
principal name (unique identifier for a user) using Cisco SSH. For static
authorization, use the AuthorizedUsersRequest message.

Dynamic authorization: For dynamic authorization, use the
AuthorizedPrincipalCheckRequest message. For details, see Rotate Host
Parameters, on page 110

CiscoSSH supports the user authorization using AuthorizedPrincipalsFile.
AuthorizedPrincipalsFile contains pairs of account names and their
corresponding principal names that the router recognizes for certificate-based
authentication. For more details, see AuthorizedPrincipalsFile

AuthorizedUsersRequest

Rotate Host Parameters

The RotateHostParametersRPC updates and verifies host account credentials on network devices to enhance
security and ensure stable SSH access. If updates fail, the system either adopts new credentials after successful
validation or reverts to the old ones to maintain uninterrupted access. The router automatically falls back to
prevent lockouts and preserve network integrity.

Prerequisites

• Configure a user account on your router.

• Configure SSH Version 2.

The following table outlines the messages that Rotate Host Parameters RPC supports, along with their
descriptions.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
110

YANG Data Models
Rotate Host Parameters

https://man.openbsd.org/sshd_config#AuthorizedPrincipalsFile

DescriptionMessage

The SSH server uses the CA public key message to verify the gNSI client
certificates presented during connection establishment.

Without Host Identity Based Authorization (HIBA), the following keys are
supported:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

CA public key

The Server keys message includes host keys and router certificates that
serve as credentialz for the gNSI client.

If the host keys are generated externally, they must be specified in the Server
keys request.

It supports the following keys:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

It supports the following router certificates:

• Router certificates with HIBA Support

• ssh-rsa-cert-v01@openssh.com

• Router certificates without HIBA support:

• ecdsa-sha2-nistp256-cert-v01@openssh.com

• ecdsa-sha2-nistp521-cert-v01@openssh.com

• ssh-ed25519-cert-v01@openssh.com

• rsa-sha2-256-cert-v01@openssh.com

• rsa-sha2-512-cert-v01@openssh.com

Server keys

The Generate Keymessage is used for host key management in SSH.When
the host keys are generated by the router, this message triggers the creation
of new host keys for SSH host keymanagement. The Generate keymessage
supports the following keys:

It supports the following keys:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

Generate key

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
111

YANG Data Models
Rotate Host Parameters

mailto:ecdsa-sha2-nistp256-cert-v01@openssh.com
mailto:ecdsa-sha2-nistp521-cert-v01@openssh.com
mailto:ssh-ed25519-cert-v01@openssh.com
mailto:rsa-sha2-256-cert-v01@openssh.com
mailto:rsa-sha2-512-cert-v01@openssh.com

DescriptionMessage

The AllowedAuthenticationRequest message specifies the permissible
authentication methods for the gNSI client authentication.

The supported authentication methods are as follows:

• Keyboard interactive

• Password-based

• Pubkey-based

• OpenSSH certificate-based

• Public key-based

By default, the SSH server allows all authentication methods.

AllowedAuthenticationRequest

The AuthorizedPrincipalCheckRequest message supports the dynamic
authorization of the user against the principal name using the OpenSSH or
CiscoSSH.

Setting the TOOL_HIBA_DEFAULT flag prompts the router to use the
HIBA binary for dynamic authorization. Un setting the HIBA_DEFAULT
flag switches the router to use a static authorization.

Dynamic Authorization: You can enforce the user for authorization check
using HIBA.

Note
The support is only for ssh-rsa-cert-v01@openssh.com

CiscoSSH supports AuthorizedPrincipalCheck using
AuthorizedPrincipalsCommand and AuthorizedPrincipalsCommandUser

AuthorizedPrincipalsCommand:

This command generates the list of allowed certificate principals by executing
a HIBA binary (By setting the TOOL_HIBA_DEFAULT flag).

AuthorizedPrincipalsCommandUser:

This command specifies the user account under which the system executes
the AuthorizedPrincipalsCommand. For more details on the specification,
see AuthorizedPrincipalsCommandUser

AuthorizedPrincipalCheckRequest

CanGenerateKey

This RPC checks if the router can generate a public or private key pair.

It supports the following key pairs:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
112

YANG Data Models
CanGenerateKey

http://ssh-rsa-cert-v01@openssh.com
https://man.openbsd.org/sshd_config#AuthorizedPrincipalsCommandUser

GetPublicKey

This RPC gets the available public keys from the router and displays them. It supports the following keys:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

Manage certificates using Certz.proto
Table 28: Feature History Table

Feature DescriptionRelease InformationFeature Name

Instead of using multiple RPCs,
Certz.proto provides a bidirectional
Rotate RPC to replace, revoke, or
load a certificate. It also provides
additional APIs to install Public
Key Infrastructure (PKI) entities
such as like identity certificates,
trust-bundles, and Certificate
Revocation Lists (CRLs) for a
gRPC Server.

This feature introduces the
following changes:

CLI:

• grpc gnsi service certz
ssl-profile-id

• show grpc certificate

Yang Data Models:

• Cisco-IOS-XR-man-ems-cfg.yang
(see Github, YANG Data
Models Navigator)

Release 24.1.1Manage certificates using
Certz.proto

Certz RPCs

The Certz RPCs are specific methods used for executing operations on the certificate that resides in the target
device. The certz.proto file is available in the Github repository.

In cert.proto, a certificate identifier differentiates between leaf certificates. However, the CA bundle lacks an
identifier, meaning a new request to load a bundle could overwrite the existing one. On the other hand, in
certz.proto, entities like Certificate, CA bundle, key, CRL, and authentication policy are tied to a unique SSL
profile.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
113

YANG Data Models
GetPublicKey

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2880688975
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2880688975
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1676784286
https://github.com/openconfig/gnsi/tree/main/certz
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://github.com/openconfig/gnsi/tree/main/certz

In cert.proto, a certificate identifier differentiates between leaf certificates. However, the CA bundle lacks an
identifier, meaning a new request to load a bundle could overwrite the existing one. On the other hand, in
certz.proto, entities like Certificate, CA bundle, key, CRL, and authentication policy are tied to a unique SSL
profile.

The certz.proto differs from the cert.proto in the way that it handles the upload of all entities.While in cert.proto,
separate RPCs are used to replace, load, and revoke a certificate, in certz.proto, a single Rotate() RPC is used
to upload all entities at once. This includes the certificate, the key, the CA bundle, and the CRL.

In addition to these features, certz.proto also provides support for different cryptographic algorithms, including
Rivest-Shamir-Adleman (RSA), Elliptic Curve Digital Signature Algorithm (ECDSA), and ED25519, a
public-key signature system.

These functionalities make certz.proto a comprehensive solution for managing SSL profiles, providing a
streamlined process for handling cryptographic entities and algorithms.

If neither cert.proto nor certz.proto is configured, then tls trustpoint data is considered for certificate
management.

Note

The following table describes the RPCs supported under Certz.proto.

Table 29: Certz RPCs

DescriptionRPC

AddProfile is part of SSL profile management. It allows adding a new SSL profile. When
an SSL profile is added, all its elements, that is, certificate, CA trusted bundle and a set
of certificate revocation lists are NULL/Empty. So, before an SSL profile can be used
these entities have to be 'rotated' using the `Rotate()` RPC.

Note
An attempt to add an already existing profile is rejected with an error.

AddProfile

Rotate replaces/adds an existing device certificate and/or CA certificates (trust bundle)
or/and a certificate revocation list bundle on the target. The new device certificate can be
created from a target-generated or client-generated CSR (Certificate Signing Request). In
the latter case, the client must provide the corresponding private key with the signed
certificate.

Rotate

DeleteProfile is part of SSL profile management. It allows for removing an existing SSL
profile.

Note
An attempt to delete a not existing profile results in an error. The profile used by the gRPC
server can’t be deleted and an attempt to remove it will be rejected with an error.

DeleteProfile

GetProfileList is part of SSL profile management. It allows for retrieving a list of IDs of
SSL profiles present on the target.

GetProfileList

An RPC to ask a target if it can generate a CSR.CanGenerateCSR

SSL Profile

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
114

YANG Data Models
Manage certificates using Certz.proto

An SSL profile is a named set of SSL settings that determine how end-user systems connect to or from
SSL-based applications or interfaces. The settings in an SSL profile include information about the version of
SSL/TLS to be used, certificates, keys, and other parameters related to SSL/TLS communication. By using
profiles, administrators can manage and apply these settings more easily across multiple applications or
connections.

Here are some key-points regarding SSL profile:

• SSL profiles logically groups certificate, private key, Certificate Authority chain of certificates (a.k.a. a
CA trust bundle) and a list of Certificate Revocation Lists into a single set that then can be assigned to
a gRPC server.

• There’s at least one profile present on a target - the one that is used by the gRPC server. Its ID is gNxI
but when the ssl_profile_id field in the RotateCertificateRequest message isn’t set (or set to an empty
string) it also refers to this SSL profile by default.

• You can’t remove the gRPC SSL profile (gNxI).

Configure gNSI Certz

Before you begin

• Ensure you've created and stored SSL-Profile at cd/misc/config/grpc/gnsi/certz/ssl_profiles/

Procedure

Step 1 Create SSL-Profile using AddProfile RPC.
Step 2 Rotate SSL-profile using Rotate RPC. You can't rotate SSL-profile using a command line interface.
Step 3 Activate the profile using grpc gnsi service certz ssl-profile-id.

Example:

Router (config-grpc) #gnsi service certz profile ssl-profile id <ssl-profile-name>

Step 4 Verify that certz.proto is configured using the show grpc certificate.

Example:
Router#show grpc certificate
Certificate:

Data:
Version: 3 (0x2)
Serial Number: 32 (0x20)
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN=localhost,O=OpenConfig,C=US
Validity

Not Before: Nov 8 08:49:38 2023 GMT
Not After : Mar 22 08:49:38 2025 GMT

Subject: CN=ems,O=OpenConfig,C=US
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public-Key: (4096 bit)
Modulus:

00:ea:6a:6c:25:be:9f:15:71:ce:74:89:03:ec:ef:
0b:3b:de:58:a8:7e:28:b8:cf:b3:82:91:b4:5c:42:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
115

YANG Data Models
Configure gNSI Certz

e7:d8:28:98:35:bd:35:60:a7:4e:f8:77:02:46:5f:
27:a4:16:cf:3c:e3:24:28:69:9c:22:1e:e3:52:96:
71:87:7c:40:0c:1f:dd:30:ea:dc:40:ca:93:00:54:
5e:de:20:54:5b:f4:2f:9f:19:6f:71:61:28:69:3d:
97:26:ab:e1:5f:53:3c:f1:a2:c3:14:f4:01:90:1a:
e3:08:7b:51:c9:5d:aa:6d:eb:99:a4:08:97:d3:72:
8c:86:a3:f3:b3:77:10:72:e7:a9:3b:fc:38:65:3d:
41:1a:f5:cf:3e:a0:d8:17:d6:d5:53:86:49:a3:dc:
cc:3a:d9:6d:46:25:b0:f9:3b:98:fa:2f:98:09:08:
51:ac:2c:b1:43:c4:b7:96:3e:4e:4e:a6:a5:36:1f:
1f:0f:6a:6a:1a:ea:72:6e:74:90:21:05:fb:26:df:
81:0d:96:e7:13:94:62:2b:ce:3c:7c:de:32:f4:d9:
fa:24:ce:f5:b2:0f:d3:f7:4b:6b:ee:bd:cf:ac:a6:
ed:69:37:fc:d3:4f:3b:46:8b:1b:62:4d:3b:60:30:
74:68:50:4e:48:35:5f:15:66:9a:01:7c:37:1f:e1:
5a:8a:d9:c0:2c:3e:12:fd:71:30:13:b8:b7:16:98:
03:27:6d:45:c4:0f:34:fd:f1:aa:29:8e:c1:63:ac:
57:04:f6:a7:83:83:06:45:dc:0f:f9:de:f9:1e:b6:
d8:5a:bc:3a:98:f8:ac:b0:be:3f:87:df:8c:5e:47:
12:ca:77:70:26:14:02:14:79:fa:6f:1f:ab:ee:06:
2c:83:93:e4:22:db:37:83:90:c1:72:5b:36:78:1b:
6d:0a:06:72:76:dc:89:df:86:89:43:54:03:55:bd:
fc:a0:9a:d6:8e:5d:22:87:a2:32:19:35:c8:17:4e:
1c:1b:5e:81:9d:a5:67:9e:a7:ed:06:e8:e2:91:f1:
ae:f9:19:b1:ae:a8:e6:66:14:2c:6d:a6:c3:0f:8b:
7f:ef:c0:60:cb:c2:52:a5:46:1e:a4:20:52:f8:93:
93:2b:02:23:98:90:81:b3:e6:c4:4e:8f:85:a6:ff:
4e:8e:dd:6c:12:ea:db:58:7f:3c:66:c4:38:96:44:
d1:5b:da:c2:66:6a:4e:97:4d:99:59:9f:24:a0:4a:
57:b6:9d:69:22:f7:5a:10:cb:96:bc:58:ca:96:0e:
ab:b0:4d:14:da:03:e1:d3:24:c1:f2:bd:40:32:20:
82:66:4d:78:4b:13:c6:bd:66:a9:83:2f:15:29:7e:
11:95:37

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Key Usage: critical
Digital Signature

X509v3 Extended Key Usage:
TLS Web Client Authentication, TLS Web Server Authentication

X509v3 Authority Key Identifier:
keyid:0A:A8:9A:6A:23:34:AE:CA:96:00:2C:F3:04:38:14:E3:D4:8D:77:BD

X509v3 Subject Alternative Name:
DNS, IP Address:64.103.223.56

Signature Algorithm: sha256WithRSAEncryption
b9:89:ec:60:3d:8d:7d:9c:dc:08:56:89:99:44:92:98:45:b6:
97:ba:e3:e5:f2:48:b2:44:8d:db:23:bb:a1:c0:62:79:78:18:
d7:55:f6:4a:67:5b:75:e0:c0:0b:52:51:07:36:d5:6c:c7:67:
48:86:8d:dd:70:1c:9f:7c:a1:7b:aa:a5:4e:e1:ad:cf:4c:e5:
81:db:92:cf:88:70:5a:1c:8d:de:0d:e8:b3:05:de:b9:04:4d:
23:e1:de:66:e5:08:bd:2e:31:0a:07:a6:c0:00:3a:38:2f:00:
cd:cf:be:e2:1f:12:9f:8a:44:8d:2d:24:d5:d3:bb:9e:db:70:
bf:89:ea:0c:31:b4:b2:fc:3d:73:f5:17:09:07:54:ab:2f:23:
cb:66:0e:0e:7a:9e:21:bf:1e:bf:07:f1:fc:09:88:23:4e:2d:
5d:08:35:16:cd:07:df:25:34:7f:42:0a:dc:6f:d0:ec:9d:99:
72:d8:5f:d6:7e:6f:cc:67:4d:d7:b9:b8:c8:56:75:db:56:1e:
03:1b:6d:37:21:4d:e0:f1:e2:80:99:40:24:24:f2:e4:9b:7e:
6c:bc:f7:f9:3a:b6:fc:8e:dd:9a:cd:dd:88:15:d7:46:71:d2:
11:20:86:8f:ea:c5:a8:e8:4e:b6:ef:9b:06:5b:b1:c4:11:36:
38:7a:63:8e:1a:a6:a8:f8:bb:7d:0b:a6:f2:89:49:94:ac:0c:
8b:c4:fc:02:e8:b2:b8:27:bc:70:95:32:83:09:f5:de:68:34:
3f:a4:5a:73:dc:92:15:2c:0e:ab:46:dd:13:06:98:aa:08:2d:
b8:37:a0:52:4b:ba:f7:be:ed:68:cd:fb:67:3b:66:ea:16:85:
61:75:cf:06:85:a0:06:e8:4a:3e:63:72:c1:79:c7:fd:d4:85:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
116

YANG Data Models
Configure gNSI Certz

74:d8:ea:66:d3:42:74:e2:fb:7c:9e:93:4b:24:2f:ad:c5:13:
bc:eb:83:f7:6d:3e:53:9a:ec:16:85:b7:b5:6c:77:48:53:7e:
19:2e:48:2d:83:35:7b:b9:66:5e:12:b4:f3:ee:e8:b2:3b:ba:
18:46:91:b0:f9:6f:b0:d5:17:a8:de:5c:a0:0e:35:85:7b:c0:
e3:79:06:fa:ad:8e:f2:28:ab:09:19:b7:f0:f3:9e:cb:94:93:
b7:04:63:74:82:c3:71:3b:16:8b:58:c7:fa:ff:ff:2a:97:91:
e7:1d:06:ab:0a:6c:cc:a0:41:31:54:f2:e7:db:a3:b5:22:c4:
ab:ec:e2:5d:86:e6:ac:a5:c6:e2:0e:15:44:a2:32:42:3d:07:
65:0a:0d:58:2e:22:3c:7b:e3:e8:8e:2e:60:47:f0:60:04:89:
64:65:fc:fc:74:dd:4d:7f

gNSI EnrollZ and AttestZ
Table 30: Feature History Table

DescriptionRelease
Information

Feature Name

Introduced in this release on: Fixed Systems (8200, 8700);
Centralized Systems (8600); Modular Systems (8800 [LC
ASIC: Q100, Q200, P100])

You can now use the new gNSI service for enrollment and
attestation, EnrollZ and AttestZ, to enhance security of
networking devices. The EnrollZ has been added to meet
open-source requirements, thereby providing advantages such
as the verification of device identity and integrity during
boot-up, and the provisioning of owner-specific certificates.
This bypasses the need for router vendor certificate authorities,
offering a user-friendly and secure system. Sensitive
credentials are only available to devices that have completed
the EnrollZ and AttestZ processes.

Release 24.3.1TPM Enrollment and
Attestation

Secure TPM Enrollment and Attestation Workflow for Network Devices

The EnrollZ and AttestZ gNSI services provide a secure method for verifying the identity and integrity of
network devices. The EnrollZ service handles the TPM 2.0 enrollment workflow, involving cryptographic
verification of the device's TPM-rooted identity and provisioning of attestation and Transport Layer Security
(TLS) certificates by the device owner. This ensures that the device is under the control of the owner and not
dependent on external vendor Certificate Authorities (CAs) during the attestation process. The AttestZ service
manages the TPM 2.0 attestation workflow, confirming the device's integrity throughout the boot process by
comparing observed PlatformConfiguration Register (PCR) values against expected ones to verify the device's
boot state. This approach simplifies the TPM enrollment process for device owners, enhances control over
certificate management, and eliminates external dependencies, while aligning with Trusted Computing Group
(TCG) specifications.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
117

YANG Data Models
gNSI EnrollZ and AttestZ

Enroll a TPM 2.0 on Network Devices
The Trusted Platform Module (TPM) 2.0 enrollment workflow is a secure process for network devices to
obtain the necessary credentials and configurations for TPM management. This workflow is initiated after
the device boot process and involves interaction with various gRPC API endpoints.

Before you begin

• Device has completed the Bootz workflow.

• Device is equipped with a default SSL profile using the Secure Unique Device Identifier (SUDI) key
pair and certificate.

• EnrollZ service is available and ready to enroll the TPM on the control card.

• Router owner has access to the trust bundle/anchor from the router vendor.

Procedure

Step 1 Prepare Device for TPM Enrollment: Ensure the device has completed the Bootz workflow and is ready to serve TPM
enrollment gRPC API endpoints on the required port.

Step 2 Trigger EnrollZ Service: Use the GetIakCert API to retrieve the Initial Attestation Key (IAK) and IDevID certificates.
Step 3 Verify and Validate Certificates:

• Verify the signature over the IAK certificate using the trust bundle/anchor from the router vendor.

• Confirm that the device identity fields in the IAK and IDevID certificates meet the expected criteria.

Step 4 Request and Install Owner Certificates:

• Request the router owner CA to issue the Owner IAK (oIAK) and Owner IDevID (oIDevID) certificates based on
the public keys.

• Use the RotateOIakCert API to install the oIAK and oIDevID certificates on the control card.

Step 5 Verify and Store Certificates:

• Verify that the public keys in the oIAK and oIDevID certificates match with respective IAK and SUDI public key.

• Store the oIAK and oIDevID certificates in non-volatile memory for presentation during the TPM attestation (attestz)
workflow.

Step 6 Update SSL Profile: Update the SSL profile to use the trust bundle and rotate the certificates to the Owner IDevID
certificate.

Step 7 Enroll Secondary Control Card: Repeat the enrollment workflow for the secondary control card, if present.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
118

YANG Data Models
Enroll a TPM 2.0 on Network Devices

TPM 2.0 Attestation
The TPM 2.0 attestation workflow ensures the integrity and identity of network devices by verifying their
configurations and credentials. This process involves interaction with gRPC TPM 2.0 attestation endpoints
and requires the device to be booted with the correct OS image and configurations.

Before you begin

• Device must be booted with the correct OS image.

• Correct configurations and credentials must be applied.

• Primary/active control card is responsible for all RPCs directed to the secondary/standby control card.

Procedure

Step 1 Serve gRPC TPM 2.0 Attestation Endpoints: Ensure the device serves gRPC TPM 2.0 attestation endpoints on port 9339,
the same port as gNOI/gNSI/gNMI.

The device must be booted with the correct OS image and configurations.

Step 2 Authenticate Standby Control Card: Perform an authentication handshake between the active and standby control cards
using the IDevID key pair/cert.

The active control card is responsible for this handshake as the router owner cannot directly TLS authenticate the standby
card.

Step 3 Secure Initial Attestation RPCs: Use the active control card’s IDevID private key and oIDevID cert to secure TLS for
the initial attestation RPCs.

Step 4 Call AttestZ Service: AttestZ service calls the device’s Attest endpoint for a given control card (and a random nonce) to
get back:

• An oIAK cert signed by the router owner’s CA.

• Final observed PCR hashes/values.

• PCR Quote structure and signature over it signed by IAK private key.

• (Optional) oIDevID cert of the standby control card.

Step 5 Verify Certificates and Signatures:

• AttestZ service uses the trust bundle/anchor from the router owner CA to verify the oIAK cert and its
validity/revocation status.

• Ensure that the control card serial number in the oIAK cert and oIDevID cert is the same.

Step 6 Compare PCR Values: The AttestZ service compares the PCR values against the known PCR values provided by the
OEM vendor specific to a release.

Step 7 Compare PCR Values and Record Attestation Status: AttestZ service fetches expected final PCR values from its database
and compares them to the observed ones reported by the device.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
119

YANG Data Models
TPM 2.0 Attestation

AttestZ service records a successful attestation status for the given control card and repeats the workflow for the
secondary/standby control card if one is available.

P4Runtime
Table 31: Feature History Table

DescriptionRelease InformationFeature Name

With this release, the router supports
Programming Protocol-Independent Packet
Processors Runtime (P4), a gRPC-based
service, to program the data plane elements
for network operations such as sending and
receiving packets between the router and the
P4Runtime controller using packet I/O
messages.

This feature introduces the following
commands:

CLI:

• grpc p4rt

• grpc p4rt interface

• grpc p4rt location

• show p4rt devices

• show p4rt interfaces

• show p4rt state

• show p4rt stats

• show p4rt trace

YANG Data Model:

openconfig-p4rt.yang OpenConfig data
model (see GitHub, YANG Data Models
Navigator)

Release 7.10.1P4Runtime to Manage Traffic
Operations

P4Runtime is a control plane specification to manage the data plane elements of a device. It defines the
navigation and management of packets through data plane blocks using P4Runtime APIs. These blocks can
be managed to perform the following set of traffic operations between the P4Runtime controller and the router:

• Send or receive packets using PacketOut and PacketIn I/O messages—StreamMessageRequest,
StreamMessageResponse and StreamError messages.

• Elect the primary controller using the MasterArbitrationUpdate message.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
120

YANG Data Models
P4Runtime

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2834182384
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1661347182
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3885356267
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1706537545
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1661347182
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1454069690
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2726290155
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3294843104
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

• Read and write forwarding table entries, protocol headers, counters, and other P4 entities.

For more information about how controllers can connect to the router and program P4-defined functionalities,
see P4RT specification.

Configure P4RT to Manage Packets
Configure P4RT to send or receive packets between one or more controllers and the router.

Procedure

Step 1 Enable P4Runtime.

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#p4rt
Router(config-grpc-p4rt)#commit

Step 2 Assign a unique P4 numeric identifier to the required physical port on the router. The controller uses this port ID as an
alias to identify the interface through which the packets are sent or received with ingress or egress metadata.

Example:
Router(config-grpc-p4rt)#interface HundredGigE0/0/0/24 port-id 3
Router(config-grpc-p4rt)#interface HundredGigE0/0/0/25 port-id 6
Router(config-grpc-p4rt)#interface HundredGigE0/0/0/26 port-id 7

The port-id is a unique 32-bit identifier. The range is 1 to 4294967039.

Step 3 Assign a unique P4 device identifier to each Network Processing Unit (NPU) in the system.

Example:
Router(config-grpc-p4rt)#location 0/0/CPU0 npu-id 0 device-id 1000000
Router(config-grpc-p4rt)#location 0/0/CPU0 npu-id 1 device-id 1000001
Router(config-grpc-p4rt)#location 0/1/CPU0 npu-id 0 device-id 1000002
Router(config-grpc-p4rt)#location 0/1/CPU0 npu-id 1 device-id 1000011
Router(config-grpc-p4rt)#commit
Router(config-grpc-p4rt)#end

The device-id is a unique 64-bit identifier. The range is 1 to 18446744073709551615. The npu-id represents a NPU
identifier within a line card and the value ranges from 0 to 7.

The controller or the P4Runtime agent, which can be external or internal to the router, can use the port-id and device-id
to inject packets and request to send certain packet types. For example, P4Runtime supports the ability to configure
Access Control Lists (ACLs) in order to redirect packets with TTL value 1 to the controller. When the router receives a
packet with that TTL value, the packet is sent to the controller with the details such as packet received from device-id

x, port-id y and the packet is being sent to port-id z.

For more information about programming the router using P4Runtime, see P4RT specification.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
121

YANG Data Models
Configure P4RT to Manage Packets

https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120.html
https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120.html

IANA Port Numbers For gRPC Services
Table 32: Feature History Table

DescriptionRelease InformationFeature Name

You can now efficientlymanage and customize
port assignments for gNMI, gRIBI, and P4RT
services without port conflicts. This is possible
because Cisco IOS XR now supports the
Internet Assigned Numbers Authority
(IANA)-assigned specific ports for P4RT (Port
9559), gRIBI (Port 9340), and gNMI (Port
9339). You can now use both IANA-assigned
and user-specified ports for these gRPC
services across any specified IPv4 or IPv6
addresses. As part of this support, a new
submode for gNMI in gRPC is introduced.

This feature introduces the following changes:

CLI:

• port (gRPC)

• gnmi

Release 24.1.1IANA Port Numbers For gRPC
Services

IANA (Internet Assigned Numbers Authority) manages the allocation of port numbers for various protocols.
These port numbers help in distinguishing different services on a network. Service names and port numbers
are used to distinguish between different services that run over transport protocols such as TCP, UDP, DCCP,
and SCTP. Port numbers are assigned in various ways, based on three ranges: System Ports (0-1023), User
Ports (1024-49151), and the Dynamic and/or Private Ports (49152-65535).

Earlier, the gRPC server configuration on IOS-XR allowed a usable port range of 10000-57999, with a default
listening port of 57400 and all services registered to the gRPC server utilized this port for connectivity.
Service-based filtering of requests on any of the ports was unavailable. Hence, the request for a specific service
sent on a port designated to another service (for example, gRIBI request on gNMI port) was accepted.

From Cisco IOS XR Release 24.1.1, a new submode for gNMI is introduced in the configuration model to
allow for service-level port customization. The existing gRPC configuration model includes submodes for
P4RT and gRIBI. This submode will enable you to configure specific ports for gNMI, gRIBI, and P4RT
services independently. You can configure gNMI, gRIBI, and P4RT services using the gRPC submode
command to set the default port for each service. The port command under service submode, allows you to
modify the port as needed, while adhering to the defined port range.

Disabling the port command will cause the service to use the default or IANA port.

You can set custom ports for gNMI, gRIBI, and P4RT services within the defined range, including default
IANA ports like 9339, 9340, and 9559 (respectively). The gRPC service will continue to maintain its default
port within the specified range (57344-57999). Any changes made to the gRPC default port will not impact
the service port configurations for gNMI, gRIBI, and P4RT. Requests which are sent on a port designated for
a specific service (example, gRIBI request on gNMI port) will be accepted. This flexibility allows for seamless
communication across different service ports and the general gRPC port.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
122

YANG Data Models
IANA Port Numbers For gRPC Services

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3687650536
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4022790341

Starting from Cisco IOS XR Release 24.2.1, the allowed port range is 1024-65535.

Configure gRPC Service-Level Port
To configure a default listening port for the gRPC services such as gNMI, gRIBI, and P4RT, use the respective
service command (gnmi, gribi, or p4rt) under the gRPC configuration mode.

To specify a port number for gRPC, gNMI, gRIBI, and P4RT services within the defined range, use the port
command under respective submodes.

The IANA port ranges are:

• System ports (Reserved): 0—1023

• Registered ports: 1024—49151

• Dynamic or Private or Ephemeral ports: 49152—65535

XR Ephemeral port range: 15232–57343

If the configured port is in the range of IANA registered ports (1024-49151) or XR ephemeral ports
(15232-57343), a syslog is generated with a NOTICE to warn the user for a possible application conflict.

Resetting the port reverts to the default service port, and disabling the service stops listening on that port.

Note

Procedure

Configure the port number for a service.

The following examples display the service-level port configurations.

• For gRPCservice:

This configuration creates a gRPC listener with the default or IANA ratified port of 57400.

The allowed range is 1024-65535.
Router#config
Router(config)#grpc
Router(config-grpc)# commit

Verify the listening port created for gRPC service.
Router#show running-config grpc
grpc
!

The port command under gRPC submode allows the port to be modified in the port range or IANA ratified port.
Router# config
Router(config)# grpc port 2000
Router(config)# commit

Verify the port number.
Router#show running-config grpc
grpc

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
123

YANG Data Models
Configure gRPC Service-Level Port

port 2000
!

• For gNMI service:

This configuration creates a gRPC listener with the default or IANA ratified gNMI port of 9339.

The allowed range is 1024-65535.
Router(config-grpc)#gnmi
Router(config-grpc-gnmi)#commit

Verify the listening port created for gNMI service.
Router#show running-config grpc
grpc
gnmi

!

The port command under gNMI submode allows the port to be modified in the port range or IANA ratified port.
Router(config-grpc)#gnmi
Router(config-grpc-gnmi)#port 9339
Router(config-grpc-gnmi)#commit

Verify the port number.
Router#show running-config grpc
grpc
gnmi
port 9339

!

• For P4RT service:

This configuration creates a gRPC listener with the default or IANA ratified P4RT port of 9559.

The allowed range is 1024-65535.
Router(config-grpc)#p4rt
Router(config-grpc-p4rt)#commit

Verify the listening port created for P4RT service.
Router#show running-config grpc
grpc
p4rt

!

The port command under P4RT submode allows the port to be modified in the port range or IANA ratified port.
Router(config-grpc)#p4rt
Router(config-grpc-p4rt)#port 9559
Router(config-grpc-p4rt)#commit

Verify the port number.
Router#show running-config grpc
grpc
p4rt
port 9559

!

• For gRIBI service:

This configuration creates a gRPC listener with the default or IANA ratified gRIBI port of 9340.

The allowed range is 1024-65535.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
124

YANG Data Models
Configure gRPC Service-Level Port

Router(config-grpc)#gribi
Router(config-grpc-gribi)#commit

Verify the listening port created for gRIBI service.
Router#show running-config grpc
grpc
gribi

!

The port command under gRIBI submode allows the port to be modified in the port range or IANA ratified port.
Router(config-grpc)#gribi
Router(config-grpc-gribi)#port 9340
Router(config-grpc-gribi)#commit

Verify the port number.
Router#show running-config grpc
grpc
gribi
port 9340

!

Unconfiguring the port command in a service

and

Unconfiguring a service under gRPC

• Unconfiguring the port command results in using the default port for the respective service.

Example:

Unconfiguring the port command will result in a gNMI service using the default gNMI port.
Router(config-grpc)#gnmi
Router(config-grpc-gnmi)#no port
Router(config-grpc-gnmi)#commit

Verify the service port configuration.
Router#show running-config grpc
grpc
gnmi

!

• Unconfiguring a service removes the listener for the respective port and no requests will be accepted on that port.

Example:

Unconfiguring gNMI disables the requests on port 9339.
Router(config-grpc)#no gnmi
Router(config-grpc-gnmi)#commit

Verify the port configuration.
Router#show running-config grpc
grpc
!

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
125

YANG Data Models
Configure gRPC Service-Level Port

Configure Interfaces Using Data Models in a gRPC Session
Table 33: Feature History Table

DescriptionRelease InformationFeature Name

You can prevent potential security attacks by
disallowing any single gRPC server client on
Cisco IOS XR from consuming excessive
resources and monopolizing connection
resources, both of which can be potential attack
vectors. Such prevention is possible because
you now have the option to configure the
gRPC server to limit the number of concurrent
streams per gRPC connection.

The feature introduces the grpc
max-concurrent-streams command.

YANG Data Models:

• Cisco-IOS-XR-man-ems-oper.yang

• Cisco-IOS-XR-man-ems-cfg.yang

(see GitHub, YANG Data Models Navigator)

Release 24.1.1Set Limit on Concurrent Streams
for gRPC Server

Google-defined remote procedure call () is an open-source RPC framework. gRPC supports IPv4 and IPv6
address families. The client applications use this protocol to request information from the router, and make
configuration changes to the router.

The process for using data models involves:

• Obtain the data models.

• Establish a connection between the router and the client using gRPC communication protocol.

• Manage the configuration of the router from the client using data models.

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

Note

In this section, you use native data models to configure loopback and ethernet interfaces on a router using a
gRPC session.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
126

YANG Data Models
Configure Interfaces Using Data Models in a gRPC Session

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1516434744
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1516434744
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Figure 5: Network Topology for gRPC session

You use Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang to programmatically configure router
LER1.

Before you begin

• Retrieve the list of YANGmodules on the router using NETCONFmonitoring RPC. For more information

• Configure Transport Layer Security (TLS). Enabling gRPC protocol uses the default HTTP/2 transport
with no TLS. gRPC mandates AAA authentication and authorization for all gRPC requests. If TLS is
not configured, the authentication credentials are transferred over the network unencrypted. Enabling
TLS ensures that the credentials are secure and encrypted. Non-TLS mode can only be used in secure
internal network.

Procedure

Step 1 Enable gRPC Protocol

To configure network devices and view operational data, gRPC proptocol must be enabled on the server. In this example,
you enable gRPC protocol on LER1, the server.

Note

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
127

YANG Data Models
Configure Interfaces Using Data Models in a gRPC Session

Cisco IOS XR 64-bit platforms support gRPC protocol. The 32-bit platforms do not support gRPC protocol.

a) Enable gRPC over an HTTP/2 connection.

Example:

Router#configure
Router(config)#grpc
Router(config-grpc)#port <port-number>

The port number ranges from 57344 to 57999. If a port number is unavailable, an error is displayed.

Starting Release 24.1.1, you can now configure IANA port numbers for specified gRPC services. To see the port
numbers for the various gRPC services, see Support IANA Port Numbers.

b) Set the session parameters.

Example:
Router(config)#grpc {address-family | certificate-authentication | dscp | max-concurrent-streams
| max-request-per-user | max-request-total | max-streams |
max-streams-per-user | no-tls | tlsv1-disable | tls-cipher | tls-mutual | tls-trustpoint |
service-layer | vrf}

where:

• address-family: set the address family identifier type.

• certificate-authentication: enables certificate based authentication

• dscp: set QoS marking DSCP on transmitted gRPC.

• max-concurrent-streams: set the limit on the maximum concurrent streams per gRPC connection to be applied
on the server.

• max-request-per-user: set the maximum concurrent requests per user.

• max-request-total: set the maximum concurrent requests in total.

• max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription limit is 128
requests. The default is 32 requests.

• max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum subscription
limit is 128 requests. The default is 32 requests.

• no-tls: disable transport layer security (TLS). The TLS is enabled by default

• tlsv1-disable: disable TLS version 1.0

• service-layer: enable the grpc service layer configuration.

This parameter is not supported in Cisco ASR 9000 Series Routers, Cisco NCS560 Series Routers, , and Cisco
NCS540 Series Routers.

• tls-cipher: enable the gRPC TLS cipher suites.

• tls-mutual: set the mutual authentication.

• tls-trustpoint: configure trustpoint.

• server-vrf: enable server vrf.

After gRPC is enabled, use the YANG data models to manage network configurations.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
128

YANG Data Models
Configure Interfaces Using Data Models in a gRPC Session

Step 2 Configure the interfaces.

In this example, you configure interfaces using Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang. You gain
an understanding about the various gRPC operations while you configure the interface. For the complete list of operations,
see gRPCOperations, on page 50. In this example, youmerge configurations with merge-configRPC, retreive operational
statistics using get-oper RPC, and delete a configuration using delete-config RPC. You can explore the structure of
the data model using YANG validator tools such as pyang.

LER1 is the gRPC server, and a command line utility grpcc is used as a client on the controller. This utility does not
support YANG and, therefore, does not validate the data model. The server, LER1, validates the data mode.

Note
The OC interface maps all IP configurations for parent interface under a VLAN with index 0. Hence, do not configure a
sub interface with tag 0.

a) Explore the XR configuration model for interfaces and its IPv4 augmentation.

Example:

controller:grpc$ pyang --format tree --tree-depth 3 Cisco-IOS-XR-ifmgr-cfg.yang
Cisco-IOS-XR-ipv4-io-cfg.yang
module: Cisco-IOS-XR-ifmgr-cfg

+--rw global-interface-configuration
| +--rw link-status? Link-status-enum
+--rw interface-configurations

+--rw interface-configuration* [active interface-name]
+--rw dampening
| ...
+--rw mtus
| ...
+--rw encapsulation
| ...
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string
+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ipv4-io-cfg:ipv4-network
| ...
+--rw ipv4-io-cfg:ipv4-network-forwarding ...

b) Configure a loopback0 interface on LER1.

Example:
controller:grpc$ more xr-interfaces-lo0-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations":
{ "interface-configuration": [
{
"active": "act",
"interface-name": "Loopback0",
"description": "LOCAL TERMINATION ADDRESS",
"interface-virtual": [
null
],
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {
"addresses": {

"primary": {

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
129

YANG Data Models
Configure Interfaces Using Data Models in a gRPC Session

https://github.com/mbj4668/pyang

"address": "172.16.255.1",
"netmask": "255.255.255.255"

}
}
}
}
]

}
}

c) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json
emsMergeConfig: Sending ReqId 1
emsMergeConfig: Received ReqId 1, Response '
'

d) Configure the ethernet interface on LER1.

Example:

controller:grpc$ more xr-interfaces-gi0-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"description": "CONNECTS TO LSR1 (g0/0/0/0)",
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {

"addresses": {
"primary": {

"address": "172.16.1.0",
"netmask": "255.255.255.254"

}
}
}
}
]
}
}

e) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json
emsMergeConfig: Sending ReqId 1
emsMergeConfig: Received ReqId 1, Response '
'

f) Enable the ethernet interface GigabitEthernet 0/0/0/0 on LER1 to bring up the interface. To do this, delete shutdown
configuration for the interface.

Example:

controller:grpc$ grpcc -username admin -password admin -oper delete-config
-server_addr 198.18.1.11:57400 -yang_path "$(< xr-interfaces-gi0-shutdown-cfg.json)"
emsDeleteConfig: Sending ReqId 1, yangJson {

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
130

YANG Data Models
Configure Interfaces Using Data Models in a gRPC Session

"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [
null

]
}
]
}
}
emsDeleteConfig: Received ReqId 1, Response ''

Step 3 Verify that the loopback interface and the ethernet interface on router LER1 are operational.

Example:

controller:grpc$ grpcc -username admin -password admin -oper get-oper
-server_addr 198.18.1.11:57400 -oper_yang_path "$(< xr-interfaces-briefs-oper-filter.json)"
emsGetOper: Sending ReqId 1, yangPath {
"Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": [
null
]

}
}
{ "Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": {
"interface-brief": [
{
"interface-name": "GigabitEthernet0/0/0/0",
"interface": "GigabitEthernet0/0/0/0",
"type": "IFT_GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000
},
{
"interface-name": "GigabitEthernet0/0/0/1",
"interface": "GigabitEthernet0/0/0/1",
"type": "IFT_GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000
},
{
"interface-name": "Loopback0",
"interface": "Loopback0",

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
131

YANG Data Models
Configure Interfaces Using Data Models in a gRPC Session

"type": "IFT_LOOPBACK",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "loopback",
"encapsulation-type-string": "Loopback",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

},
{

"interface-name": "MgmtEth0/RP0/CPU0/0",
"interface": "MgmtEth0/RP0/CPU0/0",
"type": "IFT_ETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000

},
{

"interface-name": "Null0",
"interface": "Null0",
"type": "IFT_NULL",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "null",
"encapsulation-type-string": "Null",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

}
]
}
}
}
emsGetOper: ReqId 1, byteRecv: 2325

In summary, router LER1, which had minimal configuration, is now programmatically configured using data models
with an ethernet interface and is assigned a loopback address. Both these interfaces are operational and ready for network
provisioning operations.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
132

YANG Data Models
Configure Interfaces Using Data Models in a gRPC Session

C H A P T E R 6
Use Service Layer API to Bring your Controller
on Cisco IOS XR Router

Bring your protocol or controller on IOSXR router to interact with the network infrastructure layer components
using Service Layer API.

For example, you can bring your controller to gain control over the Routing Information Base (RIB) tables
and many more use cases.

• Get to Know Service Layer API, on page 133
• Enable Service Layer, on page 136
• Write Your Service Layer Client API, on page 137
• Preprogram Backup LSPs Using Service Layer API, on page 138

Get to Know Service Layer API
Service Layer API is a model-driven API over Google-defined remote procedure call (gRPC).

gRPC enables you to bring your applications, routing protocols, controllers in a rich set of languages including
C++, Python, GO, and many more.

Service Layer API is available out of the box and no extra packages required.

In IOS XR, routing protocols use RIB, the MPLS label manager, BFD, and other modules, to program the
forwarding plane. You can expose these protocols through the service layer API.

Benefits

The Service Layer API gives direct access to the Network Infrastructure Layer (Service-Adaptation Layer).
Therefore, you have the following advantages:

• High Performance: Direct access to the Network Infrastructure Layer, without going through a Network
state database, results in higher performance than equivalent Management APIs.

For example, Batch updates straight to the Label Switching Data Base (LSDB), the Routing Information
Base (RIB) (over gRPC). The LSDB stores label-to-address mappings for efficient traffic routing in
Label-switching routers. And, RIB contains the active and potential routes to various network destinations.

• Flexibility: The Service Layer API gives you the flexibility to bring your Protocol or Controller over
gRPC.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
133

• Offload low-level tasks to IOS XR: IOS XR infrastructure layer handles the following. Hence, you can
focus on higher-layer protocols and controller logic:

• Conflict resolution

• Transactional notifications

• Data plane abstraction

Components of Service Layer API

The following are the components of the Service Layer API architecture:

• Functionality Verticals/Domains: The verticals define the broader capability categories supported by
the API. The following are the supported verticals. Each vertical supports data structure and RPCs defined
in gpb

• Initialization: Handles global initialization, sets up an event notification channel using GRPC
streaming capabilities.

The initialization RPCs are mandatory. Use the initialization RPCs to connect a client to the gRPC
server on the router. Also, to send heartbeats and termination requests from the server to the client.

• IPv4, IPv6 Route (RIB): Handles route manipulations (add, update, delete) for a certain VRF.

• MPLS: Handles allocation of label blocks and any incoming MPLS label mapping to a forwarding
function.

• Interface: Handles subscription of the registered clients to the interface state event notifications.

• IPv4, IPv6 BFD: Manages BFD sessions, and corresponding BFD session state notifications.

• Policy-Based Routing (PBR): Manages routing decisions based on user-defined policies rather
than the default routing table.

• Protobuf Schema/Model: Use gRPC to model the service layer API.

• gRPC: gRPC utilizes GPB protobuf IDL by default to convert the models into bindings in various
languages (c++, python, golang, andmore). The gRPC server (running on the router) and the gRPC client
use the generated bindings to serialize data and encode or decode the request or response between the
server and the client.

• Service Layer gRPC clients: Based on the business needs, the gRPC clients for service layer can exist
in one of the following ways:

• On-box (agents runnning on their own sand-boxed third-party containers)

• Off-box (within Controllers or other open-source tools)

• gRPC Authentication Modes:

gRPC supports the following authentication modes to secure communication between clients and servers.
These authentication modes help ensure that only authorized entities can access the gRPC services, like
gNOI, gRIBI, and P4RT. Upon receiving a gRPC request, the device will authenticate the user and
perform various authorization checks to validate the user.

The following table lists the authentication type and configuration requirements:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
134

YANG Data Models
Get to Know Service Layer API

Table 34: Types of Authentication with Configuration

Requirement From
Client

Configuration
Requirement

Authorization
Method

Authentication
Method

Type

username,
password, and CA

grpcusernameusername,
password

Metadata with TLS

username,
password

grpc no-tlsusernameusername,
password

Metadata without
TLS

username,
password, client
certificate, client
key, and CA

grpc tls-mutualusernameusername,
password

Metadata with
Mutual TLS

client certificate,
client key, and CA

grpc tls-mutual

and

grpc certificate
authentication

username from
client certificate's
commonname field

client certificate's
commonname field

Certificate based
Authentication

Figure 6: Components of Service Layer API

Bring your controller

To bring your controller on IOS XR, first, enable the service layer on the router and then write your Service
Layer Client API.

1. Enable Service Layer, on page 136

2. Write Your Service Layer Client API

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
135

YANG Data Models
Get to Know Service Layer API

Enable Service Layer

Procedure

Step 1 Enable the Service Layer.

Example:

Router#configure
Router(config)#grpc
Router(config-grpc)#port 57777
Router(config-grpc)#service-layer
Router(config-grpc)#no-tls
Router(config-grpc)#commit

The default port value for gNMI service port is 9339. You can set gNMI service port value from 57344 to 57999.Whereas,
the default port value for gRIBI service port is default 9340. You can set gRIBI service port value from 57344 to 57999.

Step 2 Verify if the Service Layer is operational:

Example:

Router#show running-config grpc
Mon Nov 4 04:19:14.044 UTC
grpc
port 57777
no-tls
service-layer
!
!

Step 3 Verify the gRPC state.

Example:

Router#show service-layer state
Mon Feb 24 04:18:40.055 UTC
------------service layer state----------
config on: YES
standby connected : NO
idt done: NO
blocked on ndt: NO
connected to RIB for IPv4: YES
connected to RIB for IPv6: YES
Initialization state: estab sync
pending requests: 0
BFD Connection: UP
MPLS Connection: UP
Interface Connection: UP
Objects accepted: NO
interface registered: NO
bfd registered for IPv4: NO
bfd registered for IPv6: NO

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
136

YANG Data Models
Enable Service Layer

Write Your Service Layer Client API
You can write a Service Layer API based on your business needs. Follow these steps to write a Service Layer
API client for a particular functionality vertical.

• Import Bindings: After generating the bindings, import the binding in your code.

• Open Notification Channel:Utilize the initialization functionality vertical to create a notification channel
to register the client to the gRPC server running on the router.

• Register against Vertical: Register for a functionality vertical to utilize an RPC using the registration
RPC before making calls. The system rejects any calls without prior registration.

• Use RPCs: Once registered against a vertical, select the RPC of your choice. Then complete the object
fields in the gRPC stub.

To know more about creating a Service Layer API, see. Cisco IOS-XR Service Layer.

Figure 7: Service Layer API Workflow

Removing VRF or interface configurations referenced by SL-API objects is not supported and can impact
traffic. Ensure Service Layer API clients reroute traffic and update routing before making such changes.

Note

To know more about using gRPC protocol, see Use gRPC Protocol to Define Network Operations with Data
Models, on page 47 Chapter in Programmability Configuration Guide.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
137

YANG Data Models
Write Your Service Layer Client API

https://xrdocs.io/cisco-service-layer/

Preprogram Backup LSPs Using Service Layer API
Table 35: Feature History Table

Feature DescriptionRelease InformationFeature Name

This feature extends the Service
Layer API, allowing the controller
to preprogram backup Label
Switched Paths (LSPs) in the
hardware. When the Path Priority
flag indicates a transition from the
backup LSP to the primary LSP,
the controller switches the traffic
to the backup LSP.

Release 24.2.11Preprogram Backup LSPs Using
Service Layer API

With this feature, the primary LSP failure is detected through a controller-definedmechanism. Upon detecting
a failure, the controller switches the primary LSP to backup in a down state and promotes the backup LSP to
primary using the provided API parameters.

You can use the Service Layer API to preprogram LSPs as either primary or backup paths by using the Path
Priority attribute. You can group LSPs with the set-ID attribute and determine their operational status as active
or inactive using the Path State attribute. To ensure seamless traffic management, you can monitor the status
of the LSPs using the controller. If traffic needs to be rerouted to the backup LSP, you can modify the priority
of the preconfigured backup LSP to primary through the controller, thus allowing the backup path to take
over the traffic load. The primary LSP then acts as the backup with its Path State set as down to retain the
preprogram state. For more information about Service Layer API, see Github - Service Layer API and
https://xrdocs.io/cisco-service-layer/.

Verify the Preprogramed Backup Paths
Use the show service-layer mpls command to verify the backup programming state for an LSP. For a given
path, you can view path priority, and path set ID.

In the following command output, the Next-Hop Label Forwarding Entry 1 (NHLFE 1) is the primary LSP
as the path priority is primary and the LSP state is up. NHLFE 2 is the backup LSP as the path priority is
backup and it belongs to the set ID 1. The status of the backup LSP is up.
Router#show service-layer mpls label 24000 exp default
Tue Jun 11 04:58:03.154 UTC
vrf name: mpls-default, vrf state: eof,
vrf magic: valid, purge timer: 600 seconds, vrf flags: eof,

local label: 24000, update priority: high, magic: valid, flags: elsp, EXP: default,
nhlfe: 1, magic: valid,

ref count: 1, protected bitmap: 0x0, path id: 0, backup path id: 0,
flags: path priority: primary, path setid: 0, path up
path protection flags: 0, next hop: 10.10.10.2, load metric: 32,
label action: 1,
remote address:
remote labels: 34000,
interface name: Bundle-Ether1,

nhlfe: 2, magic: valid,

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
138

YANG Data Models
Preprogram Backup LSPs Using Service Layer API

https://github.com/Cisco-Service-Layer/service-layer-objmodel
https://xrdocs.io/cisco-service-layer/

ref count: 1, protected bitmap: 0x0, path id: 0, backup path id: 0,
flags: path priority: backup, path setid: 1, path up
path protection flags: 0, next hop: 10.10.10.3, load metric: 1,
label action: 1,
remote address:
remote labels: 44000,
interface name: Bundle-Ether2,

nhlfe: 3, magic: valid,
ref count: 1, protected bitmap: 0x0, path id: 0, backup path id: 0,
flags: path priority: backup, path setid: 1, path up
path protection flags: 0, next hop: 10.10.10.8, load metric: 31,
label action: 1,
remote address:
remote labels: 44000,
interface name: Bundle-Ether3

The following table describes the possible values for the path attributes:

Possible ValuesAttribute

Primary or
Backup

Path
Priority

0–3set-ID

Up or DownPath State

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
139

YANG Data Models
Verify the Preprogramed Backup Paths

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
140

YANG Data Models
Verify the Preprogramed Backup Paths

C H A P T E R 7
Enhancements to Data Models

This section provides an overview of the enhancements made to data models.

• Improved YANG Input Validator and Get Requests, on page 142
• OpenConfig Data Model Enhancements, on page 144
• Define Power State of Line Card Using Data Model, on page 145
• Install Label in oc-platform Data Model, on page 146
• OpenConfig YANG Model:SR-TE Policies, on page 148
• Aggregate Prefix SID Counters for OpenConfig SR YANG Module, on page 149
• OpenConfig YANG Model:MACsec, on page 150
• OpenConfig YANG Model:dscp-set, on page 156
• OpenConfig YANG Model:procmon, on page 159
• Automatic Resynchronization of OpenConfig Configuration, on page 160

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
141

Improved YANG Input Validator and Get Requests
Table 36: Feature History Table

DescriptionRelease InformationFeature Name

The OpenConfig data models
provide a structure for managing
networks via YANG protocols.
With this release, enhancements to
the configuration architecture
improve input validations and
ensure that the Get requests made
through gNMI or NETCONF
protocols return only explicitly
configured OpenConfig leaves.

Previously, Get requests returned
all the items in the Cisco native
data models that the system could
convert into OpenConfig items,
regardless of whether they were
initially configured via
OpenConfig.We have added a new
legacy mode option for a limited
number of releases which helps you
preserve this behaviour.

Release 7.10.1Improved YANG Input Validator
and Get Requests

In IOS XR Software Release 7.10.1, the following are the enhancements to improve YANG Input Validator
and Get Requests:

• Get requests made via NETCONF or gNMI now return only OpenConfig leaves that were configured
using OpenConfig models.

Use the legacy mode as follows:

NETCONF: Add a legacy mode attribute to the get-config request tag,

Example: get-config xmlns:xr-md=”http://cisco.com/ns/yang/cisco-xr-metadata”
xr-md:mode="legacy"

gNMI: Set the origin to openconfig-legacy.

• Improved input validation for OpenConfig configurations to provide a more consistent experience across
the schema.

The new validation includes enhanced error reporting, though some errors may include references to XR
configuration schema paths and item values in the message string.

• OpenConfig leaves now return default values consistently.

Get requests use the Explicit Basic Mode (refer RFC6243) to return only the OpenConfig leaves that
were explicitly configured.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
142

YANG Data Models
Improved YANG Input Validator and Get Requests

Usage Guidelines and Limitations

In this release, the following usage guidelines and limitations apply based on the following functionalities:

• Upgrades to Cisco IOS XR Software Release 7.10.1 and later will not show OpenConfig leaves in Get
requests until OpenConfig has been successfully committed.

• Similarly, downgrading from Release 7.10.1 to an earlier version and then upgrading back to Release
7.10.1 will not showOpenConfig leaves in Get requests until OpenConfig has been successfully committed.

• Each feature must be fully configured using OpenConfig or Cisco native data model or CLI.

If configuration items applied to a feature via OpenConfig are overridden by configuring those items
directly via Cisco native data model, this will not be reflected in the system view of currently configured
OpenConfig items.

Use the Cisco native data model to configure features not supported by OpenConfig data model.

• Use either gNMI or NETCONF to manage configuration via OpenConfig. We recommend not to use
both the management agents on the same device simultaneously.

Once a successful commit has beenmade using gNMI or NETCONF, that management agent is considered
the active agent.

OpenConfig items cannot be configured by the non-active agent. However, the non-active agent can
configure Cisco native data model items and perform Get requests on any configuration items.

All OpenConfig leaves must first be removed by the active agent before a different agent can be used.

• During the commit process (which can take many minutes for large changesets), Get requests can be
made on the running datastore.

Other request types like, Edit request, Commit request from other clients, and Get request on the candidate
datastore of another client are rejected.

• When ACLs are configured via OpenConfig, CLI actions such as resequencing ACLs and copying ACLs
will not be reflected in the system view of the current OpenConfig configuration.

• Configuration modifications made by Config Scripts to features configured through OpenConfig will
not be reflected in the system view of the current OpenConfig configuration which is returned from
Get-config operations.

• Configuration removal from the system may occur as a result of some events, such as install operations
and startup configuration failures during line card insertion.

OpenConfig items currently configured do not reflect this change. In such cases, a syslog will be generated
to remind the user to manually apply OpenConfig configurations to the system.

• All OpenConfig will be removed from the system when a Commit Replace operation is performed
using the CLI.

• By using the show running-config | (xml | json) openconfig command, you can still view the running
OpenConfig. However, you cannot filter the view using XR CLI configuration keywords.

Starting from Cisco IOS XR Release 24.4.1, the show running-config | (xml |
json) openconfigcommand is not supported.

Note

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
143

YANG Data Models
Improved YANG Input Validator and Get Requests

• The load rollback changes and load commit changes commands are not supported for rollback or
commit that include OpenConfig leaves.

OpenConfig Data Model Enhancements
Table 37: Feature History Table

DescriptionRelease InformationFeature Name

Use the openconfig-lacp.yang data model to manage
Link Aggregation Control Protocol (LACP) aggregate
interfaces bymonitoring the number of LACP timeouts
and the time since the last timeout.

With this release, the data model is revised from
version 1.1.0 to 1.2.0 to introduce the following sensor
paths for the operational state of the bundle member
interface
lacp/interfaces/interface[name]/members/member[interface]/state/:

• last-change

• counters/lacp-timeout-transitions

You can stream Event-driven telemetry data for the
time since the last change of a timeout, and
Model-driven telemetry data for the number of times
the state has transitioned with a timeout. The state
change is monitored since the time the device restarted
or the interface was brought up, whichever is most
recent.

Release 7.5.3LACPOpenConfigModel

The OpenConfig MPLS data model provides data
definitions forMultiprotocol Label Switching (MPLS)
configuration and associated signaling and traffic
engineering protocols. In this release, the following
data models are revised for streaming telemetry from
OpenConfig version 2.3.0 to version 3.0.1:

• openconfig-mpls

• openconfig-mpls-te

• openconfig-mpls-rsvp

• openconfig-mpls-igp

• openconfig-mpls-types

• openconfig-mpls-sr

You can access this data model from the Github
repository.

Release 7.3.3Revised OpenConfig
MPLS Model to Version
3.0.1 for Streaming
Telemetry

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
144

YANG Data Models
OpenConfig Data Model Enhancements

https://github.com/openconfig/public/tree/master/release/models/mpls

Define Power State of Line Card Using Data Model
Table 38: Feature History Table

DescriptionRelease InformationFeature Name

The oc-platform.yang YANG
data model enables or disables
power to the line card and identifies
its slot or chassis.

You can access this data model
from the Github repository.

Release 7.5.1Control Line Card Power Using
YANG Data Model

This feature adds the following component paths to the model to configure and fetch the power state of the
line card, enable/disable the power state, and slot ID of line cards:

• /components/component/linecard/config/power-admin-state

• /components/component/linecard/state/power-admin-state

• /components/component/linecard/state/slot-id

module: openconfig-platform-linecard
augment /oc-platform:components/oc-platform:component:
+--rw linecard

+--rw config
| +--rw power-admin-state? oc-platform-types:component-power-type
+--ro state

+--ro power-admin-state? oc-platform-types:component-power-type
+--ro slot-id? string

The following example shows the configuration to enable the line card in location "0/0" to power up:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>

</target>
<config>
<components xmlns="http://openconfig.net/yang/platform">
<component>
<name>0/0</name>
<linecard xmlns="http://openconfig.net/yang/platform/linecard">
<config>
<power-admin-state>POWER_ENABLED</power-admin-state>
</config>
</linecard>
</component>
</components>
</config>

</edit-config>
</rpc>

To disable the line card, use POWER_DISABLED in the state field.

In the following example, an RPC request is sent to retrieve the power state of all line cards:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
145

YANG Data Models
Define Power State of Line Card Using Data Model

https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-linecard.yang

<filter>
<components xmlns="http://openconfig.net/yang/platform">
<component>
<linecard xmlns="http://openconfig.net/yang/platform/linecard">
<state/>
</linecard>
</component>
</components>
</filter>
</get>
</rpc>

The following example shows the RPC response to the request:
<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<components xmlns="http://openconfig.net/yang/platform">
<component>
<name>0/0</name>
<linecard xmlns="http://openconfig.net/yang/platform/linecard">
<state>
<power-admin-state>POWER_ENABLED</power-admin-state>
<slot-id>0/0</slot-id>
</state>
</linecard>
</component>
</components>
</data>
</rpc-reply>

Install Label in oc-platform Data Model
Table 39: Feature History Table

DescriptionRelease InformationFeature Name

The openconfig-platform YANG
data model provides a structure for
querying hardware and software
router components via the
NETCONF protocol. This release
delivers an enhanced
openconfig-platform YANG data
model to provide information
about:

• software version

• golden ISO (GISO) label

• committed IOS XR packages

You can access this data model
from the Github repository.

Release 7.3.2Enhancements to
openconfig-platform YANG Data
Model

The openconfig-platform (oc-platform.yang) data model is enhanced to provide the following data:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
146

YANG Data Models
Install Label in oc-platform Data Model

https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform.yang

• IOS XR software version (optionally with GISO label)

• Type, description, operational status of the component. For example, a CPU component reports its
utilization, temperature or other physical properties.

• List of the committed IOS XR packages

To retrieve oc-platform information from a router via NETCONF, ensure you configured the router with the
SH server and management interface:
Router#show run
Building configuration...
!! IOS XR Configuration version = 7.3.2
!! Last configuration change at Tue Sep 7 16:18:14 2016 by USER1
!
......
......
netconf-yang agent ssh
ssh server netconf vrf default
interface MgmtEth 0/RP0/CPU0/0

no shut
ipv4 address dhcp

The following example shows the enhanced OPERATING_SYSTEM node component (line card or route processor)
of the oc-platform data model:
<component>
<name>IOSXR-NODE 0/RP0/CPU0</name>
<config>
<name>0/RP0/CPU0</name>
</config>
<state>
<name>0/RP0/CPU0</name>
<type xmlns:idx="http://openconfig.net/yang/platform-types">idx:OPERATING_SYSTEM</type>
<location>0/RP0/CPU0</location>
<description>IOS XR Operating System</description>
<software-version>7.3.2</software-version> -----------------------> Label Info
<removable>true</removable>
<oper-status xmlns:idx="http://openconfig.net/yang/platform-types">idx:ACTIVE</oper-status>
</state>
<subcomponents>
<subcomponent>
<name><platform>-af-ea-7.3.2v1.0.0.1</name>
<config>
<name><platform>-af-ea-7.3.2v1.0.0.1</name>
</config>
<state>
<name><platform>-af-ea-7.3.2v1.0.0.1</name>
</state>
</subcomponent>
...

The following example shows the enhanced OPERATING_SYSTEM_UPDATE package component (RPMs) of the
oc-platform data model:
<component>
<name>IOSXR-PKG/1 <platform>-isis-2.1.0.0-r732</name>
<config>
<name><platform>-isis-2.1.0.0-r732</name>
</config>
<state>
<name><platform>-isis-2.1.0.0-r732</name>
<type xmlns:idx="http://openconfig.net/yang/platform-types">idx:OPERATING_SYSTEM_UPDATE</type>
<description>IOS XR Operating System Update</description>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
147

YANG Data Models
Install Label in oc-platform Data Model

<software-version>7.3.2</software-version>-----------------------> Label Info
<removable>true</removable>
<oper-status xmlns:idx="http://openconfig.net/yang/platform-types">idx:ACTIVE</oper-status>
</state>
</component>

Associated Commands

• show install committed—Shows the committed IOS XR packages.

• show install committed summary—Shows a summary of the committed packages along with the
committed IOS XR version that is displayed as a label.

OpenConfig YANG Model:SR-TE Policies
Table 40: Feature History Table

DescriptionRelease InformationFeature Name

This release supports the
OpenConfig (OC) Segment
Routing-Traffic Engineering
(SR-TE) YANG data model that
provides data definitions for SR-TE
policy configuration and associated
signaling and traffic engineering
protocols. Using themodel, you can
stream a collection of SR-TE
operational statistics, such as color,
endpoint, and state.

You can access the OC data model
from the Github repository.

Release 7.3.4OpenConfig YANGModel:SR-TE
Policies

The OC SR-TE policies YANG Data Model supports Version 0.22. Subscribe to the following sensor path
to send a pull request to the YANG leaf, list, or container:
openconfig-network-instance:network-instances/network-instance/segment-routing/te-policies

The response from the router is a collection of SR-TE operational statistics, such as color, endpoint, and state.

Limitations

• Segment-list ID

• All locally-configured segment-lists have a unique segment-list ID except for the BGP TE controller.
Instead, the BGP TE controller uses the index of the segment-list as the segment-list ID. This ID
depends on the local position of the segment-list and can change over time. Therefore for BGP TE
controller, you must stream the entire table of the segment-list to ensure that the segment-list ID is
always up-to-date.

• Next-hop index

• The Next-hop container is imported from the openconfig-aft-common.yang module where the
next-hop index is defined as Uint64. However, the AFT OC in the FIB uses a positional value of

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
148

YANG Data Models
OpenConfig YANG Model:SR-TE Policies

https://github.com/openconfig/public/tree/master/release/models/mpls

the index and does not identify the next-hop entry separately. Similarly, the next-hop container for
OC-SRTE ais also implemented as a positional value of the entry in the list. Ensure that you stream
the entire table of the next-hop to get a updated index along with the next-hop entry.

Aggregate Prefix SID Counters for OpenConfig SR YANG Module
Table 41: Feature History Table

DescriptionRelease InformationFeature Name

The following components are now
available in the OpenConfig (OC)
Segment-Routing (SR) YANG
model:

• The aggregate-sid-counters
container in the sr-mpls-top
group to aggregate the prefix
segment identifier (SID)
counters across the router
interfaces.

• The aggregate-sid-counter
and the mpls-label key to
aggregate counters across all
the router interfaces
corresponding to traffic
forwarded with a particular
prefix-SID.

You can access the OC data model
from the Github repository.

Release 7.3.4Aggregate Prefix SID Counters for
OpenConfig SR YANG Module

The OpenConfig SR YANG model supports Version 0.3. Subscribe to the following sensor path:
openconfig-mpls/mpls/signaling-protocols/segment-routing/aggregate-sid-counters/aggregate-sid-counter/mpls-label/state

When a receiver subscribes to the sensor path, the router periodically streams the statistics to telemetry for
each SR-label. The default collection interval is 30 seconds.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
149

YANG Data Models
Aggregate Prefix SID Counters for OpenConfig SR YANG Module

https://github.com/openconfig/public/tree/master/release/models/mpls

OpenConfig YANG Model:MACsec
Table 42: Feature History Table

DescriptionRelease InformationFeature Name

You can now use the OpenConfig
YANG data model to define the
MACsec key chain and policy, and
apply MACsec encryption on a
router interface.

You can access the OC data model
from the Github repository.

Release 7.5.2OpenConfig YANG
Model:MACsec

With the OpenConfig YANG Model:MACsec, you can also retrieve operational data from the NETCONF
agent using gRPC. By automating processes that are repeated across multiple network elements, you can
leverage the YANG models for MACsec.

You can use the following operations to stream Telemetry data by sending a request to the NETCONF agent:

• <get>

• <get-config>

• <edit-config>

Subscribe to the following sensor paths to send a pull request to the YANG leaf, list, or container:

• mka/key-chains/key-chain/mka-keys/mka-key

• interfaces/interface/mka

• interfaces/interface

• mka/policies/policy

• interfaces/interface/scsa-rx/scsa-rx

• interfaces/interface/scsa-tx/scsa-tx

• mka/state/counter

Limitation

• The current implementation of Cisco IOS XR supports only the local time zone configuration in the
YYYY-MM-DDTHH:MM:SS format for the following paths:

• /macsec/mka/key-chains/key-chain/mka-keys/mka-key/config/valid-date-time

• /macsec/mka/key-chains/key-chain/mka-keys/mka-key/config/expiration-date-time

• /macsec/mka/key-chains/key-chain/mka-keys/mka-key/state/valid-date-time

• /macsec/mka/key-chains/key-chain/mka-keys/mka-key/state/expiration-date-time

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
150

YANG Data Models
OpenConfig YANG Model:MACsec

https://github.com/openconfig/public/blob/master/release/models/macsec/openconfig-macsec.yang

• Under the MACsec policy, you can disable the delay-protection and include-icv-indicator leaves only
by using the delete operation. You cannot modify the configuration by updating the default field value,
from true to false. This codeblock shows a sample delete operation:
<config>
<delay-protection nc:operation="delete"/>
<include-icv-indicator nc:operation="delete"/>
</config>

Running Configuration

RP/0/0/CPU0:ios#show running-config
Tue Apr 19 21:36:08.882 IST
Building configuration...
!! IOS XR Configuration 0.0.0
!! Last configuration change at Thu Apr 14 16:25:17 2022 by UNKNOWN
key chain kc
macsec
key 1234
key-string password

00554155500E5D5157701E1D5D4C53404A5A5E577E7E727F6B647040534355560E080A00005B554F4E080A0407070303530A54540C0252445E550958525A771B16
cryptographic-algorithm aes-256-cmac
lifetime 00:01:01 january 01 2021 infinite
netconf-yang agent
ssh
interface GigabitEthernet0/0/0/0
shutdown
interface GigabitEthernet0/0/0/1
macsec psk-keychain kc
interface GigabitEthernet0/0/0/2
macsec psk-keychain kc policy mp
interface GigabitEthernet0/0/0/3
shutdown
interface GigabitEthernet0/0/0/4
shutdown
macsec-policy mp
cipher-suite GCM-AES-XPN-256
key-server-priority 4
ssh server v2
end

RPC Request for get-config

<get-config>
<source>

<running/>
</source>

<filter>
<macsec xmlns="http://openconfig.net/yang/macsec">
</macsec>

</filter>
</get-config>

RPC Response for get-config

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<macsec xmlns="http://openconfig.net/yang/macsec">
<mka>
<policies>
<policy>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
151

YANG Data Models
OpenConfig YANG Model:MACsec

<name>mp</name>
<config>
<name>mp</name>
<macsec-cipher-suite>gcm-aes-xpn-256</macsec-cipher-suite>
<key-server-priority>4</key-server-priority>
</config>
</policy>
</policies>
<key-chains>
<key-chain>
<name>kc</name>
<config>
<name>kc</name>
</config>
<mka-keys>
<mka-key>
<id>1234</id>
<config>
<id>1234</id>
<cryptographic-algorithm>AES_256_CMAC</cryptographic-algorithm>
<valid-date-time>2021-01-01T00:01:01</valid-date-time>
<expiration-date-time>NO_EXPIRATION</expiration-date-time>
</config>
</mka-key>
</mka-keys>
</key-chain>
</key-chains>
</mka>
<interfaces>
<interface>
<name>GigabitEthernet0/0/0/1</name>
<config>
<name>GigabitEthernet0/0/0/1</name>
</config>
<mka>
<config>
<key-chain>kc</key-chain>
</config>
</mka>
</interface>
<interface>
<name>GigabitEthernet0/0/0/2</name>
<config>
<name>GigabitEthernet0/0/0/2</name>
</config>
<mka>
<config>
<key-chain>kc</key-chain>
<mka-policy>mp</mka-policy>
</config>
</mka>
</interface>
</interfaces>
</macsec>
</data>
</rpc-reply>

RPC Request for get

<get>
<filter>
<macsec xmlns="http://openconfig.net/yang/macsec">
</macsec>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
152

YANG Data Models
OpenConfig YANG Model:MACsec

</filter>
</get>

RPC Response for get

<?xml version="1.0"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<macsec xmlns="http://openconfig.net/yang/macsec">
<mka>
<policies>
<policy>
<name>mp</name>
<config>
<name>mp</name>
<macsec-cipher-suite>gcm-aes-xpn-256</macsec-cipher-suite>
<key-server-priority>4</key-server-priority>
</config>
<state>
<name>mp</name>
<key-server-priority>4</key-server-priority>
<macsec-cipher-suite>gcm-aes-xpn256</macsec-cipher-suite>
<confidentiality-offset>zero-bytes</confidentiality-offset>
<delay-protection>false</delay-protection>
<include-icv-indicator>false</include-icv-indicator>
<sak-rekey-interval>0</sak-rekey-interval>
</state>
</policy>
<policy>
<name>DEFAULT-POLICY</name>
<state>
<name>DEFAULT-POLICY</name>
<key-server-priority>16</key-server-priority>
<macsec-cipher-suite>gcm-aes-xpn256</macsec-cipher-suite>
<confidentiality-offset>zero-bytes</confidentiality-offset>
<delay-protection>false</delay-protection>
<include-icv-indicator>false</include-icv-indicator>
<sak-rekey-interval>0</sak-rekey-interval>
</state>
</policy>
</policies>
<key-chains>
<key-chain>
<name>kc</name>
<config>
<name>kc</name>
</config>
<mka-keys>
<mka-key>
<id>1234</id>
<config>
<id>1234</id>
<cryptographic-algorithm>AES_256_CMAC</cryptographic-algorithm>
<valid-date-time>2021-01-01T00:01:01</valid-date-time>
<expiration-date-time>NO_EXPIRATION</expiration-date-time>
</config>
<state>
<id>1234</id>
<cryptographic-algorithm>AES_256_CMAC</cryptographic-algorithm>
<valid-date-time>2021-01-01T00:01:01</valid-date-time>
<expiration-date-time>NO_EXPIRATION</expiration-date-time>
</state>
</mka-key>
</mka-keys>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
153

YANG Data Models
OpenConfig YANG Model:MACsec

<state>
<name>kc</name>
</state>
</key-chain>
</key-chains>
</mka>
<interfaces>
<interface>
<name>GigabitEthernet0_0_0_1</name>
<state>
<name>GigabitEthernet0_0_0_1</name>
<counters>
<tx-untagged-pkts>8</tx-untagged-pkts>
<rx-untagged-pkts>0</rx-untagged-pkts>
<rx-badtag-pkts>2</rx-badtag-pkts>
<rx-unknownsci-pkts>3</rx-unknownsci-pkts>
<rx-nosci-pkts>4</rx-nosci-pkts>
</counters>
</state>
<mka>
<state>
<mka-policy>DEFAULT-POLICY</mka-policy>
<key-chain>kc</key-chain>
<counters>
<in-mkpdu>0</in-mkpdu>
<in-sak-mkpdu>0</in-sak-mkpdu>
<out-mkpdu>225271</out-mkpdu>
<out-sak-mkpdu>0</out-sak-mkpdu>
</counters>
</state>
</mka>
<scsa-tx>
<scsa-tx>
<sci-tx>024f88a08c9d0001</sci-tx>
<state>
<sci-tx>024f88a08c9d0001</sci-tx>
<counters>
<sc-encrypted>0</sc-encrypted>
<sa-encrypted>0</sa-encrypted>
</counters>
</state>
</scsa-tx>
</scsa-tx>
</interface>
<interface>
<name>GigabitEthernet0_0_0_2</name>
<state>
<name>GigabitEthernet0_0_0_2</name>
<counters>
<tx-untagged-pkts>8</tx-untagged-pkts>
<rx-untagged-pkts>0</rx-untagged-pkts>
<rx-badtag-pkts>2</rx-badtag-pkts>
<rx-unknownsci-pkts>3</rx-unknownsci-pkts>
<rx-nosci-pkts>4</rx-nosci-pkts>
</counters>
</state>
<mka>
<state>
<mka-policy>mp</mka-policy>
<key-chain>kc</key-chain>
<counters>
<in-mkpdu>0</in-mkpdu>
<in-sak-mkpdu>0</in-sak-mkpdu>
<out-mkpdu>225271</out-mkpdu>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
154

YANG Data Models
OpenConfig YANG Model:MACsec

<out-sak-mkpdu>0</out-sak-mkpdu>
</counters>
</state>
</mka>
<scsa-tx>
<scsa-tx>
<sci-tx>0246c822daae0001</sci-tx>
<state>
<sci-tx>0246c822daae0001</sci-tx>
<counters>
<sc-encrypted>0</sc-encrypted>
<sa-encrypted>0</sa-encrypted>
</counters>
</state>
</scsa-tx>
</scsa-tx>
</interface>
<interface>
<name>GigabitEthernet0/0/0/1</name>
<config>
<name>GigabitEthernet0/0/0/1</name>
</config>
<mka>
<config>
<key-chain>kc</key-chain>
</config>
</mka>
</interface>
<interface>
<name>GigabitEthernet0/0/0/2</name>
<config>
<name>GigabitEthernet0/0/0/2</name>
</config>
<mka>
<config>
<key-chain>kc</key-chain>
<mka-policy>mp</mka-policy>
</config>
</mka>
</interface>
</interfaces>
</macsec>
</data>
</rpc-reply>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
155

YANG Data Models
OpenConfig YANG Model:MACsec

OpenConfig YANG Model:dscp-set
Table 43: Feature History Table

DescriptionRelease InformationFeature Name

This model allows you to configure
a minimum and maximum
Differentiated Services Code Point
(DSCP) value in the dscp-set
leaf-list. When you send these
values in your request to the
NETCONF agent, it filters the
traffic by matching the values in
the list with the incoming packet
header. This ensures that your
network is not vulnerable to
unwanted traffic.

You can access the OC data model
from the Github repository.

Release 7.5.2OpenConfig YANG
Model:dscp-set

You can configure two Differentiated Services Code Point (DSCP) values in the dscp-set leaf-list. You can
enter these values in any order, and they are internally mapped to dscp-min and dscp-max values. The incoming
IPv4 or IPv6 packet header contains the DSCP field. This DSCP field is matched with the range of values
that exist between the specifiedminimum (dscp-min) andmaximum (dscp-max) values.When the DSCP field
contains one of the values specified in the list, the incoming packet is allowed access to your network. You
can add or delete the dscp-set leaf-list in the IPv4 and IPv6 OpenConfig YANGmodel by sending a NETCONF
request.

When you delete one of the values from the dscp-set, the model applies the remaining value for both dscp-min
and dscp-max fields.

Note

Adding the dscp-set in the IPv4 OC YANG Model

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<candidate/>
</target>
<config type="subtree"xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<acl xmlns="http://openconfig.net/yang/acl">
<acl-sets>
<acl-set>
<name>test-dscp-set</name>
<type>ACL_IPV4</type>
<config>
<name>test-dscp-set</name>
<type>ACL_IPV4</type>
</config>
<acl-entries>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
156

YANG Data Models
OpenConfig YANG Model:dscp-set

https://github.com/openconfig/public/blob/master/release/models/acl/openconfig-packet-match.yang

<acl-entry>
<sequence-id>10</sequence-id>
<config>
<sequence-id>10</sequence-id>
</config>
<actions>
<config>
<forwarding-action>ACCEPT</forwarding-action>
</config>
</actions>
<ipv4>
<config>
<dscp-set>12</dscp-set>
<dscp-set>15</dscp-set>
</config>
</ipv4>
</acl-entry>
</acl-entries>
</acl-set>
</acl-sets>
</acl>
</config>

</edit-config>
</rpc>

Deleting the dscp-set in the IPv4 OC YANG Model

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<candidate/>

</target>
<config type="subtree" xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<acl xmlns="http://openconfig.net/yang/acl">
<acl-sets>
<acl-set xc:operation="delete">
<name> test-dscp-set</name>
<type>ACL_IPV4</type>

</acl-set>
</acl-sets>
</acl>
</config>
</edit-config>
</rpc>

Adding the dscp-set in the IPv6 OC YANG Model

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<candidate/>
</target>
<config type="subtree" xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<acl xmlns="http://openconfig.net/yang/acl">
<acl-sets>
<acl-set>
<name>test-dscp-v6-edit</name>
<type>ACL_IPV6</type>
<config>
<name>test-dscp-v6-edit</name>
<type>ACL_IPV6</type>

</config>
<acl-entries>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
157

YANG Data Models
OpenConfig YANG Model:dscp-set

<acl-entry>
<sequence-id>10</sequence-id>
<config>

<sequence-id>10</sequence-id>
</config>
<actions>
<config>
<forwarding-action>ACCEPT</forwarding-action>

</config>
</actions>

<ipv6>
<config>
<dscp-set>22</dscp-set>
<dscp-set>55</dscp-set>

</config>
</ipv6>
</acl-entry>
</acl-entries>
</acl-set>
</acl-sets>
</acl>
</config>
</edit-config>
</rpc>

Deleting the dscp-set in the IPv6 OC YANG Model

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<candidate/>

</target>
<config type="subtree" xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<acl xmlns="http://openconfig.net/yang/acl">
<acl-sets>
<acl-set xc:operation="delete">
<name>test-dscp-v6-edit</name>
<type>ACL_IPV6</type>

</acl-set>
</acl-sets>
</acl>
</config>
</edit-config>
</rpc>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
158

YANG Data Models
OpenConfig YANG Model:dscp-set

OpenConfig YANG Model:procmon
Table 44: Feature History Table

DescriptionRelease InformationFeature Name

This model provides data
definitions to monitor the health of
one or more processes running on
a system, delivering insights into
the performance of critical
processes and helping remediate
performance bottlenecks.

For example, the stress tool that is
part of the Linux distribution may
be consuming high CPU. The
openconfig-procmon model pulls
this information and sends it to you
when you query the node. As a
remediation measure, you can then
restart the process.

You can access the OC data model
from the Github repository.

Release 7.5.2OpenConfig YANG
Model:procmon

Subscribe to the following sensor path:

openconfig-system:system/processes/process

Based on a Process ID (PID), you can stream state parameters, such as name, args, start-time, uptime,
cpu-usage-user, cpu-usage-system, cpu-utilization, memory usage and memory utilization.

When you send the PID to a MDT-capable device requesting state parameters of a process, the PID of the
process acts as a key for the request. If the requested PID is invalid, you will not receive any response.

The location of the PID is always assumed to be the Active RP. This model does not have any leaf or field
where you can specify the location or node name.

Note

Example

This output shows state parameters that monitor the health of the dhcpd process having PID: 22482 using the
XR built-in mdt_exec tool. You can also use telemetry tools, such as gNMI and gRPC.
RP/0/RP1/CPU0:SF-D#run mdt_exec -s openconfig-system:system/processes/process[pid=22482]
Enter any key to exit...
Sub_id 200000001, flag 0, len 0
Sub_id 200000001, flag 4, len 583

{"node_id_str":"SF-D","subscription_id_str":"app_TEST_200000001",
"encoding_path":"openconfig-system:system/processes/process","collection_id":"13",
"collection_start_time":"1648387172382","msg_timestamp":"1648387172384",

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
159

YANG Data Models
OpenConfig YANG Model:procmon

https://github.com/openconfig/public/blob/master/release/models/system/openconfig-procmon.yang

"data_json":[{"timestamp":"1648387172384","keys":[{"pid":"22482"}],
"content":{"state":{"pid":"22482","name":"dhcpd","args":["dhcpd"],
"start-time":"1648385883000000000","uptime":"1289384179023","cpu-usage-user":"270000000",
"cpu-usage-system":"180000000","cpu-utilization":0,"memory-usage":"16641952",
"memory-utilization":0}}}],"collection_end_time":"1648387172384"}

Sub_id 200000001, flag 8, len 0

Automatic Resynchronization of OpenConfig Configuration
Table 45: Feature History Table

Feature DescriptionRelease InformationFeature Name

OpenConfig infrastructure now
provides an operational data YANG
model, Cisco-IOS-XR-yiny-oper,
which can be queried to view the
inconsistent OpenConfig
configuration caused due to
activities such as interface breakout
operations, installation activities or
insertion of a new line card.

See GitHub, YANG Data Models
Navigator

Release 24.1.1View Inconsistent OpenConfig
Configuration

OpenConfig infrastructure can now
reapply all the OpenConfig
configurations automatically if
there are any discrepancies in the
running configuration.

With this feature, there is no need
for manual replacement of the
OpenConfig configuration using
Netconf or gNMI.

The re-sync operation is triggered
if the running configurations and
the OpenConfig configuration go
out of sync after any system event
that removes some running
configurations from the system. A
corresponding system log gets
generated to indicate the re-sync
status.

Release 7.11.1Automatic Resynchronization of
OpenConfig Configuration

In the earlier releases, when activities such as interface breakout operations, installation activities or insertion
of a new line card took place, there was a risk of OpenConfig configuration and the running configuration
going out of sync. A full replacement of the OpenConfig configuration was required in order to get the
OpenConfig configurations back in sync using Netconf or gNMI.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
160

YANG Data Models
Automatic Resynchronization of OpenConfig Configuration

https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

From the Cisco IOSXR Software Release 7.11.1, if the OpenConfig configurations and running configurations
go out of sync, or any activities takes place which may result in the two configurations to go out of sync, the
system automatically reapplies all the OpenConfig configurations and resolve the sync issue. If there is a
synchronization issue between the running configuration and the OpenConfig configuration, a corresponding
system log is generated to indicate it. Similarly, a corresponding system log is generated indicating the status
of the re-synchronization attempt.

This feature is enabled by default. This process is completely automated.

From the Cisco IOS XR Software Release 24.1.1, the new Cisco-IOS-XR-yiny-oper YANG model displays
the OpenConfig configurationwhich is out of sync with the running configuration, including the error associated
with each out of sync configuration.

The Cisco-IOS-XR-yiny-oper operational data is a snapshot of the current system status, rather than a record
of all past failures. That is, if an item of configuration is out of sync and is later resolved, such as through a
resynchronization or another configuration operation, then this configuration is no longer considered out of
sync and is removed from the snapshot.

Operations that Remove Running Configuration

Here are three types of operation that can have the effect of removing running configuration from the system.
Running configurations are either affected because they directly remove configuration in the system or because
they result in configuration failing to be accepted by the system during start-up.

• Install operations: Running configuration can be removed during non-reload and reload install operations.
During non-reload install, running configuration is removedwhen it is incompatible with the new software.
In this case, it is directly removed by the Install infra. The configuration is removed during reload install
operations if the attempt to restore the startup configuration is partially successful.

• Breakout interfaces configuration: When breakout interfaces are configured or de-configured, all the
existing configuration on interfaces is affected. The affect may be creation or deletion of the parent and
child interfaces. This results in an inconsistency between the running configuration and the OpenConfig
datastore for any of the removed configurations that was mapped from OpenConfig configuration.

The automatic restoration of OpenConfig configuration resolves this inconsistency by re-adding that
removed configuration.

• New line card insertion: On insertion of a new line card into the system, any pre-configuration for that
card is verified for the first time and may be rejected, causing it to be removed. This results in an
inconsistency between the running configuration and the OpenConfig datastore.

In any of the above scenarios, if there is a sync issue, system logs are generated and the system tries to reapply
all the OpenConfig configurations. If the re-sync attempt is successful, the configurations which were removed
earlier, are re-applied. If the re-sync attempt fails, this means that some of the OpenConfig configuration is
no longer valid.

The above scenarios are invalid if there are no OpenConfig configuration present in the system.Note

System Logs Indicating Out-of-Sync Configuration

System log messages are generated due to the above operations that can lead to discrepancies in configurations
on the router. Listed are examples of system log messages raised if any such discrepancies occur.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
161

YANG Data Models
Automatic Resynchronization of OpenConfig Configuration

Table 46: Examples of system log messages generated due to Out-of-Sync Configurations :

DescriptionEvent Name Displayed in the System Log

When an unexpected commit errors in case of a SysDB server
crash.

unexpected commit errors

When a configuration rollbacks back to a commit ID created
using a different software version.

config rollback (to a commit ID created
using a different software version)

This system log is generated when an inconsistency alarm is
raised due to failure in restoring the start-up configurations
after activities like system reload or insertion of a new line
card. Re-synchronization of the configuration is triggered
only after the alarm is cleared.

inconsistent configuration

When interface configuration is removed in response to a
change in interface breakout configuration.

configuration removal (triggered on
0/2/CPU0 by the last config operation for
interface GigabitEthernet0/2/0/0 and 6
other interfaces)

Configuration is removed from the system during a non-reload
install operation due to incompatibility with the new software.

configuration removal (to prepare for an
install operation)

Alarms Related to Out-of-Sync OpenConfig Configuration

• Inconsistency alarm: When a there is a failure in restoring the start-up configurations after a system
reload or insertion of a new line card, inconsistency alarm is raised. If the inconsistency alarm is raised,
you can see an informational system log is generated which indicates that the OpenConfig configuration
and running configuration may be out of sync. A re-sync attempt will be made when the configuration
inconsistency alarm is cleared. This system log is an early warning that the system is potentially out of
sync.

Inconsistency alarm message:

NMI OpenConfig configuration is potentially out of sync with the running configuration

(details: system configuration become inconsistent during OIR restore on 0/0/CPU0). An

automatic reapply of the OpenConfig configuration will be performed when the inconsistency

alarm is cleared.

• Missing item in the OpenConfig datastore alarm: If there are missing items in the configurations
which could not be added to the OpenConfig datastore while loading in a snapshot from disk, you can
see an error system log is raised which indicates that there are some items which are absent in the running
OpenConfig configuration. This scenario occurs when the yang schema is changed from the time the
snapshot was created.

Item missing alarm message:

gNMI OpenConfig configuration is potentially out of sync with the running configuration:

3 failed to be applied to the system (details: snapshot 2 was created with a different

schema version). The system may contain config items mapped from OC that no longer exist

in the OC datastore. Automatic attempts to reapply OC will not remove these items, even

if they otherwise succeed. Config should be replaced manually using a GNMI Replace

operation.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
162

YANG Data Models
Automatic Resynchronization of OpenConfig Configuration

System Logs Generated During Configuration Resynchronization:

When an attempt to re-apply OpenConfig (resynchronization) is complete, the following informational system
logs are generated to indicate the user that the OpenConfig and running configuration were out of sync, and
whether the attempt to resolve this was successful.

• Successful re-sync:

As a result of configuration removal (to prepare for an install operation), the gNMI

OpenConfig configuration has been successfully reapplied.

• Unsuccessful re-sync:

As a result of configuration removal (to prepare for an install operation), an attempt

to reapply the gNMI OpenConfig configuration was made, but some items remain out of

sync with the running configuration. Out of sync configuration can be viewed using the

Cisco-IOS-XR-yiny-oper model.

• Re-sync failure during mapping of OpenConfig configurations to XR configurations:

As a result of configuration removal (to prepare for an install operation), the attempt

to reapply the gNMI OpenConfig configuration failed, and the out of sync configuration

could not be updated. gNMI OpenConfig configuration is potentially out of sync with the

running configuration. Configuration should be reapplied manually using a GNMI Replace

operation

Re-sync failure during mapping of OpenConfig configurations to XR configurations is a rare scenario. When
there is a failure in the re-sync process while mapping the OpenConfig configuration to XR items, it causes
the re-sync request to aborted. This scenario is only possible after an install which changes the OpenConfig
mappings such that some configuration is no longer supported.

Resolve Out of Sync Configuration

An automatic resynchronization fails if the out-of-sync scenario is unresolved or the OpenConfig configuration
and running XR configuration are out of sync.

Here are the two scenarios with steps to resolve the out-of-sync configuration if an attempt for automatic
resynchronization fails.

Resync Fails Partially:

1. Query the items of configuration which are out of sync using the Cisco-IOS-XR-yiny-operYANGmodel

2. For each out-of-sync configuration item:

• Delete the OpenConfig items that are out of sync.

• Re-add the deleted OpenConfig items in a separate request.

Resync Fails Completely:

Perform a full replace of the OpenConfig configuration using Netconf or gNMI.

By successfully completing these steps, you can now ensure that all configurations are in sync.

YANG Model Data for Inconsistent Configuration

Each configuration of the Cisco-IOS-XR-yiny-oper YANG model has a list entry with the following fields:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
163

YANG Data Models
Automatic Resynchronization of OpenConfig Configuration

• Path: The path of the XR configuration, in YPath format.

• Input paths: The OpenConfig paths of the items from which the XR configuration is mapped.

Activity: If last occurrence of this failure was:

• in a user-initiated commit operation.

• in a system-initiated resynchronization attempt, after an install operation, breakout interfaces being
configured, or line card insertion.

• Operation: If a configuration being set or delete:

For a configuration that is out of sync because it failed during a resynchronization attempt, the operation
is always set, but for a user-initiated commit operation, the operation is whichever the user was attempting
during the commit.

• Latest failure type: If the latest failure is a verify failure or an apply failure.

Only verify errors are currently tracked as out of sync and reported in the operational data, but this field
is present in the model for potential future usage if apply errors are also tracked.

• For configuration that fails during startup, both verify and apply failures canmake the configurations
out of sync.

• For configuration that fails during a commit operation, only apply failures canmake the configuration
out of sync. This is because configuration is not allowed in the datastore if verify failures occur
during a commit operation.

• Latest error: The latest error message describing the error.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
164

YANG Data Models
Automatic Resynchronization of OpenConfig Configuration

C H A P T E R 8
Unified Data Models

CLI-based YANG data models, also known as unified configuration models are introduced in Cisco IOS XR
Software Release 7.0.1. The unified models provide a full coverage of the router functionality, and serves as
a single abstraction for YANG and CLI commands. Unified models are generated from the CLI and replaces
the native schema-based models.

The unified models are available in pkg/yang location. The presence of um in the model name indicates that
the model is a unified model. For example, Cisco-IOS-XR-um-<feature>-cfg.yang.

You can access the models supported on the router using the following command:
Router#run
[node]$cd /pkg/yang
[node:pkg/yang]$ls

The unified models are also available in the Github repository.

• Unified Configuration Models, on page 165

Unified Configuration Models
Table 47: Feature History Table

DescriptionRelease InformationFeature Name

Use the
Cisco-IOS-XR-um-script-server-cfg.yang

unified data model to map script file to the custom
OID.

Release 7.5.3Unified DataModel to map script
file to the custom OID

Use the Cisco-IOS-XR-um-script-cfg.yang
unified data model to configure checksum for the
newly added file-name in the Custom OID.

Release 7.5.3Unified DataModel to Configure
checksum in the custom OID

Use the
Cisco-IOS-XR-um-if-encap-ambiguous-cfg.yang

unified data model to configure encapsulated
ambiguous VLANs with IEEE802.1ad Provider
Bridging (PB) encapsulation type on an
access-interface.

Release 7.5.3Unified DataModel to Configure
EncapsulatedAmbiguousVLANs

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
165

https://github.com/YangModels/yang/blob/master/vendor/cisco/xr/

DescriptionRelease InformationFeature Name

Use the
Cisco-IOS-XR-um-if-mac-address-cfg.yang

unified data model to set or delete aMedia Access
Control (MAC) address of the Management
Ethernet interface, which acts as a unique
identifier for the device in the network.

Release 7.5.3Unified DataModel to Configure
MAC Address

Unified models are CLI-based YANG models
that are designed to replace the native
schema-based models. This release introduces
new unified models to configure the Fabric
Interface ASIC (FIA), Link Aggregation Control
Protocol (LACP), Cisco Express Forwarding
(CEF) and controller fabric.

You can access these new unified models from
the Github repository.

Release 7.5.2New Unified Models

Unified models are CLI-based YANG models
that are designed to replace the native
schema-basedmodels. UMmodels are generated
directly from the IOS XR CLIs and mirror them
in several ways. This results in improved usability
and faster adoption of YANG models.

You can access the new unified models from the
Github repository.

Release 7.4.1Transitioning Native Models to
Unified Models (UM)

The following table lists the unified models supported on Cisco IOS XR routers.

Table 48: Unified Models

Introduced in ReleaseUnified Models

Release 7.5.3Cisco-IOS-XR-um-script-server-cfg

Release 7.5.3Cisco-IOS-XR-um-script-cfg

Release 7.5.3Cisco-IOS-XR-um-if-mac-address-cfg

Release 7.5.3Cisco-IOS-XR-um-if-encap-ambiguous-cfg

Release 7.5.2Cisco-IOS-XR-um-cont-cpri-cfg

Release 7.5.2Cisco-IOS-XR-um-lacp-cfg

Release 7.5.2Cisco-IOS-XR-um-controller-fabric-cfg

Release 7.5.1Cisco-IOS-XR-um-if-ipsubscriber-cfg

Release 7.5.1Cisco-IOS-XR-um-session-redundancy-cfg

Release 7.5.1Cisco-IOS-XR-um-subscriber-accounting-cfg

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
166

YANG Data Models
Unified Configuration Models

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
https://github.com/YangModels/yang/tree/master/vendor/cisco/xr

Introduced in ReleaseUnified Models

Release 7.5.1Cisco-IOS-XR-um-subscriber-cfg

Release 7.5.1Cisco-IOS-XR-um-subscriber-redundancy-cfg

Release 7.5.1Cisco-IOS-XR-um-dyn-tmpl-opendns-cfg

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-cfg

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-cfg

Release 7.5.1Cisco-IOS-XR-um-lpts-profiling-cfg

Release 7.5.1Cisco-IOS-XR-um-ppp-cfg

Release 7.5.1Cisco-IOS-XR-um-pppoe-cfg

Release 7.5.1Cisco-IOS-XR-um-vpdn-cfg

Release 7.5.1Cisco-IOS-XR-um-aaa-subscriber-cfg

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-ipv4-cfg

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-ipv6-cfg

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-vrf-cfg

Release 7.5.1Cisco-IOS-XR-um-mibs-subscriber-cfg

Release 7.5.1Cisco-IOS-XR-um-dyn-tmpl-monitor-session-cfg

Release 7.5.1Cisco-IOS-XR-um-l2tp-class-cfg

Release 7.5.1Cisco-IOS-XR-um-dynamic-template-dhcpv6d-cfg

Release 7.5.1Cisco-IOS-XR-um-dyn-tmpl-service-policy-cfg

Release 7.5.1Cisco-IOS-XR-um-snmp-server mroutemib send-all-cfg

Release 7.4.1Cisco-IOS-XR-um-aaa-cfg

Release 7.4.1Cisco-IOS-XR-um-aaa-diameter-cfg

Release 7.4.1Cisco-IOS-XR-um-aaa-nacm-cfg

Release 7.4.1Cisco-IOS-XR-um-aaa-tacacs-server-cfg

Release 7.4.1Cisco-IOS-XR-um-aaa-task-user-cfg

Release 7.4.1Cisco-IOS-XR-um-banner-cfg

Release 7.4.1Cisco-IOS-XR-um-bfd-sbfd-cfg

Release 7.4.1Cisco-IOS-XR-um-call-home-cfg

Release 7.4.1Cisco-IOS-XR-um-cdp-cfg

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
167

YANG Data Models
Unified Configuration Models

Introduced in ReleaseUnified Models

Release 7.4.1Cisco-IOS-XR-um-cef-accounting-cfg

Release 7.4.1Cisco-IOS-XR-um-cfg-mibs-cfg

Release 7.4.1Cisco-IOS-XR-um-cli-alias-cfg

Release 7.4.1Cisco-IOS-XR-um-clock-cfg

Release 7.4.1Cisco-IOS-XR-um-config-hostname-cfg

Release 7.4.1Cisco-IOS-XR-um-cont-breakout-cfg

Release 7.4.1Cisco-IOS-XR-um-cont-optics-cfg

Release 7.4.1Cisco-IOS-XR-um-control-plane-cfg

Release 7.4.1Cisco-IOS-XR-um-crypto-cfg

Release 7.4.1Cisco-IOS-XR-um-domain-cfg

Release 7.4.1Cisco-IOS-XR-um-ethernet-cfm-cfg

Release 7.4.1Cisco-IOS-XR-um-ethernet-oam-cfg

Release 7.4.1Cisco-IOS-XR-um-exception-cfg

Release 7.4.1Cisco-IOS-XR-um-flowspec-cfg

Release 7.4.1Cisco-IOS-XR-um-frequency-synchronization-cfg

Release 7.4.1Cisco-IOS-XR-um-hostname-cfg

Release 7.4.1Cisco-IOS-XR-um-hw-module-port-range-cfg

Release 7.4.1Cisco-IOS-XR-um-hw-module-profile-cfg

Release 7.4.1Cisco-IOS-XR-um-ip-virtual-cfg

Release 7.4.1Cisco-IOS-XR-um-ipsla-cfg

Release 7.4.1Cisco-IOS-XR-um-l2vpn-cfg

Release 7.4.1Cisco-IOS-XR-um-line-cfg

Release 7.4.1Cisco-IOS-XR-um-line-exec-timeout-cfg

Release 7.4.1Cisco-IOS-XR-um-line-general-cfg

Release 7.4.1Cisco-IOS-XR-um-line-timestamp-cfg

Release 7.4.1Cisco-IOS-XR-um-lldp-cfg

Release 7.4.1Cisco-IOS-XR-um-location-cfg

Release 7.4.1Cisco-IOS-XR-um-logging-cfg

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
168

YANG Data Models
Unified Configuration Models

Introduced in ReleaseUnified Models

Release 7.4.1Cisco-IOS-XR-um-logging-correlator-cfg

Release 7.4.1Cisco-IOS-XR-um-lpts-pifib-cfg

Release 7.4.1Cisco-IOS-XR-um-lpts-pifib-domain-cfg

Release 7.4.1Cisco-IOS-XR-um-lpts-pifib-dynamic-flows-cfg

Release 7.4.1Cisco-IOS-XR-um-mibs-cbqosmib-cfg

Release 7.4.1Cisco-IOS-XR-um-mibs-fabric-cfg

Release 7.4.1Cisco-IOS-XR-um-mibs-ifmib-cfg

Release 7.4.1Cisco-IOS-XR-um-mibs-rfmib-cfg

Release 7.4.1Cisco-IOS-XR-um-mibs-sensormib-cfg

Release 7.4.1Cisco-IOS-XR-um-monitor-session-cfg

Release 7.4.1Cisco-IOS-XR-um-mpls-oam-cfg

Release 7.4.1Cisco-IOS-XR-um-ntp-cfg

Release 7.4.1Cisco-IOS-XR-um-pce-cfg

Release 7.4.1Cisco-IOS-XR-um-pool-cfg

Release 7.4.1Cisco-IOS-XR-um-priority-flow-control-cfg

Release 7.4.1Cisco-IOS-XR-um-rcc-cfg

Release 7.4.1Cisco-IOS-XR-um-router-hsrp-cfg

Release 7.4.1Cisco-IOS-XR-um-router-vrrp-cfg

Release 7.4.1Cisco-IOS-XR-um-service-timestamps-cfg

Release 7.4.1Cisco-IOS-XR-um-ssh-cfg

Release 7.4.1Cisco-IOS-XR-um-tcp-cfg

Release 7.4.1Cisco-IOS-XR-um-telnet-cfg

Release 7.4.1Cisco-IOS-XR-um-tpa-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-bridgemib-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-config-copy-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-entity-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-entity-redundancy-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-entity-state-cfg

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
169

YANG Data Models
Unified Configuration Models

Introduced in ReleaseUnified Models

Release 7.4.1Cisco-IOS-XR-um-traps-flash-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-fru-ctrl-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-ipsec-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-l2tun-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-otn-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-power-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-selective-vrf-download-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-syslog-cfg

Release 7.4.1Cisco-IOS-XR-um-traps-system-cfg

Release 7.4.1Cisco-IOS-XR-um-udp-cfg

Release 7.4.1Cisco-IOS-XR-um-vty-pool-cfg

Release 7.4.1Cisco-IOS-XR-um-xml-agent-cfg

Release 7.3.1Cisco-IOS-XR-um-conflict-policy-cfg

Release 7.2.1Cisco-IOS-XR-um-flow-cfg

Release 7.2.1Cisco-IOS-XR-um-if-access-group-cfg

Release 7.2.1Cisco-IOS-XR-um-if-ipv4-cfg

Release 7.2.1Cisco-IOS-XR-um-if-ipv6-cfg

Release 7.2.1Cisco-IOS-XR-um-if-service-policy-qos-cfg

Release 7.2.1Cisco-IOS-XR-um-ipv4-access-list-cfg

Release 7.2.1Cisco-IOS-XR-um-ipv6-access-list-cfg

Release 7.2.1Cisco-IOS-XR-um-l2-ethernet-cfg

Release 7.2.1Cisco-IOS-XR-um-multicast-routing-cfg

Release 7.2.1Cisco-IOS-XR-um-object-group-cfg

Release 7.2.1Cisco-IOS-XR-um-policymap-classmap-cfg

Release 7.2.1Cisco-IOS-XR-um-router-igmp-cfg

Release 7.2.1Cisco-IOS-XR-um-router-pim-cfg

Release 7.2.1Cisco-IOS-XR-um-statistics-cfg

Release 7.2.1Cisco-IOS-XR-um-ethernet-services-access-list-cfg

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
170

YANG Data Models
Unified Configuration Models

Introduced in ReleaseUnified Models

Release 7.2.1Cisco-IOS-XR-um-if-l2transport-cfg

Release 7.2.1Cisco-IOS-XR-um-ipv4-prefix-list-cfg

Release 7.2.1Cisco-IOS-XR-um-ipv6-prefix-list-cfg

Release 7.2.1Cisco-IOS-XR-um-router-amt-cfg

Release 7.2.1Cisco-IOS-XR-um-router-mld-cfg

Release 7.2.1Cisco-IOS-XR-um-router-msdp-cfg

Release 7.1.1Cisco-IOS-XR-um-router-bgp-cfg

Release 7.1.1Cisco-IOS-XR-um-mpls-te-cfg

Release 7.1.1Cisco-IOS-XR-um-router-isis-cfg

Release 7.1.1Cisco-IOS-XR-um-router-ospf-cfg

Release 7.1.1Cisco-IOS-XR-um-router-ospfv3-cfg

Release 7.0.1Cisco-IOS-XR-um-grpc-cfg

Release 7.0.1Cisco-IOS-XR-um-if-bundle-cfg

Release 7.0.1Cisco-IOS-XR-um-if-ethernet-cfg

Release 7.0.1Cisco-IOS-XR-um-if-ip-address-cfg

Release 7.0.1Cisco-IOS-XR-um-if-vrf-cfg

Release 7.0.1Cisco-IOS-XR-um-interface-cfg

Release 7.0.1Cisco-IOS-XR-um-mpls-l3vpn-cfg

Release 7.0.1Cisco-IOS-XR-um-netconf-yang-cfg

Release 7.0.1Cisco-IOS-XR-um-router-rib-cfg

Release 7.0.1Cisco-IOS-XR-um-router-static-cfg

Release 7.0.1Cisco-IOS-XR-um-snmp-server-cfg

Release 7.0.1Cisco-IOS-XR-um-telemetry-model-driven-cfg

Release 7.0.1Cisco-IOS-XR-um-vrf-cfg

Release 7.0.1Cisco-IOS-XR-um-arp-cfg

Release 7.0.1Cisco-IOS-XR-um-if-arp-cfg

Release 7.0.1Cisco-IOS-XR-um-if-mpls-cfg

Release 7.0.1Cisco-IOS-XR-um-if-tunnel-cfg

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
171

YANG Data Models
Unified Configuration Models

Introduced in ReleaseUnified Models

Release 7.0.1Cisco-IOS-XR-um-mpls-ldp-cfg

Release 7.0.1Cisco-IOS-XR-um-mpls-lsd-cfg

Release 7.0.1Cisco-IOS-XR-um-rsvp-cfg

Release 7.0.1Cisco-IOS-XR-um-traps-mpls-ldp-cfg

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
172

YANG Data Models
Unified Configuration Models

P A R T II
Automation Scripts

• Achieve Network Operational Simplicity Using Automation Scripts, on page 175
• Precommit Scripts, on page 179
• Config Scripts, on page 191
• Exec Scripts, on page 209
• Process Scripts, on page 227
• EEM Scripts, on page 241
• Model-Driven Command-Line Interface, on page 255
• Manage Automation Scripts Using YANG RPCs, on page 263
• Script Infrastructure and Sample Templates, on page 279
• Troubleshoot Automation Scripts, on page 301

C H A P T E R 9

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
175

Achieve Network Operational Simplicity Using
Automation Scripts

Table 49: Feature History Table

DescriptionRelease InformationFeature Name

This feature lets you host and
execute your automation scripts
directly on a router running IOSXR
software, instead of managing them
on external controllers. The scripts
available on-box can now leverage
Python libraries, access the
underlying router information to
execute CLI commands, and
monitor router configurations
continuously. This results in setting
up a seamless automationworkflow
by improving connectivity, access
to resources, and speed of script
execution.

The following categories of on-box
scripts are used to achieve
operational simplicity:

• Config scripts—Implement
custom configuration rules,
and notify the user to take
action when the configuration
conditions are not met.

• Exec scripts—Automate
operational tasks and network
troubleshooting.

• Process scripts—Monitor the
system continuously using
daemons.

• EEM scripts—Respond to a
predefined set of events.

Release 7.3.2Operational Simplicity Using
Automation Scripts

Network automation is imperative to deploy and manage the networks with large-scale cloud-computing
architectures. The automation can be achieved through standard model-driven data models. To cater to the
automation requirements, you leverage the Cisco IOS XR infrastructure to make API calls and run scripts
from an external controller. These off-box scripts take advantage of the exposed interfaces such as NETCONF,
SNMP, SSH to work on the network element. However, there is need to maintain an external controller to
interact with the router.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
176

Automation Scripts

To simplify the operational infrastructure, the automation scripts can be run on the router, eliminating the
need for an external controller. The execution of the different types of scripts are faster and reliable as it is
not dependent on the speed or network reachability of the external controller. Most script types interact with
IOS XR Software using standard protocols such as NETCONF. You can download script to the router,
configure scripts, view operational data, and set responses to events in the router.

In summary, on-box scripting is similar to off-box scripting, with the exception that the management software
that runs in an external controller is now part of the router software. The scripts programmatically automate
configuration and operational tasks on the network devices. You can create customized scripts that are based
on your network requirement and execute scripts on routers running Cisco IOS XR operating system. The
packages that support scripting are provided in the software image.

You can create scripts using Python 3.5.Note

• Explore the Types of Automation Scripts, on page 177

Explore the Types of Automation Scripts
There are four types of on-box automation scripts that you can leverage to automate your network operations:

• Configuration (Config) scripts

• Execution (Exec) scripts

• Process scripts

• EEM scripts

The following table provides the scope and benefit of on-box scripts:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
177

Automation Scripts
Explore the Types of Automation Scripts

Table 50: On-Box Automation Scripts

EEM ScriptsProcess ScriptsExec ScriptsConfig Scripts

Run operational
commands or RPCs,
generate, and
determine the next
steps like logging
the root cause or
changing device
configuration. Event
policies can upload
the output of event
scripts to an on-box
or off-box location
for further analysis.

Daemonize to
continuously run as
an agent on the
router to execute
additional checks
outside traditional
ZTP. Daemonized
scripts are similar to
exec scripts but run
continuously. The
script executes
operational
commands on the
router and analyzes
the output.

Run operational
commands or RPCs,
process the output,
generate syslogs,
configure system,
perform system
action commands
such as system
reload, process
restarts, and collect
logs for further
evaluation.

Enforce contextual
and conditional
changes to
configurations,
validate
configurations
before committing
the changes to detect
and notify potential
errors. If
configuration does
not comply with the
rules that are defined
in the script, an
action can be
invoked. For
example, generate a
warning, syslog
message, or halt a
commit operation.

What is the scope of
the script?

Event scripts are
invoked by defined
event policies in
response to a system
event and allow for
immediate action to
take effect.

Process script is
activated via
configuration CLI
command.

Exec script is
invoked manually
via CLI command or
RPC.

All config scripts are
processed
automatically when
commit command is
executed on the
router.

How to invoke the
script?

Automates log
collection upon
detecting error
conditions that are
defined by event
policies.

Uploads the output
of event scripts to an
on-box or off-box
location for further
analysis.

Runs scripts as a
daemon to
continuously
perform tasks that
are not transient.

Collects operational
information, and
decreases the time
that is involved in
troubleshooting
issues.

Provides flexibility
in changing the
input parameters for
every script run.
This fosters dynamic
automation of
operational
information.

Simplifies complex
configurations and
averts potential
errors before a
configuration is
committed.

Ensures that the
network
configuration
complies with rules
and policies that are
defined in the script.

What are the main
benefits of using the
script?

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
178

Automation Scripts
Explore the Types of Automation Scripts

C H A P T E R 10
Precommit Scripts

Table 51: Feature History Table

DescriptionRelease InformationFeature Name

With this feature, you can deploy
custom python scripts to be
executed automatically during a
configuration commit operation.
These scripts process the
configuration change and act as
deciding factor to either proceed
with applying the configuration or
stop the commit operation in the
event of an error.

Release 7.5.4Precommit Script to Validate
Configuration Change

Cisco IOS XR precommit scripts can validate the configuration during the commit operation. They allow
device administrators to enforce custom configuration validation rules. These scripts are invoked automatically
when you change a configuration and commit the changes. When a configuration commit is in progress, a
precommit script is automatically initaited to validate the changes. If the change is valid, the script allows
committing the new configuration. If the configuration is invalid, or does not adhere to the enforced validation
rules, the script notifies you about the mismatch and blocks the commit operation. Overall, precommit scripts
help to maintain crucial device parameters, and reduce human error in managing the network.

When you commit a configuration, the system automatically invokes the precommit scripts to validate that
change. Precommit scripts can perform the following actions during a commit operation:

• Validate the proposed new configuration, ensure that the changes to the target configuration does not
exceed the boundaries defined for the system or software functionality. For example, you can program
the script to estimate the Ternary Content Addressable Memory (TCAM) slots needed for the target
configuration, and verify that the TCAM usage does not exceed a defined threshold.

• Verify that the commit operation adheres to the predefined execution rules. For example, you can use
the script to ensure that certain configuration changes that impact traffic are allowed only at specified
time intervals.

• Block the commit operation if the configuration is invalid and notify the details in an error message.

• Generate system log messages for in-depth analysis of the configuration change. This log also helps in
troubleshooting a failed commit operation.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
179

Precommit Script Limitations

The following restrictions apply when using precommit scripts:

• Precommit scripts cannot modify a configuration.

• Configuration validation before a commit operation is supported only using CLI commands. Operations
using NETCONF, gNMI and XML are not supported even if the precommit script is enabled.

Get Started with Precommit Scripts

Precommit scripts can be written in Python 3.9 (and earlier) programming language using the packages that
Cisco supports. For more information about the supported packages, see Script Infrastructure and Sample
Templates, on page 279.

This chapter gets you started with provisioning your precommit automation scripts on the router.

This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section walks you through the process involved in deploying and using
the precommit scripts on the router.

Note

• Workflow to Run Precommit Scripts, on page 180
• Example: Verify BGP Configuration Using Precommit Script, on page 186

Workflow to Run Precommit Scripts
The following image shows a workflow diagram representing the steps involved in using a precommit script:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
180

Automation Scripts
Workflow to Run Precommit Scripts

Complete the following tasks to provision precommit scripts:

• Download the Script to the Router—Store the precomit script on a remote server or copy to the harddisk
of the router. Add the precommit script from the server to the script management repository
(hardisk:/mirror/script-mgmt) on the router using the script add precommit command.

• Configure Checksum for Precommit Script—Configure the script integrity and authenticity using the
script precommit script checksum command. A script cannot be used unless the checksum is configured.

• Activate Precommit Scripts—Activate the precommit script using script precommit script activate
command to validate the configuration from a commit operation. The script ensures that the configuration
changes comply with the predefined conditions in the script, and uncover potential errors, if any.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
181

Automation Scripts
Workflow to Run Precommit Scripts

A precommit script is invoked automatically when you commit a configuration
change to modify the router configuration. You can view the result from the script
execution on the console.

Note

Download the Script to the Router
Download LocationScript Type

harddisk:/mirror/script-mgmt/precommitprecommit

harddisk:/mirror/script-mgmt/configconfig

harddisk:/mirror/script-mgmt/execexec

harddisk:/mirror/script-mgmt/processprocess

harddisk:/mirror/script-mgmt/eemeem

The scripts are added to the script management repository using two methods:

• Method 1: Add script from a server

• Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add precommit-bgp.py script to the script management repository.

Before you begin

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Procedure

Step 1 Add the script to the script management repository on the router using one of the two options:

• Add Script From a Server

Add the script from a configured remote server (HTTP, HTTPS, FTP or SCP) or the harddisk location in the router.
Router#script add precommit script-location script.py

The following example shows a precommit script precommit-bgp.py downloaded from an external repository
http://192.0.2.0/scripts:

Router#script add precommit http://192.0.2.0/scripts precommit-bgp.py
Tue Jan 24 05:03:40.791 UTC
Copying script from http://192.0.2.0/scripts/precommit-bgp.py
precommit-bgp.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
182

Automation Scripts
Download the Script to the Router

Router#script add precommit script-location script1.py script2.py ... script10.py

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Note
Only SHA256 checksum is supported.

Router#script add precommit http://192.0.2.0/scripts precommit-bgp.py checksum SHA256 checksum-value

For multiple scripts, use the following syntax to specify the checksum:
Router#script add precommit http://192.0.2.0/scripts script1.py script1-checksum script2.py
script2-checksum... script10.py script10-checksum

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

• Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/precommit-bgp.py /harddisk:/

b. Add the script from the harddisk to the script management repository.
Router#script add precommit /harddisk:/ precommit-bgp.py
Tue Jan 24 05:03:40.791 UTC
Copying script from /harddisk:/precommit-bgp.py
precommit-bgp.py has been added to the script repository

Step 2 Verify that the script is downloaded to the script management repository on the router.

Example:
Router#show script status
Tue Jan 24 05:10:40.791 UTCC
==

Name | Type | Status | Last Action | Action Time
--

precommit-bgp.py | precommit | Config Checksum | NEW | Tue Jan 24 05:10:18 2023

Script precommit-bgp.py is copied to harddisk:/mirror/script-mgmt/precommit directory on the router.

Configure Checksum for Precommit Script
Every script is associated with a checksum hash value. This value ensures the integrity of the script, and that
the script is not tampered with. The checksum is a string of numbers and letters that act as a fingerprint for
script. The checksum of the script is compared with the configured checksum. If the values do not match, the
script is not run and a syslog warning message is displayed.

It is mandatory to configure the checksum to run the script.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
183

Automation Scripts
Configure Checksum for Precommit Script

Precommit scripts support SHA256 checksum.Note

Procedure

Step 1 Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.
However, if the router is secure, you can retrieve the checksum hash value from the IOS XR Linux bash shell.

Example:
Router#run
[node0_RP0_CPU0:~]$sha256sum /harddisk:/mirror/script-mgmt/precommit/precommit-bgp.py
6bb460920a694a0f91a27892f457203090e7a6391ab7d2f8656f477af17f9ed1
/harddisk:/mirror/script-mgmt/precommit/precommit-bgp.py

Make note of the checksum value.

Step 2 View the status of the script.

Example:
Router#show script status detail
Tue Jan 24 05:20:13.539 UTC
==

Name | Type | Status | Last Action | Action Time
--

precommit-bgp.py | precommit | Config Checksum | NEW | Tue Jan 24 05:19:41
2023
--

Script Name : precommit-bgp-script.py
History:

1. Action : NEW

Time : Tue Jan 24 05:19:41 2021
Description : User action IN_CLOSE_WRITE

===

The Status shows that the checksum is not configured.

You can view the details of the specific script using the show script status name script detail command.

Step 3 Configure the checksum and set the priority.

Example:
Router#configure
Router(config)#script precommit precommit-bgp.py checksum SHA256
6bb460920a694a0f91a27892f457203090e7a6391ab7d2f8656f477af17f9ed1 priority 20
Router(config)#commit
Tue Jan 24 10:23:10.546 UTC
Router(config)#end

If you are configuring multiple scripts, the system decides an appropriate order to run the scripts. However, you can
control the order in which scripts execute using a priority value. For more information on configuring the priority value,
see Control Priority When Running Multiple Scripts, on page 201.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
184

Automation Scripts
Configure Checksum for Precommit Script

Step 4 Verify the status of the script.

Example:
Router#show script status detail
Tue Jan 24 05:06:17.296 UTC
==

Name | Type | Status | Last Action | Action Time
--

precommit-bgp.py | precommit | Ready | NEW | Tue Jan 24 06:17:41 2023
--

Script Name : precommit-bgp.py
Checksum : 6bb460920a694a0f91a27892f457203090e7a6391ab7d2f8656f477af17f9ed1
History:

1. Action : NEW

Time : Tue Jan 24 06:17:41 2023
Checksum : 6bb460920a694a0f91a27892f457203090e7a6391ab7d2f8656f477af17f9ed1
Description : User action IN_CLOSE_WRITE

===

The status Ready indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script is not
run, and the commit operation that triggered the script is rejected. It is mandatory for the checksum values to match for
the script to run.

Activate Precommit Scripts
Activate the precommit script to validate a configuration change on the set of active configuration (including
any scripts newly activated as part of the configuration change) before committing the changes.

If the precommit script rejects one or more items in the configuration change, the entire configuration is
rejected before committing the change.

Note

Before you begin

Ensure that the following prerequisites are met before you run the script:

1. Download the Script to the Router, on page 182

2. Configure Checksum for Precommit Script, on page 183

Procedure

Step 1 Activate the precommit script for the configuration validation to take effect.

Example:
Router(config)#script precommit precommit-bgp.py activate

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
185

Automation Scripts
Activate Precommit Scripts

Step 2 Commit the changes and verify that the precommit script is automatically initiated. You can choose to perform one of
the following options based on the requirement:

• Commit the changes to automatically initiate the precommit verification script.
Router(config-bgp-nbr)#commit
Tue Jan 24 00:13:37.050 UTC
Precommit Script Report Start

Pre-commit Verification Result: Pass
Pre-commit Verification Script precommit-bgp.py (req id 1656378102): Pass

Precommit Script Report Done

• Ignore the result of the precommit script execution and proceed to the next step in the commit process using
ignore-results keyword. Use this keyword if you want to bypass the commit verification. The precommit script is
still executed, but the result is ignored.
Router(config-bgp-nbr)#commit script-verification ignore-results

• View all the logs generated by the commit script on the console using verbose keyword. If this keyword is not
specified, only the result of the script verification is displayed on the console.
Router(config-bgp-nbr)#commit script-verification verbose

An execution report from the script is displayed on the console. If the script displays an error message, rectify the error
and rerun the commit operation. If there are no validation errors, the commit operation is successful indicating that the
configuration change is valid.

Example: Verify BGP Configuration Using Precommit Script
In this example, you create a precommit script to validate the following Border Gateway Protocol (BGP)
configuration:

• Check that the autonomous system (AS) value is in the range from 123 to 234

• Check that the remote AS of neighbours is not set to 25

Procedure

Step 1 Create a precommit script named verify-bgp.py. Store the script on a remote server or copy the script to the harddisk:
location of the router.

Example:
"""

import re
from iosxr.xrcli.xrcli_helper import XrcliHelper
from cisco.script_mgmt import xrlog
from cisco.script_mgmt import precommit

syslog = xrlog.getSysLogger('precommit_verify_bgp')
log = xrlog.getScriptLogger('precommit_verify_bgp')

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
186

Automation Scripts
Example: Verify BGP Configuration Using Precommit Script

helper = XrcliHelper(debug=True)

def verify_bgp():
"""
Query for target configs and check if the target configs has bgp configs
Check if the bgp AS is in the range 123-234
Check if remote AS is not 25.
:return: None on pass / Raise exception on failure.
"""

CLI verification
cfg = precommit.get_target_configs()
#cfg = "Thu Feb 23 18:54:28.605 UTC\nrouter bgp 100\n neighbor 10.0.0.1\n remote-as 25\n !\n!\n"

#cfg = cfg.split("\n")
print(cfg)

for cfg_line in cfg:

bgp_cfg_start_pattern = re.match("^router bgp (.*)", cfg_line)
if bgp_cfg_start_pattern:

log.info("BGP config found")

bgp_as = int(bgp_cfg_start_pattern.group(1))
if not bgp_as in range(123, 234):

precommit.config_warning("BGP AS number (%d) " % bgp_as +
"not in recommended range (123-234)")

sysdb verification
cfg = precommit.get_target_configs(format="sysdb")
cfg = [Item(name='gl/ip-bgp/default/0/100/aya', value=1, datatype=1),
Item(name='gl/ip-bgp/default/0/100/gbl/edm/ord_a/running', value=1, datatype=1),
#

Item(name='gl/ip-bgp/default/0/100/ord_a/default/nbr/________/edm/ord_u/0x3/10.0.0.1/________/________/aya',
value=1, datatype=1),

#
Item(name='gl/ip-bgp/default/0/100/ord_a/default/nbr/________/edm/ord_u/0x3/10.0.0.1/________/________/ord_a/exists',
value=1, datatype=1),

#
Item(name='gl/ip-bgp/default/0/100/ord_a/default/nbr/________/edm/ord_u/0x3/10.0.0.1/________/________/ord_b/remote-as',
value=(0, 26), datatype=5)]

print(cfg)

for item in cfg:

remote_as_pattern = re.match("^gl/ip-bgp/default/0/.*/remote\-as", item.name)
if remote_as_pattern:

log.info("BGP remote AS config found")
remote_as = int(item.value[1])
if remote_as == 25:

syslog.info("Attempt to configure BGP remote AS %d" % remote_as)
precommit.config_error("Remote AS (%d) is not permitted" % remote_as)

log.info("BGP verification is good")

if __name__ == '__main__':

result = helper.xrcli_exec("show version")
match = re.search(r'Version +: (.*)\n*', result['output'])
print("Image version: %s" % match.group(1))
verify_bgp()

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
187

Automation Scripts
Example: Verify BGP Configuration Using Precommit Script

Step 2 Add the script from the remote server or the harddisk: location to the script management repository. See Download the
Script to the Router, on page 182.

Step 3 Configure the checksum value to check the script integrity. See Configure Checksum for Precommit Script, on page 183.
Step 4 Activate the script. See Activate Precommit Scripts, on page 185.
Step 5 Configure BGP and commit the configuration.

Example:
Router(config)#router bgp 100
Router(config-bgp)#neighbor 10.0.0.1
Router(config-bgp-nbr)#remote-as 25
Router(config-bgp-nbr)#commit
Wed Jan 25 22:53:21.910 UTC
Precommit Script Report Start

Pre-commit Verification Result: Fail
Pre-commit Verification Script verify-bgp.py (req id 1674671641): Fail
% Script exception return value 1
Errors:
Remote AS (25) is not permitted
Warnings:
BGP AS number (100) not in recommended range (123-234)

Precommit Script Report Done

% Failed to commit .. As an error (Unknown) encountered during commit operation. Changes may not have
been committed:
'SCRIPT_MGMT' detected the 'fatal' condition 'One or more Pre-Commit script verifications failed'

The precommit script is automatically initiated when you commit the configuration. The result from the script run is
displayed.

In this example, the precommit script validates the BGP configuration. The AS value limit that is configured in the script
is not within the permissible range of 123 to 234. The script rejects the configuration, and displays the details of the
validation failure on the console.

Step 6 Verify the script execution details. You can either choose to ignore the script results or view the detailed report of the
script execution.

• Ignore the script results using ignore-results keyword, and proceed to commit the configuration.
Router(config-bgp-nbr)#commit script-verification ignore-results
Wed Jan 25 23:00:02.057 UTC
Precommit Script Report Start

Pre-commit Verification Result: Pass (Failures Ignored)
Pre-commit Verification Script verify-bgp.py (req id 1674671645): Fail (Ignored)
% Script exception return value 1
Errors:
Remote AS (25) is not permitted
Warnings:
BGP AS number (100) not in recommended range (123-234)

Precommit Script Report Done

• View the detailed report using verbose keyword.
Router(config-bgp-nbr)#commit script-verification verbose
Wed Jan 25 22:53:30.881 UTC
Precommit Script Report Start

Pre-commit Verification Result: Fail

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
188

Automation Scripts
Example: Verify BGP Configuration Using Precommit Script

Pre-commit Verification Script verify-bgp.py (req id 1674671642): Fail
% Script exception return value 1
Errors:
Remote AS (25) is not permitted
Warnings:
BGP AS number (100) not in recommended range (123-234)
Script output logs:
/harddisk:/mirror/script-mgmt/logs/verify-bgp.py_precommit_1674671642/stdout.log
Image version: 7.5.4.29I
['!! IOS XR Configuration 7.5.4.29I', 'router bgp 100', ' neighbor 10.0.0.1', ' remote-as 25',
' !', '!', 'end', '', '']
[2023-01-25 22:53:31,545] INFO [precommit_verify_bgp]:: BGP config found
!!!!!$$$$$CONFIG WARNING: BGP AS number (100) not in recommended range (123-234) $$$$$!!!!!
[Item(name='gl/ip-bgp/default/0/100/aya', value=1, datatype=1),
Item(name='gl/ip-bgp/default/0/100/gbl/edm/ord_a/running',
value=1, datatype=1),
Item(name='gl/ip-bgp/default/0/100/ord_a/default/nbr/________/edm/ord_u/0x3/10.0.0.1/________/________/aya',
value=1,
datatype=1),
Item(name='gl/ip-bgp/default/0/100/ord_a/default/nbr/________/edm/ord_u/0x3/10.0.0.1/________/________/
ord_a/exists', value=1, datatype=1),
Item(name='gl/ip-bgp/default/0/100/ord_a/default/nbr/________/edm/ord_u/0x3/10.0.0.1/
________/________/ord_b/remote-as', value=(0, 25), datatype=5)]
[2023-01-25 22:53:31,571] INFO [precommit_verify_bgp]:: BGP remote AS config found
!!!!!$$$$$CONFIG ERROR: Remote AS (25) is not permitted $$$$$!!!!!

Script error logs: /harddisk:/mirror/script-mgmt/logs/verify-bgp.py_precommit_1674671642/stderr.log
Traceback (most recent call last):
File "/harddisk:/mirror/script-mgmt/precommit/verify-bgp.py", line 107, in <module>
verify_bgp()

File "/harddisk:/mirror/script-mgmt/precommit/verify_bgp.py", line 97, in verify_bgp
precommit.config_error("Remote AS (%d) is not permitted" % remote_as)

File "infra/script-mgmt/src/Packages/precommit.py", line 87, in config_error
cisco.script_mgmt.precommit.PrecommitConfigError: !!!!!$$$$$CONFIG ERROR: Remote AS (25) is not
permitted $$$$$!!!!!

Precommit Script Report Done

% Failed to commit .. As an error (Unknown) encountered during commit operation. Changes may not
have been committed:
'SCRIPT_MGMT' detected the 'fatal' condition 'One or more Pre-Commit script verifications failed'

Step 7 Rectify the errors and commit the configuration.

Example:
Router(config)#router bgp 200
Router(config-bgp)#neighbor 10.0.0.1
Router(config-bgp-nbr)#remote-as 26
Router(config-bgp-nbr)#commit
Wed Jan 25 22:59:06.704 UTC
Precommit Script Report Start

Pre-commit Verification Result: Pass
Pre-commit Verification Script verify-bgp.py (req id 1674671644): Pass

Precommit Script Report Done

The precommit script validates the BGP configuration to ensure that the conditions configured in the script are met.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
189

Automation Scripts
Example: Verify BGP Configuration Using Precommit Script

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
190

Automation Scripts
Example: Verify BGP Configuration Using Precommit Script

C H A P T E R 11
Config Scripts

Cisco IOSXR config scripts can validate and make modifications to configuration changes. They allow device
administrators to enforce custom configuration validation rules, or to simplify certain repetitive configuration
tasks. These scripts are invoked automatically when you change a configuration and commit the changes.
When a configuration commit is in progress, a config script inserts itself into the commit process. The config
script can modify the current config candidate. For example, consider you want to maintain certain parameters
for routers such as switched off ports or security policies. The config script is triggered to validate the updated
configuration and take appropriate action. If the change is valid, the script allows committing the new
configuration. If the configuration is invalid, or does not adhere to the enforced constraints, the script notifies
you about the mismatch and blocks the commit operation. Overall, config scripts help to maintain crucial
device parameters, and reduce human error in managing the network.

When you commit or validate a configuration change, the system invokes each of the active scripts to validate
that change. Config scripts can perform the following actions:

• Analyze the proposed new configuration.

• If the configuration is invalid, block the commit by returning an error message along with the set of
configuration items to which it relates.

• Return a warning message with the related details but does not block the commit operation.

• Modify the configuration to be included in the commit operation to make the configuration valid, or to
simplify certain repetitive configuration tasks. For example, where a value needs duplicating between
one configuration item and another configuration item.

• Generate system log messages for in-depth analysis of the configuration change. This log also helps in
troubleshooting a failed commit operation.

Config Scripts Limitations

The following are the configuration and software restrictions when using config scripts:

• Config scripts cannot make modifications to configuration that is protected by CCV process, in particular:

• Script checksum configuration.

• Other sensitive security configuration such as AAA configuration.

• Config scripts do not explicitly support importing helper modules or other custom imports to provide
shared functionality. Although such imports appear to function correctly when set up, they can potentially
represent a security risk becaue there is no checksum validation on the imported modules. Modifications

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
191

to these imported modules are not automatically detected. To reflect changes to the imported module in
the running scripts, you must manually unconfigure and reconfigure any scripts using the imported
module.

Get Started with Config Scripts

Config scripts can be written in Python 3.5 programming language using the packages that Cisco supports.
For more information about the supported packages

This chapter gets you started with provisioning your Python automation scripts on the router.

This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

Note

• Workflow to Run Config Scripts, on page 192
• Manage Scripts, on page 200
• Example: Validate and Activate an SSH Config Script, on page 202

Workflow to Run Config Scripts
Complete the following tasks to provision config scripts:

• Enable the config scripts feature—Globally activate the config scripts feature on the router using
configuration validation scripts command.

• Download the script—Store the config script on an HTTP server or copy to the harddisk of the router.
Add the config script from the HTTP server to the script management repository
(hardisk:/mirror/script-mgmt) on the router using the script add config command.

• Validate the script—Check script integrity and authenticity using the script config script.py checksum
command. A script cannot be used unless the checksum is configured. After the checksum is configured,
the script is active.

A config script is invoked automatically when you validate or commit a
configuration change to modify the candidate configuration.

Note

• Validate the configuration—Ensure that the configuration changes comply with the predefined conditions
in the script and uncover potential errors using validate config-scripts apply-policy-modifications
command.

• View the script execution details—Retrieve the operational data using the show operational Config
Global Validation Script Execution command.

The following image shows a workflow diagram representing the steps involved in using a config script:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
192

Automation Scripts
Workflow to Run Config Scripts

Enable Config Scripts Feature
Config scripts are driven by commit operations. To run the config scripts, you must enable the feature on the
router. You must have root user privileges to enable the config scripts.

You must commit the configuration to enable the config scripts feature before committing any script checksum
configuration.

Note

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
193

Automation Scripts
Enable Config Scripts Feature

Procedure

Step 1 Enable the config scripts.

Example:
Router(config)#configuration validation scripts

Step 2 Commit the configuration.

Example:
Router(config)#commit

Download the Script to the Router
To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Download LocationScript Type

harddisk:/mirror/script-mgmt/configconfig

harddisk:/mirror/script-mgmt/execexec

harddisk:/mirror/script-mgmt/processprocess

harddisk:/mirror/script-mgmt/eemeem

The scripts are added to the script management repository using two methods:

• Method 1: Add script from a server

• Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add config-script.py script to the script management repository.

Procedure

Step 1 Add the script to the script management repository on the router using one of the two options:

• Add Script From a Server

Add the script from a configured HTTP server or the harddisk location in the router.
Router#script add config <script-location> <script.py>

The following example shows a config script config-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
194

Automation Scripts
Download the Script to the Router

Router#script add config http://192.0.2.0/scripts config-script.py
Fri Aug 20 05:03:40.791 UTC
config-script.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.
Router#script add config <script-location> <script1.py> <script2.py> ... <script10.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.
Router#script add config http://192.0.2.0/scripts config-script.py checksum SHA256 <checksum-value>

For multiple scripts, use the following syntax to specify the checksum:
Router#script add config http://192.0.2.0/scripts <script1.py> <script1-checksum> <script2.py>
<script2-checksum>
... <script10.py> <script10-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note
Only SHA256 checksum is supported.

• Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/config-script.py /harddisk:/

b. Add the script from the harddisk to the script management repository.
Router#script add config /harddisk:/ config-script.py
Fri Aug 20 05:03:40.791 UTC
config-script.py has been added to the script repository

Step 2 Verify that the scripts are downloaded to the script management repository on the router.

Example:
Router#show script status
Fri Sep 2 21:37:05.021 PDT
===

Name | Type | Status | Last Action | Action Time

CpuCheck_Netconf_RPC_Agent.py | process| Ready | NEW | Fri Sep 2 20:24:58 2022

config_ssh_script.py | config | Ready | MODIFY | Tue Aug 30 14:11:25 2022

eem_script_action_gshut.py | eem | N/A | MODIFY | Thu Sep 1 14:37:58 2022
:23 2021

Router# show appmgr process-script CpuCheck_Netconf_RPC_Agent_Process_App info
Fri Sep 2 21:38:27.455 PDT
Application: CpuCheck_Netconf_RPC_Agent_Process_App
Activated configuration:
Executable : CpuCheck_Netconf_RPC_Agent.py
Run arguments : 15

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
195

Automation Scripts
Download the Script to the Router

Restart policy : On Failure
Maximum restarts : 3

Execution status and info:
Activated : Yes
Status : Started
Executable Checksum : ee3c32a7d95b398a7eeea9b0d39d4d414338cc9fca739462b8ed49069d28d83c
Restart count : 2
Log location :

/harddisk:/mirror/script-mgmt/logs/CpuCheck_Netconf_RPC_Agent.py_process_CpuCheck_Netconf_RPC_Agent_Process_App

Last started Time : Fri Sep 2 21:13:33 2022

Script config_ssh_script.py is copied to harddisk:/mirror/script-mgmt/config directory on the router.

Configure Checksum for Config Script
Every script is associated with a checksum hash value. This value ensures the integrity of the script, and that
the script is not tampered with. The checksum is a string of numbers and letters that act as a fingerprint for
script. The checksum of the script is compared with the configured checksum. If the values do not match, the
script is not run and a syslog warning message is displayed.

It is mandatory to configure the checksum to run the script.

Config scripts support SHA256 checksum.Note

Before you begin

Ensure that the following prerequisites are met before you run the script:

1. Enable Config Scripts Feature, on page 193

2.

Procedure

Step 1 Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.
However, if the router is secure, you can retrieve the checksum hash value from the IOS XR Linux bash shell.

Example:
Router#run
[node0_RP0_CPU0:~]$sha256sum /harddisk:/mirror/script-mgmt/config/config-script.py
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
/harddisk:/mirror/script-mgmt/config/config-script.py

Make note of the checksum value.

Step 2 View the status of the script.

Example:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
196

Automation Scripts
Configure Checksum for Config Script

Router#show script status detail
Fri Aug 20 05:04:13.539 UTC
==

Name | Type | Status | Last Action | Action Time
--

config-script.py | config | Config Checksum | NEW | Fri Aug 20 05:03:41 2021
--

Script Name : config-script.py
History:

1. Action : NEW

Time : Fri Aug 20 05:03:41 2021
Description : User action IN_CLOSE_WRITE

===

The Status shows that the checksum is not configured.

Step 3 Configure the checksum.

Example:
Router#configure
Router(config)#script config config-script.py checksum SHA256
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Router(config)#commit
Tue Aug 24 10:23:10.546 UTC
Router(config)#end

Note
When you commit this configuration, the script is automatically run to validate the resulting running configuration. If
the script returns any errors, this commit operation fails. This way, the running configuration always remains valid with
respect to all currently active scripts with checksums configured.

If you are configuring multiple scripts, the system decides an appropriate order to run the scripts. However, you can
control the order in which scripts execute using a priority value. For more information on configuring the priority value,
see Control Priority When Running Multiple Scripts, on page 201.

Step 4 Verify the status of the script.

Example:
Router#show script status detail
Fri Aug 20 05:06:17.296 UTC
==

Name | Type | Status | Last Action | Action Time
--

config-script.py | config | Ready | NEW | Fri Aug 20 05:03:41 2021
--

Script Name : config-script.py
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
History:

1. Action : NEW

Time : Fri Aug 20 05:03:41 2021
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Description : User action IN_CLOSE_WRITE

===

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
197

Automation Scripts
Configure Checksum for Config Script

The status Ready indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script is not
run, and the commit operation that triggered the script is rejected. It is mandatory for the checksum values to match for
the script to run.

Validate or Commit Configuration to Invoke Config Script
Table 52: Feature History Table

DescriptionRelease InformationFeature Name

This feature allows you to use
config scripts to validate
pre-configuration during a commit
or validate operation. Any active
config scripts can read and validate
(accept, reject or modify)
pre-configuration. The
pre-configuration is only applied to
the system later on, when the
relevant hardware is inserted, and
does not require further script
validation at that point. Previously,
config scripts did not allow
validating configuration until the
corresponding hardware was
present.

Release 7.5.1Validate Pre-configuration Using
Config Scripts

You can validate a configuration change on the set of active config scripts (including any scripts newly
activated as part of the configuration change) before committing the changes. This validation ensures that the
configuration complies with predefined conditions defined in the active scripts based on your network
requirements. With validation, you can update the target configuration buffer with any modifications that are
made by the config scripts. You can review the target configuration using the show configuration command,
and further refine the changes to resolve any outstanding errors before revalidating or committing the
configuration.

If the config script rejects one or more items in the commit operation, the entire commit operation is rejected.Note

You can also validate pre-configuration during a commit operation. Pre-configuration is any configuration
specific to a particular hardware resource such as an interface or a line card that is committed before that
resource is present. For example, commit configuration for a line card before it is inserted into the chassis.
Any active config scripts can read and validate (accept, reject or modify) the pre-configuration. However,
when the configuration is committed, the pre-configuration is not applied to the system. Later, when the
relevant hardware resource is available, the pre-configuration becomes active and is applied to the system.
The config scripts are not run to validate the configuration at this point as the scripts have already validated
this configuration.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
198

Automation Scripts
Validate or Commit Configuration to Invoke Config Script

Before you begin

Ensure that the following prerequisites are met before you run the script:

1. Enable Config Scripts Feature, on page 193

2. Configure Checksum for Config Script, on page 196

Procedure

Step 1 Validate the configuration with the conditions in the config script.

Example:
Router(config)#validate config-scripts apply-policy-modifications
Tue Aug 31 08:30:38.613 UTC

% Policy modifications were made to target configuration, please issue 'show configuration'
from this session to view the resulting configuration

figuration' from this session to view the resulting configuration

The output shows that there are no errors in the changed configuration. You can view the modifications made to the target
configuration.

Note
If you do not want the config buffer to be updated with the modifications, omit the apply-policy-modifications keyword
in the command.

The script validates the configuration changes with the conditions set in the script. Based on the configuration, the script
stops the commit operation, or modifies the configuration.

Step 2 View the modified target configuration.

Example:
Router(config)#show configuration
Tue Aug 31 08:30:56.833 UTC
Building configuration...
!! IOS XR Configuration 7.3.2
script config config-script.py checksum SHA256
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b

d342adb35cbc8a0cd4b6ea1063d0eda2d58
......----- configuration details
end

Step 3 Commit the configuration.

Example:
Router(config)#commit
Tue Aug 31 08:31:32.926 UTC

If the script returns an error, use the show configuration failed if-committed command to view the errors. If there are
no validation errors, the commit operation is successful including any modifications that are made by config scripts.

You can view the recent commit operation that the script modified, and display the original configuration changes before
the script modified the values using show configuration commit changes original last-modified command.

If the commit operation is successful, you can check what changes were committed including the script modifications
using show configuration commit changes last 1 command.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
199

Automation Scripts
Validate or Commit Configuration to Invoke Config Script

Note
If a config script returns a modified value that is syntactically invalid, such as an integer that is out of range, then the
configuration is not converted to CLI format for use in operational commands. This action impacts the validate
config-scripts apply-policy-modifications command and show configuration command to view the modifications, and
show configuration failed [if-committed] command during a failed commit operation.

Step 4 After the configuration change is successful, view the running configuration and logs for details.

Example:
Router(config)#show logging
Tue Aug 31 08:31:54.472 UTC
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)

Console logging: Disabled
Monitor logging: level debugging, 0 messages logged
Trap logging: level informational, 0 messages logged
Buffer logging: level debugging, 13 messages logged

Log Buffer (2097152 bytes):
-------------------- snipped for brevity ---------------------------------------
Configuration committed by user 'cisco'. Use 'show configuration commit changes
1000000006' to view the changes.

Manage Scripts
This section shows the additional operations that you can perform on a script.

Delete Config Script from the Router
You can delete a config script from the script management repository using the script remove command.

Procedure

Step 1 View the active scripts on the router.

Example:
Router#show script status
Wed Aug 24 10:10:50.453 UTC
==

Name | Type | Status | Last Action | Action Time
--

ssh_config_script.py | config | Ready | NEW | Tue Aug 24 09:18:23 2021

==

Ensure the script that you want to delete is present in the repository.

Alternatively you can also view the list of scripts from the IOS XR Linux bash shell.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
200

Automation Scripts
Manage Scripts

[node0_RP0_CPU0:/harddisk:/mirror/script-mgmt/config]$ls -lrt
total 1
-rw-rw-rw-. 1 root root 110 Aug 24 10:44 ssh_config_script.py

Step 2 Delete script ssh_config_script.py.

Example:
Router#script remove config ssh_config_script.py
Tue Aug 24 10:19:38.170 UTC
ssh_config_script.py has been deleted from the script repository

You can also delete multiple scripts simultaneously.
Router#script remove config sample1.py sample2.py sample3.py

Step 3 Verify that the script is deleted from the subdirectory.

Example:
Router#show script status
Tue Aug 24 10:24:38.170 UTC
No scripts found

The script is deleted from the script management repository.

If a config script is still configured when it is removed, subsequent commit operations are rejected. So, you must also
undo the configuration of the script:
Router(config)#no script config ssh_config_script.py
Router(config)#commit

Control Priority When Running Multiple Scripts
If the set of active scripts includes two (or more) that may attempt to modify the same configuration item but
to different values, whichever script runs last takes precedence. The script that was last run supersedes the
values written by the script (or scripts) that ran before it. It is recommended to avoid such dependencies
between scripts. For example, you can combine such scripts into a single script. If the dependency cannot be
resolved, you can specify which script takes precedence by ensuring it runs last.

Priority can also be used to ensure scripts run in an optimal order, which may be important if scripts consume
resources and impacts performance. For example, consider that script A sets configuration that is validated
by script B. Without a set priority, the system may run script B first, then script A, and then script B a second
time to validate the changes made by script A. With a configured priority, the system ensures that script A
runs first, and script B needs to run only once.

The priority value is an integer between 0-4294967295. The default value is 500.

Consider script sample1.py depends on sample2.py to validate the configuration that the script sets. The
script sample1.pymust be run first, followed by sample2.py. Configure the priority to ensure that the system
runs the scripts in a specified order.

Procedure

Step 1 Configure script sample1.py with a lower priority.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
201

Automation Scripts
Control Priority When Running Multiple Scripts

Example:
Router(config)#script config sample1.py checksum sha256
2b061f11ede3c1c0c18f1ee97269fd342adb35cbc8a0cd4b6ea1063d0eda2d58
priority 10

Step 2 Configure script sample2.py with a higher priority.

Example:
Router(config)#script config sample2.py checksum sha256
2fa34b64542f005ed58dcaa1f3560e92a03855223e130535978f8c35bc21290c
priority 20

Step 3 Commit the configuration.

Example:
Router(config)#commit

The system checks the priority values, and runs the one with lower priority first (sample1.py), followed by the one with
the higher priority value (sample2.py).

Example: Validate and Activate an SSH Config Script
This section presents examples for config script that enforces various constraints related to SSH configuration,
including making modifications to the configuration in some cases. The following sub-sections illustrate the
behaviour of this script in various scenarios.

Before you begin

Ensure you have completed the following prerequisites before you validate the script:

1. Enable config scripts feature on the router. See Enable Config Scripts Feature, on page 193.

2. Create a config script ssh_config_script.py. Store the script on an HTTP server or copy the script to
the harddisk of the router.
import cisco.config_validation as xr
from cisco.script_mgmt import xrlog
syslog = xrlog.getSysLogger('xr_cli_config')

def check_ssh_late_cb(root):
SSH = "/crypto-ssh-cfg:ssh"
SERVER = "/crypto-ssh-cfg:ssh/server"
SESSION_LIMIT = "session-limit"
LOGGING = "logging"
RATE_LIMIT = "rate-limit"
V2 = "v2"
server = root.get_node(SERVER)
if server is None:

xr.add_error(SSH, "SSH must be enabled.")

if server :
session_limit = server.get_node(SESSION_LIMIT)
rate_limit = server.get_node(RATE_LIMIT)
ssh_logging = server.get_node(LOGGING)
ssh_v2 = server.get_node(V2)

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
202

Automation Scripts
Example: Validate and Activate an SSH Config Script

if session_limit is None or session_limit.value >= 100:
server.set_node(SESSION_LIMIT, 80)

if rate_limit.value == 60:
xr.add_warning(rate_limit, "RATE_LIMIT should not be set to default value")

if not ssh_logging:
server.set_node(LOGGING)

if not ssh_v2:
xr.add_error(server, "Server V2 need to be set")

xr.register_validate_callback(["/crypto-ssh-cfg:ssh/server/*"], check_ssh_late_cb)

The script checks the following actions:

• Check if SSH is enabled. If not, generate an error message SSH must be enabled and stop the commit
operation.

• Check if the rate-limit is set to 60, display a warning message that the RATE_LIMIT should not be

set to default value and allow the commit operation.

• Check if the session-limit is set. If the limit is 100 sessions or more, set the value to 80 and allow
the commit operation.

• Set the logging if not already enabled.

3. Add the script from HTTP server or harddisk to the script management repository.

Scenario 1: Validate the Script Without SSH Configuration
In this example, you validate a script without SSH configuration. The script is programmed to check the SSH
configuration. If not configured, the script instructs the system to display an error message and stop the commit
operation until SSH is configured.

Procedure

Step 1 Configure the checksum to verify the authenticity and integrity of the script. See Configure Checksum for Config Script,
on page 196.

Step 2 Validate the config script.

Example:
Router(config)#validate config-scripts apply-policy-modifications
Wed Sep 1 23:21:34.730 UTC

% Validation of configuration items failed. Please issue 'show configuration failed if-committed'
from this
session to view the errors

The validation of the configuration failed.

Step 3 View the configuration of the failed operation.

Example:
Router#show configuration failed if-committed
Wed Sep 1 22:01:07.492 UTC
!! SEMANTIC ERRORS: This configuration was rejected by !! the system due to semantic errors.
!! The individual errors with each failed configuration command can be found below.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
203

Automation Scripts
Scenario 1: Validate the Script Without SSH Configuration

script config ssh_config_script.py checksum SHA256
2b061f11ede3c1c0c18f1ee97269fd342adb35cbc8a0cd4b6ea1063d0eda2d58
!!% ERROR: SSH must be enabled.
end

The message for the failure is displayed. Here, the error SSH must be enabled is displayed as programmed in the script.
The script stops the commit operation because the changes do not comply with the rule set in the script.

Step 4 Check the syslog output for the count of errors, warnings, and modifications.

Example:
Router#show logging | in Error
Wed Sep 1 22:02:05.559 UTC
Router:Wed Sep 1 22:45:05.559 UTC: ccv[394]: %MGBL-CCV-6-CONFIG_SCRIPT_CALLBACK_EXECUTED :
The function check_ssh_late_cb registered by the config script ssh_config_script.py was
executed in 0.000 seconds.
Error/Warning/Modification counts: 1/0/0

In this example, the script displays an error about the missing SSH configuration.When an error is displayed, the warning
and modification count always show 0/0 respectively even if modifications exist on the target buffer.

Scenario 2: Configure SSH and Validate the Script
In this example, you configure SSH to resolve the error displayed in scenario 1, and validate the script again.

Procedure

Step 1 Configure SSH.

Example:
Router(config)#ssh server v2
Router(config)#ssh server vrf default
Router(config)#ssh server netconf vrf default

Step 2 Configure the checksum.
Step 3 Validate the configuration again.

Example:
Router(config)#validate config-scripts apply-policy-modifications
Wed Sep 1 22:03:05.448 UTC

% Policy modifications were made to target configuration, please issue 'show configuration'
from this session to view the resulting configuration

The script is programmed to display an error and stop the commit operation if the system detects that SSH server is not
configured. After the SSH server is configured, the script is validated successfully.

Step 4 Commit the configuration.

Example:
Router(config)#commit
Tue Aug 31 08:31:32.926 UTC

Step 5 View the SSH configuration that is applied or modified after the commit operation.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
204

Automation Scripts
Scenario 2: Configure SSH and Validate the Script

Example:
Router#show running-config ssh
Wed Sep 1 22:15:05.448 UTC
ssh server logging
ssh server session-limit 80
ssh server v2
ssh server vrf default
ssh server netconf vrf default

In addition, you see the modifications that are made by the script to the target buffer. The session-limit is used to configure
the number of allowable concurrent incoming SSH sessions. In this example, the default limit is set to 80 sessions.
Outgoing connections are not part of the limit. The script is programmed to check the session limit. If the limit is greater
or equal to 100 sessions, the script reconfigures the value to the default 80 sessions. However, if the limit is within 100
sessions, the configuration is accepted without modification.

Step 6 Check the syslog output for the count of errors, warnings, and modifications.

Example:
Router#show logging | in Error
Wed Sep 1 22:45:05.559 UTC
Router:Wed Sep 1 22:45:05.559 UTC: ccv[394]: %MGBL-CCV-6-CONFIG_SCRIPT_CALLBACK_EXECUTED :
The function check_ssh_late_cb registered by the config script ssh_config_script.py was
executed in 0.000 seconds.
Error/Warning/Modification counts: 0/0/2

In this example, the script did not display an error or warning, but made two modifications for server logging and
session-limit.

Scenario 3: Set Rate-limit Value to Default Value in the Script
In this example, you see the response after setting the rate-limit to the default value configured in the script.
The rate-limit is used to limit the incoming SSH connection requests to the configured rate. The SSH server
rejects any connection request beyond the rate-limit. Changing the rate-limit does not affect established SSH
sessions. For example, if the rate-limit argument is set to 60, then 60 requests are allowed per minute. The
script checks if the rate-limit is set to the default value 60. If yes, the script displays a warning message that
the RATE_LIMIT should not be set to default value, but allow the commit operation.

Procedure

Step 1 Configure rate-limit to the default value of 60.

Example:
Router(config)#ssh server rate-limit 60

Step 2 Commit the configuration.

Example:
Router(config)#commit
Wed Sep 1 22:11:05.448 UTC

% Validation warnings detected as a result of the commit operation.
Please issue 'show configuration warnings' to view the warnings

The script displays a warning message but proceeds with the commit operation.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
205

Automation Scripts
Scenario 3: Set Rate-limit Value to Default Value in the Script

Step 3 View the warning message.

Example:
Router(config)#show configuration warnings
Wed Sep 1 22:12:05.448 UTC
!! SEMANTIC ERRORS: This configuration was rejected by the system due to
semantic errors. The individual errors with each failed configuration command
can be found below.

script config ssh_config_script.py checksum SHA256
2b061f11ede3c1c0c18f1ee97269fd342adb35cbc8a0cd4b6ea1063d0eda2d58
!!% WARNING: RATE_LIMIT should not be set to default value
end

The rate limit is default value of 60. The script is programmed to display a warning message if the rate limit is set to the
default value. You can either change the limit or leave the value as is.

Step 4 View the running configuration.

Example:
Router(config)#do show running-config script
Wed Sep 1 22:15:05.448 UTC
script config ssh_config_script.py checksum SHA256
2b061f11ede3c1c0c18f1ee97269fd342adb35cbc8a0cd4b6ea1063d0eda2d58

The script ssh_config_script.py is active.

Scenario 4: Delete SSH Server Configuration
In this example, you delete the SSH server configurations, and see the response when the script is validated.

Procedure

Step 1 Remove the SSH server configuration.

Example:
Router(config)#no ssh server v2

Step 2 Commit the configuration.

Example:
Router(config)#commit
Wed Sep 1 22:45:05.559 UTC

% Failed to commit one or more configuration items during an atomic operation.
No changes have been made. Please issue 'show configuration failed if-committed' from
this session to view the errors

Step 3 View the error message.

Example:
Router(config)#show configuration failed if-committed
Wed Sep 1 22:47:53.202 UTC
!! SEMANTIC ERRORS: This configuration was rejected by the system due to semantic errors. The individual
errors with each failed configuration command can be found below.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
206

Automation Scripts
Scenario 4: Delete SSH Server Configuration

no ssh server v2
!!% ERROR: Server V2 need to be set
end

The message is displayed based on the rule set in the script.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
207

Automation Scripts
Scenario 4: Delete SSH Server Configuration

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
208

Automation Scripts
Scenario 4: Delete SSH Server Configuration

C H A P T E R 12
Exec Scripts

Cisco IOS XR exec scripts are on-box scripts that automate configurations of devices in the network. The
exec scripts are written in Python using the Python libraries that Cisco provides with the base package. For
the list of supported packages

A script management repository on the router manages the exec scripts. This repository is replicated on both
RPs.

In IOS XR, AAA authorization controls the user access and privileges to perform operations. To run the exec
script, you must have root user permissions.

Exec scripts provide the following advantages:

• Provides automation capabilities to simplify complex operations.

• Create customized operations based on the requirement.

• Provide flexibility in changing the input parameters for every script run. This fosters dynamic automation
of operational information.

• Detect and display errors and warnings when executing an operation.

• Run multiple automated operations in parallel without blocking the console.

This chapter gets you started with provisioning your Python automation scripts on the router.

This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

Note

• Workflow to Run an Exec Script, on page 209
• Manage Scripts, on page 220
• Example: Exec Script to Verify Bundle Interfaces, on page 221

Workflow to Run an Exec Script
Complete the following tasks to provision exec scripts:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
209

• Download the script—Add the script to the appropriate exec script directory on the router. using the
script add exec command.

• Configure checksum—Check script integrity and authenticity using the script exec <script.py> checksum
command.

• Run the script—Trigger changes to the router configuration. Include arguments, set the maximum time
for the script to run, setup log levels using the script run command.

• View the script execution details—Validate the script and retrieve the operational data using the show
script execution command.

The following image shows a workflow diagram representing the steps involved in using an exec script:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
210

Automation Scripts
Workflow to Run an Exec Script

Download the Script to the Router
To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Download LocationScript Type

harddisk:/mirror/script-mgmt/configconfig

harddisk:/mirror/script-mgmt/execexec

harddisk:/mirror/script-mgmt/processprocess

harddisk:/mirror/script-mgmt/eemeem

The scripts are added to the script management repository using two methods:

• Method 1: Add script from a server

• Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add exec-script.py script to the script management repository.

Procedure

Step 1 Add the script to the script management repository on the router using one of the two options:

• Add Script From a Server

Add the script from a configured HTTP server or the harddisk location in the router.
Router#script add exec <script-location> <script.py>

The following example shows a config script exec-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Router#script add config http://192.0.2.0/scripts exec-script.py
Fri Aug 20 05:03:40.791 UTC
exec-script.py has been added to the script repository

Note
The repository can be local to the router, or accessed remotely through TFTP, SCP, FTP, HTTP, or HTTPS protocols.
In addition to the default Virtual Routing and Forwarding (VRF), support is also extended for non-default VRF.

You can add a maximum of 10 scripts simultaneously.
Router#script add exec <script-location> <script1.py> <script2.py> ... <script10.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Note
Only SHA256 checksum is supported.

Router#script add exec http://192.0.2.0/scripts exec-script.py checksum SHA256 <checksum-value>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
211

Automation Scripts
Download the Script to the Router

For multiple scripts, use the following syntax to specify the checksum:
Router#script add exec http://192.0.2.0/scripts <script1.py> <script1-checksum> <script2.py>
<script2-checksum>
... <script10.py> <script10-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

• Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/exec-script.py /harddisk:/

b. Add the script from the harddisk to the script management repository.
Router#script add exec /harddisk:/ exec-script.py
Fri Aug 20 05:03:40.791 UTC
exec-script.py has been added to the script repository

Step 2 Verify that the scripts are downloaded to the script management repository on the router.

Example:
Router#show script status
Wed Aug 25 23:10:50.453 UTC
==
Name | Type | Status | Last Action | Action Time
--
exec-script.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021
==

Script exec-script.py is copied to harddisk:/mirror/script-mgmt/exec directory on the router.

Update Scripts from a Remote Server
Table 53: Feature History Table

DescriptionRelease InformationFeature Name

This feature lets you update
automation scripts across routers
by accessing the master script from
a remote site. This eases script
management, where you make
changes to the master script and
then copy it to routers where it is
deployed.

This feature introduces the
auto-update keyword in the script
exec command.

Release 7.5.1Update Automation Scripts from
Remote Server

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
212

Automation Scripts
Update Scripts from a Remote Server

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4173827902
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4173827902

You can maintain the latest copy of the scripts in a remote location, and configure the routers to automatically
update the local copy with the latest copy on the server as required.

Procedure

You can update the script using one of the following options.

• Config CLI commands:

a. Update the script on the router with the version on the remote server.
Router(config)#script exec auto-update sample3.py http://10.23.255.205
condition [manual | on-run | schedule]

In this example, sample3.py script is automatically updated from the remote server at http://10.23.255.205.
You can set conditions when updating the script.

The repository can be accessed remotely through FTP, HTTP, HTTPS, TFTP or SCP protocols.

DescriptionCondition

Update manually with an Exec CLI (default). The following option is
supported:

• vrf—Specify the non-default Virtual Routing and Forwarding
(VRF) name.

• username—Enter the username.

• password—Enter the password.

manual

Update the exec script during run time. The following options are
supported:

• on-fail—Specify one of the actions on failure.

• do-not-run—Do not run the script on failure.

• run-local—Run the local copy of the script.

• vrf—Specify the non-default VRF name.

• username—Enter the username.

• password—Enter the password.

Note
Only the exec scripts support the on-run option.

on-run

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
213

Automation Scripts
Update Scripts from a Remote Server

DescriptionCondition

Update automatically at specified time intervals. The following option
is supported:

• <60-262800>—Update interval in minutes

• username—Enter the username.

• password—Enter the password.

Note
The schedule option does not support SCP protocol.

schedule

Note
Do not specify the username and password inside the URL of the remote server.

b. Commit the configuration.
Router(config)#commit

c. Run the script.
Router#script run sample3.py background
Tue Nov 16 12:50:33.512 UTC
sample3.py has been added to the script repository
Script run scheduled: sample3.py. Request ID: 1624990452

You can specify additional options to the command:

• arguments: Script command-line arguments. The format is strings in single quotes. Escape double quotes
inside string arguments.

• description: Description of script run.

• log-level: Script logging level. Default is INFO.

• log-path: Location to store script logs.

• max-runtime: Maximum run time of script.

• Exec CLI commands:

When you run the script, the script is downloaded and the checksum is automatically configured on the router.

• If on-run option is configured, running the script run command downloads the script.

• If manual option is configured, then you must run script update Exec command.

• If schedule option is selected, then the script is automatically updated after the specified interval.

a. Update the script on the router with the version on the remote server.
Router#script update manual exec sample2.py
Tue Nov 16 12:20:23.058 UTC
sample2.py has been added to the script repository

You can set options when updating the script:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
214

Automation Scripts
Update Scripts from a Remote Server

DescriptionOption

Script name.WORD

Update all scripts in config.all

Invoke Scripts from a Remote Server

You can directly run the script using the URL to the remote server and provide the checksum value. The
checksum is a mandatory parameter. The format of the URL is
[protocol]://[user:password@]server[:port]/directory/file_name.

Procedure

Run the script from the remote server.

Example:
Router#script run http://10.23.255.205/sample1.py checksum
5103a843032505decc37ff21089336e4bcc6a1061341056ca8add3ac5d6620ef background
Tue Nov 16 12:12:08.614 UTC
Script run scheduled: sample1.py. Request ID: 1624990451

The repository can be accessed remotely through FTP, HTTP, HTTPS, TFTP or SCP protocols.

You can specify additional options to the command:

• arguments: Script command-line arguments. The format is strings in single quotes. Escape double quotes inside
string arguments.

• description: Description of script run.

• log-level: Script logging level. Default is INFO.

• log-path: Location to store script logs.

• max-runtime: Maximum run time of script.

• vrf: Specify the VRF for the network file system.

Configure Checksum for Exec Script
Every script is associated with a checksum value. The checksum ensures the integrity of the script that is
downloaded from the server or external repository is intact, and that the script is not tampered. The checksum
is a string of numbers and letters that act as a fingerprint for script. The checksum of the script is compared
with the configured checksum. If the values do not match, the script is not run and a syslog warning message
is displayed.

It is mandatory to configure the checksum to run the script.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
215

Automation Scripts
Invoke Scripts from a Remote Server

Exec scripts support SHA256 checksum.Note

Before you begin

Ensure that the script is added to the script management repository. See Download the Script to the Router,
on page 211.

Procedure

Step 1 Retrieve the SHA256 checksum hash value for the script. Ideally this action would be performed on a trusted device,
such as the system on which the script was created. This minimizes the possibility that the script is tampered with.

Example:
Server$sha256sum sample1.py
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b sample1.py

Make note of the checksum value.

Step 2 View the status of the script.

Example:
Router#show script status detail
Fri Aug 20 05:04:13.539 UTC
==

Name | Type | Status | Last Action | Action Time
--

sample1.py | exec | Config Checksum | NEW | Fri Aug 20 05:03:41 2021
--

Script Name : sample1.py
History:

1. Action : NEW

Time : Fri Aug 20 05:03:41 2021
Description : User action IN_CLOSE_WRITE

===

The Status shows that the checksum is not configured.

Step 3 Enter global configuration mode.

Example:
Router#configure

Step 4 Configure the checksum.

Example:

Router(config)#script exec sample1.py checksum SHA256
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Router(config)#commit
Tue Aug 24 10:23:10.546 UTC
Router(config)#end

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
216

Automation Scripts
Configure Checksum for Exec Script

Step 5 Verify the status of the script.

Example:

Router#show script status detail
Fri Aug 20 05:06:17.296 UTC
==

Name | Type | Status | Last Action | Action Time
--

sample1.py | exec | Ready | NEW | Fri Aug 20 05:03:41 2021
--

Script Name : cpu_load.py
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
History:

1. Action : NEW

Time : Fri Aug 20 05:03:41 2021
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Description : User action IN_CLOSE_WRITE

===

The status Ready indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script fails.
It is mandatory for the checksum values to match for the script to run.

Run the Exec Script
To run an exec script, use the script run command. After the script is run, a request ID is generated. Each
script run is associated with a unique request ID.

Before you begin

Ensure the following prerequisites are met before you run the script:

1. Download the Script to the Router, on page 211

2. Configure Checksum for Exec Script, on page 215

Procedure

Run the exec script.

Example:

Router#script run sample1.py
Wed Aug 25 16:40:59.134 UTC
Script run scheduled: sample1.py. Request ID: 1629800603
Script sample1.py (exec) Execution complete: (Req. ID 1629800603) : Return Value: 0 (Executed)

Scripts can be run with more options. The following table lists the various options that you can provide at run time:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
217

Automation Scripts
Run the Exec Script

DescriptionKeyword

Script command-line arguments. Syntax: Strings in single quotes. Escape double quotes
inside string arguments (if any).

For example:
Router#script run sample1.py arguments 'hello world' '-r' '-t' 'exec' '--sleep'

'5' description "Sample exec script"

arguments

Run script in background. By default, the script runs in the foreground.

When a script is run in the background, the console is accessible only after the script run is
complete.

background

Description about the script run.
Router#script run sample1.py arguments '-arg1' 'reload' '-arg2' 'all'
'description' "Script reloads the router"

When you provide both the argument and description ensure that the arguments are in single
quote and description is in double quotes.

description

Script logging level. The default value is INFO.

You can specifiy what information is to be logged. The log level can be set to one of these
options—Critical, Debug, Error, Info, or Warning.

log-level

Location to store the script logs. The default log file location is in the script management
repository harddisk:/mirror/script-mgmt/logs.

log-path

Maximum run-time of script can be set between 1–3600 seconds. The default value is 300.max-runtime

The script run is complete.

View the Script Execution Details
View the status of the script execution.

Before you begin

Ensure the following prerequisites are met before you run the script:

1. Download the Script to the Router, on page 211

2. Configure Checksum for Exec Script, on page 215

3. Run the Exec Script, on page 217

Procedure

Step 1 View the status of the script execution.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
218

Automation Scripts
View the Script Execution Details

Example:
Router#show script execution
Wed Aug 25 18:32:12.351 UTC
==

Req. ID | Name (type) | Start | Duration | Return | Status
--

1629800603| sample1.py (exec) | Wed Aug 25 16:40:59 2021 | 60.62s | 0 | Executed
==

You can view detailed or filtered data for every script run.

Step 2 Filter the script execution status to view the detailed output of a specific script run via request ID.

Example:
Router#show script execution request-id 1629800603 detail output
Wed Aug 25 18:37:12.920 UTC
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1629800603| sample1.py (exec) | Wed Aug 25 16:40:59 2021 | 60.62s | 0
| Executed

--

Execution Details:

Script Name : sample1.py
Log location : /harddisk:/mirror/script-mgmt/logs/sample1.py_exec_1629800603
Arguments :
Run Options : Logging level - INFO, Max. Runtime - 300s, Mode - Foreground
Events:

1. Event : New

Time : Wed Aug 25 16:40:59 2021
Time Elapsed : 0.00s Seconds
Description : None

2. Event : Started
Time : Wed Aug 25 16:40:59 2021
Time Elapsed : 0.03s Seconds
Description : Script execution started. PID (20736)

3. Event : Executed
Time : Wed Aug 25 16:42:00 2021
Time Elapsed : 60.62s Seconds
Description : Script execution complete

--

Script Output:

Output File : /harddisk:/mirror/script-mgmt/logs/sample1.py_exec_1629800603/stdout.log
Content :
==

DescriptionKeyword

Display detailed script execution history, errors, output and deleted scripts.
Router#show script execution detail [errors | output | show-del]

detail

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
219

Automation Scripts
View the Script Execution Details

DescriptionKeyword

Show last N (1-100) execution requests.
Router#show script execution last 10

This example will display the list of last 10 script runs with their request IDs, type of script,
timestamp, duration that the script was run, number of errrors, and the status of the script
run.

last <number>

Filter operational data based on script name. If not specified, all scripts are displayed.
Router#show script execution name sample1.py

name <filename>

Display summary of the script using request-ID that is generated with each script run.
Router#show script execution request-ID 1629800603

request-id <value>

Display the request IDs from the script execution in reverse chronological order. For example,
the request-ID from the latest run is displayed first, followed by the descending order of
request-IDs.
Router#script script execution reverse

reverse

Filter data based on script status.
Router#[status {Exception, Executed, Killed, Started, Stopped, Timed-out}]

status

Manage Scripts
This section shows the additional operations that you can perform on a script.

Delete Exec Script from the Router
Delete the script from the script management repository using the script remove command. This repository
stores the downloaded scripts.

Procedure

Step 1 View the list of scripts present in the script management repository.

Example:
Router#show script status
Wed Aug 25 23:10:50.453 UTC
==
Name | Type | Status | Last Action | Action Time
--
sample1.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021
sample2.py | exec | Config Checksum | NEW | Wed Aug 25 23:44:53 2021
sample3.py | config | Config Checksum | NEW | Wed Aug 25 23:44:57 2021

Ensure the script you want to delete is present in the repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
220

Automation Scripts
Manage Scripts

Step 2 Delete the script.

Example:
Router#script remove exec sample2.py
Wed Aug 25 231:46:38.170 UTC
sample2.py has been deleted from the script repository

You can also delete multiple scripts simulataneoulsy.

Step 3 Verify the script is deleted from the subdirectory.

Example:
Router#show script status
Wed Aug 25 23:48:50.453 UTC
==
Name | Type | Status | Last Action | Action Time
--
sample1.py | exec | Config Checksum | NEW | Tue Aug 24 10:18:23 2021
sample3.py | config | Config Checksum | NEW | Wed Aug 25 10:44:57 2021

The script is deleted from the script management repository.

Example: Exec Script to Verify Bundle Interfaces
In this example, you create a script to verify the bandwidth usage of bundle interfaces on the router, and check
if it is beyond the defined limit. If usage is above the limit, the script generates a syslog indicating that the
bandwidth is above the limit, and additional interfaces must be added to the bundle.

Before you begin

Ensure you have completed the following prerequisites before you validate the script:

1. Create an exec script verify_bundle.py. Store the script on an HTTP server or copy the script to the
harddisk of the router.
"""
Bundle interfaces bandwidth verification script

Verify bundle interfaces mpls packets per sec is below threshold.
If pkts/sec is greater than threshold then print syslog message
and add list of new interfaces to bundle

Arguments:
-h, --help show this help message and exit
-n NAME, --name NAME Bundle interface name
-t THRESHOLD, --threshold THRESHOLD

Bandwidth threshold
-m MEMBERS, --members MEMBERS

interfaces (coma separated) to add to bundle
"""
import re
import argparse
from iosxr.xrcli.xrcli_helper import XrcliHelper
from cisco.script_mgmt import xrlog

syslog = xrlog.getSysLogger('verify_bundle')
log = xrlog.getScriptLogger('verify_bundle')

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
221

Automation Scripts
Example: Exec Script to Verify Bundle Interfaces

def add_bundle_members(bundle_name, members):

helper = XrcliHelper()
bundle_pattern = re.compile('[A-Z,a-z,]([0-9]+)')
match = bundle_pattern.search(bundle_name)
if match:

bundle_id = match.group(1)
else:

raise Exception('Invalid bundle name')
cfg = ''
for member in members:

cfg = cfg + 'interface %s \nbundle id %s mode active\nno shutdown\n' % \
(member.strip(), bundle_id)

log.info("Configs to be added : \n%s" % cfg)
result = helper.xr_apply_config_string(cfg)
if result['status'] == 'success':

msg = "Configuring new bundle members successful"
syslog.info(msg)
log.info(msg)

else:
msg = "Configuring new bundle members failed"
syslog.warning(msg)
log.warning(msg)

def verify_bundle(script_args):

helper = XrcliHelper()
cmd = "show interfaces %s accounting rates" % script_args.name
cmd_out = helper.xrcli_exec(cmd)
if not cmd_out['status'] == 'success':

raise Exception('Invalid bundle or error getting interface accounting rates')

log.info('Command output : \n%s' % cmd_out['output'])
rate_pattern = re.compile("MPLS +[0-9]+ +[0-9]+ +[0-9]+ +([0-9]+)")
match = rate_pattern.search(cmd_out['output'])
if match:

pktspersec = int(match.group(1))
if pktspersec > int(script_args.threshold):

msg = 'Bundle %s bandwidth of %d pps is above threshold of %s pps' % \
(script_args.name, pktspersec, script_args.threshold)

log.info(msg)
syslog.info(msg)
return False

else:
msg = 'Bundle %s bandwidth of %d pps is below threshold of %s pps' % \

(script_args.name, pktspersec, script_args.threshold)
log.info(msg)
return True

if __name__ == '__main__':

parser = argparse.ArgumentParser(description="Verify budle")
parser.add_argument("-n", "--name",

help="Bundle interface name")
parser.add_argument("-t", "--threshold",

help="Bandwidth threshold")
parser.add_argument("-m", "--members",

help="interfaces (coma separated) to add to bundle")

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
222

Automation Scripts
Example: Exec Script to Verify Bundle Interfaces

args = parser.parse_args()
log.info('Script arguments :')
log.info(args)
if not verify_bundle(args):

syslog.info("Adding new members (%s) to bundle interfaces %s" %
(args.members, args.name))

add_bundle_members(args.name, args.members.split(','))

2. Add the script from HTTP server or harddisk to the script management repository. See Download the
Script to the Router, on page 211.

3. Configure the checksum to verify the authenticity and integrity of the script.

Procedure

Step 1 View the script status.

Example:
Router#show script status
Sat Sep 25 00:10:11.222 UTC
==
Name | Type | Status | Last Action | Action Time

verify_bundle.py | exec | Ready | MODIFY | Sat Sep 25 00:08:55 2021
===

The status indicates that the script is ready to be run.

Step 2 Run the script.

Example:
Router#script run verify_bundle.py arguments '--name' 'Bundle-Ether6432' '-t'
'400000' '-m' 'FourHundredGigE0/0/0/2
Sat Sep 25 00:11:14.183 UTC
Script run scheduled: verify_bundle.py. Request ID: 1632528674
[2021-09-25 00:11:14,579] INFO [verify_bundle]:: Script arguments :
[2021-09-25 00:11:14,579] INFO [verify_bundle]:: Namespace(members='FourHundredGigE0/0/0/2,
FourHundredGigE0/0/0/3', name='Bundle-Ether6432', threshold='400000')
[2021-09-25 00:11:14,735] INFO [verify_bundle]:: Command output :

-------------- show interfaces Bundle-Ether6432 accounting rates --------------
Bundle-Ether6432

Ingress Egress
Protocol Bits/sec Pkts/sec Bits/sec Pkts/sec
IPV4_UNICAST 22000 40 0 0
MPLS 0 0 1979249000 430742
ARP 0 0 0 0
IPV6_ND 0 0 0 0
CLNS 1000 1 26000 3

[2021-09-25 00:11:14,736] INFO [verify_bundle]:: Bundle Bundle-Ether6432 bandwidth
of 430742 pps is above threshold of 400000 pps
[2021-09-25 00:11:14,737] INFO [verify_bundle]:: Configs to be added :
interface FourHundredGigE0/0/0/2
bundle id 6432 mode active
no shutdown
interface FourHundredGigE0/0/0/3
bundle id 6432 mode active

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
223

Automation Scripts
Example: Exec Script to Verify Bundle Interfaces

no shutdown

[2021-09-25 00:11:18,254] INFO [verify_bundle]:: Configuring new bundle members successful
Script verify_bundle.py (exec) Execution complete: (Req. ID 1632528674) : Return Value: 0 (Executed)

Step 3 View the detailed output based on request ID. A request ID is generated for each script run.

Example:
Router#show script execution request-id 1632528674 detail output
Sat Sep 25 00:11:58.141 UTC
===
Req. ID | Name (type) | Start | Duration | Return | Status

1632528674| verify_bundle.py (exec) | Sat Sep 25 00:11:14 2021 | 4.06s | 0 | Executed
--
Execution Details:

Script Name : verify_bundle.py
Log location : /harddisk:/mirror/script-mgmt/logs/verify_bundle.py_exec_1632528674
Arguments : '--name', 'Bundle-Ether6432', '-t', '400000', '-m', 'FourHundredGigE0/0/0/2,
FourHundredGigE0/0/0/3'
Run Options : Logging level - INFO, Max. Runtime - 300s, Mode - Foreground
Events:

1. Event : New

Time : Sat Sep 25 00:11:14 2021
Time Elapsed : 0.00s Seconds
Description : None

2. Event : Started
Time : Sat Sep 25 00:11:14 2021
Time Elapsed : 0.02s Seconds
Description : Script execution started. PID (29768)

3. Event : Executed
Time : Sat Sep 25 00:11:18 2021
Time Elapsed : 4.06s Seconds
Description : Script execution complete

--
Script Output:

Output File : /harddisk:/mirror/script-mgmt/logs/verify_bundle.py_exec_1632528674/stdout.log
Content :
[2021-09-25 00:11:14,579] INFO [verify_bundle]:: Script arguments :
[2021-09-25 00:11:14,579] INFO [verify_bundle]:: Namespace(members='FourHundredGigE0/0/0/2,
FourHundredGigE0/0/0/3',
name='Bundle-Ether6432', threshold='400000')
[2021-09-25 00:11:14,735] INFO [verify_bundle]:: Command output :

-------------- show interfaces Bundle-Ether6432 accounting rates --------------
Bundle-Ether6432

Ingress Egress
Protocol Bits/sec Pkts/sec Bits/sec Pkts/sec
IPV4_UNICAST 22000 40 0 0
MPLS 0 0 1979249000 430742
ARP 0 0 0 0
IPV6_ND 0 0 0 0
CLNS 1000 1 26000 3

[2021-09-25 00:11:14,736] INFO [verify_bundle]:: Bundle Bundle-Ether6432 bandwidth of 430742 pps is
above threshold
of 400000 pps
[2021-09-25 00:11:14,737] INFO [verify_bundle]:: Configs to be added :
interface FourHundredGigE0/0/0/2
bundle id 6432 mode active

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
224

Automation Scripts
Example: Exec Script to Verify Bundle Interfaces

no shutdown
interface FourHundredGigE0/0/0/3
bundle id 6432 mode active
no shutdown

[2021-09-25 00:11:18,254] INFO [verify_bundle]:: Configuring new bundle members successful
==

Step 4 View the running configuration for the bundle interfaces.

Example:
Router#show running-config interface FourHundredGigE0/0/0/2
Sat Sep 25 00:12:30.765 UTC
interface FourHundredGigE0/0/0/2
bundle id 6432 mode active
!

Router#show running-config interface FourHundredGigE0/0/0/3
Sat Sep 25 00:12:38.659 UTC
interface FourHundredGigE0/0/0/3
bundle id 6432 mode active
!

Step 5 View the latest logs for more details about the script run. Here, the last 10 logs are displayed. The logs show that configuring
new bundle members is successful.

Example:
Router#show logging last 10
Sat Sep 25 00:13:34.383 UTC
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)

Console logging: level warnings, 178 messages logged
Monitor logging: level debugging, 0 messages logged
Trap logging: level informational, 0 messages logged
Buffer logging: level debugging, 801 messages logged

Log Buffer (2097152 bytes):

RP/0/RP0/CPU0:Sep 25 00:10:05.763 UTC: config[66385]: %MGBL-CONFIG-6-DB_COMMIT : Configuration
committed by user 'cisco'.
Use 'show configuration commit changes 1000000045' to view the changes.
RP/0/RP0/CPU0:Sep 25 00:10:07.971 UTC: config[66385]: %MGBL-SYS-5-CONFIG_I : Configured from console
by cisco on vty0 (6.3.65.175)
RP/0/RP0/CPU0:Sep 25 00:11:14.447 UTC: script_control_cli[66627]: %OS-SCRIPT_MGMT-6-INFO :
Script-control: Script run scheduled:
verify_bundle.py. Request ID: 1632528674
RP/0/RP0/CPU0:Sep 25 00:11:14.453 UTC: script_agent_main[347]: %OS-SCRIPT_MGMT-6-INFO :
Script-script_agent: Script execution
verify_bundle.py (exec) Started : Request ID : 1632528674 :: PID: 29768
RP/0/RP0/CPU0:Sep 25 00:11:14.453 UTC: script_agent_main[347]: %OS-SCRIPT_MGMT-6-INFO :
Script-script_agent: Starting execution
verify_bundle.py (exec) (Req. ID: 1632528674) : Logs directory:
/harddisk:/mirror/script-mgmt/logs/verify_bundle.py_exec_1632528674
RP/0/RP0/CPU0:Sep 25 00:11:14.736 UTC: python3_xr[66632]: %OS-SCRIPT_MGMT-6-INFO : Script-verify_bundle:
Bundle Bundle-Ether6432
bandwidth of 430742 pps is above threshold of 400000 pps
RP/0/RP0/CPU0:Sep 25 00:11:14.736 UTC: python3_xr[66632]: %OS-SCRIPT_MGMT-6-INFO : Script-verify_bundle:
Adding new members
(FourHundredGigE0/0/0/2, FourHundredGigE0/0/0/3) to bundle interfaces Bundle-Ether6432
RP/0/RP0/CPU0:Sep 25 00:11:16.916 UTC: config[66655]: %MGBL-CONFIG-6-DB_COMMIT : Configuration
committed by user 'cisco'. Use 'show
configuration commit changes 1000000046' to view the changes.
RP/0/RP0/CPU0:Sep 25 00:11:18.254 UTC: python3_xr[66632]: %OS-SCRIPT_MGMT-6-INFO : Script-verify_bundle:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
225

Automation Scripts
Example: Exec Script to Verify Bundle Interfaces

Configuring new bundle members
successful
RP/0/RP0/CPU0:Sep 25 00:11:18.497 UTC: script_agent_main[347]: %OS-SCRIPT_MGMT-6-INFO :
Script-script_agent: Script verify_bundle.py
(exec) Execution complete: (Req. ID 1632528674) : Return Value: 0 (Executed)

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
226

Automation Scripts
Example: Exec Script to Verify Bundle Interfaces

C H A P T E R 13
Process Scripts

Cisco IOS XR process scripts are also called daemon scripts. The process scripts are persistent scripts that
continue to run as long as you have activated the scripts. An IOS XR process, Application manager (AppMgr
or app manager), manages the lifecycle of process scripts. The scripts are registered as an application on the
app manager. This application represents the instance of the script that is running on the router.

The app manager is used to:

• Start, stop, monitor, or retrieve the operational status of the script.

• Maintain the startup dependencies between the processes.

• Restart the process if the script terminates unexpectedly based on the configured restart policy.

Process scripts support Python 3.5 programming language. For the list of supported packages, see Cisco IOS
XR Python Packages.

This chapter gets you started with provisioning your Python automation scripts on the router.

This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router. A process script refers to code that runs continuously or endlessly.

Note

• Workflow to Run Process Scripts, on page 227
• Managing Actions on Process Script, on page 237
• Example: Check CPU Utilization at Regular Intervals Using Process Script, on page 237

Workflow to Run Process Scripts
Complete the following tasks to provision process scripts:

• Download the script—Store the script on an external server or copy to the harddisk of the router. Add
the script from the external server or harddisk to the script management repository on the router using
the script add process command.

• Configure the checksum—Check script integrity and authenticity using the script process <script.py>
checksum command.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
227

• Register the script—Register the script as an application in the appmanager using appmgr process-script
command.

• Activate the script—Activate the registered application using appmgr process-script activate command.

• View the script execution details—Retrieve the operational data using the show appmgr process-script
command.

The following image shows the workflow diagram representing the steps that are involved in using a process
script:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
228

Automation Scripts
Workflow to Run Process Scripts

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
229

Automation Scripts
Workflow to Run Process Scripts

Download the Script to the Router
To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Download LocationScript Type

harddisk:/mirror/script-mgmt/configconfig

harddisk:/mirror/script-mgmt/execexec

harddisk:/mirror/script-mgmt/processprocess

harddisk:/mirror/script-mgmt/eemeem

The scripts are added to the script management repository using two methods:

• Method 1: Add script from a server

• Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add process-script.py script to the script management repository.

Procedure

Step 1 Add the script to the script management repository on the router using one of the two options:

• Add Script From a Server

Add the script from any server or the harddisk location in the router.
Router#script add process <script-location> <script.py>

The following example shows a process script process-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Router#script add process http://192.0.2.0/scripts process-script.py
Fri Aug 20 05:03:40.791 UTC
process-script.py has been added to the script repository

The script add process supports the HTTP, HTTPS, FTP, TFTP, and SCP protocols for copying a script.

You can add a maximum of 10 scripts simultaneously.
Router#script add process <script-location> <script1.py> <script2.py> ... <script10.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.
Router#script add process http://192.0.2.0/scripts process-script.py checksum SHA256
<checksum-value>

For multiple scripts, use the following syntax to specify the checksum:
Router#script add process http://192.0.2.0/scripts <script1.py> <script1-checksum> <script2.py>
<script2-checksum>
... <script10.py> <script10-checksum>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
230

Automation Scripts
Download the Script to the Router

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note
Only SHA256 checksum is supported.

• Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/process-script.py /harddisk:/

b. Add the script from the harddisk to the script management repository.
Router#script add process /harddisk:/ process-script.py
Fri Aug 20 05:03:40.791 UTC
process-script.py has been added to the script repository

Step 2 Verify that the scripts are downloaded to the script management repository on the router.

Example:
Router#show script status
Wed Aug 25 23:10:50.453 UTC
==
Name | Type | Status | Last Action | Action Time
--
process-script.py | process | Config Checksum | NEW | Tue Aug 24 10:44:53 2021
==

Script process-script.py is copied to harddisk:/mirror/script-mgmt/process directory on the router.

Configure Checksum for Process Script
Every script is associated with a checksum hash value. This value ensures the integrity of the script, and that
the script is not tampered. The checksum is a string of numbers and letters that acts as a fingerprint for script.
The checksum of the script is compared with the configured checksum. If the values do not match, the script
is not run and a warning message is displayed.

It is mandatory to configure the checksum to run the script.

Process scripts support the SHA256 checksum hash.Note

Before you begin

Ensure that the script is added to the script management repository. See Download the Script to the Router,
on page 211.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
231

Automation Scripts
Configure Checksum for Process Script

Procedure

Step 1 Retrieve the SHA256 checksum hash value for the script from the IOS XR Linux bash shell.

Example:
Router#run
[node0_RP0_CPU0:~]$sha256sum /harddisk:/mirror/script-mgmt/process/process-script.py
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
/harddisk:/mirror/script-mgmt/process/process-script.py

Make note of the checksum value.

Step 2 View the status of the script.

Example:
Router#show script status detail
Fri Aug 20 05:04:13.539 UTC
===
Name | Type | Status | Last Action | Action Time

process-script.py | process | Config Checksum | NEW | Fri Aug 20 05:03:41 2021

Script Name : process-script.py
History:

1. Action : NEW

Time : Fri Aug 20 05:03:41 2021
Description : User action IN_CLOSE_WRITE

===

The Status shows that the checksum is not configured.

Step 3 Configure the checksum.

Example:
Router#configure
Router(config)#script process process-script.py checksum SHA256
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Router(config)#commit
Tue Aug 20 05:10:10.546 UTC
Router(config)#end

Step 4 Verify the status of the script.

Example:
Router#show script status detail
Fri Aug 20 05:15:17.296 UTC
==
Name | Type | Status | Last Action | Action Time

process-script.py | process | Ready | NEW | Fri Aug 20 05:20:41 2021

Script Name : process-script.py
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
History:

1. Action : NEW

Time : Fri Aug 20 05:20:41 2021
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
232

Automation Scripts
Configure Checksum for Process Script

Description : User action IN_CLOSE_WRITE
===

The status Ready indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script fails.
It is mandatory for the checksum values to match for the script to run.

Register the Process Script as an Application
Register the process script with the app manager to enable the script. The registration is mandatory for using
process script on the router.

Before you begin

Ensure that the following prerequisites are met before you register the script:

• Download the Script to the Router, on page 211

• Configure Checksum for Process Script, on page 231

Procedure

Step 1 Register the script with an application (instance) name in the app manager.

Example:
Router#configure
Fri Aug 20 06:10:19.284 UTC
Router(config)#appmgr process-script my-process-app
Router(config-process)#executable process-script.py

Here, my-process-app is the application for the executable process-script.py script.

Step 2 Provide the arguments for the script.

Example:
Router(config-process)#run-args --host <host-name> --runtime 3 --log script

Step 3 Set a restart policy for the script if there is an error.

Example:
Router(config-process)#restart on-failure max-retries 3
Router(config-process)#commit

Here, the maximum attempts to restart the script is set to 3. After 3 attempts, the script stops.

You can set more options to restart the process:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
233

Automation Scripts
Register the Process Script as an Application

DescriptionKeyword

Always restart automatically. If the process exits, a scheduler queues the script and restarts
the script.

Note
This is the default restart policy.

always

Never restart automatically. If the process exits, the script is not rerun unless you provide
an action command to invoke the process.

never

Restart on failure automatically. If the script exits successfully, the script is not scheduled
again.

on-failure

Restart script automatically unless errored.unless-errored

Restart script automatically unless stopped by the user using an action command.unless-stopped

Step 4 View the status of the registered script.

Example:
Router#show appmgr process-script-table
Fri Aug 20 06:15:44.244 UTC
Name Executable Activated Status Restart Policy Config Pending
--------------- ------------------ --------- ------------- ---------------- --------------
my-process-app process-script.py No Not Started On Failure No

The script is registered but is not active.

Activate the Process Script
Activate the process script that you registered with the app manager.

Before you begin

Ensure that the following prerequisites are met before you run the script:

• Download the Script to the Router, on page 211

• Configure Checksum for Process Script, on page 231

• Register the Process Script as an Application, on page 233

Procedure

Step 1 Activate the process script.

Example:
Router#appmgr process-script activate name my-process-app
Fri Aug 20 06:20:55.006 UTC

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
234

Automation Scripts
Activate the Process Script

The instance my-process-app is activated for the process script.

Step 2 View the status of the activated script.

Example:
Router#show appmgr process-script-table
Fri Aug 20 06:22:03.201 UTC
Name Executable Activated Status Restart Policy Config Pending
--------------- ------------------ --------- ------------- ---------------- --------------
my-process-app process-script.py Yes Running On Failure No

The process script is activated and running.

Note
You can modify the script while the script is running. However, for the changes to take effect, you must deactivate and
activate the script again. Until then, the configuration changes are pending. The status of the modification is indicated in
the Config Pending option. In the example, value No indicates that there are no configuration changes that must be
activated.

Obtain Operational Data and Logs
Retrieve the operational data and logs of the script.

Before you begin

Ensure that the following prerequisites are met before you obtain the operational data:

• Download the Script to the Router, on page 211

• Configure Checksum for Process Script, on page 231

• Register the Process Script as an Application, on page 233

• Activate the Process Script, on page 234

Procedure

Step 1 View the registration information, pending configuration, execution information, and run time of the process script.

Example:
Router#show appmgr process-script my-process-app info
Fri Aug 20 06:20:21.947 UTC
Application: my-process-app

Registration info:
Executable : process-script.py
Run arguments : --host <host-name> --runtime 3 --log script
Restart policy : On Failure
Maximum restarts : 3

Pending Configuration:
Run arguments : --host <host-name> --runtime 3 --log script
Restart policy : Always

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
235

Automation Scripts
Obtain Operational Data and Logs

Execution info and status:
Activated : Yes
Status : Running
Executable Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b

Last started time : Fri Aug 20 06:20:21.947
Restarts since last activate : 0/3
Log location :

/harddisk:/mirror/script-mgmt/logs/process-script.py_process_my-process-app
Last exit code : 1

Step 2 View the logs for the process scripts. App manager shows the logs for errors and output.

Example:

The following example shows the output logs:
Router#show appmgr process-script my-process-app logs output
Fri Aug 20 06:25:20.912 UTC
[2021-08-20 06:20:55,609] INFO [sample-process]:: Beginning execution of process..
[2021-08-20 06:20:55,609] INFO [sample-process]:: Connecting to host '<host-name>'
[2021-08-20 06:20:56,610] INFO [sample-process]:: Reading database..
[2021-08-20 06:20:58,609] INFO [sample-process]:: Listening for requests..

The following example shows the error logs with errors:
Router#show appmgr process-script my-process-app logs errors
Fri Aug 20 06:30:20.912 UTC
----------Run ID:1632914459 Fri Aug 20 06:30:20 2021----------
Traceback (most recent call last):
File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 121, in <module>
main(args)

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 97, in main
printer()

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 37, in wrapper
result = func(*args, **kwargs)

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 88, in printer
time.sleep(1)

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 30, in _handle_timeout
raise TimeoutError(error_message)

__main__.TimeoutError: Timer expired
----------Run ID:1632914460 Fri Aug 20 06:31:03 2021----------

This example shows the log without errors:
Router#show appmgr process-script my-process-app logs errors
Fri Aug 20 06:30:20.912 UTC
----------Run ID:1624346220 Fri Aug 20 10:46:44 2021----------
----------Run ID:1624346221 Fri Aug 20 10:47:50 2021----------
----------Run ID:1624346222 Fri Aug 20 10:52:39 2021----------
----------Run ID:1624346223 Fri Aug 20 10:53:45 2021----------
----------Run ID:1624346224 Fri Aug 20 11:07:17 2021----------
----------Run ID:1624346225 Fri Aug 20 11:08:23 2021----------
----------Run ID:1624346226 Fri Aug 20 11:09:29 2021----------
----------Run ID:1624346227 Fri Aug 20 11:10:35 2021----------
----------Run ID:1624346228 Fri Aug 20 11:11:41 2021----------

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
236

Automation Scripts
Obtain Operational Data and Logs

Managing Actions on Process Script
The process script runs as a daemon continuously. You can, however, perform the following actions on the
process script and its application:

Table 54: Feature History Table

DescriptionAction

Clears all the resources that the application uses.
Router#appmgr process-script deactivate name my-process-app

You can modify the script while the script is running. However, for the changes
to take effect, you must deactivate and activate the script again. Until then, the
configuration changes do not take effect.

Deactivate

Terminates the script if the option to stop the script is unresponsive.
Router#appmgr process-script kill name my-process-app

Kill

Restarts the process script.
Router#appmgr process-script restart name my-process-app

Restart

Starts an application that is already registered and activated with the appmanager.
Router#appmgr process-script start name my-process-app

Start

Stops an application that is already registered, activated, and is currently running.
Only the application is stopped; resources that the application uses is not cleared.
Router#appmgr process-script stop name my-process-app

Stop

Example: Check CPU Utilization at Regular Intervals Using
Process Script

In this example, you use the process script to check CPU utilization at regular intervals. The script does the
following actions:

• Monitor the CPU threshold value.

• If the threshold value equals or exceeds the value passed as argument to the script, log an error message
that the threshold value has exceeded.

Before you begin

Ensure you have completed the following prerequisites before you register and activate the script:

1. Create a process script cpu-utilization-process.py. Store the script on an external server or copy the
script to the harddisk of the router.
import time
import os

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
237

Automation Scripts
Managing Actions on Process Script

import xmltodict
import re
import argparse

from cisco.script_mgmt import xrlog
from iosxr.netconf.netconf_lib import NetconfClient

log = xrlog.getScriptLogger('Sample')
syslog = xrlog.getSysLogger('Sample')

def cpu_memory_check(threshold):
"""
Check total routes in router
"""
filter_string = """
<system-monitoring xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-wdsysmon-fd-oper">
<cpu-utilization>
<node-name>0/RP0/CPU0</node-name>
<total-cpu-one-minute/>

</cpu-utilization>
</system-monitoring>"""
nc = NetconfClient(debug=True)
nc.connect()
do_get(nc, filter=filter_string)
ret_dict = _xml_to_dict(nc.reply, 'system-monitoring')
total_cpu =

int(ret_dict['system-monitoring']['cpu-utilization']['total-cpu-one-minute'])
if total_cpu >= threshold:

syslog.error("CPU utilization is %s, threshold value is %s"
%(str(total_cpu),str(threshold)))

nc.close()

def _xml_to_dict(xml_output, xml_tag=None):
"""
convert netconf rpc request to dict
:param xml_output:
:return:
"""
if xml_tag:

pattern = "<data>\s+(<%s.*</%s>).*</data>" % (xml_tag, xml_tag)
else:

pattern = "(<data>.*</data>)"
xml_output = xml_output.replace('\n', ' ')
xml_data_match = re.search(pattern, xml_output)
ret_dict = xmltodict.parse(xml_data_match.group(1))
return ret_dict

def do_get(nc, filter=None, path=None):
try:

if path is not None:
nc.rpc.get(file=path)

elif filter is not None:
nc.rpc.get(request=filter)

else:
return False

except Exception as e:
return False

return True

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("threshold", help="cpu utilization threshold",type=int)
args = parser.parse_args()
threshold = args.threshold

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
238

Automation Scripts
Example: Check CPU Utilization at Regular Intervals Using Process Script

while(1):
cpu_memory_check(threshold)
time.sleep(30)

Configure the script with the desired threshold criteria. This default threshold is configured to alert when
CPU utilization exceeds this value. The script checks the CPU utilization every 30 seconds.

2. Add the script from the external server or harddisk to the script management repository. See Download
the Script to the Router, on page 211.

3. Configure the checksum to verify the authenticity and integrity of the script. See Configure Checksum
for Process Script, on page 231.

Procedure

Step 1 Register the process script cpu-utilization-process.py with an instance name my-process-app in the app manager.

Example:
Router(config)#appmgr process-script my-process-app
Router(config-process)#executable cpu-utilization-process.py
Router(config-process)#run-args <threshold-value>

Step 2 Activate the registered application.

Example:
Router(config-process)#appmgr process-script activate name my-process-app

Step 3 Check the script status.

Example:
Router#show appmgr process-script-table
Thu Sep 30 18:15:03.201 UTC
Name Executable Activated Status Restart Policy Config Pending
--------------- -------------------------- --------- ------------- ---------------- --------------
my-process-app cpu-utilization-process.py Yes Running On Failure No

Step 4 View the log.

Example:
Router#show appmgr process-script my-process-app logs errors
RP/0/RP0/CPU0:Sep 30 18:03:54.391 UTC: python3_xr[68378]: %OS-SCRIPT_MGMT-3-ERROR :
Script-test_process: CPU utilization is 6, threshold value is 5

An error message is displayed that the CPU utilization has exceeded the configured threshold value, and helps you take
corrective actions.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
239

Automation Scripts
Example: Check CPU Utilization at Regular Intervals Using Process Script

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
240

Automation Scripts
Example: Check CPU Utilization at Regular Intervals Using Process Script

C H A P T E R 14
EEM Scripts

Cisco IOS XR Embedded Event Manager (EEM) scripts are also known as event scripts that are triggered
automatically in response to events on the router. An event can be any significant occurrence, not limited to
errors, that has happened within the system. You can use these scripts to detect issues in the network in real
time, program certain conditions in response to the event, detect and generate an action when those conditions
are met, and execute policy (script) when an event is generated. The script acts in response to the events and
reduces the troubleshooting time involved in resolving the issues. For example, you can enforce LACP
dampening if a bundle interface has flapped 5 times in less than 30 secs, and define the script to disable the
interface for 2 minutes.

You can programmatically define the event and actions separately and map them using a policy map via CLI
or NETCONF RPCs. Whenever the configured event occurs, the action that is mapped to it is executed. The
same event and action can be mapped to multiple policy maps. You can map the same event and action in 64
policy maps, and add a maximum of 5 different actions in a policy map.

You can create event scripts using Python 3.5 programming language. For the list of supported Python packages.
You can also configure the EEM policies using Tool Command Language (TCL) scripts. To knowmore about
TCL scripts, seeConfiguring and Managing Embedded Event Manager PoliciesChapter in SystemMonitoring
Configuration Guide.

This chapter gets you started with provisioning your Python automation scripts on the router.

This section does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router.

Note

• Workflow to Run Event Scripts, on page 241
• Example: Shut Inactive Bundle Interfaces Using EEM Script, on page 253

Workflow to Run Event Scripts
Complete the following tasks to provision eem scripts:

• Download the script—Store the eem script on an HTTP server or copy to the harddisk of the router. Add
the eem script from the HTTP server or harddisk to the script management repository on the router using
the script add eem command.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
241

• Define events—Configure the events with the trigger conditions using the event manager event-trigger
command.

• Define actions to the events—Setup the actions that must be performed in response to an event using
event manager action command.

• Create policy map—Put together the events and the actions in a policy map using event manager
policy-map command.

An eem script is invoked automatically when the event occurs. With the event,
the event-trigger invokes the corresponding policy-map to implement the actions
in response to the event.

Note

• View operational status of the event—Retrieve the operational data using the show event-manager
action | event-trigger | policy-map command.

The following image shows a workflow diagram representing the steps involved in using an event script:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
242

Automation Scripts
Workflow to Run Event Scripts

The following sections cover the steps to run event scripts:

1. Download the Script to the Router

2. Define Trigger Conditions for an Event

3. Create Actions for Events

4. Create a Policy Map of Events and Actions

5. View Operational Status of Event Scripts

Download the Script to the Router
To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
243

Automation Scripts
Download the Script to the Router

Download LocationScript Type

harddisk:/mirror/script-mgmt/configconfig

harddisk:/mirror/script-mgmt/execexec

harddisk:/mirror/script-mgmt/processprocess

harddisk:/mirror/script-mgmt/eemeem

The scripts are added to the script management repository using two methods:

• Method 1: Add script from a server

• Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add eem-script.py script to the script management repository.

Procedure

Step 1 Add the script to the script management repository on the router using one of the two options:

• Add Script From a Server

Add the script from a configured HTTP server or the harddisk location in the router.
Router#script add eem <script-location> <script.py>

The following example shows a process script eem-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Router#script add eem http://192.0.2.0/scripts eem-script.py
Fri Aug 20 05:03:40.791 UTC
eem-script.py has been added to the script repository

You can add a maximum of 10 scripts simultaneously.
Router#script add eem <script-location> <script1.py> <script2.py> ... <script10.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.
Router#script add eem http://192.0.2.0/scripts eem-script.py checksum SHA256 <checksum-value>

For multiple scripts, use the following syntax to specify the checksum:
Router#script add eem http://192.0.2.0/scripts <script1.py> <script1-checksum> <script2.py>
<script2-checksum>
... <script10.py> <script10-checksum>

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note
Only SHA256 checksum is supported.

• Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
244

Automation Scripts
Download the Script to the Router

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/eem-script.py /harddisk:/

b. Add the script from the harddisk to the script management repository.
Router#script add eem /harddisk:/ eem-script.py
Fri Aug 20 05:03:40.791 UTC
eem-script.py has been added to the script repository

Step 2 Verify that the scripts are downloaded to the script management repository on the router.

Example:
Router#show script status
Wed Aug 25 23:10:50.453 UTC
==
Name | Type | Status | Last Action | Action Time
--
eem-script.py | eem | Config Checksum | NEW | Tue Aug 24 10:44:53 2021
==

Script eem-script.py is copied to harddisk:/mirror/script-mgmt/eem directory on the router.

Define Trigger Conditions for an Event
You define the event, and create a set of instructions that trigger a match to this event. You can create multiple
events.

Before you begin

Ensure that the script is added to the script management repository..

Procedure

Step 1 Register the event.

Example:
Router(config)#event manager event-trigger eventT10

You can configure more options to trigger an event:

DescriptionKeyword

Number of occurrences before the event is raised.

Note
The occurrence keyword is supported only for syslog events.

occurrence

Time interval during which configured occurrence should take place.

Note
The period keyword is supported only for syslog events.

period

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
245

Automation Scripts
Define Trigger Conditions for an Event

DescriptionKeyword

Configure the type of event.

Note
In Cisco IOS XR Release 7.3.2, you can configure only syslog events.

• Rate limit—Configure rate limit in seconds or milliseconds. After the event is triggered,
the event trigger does not happen even if the event occurs any number of times, till
this time has elapsed.

• Syslog—Configure syslog pattern, severity.

• Timer—Configure watch dog timer in seconds; cron timer as a text string with five
fields separated by a space.

• Track—Configure event-trigger for track (object tracking), track state (UP, DOWN, or
ANY). If event-trigger is configured for track state UP, then it gets triggered when the
track state changes from DOWN to UP, and vice-versa.

• Telemetry—Define events based on telemetry data. With this feature, you can perform
the following operations:

a. Monitor any operational state such as interface status, and trigger an action when
the state changes to a specific value.

b. Monitor any counter or statistics in an operational data, and trigger an action when
it reaches a threshold.

c. Monitor rate of change of any operational attribute, and trigger an action based on
threshold.

Note
exact match supported on string and threshold or rate limit is supported only for integer
type telemetry data

Configure sensor path for exact match, threshold or rate depending on the telemetry
data type. The exact match is supported on string data type, and threshold and rate limit
is supported only for interger data type. Use the following command to verify the sensor
path or query before configuring the event trigger.
Router#event manager telemetry sensor-path
<sensor-path> json-query <query>

It is mandatory to enable model-driven telemetry using the command:
Router#telemetry model-driven

type

Step 2 Configure the type for the event.

• Syslog:
Router(config)#event manager event-trigger eventT10 type syslog pattern
"L2-BM-6-ACTIVE"

For syslog, set the pattern to match. In this example, the pattern L2-BM-6-ACTIVE is the match value. If a syslog is
generated on the router with a pattern that matches this configured pattern, the event gets triggered.

• Timer:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
246

Automation Scripts
Define Trigger Conditions for an Event

Watchdog timer—
Router(config)#event manager event-trigger <event-name>
type timer watchdog value <countdown-timer-value-in-seconds>

Cron timer—
Router(config)#event manager event-trigger <event-name>
type timer cron cron-entry “<cron string>”

• Track:
Router(config)#event manager event-trigger <event-name>
type track name <track-name> status {up | down | any}

• Telemetry:

Match criteria as exact-match—
Router(config)#event manager event-trigger <event-name>
query json-path <query> match-criteria exact-match value <value>
type telemetry sensor-path <telemetry-sensor-path>
sample-interval <sample-interval-in-seconds>

Match criteria as threshold—
Router(config)#event manager event-trigger <event-name> query
json-path <query> match-criteria threshold {equal-to | greater-equal-to |
greater-than | less-equal-to | less-than| not-equal-to} <value>
type telemetry sensor-path <telemetry-sensor-path> sample-interval <sample-interval-in-seconds>

Match criteria as rate—
Router(config)#event manager event-trigger <event-name>
query json-path <query> match-criteria rate direction {any | decreasing | increasing}
value {equal-to| greater-equal-to | greater-than | less-equal-to | less-than | not-equal-to}
<value>
type telemetry sensor-path <telemetry-sensor-path> sample-interval <sample-interval-in-seconds>>

Example

Example: The following example shows the configuration for syslog event type. If severity is
configured, the event gets triggered only if both the syslog severity and the syslog pattern match with
the syslog generated on the router. If severity is not configured, it is set to all, where only pattern
match is considered for the event to trigger.
Router(config)#event manager event-trigger eventT10
type syslog pattern "<pattern-to-match>" severity <value>

Router(config)#event manager event-trigger eventT10
rate-limit seconds <time-in-seconds>
type syslog pattern "<pattern-to-match>" severity <value>

The severity values are:

alert Syslog priority 1
critical Syslog priority 2
debug Syslog priority 7 (lowest)
emergency Syslog priority 0 (highest)
error Syslog priority 3

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
247

Automation Scripts
Define Trigger Conditions for an Event

info Syslog priority 6
notice Syslog priority 5
warning Syslog priority 4

The following example shows a syslog pattern L2-BM-6-ACTIVE with severity value critical:
Router(config)#event manager event-trigger eventT10
type syslog pattern "L2-BM-6-ACTIVE" severity info

The event gets triggered, if both the syslog pattern L2-BM-6-ACTIVE and severity value info match.

Create Actions for Events
Define the actions that must be taken when an event occurs.

Before you begin

Ensure that the following prerequisites are met before you configure the action:

• Define Trigger Conditions for an Event, on page 245

Procedure

Step 1 Set the event action.

Example:
Router(config)#event manager action action1

Step 2 Define the type of action. For example, the action is a Python script.

Example:
Router(config)#event manager action action1 type script action1.py

Step 3 Configure the maximum run time of the script for the event.

Example:
Router(config)#event manager action action1 type script action1.py maxrun seconds 30

The default value is 20 seconds.

Step 4 Configure the checksum for the script. This configuration is mandatory. Every script is associated with a checksum hash
value. This value ensures the integrity of the script, and that the script is not tampered. The checksum is a string of numbers
and letters that act as a fingerprint for script.
a) Retrieve the SHA256 checksum hash value for the script from the IOS XR Linux bash shell.

Example:
Router#run
[node0_RP0_CPU0:~]$sha256sum /harddisk:/mirror/script-mgmt/eem/action1.py
407ce32678a5fc4b0ad49e83acad6453ad1d47e8dad9501cf139daa75d53e3dd
/harddisk:/mirror/script-mgmt/eem/action1.py

b) Configure the checksum for the script.

Example:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
248

Automation Scripts
Create Actions for Events

Router(config)#event manager action action1 type script action1.py checksum
sha256 407ce32678a5fc4b0ad49e83acad6453ad1d47e8dad9501cf139daa75d53e3dd

Step 5 Enter the username for the script to execute.

Example:
Router(config)#event manager action action1 username eem_user

Note
If you load the event manager action commands using configuration files, for example, by using the load
harddisk:config.txt command, you must make sure that the commands in the configuration files are properly indented
and aligned with the running configuration.

In this example, the username eem and type script commands in the config.txt configuration file are properly indented
and aligned with the running configuration.
event manager action action_all
username eem
type script script-name eem.py Marx seconds 7200 checksum
sha256fb2e1f7c4b135c296abb7149cf5fb96f052d3876c35a8422d44f78b9b6d3e452
!

Create a Policy Map of Events and Actions
Table 55: Feature History Table

DescriptionRelease InformationFeature Name

With this feature, you can add
multiple events to a policy map
with boolean (AND or OR)
correlation. EEM triggers the script
when the correlation defined in the
policy map for the events is true.
Using EEM scripts, you can create
a logical correlation of events in the
policy map and configure multiple
actions for detectors such as timer,
object-tracking, and telemetry
events via sensor path.

Release 7.5.1Add Multiple Events In a Policy
Map With a Single EEM Script

Create a policy to map events and actions. You can configure a policy that associates multiple actions with
an event or use the same action with different events. The policy can be triggered if an event or multiple events
occur at a specified number of times within a specified period of time. The occurrence and period are optional
parameters. You can addmultiple events to a policy-map with boolean (AND or OR) correlation. EEM triggers
the script when correlation defined in the policy-map for the events is true. For example, a multi-event
policy-map for event1 and event2 with event1 AND event2 boolean operation is triggered only when both
event1 and event2 are true.

Before you begin

Ensure that the following prerequisites are met before you create a policy map:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
249

Automation Scripts
Create a Policy Map of Events and Actions

• Define Trigger Conditions for an Event, on page 245

• Create Actions for Events, on page 248

Procedure

Step 1 Create a policy map.

Example:
Router(config)#event manager policy-map policy1

Router(config)#event manager policy-map policy1
trigger multi-event [“(<event1> AND <event2>) AND (<event3> OR <event4>)” |
occurrence <count> | period <time in seconds>]

Note
Ensure that the operations when configuring multiple events are within double quotes "".

where,

• occurrence: Specifies the number of times the total correlation occurs before an EEM event is raised. If occurrence
is not specified, the policy-map gets triggered on every occurrence of the event. The occurance vale ranges from 1
to 32. An occurrence that is configured with multiple events is considered as only one occurrence if the boolean
logic operations becomes true.

• period: Time interval in seconds, during which the event occurs. The period must be an integer number between 1
to 429496729 seconds.

Step 2 Define the action that must be implemeted when the event occurs. Maximum of 5 actions can be mapped to a policy map.

Example:
Router(config-policy-map)#action action1

Step 3 Configure the name of the event or multiple events to trigger the policy-map.

Example:
Router(config-policy-map)#trigger event event10

The following example shows the policy-map for multiple events:
event manager policy-map policy001
trigger multi-event “event1 OR (event4 AND event2)”
period 60
action action2
occurrence 2
!

View Operational Status of Event Scripts
Retrieve the operational status of events, actions and policy maps.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
250

Automation Scripts
View Operational Status of Event Scripts

Before you begin

Ensure that the following prerequisites are met before you trigger the event:

• Define Trigger Conditions for an Event, on page 245

• Create Actions for Events, on page 248

• Create a Policy Map of Events and Actions, on page 249

Procedure

Step 1 Run the show event manager event-trigger all command to view the summary of basic data of all events that are
configured.

Example:
Router#show event manager event-trigger all
Tue Aug 24 14:47:35.803 IST
Thu May 20 20:41:03.690 UTC
No. Name esid Type Occurs Period Trigger-Count Policy-Count Status
1 event1 1008 syslog 2 1800 4 1 active
2 event2 1009 syslog 2 1800 4 1 active
3 event3 1010 syslog 2 1800 4 1 active
4 event4 1011 syslog 2 1800 4 1 active
5 event5 1012 syslog 2 1800 4 1 active
6 event6 1013 syslog 2 1800 4 1 active
7 event7 1014 syslog 2 1800 4 1 active
8 event8 1015 syslog 2 1800 4 1 active
9 event9 1016 syslog 2 1800 4 1 active

Use the show event manager event-trigger all detailed command to view the details about the match criteria that you
configured, severity level, policies mapped to the events and so on.

Use the show event manager event-trigger <event-name> detailed command to view the details about the individual
events.
Router#show event manager event-trigger event1 detailed
Fri Nov 19 04:21:45.558 UTC

Event trigger name: event1
Event esid: 107
Event type: timer
Event occurrence: NA
Event period: NA
Event rate-limit: NA
Event triggered count: 12861
Event policy reg count: 1
Event status: active
Timer type: watchdog
Timer value: 10

Policy mapping info
1 event1 policy1

Step 2 Run the show event manager policy-map all command to view the summary of all the configured policy maps.

Example:
Router#show event manager policy-map all
Tue Aug 24 14:48:52.153 IST

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
251

Automation Scripts
View Operational Status of Event Scripts

No. Name Occurs period Trigger-Count Status
1 policy1 NA NA 1 active
2 policy2 NA NA 1 active
3 policy3 NA NA 1 active
4 policy4 NA NA 1 active

Use the show event manager policy-map all detailed command to view the details about mapping of associated events
and actions in the policy maps.
Router#show event manager policy-map policy1 all detailed
Fri Nov 19 11:35:40.282 UTC

Policy name: policy1
Policy occurrence: 3
Policy period: 120
Policy triggered count: 0
Policy status: active
Multi event policy: FALSE

Events mapped to the policy
No. Name Status
1 event2 active

Actions mapped to the policy
No. Name Checksum
1 action1 SHA256

Use the show event manager policy-map <policy-map-name> detailed command to view the details about the individual
policy maps.
Router#show event manager policy-map policy1 detailed
Fri Nov 19 11:05:38.828 UTC

Policy name: policy1
Policy occurrence: 2
Policy period: 60
Policy triggered count: 0
Policy status: active
Multi event policy: TRUE
Multi event string : "event1 OR (event4 AND event2)"
Current Correlation State : FALSE

Events mapped to the policy
No. Name Status Corr Status Reset time(sec)
1 event1 active 0 0
2 event2 active 0 0
3 event4 active 0 0

Actions mapped to the policy
No. Name Checksum
1 action2 SHA256

Step 3 Run the show event manager action <action-name> detailed commad to view the details of an action.

Example:
Router#show event manager action action1 detailed
Tue Aug 24 16:05:44.298 UTC

Action name: action1
Action type: script
EEM Script name: event_script_1.py
Action triggered count: 1
Action policy count: 1
Username: eem_user

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
252

Automation Scripts
View Operational Status of Event Scripts

Checksum: 407ce32678a5fc4b0ad49e83acad6453ad1d47e8dad9501cf139daa75d53e3dd
Last execution status: Success

Policy mapping info
1 action1 policy1

Use the show event manager action all and show event manager action all detailed command to view the summary
and details about all the configured actions.

Example: Shut Inactive Bundle Interfaces Using EEM Script
In this example, you use an EEM event to look for a syslog message and trigger a Python script. The script
does two things:

• Triggers an event on the interface inactive log as part of Bundle-Ether1, and shuts down the interface.

• Runs the show tech-support bundles command to collect debug data.

Procedure

Step 1 Create an eem script event_script_action_bundle_shut.py. Store the script on an HTTP server or copy the script to
the harddisk of the router.

Example:
from iosxr.xrcli.xrcli_helper import *
from cisco.script_mgmt import xrlog

logger = xrlog.getScriptLogger('sample_script')
syslog = xrlog.getSysLogger('sample_script')
helper = XrcliHelper(debug = True)

syslog.info('Execution of event manager action script event_script_action_bundle_shut.py started')

config = """interface Bundle-Ether1
shutdown"""

cmd = "show tech-support bundles"

if __name__ == '__main__':
res = helper.xr_apply_config_string(config)
if res['status'] == 'success':

syslog.info('OPS_EVENT_SCRIPT_ACTION : Configuration succeeded')
else:

syslog.error('OPS_EVENT_SCRIPT_ACTION : Configuration failed')

res = helper.xrcli_exec(cmd)
if res['status'] == 'success':

syslog.info('OPS_EVENT_SCRIPT_ACTION : show tech started')
else:

syslog.error('OPS_EVENT_SCRIPT_ACTION : show tech failed')

syslog.info('Execution of event manager action script event_script_action_bundle_shut.py ended')

Step 2 Add the script from HTTP server or harddisk to the script management repository..

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
253

Automation Scripts
Example: Shut Inactive Bundle Interfaces Using EEM Script

Step 3 After the configured type matches the syslog pattern, the script is triggered in response to the detected event. You can
view the running configuration for the event manager.

Example:
Router#show running-config event manager
Mon Aug 30 06:23:32.974 UTC
event manager action action1
username eem_user
type script script-name eem_script_bundle_shut.py maxrun seconds 600 checksum sha256

2386d8f71b2d6f6f6e77a7a39d3b4d38cca07f9eaf2a4de7cd40c1b027a4e248
!
event manager policy-map policy1
trigger event event1
action action1

!
event manager event-trigger event1
type syslog pattern "%L2-BM-6-ACTIVE : FortyGigE0/0/0/13 is no longer Active as part of Bundle-Ether1"

!

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
254

Automation Scripts
Example: Shut Inactive Bundle Interfaces Using EEM Script

C H A P T E R 15
Model-Driven Command-Line Interface

This section shows the CLI commands that are based on YANG data models and can be used on the router
console.

• Model-Driven CLI to Display Data Model Structure, on page 255
• Model-Driven CLI to Display Running Configuration in XML and JSON Formats, on page 259

Model-Driven CLI to Display Data Model Structure
Table 56: Feature History Table

DescriptionRelease InformationFeature Name

This feature enables you to use a
traditional CLI command to display
YANG datamodel structures on the
router console and also obtain
operational data from the router in
JSON or XML formats. The
functionality helps you transition
smoothly between CLI and YANG
models, easing data retrieval from
your router and network.

This feature introduces the show
yang operational command.

Release 7.3.2Model-driven CLI to Show YANG
Operational Data

Cisco IOS XR Software provides a rich set of show commands and data models to access data from the router
and network. The show commands present unstructured data, whereas data models are structured data that
can be encoded in XML or JSON formats. However, both the access points do not always present the same
view. Network operators who work on show commands face challenges with adopting the data models when
transitioning to programmatic interfaces.

With this feature, these adoption challenges are overcome using show yang operational command that is
driven by data models. The command uses the data model as the base to display the structured data using
traditional CLI command. Using this command, you can simplify parsing scripts via XML and JSON formats.

A data model has a structured hierarchy: model, module, container, and leaf. The following example shows
the structure of ietf-interfaces.yang data model:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
255

ietf-interfaces.yang
module: ietf-interfaces
+--rw interfaces
| +--rw interface* [name]
| +--rw name string
| +--rw description? string
| +--rw type identityref
| +--rw enabled? boolean
| +--rw link-up-down-trap-enable? enumeration {if-mib}?
+--ro interfaces-state

+--ro interface* [name]
+--ro name string
+--ro type identityref
+--ro admin-status enumeration {if-mib}

In the example, the hierarchy of the data model is as follows:

• Model—ietf-interfaces.yang

• Module—ietf-interfaces

• Container—interfaces, interface-state

• Node—interface* [name]

• Leaf—name, description, type, enabled, link-up-down-trap-enable, admin-status

You can use the show yang operational command to navigate to the leaf level as you do in a data model.

The image show a mapping between CLI and data model, and how the structured data is displayed on the
console.

The table shows various queries that can be used to navigate through the hierarchy of a data model using the
CLI command. The queries are demonstrated using Cisco-IOS-XR-interfaces-oper.yang data model as an
example.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
256

Automation Scripts
Model-Driven CLI to Display Data Model Structure

DescriptionOperational Query

Search and produce the output of keywords from top-level nodes.
Router#show yang operational

Router#show yang operational | include <component>

The following example shows the search result for interfaces:
Router#show yang operational | include interface
Wed Jul 7 00:02:37.982 PDT
drivers-media-eth-oper:ethernet-interface
ifmgr-oper:interface-dampening
ifmgr-oper:interface-properties
interface-cem-oper:cem
l2vpn-oper:generic-interface-list-v2
pfi-im-cmd-oper:interfaces

Search specific top-level
nodes

Lists all the models at the root level container and its container name.
Router#show yang operational ?

You can also see the containers for a partially typed keyword. For example,
keyword search for mpls- displays all the containers with mpls :
Router#show yang operational mpls-
mpls-io-oper-mpls-ea mpls-io-oper-mpls-ma
mpls-ldp-mldp-oper:mpls-mldp
mpls-lsd-oper:mpls-lsd mpls-lsp-oper:mpls-lsd-nodes
mpls-ldp-mldp-oper:mpls-mldp
mpls-vpn-oper:l3vpn mpls-te-oper:mpls-tp
mpls-te-oper:mpls-te

View the container data. The output of the command is in-line with the structure
of the data model.
Router#show yang operational mpls-static-oper:mpls-static
Request datatree:

filter
mpls-static (ka)

{
"Cisco-IOS-XR-mpls-static-oper:mpls-static": {
"vrfs": {
"vrf": [
{
"vrf-name": "default"
}
]
},
"summary": {
"lsp-count": 0,
"label-count": 0,
"label-error-count": 0,
"label-discrepancy-count": 0,
"vrf-count": 1,
"active-vrf-count": 1,
"interface-count": 0,
"interface-forward-reference-count": 0,
"lsd-connected": true,
"ribv4-connected": false,
"ribv6-connected": false
}

}
}

All the instances of the
container

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
257

Automation Scripts
Model-Driven CLI to Display Data Model Structure

DescriptionOperational Query

Router#show yang operational mpls-static-oper:mpls-static ?
JSON Output in JSON format
XML Output in XML format
local-labels
summary
vrfs
| Output Modifiers
<cr>

Output in JSON Format:

Router#show yang operational man-netconf-oper:netconf-yang clients
JSON
Mon Sep 27 11:38:27.158 PST
Request datatree:

filter
netconf-yang (ka)

clients
{
"Cisco-IOS-XR-man-netconf-oper:netconf-yang": {
"clients": {
"client": [
{
"session-id": "1396267443",
"version": "1.1",
"connect-time": "52436839",
"last-op-time": "1545",
"last-op-type": "get",
"locked": "No"
}
]
}

}
}

Output in XML Format:

Router#show yang operational man-netconf-oper:netconf-yang clients
XML
Mon Sep 27 11:38:34.218 PST
Request datatree:

filter
netconf-yang (ka)

clients
<netconf-yang
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-man-netconf-oper">
<clients>
<client>
<session-id>1396267443</session-id>
<version>1.1</version>
<connect-time>52443884</connect-time>
<last-op-time>1545</last-op-time>
<last-op-type>get</last-op-type>
<locked>No</locked>
</client>

</clients>
</netconf-yang>

All the nodes of the
container

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
258

Automation Scripts
Model-Driven CLI to Display Data Model Structure

DescriptionOperational Query

Router#show yang operational mpls-static-oper:mpls-static summary ?
JSON Output in JSON format
XML Output in XML format
active-vrf-count
im-connected
interface-count
interface-forward-reference-count
mpls-enbled-interface-count
vrf-count
| Output Modifiers
<cr>

View data specific to the leaf value. The read only (ro) leaves in a YANGmodel
are considered as the state data (operational).
Router#show yang operational mpls-static-oper:mpls-static summary
active-vrf-count
Request datatree:

filter
mpls-static (ka)

summary
active-vrf-count

{
"Cisco-IOS-XR-mpls-static-oper:mpls-static": {
"summary": {
"active-vrf-count": [
}

}
}

Navigate until the last
leaf level

Model-Driven CLI to Display Running Configuration in XML and
JSON Formats

Table 57: Feature History Table

DescriptionRelease InformationFeature Name

This feature enables you to display
the configuration data for Cisco
IOS XR platforms in both JSON
and XML formats.

This feature introduces the show
run | [xml | json] command.

Release 7.3.2Model-driven CLI to Display
Running Configuration in XML
and JSON Formats

The show run | [xml | json] command uses native, OpenConfig and unified models to retrieve and display
data.

Use the following variations of the command to generate output:

• show run | [xml | json]—Shows configuration in YANG XML or JSON tree.

• show run | [xml | json] openconfig—Shows configuration in OpenConfig YANG XML tree.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
259

Automation Scripts
Model-Driven CLI to Display Running Configuration in XML and JSON Formats

• show run | [xml | json] unified—Shows configuration in unified model YANG XML tree.

• show run component | [xml | json]—Shows configuration in YANGXML or JSON tree for the top-level
component. For example, show run interface | xml

• show run component | [xml | json] unified—Shows configuration in unified model YANG XML or
JSON tree for the top-level component. For example, show run interface | json unified

• show run component subcomponent | [xml | json]—Shows configuration in YANG XML or JSON tree
for the granular-level component. For example, show run router bgp 12 neighbor 12.12.12.12 | xml

• show run component subcomponent | [xml | json] unified—Shows configuration in unified model
YANG XML or JSON tree for the granular-level component. For example, show run router bgp 12
neighbor 12.12.12.12 | json unified

XML Output

Router#show run | xml
Building configuration...
<data>
<interface-configurations xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg">
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/0</interface-name>
<shutdown></shutdown>
</interface-configuration>
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/1</interface-name>
<shutdown></shutdown>
</interface-configuration>
<interface-configuration>
<active>act</active>
<interface-name>GigabitEthernet0/0/0/2</interface-name>
<shutdown></shutdown>
</interface-configuration>
</interface-configurations>
<interfaces xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-interface-cfg">
<interface>
<interface-name>GigabitEthernet0/0/0/0</interface-name>
<shutdown/>
</interface>
<interface>
<interface-name>GigabitEthernet0/0/0/1</interface-name>
<shutdown/>
</interface>
<interface>
<interface-name>GigabitEthernet0/0/0/2</interface-name>
<shutdown/>
</interface>
</interfaces>
</data>

JSON Output

Router#show run | json
Building configuration...
{
"data": {
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {

"interface-configuration": [
{

"active": "act",

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
260

Automation Scripts
Model-Driven CLI to Display Running Configuration in XML and JSON Formats

"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [

null
]

},
{

"active": "act",
"interface-name": "GigabitEthernet0/0/0/1",
"shutdown": [

null
]
},
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/2",
"shutdown": [

null
]
}

],
"Cisco-IOS-XR-man-netconf-cfg:netconf-yang": {

"agent": {
"ssh": true
}

},
}

Granular-Level Component Output

Router#sh run router bgp 12 neighbor 12.12.12.12 | json unified
{
"data": {
"Cisco-IOS-XR-um-router-bgp-cfg:router": {
"bgp": {
"as": [
{
"as-number": 12,
"neighbors": {
"neighbor": [
{
"neighbor-address": "12.12.12.12",
"remote-as": 12,
"address-families": {
"address-family": [
{
"af-name": "ipv4-unicast"
}
]
}
}
]
}
}
]
}
}
}
}

Unified Model Output

Router#sh run router bgp 12 | xml unified
<data>
<router xmlns=http://cisco.com/ns/yang/Cisco-IOS-XR-um-router-bgp-cfg>
<bgp>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
261

Automation Scripts
Model-Driven CLI to Display Running Configuration in XML and JSON Formats

<as>
<as-number>12</as-number>
<bgp>
<router-id>1.1.1.1</router-id>
</bgp>
<address-families>
<address-family>
<af-name>ipv4-unicast</af-name>
</address-family>
</address-families>
<neighbors>
<neighbor>
<neighbor-address>12.12.12.12</neighbor-address>
<remote-as>12</remote-as>
<address-families>
<address-family>
<af-name>ipv4-unicast</af-name>
</address-family>
</address-families>
</neighbor>
</neighbors>
</as>
</bgp>
</router>
</data>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
262

Automation Scripts
Model-Driven CLI to Display Running Configuration in XML and JSON Formats

C H A P T E R 16
Manage Automation Scripts Using YANG RPCs

Table 58: Feature History Table

DescriptionRelease InformationFeature Name

This feature enables you to use
remote procedure calls (RPCs) on
YANG data models to perform the
same automated operations as CLIs,
such as edit configurations or
retrieve router information.

Release 7.3.2Manage Automation Scripts Using
YANG RPCs

You can use automation scripts to interact with the router using NETCONF, helper modules or gNMI python
modules.

An SSH session must be established between the client and the server to run RPCs on a device. The client
can be a script or application that runs as part of a network manager. The server is a network device such as
a router. To enable the NETCONF SSH agent, use the following commands:
ssh server v2
netconf agent tty

After a NETCONF session is established, the client sends one or more RPC requests to the server. The server
processes the requests and sends an RPC response back to the client. For example, the get-config operation
retrieves the configuration of the device and the edit-config operation edits the configuration on the device.

For more information about data models and how to use the models

• Manage Common Script Actions Using YANG RPCs, on page 264
• Manage Exec Scripts Using RPCs, on page 266
• Manage EEM Script Using RPCs, on page 270

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
263

Manage Common Script Actions Using YANG RPCs
Table 59: Feature History Table

DescriptionRelease InformationFeature Name

This feature enables you to use
YANG remote procedure calls
(RPCs) on
Cisco-IOS-XR-infra-script-mgmt-act.yang

data model to perform actions on
the automation scripts such as add
or remove script from the script
repository, run, or stop script from
running.

Release 7.5.1Manage Common Script Actions
Using YANG RPCs

This section provides information about YANG RPC messages for common actions on automation scripts.
The Cisco-IOS-XR-infra-script-mgmt-act.yang action YANG model is enhanced to perform the actions
such as adding or removing a script from the repository, and also include output responses. The output response
provides a description about the action and displays the status as True for a successful action, and False for
a failed action.

The YANG RPC supports these scripts:

• Config

• Exec

• Process

• EEM

The following section shows the various script actions, sample RPC request, and RPC response.

Add Script

You can add up to a maximum of 10 scripts to the script repository. You can set the script type to config,
exec, process, or eem. The following example shows the RPC to add the exec script to the repository:
<add xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<script-type>exec</script-type>
<vrf></vrf>
<source>/harddisk:/</source>
<script-name>sample.py</script-name>
</add>

You can add more than one script to the repository simultaneously:
<add xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<script-type>exec</script-type>
<source>/harddisk:/</source>
<script-name>sample2.py</script-name>
<script-name>sample3.py</script-name>
</add>

To add a checksum value to the script, use the following RPC request:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
264

Automation Scripts
Manage Common Script Actions Using YANG RPCs

<add-checksum xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<script-type>exec</script-type>
<source>/harddisk:/</source>
<script-checksums>

<script-name>sample.py</script-name>
<checksum>e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855</checksum>
</script-checksums>
</add-checksum>

You can add more than one script with their checksum values:
<add-checksum xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<script-type>exec</script-type>
<source>/harddisk:/</source>
<script-checksums>

<script-name>sample.py</script-name>
<checksum>e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855</checksum>
</script-checksums>
<script-checksums>

<script-name>sample2.py</script-name>
<checksum>e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855</checksum>
</script-checksums>
</add-checksum>

Remove Script

To remove script from the repository, provide the script type and the script name. You can send an RPC
request to remove up to 10 scripts.
<remove xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<script-type>exec</script-type>
<script-name>sample.py</script-name>
</remove>

You can remove more than one script simultaneously:
<remove xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<script-type>exec</script-type>
<script-name>sample2.py</script-name>
<script-name>sample3.py</script-name>
</remove>

The following example shows a sample RPC response indicating that the script sample1.py is removed from
the repository:
<responses>
<script-name>sample.py<script-name>
<response>sample.py has been removed from the script repository</response>
<status>True</status>
<responses>

Stop Script

You must provide the request ID for the script instance to be stopped.
<stop xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<request-id>1622058854</request-id>
<description></description>
</stop>

The following example shows that the script has stopped:
<script-stop-response>

<response></response>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
265

Automation Scripts
Manage Common Script Actions Using YANG RPCs

<status>True</status>
</script-stop-response>

Run Script

You must provide the script name to run the script. You can also configure the log levels to one of these
values—Critical, Debug, Error, Info, or Warning.
<run xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<script-name>sample.py</script-name>
<argument-list></ argument-list>
<description></description>
<log-level></log-level>
<log-path></log-path>
<max-runtime></max-runtime>

</run>

The following example shows a sample RPC response where the script with the request ID 1622058854 is
run:
<script-run-response>
<response>Script run scheduled</response>
<request-id>1622058854</request-id>
<status>True</status>
</script-run-response>

Manage Exec Scripts Using RPCs
The following data models support exec scripts:

• Edit or get configuration—Cisco-IOS-XR-infra-script-mgmt-cfg.yang

• Perform action—Cisco-IOS-XR-infra-script-mgmt-act.yang

• Retrieve operational data—Cisco-IOS-XR-infra-script-mgmt-oper.yang

This section provides examples of using RPC messages on exec scripts, and also the YANG data model and
equivalent CLI command to perform the tasks:

Add Script

You use data model to add an exec script from an external repository to the
harddisk:/mirror/script-mgmt/exec script management repository on the router.

Equivalent CLIYANG Data Model

script add exec script-location script.py

See.

Cisco-IOS-XR-infra-script-mgmt-act.yang

RPC Request:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-add-type-source xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<type>exec</type>
<source>/harddisk:</source>
<file-name-1>sample1.py</file-name-1>

</script-add-type-source>
</rpc>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
266

Automation Scripts
Manage Exec Scripts Using RPCs

Syslog:
Router: script_manager[66762]: %OS-SCRIPT_MGMT-6-INFO :
Script-script_manager: sample1.py has been added to the script repository

Configure Checksum

Every script is associated with a checksum value for integrity. You can configure the checksum using data
models.

Equivalent CLIYANG Data Model

script exec sample1.py checksum SHA256
checksum-value

See, .

Cisco-IOS-XR-infra-script-mgmt-act.yang

RPC Request:
<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccd1aefcaf">
<nc:edit-config>
<nc:target>
<nc:candidate/>

</nc:target>
<nc:config>
<scripts xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-cfg">
<exec-script>
<scripts>
<script>
<script-name>sample1.py</script-name>
<checksum>
<checksum-type>sha256</checksum-type>

<checksum>5103a843032505decc37ff21089336e4bcc6a1061341056ca8add3ac5d6620ef</checksum>
</checksum>

</script>
</scripts>

</exec-script>
</scripts>

</nc:config>
</nc:edit-config>

</nc:rpc>

RPC Response:
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccd1aefcaf"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Run Script

Equivalent CLIYANG Data Model

script run sample1.pyCisco-IOS-XR-infra-script-mgmt-act.yang

RPC Request:

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
267

Automation Scripts
Manage Exec Scripts Using RPCs

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-run xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<name>sample1.py</name>

</script-run>
</rpc>

RPC Response:
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:d54247c7-cf29-42f2-bfb8-517d6458f77c" xmlns="urn:ietf:
params:xml:ns:netconf:base:1.0" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Syslog:
Router: UTC: script_control_cli[67858]: %OS-SCRIPT_MGMT-6-INFO : Script-control:
Script run scheduled: sample1.py. Request ID: 1631795207
Router: script_agent_main[248]: %OS-SCRIPT_MGMT-6-INFO : Script-script_agent: Script
execution sample1.py (exec) Started : Request ID : 1631795207 :: PID: 18710

Stop Script

Equivalent CLIYANG Data Model

script stop value [short-decription]Cisco-IOS-XR-infra-script-mgmt-act.yang

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-stop-request xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">

<request>1614930988</request>
</script-stop-request>

</rpc>

Remove Script

You can remove scripts from the script management repository. The data about script management and
execution history is not deleted when the script is removed.

Equivalent CLIYANG Data Model

script remove exec script.py

See,.

Cisco-IOS-XR-infra-script-mgmt-act.yang

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<script-remove-type xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-act">
<type>exec</type>
<file-name-1>load_modules_ut.py</file-name-1>

</script-remove-type>
</rpc>

Show Script Execution

View the status of the script execution.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
268

Automation Scripts
Manage Exec Scripts Using RPCs

Equivalent CLIYANG Data Model

show script execution [request-id <value>] [name
<filename>] [status {Exception | Executed | Killed |
Started | Stopped | Timed-out}] [reverse] [last
<number>]

Cisco-IOS-XR-infra-script-mgmt-oper.yang

RPC Request:
-------------- Sent to NETCONF Agent ---------------
<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:7fd0d184-0004-4a51-9765-d29bc94c793b">
<get>
<filter>
<script xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-oper">
<execution>
<requests>
<request>
<request-id>1631795207</request-id>
<detail>
<execution-detail/>

</detail>
</request>

</requests>
</execution>

</script>
</filter>

</get>
</rpc>

RPC Response:
----------------- Received from NETCONF agent --------------------
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:7fd0d184-0004-4a51-9765-d29bc94c793b"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<script xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-infra-script-mgmt-oper">
<execution>
<requests>
<request>
<request-id>1631795207</request-id>
<detail>
<execution-detail>
<execution-summary>
<request-id>1631795207</request-id>
<return-val>0</return-val>
<script-type>exec</script-type>
<script-name>sample1.py</script-name>
<duration>60.65s</duration>
<event-time>Thu Sep 16 12:26:46 2021</event-time>
<status>Executed</status>

</execution-summary>
<execution-detail>

<log-path>/harddisk:/mirror/script-mgmt/logs/sample1.py_exec_1631795207</log-path>
<run-options>Logging level - INFO, Max. Runtime - 300s, Mode -

Background</run-options>
</execution-detail>
<execution-event>
<description>None</description>
<duration>0.00s</duration>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
269

Automation Scripts
Manage Exec Scripts Using RPCs

<event>New</event>
<time>Thu Sep 16 12:26:46 2021</time>

</execution-event>
<execution-event>
<description>Script execution started. PID (18710)</description>
<duration>0.03s</duration>
<event>Started</event>
<time>Thu Sep 16 12:26:46 2021</time>

</execution-event>
<execution-event>
<description>Script execution complete</description>
<duration>60.65s</duration>
<event>Executed</event>
<time>Thu Sep 16 12:27:47 2021</time>

</execution-event>
</execution-detail>

</detail>
</request>

</requests>
</execution>

</script>
</data>

</rpc-reply>

Manage EEM Script Using RPCs
The following data model supports eem scripts:

• Edit configuration—Cisco-IOS-XR-um-event-manager-policy-map-cfg.yang

The model is augmented to Cisco-IOS-XR-um-event-manager-cfg.yang data model.

This section provides examples of using RPC messages on eem scripts, and also the YANG data model and
equivalent CLI command to perform the tasks:

Define Actions for Events Using Data Model

You use data model to create actions for events.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
270

Automation Scripts
Manage EEM Script Using RPCs

Equivalent CLIYANG Data Model

event manager event-trigger event-name

occurance value

period seconds value

period seconds valuetype syslog pattern
"syslog-pattern" severity syslog-severity

See

event manager action action-name

username username

type script script-name python-script-name.py
maxrun seconds value checksum sha256
checksum-value

See.

Cisco-IOS-XR-um-event-manager-policy-map-cfg

RPC Request:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>
</target>
<config>
<event xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-event-manager-cfg">
<manager>
<event-trigger

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-event-manager-policy-map-cfg">
<event>
<event-name>event_1</event-name>
<occurrence>2</occurrence>
<period>
<seconds>60</seconds>
</period>
<type>
<syslog>
<pattern>"Syslog for EEM script"</pattern>
<severity>
<warning/>
</severity>
</syslog>
</type>
</event>
</event-trigger>

<actions xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-event-manager-policy-map-cfg">

<action>
<action-name>action_1</action-name>
<type>
<script>
<script-name>event_script_1.py</script-name>
<maxrun>
<seconds>30</seconds>
</maxrun>
<checksum>
<sha256>bb19a7a286db72aa7c7bd75ad5f224eea1062b7cdaaeee06f11f0f86f976831d</sha256>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
271

Automation Scripts
Manage EEM Script Using RPCs

</checksum>
</script>
</type>
<username>eem_user_1</username>
</action>
</actions>
</manager>
</event>
</config>
</edit-config>
</rpc>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<commit>
</rpc>

RPC Response:
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccd1aefcaf"
xmlns="urn:ietf:params:xml:ns:
netconf:base:1.0" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Create Policy Map for Events and Actions Using Data Model

You use data model to create actions for events.

Equivalent CLIYANG Data Model

event manager policy-map policy-name

action action-name

trigger event event-name

See, .

Cisco-IOS-XR-um-event-manager-policy-map-cfg

RPC Request:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>
</target>
<config>
<event xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-event-manager-cfg">
<manager>
<policy-maps xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-event-manager-policy-map-cfg">

<policy-map>
<policy-map-name>policy_1</policy-map-name>
<trigger>
<event>event_1</event>
</trigger>
<actions>
<action>
<action-name>action_1</action-name>

</action>
</actions>
</policy-map>
</policy-maps>
</manager>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
272

Automation Scripts
Manage EEM Script Using RPCs

</config>
</edit-config>

</rpc>

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<commit/>

</rpc>

RPC Response:
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:16fa22ed-3f46-4369-806a-3bccd1aefcaf"
xmlns="urn:ietf:params:xml:ns:
netconf:base:1.0" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Operational Model for EEM Script
Table 60: Feature History Table

DescriptionRelease InformationFeature Name

You can programmatically retrieve the
operational status of events, actions, and
policy maps using the YANG data model.

In earlier releases, you used the show event

manager command to view the operational
status of event scripts.

This release introduces
Cisco-IOS-XR-ha-eem-policy-oper.yang

and
Cisco-IOS-XR-event-manager-policy-map-oper.yang

data models.

Release 7.5.2Operational Data Model for EEM
Script

Operational Data Model to Retrieve Actions

You use data model to view the details of an action. IOS XR actions are RPC statements that trigger an
operation or execute a command on the router. This action is executed when the router receives the
corresponding NETCONF RPC request. Once the router executes an action, it replies with a NETCONF RPC
response.

Equivalent CommandYANG Data Model

show event manager action action-name detailed

See, View Operational Status of Event Scripts, on
page 250.

Cisco-IOS-XR-ha-eem-policy-oper

RPC Request:
<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:62b9e81b-5d9e-44f6-8a5d-d193a0f8b3d3">
<get>
<filter>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
273

Automation Scripts
Operational Model for EEM Script

<eem xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ha-eem-policy-oper">
<action-names

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-event-manager-policy-map-oper">
<action-name>
<action-name>action2</action-name>

</action-name>
</action-names>

</eem>
</filter>

</get>
</rpc>

RPC Response:
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:62b9e81b-5d9e-44f6-8a5d-d193a0f8b3d3"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<eem xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ha-eem-policy-oper">
<action-names

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-event-manager-policy-map-oper">
<action-name>
<action-name>action2</action-name>
<action-name-xr>action2</action-name-xr>
<script-name>event_script_2.py</script-name>
<action-type>script</action-type>
<triggered-count>7</triggered-count>
<policy-count>1</policy-count>
<max-run>20</max-run>
<checksum-enabled>SHA256</checksum-enabled>
<last-run-status>Success</last-run-status>
<user-name>eem_user</user-name>

<checksum-string>270b9730e77c9bd6f5784084ed21e29d8d7b8edaf8f98a4513879a1631c493ad</checksum-string>

<action-policy-map>
<policy-name>policy3</policy-name>

</action-policy-map>
</action-name>

</action-names>
</eem>

</data>
</rpc-reply>

Operational Data Model to Retrieve Policy Map

You use data model to view the details of a policy map.

Equivalent CommandYANG Data Model

show event manager policy-map policy-name
detailed

See, View Operational Status of Event Scripts, on
page 250.

Cisco-IOS-XR-ha-eem-policy-oper

RPC Request:
<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:3cec3f3a-395b-4763-b1a1-1053149da60c">
<get>
<filter>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
274

Automation Scripts
Operational Model for EEM Script

<eem xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ha-eem-policy-oper">
<policy-map-names

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-event-manager-policy-map-oper">
<policy-map-name>
<policy-name>policy4</policy-name>

</policy-map-name>
</policy-map-names>

</eem>
</filter>

</get>
</rpc>

RPC Response:
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:3cec3f3a-395b-4763-b1a1-1053149da60c"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<eem xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ha-eem-policy-oper">
<policy-map-names

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-event-manager-policy-map-oper">
<policy-map-name>
<policy-name>policy4</policy-name>
<policy-name-xr>policy4</policy-name-xr>
<policy-status>active</policy-status>
<policy-occurrence>2</policy-occurrence>
<policy-period>30</policy-period>
<policy-triggered-count>0</policy-triggered-count>
<event-count>2</event-count>
<action-count>1</action-count>
<policy-event-map>
<event-name>event5</event-name>
<event-status>active</event-status>
<corr-status>false</corr-status>
<reset-time>0</reset-time>

</policy-event-map>
<policy-event-map>
<event-name>event4</event-name>
<event-status>active</event-status>
<corr-status>false</corr-status>
<reset-time>0</reset-time>

</policy-event-map>
<policy-action-map>
<action-name>action4</action-name>
<checksum-enabled>SHA256</checksum-enabled>

</policy-action-map>
<multi-event-policy>true</multi-event-policy>
<current-correlation-state>false</current-correlation-state>
<multi-event-string>"event4 AND event5"</multi-event-string>

</policy-map-name>
</policy-map-names>

</eem>
</data>
</rpc-reply>

Operational Data Model to Retrieve Events With Trigger Conditions

You use data model to view the details of a event-trigger conditions.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
275

Automation Scripts
Operational Model for EEM Script

Equivalent CLIYANG Data Model

show event manager event-trigger event-trigger-name
detailed

See, View Operational Status of Event Scripts, on
page 250.

Cisco-IOS-XR-ha-eem-policy-oper

RPC Request:
<rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:77229832-1a44-47e4-b0cf-2c2066ac579a"><nc:get>

<filter>
<eem xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ha-eem-policy-oper">
<event-trigger-names

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-event-manager-policy-map-oper">
<event-trigger-name>
<event-name>event4</event-name>

</event-trigger-name>
</event-trigger-names>

</eem>
</filter>

</get>
</rpc>

RPC Response:
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:77229832-1a44-47e4-b0cf-2c2066ac579a"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<eem xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ha-eem-policy-oper">
<event-trigger-names

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-event-manager-policy-map-oper">
<event-trigger-name>
<event-name>event4</event-name>
<event-name-xr>event4</event-name-xr>
<event-status>active</event-status>
<event-type>syslog</event-type>
<eventesid>16</eventesid>
<event-occurrence>NA</event-occurrence>
<event-period>NA</event-period>
<rate-limit>0</rate-limit>
<event-triggered-count>2</event-triggered-count>
<event-policy-reg-count>1</event-policy-reg-count>
<event-policy-map>
<policy-name>policy4</policy-name>

</event-policy-map>
<event-syslog-info>
<pattern>%PKT_INFRA-LINK-3-UPDOWN : Interface GigabitEthernet0/0/0/4, changed

state to Down</pattern>
<severity>ALL</severity>

</event-syslog-info>
<event-timer-info>
<wd-info>
<timer-value>0</timer-value>

</wd-info>
</event-timer-info>
<event-telemetry-info>
<sample-interval>0</sample-interval>

</event-telemetry-info>
</event-trigger-name>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
276

Automation Scripts
Operational Model for EEM Script

</event-trigger-names>
</eem>

</data>
</rpc-reply>

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
277

Automation Scripts
Operational Model for EEM Script

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
278

Automation Scripts
Operational Model for EEM Script

C H A P T E R 17
Script Infrastructure and Sample Templates

Table 61: Feature History Table

DescriptionRelease InformationFeature Name

When you create and run Python
scripts on the router, this feature
enables a contextual interaction
between the scripts, the IOS XR
software, and the external servers.
This context, programmed in the
script, uses Cisco IOS XR Python
packages, modules, and libraries to:

• obtain operational data from
the router

• set configurations and
conditions

• detect events in the network
and trigger an appropriate
action

Release 7.3.2Contextual Script Infrastructure

You can create Python scripts and execute the scripts on routers running Cisco IOSXR software. The software
supports the Python packages, libraries and dictionaries in the software image. For more informtion about the
script types and to run the scripts using CLI commands To run the same actions using NETCONF RPCs,

Cisco IOS XR, Release 7.3.2 supports creating scripts using Python version 3.5.

Cisco IOS XR, Release 7.5.1 supports creating scripts using Python version 3.9.

• Cisco IOS XR Python Packages, on page 280
• Cisco IOS XR Python Libraries, on page 282
• Sample Script Templates, on page 284
• Use Automation Scripts to Interact with the Router via gNMI RPCs, on page 287
• Xrcli_helper Python Module, on page 291
• Xrlog Python Module, on page 294

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
279

Cisco IOS XR Python Packages
Table 62: Feature History Table

DescriptionRelease InformationFeature Name

This upgrade adds new modules
and capabilities to create Python
scripts and execute the scripts on
routers running Cisco IOS XR
software. Some of the modules
added as part of the upgraded IOS
XR Python 3.9 are: hashlib, idna,
packaging, pyparsing, six, yaml.

Release 7.5.1Upgraded IOS XR Python from
Version 3.5 to Version 3.9

With on-box Python scripting, automation scripts that was run from an external controller is now run on the
router. To achieve this functionality, Cisco IOS XR software provides contextual support using SDK libraries
and standard protocols.

The following Python third party application packages are supported by the scripting infrastructure and can
be used to create automation scripts.

Support Introduced in ReleaseDescriptionPackage

Release 7.3.2Chooses the appropriate
platform-specific directories for
user data.

appdirs

Release 7.3.2Defines an object type that can
compactly represent an array of
basic values: characters, integers,
floating point numbers.

array

Release 7.3.2Parses and serializes Abstract
Syntax Notation One (ASN.1) data
structures.

asn1crypto

Release 7.3.2Universal character encoding
auto-detector.

chardet

Release 7.3.2Provides a high-level interface for
asynchronously executing callables.

concurrent.futures

Release 7.3.2Implements Elliptic Curve Digital
Signature Algorithm (ECDSA)
cryptography library to create
keypairs (signing key and verifying
key), sign messages, and verify the
signatures.

ecdsa

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
280

Automation Scripts
Cisco IOS XR Python Packages

Support Introduced in ReleaseDescriptionPackage

Release 7.3.2Enumerates symbolic names
(members) bound to unique,
constant values.

enum

Release 7.3.2Manages email messages.email

Release 7.3.2Supports language-neutral,
platform-neutral, extensible
mechanism for serializing
structured data.

google.protobuf

Release 7.5.1Implements a common interface to
many different secure hash and
message digest algorithms.

hashlib

Release 7.5.1Supports the Internationalized
Domain Names in Applications
(IDNA) protocol as specified in
RFC 5891.

idna

Release 7.3.2Provides capability to create,
manipulate and operate on IPv4 and
IPv6 addresses and networks.

ipaddress

Release 7.3.2Supports adding functionality
useful for templating environments.

jinja2

Release 7.3.2Provides a lightweight data
interchange format.

json

Release 7.3.2Implements a text object that
escapes characters so it is safe to
use in HTML and XML.

markupsafe

Release 7.3.2Enables system-independent
network address manipulation and
processing of Layer 3 network
addresses.

netaddr

Release 7.5.1Add the necessary files and
structure to create the package.

packaging

Release 7.3.2Defines an interactive source code
debugger for Python programs.

pdb

Release 7.3.2Provides runtime facilities for
finding, introspecting, activating
and using installed distributions.

pkg_resources

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
281

Automation Scripts
Cisco IOS XR Python Packages

Support Introduced in ReleaseDescriptionPackage

Release 7.3.2Provides library to retrieve
information on running processes
and system utilization such as CPU,
memory, disks, sensors and
processes.

psutil

Release 7.3.2Provides a collection of ASN.1
modules expressed in form of
pyasn1 classes. Includes protocols
PDUs definition (SNMP, LDAP
etc.) and various data structures
(X.509, PKCS).

pyasn1

Release 7.5.1Provides a library of classes to
construct the grammar directly in
Python code.

pyparsing

Release 7.3.2Allows sending HTTP/1.1 requests
using Python.

requests

Release 7.3.2Defines the function that returns a
shell-escaped version of a Python
string.

shellescape

Release 7.5.1Provides simple utilities for
wrapping over differences between
Python 2 and Python 3.

six

Release 7.3.2Spawns new processes, connects to
input/output/error pipes, and obtain
return codes.

subprocess

Release 7.3.2HTTP client for Python.urllib3

Release 7.3.2Makes working with XML feel like
you are working with JSON.

xmltodict

Release 7.5.1Provides a human-friendly format
for structured data, that is both easy
to write for humans and still
parsable by computers.

yaml

Cisco IOS XR Python Libraries
Cisco IOS XR software provides support for the following SDK libraries and standard protocols.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
282

Automation Scripts
Cisco IOS XR Python Libraries

SyntaxLibrary

To connect to gnmi client #
from iosxr.gnmi.gnmi_lib import GNMIClient
gnmi = GNMIClient()

For more information, see Use Automation Scripts to
Interact with the Router via gNMI RPCs, on page 287.

gnmi

To generate syslogs
from cisco.script_mgmt import xrlog

syslog = xrlog.getSysLogger('template_exec')

For more information, see Xrlog Python Module, on
page 294.

xrlog

#To connect to netconf client #
from iosxr.netconf.netconf_lib import
NetconfClient

nc = NetconfClient(debug=True)

netconf

To run native xr cli and config commands
from iosxr.xrcli.xrcli_helper import *

helper = XrcliHelper(debug = True)

For more information, see Xrcli_helper Python
Module, on page 291.

xrclihelper

To validate configuration
import cisco.config_validation as xr

For more information, see Config Scripts Chapter.

config_validation

For EEM operations
from iosxr import eem

For more information, see EEM Scripts Chapter.

eem

For Precommit script operations
from cisco.script_mgmt import precommit

For more information, seePrecommit ScriptsChapter.

precommit

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
283

Automation Scripts
Cisco IOS XR Python Libraries

Sample Script Templates
Table 63: Feature History Table

DescriptionRelease InformationFeature Name

You now have access to sample
scripts and templates published on
the Github repository. You can
leverage these samples to use the
python packages and libraries
developed by Cisco to build your
custom automation scripts for your
network

Release 7.5.1Github Repository for Automation
Scripts

Use these sample script templates based on script type to build your custom script.

To get familiar with IOS XR Python scripts, see the samples and templates on the Cisco Devnet developer
program and Github repository.

Follow these instructions to download the sample scripts from the Github repository to your router, and run
the scripts:

1. Clone the Github repository.
$git clone https://github.com/CiscoDevNet/iosxr-ops.git

2. Copy the Python files to the router's harddisk or a remote repository.

Precommit Script

The following example shows the template for precommit scripts
from cisco.script_mgmt import precommit

def sample_method():
"""
Method documentation
"""

cfg = precommit.get_target_configs()
cfg = precommit.get_target_configs(format="sysdb") for target config in sysdb format

process and verify target configs here.

precommit.config_warning("Print a warning message in commit report")
precommit.config_error("Print an error message in commit report and abort commit

operation")

if __name__ == '__main__':

sample_method()

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
284

Automation Scripts
Sample Script Templates

https://github.com/CiscoDevNet/xr-python-scripts
https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/xr-python-scripts
https://github.com/CiscoDevNet/xr-python-scripts

Config Script

The following example shows a code snippet for config script. Use this snippet in your script to import the
libraries required to validate configuration and also generate syslogs.
#Needed for config validation
import cisco.config_validation as xr

#Used for generating syslogs
from cisco.script_mgmt import xrlog
syslog = xrlog.getSysLogger('Add script name here')

def check_config(root):
#Add config validations
pass

xr.register_validate_callback([<Add config path here>],check_config)

Exec Script

Use this sample code snippet in your exec script to import Python libraries to connect to NETCONF client
and also to generate syslogs.
#To connect to netconf client
from iosxr.netconf.netconf_lib import NetconfClient

#To generate syslogs
syslog = xrlog.getSysLogger('template_exec')

def test_exec():
"""
Testcase for exec script
"""
nc = NetconfClient(debug=True)
nc.connect()
#Netconf or processing operations
nc.close()

if __name__ == '__main__':
test_exec()

Process Script

Use the following sample code snippet to trigger a process script and perform various actions on the script.
You can leverage this snippet to create your own custom process script. Any exec script can be used as a
process script.
To trigger script
Step 1: Add and configure script as shown in README.MD

Step 2: Register the application with Appmgr

Configuraton:
appmgr process-script my-process-app
executable test_process.py
run args --threshold <threshold-value>

Step 3: Activate the registered application
appmgr process-script activate name my-process-app

Step 4: Check script status
show appmgr process-script-table

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
285

Automation Scripts
Sample Script Templates

Router#show appmgr process-script-table
Name Executable Activated Status Restart Policy Config Pending
--------------- ------------------ --------- ------------- ---------------- --------------
my-process-app test_process.py Yes Running On Failure No

Step 5: More operations
Router#appmgr process-script ?
activate Activate process script
deactivate Deactivate process script
kill Kill process script
restart Restart process script
start Start process script
stop Stop process script

"""

#To connect to netconf client
from iosxr.netconf.netconf_lib import NetconfClient

#To generate syslogs
syslog = xrlog.getSysLogger('template_exec')

def test_process():
"""
Testcase for process script
"""
nc = NetconfClient(debug=True)
nc.connect()
#Netconf or any other operations
nc.close()

if __name__ == '__main__':
test_process()

EEM Script

You can leverage the following sample code to import Python libraries to create your custom eem script and
also generate syslogs.
Required configuration:
User and AAA configuration

event manager event-trigger <trigger-name>
type syslog pattern "PROC_RESTART_NAME"

event manager action <action-name>
username <user>
type script script-name <script-name> checksum sha256 <checksum>

event manager policy-map policy1
trigger event <trigger-name>
action <action-name>

To verify:
Check for syslog EVENT SCRIPT EXECUTED: User restarted <process-name>

"""
#Needed for eem operations
from iosxr import eem

#Used to generate syslogs
from cisco.script_mgmt import xrlog
syslog = xrlog.getSysLogger(<add your script name here>)

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
286

Automation Scripts
Sample Script Templates

event_dict consists of details of the event
rc, event_dict = eem.event_reqinfo()

#You can process the information as needed and take action for example: generate a syslog.
#Syslog type can be emergency, alert, critical, error, exception, warning, notification,
info, debug

syslog.info(<Add you syslog here>)

Use Automation Scripts to Interact with the Router via gNMI
RPCs

Table 64: Feature History Table

DescriptionRelease InformationFeature Name

You can create automation scripts to connect
to the gRPC Network Management Interface
(gNMI) server and interact with the router
using gNMI services. Based on gNMI-defined
RPCs, you can use the automation script to
connect to the gNMI server, manage the
configuration of network devices, and query
the operational data.

Release 7.5.2Automation Scripts for gNMIRPCs

gRPC Network Management Interface (gNMI) is developed by Google. gNMI provides the mechanism to
install, manipulate, and delete the configuration of network devices, and also to view operational data. The
content provided through gNMI can be modeled using YANG. The supported operations are based on the
gNMI defined RPCs:
from iosxr.gnmi.gnmi_lib import GNMIClient
gnmi = GNMIClient()

#Connect
gnmi.connect()

#Capabilities
cap = gnmi.capabilities()

#Get
get = gnmi.get(get_request)

#Set
set = gnmi.set(set_request)

#Disconnect
gnmi.disconnect()

• gNMI Capabilities RPC: This RPC allows the client to retrieve the gNMI capabilities that is supported
by the target (router). This allows the target to validate the service version that is implemented and retrieve
the set of models that the target supports. The models can then be specified in subsequent RPCs to restrict
the set of data that is utilized. The CapabilityRequest RPC returns a response CapabilityResponse
RPC.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
287

Automation Scripts
Use Automation Scripts to Interact with the Router via gNMI RPCs

• gNMI GET RPC: This RPC specifies how to retrieve one or more of the configuration attributes, state
attributes or all attributes associated with a supported mode from a date tree. A GetRequest RPC is sent
from a client to the target to retrieve values from the data tree. A GetResponse RPC is sent in response
to the request.

• gNMI SET RPC: This RPC specifies how to set one or more configurable attributes associated with a
supported model. A SetRequest RPC is sent from a client to a target to update the values in the data tree.
The actions contained in a SetRequest RPC is treated as a single transaction. If any element of the
transaction fails, the entire transaction fails and is rolled back. A SetResponse RPC is sent in response
to the request.

• gNMI Connect RPC: This RPC specifies how to initiaize a connection to the client.

• gNMI Disconnect RPC: This RPC specifies how to end the connection with the client.

Restrictions for the gNMI Protocol

The following restrictions apply to the gNMI protocol:

• Subscribe RPC services are not supported.

• Only JSON_IETF encoding for GET and SET requests is supported

• CLI over GNMI is not supported

Follow the procedure to use automation scripts to interact with the router via gNMI services:

Procedure

Step 1 Create script using the GNMIClient python module.

Example:

In this example, you create a script to connect with the router using gNMI capabilities.
from iosxr.gnmi.gnmi_lib import GNMIClient

gnmi = GNMIClient()
gnmi.connect()
print("Getting capabilities")
cap = gnmi.capabilities()
print("Get")
get_req = """
path: {

elem: {
name: "network-instances"

}
elem: {

name: "network-instance"
key: {

key: "name"
value: "vrf_1"

}
}
origin: "openconfig-network-instance"

}
type: CONFIG
encoding: JSON_IETF
"""

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
288

Automation Scripts
Use Automation Scripts to Interact with the Router via gNMI RPCs

get = gnmi.get(get_req)
print("Set")
set_req = """
prefix: <

origin:"openconfig-interfaces"
>
update: <
path: <

elem: <
name: "interfaces"

>
elem: <

name: "interface"
key: <

key: "name"
value: "MgmtEth0/RP0/CPU0/0"

>
>
elem: <

name: "config"
>

>
val: <

json_ietf_val: '{"description":"Testing failover case: testrole200"}'
>

>
"""
set = gnmi.set(set_req)
import pdb;pdb.set_trace()

Step 2 Configure gRPC.

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#local connection
Router(config-grpc)#no-tls
Router(config-grpc)#commit

Step 3 Copy the script to the router.
Step 4 Verify that the script is available on the router.

Example:
Router#show script status detail
Tue Apr 12 23:10:50.453 UTC
==
Name | Type | Status | Last Action | Action Time

gnmi-sample-script.py | exec | Config Checksum | NEW | Tue Apr 12 10:18:23 2021
==
Script Name : gnmi-sample-scripy.py
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Script Description : View gNMI capabilities
History:

1. Action : NEW

Time : Tue Apr 12 05:03:41 2021
Description : User action IN_CLOSE_WRITE

===
Router(config)#exit

Step 5 Add the script to the script management repository.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
289

Automation Scripts
Use Automation Scripts to Interact with the Router via gNMI RPCs

Example:
Router#script add <type> <location> <name>

In this example, you add an Exec script gnmi-sample-script.py to the router.
Router#script add exec /harddisk\: gnmi-sample-scripy.py
Tue Apr 18 16:16:46.427 UTC
Copying script from /harddisk:/gnmi-sample-scripy.py
gnmi-sample-scripy.py has been added to the script repository

Step 6 Configure the checksum.

Example:
Router(config)#script <type> <name> checksum SHA 256 <checksum>

In this example, you configure the checksum for the Exec script gnmi-sample-script.py to the router.

Example:
Router(config)#script exec gnmi-sample-script.py checksum SHA 256
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Router(config)#commit
Router(config)#end

Step 7 Run the script.

Example:
Router#script run gnmi-sample-script.py
Tue Apr 18 16:17:46.427 UTC
Script run scheduled: gnmi-sample-script.py. Request ID: 1634055439
Getting capabilities
..................................

The following example shows the output of the gNMI get operation:
notification: <
timestamp: 1649917466577514766
update: <
path: <
origin: "openconfig-interfaces"
elem: <
name: "interfaces"

>
elem: <
name: "interface"
key: <
key: "name"
value: "TenGigE0/0/0/0"

>
>

>
val: <
json_ietf_val: "{\n \"config\": {\n \"name\": \"TenGigE0/0/0/0\",\n \"type\":

\"iana-if-type:ethernetCsmacd\",\n \"enabled\": false\n },\n \"openconfig-if-ethernet:
ethernet\": {\n \"config\": {\n \"auto-negotiate\": false\n }\n }\n}\n"

>
>
update: <
path: <
origin: "openconfig-interfaces"
elem: <
name: "interfaces"

>
elem: <

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
290

Automation Scripts
Use Automation Scripts to Interact with the Router via gNMI RPCs

name: "interface"
key: <
key: "name"
value: "TenGigE0/0/0/1"

>
>

>
val: <
json_ietf_val: "{\n \"config\": {\n \"name\": \"TenGigE0/0/0/1\",\n \"type\":

\"iana-if-type:ethernetCsmacd\",\n \"enabled\": false\n },\n \"openconfig-if-ethernet:
ethernet\": {\n \"config\": {\n \"auto-negotiate\": false\n }\n }\n}\n"

>
------------------------------- Output truncated for brevity ---

Xrcli_helper Python Module
Overview of xrcli_helper Python Module

The XrcliHelper is a utility class designed to facilitate the execution of IOS-XR CLI commands and
configuration changes programmatically. It provides methods to:

• Execute native IOS-XR commands.

• Apply configurations from files or strings.

Prerequisites of xrcli_helper Python Module

• Python 2.7 or higher.

• Ensure that you are on Cisco IOS XR Release 7.4.x or higher.

• Access to Cisco IOS XR device with AAA Authorization enabled. Use the aaa authorization exec
default group tacacs+ local command to enable AAA Authorization.

• Ensure that the iosxr.xrcli.xrcli_helper module is available in your Python environment.

Import Library Information

To use the XrcliHelper class in your Python script, you need to import it from the appropriate module. The
import statement provided allows you to bring the XrcliHelper class into your script so you can create instances
of it and use its methods.
from iosxr.xrcli.xrcli_helper import XrcliHelper

Library/API Initialization

By initializing the XrcliHelper class, you establish the environment needed to execute IOS-XR commands
and apply configurations programmatically. This serves as the initial step in automating network management
tasks, enabling you to utilize the class's methods to efficiently interact with your IOS-XR devices.
<object name> = XrcliHelper([debug=True/False(default)])

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
291

Automation Scripts
Xrcli_helper Python Module

This example shows how to initialize Xrclihelper class.
helper = XrcliHelper()

Xrcli_helper Script APIs

xrcli_exec

The xrcli_exec API executes IOS-XR exec commands to obtain the output.

Parameter

cmd: A String representing the IOS- XR exec command to be executed.

Result

The result of the xrcli_exec API is a dictionary containing:

• status: Indicates whether the command execution was error or success.

• output: The output of the executed command.

Example

The following example shows the sample output of xrcli_exec API:
>>> result = helper.xrcli_exec("show filesystem ")

>>> print(result)
{'output': '\n'

'------------------------------- show filesystem '
'-------------------------------\n'
'File Systems:\n'
'\n'
' Size(b) Free(b) Type Flags Prefixes\n'
' 4275265536 4274974720 flash-disk rw disk0:\n'
' 67301322752 67266158592 harddisk rw harddisk:\n'
' 0 0 network rw ftp:\n'
' 60264796160 51056054272 flash rw /misc/config\n'
' 0 0 network rw tftp:\n',

'status': 'success'}

xr_apply_config_file

The xr_apply_config_file API applies configuration to IOS-XR using a file.

Parameter

• filename: Path to a configuration file containing XR config commands with the following structure:
!
XR config command
!
end

• comment: A comment for the configuration commit, which will be visible in the output of show
configuration commit list detail.

Result

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
292

Automation Scripts
Xrcli_helper Script APIs

The result of xr_apply_config_file is a dictionary specifying the effect of the configuration change:

• status: Indicates whether the configuration application was error or success.

• output:

• If status is error: use the show configuration failed command.

• If status is success: use the show configuration commit changes last 1 command.

Example

The following example shows sample output of xr_apply_config_file API.
[node0_RP0_CPU0:~]$more /harddisk:/noshut_int.cfg
!
interface hundredGigE 0/0/0/24
no shutdown
interface hundredGigE 0/0/0/25
no shutdown
!
end

>>> result = helper.xr_apply_config_file("/harddisk:/noshut_int.cfg")
>>> print(result)
{'output': '\n'

'------------------ show configuration commit changes last 1 '
'-------------------\n'
'!! Building configuration...\n'
'!! IOS XR Configuration x.y.z \n'
'interface HundredGigE0/0/0/24\n'
' no shutdown\n'
'!\n'
'interface HundredGigE0/0/0/25\n'
' no shutdown\n'
'!\n'
'end\n'
'\n',

'status': 'success'}
>>>

xr_apply_config_string

The xr_apply_config_string applies configuration to XR using a single line string.

Parameter

cmd: Single line string representing an XR config command.

comment:Reason for the config commit, visible in show configuration commit list detail.

Result

The result of xr_apply_config_string is a dictionary specifying the effect of the configuration change:

• status: Indicates whether the configuration application was error or success.

• output:

• If status is error: use the show configuration failed command.

• If status is success: use the show configuration commit changes last 1 command.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
293

Automation Scripts
Xrcli_helper Script APIs

Example

The following example shows sample output of xr_apply_config_file API.
>>> cmd = """
... interface HundredGigE0/0/0/25
... description "shut down by scriptx"
... shut
... """
>>> result = helper.xr_apply_config_string(cmd)
>>> print(result)
{'output': '\n'

'------------------ show configuration commit changes last 1 '
'-------------------\n'
'!! Building configuration...\n'
'!! IOS XR Configuration x.y.z\n'
'interface HundredGigE0/0/0/25\n'
' description "shut down by scriptx"\n'
' shutdown\n'
'!\n'
'end\n'
'\n',

'status': 'success'
>>>

user

The user is an XrcliHelper Object Attribute (not API) which contains the username to authorize the XR
commands.

Example

The following example shows sample output of user.
Example:

>>> helper.user
'cisco'

toggle_debug

The toggle_debug enables or disables debug logging.

Example

The following example shows sample output of toggle_debug.
>>> helper.toggle_debug(True)
>>>

Xrlog Python Module
Overview of Xrlog Python Module

The xrlog Python module is a utility designed for generating syslog messages and script logs within Cisco
IOS XR environments. It provides methods to do the following:

• Module to generate XR syslog messages from scripts.

• Provides a logger for generating script logs.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
294

Automation Scripts
Xrlog Python Module

Prerequisites of Xrlog Python Module

• Python 2.7 or higher.

• Ensure that you are on Cisco IOS XR Release 7.4.x or higher.

• Ensure that the cisco.script_mgmt.xrlog is available in your Python environment.

Import Library Information

To use the xrlogmodule in your Python script, you need to import it from the appropriate module. The import
statement provided allows you to bring the xrlog functionalities into your script so you can create instances
of syslog and script loggers.
from cisco.script_mgmt import xrlog

Library/API Initialization

By initializing the xrlog module, you establish the environment needed to generate syslog messages and
script logs programmatically. This serves as the initial step in automating logging tasks, enabling you to utilize
the module's methods to efficiently log events and messages.
<object_name> = xrlog.getSysLogger([logger_name [default: root]])
<object_name> = xrlog.getScriptLogger([logger_name [default: root]])

Example:

This is the example of generating syslog and script logs.
syslog = xrlog.getSysLogger('myscript')
log = xrlog.getScriptLogger('myscript')

getSysLogger Script APIs
The getSysLogger API returns a syslogger object with APIs to print to XR syslog.

Parameter

name: A string representing the module name of the syslogger. This parameter is optional, and the default
value is "root".

Result

The result of the getSysLogger API is a syslogger object.

Result

The result of the alert API is the message being logged to the XR syslog with severity level 1.

Syslogger APIs

The following are the list of Syslogger APIs:

• emergency

• alert

• critical

• error

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
295

Automation Scripts
getSysLogger Script APIs

• warning

• notification

• info

• debug

• log

• setlevel

emergency

The emergency API prints a message string to the XR syslog with severity level 0, indicating that the system
is unusable.

Parameters

• self: The syslogger object.

• msg_string: A string representing the syslog message to be printed.

Result

The result of the emergency API is the message being logged to the XR syslog with severity level 0.

Example

The following example shows how to use the emergencyAPI to log a message indicating a system emergency
and the system logging message that you can see on the router.
>>> syslog.emergency("script generated syslog message")
RP/0/RP0/CPU0: scripting_python3[67965]: %OS-SCRIPT_LOG-0-EMERGENCY : Script-myscript:
script generated syslog message

alert

The alertAPI prints a message string to the XR syslog with severity level 1, indicating that immediate action
is needed.

After getting the object, the following are the list of APIs that belong to that object.

Parameters

• self: The syslogger object.

• msg_string: A string representing the syslog message to be printed.

Example

The following example shows how to use the alert API to log a message indicating that immediate action
is needed and the system logging message that you can see on the router:
>>> syslog.alert("script generated syslog message")
RP/0/RP0/CPU0: scripting_python3[67965]: %OS-SCRIPT_LOG-1-ALERT : Script-myscript: script
generated syslog message

critical

The criticalAPI prints a message string to the XR syslog with severity level 2, indicating critical conditions.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
296

Automation Scripts
getSysLogger Script APIs

Parameters

• self: The syslogger object.

• msg_string: A string representing the syslog message to be printed.

Result

The result of the critical API is the message being logged to the XR syslog with severity level 2.

Example

The following example shows how to use the critical API to log a message indicating critical conditions
and the system logging message that you can see on the router:
>>> syslog.critical("script generated syslog message")
RP/0/RP0/CPU0: scripting_python3[67965]: %OS-SCRIPT_LOG-2-CRITICAL : Script

error

The error API prints a message string to the XR syslog with severity level 3, indicating error conditions.

Parameters

• self: The syslogger object.

• msg_string: A string representing the syslog message to be printed.

Result

The result of the error API is the message being logged to the XR syslog with severity level 3.

Example

The following example shows how to use the error API to log a message indicating error conditions and the
system logging message that you can see on the router:
>>> syslog.error("script generated syslog message")
RP/0/RP0/CPU0: scripting_python3[67965]: %OS-SCRIPT_LOG-3-ERROR : Script-myscript: script
generated syslog message

warning

The warningAPI prints a message string to the XR syslog with severity level 4, indicating a warning condition.

Parameters

• self: The syslogger object.

• msg_string: A string representing the syslog message to be printed.

Result

The result of the warning API is the message being logged to the XR syslog with severity level 4.

Example

The following example shows how to use the warning API to log a message indicating a warning condition
and the system logging message that you can see on the router:
>>> syslog.warning("script generated syslog message")
RP/0/RP0/CPU0: scripting_python3[67965]: %OS-SCRIPT_LOG-4-WARNING : Script-myscript: script
generated syslog message

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
297

Automation Scripts
getSysLogger Script APIs

notification

The notification API prints a message string to the XR syslog with severity level 5, indicating a normal
but significant condition.

Parameters

• self: The syslogger object.

• msg_string: A string representing the syslog message to be printed.

Result

The result of the notification API is the message being logged to the XR syslog with severity level 5.

Example

The following example shows how to use the notification API to log a message indicating a normal but
significant condition and the system logging message that you can see on the router:
>>> syslog.notification("script generated syslog message")
RP/0/RP0/CPU0:scripting_python3[67965]: %OS-SCRIPT_LOG-5-NOTIFICATION : Script-myscript:
script generated syslog message

info

The info API prints a message string to the XR syslog with severity level 6, indicating an informational
message only.

Parameters

• self: The syslogger object.

• msg_string: A string representing the syslog message to be printed.

Result

The result of the info API is the message being logged to the XR syslog with severity level 6.

Example

The following example shows how to use the infoAPI to log an informational message and the system logging
message that you can see on the router:
>>> syslog.info("script generated syslog message")
RP/0/RP0/CPU0:scripting_python3[67965]: %OS-SCRIPT_LOG-6-INFO : Script-myscript: script
generated syslog message

debug

The debugAPI prints a message string to the XR syslog with severity level 7, indicating a debugging message
only.

Parameters

• self: The syslogger object.

• msg_string: A string representing the syslog message to be printed.

Result

The result of the debug API is the message being logged to the XR syslog with severity level 7.

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
298

Automation Scripts
getSysLogger Script APIs

Example

The following example shows how to use the debug API to log a debugging message and the system logging
message that you can see on the router:
>>> syslog.debug("script generated syslog message")
RP/0/RP0/CPU0:scripting_python3[67965]: %OS-SCRIPT_LOG-7-DEBUG : Script-myscript: script
generated syslog message

log

The log API prints a message string to the XR syslog at the provided severity level.

Parameters

• self: The syslogger object.

• level: An integer representing the syslog logging level.

• msg_string: A string representing the syslog message to be printed.

Result

The result of the log API is the message being logged to the XR syslog at the specified severity level.

Example

The following example shows how to use the log API to log a message at a specified severity level and the
system logging message that is generated on the router:
syslog.log(xrlog.WARNING, "script generated syslog message")
RP/0/RP0/CPU0: scripting_python3[67965]: %OS-SCRIPT_LOG-4-WARNING : Script-myscript: script
generated syslog message
>>> syslog.log(30, "script generated syslog message")
RP/0/RP0/CPU0:scripting_python3[67965]: %OS-SCRIPT_LOG-4-WARNING : Script-myscript: script
generated syslog message

setlevel

The setLevel API sets the level of messages that should be written to syslogs. Messages with a lower level
than the specified level will be discarded.

Parameters

level: An integer representing the syslog logging level.

Result

The result of the setLevelAPI is that only messages with a severity level equal to or higher than the specified
level will be logged to the XR syslog.

Example

The following example shows how to use the setLevel API to set the logging level:
syslog = xrlog.getSysLogger('myscript')
syslog.setLevel(4)

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
299

Automation Scripts
getSysLogger Script APIs

Script Logger API

getScriptLogger

The getScriptLogger API returns a Python Logger object.

Parameters

name: A string representing the module name of the logger. This parameter is optional.

Result

The result of the getScriptLogger API is a Python Logger object.

For more information on Python Logger, refer to the Python logger documentation.

Example

The following example shows how to initialize a script logger using the getScriptLogger API:
log = xrlog.getScriptLogger('myscript')

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
300

Automation Scripts
Script Logger API

https://docs.python.org/3/library/logging.html

C H A P T E R 18
Troubleshoot Automation Scripts

This chapter provides information about troubleshooting the automation scripts.

• Collect Debug Logs, on page 301

Collect Debug Logs
Table 65: Feature History Table

DescriptionRelease InformationFeature Name

Use this feature to collect logs that
contain debug information for
ltraces and tech-support data. These
logs aid in troubleshooting
whenever the scripts are not
working as expected.

This feature introduces the show
tech-support script command.

Release 7.5.1Debug Automation Scripts

To automatically run show commands that display the debugging information specific to automation scripts,
use the show tech-support script command in EXEC mode.

• show version

• show platform

• show logging

• show running-config

• show install active

• show processes blocked location all

• show processes script_watcher_main location all

• show processes script_agent_main location all

• show processes checksum_verifier_main location all

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
301

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2594358711
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2594358711

• show memory summary location all

• show tech cfgmgr

• show tech eem

• show tech appmgr

• show script status detail

• show script execution detail

In addition, the debug command collects the following data:

• All the script management log files in /var/log directory

• List all the files under /pkg/lib/python3/ directroy

• Collects data about top processes consuming high CPU resources

• List all the processes initiated by the script manager

• Collect information about /harddisk:/mirror/script-mgmt directory

Run the debug command to collect information about the automation scripts (in zip format):
Router#show tech-support script
Mon Nov 15 23:28:46.849 UTC
++ Show tech start time: 2021-Nov-15.232847.UTC ++
Mon Nov 15 23:28:47 UTC 2021 Waiting for gathering to complete
.............................
Mon Nov 15 23:30:19 UTC 2021 Compressing show tech output
Show tech output available at
0/RP0/CPU0 : /harddisk:/showtech/showtech-script-2021-Nov-15.232847.UTC.tgz
++ Show tech end time: 2021-Nov-15.233019.UTC ++

View the collected debug zip files:
Router#dir harddisk:/showtech
Mon Nov 15 00:32:17.218 UTC

Directory of harddisk:/showtech
262146 -rw-rw-rw-. 1 1101085 Nov 15 23:24 showtech-script-2021-Nov-15.232322.UTC.tgz
262147 -rw-rw-rw-. 1 1143339 Nov 15 23:30 showtech-script-2021-Nov-15.232847.UTC.tgz

70553000 kbytes total (66887640 kbytes free)

Untar the collected zip file to view the list of debug log files:
Router#run
Mon Nov 15 00:32:29.724 UTC
[node0_RP0_CPU0:~]$cd /harddisk\:/showtech/
[node0_RP0_CPU0:/harddisk:/showtech]$ls -ltr
total 2196
-rw-rw-rw-. 1 root iosxr 1101085 Nov 15 23:24 showtech-script-2021-Nov-15.232322.UTC.tgz
-rw-rw-rw-. 1 root iosxr 1143339 Nov 15 23:30 showtech-script-2021-Nov-15.232847.UTC.tgz

[node0_RP0_CPU0:/harddisk:/showtech]$gunzip showtech-script-2021-Nov-15.232847.UTC.tgz
[node0_RP0_CPU0:/harddisk:/showtech]$ls -l
total 2612
-rw-rw-rw-. 1 root iosxr 1101085 Nov 15 23:24 showtech-script-2021-Nov-15.232322.UTC.tgz
-rw-rw-rw-. 1 root iosxr 1572864 Nov 15 23:30 showtech-script-2021-Nov-15.232847.UTC.tar

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
302

Automation Scripts
Collect Debug Logs

[node0_RP0_CPU0:/harddisk:/showtech]$tar -xvf showtech-script-2021-Nov-15.232847
showtech-script-2021-Nov-15.232847.UTC/
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-ps-grep-python-output
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script_action_log
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/config/
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/logs/
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/logs/exec_sample_script.py_exec_1625009314/
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/logs/exec_sample_script.py_exec_1625009314/stderr.log
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/logs/exec_sample_script.py_exec_1625009314/stdout.log
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/exec/
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/exec/exec_sample_script.py
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/process/
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/eem/
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/.script-mgmt/
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/.script-mgmt/request_queue.json
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script-mgmt/.script-mgmt/script_db.json
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-ps-grep-python-output
showtech-script-2021-Nov-15.232847.UTC/cfg-node0_RP0_CPU0.tar
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script_watcher_log
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-top-output-2
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0.tech.gz
showtech-script-2021-Nov-15.232847.UTC/system.tech.gz
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-top-output-2
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script_agent_log
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/config/
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/logs/
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/logs/exec_sample_script.py_exec_1625009314/
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/logs/exec_sample_script.py_exec_1625009314/stderr.log
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/logs/exec_sample_script.py_exec_1625009314/stdout.log
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/exec/
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/exec/exec_sample_script.py
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/process/
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/eem/
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/.script-mgmt/
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/.script-mgmt/request_queue.json
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-script-mgmt/.script-mgmt/script_db.json
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0.tech.gz
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-top-output-1
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script_control_log
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script_manager_log
showtech-script-2021-Nov-15.232847.UTC/node0_RP1_CPU0-top-output-1
showtech-script-2021-Nov-15.232847.UTC/node0_RP0_CPU0-script_oper_log

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
303

Automation Scripts
Collect Debug Logs

Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
304

Automation Scripts
Collect Debug Logs

	Programmability Configuration Guide for Cisco 8000 Series Routers, IOS XR Release 24.1.x, 24.2.x, 24.3.x, 24.4.x
	Contents
	YANG Data Models
	New and Changed Feature Information
	Programmability Features Added or Modified in IOS XR Release 24.x.x

	YANG Data Models for Programmability Features
	Using YANG Data Models

	Drive Network Automation Using Programmable YANG Data Models
	YANG Data Model
	Access the Data Models
	CLI to Yang Mapping Tool
	Prevent Partial Pseudo-Atomic Committed Configurations
	Communication Protocols
	NETCONF Protocol
	gRPC Protocol

	YANG Actions

	Use NETCONF Protocol to Define Network Operations with Data Models
	NETCONF Operations
	Retrieve Default Parameters Using with-defaults Capability
	Retrieve Transaction ID for NSO Operations
	Set Router Clock Using Data Model in a NETCONF Session
	NETCONF version 1.0 with YANG support
	Prerequisites
	Configure NETCONF-YANG Version 1.0

	Use gRPC Protocol to Define Network Operations with Data Models
	gRPC Operations
	gRPC Authentication Modes
	Authenticate gRPC Services
	gRPC server TLS version 1.3 support
	Configure gRPC TLS version

	SPIFFE ID-Based Authentication and Authorization Services for gRPC Services
	Authenticate and Authorize gRPC Service Requests Using the SPIFFE Standard

	Certificate Common-Name For Dial-in Using gRPC Protocol
	Configure Certificate Common Name For Dial-in

	gRPC over UNIX Domain Sockets
	gRPC Network Management Interface
	gNMI Operations
	gNMI Wildcard in Schema Path
	gNMI Bundling of Telemetry Updates
	Configure gNMI Bundling Size

	Replace Router Configuration at Sub-tree Level Using gNMI
	gNMI XPath-Based Authorization
	gNSI Pathz Authorization Policy Configuration
	Load gNSI Pathz Policies at Boot-time
	Rotate, Finalize, and Get the gNSI Pathz Policy

	Metrics of gNSI Authorization Rules
	gNSI Path Authorization Counters
	gNSI Pathz Policy and Statistics
	gNSI Pathz Trace Data
	gNSI State Details

	gRPC Network Operations Interface
	gNOI RPCs
	gNOI Packet Link Qualification
	gNOI Healthz
	Verify router health using gNOI RPCs

	gRPC Network Security Interface
	How to Update gRPC-Level Authorization Policy
	gNSI Acctz Logging
	Configure gNSI Acctz Logging

	Data logging with gNSI AcctzStream service
	Configure gNSI AcctzStream logging

	gNSI Credentialz Update
	gNSI Rotate Credentialz RPC
	Rotate Account Credentials
	Rotate Host Parameters
	CanGenerateKey
	GetPublicKey

	Manage certificates using Certz.proto
	Configure gNSI Certz

	gNSI EnrollZ and AttestZ
	Enroll a TPM 2.0 on Network Devices
	TPM 2.0 Attestation

	P4Runtime
	Configure P4RT to Manage Packets

	IANA Port Numbers For gRPC Services
	Configure gRPC Service-Level Port

	Configure Interfaces Using Data Models in a gRPC Session

	Use Service Layer API to Bring your Controller on Cisco IOS XR Router
	Get to Know Service Layer API
	Enable Service Layer
	Write Your Service Layer Client API
	Preprogram Backup LSPs Using Service Layer API
	Verify the Preprogramed Backup Paths

	Enhancements to Data Models
	Improved YANG Input Validator and Get Requests
	OpenConfig Data Model Enhancements
	Define Power State of Line Card Using Data Model
	Install Label in oc-platform Data Model
	OpenConfig YANG Model:SR-TE Policies
	Aggregate Prefix SID Counters for OpenConfig SR YANG Module
	OpenConfig YANG Model:MACsec
	OpenConfig YANG Model:dscp-set
	OpenConfig YANG Model:procmon
	Automatic Resynchronization of OpenConfig Configuration

	Unified Data Models
	Unified Configuration Models

	Automation Scripts
	Achieve Network Operational Simplicity Using Automation Scripts
	Explore the Types of Automation Scripts

	Precommit Scripts
	Workflow to Run Precommit Scripts
	Download the Script to the Router
	Configure Checksum for Precommit Script
	Activate Precommit Scripts

	Example: Verify BGP Configuration Using Precommit Script

	Config Scripts
	Workflow to Run Config Scripts
	Enable Config Scripts Feature
	Download the Script to the Router
	Configure Checksum for Config Script
	Validate or Commit Configuration to Invoke Config Script

	Manage Scripts
	Delete Config Script from the Router
	Control Priority When Running Multiple Scripts

	Example: Validate and Activate an SSH Config Script
	Scenario 1: Validate the Script Without SSH Configuration
	Scenario 2: Configure SSH and Validate the Script
	Scenario 3: Set Rate-limit Value to Default Value in the Script
	Scenario 4: Delete SSH Server Configuration

	Exec Scripts
	Workflow to Run an Exec Script
	Download the Script to the Router
	Update Scripts from a Remote Server
	Invoke Scripts from a Remote Server

	Configure Checksum for Exec Script
	Run the Exec Script
	View the Script Execution Details

	Manage Scripts
	Delete Exec Script from the Router

	Example: Exec Script to Verify Bundle Interfaces

	Process Scripts
	Workflow to Run Process Scripts
	Download the Script to the Router
	Configure Checksum for Process Script
	Register the Process Script as an Application
	Activate the Process Script
	Obtain Operational Data and Logs

	Managing Actions on Process Script
	Example: Check CPU Utilization at Regular Intervals Using Process Script

	EEM Scripts
	Workflow to Run Event Scripts
	Download the Script to the Router
	Define Trigger Conditions for an Event
	Create Actions for Events
	Create a Policy Map of Events and Actions
	View Operational Status of Event Scripts

	Example: Shut Inactive Bundle Interfaces Using EEM Script

	Model-Driven Command-Line Interface
	Model-Driven CLI to Display Data Model Structure
	Model-Driven CLI to Display Running Configuration in XML and JSON Formats

	Manage Automation Scripts Using YANG RPCs
	Manage Common Script Actions Using YANG RPCs
	Manage Exec Scripts Using RPCs
	Manage EEM Script Using RPCs
	Operational Model for EEM Script

	Script Infrastructure and Sample Templates
	Cisco IOS XR Python Packages
	Cisco IOS XR Python Libraries
	Sample Script Templates
	Use Automation Scripts to Interact with the Router via gNMI RPCs
	Xrcli_helper Python Module
	Xrcli_helper Script APIs

	Xrlog Python Module
	getSysLogger Script APIs
	Script Logger API

	Troubleshoot Automation Scripts
	Collect Debug Logs

