
Implementing Access Lists

• Understanding Access Lists, on page 1
• IP Access List Entry Sequence Numbering, on page 6
• Applying Access Lists, on page 7
• Understanding Hybrid ACLs, on page 8
• Configuring IPv4 ACLs, on page 15
• Configuring IPv6 ACLs, on page 18
• TCP Flags in ACLs, on page 26
• Configuring Extended Access Lists, on page 28
• IPv4 and IPv6 ACL in Class Map, on page 29
• User-Defined TCAM Keys for IPv4 and IPv6, on page 30
• Modifying ACLs, on page 34
• ACLs on Bridge Virtual Interfaces, on page 35
• Configuring ACL-based Forwarding, on page 38
• Access Control List Counters, on page 43
• ACL Statistics Counter, on page 43
• Configuring ACLs with Fragment Control, on page 45
• Configuring ACL Filtering by IP Packet Length, on page 49
• Configuring TTL Matching, on page 52
• Understanding IP Access List Logging Messages, on page 52
• Per Interface Statistics, on page 56

Understanding Access Lists
Access lists perform packet filtering to control which packets move through the network and where. Such
controls help to limit network traffic and restrict the access of users and devices to the network. Access lists
have many uses, and therefore many commands accept a reference to an access list in their command syntax.
Access lists can be used to do the following:

An access control list (ACL) consists of one or more access control entries (ACE) that collectively define the
network traffic profile. Access control entries (ACE) are entries in an ACL that describe the access rights
related to a particular security identifier or user. This profile can then be referenced by Cisco IOS XR software
features such as traffic filtering, route filtering, QoS classification, and access control. There are 2 types of
ACLs:

Implementing Access Lists
1

• Standard ACLs- Verifies only the source IP address of the packets. Traffic is controlled by the comparison
of the address or prefix configured in the ACL, with the source address found in the packet.

• Extended ACLs- Verifies more than just the source address of the packets. Attributes such as destination
address, specific IP protocols, User Datagram Protocol (UDP) or Transmission Control Protocol (TCP)
port numbers, Differentiated Services Code Point (DSCP), and so on are validated. Traffic is controlled
by a comparison of the attributes stated in the ACL with those in the incoming or outgoing packets.

Cisco IOS XR does not differentiate between standard and extended access lists. Standard access list support
is provided for backward compatibility.

Purpose of IP Access Lists

• Filter incoming or outgoing packets on an interface.

• Filter packets for mirroring.

• Redirect traffic as required.

• Restrict the contents of routing updates.

• Limit debug output based on an address or protocol.

• Control vty access.

• Identify or classify traffic for advanced features, such as congestion avoidance, congestion management,
and priority and custom queueing.

How an IP Access List Works

An access list is a sequential list consisting of permit and deny statements that apply to IP addresses and
possibly upper-layer IP protocols. The access list has a name by which it is referenced. Many software
commands accept an access list as part of their syntax.

An access list can be configured and named, but it is not in effect until the access list is referenced by a
command that accepts an access list. Multiple commands can reference the same access list. An access list
can control traffic arriving at the router or leaving the router, but not traffic originating at the router.

Source address and destination addresses are two of the most typical fields in an IP packet on which to base
an access list. Specify source addresses to control packets from certain networking devices or hosts. Specify
destination addresses to control packets being sent to certain networking devices or hosts.

You can also filter packets on the basis of transport layer information, such as whether the packet is a TCP,
UDP, Internet Control Message Protocol (ICMP), or Internet Group Management Protocol (IGMP) packet.

ACL Workflow

The following image illustrates the workflow of an ACL.

Implementing Access Lists
2

Implementing Access Lists
Understanding Access Lists

IP Access List Process and Rules

Use the following process and rules when configuring an IP access list:

• The software tests the source or destination address or the protocol of each packet being filtered against
the conditions in the access list, one condition (permit or deny statement) at a time.

• If a packet does not match an access list statement, the packet is then tested against the next statement
in the list.

• If a packet and an access list statement match, the remaining statements in the list are skipped and the
packet is permitted or denied as specified in the matched statement. The first entry that the packet matches
determines whether the software permits or denies the packet. That is, after the first match, no subsequent
entries are considered.

• If the access list denies the address or protocol, the software discards the packet and returns an ICMP
Host Unreachable message. ICMP is configurable in the Cisco IOS XR software.

ICMP type and code such as ECHO, ECHO-REPLY, MASK-REPLY, MASK-REQUEST, and so on
are supported.

• If no conditions match, the software drops the packet because each access list ends with an unwritten or
implicit deny statement. That is, if the packet has not been permitted or denied by the time it was tested
against each statement, it is denied.

• The access list should contain at least one permit statement or else all packets are denied.

Implementing Access Lists
3

Implementing Access Lists
Understanding Access Lists

• Because the software stops testing conditions after the first match, the order of the conditions is critical.
The same permit or deny statements specified in a different order could result in a packet being passed
under one circumstance and denied in another circumstance.

• Only one access list per interface, per protocol, per direction is allowed.

• Inbound access lists process packets arriving at the router. Incoming packets are processed before being
routed to an outbound interface. An inbound access list is efficient because it saves the overhead of
routing lookups if the packet is to be discarded because it is denied by the filtering tests. If the packet is
permitted by the tests, it is then processed for routing. For inbound lists, permit means continue to process
the packet after receiving it on an inbound interface; deny means discard the packet.

• Outbound access lists process packets before they leave the router. Incoming packets are routed to the
outbound interface and then processed through the outbound access list. For outbound lists, permit means
send it to the output buffer; deny means discard the packet.

• An access list can not be removed if that access list is being applied by an access group in use. To remove
an access list, remove the access group that is referencing the access list and then remove the access list.

• Before removing an interface, which is configured with an ACL that denies certain traffic, you must
remove the ACL and commit your configuration. If this is not done, then some packets are leaked through
the interface as soon as the no interface <interface-name> command is configured and committed.

• An access list must exist before you can use the ipv4 | ipv6 access-group command.

Helpful Hints for Creating IP Access Lists

Consider the following when creating an IP access list:

• Create the access list before applying it to an interface.

• Organize your access list so that more specific references in a network or subnet appear before more
general ones.

• To make the purpose of individual statements more easily understood at a glance, you can write a helpful
remark before or after any statement.

Source and Destination Addresses

Source address and destination addresses are two of the most typical fields in an IP packet on which to base
an access list. Specify source addresses to control packets from certain networking devices or hosts. Specify
destination addresses to control packets being sent to certain networking devices or hosts.

ACL Filtering by Wildcard Mask and Implicit Wildcard Mask

Address filtering uses wildcard masking to indicate whether the software checks or ignores corresponding IP
address bits when comparing the address bits in an access-list entry to a packet being submitted to the access
list. By carefully setting wildcard masks, an administrator can select a single or several IP addresses for permit
or deny tests.

Wildcard masking for IP address bits uses the number 1 and the number 0 to specify how the software treats
the corresponding IP address bits. A wildcard mask is sometimes referred to as an inverted mask, because a
1 and 0 mean the opposite of what they mean in a subnet (network) mask.

• A wildcard mask bit 0 means check the corresponding bit value.

Implementing Access Lists
4

Implementing Access Lists
Understanding Access Lists

• A wildcard mask bit 1 means ignore that corresponding bit value.

You do not have to supply a wildcard mask with a source or destination address in an access list statement.
If you use the host keyword, the software assumes a wildcard mask of 0.0.0.0.

Unlike subnet masks, which require contiguous bits indicating network and subnet to be ones, wildcard masks
allow noncontiguous bits in the mask.

You can also use Classless Inter-Domain Routing (CIDR) format (/x) in place of wildcard bits. For example,
the IPv4 address 1.2.3.4 0.255.255.255 corresponds to 1.2.3.4/8 and for IPv6 address
2001:db8:abcd:0012:0000:0000:0000:0000 corresponds to 2001:db8:abcd:0012::0/64.

Transport Layer Information

You can filter packets on the basis of transport layer information, such as whether the packet is a TCP, UDP,
ICMP, or IGMP packet.

Guidelines and Restrictions for Configuring Access Lists

You must be aware of the following restrictions for configuring access lists.

• IPv4 and IPv6 ACLs are not supported for loopback and interflex interfaces.

• If the Ternary content-addressable memory (TCAM) utilization is high and large ACLs are modified,
then an error may occur. During such instances, remove the ACL from the interface and reconfigure the
ACL. Later, reapply the ACL to the interface.

• Filtering of Multiprotocol Label Switching (MPLS) packets through interface ACL is not supported.

• Modifying an ACL when it is attached to the interface is supported.

• You can configure an ACL name with a maximum of 64 characters.

• You can configure an ACL name to comprise of only letters and numbers.

• The ACL ID scale per protocol for IPv4 and IPv6 traffic in each direction:

• The ACL scale for the Cisco 8200 series router is 15 ACL IDs per slice pair, 45 ACL IDs per NPU,
45 ACL IDs per line card, and 45 ACL IDs per router.

• The ACL scale for the Cisco 8812 series routers with 8800-LC-48H line cards is 15 ACL IDs per
slice pair, 30 ACL IDs per NPU, 60 ACL IDs per line card, and 720 ACL IDs per router.

• The ACL scale for the Cisco 8812 series routers with 8800-LC-36FH-M line cards is 15 ACL IDs
per slice pair, 30 ACL IDs per NPU, 120 ACL IDs per line card, and 1440 ACL IDs per router.

Including Comments in Access Lists

You can include comments (remarks) about entries in any named IP access list using the remark access list
configuration command. The remarks make the access list easier for the network administrator to understand
and scan. Each remark line is limited to 255 characters.

The remark can go before or after a permit or deny statement. You should be consistent about where you put
the remark so it is clear which remark describes which permit or deny statement. For example, it would be
confusing to have some remarks before the associated permit or deny statements and some remarks after the
associated statements. Remarks can be sequenced.

Implementing Access Lists
5

Implementing Access Lists
Understanding Access Lists

Remember to apply the access list to an interface or terminal line after the access list is created.

IP Access List Entry Sequence Numbering
The ability to apply sequence numbers to IP access-list entries simplifies access list changes. Prior to this
feature, there was no way to specify the position of an entry within an access list. If a user wanted to insert
an entry (statement) in the middle of an existing list, all the entries after the desired position had to be removed,
then the new entry was added, and then all the removed entries had to be reentered. This method was
cumbersome and error prone.

The IP Access List Entry Sequence Numbering feature allows users to add sequence numbers to access-list
entries and resequence them. When you add a new entry, you choose the sequence number so that it is in a
desired position in the access list. If necessary, entries currently in the access list can be resequenced to create
room to insert the new entry.

Sequence Numbering Behavior
The following details the sequence numbering behavior:

• If entries with no sequence numbers are applied, the first entry is assigned a sequence number of 10, and
successive entries are incremented by 10. The maximum configurable sequence number is 2147483643
for IPv4 and IPv6 entries. For other entries, the maximum configurable sequence number is 2147483646.
If the generated sequence number exceeds this maximum number, the following message displays:

Exceeded maximum sequence number.

• If you provide an entry without a sequence number, it is assigned a sequence number that is 10 greater
than the last sequence number in that access list and is placed at the end of the list.

• ACL entries can be added without affecting traffic flow and hardware performance.

• If a new access list is entered from global configuration mode, then sequence numbers for that access
list are generated automatically.

• Distributed support is provided so that the sequence numbers of entries in the route processor (RP) and
line card (LC) are synchronized at all times.

• This feature works with named standard and extended IP access lists. Because the name of an access list
can be designated as a number, numbers are acceptable.

Adding Entries with Sequence Numbers: Example
In the following example, an new entry is added to IPv4 access list acl_5.
ipv4 access-list acl_5
2 permit ipv4 host 192.0.2.1 any
5 permit ipv4 host 198.51.100.44 any
10 permit ipv4 host 198.51.100.1 any
20 permit ipv4 host 198.51.100.2 any
configure
ipv4 access-list acl_5
15 permit 203.0.113.1 255.255.255.0
end

Implementing Access Lists
6

Implementing Access Lists
IP Access List Entry Sequence Numbering

ipv4 access-list acl_5
2 permit ipv4 host 192.0.2.1 any
5 permit ipv4 host 198.51.100.44 any
10 permit ipv4 host 198.51.100.1 any
15 permit ipv4 203.0.113.1 255.255.255.0 any
20 permit ipv4 host 198.51.100.2 any

Adding Entries Without Sequence Numbers: Example
The following example shows how an entry with no specified sequence number is added to the end of an
access list. When an entry is added without a sequence number, it is automatically given a sequence number
that puts it at the end of the access list. Because the default increment is 10, the entry will have a sequence
number 10 higher than the last entry in the existing access list.

configure
ipv4 access-list acl_10
permit 192.0.2.1 255.255.255.0
permit 198.51.100.1 255.255.255.0
permit 203.0.113.1 255.255.255.0
end

ipv4 access-list acl_10
10 permit ip 192.0.2.1 255.255.255.0 any
20 permit ip 198.51.100.1 255.255.255.0 any
30 permit ip 203.0.113.1 255.255.255.0 any

configure
ipv4 access-list acl_10
permit 203.0.113.5 255.255.255.0
end

ipv4 access-list acl_10
10 permit ip 192.0.2.1 255.255.255.0 any
20 permit ip 198.51.100.1 255.255.255.0 any
30 permit ip 203.0.113.1 255.255.255.0 any
40 permit ip 203.0.113.5 255.255.255.0 any

Applying Access Lists
After you create an access list, you must reference the access list to make it work. Access lists can be applied
on either outbound or inbound interfaces. This section describes guidelines on how to accomplish this task
for both terminal lines and network interfaces.

Set identical restrictions on all the virtual terminal lines, because a user can attempt to connect to any of them.

For inbound access lists, after receiving a packet, Cisco IOS XR software checks the source address of the
packet against the access list. If the access list permits the address, the software continues to process the
packet. If the access list rejects the address, the software discards the packet and returns an ICMP host
unreachable message. The ICMP message is configurable.

For outbound access lists, after receiving and routing a packet to a controlled interface, the software checks
the source address of the packet against the access list. If the access list permits the address, the software sends
the packet. If the access list rejects the address, the software discards the packet and returns an ICMP host
unreachable message.

Implementing Access Lists
7

Implementing Access Lists
Adding Entries Without Sequence Numbers: Example

When you apply an access list that has not yet been defined to an interface, the software acts as if the access
list has not been applied to the interface and accepts all packets. Note this behavior if you use undefined access
lists as a means of security in your network.

Understanding Hybrid ACLs
Table 1: Feature History Table

Feature DescriptionRelease InformationFeature Name

From this release onwards, you can
apply compression levels for
object-group ACLs, also known as
hybrid ACLs, at the egress traffic.
Because ACL compression
optimizes TCAM space usage, it
enables the router to accommodate
additional ACLs or features.

Release 7.10.1Egress Hybrid ACL Support

You can apply compression levels
for object-group ACLs and attach
up to 4000 ACEs per line card in
the ingress direction. This leads to
optimal TCAM space usage and
resources utilization.

The commands modified are:

• ipv4 access-group

• ipv6 access-group

Release 7.3.1Hybrid ACLs

You can use Hybrid ACLs or object-group ACLs to classify users, devices, or protocols into groups so you
can have a group-level access control policy. Instead of specifying individual IP addresses, protocols, and
port numbers in multiple ACEs, you can specify just the object group in a single ACL.

This feature is very beneficial in large scale networks which currently contain hundreds of ACLs. By using
the object-group ACL feature, the number of ACEs per ACL are significantly reduced. Object-group ACLs
are also more readable, and easier to manage than conventional ACLs. Using object-group ACLs instead of
conventional ACLs optimizes the storage needed in TCAM.

Types of Object-Group ACLs

You can create two types of object-group ACLs on Cisco IOS XR:

• Network object-group ACLs: Consist of groups of host IP Addresses and network IP addresses.

• Port object-group ACLs: Consist of groups of ports and supporting Layer 3 or Layer 4 protocols.

Implementing Access Lists
8

Implementing Access Lists
Understanding Hybrid ACLs

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp3489368789
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp2625111658

Compressing ACLs

Object-group ACLs use compression to accommodate the large number of ACEs. Compression is achieved
by compressing the following two fields of an ACE:

• Source IP prefix

• Destination IP prefix

There are only two compression levels in the access-group configuration for an ACL on an ingress interface:

• Compress level 0: No compression is done on the ACE fields.

In this mode, the object-group ACL behaves like a traditional ACL.

• Compress level 2: Two fields (source IP and destination IP) in an ACE are compressed.

In this mode, for ingress traffic, central EM (Exact Match) is used for prefix lookup, and internal TCAM
is used for ACE lookup.

For egress traffic, central TCAM is used for both prefix lookup and ACE lookup.

Configuring an Object-Group ACL

Before You Begin

You must be aware of the following information that apply to object-group ACLs:

• You can configure ACLs that contain both conventional and object-group ACEs.

• You can modify the objects in an object group dynamically without redefining the object group or the
ACE that references the object group.

• You can configure an object-group ACL multiple times with a source group, or a destination group, or
both source and destination groups.

Restrictions

Configuring object-group ACLs involves the following restrictions:

• Object-group ACLs can only be configured to an interface. They cannot be used or referenced by
applications like SSH, SNMP, NTP.

• To delete an object-group, you must first delete it from all ACLs.

• You cannot configure object-group ACLs along with QoS policies.

• Object-group ACLs are not supported in any policy based configuration.

• Any inline ACE update to an object group ACL clears complete stats of the ACL.

Configuring a Network Object-Group ACL
A network object group can contain a single or multiple network objects.

Starting Release 7.10.1 onwards, you can configure an egress IPv4 or IPv6 hybrid ACL on an interface. This
allows you to separate address prefixes and ports into two object groups or access control entries (ACEs).

Implementing Access Lists
9

Implementing Access Lists
Configuring an Object-Group ACL

Thus, improving network traffic security, also allowing improved usage of space and resource to accommodate
more ACLs.

Restriction

Compression level 2 only supports prefix masks /n, not arbitrary address masks a.b.c.d.

Configuring a Network Object-Group ACL

Use the following set of configuration statements to configure a network object-group ACL for an IPv4
address.

/* From the global configuration mode, create a network object group. */
Router(config)# object-group network ipv4 netobj1
Router(config-object-group-ipv4)# description my-network-object
Router(config-object-group-ipv4)# host 10.1.1.1
Router(config-object-group-ipv4)# 10.2.1.0 255.255.255.0
Router(config-object-group-ipv4)# range 10.3.1.10 10.3.1.50

/* Create an access list referencing the object group. */
Router(config)# ipv4 access-list network-object-acl permit ipv4 net-group netobj1 any

/* Apply the access list containing the object group to the desired interface and commit
your configuration. */
Router(config)# interface HundredGigE 0/0/10/3
Router(config-if)# ipv4 address 1.1.1.1/24
Router(config-if)# no shut
Router(config-if)# ipv4 access-group network-object-acl ingress compress level 2
Router(config-if)# commit
Tue Mar 28 10:23:34.106 IST

Router(config-if)# interface HundredGigE 0/0/10/3, changed state to Down

Router(config-if)# interface HundredGigE 0/0/10/3, changed state to Up

Router(config-if)# exit

Use the following set of configuration statements to configure a network object-group ACL for an IPv6
address.

/* From the global configuration mode, create a network object group. */
Router(config)# object-group network ipv6 netobj1
Router(config-object-group-ipv6)# description my-network-object
Router(config-object-group-ipv6)# host 2001:DB8:1::1
Router(config-object-group-ipv6)# 2001:DB8::1 2001:DB8:0:ABCD::1
Router(config-object-group-ipv6)# range 2001:DB8::2 2001:DB8::5

/* Create an access list referencing the object group. */
Router(config)# ipv6 access-list network-object-acl permit ipv6 net-group netobj1 any

/* Apply the access list containing the object group to the desired interface and commit
your configuration. */
Router(config)# interface HundredGigE 0/0/10/3
Router(config-if)# ipv6 address 2001:DB8::1/32
Router(config-if)# no shut
Router(config-if)# ipv6 access-group network-object-acl ingress compress level 2
Router(config-if)# commit
Tue Mar 28 10:23:34.106 IST

Implementing Access Lists
10

Implementing Access Lists
Configuring a Network Object-Group ACL

Router(config)# interface HundredGigE 0/0/10/3, changed state to Down
Router(config)# interface HundredGigE 0/0/10/3, changed state to Up

Router(config-if)# exit

Running Configuration

Validate your configuration by using the show run command.
Router(config)# show run
Tue Mar 28 10:37:55.737 IST

Building configuration...
!! IOS XR Configuration 0.0.0
...

!
object-group network ipv4 netobj1
10.2.1.0/24
host 10.1.1.1
range 10.3.1.10 10.3.1.50
description my-network-object
!
!
ipv4 access-list network-object-acl
10 permit ipv4 net-group netobj1 any
!
interface HundredGigE 0/0/10/3
ipv4 address 1.1.1.1 255.255.255.0
ipv4 access-group network-object-acl ingress compress level 2
!

You have successfully configured a network object-group ACL.

Configuring an Egress IPv4 or IPv6 Hybrid ACL on a HundredGigE Interface

Use the following configuration to configure an egress IPv4 hybrid ACL on a HundredGigE interface. You
can also configure an egress IPv6 hybrid ACL by performing the same steps.

/* From the global configuration mode, create a network object group. */
Router(config)#object-group network ipv4 netobj1
Router(config-object-group-ipv4)#12.1.0.0/16
Router(config-object-group-ipv4)#14.1.0.0/16
Router(config-object-group-ipv4)#105.2.0.0/16
Router(config-object-group-ipv4)#commit
Tue Jul 25 22:36:45.496 UTC

/* Create an access list referencing the object group. */
Router(config)#ipv4 access-list test-v4
Router(config-ipv4-acl)#10 deny ipv4 any net-group netobj1
Router(config-ipv4-acl)#20 permit ipv4 any any
Router(config-ipv4-acl)#commit
Tue Jul 25 22:39:51.914 UTC

/* Apply the access list containing the object group to the desired interface, apply
compression, and commit your configuration. */
Router(config)#interface fourHundredGigE 0/0/0/1
Router(config-if)#ipv4 access-group test-v4 egress compress level 2
Router(config-if)#commit

Implementing Access Lists
11

Implementing Access Lists
Configuring a Network Object-Group ACL

Tue Jul 25 22:40:40.493 UTC

Running Configuration

Validate your configuration by using the show running-config command for the network object group, access
list, and the interface that you've configured for IPv4 traffic.
Router#show running-config object-group network ipv4 netobj1
Tue Jul 25 22:44:20.516 UTC
object-group network ipv4 netobj1
12.1.0.0/16
14.1.0.0/16
105.2.0.0/16
!

Router#show running-config ipv4 access-list test-v4
Tue Jul 25 22:44:39.010 UTC
ipv4 access-list test-v4
10 deny ipv4 any net-group netobj1
20 permit ipv4 any any
!

Router#show running-config interface fourHundredGigE 0/0/0/1
Tue Jul 25 22:45:13.769 UTC
interface FourHundredGigE0/0/0/1
ipv4 address 12.1.0.1 255.255.255.0
ipv6 address 12:1::1/64
ipv4 access-group test-v4 egress compress level 2
!

Verification

Verify the packet count for the filtered traffic. In this example, the filtered packet count is 47 and 100008,
which implies that the traffic is getting filtered as per the rules set in your ACL.

Router#show access-lists ipv4 test-v4 hardware egress location 0/RP0/CPU0
Tue Jul 25 22:53:38.980 UTC
ipv4 access-list test-v4
10 deny ipv4 any net-group netobj1 (47 matches)
20 permit ipv4 any any (100008 matches)

Configuring a Port Object-Group ACL
A port object-group can contain a single or multiple port objects.

Restriction

If you configure port object-group ACLs with compression level 2, it does not result in a lower number of
TCAM entries because the compression algorithm only uses the source and destination prefixes and not the
port or protocol numbers.

Configuration

Use the following set of configuration statements to configure a port object-group ACL.

/* From the global configuration mode, create a port object group, and commit your

Implementing Access Lists
12

Implementing Access Lists
Configuring a Port Object-Group ACL

configuration. */
Router(config)# object-group port portobj1
Router(config-object-group-ipv4)# description my-port-object
Router(config-object-group-ipv4)# eq bgp
Router(config-object-group-ipv4)# range 100 200
Router(config-object-group-ipv4)# commit
Router(config-object-group-ipv4)# exit

/* Create an access list referencing the object group. */
Router(config)# ipv4 access-list port-object-acl permit ipv4 net-group portobj1

/* Apply the access list containing the object group to the desired interface and commit
your configuration. */
Router(config)# interface HundredGigE 0/0/10/3
Router(config-if)# ipv4 address 2.2.2.2/24
Router(config-if)# ipv4 access-group port-obj-acl ingress compress level 2
Router(config-if)# no shut
Router(config-if)# commit
Tue Mar 28 10:23:34.106 IST

Router(config-if)# interface HundredGigE 0/0/10/3, changed state to Down
Router(config-if)# interface HundredGigE 0/0/10/3, changed state to Up

Router(config-if)# (config-if)# exit

Running Configuration

Confirm your configuration.
Router(config-if)# (config)# show run
Tue Mar 28 10:37:55.737 IST

Building configuration...
!! IOS XR Configuration 0.0.0
...
object-group port portobj1
eq bgp
range 100 200
!

ipv4 access-list port-object-acl
10 permit tcp net-group portobj1
!
interface HundredGigE 0/0/10/3
ipv4 access-group port-obj-acl ingress compress level 2
!
end
!

You have successfully configured a port object-group ACL.

Verifying Object-Group ACL Compression
You can use the commands described in this section to verify the configured object-group ACLs in operation
and the compression of the ACEs in the ACL.

Implementing Access Lists
13

Implementing Access Lists
Verifying Object-Group ACL Compression

The outputs provided in this section are a standalone sample and are not related to the configurations provided
in the preceding sections.

Note

Verification

Use the following set of verification commands to verify object-group ACL compression.
/* Verify the entries of the ACL in operation. */

Router# show access-lists ipv4 network-object-acl hardware ingress location 0/0/CPU0
ipv4 access-list network-object-acl
40 permit ospf net-group n_192.168.0.0_16 any (20898463272 matches)
70 permit tcp any net-group CORP_ALL_V4 established
100 permit udp net-group INTERNAL port-group KERBEROS_UDP net-group CORP_ALL_V4
130 permit udp net-group INTERNAL port-group DNS_UDP net-group CORP_ALL_V4
160 permit udp net-group INTERNAL port-group NTP net-group CORP_ALL_V4
190 permit udp net-group INTERNAL port-group LDAP_UDP net-group CORP_ALL_V4
...
1500 permit udp net-group VLAN60_SECURITY net-group h_192.168.77.242 port-group
UDP_50000-50100
1530 deny ipv4 net-group VLAN60_SECURITY any log (20891956640 matches)
...

/* Verify the ACE compression in the ACL. */
Router# show access-lists ipv4 network-object-acl hardware ingress verify location 0/0/CPU0
Verifying TCAM entries for network-object-acl
Please wait...

INTF NPU lookup ACL # intf Total compression Total result failed(Entry) TCAM
entries

type ID shared ACES prefix-type Entries ACE SEQ # verified
---------- --- ------- --- ------ ------ ----------- ------- ------ ------------- ------------

HundredGigE 0_0_10_3 (ifhandle: 0x1c8)

1 IPV4 2 1 247 COMPRESSED 810 passed
810

SRC IP 2746 passed
2746

DEST IP 3413 passed
3413

SRC PORT 340 passed
340

You have successfully verified the compression of ACEs within an ACL.

The command show access-lists access-list-name hardware ingress detail location location

displays compressed output for source and destination IP addresses when the detail keyword is used while
attaching ACLs to interfaces.

Note

Implementing Access Lists
14

Implementing Access Lists
Verifying Object-Group ACL Compression

Configuring IPv4 ACLs
This section describes the basic configuration of IPv4 ingress and egress ACLs.

Notes and Restrictions for Configuring IPv4 Ingress ACLs

IPv4 ingress ACLs are characterized by the following behavior for Cisco 8000 Series Routers. These restrictions
are subject to change with respect to other platforms.

• Ingress IPv4 ACLs are supported on all interfaces except management interfaces.

• In Fixed system, maxmium number of ACLs allowed per NPU is 45, In distributed system, maxmium
number of ACLs allowed per NPU is 30.

• Packet Length is not supported.

• ACL logging with input interface (using the log-input keyword) is not supported.

• FromRelease 7.8.1 onwards, ACL loggingwith input interface (using the log-input keyword) is supported.

Notes and Restrictions for Configuring IPv4 Egress ACLs

IPv4 egress ACLs are characterized by the following behavior.

• ACL is not supported on Management interface on egress direction.

• ACL logging is not supported on egress direction.

Configuring an Ingress IPv4 ACL on a HundredGigE Interface

Use the following configuration to configure an ingress IPv4 ACL on a HundredGigE interface.
/* Configure a HundredGigE interface with an IPv4 address */
Router(config)# interface HundredGigE 0/0/0/0
Router(config-if)# ipv4 address 192.0.2.1 255.255.255.0
Router(config-if)# no shut
Router(config-if)# commit
Thu Jul 11 08:46:51.930 UTC
Router(config-if)# exit

/* Verify if the interface is up */
Router(config)# do show ipv4 interface brief

Thu Jul 11 08:46:51.930 UTC
Interface IP-Address Status Protocol Vrf-Name
HundredGigE 0/0/0/0 192.0.2.1 Up Up default

/* Configure an IPv4 ingress ACL */
Router(config)# ipv4 access-list V4-ACL-INGRESS
Router(config-ipv4-acl)# 10 permit tcp 192.0.2.2 255.255.255.0 any
Router(config-ipv4-acl)# 20 deny udp any any
Router(config-ipv4-acl)# 30 permit ipv4 192.0.2.64 255.255.255.0 any
Router(config-ipv4-acl)# commit
Thu Jul 11 08:55:12.806 UTC

/* Verify the ingress ACL creation */
Router(config)# do show access-lists ipv4
Thu Jul 11 08:55:44.824 UTC

Implementing Access Lists
15

Implementing Access Lists
Configuring IPv4 ACLs

...
ipv4 access-list V4-ACL-INGRESS
10 permit tcp 192.0.2.2 255.255.255.0 any
20 deny udp any any
30 permit ipv4 192.0.2.64 255.255.255.0 any

/* Apply the ingress ACL to the HundredGigE interface */
Router(config)# interface HundredGigE 0/0/0/0
Router(config-if)# ipv4 access-group V4-ACL-INGRESS ingress
Router(config-if)# commit
Thu Jul 11 09:01:26.744 UTC
Router(config-if)# exit

/* Verify if the ingress ACL has been successfully applied to the interface */
Router(config)# do show ipv4 interface
Thu Jul 11 09:01:50.445 UTC
HundredGigE 0/0/0/0 is Up, ipv4 protocol is Up
Vrf is default (vrfid 0x60000000)
Internet address is 192.0.2.1/24
MTU is 1514 (1500 is available to IP)
Helper address is not set
Directed broadcast forwarding is disabled
Outgoing access list is not set
Inbound common access list is not set, access list is V4-ACL-INGRESS
Proxy ARP is disabled
ICMP redirects are never sent
ICMP unreachables are always sent
ICMP mask replies are never sent
Table Id is 0xe0000000

You have successfully configured an IPv4 ingress ACL on a HundredGigE interface.

Configuring an Egress IPv4 ACL on a HundredGigE Interface

Use the following configuration to configure an egress IPv4 ACL on a HundredGigE interface.
/* Configure a HundredGigE interface with an IPv4 address */
Router(config)# interface HundredGigE 0/0/0/0
Router(config-if)# ipv4 address 198.51.100.1 255.255.255.0
Router(config-if)# no shut
Router(config-if)# commit
Thu Jul 11 08:55:12.806 UTC
Router(config-if)# exit

/* Verify if the interface is up */
Router(config)# do show ipv4 interface brief
Thu Jul 11 08:55:44.824 UTC

Interface IP-Address Status Protocol Vrf-Name
HundredGigE 0/0/0/0 192.0.2.1 Up Up default
HundredGigE 0/0/0/1 198.51.100.1 Up Up default

/* Configure an IPv4 egress ACL */
Router(config)# ipv4 access-list V4-ACL-EGRESS
Router(config-ipv4-acl)# 10 permit ipv4 203.0.113.1 255.255.255.0 192.0.2.1 0.255.255.255
Router(config-ipv4-acl)# 20 deny ipv4 any any
Router(config-ipv4-acl)# commit
Thu Jul 11 08:59:10.093 UTC

/* Verify the egress ACL creation */
Router(config)# do show access-lists ipv4

Implementing Access Lists
16

Implementing Access Lists
Configuring IPv4 ACLs

Thu Jan 25 10:25:19.896 IST
ipv4 access-list V4-ACL-EGRESS
10 permit ipv4 203.0.113.1 255.255.255.0 192.0.2.1 255.255.255.0
20 deny ipv4 any any
...

/* Apply the egress ACL to the HundredGigE interface */
Router(config)# interface HundredGigE 0/0/0/1
Router(config-if)# ipv4 access-group V4-ACL-EGRESS egress
Router(config-if)# commit
Thu Jul 11 09:19:49.569 UTC
Router(config-if)# exit

/* Verify if the egress ACL has been successfully applied to the interface */
Router(config)# do show ipv4 interface
Thu Jul 11 09:01:50.445 UTC
HundredGigE 0/0/0/1 is Up, ipv4 protocol is Up
Vrf is default (vrfid 0x60000000)
Internet address is 198.51.100/24
MTU is 1514 (1500 is available to IP)
Helper address is not set
Directed broadcast forwarding is disabled
Outgoing access list is V4-ACL-EGRESS
Inbound common access list is not set, access list is not set
Proxy ARP is disabled
ICMP redirects are never sent
ICMP unreachables are always sent
ICMP mask replies are never sent
Table Id is 0xe0000000

...

You have successfully configured an IPv4 egress ACL on a HundredGigE interface. For more information
on logging messages, see Understanding IP Access List Logging Messages, on page 52.

Implementing Access Lists
17

Implementing Access Lists
Configuring IPv4 ACLs

Configuring IPv6 ACLs
Table 2: Feature History Table

Feature DescriptionRelease InformationFeature Name

We ensure that IPv6 packets have
a limited lifetime on your networks,
thus reducing the impact of any
routing loops and preventing
networking failures. To that end,
we have added the option to set hop
limit rules in the ACLs based on
the following hop limit match
criteria:

• eq - equal to

• lt - less than

• gt - greater than

• range - ranges from 1 to 255

To set the hop limit, use the ttl
keyword in the following
commands:

• deny (IPv6)

• permit (IPv6)

Release 7.8.1Filter Ingress IPv6 ACL Traffic
based on ACL Hop Limit

You can filter IP version 6 (IPv6) traffic by creating IPv6 access control lists (ACLs) and applying them to
interfaces similar to the way that you create and apply IP version 4(IPv4) named ACLs.

Restrictions and Guidelines

The following restrictions and guidelines apply while configuring IPv6 ACLs:

• Ingress IPv6 ACLs are supported on all interfaces.

• From Release 7.3.1 onwards, the maximum number of ACLs allowed per router is 126.

In earlier releases, for the Cisco 8100 and 8200 Series fixed chassis, the maximum number of ACLs
allowed per router is 45. For the Cisco 8800 modular chassis, the maximum number of ACLs allowed
per router is 30.

• Packet Length (using the pkt-length keyword) is not supported.

• IPv6 hop limit is supported only on ingress traffic with object-group ACL (compression level 2)

• FromRelease 7.8.1 onwards, ACL loggingwith input interface (using the log-input keyword) is supported.

Implementing Access Lists
18

Implementing Access Lists
Configuring IPv6 ACLs

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1530923496
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1540283175

Configuring an Ingress IPv6 ACL on a HundredGigE Interface

Use the following configuration to configure an ingress IPv6 ACL on a HundredGigE interface.
/* Configure a HundredGigE interface with an IPv6 address */
Router(config)# interface HundredGigE 0/0/0/0
Router(config-if)# ipv6 address 2001::1/64
Router(config-if)# no shut
Router(config-if)# commit
Thu Jul 11 09:28:07.759 UTC
Router(config-if)# exit

/* Verify if the interface is up */
Router(config)# do show ipv6 interface brief
Thu Jul 11 09:28:43.657 UTC
HundredGigE 0/0/0/0 [Up/Up]

fe80::bd:b9ff:fea9:5606
2001::1

…

/* Configure an IPv6 ingress ACL */
Router(config)# ipv6 access-list V6-INGRESS-ACL
Router(config-ipv6-acl)# 10 permit ipv6 any any
Router(config-ipv6-acl)# 20 deny udp any any
Router(config-ipv6-acl)# commit
Thu Jul 11 09:41:02.625 UTC
Router(config-ipv6-acl)# exit

/* Verify the ingress ACL creation */
Router(config)# do show access-lists ipv6
Thu Jul 11 09:41:37.260 UTC
ipv6 access-list V6-INGRESS-ACL
10 permit ipv6 any any
20 deny udp any any

/* Apply the ingress ACL to the HundredGigE interface */
Router(config)# interface HundredGigE 0/0/0/0
Router(config-if)# ipv6 access-group V6-INGRESS-ACL ingress
Router(config-if)# commit
Thu Jul 11 09:43:59.733 UTC
Router(config-if)# exit

/* Verify if the ingress ACL has been successfully applied to the interface */
Router(config)# do show ipv6 interface
Thu Jan 25 11:34:08.028 IST
HundredGigE 0/0/0/0 is Up, ipv6 protocol is Up, Vrfid is default (0x60000000)
IPv6 is enabled, link-local address is fe80::bd:b9ff:fea9:5606
Global unicast address(es):
2001::1, subnet is 1001::/64

Joined group address(es): ff02::1:ff00:1 ff02::1:ffa9:5606 ff02::2
ff02::1

MTU is 1514 (1500 is available to IPv6)
ICMP redirects are disabled
ICMP unreachables are enabled
ND DAD is enabled, number of DAD attempts 1
ND reachable time is 0 milliseconds
ND cache entry limit is 1000000000
ND advertised retransmit interval is 0 milliseconds
Hosts use stateless autoconfig for addresses.
Outgoing access list is not set
Inbound common access list is not set, access list is V6-INGRESS-ACL
Table Id is 0xe0800000

Implementing Access Lists
19

Implementing Access Lists
Configuring IPv6 ACLs

Complete protocol adjacency: 0
Complete glean adjacency: 0
Incomplete protocol adjacency: 0
Incomplete glean adjacency: 0
Dropped protocol request: 0
Dropped glean request: 0

…

You have successfully configured an IPv6 ingress ACL on a HundredGigE interface.

Configuring an Egress IPv6 ACL on a HundredGigE Interface

Use the following configuration steps to configure an egress IPv6 ACL on a HundredGigE interface.
/* Configure a HundredGigE interface with an IPv6 address */
Router(config)# interface HundredGigE 0/0/0/1
Router(config-if)# ipv6 address 2001::1/64
Router(config-if)# no shut
Router(config-if)# commit
Thu Jan 25 11:41:25.778 IST
Router(config-if)# exit

/* Verify if the interface is up */
Router(config)# do show ipv6 interface brief
Thu Jul 11 09:47:50.812 UTC
HundredGigE 0/0/0/0 [Up/Up]

fe80::bd:b9ff:fea9:5606
1001::1

HundredGigE 0/0/0/1 [Up/Up]
fe80::23:e9ff:fea8:a44e
2001::1

/* Configure an IPv6 egress ACL */
Router(config)# ipv6 access-list V6-EGRESS-ACL
Router(config-ipv6-acl)# 10 permit ipv6 any any
Router(config-ipv6-acl)# 20 deny udp any any
Router(config-ipv6-acl)# commit
Thu Jul 11 09:50:40.566 UTC
Router(config-ipv6-acl)# exit

/* Verify the egress ACL creation */
Router(config)# do show access-lists ipv6
Thu Jul 11 09:51:16.687 UTC
ipv6 access-list V6-EGRESS-ACL
10 permit ipv6 any any
20 deny udp any any
…

/* Apply the egress ACL to the HundredGigE interface */
Router(config)# interface HundredGigE 0/0/0/1
Router(config-if)# ipv6 access-group V6-EGRESS-ACL egress
Router(config-if)# commit
Thu Jul 11 09:52:57.751 UTC
Router(config-if)# exit

/* Verify if the egress ACL has been successfully applied to the interface */
Router(config)# do show ipv6 interface
Thu Jul 11 09:53:41.365 UTC
…
HundredGigE is Up, ipv6 protocol is Up, Vrfid is default (0x60000000)
IPv6 is enabled, link-local address is fe80::23:e9ff:fea8:a44e
Global unicast address(es):

Implementing Access Lists
20

Implementing Access Lists
Configuring IPv6 ACLs

2001::1, subnet is 2001::/64
Joined group address(es): ff02::1:ff00:1 ff02::1:ffa8:a44e ff02::2

ff02::1
MTU is 1514 (1500 is available to IPv6)
ICMP redirects are disabled
ICMP unreachables are enabled
ND DAD is enabled, number of DAD attempts 1
ND reachable time is 0 milliseconds
ND cache entry limit is 1000000000
ND advertised retransmit interval is 0 milliseconds
Hosts use stateless autoconfig for addresses.
Outgoing access list is V6-EGRESS-ACL
Inbound common access list is not set, access list is not set
Table Id is 0xe0800000
Complete protocol adjacency: 0
Complete glean adjacency: 0
Incomplete protocol adjacency: 0
Incomplete glean adjacency: 0
Dropped protocol request: 0
Dropped glean request: 0

...

You have successfully configured an IPv6 egress ACL on a HundredGigE interface.

Configuring Ingress and Egress IPv6 ACLs on Bundle Interfaces

Use the following configuration to configure ingress and egress IPv6 ACLs on a bundle interface.
/* Configure a bundle interface with an IPv6 address */
Router(config)# interface Bundle-Ether 1
Router(config-if)# ipv6 address 2001::1/64
Router(config-if)# no shut
Router(config-if)# commit
Thu Jul 11 09:56:40.603 UTC
Router(config-if)# exit

/* Configure an IPv6 egress ACL */
Router(config)# ipv6 access-list V6-EGRESS-ACL-bundle interface
Router(config-ipv6-acl)# 10 permit tcp any any range 3000 4000
Router(config-ipv6-acl)# 20 permit ipv6 any any
Router(config-ipv6-acl)# commit
Thu Jul 11 10:02:34.568 UTC
Router(config-ipv6-acl)# exit

/* Configure an IPv6 ingress ACL to deny ingress traffic on the bundle interface */
Router(config)# ipv6 access-list V6-DENY-INGRESS-ACL
Router(config-ipv6-acl)# 10 deny ipv6 any any
Router(config-ipv6-acl)# commit
Thu Jul 11 10:03:43.411 UTC
Router(config-ipv6-acl)# exit

/* Verify the egress and ingress ACL creation */
Router(config)# do show access-lists ipv6
Thu Jul 11 10:04:35.798 UTC
ipv6 access-list V6-DENY-INGRESS-ACL
10 deny ipv6 any any
ipv6 access-list V6-EGRESS-ACL-BI
10 permit tcp any any range 3000 4000
20 permit ipv6 any any
...

/* Apply the egress and ingress ACLs to the bundle interface */

Implementing Access Lists
21

Implementing Access Lists
Configuring IPv6 ACLs

Router(config)# interface Bundle-Ether 1
Router(config-if)# ipv6 access-group V6-EGRESS-ACL-BI egress
Router(config-if)# ipv6 access-group V6-DENY-INGRESS-ACL ingress
Router(config-if)# commit
Thu Jul 11 10:06:06.452 UTC
Router(config-if)# exit

/* Verify if the ACLs have been successfully applied to the interface */
Router(config)# do show ipv6 interface
Thu Jul 11 10:06:49.975 UTC
…
Bundle-Ether1 is Down, ipv6 protocol is Down, Vrfid is default (0x60000000)
IPv6 is enabled, link-local address is fe80::1:10ff:fe87:8d04 [TENTATIVE]
Global unicast address(es):
2001::1, subnet is 2001::/64 [TENTATIVE]

Joined group address(es): ff02::2 ff02::1
MTU is 1514 (1500 is available to IPv6)
ICMP redirects are disabled
ICMP unreachables are enabled
ND DAD is enabled, number of DAD attempts 1
ND reachable time is 0 milliseconds
ND cache entry limit is 1000000000
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 160 to 240 seconds
ND router advertisements live for 1800 seconds
Hosts use stateless autoconfig for addresses.
Outgoing access list is V6-EGRESS-ACL-BI
Inbound common access list is not set, access list is V6-DENY-INGRESS-ACL
Table Id is 0xe0800000
Complete protocol adjacency: 0
Complete glean adjacency: 0
Incomplete protocol adjacency: 0
Incomplete glean adjacency: 0
Dropped protocol request: 0
Dropped glean request: 0

You have successfully configured ingress and egress IPv6 ACLs on a bundle interface.

Configuring an Ingress IPv6 ACL with Hop Limit on a Bundle Interface

Similar to the Time to Live (TTL) field in the IPv4 packet header, the TTL field is referred to as Hop Limit
field in IPv6 packets. To filter an IPv6 packet on your source interface, you can define the following criteria
as hop limit value that you set in your ACLs:

• Equal (eq) - permit or deny a packet if the hop limit matches the value as defined in the ACL.

• Less than (lt) - permit or deny a packet if the hop limit matches the value as defined in the ACL.

• Greater than (gt) - permit or deny a packet if the hop limit is greater than as defined in the ACL.

• Range - permit or deny a packet if the hop limit range matches as defined in the ACL.

To configure an ingress IPv6 ACL with hop limit on a bundle interface, use the following configuration steps:

1. Configure a bundle interface with an IPv6 address.

2. In the interface configuration mode, create an object group with a list of hosts.

3. Apply the ACL definition to filter IPv6 packets based on hop limit match.

4. Associate the ACL configuration on to the ingress interface to match based on IPv6 hop limit.

Implementing Access Lists
22

Implementing Access Lists
Configuring IPv6 ACLs

Configuration Example

The following example shows how to set hop limit on an IPv6 ACL. In this example, the hop limit criteria,
equal (eq) and range (range) is used to filter the traffic. While deny action is used for the 'eq' criteria, permit
action is used for 'range' criteria. This means that packets that matches the 'eq' criteria will be denied and the
packets that matches the 'range' criteria will be permitted.

Hop limit is referred to as ttl.Note

/* Configure a bundle interface with an IPv6 address */
Router(config)# interface Bundle-Ether 1
Router(config-if)# ipv6 address 2001::1/64
Router(config-if)# no shut
Router(config-if)# commit
Thu Jul 11 09:56:40.603 UTC
Router(config-if)# exit

/* Create an object group with the list of host */

Router(config)# object-group network ipv6 network_object_group_bundle_host
Router(config-object-group-ipv6)# host 140:1:2::1
Router(config-object-group-ipv6)# host 150:1:2::1
Router(config-object-group-ipv6)# host 160:1:2::1
Router(config-object-group-ipv6)# commit
Thu Jul 11 09:41:02.625 UTC
Router(config-object-group-ipv6)# exit

/* Apply ACL definition to filter packets based on hop-limit match on IPv6.
Router(config)# ipv6 access-list ipv6_ob_network_tcp_bundle_ingress_main
Router(config-if)# 10 deny tcp net-group network_object_group_bundle_host net-group
network_object_group_bundle_host ttl eq 205
Router(config-if)# 20 permit udp net-group network_object_group_bundle_host net-group
network_object_group_bundle_host ttl range 250 255 log-input
!

/* Associate the ACL configuration on to the ingress interface to match based on IPv6 hop
limit */

Router(config)# interface Bundle-Ether500
Router(config-if)# ipv4 address 30.1.0.1 255.255.255.0
Router(config-if)# ipv6 address 30:1::1/96
Router(config-if)# ipv6 access-group ipv6_ob_network_tcp_bundle_ingress_main ingress compress
level 2
!

Running Configuration

The following example shows the running configuration of an IPv6 ingress ACL with hop limit (ttl) on a
bundle interface.
Router:R1#sh access-lists ipv6 ipv6_ob_network_tcp_bundle_ingress_main hardware ingress
detail location 0/0/CPU0
Fri Nov 4 06:39:15.155 UTC

ipv6_ob_network_tcp_bundle_ingress_main Details:
Sequence Number: 10
NPU ID: 0
Number of DPA Entries: 1
ACL ID: 1
ACE Action: DENY

Implementing Access Lists
23

Implementing Access Lists
Configuring IPv6 ACLs

ACE Logging: DISABLED
ABF Action: 0(ABF_NONE)
Hit Packet Count: 0
Source Address: 0:1:0:1::
Source Address Mask: 0:0:0:0::
Destination Address: 0:0:0:0::
Destination Address Mask: 0:0:0:0::
DPA Entry: 1
Entry Index: 0
DPA Handle: 0x8E8A10A8
TTL Match: 0xCD (Mask 0xFF)
Sequence Number: 20
NPU ID: 0
Number of DPA Entries: 2
ACL ID: 1
ACE Action: PERMIT
ACE Logging: ENABLED
ABF Action: 0(ABF_NONE)
Hit Packet Count: 71
Source Address: 0:1:0:1::
Source Address Mask: 0:0:0:0::
Destination Address: 0:0:0:0::
Destination Address Mask: 0:0:0:0::
DPA Entry: 1
Entry Index: 0
DPA Handle: 0x8E8A1398
TTL Match: 0xFA (Mask 0xFE)
DPA Entry: 2
Entry Index: 1
DPA Handle: 0x8E8A1688
TTL Match: 0xFC (Mask 0xFC)
<Output truncated>

Verification

Verify that IPv6 ingress ACL with hop limit is set on a bundle interface:

/* Verify the ingress ACL creation */
Router(config)# show running-config | i hw
Fri Nov 4 06:26:27.382 UTC
Building configuration...
hw-module profile stats acl-permit

/* Verify the ACL hit count for the ACE */
Router(config)#sh access-lists ipv6 ipv6_ob_network_tcp_bundle_ingress_main h i location
0/0/CPU0
Fri Nov 4 06:38:43.664 UTC
ipv6 access-list ipv6_ob_network_tcp_bundle_ingress_main
10 deny tcp net-group network_object_group_bundle_host net-group
network_object_group_bundle_host ttl eq 205
20 permit udp net-group network_object_group_bundle_host net-group
network_object_group_bundle_host ttl range 250 255 log-input (71 matches)

/* Verify the ACL logging */
Router(config)# show logging | i permit
Mon Nov 7 06:42:30.146 UTC
Router:Nov 7 06:41:59.614 UTC: ipv6_acl_daemon[396]: %ACL-IPV6_ACL-6-IPACCESSLOGNP :
access-list ipv6_ob_network_tcp_bundle_ingress_main (20) permit 58 150:1:2::1
(Bundle-Ether500)-> 140:1:2::1, 1 packet

You have successfully configured an IPv6 ingress ACL on a bundle interface with hop limit.

For more information on logging messages, see Understanding IP Access List Logging Messages, on page
52.

Implementing Access Lists
24

Implementing Access Lists
Configuring IPv6 ACLs

Configuring IPv6 Extensions Headers in Ingress IPv6 Hybrid ACLs

Table 3: Feature History Table

DescriptionRelease InformationFeature Name

You can configure ingress IPv6
hybrid ACLs with compression
level 2 to permit or deny packets
on the basis of IPv6 extension
headers set in them. IPv6 extension
headers include routing headers,
authentication headers, and
destination option headers. These
extension headers contain
information that is used by network
devices (routers and switches) to
route or process an ingress IPv6
packet.

The ipv6 access-group command
is updated.

Release 7.3.15IPv6 Extension Headers in Hybrid
ACLs

Figure 1: IPv6 Extension Header in an IPv6 Packet

As illustrated in the figure, an IPv6 packet may carry zero, one, or more extension headers, each identified
by the Next Header field of the preceding header. To configure ingress Hybrid ACLs with ACEs that permit
or deny packets on the basis of IPv6 extension headers, the IPv6 extension headers must be set immediately
after the base IPv6 header as shown in the figure.

Therefore, you can filter ingress IPv6 packets through Hybrid ACLs with compression level 2 on the basis
of IPv6 extension headers set in them.

You can filter ingress IPv6 packets having hop-by-hop extension headers through regular ACLs or through
Hybrid ACLs with compression level 2.

Note

Restrictions

• You cannot configure a protocol and an IPv6 extension header in the same ACE. However, you can
create separate ACEs with protocols and extension header in a single ACL.

• You cannot filter egress IPv6 packets with Hybrid ACLs that have compression level 2 and have IPv6
extension headers set as an ACE.

Implementing Access Lists
25

Implementing Access Lists
Configuring IPv6 ACLs

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp2625111658

• You cannot configure custom headers or mobility headers in an ACE filter ingress IPv6 packets through
Hybrid ACLs with compression level 2.

Configuring Ingress IPv6 Hybrid ACLs Based on Extensions Headers

This following example shows you how to create an ingress IPv6 Hybrid ACLwith compression level 2 based
on IPv6 extensions headers:
/* Enter the global configuration mode and create an IPv6 Hybrid ACL with an ACE that has
routing extension header. */
Router# configure
Router(config)# ipv6 access-list ACL-EXT-HEADER
Router(config-ipv6-acl)# 10 deny ipv6 any any routing
Router(config-ipv6-acl)# 20 deny ospf any any
Router(config-ipv6-acl)# commit
Router(config-ipv6-acl)# exit

/* Enter the interface configuration mode and configure an ingress interface with the Hybrid
ACL twith compression level 2. */
Router(config)# interface hundredGigE 0/4/0/36
Router(config-if)# ipv6 access-group ACL-EXT-HEADER ingress compress level 2
Router(config-if)# commit

TCP Flags in ACLs
Table 4: Feature History Table

DescriptionRelease InformationFeature Name

You can configure an egress IPv6
ACL that permits or denies packets
on the basis of TCP flags set in
them. Through this feature, you can
restrict and manage traffic streams
thereby enhancing network
security.

The following commands are
updated:

• deny (IPv6)

• permit (IPv6)

Release 7.3.15TCP Flags in Egress IPv6 ACLs

The transmission Control Protocol (TCP) is one of the most widely used protocol for data transmission in
networks. The TCP header contains several one-bit boolean fields known as flags used to influence the flow
of data across a TCP connection. TCP packets use TCP flags during a packet transfer to indicate connection
state or provide additional information about the packet transfer. The various TCP flags are SYN, ACK, FIN,
RST, URG, PSH, and EST. The following table provides information about these flags:

You can create ACEs that permit or deny packets based on TCP flags. By using ACLs:

• You can create ACEs that filter packets based on whether a packet has a TCP flag set or not.

• You can filter packets based on the presence or absence of any one TCP flag or combination of multiple
TCP flags.

Implementing Access Lists
26

Implementing Access Lists
TCP Flags in ACLs

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1530923496
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1540283175

Therefore, ACLs based on TCP flags provide increased flexibility to filter packets and provides enhanced
security. For example, ACLs can permit packets that have a SYN flag to ensure that the packets have a verified
source.

TCP Flags

The following TCP flags can be present in a packet:

• SYN: Both the sender and receiver devices use the synchronisation (SYN) flag in only the first packet
that is sent.

• ACK: The receiver devices use the acknowledgment (ACK) flag in the packet that is sent to acknowledge
the successful receipt of a packet.

• FIN: The sender device uses the finished (FIN) flag in the last packet to indicate that there is no more
data to be sent.

• RST: The receiver device uses the reset (RST) flag in the packet sent to the sender device when the
receiver device receives a packet that is not expected.

• URG: The sender device uses the urgent (URG) flag in the packets to notify the receiver device to process
the urgent packets before processing all other packets.

• PSH: The receiver device uses the push (PSH) flag that is similar to the URG flag and tells the receiver
to process these packets as soon as they are received without waiting for any other packets to be received.

• EST: When a remote host receives TCP packets with aSYN flag set and if it does not support such a
service, the remote host replies with an EST flag set in the packet. EST flag signifies both ACK and RST
flags set in the packet.

Configuring ACLs Based on TCP Flags

You can use thematch-any keyword in ACLs to permit or deny packets based on whether any of the configured
TCP flags is set.

This following example shows you how to create an ACL to permit packets that have either the PSH or URG
TCP flags set:
/* Enter the global configuration mode and create an ACL with name ACL-TCP.*/
Router# configure
Router(config)# ipv4 access-list ACL-TCP

/* Configure an ACL that permits packets with TCP flag that is either PSH or URG */
Router(config-ipv4-acl)# 10 permit tcp any any match-any + urg + psh
Router(config-ipv4-acl)# commit

This following example shows you how to create an ACL to permit packets that have either the SYN or ACK
TCP flag set:
/* Enter the global configuration mode and create an ACL with name ACL-TCP. */
Router# configure
Router(config)# ipv4 access-list ACL-TCP

/* Configure an ACL that permits packets with both SYN and ACK TCP flags set. */
Router(config-ipv4-acl)# 10 permit tcp any any match-any + syn + ack
Router(config-ipv4-acl)# commit

This following example shows you how to create an ACL to permit packets that have the SYN flag set or the
ACK flag not set:

Implementing Access Lists
27

Implementing Access Lists
TCP Flags in ACLs

/* Enter the global configuration mode and create an ACL with name ACL-TCP.*/
Router# configure
Router(config)# ipv4 access-list ACL-TCP

/* Configure an ACL that permits packets with the SYN flag set and the ACK flag not set.
*/
Router(config-ipv4-acl)# 10 permit tcp any any match-any + syn - ack
Router(config-ipv4-acl)# commit

You can use the match-all keyword in ACLs to permit or deny packets based on whether all the configured
TCP flags are set.

This following example shows you how to create an ACL to permit packets that have both the URG flag and
FIN flag set:
/* Enter the global configuration mode and create an ACL with name ACL-TCP.*/
Router# configure
Router(config)# ipv4 access-list ACL-TCP

/* Configure an ACL that permits packets with the SYN flag set and the ACK flag not set.
*/
Router(config-ipv4-acl)# 10 permit tcp any any match-all + urg + fin
Router(config-ipv4-acl)# commit

This following example shows you how to create an ACL to permit packets that have both the SYN flag set
and the ACK flag not set:
/* Enter the global configuration mode and create an ACL with name ACL-TCP.*/
Router# configure
Router(config)# ipv4 access-list ACL-TCP

/* Configure an ACL that permits packets with the SYN flag set and the ACK flag not set.
*/
Router(config-ipv4-acl)# 10 permit tcp any any match-all + syn - ack
Router(config-ipv4-acl)# commit

Configuring Extended Access Lists
Use Extended Access Lists to verify more than just the source address of the packets. Attributes such as
destination address, specific IP protocols, UDP or TCP port numbers, DSCP, and so on are validated. Traffic
is controlled by a comparison of the attributes stated in the ACL with those in the incoming or outgoing
packets.

Configuration Example

To configure Extended Access Lists, you must completed create an access list and specify the condition to
allow or deny the network traffic.
/* Enter the global configuration mode and create the access list*/
Router# configure
Router(config)# ipv4 access-list acl_1
Router(config-ipv4-acl)# 10 remark Do not allow user1 to telnet out
/*Specify the condition to allow or deny the network traffic.*/
Router(config-ipv4-acl)# 10 permit 172.16.0.0 0.0.255.255
Router(config-ipv4-acl)# 20 deny 192.168.34.0 0.0.0.255
Router(config-ipv4-acl)commit

Implementing Access Lists
28

Implementing Access Lists
Configuring Extended Access Lists

Running Configuration

Router#show running-config
Mon Jul 29 05:56:14.315 UTC
Building configuration...
!! IOS XR Configuration

!
ipv4 access-list acl_1
10 permit ipv4 172.16.0.0 0.0.255.255 any
20 deny ipv4 192.168.34.0 0.0.0.255 any
!

Verification

Router#show access-lists ipv4 acl_1 hardware ingress location 0/0/CPU0
Tue Jul 2 08:03:29.495 UTC
ipv4 access-list acl_1
66 deny igmp 30.0.20.0 0.0.0.255 30.0.10.0 0.0.0.255 v3-report (11604 matches)
67 deny igmp host 30.0.20.1 host 30.0.10.1 v2-report

IPv4 and IPv6 ACL in Class Map
Quality of Service (Qos) features are enhanced to support these:

• Support on L3 interface, sub-interface, bundle interface and bundle sub-interface

• Support for only ingress direction

• IPv6-supported match fields:

• Destination Port

• Fragment bit

• ICMP type and code

• IGMP type and code

• IPv6 Destination Address

• IPv6 Source Address

• IPv6 Protocol

• Precedence/DSCP

• Source Port

Configuring IPv6 ACL QoS - An Example
This example shows how to configure IPv6 ACL QoS with IPv4 ACL and other fields :

ipv6 access-list aclv6
10 permit ipv6 1111:6666::2/64 1111:7777::2/64 authen
30 permit tcp host 1111:4444::2 eq 100 host 1111:5555::2

Implementing Access Lists
29

Implementing Access Lists
IPv4 and IPv6 ACL in Class Map

!

ipv4 access-list aclv4
10 permit ipv4 host 10.6.10.2 host 10.7.10.2
!

class-map match-any c.aclv6
match access-group ipv6 aclv6
match access-group ipv4 aclv4
match cos 1
end-class-map
!

policy-map p.aclv6
class c.aclv6
set precedence 3

!
class class-default
!
end-policy-map
!

User-Defined TCAM Keys for IPv4 and IPv6
Access-lists use a TCAM (internal and external) to perform the lookup and action resolution on each packet.
The TCAM is a valuable and constrained resource in hardware, which must be shared by multiple features.
Therefore, the space (key width) available for these key definitions is also constrained. A key definition
specifies which qualifier and action fields are available to the ACL feature when performing the lookup.

The key definitions are specific to a given ACL type, which can depend on the following attributes of the
access-list:

• Direction of attachment only for ingress

• Protocol type (IPv4/IPv6)

Because the default key definitions are constrained (do not include all qualifier/action fields), User-Defined
Key (UDK) definitions are supported for the following types:

• Traditional Ingress IPv4 ACL (uncompressed)

• Traditional Ingress IPv6 ACL (uncompressed)

The User-Defined TCAM Key (UDK) functionality provides the flexibility to define your own TCAM key
for ingress, traditional, or IPv4 and IPv6 ACL only:

To include the well-known fields in the default TCAM key, see IPv4 and IPv6 Key Formats, on page 32.

A User-Defined TCAM Key (UDK) can be defined globally or locally per line card. If both global and local
UDK is available for a line card, then global UDK is be ignored for the line card.

A UDK can be configured using the following command:
hw-module profile tcam format access-list [ipv4 | ipv6] field1 field2[location rack/slot/cpu0]

To define UDK globally, you can ignore the location option.
hw-module profile tcam format access-list [ipv4 | ipv6] field1field2

Implementing Access Lists
30

Implementing Access Lists
User-Defined TCAM Keys for IPv4 and IPv6

It is recommeded to use global UDK for Cisco 8000 Series Routers Fixed platform.Note

User-Defined Fields
TCAM key consists of several qualifiers. Use the sets of qualifiers to filter packets for a given ACL. The
User-Defined Field (UDF) allows you to define a custom qualifier by specifying the location and size of the
field, using the following UDF command:

udf udf-name header [inner | outer] [l3 | l4] offset byte-offset length no of bytes

You can add the UDF to a UDK as follows.
hw-module profile tcam format access-list [ipv4 | ipv6] qualifiers [udf1 udf-name udf2
udf-name] [location rack/slot/cpu0]

You can define up to 8 UDFs systemwide. Currently, you can define UDFs globally.Note

Restrictions

• Cisco 8000 Series Routers support UDF only on L3 interfaces and not on L2 ports.

• Deep Packet Inspection is available only up to 128 Bytes inside the packet initiating from the L2 header.

• Cisco 8000 Series Routers support UDF only in ingress direction.

• Cisco 8000 Series Routers support only L3 and L4 base offsets for both inner and outer headers.

• Cisco 8000 Series Routers support only four bytes of match length.

• Modification for UDF configuration is allowed, but you must reload the related line card to be effective
using the reload location node Id command.

• Modification for UDK is not supported using the hw-module profile tcam format command.

First, remove the existing UDK using the no hw-module profile tcam format command, then add a
new UDK definition.

• If you configure UDK, you cannot use the default keys. But you can explicitly define the default fields
in UDK.

Configuration Example

Steps

1. Create an UDF and define UDK.

2. Manually, reload the node on the line card.

3. Configure ACL using fields defined in UDK.

4. Attach ACL to an interface in ingress direction.

Implementing Access Lists
31

Implementing Access Lists
User-Defined Fields

Configuration

The following example shows how to deny packets with the following condition:

• The packets with the source address as 192.0.2.0 and destination address as 203.0.113.0

• The packets with the payload pattern of 0x4567 at an offset of 48 bytes from the L3 header

/* Create an UDF and define global UDK and UDF*\
Router#configure terminal
Router(config)#udf udf_outerl3_2b header outer l3 offset 48 length 2
Router(config)#hw-module profile tcam format access-list ipv4 ipv4-sip ipv4-dip udf1
udf_outerl3_2b

In order to activate/deactivate this ipv4 profile, you must manually reload line cards
Router(config)#exit

/* Reload the node on the Cisco 8000 Series Routers line card*\
Router#reload location 0/8/CPU0
Wed Aug 21 14:12:40.123 UTC
Proceed with reload? [confirm]

Router#:Aug 21 14:12:44.120 UTC: fsdbagg[216]: %PKT_INFRA-FM-4-FAULT_MINOR : ALARM_MINOR
:FABRIC-PLANE-5 :DECLARE :: Fabric Plane-5 DOWN
Router:Aug 21 14:12:44.123 UTC: fsdbagg[216]: %PKT_INFRA-FM-4-FAULT_MINOR : ALARM_MINOR
:FABRIC-PLANE-6 :DECLARE :: Fabric Plane-6 DOWN

/*Configure ACL for User Defined Key*\
Router(config)#ipv4 access-list acl1
Router(config-ipv4-acl)10 deny ipv4 192.0.2.0 203.0.113.0 any udf udf_outerl3_2b 0x4567
0xffff
Router(config-ipv4-acl)#exit
Router(config)#interface HundredGigE 0/0/0/24
Router (config-if)#ipv4 access-group acl1 ingress

The following example shows how to deny the IP in IP Tunneling packet with the following condition:

• Packet with the inner IP header having the DSCP as AF42.

• Packet with the payload pattern of 0x12345678 at offset of 20 bytes from outer layer 4 header.

Router#configure terminal
Router(config)#udf udf_innerl3_1b header inner l3 offset 1 length 1
Router(config)#udf udf_outerl4_4b header outer l4 offset 20 length 4
Router(config)#hw-module profile tcam format access-list ipv4 protocol udf1 udf_innerl3_1b
udf udf_outerl4_4b

IPv4 and IPv6 Key Formats
The following table shows the qualifier fields that are supported in the IPv4 and IPv6 key formats.

You cannot configure destination address and destination object group together for an ACL. Similarly, you
cannot configure source address and source object group together for an ACL.

Note

Implementing Access Lists
32

Implementing Access Lists
IPv4 and IPv6 Key Formats

Table 5: Qualifier Fields Supported in IPv4 and IPv6 Key Formats

Default TCAM KeyParameter

IPv6IPv4

SupportedSupportedDestination Address

SupportedSupportedDestination Object Group

SupportedSupportedDestination Port

SupportedSupportedFragment bit

Not SupportedSupportedFragment offset

Not SupportedSupportedFragment type

SupportedSupportedICMP type and code

SupportedSupportedIGMP type and code

SupportedSupportedPacket Length

SupportedSupportedProtocol/Next Header

SupportedSupportedPrecedence/DSCP

SupportedSupportedSource Object Group

SupportedSupportedSource Address

SupportedSupportedSource Port

SupportedSupportedTCP Flags

Not supportedSupportedTime to live (TTL) Match

Not supportedNot supportedUDF 1-8

IGMP header match for IPv4 in v2 and v3 reports is not supported.Note

The following table shows the action fields supported in the IPv4 and IPv6 key formats.

Table 6: Action Fields Supported in IPv4 and IPv6 Key Formats

Default Action FieldParameter

IPv6IPv4

SupportedSupportedPermit

SupportedSupportedDeny

Implementing Access Lists
33

Implementing Access Lists
IPv4 and IPv6 Key Formats

Default Action FieldParameter

IPv6IPv4

SupportedSupportedNext Hop

Supported for Ingress
only

Supported for Ingress onlyLog

Supports only ingress
Encapsulated Remote
Switch port Analyzer
(ERSPAN)

Supports only ingress Encapsulated Remote
SPAN (ERSPAN)

Capture

Deny stats is always
enabled (permit stats is
enabled by the
hw-module profile stats
acl-permit command)

Deny stats is always enabled (permit stats is
enabled by the hw-module profile stats
acl-permit command)

Stats Counter

Modifying ACLs
This section describes a sample configuration for modification of ACLs.
/ Create an Access List/
Router(config)#ipv4 access-list acl_1

/Add entries (ACEs) to the ACL/
Router(config-ipv4-acl)#10 permit ip host 10.3.3.3 host 172.16.5.34
Router(config-ipv4-acl)#20 permit icmp any any
Router(config-ipv4-acl)#30 permit tcp any host 10.3.3.3
Router(config-ipv4-acl)#end

/Verify the entries of the ACL/:
Router#show access-lists ipv4 acl_1
ipv4 access-list acl_1
10 permit ip host 10.3.3.3 host 172.16.5.34
20 permit icmp any any
30 permit tcp any host 10.3.3.3

*/Add new entries, one with a sequence number "15" and another without a sequence number
to the ACL. Delete an entry with the sequence number "30":*/
Router(config)#ipv4 access-list acl_1
Router(config-ipv4-acl)# 15 permit 10.5.5.5 0.0.0.255
Router(config-ipv4-acl)# no 30
Router(config-ipv4-acl)# permit 10.4.4.4 0.0.0.255
Router(config-ipv4-acl)# commit

*/When an entry is added without a sequence number, it is automatically given a sequence
number
that puts it at the end of the access list. Because the default increment is 10, the entry
will have a sequence
number 10 higher than the last entry in the existing access list*/

/Verify the entries of the ACL:/
Router#show access-lists ipv4 acl_1

Implementing Access Lists
34

Implementing Access Lists
Modifying ACLs

ipv4 access-list acl_1
10 permit ipv4 host 10.3.3.3 host 172.16.5.34

15 permit 10.5.5.5 0.0.0.255---*/newly added ACE (with the sequence number)*/
20 permit icmp any any
30 permit ipv4 10.4.4.0 0.0.0.255 any ---*/newly added ACE (without the sequence number)*/

*/The entry with the sequence number 30, that is, "30 permit tcp any host 10.3.3.3" is
deleted from the ACL*/

You have successfully modified ACLs in operation.

ACLs on Bridge Virtual Interfaces
Table 7: Feature History Table

DescriptionRelease InformationFeature Name

This feature allows traffic
filtering by configuring
ACLs on Bridge Virtual
Interfaces (BVIs). A
single configuration can
be applied for multiple
interfaces that are part of
the BVI. You can
therefore, filter traffic for
a group of interfaces with
a particular purpose.

Release 7.3.1ACLs on BVI

Bridge Virtual Interfaces (BVIs) provide a bridge between the routing and bridging domains on a router. You
can configure BVI with an IP address that operates as a regular routed interface. You can configure an ACL
on a BVI to filter the traffic for the network that uses the interface.

Increased TCAM Consumption with Configuring ACLs on BVIs

The consumption of TCAM resources is impacted in the following manner when ACLs are configured on
BVIs.

• When an ACL is attached to a BVI interface, TCAM entries are programmed on all line cards regardless
of physical interface membership. This process leads to greater consumption of TCAM resources even
on line cards that do not have BVI member interfaces.

• For ingress and egress ACLs, the TCAM entries for the same ACL are shared across interfaces on the
same NPU.

Restrictions for Configuring ACLs on BVIs

You must be aware of the following restrictions before proceeding to configure ACLs on BVIs.

• When you apply a security ACL on a BVI interface, TCAMs are programmed on all NPUs of all linecards.
On a distributed system, ingress ACL stats on a BVI interface are seen on the line card where the L2
interface resides. Egress ACL stats are seen on the linecard of the L3 interface.

Implementing Access Lists
35

Implementing Access Lists
ACLs on Bridge Virtual Interfaces

Configuration

The following section describes the procedure for configuring IPv4 ingress and egress ACLs on BVIs.

To configure IPv4 ingress and egress ACLs on a BVI, use the following procedure with a sample configuration.

1. Enter the Global Configuration mode, and configure an IPv4 ingress ACL.
Router(config)# ipv4 access-list v4-acl-ingress
Router(config-ipv4-acl)# 10 permit tcp any 10.1.1.0/24 dscp cs6
Router(config-ipv4-acl)# 20 deny udp any any eq ssh
Router(config-ipv4-acl)# 30 permit ipv4 any any
Router(config-ipv4-acl)# commit
Router(config-ipv4-acl)# exit

2. Configure an IPv4 egress ACL.
Router(config)# ipv4 access-list v4-acl-egress
Router(config-ipv4-acl)# 10 deny ipv4 any any fragments log
Router(config-ipv4-acl)# 20 deny tcp any any ack
Router(config-ipv4-acl)# 30 permit ipv4 any any
Router(config-ipv4-acl)# commit
Router(config-ipv4-acl)# exit

3. Configure the HundredGigE interface that you must to the BVI, and enable it for Layer 2 transport.
Router(config)# interface HundredGigE 0/0/0/0
Router(config-if)# l2transport
Router(config-if-l2)# commit

4. Attach the ingress and egress ACLs to the BVI.
Router(config)# interface BVI1
Router(config-if)# ipv4 access-group v4-acl-ingress ingress
Router(config-if)# ipv4 access-group v4-acl-egress egress
Router(config-if)# commit
Router(config-if)# exit

5. Configure the bridge domain with the HundredGigE interface and BVI.
Router(config)# l2vpn
Router(config-l2vpn)# bridge group BG1
Router(config-l2vpn-bg)# bridge-domain B1
Router(config-l2vpn-bg-bd)# interface HundredGigE 0/0/0/0
Router(config-l2vpn-bg-bd-ac)# routed interface BVI1
Router(config-l2vpn-bg-bd)# commit
Router(config-l2vpn-bg-bd)# exit
Router(config-l2vpn-bg)# exit
Router(config-l2vpn)# exit

6. Confirm that you have successfully committed the configuration.
Router(config)# show run
...
!
ipv4 access-list v4-acl-egress
10 deny ipv4 any any fragments log
20 deny tcp any any ack
30 permit ipv4 any any
!

Implementing Access Lists
36

Implementing Access Lists
ACLs on Bridge Virtual Interfaces

ipv4 access-list v4-acl-ingress
10 permit tcp any 10.1.1.0/24 dscp cs6
20 deny udp any any eq ssh
30 permit ipv4 any any
!
interface HundredGigE 0/0/0/0
l2transport
!
!
interface BVI1
ipv4 address 209.165.200.224/27
ipv4 access-group v4-acl-ingress ingress
ipv4 access-group v4-acl-egress egress

!
l2vpn
bridge group BG1
bridge-domain B1
interface HundredGigE 0/0/0/0
!
routed interface BVI1
!
!
!
end

7. Exit to the Executive Privileged mode and confirm that the ACLs are in operation.
Router# show access-lists interface bvi1
Tue May 9 10:01:25.732 EDT
Input ACL (common): HundredGigE 0/0/0/0 (interface): v4-acl-ingress
Output ACL: v4-acl-egress

Router# show access-lists summary
Tue May 9 10:02:01.167 EDT
ACL Summary:
Total ACLs configured: 2
Total ACEs configured: 6

Router# show access-lists ipv4 v4-acl-egress hardware egress location 0/0/CPU0
ipv4 access-list v4-acl-egress
10 deny ipv4 any any fragments log (15214 matches)
20 deny tcp any any ack (15214 matches)
30 permit ipv4 any any (15214 matches)

The output clearly shows the configured ACLs, the total number of ACEs (three per ACL), and also the
ACE matches in hardware.

You have successfully configured and enabled IPv4 ingress and egress ACL on a BVI.

Implementing Access Lists
37

Implementing Access Lists
ACLs on Bridge Virtual Interfaces

Configuring ACL-based Forwarding
Table 8: Feature History Table

DescriptionRelease InformationFeature Name

This feature enables the
inclusion of permitted packet
count for ABF in the
hardware profile statistics,
thus providing the
cumulative packet count of
permit and deny ACL and
ABF. This information helps
you plan your traffic
management and distribution
more effectively.

Modified command:

• hw-module profile
stats acl-permit

Permit statistics for
ACL-based Forwarding
(ABF)

Release 7.3.2

Converged networks carry voice, video, and data. Users may need to route certain traffic through specific
paths instead of using the paths computed by routing protocols. This is achieved by specifying the next-hop
address in ACL configurations, so that the configured next-hop address from ACL is used for forwarding
packet towards its destination instead of routing through packet-based destination address lookup. This feature
of using next-hop in ACL configurations for forwarding is called ACL Based Forwarding (ABF).

ACL-based forwarding enables you to choose service from multiple providers for broadcast TV over IP, IP
telephony, data, and so on, which provides a cafeteria-like access to the Internet. Service providers can divert
user traffic to various content providers.

Restrictions

• Traffic outages can occur during transitions from an existing nexthop to another nexthop.

• IPv4 and IPv6 ABF nexthops routed over GRE interfaces are not supported.

• ACL Based Forwarding(ABF) is not supported over BVI.

Feature Highlights

• ABF supports nexthop modifications. You can modify a nexthop, remove a nexthop, or make changes
between existing nexthops.

While defining an ACE rule, you must specify the VRF for all nexthops unless
the nexthop is in the default VRF. This process ensures that the packets take the
right path towards the nexthop.

Note

Implementing Access Lists
38

Implementing Access Lists
Configuring ACL-based Forwarding

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1459049907
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1459049907

• As ABF is ACL-based, packets that do not match an existing rule (ACE) in the ACL are subjected to
the default ACL rule (drop all). If the ACL is being used for ABF-redirect only (not for security), then
include an explicit ACE rule at the end of the ACL (lowest user priority) to match and "permit" all traffic.
This ensures that all traffic that does not match an ABF rule is permitted and forwarded as normal.

• ABF is supported on permit rules only.

• ABF default route is not supported.

• Packets punted in the ingress direction from the NPU to the linecard CPU are not subjected to ABF
treatment due to lack of ABF support in the slow path. These packets will be forwarded normally based
on destination-address lookup by the software dataplane. Some examples of these types of packets are
(but are not limited to) packets with IPv4 options, IPv6 extension headers, and packets destined for glean
(unresolved/incomplete) adjacencies.

• Starting with Cisco IOS XR Release 7.3.2, ABF supports logging of permit statistics. This feature keeps
track of the number of packets that an ACL permits in the routing traffic. To enable logging of permit
statistics for ABF, configure hardware module statistics for ACL prior to configuring the ACL based
forwarding itself. To enable hardware module statistics for ACL, use the hw-module profile stats
acl-permit command in XR Config mode. To disable the tracking of permitted packet count, use the no
form of this command.

After enabling hardware module statistics for ACL, based on the requirement,
you must reboot the line cards or the router.

Note

The following snippet shows you how to configure logging of permit statistics:
Router# configure
Router(config)# hw-module profile stats acl-permit
Fri Aug 7 05:52:58.052 UTC
In order to activate/deactivate this stats profile, you must manually reload the
chassis/all line cards
Router(config)# commit
Fri Aug 7 05:55:50.103 UTC
LC/0/4/CPU0:Aug 7 05:55:50.218 UTC: fia_driver[245]:
%FABRIC-FIA_DRVR-4-STATS_HW_PROFILE_MISMATCH : Mismatch found, reload LC to activate
the new stats profile
Router(config)#

You can use the show access-lists ipv4 or show access-lists ipv6 command to view the ABF statistics.

The following snippet shows the ABF statistics for a IPv4 ACL in a selected interface:
Router#sh access-lists ipv4 test-acl-ipv4 hardware ingress location 0/0/CPU0
Tue Sep 21 07:37:41.297 UTC
ipv4 access-list test-acl-ipv4
10 permit ipv4 any any (14950)

Configuration Example

To configure ACL-based forwarding for IPv4 packets, use the following steps:

1. Enter IPv4 access list configuration mode and configure an ACL.

2. Set the conditions for the ACL.

3. Configure nexthop addresses for ABF.

Implementing Access Lists
39

Implementing Access Lists
Configuring ACL-based Forwarding

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp2919984177
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp3423358576

Configuration

To configure ACL-based forwarding for IPv4 packets, use the following configuration example:
/* Enter IPv4 access list configuration mode and configure an ACL: */
Router# configure
Router(config)# ipv4 access-list abf-acl

/* Set the conditions for the ACL and configure ABF: */
/* The next hop for this entry is specified. */
Router(config-ipv4-acl)# 10 permit ipv4 192.168.18.0 0.255.255.255 any nexthop1 ipv4
192.168.20.2
Router(config-ipv4-acl)# 15 permit ipv4 192.168.21.0 0.0.0.255 any
Router(config-ipv4-acl)# 20 permit ipv4 192.168.22.0 0.0.255.255 any nexthop1 ipv4
192.168.23.2
/* More than two nexthops */
Router(config-ipv4-acl)# 25 permit tcp any range 2000 3000 any range 4000 5000 nexthop1
ipv4 192.168.23.1 nexthop2 ipv4 192.168.24.1 nexthop3 ipv4 192.168.25.1

/* VRF support on ABF */
Router(config-ipv4-acl)# 30 permit tcp any eq www host 192.168.12.2 precedence immediate
nexthop1 vrf vrf1_ipv4 ipv4 192.168.13.2 nexthop2 vrf vrf1_ipv4 ipv4 192.168.14.2

Router(config-ipv4-acl)# 35 permit ipv4 any any

Router(config-ipv4-acl)# commit

To configure ACL-based forwarding for IPv6 packets, use the following configuration example:
/* Enter IPv6 access list configuration mode and configure an ACL: */
Router# configure
Router(config)# ipv6 access-list abf-acl

/* Set the conditions for the ACL and configure ABF: */
/* The next hop for this entry is specified. */
Router(config-ipv6-acl)# 10 permit ipv6 2001:db8::/32 any nexthop1 ipv6 2001:db8::2

/* More than two nexthops */
Router(config-ipv6-acl)# 25 permit tcp any range 2000 3000 any range 4000 5000 nexthop1
ipv6 2001:db8::3 nexthop2 ipv6 2001:db8::4 nexthop3 ipv6 2001:db8::5

/* VRF support on ABF */
Router(config-ipv6-acl)# 30 permit tcp any eq www host 2001:db8::8 precedence immediate
nexthop1 vrf vrf1_ipv6 ipv6 2001:db8::7 nexthop2 vrf vrf1_ipv6 ipv6 2001:db8::6

Router(config-ipv6-acl)# 35 permit ipv6 any any

Router(config-ipv6-acl)# commit

Running Configuration

Router# show access-lists ipv4
ipv4 access-list abf-acl
10 permit ipv4 192.168.18.0 0.255.255.255 any nexthop1 192.168.20.2
15 permit ipv4 192.168.21.0 0.0.0.255 any
20 permit ipv4 192.168.22.0 0.0.255.255 any nexthop1 192.168.23.2
25 permit tcp any range 2000 3000 any range 4000 5000 nexthop1 ipv4 192.168.23.1 nexthop2
ipv4 192.168.24.1 nexthop3 ipv4 192.168.25.1
30 permit tcp any eq www host 192.168.12.2 precedence immediate nexthop1 vrf vrf1_ipv4 ipv4
192.168.13.2 nexthop2 vrf vrf1_ipv4 ipv4 192.168.14.2
35 permit ipv4 any any
!
Router# show access-lists ipv6
ipv6 access-list abf-acl-ipv6

Implementing Access Lists
40

Implementing Access Lists
Configuring ACL-based Forwarding

10 permit ipv6 2001:db8::/32 any nexthop1 ipv6 2001:db8::2
25 permit tcp any range 2000 3000 any range 4000 5000 nexthop1 ipv6 2001:db8::3 nexthop2
ipv6 2001:db8::4 nexthop3 ipv6 2001:db8::5
30 permit tcp any eq www host 2001:db8::8 precedence immediate nexthop1 vrf vrf1_ipv6 ipv6
2001:db8::7 nexthop2 vrf vrf1_ipv6 ipv6 2001:db8::6
35 permit ipv6 any any

Verification

Use the following command to verify the IP nexthop state in ABF to ensure that the expected nexthop is up:

Router# show access-lists ipv4 abf nexthops client pfilter_ea location 0/3/CPU0
Tue May 17 22:25:05.940 UTC

ACL name : abf-acl
ACE seq. NH-1 NH-2 NH-3
--------- --------------------- --------------------- ---------------------

20 Global 192.168.23.2 Not present Not present
status UP Not present Not present
exist No Not present Not present
pd ctx Present Not present Not present

Track not present Track not present --
25 Global 192.168.23.1 Global 192.168.24.1 Global 192.168.25.1

status UP UP UP
exist Yes Yes Yes
pd ctx Present Present Present

Track not present Track not present Track not present

Use the following command to verify if ABF is currently attached to any interfaces at any linecard:
Router# show access-lists usage pfilter location all
sh access-lists ipv4 abf nexthops client pfilter_ea loc 0/RP0/CPU0
Wed Jul 29 20:48:18.559 UTC

ACL name : abf-1
ACE seq. NH-1 NH-2 NH-3
--------- --------------- --------------- ---------------

10 27.138.216.32 28.0.0.2 Not present
status UP UP Not present

at status Not Present Not Present Not present
exist No Yes Not present
vrf default default Not present

track Not present Not present Not present
pd ctx Present Present Not present

Implementing Access Lists
41

Implementing Access Lists
Configuring ACL-based Forwarding

Virtual Routing and Forwarding (VRF) redirect in ABF

Table 9: Feature History Table

DescriptionRelease InformationFeature Name

With this feature, ABF supports
VRF redirect for IPv4 and IPv6
addresses. You can enable this
feature by configuring a VRF as the
next-hop in ABF ACEs.

ABF supports two types of VRF
redirect:

• VRF-select

• VRF-aware

ABFwithVRF redirect enables you
to inject income traffic matching a
ACEs in the ABF to a VRF
network and helps in load balancing
and cost saving.

Release 7.3.3Virtual Routing and Forwarding
(VRF) redirect in ACL Based
Forwarding (ABF)

Starting with Cisco IOS XR Release 7.3.3, ACL-based Forwarding for IPv4 and IPv6 addresses supports
virtual routing and forwarding (VRF) redirect. With this, you could configure the ABF ACEs to forward
incoming traffic matching a ACEs in the ABF packets to a VRF by using it as a next-hop. ABF supports both
VRF-select and VRF-aware redirect. In VRF-select, you could configure only a VRF as the next-hop, and in
VRF-aware, you could configure both VRF and IP address as the next-hop. The ABF VRF redirect supports
three next-hops per ACE.

When an incoming packet matches the permit ACE with VRF redirect, the router forwards that traffic to the
first available VRF specified in the ACE. Then, the traffic injected to VRF is further processed by matching
it against the routes available in the VRF. If the redirected traffic fails to match any routes available in VRF,
a default route redirects the traffic back to the global routing table for lookup and forwarding. In any ACEs
with VRF, if the VRFs are down, then the traffic matching such ACEs are dropped immediately.

The following example shows how to configure ABF with VRF-select:
Router# configure
Router(config)# ipv4 access-list abf-vrf-select
Router(config-ipv4-acl)# 10 permit ipv4 60.1.1.5 0.0.0.255 any nexthop1 vrf VRF1 nexthop2
vrf VRF2 nexthop3 vrf VRF3
Router(config-ipv4-acl)# 11 permit tcp 30.0.10.1 0.0.0.255 30.0.20.1 0.0.0.255 nexthop1 vrf
vrf3 nexthop2 vrf vrf2
Router(config-ipv4-acl)# 12 permit tcp host 30.0.10.1 host 30.0.20.1 match-all +ack +psh
+syn nexthop1 vrf vrf2 nexthop2 vrf vrf3 nexthop3 vrf vrf1
Router(config-ipv4-acl)# 13 permit tcp host 30.0.10.1 host 30.0.20.1 precedence priority
nexthop1 vrf vrf1 nexthop2 vrf vrf2 nexthop3 vrf vrf3
Router(config-ipv4-acl)# commit

The following example shows how to configure ABF with VRF-aware:
Router# configure
Router(config)# ipv4 access-list abf-vrf-aware
Router(config-ipv4-acl)# 10 permit tcp net-group network_object_group_host net-group
network_object_group_host precedence priority nexthop1 vrf vrf1 ipv4 40.1.5.2 nexthop2 vrf
vrf2 ipv4 50.1.5.2 nexthop3 vrf vrf3 ipv4 60.1.5.2

Implementing Access Lists
42

Implementing Access Lists
Configuring ACL-based Forwarding

Router(config-ipv4-acl)# 11 permit tcp 30.0.10.1 0.0.0.255 net-group network_object_group
dscp af22 nexthop1 vrf vrf3 ipv4 60.1.5.2 nexthop2 vrf vrf2 ipv4 50.1.5.2
Router(config-ipv4-acl)# commit

The following commands display ABF-VRF configurations in the router:
Router# show access-lists ipv4 abf-vrf-select
10 permit ipv4 60.1.1.5 0.0.0.255 any nexthop1 vrf VRF1 nexthop2 vrf VRF2 nexthop3 vrf VRF3
11 permit tcp 30.0.10.1 0.0.0.255 30.0.20.1 0.0.0.255 dscp af22 nexthop1 vrf vrf3 nexthop2
vrf vrf2
12 permit tcp host 30.0.10.1 host 30.0.20.1 match-all +ack +psh +syn set nexthop1 vrf vrf2
nexthop2 vrf vrf3 nexthop3 vrf vrf1
13 permit tcp host 30.0.10.1 host 30.0.20.1 precedence priority nexthop1 vrf vrf1 nexthop2
vrf vrf2 nexthop3 vrf vrf3

Router# show access-lists ipv4 abf-vrf-aware
10 permit tcp net-group network_object_group_host net-group network_object_group_host
precedence priority nexthop1 vrf vrf1 ipv4 40.1.5.2 nexthop2 vrf vrf2 ipv4 50.1.5.2 nexthop3
vrf vrf3 ipv4 60.1.5.2
11 permit tcp 30.0.10.1 0.0.0.255 net-group network_object_group dscp af22 nexthop1 vrf
vrf3 ipv4 60.1.5.2 nexthop2 vrf vrf2 ipv4 50.1.5.2

Associated Commands

• ipv4 access-list

• ipv6 access-list

• show access-lists ipv4

• show access-lists ipv6

Associated Topics

• Configuring IPv4 ACLs

• Configuring IPv6 ACLs

Access Control List Counters
In Cisco IOS XR software, ACL counters are maintained both in hardware and software. Hardware counters
are used for packet filtering applications. Software counters are used by all the applications mainly involving
software packet processing.

Software counters are updated for the packets processed in software, for example, exception packets punted
to the LC CPU for processing, or ACL used by routing protocols, and so on. The counters that are maintained
are an aggregate of all the software applications using that ACL. To display software-only ACL counters, use
the show access-lists ipv4 access-list-name [sequence number] command in EXEC mode.

ACL Statistics Counter
The ACL statistics counter feature allows you to track the count of packets that a router either permits or
denies. A router permits or denies packets based on the ACL rules that you configure on a router interface.
By default, the ACL statistics counter allows you to track only the the count of packets denied. By configuring

Implementing Access Lists
43

Implementing Access Lists
Access Control List Counters

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1297145163
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1483417387
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp2919984177
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp3423358576
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/70x/b-ip-addresses-cg-8k-70x/implementing-access_lists.html#concept_cwx_gfr_d3b
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/70x/b-ip-addresses-cg-8k-70x/implementing-access_lists.html#concept_lk5_2fr_d3b

the command, hw-module profile stats acl-permit, you can also track the count of packets that are permitted.
Routers use this knowledge of the count of packets for ACL-based traffic mirroring. Support for ACL permit
counters also allows you to track the ACE through which a router permits a packet.

Restrictions

• ACL-based forwarding (ABF) is not supported on a router after you configure the hw-module profile
stats acl-permit command on that router.

• After you configure the hw-module profile stats acl-permit command on the router, based on the
requirement, you must reload the router or the line cards. Configuring of the command followed by
reloading the router or line cards enables the tracking of the permitted packet count on the router or line
cards.

Configuration Example

To enable the tracking of the permitted packet count based on the ACL rules, use the following steps:

1. Enter global configuration mode and configure an ACL.

2. Enter interface configuration mode and attach the configured ACL on an interface.

3. Enable the tracking of the permitted packet count.

4. Based on the requirement, reload the router or line cards.

Configuration

/* Enter global configuration mode and configure an ACL. */
Router# configure
Router(config)# ipv4 access-list TEST
Router(config-ipv4-acl)# 10 permit ipv4 any any
Router(config-ipv4-acl)# 20 deny udp any any
Router(config-ipv4-acl)# commit
Router(config)# exit

/* Enter the interface configuration mode and attach the configured ACL on an interface.
*/
Router(config)# interface HundredGigE 0/0/0/0
Router(config-if)# ipv4 access-group TEST ingress
Router(config-if)# commit
Router(config-if)# exit

/* Enable the tracking of the permitted packet count. */
Router(config)# hw-module profile stats acl-permit
Router(config)# commit

/* Reload the line cards. */
Router# reload location 0/0/CPU0

Running Configuration

Router# show running-configuration
ipv4 access-list TEST
10 permit ipv4 any any
20 deny udp any any
!
interface HundredGigE 0/0/0/0
ipv4 access-group TEST ingress

Implementing Access Lists
44

Implementing Access Lists
ACL Statistics Counter

!
hw-module profile stats acl-permit
end

Verification

Use the show access-lists ipv4 acl-name hardware ingress location node-id command to verify that you
have enabled or disabled the tracking of the permitted packet count.

Router# show access-lists ipv4 TEST hardware ingress location 0/0/CPU0
ipv4 access-list test-v4-ttl
10 permit ipv4 any any ttl eq 100
20 deny ipv4 any any ttl eq 200 (44043 matches)
Router# configure
Router(config)# hw-module profile stats acl-permit
In order to activate/deactivate this stats profile, you must manually reload the chassis/all
line cards
Router(config)# commit
Router# reload location 0/0/CPU0

Router# show access-lists ipv4 TEST hardware ingress location 0/0/CPU0
ipv4 access-list test-v4-ttl
10 permit ipv4 any any ttl eq 100 (346318 matches)
20 deny ipv4 any any ttl eq 200 (44043 matches)

Configuring ACLs with Fragment Control
The non-fragmented packets and the initial fragments of a packet were processed by IP extended access lists
(if you apply this access list), but non-initial fragments were permitted, by default. However, now, the IP
Extended Access Lists with Fragment Control feature allows more granularity of control over non-initial
fragments of a packet. Using this feature, you can specify whether the system examines non-initial IP fragments
of packets when applying an IP extended access list.

As non-initial fragments contain only Layer 3 information, these access-list entries containing only Layer 3
information, can now be applied to non-initial fragments also. The fragment has all the information the system
requires to filter, so the access-list entry is applied to the fragments of a packet.

This feature adds the optional fragments keyword to the following IP access list commands: deny and
permit . By specifying the fragments keyword in an access-list entry, that particular access-list entry applies
only to non-initial fragments of packets; the fragment is either permitted or denied accordingly.

The behavior of access-list entries regarding the presence or absence of the fragments keyword can be
summarized as follows:

Implementing Access Lists
45

Implementing Access Lists
Configuring ACLs with Fragment Control

Then...If the Access-List Entry has...

For an access-list entry containing only Layer 3 information:

• The entry is applied to non-fragmented packets, initial fragments, and
non-initial fragments.

For an access-list entry containing Layer 3 and Layer 4 information:

• The entry is applied to non-fragmented packets and initial fragments.

• If the entry matches and is a permit statement, the packet or
fragment is permitted.

• If the entry matches and is a deny statement, the packet or fragment
is denied.

• The entry is also applied to non-initial fragments in the followingmanner.
Because non-initial fragments contain only Layer 3 information, only
the Layer 3 portion of an access-list entry can be applied. If the Layer
3 portion of the access-list entry matches, and

• If the entry is a permit statement, the non-initial fragment is
permitted.

• If the entry is a deny statement, the next access-list entry is
processed.

The deny statements are handled differently for non-initial
fragments versus non-fragmented or initial fragments.

Note

...no fragments keyword
and all of the access-list entry
information matches

The access-list entry is applied only to non-initial fragments.

If the fragments keyword is configured for an access-list entry,
the Layer 4 information will be ignored for the non-initial
fragments.

Note

...the fragments keyword
and all of the access-list entry
information matches

You should not add the fragments keyword to every access-list entry, because the first fragment of the IP
packet is considered a non-fragment and is treated independently of the subsequent fragments. Because an
initial fragment will not match an access list permit or deny entry that contains the fragments keyword, the
packet is compared to the next access list entry until it is either permitted or denied by an access list entry that
does not contain the fragments keyword. Therefore, you may need two access list entries for every deny
entry. The first deny entry of the pair will not include the fragments keyword, and applies to the initial
fragment. The second deny entry of the pair will include the fragments keyword and applies to the subsequent
fragments. In the cases where there are multiple deny access list entries for the same host but with different
Layer 4 ports, a single deny access-list entry with the fragments keyword for that host is all that has to be
added. Thus all the fragments of a packet are handled in the same manner by the access list.

Packet fragments of IP datagrams are considered individual packets and each fragment counts individually
as a packet in access-list accounting and access-list violation counts.

Implementing Access Lists
46

Implementing Access Lists
Configuring ACLs with Fragment Control

The fragments cannot be configured for an access-list entry that contains any Layer 4 information.Note

Within the scope of ACL processing, Layer 3 information refers to fields located within the IPv4 header; for
example, source, destination, protocol. Layer 4 information refers to other data contained beyond the IPv4
header; for example, source and destination ports for TCP or UDP, flags for TCP, type and code for ICMP.

Note

Configuring an IPv4 ACL to Match on Fragment Type
Most DoS (Denial of Service) attacks work by flooding the network with fragmented packets. By filtering
the incoming fragments of the packet in a network, an extra layer of protection can be added against such
attacks.

IPv6 Extended Access Lists do not support the configuration of fragment types.Note

You can configure an IPv4 ACL to match on the fragment type, and perform an appropriate action. You can
use the following sample configuration with the different fragment options:

/* Enter the global configuraton mode and configure an IPv4 access list */
Router# config
Router(config)# ipv4 access-list TEST
Router(config-ipv4-acl)# 10 permit tcp any any

/* Configure an ACE to match on the dont-fragment flag (indicates a non-fragmented packet)
and forward the packet to the default (pre-configured) next hop */
Router(config-ipv4-acl)# 20 permit tcp any any fragment-type dont-fragment default

/* Configure an ACE to match on the is-fragment flag (indicates a fragmented packet)
and forward the packet to a next hop of 10.10.10.1 */
Router(config-ipv4-acl)# 30 permit udp any any fragment-type is-fragment nexthop1 ipv4
10.10.10.1

/* Configure an ACE to match on the first-fragment flag (indicates the first fragment of a
fragmented packet)
and forward the packet to a next hop of 20.20.20.1 */
Router(config-ipv4-acl)# 40 permit ospf any any fragment-type first-fragment nexthop1 ipv4
20.20.20.1

/* Configure an ACE to match on the last-fragment flag (indicates the last fragment of a
fragmented packet)
and forward the packet to a next hop of 30.30.30.1 */
Router(config-ipv4-acl)# 50 permit icmp any any fragment-type last-fragment nexthop1 ipv4
30.30.30.1
Router(config-ipv4-acl)# commit

Use Case: Configuring an IPv4 ACL to Match on the First Fragment and Last Fragment

This section describes an use case, where you configure an ACL to forward a fragment if it is the first fragment
of the packet and discard a fragment if it is the last fragment of the packet.

Implementing Access Lists
47

Implementing Access Lists
Configuring an IPv4 ACL to Match on Fragment Type

In this configuration, the ACL checks the fragment offset value ('0' for the first fragment). If the fragment is
the first fragment of the packet, the packet is forwarded. If the fragment is the last fragment of the packet, it
is dropped at the interface.
/* Enter the global configuraton mode and configure an IPv4 access list */
Router# config
Thu Jan 11 11:56:27.221 IST
Router(config)# ipv4 access-list ACLFIRSTFRAG

/* Configure an ACE to match on the first fragment.
If the fragment offset value equals 0, the fragment is forwarded to the 192.168.1.2 next
hop */
Router(config-ipv4-acl)# 10 permit tcp any any fragment-type first-fragment nexthop1 ipv4
192.168.1.2

/* Configure an ACE to match on the last fragment, and drop the fragment at the interface.
*/
Router(config-ipv4-acl)# 20 deny tcp any any fragment-type last-fragment
Router(config-ipv4-acl)# commit
Thu Jan 11 12:01:33.297 IST

/* Validate the configuration */
Router(config-ipv4-acl)# do show access-lists
Thu Jan 11 12:05:23.646 IST
ipv4 access-list ACLFIRSTFRAG
10 permit tcp any any fragment-type first-fragment nexthop1 ipv4 192.168.1.20
20 deny tcp any any fragment-type last-fragment

You have successfully configured an IPv4 ACL to match on the fragment type.

Matching by Fragment Offset in ACLs
You can configure an access control list (ACL) rule to filter packets by the fragment-offset value. Depending
on whether a packet matches the criteria in a permit or deny statement, the packet is either processed or dropped
respectively at the interface. Fragment-offset filtering is supported only on ingress direction with compression
mode of an ACL.

• Fragment offset filtering is supported for IPv4 packets in the default TCAM key for NC57-18DD-SE
line cards, in traditional ACL mode, and not in compressed ACL mode.

• IPv6 Extended Access Lists do not support the configuration of ACLmatching by fragment-offset values.

Note

Configuring ACL Matching by Fragment Offset
To configure fragment-offset match in ACL, use the fragment-offset option in permit or deny command in
IPv4 or IPv6 access-list configuration mode.

For fragment-offset filtering, you must attach the particular ACL to an interface with compression level 2.
Else, the configuration is rejected.

Note

Implementing Access Lists
48

Implementing Access Lists
Matching by Fragment Offset in ACLs

Configuration

This example shows how to specify an ACL rule based on the fragment-offset per IPv4 header. Here, the
packet is permitted only if the fragment-offset in the IPv4 header of the packet is within the range of 300-400.
The value 300-400 is based on the 8-byte unit, which is same as fragment-offset of 2400-3200 bytes.

Running Configuration

ipv4 access-list fragment-offset-acl
10 permit ipv4 any any fragment-offset range 300 400
!

Verify Fragment-offset Match in ACL

Router# show access-lists ipv4 fragment-offset-acl usage pfilter loc 0/4/CPU0

Wed Apr 12 19:49:54.457 UTC
Interface : Bundle-Ether70

Input ACL : Common-ACL : N/A ACL : fragment-offset-acl (comp-lvl 3)
Output ACL : N/A

Router# show access-lists ipv4 fragment-offset-acl hardware ing int Bundle-Ether70 loc
0/4/CPU0

Wed Apr 12 19:51:07.837 UTC
ipv4 access-list fragment-offset-acl
10 permit ipv4 any any fragment-offset range 300 400

Configuring ACL Filtering by IP Packet Length
You can configure an access control list to filter packets by the packet length at an ingress interface. Depending
on whether a packet matches the packet-length condition in a permit or deny statement, the packet is either
processed or dropped respectively at the interface.

To configure packet length filtering in ACL, use the packet-length option in permit or deny command in
IPv4 or IPv6 access-list configuration mode.

Restrictions

Packet length filtering feature in ACL is subjected to these restrictions:

• Packet length filtering is supported only on ingress direction, for both traditional (non-compression) and
hybrid (compression) ACLs.

• IPv6 packet length filtering is supported only for hybrid ACLs; not for traditional ACLs.

• Only quantized (value divisible by 16) packet length filtering is supported for traditional ACLs on IPv4.

• For ACLs with compression level 2, by using the hw-module profile tcam format command, you can
add packet length as a User Defined Field (UDF) along with src-object-group and dst-object-group
as other UDFs.

Implementing Access Lists
49

Implementing Access Lists
Configuring ACL Filtering by IP Packet Length

• For ACLs with compression level 0, by defining packet length along with src-object-group and
dst-object-group as a UDF, you can add packet length as a User Defined Field (UDF) along with src-addr
and dst-addr as other UDFs. For more information, see User-Defined Fields, on page 31.

Configuring Scaled IPv4 ACLs to Filter by Packet Length
To configure a scaled ACL to filter by packet length in IPv4 networks, use the following steps.

1. Enable packet length filtering in the global configuration mode by using the hw-module command.

Router# config
Router(/config)# hw-module profile tcam format access-list ipv4 src-object-group
dst-object-group dst-port proto packet-length frag-bit port-range

2. Enter the global configuration mode and create an object group for configuring a scaled ACL.

Router(config)# object-group network ipv4 netobject1
Router(config-object-group-ipv4)# 50.0.0.0/24
Router(config-object-group-ipv4)# commit

3. From the global configuration mode, configure an IPv4 access list to filter packets by the packet length
value.

In this particular example, we configure a statement to process only those packets that match the specified
packet length condition. All other packets are dropped when this ACL is applied to an ingress interface.

Router# configure
Router(config)# ipv4 access-list scaled_acl1
Router(config-ipv4-acl)# 10 permit ipv4 net-group netobject1 any packet-length eq 1000

4. Commit the ACL and exit the IPv4 ACL configuration mode.
Router(config-ipv4-acl)# commit
Router(config-ipv4-acl)# end

5. Apply the ACL to the required HundredGigE interface.

Router(config)# interface HundredGigE 0/5/0/3
Router(config-if)#ipv4 access-group scaled_acl1 ingress compress level 2

6. Commit the configuration and exit the interface configuration mode.
Router(config-if)# commit
Router(config-if)# end

7. Verify your configuration.

Router# show access-lists scaled_acl1
ipv4 access-list scaled_acl1
10 permit ipv4 net-group netobject1 any packet-length eq 1000

8. Verify the ACL matches in hardware.

Implementing Access Lists
50

Implementing Access Lists
Configuring Scaled IPv4 ACLs to Filter by Packet Length

Router# show access-lists scaled_acl1 hardware ingress location 0/5/CPU0
ipv4 access-list scaled_acl1
10 permit ipv4 net-group netobject1 any packet-length eq 1000 (1500 hw matches)

You have successfully configured a scaled IPv4 ACL to filter by packet length.

Configuring Scaled IPv6 ACLs to Filter by Packet Length
To configure a scaled ACL to filter by packet length in IPv6 networks, use the following steps.

1. Enable packet length filtering in the global configuration mode by using the hw-module command.

Router# config
Router(/config)# hw-module profile tcam format access-list ipv4 src-object-group
dst-object-group dst-port proto packet-length frag-bit port-range

2. Enter the global configuration mode and create an object group for configuring a scaled ACL.

Router(config)# object-group network ipv6 netobject2
Router(config-object-group-ipv6)# 2001::0/128
Router(config-object-group-ipv6)# commit

3. From the global configuration mode, configure a scaled IPv6 access list to filter packets by the packet
length value.

In this particular example, we configure a statement to process only those packets that match the specified
packet length condition. All other packets are dropped when this ACL is applied to an ingress interface.

Router(config)# ipv6 access-list scaled_acl2
Router(config-ipv6-acl)# 10 permit ipv6 net-group netobject2 any packet-length eq 1000
Router(config-ipv6-acl)# commit

4. Commit the ACL and exit the IPv6 ACL configuration mode.
Router(config-ipv6-acl)# commit
Router(config-ipv6-acl)# end

5. Apply the ACL to the required HundredGigE interface.
Router# config
Router(config)# interface HundredGigE 0/5/0/3
Router(config-if)# ipv6 access-group scaled_acl2 ingress compress level 3

6. Commit the configuration and exit the interface configuration mode.
Router(config-if)# commit
Router(config-if)# end

7. Verify your configuration.
Router# show access-lists ipv6 scaled_acl2
ipv6 access-list scaled_acl2
10 permit ipv6 net-group netobject2 any packet-length eq 1000

8. Verify the ACL matches in hardware.
Router# show access-lists ipv6 scaled_acl2 hardware ingress location 0/5/CPU0
ipv6 access-list scaled_acl2
10 permit ipv6 net-group netobject2 any packet-length eq 1000 (2000 hw matches)

Implementing Access Lists
51

Implementing Access Lists
Configuring Scaled IPv6 ACLs to Filter by Packet Length

You have successfully configured a scaled IPv6 ACL to filter by packet length.

Configuring TTL Matching
You can configure ACLs to match on the TTL value specified in the IPv4 header. You can specify the TTL
match condition to be based on a single value, or multiple values.

TTL matching is supported for both ingress and egress ACLs.

Configuration

Use the following steps to configure TTL matching.

/* Configure an IPv4 ACL with the TTL parameters */
Router(config)# ipv4 access-list acl-v4
Router(config-ipv4-acl)# 10 deny tcp any any ttl eq 100
Router(config-ipv4-acl)# 20 permit tcp any any ttl range 1 50
Router(config-ipv4-acl)# 30 permit tcp any any ttl neq 100
Router(config-ipv4-acl)# commit
Thu Nov 2 12:22:58.948 IST

/* Attach the IPv4 ACL to the HundredGigE interface */
Router(config)# interface HundredGigE 0/0/0/0
Router(config-if)# ipv4 address 15.1.1.1 255.255.255.0
Router(config-if)# ipv4 access-group acl-v4 ingress
Router(config-if)# commit

Running Configuration

Validate your configuration by using the show run command.
Router(config)# show run
Thu Nov 2 14:01:53.376 IST
Building configuration...
!! IOS XR Configuration 0.0.0
!! Last configuration change at Thu Nov 2 12:22:59 2017 by annseque
!
ipv4 access-list acl-v4
10 deny tcp any any ttl eq 100
20 permit tcp any any ttl range 1 50
30 permit tcp any any ttl neq 100
!
interface HundredGigE 0/0/0/0
ipv4 address 15.1.1.1 255.255.255.0
ipv4 access-group acl-v4 ingress
!

You have successfully configured TTL matching for IPv4 ACLs.

Understanding IP Access List Logging Messages
Cisco IOS XR software can provide logging messages about packets permitted or denied by a standard IP
access list. That is, any packet that matches the access list causes an informational logging message about the
packet to be sent to the console. The level of messages logged to the console is controlled by the logging
console command in global configuration mode.

Implementing Access Lists
52

Implementing Access Lists
Configuring TTL Matching

The first packet that triggers the access list causes an immediate logging message, and subsequent packets
are collected over 5-minute intervals before they are displayed or logged. The logging message includes the
access list number, whether the packet was permitted or denied, the source IP address of the packet, and the
number of packets from that source permitted or denied in the prior 5-minute interval.

However, you can use the { ipv4 | ipv6 } access-list log-update threshold command to set the number of
packets that, when they match an access list (and are permitted or denied), cause the system to generate a log
message. You might do this to receive log messages more frequently than at 5-minute intervals.

If you set the update-number argument to 1, a log message is sent right away, rather than caching it; every
packet that matches an access list causes a log message. A setting of 1 is not recommended because the volume
of log messages could overwhelm the system.

Caution

Even if you use the { ipv4 | ipv6} access-list log-update threshold command, the 5-minute timer remains
in effect, so each cache is emptied at the end of 5 minutes, regardless of the number of messages in each cache.
Regardless of when the log message is sent, the cache is flushed and the count reset to 0 for that message the
same way it is when a threshold is not specified.

The logging facility might drop some logging message packets if there are too many to be handled or if more
than one logging message is handled in 1 second. This behavior prevents the router from using excessive CPU
cycles because of too many logging packets. Therefore, the logging facility should not be used as a billing
tool or as an accurate source of the number of matches to an access list.

Note

Enable Interface Logging on ACLs
Table 10: Feature History Table

Feature DescriptionRelease InformationFeature Name

We have made it easier for you to
monitor ACL egress traffic, assess
traffic load on an ACL, and
troubleshoot issues. This is made
possible by adding a log option to
the ACEs that are associated with
an interface and identify the packet
counts matching the ACEs. With
this log option, for an egress traffic,
you can fetch information, such as
access list number, packets
permitted or denied, and source or
destination addresses of the
packets.

Release 7.10.1ACL Log Message Collection for
Egress Traffic

Implementing Access Lists
53

Implementing Access Lists
Enable Interface Logging on ACLs

Feature DescriptionRelease InformationFeature Name

Using the log-input keyword, you
can now enable Access Control
Lists (ACLs) to generate log
messages that help you identify the
interface throughwhich a particular
traffic stream ingresses the routers.
This information aids in optimizing
traffic flow across the network.

There was no option to enable
logging of ingress interfaces with
an ACL in earlier releases. This
feature introduces an optional
keyword log-input for the
following commands:

• deny (IPv4)

• deny (IPv6)

• permit (IPv4)

• permit (IPv6)

Release 7.8.1Enable Ingress Interface Logging
on IPv4 and IPv6 ACLs

Enable Ingress Interface Logging

This section shows you how to configure an ACL with the optional keyword log-input. This option provides
the same functionality as the log keyword, except that the log-message also includes the ingress interface on
which the router receives the packet. The router supports this feature for both IPv4 and IPv6 ingress ACLs
on main interfaces, sub-interfaces and bridged-virtual interfaces (BVI).
Router#configure
Router(config)#ipv4 access-list test
Router(config-ipv4-acl)#10 deny udp 10.1.1.0 255.255.255.0 log-input
Router(config-ipv4-acl)#exit
Router(config)# interface FortyGigE0/0/0/22
Router(config-if)# ipv4 access-group test ingress
Router(config-if)# commit

The following snippet shows a sample log message when the you enable this option on an ACE:
Router: ipv4_acl_mgr[132]: %ACL-IPV4_ACL-6-IPACCESSLOGP : access-list test (10) deny udp
10.1.1.2(0) FortyGigE0/0/0/22-> 10.2.2.2(0), 63782 packets

For more information on how to configure IPv4 and IPv6 ACLs, see Configuring IPv4 ACLs, on page 15
and Configuring IPv6 ACLs, on page 18.

Enable Egress Interface Logging

This section shows you how to configure an ACL with the optional keyword log for an egress traffic.

The log message provides the following information:

• access list number

• packet permitted or denied

Implementing Access Lists
54

Implementing Access Lists
Enable Interface Logging on ACLs

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1687552441
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1530923496
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1503104465
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/access-list-commands.html#wp1540283175

• protocol used, such as TCP, UDP, or ICMP

• source and destination addresses

• source and destination port numbers

Configuration Guidelines and Limitations

Following are the configuration guidelines and limitations for the ACL logging for egress traffic:

• The router supports this feature for both IPv4 and IPv6 egress ACLs on main interfaces, sub-interfaces
and bridged-virtual interfaces (BVI).

• This feature is supported only on the Cisco 8000 Series routers that use Q100 and Q200-based line cards.

Configuring ACL Logging for Egress Traffic

To enable egress interface ACL logging, perform the following steps as described in the following example.
In this example, an IPv4 ACL is configured and then the ACL logging is enabled.
Router#configure
Router(config)#ipv4 access-list test-egress-acl
Router(config-ipv4-acl)#10 deny tcp host 30.0.10.1 host 30.0.20.1 precedence priority
Router(config-ipv4-acl)#11 permit tcp 30.0.10.1 0.0.0.255 30.0.20.1 0.0.0.255 dscp af22 log
Router(config-ipv4-acl)#17 deny udp host 30.0.10.1 host 30.0.20.1 precedence priority log
Router(config-ipv4-acl)#exit
Router(config)# interface FourHundredGigE0/1/0/0
Router(config-if)# ipv4 access-group test-egress-acl egress
Router(config-if)# commit

Running Configuration

The following example shows the running configuration of an IPv4 egress ACL with logging enabled on an
interface.
Router#show running-config
Wed May 3 16:09:25.917 UTC
ipv4 access-list test-egress-acl
10 deny tcp host 30.0.10.1 host 30.0.20.1 precedence priority
11 permit tcp 30.0.10.1 0.0.0.255 30.0.20.1 0.0.0.255 dscp af22 log
17 deny udp host 30.0.10.1 host 30.0.20.1 precedence priority log
!
interface FourHundredGigE0/1/0/0
mtu 1530
ipv4 address 30.0.10.2 255.255.255.0
ipv6 address 130:1::2/96
ipv4 access-group test-egress-acl egress
!

Verification

Verify the packet counts for the filtered egress packets on the interface.
Router#show access-lists ipv4 test-egress-acl hardware egress location 0/1/CPU0
Wed May 3 16:09:25.917 UTC
ipv4 access-list test-egress-acl
10 deny tcp host 30.0.10.1 host 30.0.20.1 precedence priority
11 permit tcp 30.0.10.0 0.0.0.255 30.0.20.0 0.0.0.255 dscp af22 log (1440 matches)
17 deny udp host 30.0.10.1 host 30.0.20.1 precedence priority log

Verify the ACL logging message for the egress traffic.
Router#show logging | i permit
Wed May 3 16:12:30.162 UTC

Implementing Access Lists
55

Implementing Access Lists
Enable Interface Logging on ACLs

Router:May 3 16:09:08.251 UTC: ipv4_acl_mgr[431]: %ACL-IPV4_ACL-6-IPACCESSLOGP : access-list
test-egress-acl (11) permit tcp 30.0.10.1(1024) -> 30.0.20.1(1024), 1 packet
Router:May 3 16:10:08.396 UTC: ipv4_acl_mgr[431]: %ACL-IPV4_ACL-6-IPACCESSLOGP : access-list
test-egress-acl (11) permit tcp 30.0.10.1(1024) -> 30.0.20.1(1024), 1000 packet

Per Interface Statistics
When binding ACL to interfaces, you can configure ACE drop counts by using the interface-statistics keyword
in the per-interface mode.

In Cisco 8000 Series Routers, you can allocate up to 8 stats counters per NPU.

This also limits the number of the interface that can support the same ACL in per-interface-stats mode to 8.
Additional binding of the same ACL in per-interface-stats mode will be rejected.

For a specific direction, all interfaces on a line card using the same ACL must be configured in the same stats
mode, if not the subsequent binding will be rejected.

This is true for the bundle interface too. If you add anymember to the existing bundle interface with a different
stats mode, the binding will be rejected.

Note

Configuration Example

Router# interface HundredGigE 0/0/0/0
Router(config-if)#ipv4 address 1.1.1.1 255.255.0.0
Router(config-if)#ipv6 address 2001::1/64
Router(config-if)#ipv4 access-group test ingress interface-statistics
Router(config-if)#commit

Verification

To display deny stats on the interface:
Router#show access-lists ipv4 test hardware ingress interface
FourHundredGigE 0/1/0/0 location 0/1/CPU0

ipv6 access-list test
10 permit ipv6 any 200:23::/64
20 deny udp any any (2356 matches)

Implementing Access Lists
56

Implementing Access Lists
Per Interface Statistics

	Implementing Access Lists
	Understanding Access Lists
	IP Access List Entry Sequence Numbering
	Sequence Numbering Behavior
	Adding Entries with Sequence Numbers: Example
	Adding Entries Without Sequence Numbers: Example

	Applying Access Lists
	Understanding Hybrid ACLs
	Configuring an Object-Group ACL
	Configuring a Network Object-Group ACL
	Configuring a Port Object-Group ACL

	Verifying Object-Group ACL Compression

	Configuring IPv4 ACLs
	Configuring IPv6 ACLs
	TCP Flags in ACLs
	Configuring Extended Access Lists
	IPv4 and IPv6 ACL in Class Map
	Configuring IPv6 ACL QoS - An Example

	User-Defined TCAM Keys for IPv4 and IPv6
	User-Defined Fields
	IPv4 and IPv6 Key Formats

	Modifying ACLs
	ACLs on Bridge Virtual Interfaces
	Configuring ACL-based Forwarding
	Access Control List Counters
	ACL Statistics Counter
	Configuring ACLs with Fragment Control
	Configuring an IPv4 ACL to Match on Fragment Type
	Matching by Fragment Offset in ACLs
	Configuring ACL Matching by Fragment Offset

	Configuring ACL Filtering by IP Packet Length
	Configuring Scaled IPv4 ACLs to Filter by Packet Length
	Configuring Scaled IPv6 ACLs to Filter by Packet Length

	Configuring TTL Matching
	Understanding IP Access List Logging Messages
	Enable Interface Logging on ACLs

	Per Interface Statistics

