
Application Hosting Overview

In today’s networking environment, there is a need for simplifying and automating network management
processes. Application hosting gives administrators a platform for leveraging their own tools and utilities for
network management. Cisco IOS XR supports third-party, off-the-shelf applications that are built using Linux
tool chains. With the software development kit that Cisco provides, users can cross-compile and run custom
applications.

When you manage network devices with applications, you are freed of the task of focusing only on the CLI
based configurations. Because of the abstraction provided by the applications, while the applications do their
job, you can now focus on design and implementation aspects of the network.

The purpose of this chapter is to develop an understanding of the application hosting infrastructure, and the
wide range of use cases that may be right for your need.

• Docker Container Application Hosting, on page 1
• Hosting Third Party Applications in Sandbox Container Using Sandbox Manager, on page 13
• Top Use Cases for Application Hosting, on page 16
• Automated Deployment of Third Party Python Scripts, on page 16

Docker Container Application Hosting
You can create your own container on IOS XR, and host applications within the container. The applications
can be developed using any Linux distribution. Docker container application hosting is suited for applications
that use system libraries that are different from those libraries provided by the IOS XR root file system.

In docker container application hosting, you canmanage the amount of resources (memory and CPU) consumed
by the hosted applications.

Restrictions
MPLS packets are not supported on Linux interfaces.

Docker Container Application Hosting Architecture
This section describes the docker container application hosting architecture.

Application Hosting Overview
1

Figure 1: Docker on IOS XR

The docker client, run from the bash shell, interacts with dockers (docker 1 and docker 2) by using the docker
commands. The docker client sends the docker commands to docker daemon, which, then, executes the
commands. The docker daemon uses the docker.sock Unix socket to communicate with the dockers.

When the docker run command is executed, a docker container is created and started from the docker image.
Docker containers can be either in global-vrf namespace or any other defined namespace (for example,
VRF-blue).

The docker utilizes overlayfs under the /var/lib/docker folder for managing the directories.

To host an application in docker containers, see Hosting an Application in Docker Containers.

App Hosting Components on IOS XR

The following are the components of App Hosting:

• Docker on IOS XR: The Docker daemon is included with the IOS XR software on the base Linux OS.
This inclusion provides native support for running applications inside Docker containers on IOS XR.
Docker is the preferred method for running TPAs on IOS XR.

• Appmgr: While the Docker daemon comes packaged with IOS XR, Docker applications can only be
managed using appmgr. Appmgr allows users to install applications packaged as RPMs and then manage
their lifecycle using the IOS XR CLI and programmable models.

• PacketIO: This is the router infrastructure that implements the packet path between TPAs and IOS XR
running on the same router. It enables TPAs to leverage XR forwarding for sending and receiving traffic.

TPA Security

IOS XR is equipped with inherent safeguards to prevent third party applications from interfering with its role
as a Network OS.

• Although IOSXR doesn't impose a limit on the number of TPAs that can run concurrently, it does impose
constraints on the resources allocated to the Docker daemon, based on the following parameters:

• CPU: By default, ¼ of the CPU per core available in the platform.

Application Hosting Overview
2

Application Hosting Overview
Docker Container Application Hosting Architecture

b-application-hosting-cg-cisco8000_appendix1.pdf#nameddest=unique_14

Starting from IOSXRRelease 24.4.1, you can hard limit the default CPU usage in the range between
25-75% of the total systemCPU using the appmgr resources containers limit cpu value command.
This configuration restricts the TPAs from using more CPU than the set hard limit value irrespective
of the CPU usage by other XR processes.

This example provides the CPU hard limit configuration.
RP/0/RSP0/CPU0:ios(config)#appmgr resources containers limit cpu ?
<25-75> In Percentage

RP/0/RSP0/CPU0:ios(config)#appmgr resources containers limit cpu 25

• RAM: By default, 1 GB of memory is available.

Starting from IOS XR Release 24.4.1, you can hard limit the default memory usage in the range
between 1-25% of the overall systemmemory using the appmgr resources containers limit memory
value command. This configuration restricts the TPAs from using more memory than the set hard
limit value.

This example provides the memory hard limit configuration.
RP/0/RSP0/CPU0:ios(config)#appmgr resources containers limit memory ?
<1-25> In Percentage

RP/0/RSP0/CPU0:ios(config)#appmgr resources containers limit memory 20

• Disk space is restricted by the partition size, which varies by platform and can be checked by
executing "run df -h" and examining the size of the /misc/app_host or /var/lib/docker mounts.

• All traffic to and from the application is monitored by the XR control protection, LPTS.

• Signed Applications are supported on IOS XR. Users have the option to sign their own applications by
onboarding an Owner Certificate (OC) through Ownership Voucher-based workflows as described in
RFC 8366. Once an Owner Certificate is onboarded, users can sign applications with GPG keys based
on the Owner Certificate, which can then be authenticated during the application installation process on
the router.

The table below shows the various functions performed by appmgr.

Monitoring and DebuggingLifecyle ManagerPackage Manager

• Logging, stats, application
health check.

• Forwards docker deamon logs
to XR syslog.

• Allows to execute into docker
shell of running application.

• Handles application
start/stop/kill operations.

• Handles automatic application
reload on:

• Router reboot

• Container crash

• Switchover

• Handles installation of docker
images packaged as RPMs.

• Syncs the required state to
standby to restart apps in cases
of switchover, etc

Application Hosting Overview
3

Application Hosting Overview
Docker Container Application Hosting Architecture

Customize Docker Run Options Using Application Manager
Table 1: Feature History Table

DescriptionRelease InformationFeature Name

You can now leverage Application
Manager to efficiently overwrite
default docker runtime
configurations, tailoring them to
specific parameters like CPU usage,
security settings, and health checks.
You can thus optimize application
performance, maintain fair resource
allocation amongmultiple dockers,
and establish non-default network
security settings to meet specific
security requirements. Additionally,
you can accurately monitor and
reflect the health of individual
applications.

This feature modifies the
docker-run-opts option command.

Release 24.1.1Customize Docker Run Options
Using Application Manager

With this feature, runtime options for docker containerized applications on IOS-XR can be configured during
launch using the appmgr activate" command. AppMgr, which oversees docker containerized applications,
ensures that these runtime options can effectively override default configurations, covering aspects like CPU,
security, and health checks during the container launch.

This feature introduces multiple runtime options that allow users to customize different parameters of docker
containers. The configuration of these runtime options is flexible, as users can use either command or Netconf
for the configuration process. Regardless of the chosen method, runtime options must be added to
docker-run-opts as needed.

The following are the docker run option commands introduced in IOS-XR software release 24.1.1.

Table 2: Docker Run Options

DescriptionDocker Run Option

Number of CPUs--cpus

CPUs in which to allow execution (0-3, 0,1)--cpuset-cpus

Drop Linux capabilities--cap-drop

Sets the username or UID--user, -u

Add additional groups to run--group-add

Run to check health--health-cmd

Time between running the check--health-interval

Application Hosting Overview
4

Application Hosting Overview
Customize Docker Run Options Using Application Manager

DescriptionDocker Run Option

Consecutive failures needed to report unhealthy--health-retries

Start period for the container to initialize before
starting health-retries countdown

--health-start-period

Maximum time to allow one check to run--health-timeout

Disable any container-specified HEALTHCHECK--no-healthcheck

Add a custom host-to-IP mapping (host:ip)--add-host

Set custom DNS servers--dns

Set DNS options--dns-opt

Set custom DNS search domains--dns-search

Container NIS domain name--domainname

Tune host's OOM preferences (-1000 to 1000)--oom-score-adj

Option to set the size of /dev/shm--shm-size

Run an init inside the container that forwards signals
and reaps processes

--init

Set meta data on a container--label, -l

Read in a line delimited file of labels--label-file

Tune container pids limit (set -1 for unlimited)--pids-limit

Working directory inside the container--work-dir

Ulimit options--ulimit

Mount the container's root filesystem as read only--read-only

Mount volumes from the specified container(s)--volumes-from

Signal to stop the container--stop-signal

Timeout (in seconds) to stop a container--stop-timeout

Enable NET_RAW capabilities--cap-addNET_RAW

Prior to IOS-XR software release 24.1.1, only the below mentioned docker run option commands were
supported.

Table 3: Docker Run Options

DescriptionDocker Run Option

Publish a container's port(s) to the host--publish

Application Hosting Overview
5

Application Hosting Overview
Customize Docker Run Options Using Application Manager

DescriptionDocker Run Option

Overwrite the default ENTRYPOINT of the image--entrypoint

Expose a port or a range of ports--expose

Add link to another container--link

Set environment variables--env

Read in a file of environment variables--env-file

Connect a container to a network--network

Container host name--hostname

Keep STDIN open even if not attached--interactive

Allocate a pseudo-TTY--tty

Publish all exposed ports to random ports--publish-all

Bind mount a volume--volume

Attach a filesystem mount to the container--mount

Restart policy to apply when a container exits--restart

Add Linux capabilities--cap-add

Logging driver for the container--log-driver

Log driver options--log-opt

Run container in background and print container ID--detach

Memory limit--memory

Memory soft limit--memory-reservation

CPU shares (relative weight)--cpu-shares

Sysctl options--sysctl

Guidelines and Limitations

• For the options --mount and --volume, only the following values can be configured:

• "/var/run/netns"

• "/var/lib/docker"

• "/misc/disk1"

• "/disk0"

• The maximum allowed size for shm-size option is 64 Mb.

Application Hosting Overview
6

Application Hosting Overview
Customize Docker Run Options Using Application Manager

• Prior to Release 24.4.1, all container logs were recorded with an info severity level (sev-6), regardless
of the docker run time options used. From Release 24.4.1, if the docker run time option -it is used, the
container logs are generated with an info severity level (sev-6). However, if the --it option is not included,
the logs are produced with an error severity level (sev-3).

• From Release 24.4.1, you can use the rsyslog daemon to forward syslog messages to remote syslog
servers. To know more, see Support for logging functionality on third-party applications.

Configuration

This section provides the information on how to configure the docker run time options.

In this example we configure the docker run time option --pids-limit to limit the number of process IDs using
appmgr.
Router#appmgr application alpine_app activate type docker source alpine docker-run-opts
"-it –pids-limit 90" docker-run-cmd "sh"
Router#

In this example we configure the docker run time option --pids-limit to limit the number of process IDs using
Netconf.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>

</target>
<config>
<appmgr xmlns=http://cisco.com/ns/yang/Cisco-IOS-XR-um-appmgr-cfg>

<applications>
<application>
<application-name>alpine_app</application-name>
<activate>
<type>docker</type>

<source-name>alpine</source-name>
<docker-run-cmd>/bin/sh</docker-run-cmd>
<docker-run-opts>-it

--pids-limit=90</docker-run-opts>
</activate>

</application>
</applications>

</appmgr>
</config>

</edit-config>

Verification

This example shows how to verify the docker run time option configuration.
Router# show running-config appmgr
Thu Mar 23 08:22:47.014 UTC
appmgr
application alpine_app
activate type docker source alpine docker-run-opts "-it –pids-limit 90" docker-run-cmd

"sh"
!
!

You can also use docker inspect container id to verify the docker run time option configuration.

Application Hosting Overview
7

Application Hosting Overview
Customize Docker Run Options Using Application Manager

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/system-monitoring/24xx/configuration/guide/b-system-monitoring-cg-cisco8k-24xx/implementing-system-logging.html#rsyslog

Router# docker inspect 25f3c30eb424
[

{
"PidsLimit": 90,

}
]

Prioritize Traffic for TPAs in Sandbox Environments
Table 4: Feature History Table

DescriptionRelease InformationFeature Name

You can now optimize network
performance, implement traffic
segregation, and prevent packet
drops due to congestion for Third
Party Application (TPA) within the
Sandbox environment, improving
reliability and efficiency. This is
achieved through enhanced
LPTS-based traffic prioritization
for TPAs hosted within a sandbox
container.

This feature introduces these
changes:

CLI:

• sandbox flow
TPA-APPMGR-HIGH ports

• sandbox flow
TPA-APPMGR-MEDIUM
ports

• sandbox flow
TPA-APPMGR-LOW ports

Release 24.1.1Prioritize Traffic for TPAs in
Sandbox Environments

With this enhancement, you have the flexibility to categorize traffic flows from TPAs hosted in a sandbox
based on priority levels, offering better granular control over traffic handling. Prior to this release, traffic from
TPAs hosted in a sandbox flowed through a single queue, leading to policer overload and subsequent packet
drop.

Configuring Traffic Prioritization for TPA in a Sandbox

During the configuration of a TPA port, you can now set the priority for the port as High, Medium, or Low.

Configuring high priority traffic port

This example shows how to configure TPA traffic in port 2018 to high LPTS flow priority.
Router(config)# sandbox flow TPA-APPMGR-HIGH ports 2018

Application Hosting Overview
8

Application Hosting Overview
Prioritize Traffic for TPAs in Sandbox Environments

Configuring medium priority traffic port

This example shows how to configure TPA traffic in port 6666 to medium LPTS flow priority.
Router(config)# sandbox flow TPA-APPMGR-MEDIUM ports 6666

Configuring low priority traffic port

This example shows how to configure TPA traffic in port 60100 to low LPTS flow priority.
Router(config)# sandbox flow TPA-APPMGR-LOW ports 60100

Verification

This example shows how to verify TPA traffic prioritization.
Router(config)# show lpts pifib hardware police location

TPA-APPMGR-HIGH 103 np NPU 1940 1000 0 0
0

TPA-APPMGR-HIGH 103 np NPU 1940 1000 1456 0
1

TPA-APPMGR-MED 104 np NPU 1940 1000 0 0
0

TPA-APPMGR-MED 104 np NPU 1940 1000 1455 0
1

TPA-APPMGR-LOW 105 np NPU 1940 1000 0 0
0

TPA-APPMGR-LOW 105 np NPU 1940 1000 1456 0
1

Docker Application Management using IPv6 Address
Table 5: Feature History Table

DescriptionRelease InformationFeature Name

Introduced in this release on: Fixed
Systems(8200, 8700);Modular
Systems (8800 [LC ASIC:
P100]) (select variants only*)

*This feature is now supported on:

• 8212-32FH-M
• 8711-32FH-M

• 88-LC1-12TH24FH-E

Release 24.4.1Docker Application Management
using IPv6 Address

Application Hosting Overview
9

Application Hosting Overview
Docker Application Management using IPv6 Address

DescriptionRelease InformationFeature Name

In this release, you gain the ability
to manage Docker applications
within containers using IPv6
addresses via the router's
management interface. Leveraging
IPv6 addresses provides expanded
addressing options, enhances
network scalability, and enables
better segmentation and isolation
of applications within the network.

Prior to this update, only IPv4
addresses could be used to manage
docker applications.

Release 7.11.1Docker Application Management
using IPv6 Address

The ApplicationManager in IOS-XR software release 7.3.15 introduces support for an application networking
feature that facilitates traffic forwarding across Virtual Routing and Forwarding (VRF) instances. This feature
is implemented through the deployment of a relay agent contained within an independent docker container.

The relay agent acts as a bridge, connecting two network namespaces within the host system and actively
transferring traffic between them. Configurations can be made to establish forwarding between either a single
pair of ports or multiple pairs, based on your network requirements.

One of the main uses of this feature is to allow the management of Linux-based Docker applications that are
running in the default VRF through a management interface. This management interface can be located in a
separate VRF. This feature ensures that Docker applications can be managed seamlessly across different
VRFs.

In the IOS-XR software release 7.11.1, enhancedmanagement capabilities are offered for docker applications.
Now, you can leverage IPv6 addresses to manage applications within docker containers via the management
interface of the Cisco 8000 router. This update provides improved accessibility and control over your Docker
applications using IPv6 addressing. Prior to the IOS-XR software release 7.11.1, application management for
docker containers could only be conducted using IPv4 addresses.

Restrictions and Limitations

In configuring your setup, please consider the following restrictions and limitations:

• VRF Forwarding Limitation: The Virtual Routing and Forwarding (VRF) is only supported for Docker
apps with host networking.

• Relay Agent Availability and Management: The relay agent container is designed to be highly available.
It will be managed by the Application Manager (App Mgr).

• Relay Agent Creation: For each pair of forwarded ports, one relay agent container will be created.

• Port Limitation per Application: The total effective number of ports for each application is limited to
a maximum of 10.

Configure VRF Forwarding
To manage a Docker application using the Application Manager through the Management Interface, follow
these steps:

Application Hosting Overview
10

Application Hosting Overview
Configure VRF Forwarding

Procedure

Step 1 Configure the app manager: The application manager is configured to access the docker application. Use the appmgr
applicationapplication-name keyword to enable and specify configuration parameters for the VRF forwarding. A typical
example would look like this:

Example:
Router#appmgr
Router#application Testapp

Note
The VRF forwarding related run options like --vrf-forward and --vrf-forward-ip-rangewill not be passed to the Docker
engine when the app container is run.

Step 2 Enable Basic Forwarding Between Two Ports: To enable traffic forwarding between two ports in different VRFs, use
the following configuration:

Example:

Router#activate type docker source swanagent docker-run-opts "--vrf-forward vrf-mgmt:5001
vrf-default:8001 --net=host -it"

This command enables traffic on port 5000 at all addresses in vrf-mgmt to be forwarded to the destination veth device
in vrf-default on port 8000.

To enable VRF forwarding between multiple ports, follow the steps below:

• Enable Forwarding Between a Range of Ports: To enable traffic forwarding between port ranges in different
VRFs, use the following configuration:
Router#--vrf-forward vrf-mgmt:5000-5002 vrf-default:8000-8002

This command enables traffic on ports 5000, 5001, and 5002 at all addresses in vrf-mgmt to be forwarded to the
destination veth device in vrf-default on ports 8000, 8001, and 8002 respectively.

• Enable Forwarding Between Multiple VRF Pairs or Port Ranges: To enable traffic forwarding between multiple
VRF pairs, use multiple --vrf-forward command.
Router#--vrf-forward vrf-mgmt:5000 vrf-default:8000 --vrf-forward vrf-mgmt:5003-5004
vrf-default:8003-8004
Router#--vrf-forward vrf-mgmt1:5000 vrf-default:8000 --vrf-forward vrf-mgmt2:5000 vrf-default:8001

You can provide any number of --vrf-forward options, but the total number of port pairs involved should not exceed
10.

Verifying VRF Forwarding for Application Manager
Use the show appmgr application name keyword to verify the VRF forwarding. A typical example would
look like this:
RP/0/RP0/CPU0:ios#show appmgr application name swan info detail
Thu Oct 26 11:59:32.798 UTC
Application: swan
Type: Docker

Application Hosting Overview
11

Application Hosting Overview
Verifying VRF Forwarding for Application Manager

Source: swanagent
Config State: Activated
Docker Information:
Container ID: f230a2396b85f6b3eeb01a8a4450a47e5bd8499fe5cfdb141c2d0fba905b63ec
Container name: swan
Labels:

com.azure.dev.image.build.buildnumber=2.3.2-dev-ricabrah-partho-xr-dev.1+28,com.azure.dev.image.build.definitionname=swanagentXR,com.azure.dev.image.build.repository.uri=https://1Wan@dev.azure.com/1Wan/SWAN/_git/swanagentXR,com.azure.dev.image.system.teamfoundationcollectionuri=https://dev.azure.com/1Wan/,com.azure.dev.image.build.builduri=vstfs:///Build/Build/8518,com.azure.dev.image.build.repository.name=swanagentXR,com.azure.dev.image.build.sourcebranchname=partho-xr-dev,com.azure.dev.image.build.sourceversion=0ebd43521870844688660c131b0921ea7e2dcb27,com.azure.dev.image.system.teamproject=SWAN,image.base.ref.name=mcr.microsoft.com/mirror/docker/library/alpine:3.15

Image: swancr.azurecr.io/swanagentxr-iosxr:2.4.0-0ebd435
Command: "./agentxr"
Created at: 2023-10-26 11:58:45 +0000 UTC
Running for: 48 seconds ago
Status: Up 47 seconds
Size: 0B (virtual 29.3MB)
Ports:
Mounts:

/var/lib/docker/appmgr/config/swanagent/hostname,/var/lib/docker/appmgr/config/swanagent,/var/lib/docker/ems/grpc.sock,/var/run/netns

Networks: host
LocalVolumes: 0
Vrf Relays:
Vrf Relay: vrf_relay.swan.6a98f0ed060bffa
Source VRF: vrf-management
Source Port: 11111
Destination VRF: vrf-default
Destination Port: 10000
IP Address Range: 172.16.0.0/12
Status: Up 45 seconds

Use the show running-config appmgr keyword to check the running configuration.
Router#show running-config appmgr
Thu Oct 26 12:04:06.063 UTC
appmgr
application swan
activate type docker source swanagent docker-run-opts "--vrf-forward vrf-management:11111
vrf-default:10000 -it --restart always --cap-add=SYS_ADMIN --net=host --log-opt max-size=20m
--log-opt max-file=3 -e HOSTNAME=$HOSTNAME -v /var/run/netns:/var/run/netns -v
{app_install_root}/config/swanagent:/root/config -v
{app_install_root}/config/swanagent/hostname:/etc/hostname -v
/var/lib/docker/ems/grpc.sock:/root/grpc.sock"
!
!

Application Hosting Overview
12

Application Hosting Overview
Verifying VRF Forwarding for Application Manager

Hosting Third Party Applications in Sandbox Container Using
Sandbox Manager

Table 6: Feature History Table

Feature DescriptionRelease InformationFeature Name

This release introduces Sandbox Manager for
hosting and functioning third-party client
application in the CentOS 8 based Sandbox
Container. The Sandbox container supports
configuration, deployment, and management of
third-party client applications from the third-party
server. The Sandbox manger uses IOS XR
commands for managing the Sandbox container.

7.5.3Hosting Third Party
Applications in Sandbox
Container Using Sandbox
Manager

The Sandbox container enables you to configure, deploy, and manage third-party client applications through
the respective third-party server over a network. The Sandbox manager activates the Sandbox container using
the APPMGR client library APIs. During the router bootup, the third-party client applications are placed in
the Sandbox container using ZTP and get activated when the sandbox manger is enabled. The third-party
client applications can then connect to the respective server for installing or upgrading applications in the
Sandbox container. Sandbox container operates on CentOS 8, this enables you to control the applications in
the container using the docker commands. All the activated third-party client applications can restart
automatically after a router reload or an RP switchover.

Supported Commands on Sandbox Manager

This section describes the operations and the IOS XR commands that are supported on the sandbox manager:

• Enable and disable sandbox manager: This command is used to enable or disable sandbox manager:

• Enable—

The following command enables the Sandbox Manager:
RP/0/RP0/CPU0:ios#conf
RP/0/RP0/CPU0:ios(config)#sandbox enable
RP/0/RP0/CPU0:ios(config)#commit

• Disable—

The following command disables the Sandbox Manager:
RP/0/RP0/CPU0:ios#conf
RP/0/RP0/CPU0:ios(config)# no sandbox enable
RP/0/RP0/CPU0:ios(config)#commit

• TPA traffic flow prioritization: These commands are used to configure traffic priority for third party
applications within a Sandbox container:

• High priority traffic—

The following command configures TPA traffic in port 2018 to high LPTS flow priority
Router(config)# sandbox flow TPA-APPMGR-HIGH ports 2018

Application Hosting Overview
13

Application Hosting Overview
Hosting Third Party Applications in Sandbox Container Using Sandbox Manager

• Medium priority traffic—

The following command configures TPA traffic in port 6666 to medium LPTS flow priority
Router(config)# sandbox flow TPA-APPMGR-MEDIUM ports 6666

• Low priority traffic—

The following command configures TPA traffic in port 60100 to low LPTS flow priority
Router(config)# sandbox flow TPA-APPMGR-LOW ports 60100

• Show commands

• Info—

The following command shows the Sandbox Manager and application info:
RP/0/RP0/CPU0:ios#show sandbox info
Thu Jun 30 06:56:45.593 UTC

Sandbox Config State: Enabled

APP INFO:
Image: /pkg/opt/cisco/XR/appmgr/images/sandbox-centos.tar.gz
Config state: Activated
Container state: Running

• Detail—

The following command shows the Sandbox Manager and application details:
RP/0/RP0/CPU0:ios#show sandbox detail
Thu Jun 30 06:57:46.724 UTC

Sandbox Config State: Enabled

APP INFO:
Image: /pkg/opt/cisco/XR/appmgr/images/sandbox-centos.tar.gz
Run Options:
--restart always
--cap-add SYS_ADMIN --cap-add NET_ADMIN
--log-opt max-size=10m --log-opt max-file=3
--net host
--mount type=bind,source=/sys/fs/cgroup,target=/sys/fs/cgroup,readonly
--mount type=bind,source=/var/run/netns,target=/netns,bind-propagation=shared
--mount type=bind,source=/opt/sandbox,target=/opt/sandbox,bind-propagation=shared

--mount type=bind,source=/misc/disk1/sandbox,target=/host,bind-propagation=shared

Config state: Activated
Container state: Running

STATS INFO:
Cpu Percentage: 0.01%
Memory Usage: 13.57MiB / 19.42GiB
Net IO: 0B / 0B
Block IO: 0B / 1.2MB
Memory Percentage: 0.07%
pids: 2

• Services—

The following command shows the Sandbox Manager and application services:

Application Hosting Overview
14

Application Hosting Overview
Hosting Third Party Applications in Sandbox Container Using Sandbox Manager

RP/0/RP0/CPU0:ios#show sandbox services
Wed Jul 6 05:59:16.446 UTC
UNIT LOAD ACTIVE SUB DESCRIPTION
-.mount loaded active mounted /
dev-mqueue.mount loaded active mounted POSIX Message Queue File Sys
etc-hostname.mount loaded active mounted /etc/hostname
etc-hosts.mount loaded active mounted /etc/hosts
etc-resolv.conf.mount loaded active mounted /etc/resolv.conf
host.mount loaded active mounted /host
netns-default.mount loaded active mounted /netns/default
netns-global\x2dvrf.mount loaded active mounted /netns/global-vrf
netns-vrf\x2dblue.mount loaded active mounted /netns/vrf-blue
netns-vrf\x2ddefault.mount loaded active mounted /netns/vrf-default
netns-vrf\x2dmanagement.mount loaded active mounted /netns/vrf-management
netns-vrf\x2dred.mount loaded active mounted /netns/vrf-red
netns-xrnns.mount loaded active mounted /netns/xrnns
netns.mount loaded active mounted /netns
proc-acpi.mount loaded active mounted /proc/acpi
proc-bus.mount loaded active mounted /proc/bus
proc-fs.mount loaded active mounted /proc/fs
proc-irq.mount loaded active mounted /proc/irq
proc-kcore.mount loaded active mounted /proc/kcore
proc-keys.mount loaded active mounted /proc/keys
proc-latency_stats.mount loaded active mounted /proc/latency_stats
proc-sched_debug.mount loaded active mounted /proc/sched_debug
proc-scsi.mount loaded active mounted /proc/scsi
proc-sysrq\x2dtrigger.mount loaded active mounted /proc/sysrq-trigger
proc-timer_list.mount loaded active mounted /proc/timer_list
sys-firmware.mount loaded active mounted /sys/firmware
systemd-journald.service loaded active running Journal Service
systemd-tmpfiles-setup.service loaded active exited Create Volatile Files and
Di
-.slice loaded active active Root Slice
system.slice loaded active active System Slice
dbus.socket loaded active listening D-Bus System Message Bus Soc
systemd-journald.socket loaded active running Journal Socket
systemd-shutdownd.socket loaded active listening Delayed Shutdown Socket
basic.target loaded active active Basic System
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
paths.target loaded active active Paths
slices.target loaded active active Slices
sockets.target loaded active active Sockets
swap.target loaded active active Swap
sysinit.target loaded active active System Initialization
timers.target loaded active active Timers
systemd-tmpfiles-clean.timer loaded active waiting Daily Cleanup of Temporary
D

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.

43 loaded units listed. Pass --all to see loaded but inactive units, to
o.
To show all installed unit files use 'systemctl list-unit-files'.

• Access Sandbox—

The following command is used to access sandbox container:
RP/0/RP0/CPU0:ios#bash sandbox
root@ios:/data# exit

Application Hosting Overview
15

Application Hosting Overview
Hosting Third Party Applications in Sandbox Container Using Sandbox Manager

exit
RP/0/RP0/CPU0:ios#

• Linux commands—

The following command is used to run linux commands inside sandbox container:
RP/0/RP0/CPU0:ios#bash sandbox -c linux-command
RP/0/RP0/CPU0:ios#

Top Use Cases for Application Hosting
Some of the top use cases for application hosting are:

• Measure Network Performance: An application can be hosted to measure the bandwidth, throughput
and latency of the network and monitor the performance. An example of such an application is the iPerf
tool.

• Automate Server Management: An application can be hosted to automate the server functions like
upgrading software, allocation of resources, creating user accounts, and so on. Examples of such an
application are the Chef and Puppet configuration management tools.

Automated Deployment of Third Party Python Scripts
DescriptionRelease InformationFeature Name

When you deploy custom or
third-party Python scripts on routers
running IOS XR software using
third-party RPMs, these scripts are
automatically executed. This
streamlines the deployment process
and enhances the speed of script
execution. Traditionally, script
deployment required an external
controller, which used interfaces
like NETCONF, SNMP, and SSH
to communicate with the router.
This feature eliminates the need for
such external controllers,
simplifying the workflow and
improving efficiency.

Release 24.2.1Automated Deployment of Third
Party Python Scripts

Efficient network automation is pivotal in handling extensive cloud-computing networks. The Cisco IOS XR
infrastructure plays a crucial role by enabling automation through the initiation of API calls and execution of
scripts. Traditionally, an external controller is used for this purpose, utilizing interfaces like NETCONF,
SNMP, and SSH to communicate with the router.

This feature streamlines the operational structure by executing automation scripts directly on the router, thus
eliminating the need for an external controller. It allows scripts to leverage Python libraries and access
underlying router information. This approach not only accelerates the execution of various types of scripts

Application Hosting Overview
16

Application Hosting Overview
Top Use Cases for Application Hosting

but also enhances reliability by removing dependencies on the speed and network reachability of an external
controller.

The third party script is automatically executed by the xr_script_scheduler.py script upon the installation of
third-party RPMs. No specific configuration is required to run these scripts after installation.

The below steps provide the information on how to deploy and activate third party script:

Procedure

Step 1 Adding and Activating Scheduler Script - Add and activate scheduler script in in-built script repository - Copy the
"xr_script_scheduler.py" scheduler script to the In-Built Script Repository, and simultaneously activate it using the
following commands:

Example:
cp /path/to/xr_script_scheduler.py /opt/cisco/install-iosxr/base/opt/cisco/ops-script-repo/process/
appmgr activate script name xr_script_scheduler.py
Router#

Replace "/path/to/xr_script_scheduler.py" with the actual path of the script. This command copies the script to the specified
directory and activates it in the XR configuration mode.

This step ensures the script is added to the repository and activated for continuous execution.

Step 2 Verify the Status of Scheduler Script - To confirm the availability of the scheduler script, run the following command
on the router.

Example:
Router# show script status
Tue Oct 24 18:03:09.220 UTC
==

Name | Type | Status | Last Action | Action Time

--

show_interfaces_counters_ecn.py | exec | Ready | NEW | Tue Oct 24 07:10:36 2023

xr_data_collector.py | exec | Ready | NEW | Tue Oct 24 07:10:36 2023

xr_script_scheduler.py | process| Ready | NEW | Tue Oct 24 07:10:36 2023

==
Router#

Ensure that the output displays "Ready" for the "xr_script_scheduler.py" script, indicating that the script checksum is
verified and it is ready to run. This single step provides a quick verification of the scheduler script's status.

Step 3 Configure appmgr to Automatically Run the Scheduler Script - Activate the scheduler script automatically using the
"autorun" option with the following configuration:

Example:

Router(config)#appmgr
Router(config-appmgr)#process-script xr_script_scheduler
Router(config-process-script)#executable xr_script_scheduler.py
Router(config-process-script)#autorun
Router(config-process-script)#commit

Application Hosting Overview
17

Application Hosting Overview
Automated Deployment of Third Party Python Scripts

The 'autorun' configuration has been added to enable automatic activation of the process script. If you prefer manual
activation/deactivation using cli, the 'autorun' configuration line can be skipped.

Step 4 Verify scheduler script is running - To verify if the scheduler script is running, execute the show script execution
command. This command will display a list of OPS scripts currently running. If the scheduler script has been correctly
configured and activated, the scheduler script execution detail will appear in the output.

Example:
Router# show script execution
Tue Oct 24 18:01:56.590 UTC
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1698170509| xr_script_scheduler.py (process) | Tue Oct 24 18:01:49 2023 | 7.68s | None
| Started

--

Execution Details:

Script Name : xr_script_scheduler.py
Version : 7.3.6.14Iv1.0.0
Log location : /harddisk:/mirror/script-mgmt/logs/xr_script_scheduler.py_process_xr_script_scheduler

Arguments :
Run Options : Logging level - INFO, Max. Runtime - 0s, Mode - Background
Events:

1. Event : New

Time : Tue Oct 24 18:01:49 2023
Time Elapsed : 0.00s Seconds
Description : Started by Appmgr

2. Event : Started
Time : Tue Oct 24 18:01:49 2023
Time Elapsed : 0.11s Seconds
Description : Script execution started. PID (15985)

==
Router#

Step 5 Transfer of Third-Party RPMwith Debug/Monitoring Scripts - Transfer the third-party RPM containing debug/monitoring
scripts onto the router. This RPM includes Python scripts for debugging/monitoring and a run parameters JSON file.

Example:
Router# scp user@171.68.251.248:/users/savinaya/rpm-factory/RPMS/x86_64/nms-1.1-24.1.1.x86_64.rpm
/harddisk:

Tue Oct 24 18:02:42.400 UTC
<snip>
Password:
nms-1.1-24.1.1.x86_64.rpm 100% 9664 881.5KB/s 00:00

Router#
Router# dir harddisk:/nms-1.1-24.1.1.x86_64.rpm

Step 6 Install the third-party RPM - Use the appmgr package install CLI command for the installation of the RPM.

Example:
Router# appmgr package install rpm /harddisk:/nms-1.1-24.1.1.x86_64.rpm
Tue Oct 24 18:03:26.685 UTC

Application Hosting Overview
18

Application Hosting Overview
Automated Deployment of Third Party Python Scripts

Router# show appmgr packages installed
Tue Oct 24 19:42:07.967 UTC
Sno Package
--- --
1 nms-1.1-24.1.1.x86_64
Router#

Step 7 Verify the operation of the debug/monitoring scripts - You can verify that these scripts are functioning by executing the
show script execution command.

Example:
Router# show script execution
Tue Oct 24 19:41:15.882 UTC
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1698176223| xr_script_scheduler.py (process) | Tue Oct 24 19:37:02 2023 | 253.32s | None
| Started

1698176224| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:43 2023 | 152.46s | None
| Started

1698176225| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:44 2023 | 152.03s | None
| Started

1698176226| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 19:38:44 2023 | 151.63s | None
| Started

==
Router#

Step 8 Stopping the scheduler script - Stop the scheduler using the appmgr process-script stop command.

Example:
Router# show script execution
Tue Oct 24 20:04:22.021 UTC
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1698176224| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:43 2023 | 234.21s | -9
| Stopped

1698176225| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:44 2023 | 234.43s | -9
| Stopped

1698176226| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 19:38:44 2023 | 234.67s | -9
| Stopped

1698176227| ops/monitor_int_rx_cntr3.py (exec) | Tue Oct 24 19:41:35 2023 | 97.56s | -9
| Stopped

1698176228| ops/monitor_int_rx_cntr4.py (exec) | Tue Oct 24 19:41:36 2023 | 97.19s | -9
| Stopped

1698176229| ops/monitor_int_rx_cntr5.py (exec) | Tue Oct 24 19:41:36 2023 | 96.48s | -9
| Stopped

1698176231| ops/monitor_int_rx_cntr3.py (exec) | Tue Oct 24 19:43:44 2023 | 760.88s | -9
| Stopped

1698176232| ops/monitor_int_rx_cntr4.py (exec) | Tue Oct 24 19:43:44 2023 | 760.53s | -9
| Stopped

1698176233| ops/monitor_int_rx_cntr5.py (exec) | Tue Oct 24 19:43:44 2023 | 760.20s | -9
| Stopped

1698176234| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:44:15 2023 | 202.88s | -9
| Stopped

1698176235| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:44:15 2023 | 203.01s | -9
| Stopped

Application Hosting Overview
19

Application Hosting Overview
Automated Deployment of Third Party Python Scripts

1698176236| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 19:44:16 2023 | 203.17s | -9
| Stopped

1698176237| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:53:41 2023 | 163.99s | -9
| Stopped

1698176238| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:53:41 2023 | 163.52s | -9
| Stopped

1698176239| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 19:53:42 2023 | 163.11s | -9
| Stopped

1698176252| xr_script_scheduler.py (process) | Tue Oct 24 20:00:20 2023 | 220.61s | -15
| Stopped

1698176253| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 20:00:21 2023 | 222.11s | -9
| Stopped

1698176254| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 20:00:21 2023 | 221.76s | -9
| Stopped

1698176255| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 20:00:22 2023 | 221.39s | -9
| Stopped

1698176256| ops/monitor_int_rx_cntr3.py (exec) | Tue Oct 24 20:00:22 2023 | 221.08s | -9
| Stopped

1698176257| ops/monitor_int_rx_cntr4.py (exec) | Tue Oct 24 20:00:23 2023 | 131.46s | -9
| Stopped

1698176258| ops/monitor_int_rx_cntr5.py (exec) | Tue Oct 24 20:00:23 2023 | 220.30s | -9
| Stopped

==
Router#

Application Hosting Overview
20

Application Hosting Overview
Automated Deployment of Third Party Python Scripts

	Application Hosting Overview
	Docker Container Application Hosting
	Restrictions
	Docker Container Application Hosting Architecture
	Customize Docker Run Options Using Application Manager
	Prioritize Traffic for TPAs in Sandbox Environments
	Docker Application Management using IPv6 Address
	Configure VRF Forwarding
	Verifying VRF Forwarding for Application Manager

	Hosting Third Party Applications in Sandbox Container Using Sandbox Manager
	Top Use Cases for Application Hosting
	Automated Deployment of Third Party Python Scripts

