
Controlling the TTL Value of Inner Payload
Header

Cisco 8000 Routers allow you to control the TTL value of inner payload header of IP-in-IP tunnel packets
before it gets forwarded to the next-hop router. This feature enables a router to forward custom formed IP-in-IP
stacked packets even if the inner packet TTL is 1. Therefore, this feature enables you to measure the link-state
and path reachability from end to end in a network.

After you enable or disable the decrement of the TTL value of the inner payload header of a packet, you do
not need to reload the line card.

Note

Configuration

To disable the decrement of the TTL value of inner payload header of an IP-in-IP packet, use the following
steps:

1. Enter the global configuration mode.

2. Disable the decrement of TTL value of inner payload header of an IP-in-IP packet.

Configuration Example

/* Enter the Global Configuration mode. */
Router# configure

/* Disable the decrement of TTL value of inner payload header of an IP-in-IP packet. */
Router(config)# hw-module profile cef ttl tunnel-ip decrement disable
Router(config)# commit

Starting from Release 7.3.3, Cisco IOS XR 8000 router supports a maximum of 16 IP-in-IP decap tunnels
with unique source addresses. If 15 unique tunnel sources are configured that is rounded to 95% of the tunnel
hardware resource OOR threshold level. As a result, the OOR State displays Red in show controllers npu
resources sipidxtbl location all command output.

Note

Controlling the TTL Value of Inner Payload Header
1



Associated Commands

• hw-module profile cef ttl tunnel-ip decrement disable

• IP-in-IP Decapsulation, on page 2
• ECMP Hashing Support for Load Balancing, on page 9

IP-in-IP Decapsulation
Table 1: Feature History Table

DescriptionRelease InformationFeature Name

Your routers are now enhanced to
identify IP packets with multistack
IP header encapsulations and
perform multiple IP header
decapsulations on these packets.
With this ability, you can use IP
packets to travel from the source
endpoint to the destination endpoint
and then back to the source in a
IP-in-IP tunnel This feature
facilitates identification of IP
packets streamlined fault
identification and isolation
processes in your IP-in-IP network.

This feature is enabled by default
and doesn’t require any
configuration changes.

Release 7.3.5IP header decapsulation for
multistack packet in IP-in-IP
tunnels

IP-in-IP encapsulation involves the insertion of an outer IP header over the existing IP header. The source
and destination address in the outer IP header point to the endpoints of the IP-in-IP tunnel. The stack of IP
headers is used to direct the packet over a predetermined path to the destination, provided the network
administrator knows the loopback addresses of the routers transporting the packet. This tunneling mechanism
can be used for determining availability and latency for most network architectures. It is to be noted that the
entire path from source to the destination does not have to be included in the headers, but a segment of the
network can be chosen for directing the packets.

In IP-in-IP encapsulation and decapsulation has two types of packets. The original IP packets that are
encapsulated are called Inner packets and the IP header stack added while encasulation are called the Outer
packets.

The router only supports decapsulation and no encapsulation. Encapsulation is done by remote routers.Note

Staring with Cisco IOS XR Software Release 7.3.5, the routers are enhanced to handle multi-stack for-us
packets within IP-in-IP tunnels efficiently. The for-us packets refers to the IP packets with the the source and
destination terminating on the same router and they are multi-stack when they undergo multiple layers of IP
header encapsulation at ingress, loopback and egress interfaces. With this improvement, your routers can

Controlling the TTL Value of Inner Payload Header
2

Controlling the TTL Value of Inner Payload Header
IP-in-IP Decapsulation

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/Interfaces/b-interfaces-hardware-component-cr-8000/gre-tunnel-interface-commands.html#wp1217724771


identify IP packets with multi-stack tunnelling IP header encapsulations and perform multiple IP header
terminations on these packets. This capability enables you to configure IP packets to travel from the source
endpoint to the destination endpoint and then back to the source, facilitating streamlined fault identification
and isolation processes.

The following topology describes a use case where IP-in-IP encapsulation and decapsulation are used for
different segments of the network from source to destination. The IP-in-IP tunnel consists of multiple routers
that are used to decapsulate and direct the packet through the data center fabric network.

Figure 1: IP-in-IP Decapsulation Through a Data Center Network

The following illustration shows how the stacked IPv4 headers are decapsulated as they traverse through the
decapsulating routers.

Figure 2: IP Header Decapsulation

Stacked IP Header in an Encapsulated Packet

The encapsulated packet has an outer IPv4 header that is stacked over the original IPv4 header, as shown in
the following illustration.

Controlling the TTL Value of Inner Payload Header
3

Controlling the TTL Value of Inner Payload Header
IP-in-IP Decapsulation



Figure 3: Encapsulated Packet

Configuration

You can use the following sample configuration in the routers to decapsulate the packet as it traverses the
IP-in-IP tunnel:

Router(config)# interface loopback 0
Router(config-if)# ipv4 address 127.0.0.1/32
Router(config-if)# no shutdown
Router(config-if)# interface tunnel-ip 10

Controlling the TTL Value of Inner Payload Header
4

Controlling the TTL Value of Inner Payload Header
IP-in-IP Decapsulation



Router(config-if)# ipv4 unnumbered loopback 1
Router(config-if)# tunnel mode ipv4 decap
Router(config-if)# tunnel source loopback 0

• tunnel-ip: configures an IP-in-IP tunnel interface.

• ipv4 unnumbered loopback address: enables ipv4 packet processing without an explicit address, except
for loopback address.

• tunnel mode ipv4 decap: enables IP-in-IP decapsulation.

• tunnel source: indicates the source address for the IP-in-IP decap tunnel with respect to the router
interface.

You can configure the tunnel destination only if you want to decapsulate packets from a particular destination.
If no tunnel destination is configured, then all the ip-in-ip ingress packets on the configured interface are
decapsulated.

Note

Running Configuration

Router# show running-config interface tunnel-ip 10
...
interface tunnel-ip 10
ipv4 unnumbered loopback 1
tunnel mode ipv4 decap

Extended ACL to Match the Outer Header for IP-in-IP Decapsulation

Starting with Cisco IOS XR Software Release 7.0.14, extended ACL has to match on the outer header for
IP-in-IP Decapsulation. Extended ACL support reduces mirrored traffic throughput. This match is based only
on the IPv4 protocol, and extended ACL is applied to the received outermost IP header, even if the outer
header is locally terminated.

Sample configuration:
Router#show running-config interface bundle-Ether 50.5
Tue May 26 12:11:49.017 UTC
interface Bundle-Ether50.5
ipv4 address 101.1.5.1 255.255.255.0
encapsulation dot1q 5
ipv4 access-group ExtACL_IPinIP ingress
ipv4 access-group any_dscpegg egress
!

Router#show access-lists ipv4 ExtACL_IPinIP hardware ingress location$
Tue May 26 12:11:55.940 UTC
ipv4 access-list ExtACL_IPinIP
10 permit ipv4 192.168.0.0 0.0.255.255 any ttl gt 150
11 deny ipv4 172.16.0.0 0.0.255.255 any fragments
12 permit ipv4 any any

Controlling the TTL Value of Inner Payload Header
5

Controlling the TTL Value of Inner Payload Header
IP-in-IP Decapsulation



Configure Tunnel Destination with an Object Group
Table 2: Feature History Table

DescriptionRelease InformationFeature Name

You can now assign an object
group as the destination for an
IP-in-IP decapsulation tunnel.With
this functionality, you could
configure an IPv4 or IPv6 object
group consisting of multiple IPv4
or IPv6 addresses as the destination
for the tunnel instead of a single
IPv4 or IPv6 address. Using an
object group instead of a singular
IP address. This helps reduce the
configuration complexity in the
router by replacing the multiple
tunnels with one destination with a
single decapsulation tunnel that
supports a diverse range of
destinations

The feature introduces these
changes:

• CLI: New tunnel destination
command.

• YANG Data Model: New
object-group option
supported in
Cisco-IOS-XR-um-if-tunnel-cfg.yang
Cisco native model (see
GitHub).

Release 7.5.4Configure Tunnel Destination with
an Object Group

In IP-in-IP Decapsulation, the router accepts a packet on a tunneled interface only when the tunnel IP address
matches the source IP address of the incoming packets. With this implementation, the user needs to configure
separate interface tunnels for each IP address that the router needs to receive the traffic packets. This limitation
often leads to configuration overload on the router.

You can eliminate the configuration overload on the router by assigning an object group as the tunnel destination
for IPv4 and IPv6 traffic types. That is, the router matches the source IP address of the incoming packet against
the object group available as the tunnel destination. The decapsulation tunnel accepts the incoming traffic
packets when there’s a match between the packet source and the object group. Otherwise, the router drops
the packets.

Restrictions

The following restrictions are applicable to the tunnel destination with an object group feature:

• GRE tunnels don’t support configuring object groups as the tunnel destination.

Controlling the TTL Value of Inner Payload Header
6

Controlling the TTL Value of Inner Payload Header
Configure Tunnel Destination with an Object Group

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/Interfaces/b-interfaces-hardware-component-cr-8000/m-gre-tunnel-interface-commands.html#wp1577469727
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr


• The router supports configuring tunnel destination with an object group only when the tunnel source is
tunnel source direct.

• You can configure the object group as tunnel destination only on default VRF.

• Configuring object groups as the tunnel destination isn’t applicable to tunnel encapsulation.

• Subinterfaces don’t support configuring object groups as the tunnel destination.

• Configuring object groups as the tunnel destination feature is mutually exclusive with ACL and QoS
features.

• The tunnel destination feature supports only IPv4 and IPv6 object groups.

• The router does not support changing tunnel configuration after its creation. Configure the tunnel source
direct and tunnel destination with an object group while creating the tunnel only.

Prerequisites

• Define an object group including the network elements for the tunnel destination.

• Enable the tunnel source direct feature. For more information, see decapsulation using tunnel source
direct.

Configuration Example

This section provides an example for configuring the tunnel destination with an object group:

Configuration

IPv4:

Router# configure
/* Configure the IPv4 object group */
Router(config)# object-group network ipv4 Test_IPv4
Router(config-object-group-ipv4)# 192.0.2.0/24
Router(config-object-group-ipv4)# 198.51.100.0/24
Router(config-object-group-ipv4)# 203.0.113.0/24
Router(config-object-group-ipv4)# commit
Router(config-object-group-ipv4)# exit

/* Enters the tunnel configuration mode */
Router(config)# interface tunnel TestIPv4

/* Configures the tunnel mode */
Router(config-if)# tunnel mode ipv4 decap

/* Configures the tunnel to accept all packets with destination address matching the IP
addresses on the router */
Router(config-if)# tunnel source direct

/* Configures the tunnel to accept all packets with destination address that are in the
specified object group */
Router(config-if)# tunnel destination object-group ipv4 Test_IPv4

Router(config-if)# no shutdown
Router(config-if)# commit
Router(config-if)# exit

Controlling the TTL Value of Inner Payload Header
7

Controlling the TTL Value of Inner Payload Header
Configure Tunnel Destination with an Object Group



IPv6:

Router# configure
/* Configure the IPv6 object group */
Router(config)# object-group network ipv6 Test_IPv6
Router(config-object-group-ipv6)# 2001:DB8::/32
Router(config-object-group-ipv6)# 2001:DB8::/48
Router(config-object-group-ipv6)# commit
Router(config-object-group-ipv6)# exit

/* Enters the tunnel configuration mode */
Router(config)# interface tunnel TestIPv6

/* Configures the tunnel mode */
Router(config-if)# tunnel mode ipv6 decap

/* Configures the tunnel to accept all packets with destination address matching the IP
addresses on the router */
Router(config-if)# tunnel source direct

/* Configures the tunnel to accept all packets with destination address that are in the
specified object group */
Router(config-if)# tunnel destination object-group ipv6 Test_IPv6

Router(config-if)# no shutdown
Router(config-if)# commit
Router(config-if)# exit

Running Configuration

Router# show running config object-group
object-group network ipv4 Test_IPv4
192.0.2.0/24
198.51.100.0/24
203.0.113.0/24
!
object-group network ipv6 Test_IPv6
2001:DB8::/32
2001:DB8::/48
!

Router# show interface tunnel TestIPv4
interface TunnelTestIPv4
tunnel mode ipv4 decap
tunnel source direct
tunnel destination object-group ipv4 Test_IPv4
no shutdown

!

Router# show interface tunnel TestIPv6
interface TunnelTestIPv6
tunnel mode ipv6 decap
tunnel source direct
tunnel destination object-group ipv6 Test_IPv6
no shutdown
!

Verification

Router# show tunnel ip ea database

----- node0_0_CPU0 -----
tunnel ifhandle 0x80022cc
tunnel source 161.115.1.2
tunnel destination address group Test_IPv4

Controlling the TTL Value of Inner Payload Header
8

Controlling the TTL Value of Inner Payload Header
Configure Tunnel Destination with an Object Group



tunnel transport vrf table id 0xe0000000
tunnel mode gre ipv4, encap
tunnel bandwidth 100 kbps
tunnel platform id 0x0
tunnel flags 0x40003400
IntfStateUp
BcStateUp
Ipv4Caps
Encap
tunnel mtu 1500
tunnel tos 0
tunnel ttl 255
tunnel adjacency flags 0x1
tunnel o/p interface handle 0x0
tunnel key 0x0, entropy length 0 (mask 0xffffffff)
tunnel QT next 0x0
tunnel platform data (nil)
Platform:
Handle: (nil)
Decap ID: 0
Decap RIF: 0
Decap Recycle Encap ID: 0x00000000
Encap RIF: 0
Encap Recycle Encap ID: 0x00000000
Encap IPv4 Encap ID: 0x4001381b
Encap IPv6 Encap ID: 0x00000000
Encap MPLS Encap ID: 0x00000000
DecFEC DecRcyLIF DecStatsId EncRcyLIF

ECMP Hashing Support for Load Balancing
The system inherently supports the n-tuple hash algorithm. The first inner header in the n-tuple hashing
includes the source port and the destination port of UDP / TCP protocol headers.

The load balancing performs these functions:

• Incoming data traffic is distributed over multiple equal-cost connections.

• Incoming data traffic is distributed over multiple equal-cost connections member links within a bundle
interface.

• Layer 2 bundle and Layer 3 (network layer) load-balancing decisions are taken on IPv4, and IPv6. If it
is an IPv4 or an IPv6 payload, then an n-tuple hashing is done.

• An n-tuple hash algorithm provides more granular load balancing and used for load balancing over
multiple equal-cost Layer 3 (network layer) paths. The Layer 3 (network layer) path is on a physical
interface or on a bundle interface.

• The n-tuple load-balance hash calculation contains:

• Source IP address

• Destination IP address

• IP Protocol type

• Router ID

• Source port

Controlling the TTL Value of Inner Payload Header
9

Controlling the TTL Value of Inner Payload Header
ECMP Hashing Support for Load Balancing



• Destination port

• Input interface

• Flow-label (for IPv6 only)

Controlling the TTL Value of Inner Payload Header
10

Controlling the TTL Value of Inner Payload Header
ECMP Hashing Support for Load Balancing


	Controlling the TTL Value of Inner Payload Header
	IP-in-IP Decapsulation
	Configure Tunnel Destination with an Object Group

	ECMP Hashing Support for Load Balancing


