Configure IP-in-IP Tunnels

This chapter provides conceptual and configuration information for IP-in-IP tunnels.

Table 1: Feature History for Configure Tunnels

Release 7.0.11 This feature was introduced.

Release 7.0.14 Support for the following feature was introduced in Configure Tunnels:

» Extended ACL must match on the outer header for IP-in-IP Decapsulation.

Table 2: Feature History Table

Feature Name

Release Information

Feature Description

IPv4 packets with IPv6 outer
header

Release 24 .4.1

Introduced in this release on: Fixed

Systems(8200, 8700)(select variants
only*); Modular Systems (8800 [LC
ASIC: P100])(select variants only*).

This feature that allows decapsulation of
IPv4 and IPv6 tunnels with IPv6 headers
helps the administrators to benefit from
an improved IPv6 routing and security
without upgrading their entire network
to IPvo6.

*This feature is now supported on:

» 8212-48FH-M

* 8711-32FH-M

» 8712-MOD-M

» 88-LC1-12TH24FH-E
» 88-LC1-52Y8H-EM

» 88-LC1-36EH

Configure IP-in-IP Tunnels .

Configure IP-in-IP Tunnels |

Feature Name Release Information Feature Description
IPv4 packets with IPv6 outer | Release 7.5.3 With this release, decapsulation of IPv4
header and IPv6 tunnels with IPv6 outer headers

are supported.

This feature helps the administrators to
take advantage of the benefits of IPv6,
such as improved routing and security,
without having to upgrade their entire
network to [Pv6.

Overview of IP-in-IP Tunnels

Tunneling provides a mechanism to transport packets of one protocol within another protocol. IP-in-IP
tunneling refers to the encapsulation and decapsulation of an IP packet as a payload in another IP packet.
Cisco 8000 Series Routers support IP-in-IP decapsulation with all possible combinations of IPv4 and IPv6;
that is, IPv4 over IPv4, IPv6 over IPv4, IPv4 over IPv6, and IPv6 over IPv6. For example, an IPv4 over IPv6
refers to an IPv4 packet as a payload encapsulated within an IPv6 packet and routed across an IPv6 network
to reach the destination IPv4 network, where it is decapsulated.

[P-in-IP tunneling can be used to connect remote networks securely or provide virtual private network (VPN)
services.

The following example provides configurations for an [Pv4 or IPv6 tunnel, with the transport VRF as the
default VRF for the following simplified network topology.

Figure 1: IP-in-IP Tunnel Network Topology

CE1 Router CE2 Router
Fatn VOO
FPE1 Router PEZ Router

GO % gioooo IPvd or IPvE Network gooioio % VOGN

Guidelines and Restrictions for Configure IP-in-IP Tunnels

AGE25

* The feature does not support decapsulation tunnels on subinterfaces.
* Only the default Virtual Routing and Forwarding (VRF) instance is supported.
* [Pv6 link local addresses are not supported.

* Regular tunnels cannot use a configured IP address as the tunnel source; only a non-existent I[P address
can be used.

* Configuring multiple interfaces with the same IP address is not supported.
* Each line card can have different number of Network Processor (NP) slices.

* The maximum IPv4 and IPv6 IP-in-IP decapsulation tunnels supported is 64 per slice.

. Configure IP-in-IP Tunnels

| Configure IP-in-IP Tunnels

Configuration Example for IPv4 Tunnel

PE1 Router Configuration

PE2 Router Configuration

interface GigabitEthernet0/0/0/0
!'! Link between PE1-PE2

ipv4 address 100.1.1.1/24

|
interface GigabitEthernet0/0/0/1
!'! Link between CE1-PEl
ipv4 address 20.1.1.1/24

ipv6 address 20::1/64

|
interface tunnel-ip 1
ipv4 address 10.1.1.1/24

ipv6 address 10::1/64

tunnel mode ipv4

tunnel source GigabitEthernet0/0/0/0

tunnel destination 100.1.1.2
|

router static
address-family ipv4 unicast
30.1.1.0/24 tunnel-ipl
address-family ipv6 unicast

30::0/64 tunnel-ipl
|

interface GigabitEthernet0/0/0/0
!'! Link between PE1-PE2

ipv4 address 100.1.1.2/24

|
interface GigabitEthernet0/0/0/1
!'! Link between PE2-CE2
ipv4 address 30.1.1.1/24

ipv6 address 30::1/64

|
interface tunnel-ip 1
ipv4 address 10.1.1.2/24

ipv6 address 10::2/64

tunnel mode ipv4

tunnel source GigabitEthernet0/0/0/0

tunnel destination 100.1.1.1
|

router static

address-family ipv4 unicast
20.1.1.0/24 tunnel-ipl
address-family ipv6 unicast
20::0/64 tunnel-ipl
I

CE1 Router Configuration

CE2 Router Configuration

interface GigabitEthernet0/0/0/1
!'! Link between CE1-PEl
ipv4 address 20.1.1.2 255.255.255.0
ipv6 address 20::2/64
|
router static
address-family ipv4 unicast
30.1.1.0/24 20.1.1.1
address-family ipv6 unicast
30::0/64 20::1
|

interface GigabitEthernet0/0/0/1
!'! Link between CE2-PE2
ipv4 address 30.1.1.2 255.255.255.0
ipv6 address 30::2/64
|
router static
address-family ipv4 unicast
20.1.1.0/24 30.1.1.1
address-family ipv6 unicast
20::0/64 30::1
|

Configuration Example for IPv6 Tunnel

PE1 Router Configuration

PE2 Router Configuration

Configure IP-in-IP Tunnels .

Configure IP-in-IP Tunnels |

interface GigabitEthernet0/0/0/0
'l Link between PE1-PE2
ipv6 address 100::1/64
!
interface GigabitEthernet0/0/0/1
'l Link between CE1-PE1l
vrf RED
ipv4 address 20.1.1.1/24
ipv6 address 20::1/64
!
interface tunnel-ip 1
vrf RED
ipv4 address 10.1.1.1/24
ipv6 address 10::1/64
tunnel mode ipveé
tunnel source GigabitEthernet0/0/0/0
tunnel destination 100::2
!
vrf RED
address-family ipv6 unicast
import route-target
2:1
!
export route-target
2:1
!
address-family ipv4 unicast
import route-target
2:1
!
export route-target
2:1
!
router static
vrf RED
address-family ipv4 unicast
30.1.1.0/24 tunnel-ipl
address-family ipv6 unicast

30::0/64 tunnel-ipl
|

interface GigabitEthernet0/0/0/0
!

interface GigabitEthernet0/0/0/1

interface tunnel-ip 1

vrf RED

router static
vrf RED

! Link between PE1-PE2
ipv6 address 100::2/64

'l Link between PE2-CE2
vrf RED

ipv4 address 30.1.1.1/24
ipv6 address 30::1/64

vrf RED

ipv4 address 10.1.1.2/24

ipv6 address 10::2/64

tunnel mode ipvé

tunnel source GigabitEthernet0/0/0/0

tunnel destination 100::1
!

address-family ipv6 unicast
import route-target
2:1
!
export route-target
2:1
!
address-family ipv4 unicast
import route-target
2:1
!
export route-target
2:1
!

address-family ipv4 unicast
20.1.1.0/24 tunnel-ipl
address-family ipv6 unicast

20::0/64 tunnel-ipl
|

CE1 Router Configuration

CE2 Router Configuration

interface GigabitEthernet0/0/0/1
'l Link between CE1-PE1
ipv4 address 20.1.1.2 255.255.255.0
ipv6 address 20::2/64
|
router static
address-family ipv4 unicast
30.1.1.0/24 20.1.1.1
address-family ipv6 unicast
30::0/64 20::1
|

i
!

router static

a

nterface GigabitEthernet0/0/0/1

! Link between CE2-PE2

ipv4 address 30.1.1.2 255.255.255.0
ipv6 address 30::2/64

address-family ipv4 unicast
20.1.1.0/24 30.1.1.1
ddress-family ipv6 unicast
20::0/64 30::1

|

* Controlling the TTL Value of Inner Payload Header, on page 5

* Time-to-Live uniform mode, on page 5
* [P-in-IP Decapsulation, on page 9

* ECMP Hashing Support for Load Balancing, on page 18

. Configure IP-in-IP Tunnels

| Configure IP-in-IP Tunnels
Controlling the TTL Value of Inner Payload Header .

Controlling the TTL Value of Inner Payload Header

Cisco 8000 Routers allow you to control the TTL value of inner payload header of IP-in-IP tunnel packets
before it gets forwarded to the next-hop router. This feature enables a router to forward custom formed IP-in-IP
stacked packets even if the inner packet TTL is 1. Therefore, this feature enables you to measure the link-state
and path reachability from end to end in a network.

\)

Note After you enable or disable the decrement of the TTL value of the inner payload header of a packet, you do
not need to reload the line card.

Configuration

To disable the decrement of the TTL value of inner payload header of an IP-in-IP packet, use the following
steps:

1. Enter the global configuration mode.

2. Disable the decrement of TTL value of inner payload header of an IP-in-IP packet.

Configuration Example

/* Enter the Global Configuration mode. */
Router# configure

/* Disable the decrement of TTL value of inner payload header of an IP-in-IP packet. */
Router (config) # hw-module profile cef ttl tunnel-ip decrement disable
Router (config) # commit

\}

Note Starting from Release 7.3.3, Cisco IOS XR 8000 router supports a maximum of 16 IP-in-IP decap tunnels
with unique source addresses. If 15 unique tunnel sources are configured that is rounded to 95% of the tunnel
hardware resource OOR threshold level. As a result, the OOR State displays Red in show controllersnpu
resour ces sipidxtbl location all command output.

Associated Commands

» hw-module profile cef ttl tunnel-ip decrement disable

Time-to-Live uniform mode

Time-to-Live (TTL) uniform mode is a mechanism that:

* ensures consistent TTL management by synchronizing the TTL values between inner and outer packet
headers during encapsulation and decapsulation, allowing the receiving device to accurately interpret
the packet's remaining lifespan

Configure IP-in-IP Tunnels .

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/Interfaces/b-interfaces-hardware-component-cr-8000/m-gre-tunnel-interface-commands.html#wp1217724771

Configure IP-in-IP Tunnels |
. Configuration guidelines for TTL uniform mode

» allows you to copy the TTL values from inner headers to outer headers during encapsulation (ENCAP)
and from outer headers to inner headers during decapsulation (DECAP), and

» ensures consistent TTL management across various network scenarios.

For more information on the various network scenarios, see Use cases for TTL uniform mode on a router, on
page 7.

Table 3: Feature History Table

Feature Name Release Information Feature Description

Copy TTL value to IP headers |Release 25.1.1 Introduced in this release on: Fixed
Systems (8200 [ASIC: Q200];
Centralized Systems (8600
[ASIC:Q200]); Modular Systems (8800
[LC ASIC: Q2007)

We've introduced support for
Time-to-Live (TTL) uniform mode,
which ensures consistent TTL
management by synchronizing the TTL
values between inner and outer packet
headers during encapsulation and
decapsulation, allowing the receiving
device to accurately interpret the packet's
remaining lifespan. TTL uniform mode
is enabled only for the pbr vrf-redirect
mode in [P-in-IP tunnels.

Benefits of TTL uniform mode
Enabling TTL uniform mode offers these advantages:

» Enhanced packet integrity and lifespan accuracy: The TTL uniform mode ensures consistent TTL
management by allowing the copying of TTL values between inner and outer headers during encapsulation
and decapsulation. This consistency helps in accurately interpreting the packet's remaining lifespan at
the receiving device.

 Network diagnostics and troubleshooting: By controlling and monitoring the TTL values, you can
better diagnose and troubleshoot network paths and performance issues.

Configuration guidelines for TTL uniform mode

These configuration guidelines apply to the TTL uniform mode:

» Hardware and feature prerequisites: TTL uniform mode is only enabled on the Cisco Silicon One
Q200 ASIC-based systems when the pbr vrf-redirect mode in the hw-module profile command is
enabled.

» Post-configuration requirements: You must reload the router by using the reload location all command
for the configuration changes to take effect.

. Configure IP-in-IP Tunnels

XR-98353
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-hardware-redundancy-commands.html#wp2349928885
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-hardware-redundancy-commands.html#wp3458711819

| Configure IP-in-IP Tunnels

Use cases for TTL uniform mode on a router

Use cases for TTL uniform mode on a router .

This table details the various scenarios of encapsulation and decapsulation, and their corresponding TTL

action that the router performs.

Table 4: Use cases for TTL uniform mode on a router

Use case if the TTL uniform
mode is..

Then..

Example

encapsulation-only

The router decrements the TTL
value and copies the value from
the inner header to outer header.

Consider this example for the
encapsulation-only use case for a packet:

« [nitial state: TTL value of the
packet is 100

» Decrement: The router decrements
the inner header TTL value by one,
making it 99.

» Copy: The router then copies the
inner header TTL value to the outer
header TTL value. The outer header
TTL value becomes 99.

» Result: The inner and outer header
TTL becomes 99, making it
uniform.

decapsulation-only

The router decrements the TTL
value and copies the value from
the outer header to inner header.

Consider this example for the
decapsulation-only use case for a packet:

« | nitial state: The outer header TTL
value is 77 and the inner header
TTL value is 99

» Decrement: The router decreases
the outer header TTL value by 1,
making it 76.

» Copy: The router then copies the
outer header TTL value to the inner
header TTL value.

» Removal: The router removes the
outer header TTL value.

* Result: The final packet TTL value
becomes 76.

Configure IP-in-IP Tunnels .

Configure IP-in-IP Tunnels |
. Use cases for TTL uniform mode on a router

Use case if the TTL uniform Then.. Example
mode is..

decapsulation and encapsulation | The router copies the TTL value | Consider this example for the
from the outer header and applies | encapsulation and decapsulation use case.
it to the new outer header. Such scenarios apple when packet travels
Decrements the TTL value by 1 |through IP tunnels:
and forwards the packet. .
* Encapsulation
* Initial state: TTL value of the
packet is 100

» Decrement: The router
decrements the inner header
TTL value by one, making it
99.

» Copy: The router then copies
the inner header TTL value to
the outer header TTL value.
The outer header TTL value
becomes 99.

* Result: The inner and outer
header TTL becomes 99,
making it uniform.

* Decapsulation

« [nitial state: The outer header
TTL value is 77 and the inner
header TTL value is 99

« Decrement: The router
decreases the outer header TTL
value by 1, making it 76.

» Copy: The router then copies
the outer header TTL value to
the inner header TTL value.

» Removal: The router removes
the outer header TTL value.

* Result: The final packet TTL
value becomes 76.

. Configure IP-in-IP Tunnels

| Configure IP-in-IP Tunnels

IP-in-IP Decapsulation .

Use case if the TTL uniform
mode is..

Then..

Example

decapsulation and lookup

The router copies the TTL value
from the outer header to the inner
header. Decrements the TTL
value by 1 and forwards the
packet.

Consider this example for the
decapsulation and lookup use case for a
packet:

« | nitial state: The outer header TTL
value is 77 and the inner header
TTL value is 99.

» Decrement: The router decreases
the outer header TTL value by 1,
making it 76.

» Copy: The router copies the outer
header TTL value to the inner
header TTL value.

* Removal: The router removes the
outer header TTL value.

* Lookup: The router then forwards
the packet to the next hop.

repair

The router keeps the inner header
TTL value unchanged and
forwards the packet as usual.

The repair use case occurs after
the encapsulation-only and
decapsulation-encapsulation use
cases.

Consider this example for the repair use
case for a packet:

« Initial state: The primary path for
a packet on a tunnel is unavailable.

* Initiaterecycle: The router begins
the recycling of the packet by
re-entering the packet into the
ingress pipeline from the egress
pipeline.

» Header update: The router updates
the packet by replacing the old outer
header with a new outer header.

IP-in-IP Decapsulation

[P-in-IP encapsulation involves the insertion of an outer IP header over the existing IP header. The source
and destination address in the outer IP header point to the endpoints of the IP-in-IP tunnel. The stack of IP
headers is used to direct the packet over a predetermined path to the destination, provided the network
administrator knows the loopback addresses of the routers transporting the packet. This tunneling mechanism
can be used for determining availability and latency for most network architectures. It is to be noted that the
entire path from source to the destination does not have to be included in the headers, but a segment of the
network can be chosen for directing the packets.

Configure IP-in-IP Tunnels .

Configure IP-in-IP Tunnels |

. IP-in-IP Decapsulation

In IP-in-IP encapsulation and decapsulation has two types of packets. The original IP packets that are
encapsulated are called Inner packets and the IP header stack added while encasulation are called the Outer
packets.

\)

Note The router only supports decapsulation and no encapsulation. Encapsulation is done by remote routers.

The following topology describes a use case where IP-in-IP encapsulation and decapsulation are used for
different segments of the network from source to destination. The IP-in-IP tunnel consists of multiple routers
that are used to decapsulate and direct the packet through the data center fabric network.

Figure 2: IP-in-IP Decapsulation Through a Data Center Network

SourteSarver EnEpaknoT)

Sarwar 1 AERWE e

SaWH 2 Al Ewwed

Destinabon Sars 2 [

Q

385389

Data Center Fabric Transport

The following illustration shows how the stacked IPv4 headers are decapsulated as they traverse through the
decapsulating routers.

Figure 3: IP Header Decapsulation

| PF | [sewrz |
Core][o] [owr]

Po S PE @ |» FF @ |

-

SHERD

Bodte Sover Destinalion
[Encapsaation) Servar 2
Stacked IP Header in an Encapsulated Packet

The encapsulated packet has an outer IPv4 header that is stacked over the original IPv4 header, as shown in
the following illustration.

. Configure IP-in-IP Tunnels

| Configure IP-in-IP Tunnels

Figure 4: Encapsulated Packet

IP-in-IP Decapsulation .

[=] Frame
‘—'J EthernetIl
1 - Preamble (hex) fb555555555555d5
Destination MAC 62:19:58:04hE2:68

- Source MAC
i ' EtherType (hex)
;. IPv4 Header

00:10:94:00:00:02
<auto> Internet IP

= Version (int) <auto> 4
- Header length (int) <auto> 5
- ToS/Diffsery tos (0x00)
- Total length (int) <auto> calculated
- Identification (int) 0
- Control Flags
Reserved (bit) 0
- DF Bit (bit) 0
.. MF Bit (bit) 0
- Fragment Offset (int) 0
- Time to live {int) 255
- Protocol (int) <auto=IP
i Chedksum (int) <auto:> 33492
- Source 192 200 200.XX
- Destination 127.0.0.1
- Header Options
_ i - Gateway 192.0.2.10
:'_. IPv4 Header
> Version {int) <auto> 4
Header length (int) <auto> 5
ToS /DiffServ tos (0x00)
Total length (int) <auto> calculated
’ Identification (int) 0
F—] Control Flags
; = Reserved (bit) 0

Configuration

385413

You can use the following sample configuration in the routers to decapsulate the packet as it traverses the
IP-in-IP tunnel:

Router (config) # interface loopback 0

Router (config-if) # ipv4 address 127.0.0.1/32
Router (config-if) # no shutdown

Router (config-if)# interface tunnel-ip 10

Configure IP-in-IP Tunnels .

. IP-in-IP Decapsulation

Configure IP-in-IP Tunnels |

Router (config-if)# ipv4 unnumbered loopback 1
Router (config-if) # tunnel mode ipv4 decap
Router (config-if) # tunnel source loopback 0

\}

* tunnel-ip: configures an IP-in-IP tunnel interface.

* ipv4 unnumbered loopback address: enables ipv4 packet processing without an explicit address, except
for loopback address.

« tunnel mode ipv4 decap: enables IP-in-IP decapsulation.

« tunnel source: indicates the source address for the IP-in-IP decap tunnel with respect to the router
interface.

Note

You can configure the tunnel destination only if you want to decapsulate packets from a particular destination.
If no tunnel destination is configured, then all the ip-in-ip ingress packets on the configured interface are
decapsulated.

Running Configuration

Router# show running-config interface tunnel-ip 10

interface tunnel-ip 10
ipv4 unnumbered loopback 1
tunnel mode ipv4 decap

Extended ACL to Match the Outer Header for IP-in-IP Decapsulation

Starting with Cisco IOS XR Software Release 7.0.14, extended ACL has to match on the outer header for
[P-in-IP Decapsulation. Extended ACL support reduces mirrored traffic throughput. This match is based only
on the IPv4 protocol, and extended ACL is applied to the received outermost IP header, even if the outer
header is locally terminated.

Sample configuration:

Router#show running-config interface bundle-Ether 50.5
Tue May 26 12:11:49.017 UTC

interface Bundle-Ether50.5

ipv4 address 101.1.5.1 255.255.255.0

encapsulation dotlg 5

ipv4 access-group ExtACL IPinIP ingress

ipv4 access-group any dscpegg egress

Router#show access-lists ipv4 ExtACL IPinIP hardware ingress location$
Tue May 26 12:11:55.940 UTC

ipv4d access-list ExtACL_IPinIP

10 permit ipv4 192.168.0.0 0.0.255.255 any ttl gt 150

11

deny ipv4 172.16.0.0 0.0.255.255 any fragments

12 permit ipv4 any any

. Configure IP-in-IP Tunnels

| Configure IP-in-IP Tunnels

Decapsulation using tunnel source direct .

Decapsulation using tunnel source direct

Table 5: Feature History Table

Feature Name Release Information Feature Description
Decapsulation using tunnel Release 24.4.1 Introduced in this release on: Fixed
source direct Systems (8700 [ASIC:K100])

This feature support is now
extended to the Cisco
8712-MOD-M routers.

Decapsulation using tunnel Release 7.5.3 Tunnel source direct allows you to
source direct decapsulate the tunnels on any L3
interface on the router.

You can use the tunnel source
direct configuration command to
choose the specific IP Equal-Cost
Multipath (ECMP) links for
troubleshooting, when there are
multiple IP links between two
devices.

To debug faults in various large networks, you may have to capture and analyze the network traffic at a packet
level. In datacenter networks, administrators face problems with the volume of traffic and diversity of faults.
To troubleshoot faults in a timely manner, DCN administrators must identify affected packets inside large
volumes of traffic. They must track them across multiple network components, analyze traffic traces for fault
patterns, and test or confirm potential causes.

In some networks, IP-in-IP decapsulation is currently used in network management, to verify ECMP availability
and to measure the latency of each path within a datacenter.

The Network Management System (NMS) sends IP-in-IP (IPv4 or IPv6) packets with a stack (multiple) of
predefined IPv4 or IPv6 headers (device IP addresses). The destination device at each hop removes the outside
header, performs a lookup on the next header, and forwards the packets if a route exists.

Using the tunnel sourcedirect command, you can choose the specific [P Equal-Cost Multipath (ECMP)
links for troubleshooting, when there are multiple IP links between two devices.

Je

Tip

You can programmatically configure and manage the Ethernet interfaces using openconfig-ethernet-if.yang
and openconfig-interfaces.yang OpenConfig data models. To get started with using data models, see the
Programmability Configuration Guide for Cisco 8000 Series Routers.

Guidelines and Limitations

The following guidelines are applicable to this feature.

» The tunnel sourcedirect command is only compatible with 'tunnel mode decap' for IP-in-IP decapsulation.

* The source-direct tunnel is always operationally up unless it is administratively shut down. The directly
connected interfaces are identified using the show ip route direct command.

Configure IP-in-IP Tunnels .

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/interfaces/b-ncs5500-interfaces-cli-reference/b-ncs5500-interfaces-cli-reference_chapter_0110.html#wp2887642008
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/interfaces/b-ncs5500-interfaces-cli-reference/b-ncs5500-interfaces-cli-reference_chapter_0110.html#wp2887642008

Configure IP-in-IP Tunnels |
. Configure Decapsulation Using Tunnel Source Direct

+ All Layer 3 interfaces that are configured on the device are supported.

* Platform can accept and program only certain number of IP addresses. The number of IP addresses
depends on the make of the platform linecard (LC). Each LC can have different number of Network
Processor (NP) slices and interfaces.

* Only one source-direct tunnel per address-family is supported for configuration.

* Source-direct and regular decap tunnels can't co-exist for a specific address-family. Any configuration
that attempts to enable both is automatically rejected, and an error message is displayed to indicate the
conflict.

* Inline modification of an existing regular decap tunnel (tunnel source interface| IP address) to a
source-direct tunnel (tunnel sourcedirect), or changing a source-direct tunnel to a regular decap tunnel,
is not supported. Commit-replace may fail if the same tunnel-id is used as part of the commit-replace
operation. You must delete the tunnel and recreate it.

The following functionalities are not supported for the tunnel source direct option.

* GRE tunneling mode.

* VRF (only default VRF is supported).
* ACL and QoS on the tunnels.

* Tunnel encapsulation.

* Tunnel NetlO DLL: Decapsulation is not supported if the packet is punted to slow path.

Configure Decapsulation Using Tunnel Source Direct

Configuration

The tunnel source direct configures IP-in-IP tunnel decapsulation on any directly connected IP addresses.
This option is now supported only when the IP-in-IP decapsulation is used to source route the packets through
the network.

This example shows how to configure IP-in-IP tunnel decapsulation on directly connected IP addresses:

Router# configure terminal

Router (config) #interface Tunnel4
Router (config) #tunnel mode ipv4 decap
Router (config) #tunnel source direct
Router (config) #no shutdown

This example shows how to configure IP-in-IP tunnel decapsulation on IPv6 enabled networks:

Router# configure terminal

Router (config) #interface Tunnel6
Router (config) #tunnel mode ipv6é decap
Router (config) #tunnel source direct
Router (config) #no shutdown

Verifying the Configuration

The following example shows how to verify IP-in-IP tunnel decapsulation with tunnel source direct option:

Router#show running-config interface tunnel 1
interface Tunnell

. Configure IP-in-IP Tunnels

| Configure IP-in-IP Tunnels
Configure Tunnel Destination with an Object Group .

tunnel mode ipvé6ipv6 decapsulate-any
tunnel source direct
no shutdown

Router#show interface tunnel 1

Tunnell is up Admin State: up

MTU 1460 bytes, BW 9 Kbit

Tunnel protocol/transport IPv6/DECAPANY/IPv6

Tunnel source - direct

Tx 0 packets output, 0 bytes Rx 0 packets input, 0 bytes

Configure Tunnel Destination with an Object Group

Table 6: Feature History Table

Feature Name Release Information Description
Configure Tunnel Destination with | Release 7.5.4 You can now assign an object
an Object Group group as the destination for an

IP-in-IP decapsulation tunnel. With
this functionality, you could
configure an [Pv4 or IPv6 object
group consisting of multiple [Pv4
or IPv6 addresses as the destination
for the tunnel instead of a single
IPv4 or IPv6 address. Using an
object group instead of a singular
IP address. This helps reduce the
configuration complexity in the
router by replacing the multiple
tunnels with one destination with a
single decapsulation tunnel that
supports a diverse range of
destinations

The feature introduces these
changes:

* CLI:New tunnel destination
command.

* YANG Data Model: New
object-group option
supported in
Cisoo-lOS-XR-unvif-tunnel-cfg yang
Cisco native model (see
GitHub).

In IP-in-IP Decapsulation, the router accepts a packet on a tunneled interface only when the tunnel IP address
matches the source IP address of the incoming packets. With this implementation, the user needs to configure
separate interface tunnels for each IP address that the router needs to receive the traffic packets. This limitation
often leads to configuration overload on the router.

Configure IP-in-IP Tunnels .

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/Interfaces/b-interfaces-hardware-component-cr-8000/m-gre-tunnel-interface-commands.html#wp1577469727
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr

Configure IP-in-IP Tunnels |
. Configure Tunnel Destination with an Object Group

You can eliminate the configuration overload on the router by assigning an object group as the tunnel destination
for IPv4 and IPv6 traffic types. That is, the router matches the source IP address of the incoming packet against
the object group available as the tunnel destination. The decapsulation tunnel accepts the incoming traffic
packets when there’s a match between the packet source and the object group. Otherwise, the router drops
the packets.

Restrictions
The following restrictions are applicable to the tunnel destination with an object group feature:

* GRE tunnels don’t support configuring object groups as the tunnel destination.

* The router supports configuring tunnel destination with an object group only when the tunnel source is
tunnel source direct.

* You can configure the object group as tunnel destination only on default VRF.
* Configuring object groups as the tunnel destination isn’t applicable to tunnel encapsulation.
* Subinterfaces don’t support configuring object groups as the tunnel destination.

* Configuring object groups as the tunnel destination feature is mutually exclusive with ACL and QoS
features.

* The tunnel destination feature supports only IPv4 and IPv6 object groups.

* The router does not support changing tunnel configuration after its creation. Configure the tunnel source
direct and tunnel destination with an object group while creating the tunnel only.

Prerequisites

* Define an object group including the network elements for the tunnel destination.

* Enable the tunnel source direct feature. For more information, see Decapsulation using tunnel source
direct, on page 13.

Configuration example
This section provides an example for configuring the tunnel destination with an object group.

I Pv4 configuration

Router# configure

/* Configure the IPv4 object group */

Router (config) # object-group network ipv4 Test IPv4
Router (config-object-group-ipv4)# 192.0.2.0/24
Router (config-object-group-ipv4) # 198.51.100.0/24
Router (config-object-group-ipv4) # 203.0.113.0/24
Router (config-object-group-ipv4) # commit
Router (config-object-group-ipv4) # exit

/* Enters the tunnel configuration mode */
Router (config) # interface tunnel-ip 1

/* Configures the tunnel mode */
Router (config-if) # tunnel mode ipv4 decap

/* Configures the tunnel to accept all packets with destination address matching the IP
addresses on the router */

. Configure IP-in-IP Tunnels

| Configure IP-in-IP Tunnels
Configure Tunnel Destination with an Object Group .

Router (config-if) # tunnel source direct

/* Configures the destination of the tunnel as the defined object-group */
Router (config-if) # tunnel destination object-group ipv4 Test IPv4

Router (config-if) # no shutdown
Router (config-if) # commit
Router (config-if) # exit

I Pv6 configuration

Router# configure

/* Configure the IPv6 object group */

Router (config) # object-group network ipvé Test IPvé6
Router (config-object-group-ipvé) # 2001:DB8::/32
Router (config-object-group-ipv6) # 2001:DB8::/48
Router (config-object-group-ipv6) # commit

Router (config-object-group-ipv6) # exit

/* Enters the tunnel configuration mode */
Router (config) # interface tunnel-ip 2

/* Configures the tunnel mode */
Router (config-if) # tunnel mode ipvé decap

/* Configures the tunnel to accept all packets with destination address matching the IP
addresses on the router */
Router (config-if) # tunnel source direct

/* Configures the destination of the tunnel as the defined object-group */
Router (config-if) # tunnel destination object-group ipvé Test IPvé6

Router (config-if) # no shutdown
Router (config-if) # commit
Router (config-if) # exit

Running Configuration

Router# show running-config object-group
object-group network ipv4 Test IPv4
192.0.2.0/24
198.51.100.0/24
203.0.113.0/24
|
object-group network ipvé Test IPv6
2001:DB8::/32
2001:DB8::/48
|

Router#show running-config interface tunnel-ip 1
interface tunnel-ipl

tunnel mode ipv4 decap

tunnel source direct

tunnel destination object-group ipv4 Test IPv4
I

Router#show running-config interface tunnel-ip 2
Fri Nov 29 11:26:54.716 UTC

interface tunnel-ip2

tunnel mode ipvé decap

tunnel source direct

tunnel destination object-group ipvé Test IPv6
|

Verification

Configure IP-in-IP Tunnels .

Configure IP-in-IP Tunnels |
. ECMP Hashing Support for Load Balancing

Router# show tunnel ip ea database

————— node0_0_CPUO -----

tunnel ifhandle 0x80022cc

tunnel source 161.115.1.2

tunnel destination address group Test_IPv4
tunnel transport vrf table id 0xe0000000
tunnel mode gre ipv4, encap

tunnel bandwidth 100 kbps

tunnel platform id 0x0

tunnel flags 0x40003400

IntfStateUp

BcStateUp

Ipv4Caps

Encap

tunnel mtu 1500

tunnel tos 0

tunnel ttl 255

tunnel adjacency flags 0Oxl

tunnel o/p interface handle 0x0
tunnel key 0x0, entropy length 0 (mask Oxffffffff)
tunnel QT next 0x0

tunnel platform data (nil)

Platform:

Handle: (nil)

Decap ID: 0

Decap RIF: 0

Decap Recycle Encap ID: 0x00000000
Encap RIF: O

Encap Recycle Encap ID: 0x00000000
Encap IPv4 Encap ID: 0x4001381lb

Encap IPv6 Encap ID: 0x00000000

Encap MPLS Encap ID: 0x00000000
DecFEC DecRcyLIF DecStatsId EncRcyLIF

ECMP Hashing Support for Load Balancing

The system inherently supports the n-tuple hash algorithm. The first inner header in the n-tuple hashing
includes the source port and the destination port of UDP / TCP protocol headers.

The load balancing performs these functions:

* Incoming data traffic is distributed over multiple equal-cost connections.

* Incoming data traffic is distributed over multiple equal-cost connections member links within a bundle
interface.

* Layer 2 bundle and Layer 3 (network layer) load-balancing decisions are taken on IPv4, and IPv6. If it
is an IPv4 or an IPv6 payload, then an n-tuple hashing is done.

* An n-tuple hash algorithm provides more granular load balancing and used for load balancing over
multiple equal-cost Layer 3 (network layer) paths. The Layer 3 (network layer) path is on a physical
interface or on a bundle interface.

* The n-tuple load-balance hash calculation contains:

 Source IP address

 Destination IP address

. Configure IP-in-IP Tunnels

| Configure IP-in-IP Tunnels

* [P Protocol type
* Router ID

* Source port

* Destination port
* Input interface

* Flow-label (for IPv6 only)

User-defined fields for ECMP hashing

Table 7: Feature History Table

User-defined fields for ECMP hashing .

Feature Name

Release Information

Description

User-defined fields for ECMP
hashing

Release 24.4.1

Introduced in this release on: Fixed
Systems (8700) (select variants
only*)

*This feature is now supported on
Cisco 8712-MOD-M routers.

Configure IP-in-IP Tunnels .

. User-defined fields for ECMP hashing

Configure IP-in-IP Tunnels |

Feature Name

Release Information

Description

User-defined fields for ECMP
hashing

Release 24.2.11

We ensure that in cases where
multiple paths are used to carry
packets from source to destination,
each path is utilized for this purpose
and no path is over-utilized or
congested. This is made possible
because we now provide
customized ECMP hashing fields
that are used for path computation.

Previously, the router relied on
fixed packet header fields for
hashing, which were not user
configurable. With additional
user-defined bytes considered for
hashing, the granularity at which
the traffic can be analyzed for
ECMP load balancing increases,
resulting in better load balancing
and path utilization.

The feature introduces these
changes:

CLI:

« cef load-balancing fields
user-data

* The show cef exact-route
command is modified with a
new user-data keyword.

* The show cef ipv4
exact-route command is
modified with a new
user-data keyword.

* The show cef ipv6
exact-route command is
modified with a new
user-data keyword.

YANG:

* New Xpath for
Cisco-TO53R-8000-fibplatform-cfg. varng
(see Github, YANG Data
Models Navigator).

ECMP hashing is used to distribute traffic across multiple equal-cost paths. See ECMP Hashing Support for
Load Balancing, on page 18 for the default static hashing algorithm details.

. Configure IP-in-IP Tunnels

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/bgp/b-ncs5500-bgp-cli-reference/b-ncs5500-bgp-cli-reference_chapter_01.html#wp2033778090
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/bgp/b-ncs5500-bgp-cli-reference/b-ncs5500-bgp-cli-reference_chapter_01.html#wp2033778090
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/m-cisco-express-forwarding-commands.html#wp2203255988
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/m-cisco-express-forwarding-commands.html#wp3182749348
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/m-cisco-express-forwarding-commands.html#wp3182749348
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/m-cisco-express-forwarding-commands.html#wp3436028600
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/m-cisco-express-forwarding-commands.html#wp3436028600
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

| Configure IP-in-IP Tunnels
Configure User-Defined Fields for ECMP Hashing .

You can now add user-defined packet header fields for ECMP path calculation for ipv4 and ipv6 flows using
the cef load-balancing fields user-data command. Ensure you specify these user-defined fields based on the
type of traffic flow that requires load balancing. You can include the following parameters:

» Hash header: The hash header specifies which packet header is being considered for load balancing.
You can enable any or all of the available six profiles.

* [Pv4: tcp, udp, non-tcp-udp
* [Pv6: tcp, udp, non-tcp-udp
If any hash header profile is defined for load balancing, along with the fixed fields considered for hashing,
additional bytes in the payload are also used for path computation.
 Hashing offset: The hashing offset specifies the byte location from the end of the configured header.

+ Hash size: The hash size specifies the number of bytes that is considered from the start of the hash offset
by the ECMP hashing algorithm. Range is 1 to 4 bytes.

» Location: This specifies the location of the ingress line card that receives the incoming traffic. The
user-defined hashing configuration is applied on the specified line card.

The addition of the user-defined packer header fields increases the granularity at which the traffic is analyzed
for ECMP load balancing. When multiple paths with equal cost are available for routing a specific type of
packet from a source to a destination, this granularity ensures that the intended type of traffic is evenly
distributed across these paths. This ensures all available paths are used efficiently and prevents congestion or
over-utilization of a single path.

You can also retrieve the exact-route information based on the configured user-data using the show cef
exact-route command with user-data keyword.

\}

Note * When the user-defined hashing configuration is active, any additional options or optional keywords are
disregarded during the parsing of incoming packets for retrieving the user-defined bytes.

* The hashing results based on user-defined hash feature is applicable to BGP/IGP ECMP and LAG hashing.

* The use of the user-defined hashing configuration changes the load balancing behavior of GRE and
IPinIP traffic. This includes all traffic that begins with ipv4, ipv6, ipv4-+udp, ipv6+udp, ipv4d+tcp, and
ipv6t+tep, regardless of the payload.

Configure User-Defined Fields for ECMP Hashing

The command cef load-balancing fields user-data configures the additional user-defined fields that are to
be considered for the hashing algorithm.

This example shows how to configure the additional IPv4 header fields for TCP packets:

Router# configure terminal
Router (config) #cef load-balancing fields user-data ipv4 tcp offset 5 size 3 location 0/0/CPUO
Router (config) #commit

» offset 5: The payload considered for hashing starts from byte 6 from the end of TCP header.

* size 3: Three bytes of payload are considered.

Configure IP-in-IP Tunnels .

. Configure User-Defined Fields for ECMP Hashing

Configure IP-in-IP Tunnels |

* location 0/0/CPUO: Specifies the line card on which the configuration is applied.

In the above example, the sixth, seventh, and eighth bytes of the payload are considered additionally for the

hashing.

This example shows how to configure the additional IPv6 header fields for UDP packets:

Router# configure terminal

Router (config) #cef load-balancing fields user-data ipv6 udp offset 0 size 2 location 0/0/CPUO

Router (config) #commit

« offset 0: The payload considered for hashing starts from the end of UDP header.

* size 2: Two bytes of payload are considered.

* location 0/0/CPUO: Specifies the line card on which the configuration is applied.

In the above example, the first two bytes of payload of a UDP packet are considered additionally for the

hashing.

Running Configuration
The following example shows the running configuration:

Router#show running-config | include cef
Fri Jul 28 12:02:01.002 UTC

cef load-balancing fields user-data ipv4 tcp offset 5 size 3 location 0/0/CPUO
cef load-balancing fields user-data ipvé6 udp offset 0 size 2 location 0/0/CPUO

Router#

Verification

The following example shows the difference in load balancing before and after applying user-defined hashing,

for a flow with data that exhibits good hashing behavior.
Before applying user-defined hashing

Router#show interfaces accounting | i IPV6_U

Protocol Pkts In Chars In Pkts Out
IPV67UNICAST 1 72 0
IPV67UNICAST 1 72 0
IPV67UNICAST 1 72 0
IPV67UNICAST 1 72 0
IPV67UNICAST 2 144 0
IPV67UNICAST 1 72 0
IPV6 UNICAST 0 0 3979416
IPV6 UNICAST 4191438 2087336124 0
IPV67UNICAST 1 72 0
IPV67UNICAST 1 72 0
IPV67UNICAST 1 72 0
Router#

After applying user-defined hashing

Routerf#show interfaces accounting | i IPV6_U

Protocol Pkts In Chars In Pkts Out
IPV6_UNICAST 0 0 39119
IPV6_UNICAST 0 0 39801
IPV6_UNICAST 0 0 40483
IPV6_UNICAST 0 0 40524
IPV6_UNICAST 0 0 40573
IPV6_UNICAST 0 0 40614
IPV6_UNICAST 0 0 39368

. Configure IP-in-IP Tunnels

Chars Out

198174916

O O O O WO oo o oo

Chars Out
19481262
19820898
20160534
20180952
20205354
20225772
19605264

| Configure IP-in-IP Tunnels
Configure User-Defined Fields for ECMP Hashing .

IPV6_UNICAST 0 0 40734 20285532
IPV6_UNICAST 0 0 40777 20306946
IPV6_UNICAST 0 0 40171 20005158
IPV6_UNICAST 0 0 40858 20347284
IPV6_UNICAST 0 0 40269 20053962
IPV6_UNICAST 0 0 41603 20718294
IPV6_UNICAST 0 0 40363 20100774
IPV6_UNICAST 0 0 40407 20122686
IPV6_UNICAST 0 0 41098 20466804
IPV6_UNICAST 850393 423495714 0 0

To view the exact route information allocated to the packets, use show cef exact-route command with
user-data keyword.

The packet contains value 0x2 in the packet position for the ipv6 packet, for which the user-defined
configuration has been added for a non-tcp-udp ipv6 flow.

Router#show cef ipvé exact-route 100::10 60::1 flow-label 0 protocol 59 source-port 0
destination-port 0 user-data 0x2 ingress-interface HundredGigE0/0/0/2 location 0/0/cpu0
Unsupported protocol value 59

60::/16, version 1293, internal 0x1000001 0x20 (ptr O0x8b78ef00) [1], 0x400 (0x8e9cfc48),
0x0 (0x0)

Updated Aug 14 07:50:20.022

local adjacency to Bundle-Ether3.30

Prefix Len 16, traffic index 0, precedence n/a, priority 2
via Bundle-Ether3.30
via fe80::72b3:17ff:feae:d703/128, Bundle-Ether3.30, 7 dependencies, weight 0, class 0
[flags 0x0]
path-idx 7 NHID 0x0 [0x8db8bed8 0x0]
next hop fe80::72b3:17ff:feae:d703/128
local adjacency

Configure IP-in-IP Tunnels .

Configure IP-in-IP Tunnels |
. Configure User-Defined Fields for ECMP Hashing

. Configure IP-in-IP Tunnels

	Configure IP-in-IP Tunnels
	Controlling the TTL Value of Inner Payload Header
	Time-to-Live uniform mode
	Configuration guidelines for TTL uniform mode
	Use cases for TTL uniform mode on a router

	IP-in-IP Decapsulation
	Decapsulation using tunnel source direct
	Guidelines and Limitations
	Configure Decapsulation Using Tunnel Source Direct

	Configure Tunnel Destination with an Object Group

	ECMP Hashing Support for Load Balancing
	User-defined fields for ECMP hashing
	Configure User-Defined Fields for ECMP Hashing

