VRF-Aware IPsec

First Published: March 17, 2003
Last Updated: November 24, 2010

The VRF-Aware IPsec feature introduces IP Security (IPsec) tunnel mapping to Multiprotocol Label Switching (MPLS) Virtual Private Networks (VPNs). Using the VRF-Aware IPsec feature, you can map IPsec tunnels to Virtual Routing and Forwarding (VRF) instances using a single public-facing address.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the “Feature Information for VRF-Aware IPsec” section on page 35.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Contents

- Restrictions for VRF-Aware IPsec, page 2
- Information About VRF-Aware IPsec, page 2
- How to Configure VRF-Aware IPsec, page 4
- Configuration Examples for VRF-Aware IPsec, page 22
- Additional References, page 34
- Feature Information for VRF-Aware IPsec, page 35
- Glossary, page 36
Restrictions for VRF-Aware IPsec

- If you are configuring the VRF-Aware IPsec feature using a crypto map configuration and the Inside VRF (IVRF) is not the same as the Front Door VRF (FVRF), this feature is not interoperable with unicast reverse path forwarding (uRPF) if uRPF is enabled on the crypto map interface. If your network requires uRPF, it is recommended that you use Virtual Tunnel Interface (VTI) for IPsec instead of crypto maps.

- The VRF-Aware IPsec feature does not allow IPsec tunnel mapping between VRFs. For example, it does not allow IPsec tunnel mapping from VRF vpn1 to VRF vpn2.

- When the VRF-Aware IPsec feature is used with a crypto map, this crypto map cannot use the global VRF as the IVRF and a non-global VRF as the FVRF. However, configurations based on virtual tunnel interfaces do not have that limitation. When VTIs or Dynamic VTIs (DVTIs) are used, the global VRF can be used as the IVRF together with a non-global VRF used as the FVRF.

Information About VRF-Aware IPsec

- VRF Instance, page 2
- MPLS Distribution Protocol, page 2
- VRF-Aware IPsec Functional Overview, page 2

VRF Instance

A VRF instance is a per-VPN routing information repository that defines the VPN membership of a customer site attached to the Provider Edge (PE) router. A VRF comprises an IP routing table, a derived Cisco Express Forwarding (CEF) table, a set of interfaces that use the forwarding table, and a set of rules and routing protocol parameters that control the information that is included in the routing table. A separate set of routing and Cisco Express Forwarding (CEF) tables is maintained for each VPN customer.

MPLS Distribution Protocol

The MPLS distribution protocol is a high-performance packet-forwarding technology that integrates the performance and traffic management capabilities of data link layer switching with the scalability, flexibility, and performance of network-layer routing.

VRF-Aware IPsec Functional Overview

Front Door VRF (FVRF) and Inside VRF (IVRF) are central to understanding the feature.

Each IPsec tunnel is associated with two VRF domains. The outer encapsulated packet belongs to one VRF domain, which we shall call the FVRF, while the inner, protected IP packet belongs to another domain called the IVRF. Another way of stating the same thing is that the local endpoint of the IPsec tunnel belongs to the FVRF while the source and destination addresses of the inside packet belong to the IVRF.
One or more IPsec tunnels can terminate on a single interface. The FVRF of all these tunnels is the same and is set to the VRF that is configured on that interface. The IVRF of these tunnels can be different and depends on the VRF that is defined in the Internet Security Association and Key Management Protocol (ISAKMP) profile that is attached to a crypto map entry.

Figure 1 is an illustration of a scenario showing IPsec to MPLS and Layer 2 VPNs.

Packet Flow into the IPsec Tunnel

- A VPN packet arrives from the Service Provider MPLS backbone network to the PE and is routed through an interface facing the Internet.
- The packet is matched against the Security Policy Database (SPD), and the packet is IPsec encapsulated. The SPD includes the IVRF and the access control list (ACL).
- The IPsec encapsulated packet is then forwarded using the FVRF routing table.

Packet Flow from the IPsec Tunnel

- An IPsec-encapsulated packet arrives at the PE router from the remote IPsec endpoint.
- IPsec performs the Security Association (SA) lookup for the Security Parameter Index (SPI), destination, and protocol.
- The packet is decapsulated using the SA and is associated with IVRF.
- The packet is further forwarded using the IVRF routing table.
How to Configure VRF-Aware IPsec

- Configuring Crypto Keyrings, page 4 (Optional)
- Configuring ISAKMP Profiles, page 6 (Required)
- Configuring an ISAKMP Profile on a Crypto Map, page 10 (Required)
- Configuring to Ignore Extended Authentication During IKE Phase 1 Negotiation, page 11 (Optional)
- Verifying VRF-Aware IPsec, page 12
- Clearing Security Associations, page 12
- Troubleshooting VRF-Aware IPsec, page 13

Configuring Crypto Keyrings

A crypto keyring is a repository of preshared and Rivest, Shamir, and Adelman (RSA) public keys. There can be zero or more keyrings on the Cisco IOS router.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto keyring keyring-name [vrf fvrf-name]
4. description string
5. pre-shared-key {address address [mask] | hostname hostname} key key
6. rsa-pubkey {address address | name fqdn} [encryption | signature]
7. address ip-address
8. serial-number serial-number
9. key-string
10. text
11. quit
12. exit
13. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| **Example:** Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal | |
| **Step 3** crypto keyring keyring-name [vrf fvrf-name] | Defines a keyring with *keyring-name* as the name of the keyring and enters keyring configuration mode.
 - (Optional) The *vrf* keyword and *fvrf-name* argument imply that the keyring is bound to Front Door Virtual Routing and Forwarding (FVRF). The key in the keyring is searched if the local endpoint is in FVRF. If *vrf* is not specified, the keyring is bound to the global. |
| **Example:** Router (config)# crypto keyring VPN1 | | |
| **Step 4** description string | (Optional) Specifies a one-line description of the keyring. |
| **Example:** Router (config-keyring)# description The keys for VPN1 | |
| **Step 5** pre-shared-key {address address [mask] | hostname hostname} key key | (Optional) Defines a preshared key by address or host name. |
| **Example:** Router (config-keyring)# pre-shared-key address 10.72.23.11 key VPN1 | |
| **Step 6** rsa-pubkey {address address | name fqdn} [encryption | signature] | (Optional) Defines an RSA public key by address or host name and enters rsa-pubkey configuration mode.
 - The optional *encryption* keyword specifies that the key should be used for encryption.
 - The optional *signature* keyword specifies that the key should be used for signature. By default, the key is used for signature. |
| **Example:** Router (config-keyring)# rsa-pubkey name host.vpn.com | |
| **Step 7** address ip-address | (Optional) Defines the RSA public key IP address. |
| **Example:** Router (config-pubkey-key)# address 10.5.5.1 | |
| **Step 8** serial-number serial-number | (Optional) Specifies the serial number of the public key. The value is from 0 through infinity. |
| **Example:** Router (config-pubkey-key)# serial-number 1000000 | |
| **Step 9** key-string | Enters into the text mode in which you define the public key. |
| **Example:** Router (config-pubkey-key)# key-string | |
Configuring ISAKMP Profiles

An ISAKMP profile is a repository for Internet Key Exchange (IKE) Phase 1 and IKE Phase 1.5 configuration for a set of peers. An ISAKMP profile defines items such as keepalive, trustpoints, peer identities, and XAUTH AAA list during the IKE Phase 1 and Phase 1.5 exchange. There can be zero or more ISAKMP profiles on the Cisco IOS router.

Restrictions

- If traffic from the router to a certification authority (CA) (for authentication, enrollment, or for obtaining a certificate revocation list [CRL]) or to an Lightweight Directory Access Protocol (LDAP) server (for obtaining a CRL) needs to be routed via a VRF, the `vrf` command must be added to the trustpoint. Otherwise, the traffic uses the default routing table.

- If a profile does not specify one or more trustpoints, all trustpoints in the router will be used to attempt to validate the certificate of the peer (IKE main mode or signature authentication). If one or more trustpoints are specified, only those trustpoints will be used.

Configuring ISAKMP Profiles

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10 <code>text</code></td>
<td>Specifies the public key.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router (config-pubkey)# 00302017 4A7D385B 1234EF29 335FC973</td>
<td></td>
</tr>
<tr>
<td>Step 11 <code>quit</code></td>
<td>Quits to the public key configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router (config-pubkey)# quit</td>
<td></td>
</tr>
<tr>
<td>Step 12 <code>exit</code></td>
<td>Exits to the keyring configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router (config-pubkey)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 13 <code>exit</code></td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router (config-keyring)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Note

- If traffic from the router to a certification authority (CA) (for authentication, enrollment, or for obtaining a certificate revocation list [CRL]) or to an Lightweight Directory Access Protocol (LDAP) server (for obtaining a CRL) needs to be routed via a VRF, the `vrf` command must be added to the trustpoint. Otherwise, the traffic uses the default routing table.

- If a profile does not specify one or more trustpoints, all trustpoints in the router will be used to attempt to validate the certificate of the peer (IKE main mode or signature authentication). If one or more trustpoints are specified, only those trustpoints will be used.

Restrictions

A router initiating IKE and a router responding to the IKE request should have symmetrical trustpoint configurations. For example, a responding router (in IKE Main Mode) performing RSA signature encryption and authentication might use trustpoints that were defined in the global configuration when sending the CERT-REQ payloads. However, the router might use a restricted list of trustpoints that were defined in the ISAKMP profile for the certificate verification. If the peer (the IKE initiator) is configured to use a certificate whose trustpoint is in the global list of the responding router but not in ISAKMP profile of the responding router, the certificate will be rejected. (However, if the initiating router does not know about the trustpoints in the global configuration of the responding router, the certificate can still be authenticated.)
SUMMARY STEPS

1. enable
2. configure terminal
3. crypto isakmp profile profile-name
4. description string
5. vrf ivrf-name
6. keepalive seconds retry retry-seconds
7. self-identity {address | fqdn | user-fqdn user-fqdn}
8. keyring keyring-name
9. ca trust-point trustpoint-name
10. match identity {group group-name | address address [mask] [fvr] | host host-name | host domain domain-name | user user-fqdn | user domain domain-name}
11. client configuration address {initiate | respond}
12. client authentication list list-name
13. isakmp authorization list list-name
14. initiate mode aggressive
15. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 crypto isakmp profile profile-name</td>
<td>Defines an Internet Security Association and Key Management Protocol (ISAKMP) profile and enters into isakmp profile configuration mode.</td>
</tr>
<tr>
<td>Example: Router (config)# crypto isakmp profile vpprofile</td>
<td></td>
</tr>
<tr>
<td>Step 4 description string</td>
<td>(Optional) Specifies a one-line description of an ISAKMP profile.</td>
</tr>
<tr>
<td>Example: Router (conf-isa-prof)# description configuration for VPN profile</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td><code>vrf ivrf-name</code></td>
<td>(Optional) Maps the IPsec tunnel to a Virtual Routing and Forwarding (VRF) instance.</td>
</tr>
<tr>
<td>Example</td>
<td>Example: <code>vrf VPN1</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>The VRF also serves as a selector for matching the Security Policy Database (SPD). If the VRF is not specified in the ISAKMP profile, the IVRF of the IPsec tunnel will be the same as its FVRF.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>keepalive seconds retry retry-seconds</code></td>
<td>(Optional) Allows the gateway to send dead peer detection (DPD) messages to the peer.</td>
</tr>
<tr>
<td>Example</td>
<td>Example: <code>keepalive 60 retry 5</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>seconds</td>
<td>- If not defined, the gateway uses the global configured value.</td>
</tr>
<tr>
<td></td>
<td>retry</td>
<td>- seconds—Number of seconds between DPD messages. The range is 10 to 3600 seconds.</td>
</tr>
<tr>
<td></td>
<td>retry-seconds</td>
<td>- retry retry-seconds—Number of seconds between retries if the DPD message fails. The range is 2 to 60 seconds.</td>
</tr>
<tr>
<td>Step 7</td>
<td>`self-identity {address</td>
<td>fqdn</td>
</tr>
<tr>
<td>Example</td>
<td>Example: <code>self-identity address</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>address</td>
<td>- If not defined, IKE uses the global configured value.</td>
</tr>
<tr>
<td></td>
<td>fqdn</td>
<td>- address—Uses the IP address of the egress interface.</td>
</tr>
<tr>
<td></td>
<td>user-fqdn</td>
<td>- fqdn—Uses the fully qualified domain name (FQDN) of the router.</td>
</tr>
<tr>
<td></td>
<td>user-fqdn</td>
<td>- user-fqdn—Uses the specified value.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>keyring keyring-name</code></td>
<td>(Optional) Specifies the keyring to use for Phase 1 authentication.</td>
</tr>
<tr>
<td>Example</td>
<td>Example: <code>keyring VPN1</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trustpoint</td>
<td>- If the keyring is not specified, the global key definitions are used.</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>ca trust-point (trustpoint-name)</code></td>
<td>(Optional) Specifies a trustpoint to validate a Rivest, Shamir, and Adelman (RSA) certificate.</td>
</tr>
<tr>
<td>Example</td>
<td>Example: <code>ca trustpoint VPN1-trustpoint</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trustpoint</td>
<td>- If no trustpoint is specified in the ISAKMP profile, all the trustpoints that are configured on the Cisco IOS router are used to validate the certificate.</td>
</tr>
</tbody>
</table>
VRF-Aware IPsec

How to Configure VRF-Aware IPsec

Step 10

```plaintext
match identity {group group-name | address address [mask] [fvrf] | host host-name | host domain domain-name | user user-fqdn | user domain domain-name}
```

Example:

```
Router (conf-isa-prof)# match identity address 10.1.1.1
```

- **Purpose:** Specifies the client IKE Identity (ID) that is to be matched.
- **group group-name** — Matches the `group-name` with the ID type ID_KEY_ID. It also matches the `group-name` with the Organizational Unit (OU) field of the Distinguished Name (DN).
- **address address [mask] fvrf** — Matches the `address` with the ID type ID_IPV4_ADDR. The `mask` argument can be used to specify a range of addresses. The `fvrf` argument specifies that the address is in Front Door Virtual Routing and Forwarding (FVRF).
- **host host-name** — Matches the `host-name` with the ID type ID_FQDN.
- **host domain domain-name** — Matches the `domain-name` to the ID type ID_FQDN whose domain name is the same as the `domain-name`. Use this command to match all the hosts in the domain.
- **user username** — Matches the `username` with the ID type ID_USER_FQDN.
- **user domain domain-name** — Matches the ID type ID_USER_FQDN whose domain name matches the `domain-name`.

Step 11

```plaintext
client configuration address {initiate | respond}
```

Example:

```
Router (conf-isa-prof)# client configuration address initiate
```

- **Purpose:** (Optional) Specifies whether to initiate the mode configuration exchange or responds to mode configuration requests.

Step 12

```plaintext
client authentication list list-name
```

Example:

```
Router (conf-isa-prof)# client authentication list xauthlist
```

- **Purpose:** (Optional) AAA (authentication, authorization, and accounting) to use for authenticating the remote client during the extended authentication (XAUTH) exchange.

Step 13

```plaintext
isakmp authorization list list-name
```

Example:

```
Router (conf-isa-prof)# isakmp authorization list ikessaaalist
```

- **Purpose:** (Optional) Network authorization server for receiving the Phase 1 preshared key and other attribute-value (AV) pairs.

Step 14

```plaintext
initiate mode aggressive
```

Example:

```
Router (conf-isa-prof)# initiate mode aggressive
```

- **Purpose:** (Optional) Initiates aggressive mode exchange.
- **If not specified, IKE always initiates main mode exchange.**

Step 15

```plaintext
exit
```

Example:

```
Router (conf-isa-prof)# exit
```

- **Purpose:** Exits to global configuration mode.
What to Do Next

Go to the section “Configuring an ISAKMP Profile on a Crypto Map” section on page 10.”

Configuring an ISAKMP Profile on a Crypto Map

An ISAKMP profile must be applied to the crypto map. The IVRF on the ISAKMP profile is used as a selector when matching the VPN traffic. If there is no IVRF on the ISAKMP profile, the IVRF will be equal to the FVRF. Perform this task to configure an ISAKMP profile on a crypto map.

Prerequisites

Before configuring an ISAKMP profile on a crypto map, you must first configure your router for basic IPsec.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **crypto map map-name isakmp-profile isakmp-profile-name**
4. **set isakmp-profile profile-name**
5. **exit**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto map map-name isakmp-profile isakmp-profile-name</td>
<td>(Optional) Specifies the Internet Key Exchange and Key Management Protocol (ISAKMP) profile for the crypto map set and enters crypto map configuration mode.</td>
</tr>
<tr>
<td>Example: Router (config)# crypto map vpnmap isakmp-profile vpnprofile</td>
<td>• The ISAKMP profile will be used during IKE exchange.</td>
</tr>
</tbody>
</table>
Configuring to Ignore Extended Authentication During IKE Phase 1 Negotiation

To ignore XAUTH during an IKE Phase 1 negotiation, use the no crypto xauth command. Use the no crypto xauth command if you do not require extended authentication for the Unity clients.

SUMMARY STEPS

1. enable
2. configure terminal
3. no crypto xauth interface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3 no crypto xauth interface</td>
<td>Ignores XAUTH proposals for requests that are destined to the IP address of the interface. By default, Internet Key Exchange (IKE) processes XAUTH proposals.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>

Example:

Command or Action

| Step 4 set isakmp-profile profile-name | (Optional) Specifies the ISAKMP profile to use when the traffic matches the crypto map entry. |
| Example: Router (config-crypto-map)# set isakmp-profile vpnprofile | |

Step 5 exit

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td>Example: Router (config-crypto-map)# exit</td>
</tr>
</tbody>
</table>
Verifying VRF-Aware IPsec

To verify your VRF-Aware IPsec configurations, use the following `show` commands. These `show` commands allow you to list configuration information and security associations (SAs):

SUMMARY STEPS

1. `enable`
2. `show crypto ipsec sa [map map-name | address | identity | interface interface | peer [vrf fvrf-name] address | vrf ivrf-name] [detail]`
3. `show crypto isakmp key`
4. `show crypto isakmp profile`
5. `show crypto key pubkey-chain rsa`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** `enable` | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:**
 Router> enable | |
| **Step 2** `show crypto ipsec sa [map map-name | address | identity | interface interface | peer [vrf fvrf-name] address | vrf ivrf-name] [detail]` | Allows you to view the settings used by current security associations (SAs). |
| **Example:**
 Router# show crypto ipsec sa vrf vpn1 | |
| **Step 3** `show crypto isakmp key` | Lists all the keyrings and their preshared keys.
 • Use this command to verify your crypto keyring configuration. |
| **Example:**
 Router# show crypto isakmp key | |
| **Step 4** `show crypto isakmp profile` | Lists all ISAKMP profiles and their configurations. |
| **Example:**
 Router# show crypto isakmp profile | |
| **Step 5** `show crypto key pubkey-chain rsa` | Views the RSA public keys of the peer that are stored on your router.
 • The output is extended to show the keyring to which the public key belongs. |
| **Example:**
 Router# show crypto key pubkey-chain rsa | |

Clearing Security Associations

The following `clear` commands allow you to clear SAs.
SUMMARY STEPS

1. enable
2. clear crypto sa [counters | map map-name | peer [vrf fvrf-name] address | spi address {ah | esp} spi | vrf ivrf-name]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Step 2** clear crypto sa [counters | map map-name | peer [vrf fvrf-name] address | spi address {ah | esp} spi | vrf ivrf-name] | Clears the IPsec security associations (SAs). |

Example:
Router# clear crypto sa vrf VPN1

Troubleshooting VRF-Aware IPsec

To troubleshoot VRF-Aware IPsec, use the following `debug` commands:

SUMMARY STEPS

1. enable
2. debug crypto ipsec
3. debug crypto isakmp

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Step 2** debug crypto ipsec | Displays IP security (IPsec) events. |
| **Step 3** debug crypto isakmp | Displays messages about Internet Key Exchange (IKE) events. |

Example:
Router> enable
Router# debug crypto ipsec
Router(config)# debug crypto isakmp
Debug Examples for VRF-Aware IPsec

The following sample debug outputs are for a VRF-aware IPsec configuration:

IPsec PE

Router# debug crypto ipsec

Crypto IPSEC debugging is on
IPSEC-PE# debug crypto isakmp
Crypto ISAKMP debugging is on
IPSEC-PE# debug crypto isakmp d
04:31:28: ISAKMP (0:12): purging SA., sa=6482B354, delme=6482B354
04:31:28: ISAKMP: Unlocking IKE struct 0x63C142F8 for declare_sa_dead(), count 0
IPSEC-PE# debug crypto isakmp detail
Crypto ISAKMP internals debugging is on
IPSEC-PE#
IPSEC-PE#
IPSEC-PE#
04:32:07: ISAKMP: Deleting peer node by peer_reap for 10.1.1.1: 63C142F8
04:32:55: ISAKMP cookie gen for src 172.16.1.1 dst 10.1.1.1
04:32:55: ISAKMP cookie gen for src 10.1.1.1 dst 172.68.1.1
04:32:55: ISAKMP cookie gen for src 172.16.1.1 dst 10.1.1.1
04:32:55: ISAKMP cookie gen for src 172.16.1.1 dst 10.1.1.1
04:32:55: ISAKMP cookie gen for src 172.16.1.1 dst 10.1.1.1
04:32:55: ISAKMP cookie gen for src 172.16.1.1 dst 10.1.1.1
04:32:55: ISAKMP cookie gen for src 172.16.1.1 dst 10.1.1.1
04:32:55: ISAKMP cookie gen for src 172.16.1.1 dst 10.1.1.1
04:32:55: ISAKMP (0:0): received packet from 10.1.1.1 dport 500 sport 500 Global (N) NEW SA
04:32:55: ISAKMP: local port 500, remote port 500
04:32:55: ISAKMP: hash from 729FA94 for 619 bytes
04:32:55: ISAKMP: Packet hash:
64218CC0: B91E2C70 095A1346 9..,p.Z.F
64218CD0: 0EDB4C6A 8A46784F B314FD3B 00 [.L6.FxO.];.
04:32:55: ISAKMP cookie gen for src 172.18.1.1 dst 172.18.1.1
04:32:55: ISAKMP cookie gen for src 172.18.1.1 dst 172.18.1.1
04:32:55: ISAKMP cookie gen for src 172.18.1.1 dst 172.18.1.1
04:32:55: ISAKMP cookie gen for src 172.18.1.1 dst 172.18.1.1
04:32:55: ISAKMP (0:13): setting SA payload. message ID = 0
04:32:55: ISAKMP (0:13): processing ID payload. message ID = 0
04:32:55: ISAKMP (0:13): peer matches vpn2-ra profile
04:32:55: ISAKMP: Looking for a matching key for 10.1.1.1 in default
04:32:55: ISAKMP: Created a peer struct for 10.1.1.1, peer port 500
04:32:55: ISAKMP: Locking peer struct 0x640BBB18, IKE refcount 1 for crypto_ikmp_config_initialize_sa
04:32:55: ISAKMP (0:13): Setting client config settings 648252B0
04:32:55: ISAKMP (0:13): (Re)Setting client xauth list and state
04:32:55: ISAKMP (0:13): processing vendor id payload
04:32:55: ISAKMP (0:13): vendor ID seems Unity/DPD but major 157 mismatch
04:32:55: ISAKMP (0:13): vendor ID is NAT-T v3
04:32:55: ISAKMP (0:13): processing vendor id payload
04:32:55: ISAKMP (0:13): vendor ID seems Unity/DPD but major 123 mismatch
04:32:55: ISAKMP (0:13): vendor ID is NAT-T v2
04:32:55: ISAKMP (0:13): Authentication by xauth preshared
04:32:55: ISAKMP (0:13): Checking ISAKMP transform 1 against priority 1 policy
04:32:55: ISAKMP: encryption 3DES-CBC
04:32:55: ISAKMP: hash SHA
04:32:55: ISAKMP: auth XAUTHInitPreShared
04:32:55: ISAKMP: life type in seconds
04:32:55: ISAKMP: life duration (VPI) of 0x0 0x20 0xC4 0x9B
04:32:55: ISAKMP (0:13): atts are acceptable. Next payload is 3
04:32:55: ISAKMP (0:13): processing vendor id payload
04:32:55: ISAKMP (0:13): vendor ID seems Unity/DPD but major 157 mismatch
04:32:55: ISAKMP (0:13): vendor ID is NAT-T v3
04:32:55: ISAKMP (0:13): processing vendor id payload
04:32:55: ISAKMP (0:13): vendor ID seems Unity/DPD but major 123 mismatch
04:32:55: ISAKMP (0:13): vendor ID is NAT-T v2
04:32:55: ISAKMP (0:13): processing KE payload. message ID = 0
04:32:55: ISAKMP (0:13): processing NONCE payload. message ID = 0
04:32:55: ISAKMP (0:13): processing vendor id payload
04:32:55: ISAKMP (0:13): vendor ID is DPD
04:32:55: ISAKMP (0:13): processing vendor id payload
04:32:55: ISAKMP (0:13): vendor ID seems Unity/DPD but major 175 mismatch
04:32:55: ISAKMP (0:13): vendor ID is XAUTH
04:32:55: ISAKMP (0:13): processing vendor id payload
04:32:55: ISAKMP (0:13): vendor ID is Unity
04:32:55: ISAKMP (0:13): claimed IOS but failed authentication
04:32:55: ISAKMP (0:13): processing vendor id payload
04:32:55: ISAKMP (0:13): vendor ID is Unity
04:32:55: ISAKMP (0:13): Input = IKE_MSG_FROM_PEER, IKE_AM_EXCH

04:32:55: ISAKMP cookie gen for src 11.1.1.1 dst 172.16.1.1
04:32:55: ISAKMP cookie AA87F841 7AE6E1DF
04:32:55: crawler my_cookie AA87F841 F7ACF384
04:32:55: crawler his_cookie E46E088D F227FE4D
04:32:55: ISAKMP: got callback 1
04:32:55: ISAKMP (0:13): SKEYID state generated
04:32:55: ISAKMP (0:13): constructed NAT-T vendor-03 ID
04:32:55: ISAKMP (0:13): SA is doing pre-shared key authentication plus XAUTH using id type ID_IPV4_ADDR
 next-payload : 10
 type : 1
 addr : 172.16.1.1
 protocol : 17
 port : 0
 length : 8
04:32:55: ISAKMP (13): Total payload length: 12
04:32:55: ISAKMP (0:13): constructed HIS NAT-D
04:32:55: ISAKMP (0:13): constructed MINE NAT-D
04:32:55: ISAKMP (0:13): constructed NAT-T vendor-03 ID
04:32:55: ISAKMP (0:13): SA is doing pre-shared key authentication plus XAUTH using id type ID_IPV4_ADDR
04:32:55: ISAKMP (0:13): constructed MINE NAT-D
04:32:55: ISAKMP (0:13): sending packet to 10.1.1.1 my_port 500 peer_port 500 (R)
 AG_INIT_EXCH
04:32:55: ISAKMP (0:13): Input = IKE_MSG_FROM_AAA, PRESHARED_KEY_REPLY
04:32:55: ISAKMP cookie gen for src 172.16.1.1 dst 10.1.1.1
04:32:55: ISAKMP cookie 3123100B 00583224
04:32:55: ISAKMP cookie gen for src 10.1.1.1 dst 172.16.1.1
04:32:55: ISAKMP cookie AA87B41 C1B006EE
04:32:55: crawler my_cookie AA87B41 F7ACF384
04:32:55: crawler his_cookie E46E088D F227FE4D
04:32:55: ISAKMP (0:13): received packet from 10.1.1.1 dport 500 sport 500 Global (R) AG_INIT_EXCH
04:32:55: ISAKMP: hash from 7003A34 for 132 bytes
04:32:55: ISAKMP: Packet hash:
 64218CC0: D1202D99 2BB49D38 Q -.+4.8
 64218CD0: B8FB1BE 7CD67D7 4E6B126C 63 81e1\gWN&.lc
04:32:55: ISAKMP (0:13): processing HASH payload. message ID = 0
04:32:55: ISAKMP (0:13): received payload type 17
04:32:55: ISAKMP (0:13): Detected NAT-D payload
04:32:55: ISAKMP (0:13): recalc my hash for NAT-D
04:32:55: ISAKMP (0:13): NAT match MINE hash
04:32:55: ISAKMP: received payload type 17
04:32:55: ISAKMP (0:13): Detected NAT-D payload
04:32:55: ISAKMP (0:13): recalc his hash for NAT-D
04:32:55: ISAKMP (0:13): NAT match HIS hash
04:32:55: ISAKMP (0:13): processing NOTIFY INITIAL_CONTACT protocol 1 spi 0, message ID = 0, sa = 6482B354
04:32:55: ISAKMP (0:13): Process initial contact, bring down existing phase 1 and 2 SA's with local 172.16.1.1 remote 10.1.1.1 remote port 500
04:32:55: ISAKMP (0:13): returning IP addr to the address pool
04:32:55: ISAKMP cookie gen for src 10.1.1.1 dst 172.16.1.1
04:32:55: ISAKMP cookie AA87B41 05D115CS
04:32:55: ISAKMP cookie gen for src 172.16.1.1 dst 10.1.1.1
04:32:55: ISAKMP cookie 3123100B 041A85A6
04:32:55: ISAKMP (0:13): SA has been authenticated with 10.1.1.1
04:32:55: ISAKMP: set new node -803402627 to CONF_XAUTH
04:32:55: ISAKMP/xauth: request attribute XAUTH_USER_NAME_V2
04:32:55: ISAKMP/xauth: request attribute XAUTH_USER_PASSWORD_V2
04:32:55: ISAKMP (0:13): initiating peer config to 10.1.1.1. ID = -1447732198
04:32:55: ISAKMP (0:13): sending packet to 10.1.1.1 my_port 500 peer_port 500 (R) CONF_XAUTH
04:32:55: ISAKMP (0:13): Input = IKE_MESG_FROM_AAA, IKE_AAA_START_LOGIN

04:33:00: ISAKMP (0:13): retransmitting phase 2 CONF_XAUTH -1447732198 ...
04:33:00: ISAKMP (0:13): incrementing error counter on sa: retransmit phase 2
04:33:00: ISAKMP (0:13): incrementing error counter on sa: retransmit phase 2
04:33:00: ISAKMP (0:13): sending packet to 10.1.1.1 my_port 500 peer_port 500 (R) CONF_XAUTH

04:33:03: ISAKMP cookie gen for src 172.18.1.1 dst 10.1.1.1
04:33:03: ISAKMP cookie 3123100B 124D4618
04:33:03: ISAKMP cookie gen for src 10.1.1.1 dst 172.18.1.1
04:33:03: ISAKMP cookie AA8F7B41 B0C91917
04:33:03: ISAKMP: isadb_post_process_list: crawler: B 27FF 2 (6482B354)
04:33:03: crawler my_cookie AA8F7B41 F7AFC384
04:33:03: crawler his_cookie E46E088D F227FE4D
04:33:03: ISAKMP cookie gen for src 172.18.1.1 dst 10.1.1.1
04:33:03: ISAKMP cookie AA8F7B41 091A7695
04:33:03: ISAKMP: isadb_post_process_list: crawler: B 27FF 2 (6482B354)
04:33:03: crawler my_cookie AA8F7B41 F7AFC384
04:33:03: crawler his_cookie E46E088D F227FE4D
04:33:03: ISAKMP (0:13): received packet from 10.1.1.1 dport 500 sport 500 Global (R) CONF_XAUTH
04:33:03: ISAKMP: hash from 7292D74 for 92 bytes
04:33:03: ISAKMP (0:13): processing transaction payload from 11.1.1.1. message ID = -1447732198
04:33:03: ISAKMP: Config payload REPLY
04:33:03: ISAKMP/xauth: reply attribute XAUTH_USER_NAME_V2
04:33:03: ISAKMP/xauth: reply attribute XAUTH_USER_PASSWORD_V2
04:33:03: ISAKMP (0:13): deleting node -1447732198 error FALSE reason "done with xauth request/reply exchange"
04:33:03: ISAKMP (0:13): Input = IKE_MESG_FROM_PEER, IKE_CFG_REPLY
04:33:03: ISAKMP (0:13): Old State = IKE_XAUTH_REQ_SENT New State = IKE_XAUTH AAA CONT LOGIN_AWAIT

04:33:03: ISAKMP cookie gen for src 10.1.1.1 dst 172.18.1.1
04:33:03: ISAKMP cookie AA8F7B41 A1B3E584
04:33:03: ISAKMP: isadb_post_process_list: crawler: B 27FF 2 (6482B354)
04:33:03: crawler my_cookie AA8F7B41 F7AFC384
04:33:03: crawler his_cookie E46E088D F227FE4D
04:33:03: ISAKMP: got callback 1
04:33:03: ISAKMP: set new node 524716665 to CONF_XAUTH
04:33:03: ISAKMP (0:13): initiating peer config to 10.1.1.1. ID = 524716665
04:33:03: ISAKMP (0:13): sending packet to 10.1.1.1 my_port 500 peer_port 500 (R) CONF_XAUTH
04:33:03: ISAKMP (0:13): Input = IKE_MESG_FROM_AAA, IKE_AAA_CONT_LOGIN
04:33:03: ISAKMP (0:13): Old State = IKE_XAUTH AAA CONT_LOGIN_AWAIT New State = IKE_XAUTH_SET_SENT

04:33:03: ISAKMP cookie gen for src 172.18.1.1 dst 10.1.1.1
04:33:03: ISAKMP cookie 3123100B 5C83A09D
04:33:03: ISAKMP cookie gen for src 10.1.1.1 dst 172.18.1.1
04:33:03: ISAKMP cookie AA8F7B41 2BEBEFD4
04:33:03: ISAKMP: isadb_post_process_list: crawler: B 27FF 2 (6482B354)
04:33:03: crawler my_cookie AA8F7B41 F7AFC384
04:33:03: crawler his_cookie E46E088D F227FE4D
04:33:03: ISAKMP cookie gen for src 172.18.1.1 dst 10.1.1.1
How to Configure VRF-Aware IPsec

04:33:03: ISAKMP cookie 3123100B DA00A46B
04:33:03: ISAKMP cookie gen for src 10.1.1.1 dst 172.18.1.1
04:33:03: ISAKMP cookie AA8F7B41 F227FE4D
04:33:03: ISAKMP: isadb_post_process_list: crawler: B 27FF 2 (6482B354)
04:33:03: crawler my_cookie AA8F7B41 F7ACF384
04:33:03: crawler his_cookie E46E0B8D F227FE4D
04:33:03: ISAKMP (0:13): received packet from 10.1.1.1 dport 500 sport 500 Global (R)
CONF_XAUTH
04:33:03: ISAKMP: hash from 7292A34 for 68 bytes
04:33:03: ISAKMP: Packet hash:
64218CC0: 5034B99E B8BA531F P49.8:S.
64218CD0: 6267B8BD F3006989 DC118796 63 bg8=s.i./...c
04:33:03: ISAKMP (0:13): processing transaction payload from 11.1.1.1. message ID = 524716665
04:33:03: ISAKMP: Config payload ACK
04:33:03: ISAKMP (0:13): XAUTH ACK Processed
04:33:03: ISAKMP (0:13): deleting node 524716665 error FALSE reason "done with transaction"
04:33:03: ISAKMP (0:13): Input = IKE_MESG_FROM_PEER, IKE_CFG_ACK
04:33:03: ISAKMP (0:13): Old State = IKE_XAUTH_SET_SENT New State = IKE_P1_COMPLETE
04:33:03: ISAKMP cookie gen for src 10.1.1.1 dst 172.18.1.1
04:33:03: ISAKMP cookie AA8F7B41 E0BB50E9
04:33:03: ISAKMP: isadb_post_process_list: crawler: 9 27FF 2 (6482B354)
04:33:03: crawler my_cookie AA8F7B41 F7ACF384
04:33:03: crawler his_cookie E46E0B8D F227FE4D
04:33:03: ISAKMP (0:13): received packet from 10.1.1.1 dport 500 sport 500 Global (R)
04:33:03: ISAKMP: hash from 7292A34 for 100 bytes
04:33:03: ISAKMP: Packet hash:
64218CC0: 9D7DF4DF FE3A6403 .}t_:d.
64218CD0: 3F1D1C59 C5D138CE 50289B79 07 ?..YE08NP(.y.
04:33:03: ISAKMP (0:13): processing transaction payload from 10.1.1.1. message ID = -1639992295
04:33:03: ISAKMP: set new node -1639992295 to QM_IDLE
04:33:03: ISAKMP: hash from 7293A74 for 100 bytes
04:33:03: ISAKMP: Packet hash:
64218CC0: 9D7DF4DF FE3A6403 .}t_-:d.
64218CD0: 3F1D1C59 C5D138CE 50289B79 07 ?..YE08NP(.y.
04:33:03: ISAKMP (0:13): processing transaction payload from 10.1.1.1. message ID = -1639992295
04:33:03: ISAKMP: Config payload REQUEST
04:33:03: ISAKMP (0:13): checking request:
04:33:03: ISAKMP: IP4_ADDRESS
04:33:03: ISAKMP: IP4_NETMASK
04:33:03: ISAKMP: IP4_DNS
04:33:03: ISAKMP: IP4_NBNS
04:33:03: ISAKMP: SPLIT_INCLUDE
04:33:03: ISAKMP: DEFAULT_DOMAIN
04:33:03: ISAKMP (0:13): Input = IKE_MESG_FROM_PEER, IKE_CFG_REQUEST
04:33:03: ISAKMP (0:13): Old State = IKE_P1_COMPLETE New State = IKE_CONFIG_AUTHOR_AAA_AWAIT
04:33:03: ISAKMP cookie gen for src 10.1.1.1 dst 172.18.1.1
04:33:03: ISAKMP cookie A8F7B41 B02E0D67
04:33:03: ISAKMP: isadb_post_process_list: crawler: C 27FF 12 (6482B354)
04:33:03: crawler my_cookie A8F7B41 F7ACF384
04:33:03: crawler his_cookie E46E088D F227FE4D
04:33:03: ISAKMP: got callback 1
04:33:03: ISAKMP (0:13): attributes sent in message:
04:33:03: Address: 10.2.0.0
04:33:03: ISAKMP (0:13): allocating address 10.4.1.4
04:33:03: ISAKMP: Sending private address: 10.4.1.4
04:33:03: ISAKMP: Sending DEFAULT_DOMAIN default domain name: vpn2.com
04:33:03: ISAKMP (0:13): responding to peer config from 10.1.1.1. ID = -1639992295
04:33:03: ISAKMP (0:13): sending packet to 10.1.1.1 my_port 500 peer_port 500 (R)
04:33:03: ISAKMP (0:13): deleting node -1639992295 error FALSE reason ""
04:33:03: ISAKMP (0:13): Old State = IKE_CONFIG_AUTHOR_AAA_AWAIT New State = IKE_P1_COMPLETE
04:33:03: ISAKMP cookie gen for src 172.18.1.1 dst 10.1.1.1
04:33:03: ISAKMP cookie 3123100B 881D5411
04:33:03: ISAKMP cookie gen for src 11.1.1.1 dst 172.18.1.1
04:33:03: ISAKMP cookie AA8F7B41 6FD82541
04:33:03: ISAKMP: isadb_post_process_list: crawler: 9 27FF 2 (6482B354)
04:33:03: crawler my_cookie AA8F7B41 F7ACF384
04:33:03: crawler his_cookie E46E088D F227FE4D
04:33:03: ISAKMP cookie gen for src 172.18.1.1 dst 10.1.1.1
04:33:03: ISAKMP cookie 3123100B BA94C1BE
04:33:03: ISAKMP cookie gen for src 10.1.1.1 dst 172.18.1.1
04:33:03: ISAKMP cookie AA8F7B41 F3BA766D
04:33:03: ISAKMP: isadb_post_process_list: crawler: 9 27FF 2 (6482B354)
04:33:03: crawler my_cookie AA8F7B41 F7ACF384
04:33:03: crawler his_cookie E46E088D F207FE4D
04:33:03: ISAKMP (0:13): received packet from 10.1.1.1 dport 500 sport 500 Global (R)
04:33:03: ISAKMP: set new node 17011691 to QM_IDLE
04:33:03: ISAKMP: hash from 70029F4 for 540 bytes
04:33:03: ISAKMP (0:13): processing HASH payload. message ID = 17011691
04:33:03: ISAKMP (0:13): processing SA payload. message ID = 17011691
04:33:03: ISAKMP (0:13): Checking IPSec proposal 1
04:33:03: ISAKMP (0:13): attributes in transform:
04:33:03: ISAKMP: encaps is 1
04:33:03: ISAKMP: SA life type in seconds
04:33:03: ISAKMP: SA life duration (VPI) of 0x0 0x20 0xC4 0x9B
04:33:03: ISAKMP: SA life type in kilobytes
04:33:03: ISAKMP: SA life duration (VPI) of 0x0 0x46 0x50 0x0
04:33:03: ISAKMP: authenticator is HMAC-SHA
04:33:03: ISAKMP (0:13): atts are acceptable.
04:33:03: IPSec(validate_proposal_request): proposal part #1, (key eng. msg.) INBOUND local= 172.18.1.1, remote= 10.1.1.1, local_proxy= 0.0.0.0/0.0.0.0/0/0 (type=4), remote_proxy= 10.4.1.4/255.255.255.255/0/0 (type=1), protocol= ESP, transform= esp-3des esp-sha-hmac, lifedur= 0s and 0kb, spi= 0x0(0), conn_id= 0, keysize= 0, flags= 0x2
04:33:03: IPSEC(validate_transform_proposal): transform proposal not supported for identity:
 (esp-3des esp-sha-hmac)
04:33:03: ISAKMP (0:13): IPSec policy invalidated proposal
04:33:03: ISAKMP (0:13): Checking IPSec proposal 2
04:33:03: ISAKMP: transform 1, ESP_3DES
04:33:03: ISAKMP: attributes in transform:
04:33:03: ISAKMP: encaps is 1
04:33:03: ISAKMP: SA life type in seconds
04:33:03: ISAKMP: SA life duration (VPI) of 0x0 0x20 0xC4 0x9B
04:33:03: ISAKMP: SA life type in kilobytes
04:33:03: ISAKMP: SA life duration (VPI) of 0x0 0x46 0x50 0x0
04:33:03: ISAKMP: authenticator is HMAC-MD5
04:33:03: ISAKMP (0:13): atts are acceptable.
04:33:03: IPSEC(validate_proposal_request): proposal part #1,
 (key eng. msg.) INBOUND local= 172.18.1.1, remote= 10.1.1.1,
 local_proxy= 0.0.0.0/0.0.0.0/0/0 (type=4),
 remote_proxy= 10.4.1.4/255.255.255.255/0/0 (type=1),
 protocol= ESP, transform= esp-3des esp-md5-hmac,
 lifedur= 0s and 0kb,
 spi= 0x0(0), conn_id= 0, keysize= 0, flags= 0x2
04:33:03: IPSEC(kei_proxy): head = ra, map->ivrf = vpn1, kei->ivrf = vpn2
04:33:03: IPSEC(kei_proxy): head = ra, map->ivrf = vpn2, kei->ivrf = vpn2
04:33:03: ISAKMP (0:13): processing NONCE payload. message ID = 17011691
04:33:03: ISAKMP (0:13): processing ID payload. message ID = 17011691
04:33:03: ISAKMP (0:13): processing ID payload. message ID = 17011691
04:33:03: ISAKMP (0:13): asking for 1 spis from ipsec
04:33:03: ISAKMP (0:13): Node 17011691, Input = IKE_MESG_FROM_PEER, IKE_QM_EXCH
04:33:03: ISAKMP (0:13): Old State = IKE_QM_READY New State = IKE_QM_SPI_STARVE
04:33:03: IPSEC(key_engine): got a queue event...
04:33:03: ISAKMP (0:13): received ke message (2/1)
04:33:03: ISAKMP (13): ID payload
 next-payload : 5
 type : 1
 addr : 10.4.1.4
 protocol : 0
 port : 0
04:33:04: ISAKMP (13): ID payload
 next-payload : 11
 type : 4
 addr : 0.0.0.0
 protocol : 0
 port : 0
04:33:04: ISAKMP (0:13): sending packet to 10.1.1.1 my_port 500 peer_port 500 (R) QM_IDLE
04:33:04: ISAKMP (0:13): Node 17011691, Input = IKE_MESG_FROM_IPSEC, IKE_SPI_REPLY
04:33:04: ISAKMP (0:13): Old State = IKE_QM_SPI_STARVE New State = IKE_QM_SPI_REPLY
04:33:04: ISAKMP cookie gen for src 172.18.1.1 dst 10.1.1.1
04:33:04: ISAKMP cookie 3123100B 93DE46D2
04:33:04: ISAKMP cookie gen for src 10.1.1.1 dst 172.18.1.1
04:33:04: ISAKMP cookie AA8F7B41 088A0A16
04:33:04: ISAKMP: isadb_post_process_list: crawler: 9 27FF 2 (6482B354)
04:33:04: crawler my_cookie AA8F7B41 F7ACF384
04:33:04: crawler his_cookie E46E088D F227FE4D
04:33:04: ISAKMP cookie gen for src 172.18.1.1 dst 10.1.1.1
04:33:04: ISAKMP cookie 3123100B 93DE46D2
04:33:04: ISAKMP cookie gen for src 10.1.1.1 dst 172.18.1.1
04:33:04: ISAKMP cookie AA8F7B41 088A0A16
04:33:04: ISAKMP: isadb_post_process_list: crawler: 9 27FF 2 (6482B354)
04:33:04: crawler my_cookie AA8F7B41 F7ACF384
04:33:04: crawler his_cookie E46E088D F227FE4D
04:33:04: ISAKMP (0:13): received packet from 10.1.1.1 dport 500 sport 500 Global (R) QM_IDLE
04:33:04: ISAKMP: hash from 7290DB4 for 60 bytes
04:33:04: ISAKMP: Packet hash:
6421BCC0: 4BB45A92 7181A2F8 K4Z.q."x
6421BCD0: 73CC12F8 091875C0 054F77CD 63 sl.x..u@.OwMc
04:33:04: ISAKMP: Locking peer struct 0x640BBB18, IPSEC refcount 1 for stuff_ke
04:33:04: ISAKMP (0:13): Creating IPsec SAs
04:33:04: inbound SA from 10.1.1.1 to 172.18.1.1 (f/i) 0/2 (proxy 10.4.1.4 to 0.0.0.0)
04:33:04: has spi 0xA3E24AFD and conn_id 5127 and flags 2
04:33:04: lifetime of 2147483 seconds
04:33:04: lifetime of 4608000 kilobytes
04:33:04: has client flags 0x0
04:33:04: outbound SA from 172.18.1.1 to 10.1.1.1 (f/i) 0/2 (proxy 0.0.0.0 to 10.4.1.4)
04:33:04: has spi 1343294712 and conn_id 5128 and flags A
04:33:04: lifetime of 2147483 seconds
04:33:04: lifetime of 4608000 kilobytes
04:33:04: has client flags 0x0
04:33:04: ISAKMP (0:13): deleting node 17011691 error FALSE reason "quick mode done (await)"
04:33:04: ISAKMP (0:13): Node 17011691, Input = IKE_MSG_FROM_PEER, IKE_QM_EXCH
04:33:04: ISAKMP (0:13): Old State = IKE_QM_R_QM2 New State = IKE_QM_PHASE2_COMPLETE
04:33:04: IPSEC(key_engine): got a queue event...
04:33:04: IPSEC(initialize_sas):,
(key eng. msg.) INBOUND local= 172.18.1.1, remote= 10.1.1.1,
local_proxy= 0.0.0.0/0.0.0.0/0/0 (type=4),
remote_proxy= 10.4.1.4/0.0.0.0/0/0 (type=1),
protocol= ESP, transform= esp-3des esp-md5-hmac,
lifedur= 2147483s and 4608000kb,
spi= 0xA3E24AFD(2749516541), conn_id= 5127, keysize= 0, flags= 0x2
04:33:04: IPSEC(initialize_sas):,
(key eng. msg.) OUTBOUND local= 172.18.1.1, remote= 10.1.1.1,
local_proxy= 0.0.0.0/0.0.0.0/0/0 (type=4),
remote_proxy= 10.4.1.4/0.0.0.0/0/0 (type=1),
protocol= ESP, transform= esp-3des esp-md5-hmac,
lifedur= 2147483s and 4608000kb,
spi= 0x50110CF8(1343294712), conn_id= 5128, keysize= 0, flags= 0xA
04:33:04: IPSEC(kei_proxy): head = ra, map->ivrf = vpn1, kei->ivrf = vpn2
04:33:04: IPSEC(kei_proxy): head = ra, map->ivrf = vpn2, kei->ivrf = vpn2
04:33:04: IPSEC(rte_mgr): VPN Route Added 10.4.1.4 255.255.255.255 via 10.1.1.1 in vpn2
04:33:04: IPSEC(add_mtree): src 0.0.0.0, dest 10.4.1.4, dest_port 0
04:33:04: IPSEC(create_sa): sa created,
(sa) sa_dest= 172.18.1.1, sa_prot= 50,
sa_spi= 0xA3E24AFD(2749516541),
sa_trans= esp-3des esp-md5-hmac, sa_conn_id= 5127
04:33:04: IPSEC(create_sa): sa created,
(sa) sa_dest= 10.1.1.1, sa_prot= 50,
sa_spi= 0x50110CF8(1343294712),
sa_trans= esp-3des esp-md5-hmac, sa_conn_id= 5128
04:33:53: ISAKMP (0:13): purging node -1639992295
04:33:54: ISAKMP (0:13): purging node 17011691
Configuration Examples for VRF-Aware IPsec

The following examples show how to configure VRF-Aware IPsec:

- Example: Static IPsec-to-MPLS VPN, page 22
- Example: IPsec-to-MPLS VPN Using RSA Encryption, page 24
- Example: IPsec-to-MPLS VPN with RSA Signatures, page 25
- Upgrade from Previous Versions of the Cisco Network-Based IPsec VPN Solution, page 28

Example: Static IPsec-to-MPLS VPN

The following sample shows a static configuration that maps IPsec tunnels to MPLS VPNs. The configurations map IPsec tunnels to MPLS VPNs “VPN1” and “VPN2.” Both of the IPsec tunnels terminate on a single public-facing interface.

IPsec PE Configuration

```plaintext
ip vrf vpn1
   rd 100:1
   route-target export 100:1
   route-target import 100:1

ip vrf vpn2
   rd 101:1
   route-target export 101:1
   route-target import 101:1

! crypto keyring vpn1
   pre-shared-key address 172.16.1.1 key vpn1
crypto keyring vpn2
   pre-shared-key address 10.1.1.1 key vpn2

! crypto isakmp policy 1
   encr 3des
   authentication pre-share
   group 2

! crypto isakmp profile vpn1
   vrf vpn1
   keyring vpn1
   match identity address 172.16.1.1 255.255.255.255

! crypto isakmp profile vpn2
   vrf vpn2
   keyring vpn2
   match identity address 10.1.1.1 255.255.255.255

! crypto ipsec transform-set vpn1 esp-3des esp-sha-hmac
crypto ipsec transform-set vpn2 esp-3des esp-md5-hmac

! crypto map cypmap 1 ipsec-isakmp
   set peer 172.16.1.1
   set transform-set vpn1
   set isakmp-profile vpn1
   match address 101
crypto map cypmap 3 ipsec-isakmp
   set peer 10.1.1.1
   set transform-set vpn2
```
set isakmp-profile vpn2
match address 102
!
interface Ethernet1/1
 ip address 172.17.1.1 255.255.0.0
tag-switching ip
!
interface Ethernet1/2
 ip address 172.18.1.1 255.255.255.0
crypto map crypmap
 !
ip route 172.16.1.1 255.255.255.255 172.18.1.2
ip route 10.1.1.1 255.255.255.255 172.18.1.2
ip route vrf vpn1 10.2.0.0 255.255.0.0 172.18.1.2 global
ip route vrf vpn2 10.2.0.0 255.255.0.0 172.18.1.2 global
!
access-list 101 permit ip 10.1.0.0 0.0.255.255 10.2.0.0 0.0.255.255
access-list 102 permit ip 10.1.0.0 0.0.255.255 10.2.0.0 0.0.255.255

IPsec Customer Provided Edge (CPE) Configuration for VPN1

```plaintext
crypto isakmp policy 1
  encr 3des
  authentication pre-share
  group 2
crypto isakmp key vpn1 address 172.18.1.1
  !
crypto ipsec transform-set vpn1 esp-3des esp-sha-hmac
  !
crypto map vpn1 1 ipsec-isakmp
set peer 172.18.1.1
set transform-set vpn1
match address 101
!
interface FastEthernet1/0
  ip address 172.16.1.1 255.255.255.0
crypto map vpn1
!
interface FastEthernet1/1
  ip address 10.1.1.1 255.255.0.0
  !
access-list 101 permit ip 10.1.0.0 0.0.255.255 10.2.0.0 0.0.255.255
  !
```

IPsec CPE Configuration for VPN2

```plaintext
crypto isakmp policy 1
  encr 3des
  authentication pre-share
  group 2
  !
crypto isakmp key vpn2 address 172.18.1.1
  !
  !
crypto ipsec transform-set vpn2 esp-3des esp-md5-hmac
  !
crypto map vpn2 1 ipsec-isakmp
set peer 172.18.1.1
set transform-set vpn2
match address 101
!
interface FastEthernet0
  ip address 10.1.1.1 255.255.255.0
```
Example: IPsec-to-MPLS VPN Using RSA Encryption

The following example shows an IPsec-to-MPLS configuration using RSA encryption:

PE Router Configuration

```plaintext
crypto map vpn2
  
interface FastEthernet1
  ip address 10.2.1.1 255.255.0.0
  
access-list 101 permit ip 10.2.0.0 0.0.255.255 10.1.0.0 0.0.255.255
```

IPsec CPE Configuration for VPN1

```plaintext
crypto isakmp policy 10
  authentication rsa-encr

crypto key pubkey-chain rsa
  addressed-key 172.18.1.1 encryption
```
key-string
3082011B 300D0609 2A864886 F70D0101 01050003 82010800 30820103 0281FB00
C90CC78A 6002BDBA 24683396 B7D7877C 16D08C47 E003C1C0 63CF13BC 4E09EA23
92E8BA48 4113F5A4 8796C8BE AD7E2DC1 3B0742B6 7118CE7C 1B0E21D1 AA9724A4
4D74FCEA 562F2F25 A2B11F18 ES3C4415 61C3B741 3A06E75D B4F9102D 6163EE40
16C68FD7 6532F660 97B59118 9C8DE3E5 4E2F2925 BB87FCB 95223D4E A5E362DB
215CB3C 26008B08 17BEE1EF C3050E13 031F3D5B 5C22D16C FC881ECC 074F07A5
D050EC80 7890D9C5 EC20D6F0 173FE2BA 895FB5F9 2EADCD9A6 D461921E 3D5B60016
ABB8B69 E2124A21 93F0E4AE B487461B E7F1F1C4 032A0B0E 80DC3E15 CB268EC9
5D7689ED 3C78CB75 CE9F68C6 484D6573 CBC3EB59 4B5F3999 8F9D0203 010001
quit
!
crypto ipsec transform-set vpn1 esp-3des esp-sha-hmac
!
crypto map vpn1 1 ipsec-isakmp
set peer 172.18.1.1
set transform-set vpn1
match address 101
!
interface FastEthernet1/0
ip address 172.16.1.1 255.255.255.0
crypto map vpn1
!
interface FastEthernet1/1
ip address 10.2.1.1 255.255.0.0
!
access-list 101 permit ip 10.2.0.0 0.0.255.255 10.1.0.0 0.0.255.255
!
Example: IPsec-to-MPLS VPN with RSA Signatures

The following shows an IPsec-to-MPLS VPN configuration using RSA signatures:

PE Router Configuration
ip vrf vpn1
rd 100:1
route-target export 100:1
route-target import 100:1
!
crypto ca trustpoint bombo
enrollment url http://172.31.68.59:80

crl optional
!
crypto ca certificate chain bombo
certificate 03C0
308203BF 308202A7 A0030201 02020203 C030D06 092A8648 86F70D01 01050500
.
quit
certificate ca 01
30820379 30820261 A0030201 02020201 300D0609 2A864886 F70D0101 05050030
.
quit
!
crypto isakmp profile vpn1
vrf vpn1
crypto trust-point bombo
match identity address 172.16.1.1 255.255.255.255
!
crypto ipsec transform-set vpn1 esp-3des esp-sha-hmac
!
crypto map crypmap 1 ipsec-isakmp
set peer 172.16.1.1
set transform-set vpn1
set isakmp-profile vpn1
match address 101
!
interface Ethernet1/1
ip address 172.31.1.1 255.255.0.0
tag-switching ip
!
interface Ethernet1/2
ip address 172.18.1.1 255.255.255.0
crypto map crypmap
!
ip route 172.16.1.1 255.255.255.255 172.18.1.2
ip route vrf vpn1 10.2.0.0 255.255.0.0 172.18.1.2 global
!
access-list 101 permit ip 10.1.0.0 0.0.255.255 10.2.0.0 0.0.255.255
!

diffie-hellman group 17

IPsec CPE Configuration for VPN1

crypto ca trustpoint bombo
 enrollment url http://172.31.68.59:80
 crl optional
!
crypto ca certificate chain bombo
 certificate 03BF
 308203BD 308202A5 A0030201 02020203 BF300D06 092A8648 86F70D01 01050500
 ...
 quit
 certificate ca 01
 30820379 30820261 A0030201 02020101 300D0609 2A864886 F70D0101 05050303
 ...
 quit
!
crypto ipsec transform-set vpn1 esp-3des esp-sha-hmac
!
crypto map vpn1 1 ipsec-isakmp
 set peer 172.18.1.1
 set transform-set vpn1
 match address 101
!
interface FastEthernet1/0
ip address 172.16.1.1 255.255.255.0
crypto map vpn1
!
interface FastEthernet1/1
ip address 10.2.1.1 255.255.0.0
!
access-list 101 permit ip 10.2.0.0 0.0.255.255 10.1.0.0 0.0.255.255
!

Example: IPsec Remote Access-to-MPLS VPN

The following shows an IPsec remote access-to-MPLS VPN configuration. The configuration maps IPsec tunnels to MPLS VPNs. The IPsec tunnels terminate on a single public-facing interface.

PE Router Configuration

aaa new-model
!
aaa group server radius vpn1

server-private 10.1.1.1 auth-port 1645 acct-port 1646 timeout 5 retransmit 3 key vpn1
!
aaa group server radius vpn2
 server-private 10.1.1.1 auth-port 1645 acct-port 1646 timeout 5 retransmit 3 key vpn2
!
aaa authorization network aaa-list group radius
!
ip vrf vpn1
 rd 100:1
 route-target export 100:1
 route-target import 100:1
!
ip vrf vpn2
 rd 101:1
 route-target export 101:1
 route-target import 101:1
!
crypto isakmp profile vpn1-ra
 vrf vpn1
 match identity group vpn1-ra
 client authentication list vpn1
 isakmp authorization list aaa-list
 client configuration address initiate
 client configuration address respond
!
crypto isakmp profile vpn2-ra
 vrf vpn2
 match identity group vpn2-ra
 client authentication list vpn2
 isakmp authorization list aaa-list
 client configuration address initiate
 client configuration address respond
!
crypto ipsec transform-set vpn1 esp-3des esp-sha-hmac

crypto ipsec transform-set vpn2 esp-3des esp-md5-hmac
!
crypto dynamic-map vpn1 1
 set transform-set vpn1
 set isakmp-profile vpn1-ra
 reverse-route
!
crypto dynamic-map vpn2 1
 set transform-set vpn2
 set isakmp-profile vpn2-ra
 reverse-route
!
crypto map ra 1 ipsec-isakmp dynamic vpn1

crypto map ra 2 ipsec-isakmp dynamic vpn2
!
interface Ethernet1/1
 ip address 172.17.1.1 255.255.0.0
tag-switching ip
!
interface Ethernet1/2
 ip address 172.18.1.1 255.255.255.0
crypto map ra
!
ip local pool vpn1-ra 10.4.1.1 10.4.1.254 group vpn1-ra
ip local pool vpn2-ra 10.4.1.1 10.4.1.254 group vpn2-ra
Upgrade from Previous Versions of the Cisco Network-Based IPsec VPN Solution

The VRF-Aware IPsec feature in the Cisco network-based IPsec VPN solution release 1.5 requires that you change your existing configurations. The following sample configurations indicate the changes you must make to your existing configurations.

- Site-to-Site Configuration Upgrade, page 28
- Remote Access Configuration Upgrade, page 29
- Combination Site-to-Site and Remote Access Configuration Upgrade, page 31

Site-to-Site Configuration Upgrade

The following configurations show the changes that are necessary for a site-to-site configuration upgrade from a previous version of the network-based IPsec VPN solution to the Cisco network-based IPsec VPN solution release 1.5:

Previous Version Site-to-Site Configuration

```
crypto isakmp key VPN1 address 172.21.25.74
crypto isakmp key VPN2 address 172.21.21.74
crypto isakmp transform-set VPN1 esp-des esp-sha-hmac
crypto isakmp transform-set VPN2 esp-3des esp-sha-hmac
crypto map VPN1 10 ipsec-isakmp
set peer 172.21.25.74
set transform-set VPN1
match address 101
!
crypto map VPN2 10 ipsec-isakmp
set peer 172.21.21.74
set transform-set VPN2
match address 102
!
interface FastEthernet0/0.1
encapsulation dot1Q 1 native
ip vrf forwarding VPN1
ip address 172.21.25.73 255.255.255.0
crypto map VPN1
!
interface FastEthernet0/0.2
encapsulation dot1Q 2 native
ip vrf forwarding VPN2
ip address 172.21.21.74 255.255.255.0
crypto map VPN2
```

New Version Site-to-Site Configuration

The following is an upgraded version of the same site-to-site configuration to the Cisco network-based IPsec VPN solution release 1.5 solution:

```
Note
You must change two keyrings. The VRF-Aware Upset feature requires that keys be associated with a VRF if the IKE local endpoint is in the VRF.
```
VRF-Aware IPsec Configuration Examples for VRF-Aware IPsec

crypto keyring VPN1-KEYS vrf VPN1
 pre-shared-key address 172.21.25.74 key VPN1
!
crypto keyring VPN2-KEYS vrf VPN2
 pre-shared-key address 172.21.21.74 key VPN2
!
crypto ipsec transform-set VPN1 esp-des esp-sha-hmac
crypto ipsec transform-set VPN2 esp-3des esp-sha-hmac
!
crypto map VPN1 10 ipsec-isakmp
 set peer 172.21.25.74
 set transform-set VPN1
 match address 101
!
crypto map VPN2 10 ipsec-isakmp
 set peer 172.21.21.74
 set transform-set VPN2
 match address 102
!
interface FastEthernet0/0.1
 encapsulation dot1Q 1 native
 ip vrf forwarding VPN1
 ip address 172.21.25.73 255.255.255.0
 crypto map VPN1
!
interface FastEthernet0/0.2
 encapsulation dot1Q 2 native
 ip vrf forwarding VPN2
 ip address 172.21.21.74 255.255.255.0
 crypto map VPN2

Remote Access Configuration Upgrade

The following configurations show the changes that are necessary for a remote access configuration upgrade from a previous version of the network-based IPsec VPN solution to the Cisco network-based IPsec VPN solution release 1.5:

Previous Version Remote Access Configuration

crypto isakmp client configuration group VPN1-RA-GROUP
 key VPN1-RA
 pool VPN1-RA
!
crypto isakmp client configuration group VPN2-RA-GROUP
 key VPN2-RA
 pool VPN2-RA
!
crypto ipsec transform-set VPN1-RA esp-3des esp-sha-hmac
crypto ipsec transform-set VPN2-RA esp-3des esp-md5-hmac
!
crypto dynamic-map VPN1-RA 1
 set transform-set VPN1-RA
 reverse-route
!
crypto dynamic-map VPN2-RA 1
 set transform-set VPN2-RA
 reverse-route
!
!
crypto map VPN1 client authentication list VPN1-RA-LIST
crypto map VPN1 isakmp authorization list VPN1-RA-LIST

crypto map VPN1 client configuration address initiate
crypto map VPN1 client configuration address respond
crypto map VPN1 10 ipsec-isakmp dynamic VPN1-RA
!
crypto map VPN2 client authentication list VPN2-RA-LIST
crypto map VPN2 isakmp authorization list VPN2-RA-LIST
crypto map VPN2 client configuration address initiate
crypto map VPN2 client configuration address respond
crypto map VPN2 10 ipsec-isakmp dynamic VPN2-RA
!
interface FastEthernet0/0.1
 encapsulation dot1Q 1 native
 ip vrf forwarding VPN1
 ip address 172.21.25.73 255.255.255.0
 crypto map VPN1
!
interface FastEthernet0/0.2
 encapsulation dot1Q 2 native
 ip vrf forwarding VPN2
 ip address 172.21.21.74 255.255.255.0
 crypto map VPN2

New Version Remote Access Configuration

In the following instance, there is no upgrade; it is recommended that you change to the following configuration:
crypto isakmp client configuration group VPN1-RA-GROUP
 key VPN1-RA
 pool VPN1-RA
!
crypto isakmp client configuration group VPN2-RA-GROUP
 key VPN2-RA
 pool VPN2-RA
!
crypto isakmp profile VPN1-RA
 match identity group VPN1-RA-GROUP
 client authentication list VPN1-RA-LIST
 isakmp authorization list VPN1-RA-LIST
 client configuration address initiate
 client configuration address respond
!
crypto isakmp profile VPN2-RA
 match identity group VPN2-RA-GROUP
 client authentication list VPN2-RA-LIST
 isakmp authorization list VPN2-RA-LIST
 client configuration address initiate
 client configuration address respond
!
crypto ipsec transform-set VPN1-RA esp-3des esp-sha-hmac

crypto map VPN1 10 ipsec-isakmp dynamic VPN1-RA
VRF-Aware IPsec

Configuration Examples for VRF-Aware IPsec

Combination Site-to-Site and Remote Access Configuration Upgrade

The following configurations show the changes that are necessary for a site-to-site and remote access configuration upgrade from a previous version of the network-based IPsec VPN solution to the Cisco network-based IPsec VPN solution release 1.5:

Previous Version Site-to-Site and Remote Access Configuration

crypto isakmp key VPN1 address 172.21.25.74 no-xauth
crypto isakmp key VPN2 address 172.21.21.74 no-xauth
! crypto isakmp client configuration group VPN1-RA-GROUP
 key VPN1-RA
 pool VPN1-RA
! crypto isakmp client configuration group VPN2-RA-GROUP
 key VPN2-RA
 pool VPN2-RA
! crypto ipsec transform-set VPN1 esp-des esp-sha-hmac
crypto ipsec transform-set VPN2 esp-3des esp-sha-hmac
! crypto ipsec transform-set VPN1-RA esp-3des esp-sha-hmac
crypto ipsec transform-set VPN2-RA esp-3des esp-md5-hmac
! crypto dynamic-map VPN1-RA 1
set transform-set VPN1-RA
reverse-route
! crypto dynamic-map VPN2-RA 1
set transform-set VPN2-RA
reverse-route
! crypto map VPN1 client authentication list VPN1-RA-LIST
crypto map VPN1 isakmp authorization list VPN1-RA-LIST
crypto map VPN1 client configuration address initiate
crypto map VPN1 client configuration address respond
crypto map VPN1 10 ipsec-isakmp
set peer 172.21.25.74
set transform-set VPN1
match address 101
crypto map VPN1 20 ipsec-isakmp dynamic VPN1-RA
! crypto map VPN2 client authentication list VPN2-RA-LIST
crypto map VPN2 isakmp authorization list VPN2-RA-LIST
crypto map VPN2 client configuration address initiate
VRF-Aware IPsec Configuration Examples for VRF-Aware IPsec

crypto map VPN2 client configuration address respond
crypto map VPN2 10 ipsec-isakmp
set peer 172.21.21.74
set transform-set VPN2
match address 102
crypto map VPN2 20 ipsec-isakmp dynamic VPN2-RA

interface FastEthernet0/0.1
encapsulation dot1Q 1 native
ip vrf forwarding VPN1
ip address 172.21.25.73 255.255.255.0
crypto map VPN1

interface FastEthernet0/0.2
encapsulation dot1Q 2 native
ip vrf forwarding VPN2
ip address 172.21.21.74 255.255.255.0
crypto map VPN2

New Version Site-to-Site and Remote Access Configuration

You must upgrade to this configuration:

- For site-to-site configurations that do not require XAUTH, configure an ISAKMP profile without XAUTH configuration. For remote access configurations that require XAUTH, configure an ISAKMP profile with XAUTH.

openssl

crypto keyring VPN1-KEYS vrf VPN1
pre-shared-key address 172.21.25.74 key VPN1

crypto keyring VPN2-KEYS vrf VPN2
pre-shared-key address 172.21.21.74 key VPN2

crypto isakmp client configuration group VPN1-RA-GROUP
key VPN1-RA
pool VPN1-RA

crypto isakmp client configuration group VPN2-RA-GROUP
key VPN2-RA
pool VPN2-RA

crypto isakmp profile VPN1
keyring VPN1-KEYS
match identity address 172.21.25.74 VPN1

crypto isakmp profile VPN2
keyring VPN2-KEYS
match identity address 172.21.21.74 VPN2

crypto isakmp profile VPN1-RA
match identity group VPN1-RA-GROUP
client authentication list VPN1-RA-LIST
isakmp authorization list VPN1-RA-LIST
client configuration address initiate
client configuration address respond

crypto isakmp profile VPN2-RA
match identity group VPN2-RA-GROUP
client authentication list VPN2-RA-LIST
isakmp authorization list VPN2-RA-LIST
client configuration address initiate
client configuration address respond
!
crypto ipsec transform-set VPN1 esp-des esp-sha-hmac
crypto ipsec transform-set VPN2 esp-3des esp-sha-hmac
!
crypto ipsec transform-set VPN1-RA esp-3des esp-sha-hmac
crypto ipsec transform-set VPN2-RA esp-3des esp-md5-hmac
!
crypto dynamic-map VPN1-RA 1
set transform-set VPN1-RA
set isakmp-profile VPN1-RA
reverse-route
!
crypto dynamic-map VPN2-RA 1
set transform-set VPN2-RA
set isakmp-profile VPN2-RA
reverse-route
!
crypto map VPN1 10 ipsec-isakmp
set peer 172.21.25.74
set transform-set VPN1
set isakmp-profile VPN1
match address 101
crypto map VPN1 20 ipsec-isakmp dynamic VPN1-RA
!
crypto map VPN2 10 ipsec-isakmp
set peer 172.21.21.74
set transform-set VPN2
set isakmp-profile VPN2
match address 102
crypto map VPN2 20 ipsec-isakmp dynamic VPN2-RA
!
interface FastEthernet0/0.1
encapsulation dot1Q 1 native
ip vrf forwarding VPN1
ip address 172.21.25.73 255.255.255.0
crypto map VPN1
!
interface FastEthernet0/0.2
encapsulation dot1Q 2 native
ip vrf forwarding VPN2
ip address 172.21.21.74 255.255.255.0
crypto map VPN2
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPsec configuration tasks</td>
<td>“Configuring Security for VPNs with IPsec”</td>
</tr>
<tr>
<td>IPsec commands</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
<tr>
<td>IKE Phase 1 and Phase 2, aggressive mode, and main mode</td>
<td>“Configuring Internet Key Exchange for IPsec VPNs”</td>
</tr>
<tr>
<td>IKE dead peer detection</td>
<td>“Easy VPN Server”</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for VRF-Aware IPsec

Table 1 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

Table 1 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 1 Feature Information for VRF-Aware IPsec

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| VRF-Aware IPsec | 12.2(15)T | The VRF-Aware IPsec feature introduces IP Security (IPsec) tunnel mapping to Multiprotocol Label Switching (MPLS) Virtual Private Networks (VPNs). Using the VRF-Aware IPsec feature, you can map IPsec tunnels to Virtual Routing and Forwarding (VRF) instances using a single public-facing address. This feature was introduced in Cisco IOS Release 12.2(15)T. The following sections provide information about this feature:
 - Information About VRF-Aware IPsec, page 2
 - How to Configure VRF-Aware IPsec, page 4
 The following commands were introduced or modified:
 - address
 - ca trust-point
 - client authentication list
 - client configuration address
 - crypto isakmp profile
 - crypto keyring
 - crypto map isakmp-profile
 - initiate-mode
 - isakmp authorization list
 - keepalive (isakmp profile)
 - keyring
 - key-string
 - match identity
 - no crypto xauth
 - pre-shared-key
 - quit
 - rsa-pubkey
 - self-identity
 - serial-number
 - set isakmp-profile
 - show crypto isakmp key
 - show crypto isakmp profile
 - vrf
 - clear crypto sa
 - crypto isakmp peer
 - crypto map isakmp-profile
 - show crypto dynamic-map
 - show crypto ipsec sa
 - show crypto isakmp sa
 - show crypto map (IPsec). |
| | 15.1(1)S | This feature was integrated into Cisco IOS Release 15.1(1)S. |
CA—certification authority. CA is an entity that issues digital certificates (especially X.509 certificates) and vouches for the binding between the data items in a certificate.

CLI—command-line-interface. CLI is an interface that allows the user to interact with the operating system by entering commands and optional arguments. The UNIX operating system and DOS provide CLIs.

client—Corresponding IPsec IOS peer of the UUT in the Multi Protocol Label Switching (MPLS) network.

dead peer—IKE peer that is no longer reachable.

DN—Distinguished Name. A DN is the global, authoritative name of an entry in the Open System Interconnection (OSI Directory [X.500]).

FQDN—fully qualified domain name. A FQDN is the full name of a system rather than just its host name. For example, aldebaran is a host name, and aldebaran.interop.com is an FQDN.

FR—Frame Relay. FR is an industry-standard, switch-data-link-layer protocol that handles multiple virtual circuits using high-level data link (HDLC) encapsulation between connected devices. Frame Relay is more efficient than X.25, the protocol for which it generally is considered a replacement.

FVRF—Front Door Virtual Routing and Forwarding (VRF) repository. FVRF is the VRF used to route the encrypted packets to the peer.

IDB—Interface descriptor block. An IDB subblock is an area of memory that is private to an application. This area stores private information and states variables that an application wants to associate with an IDB or an interface. The application uses the IDB to register a pointer to its subblock, not to the contents of the subblock itself.

IKE—Internet Key Exchange. IKE establishes a shared security policy and authenticates keys for services (such as IPsec) that require keys. Before any IPsec traffic can be passed, each router, firewall, and host must verify the identity of its peer. This can be done by manually entering preshared keys into both hosts or by a CA service.

IKE keepalive—Bidirectional mechanism for determining the liveness of an IKE peer.

IPsec—Security protocol for IP.

IVRF—Inside Virtual Routing and Forwarding. IVRF is the VRF of the plaintext packets.

MPLS—Multiprotocol Label Switching. MPLS is a switching method that forwards IP traffic using a label. This label instructs the routers and the switches in the network where to forward the packets based on preestablished IP routing information.

RSA—Rivest, Shamir, and Adelman are the inventors of the RSA technique. The RSA technique is a public-key cryptographic system that can be used for encryption and authentication.

SA—Security Association. SA is an instance of security policy and keying material applied to a data flow.

VPN—Virtual Private Network. A VPN enables IP traffic to travel securely over a public TCP or IP network by encrypting all traffic from one network to another. A VPN uses “tunneling” to encrypt all information at the IP level.

VRF—Virtual Route Forwarding. VRF is a VPN routing and forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router.
XAUTH—Extended authentication. XAUTH is an optional exchange between IKE Phase 1 and IKE Phase 2, in which the router demands additional authentication information in an attempt to authenticate the actual user (as opposed to authenticating the peer).

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© <year> Cisco Systems, Inc. All rights reserved.