MPLS Traffic Engineering—AutoTunnel Mesh Groups

First Published: January 27, 2004
Last Updated: October 21, 2009

The MPLS Traffic Engineering—AutoTunnel Mesh Groups feature allows a network administrator to configure traffic engineering (TE) label switched paths (LSPs) by using a few command-line interface (CLI) commands.

In a network topology where edge TE label switch routers (LSRs) are connected by core LSRs, the MPLS Traffic Engineering—AutoTunnel Mesh Groups feature automatically constructs a mesh of TE LSPs among the provider edge (PE) routers.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the “Feature Information for MPLS Traffic Engineering—AutoTunnel Mesh Groups” section on page 18.

Use Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Contents

- Prerequisites for MPLS Traffic Engineering—AutoTunnel Mesh Groups, page 2
- Restrictions for MPLS Traffic Engineering—AutoTunnel Mesh Groups, page 2
- Information About MPLS Traffic Engineering—AutoTunnel Mesh Groups, page 2
- How to Configure MPLS Traffic Engineering—AutoTunnel Mesh Groups, page 4
- Configuration Examples for MPLS Traffic Engineering—AutoTunnel Mesh Groups, page 14
Prerequisites for MPLS Traffic Engineering—AutoTunnel Mesh Groups

- Be knowledgeable about MPLS TE. See the “Additional References” section on page 16.
- Decide how you will set up autotunnels (that is, identify the tunnel commands that you will include in the template interface).
- Identify a block of addresses that you will reserve for mesh tunnel interfaces.

Restrictions for MPLS Traffic Engineering—AutoTunnel Mesh Groups

- Mesh groups do not support interarea tunnels because the destinations of those tunnels do not exist in the local area TE database.
- You cannot configure a static route to route traffic over autotunnel mesh group TE tunnels. You should use only the autoroute for tunnel selection.
- Intermediate System-to-System (IS-IS) does not support Interior Gateway Protocol (IGP) distribution of mesh group information. For IS-IS, only Access Control Lists (ACLs) can be used.

Information About MPLS Traffic Engineering—AutoTunnel Mesh Groups

To configure autotunnel mesh groups, you need to understand the following concepts:

- AutoTunnel Mesh Groups Description and Benefits, page 2
- Access Lists for Mesh Tunnel Interfaces, page 3
- AutoTunnel Template Interfaces, page 3
- OSPF Flooding of Mesh Group Information, page 4

AutoTunnel Mesh Groups Description and Benefits

An autotunnel mesh group (referred to as a mesh group) is a set of connections between edge LSRs in a network. There are two types of mesh groups:

- Full—All the edge LSRs are connected. Each PE router has a tunnel to each of the other PE routers.
- Partial—Some of the edge LSRs are not connected to each other by tunnels.
In a network topology where edge TE LSRs are connected by core LSRs, the MPLS Traffic Engineering—AutoTunnel Mesh Groups feature automatically constructs a mesh of TE LSPs among the PE routers.

Initially, you must configure each existing TE LSR to be a member of the mesh by using a minimal set of configuration commands. When the network grows (that is, when one or more TE LSRs are added to the network as PE routers), you do not need to reconfigure the existing TE LSR members of that mesh.

Mesh groups have the following benefits:

- Minimize the initial configuration of the network. You configure one template interface per mesh, and it propagates to all mesh tunnel interfaces, as needed.
- Minimize future configurations resulting from network growth. The feature eliminates the need to reconfigure each existing TE LSR to establish a full mesh of TE LSPs whenever a new PE router is added to the network.
- Enable existing routers to configure TE LSPs to new PE routers.
- Enable the construction of a mesh of TE LSPs among the PE routers automatically.

Access Lists for Mesh Tunnel Interfaces

The access list determines the destination addresses for the mesh tunnel interfaces. It is useful if you preallocate a block of related IP addresses. You can use that block of addresses to control the PE routers to which a full or partial mesh of TE tunnel LSPs is established. The access list allows matches for only the addresses that are learned and stored in the TE topology database.

For example, you can create an access list that matches all 10.1.1.1 IP addresses. You configure a template with the access list, then the template creates mesh tunnel interfaces to destinations within the TE topology database that match destinations in that access list.

Whenever the TE topology database is updated (for example, when a new TE LSR is inserted into the Interior Gateway Protocol (IGP), the destination address is stored in the TE topology database of each router in the IGP. At each update, the Mesh Group feature compares the destination address contained in the database to IP addresses in the access list associated with all template interfaces. If there is a match, the Mesh Group feature establishes a mesh tunnel interface to the tunnel destination IP address.

AutoTunnel Template Interfaces

An autotunnel template interface is a logical entity; that is, it is a configuration for a tunnel interface that is not tied to specific tunnel interfaces. It can be applied dynamically, when needed.

Mesh tunnel interfaces are tunnel interfaces that are created, configured dynamically (for example, by the applying [or cloning] of a template interface), used, and then freed when they are no longer needed.

A mesh tunnel interface obtains its configuration information from a template, except for the tunnel’s destination address, which it obtains from the TE topology database that matches an access list or from the IGP mesh group advertisement.

The template interface allows you to enter commands once per mesh group. These commands specify how mesh tunnel interfaces are created. Each time a new router is added to the network, a new mesh tunnel interface is created. The configuration of the interface is duplicated from the template. Each mesh tunnel interface has the same path constraints and other parameters configured on the template interface. Only the tunnel destination address is different.
OSPF Flooding of Mesh Group Information

For OSPF to advertise or flood mesh group information, you need to configure a mesh group in OSPF and add that mesh group to an autotemplate interface. When the configuration is complete, OSPF advertises the mesh group IDs to all LSRs. MPLS TE LSPs automatically connect the edge LSRs in each mesh group. For configuration information, see the “Configuring IGP Flooding for Autotunnel Mesh Groups” section on page 12.

OSPF can advertise mesh group IDs for an OSPF area. OSPF is the only IGP supported in the Cisco IOS 12.0(29)S, 12.2(33)SRA, 12.2(33)SXH, and 12.4(20)T releases of the MPLS Traffic Engineering—AutoTunnel Mesh Groups feature.

How to Configure MPLS Traffic Engineering—AutoTunnel Mesh Groups

This section contains the following procedures:

- Configuring a Mesh of TE Tunnel LSPs, page 4 (required)
- Specifying the Range of Mesh Tunnel Interface Numbers, page 9 (optional)
- Displaying Configuration Information About Tunnels, page 10 (optional)
- Monitoring the Autotunnel Mesh Network, page 11 (required)
- Configuring IGP Flooding for Autotunnel Mesh Groups, page 12 (optional)

Configuring a Mesh of TE Tunnel LSPs

Perform the following tasks on each PE router in your network to configure a mesh of TE tunnel LSPs:

- Enabling Autotunnel Mesh Groups Globally, page 4
- Creating an Access List Using a Name, page 5
- Creating an Autotunnel Template Interface, page 6

Note: You can perform these tasks in any order.

Enabling Autotunnel Mesh Groups Globally

Perform this task on all PE routers in your network that you want to be part of an autotunnel mesh group.

SUMMARY STEPS

1. enable
2. configure terminal
3. mpls traffic-eng auto-tunnel mesh
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 mpls traffic-eng auto-tunnel mesh</td>
<td>Enables autotunnel mesh groups globally.</td>
</tr>
<tr>
<td>Example: Router(config)# mpls traffic-eng auto-tunnel mesh</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Creating an Access List Using a Name

The access list determines the destination addresses for the mesh tunnel interfaces. You can use an access list to control the PE routers to which a full or partial mesh of TE tunnel LSPs is established. The access list allows matches for only the addresses that are learned and stored in the TE topology database.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip access-list {standard | extended} access-list-name
4. permit source [source-wildcard]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 3 | ip access-list (standard | extended) access-list-name | Defines an IP access list using a name and enters standard named access list configuration mode.
 - The **standard** keyword specifies a standard IP access list.
 - The **extended** keyword specifies an extended IP access list.
 - The **access-list-name** argument is the name of the access list. A name cannot contain a space or quotation mark and must begin with an alphabetic character. This prevents confusion with numbered access lists. |
| 4 | permit source [source-wildcard] | Sets conditions to allow a packet to pass a named IP access list.
 - The **source** argument is the number of the network or host from which the packet is being sent. There are three alternative ways to specify the source:
 - Use a 32-bit quantity in four-part dotted decimal format.
 - Use the **any** keyword as an abbreviation for a source and source-wildcard of 0.0.0.0 255.255.255.255.
 - Use host source as an abbreviation for a source and source-wildcard of source 0.0.0.0.
 - The **source-wildcard** argument is the wildcard bits to be applied to source. There are three alternative ways to specify the source wildcard:
 - Use a 32-bit quantity in four-part dotted decimal format. Place 1s in the bit positions you want to ignore.
 - Use the **any** keyword as an abbreviation for a source and source-wildcard of 0.0.0.0 255.255.255.255.
 - Use host source as an abbreviation for a source and source-wildcard of source 0.0.0.0. |
| 5 | end | Exits to privileged EXEC mode. |

Example:

Step 3

```plaintext
Router(config)# ip access-list standard a1
```

Step 4

```plaintext
Router(config-std-nacl)# permit 10.0.0.0 0.255.255.255
```

Step 5

```plaintext
Router(config-std-nacl)# end
```

Creating an Autotunnel Template Interface

Creating an autotunnel template interface helps minimize the initial configuration of the network. You configure one template interface per mesh, which propagates to all mesh tunnel interfaces, as needed.

Note

You can use the following commands to create a minimal configuration.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface auto-template interface-num`
4. `ip unnumbered interface-type interface-number`
5. `tunnel mode {aurp | cayman | dvmrp | eon | gre | ipip | iptalk | mpls | nos}`
6. `tunnel mpls traffic-eng autoroute announce`
7. `tunnel mpls traffic-eng priority setup-priority [hold-priority]`
8. `tunnel mpls traffic-eng auto-bw [collect-bw] [frequency seconds] [max-bw kbps] [min-bw kbps]`
9. `tunnel mpls traffic-eng path-option number {dynamic | explicit {name path-name | path-number}} [lockdown]`
10. `tunnel destination access-list num`
11. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>interface auto-template interface-num</code></td>
<td>Creates a template interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface auto-template 1</td>
<td>- The <code>interface-num</code> argument is the interface number. Valid values are from 1 to 25.</td>
</tr>
<tr>
<td>Step 4 <code>ip unnumbered interface-type interface-number</code></td>
<td>Enables IP processing on an interface without assigning an explicit IP address to the interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip unnumbered Loopback 0</td>
<td>- The <code>type</code> and <code>number</code> arguments name the type and number of another interface on which the router has an assigned IP address. It cannot be another unnumbered interface.</td>
</tr>
<tr>
<td>Step 5 `tunnel mode {aurp</td>
<td>cayman</td>
</tr>
<tr>
<td>Example: Router(config-if)# tunnel mode mpls</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6 tunnel mpls traffic-eng autoroute announce</td>
<td>Specifies that the IGP should use the tunnel (if the tunnel is up) in its enhanced shortest path first algorithm (SPF) calculation.</td>
</tr>
</tbody>
</table>
| **Example:**
 Router(config-if)# tunnel mpls traffic-eng autoroute announce | |
| **Step 7** tunnel mpls traffic-eng priority setup-priority [hold-priority] | Configures the setup and reservation priority for an MPLS TE tunnel. |
| **Example:**
 Router(config-if)# tunnel mpls traffic-eng priority 1 1 | - The setup-priority argument is the priority used when an LSP is signaled for this tunnel and determines which existing tunnels can be preempted. Valid values are from 0 to 7, where a lower number indicates a higher priority. Therefore, an LSP with a setup priority of 0 can preempt any LSP with a non-0 priority. |
| **Step 8** tunnel mpls traffic-eng auto-bw [collect-bw] [frequency seconds] [max-bw kbps] [min-bw kbps] | Configures a tunnel for automatic bandwidth adjustment and for control of the manner in which the bandwidth for a tunnel is adjusted. |
| **Example:**
 Router(config-if)# tunnel mpls traffic-eng auto-bw | - The collect-bw keyword collects output rate information for the tunnel, but does not adjust the tunnel’s bandwidth. |
| | - The frequency seconds keyword-argument pair is the interval between bandwidth adjustments. The specified interval can be from 300 to 604800 seconds. Do not specify a value lower than the output rate sampling interval specified in the mpls traffic-eng auto-bw command in global configuration mode. |
| | - The max-bw kbps keyword-argument pair is the maximum automatic bandwidth, in kbps, for this tunnel. The value can be from 0 to 4294967295. |
| | - The min-bw kbps keyword-argument pair is the minimum automatic bandwidth, in kbps, for this tunnel. The value can be from 0 to 4294967295. |
Command or Action

| Step 9 | tunnel mpls traffic-eng path-option number {dynamic | explicit {name path-name | path-number}} [lockdown] |
|---|---|
| **Example:** | Router(config-if)# tunnel mpls traffic-eng path-option 1 dynamic |

Purpose

- Configures a path option for an MPLS TE tunnel.
 - The `number` argument is the number of the path option. When multiple path options are configured, lower numbered options are preferred.
 - The `dynamic` keyword specifies that the path of the LSP is dynamically calculated.
 - The `explicit` keyword specifies that the path of the LSP is an IP explicit path.
 - The `name path-name` keyword-argument pair is the path name of the IP explicit path that the tunnel uses with this option.
 - The `path-number` argument is the path number of the IP explicit path that the tunnel uses with this option.
 - The `lockdown` keyword specifies that the LSP cannot be reoptimized.

<table>
<thead>
<tr>
<th>Step 10</th>
<th>tunnel destination access-list num</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# tunnel destination access-list 1</td>
</tr>
</tbody>
</table>

Purpose

- Specifies the access list that the template interface uses for obtaining the mesh tunnel interface destination address.
 - The `num` argument is the number of the access list.

<table>
<thead>
<tr>
<th>Step 11</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# end</td>
</tr>
</tbody>
</table>

Purpose

- Exits to privileged EXEC mode.

Specifying the Range of Mesh Tunnel Interface Numbers

SUMMARY STEPS

1. enable
2. configure terminal
3. mpls traffic-eng auto-tunnel mesh tunnel-num min num max num
4. end
How to Configure MPLS Traffic Engineering—AutoTunnel Mesh Groups

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>3</td>
<td>mpls traffic-eng auto-tunnel mesh tunnel-num min num max num</td>
<td>Specifies the range of mesh tunnel interface numbers.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config)# mpls traffic-eng auto-tunnel mesh tunnel-num min 1000 max 2000</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config)# end</td>
</tr>
</tbody>
</table>

Displaying Configuration Information About Tunnels

SUMMARY STEPS

1. enable
2. show running interface auto-template num
3. show interface tunnel num configuration
4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>enable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use this command to enable privileged EXEC mode. Enter your password if prompted. For example:</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>Router#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>show running interface auto-template num</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use this command to display interface configuration information for a tunnel interface. For example:</td>
</tr>
<tr>
<td></td>
<td>Router# show running interface auto-template 1</td>
</tr>
<tr>
<td></td>
<td>interface auto-template1</td>
</tr>
<tr>
<td></td>
<td>ip unnumbered Loopback0</td>
</tr>
<tr>
<td></td>
<td>no ip directed-broadcast</td>
</tr>
</tbody>
</table>
no keepalive
tunnel destination access-list 1
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng path-option 1 dynamic

This output shows that autotunnel template interface auto-template1 uses an access list (access-list 1) to determine the destination addresses for the mesh tunnel interfaces.

Step 3 show interface tunnel num configuration

Use this command to display the configuration of the mesh tunnel interface. For example:

```
Router# show interface tunnel 5 configuration
```

```
interface tunnel 5
   ip unnumbered Loopback0
   no ip directed-broadcast
   no keepalive
   tunnel destination access-list 1
   tunnel mode mpls traffic-eng
   tunnel mpls traffic-eng autoroute announce
   tunnel mpls traffic-eng path-option 1 dynamic
```

Step 4 exit

Use this command to exit to user EXEC mode. For example:

```
Router# exit
Router>
```

Monitoring the Autotunnel Mesh Network

SUMMARY STEPS

1. enable
2. show mpls traffic-eng tunnels property auto-tunnel mesh [brief]
3. show mpls traffic-eng auto-tunnel mesh
4. exit

DETAILED STEPS

Step 1 enable

Use this command to enable privileged EXEC mode. Enter your password if prompted. For example:

```
Router> enable
Router#
```

Step 2 show mpls traffic-eng tunnels property auto-tunnel mesh [brief]

Use this command to monitor mesh tunnel interfaces. This command restricts the output of the show mpls traffic-eng tunnels command to display only mesh tunnel interfaces. For example:

```
Router# show mpls traffic-eng tunnels property auto-tunnel mesh brief
```

Signalling Summary:
LSP Tunnels Process: running
RSVP Process: running
Forwarding: enabled
Periodic reoptimization: every 3600 seconds, next in 491 seconds
Periodic FRR Promotion: Not Running
Periodic auto-bw collection: disabled

<table>
<thead>
<tr>
<th>TUNNEL NAME</th>
<th>DESTINATION</th>
<th>UP IF</th>
<th>DOWN IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>router_t64336</td>
<td>10.2.2.2</td>
<td></td>
<td>Se2/0</td>
</tr>
<tr>
<td>router_t64337</td>
<td>10.3.3.3</td>
<td></td>
<td>Se2/0</td>
</tr>
</tbody>
</table>

Displayed 2 (of 2) heads, 0 (of 0) midpoints, 0 (of 0) tails

Step 3
show mpls traffic-eng auto-tunnel mesh

Use this command to display the cloned mesh tunnel interfaces of each autotemplate interface and the current range of mesh tunnel interface numbers. For example:

```plaintext
Router# show mpls traffic-eng auto-tunnel mesh

Auto-Template1:
Using access-list 1 to clone the following tunnel interfaces:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.2.2</td>
<td>Tunnel64336</td>
</tr>
<tr>
<td>10.3.3.3</td>
<td>Tunnel64337</td>
</tr>
</tbody>
</table>

Mesh tunnel interface numbers: min 64336 max 65337

**Step 4**  
**exit**

Use this command to exit to user EXEC mode. For example:

```plaintext
Router# exit
Router>
```

**Troubleshooting Tips**

You can configure mesh tunnel interfaces directly. However, you cannot delete them manually, and manual configuration is not permanent. The configuration is overwritten when the template changes or the mesh tunnel interface is deleted and re-created. If you attempt to manually delete a mesh tunnel interface, an error message appears.

You can enter the **show mpls traffic-eng tunnels destination address** command to display information about tunnels that are destined for a specified IP address.

Enter the **show mpls traffic-eng tunnels property auto-tunnel mesh** command to display information about mesh tunnel interfaces.

**Configuring IGP Flooding for Autotunnel Mesh Groups**

Perform the following task to configure IGP flooding for autotunnel mesh groups. Use this task to configure an OSPF-based discovery for identifying mesh group members and advertising the mesh group IDs to all LSRs.
### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `mpls traffic-eng auto-tunnel mesh`
4. `router ospf process-id`
5. `mpls traffic-eng mesh-group mesh-group-id interface-type interface-number area area-id`
6. `exit`
7. Repeat steps 4 and 5 at other LSRs to advertise the mesh group numbers to which they belong.
8. `interface auto-template interface-num`
9. `tunnel destination mesh-group mesh-group-id`
10. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  - Enter your password if prompted. |
| **Example:**  
  Router> enable | |
| **Step 2** `configure terminal` | Enters global configuration mode. |
| **Example:**  
  Router# configure terminal | |
| **Step 3** `mpls traffic-eng auto-tunnel mesh` | Enables autotunnel mesh groups globally. |
| **Example:**  
  Router(config)# mpls traffic-eng auto-tunnel mesh | |
| **Step 4** `router ospf process-id` | Enters router configuration mode and configures an OSPF routing process.  
  - The `process-id` argument is an internally used identification parameter for an OSPF routing process. It is locally assigned and can be any positive integer. A unique value is assigned for each OSPF routing process. |
| **Example:**  
  Router(config)# router ospf 100 | |
| **Step 5** `mpls traffic-eng mesh-group mesh-group-id interface-type interface-number area area-id` | Advertises the autotunnel mesh group number of an LSR.  
  - The `mesh-group-id` is a number that identifies a specific mesh group.  
  - The `interface-type` and `interface-number` arguments specify a type of interface and an interface number.  
  - The `area area-id` keyword-argument pair identifies the area. |
| **Example:**  
  Router(config-router)# mpls traffic-eng  
  mesh-group 10 loopback 0 area 100 | |
### Configuration Examples for MPLS Traffic Engineering—Autotunnel Mesh Groups

This section contains the following configuration examples:

- Configuring a Mesh of TE Tunnel LSPs: Examples, page 14
- Specifying the Range of Mesh Tunnel Interface Numbers: Example, page 15
- Configuring IGP Flooding for Autotunnel Mesh Groups: Example, page 15

### Configuring a Mesh of TE Tunnel LSPs: Examples

This section contains the following configuration examples for configuring a mesh of TE tunnel LSP:

- Enabling Autotunnel Mesh Groups Globally: Example, page 14
- Creating an Access List Using a Name: Example, page 15
- Creating an AutoTunnel Template Interface: Example, page 15

#### Enabling Autotunnel Mesh Groups Globally: Example

The following example shows how to enable autotunnel mesh groups globally:

```
configure terminal

mpls traffic-eng auto-tunnel mesh
```
Creating an Access List Using a Name: Example

The following examples show how to create an access list using a name to determine the destination addresses for the mesh tunnel interfaces:

```
configure terminal
!
ip access-list standard a1
 permit 10.0.0.0 0.255.255.255
end
```

In this example, any IP address in the TE topology database that matches access list a1 causes the creation of a mesh tunnel interface with that destination address.

Creating an AutoTunnel Template Interface: Example

This example shows how to create an AutoTunnel template template interface. In the following example, an AutoTunnel template is created and configured with a typical set of TE commands. The mesh group created from the template consists of mesh tunnel interfaces with destination addresses that match access list a1.

```
Note
The following example shows a typical configuration.

configure terminal
!
interface auto-template 1
 ip unnumbered Loopback0
 tunnel mode mpls
 tunnel mpls traffic-eng autoroute announce
 tunnel mpls traffic-eng priority 1 1
 tunnel mpls traffic-eng auto-bw
 tunnel mpls traffic-eng path-option 1 dynamic
 tunnel destination access-list a1
end
```

Specifying the Range of Mesh Tunnel Interface Numbers: Example

In the following example, the lowest mesh tunnel interface number can be 1000, and the highest mesh tunnel interface number can be 2000:

```
configure terminal
!
mls traffic-eng auto-tunnel mesh tunnel-num min 1000 max 2000
end
```

Configuring IGP Flooding for Autotunnel Mesh Groups: Example

In the following example, OSPF is configured to advertise the router membership in mesh group 10:

```
configure terminal
!
mls traffic-eng auto-tunnel mesh
```
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS traffic engineering command descriptions</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
**Technical Assistance**

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can</td>
<td></td>
</tr>
<tr>
<td>subscribe to various services, such as the Product Alert Tool (accessed from</td>
<td></td>
</tr>
<tr>
<td>Field Notices), the Cisco Technical Services Newsletter, and Really Simple</td>
<td></td>
</tr>
<tr>
<td>Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com</td>
<td></td>
</tr>
<tr>
<td>user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>
Feature Information for MPLS Traffic Engineering—AutoTunnel Mesh Groups

Table 1 lists the release history for this feature.

Not all commands may be available in your Cisco IOS software release. For release information about a specific command, see the command reference documentation.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which Cisco IOS and Catalyst OS software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

**Note** Table 1 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS Traffic Engineering—AutoTunnel Mesh Groups</td>
<td>12.0(27)S 12.0(29)S 12.2(33)SRA 12.2(33)SXH 12.4(20)T 12.2(33)SRE</td>
<td>The MPLS Traffic Engineering—AutoTunnel Mesh Groups feature allows a network administrator to configure TE LSPs. In Cisco IOS Release 12.2(27)S, this feature was introduced. In Cisco IOS Release 12.0(29)S, this feature was updated to include Interior Gateway Protocol (IGP) flooding of autotunnel mesh groups. In Cisco IOS Release 12.2(33)SRA, this feature was integrated. In Cisco IOS Release 12.2(33)SXH, support was added. In Cisco IOS Release 12.4(20)T, this feature was integrated. In Cisco IOS Release 12.2(33)SRE, this feature was integrated. A router with autotunnel mesh groups can be configured with stateful switchover (SSO) redundancy.</td>
</tr>
</tbody>
</table>
Glossary

CE router—customer edge router. A router that is part of a customer’s network and interfaces to a provider edge (PE) router.

customer network—A network that is under the control of an end customer. Private addresses can be used in a customer network. Customer networks are logically isolated from each other and from the service provider’s network.

data edge router—A router at the edge of the network that receives and transmits packets. It can define the boundaries of the Multiprotocol Label Switching (MPLS) network.

headend—The label switch router (LSR) where a tunnel originates. The tunnel’s “head” or tunnel interface resides at this LSR as well.

label—A short, fixed-length data construct that tells switching nodes how to forward data (packets).

label switched path (LSP) tunnel—A configured connection between two routers in which label switching is used to carry the packets.

LSP—label switched path. A path that a labeled packet follows over several hops, starting at an ingress LSR and ending at an egress LSR.

LSR—label switch router. A Layer 3 router that forwards a packet based on the value of a label encapsulated in the packet.

mesh group—A set of label switch routers (LSRs) that are members of a full or partial network of traffic engineering (TE) label switched paths (LSPs).

P router—provider core router.

PE router—provider edge router. A router at the edge of the service provider’s network that interfaces to customer edge (CE) routers.

router—A network layer device that uses one or more metrics to determine the optimal path along which network traffic should be forwarded. Routers forward packets from one network to another based on network layer information.

tailend—The downstream, receive end of a tunnel.

traffic engineering—The techniques and processes used to cause routed traffic to travel through the network on a path other than the one that would have been chosen if standard routing methods had been used.

tunnel—A secure communication path between two peers, such as two routers. A traffic engineering tunnel is a label switched tunnel that is used for traffic engineering. Such a tunnel is set up through means other than normal Layer 3 routing.