Easy VPN Server

First Published: February 25, 2002
Last Updated: March 29, 2011

The Easy VPN Server feature introduces server support for the Cisco VPN Client Release 3.x and later software clients and Cisco VPN hardware clients (such as the Cisco ASR 1000 Series Aggregation Services Routers). This feature allows a remote end user to communicate using IPsec with any Cisco IOS XE VPN gateway. Centrally managed IPsec policies are “pushed” to the client device by the server, minimizing configuration by the end user.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the “Feature Information for Easy VPN Server” section on page 62.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Contents

- Restrictions for Easy VPN Server, page 2
- Information About Easy VPN Server, page 3
- How to Configure Easy VPN Server, page 18
- Configuration Examples for Easy VPN Server, page 42
- Additional References, page 60
- Feature Information for Easy VPN Server, page 62
- Glossary, page 66
Restrictions for Easy VPN Server

Nonupported Protocols

Table 1 outlines IPsec protocol options and attributes that are currently not supported by Cisco VPN clients. These options and attributes should not be configured on the router for these clients.

<table>
<thead>
<tr>
<th>Options</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Types</td>
<td>Authentication with public key encryption</td>
</tr>
<tr>
<td></td>
<td>Digital Signature Standard (DSS)</td>
</tr>
<tr>
<td>Diffie-Hellman (DH) groups</td>
<td>1</td>
</tr>
<tr>
<td>IPsec Protocol Identifier</td>
<td>IPSEC_AH</td>
</tr>
<tr>
<td>IPsec Protocol Mode</td>
<td>Transport mode</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Manual keys</td>
</tr>
<tr>
<td></td>
<td>Perfect Forward Secrecy (PFS)</td>
</tr>
</tbody>
</table>

Cisco Secure VPN Client 1.x Restrictions

When used with this feature, the Cisco Secure VPN Client 1.x has the following restrictions:

- It does not support dead peer detection (DPD) or any other keepalive scheme.
- It does not support initial contact.
- This feature cannot use per-group attribute policy profiles such as IP addresses, and Domain Name Service (DNS). Thus, customers must continue to use the existing, globally defined parameters for IP address assignment, Windows Internet Naming Service (WINS), DNS, and preshared keys.

Multicast and Static NAT

Multicast and static NAT are supported only for Easy VPN servers using dynamic virtual tunnel interfaces (DVTIs).

Virtual IPsec Interface Restrictions

The Virtual IPsec Interface Support feature works only with a Cisco software VPN Client version 4.x or later, and an Easy VPN remote device that is configured to use a virtual interface.

Universal Client Mode

The Easy VPN Server feature does not support universal client mode using DHCP.
Information About Easy VPN Server

- How It Works, page 3
- RADIUS Support for Group Profiles, page 4
- RADIUS Support for User Profiles, page 7
- Supported Protocols, page 8
- Functions Supported by Easy VPN Server, page 9

How It Works

When the client initiates a connection with a Cisco IOS XE VPN device, the “conversation” that occurs between the peers consists of device authentication via Internet Key Exchange (IKE), followed by user authentication using IKE Extended Authentication (Xauth), VPN policy push (using Mode Configuration), and IPsec security association (SA) creation. An overview of this process is as follows:

- The client initiates IKE Phase 1 via aggressive mode (AM) if a preshared key is used for authentication. If the client identifies itself with a preshared key, the accompanying group name entered in the configuration GUI (ID_KEY_ID) is used to identify the group profile associated with this client.
 If digital certificates are used the client initiates main mode (MM). The organizational unit (OU) field of a distinguished name (DN) is used to identify the group profile when digital certificates are used.

 Note
 Because the client may be configured for preshared key authentication, which initiates IKE AM, it is recommended that the administrator change the identity of the VPN device via the `crypto isakmp identity hostname` command. This will not affect certificate authentication via IKE MM.

- The client attempts to establish an IKE SA between its public IP address and the public IP address of the VPN device. To reduce the amount of manual configuration on the client, every combination of encryption and hash algorithms, in addition to authentication methods and DH group sizes, is proposed.

- Depending on its IKE policy configuration, the VPN device will determine which proposal is acceptable to continue negotiating Phase 1.

 Tip
 IKE policy is global for the VPN device and can consist of several proposals. In the case of multiple proposals, the VPN device uses the first match, so you should always list your most secure policies first.

 Note
 Device authentication ends and user authentication begins at this point.

- After the IKE SA is successfully established, and if the VPN device is configured for Xauth, the client waits for a “username/password” challenge and then responds to the challenge of the peer. The information that is entered is checked against authentication entities using authentication, authorization, and accounting (AAA) protocols such as RADIUS and TACACS+. Token cards may also be used via AAA proxy. During Xauth, it is also possible for a user-specific attribute to be retrieved if the credentials of that user are validated via RADIUS.
VPN devices that are configured to handle remote clients should always be configured to enforce user authentication.

- If the VPN device indicates that authentication was successful, the client requests further configuration parameters from the peer. The remaining system parameters (for example, IP address, DNS, and split tunnel attributes) are pushed to the client at this time using Mode Configuration.

The IP address pool and group preshared key (if Rivest, Shamir, and Adelman [RSA] signatures are not being used) are the only required parameter in a group profile, all other parameters are optional.

- After each client is assigned an internal IP address via Mode Configuration, it is important that the VPN device knows how to route packets through the appropriate VPN tunnel. Reverse route injection (RRI) ensures that a static route is created on the VPN device for each client internal IP address.

It is recommended that you enable RRI on the crypto map (static or dynamic) for the support of VPN clients unless the crypto map is being applied to a Generic Routing Encapsulation (GRE) tunnel that is already being used to distribute routing information.

- After the configuration parameters have been successfully received by the client, IKE quick mode is initiated to negotiate IPsec SA establishment.
- After IPsec SAs are created, the connection is complete.

RADIUS Support for Group Profiles

Group policy information is stored in a profile that can be defined locally in the router configuration or on a RADIUS server that is accessible by the VPN device. If RADIUS is used, you must configure access to the server and allow the VPN device to send requests to the server.

To define group policy attributes for RADIUS, you must do the following task on your RADIUS server:

- Define a user that has a name equal to the group name as defined in the client GUI. For example, if users are connecting to the VPN device using the group name “sales,” you need a user whose name is “sales.” The password for this user is “cisco,” which is a special identifier that is used by the router for RADIUS purposes. The username must then be made a member of a group in which the correct policy is defined. For simplicity, it is recommended that the group name be the same as the username.

Use the `radius-server host ip-address [auth-port port-number] [acct-port port-number] [key string]` command to configure access to the RADIUS server and allow the VPN device to send requests to the server. You need to configure this command only if you choose to store group policy information in a RADIUS server.

For a Cisco Secure Access Control Server

If you are using a Cisco secure access control server (ACS), you may configure your remote access VPN group profiles on this server. To perform this task, you must ensure that IETF RADIUS attributes are selected for group configuration as shown in Figure 1. (This figure also shows the compulsory attributes
required for a remote access VPN group.) All values must be entered except the Tunnel-Password attribute, which is actually the preshared key for IKE purposes; if digital certificates are preferred, this attribute may be omitted.

Figure 1 IETF RADIUS Attributes Selection for Group Configuration

In addition to the compulsory attributes shown in Figure 1, other values can be entered that represent the group policy that is pushed to the remote client via Mode Configuration. Figure 2 shows an example of a group policy. All attributes are optional except the addr-pool, key-exchange=preshared-key, and key-exchange=ike attributes. The values of the attributes are the same as the setting that is used if the policy is defined locally on the router rather than in a RADIUS server. These values are explained in the section “Defining Group Policy Information for Mode Configuration Push”.

![Group Setup](image-url)
Figure 2 CiscoSecure ACS Group Policy Setup

Cisco RADIUS Attributes

- [009\001] cisco-av-pair
 - ipsec:key-exchange=ike
 - ipsec:addr-pool=fred
 - ipsec:default-domain=cisco.com
 - ipsec:inacl=199
 - ipsec:ipv6-servers=172.16.10.70
After the group profile is created, a user who is a member of the group should be added. (Remember that the username that is defined maps to the group name as defined on the remote client, and the password defined for the username in the RADIUS database must be “cisco.”) If digital certificates are the preferred method of IKE authentication, the username should reflect the OU field in the certificate presented by the remote client.

For All Other RADIUS Servers

Ensure that your RADIUS server allows you to define attribute-value (AV) pairs. For an example, see the section “Example: Configuring Cisco IOS XE for Easy VPN Server”.

Note

If digital certificates are used, the username defined in RADIUS must be equal to the OU field of the DN of the certificate of the client.

RADIUS Support for User Profiles

Attributes may also be applied on a per-user basis. If you apply attributes on a per-user basis, you can override a group attribute value with an individual user attribute. The attributes are retrieved at the time the user authentication via Xauth occurs. The attributes are then combined with group attributes and applied during Mode Configuration.

User-based attributes are available only if RADIUS is being used for user authentication.

To define user policy attributes for RADIUS, you must do the following task on your RADIUS server:

- Define a user or add attributes to the existing profile of a user in your RADIUS database. The password for the user will be used during Xauth user authentication, or you may proxy to a third-party server, such as a token card server.

Figure 3 shows how CiscoSecure ACS may be used for user authentication and for the assignment of a Framed-IP-Address attribute that may be pushed to the client. The presence of this attribute means that the local address pool defined for the group to which that user belongs will be overridden.
For All Other RADIUS Servers

Ensure that your RADIUS server allows you to define AV pairs. For an example, see the “Example: Configuring Cisco IOS XE for Easy VPN Server” section.

Supported Protocols

Table 2 outlines supported IPsec protocol options and attributes that can be configured for this feature. (See Table 1 for nonsupported options and attributes.)

<table>
<thead>
<tr>
<th>Options</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Algorithms</td>
<td>• Hashed Message Authentication Codes with</td>
</tr>
<tr>
<td></td>
<td>Message Digest 5 (HMAC-MD5)</td>
</tr>
<tr>
<td></td>
<td>• HMAC-Secure Hash Algorithm 1</td>
</tr>
<tr>
<td></td>
<td>(HMAC-SHA1)</td>
</tr>
<tr>
<td>Authentication Types</td>
<td>• Preshared keys</td>
</tr>
<tr>
<td></td>
<td>• RSA digital signatures</td>
</tr>
</tbody>
</table>
Functions Supported by Easy VPN Server

- Mode Configuration Version 6 Support, page 9
- Xauth Version 6 Support, page 10
- IKE Dead Peer Detect, page 10
- Split Tunneling Control, page 10
- Initial Contact, page 10
- Group-Based Policy Control, page 11
- User-Based Policy Control, page 11
- Session Monitoring for VPN Group Access, page 13
- Virtual IPsec Interface Support on a Server, page 13
- Virtual Tunnel Interface Per-User Attribute Support, page 13
- Banner, Auto-Update, and Browser Proxy, page 13
- Configuration Management Enhancements, page 14
- Per User AAA Download with PKI, page 15
- Per-User Attribute Support for Easy VPN Servers, page 15
- Network Admission Control Support for Easy VPN, page 17
- Central Policy Push Firewall Policy Push, page 17
- Password Aging, page 18
- Split DNS, page 18
- VRF Assignment by a AAA Server, page 18

Mode Configuration Version 6 Support

Mode Configuration version 6 is supported for more attributes (as described in an IETF draft submission).

Table 2 Supported IPsec Protocol Options and Attributes (continued)

<table>
<thead>
<tr>
<th>Options</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH groups</td>
<td>• 2</td>
</tr>
<tr>
<td></td>
<td>• 5</td>
</tr>
<tr>
<td>Encryption Algorithms (IKE)</td>
<td>• Data Encryption Standard (DES)</td>
</tr>
<tr>
<td></td>
<td>• Triple Data Encryption Standard (3DES)</td>
</tr>
<tr>
<td>Encryption Algorithms (IPsec)</td>
<td>• DES</td>
</tr>
<tr>
<td></td>
<td>• 3DES</td>
</tr>
<tr>
<td></td>
<td>• NULL</td>
</tr>
<tr>
<td>IPsec Protocol Identifiers</td>
<td>• Encapsulating Security Payload (ESP)</td>
</tr>
<tr>
<td></td>
<td>• IP LZS compression (IPCOMP-LZS)</td>
</tr>
<tr>
<td>IPsec Protocol Mode</td>
<td>Tunnel mode</td>
</tr>
</tbody>
</table>

DH groups

- DH groups 2
- DH groups 5

Encryption Algorithms (IKE)

- Data Encryption Standard (DES)
- Triple Data Encryption Standard (3DES)

Encryption Algorithms (IPsec)

- DES
- 3DES
- NULL

IPsec Protocol Identifiers

- Encapsulating Security Payload (ESP)
- IP LZS compression (IPCOMP-LZS)

IPsec Protocol Mode

- Tunnel mode
Xauth Version 6 Support

Cisco IOS XE software has been enhanced to support version 6 of Xauth. Xauth for user authentication is based on an IETF draft submission.

IKE Dead Peer Detect

The client implements a new keepalives scheme—IKE DPD.
DPD allows two IPsec peers to determine whether the other is still “alive” during the lifetime of a VPN connection. DPD is useful because a host may reboot, or the dialup link of a remote user may disconnect without notifying the peer that the VPN connection is terminated. When an IPsec host determines that a VPN connection no longer exists, the host can notify a user, attempt to switch to another IPsec host, or clean up valuable resources that were allocated for the peer that no longer exists.

A VPN device can be configured to send and reply to DPD messages. DPD messages are sent if no other traffic is being passed through the VPN tunnel. If a configured amount of time has lapsed since the last inbound data was received, DPD will send a message (“DPD R-U-THERE”) the next time it sends outbound IPsec data to the peer. DPD messages are unidirectional and are automatically sent by Cisco VPN clients. DPD must be configured on the router only if there is a need to send DPD messages to the VPN client to determine the health of the client.

The `crypto isakmp keepalive seconds [retries]` command allows the gateway to send DPD messages to the router. The `seconds` argument specifies the number of seconds between DPD messages (the range is from 1 to 3600 seconds); the `retries` argument specifies the number of seconds between retries if DPD messages fail (the range is from 2 to 60 seconds).

Split Tunneling Control

Remote clients can support split tunneling, which enables a client to have intranet and Internet access at the same time. If split tunneling is not configured, the client will direct all traffic through the tunnel, even traffic destined for the Internet.

Note

The split tunnel access control list (ACL) has a limit of 50 access control entries (ACE). If more than 50 ACEs are configured in a split tunnel ACL, only the first 50 ACEs are considered. These ACEs are sent to the client during Mode Configuration.

Initial Contact

If a client is suddenly disconnected, the gateway may not be notified. Consequently, removal of connection information (IKE and IPsec SAs) for that client will not immediately occur. If the client attempts to reconnect to the gateway again, the gateway will refuse the connection because the previous connection information is still valid.

To avoid such a scenario, a new capability called initial contact has been introduced; it is supported by all Cisco VPN products. If a client or router is connecting to another Cisco gateway for the first time, an initial contact message is sent that tells the receiver to ignore and delete any old connection information that has been maintained for the newly connecting peer. Initial contact ensures that connection attempts are not refused because of SA synchronization problems, which are often identified via invalid security parameter index (SPI) messages and which require devices to have their connections cleared.
Group-Based Policy Control

Policy attributes such as IP addresses, DNS, and split tunnel access can be provided on a per-group or per-user basis.

User-Based Policy Control

Attributes may also be applied on a per-user basis. You can override a group attribute value with an individual user attribute. The attributes are retrieved at the time when user authentication via Xauth occurs. They are then combined with group attributes and applied during Mode Configuration.

Attributes can be applied on a per-user basis after the user has been authenticated. These attributes can override any similar group attributes. User-based attributes are available only if RADIUS is used as the database.

Framed-IP-Address

To select the Framed-IP-Address attribute for CiscoSecure for NT, do the following:

- Under the user profile, choose the “use this IP address” option under addressing and manually enter the address. (You should check the method of configuring a framed IP address with your own RADIUS server because this procedure will vary.)

Note

If a framed IP address is present, and there is also a local pool address configured for the group that the user belongs to, the framed IP address will override the local pool setting.

DHCP Client Proxy

Easy VPN servers currently assign an IP address to a remote device using either a local pool that is configured on the router or the framed IP address attribute that is defined in RADIUS. The DHCP Client Proxy feature provides the option of configuring an Easy VPN server to obtain an IP address from a DHCP server. The IP address is pushed to the remote device using Mode Configuration.

Note

This feature does not include the functionality for the DHCP server to push the DNS, WINS server, or domain name to the remote client.

To configure DHCP Client Proxy, see the section “Configuring an Easy VPN Server to Obtain an IP Address from a DHCP Server.”

Benefits of DHCP Client Proxy

- The functionality provided with this feature helps in the creation of dynamic Domain Name System (DDNS) entries when a DNS server exists in conjunction with the DHCP server.
- The user is not restricted to IP address pools.

User-Save-Password

As per the group description, the User-Save-Password attribute can be received in addition to the group variant (Save-Password), but if it is received, it will override the value asserted by the group.

The following is sample output of a RADIUS AV pair for the User-Save-Password attribute:

```
ipsec:user-save-password=1
```
User-Include-Local-LAN

As per the group description, the User-Include-Local-LAN attribute can be received in addition to the group variant (Include-Local-LAN), but if it is received, it will override the value asserted by the group.

The following is sample output of a RADIUS AV pair for the User-Include-Local LAN attribute:

```
ipse: user-include-local-lan=1
```

User-VPN-Group

The User-VPN-Group attribute is a replacement for the Group-Lock attribute. It allows support for both preshared key and RSA signature authentication mechanisms such as certificates.

If you need to check that the group a user is attempting to connect to is indeed the group the user belongs to, use the User-VPN-Group attribute. The administrator sets this attribute to a string, which is the group that the user belongs to. The group the user belongs to is matched against the VPN group as defined by group name (ID_KEY_ID) for preshared keys or by the OU field of a certificate. If the groups do not match, the client connection is terminated.

This feature works only with AAA RADIUS. Local Xauth authentication must still use the Group-Lock attribute.

The following is sample output of a RADIUS AV pair for the User-VPN-Group attribute:

```
ipse:user-vpn-group=cisco
```

Group-Lock

If you are only using preshared keys (no certificates or other RSA signature authentication mechanisms) with RADIUS or local AAA, you can continue to use the Group-Lock attribute. If you are only using preshared keys (no certificates or other RSA signature authentication mechanisms) with RADIUS, you can either continue to use the Group-Lock attribute or you can use the new User-VPN-Group attribute.

How It works

The group lock feature allows you to perform an extra authentication check during Xauth. With this feature enabled, the user must enter a username, group name, and user password during Xauth to authenticate. The username and group name can be entered in any of the following formats:

- “username/group name,”
- “username\group name,”
- “username%group name,” or
- “username group name.”

The group name entered during Xauth is compared by the server with the group name sent for the preshared key device authentication. If they do not match, the server denies the connection. To enable this feature, use the `group-lock` command for the group.

Cisco IOS XE software does not strip the @group from the Xauth username, so the username `user@group` must exist in the local or external AAA database pointed to by the Internet Security Association Key Management Protocol (ISAKMP) profile selected at Phase 1 (machine group authentication).

Caution

Do not use the Group-Lock attribute if you are using RSA signature authentication mechanisms such as certificates. Use the User-VPN-Group attribute instead. The User-VPN-Group attribute is recommended regardless of whether preshared keys or RSA signature is used as the method of authentication when an external AAA database is used.
Session Monitoring for VPN Group Access

It is possible to mimic the functionality provided by some RADIUS servers for limiting the maximum number of connections to a specific server group and also for limiting the number of simultaneous logins for users in that group. After user-defined thresholds are defined in each VPN group, connections will be denied until counts drop below these thresholds.

If you use a RADIUS server, such as CiscoSecure ACS, it is recommended that you enable this session control on the RADIUS server if the functionality is provided. In this way, usage can be controlled across a number of servers by one central repository. When enabling this feature on the router itself, only connections to groups on that specific device are monitored. Load-sharing scenarios are not accurately accounted for.

To configure session monitoring, use the `crypto isakmp client configuration group` command in global configuration mode and the `max-users` and `max-logins` commands in crypto ISAKMP group configuration mode.

The following is sample output of RADIUS AV pairs that have been added to the relevant group:

```
ipsec:max-users=1000
ipsec:max-logins=1
```

Virtual IPsec Interface Support on a Server

Virtual IPsec Interface Support on a Server allows you to selectively send traffic to different Easy VPN concentrators (servers) as well as to the Internet.

With the Virtual IPsec Interface Support on a Server feature, the tunnel-up configuration can be applied to separate interfaces, making it easier to support separate features at tunnel-up. Features that are applied to the traffic going into the tunnel can be separate from the features that are applied to traffic that is not going through the tunnel (for example, split-tunnel traffic and traffic leaving the device when the tunnel is not up). When the Easy VPN negotiation is successful, the line protocol state of the virtual-access interface gets changed to up. When the Easy VPN tunnel goes down because the SA expires or is deleted, the line protocol state of the virtual-access interfaces changes to down.

Note

This feature does not support multicast.

Virtual Tunnel Interface Per-User Attribute Support

The Virtual Tunnel Interface provides per-user attribute support for Easy VPN servers.

For more information about this feature, see the *IPsec Virtual Tunnel Interface* feature.

Banner, Auto-Update, and Browser Proxy

The following features provide support for attributes that aid in the management of the Cisco Easy VPN remote device.

Banner

You can configure an Easy VPN server to push the banner to the Easy VPN remote device. A banner is needed for the web-based activation feature. The banner is displayed when the Easy VPN tunnel is up on the Easy VPN remote console or as a HTML page in the case of web-based activation. Use the `crypto`
isakmp client configuration group command to specify the group to which a policy profile should be defined and to enter crypto ISAKMP group configuration mode. Use the **banner** command to specify the text of the banner.

Auto-Update

You can configure an Easy VPN server to provide an automated mechanism for software and firmware upgrades on an Easy VPN remote device. Use the **crypto isakmp client configuration group** command to specify the group to which a policy profile should be defined and to enter crypto ISAKMP group configuration mode. To configure auto-update parameters for an Easy VPN remote device, use the **auto-update client** command in crypto ISAKMP group configuration mode.

Browser Proxy

You can configure an Easy VPN server so that an Easy VPN remote device can access resources on the corporate network. Using this feature, you do not have to manually modify the proxy settings of the web browser when connecting to the corporate network using Cisco VPN Client or manually revert the proxy settings upon disconnecting.

Use the **crypto isakmp client configuration browser-proxy** command in global configuration mode to configure browser-proxy parameters for an Easy VPN remote device. Use the **proxy** command in ISAKMP browser proxy configuration mode to configure proxy parameters for an Easy VPN remote device.

Configuration Management Enhancements

Pushing a Configuration URL Through a Mode-Configuration Exchange

When remote devices connect to a corporate gateway for creating an IPsec VPN tunnel, some policy and configuration information has to be applied to the remote device when the VPN tunnel is active to allow the remote device to become a part of the corporate VPN.

The Pushing a Configuration URL Through a Mode-Configuration Exchange feature provides for a mode-configuration attribute that “pushes” a URL from the concentrator (server) to the Easy VPN remote device. The URL contains the configuration information that the remote device has to download and apply to the running configuration, and it contains the Cisco IOS XE CLI listing. (For more information about a Cisco IOS XE CLI listing, see Cisco IOS XE documentation for the **configuration url** command.) The CLI for this feature is configured on the concentrator.

The configuration that is pushed to the remote device is persistent by default. That is, the configuration is applied when the IPsec tunnel is “up,” but it is not withdrawn when the IPsec tunnel goes “down.” However, it is possible to write a section of the configuration that is transient in nature, in which case the configuration of the section is reverted when the tunnel is disconnected.

There are no restrictions on where the configuration distribution server is physically located. However, Cisco recommends that you use a secure protocol such as Secure HTTP (HTTPS) to retrieve the configuration. The configuration server can be located in the corporate network and because the transfer happens through the IPsec tunnel, insecure access protocols (HTTP) can be used.

Regarding backward compatibility—the remote device asks for the CONFIGURATION-URL and CONFIGURATION-VERSION attributes. Because the CONFIGURATION-URL and CONFIGURATION-VERSION attributes are not mandatory attributes, the server sends them only if these attributes are configured for the group. There is no built-in restriction to push the configuration.
However, bootstrap configurations (such as, for the IP address) cannot be sent because those configurations are required to set up the Easy VPN tunnel, and the CONFIGURATION-URL comes into effect only after the Easy VPN tunnel comes up.

After the Configuration Has Been Acquired by the Easy VPN Remote Device

After the configuration has been acquired by the Easy VPN remote device, the remote device sends a new ISAKMP notification to the Easy VPN server. The notification contains several manageability information messages about the client (remote device). The Easy VPN server takes two actions when this information is received:

- The Easy VPN server caches the information in its peer database. The information can be displayed by using the `show crypto isakmp peer config` command. This command output displays all manageability information that is sent by the client (remote device).
- If accounting is enabled, the Easy VPN server sends an accounting update record that contains the manageability information messages about the remote device to the accounting RADIUS server. This accounting update is later available in the accounting log of the RADIUS server.

How to Configure This Feature

The commands that are used to configure this feature and the attributes, CONFIGURATION-URL and CONFIGURATION-VERSION are described in the `crypto isakmp client configuration group` command documentation.

Per User AAA Download with PKI

With the Support of Per User AAA Download with public key infrastructure (PKI) feature, user attributes are obtained from the AAA server and pushed to the remote device through Mode Configuration. The username that is used to get the attributes is retrieved from the remote device certificate.

Per-User Attribute Support for Easy VPN Servers

The Per-User Attribute Support for Easy VPN Servers feature provides users with the ability to support per-user attributes on Easy VPN servers. These attributes are applied on the virtual access interface.

Local Easy VPN AAA Server

For a local Easy VPN AAA server, the per-user attributes can be applied at the group level or at the user level using the CLI.

To configure per-user attributes for a local Easy VPN server, see “Configuring Per-User Attributes on a Local Easy VPN AAA Server” section.

Remote Easy VPN AAA Server

AV pairs can be defined on a remote Easy VPN AAA server as shown in this example:

cisco-avpair = "ip:outacl#101=permit tcp any any established"
Per-User Attributes

The following per-user attributes are currently defined in the AAA server and are applicable to IPsec:

- inacl
- interface-config
- outacl
- route
- rte-fltr-in
- rte-fltr-out
- sub-policy-In
- sub-policy-Out
- policy-route
- prefix

Easy VPN Syslog Messages

Along with the ezvpn_connection_up and ezvpn_connection_down syslog messages, the following syslog messages are supported:

- Authentication Passed
- Authentication Rejected
 - Group Lock Enabled
 - Incorrect Username or Password
 - Max Users exceeded/Max Logins exceeded
 - No. of Retries exceeded
- Authentication Failed (AAA Not Contactable)
- IP Pool Not present/No Free IP Address available in the pool
- ACL associated with Ezvpn policy but NOT defined (hence, no split tunneling possible)
- Save password Turned ON
- Incorrect firewall record being sent by Client (incorrect vendor | product | capability)
- Authentication Rejected
 - Access restricted via incoming interface
 - Group does not exist

To enable Easy VPN syslog messages on a server, use the **crypto logging ezvpn [group group-name]** command. If a group name is not provided, syslog messages are enabled for all Easy VPN connections to the server. If a group name is provided, syslog messages are enabled for that particular group only.
Network Admission Control Support for Easy VPN

Network Admission Control provides a way to determine whether a PC client should be allowed to connect to the LAN. Network Admission Control uses Extensible Authentication Protocol over UDP (EAPoUDP) to query the Cisco trust agent on the PC and allows a PC to access the network if the client status is healthy. Different policies can be applied on the server to deny or limit access of PCs that are infected.

Network Admission Control can be used to monitor the status of remote PC clients as well. After the Easy VPN tunnel comes up and the PC starts to send traffic, the traffic is intercepted at the Easy VPN server, and the posture validation process starts. The posture validation process consists of sending an EAPoUDP request over the Easy VPN tunnel and querying the Cisco trust agent. The authentication server is configured inside the trusted network, behind the IPsec aggregation.

The configuration of an Easy VPN server that has Network Admission Control enabled is shown in the Example: Network Admission Control, page 53.

Central Policy Push Firewall Policy Push

The Easy VPN server supports Central Policy Push (CPP) Firewall Policy Push. This feature allows administrators to push policies that enforce security to the Cisco Easy VPN (software) client and related firewall software.

A split tunnel enables access to corporate networks, but it also allows a remote device to be exposed to attacks from the Internet. This feature enables the server to determine whether to allow or deny a tunnel if the remote device does not have a required firewall, thereby reducing exposure to attacks.

The following firewall types are supported:

- Cisco-Integrated-firewall (central-policy-push)
- Cisco-Security-Agent (check-presence)
- Zonelabs-Zonealarm (both)
- Zonelabs-ZonealarmPro (both)

The server can be used either to check the presence of a firewall on the client (remote device) using the check-presence option or to specify the specifics of the firewall policies that must be applied by the client using the central-policy-push.

To enable this feature, see the section Configuring a Central Policy Push Firewall.

Syslog Support for CPP Firewall Policy Push

Syslog support can be enabled by using the `crypto logging ezvpn` command on your router. CPP syslog messages will be printed for the following error conditions:

- If a policy is configured on a group configuration (using the `firewall policy` command), but a global policy with the same name is not defined (using the `crypto isakmp client firewall` command). The syslog message is as follows:

 Policy enabled on group configuration but not defined

 Tunnel setup proceeds as normal (with the firewall).

- If an incorrect firewall request (vendor/product/cap incorrect order) is received, the syslog message is as follows:

 Incorrect firewall record received from client
If a policy mismatch occurs between the Cisco VPN client and the server, the syslog is as follows:

```
CPP policy mismatch between client and headend
```

Password Aging

If you have configured the Password Aging feature, the Easy VPN client is notified when a password has expired, and you are prompted to enter a new password. To configure the Password Aging feature, see the section “Configuring Password Aging.”

For more information about Password Aging, see the reference for “Password Aging” in the section Related Documents.

Split DNS

The Split DNS feature enables the Easy VPN hardware client to use primary and secondary DNS values to resolve DNS queries. These values are pushed by the Easy VPN server to the Easy VPN remote device. To configure this feature on your server, use the `split-dns` command (see the section “Defining Group Policy Information for Mode Configuration Push”). Configuring this command adds the split-dns attribute to the policy group. The attribute will include the list of domain names that you configured. All other names will be resolved using the public DNS server.

VRF Assignment by a AAA Server

To assign VRF to Easy VPN users, the following attributes should be enabled on a AAA server:

```
Cisco-avpair "ip:interface-config=ip vrf forwarding example1"
Cisco-avpair "ip:interface-config=ip unnumbered loopback10"
```

How to Configure Easy VPN Server

- Enabling Policy Lookup via AAA, page 19 (required)
- Defining Group Policy Information for Mode Configuration Push, page 20 (required)
- Enabling VPN Session Monitoring, page 23 (optional)
- Applying Mode Configuration and Xauth, page 24 (required)
- Enabling Reverse Route Injection for the Client, page 25 (optional)
- Configuring the Pushing of a Configuration URL Through a Mode-Configuration Exchange, page 27 (optional)
- Configuring Per User AAA Download with PKI—Configuring the Crypto PKI Trustpoint, page 28 (optional)
- Configuring the Actual Per User AAA Download with PKI, page 29 (optional)
- Configuring Per-User Attributes on a Local Easy VPN AAA Server, page 31 (optional)
- Configuring a Central Policy Push Firewall, page 32 (optional)
- Configuring Password Aging, page 36 (optional)
- Configuring Split DNS, page 37 (optional)
To enable policy lookup via AAA, perform the following task.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `aaa new-model`
4. `aaa authentication password-prompt text-string`
5. `aaa authentication username prompt text-string`
6. `aaa authentication login list-name method1 [method2...]`
7. `aaa authorization network list-name local [group radius]`
8. `username name [password encryption-type encrypted-password]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted.
Example:
Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode.
Example:
Router# configure terminal | |
| **Step 3** aaa new-model | Enables AAA.
Example:
Router(config)# aaa new-model | |
| **Step 4** aaa authentication password-prompt text-string | (Optional) Changes the text displayed when users are prompted for a password.
Example:
Router(config)# aaa authentication password-prompt "Enter your password now:" | |
Defining Group Policy Information for Mode Configuration Push

Although users can belong to only one group per connection, they may belong to specific groups with different policy requirements. Thus, users may decide to connect to the client using a different group ID by changing their client profile on the VPN device. To define the policy attributes that are pushed to the client via Mode Configuration, perform the following task.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto isakmp client configuration group \{group-name \| default\}
4. key name
5. dns primary-server \[secondary-server\]
6. wins primary-server \[secondary-server\]
7. domain name
8. pool name
9. netmask name
10. acl number
11. access-restrict \{interface-name\}
12. firewall policy policy-name
13. group-lock
14. include-local-lan
15. save-password
16. backup-gateway ipaddress
17. pfs

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto isakmp client configuration group {group-name</td>
<td>default}</td>
</tr>
<tr>
<td>Example:</td>
<td>If no specific group matches and a default group is defined, users will automatically be given the policy of a default group.</td>
</tr>
<tr>
<td>Router(config)# crypto isakmp client configuration group group1</td>
<td></td>
</tr>
<tr>
<td>Step 4 key name</td>
<td>Specifies the IKE preshared key for group policy attribute definition.</td>
</tr>
<tr>
<td>Example:</td>
<td>Note This command must be enabled if the client identifies itself with a preshared key.</td>
</tr>
<tr>
<td>Router(config-isakmp-group)# key group1</td>
<td></td>
</tr>
<tr>
<td>Step 5 dns primary-server [secondary-server]</td>
<td>(Optional) Specifies the primary and secondary DNS servers for the group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-isakmp-group)# dns 10.2.2.2 10.3.3.3</td>
<td></td>
</tr>
<tr>
<td>Step 6 wins primary-server [secondary-server]</td>
<td>(Optional) Specifies the primary and secondary WINS servers for the group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-isakmp-group)# wins 10.10.10.10 10.12.12.12</td>
<td></td>
</tr>
<tr>
<td>Step 7 domain name</td>
<td>(Optional) Specifies the DNS domain to which a group belongs.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-isakmp-group)# domain domain.com</td>
<td></td>
</tr>
</tbody>
</table>
Command Purpose

Step 8
pool name
Defines a local pool address.
- Although a user must define at least one pool name, a separate pool may be defined for each group policy.
Example:
`Router(config-isakmp-group)# pool pool1`
Note
This command must be defined and refer to a valid IP local pool address or the client connection will fail.

Step 9
netmask name
(Optional) Specifies the subnet mask to be downloaded to the client for local connectivity.
Example:
`Router(config-isakmp-group)# netmask 255.255.255.255`
Note
Some VPN clients use the default mask for their particular classes of address. However, for a router, the host-based mask is typically used (/32). If you want to override the default mask, use the `netmask` command.

Step 10
acl number
(Optional) Configures split tunneling.
- The `number` argument specifies a group of ACL rules that represent protected subnets for split tunneling purposes.
Example:
`Router(config-isakmp-group)# acl 199`

Step 11
access-restrict (interface-name)
Restricts clients in a group to an interface.
Example:
`Router(config-isakmp-group)# access-restrict fastethernet0/0`

Step 12
firewall policy policy-name
(Optional) Specifies a firewall policy.
Example:
`Router(config-isakmp-group)# firewall policy policy1`

Step 13
group-lock
Enforces the group lock feature.
Example:
`Router(config-isakmp-group)# group-lock`

Step 14
include-local-lan
(Optional) Configures the Include-Local-LAN attribute to allow a nonsplit-tunneling connection to access the local subnetwork at the same time as the client.
Example:
`Router(config-isakmp-group)# include-local-lan`

Step 15
save-password
(Optional) Saves your Xauth password locally on your PC.
Example:
`Router(config-isakmp-group)# save-password`
Enabling VPN Session Monitoring

Perform the following task to set restrictions on the maximum number of connections to the router per VPN group and the maximum number of simultaneous logins per user.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **crypto isakmp client configuration group** `group-name`
4. **max-logins** `number-of-logins`
5. **max-users** `number-of-users`
6. **end**
7. **show crypto session group**
8. **show crypto session summary**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>
How to Configure Easy VPN Server

Applying Mode Configuration and Xauth

Mode Configuration and Xauth must be applied to a crypto map to be enforced. To apply Mode Configuration and Xauth to a crypto map, perform the following task.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto map tag client configuration address {initiate | respond}
4. crypto map map-name isakmp authorization list list-name
5. crypto map map-name client authentication list list-name
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 crypto map tag client configuration address {initiate</td>
<td>respond}</td>
</tr>
<tr>
<td>Example: Router(config)# crypto map dyn client configuration address initiate</td>
<td>Note Cisco clients require the respond keyword to be used; however, if the Cisco Secure VPN Client 1.x is used, the initiate keyword must be used; initiate and respond keywords may be used simultaneously.</td>
</tr>
<tr>
<td>Step 4 crypto map map-name isakmp authorization list list-name</td>
<td>Enables IKE querying for a group policy when requested by the client.</td>
</tr>
<tr>
<td>Example: Router(config)# crypto map map1 isakmp authorization list list1</td>
<td>- The list-name argument is used by AAA to determine which storage source is used to find the policy (local or RADIUS) as defined in the aaa authorization network command.</td>
</tr>
<tr>
<td>Step 5 crypto map map-name client authentication list list-name</td>
<td>Enforces Xauth.</td>
</tr>
<tr>
<td>Example: Router(config)# crypto map xauthmap client authentication list xauthlist</td>
<td>- The list-name argument is used to determine the appropriate username and password storage location (local or RADIUS) as defined in the aaa authentication login command.</td>
</tr>
</tbody>
</table>

Enabling Reverse Route Injection for the Client

To enable RRI on the crypto map (static or dynamic) for VPN client support, perform the following task.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto dynamic-map map-name seq-num
 or crypto map map-name seq-num ipsec-isakmp
4. set peer ip-address
5. set transform-set transform-set-name
6. reverse-route
7. match-address extended-access-list
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>crypto dynamic-map map-name seq-num</td>
<td>Creates a dynamic crypto map entry and enters crypto map configuration mode.</td>
</tr>
<tr>
<td></td>
<td>or crypto map map-name seq-num ipsec-isakmp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adds a dynamic crypto map set to a static crypto map set and enters crypto map configuration mode.</td>
</tr>
<tr>
<td>4</td>
<td>set peer ip-address</td>
<td>Specifies an IPsec peer IP address in a crypto map entry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• This step is optional when configuring dynamic crypto map entries.</td>
</tr>
<tr>
<td>5</td>
<td>set transform-set transform-set-name</td>
<td>Specifies which transform sets are allowed for the crypto map entry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lists multiple transform sets in order of priority (highest priority first).</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>This list is the only configuration statement required in dynamic crypto map entries.</td>
</tr>
<tr>
<td>6</td>
<td>reverse-route</td>
<td>Creates source proxy information.</td>
</tr>
<tr>
<td>7</td>
<td>match address extended-access-list</td>
<td>Specifies an extended access list for a crypto map entry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• This step is optional when configuring dynamic crypto map entries.</td>
</tr>
</tbody>
</table>
Configuring the Pushing of a Configuration URL Through a Mode-Configuration Exchange

To configure an Easy VPN server to push a configuration URL through a Mode-Configuration Exchange, perform the following task.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto isakmp client configuration group group-name`
4. `configuration url url`
5. `configuration version version-number`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router> enable</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router# configure terminal</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>crypto isakmp client configuration group group-name</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# crypto isakmp client configuration group Group1</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>configuration url url</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-isakmp-group)# configuration url http://10.10.88.8/easy.cfg</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>configuration version version-number</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-isakmp-group)# configuration version 10</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Per User AAA Download with PKI—Configuring the Crypto PKI Trustpoint

To configure a AAA server to push user attributes to a remote device, perform the following task.

Prerequisites

Before configuring a AAA server to push user attributes to a remote device, you must have configured AAA. The crypto PKI trustpoint must also be configured (see the first configuration task below). It is preferable that the trustpoint configuration contain the **authorization username** command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto pki trustpoint name`
4. `enrollment url url`
5. `revocation-check none`
6. `rsakeypair key-label`
7. `authorization username subjectname commonname`
8. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router> enable</code></td>
</tr>
<tr>
<td></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router# configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>crypto pki trustpoint name</td>
</tr>
<tr>
<td></td>
<td>Declares the trustpoint that your router should use and enters</td>
</tr>
<tr>
<td></td>
<td>ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# crypto pki trustpoint ca-server</code></td>
</tr>
<tr>
<td></td>
<td>enrollment url url</td>
</tr>
<tr>
<td></td>
<td>Specifies the URL of the certification authority (CA) server to</td>
</tr>
<tr>
<td></td>
<td>which to send enrollment requests.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-ca-trustpoint)# enrollment url http://10.7.7.2:80</code></td>
</tr>
</tbody>
</table>
Configuring the Actual Per User AAA Download with PKI

To configure the actual per-user download with PKI, perform the following task.

SUMMARY STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. enable</td>
<td>Checks the revocation status of a certificate.</td>
</tr>
<tr>
<td>2. configure terminal</td>
<td>Specifies which key pair to associate with the certificate.</td>
</tr>
<tr>
<td>3. crypto isakmp policy priority</td>
<td>Specifies the parameters for the different certificate fields that are used to build the AAA username.</td>
</tr>
<tr>
<td>4. group {1</td>
<td>2}</td>
</tr>
<tr>
<td>5. exit</td>
<td>Example:</td>
</tr>
<tr>
<td>6. crypto isakmp profile profile-name</td>
<td>Router(config-ca-trustpoint)# revocation-check none</td>
</tr>
<tr>
<td>7. match certificate certificate-map</td>
<td>Example:</td>
</tr>
<tr>
<td>8. client pki authorization list listname</td>
<td>Router(config-ca-trustpoint)# rsakeypair rsa-pair</td>
</tr>
<tr>
<td>9. client configuration address {initiate</td>
<td>respond}</td>
</tr>
<tr>
<td>10. virtual-template template-number</td>
<td>Example:</td>
</tr>
<tr>
<td>11. exit</td>
<td>Router(config-cacertpoint)# exit</td>
</tr>
<tr>
<td>12. crypto ipsec transform-set [transform-set-name transform1] [transform2] [transform3] [transform4]</td>
<td></td>
</tr>
<tr>
<td>13. exit</td>
<td></td>
</tr>
<tr>
<td>14. crypto ipsec profile name</td>
<td></td>
</tr>
<tr>
<td>15. set transform-set transform-set-name</td>
<td></td>
</tr>
</tbody>
</table>
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto isakmp policy priority</td>
<td>Defines an IKE policy and enters ISAKMP policy configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# crypto isakmp policy 10</td>
<td></td>
</tr>
<tr>
<td>Step 4 group {1</td>
<td>2}</td>
</tr>
<tr>
<td>Example: Router(config-isakmp)# group 2</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits ISAKMP policy configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-isakmp)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 crypto isakmp profile profile-name</td>
<td>Defines an ISAKMP profile and audits IPsec user sessions and enters crypto ISAKMP profile configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# crypto isakmp profile ISA-PROF</td>
<td></td>
</tr>
<tr>
<td>Step 7 match certificate certificate-map</td>
<td>Assigns an ISAKMP profile to a peer on the basis of the contents of arbitrary fields in the certificate.</td>
</tr>
<tr>
<td>Example: Router(config-isa-prof)# match certificate cert-map</td>
<td></td>
</tr>
<tr>
<td>Step 8 client pki authorization list listname</td>
<td>Specifies the authorization list of AAA servers that will be used for obtaining per-user AAA attributes on the basis of the username constructed from the certificate.</td>
</tr>
<tr>
<td>Example: Router(config-isa-prof)# client pki authorization list usgrp</td>
<td></td>
</tr>
<tr>
<td>Step 9 client configuration address {initiate</td>
<td>respond}</td>
</tr>
<tr>
<td>Example: Router(config-isa-prof)# client configuration address respond</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Per-User Attributes on a Local Easy VPN AAA Server

To configure per-user attributes on a local Easy VPN AAA server, perform the following task.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `aaa attribute list list-name`
4. `attribute type name value [service service] [protocol protocol]`
5. `exit`
6. `crypto isakmp client configuration group group-name`
7. `crypto aaa attribute list list-name`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa attribute list list-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# aaa attribute list list1</td>
</tr>
<tr>
<td></td>
<td>Defines a AAA attribute list locally on a router and enters attribute list configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>attribute type name value [service service] [protocol protocol]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-attr-list)# attribute type attribute attribute-name service ike protocol ip</td>
</tr>
<tr>
<td></td>
<td>Defines an attribute type that is to be added to an attribute list locally on a router.</td>
</tr>
<tr>
<td></td>
<td>• You can choose the attribute type that should be added from the list of given attributes.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-attr-list)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits attribute list configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>crypto isakmp client configuration group group-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# crypto isakmp client configuration group group1</td>
</tr>
<tr>
<td></td>
<td>Specifies to which group a policy profile will be defined and enters ISAKMP group configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>crypto aaa attribute list list-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config-isakmp-group)# crypto aaa attribute list listname1</td>
</tr>
<tr>
<td></td>
<td>Defines a AAA attribute list locally on a router.</td>
</tr>
</tbody>
</table>

Configuring a Central Policy Push Firewall

You can configure a CPP firewall, using a local AAA server or using a remote AAA server.

- Configuring a CPP Firewall Policy Push Using a Local AAA Server, page 33
- Configuring a CPP Firewall Policy Push Using a Remote AAA Server, page 34
Configuring a CPP Firewall Policy Push Using a Local AAA Server

Perform the following task to configure a CPP firewall policy push using a local AAA server.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto isakmp client firewall policy-name {required | optional} firewall-type
4. policy {check-presence | central-policy-push {access-list [in | out] access-list-name | access-list-number}}
5. exit
6. crypto isakmp client configuration group group-name
7. firewall policy policy-name
8. end
9. debug crypto isakmp

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto isakmp client firewall policy-name {required</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a CPP Firewall Policy Push Using a Remote AAA Server

Perform the following task to configure a CPP firewall policy push using a remote AAA server.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto isakmp client firewall policy-name` [required | optional] `firewall-type`
4. `policy {check-presence | central-policy-push} {access-list {in | out} access-list-name | access-list-number}`
5. `exit`
6. Add the VSA cpp-policy under the group definition that is defined in RADIUS.
7. `exit`
8. `debug crypto isakmp`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 3** crypto isakmp client firewall policy-name
t{required | optional} firewall-type | Defines the CPP firewall push policy on a server and enters ISAKMP client firewall configuration mode. |
| **Example:** | |
| Router(config)# crypto isakmp client firewall hw-client-g-cpp required | • *policy-name*—Uniquely identifies a policy. A policy name can be associated with the Easy VPN client group configuration of the server (local group configuration) or on the AAA server. |
| Cisco-Security-Agent | • *required*—Policy is mandatory. If the CPP policy is defined as mandatory and is included in the Easy VPN server configuration, the tunnel setup is allowed only if the client confirms to this policy. Otherwise, the tunnel is terminated. |
| | • *optional*—Policy is optional. If the CPP policy is defined as optional, and is included in the Easy VPN server configuration, the tunnel setup is continued even if the client does not confirm the defined policy. |
| | • *firewall-type*—Type of firewall (see the crypto isakmp client firewall command for a list of firewall types). |
| **Step 4** policy check-presence | Defines the CPP firewall policy push. |
| **Example:** | |
| Router(config-ikmp-client-fw)# policy check-presence | • *check-presence*—Denotes that the server should check for the presence of the specified firewall as shown by the value of the firewall-type argument on the client. |
| **Step 5** exit | Exits ISAKMP client firewall configuration mode and enters global configuration mode. |
| **Example:** | |
| Router(config-ikmp-client-fw)# exit | |
| **Step 6** Add the VSA “cpp-policy” under the group definition that is defined in RADIUS. | Defines the CPP firewall push policy for a remote server. |
| **Example:** | |
| ipsec:cpp-policy="Enterprise Firewall" | |
| **Step 7** exit | Exits global configuration mode and enters privileged EXEC mode. |
| **Example:** | |
| Router(config)# exit | |
Configuring Password Aging

To configure Password Aging so that the Easy VPN client is notified if the password has expired, perform the following task.

Restrictions

The following restrictions apply to the Password Aging feature:
- It works only with VPN software clients. It does not work with VPN client hardware.
- It works only with RADIUS servers.

SUMMARY STEPS

1. enable
2. configure terminal
3. aaa new-model
4. aaa authentication login list-name passwd-expiry group radius
5. radius-server host ip-address [auth-port port-number] [acct-port port-number] [key string]
6. crypto isakmp profile profile-name
7. match certificate certificate-map
8. client authentication list list-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 aaa new-model</td>
<td>Enables AAA.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# aaa new-model</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Split DNS

To configure Split DNS, perform the following task. The task also provides information on how to verify and monitor the Spilt DNS configuration.

Prerequisites

Before the Split DNS feature can work, the following commands should have been configured on the Easy VPN remote:

- `ip dns server`
- `ip domain-lookup`

SUMMARY STEPS

1. `enable`
2. `configure terminal`

Command Purpose

<table>
<thead>
<tr>
<th>Step 4</th>
<th><code>aaa authentication login list-name passwd-expiry group radius</code></th>
<th>Configures the authentication list so that the Password Aging feature is enabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config)# aaa authentication login userauth passwd-expiry group radius</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th><code>radius-server host ip-address [auth-port port-number] [acct-port port-number] [key string]</code></th>
<th>Configures the RADIUS server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config)# radius-server host 172.19.217.96 auth-port 1645 acct-port 1646 key cisco radius-server vsa send authentication</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th><code>crypto isakmp profile profile-name</code></th>
<th>Defines an ISAKMP profile and audits IPsec user sessions and enters crypto ISAKMP profile configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config)# crypto isakmp profile profile2</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th><code>match certificate certificate-map</code></th>
<th>Assigns an ISAKMP profile to a peer on the basis of the contents of arbitrary fields in the certificate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config-isa-prof)# match identity group branch</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th><code>client authentication list list-name</code></th>
<th>Configures IKE extended authentication (Xauth) in an ISAKMP profile and includes the authentication list that was defined above.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config-isa-prof)# client authentication list userauth</code></td>
<td></td>
</tr>
</tbody>
</table>
3. `crypto isakmp client configuration group group-name`
4. `dns primary-server secondary-server`
5. `split-dns domain-name`
6. `end`
7. `show ip dns name-list [name-list-number]`
8. `show ip dns view [vrf vrf-name] [default | view-name]`
9. `show ip dns view-list [view-list-name]`
10. `debug ip dns name-list`
11. `debug ip dns view`
12. `debug ip dns view-list`

Note: You can use the `show` and `debug` commands in any order.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:** Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router(config)# configure terminal |
| **Step 3** crypto isakmp client configuration group
(group-name | default) | Specifies the policy profile of the group that will be defined and enters ISAKMP group configuration mode.
- If no specific group matches and a default group is defined, users will automatically be given the policy of a default group. |
| **Example:** Router(config)# crypto isakmp client configuration group group1 |
| **Step 4** dns primary-server secondary-server | Specifies the primary and secondary DNS servers for the group. |
| **Example:** Router(config-isakmp-group)# dns 10.2.2.2 10.3.3.3 |
| **Step 5** split-dns domain-name | Specifies a domain name that must be tunneled or resolved to the private network. |
| **Example:** Router(config-isakmp-group)# split-dns domain.com |
| **Step 6** end | Exits ISAKMP group configuration mode and enters privileged EXEC mode. |
| **Example:** Router(config-isakmp-group)# end |
How to Configure Easy VPN Server

Step 7
show ip dns name-list [name-list-number]

Example:
Router# show ip dns name-list 1

Purpose: Displays information about DNS name lists.

Step 8
show ip dns view [vrf vrf-name] [default | view-name]

Example:
Router# show ip dns view default

Purpose: Displays information about DNS views.

Step 9
show ip dns view-list [view-list-name]

Example:
Router# show ip dns view-list ezvpn-internal-viewlist

Purpose: Displays information about DNS view lists.

Step 10
debug ip dns name-list

Example:
Router# debug ip dns name-list

Purpose: Enables debugging output for DNS name-list events.

Step 11
debug ip dns view

Example:
Router# debug ip dns view

Purpose: Enables debugging output for DNS view events.

Step 12
debug ip dns view-list

Example:
Router# debug ip dns view-list

Purpose: Enables debugging output for DNS view-list events.

Configuring an Easy VPN Server to Obtain an IP Address from a DHCP Server

When the Easy VPN server selects the method for address assignment, it does so in the following order of precedence:

1. Selects the framed IP address.
2. Uses the IP address from the authentication server (group/user).
3. Uses the global IKE address pools.
4. Uses DHCP.

Note: To enable the Easy VPN server to obtain an IP address from a DHCP server, remove other address assignments.

To configure an Easy VPN server to obtain an IP address from a DHCP server, perform the following task.
Easy VPN Server

How to Configure Easy VPN Server

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto isakmp client configuration group group-name
4. dhcp server {ip-address | hostname}
5. dhcp timeout time
6. dhcp giaddr ip-address

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | enable | Enables privileged EXEC mode.
Example:
Router> enable
Enter your password if prompted. |
| 2 | configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| 3 | crypto isakmp client configuration group group-name | Specifies to which group a policy profile will be defined.
Note: Entering this command places the CLI in ISAKMP group configuration mode. From this mode, you can use subcommands to specify characteristics for the group policy.
Example:
Router(config)# crypto isakmp client configuration group group1 |
| 4 | dhcp server {ip-address | hostname} | Specifies a primary (and backup) DHCP server to allocate IP addresses to users entering a particular public data network (PDN) access point.
Example:
Router(config-isakmp-group)# dhcp server 10.10.1.2 |
| 5 | dhcp timeout time | Sets the wait time in seconds before the next DHCP server on the list is tried.
Example:
Router(config-isakmp-group)# dhcp timeout 6 |
| 6 | dhcp giaddr ip-address | Specifies the giaddr for the DHCP scope.
Example:
Router (config-isakmp-group)# dhcp giaddr 10.1.1.4 |

Verifying and Monitoring DHCP Client Proxy

To verify and monitor your DHCP client proxy configuration, perform the following task.

Note: You can use the show and debug commands in any order.
SUMMARY STEPS

1. **enable**
2. **show dhcp lease**
3. **show ip dhcp pool**
4. **show ip dhcp binding**
5. **debug crypto isakmp**
6. **debug dhcp**
7. **debug dhcp detail**
8. **debug ip dhcp server events**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
<td><code>Router> enable</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td><code>show dhcp lease</code></td>
<td>Displays information about the DHCP address pools.</td>
<td><code>Router# show dhcp lease</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note Use this command when an external DHCP is used.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>show ip dhcp pool</code></td>
<td>Displays information about the DHCP address pools.</td>
<td><code>Router# show ip dhcp pool</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note This command is applicable only when the Easy VPN server is also the DHCP server (generally not the case because in most cases, the DHCP server is an external server).</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>show ip dhcp binding</code></td>
<td>Displays address bindings on the DHCP server.</td>
<td><code>Router# show ip dhcp binding</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note This command is applicable only when the Easy VPN server is also the DHCP server (generally not the case because in most cases, the DHCP server is an external server).</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>debug crypto isakmp</code></td>
<td>Displays messages about IKE events.</td>
<td><code>Router# debug crypto isakmp</code></td>
</tr>
<tr>
<td>5</td>
<td><code>debug dhcp</code></td>
<td>Reports server events, like address assignments and database updates.</td>
<td><code>Router# debug dhcp</code></td>
</tr>
</tbody>
</table>
Configuration Examples for Easy VPN Server

This section provides the following configuration examples:

- Example: Configuring Cisco IOS XE for Easy VPN Server, page 43
- Example: RADIUS Group Profile with IPsec AV Pairs, page 44
- Example: RADIUS User Profile with IPsec AV Pairs, page 45
- Example: Backup Gateway with Maximum Logins and Maximum Users, page 45
- Example: Easy VPN with an IPsec Virtual Tunnel Interface, page 45
- Examples: Pushing a Configuration URL Through a Mode-Configuration Exchange, page 47
- Example: Per User AAA Download with PKI, page 47
- Example: Per-User Attributes on an Easy VPN Server, page 51
- Example: Network Admission Control, page 53
- Example: Configuring Password Aging, page 55
- Example: Split DNS, page 56
- Example: DHCP Client Proxy, page 58
- Example: VRF Assignment by a AAA Server, page 59

Example: Configuring Cisco IOS XE for Easy VPN Server

The following example shows how to define group policy information locally for Mode Configuration. In this example, a group is named “cisco” and another group is named “default.” The policy is enforced for all users who do not offer a group name that matches “cisco.”

! Enable policy look-up via AAA. For authentication and authorization, send requests to
! RADIUS first, then try local policy.
aaa new-model
aaa authentication login userlist group radius local
aaa authorization network grouplist group radius local
enable password XXXX
!
username cisco password 0 cisco
clock timezone PST -8
ip subnet-zero
! Configure IKE policies, which are assessed in order so that the first policy that
matches the proposal of the client will be used.
crypto isakmp policy 1
group 2
!
crypto isakmp policy 3
hash md5
authentication pre-share
group 2
crypto isakmp identity hostname
!
! Define "cisco" group policy information for mode config push.
crypto isakmp client configuration group cisco
key cisco
dns 10.2.2.2 10.2.2.3
wins 10.6.6.6
domain cisco.com
pool pool1
acl 199
!
! Define default group policy for mode config push.
crypto isakmp client configuration group default
key cisco
dns 10.2.2.2 10.3.2.3
pool pool1
acl 199
!
!
crypto ipsec transform-set set1 esp-des esp-sha-hmac
!
crypto dynamic-map mode 1
 set transform-set set1
!
! Apply mode config and xauth to crypto map "mode." The list names that are defined here
! must match the list names that are defined in the AAA section of the config.
crypto map mode client authentication list userlist
crypto map mode isakmp authorization list grouplist
crypto map mode client configuration address respond
crypto map mode 1 ipsec-isakmp dynamic mode
!
!
controller ISA 1/1
!
!
interface GigabitEthernet0/0
 ip address 10.6.1.8 255.255.0.0
 ip route-cache
 ip mroute-cache
duplex auto
speed auto
crypto map mode
!
interface GigabitEthernet0/1
 ip address 192.168.1.28 255.255.255.0
 no ip route-cache
 no ip mroute-cache
duplex auto
speed auto
!
! Specify IP address pools for internal IP address allocation to clients.
 ip local pool pool1 192.168.2.1 192.168.2.10
 ip classless
 ip route 0.0.0.0 0.0.0.0 10.6.0.1
!
! Define access lists for each subnet that should be protected.
 access-list 199 permit ip 192.168.1.0 0.0.0.255 any
 access-list 199 permit ip 192.168.3.0 0.0.0.255 any
!
! Specify a RADIUS server host and configure access to the server.
radius-server host 192.168.1.1 auth-port 1645 acct-port 1646 key XXXXX
radius-server retransmit 3
!
line con 0
 exec-timeout 0 0
 length 25
 transport input none
 line aux 0
 line vty 5 15
!

Example: RADIUS Group Profile with IPsec AV Pairs

The following example shows a standard RADIUS group profile that includes RADIUS IPsec AV pairs. To get the group authorization attributes, “cisco” must be used as the password.

client_r Password = "cisco"
Service-Type = Outbound

cisco-avpair = "ipsec:tunnel-type*ESP"
cisco-avpair = "ipsec:key-exchange=ike"
cisco-avpair = "ipsec:tunnel-password=lab"
cisco-avpair = "ipsec:addr-pool=pool1"
cisco-avpair = "ipsec:default-domain=cisco"
cisco-avpair = "ipsec:inacl=101"
cisco-avpair = "ipsec:access-restrict=fastethernet 0/0"
cisco-avpair = "ipsec:group-lock=1"
cisco-avpair = "ipsec:firewall=1"
cisco-avpair = "ipsec:include-local-lan=1"
cisco-avpair = "ipsec:save-password=1"
cisco-avpair = "ipsec:wins-servers=10.1.1.1 10.2.2.2"
cisco-avpair = "ipsec:ipsec-backup-gateway=10.1.1.1 10.1.1.2"
cisco-avpair = "ipsec:pfs=1"
cisco-avpair = "ipsec:cpp-policy="Enterprise Firewall"
cisco-avpair = "ipsec:auto-update="Win http://example.com 4.0.1"
cisco-avpair = "ipsec:browser-proxy=bproxy_profile_A"
cisco-avpair = "ipsec:banner=Xauth banner text here"

The following example shows a RADIUS user profile that is set up for a group that has group-lock configured. The user name is entered in the same format as the user@domain format.

abc@example.com Password = "abc111111"
cisco-avpair = "ipsec:include-local-lan=1"
cisco-avpair = "ipsec:user-save-password=1"
Framed-IP-Address = 10.10.10.10

Example: RADIUS User Profile with IPsec AV Pairs

The following example shows a standard RADIUS user profile that includes RADIUS IPsec AV pairs. These user attributes will be obtained during Xauth.

ualluall Password = "uall1234"
cisco-avpair = "ipsec:user-vpn-group=unity"
cisco-avpair = "ipsec:user-include-local-lan=1"
cisco-avpair = "ipsec:user-save-password=1"
Example: Backup Gateway with Maximum Logins and Maximum Users

The following example shows that five backup gateways have been configured, that the maximum users have been set to 250, and that maximum logins have been set to 2:

crypto isakmp client configuration group sdm
 key 6 MMZPRMRQMSdiZMg`EHebWTkST1\d1
 pool POOL1
 acl 150
 backup-gateway 172.16.12.12
 backup-gateway 172.16.12.13
 backup-gateway 172.16.12.14
 backup-gateway 172.16.12.130
 backup-gateway 172.16.12.131
 max-users 250
 max-logins 2

Example: Easy VPN with an IPsec Virtual Tunnel Interface

The following example shows that Easy VPN has been configured with an IPsec virtual tunnel interface.

! version 15.0
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname Router
!
boot-start-marker
boot-end-marker
!
!
! aaa new-model
!
! aaa authentication login default local
aaa authorization network default local
!
aaa session-id common
!
resource policy
!
clock timezone IST 0
ip subnet-zero
ip cef
no ip domain lookup
no ip dhcp use vrf connected
!
username lab password 0 lab
!
crypto isakmp policy 3
 authentication pre-share
 group 2
crypto isakmp xauth timeout 90
!
crypto isakmp client configuration group easy

Framed-IP-Address = 10.10.10.10
Examples: Pushing a Configuration URL Through a Mode-Configuration Exchange

The following `show crypto ipsec client ezvpn` command output displays the Mode Configuration URL location and version:

```
Router# show crypto ipsec client ezvpn
```
Easy VPN Remote Phase: 5

Tunnel name: branch
Inside interface list: Vlan1
Outside interface: FastEthernet0
Current State: IPSEC_ACTIVE
Last Event: SOCKET_UP
Address: 172.16.1.209
Mask: 255.255.255.255
Default Domain: cisco.com
Save Password: Allowed
Config status: applied, Last successfully applied version: 11
Current EzVPN Peer: 192.168.10.1

The following show crypto isakmp peers config command output displays all manageability information that is sent by the remote device.

Router# show crypto isakmp peers config

Client-Public-Addr=192.168.10.2:500; Client-Assigned-Addr=172.16.1.209;
Client-Group=branch; Client-User=branch; Client-Hostname=branch.; Client-Platform=Cisco 1711; Client-Serial=FOC08210E2 (412454448); Client-Config-Version=11;
Client-Flash=33292284; Client-Available-Flash=10202680; Client-Memory=95969280;
Client-Free-Memory=14992140; Client-Image=flash:c1700-advipservicesk9-mz.ef90241;
Client-Public-Addr=192.168.10.3:500; Client-Assigned-Addr=172.16.1.121;
Client-Group=store; Client-User=store; Client-Hostname=831-storerouter.; Client-Platform=Cisco C831; Client-Serial=FOC08472UXR (1908379618);
Client-Config-Version=2; Client-Flash=24903676; Client-Available-Flash=5875028;
Client-Memory=45298688; Client-Free-Memory=6295596;
Client-Image=flash:c831-k9o3y6-mz.ef90241

Example: Per User AAA Download with PKI

The following example shows that the Per User AAA Download with PKI feature has been configured on the Easy VPN server.

Router# show running-config

Building configuration...

Current configuration : 7040 bytes
!
! Last configuration change at 21:06:51 UTC Tue Jun 28 2005
!
version 15.0
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname GEN
!
boot-start-marker
boot-end-marker
!
!
! aaa new-model
!
!
i
aaa group server radius usgrppki
server 10.76.248.201 auth-port 1645 acct-port 1646
!

aaa authentication login xauth group usgrppki
aaa authentication login usgrg group usgrppki
aaa authorization network usgrppki group usgrppki
!

aaa session-id common
!

resource policy
!
ip subnet-zero
!
!
ip cef
!
!
ip address-pool local
!
!
crypto pki trustpoint ca-server
enrollment url http://10.7.7.2:80
revocation-check none
rsakeypair rsa-pair
! Specifying the field within the certificate that will be used as a username to do a
per-user AAA lookup into the RADIUS database. In this example, the contents of the
commonname will be used to do a AAA lookup. In the absence of this statement, by default
the contents of the “unstructured name” field in the certificate is used for AAA lookup.
authorization username subjectname commonname
!

crypto pki certificate map CERT-MAP 1
subject-name co yourname
name co yourname
!

crypto pki certificate chain ca-server
certificate 02
308201EE 30820157 A0030201 02020102 300D0609 2A864886 F70D0101 04050030
14311230 10060355 04031309 63612D73 65727665 72301E17 0D035350 36323832
30303731 345A170D 30360306 32383230 30373134 5A301531 13001106 092A8648
86F70D01 09021604 47454E2E 30819F30 0D06092A 864886F7 0D010101 05000381
8D030081 80288181 000AFBF0 FDFFDFED F22098D6 A48EEC03 F505DD96 C002EA4
EA895E99 1F7F7F50 9900B0E6 F2B7151F C5C79391 93822FE4 DE535B0C A03412BB
9B715A6D D6C31F93 C8020658 AF9A8866 63811942 913D0C02 C3E832CC 1C04B964
F73B7C1A 449F6F8E 74A627BC B809A3ED 293C152F 8DCFA217 5160F9A4 095D2044
350F85AF 08B357F5 D7020301 0001A34F 304D300B 603551D 0F040403 0205A030
1F060355 1D230418 30168014 F9BC4499 3DA4D51D 451EEFFD 5B1F5F73 8D7B1CB9
301D0603 551D0E04 1600146B F682DFD1 1F23F7FF 23294129 E55D9C48 CCB40630
0D06092A 864886F7 0D010104 05000381 810404AF 28E301CO 15D0B191 C2D06E00
260305A6 9DF610BB 24211516 5AE73B62 7E801FE4 0785776D 3ADFA3E2 CE064432
1C93E82D 93BF249F 9661EDD3 49CC49A8 F87CA553 9132F239 15D0B191 0E05187D
81F5043 2F2685BC F544F4FF 8DF535CB E55B5F36 31FF0F25 8969DF98 E41C8A87
C5769B22 4C3C63A 22DD6516 C503D6C8 3081
quit
certificate ca 01
308201E8 3082016A A0030201 02020102 300D0609 2A864886 F70D0101 04050030
14311230 10060355 04031309 63612D73 65727665 72301E17 0D035350 36332382
30303731 345A170D 30360306 32383230 30373134 5A301531 13001106 092A8648
86F70D01 09021604 47454E2E 30819F30 0D06092A 864886F7 0D010101 05000381
8D030081 80288181 000AFBF0 FDFFDFED F22098D6 A48EEC03 F505DD96 C002EA4
EA895E99 1F7F7F50 9900B0E6 F2B7151F C5C79391 93822FE4 DE535B0C A03412BB
9B715A6D D6C31F93 C8020658 AF9A8866 63811942 913D0C02 C3E832CC 1C04B964
F73B7C1A 449F6F8E 74A627BC B809A3ED 293C152F 8DCFA217 5160F9A4 095D2044
350F85AF 08B357F5 D7020301 0001A34F 304D300B 603551D 0F040403 0205A030
1F060355 1D230418 30168014 F9BC4499 3DA4D51D 451EEFFD 5B1F5F73 8D7B1CB9
301D0603 551D0E04 1600146B F682DFD1 1F23F7FF 23294129 E55D9C48 CCB40630
0D06092A 864886F7 0D010104 05000381 810404AF 28E301CO 15D0B191 C2D06E00
260305A6 9DF610BB 24211516 5AE73B62 7E801FE4 0785776D 3ADFA3E2 CE064432
1C93E82D 93BF249F 9661EDD3 49CC49A8 F87CA553 9132F239 15D0B191 0E05187D
81F5043 2F2685BC F544F4FF 8DF535CB E55B5F36 31FF0F25 8969DF98 E41C8A87
C5769B22 4C3C63A 22DD6516 C503D6C8 3081
crypto isakmp policy 10
group 2
crypto isakmp keepalive 10
crypto isakmp profile ISA-PROF
 match certificate CERT-MAP
 isakmp authorization list usrgrp
 client pki authorization list usrgrp
 client configuration address respond
 client configuration group pkiuser
 virtual-template 2
!
crypto ipsec transform-set trans2 esp-3des esp-sha-hmac
!
crypto ipsec profile IPSEC_PROF
 set transform-set trans2
!
crypto ipsec profile ISC_IPSEC_PROFILE_1
 set transform-set trans2
!
crypto call admission limit ike sa 40
!
interface Loopback0
 ip address 10.3.0.1 255.255.255.255
 no ip route-cache cef
 no ip route-cache
!
interface Loopback1
 ip address 10.76.0.1 255.255.255.255
 no ip route-cache cef
 no ip route-cache
!
interface GigabitEthernet3/0
 ip address 10.76.248.209 255.255.255.255
 no ip route-cache cef
 no ip route-cache
duplex half
!
interface GigabitEthernet3/2
 ip address 10.2.0.1 255.255.255.0
 no ip route-cache cef
 no ip route-cache
duplex half
!
interface Serial4/0
 no ip address
 no ip route-cache cef
 no ip route-cache
 shutdown
 serial restart-delay 0
interface Serial4/1
 no ip address
 no ip route-cache cef
 no ip route-cache
 shutdown
 serial restart-delay 0
!
interface Serial4/2
 no ip address
 no ip route-cache cef
 no ip route-cache
 shutdown
 serial restart-delay 0
!
interface Serial4/3
 no ip address
 no ip route-cache cef
 no ip route-cache
 shutdown
 serial restart-delay 0
!
interface FastEthernet5/0
 ip address 10.9.4.77 255.255.255.255
 no ip route-cache cef
 no ip route-cache
duplex half
!
interface FastEthernet6/0
 ip address 10.7.7.1 255.255.255.0
 no ip route-cache cef
 no ip route-cache
duplex full
!
interface Virtual-Template1
 no ip address
!
interface Virtual-Template2 type tunnel
 ip unnumbered Loopback0
tunnel source Ethernet3/2
tunnel mode ipsec ipv4
tunnel protection ipsec profile IPSEC_PROF
!
router eigrp 20
 network 172.16.0.0
 auto-summary
!
ip local pool ourpool 10.6.6.6
ip default-gateway 10.9.4.1
ip classless
ip route 10.1.0.1 255.255.255.255 10.0.0.2
ip route 10.2.3.0 255.255.0.0 10.2.4.4
ip route 10.9.1.0 255.255.0.0 10.4.0.1
ip route 10.76.0.0 255.255.0.0 10.76.248.129
ip route 10.11.1.1 255.255.255.0 10.7.7.2
!
no ip http server
no ip http secure-server
!
logging alarm informational
arp 10.9.4.1 0011.bcb4.d40a ARPA
!
radius-server host 10.76.248.201 auth-port 1645 acct-port 1646 key cisco
!
control-plane
!
!
gatekeeper
 shutdown
!
!
line con 0
 stopbits 1
line aux 0
 stopbits 1
line vty 0 4
!
!
end

Example: Per-User Attributes on an Easy VPN Server

The following example shows that per-user attributes have been configured on an Easy VPN server.

!

aaa new-model
!
!

aaa authentication login default local
aaa authentication login noAAA none
aaa authorization network default local
!

aaa attribute list per-group
 attribute type inacl "per-group-acl" service ike protocol ip mandatory
!

aaa session-id common
!

resource policy
!
ip subnet-zero
!
!
ip cef
!
!
username example password 0 example
!
!
crypto isakmp policy 3
 authentication pre-share
 group 2

crypto isakmp xauth timeout 90
!

crypto isakmp client configuration group PerUserAAA
 key cisco
 pool dpool
 crypto aaa attribute list per-group
!

crypto isakmp profile vi
 match identity group PerUserAAA
 isakmp authorization list default
 client configuration address respond
 client configuration group PerUserAAA
virtual-template 1
!

crypto ipsec transform-set set esp-3des esp-sha-hmac
!

crypto ipsec profile vi
set transform-set set
set isakmp-profile vi
!

interface GigabitEthernet0/0
description 'EzVPN Peer'
ip address 192.168.1.1 255.255.255.128
duplex full
speed 100
media-type rj45
no negotiation auto
!

interface GigabitEthernet0/1
no ip address
shutdown
duplex auto
speed auto
media-type rj45
no negotiation auto

interface Virtual-Template1 type tunnel
ip unnumbered GigabitEthernet0/0
tunnel mode ipsec ipv4
tunnel protection ipsec profile vi
!
ip local pool dpool 10.5.0.1 10.5.0.10
ip classless
!
no ip http server
no ip http secure-server
!
!
ip access-list extended per-group-acl
 permit tcp any any
deny icmp any any
logging alarm informational
logging trap debugging
!
control-plane
!
gatekeeper
 shutdown
!
line con 0
line aux 0
stopbits 1
line vty 0 4
!
!
end

Example: Network Admission Control

The following example shows that an Easy VPN server that has been enabled with Network Admission Control.
Network Admission Control is supported on an Easy VPN server only when the server uses IPsec virtual interfaces. Network Admission Control is enabled on the virtual template interface and applies to all PC clients that use this virtual template interface.

```
Router# show running-config
Building configuration...

Current configuration: 5091 bytes
!
version 15.0
!
hostname Router
!

aaa new-model
!
!
aaa authentication login userlist local
!
aaa authentication eou default group radius
aaa authorization network hw-client-groupname local
aaa accounting update newinfo
aaa accounting network acclist start-stop broadcast group radius
aaa session-id common
!
!
! Note 1: EAPoUDP packets will use the IP address of the loopback interface when sending the EAPoUDP hello to the Easy VPN client. Using the IP address ensures that the returning EAPoUDP packets come back encrypted and are associated with the correct virtual access interface. The ip admission (ip admission source-interface Loopback10) command is optional. Instead of using this command, you can specify the IP address of the virtual template to be an address in the inside network space as shown in the configuration of the virtual template below in Note 2.
!
ip admission source-interface Loopback10
ip admission name test eapoudp inactivity-time 60
!
!
eou clientless username cisco
eou clientless password cisco
eou allow ip-station-id
eou logging
!
username lab password 0 lab
username lab@easy password 0 lab
!
!
crypto isakmp policy 3
  encc 3des
  authentication pre-share
  group 2
!
!
crypto isakmp key 0 cisco address 10.53.0.1
crypto isakmp client configuration group easy
  key cisco
domain cisco.com
pool dynpool
acl split-acl
group-lock
configuration url tftp://10.13.0.9/Config-URL_TFTP.cfg
```
configuration version 111

! crypto isakmp profile vi
 match identity group easy
 client authentication list userlist
 isakmp authorization list hw-client-groupname
 client configuration address respond
 client configuration group easy
 accounting acclist
 virtual-template 2

! crypto ipsec security-association lifetime seconds 120
crypto ipsec transform-set set esp-3des esp-sha-hmac
crypto ipsec transform-set aes-trans esp-aes esp-sha-hmac
crypto ipsec transform-set transform-1 esp-des esp-sha-hmac
crypto ipsec profile vi
 set security-association lifetime seconds 3600
 set transform-set set aes-trans transform-1
 set isakmp-profile vi

!
crypto dynamic-map dynmap 1
 set transform-set set aes-trans transform-1
 reverse-route

interface Loopback10
 ip address 10.61.0.1 255.255.255.255

! interface FastEthernet0/0
 ip address 10.13.11.173 255.255.255.255
duplex auto
 speed auto

! interface FastEthernet0/1
 ip address 10.55.0.1 255.255.255.255
duplex auto
 speed auto

!
interface Virtual-Template2 type tunnel
 ! Note2: Use the IP address of the loopback10. This ensures that the EAPoUDP packets that are attached to virtual-access interfaces that are cloned from this virtual template carry the source address of the loopback address and that response packets from the VPN client come back encrypted.

 ! ip unnumbered Loopback10
 ! Enable Network Admission Control for remote VPN clients.
 ip admission test
tunnel mode ipsec ipv4
tunnel protection ipsec profile vi

!
ip local pool dynpool 172.16.2.65 172.16.2.70
ip classless
ip access-list extended ClientException
 permit ip any host 10.61.0.1
ip access-list extended split-acl
 permit ip host 10.13.11.185 any
 permit ip 10.61.0.0 255.255.255.255 any
 permit ip 10.71.0.0 255.255.255.255 any
 permit ip 10.71.0.0 255.255.255.255 10.52.0.0 0.255.255.255
 permit ip 10.55.0.0 255.255.255.255 any
ip radius source-interface FastEthernet0/0
access-list 102 permit esp any any
access-list 102 permit ahp any any
access-list 102 permit udp any any eq 21862
access-list 102 permit ospf any any
access-list 102 deny ip any any
access-list 195 deny ospf any any
access-list 195 permit ip 10.61.0.0 255.255.255.255 10.51.0.0 255.255.255.255
!
radius-server attribute 6 on-for-login-auth
radius-server attribute 8 include-in-access-req
radius-server host 10.13.11.185 auth-port 1645 acct-port 1646 key cisco
radius-server vsa send accounting
radius-server vsa send authentication
!
end

Example: Configuring Password Aging

The following example shows that password aging has been configured so that if the password expires, the Easy VPN client is notified.

Current configuration : 4455 bytes
!
version 15.0
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
!
aaa new-model
!
!
aaa authentication login USERAUTH passwd-expiry group radius aaa authorization network branch local !
aaa session-id common
!
ip cef

username cisco privilege 15 secret 5 1A3HU$bCWjlkrEztD3x6JJzSnMV1 !
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
group 2
crypto isakmp client configuration address-pool local dynpool !
crypto isakmp client configuration group branch
 key cisco
domain cisco.com
 pool dynpool
!
!
crypto ipsec transform-set transform-1 esp-3des esp-sha-hmac !
crypto isakmp profile profile2
 client authentication list USERAUTH
 match identity group branch
 isakmp authorization list branch
 client configuration address respond
virtual-template 1

crypto ipsec profile vi
set transform-set transform-1

interface GigabitEthernet0/0
description $ETH-LAN$$ETH-SW-LAUNCH$$INTF-INFO-GE 0/0$
ip address 192.168.1.100 255.255.255.0
duplex auto
speed auto
crypto map dynmap

interface GigabitEthernet0/1
description ES_LAN
ip address 172.19.217.96 255.255.255.0
duplex auto
speed auto

interface Virtual-Template1 type tunnel
ip unnumbered GigabitEthernet0/2
no clns route-cache
tunnel mode ipsec ipv4
tunnel protection ipsec profile vi

ip local pool dpool 10.0.0.1 10.0.0.3

radius-server host 172.19.220.149 auth-port 1645 acct-port 1646 key cisco radius-server
vsa send authentication !
control-plane

Example: Split DNS

In the following example, the split tunnel list named “101” contains the 10.168.0.0/16 network. It is necessary to include this network information so that the DNS requests to the internal DNS server of 10.168.1.1 are encrypted.

crypto isakmp client configuration group home
key abcd
acl 101
dns 10.168.1.1. 10.168.1.2

show Output

The following example shows that www.ciscoexample1.com and www.ciscoexample2.com have been added to the policy group:

Router# show running-config | security group

crypto isakmp client configuration group 831server
key abcd
dns 10.104.128.248
split-dns www.ciscoexample1.com
split-dns www.ciscoexample2.com
group home2 key abcd
The following sample output from the `show ip dns view` command displays currently configured DNS views:

```
Router# show ip dns view
DNS View default parameters:
Logging is off
DNS Resolver settings:
  Domain lookup is enabled
  Default domain name: cisco.com
  Domain search list:
  Lookup timeout: 3 seconds
  Lookup retries: 2
  Domain name-servers:
  172.16.168.183
DNS Server settings:
  Forwarding of queries is enabled
  Forwarder addresses:

DNS View ezvpn-internal-view parameters:
Logging is off
DNS Resolver settings:
  Domain lookup is enabled
  Default domain name:
  Domain search list:
  Lookup timeout: 3 seconds
  Lookup retries: 2
  Domain name-servers:
  10.104.128.248
DNS Server settings:
  Forwarding of queries is enabled
  Forwarder addresses:
```

The following sample output from the `show ip dns view-list` command displays currently configured DNS view lists.

```
Router# show ip dns view-list
View-list ezvpn-internal-viewlist:
  View ezvpn-internal-view:
    Evaluation order: 10
    Restrict to ip dns name-list: 1
  View default:
    Evaluation order: 20
```

The following sample output from the `show ip dns name-list` command displays DNS name lists.

```
Router# show ip dns name-list
ip dns name-list 1
  permit www.ciscoexample1.com
  permit www.ciscoexample2.com
```

Example: DHCP Client Proxy

The following examples display DHCP client proxy output information using `show` and `debug` commands.
To use the `show ip dhcp` command, the DHCP server must be a Cisco IOS XE server.

The following sample output from the `show ip dhcp pool` command provides information about the DHCP parameters:

```
Router# show ip dhcp pool
Pool dympool :
  Utilization mark (high/low) : 100 / 0
  Subnet size (first/next) : 0 / 0
  Total addresses : 254
  Leased addresses : 1
  Pending event : none
1 subnet is currently in the pool:
  Current index IP address range    Leased addresses
  10.3.3.1 - 10.3.3.254              1
No relay targets associated with class acl
```

The following sample output from the `show ip dhcp binding` command provides information about the DHCP bindings:

```
Router# show ip dhcp binding
Bindings from all pools not associated with VRF:
    IP address Client-ID/Lease expiration Type
    Hardware address/User name         Apr 04 2006 06:01 AM Automatic
    10.3.3.5 065.7a76.706e.2d63.       6c69.656e.74
```

The following example shows how the `debug crypto isakmp` and `debug ip dhcp server events` commands can be used to troubleshoot your DHCP client proxy support configuration:

```
*Apr 3 06:01:32.047: ISAKMP: Config payload REQUEST *Apr 3 06:01:32.047: ISAKMP:(1002):checking request:
*Apr 3 06:01:32.047: ISAKMP:(1002):Input = IKE_MESG_FROM_PEER, IKE_CFG_REQUEST
```

show Output

Note

debug Output
Example: VRF Assignment by a AAA Server

The following example displays that neither a VRF nor an IP address has been defined:

```
aaa new-model
aaa authentication login VPN group radius
aaa authorization network VPN group radius
!
ip vrf example1
    rd 1:1
!
crypto isakmp profile example1
    match identity group example1group
    client authentication list VPN
    isakmp authorization list VPN
    client configuration address respond
    virtual-template 10
!
crypto ipsec transform-set TS esp-3des esp-sha-hmac
!
crypto ipsec profile example1
    set transform-set TS
    set isakmp-profile example1
!
interface Virtual-Template10 type tunnel
    The next line shows that neither VRF nor an IP address has been defined.
    no ip address
```

```
# Additional References

## Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td><em>Cisco IOS Master Commands List, All Releases</em></td>
</tr>
<tr>
<td>General information on IPsec and VPN</td>
<td>• <em>Cisco IOS Security Command Reference</em></td>
</tr>
<tr>
<td></td>
<td>• “Configuring Security for VPNs with IPsec” module in the</td>
</tr>
<tr>
<td></td>
<td><em>Cisco IOS XE Security Configuration Guide: Secure Connectivity</em></td>
</tr>
<tr>
<td>RRI</td>
<td>“Reverse Route Injection” module in the *Cisco IOS XE Security</td>
</tr>
<tr>
<td></td>
<td>Configuration Guide: Secure Connectivity*</td>
</tr>
<tr>
<td>Split DNS</td>
<td><em>Configuring Split and Dynamic DNS on the Cisco VPN 3000</em></td>
</tr>
</tbody>
</table>

## Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this</td>
<td>―</td>
</tr>
<tr>
<td>feature, and support for existing standards has not</td>
<td></td>
</tr>
<tr>
<td>been modified by this feature.</td>
<td></td>
</tr>
</tbody>
</table>

## MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco software</td>
</tr>
<tr>
<td></td>
<td>releases, and feature sets, use Cisco MIB Locator found at the</td>
</tr>
<tr>
<td></td>
<td>following URL:</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

## RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this</td>
<td>―</td>
</tr>
<tr>
<td>feature, and support for existing RFCs has not</td>
<td></td>
</tr>
<tr>
<td>been modified by this feature.</td>
<td></td>
</tr>
</tbody>
</table>
## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
Table 3 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note Table 3 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

### Table 3 Feature Information for Easy VPN Server

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Central Policy Push Firewall Policy Push feature | Cisco IOS XE Release 2.1 | The Central Policy Push Firewall Policy Push feature was integrated for use on the Easy VPN Server. For information about configuring this command, see the following section:  
  - Configuring a Central Policy Push Firewall, page 32 |
| Easy VPN Server | Cisco IOS XE Release 2.1 | The Easy VPN Server feature introduces server support for the Cisco VPN Client Release 3.x and later software clients and Cisco VPN hardware clients (such as the Cisco ASR 1000 Series Routers). This feature allows a remote end user to communicate using IPsec with any Cisco IOS XE VPN gateway. Centrally managed IPsec policies are “pushed” to the client device by the server, minimizing configuration by the end user.  
  - Cisco IOS XE Release 2.1 | RADIUS support for user profiles, user-based policy control, session monitoring for VPN group access, backup-gateway list, and PFS were added. |
| Cisco IOS XE Release 2.1 | The netmask command was integrated for use on the Easy VPN server. For information about configuring this command, see the following section:  
  - Defining Group Policy Information for Mode Configuration Push, page 20 |
| Cisco IOS XE Release 2.1 | The following feature was integrated for use on the Easy VPN Server:  
  - Banner, Auto-Update, and Browser Proxy, page 13 |
## Feature Information for Easy VPN Server (continued)

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Configuration Management Enhancements (Pushing a Configuration URL Through a Mode-Configuration Exchange)</td>
<td>Cisco IOS XE Release 2.1</td>
<td>- The following features were integrated for use on the Easy VPN Server:</td>
</tr>
<tr>
<td>- Per User AAA Download with PKI</td>
<td></td>
<td>- Configuration Management Enhancements, page 14</td>
</tr>
<tr>
<td>- Syslog Message Enhancements</td>
<td></td>
<td>- Per User AAA Download with PKI, page 15</td>
</tr>
<tr>
<td>- Network Admission Control for Easy VPN</td>
<td></td>
<td>- Syslog Message Enhancements</td>
</tr>
<tr>
<td>- Password Aging</td>
<td></td>
<td>- Network Admission Control Support for Easy VPN, page 17</td>
</tr>
<tr>
<td>- Virtual IPsec Interface Support</td>
<td></td>
<td>- Password Aging, page 18</td>
</tr>
</tbody>
</table>

*Table 3 Feature Information for Easy VPN Server (continued)*
The following features were integrated for use on the Easy VPN Server:

- **DHCP Client Proxy**
  The following section provides information about this feature:
  - [DHCP Client Proxy, page 11](#)

- **Virtual Tunnel Interface Per-User Attribute Support for Easy VPN Servers.**
  - [Virtual Tunnel Interface Per-User Attribute Support, page 13](#)

- **Split DNS**
  The following section provides information about this feature:
  - [Split DNS, page 18](#)

- **Per-User Attribute Support for Easy VPN Servers**
  The following sections provide information about this feature:
  - [Per-User Attribute Support for Easy VPN Servers, page 15](#)
  - [Configuring Per-User Attributes on a Local Easy VPN AAA Server, page 31](#)
  - [Example: Per-User Attributes on an Easy VPN Server, page 51](#)

- **VRF Assignment by a AAA Server**
  The following sections provide information about this feature:
  - [VRF Assignment by a AAA Server, page 18](#)
  - [Example: VRF Assignment by a AAA Server, page 59](#)

The following commands were introduced: `crypto aaa attribute list`, `debug ip dns`, `dhcp-server (isakmp)`, `dhcp-timeout`, `show ip dns name-list`, `show ip dns view`, and `show ip dns view-list`

The following command was modified: `crypto isakmp client configuration group`
The DHCP Client Proxy feature was updated to include manageability enhancements for remote access VPNs. The following commands were modified: `clear crypto session`, `crypto isakmp client configuration group`, `debug crypto condition`, `show crypto debug-condition`, `show crypto isakmp peers`, `show crypto isakmp profile`, `show crypto isakmp sa`, `show crypto session`.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Release 2.1</td>
<td>The DHCP Client Proxy feature was updated to include manageability enhancements for remote access VPNs. The following commands were modified: <code>clear crypto session</code>, <code>crypto isakmp client configuration group</code>, <code>debug crypto condition</code>, <code>show crypto debug-condition</code>, <code>show crypto isakmp peers</code>, <code>show crypto isakmp profile</code>, <code>show crypto isakmp sa</code>, <code>show crypto session</code></td>
<td></td>
</tr>
</tbody>
</table>
Glossary

AAA — authentication, authorization, and accounting. Framework of security services that provides the method for identifying users (authentication), for remote access control (authorization), and for collecting and sending security server information used for billing, auditing, and reporting (accounting).

aggressive mode (AM) — Mode during Internet Key Exchange negotiation. Compared to main mode (MM), AM eliminates several steps, which makes it faster but less secure than MM. Cisco IOS XE software will respond in aggressive mode to an IKE peer that initiates aggressive mode.

AV pair — attribute-value pair. Additional authentication and authorization information in the following format: Cisco:AVPair="protocol:attribute=value".

IKE — Internet Key Exchange. Hybrid protocol that implements Oakley key exchange and Skeme key exchange inside the ISAKMP framework. Although IKE can be used with other protocols, its initial implementation is with IPsec. IKE provides authentication of the IPsec peers, negotiates IPsec keys, and negotiates IPsec security associations.

IPsec — IP Security Protocol. Framework of open standards that provides data confidentiality, data integrity, and data authentication between participating peers. IPsec provides these security services at the IP layer. IPsec uses IKE to handle negotiation of protocols and algorithms based on local policy and to generate the encryption and authentication keys to be used by IPsec. IPsec can be used to protect one or more data flows between a pair of hosts, between a pair of security gateways, or between a security gateway and a host.


MM — main mode. Mode that is slower than aggressive mode but more secure and more flexible than aggressive mode because it can offer an IKE peer more security proposals. The default action for IKE authentication (Rivest, Shamir, and Adelman signature (rsa-sig), RSA encryption (rsa-encr), or preshared) is to initiate main mode.

policy push — Allows administrators to push policies that enforce security to the Cisco Easy VPN (software) Client and related firewall software.

reverse route injection (RRI) — Simplified network design for VPNs on which there is a requirement for redundancy or load balancing. RRI works with both dynamic and static crypto maps.

In the dynamic case, as remote peers establish IPsec security associations with an RRI enabled router, a static route is created for each subnet or host protected by that remote peer. For static crypto maps, a static route is created for each destination of an extended access-list rule.

SA — security association. Description of how two or more entities will utilize security services to communicate securely. For example, an IPsec SA defines the encryption algorithm (if used), the authentication algorithm, and the shared session key to be used during the IPsec connection.

Both IPsec and IKE require and use SAs to identify the parameters of their connections. IKE can negotiate and establish its own SA. The IPsec SA is established either by IKE or by manual user configuration.

VPN — Virtual Private Network. Framework that consists of multiple peers transmitting private data securely to one another over an otherwise public infrastructure. In this framework, inbound and outbound network traffic is protected using protocols that tunnel and encrypt all data. This framework permits networks to extend beyond their local topology, while remote users are provided with the appearance and functionality of a direct network connection.
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2009–2011 Cisco Systems, Inc. All rights reserved.