Configuring Certificate Enrollment for a PKI

First Published: May 2, 2005
Last Updated: July 31, 2009

Certificate enrollment, which is the process of obtaining a certificate from a certification authority (CA), occurs between the end host that requests the certificate and the CA. Each peer that participates in the public key infrastructure (PKI) must enroll with a CA. This module describes the different methods available for certificate enrollment and how to set up each method for a participating PKI peer.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the “Feature Information for PKI Certificate Enrollment” section on page 32.

Use Cisco Feature Navigator to find information about platform support and Cisco IOS XE software image support. To access Cisco Feature Navigator, go to http://tools.cisco.com/ITDIT/CFN/jsp/index.jsp. An account on Cisco.com is not required.

Contents

- Prerequisites for PKI Certificate Enrollment, page 2
- Restrictions for PKI Certificate Enrollment, page 2
- Information About Certificate Enrollment for a PKI, page 2
- How to Configure Certificate Enrollment for a PKI, page 5
- Configuration Examples for PKI Certificate Enrollment Requests, page 23
- Additional References, page 30
- Feature Information for PKI Certificate Enrollment, page 32
Prerequisites for PKI Certificate Enrollment

Before you configure peers for certificate enrollment, you must:

- Authenticate the CA.
- Have a generated Rivest, Shamir, and Adelman (RSA) key pair to enroll and a PKI in which to enroll.

Restrictions for PKI Certificate Enrollment

Cisco IOS certificate servers cannot be configured using Cisco IOS XE software. The Cisco IOS certificate servers must be set up using Cisco IOS software (T- or mainline-based) images.

Information About Certificate Enrollment for a PKI

Before configuring peers to request a certificate and enroll in the PKI, you should understand the following concepts:

- What Are CAs?, page 2
- Authentication of the CA, page 3
- Supported Certificate Enrollment Methods, page 3
- Registration Authorities (RA), page 4
- Automatic Certificate Enrollment, page 4
- Certificate Enrollment Profiles, page 5

What Are CAs?

A CA manages certificate requests and issues certificates to participating network devices. These services (managing certificate requests and issuing certificates) provide centralized key management for the participating devices to validate identities and to create digital certificates. Before any PKI operations can begin, the CA generates its own public key pair and creates a self-signed CA certificate; thereafter, the CA can sign certificate requests and begin peer enrollment for the PKI.

You can use the Cisco IOS XE certificate server or a CA provided by a third-party CA vendor.

Note

Cisco IOS XE certificate servers cannot be configured using Cisco IOS XE software. The Cisco IOS certificate servers must be set up using Cisco IOS software (T- or mainline-based images).
Authentication of the CA

The certificate of the CA must be authenticated before the device will be issued its own certificate and before certificate enrollment can occur. Authentication of the CA typically occurs only when you initially configure PKI support at your router. To authenticate the CA, issue the `crypto pki authenticate` command, which authenticates the CA to your router by obtaining the self-signed certificate of the CA that contains the public key of the CA.

Authentication via the fingerprint Command

You can issue the `fingerprint` command to preenter a fingerprint that can be matched against the fingerprint of a CA certificate during authentication.

If a fingerprint is not preentered for a trustpoint, and if the authentication request is interactive, you must verify the fingerprint that is displayed during authentication of the CA certificate. If the authentication request is noninteractive, the certificate will be rejected without a preentered fingerprint.

Note

If the authentication request is made using the command-line interface (CLI), the request is an interactive request. If the authentication request is made using HTTP or another management tool, the request is a noninteractive request.

Supported Certificate Enrollment Methods

Cisco IOS XE software supports the following methods to obtain a certificate from a CA:

- **Simple Certificate Enrollment Protocol (SCEP)**—A Cisco developed enrollment protocol that uses HTTP to communicate with the CA or registration authority (RA). SCEP is the most commonly used method for sending and receiving requests and certificates.

 Note

 To take advantage of automated certificate and key rollover functionality, you must be running a CA that supports rollover and SCEP must be used as your client enrollment method.

 If you are running a Cisco IOS XE CA, you must be running Cisco IOS XE Release 2.1 or a later release for rollover support.

- **PKCS12**—The router imports certificates in PKCS12 format from an external server.

- **IOS File System (IFS)**—The router uses any file system that is supported by Cisco IOS XE software (such as TFTP, FTP, flash, and NVRAM) to send a certificate request and to receive the issued certificate. Users may enable IFS certificate enrollment when their CA does not support SCEP.

- **Manual cut-and-paste**—The router displays the certificate request on the console terminal, allowing the user to enter the issued certificate on the console terminal. A user may manually cut-and-paste certificate requests and certificates when there is no network connection between the router and CA.

- **Enrollment profiles**—The router sends HTTP-based enrollment requests directly to the CA server instead of to the RA-mode CS. Enrollment profiles can be used if a CA server does not support SCEP.

- **Self-signed certificate enrollment for a trustpoint**—The secure HTTP (HTTPS) server generates a self-signed certificate that is to be used during the secure socket layer (SSL) handshake, establishing a secure connection between the HTTPS server and the client. The self-signed certificate is then
Configuring Certificate Enrollment for a PKI

Information About Certificate Enrollment for a PKI

The saved, self-signed certificate can then be used for future SSL handshakes, eliminating the user intervention that was necessary to accept the certificate every time the router reloaded.

Note
To take advantage of autoenrollment and auto reenrollment, do not use either TFTP or manual cut-and-paste enrollment as your enrollment method. Both TFTP and manual cut-and-paste enrollment methods are manual enrollment processes, requiring user input.

Registration Authorities (RA)

A Cisco IOS XE certificate server can be configured to run in RA mode. An RA offloads authentication and authorization responsibilities from a CA. When the RA receives a SCEP or manual enrollment request, the administrator can either reject or grant it on the basis of local policy. If the request is granted, it will be forwarded to the issuing CA, and the CA can be configured to automatically generate the certificate and return it to the RA. The client can later retrieve the granted certificate from the RA.

Automatic Certificate Enrollment

Certificate autoenrollment allows the CA client to automatically request a certificate from its CA server. This automatic router request eliminates the need for operator intervention when the enrollment request is sent to the CA server. Automatic enrollment is performed on startup for any trustpoint CA that is configured and that does not have a valid client certificate. When the certificate expires, a new certificate is automatically requested.

Note
When automatic enrollment is configured, clients automatically request client certificates. The CA server performs its own authorization checks; if these checks include a policy to automatically issue certificates, all clients will automatically receive certificates, which is not very secure. Thus, automatic certificate enrollment should be combined with additional authentication and authorization mechanisms (such as Secure Device Provisioning (SDP), leveraging existing certificates, and one-time passwords).

Automated Client Certificate and Key Rollover

By default, the automatic certificate enrollment function requests a new client certificate and keys from the CS before the client’s current certificate expires. Certificate and key rollover allows the certificate renewal rollover request to be made before the certificate expires by retaining the current key and certificate until the new, or rollover, certificate is available. After a specified amount of time, the rollover certificate and keys will become the active certificate and keys. The expired certificate and keys are immediately deleted upon rollover and removed from the certificate chain and CRL.

The setup for automatic rollover is twofold: CA clients must be automatically enrolled and the client’s CAs must be automatically enrolled and have the auto-rollover command enabled.

An optional renewal percentage parameter can be used with the auto-enroll command to allow a new certificate to be requested when a specified percentage of the lifetime of the certificate has passed. For example, if the renewal percentage is configured as 90 and the certificate has a lifetime of one year, a new certificate is requested 36.5 days before the old certificate expires. In order for automatic rollover to occur, the renewal percentage must be less than 100. The specified percent value must not be less than 10. If a client certificate is issued for less than the configured validity period due to the impending
expiration of the CA certificate, the rollover certificate will be issued for the balance of that period. A minimum of 10 percent of the configured validity period, with an absolute minimum of 3 minutes, is required to allow rollover enough time to function.

Tip

If CA autoenrollment is not enabled, you may manually initiate rollover on an existing client with the `crypto pki enroll` command if the expiration time of the current client certificate is equal to or greater than the expiration time of the corresponding CA certificate.

The client will initiate the rollover process, which only occurs if the server is configured for automated rollover and has an available rollover server certificate.

Note

A key pair is also sent if configured by the `auto-enroll re-generate` command and keyword. It is recommended that a new key pair be issued for security reasons.

Certificate Enrollment Profiles

Enrollment profiles allow users to specify certificate authentication, enrollment, and reenrollment parameters when prompted. The values for these parameters are referenced by two templates that make up the profile. One template contains parameters for the HTTP request that is sent to the CA server to obtain the certificate of the CA (also known as certificate authentication); the other template contains parameters for the HTTP request that is sent to the CA for certificate enrollment.

Configuring two templates enables users to specify different URLs or methods for certificate authentication and enrollment; for example, authentication (getting the certificate of the CA) can be performed via TFTP (using the `authentication url` command) while enrollment can be performed manually (using the `enrollment terminal` command).

Users may specify the PKCS7 format for certificate renewal requests.

Note

A single enrollment profile can have up to three separate sections for each task—certificate authentication, enrollment, and reenrollment.

How to Configure Certificate Enrollment for a PKI

This section contains the following enrollment option procedures. If you configure enrollment or autoenrollment (the first task), you cannot configure manual certificate enrollment. Also, if you configure TFTP or manual cut-and-paste certificate enrollment, you cannot configure autoenrollment, auto reenrollment, an enrollment profile, nor can you utilize the automated CA certificate rollover capability.

- Configuring Certificate Enrollment or Autoenrollment, page 6
- Configuring Manual Certificate Enrollment, page 11
- Configuring a Persistent Self-Signed Certificate for Enrollment via SSL, page 16
- Configuring a Certificate Enrollment Profile for Enrollment or Reenrollment, page 19
Configuring Certificate Enrollment or Autoenrollment

Perform this task to configure certificate enrollment for clients participating in your PKI.

Prerequisites for Autoenrollment

Before configuring automatic certificate enrollment requests, you should ensure that all necessary enrollment information is configured.

Prerequisites for Enabling Automated Client Certificate and Key Rollover

CA client support for certificate rollover is automatically enabled when using autoenrollment. For automatic CA certificate rollover to run successfully, the following prerequisites are applicable:

- Your network devices must support shadow PKI.
- Your clients must be running Cisco IOS XE Release 2.1 or a later release.
- The client’s CS must support automatic rollover. See the section “Automatic CA Certificate and Key Rollover” in the chapter “Configuring and Managing a Cisco IOS XE Certificate Server for PKI Deployment” for more information on CA server automatic rollover configuration.

Prerequisites for Specifying Autoenrollment Initial Key Generation Location

To specify the location of the autoenrollment initial key generation, you must be running Cisco IOS XE Release 2.1 or a later release.

Restrictions for Autoenrollment

RSA Key Pair Restriction for Autoenrollment

Trustpoints configured to generate a new key pair using the `regenerate` command or the `regenerate` keyword of the `auto-enroll` command must not share key pairs with other trustpoints. To give each trustpoint its own key pair, use the `rsakeypair` command in ca-trustpoint configuration mode. Sharing key pairs among regenerating trustpoints is not supported and will cause loss of service on some of the trustpoints because of key and certificate mismatches.

Restrictions for Automated Client Certificate and Key Rollover

In order for clients to run automatic CA certificate rollover successfully, the following restrictions are applicable:

- SCEP must be used to support rollover. Any device that enrolls with the PKI using an alternative to SCEP as the certificate management protocol or mechanism (such as enrollment profiles, manual enrollment, or TFTP enrollment) will not be able to take advantage of the rollover functionality provided by SCEP.
- If the configuration cannot be saved to the startup configuration after a shadow certificate is generated, rollover will not occur.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto pki trustpoint name`
4. `enrollment [mode] [retry period minutes] [retry count number] url url [pem]`
5. subject-name [x.500-name]
6. ip address {ip address | interface | none}
7. serial-number [none]
8. auto-enroll [percent] [regenerate]
9. usage method1 [method2 [method3]]
10. password string
11. rsakeypair key-label [key-size [encryption-key-size]]
12. fingerprint ca-fingerprint
13. on devicename:
14. exit
15. crypto pki authenticate name
16. exit
17. copy system:running-config nvram:startup-config
18. show crypto pki certificates

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
| Example: Router> enable | • Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: Router# configure terminal | |
| **Step 3** crypto pki trustpoint name | Declares the trustpoint and a given name and enters ca-trustpoint configuration mode. |
| Example: Router(config)# crypto pki trustpoint mytp | |
Configuring Certificate Enrollment for a PKI

Step 4

Command or Action

```
enrollment [mode] [retry period minutes] [retry count number] url url [pem]
```

Example:

```
Router(ca-trustpoint)# enrollment url http://cat.example.com
```

Purpose

Specifies the URL of the CA on which your router should send certificate requests.

- **mode**—Specifies RA mode if your CA system provides an RA.
- **retry period minutes**—Specifies the wait period between certificate request retries. The default is 1 minute between retries.
- **retry count number**—Specifies the number of times a router will resend a certificate request when it does not receive a response from the previous request. (Specify from 1 to 100 retries.)
- **url url**—URL of the file system where your router should send certificate requests. For enrollment method options, see the `enrollment` command in the *Cisco IOS Security Command Reference*.
- **pem**—Adds privacy-enhanced mail (PEM) boundaries to the certificate request.

Note

An enrollment method other than TFTP or manual cut-and-paste must be configured to support autoenrollment.

Step 5

Command or Action

```
subject-name [x.500-name]
```

Example:

```
Router(ca-trustpoint)# subject-name cat
```

Purpose

(Optional) Specifies the requested subject name that will be used in the certificate request.

- **x.500-name**—If it is not specified, the fully qualified domain name (FQDN), which is the default subject name, will be used.

Step 6

Command or Action

```
ip address (ip address | interface | none)
```

Example:

```
Router(ca-trustpoint)# ip address 192.168.1.66
```

Purpose

(Optional) Includes the IP address of the specified interface in the certificate request.

Issue the `none` keyword if no IP address should be included.

Note

If this command is enabled, you will not be prompted for an IP address during enrollment for this trustpoint.

Step 7

Command or Action

```
serial-number [none]
```

Example:

```
Router(ca-trustpoint)# serial-number
```

Purpose

(Optional) Specifies the router serial number in the certificate request, unless the `none` keyword is issued.
Step 8

Command or Action

`auto-enroll [percent] [regenerate]`

Example:

```bash
Router(ca-trustpoint)# auto-enroll regenerate
```

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Enables autoenrollment, allowing the client to automatically request a rollover certificate from the CA. If autoenrollment is not enabled, the client must be manually reenrolled in your PKI upon certificate expiration.</td>
</tr>
<tr>
<td>• By default, only the Domain Name System (DNS) name of the router is included in the certificate.</td>
</tr>
<tr>
<td>• Use the <code>percent</code> argument to specify that a new certificate will be requested after the percentage of the lifetime of the current certificate is reached.</td>
</tr>
<tr>
<td>• Use the <code>regenerate</code> keyword to generate a new key for the certificate even if a named key already exists.</td>
</tr>
<tr>
<td>Note If the key pair being rolled over is exportable, the new key pair will also be exportable. The following comment will appear in the trustpoint configuration to indicate whether the key pair is exportable: “! RSA key pair associated with trustpoint is exportable.”</td>
</tr>
<tr>
<td>Note It is recommended that a new key pair be generated for security reasons.</td>
</tr>
</tbody>
</table>

Step 9

Command or Action

`usage method1 [method2 [method3]]`

Example:

```bash
Router(ca-trustpoint)# usage ssl-client
```

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
</table>
| (Optional) Specifies the intended use for the certificate.
Available options are `ike`, `ssl-client`, and `ssl-server`; the default is `ike`. |

Step 10

Command or Action

`password string`

Example:

```bash
Router(ca-trustpoint)# password string1
```

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Specifies the revocation password for the certificate. If this command is enabled, you will not be prompted for a password during enrollment for this trustpoint.</td>
</tr>
<tr>
<td>Note When SCEP is used, this password can be used to authorize the certificate request—often via a one-time password or similar mechanism.</td>
</tr>
</tbody>
</table>

Step 11

Command or Action

`rsakeypair key-label [key-size [encryption-key-size]]`

Example:

```bash
Router(ca-trustpoint)# rsakeypair cat
```

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Specifies which key pair to associate with the certificate.</td>
</tr>
<tr>
<td>• A key pair with <code>key-label</code> will be generated during enrollment if it does not already exist or if the <code>auto-enroll regenerate</code> command was issued.</td>
</tr>
<tr>
<td>• Specify the <code>key-size</code> argument for generating the key, and specify the <code>encryption-key-size</code> argument to request separate encryption, signature keys, and certificates.</td>
</tr>
<tr>
<td>Note If this command is not enabled, the FQDN key pair is used.</td>
</tr>
</tbody>
</table>
How to Configure Certificate Enrollment for a PKI

Examples

The following example shows the configuration for the “mytp-A” certificate server and its associated trustpoint, where RSA keys generated by the initial autoenrollment for the trustpoint will be stored on a USB token, “usbtoken0”:

```plaintext
crypto pki server mytp-A
  database level complete
  issuer-name CN=company, L=city, C=country
  grant auto
  ! Specifies that certificate requests will be granted automatically.
  !
  crypto pki trustpoint mytp-A
  revocation-check none
  rsakeypair myTP-A
```

### Command or Action	Purpose
Step 12 fingerprint ca-fingerprint | *(Optional)* Specifies a fingerprint that can be matched against the fingerprint of a CA certificate during authentication. **Note** If the fingerprint is not provided and authentication of the CA certificate is interactive, the fingerprint will be displayed for verification.

Example:
```
Router(ca-trustpoint)# fingerprint 12EF53FA 355CD23E 12EF53FA 355CD23E
```

Step 13 on devicename: | *(Optional)* Specifies that RSA keys will be created on the specified device upon autoenrollment initial key generation. Devices that may be specified include NVRAM and local disks. USB tokens may be used as a storage device.

Example:
```
Router(ca-trustpoint)# on usbtoken0:
```

Step 14 exit | Exits ca-trustpoint configuration mode and returns to global configuration mode.

Example:
```
Router(ca-trustpoint)# exit
```

Step 15 crypto pki authenticate name | Retrieves the CA certificate and authenticates it.
- Check the certificate fingerprint if prompted. **Note** This command is optional if the CA certificate is already loaded into the configuration.

Example:
```
Router(config)# crypto pki authenticate mytp
```

Step 16 exit | Exits global configuration mode.

Example:
```
Router(config)# exit
```

Step 17 copy system:running-config nvram:startup-config | *(Optional)* Copies the running configuration to the NVRAM startup configuration. **Note** Autoenrollment will not update NVRAM if the running configuration has been modified but not written to NVRAM.

Example:
```
Router# copy system:running-config nvram:startup-config
```

Step 18 show crypto pki certificates | *(Optional)* Displays information about your certificates, including any rollover certificates.

Example:
```
Router# show crypto pki certificates
```
storage usbtoken0:
! Specifies that keys will be stored on usbtoken0:
 on usbtoken0:
! Specifies that keys generated on initial auto enroll will be generated on and stored on
! usbtoken0:

Configuring Manual Certificate Enrollment

Manual certificate enrollment can be set up via TFTP or the manual cut-and-paste method. Both options can be used if your CA does not support SCEP or if a network connection between the router and CA is not possible. Perform one of the following tasks to set up manual certificate enrollment:

- Configuring Cut-and-Paste Certificate Enrollment, page 11
- Configuring TFTP Certificate Enrollment, page 13

PEM-Formatted Files for Certificate Enrollment Request

Using PEM-formatted files for certificate requests can be helpful for customers who are using terminal or profile-based enrollment to request certificates from their CA server. Customers using PEM-formatted files can directly use existing certificates on their Cisco IOS XE routers.

Restrictions for Manual Certificate Enrollment

Switching Enrollment URLs When Using SCEP

We do not recommend switching URLs if SCEP is used; that is, if the enrollment URL is “http://myca,” do not change the enrollment URL after getting the CA certificate and before enrolling the certificate. A user can switch between TFTP and manual cut-and-paste

Key Regeneration Restriction

Do not regenerate the keys manually using the crypto key generate command; key regeneration will occur when the crypto pki enroll command is issued if the regenerate keyword is specified.

Configuring Cut-and-Paste Certificate Enrollment

Perform this task to configure manual certificate enrollment via the cut-and-paste method for peers participating in your PKI.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint name
4. enrollment terminal [pem]
5. fingerprint ca-fingerprint
6. exit
7. crypto pki authenticate name
8. crypto pki enroll name
How to Configure Certificate Enrollment for a PKI

9. `crypto pki import name certificate`
10. `exit`
11. `show crypto pki certificates`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto pki trustpoint name</td>
<td>Declares the trustpoint and a given name and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# crypto pki trustpoint mytp</td>
<td></td>
</tr>
<tr>
<td>Step 4 enrollment terminal [pem]</td>
<td>Specifies manual cut-and-paste certificate enrollment method. The certificate request will be displayed on the console terminal so that you may manually copied (or cut).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-trustpoint)# enrollment terminal</td>
<td></td>
</tr>
<tr>
<td>Step 5 fingerprint ca-fingerprint</td>
<td>(Optional) Specifies a fingerprint that can be matched against the fingerprint of a CA certificate during authentication.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-trustpoint)# fingerprint 12EF53FA 355CD23E 12EF53FA 355CD23E</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits ca-trustpoint configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7 crypto pki authenticate name</td>
<td>Retrieves the CA certificate and authenticates it.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# crypto pki authenticate mytp</td>
<td></td>
</tr>
<tr>
<td>Step 8 crypto pki enroll name</td>
<td>Generates certificate request and displays the request for copying and pasting into the certificate server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# crypto pki enroll mytp</td>
<td></td>
</tr>
</tbody>
</table>

Note If the fingerprint is not provided, it will be displayed for verification.
Configuring Certificate Enrollment for a PKI

How to Configure Certificate Enrollment for a PKI

Step 9

crypto pki import name certificate

Example:

Router(config)# crypto pki import mytp certificate

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>crypto pki import name certificate</td>
<td>Imports a certificate manually at the console terminal (pasting). The base-64 encoded certificate is accepted from the console terminal and inserted into the internal certificate database.</td>
</tr>
<tr>
<td>Note</td>
<td>You must enter this command twice if usage keys, a signature key and an encryption key, are used. The first time the command is entered, one of the certificates is pasted into the router. The second time the command is entered, the other certificate is pasted into the router. It does not matter which certificate is pasted first.</td>
</tr>
<tr>
<td>Note</td>
<td>Some CAs ignore the usage key information in the certificate request and issue general purpose usage certificates. If this applies to the certificate authority you are using, import the general purpose certificate. The router will not use one of the two key pairs generated.</td>
</tr>
</tbody>
</table>

Step 10

exit

Example:

Router(config)# exit

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Exits global configuration mode.</td>
</tr>
</tbody>
</table>

Step 11

show crypto pki certificates

Example:

Router# show crypto pki certificates

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show crypto pki certificates</td>
<td>(Optional) Displays information about your certificates, the certificates of the CA, and RA certificates.</td>
</tr>
</tbody>
</table>

Configuring TFTP Certificate Enrollment

Perform this task to configure manual certificate enrollment using a TFTP server.

Prerequisites for TFTP Certificate Enrollment

- You must know the correct URL to use if you are configuring certificate enrollment via TFTP.
- The router must be able to write a file to the TFTP server for the **crypto pki enroll** command.
- If using a file specification with the **enrollment** command, the file must contain the CA certificate either in binary format or be base-64 encoded.
- You must know if your CA ignores key usage information in a certificate request and issues only a general purpose usage certificate.

Caution Some TFTP servers require that the file must exist on the server before it can be written.

Most TFTP servers require that the file be “write-able” by the world. This requirement may pose a risk.
because any router or other device may write or overwrite the certificate request; thus, the replacement certificate request will not used by the CA administrator, who must first check the enrollment request fingerprint before granting the certificate request.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint name
4. enrollment [mode] [retry period minutes] [retry count number] url url [pem]
5. fingerprint ca-fingerprint
6. exit
7. crypto pki authenticate name
8. crypto pki enroll name
9. crypto pki import name certificate
10. exit
11. show crypto pki certificates

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto pki trustpoint name</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# crypto pki trustpoint mytp</td>
<td>Declares the trustpoint and a given name and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>enrollment [mode] [retry period minutes] [retry count number] url url [pem]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-trustpoint)# enrollment url tftp://certserver/file_specification</td>
<td>Specifies TFTP as the enrollment method to send the enrollment request and to retrieve the CA certificate and router certificate and any optional parameters.</td>
</tr>
<tr>
<td></td>
<td>Note For TFTP enrollment, the url must be configured as a TFTP url, tftp://example_tftp_url.</td>
</tr>
<tr>
<td></td>
<td>An optional file specification filename may be included in the TFTP url. If the file specification is not included, the FQDN will be used. If the file specification is included, the router will append the extension ".ca" to the specified file name.</td>
</tr>
</tbody>
</table>
How to Configure Certificate Enrollment for a PKI

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 5 | `fingerprint ca-fingerprint` | (Optional) Specifies the fingerprint of the CA certificate received via an out-of-band method from the CA administrator.
Note If the fingerprint is not provided, it will be displayed for verification. |
| 6 | `exit` | Exits ca-trustpoint configuration mode and returns to global configuration mode. |
| 7 | `crypto pki authenticate name` | Retrieves the CA certificate and authenticates it from the specified TFTP server.
Example:
`Router(config)# crypto pki authenticate mytp` |
| 8 | `crypto pki enroll name` | Generates certificate request and writes the request out to the TFTP server.
You are prompted for enrollment information, such as whether to include the router FQDN and IP address in the certificate request. You are queried about whether or not to display the certificate request to the console terminal.
The filename to be written is appended with the extension “.req”. For usage keys, a signature key and an encryption key, two requests are generated and sent. The usage key request filenames are appended with the extensions “-sign.req” and “-encr.req” respectively.
Example:
`Router(config)# crypto pki enroll mytp` |
| 9 | `crypto pki import name certificate` | Imports a certificate via TFTP at the console terminal, which retrieves the granted certificate.
The router will attempt to retrieve the granted certificate via TFTP using the same filename used to send the request, except the extension is changed from “.req” to “.crt”. For usage key certificates, the extensions “.sign.crt” and “-encr.crt” are used.
The router will parse the received files, verify the certificates, and insert the certificates into the internal certificate database on the router.
Note Some CAs ignore the usage key information in the certificate request and issue general purpose usage certificates. If your CA ignores the usage key information in the certificate request, only import the general purpose certificate. The router will not use one of the two keypairs generated.
Example:
`Router(config)# crypto pki import mytp certificate` |
How to Configure Certificate Enrollment for a PKI

Configuring Certificate Enrollment for a PKI

This section contains the following tasks:

- Configuring a Trustpoint and Specifying Self-Signed Certificate Parameters, page 17
- Enabling the HTTPS Server, page 18

Persistent Self-Signed Certificates Overview

The SSL protocol can be used to establish a secure connection between an HTTPS server and a client (web browser). During the SSL handshake, the client expects the SSL server’s certificate to be verifiable using a certificate the client already possesses.

If Cisco IOS XE software does not have a certificate that the HTTPS server can use, the server generates a self-signed certificate by calling a PKI application programming interface (API). When the client receives this self-signed certificate and is unable to verify it, intervention is needed. The client asks you if the certificate should be accepted and saved for future use. If you accept the certificate, the SSL handshake continues.

Future SSL handshakes between the same client and the server use the same certificate. However, if the router is reloaded, the self-signed certificate is lost. The HTTPS server must then create a new self-signed certificate. This new self-signed certificate does not match the previous certificate so you are once again asked to accept it.

Requesting acceptance of the router’s certificate each time that the router reloads may present an opportunity for an attacker to substitute an unauthorized certificate when you are being asked to accept the certificate. Persistent self-signed certificates overcome all these limitations by saving a certificate in the router’s startup configuration.

Restrictions

You can configure only one trustpoint for a persistent self-signed certificate.
Note

Do not change the IP domain name or the hostname of the router after creating the self-signed certificate. Changing either name triggers the regeneration of the self-signed certificate and overrides the configured trustpoint. WebVPN ties the SSL trustpoint name to the WebVPN gateway configuration. If a new self-signed certificate is triggered, then the new trustpoint name does not match the WebVPN configuration, causing the WebVPN connections to fail.

Configuring a Trustpoint and Specifying Self-Signed Certificate Parameters

Perform the following task to configure a trustpoint and specify self-signed certificate parameters.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **crypto pki trustpoint name**
4. **enrollment selfsigned**
5. **subject-name [x.500-name]**
6. **rsakeypair key-label [key-size [encryption-key-size]]**
7. **crypto pki enroll name**
8. **end**
9. **show crypto pki certificates [trustpoint-name [verbose]]**
10. **show crypto pki trustpoints [status | label [status]]**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto pki trustpoint name</td>
<td>Declares the CA that your router should use and enters</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# crypto pki trustpoint local</td>
<td>ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Step 4 enrollment selfsigned</td>
<td>Specifies self-signed enrollment.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-trustpoint)# enrollment selfsigned</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure Certificate Enrollment for a PKI

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5**
subject-name
[x.500-name] | (Optional) Specifies the requested subject name to be used in the certificate request.
- If the x.500-name argument is not specified, the FQDN, which is the default subject name, is used. |
| **Step 6**
rsakeypair key-label [key-size
[encryption-key-size]] | (Optional) Specifies which key pair to associate with the certificate.
- The key-label argument will be generated during enrollment if it does not already exist or if the **auto-enroll regenerate** command was issued.
- Specify the key-size argument for generating the key, and specify the encryption-key-size argument to request separate encryption, signature keys, and certificates.
Note If this command is not enabled, the FQDN key pair is used. |
| **Step 7**
crypto pki enroll name | Tells the router to generate the persistent self-signed certificate. |
| **Step 8**
end | (Optional) Exits ca-trustpoint configuration mode and global configuration mode. |
| **Step 9**
show crypto pki certificates [trustpoint-name [verbose]] | Displays information about your certificate, the certification authority certificate, and any registration authority certificates. |
| **Step 10**
show crypto pki trustpoints [status | label [status]] | Displays the trustpoints that are configured in the router. |

Enabling the HTTPS Server

Perform the following task to enable the HTTPS server.
Prerequisites

To specify parameters, you must create a trustpoint and configure it. To use default values, delete any existing self-signed trustpoints. Deleting all self-signed trustpoints causes the HTTPS server to generate a persistent self-signed certificate using default values as soon as the server is enabled.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip http secure-server
4. end
5. copy system:running-config nvram: startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 ip http secure-server</td>
<td>Enables the secure HTTP web server.</td>
</tr>
<tr>
<td>Example:</td>
<td>A key pair (modulus 1024) and a certificate are generated.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Step 5 copy system:running-config nvram: startup-config</td>
<td>Saves the self-signed certificate and the HTTPS server in enabled mode.</td>
</tr>
</tbody>
</table>

Configuring a Certificate Enrollment Profile for Enrollment or Reenrollment

Perform this task to configure an enrollment profile for certificate enrollment or reenrollment of a router with a Cisco IOS XE CA that is already enrolled with a third-party vendor CA.
Enable a router that is enrolled with a third-party vendor CA to use its existing certificate to enroll with the Cisco IOS XE certificate server so the enrollment request is automatically granted. To enable this functionality, you must issue the **enrollment credential** command. Also, you cannot configure manual certificate enrollment.

Prerequisites

Before configuring a certificate enrollment profile for the client router that is already enrolled with a third party vendor CA so that the router can reenroll with a Cisco IOS XE certificate server, you should have already performed the following tasks at the client router:

- Defined a trustpoint that points to the third-party vendor CA.
- Authenticated and enrolled the client router with the third-party vendor CA.

Restrictions

- To use certificate profiles, your network must have an HTTP interface to the CA.
- If an enrollment profile is specified, an enrollment URL may not be specified in the trustpoint configuration. Although both commands are supported, only one command can be used at a time in a trustpoint.
- Because there is no standard for the HTTP commands used by various CAs, the user is required to enter the command that is appropriate to the CA that is being used.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint **name**
4. enrollment profile **label**
5. exit
6. crypto pki profile enrollment **label**
7. authentication url **url**
 or
 authentication terminal
8. authentication command
9. enrollment url **url**
 or
 enrollment terminal
10. enrollment credential **label**
11. enrollment command
12. parameter **number** { **value** | prompt **string** }
13. exit
14. show crypto pki certificates
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Step 3** crypto pki trustpoint name | Declares the trustpoint and a given name and enter ca-trustpoint configuration mode. |
| **Step 4** enrollment profile label | Specifies that an enrollment profile is to be used for certificate authentication and enrollment. |
| **Step 5** exit | Exits ca-trustpoint configuration mode. |
| **Step 6** crypto pki profile enrollment label | Defines an enrollment profile and enters ca-profile-enroll configuration mode.
- `label`—Name for the enrollment profile; the enrollment profile name must match the name specified in the enrollment profile command. |
| **Step 7** authentication url url | Specifies the URL of the CA server to which to send certificate authentication requests.
- `url`—URL of the CA server to which your router should send authentication requests.
 - If using HTTP, the URL should read “http://CA_name,” where CA_name is the host DNS name or IP address of the CA.
 - If using TFTP, the URL should read “tftp://certserver/file_specification.” (If the URL does not include a file specification, the FQDN of the router will be used.) |

Example:
```
Router> enable
```

Example:
```
Router# configure terminal
```

Example:
```
Router(config)# crypto pki trustpoint Entrust
```

Example:
```
Router(ca-trustpoint)# enrollment profile E
```

Example:
```
Router(ca-profile-enroll)# authentication url http://entrust:81
```

Example:
```
Router(ca-profile-enroll)# authentication terminal
```
Command or Action

<table>
<thead>
<tr>
<th>Step 8</th>
<th>authentication command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optional) Specifies the HTTP command that is sent to the CA for authentication. This command should be used after the authentication url command has been entered.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

Router(ca-profile-enroll)# authentication command

<table>
<thead>
<tr>
<th>Step 9</th>
<th>enrollment url url</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specifies the URL of the CA server to which to send certificate enrollment requests via HTTP or TFTP.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

Router(ca-profile-enroll)# enrollment url http://entrust:81/cda-cgi/clientcgi.exe or enrollment terminal

Example:

Router(ca-profile-enroll)# enrollment url http://entrust:81/cda-cgi/clientcgi.exe or enrollment terminal

Example:

Router(ca-profile-enroll)# enrollment terminal

associate label

Example:

Router(ca-profile-enroll)# enrollment label

associate credential label

Example:

Router(ca-profile-enroll)# enrollment credential label

Note: This command cannot be issued if manual certificate enrollment is being used.

associate enrollment command

Example:

Router(ca-profile-enroll)# enrollment command

associate parameter number (value value | prompt string)

Example:

Router(ca-profile-enroll)# parameter 1 value aaaa-bbbb-cccc

Note: This command can be used multiple times to specify multiple values.

associate exit

Example:

Router(ca-profile-enroll)# exit

Router(config)# exit

associate show crypto pki certificates

Example:

Router# show crypto pki certificates

(Optional) Displays information about your certificates, the certificates of the CA, and RA certificates.

What to Do Next

If you configured the router to reenroll with a Cisco IOS XE CA, you should configure the Cisco IOS XE certificate server to accept enrollment requests only from clients already enrolled with the specified third-party vendor CA trustpoint to take advantage of this functionality.
Configuration Examples for PKI Certificate Enrollment Requests

This section contains the following configuration examples:
- Configuring Autoenrollment: Example, page 23
- Configuring Certificate Autoenrollment with Key Regeneration: Example, page 24
- Configuring Cut-and-Paste Certificate Enrollment: Example, page 24
- Configuring Manual Certificate Enrollment with Key Regeneration: Example, page 27
- Creating and Verifying a Persistent Self-Signed Certificate: Example, page 27
- Configuring Direct HTTP Enrollment: Example, page 29

Configuring Autoenrollment: Example

The following example shows how to configure the router to automatically enroll with a CA on startup, enabling automatic rollover, and how to specify all necessary enrollment information in the configuration:

```
crypto pki trustpoint trustpt1
  enrollment url http://trustpt1.company.com/
  subject-name OU=Spiral Dept., O=exampleco.com
  ip-address Fastethernet-0
  serial-number none
  usage ike
  auto-enroll regenerate
  password revokeme
  rsa-key trustpt1 2048

crypto pki certificate chain trustpt1
  certificate pki 0B
  30820293 3082023D A0030201 0202010B 300D0609 2A864886 F70D0101 04050030
  79310B30 09060355 04061302 5553310B 03010001 01050003 4B284A44 04060355 04081302 5553310B 03010001 01050003
  6B284A44 04060355 04081302 5553310B 03010001 01050003
  6B284A44 04060355 04081302 5553310B 03010001 01050003
  quit
```

In this example, keys are neither regenerated nor rolled over.
Configuring Certificate Autoenrollment with Key Regeneration: Example

The following example shows how to configure the router to automatically enroll with the CA named “trustme1” on startup and enable automatic rollover. The `renew` keyword is issued, so a new key will be generated for the certificate and reissued when the automatic rollover process is initiated. The renewal percentage is configured as 90 so if the certificate has a lifetime of one year, a new certificate is requested 36.5 days before the old certificate expires. The changes made to the running configuration are saved to the NVRAM startup configuration because autoenrollment will not update NVRAM if the running configuration has been modified but not written to NVRAM.

```
crypto pki trustpoint trustme1
  enrollment url http://trustme1.company.com/
  subject-name OU=Spiral Dept., O=tiedye.com
  ip-address ethernet0
  serial-number none
  auto-enroll 90 regenerate
  password revokeme
  rsakeypair trustme1 2048
  exit

crypto pki authenticate trustme1
copy system:running-config nvram:startup-config
```

Configuring Cut-and-Paste Certificate Enrollment: Example

The following example shows how to configure certificate enrollment using the manual cut-and-paste enrollment method:

```
Router(config)# crypto pki trustpoint TP
Router(ca-trustpoint)# enrollment terminal
Router(ca-trustpoint)# crypto pki authenticate TP

Certificate has the following attributes:
Fingerprint: D6C12961 CD78808A 4E02193C 0790082A

% Do you accept this certificate? [yes/no]: y
Trustpoint CA certificate accepted.
% Certificate successfully imported
```

```
-----BEGIN CERTIFICATE-----
MIICNDCCAd6gAwIBAgIQOsCmXpVHwodKryRoqULV7jANBgkqhkiGjw9wBAQUFADAS
MQswCQYDVQQGEwJVUzEWMBQGA1UEChMNQ2lzY28gU3lzdGVtczESMBAGA1UEAxMj
bXNzaWxsaW5lZWN0aWZvdXQwNjBhInh0dHA6Ly9jcm9udC5jeW5uZ3JhdGVzLmJv
Q2VjYWJsZS5jcm9udC9cMjAxMDAyMDA2MjY0NDE2MzY2MjA4LTIzLTE2LC0xNTg2
MTk0MDIwLTE0NDY5NjA5MjU2Nzg4LjEwMC0wNjAwMTYwMDk1NzU0MDYxMDAg
mkZ2LypwZGcIC1odHRwOi8vaW5wZW4uY29tL0NvdmVyc2lvbi5vcmcvMTkwL2F1d
DEyLC90eXBlL3B1aWFnZS5waHRlc3MVDQ4xMTcxNzQ5ODA4MzUxMjAxMS4wLjA5
ZXhwb3J0MTIyLTIuMTQwLjEzLjE=
-----END CERTIFICATE-----
```

```
Certificate has the following attributes:
Fingerprint: D6C12961 CD78808A 4E02193C 0790082A

% Do you accept this certificate? [yes/no]: y
Trustpoint CA certificate accepted.
% Certificate successfully imported
```

```
Router(config)# crypto pki enroll TP
```

```
% The subject name in the certificate will be: Router.company.com
% Include the router serial number in the subject name? [yes/no]: n
```
% Include an IP address in the subject name? [no]: n
Display Certificate Request to terminal? [yes/no]: y
Signature key certificate request -
Certificate Request follows:
MIIBhTCB7wIBADAlMSMwIQYJKoZIhvcNAQkCFhRTYW5kQmFwZyL3VmbGl0b3IuY29tMB8GA1UEAxMhUGFyYW1lMjIwMTA1MDIwMDAyMTEwMDAwMB4XDTMxMDMxMDQxNTkzMloXDTIwMDIwMDAyMTQ5MyowJzELMAkGA1UEBhMByzAdBgNSEw0qMBQFMA0GCSqGSIb3DQEBCwUAA4GBAIhQszeC4Zb75h3mNq7yKZJLuuA0i5SMa7Gdn2+Q1p3i0hso+7A5nRkKq5u5b951FJEo3xgsE0hU5QpTsoh1p2fHMr1w7mKjnz+6m5o0GbYwi8nxkxXhp6K7FhJc4k1J/p5veAnbBfl5Y5j/hGy/x54WVdK26t6ffk7zL6PqC7BOe7iKd99C6UH069sLRHk27d+sSx3Kc5a6zQnuuLrXcFQORY+gR

Redisplay enrollment request? [yes/no]: n
Encryption key certificate request -
Certificate Request follows:
MIIBhTCB7wIBADAlMSMwIQYJKoZIhvcNAQkCFhRTYW5kQmFwZyL3VmbGl0b3IuY29tMB8GA1UEAxMhUGFyYW1lMjIwMTA1MDIwMDAyMTEwMDAwMB4XDTMxMDMxMDQxNTkzMloXDTIwMDIwMDAyMTQ5MyowJzELMAkGA1UEBhMByzAdBgNSEw0qMBQFMA0GCSqGSIb3DQEBCwUAA4GBAIhQszeC4Zb75h3mNq7yKZJLuuA0i5SMa7Gdn2+Q1p3i0hso+7A5nRkKq5u5b951FJEo3xgsE0hU5QpTsoh1p2fHMr1w7mKjnz+6m5o0GbYwi8nxkxXhp6K7FhJc4k1J/p5veAnbBfl5Y5j/hGy/x54WVdK26t6ffk7zL6PqC7BOe7iKd99C6UH069sLRHk27d+sSx3Kc5a6zQnuuLrXcFQORY+gR

Router(config)# crypto pki import TP certificate

Enter the base 64 encoded certificate.
End with a blank line or the word "quit" on a line by itself

MIIDajCCAxSgAwIBAgIKFN7C6QAAAAMRzANBgkqhkiG9w0BAQUFADASMQawCQYDVQQGEwJVUzEWMBQQGA1UEChMNQ2lzY28gU3lzdGVtczESMBAGA1UEAxMJbXNjYS1yb290MB4XDTAyMDYwODAxMTY0MloXDTAzMDYwODAxMjY0MlowJTEjMCEGCSqGSIb3DQEHJAhMuJ2UEh3Z2dlci5jXjNjby5ib290MB0GA1UEAxMhUGFyYW1lMjIwMTA1MDIwMDAyMTEwMDAwMB4XDTMxMDMxMDQxNTkzMloXDTIwMDIwMDAyMTQ5MyowJzELMAkGA1UEBhMByzAdBgNSEw0qMBQFMA0GCSqGSIb3DQEBCwUAA4GBACF7feURj/4SGbpc3zbrLcHgKpLmJt3zPXa2sBNYxDe13cYcNLLTrXq+cOoOvjr8b9t7H91zj4Xv6+i3dRyHH+sP/f6n2hC80V5wz375tF+Al683jN6t75bD1vRC257E/C97Jn9MvQnw18K6V0y/tIPkSpWvFz9c/P4uDFZJy2pX7nLrA6KnWwzH6lAaIa4eg56li5Phv+a1L6aPUP

Router(config)# crypto pki import TP certificate

Enter the base 64 encoded certificate.
End with a blank line or the word "quit" on a line by itself

MIIDajCCAxSgAwIBAgIKFN7C6QAAAAMRzANBgkqhkiG9w0BAQUFADASMQawCQYDVQQGEwJVUzEWMBQQGA1UEChMNQ2lzY28gU3lzdGVtczESMBAGA1UEAxMJbXNjYS1yb290MB4XDTAyMDYwODAxMTY0MloXDTAzMDYwODAxMjY0MlowJTEjMCEGCSqGSIb3DQEHJAhMuJ2UEh3Z2dlci5jXjNjby5ib290MB0GA1UEAxMhUGFyYW1lMjIwMTA1MDIwMDAyMTEwMDAwMB4XDTMxMDMxMDQxNTkzMloXDTIwMDIwMDAyMTQ5MyowJzELMAkGA1UEBhMByzAdBgNSEw0qMBQFMA0GCSqGSIb3DQEBCwUAA4GBACF7feURj/4SGbpc3zbrLcHgKpLmJt3zPXa2sBNYxDe13cYcNLLTrXq+cOoOvjr8b9t7H91zj4Xv6+i3dRyHH+sP/f6n2hC80V5wz375tF+Al683jN6t75bD1vRC257E/C97Jn9MvQnw18K6V0y/tIPkSpWvFz9c/P4uDFZJy2pX7nLrA6KnWwzH6lAaIa4eg56li5Phv+a1L6aPUP

Router(config)# crypto pki import TP certificate
You can verify that the certificate was successfully imported by issuing the `show crypto pki certificate` command.

Router# **show crypto pki certificate**

Certificate
Status: Available
Certificate Serial Number: 14DECE0500000000000C48
Certificate Usage: Encryption
Issuer:
 CN = TPCA-root
 O = Company
 C = US
Subject:
 Name: Router.company.com
 OID.1.2.840.113549.1.9.2 = Router.company.com
CRL Distribution Point:
 http://tpca-root/CertEnroll/tpca-root.crl
Validity Date:
 start date: 18:16:45 PDT Jun 7 2002
 end date: 18:26:45 PDT Jun 7 2003
 renew date: 16:00:00 PST Dec 31 1969

Associated Trustpoints:

Certificate
Status: Available
Certificate Serial Number: 14DECE2900000000000C47
Certificate Usage: Signature
Issuer:
 CN = tpca-root
 O = company
 C = US
Subject:
 Name: Router.company.com
 OID.1.2.840.113549.1.9.2 = Router.company.com
CRL Distribution Point:
 http://tpca-root/CertEnroll/tpca-root.crl
Validity Date:
 start date: 18:16:42 PDT Jun 7 2002
 end date: 18:26:42 PDT Jun 7 2003

End with a blank line or the word "quit" on a line by itself

% Router Certificate successfully imported
renew date: 16:00:00 PST Dec 31 1969
Associated Trustpoints: TP

CA Certificate
Status: Available
Certificate Serial Number: 3AC0A65E9547C2874AAF2468A942D5EE
Certificate Usage: Signature
Issuer:
 CN = tpca-root
 O = Company
 C = US
Subject:
 CN = tpca-root
 O = company
 C = US
CRL Distribution Point:
 http://tpca-root/CertEnroll/tpca-root.crl
Validity Date:
 start date: 16:46:01 PST Feb 13 2002
 end date: 16:54:48 PST Feb 13 2007
Associated Trustpoints: TP

Configuring Manual Certificate Enrollment with Key Regeneration: Example

The following example shows how to regenerate new keys with a manual certificate enrollment from the CA named “trustme2”:

crypto pki trustpoint trustme2
enrollment url http://trustme2.company.com/
subject-name OU=Spiral Dept., O=exampleco.com
ip-address Fastethernet0
serial-number none
regenerate
password revokeme
rsakeypair trustme2 2048s
exit
crypto pki authenticate trustme2
crypto pki enroll trustme2

Creating and Verifying a Persistent Self-Signed Certificate: Example

The following example shows how to declare and enroll a trustpoint named “local” and generate a self-signed certificate with an IP address:

crypto pki trustpoint local
enrollment selfsigned
end
configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
crypto pki enroll local
Nov 29 20:51:13.067: %SSH-5-ENABLED: SSH 1.99 has been enabled
Nov 29 20:51:13.267: %CRYPTO-6-AUTOGEN: Generated new 512 bit key pair
% Include the router serial number in the subject name? [yes/no]: yes
% Include an IP address in the subject name? [no]: yes
Enter Interface name or IP Address[]: Fastethernet 0
Generate Self Signed Router Certificate? [yes/no]: yes
Router Self Signed Certificate successfully created
A router can have only one self-signed certificate. If you attempt to enroll a trustpoint configured for a self-signed certificate and one already exists, you receive a notification and are asked if you want to replace it. If so, a new self-signed certificate is generated to replace the existing one.

Note

Enabling the HTTPS Server: Example

The following example shows how to enable the HTTPS server and generate a default trustpoint because one was not previously configured:

```
configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

ip http secure-server
% Generating 1024 bit RSA keys ... [OK]
* Dec 21 19:14:15.421:%PKI-4-NOAUTOSAVE:Configuration was modified. Issue "write memory" to save new certificate
Router(config)#
```

Note

You need to save the configuration to NVRAM if you want to keep the self-signed certificate and have the HTTPS server enabled following router reloads.

The following message also appears:

* Dec 21 19:14:10.441:%SSH-5-ENABLED:SSH 1.99 has been enabled

Note

Creation of the key pair used with the self-signed certificate causes the Secure Shell (SSH) server to start. This behavior cannot be suppressed. You may want to modify your access control lists (ACLs) to permit or deny SSH access to the router.

Verifying the Self-Signed Certificate Configuration: Example

The following example displays information about the self-signed certificate that you just created:

```
Router# show crypto pki certificates
```

Note

The number 3326000105 above is the router’s serial number and varies depending on the router’s actual serial number.

The following example displays information about the key pair corresponding to the self-signed certificate:

```
Router# show crypto key mypubkey rsa
```
Configuring Certificate Enrollment for a PKI

Configuration Examples for PKI Certificate Enrollment Requests

% Key pair was generated at: 19:14:10 GMT Dec 21 2004
Key name: TP-self-signed-3326000105
Usage: General Purpose Key
Key is not exportable.
Key Data:
30819F30 0D6092A 864886F7 0D010101 05000381 8D008218 89028181 00B88F70
6BC78B6D 67D6CFF3 13S01D91 8F360292 CA44A032 5AC1A8F0 0954E856 F8C95A2B
BFDC2B7 64A3804 98BD7326 207BD456 19BA788B D075E78E 0D25060C B09289AE
6DECB8B0 6672FB1A 5CD2AE92 904C4F71 F3BC9829 214F6293 4BA8FABF 9488BCFC
2B941BCA 5D09999A 72BE12A5 687B6699 2D88AB77 3B38E0E AA23CB8C B7020301 0001
% Key pair was generated at: 19:14:13 GMT Dec 21 2004
Key name: TP-self-signed-3326000105.server
Usage: Encryption Key
Key is not exportable.
Key Data:
307C300D 06092A86 4886F70D 01010105 00360B00 30680061 00C5680E 89777842
463E57E3 FE96E8AE F44D7CB 70499AF3 EA266651 56EE29F4 5B003D93 2FC9F81D
8A46B21F 38BAC2F3 046B9D9D 0400C283 1BB89B8 08F164E5 034D6337 F863D655
34E30F6E B4921BC5 DAC9EBA5 50C5A4A0 BF551BDD 88453F50 61020301 0001

Note

The second key pair with the name TP-self-signed-3326000105.server is the SSH key pair and is generated when any key pair is created on the router and SSH starts up.

The following example displays information about the trustpoint named “local”:

Router# show crypto pki trustpoints

Trustpoint local:
 Subject Name:
 serialNumber=C63EBBE9+ipaddress=10.3.0.18+hostname=test.company.com
 Serial Number: 01
 Persistent self-signed certificate trust point

Configuring Direct HTTP Enrollment: Example

The following example show how to configure an enrollment profile for direct HTTP enrollment with a CA server:

crypto pki trustpoint Entrust
 enrollment profile E
 serial

crypto pki profile enrollment E
 authentication url http://entrust:81
 authentication command GET /certs/cacert.der
 enrollment url http://entrust:81/cda-cgi/clientcgi.exe
 enrollment command POST reference_number=$P2&authcode=$P1&retrievedAs=rawDER&action=getServerCert&pkcs10Request=$REQ
 parameter 1 value aaaa-bbbb-cccc
 parameter 2 value 5001
Additional References

The following sections provide references related to certificate enrollment for a PKI.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of PKI, including RSA keys, certificate enrollment, and CAs</td>
<td>“Cisco IOS XE PKI Overview: Understanding and Planning a PKI” module in the Cisco IOS Security Configuration Guide: Secure Connectivity</td>
</tr>
<tr>
<td>RSA key generation and deployment</td>
<td>“Deploying RSA Keys Within a PKI” module in the Cisco IOS Security Configuration Guide: Secure Connectivity</td>
</tr>
<tr>
<td>Security commands</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS XE software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for PKI Certificate Enrollment

Table 1 lists the features in this module and provides links to specific configuration information.

For information on a feature in this technology that is not documented here, see the “Implementing and Managing PKI Features Roadmap.”

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which Cisco IOS XE software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://tools.cisco.com/ITDIT/CFN/jsp/index.jsp. An account on Cisco.com is not required.

Note

Table 1 lists only the Cisco IOS XE software release that introduced support for a given feature in a given Cisco IOS XE software release train. Unless noted otherwise, subsequent releases of that Cisco IOS XE software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Certificate Autoenrollment | Cisco IOS XE Release 2.1 | This feature introduces certificate autoenrollment, which allows the router to automatically request a certificate from the CA that is using the parameters in the configuration. The following sections provide information about this feature:
 - Automatic Certificate Enrollment
 - Configuring Certificate Enrollment or Autoenrollment
 The following commands were introduced by this feature: auto-enroll, rsakeypair, show crypto pki timers |
| Certificate Enrollment Enhancements | Cisco IOS XE Release 2.1 | This feature introduces five new crypto pki trustpoint subcommands that provide new options for certificate requests and allow users to specify fields in the configuration instead of having to go through prompts. The following section provides information about this feature:
 - Configuring Certificate Enrollment or Autoenrollment
 The following commands were introduced by this feature: ip-address (ca-trustpoint), password (ca-trustpoint), serial-number, subject-name, usage |
Direct HTTP Enrollment with CA Servers

This feature allows users to configure an enrollment profile if their CA server does not support SCEP and they do not want to use an RA-mode CS. The enrollment profile allows users to send HTTP requests directly to the CA server instead of to an RA-mode CS.

The following sections provide information about this feature:

- Certificate Enrollment Profiles
- Configuring a Certificate Enrollment Profile for Enrollment or Reenrollment

The following commands were introduced by this feature:

- `authentication command`
- `authentication terminal`
- `authentication url`
- `crypto pki profile enrollment`
- `enrollment command`
- `enrollment profile`
- `enrollment terminal`
- `enrollment url`
- `parameter`

Import of RSA Key Pair and Certificates in PEM Format

This feature allows customers to issue certificate requests and receive issued certificates in PEM-formatted files.

The following section provides information about this feature:

- Configuring Manual Certificate Enrollment

The following commands were modified by this feature:

- `enrollment`
- `enrollment terminal`

Key Rollover for Certificate Renewal

This feature allows the certificate renewal request to be made before the certificate expires and retains the old key and certificate until the new certificate is available.

The following sections provide information about this feature:

- Automatic Certificate Enrollment
- Configuring Certificate Enrollment or Autoenrollment
- Configuring Manual Certificate Enrollment

The following commands were introduced or modified by this feature: `auto-enroll`, `regenerate`
Table 1 Feature Information for PKI Certificate Enrollment (continued)

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Manual Certificate Enrollment (TFTP Cut-and-Paste) | Cisco IOS XE Release 2.1 | This feature allows users to generate a certificate request and accept CA certificates as well as the router’s certificates via a TFTP server or manual cut-and-paste operations.
 The following sections provide information about this feature:
 - Supported Certificate Enrollment Methods
 - Configuring Manual Certificate Enrollment
 The following commands were introduced or modified by this feature: **crypto pki import, enrollment, enrollment terminal** |
| Persistent Self-Signed Certificates | Cisco IOS XE Release 2.1 | This feature allows the HTTPS server to generate and save a self-signed certificate in the router startup configuration. Thus, future SSL handshakes between the client and the HTTPS server can use the same self-signed certificate without user intervention.
 In Cisco IOS XE Release 2.1, this feature was implemented on the Cisco ASR series routers.
 The following sections provide information about this feature:
 - Supported Certificate Enrollment Methods
 - Configuring a Persistent Self-Signed Certificate for Enrollment via SSL
 The following commands were introduced or modified by this feature: **enrollment selfsigned, show crypto pki certificates, show crypto pki trustpoints** |
| PKI Status\(^1\) | Cisco IOS XE Release 2.1 | This enhancement added the **status** keyword to the **show crypto pki trustpoints** command, which allows you to view the current status of the trustpoint. Prior to this enhancement, you had to issue the **show crypto pki certificates** and the **show crypto pki timers** commands for the current status.
 The following section provides information about this enhancement:
 - How to Configure Certificate Enrollment for a PKI |
Table 1 Feature Information for PKI Certificate Enrollment (continued)

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reenroll Using Existing Certificates</td>
<td>Cisco IOS XE</td>
<td>This feature allows users to reenroll a router with a Cisco IOS CA via existing certificates from a third-party vendor CA.</td>
</tr>
<tr>
<td></td>
<td>Release 2.1</td>
<td>The following section provides information about this enhancement:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring a Certificate Enrollment Profile for Enrollment or Reenrollment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced by this feature: enrollment credential, grant auto trustpoint</td>
</tr>
<tr>
<td>Trustpoint CLI</td>
<td>Cisco IOS XE</td>
<td>This feature introduces the <code>crypto pki trustpoint</code> command, which adds support for trustpoint CAs.</td>
</tr>
<tr>
<td></td>
<td>Release 2.1</td>
<td></td>
</tr>
</tbody>
</table>

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2005–2009 Cisco Systems, Inc. All rights reserved.