Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Networks

First Published: May 2, 2005
Last Updated: July 31, 2009

This module contains information about Cisco Express Forwarding and describes the required and optional tasks for verifying Cisco Express Forwarding operation.

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet, and networks characterized by intensive web-based applications or interactive sessions.

Finding Feature Information

For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the “Feature Information for Configuring Basic Cisco Express Forwarding” section on page 21.

Use Cisco Feature Navigator to find information about platform support and Cisco IOS XE software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Contents

- Prerequisites for Configuring Cisco Express Forwarding, page 2
- Restrictions for Configuring Cisco Express Forwarding, page 2
- Information About Configuring Basic Cisco Express Forwarding, page 2
- How to Verify Basic Cisco Express Forwarding, page 4
Prerequisites for Configuring Cisco Express Forwarding

Cisco Express Forwarding requires a software image that includes Cisco Express Forwarding and IP routing enabled on the device.

Restrictions for Configuring Cisco Express Forwarding

The Cisco ASR 1000 Series Aggregation Services Routers operate only in distributed Cisco Express Forwarding mode.

Information About Configuring Basic Cisco Express Forwarding

- Cisco Platform Support for Cisco Express Forwarding and Distributed Cisco Express Forwarding, page 2
- Cisco Express Forwarding Benefits: Improved Performance, Scalability, and Resiliency, page 3
- Main Components for Cisco Express Forwarding Operation, page 3

If your network architecture requires that you disable or reenable Cisco Express Forwarding or distributed Cisco Express Forwarding switching and forwarding, change your load balancing scheme, refresh Cisco Express Forwarding tables, configure network accounting for Cisco Express Forwarding, or customize the display of Cisco Express Forwarding events, go to the “Related Documents” section on page 18 for links to information on these tasks. Otherwise, you need do nothing more to configure Cisco Express Forwarding or distributed Cisco Express Forwarding operation in your network.

Note
Cisco Express Forwarding is supported on interfaces on which IEEE 802.1Q encapsulation has been enabled at the subinterface level. You no longer need to disable Cisco Express Forwarding operation on interfaces that are using IEEE 802.1Q encapsulation on VLAN subinterfaces.

Cisco Platform Support for Cisco Express Forwarding and Distributed Cisco Express Forwarding

Cisco Express Forwarding is enabled by default on the Cisco ASR 1000 Series Aggregation Services Routers.

To find out if Cisco Express Forwarding is enabled by default on your platform, enter the `show ip cef` command. If Cisco Express Forwarding is enabled, you receive output that looks like the following:

```
Router# show ip cef
```
Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Information About Configuring Basic Cisco Express Forwarding

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.61.8/24</td>
<td>192.168.100.1</td>
<td>FastEthernet1/0/0</td>
</tr>
<tr>
<td>192.168.101.1</td>
<td>192.168.100.1</td>
<td>FastEthernet2/1/0</td>
</tr>
</tbody>
</table>

If Cisco Express Forwarding is not enabled on your platform, the output for the `show ip cef` command looks like this:

```
Router# show ip cef
%CEF not running
```

If Cisco Express Forwarding is not enabled on your platform, use the `ip cef` command to enable Cisco Express Forwarding or the `ip cef distributed` command to enable distributed Cisco Express Forwarding.

Cisco Express Forwarding Benefits: Improved Performance, Scalability, and Resiliency

- **Improved performance**—Cisco Express Forwarding is less CPU-intensive than fast switching route caching. As a result, more CPU processing power can be dedicated to Layer 3 services such as quality of service (QoS) and encryption.

- **Scalability**—Cisco Express Forwarding offers full switching capacity at each line card when distributed Cisco Express Forwarding mode is active. Distributed Cisco Express Forwarding is a distributed switching mechanism that scales linearly with the number of interface cards and the bandwidth installed in the router.

- **Resiliency**—Cisco Express Forwarding offers an unprecedented level of switching consistency and stability in large dynamic networks. In dynamic networks, fast-switched cache entries are frequently invalidated by routing changes. These changes can cause traffic to be process-switched through use of the routing table, rather than fast-switched through use of the route cache. Because the forwarding information base (FIB) lookup table contains all known routes that exist in the routing table, it eliminates the need for route cache maintenance and the steps involved with fast-switch or process-switch forwarding. Cisco Express Forwarding can switch traffic more efficiently than typical demand caching schemes.

Main Components for Cisco Express Forwarding Operation

Information conventionally stored in a route cache is stored in several data structures for Cisco Express Forwarding switching. The data structures provide optimized lookup for efficient packet forwarding. The two main components of Cisco Express Forwarding operation are the forwarding information base (FIB) and the adjacency tables.

The FIB is conceptually similar to a routing table or information base. A router uses this lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The FIB is updated as changes occur in the network and contains all routes known at the time. For more information on the FIB, see the “Cisco Express Forwarding Overview” module.

Adjacency tables maintain Layer 2 next-hop addresses for all FIB entries. For more information on adjacency tables, see the “Cisco Express Forwarding Overview” module.
This separation of the reachability information (in the Cisco Express Forwarding table) and the forwarding information (in the adjacency table), provides two main benefits:

- The adjacency table can be built separately from the Cisco Express Forwarding table, allowing both tables to build without the process switching of any packets.
- The MAC header rewrite used to forward a packet isn't stored in cache entries, so changes in a MAC header rewrite string do not require invalidation of cache entries.

How to Verify Basic Cisco Express Forwarding

There are no configuration tasks. Cisco Express Forwarding is enabled by default.

The following section contains instructions for verifying basic Cisco Express Forwarding or distributed Cisco Express Forwarding operation.

Before you perform the remaining tasks in this section you need to know which mode of Cisco Express Forwarding is running on your router. Distributed Cisco Express Forwarding is enabled by default on the Cisco ASR 1000 Series Routers. To determine if Cisco Express Forwarding or distributed Cisco Express Forwarding is enabled on your router, you can enter the `show ip interface` command and look for the entry “IP CEF switching enabled” or “IP Distributed CEF switching enabled.” If Cisco Express Forwarding is not enabled, the entry in the command display would indicate that “IP CEF switching is disabled.”

To verify basic Cisco Express Forwarding or distributed Cisco Express Forwarding operation, perform the following procedures and tasks:

- Determining If the Router Is Configured for Central or Distributed Cisco Express Forwarding, page 4 (required)
- Verifying Cisco Express Forwarding Operation on Your Router, page 6 (optional)
- Verifying Distributed Cisco Express Forwarding Operation on Your Router, page 12 (optional)
- Interpreting Information in Cisco Express Forwarding Command Output, page 13 (optional)

Determining If the Router Is Configured for Central or Distributed Cisco Express Forwarding

To determine if the router is configured for Cisco Express Forwarding or distributed Cisco Express Forwarding, perform the following task.

SUMMARY STEPS

1. `enable`
2. `show ip interface [type slot/subslot/port[,subinterface-number]] [brief]`
3. `disable`
Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Environments

How to Verify Basic Cisco Express Forwarding

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:**
Router> enable | |
| **Step 2** show ip interface [type slot/subslot/port/.subinterface-number] [brief] | Configures an interface type and enters interface configuration mode.
- The `type` argument is the type of interface to be configured.
- The `slot` argument is the chassis slot number. Refer to the appropriate hardware manual for slot information. For SIPs, refer to the platform-specific SPA hardware installation guide or the corresponding “Identifying Slots and Subslots for SIPs and SPAs” topic in the platform-specific SPA software configuration guide.
- The `subslot` keyword and argument pair is the secondary slot number on a SIP where a SPA is installed. The slash (`/`) is required. Refer to the platform-specific SPA hardware installation guide and the corresponding “Specifying the Interface Address on a SPA” topic in the platform-specific SPA software configuration guide for subslot information.
- The `port` keyword and argument pair is the port or interface number. The slash (`/`) is required. Refer to the appropriate hardware manual for port information. For SPAs, refer to the corresponding “Specifying the Interface Address on a SPA” topics in the platform-specific SPA software configuration guide.
- The `.subinterface-number` keyword and argument pair is the subinterface number in the range 1 to 4294967293. The number that precedes the period (`.`) must match the number to which this subinterface belongs.
- The `brief` keyword displays a summary of the usability status information. Look for the entry “IP CEF switching enabled” or “IP Distributed CEF switching enabled.” |
| **Example:**
Router# show ip interface | |
| **Step 3** disable | Exits to user EXEC mode. |
| **Example:**
Router# disable | |
What to Do Next

- If the router is configured for Cisco Express Forwarding, complete the steps in each of the tasks on the RP in the “Verifying Cisco Express Forwarding Operation on Your Router” section on page 6.
- If the router is configured for distributed Cisco Express Forwarding, complete the steps in each of the tasks on the line card in the “Verifying Distributed Cisco Express Forwarding Operation on Your Router” section on page 12. You might also need to complete steps, as indicated in each task, on the RP. By performing the same steps on the RP that you do on the line cards, you can verify that the forwarding tables on the RP and the line cards are synchronized.

Verifying Cisco Express Forwarding Operation on Your Router

Perform the following tasks, in the order presented, to verify Cisco Express Forwarding operation on your router or to look for Cisco Express Forwarding operation information on your router:

- Verifying That Cisco Express Forwarding Switching Is Enabled on the Input Interface on the Router, page 6
- Locating the Prefix in a Forwarding Table on the Route Processor, page 8
- Finding the Cisco Express Forwarding Output Information Associated with the Prefix on the Route Processor, page 9
- Verifying the Adjacency or Next-Hop Information on the Route Processor, page 10

See the “Verifying Distributed Cisco Express Forwarding Operation on Your Router” section on page 12 for the tasks to perform for distributed Cisco Express Forwarding operation.

Verifying That Cisco Express Forwarding Switching Is Enabled on the Input Interface on the Router

To verify that Cisco Express Forwarding switching is enabled on the input (ingress) interface on the router, perform the following steps.

SUMMARY STEPS

1. `enable`
2. `show ip cef`
3. `show cef interface type slot/subslot/port[,subinterface-number]`
4. `show ip interface type slot/subslot/port[,subinterface-number]`
5. `disable`
Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Environments

How to Verify Basic Cisco Express Forwarding

DETAILED STEPS

Step 1
enable

Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

```
Router> enable
Router#   
```

Step 2
show ip cef

Use this command to verify that Cisco Express Forwarding is enabled globally. For example:

```
Router# show ip cef
%CEF not running
```

If Cisco Express Forwarding is not running, use the **ip cef** command to enable Cisco Express Forwarding or the **ip cef distributed** command to enable distributed Cisco Express Forwarding.

When Cisco Express Forwarding or distributed Cisco Express Forwarding is enabled, the **show ip cef** command shows a brief display of all FIB entries.

Step 3
show cef interface type slot/subslot/port[,subinterface-number]

Use this command to verify that Cisco Express Forwarding is enabled on a particular ingress interface. Look for the entry “IP CEF switching enabled.” For example:

```
Router# show cef interface fastethernet 1/0/0

FastEthernet1/0/0 is up (if_number 6)
Corresponding hwidb fast_if_number 6
Corresponding hwidb firstsw->if_number 6
Internet address is 10.1.1.1/24
ICMP redirects are always sent
Per packet load-sharing is disabled
IP unicast RPF check is disabled
Inbound access list is not set
Outbound access list is not set
IP policy routing is disabled
BGP based policy accounting on input is enabled
BGP based policy accounting on output is disabled
Hardware idb is FastEthernet1/0/0 (6)
Software idb is FastEthernet1/0/0 (6)
Fast switching type 1, interface type 18
IP Distributed CEF switching enabled ! <==== Notice this entry.
IP Feature Fast switching turbo vector
IP Feature CEF switching turbo vector
Input fast flags 0x100, Output fast flags 0x0, Flags 0x0
ifindex 7(7)
Slot 1 Slot unit 0 VC -1
Transmit limit accumulator 0xE8001A82 (0xE8001A82)
IP MTU 1500
```

Step 4
show ip interface type slot/subslot/port[,subinterface-number]

Use this command to display the Cisco IOS switching methods enabled on an interface. For example:

```
Router# show ip interface fastethernet 1/0/0

FastEthernet1/0/0 is up, line protocol is up

    IP fast switching is enabled
    IP fast switching on the same interface is enabled
```
Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Environments

How to Verify Basic Cisco Express Forwarding

IP Flow switching is disabled
IP CEF switching is enabled ! <--- Entry verifying Cisco Express Forwarding is enabled.
IP Distributed switching is enabled
IP Fast switching turbo vector
IP Normal CEF switching turbo vector
IP multicast fast switching is enabled
IP multicast distributed fast switching is disabled
IP route-cache flags are Fast, Distributed, No CEF ! <--- HERE.

In the above output, the “IP CEF switching is enabled” entry indicates that Cisco Express Forwarding is enabled by default. The “No CEF” IP route-cache flag indicates that Cisco Express Forwarding is disabled because an administrator entered the `no ip route-cache cef` command on this interface.

To enable Cisco Express Forwarding on this interface, enter the `ip route-cache cef` command. Once you do that, the “CEF” flag indicates that Cisco Express Forwarding is running.

Step 5 disable

Use this command to exit privileged EXEC mode. For example:

```
Router# disable
Router>
```

Locating the Prefix in a Forwarding Table on the Route Processor

To locate the prefix in a forwarding table, perform the following steps.

SUMMARY STEPS

1. enable
2. show ip cef
3. show ip cef vrf vrf-name
4. Repeat Step 2 as many times as required to locate the prefix.
5. disable

DETAILED STEPS

- **Step 1 enable**
 Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:
  ```
  Router> enable
  Router#
  ```

- **Step 2 show ip cef**
 Use this command to show entries in the FIB and confirm that prefixes are listed in the FIB. For example:
  ```
  Router# show ip cef
  Prefix          Next Hop           Interface
  [...]
  10.2.61.8/24    192.168.100.1     FastEthernet1/0/0
  192.168.101.1   FastEthernet2/1/0
  [...]
  ```
Step 3 **show ip cef vrf vrf-name**

Use this command to locate prefixes in forwarding tables associated with Virtual Private Network (VPN) routing/forwarding table instances (VRFs). For example, this command shows prefixes in the left-hand column for a VRF named vpn1:

```
Router# show ip cef vrf vpn1

Prefix              Next Hop            Interface
0.0.0.0/32          receive            
10.1.0.0/8          10.0.0.1            FastEthernet1/0/3
10.2.0.0/8          10.0.0.2            POS2/0/0
10.0.0.0/8          attached           FastEthernet1/0/3
10.0.0.0/32         receive            
10.0.0.1/32         10.0.0.1            FastEthernet1/0/3
10.0.0.2/32         receive            
10.255.255.255/32   receive            
10.3.0.0/8          10.0.0.2            POS2/0/0
10.50.0.0/24        receive            
255.255.255.255/32  receive            
```

Step 4 Repeat Step 2 as many times as required to locate the prefix.

If Cisco Express Forwarding is in a VPN, you might need to look at multiple VRFs.

Step 5 **disable**

Use this command to exit privileged EXEC mode. For example:

```
Router# disable
Router>
```

Finding the Cisco Express Forwarding Output Information Associated with the Prefix on the Route Processor

To find the Cisco Express Forwarding output information associated with the prefix on the RP, perform the following steps.

SUMMARY STEPS

1. **enable**
2. **show ip cef**
3. **show ip cef prefix**
4. **show ip cef prefix detail**
5. **disable**

DETAILED STEPS

Step 1 **enable**

Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

```
Router> enable
Router#
```

Step 2 **show ip cef**
Use this command to confirm that the prefix is listed in the FIB. For example:

```
Router# show ip cef
```

<table>
<thead>
<tr>
<th>Prefix (24)</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/32</td>
<td>receive</td>
<td></td>
</tr>
<tr>
<td>192.168.0.0/30</td>
<td>attached</td>
<td>Serial2/0/0:1</td>
</tr>
<tr>
<td>192.168.0.0/32</td>
<td>receive</td>
<td></td>
</tr>
<tr>
<td>10.2.61.8/24</td>
<td>192.168.100.1</td>
<td>FastEthernet1/0/0</td>
</tr>
</tbody>
</table>

Step 3 `show ip cef prefix`

Use this command to display the prefix entry in the FIB for centralized Cisco Express Forwarding. For example:

```
Router# show ip cef 10.2.61.8 255.255.255.0
```

10.0.0.0/8, version 72, per-destination sharing
0 packets, 0 bytes
via 192.168.100.1, 0 dependencies, recursive
 traffic share 1
 next hop 192.168.100.1, FastEthernet1/0/0 via 192.168.100.1/32
 valid adjacency
via 192.168.101.1, 0 dependencies, recursive
 traffic share 1
 next hop 192.168.101.1, FastEthernet2/1/0 via 192.168.101.1/32
 valid adjacency
0 packets, 0 bytes switched through the prefix

Step 4 `show ip cef prefix detail`

Use this command to show more detail for each of the active paths associated with a destination prefix. For example:

```
Router# show ip cef 10.0.0.0 detail
```

10.0.0.0/8, version 72, per-destination sharing
0 packets, 0 bytes
via 192.168.100.1, 0 dependencies, recursive
 traffic share 1
 next hop 192.168.100.1, FastEthernet1/0/0 via 192.168.100.1/32
 valid adjacency
via 192.168.101.1, 0 dependencies, recursive
 traffic share 1
 next hop 192.168.101.1, FastEthernet2/1/0 via 192.168.101.1/32
 valid adjacency
0 packets, 0 bytes switched through the prefix

Step 5 `disable`

Use this command to exit privileged EXEC mode. For example:

```
Router# disable
Router>
```

Verifying the Adjacency or Next-Hop Information on the Route Processor

To verify the adjacency or next-hop information, perform the following steps.

Adjacencies are added to the adjacency table when the adjacency is

- Indirectly configured manually
• Dynamically discovered through ARP
• Created when a routing protocol, for example, Border Gateway Protocol (BGP) or Open Shortest Path First (OSPF), forms a neighbor relationship

For more information on adjacencies, see the “Cisco Express Forwarding Overview” module.

SUMMARY STEPS

1. **enable**
2. **show ip cef**
3. **show adjacency detail**
4. **show adjacency summary**
5. **show adjacency** `type slot/subslot/port[.subinterface-number]`
6. **show ip cef exact-route** `source-address destination-address`
7. **disable**

DETAILED STEPS

Step 1 **enable**

Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

```
Router> enable
Router#
```

Step 2 **show ip cef**

Use this command to find the output interface. For example:

```
Router# show ip cef

Prefix              Next Hop            Interface
0.0.0.0/32          receive
192.168.0.0/30      attached            Serial2/0/0:1
192.168.0.0/32      receive
10.2.61.8/24        192.168.100.1       FastEthernet1/0/0

In this example, the output interface for the prefix 10.2.61.8/24 is FastEthernet 1/0/0, and the next hop address is 192.168.100.1.
```

Step 3 **show adjacency detail**

Use this command to display adjacency information, including Layer 2 information. For example:

```
Router# show adjacency detail

Protocol Interface              Address
IP      FastEthernet1/0/0        10.2.61.8(7)
       0 packets, 0 bytes
       00107BC30D5C
       00500B32D8200800
       ARP       02:01:49

The encapsulation string 00107BC30D5C00500B32D8200800 is that of an adjacency used for traffic switched out of a router on a FastEthernet link by means of Ethernet II encapsulation.
```
Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Routing

How to Verify Basic Cisco Express Forwarding

Step 4
show adjacency summary
Use this command to display Cisco Express Forwarding adjacency table summary information. For example:

```
Router# show adjacency summary
```

Adjacency Table has 1 adjacency
```
  Interface               Adjacency Count
  FastEthernet1/0/0        1
```

Step 5
show adjacency type slot/subslot/port[].subinterface-number
Use this command to display adjacency information for a particular interface. For example:

```
Router# show adjacency fastethernet 2/0/3
```

```
Protocol | Interface                  | Address          
---------|----------------------------|------------------
IP       | FastEthernet2/0/3          | 172.20.52.1(3045)|
IP       | FastEthernet2/0/3          | 172.20.52.22(11) |
```

Step 6
show ip cef exact-route source-address destination-address
Use this command to display the exact route for a source-destination IP address pair and verify the next-hop address. For example:

```
Router# show ip cef exact-route 10.1.1.1 10.2.61.8
```

```
10.1.1.1 -> 10.2.61.8 :FastEthernet1/0/0 (next hop 192.168.100.1)
```

In this example, the exact route from source address 10.1.1.1 to destination address 10.2.61.8 is through interface FastEthernet1/0/0 to next hop address 192.168.100.1.

Step 7
disable
Use this command to exit privileged EXEC mode. For example:

```
Router# disable
Router>
```

Verifying Distributed Cisco Express Forwarding Operation on Your Router

Perform the following tasks, in the order presented, to verify distributed Cisco Express Forwarding operation on your router:

- Verifying That Distributed Cisco Express Forwarding Switching Is Enabled on the Input Interface on a Line Card, page 12

Verifying That Distributed Cisco Express Forwarding Switching Is Enabled on the Input Interface on a Line Card

To verify that distributed Cisco Express Forwarding switching is enabled on the input (ingress) interface on the line card, perform the following steps.

SUMMARY STEPS

1. **enable**
2. **show ip cef**
3. `show ip cef prefix type slot/subslot/port[,subinterface-number]`

4. `disable`

DETAILED STEPS

Step 1 `enable`

Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

```
Router> enable
Router#
```

Step 2 `show ip cef`

Use this command to verify that Cisco Express Forwarding is enabled globally. For example:

```
Router# show ip cef
%CEF not running
```

If Cisco Express Forwarding is not running, use the `ip cef` command to enable (central) Cisco Express Forwarding or the `ip cef distributed` command to enable distributed Cisco Express Forwarding.

When Cisco Express Forwarding or distributed Cisco Express Forwarding is enabled, the `show ip cef` command shows a brief display of all FIB entries.

Step 3 `show ip cef prefix type slot/subslot/port[,subinterface-number]`

Use this command to verify information about interfaces on a line card. For example:

```
Router# show ip cef 192.68.0.0 255.255.255.0 fastethernet0/0/0
```

`show ip cef 192.68.0.0 255.255.255.0 from slot 0:

192.68.0.0/24, version 19, epoch 0, attached, connected
0 packets, 0 bytes
via FastEthernet0/0/0, 0 dependencies
valid glean adjacency`

Step 4 `disable`

Use this command to exit privileged EXEC mode. For example:

```
Router# disable
Router>
```

Interpreting Information in Cisco Express Forwarding Command Output

Perform the following tasks to interpret information in Cisco Express Forwarding command output:

- **Verifying That the Cisco Express Forwarding Information Looks As Expected, page 14** (optional)
- **Interpreting MPLS Information in Cisco Express Forwarding Output, page 16** (optional)
Verifying That the Cisco Express Forwarding Information Looks As Expected

Perform the following tasks to verify that the Cisco Express Forwarding information looks as you expected.

SUMMARY STEPS

1. **enable**
2. **show ip route**
3. **show ip cef**
4. Compare the command output in Steps 2 and 3.
5. **show ip cef type slot/subslot/port/subinterface-number**
6. Compare the command output in Steps 2 and 4.
7. **disable**

DETAILED STEPS

Step 1
enable
Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

```
Router> enable
Router#
```

Step 2
show ip route
Use this command to look at the forwarding information contained in the IP routing table. For example:

```
Router# show ip route
...

10.1.0.0/32 is subnetted, 1 subnets
O 10.1.2.3 [110/3] via 10.5.5.5, 00:00:03, POS2/0/0
10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C 10.5.5.5/32 is directly connected, POS2/0/0
C 10.5.5.0/24 is directly connected, POS2/0/0
10.7.0.0/24 is subnetted, 1 subnets
 O 10.7.8.0 [110/3] via 10.5.5.5, 00:00:04, POS2/0/0
10.0.0.0/24 is subnetted, 2 subnets
 O 10.23.64.0 [110/12] via 10.5.5.5, 00:00:04, POS2/0/0
 O 10.23.66.0 [110/12] via 10.5.5.5, 00:00:04, POS2/0/0
10.47.0.0/32 is subnetted, 1 subnets
 O 10.47.0.10 [110/3] via 10.5.5.5, 00:00:04, POS2/0/0
 O 172.16.57.0/24 [110/3] via 10.5.5.5, 00:00:04, POS2/0/0
10.150.0.0/24 is subnetted, 1 subnets
 C 10.150.3.0 is directly connected, POS0/0/0
 O 192.168.92.0/24 [110/2] via 10.5.5.5, 00:00:04, POS2/0/0 !<---- Compare with entry
```

In the example, c indicates a directly connected route and o represents a route discovered by means of OSPF.
Step 3
show ip cef

Use this command to display entries in the FIB. For example:

```
Router# show ip cef
Prefix               Next Hop            Interface
0.0.0.0/0            10.5.5.5             POS2/0/0 (default route)
0.0.0.0/32           receive
10.1.2.3/32          10.5.5.5             POS2/0/0 (two paths)
                   10.150.3.9             POS0/0/0
10.5.5.0/24          attached            POS2/0/0
10.5.5.0/32          receive
10.5.5.5/32          attached            POS2/0/0 (glean adjacency)
10.5.5.6/32          receive (our interface)
10.5.5.255/32        receive (broadcast)
10.7.8.0/24          10.5.5.5             POS2/0/0
                   10.150.3.9             POS0/0/0
10.23.64.0/24        10.150.3.9             POS0/0/0 (normal route)
10.23.66.0/24        10.150.3.9             POS0/0/0
10.47.0.10/32        10.150.3.9             POS0/0/0
10.150.3.0/24        attached            POS0/0/0
10.150.3.1/32        receive
10.150.3.255/32      receive
192.168.92.0/24      10.5.5.5             POS2/0/0 ! <--- Compare with entry in show ip route command.
                   10.150.3.9             POS0/0/0
172.16.57.0/24       10.5.5.5             POS2/0/0
                   10.150.3.9             POS0/0/0
239.224.0.0/4        receive (multicast)
255.255.255.255/32   receive (all 1s broadcast)
```

Step 4

Compare the command output in Steps 2 and 3.

Cisco Express Forwarding maintains the information contained in the IP routing table structured in a way that optimizes forwarding. Check that there is a one-to-one correlation between FIB entries and routing table entries. For example, the following lines from the sample output in Step 2 and Step 2 show a one-to-one correlation. The destination prefix 192.168.92.0/24, the next hop IP address 10.5.5.5, and the next-hop interface POS2/0/0 are the same.

- From the `show ip route` command output in Step 2:
  ```
  0  192.168.92.0/24 [110/2] via 10.5.5.5, 00:00:04, POS2/0/0
  ```

- From the `show ip cef` command output in Step 3:
  ```
  192.168.92.0/24  10.5.5.5  POS2/0/0
  ```

If there is not a one-to-one correlation, you can recreate the central FIB table by clearing the IP routing table and allowing the routing table to be rebuilt, which in turn causes the central FIB table to be repopulated with up-to-date routing information.

Step 5

(For distributed Cisco Express Forwarding operation only) `show ip cef type slot/subslot/port[,subinterface-number]`

Use this command to display FIB entries on all line cards. For example:

```
Router# show ip cef pos2/0/0
```
Step 6
(For distributed Cisco Express Forwarding operation only) Compare the command output in Steps 2 and 4.

The output from the `show ip cef` command in Step 3 should be identical to the output from the `show ip cef` command in Step 5. If the outputs are not identical, see the “Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards” module for information on synchronizing FIB entries on the RP and the line card.

Step 7
disable

Use this command to exit privileged EXEC mode. For example:

```
Router# disable
Router>
```

Interpreting MPLS Information in Cisco Express Forwarding Output

Perform the following steps to interpret Multiprotocol Label Switching (MPLS) information in Cisco Express Forwarding output.

- Cisco Express Forwarding and MPLS Interaction, page 16
- MPLS VPNs and Cisco Express Forwarding Tables, page 17

Cisco Express Forwarding and MPLS Interaction

Cisco Express Forwarding interacts with a label switched path (LSP) primarily at the beginning and end of the LSP—that is, on label imposition (IP packet to MPLS packet) and label disposition (MPLS packet to IP packet). Output from Cisco Express Forwarding commands should show these processes.

The Cisco implementation of MPLS leverages the advantages of Cisco Express Forwarding. When you use a router as an MPLS edge router, Cisco Express Forwarding identifies the route for incoming packets and finds the label to apply to the packet.

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Prefix Length</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.2.3/32</td>
<td>32</td>
<td>POS2/0/0</td>
</tr>
<tr>
<td>10.5.5.5/32</td>
<td>32</td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>105.5.5.0/24</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>10.5.5.0/32</td>
<td></td>
<td>POS2/0/0</td>
</tr>
<tr>
<td>10.5.5.5/32</td>
<td></td>
<td>POS2/0/0</td>
</tr>
<tr>
<td>10.5.5.6/32</td>
<td></td>
<td>POS2/0/0</td>
</tr>
<tr>
<td>10.5.5.255/32</td>
<td></td>
<td>POS2/0/0</td>
</tr>
<tr>
<td>10.7.8.0/24</td>
<td>24</td>
<td>POS2/0/0</td>
</tr>
<tr>
<td>10.5.5.5/32</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>10.7.54.0/24</td>
<td></td>
<td>POS0/1/0</td>
</tr>
<tr>
<td>10.7.54.0/32</td>
<td></td>
<td>POS0/1/0</td>
</tr>
<tr>
<td>10.7.54.3/32</td>
<td></td>
<td>POS0/1/0</td>
</tr>
<tr>
<td>10.7.54.255/32</td>
<td></td>
<td>POS0/1/0</td>
</tr>
<tr>
<td>10.23.64.0/24</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>10.150.3.9</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>10.150.3.0/24</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>10.150.3.0/32</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>10.150.3.1/32</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>10.150.3.255/32</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>192.168.92.0/24</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>10.150.3.9</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>172.16.57.0/24</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>239.224.0.0/4</td>
<td></td>
<td>POS0/0/0</td>
</tr>
<tr>
<td>255.255.255.255/32</td>
<td></td>
<td>POS0/0/0</td>
</tr>
</tbody>
</table>
However, when you use a router as a label switch router (LSR), tables from the MPLS label forwarding information base (LFIB) are used to switch MPLS packets. These tables are distributed to the line cards in the same way that the FIB tables are distributed in Cisco Express Forwarding.

MPLS VPNs and Cisco Express Forwarding Tables

A customer-site VRF contains all the routes available to the site from the VPNs to which it belongs. VPN routing information is stored in the IP routing table and in the Cisco Express Forwarding table for each VRF. A separate set of tables is maintained for each VRF, which prevents information from being forwarded outside a VPN and prevents packets that are outside a VPN from being forwarded to a router within the VPN. Based on the routing information stored in the VRF IP routing table and the VRF Cisco Express Forwarding table, packets are forwarded to their destinations. Output from Cisco Express Forwarding commands shows details from the VRF Cisco Express Forwarding tables.

SUMMARY STEPS

1. enable
2. show ip cef vrf vrf-name detail
3. disable

DETAILED STEPS

Step 1
enable

Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

```plaintext
Router> enable
Router# 
```

Step 2
show ip cef vrf vrf-name detail

Use this command to display detailed information from the Cisco Express Forwarding forwarding table that is associated with a VRF. For example:

```plaintext
Router# show ip cef vrf vpn1 detail
```

```plaintext
IP CEF with switching (Table Version 10), flags=0x0
8 routes, 0 reresolve, 0 unresolved (0 old, 0 new)
46 leaves, 51 nodes, 54640 bytes, 361 inserts, 315 invalidations
0 load sharing elements, 0 bytes, 0 references
universal per-destination load sharing algorithm, id F968AD29
5 CEF resets, 38 revisions of existing leaves
refcounts: 1400 leaf, 1392 node

Adjacency Table has 2 adjacencies
0.0.0.0/32, version 0, receive
192.168.6.0/24, version 9, cached adjacency to Serial0/1.1
0 packets, 0 bytes

The following section of the Cisco Express Forwarding output provides MPLS information for the first adjacency. The “tag rewrite” is an equivalent of a Cisco Express Forwarding adjacency. Look at the tags imposed field. The first tag {20} is the tag used to reach the next hop, 10.1.1.13. The second tag {30} is the tag advertised to the local provider edge (PE) router by the remote PE router.

```plaintext
tag information set
 local tag: VPN-route-head
 fast tag rewrite with Se0/1.1, point2point, tags imposed: (20 30)
```
Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Networks

Configuration Examples for Basic Cisco Express Forwarding

There are no configuration examples for Cisco Express Forwarding. Cisco Express Forwarding is enabled by default.

Where to Go Next

If you want to disable Cisco Express Forwarding or distributed Cisco Express Forwarding operation, refer to Enabling or Disabling Cisco Express Forwarding or distributed Cisco Express Forwarding to Customize Switching/Forwarding for Dynamic Networks.

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Commands for configuring and managing Cisco Express</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>Forwarding</td>
<td></td>
</tr>
</tbody>
</table>
### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS XE software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to install</td>
<td></td>
</tr>
<tr>
<td>and configure the software and to troubleshoot and resolve technical</td>
<td></td>
</tr>
<tr>
<td>issues with Cisco products and technologies. Access to most tools on the</td>
<td></td>
</tr>
<tr>
<td>Cisco Support and Documentation website requires a Cisco.com user ID and</td>
<td></td>
</tr>
<tr>
<td>password.</td>
<td></td>
</tr>
</tbody>
</table>
Feature Information for Configuring Basic Cisco Express Forwarding

Table 1 lists the features in this module.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which Cisco IOS XE software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

Table 1 lists only the Cisco IOS XE software release that introduced support for a given feature in a given Cisco IOS XE software release train. Unless noted otherwise, subsequent releases of that Cisco IOS XE software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
</table>
| CEF/dCEF - Cisco Express Forwarding | Cisco IOS XE Release 2.1 | This module contains information about Cisco Express Forwarding and describes the required and optional tasks for verifying Cisco Express Forwarding operation. Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet, and networks characterized by intensive web-based applications or interactive sessions. In Cisco IOS XE Release 2.1, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers. The following sections provide information about this feature:  
  - Information About Configuring Basic Cisco Express Forwarding, page 2  
  - How to Verify Basic Cisco Express Forwarding, page 4 |
| CEF Support for IP Routing between IEEE 802.1Q vLANs | Cisco IOS XE Release 2.1 | In Cisco IOS XE Release 2.1, Cisco Express Forwarding support for IP routing between IEEE 802.1Q vLANs was introduced on Cisco ASR 1000 Series Aggregation Services Routers. No commands were introduced or modified for this feature. |
Glossary

adjacency—A relationship formed between selected neighboring routers and end nodes for the purpose of exchanging routing information. Adjacency is based upon the use of a common media segment by the routers and nodes involved.

Cisco Express Forwarding—A Layer 3 switching technology. Cisco Express Forwarding can also refer to central Cisco Express Forwarding mode, one of two modes of Cisco Express Forwarding operation. Cisco Express Forwarding enables a Route Processor (RP) to perform express forwarding. Distributed Cisco Express Forwarding is the other mode of Cisco Express Forwarding operation.

distributed Cisco Express Forwarding—A type of Cisco Express Forwarding switching in which line cards maintain identical copies of the Forwarding Information Base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Processor of involvement in the switching operation.

FIB—forwarding information base. A component of Cisco Express Forwarding. The router uses the FIB lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The router maintains a mirror image of the forwarding information in an IP routing table.

IPC—interprocess communication. The mechanism that enables the distribution of Cisco Express Forwarding tables from the Route Processor (RP) to the line card when the router is operating in distributed Cisco Express Forwarding mode.

label disposition—The removal of Multiprotocol Label Switching (MPLS) headers at the edge of a network. In MPLS label disposition, packets arrive on a router as MPLS packets and, with the headers removed, are transmitted as IP packets.

label imposition—The action of putting a label on a packet.

LER—label edge router. A router that performs label imposition.

LFIB—label forwarding information base. The data structure used by switching functions to switch labeled packets.

LIB—label information base. A database used by a label switch router (LSR) to store labels learned from other LSRs, as well as labels assigned by the local LSR.

line card—A general term for an interface processor that can be used in various Cisco products.

LSP—label switched path. A sequence of hops (Router 0...Router n). A packet travels from R0 to Rn by means of label switching mechanisms. An LSP can be chosen dynamically, based on normal routing mechanisms, or it can be configured manually.

LSR—label switch router. A Layer 3 router that forwards a packet based on the value of a label encapsulated in the packet.

MPLS—Multiprotocol Label Switching. An emerging industry standard for the forwarding of packets along the normal routing paths (sometimes called MPLS hop-by-hop forwarding).

prefix—The network address portion of an IP address. A prefix is specified by a network and mask and is generally represented in the format network/mask. The mask indicates which bits are the network bits. For example, 1.0.0.0/16 means that the first 16 bits of the IP address are masked, making them the network bits. The remaining bits are the host bits. In this example, the network number is 10.0.

RIB—Routing Information Base. A central repository of routes that contains Layer 3 reachability information and destination IP addresses or prefixes. The RIB is also known as the routing table.

RP—Route Processor. The processor module contains the CPU, system software, and most of the memory components that are used in the router. It is sometimes called a supervisory processor.
**VPN**—Virtual Private Network. The result of a router configuration that enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

**VRF**—A Virtual Private Network (VPN) routing/forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a provider edge (PE) router.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2005–2009 Cisco Systems, Inc. All rights reserved.