Virtual Router Redundancy Service

Virtual Router Redundancy Service (VRRS) provides a multiclient information abstraction and management service between a First Hop Redundancy Protocol (FHRP) and a registered client. The VRRS multiclient service provides a consistent interface with FHRP protocols by abstracting over several FHRPs and providing an idealized view of their state. VRRS manages data updates, allowing interested clients to register in one place and receive updates for named FHRP groups or all registered FHRP groups.

Virtual Router Redundancy Protocol (VRRP) is an FHRP that acts as a server that pushes FHRP status information out to all registered VRRS clients. Clients obtain status on essential information provided by the FHRP, including current and previous redundancy states, active and inactive L3 and L2 addresses, and, in some cases, information about other redundant gateways in the network. Clients can use this information to provide stateless and stateful redundancy information to clients and protocols.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the “Feature Information for VRRS” section on page 16.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Contents

- Restrictions for VRRS, page 2
- Information About VRRS, page 2
- How to Configure VRRS, page 5
Restrictions for VRSS

- VRSS plug-ins must be configured on subinterfaces that are not configured with an FHRP, but which share a physical interface with an FHRP it is following.
- VRRPv2 is configurable only on Gigabit Ethernet interfaces.

Information About VRSS

- VRSS Overview, page 2
- Using VRSS with VRRP, page 2
- VRSS Servers and Clients, page 3
- VRSS MAC-Address Plug-in, page 3
- VRSS Interface-State Plug-in, page 4
- VRSS Accounting Plug-in, page 4

VRSS Overview

VRSS improves the scalability of FHRP. VRSS provides a stateless redundancy service to applications (VRSS clients) by monitoring VRRP. VRSS provides a database of the current VRRP state and operates without maintaining sessions or keeping track of previous states of the clients and servers with which it communicates. VRRP acts as a VRSS server. VRSS clients are other Cisco IOS processes or applications that use VRRP to provide or withhold a service or resource dependent upon the state of the group.

VRSS by itself is limited to maintaining its own state. Linking a VRSS client to a VRRP group provides a mechanism that allows VRSS to provide a service to client applications so they can implement stateless or stateful failover. Stateless failover is failover without syncing of state. Stateful failover requires communication with a nominated backup before failure so that operational data is not lost when failover occurs.

Using VRSS with VRRP

VRRP provides server support for VRSS. The VRRP server pushes state and status information to VRSS when an internal update occurs. VRSS updates its internal database upon receiving a server update, and then sends push notifications to each of the VRSS clients associated with the shared name. Clients are interested in the protocol state, virtual MAC address, and virtual IP address.
information associated with a group. The association name between a client and a VRRP group is a character name string. The information provided by VRRS allows clients to perform various activities that are dependent on the state of the associated VRRP group.

VRRP notifies VRRS of its current state (master, backup, or nonoperational INIT). The VRRP state is then passed on to clients or acted on by a plug-in. A VRRP group should be configured with a name to activate VRRS. Clients should be configured with the same name to bind them with VRRS. The VRRP group name associates the VRRP group with any clients that are configured as part of VRRS with the same name.

VRRS Servers and Clients

VRRP acts as the VRRS server. Clients act on the VRRP server state. When a VRRP group changes state, VRRS clients act by altering their behavior (performing tasks such as shutting down interfaces or appending accounting logs) depending on the state received from VRRS.

The following can be VRRS clients:

- PPP over Ethernet (PPPoE) subinterfaces
- Access Node Control Protocol (ANCP) subinterfaces
- VRRS Interface-state plug-in
- VRRS MAC-Address plug-in
- VRRS Accounting plug-in

VRRS plug-ins extend the failover of VRRP without the need for configuring VRRP groups on all subinterfaces. Configuring a VRRS plug-in on subinterfaces is a substitute for having to configure multiple VRRP groups on many subinterfaces. Plug-ins provide a light-weight version of VRRP and scale better than a fully configured VRRP group. The state of the plug-ins follows the VRRP server state. Client plug-ins are configured on other subinterfaces that share the same physical interface as VRRP.

VRRS MAC-Address Plug-in

The VRRS MAC-Address plug-in provides a mechanism for controlling a virtual MAC address associated with the primary interface IP address. If the VRRS MAC-Address plug-in is configured on an interface, and a VRRP group shares a name association with the plug-in, then a VRRS active state associates a virtual MAC address with the configured primary IP address.

The VRRS MAC-Address plug-in is only interested in the VRRS active state, which is interpreted as up. All other states are interpreted as down. When the state is up and the additional interface criteria listed below have been met, then the VRRS MAC-Address plug-in provides the following services:

- Overwrites the interface IP address ARP table with a virtual MAC address provided by VRRS
- Inserts the virtual MAC address provided by VRRS into the MAC address filter of the interface
- Controls the ARP reply mechanism by substituting a VRRS-provided virtual MAC address
- Broadcasts unsolicited ARP messages that include the VRRS virtual MAC address

When VRRS is in a nonactive state, the virtual MAC address is unassociated from the primary IP address.

When you use the VRRS MAC-Address plug-in, the VRRS Interface-State plug-in must also be used in order to prevent address conflicts with other redundant members.
Additional interface criteria:

- Interfaces must be configured with an interface IP address.
- Interfaces must be in the line-protocol up state.
- Other FHRP protocols cannot be configured on the interface; these include HSRP, VRRP, and GLBP.

The VRRS MAC-Address plug-in is associated with a VRRS group name by configuring the `vrrs follow name` command.

VRRS Interface-State Plug-in

The VRRS Interface-State plug-in provides a mechanism for controlling the line-protocol state of a subinterface based on the state of VRRP. The VRRS Interface-State plug-in is an extension of the VRRS, and is directly controlled by the push events associated with the VRRS. If the plug-in is configured on an interface, and a VRRP group shares a name association with the VRRS plug-in, then a VRRS active state allows the line-protocol state of the interface to be up. A VRRS nonactive state will cause the line protocol of the interface to be down.

Note When first configured, the interface line protocol may immediately change to the down state until the VRRS state is confirmed as up.

The VRRS Interface-State plug-in is associated with a VRRS group name by configuring the `vrrs follow name` command.

The Interface-State plug-in restricts the operation of the `no shutdown` command. When an interface is line-protocol down, the interface state will not go up.

VRRS Accounting Plug-in

The VRRS Accounting plug-in provides a configurable AAA method list mechanism that provides updates to a RADIUS server when a VRRS group transitions its state.

The VRRS accounting plug-in is an extension of existing AAA system accounting messages. The VRRS Accounting plug-in provides accounting-on and accounting-off messages and an additional Vendor-Specific Attribute (VSA) that sends the configured VRRS name in RADIUS accounting messages. The VRRS name is configured using the `vrrp name` command in interface configuration mode.

The VRRS Accounting plug-in sends an accounting-on message to RADIUS when a VRRS group transitions to the master state, and it sends an accounting-off message when a VRRS group transitions from the master state.

The following RADIUS attributes are included in VRRS accounting messages by default:

- Attribute 4, NAS-IP-Address
- Attribute 26, Cisco VSA Type 1, VRRS
- Attribute 40, Acct-Status-Type
- Attribute 41, Acct-Delay-Time
- Attribute 44, Acct-Session-Id

Accounting messages for a VRRS transitioning out of master state are sent after all PPPoE accounting stop messages for sessions that are part of that VRRS.
The VRRS accounting type is implemented by AAA to support VRRS accounting.

How to Configure VRRS

- Configuring a VRRS Server, page 5 (required)
- Configuring the Clients That Use VRRS, page 6 (optional)
- Configuring VRRS Accounting, page 7 (optional)
- Monitoring and Maintaining VRRS, page 9 (optional)

Configuring a VRRS Server

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip address ip-address mask [secondary [vrf vrf-name]]
5. vrrp group-number name [vrrp-group-name]
6. vrrp group ip ip-address [secondary]
7. vrrp delay {minimum seconds [reload seconds] | reload seconds}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2: configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3: interface type number</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface gigabitethernet0/0/0</td>
</tr>
<tr>
<td>Step 4: ip address ip-address mask [secondary [vrf vrf-name]]</td>
<td>Sets a primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip address 10.0.0.1 255.255.255.0</td>
</tr>
</tbody>
</table>
How to Configure VRRS

Perform this task to configure the clients, including VRRS plug-ins, that use VRRS. This task is configured on multiple subinterfaces.

1. enable
2. configure terminal
3. interface type number.subinterface
4. ip address ip-address mask [secondary [vrf vrf-name]]
5. vrrs follow name
6. vrrs interface-state
7. vrrs mac-address [arp [interval seconds] [duration seconds]]
8. Repeat Step 3 through Step 7 to configure additional subinterfaces.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>vrrp group-number name [vrrp-group-name]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# vrrp 1 name name1</td>
</tr>
<tr>
<td>Step 6</td>
<td>vrrp group ip ip-address [secondary]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# vrrp 1 ip 10.0.1.20</td>
</tr>
<tr>
<td>Step 7</td>
<td>vrrp delay {minimum seconds [reload seconds]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# vrrp delay minimum 30 reload 60</td>
</tr>
</tbody>
</table>

Links a VRRS client to a VRRP group.

Enables VRRP on an interface and identifies the IP address of the virtual router.

Configures the delay period before the initialization of all VRRP groups on an interface.
The recommended minimum seconds value is 30 seconds, and the recommended reload seconds value is 60 seconds.
Configuring VRRS Accounting

Perform this task to configure VRRS to send AAA accounting messages to the AAA server when there is a state-change in VRRS from active to standby or from standby to active.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3**

`interface type number.subinterface`

Example:

Router(config)# interface gigabitethernet0/0/0.1

- Configures a subinterface type and enters subinterface configuration mode.

| **Step 4**

`ip address ip-address mask [secondary [vrf vrf-name]]`

Example:

Router(config-subif)# ip address 10.0.0.1 255.255.255.0

- Sets a primary or secondary IP address for an interface.
- This interface should be a subinterface.

| **Step 5**

`vrrs follow name`

Example:

Router(config-subif)# vrrs follow name1

- Configures a name association between VRRS plug-ins and the VRRS server.

| **Step 6**

`vrrs interface-state`

Example:

Router(config-subif)# vrrs interface-state

- (Optional) Configures the VRRP shutdown plug-in on an interface.

| **Step 7**

`vrrs mac-address [arp [interval seconds] [duration seconds]]`

Example:

Router(config-subif)# vrrs mac-address

- (Optional) Configures the VRRS MAC-Address plug-in on an interface.

| **Step 8**

Repeat Steps 3 through 7 to configure additional subinterfaces.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Enables privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa accounting vrrs {default</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# aaa accounting vrrs vrrp-mlist-1 start-stop group radius</td>
</tr>
<tr>
<td>Enables AAA accounting of requested services for billing or security purposes when you use VRRS.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>aaa attribute list list-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# aaa attribute list vrrp-1-attr</td>
</tr>
<tr>
<td>Defines a AAA attribute list locally on a router.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>attribute type name value [service service] [protocol protocol] [mandatory] [tag tag-value]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-attr-list)# attribute type account-delay "10"</td>
</tr>
<tr>
<td>Defines an attribute type that is to be added to an attribute list locally on a router.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-attr-list)# exit</td>
</tr>
<tr>
<td>Exits attribute list configuration mode and returns to global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>vrrs vrrs-group-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# vrrs vrrp-name-1</td>
</tr>
<tr>
<td>(Optional) Specifies a distinct AAA accounting method list to use, a nonzero delay time for accounting-off messages, and additional attributes other than the default for a VRRP group.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>accounting delay delay</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-vrrs)# accounting delay 10</td>
</tr>
<tr>
<td>(Optional) Specifies a delay time for sending accounting-off messages for VRRS.</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring and Maintaining VRRS

SUMMARY STEPS

1. debug vrrp vrrs
2. debug vrrs accounting {all | errors | events}
3. debug vrrs infra {all | client | events | server}
4. debug vrrs plugin {all | arp-packet | client | database | if-state | mac | process | sublock | test}
5. show vrrs clients
6. show vrrs group [group-name]
7. show vrrs plugin database
8. show vrrs summary

DETAILED STEPS

Step 1 debug vrrp vrrs
This command enables VRRP debugging statements for VRRS interactions.

Router# debug vrrp vrrs

VRRP VRRS debugging is on
*Feb 5 09:29:47.005: VRRP: Registered VRRS group "name1"
*Feb 5 09:29:53.237: VRRP: Updated info for VRRS group name1
*Feb 5 09:30:14.153: VRRP: Unregistered VRRS group "name1"
*Feb 5 09:30:14.153: VRRP: Registered VRRS group "name2"
*Feb 5 09:30:22.689: VRRP: Unregistered VRRS group "name2"

Step 2 debug vrrs accounting {all | errors | events}
This command enables debug messages for VRRS accounting.

Router# debug vrrs accounting
time
00:16:13: VRRS/ACCT/EV: entry create for abc(0x4E8C1F0)
00:16:13: VRRS/ACCT/EV: abc(0x4E8C1F0 12000006) client add ok2(No group)
Step 3 `debug vrrs infra {all | client | events | server}`

This command enables VRRS infrastructure debug messages.

```
Router# debug vrrs infra
```

```
* Sep 9 16:09:53.848: VRRS: Client 21 is not registered
* Sep 9 16:09:53.848: VRRS: Client 21 unregister failed
* Sep 9 16:09:53.848: VRRS: Client VRRS TEST CLIENT registered, id 21
* Sep 9 16:09:53.848: VRRS: Client 21 add, group VRRP-TEST-1 does not exist, allocating...
* Sep 9 16:09:53.848: VRRS: Client 21 add to VRRP-TEST-1. Vrrs handle F7000001, client handle FE720
* Sep 9 16:09:53.848: VRRS: Server VRRP add, group VRRP-TEST-1, state INIT, vrrs handle F7000001
```

Step 4 `debug vrrs plugin {all | arp-packet | client | database | if-state | mac | process | sublock | test}`

This command enables VRRS plug-in debug messages.

```
Router# debug vrrs plugin
```

```
Feb 17 19:15:38.052: VRRS-P(mac): GigEth0/0/0.1 Add 0000.12ad.0001 to MAC filter, using (afilter_add)
Feb 17 19:15:38.053: VRRS-P(mac): Active count increase to (2) for MAC : 0000.12ad.0001
```

Step 5 `show vrrs clients`

This command displays a list of VRRS clients.

```
Router# show vrrs clients
```

```
ID  Priority  All-groups  Name
------------------------------
1   High      No          VRRS-Plugins
2   Low       Yes         VRRS-Accounting
3 Normal No  PPPOE-VRRS-CLIENT
```

Step 6 `show vrrs group [group-name]`

This command displays information about VRRS groups.

```
Router# show vrrs group DT-CLUSTER-3
```

```
DT-CLUSTER-3
Server Not configured, state INIT, old state INIT, reason Protocol
Address family IPv4, Virtual address 0.0.0.0, Virtual mac 0000.0000.0000
Active interface address 0.0.0.0, standby interface address 0.0.0.0
Client 5 VRRS TEST CLIENT, priority Low
```

Step 7 `show vrrs plugin database`

This command displays details about the internal VRRS plug-in database.

```
Router# show vrrs plugin database
```

```
VRRS Plugin Database
-----------------------------------------------
Name = VRRS_NAME_1
Server connection = Live
State = Disabled
MAC addr = 0000.5e00.0101
Test Control = False
Client Handle = 3741319170
Interface list =
    gige0/0/0.2
    gige0/0/0.3
```
Step 8 show vrrs summary
This command displays a summary of all VRRS groups.

```
Router# show vrrs summary
Group Server State Virtual-address
------------------------------------------------------------------------------
DT-CLUSTER-3 UNKNOW INIT 0.0.0.0
DT-CLUSTER-2 VRRP BACKUP 11.1.1.1
DT-CLUSTER-1 VRRP ACTIVE 1.1.1.1
```

Configuration Examples for VRRS

- Example: Configuring a VRRS Server, page 11
- Example: Configuring the Clients that use VRRS, page 11
- Example: Configuring VRRS Accounting, page 11
- Example: Confirming Operation of the VRRS Interface-State Plug-in, page 12
- Example: Confirming Operation of the VRRS MAC-Address plug-in, page 13

Example: Configuring a VRRS Server

```
Router# configure terminal
Router(config)# interface gigabitethernet0/0/0
Router(config-if)# ip address 10.0.0.1 255.255.255.0
Router(config-if)# vrrp 1 name name1
Router(config-if)# vrrp 1 ip 10.0.1.20
Router(config-if)# vrrp delay minimum 30 reload 60
```

Example: Configuring the Clients that use VRRS

The following example shows how to configure the clients, including VRRS plug-ins, that use VRRS.

```
Router# configure terminal
Router(config)# interface gigabitethernet0/0/0.1
Router(config-subif)# ip address 10.0.0.1 255.255.255.0
Router(config-subif)# vrrp follow name1
Router(config-subif)# vrrs interface-state
Router(config-subif)# vrrs mac-address
```

Example: Configuring VRRS Accounting

The following example shows how to configure VRRS to send AAA accounting messages to the AAA server when there is a state change in VRRS from active to standby or from standby to active.

```
Router# configure terminal
Router(config)# aaa accounting vrrs vrrp-mlist-1 start-stop group radius
Router(config)# aaa attribute list vrrp-1-attr
Router(config-attr-list)# attribute type account-delay "10"
Router(config-attr-list)# exit
Router(config)# vrrs vrrp-name-1
Router(config-vrrs)# accounting delay 10
Router(config-vrrs)# accounting method METHOD1
```
Example: Confirming Operation of the VRRS Interface-State Plug-in

```
Router(config-vrrs)# attribute list vrrp-1-attr

Router(config)# interface GigabitEthernet0/0/0
Router(config-if)# no ip address
Router(config-if)# exit
Router(config)# interface GigabitEthernet0/0/0.1
Router(config-if)# encapsulation dot1q 1 native
Router(config-if)# ip address 172.16.1.1 255.255.255.0
Router(config-if)# vrrp 1 name VRRS_NAME_1
Router(config-if)# vrrp 1 ip 172.16.1.254
Router(config-if)# exit
Router(config)# interface GigabitEthernet0/0/0.2
Router(config-if)# encapsulation dot1q 2
Router(config-if)# ip address 192.168.42.1 255.255.255.0
Router(config-if)# vrrs follow VRRS_NAME_1
Router(config-if)# vrrs interface-state
Router(config-if)# exit
Router(config)# interface GigabitEthernet0/0/0.3
Router(config-if)# encapsulation dot1q 3
Router(config-if)# ip address 192.168.43.1 255.255.255.0
Router(config-if)# vrrs follow VRRS_NAME_1
Router(config-if)# vrrs interface-state
Router(config-if)# exit
Router(config)# interface GigabitEthernet0/0/0.4
Router(config-if)# encapsulation dot1q 4
Router(config-if)# ip address 192.168.44.1 255.255.255.0
Router(config-if)# vrrs follow VRRS_NAME_2
Router(config-if)# vrrs interface-state
Router(config-if)# exit
Router# show ip interface brief
Interface      IP-Address      OK? Method Status                Protocol
GigabitEthernet0/0/0 unassigned      YES NVRAM  up                    up
GigabitEthernet0/0/0.1          172.24.1.1      YES manual up                    up
GigabitEthernet0/0/0.2          192.168.42.1    YES manual up                    up
GigabitEthernet0/0/0.3          192.168.43.1    YES manual up                    up
GigabitEthernet0/0/0.4          192.168.44.1    YES manual up down !
“interface-state” DOWN due to no VRRS server

Router# show vrrs plugin database

VRRS Plugin Database
--------------------------------------------------------------
Name = VRRS_NAME_1
Server connection = Live
State = Active
MAC addr = 0000.5e00.0101
Test Control = False
Client Handle = 3741319170
Interface list =
    GigE0/0/0.2
    GigE0/0/0.3
--------------------------------------------------------------
Name = VRRS_NAME_2
Server connection = Disconnected
State = Disabled
MAC addr = 0000.0000.0000
Test Control = False
Client Handle = 603979779
Interface list =
```
Example: Confirming Operation of the VRRS MAC-Address plug-in

Router(config)# interface GigabitEthernet0/0/0
Router(config-if)# no ip address
Router(config-if)# exit
Router(config)# interface GigabitEthernet0/0/0.1
Router(config-if)# encapsulation dot1Q 1 native
Router(config-if)# ip address 172.24.1.1 255.255.255.0
Router(config-if)# vrrp 1 name VRRS_NAME_1
Router(config-if)# vrrp 1 ip 172.24.1.254
Router(config-if)# exit
Router(config)# interface GigabitEthernet0/0/0.2
Router(config-if)# encapsulation dot1Q 2
Router(config-if)# ip address 192.168.42.1 255.255.255.0
Router(config-if)# vrrs follow VRRS_NAME_1
Router(config-if)# vrrs mac-address arp interval 5 duration 360
Router(config-if)# exit
Router(config)# interface GigabitEthernet0/0/0.3
Router(config-if)# encapsulation dot1Q 3
Router(config-if)# ip address 192.168.43.1 255.255.255.0
Router(config-if)# vrrs follow VRRS_NAME_1
Router(config-if)# vrrs mac-address arp interval 5 duration 360
Router(config-if)# exit
Router(config)# interface GigabitEthernet0/0/0.4
Router(config-if)# encapsulation dot1Q 4
Router(config-if)# ip address 192.168.44.1 255.255.255.0
Router(config-if)# vrrs follow VRRS_NAME_2
Router(config-if)# vrrs mac-address arp interval 5 duration 360
Router(config-if)# exit
Router# show ip arp

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Address</th>
<th>Age (min)</th>
<th>Hardware Addr</th>
<th>Type</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>172.24.1.1</td>
<td>-</td>
<td>aabb.cc00.fb00</td>
<td>ARPA</td>
<td>GigabitEthernet0/0/0.1</td>
</tr>
<tr>
<td>Internet</td>
<td>172.24.1.254</td>
<td>-</td>
<td>0000.5e00.0101</td>
<td>ARPA</td>
<td>GigabitEthernet0/0/0.1</td>
</tr>
</tbody>
</table>
| Internet | 192.168.42.1 | - | 0000.5e00.0101 | ARPA | GigabitEthernet0/0/0.2 !
| "mac-address" enabled interfaces using VRRP MAC via VRRS |
| Internet | 192.168.43.1 | - | 0000.5e00.0101 | ARPA | GigabitEthernet0/0/0.3 !
| "mac-address" enabled interfaces using VRRP MAC via VRRS |
| Internet | 192.168.44.1 | - | aabb.cc00.fb00 | ARPA | GigabitEthernet0/0/0.4 !
| "mac-address" disabled interface using BIA |

Router# debug arp

ARP packet debugging is on

*Sep 10 20:02:14.971: IP ARP: sent rep src 192.168.42.1 0000.5e00.0101,
dst 192.168.42.1 ffff.ffff.ffff Ethernet0/0.2
*Sep 10 20:02:14.971: IP ARP: sent rep src 192.168.43.1 0000.5e00.0101,
dst 192.168.43.1 ffff.ffff.ffff Ethernet0/0.3

*Sep 10 20:02:19.991: IP ARP: sent rep src 192.168.42.1 0000.5e00.0101,
dst 192.168.42.1 ffff.ffff.ffff Ethernet0/0.2
*Sep 10 20:02:19.991: IP ARP: sent rep src 192.168.43.1 0000.5e00.0101,
dst 192.168.43.1 ffff.ffff.ffff Ethernet0/0.3

Router# show controller gigabitethernet0/0/0
Interface GigabitEthernet0/0/0
Hardware is AMD Unknown
ADDR: 1EC55D8, FASTSEND: FC286088, MCI_INDEX: 0
DIST ROUTE ENABLED: 0
Virtual Router Redundancy Service

Where to Go Next

If you want to configure additional VRRP features, see the “Configuring VRRP” document.

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCP</td>
<td>Access Node Control Protocol</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>VRRP</td>
<td>Configuring VRRP</td>
</tr>
<tr>
<td>VRRP and VRSS commands</td>
<td>Cisco IOS IP Application Services Command Reference</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRRP MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2338</td>
<td>Virtual Router Redundancy Protocol</td>
</tr>
<tr>
<td>RFC 2787</td>
<td>Definitions of Managed Objects for the Virtual Router Redundancy Protocol</td>
</tr>
<tr>
<td>RFC 3768</td>
<td>Virtual Router Redundancy Protocol (VRRP)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for VRRS

Table 1 lists the release history for this feature.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1 Feature Information for VRRS

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Router Redundancy Service (VRRS)</td>
<td>Cisco IOS XE</td>
<td>Virtual Router Redundancy Service (VRRS) provides a multiclient information abstraction and management service between a First Hop Redundancy Protocol (FHRP), and a registered client.</td>
</tr>
<tr>
<td></td>
<td>Release 2.6</td>
<td>The following commands were introduced or modified:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aaa accounting vrrs, accounting delay (VRRS), accounting method (VRRS), attribute list (VRRS), debug vrrp all, debug vrrp vrrs, debug vrrs accounting, debug vrrs infra, debug vrrs plugin, show vrrp, show vrrs clients, show vrrs clients, show vrrs group, show vrrs plugin database, show vrrs summary, vrrp delay, vrrs follow, vrrp ip, vrrs mac-address, vrrs name, vrrs.</td>
</tr>
</tbody>
</table>
Glossary

AAA—authentication, authorization, and accounting.

RADIUS—Remote Authentication Dial-In User Service.

Virtual router—One or more VRRP routers that form a group. The virtual router acts as the default gateway router for LAN clients. Also known as a VRRP group.

VRRP—Virtual Router Redundancy Protocol. An election protocol that dynamically assigns responsibility for one or more virtual routers to the VRRP routers on a LAN, allowing several routers on a multiaccess link to utilize the same virtual IP address.

VSA—vendor-specific attribute. An attribute that has been implemented by a particular vendor.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2010–2011 Cisco Systems, Inc. All rights reserved.