Cisco IOS Bridging and IBM Networking Configuration Guide

Release 12.2SR
Initially Configuring a Device

Initially configuring a device varies by platform. For information about performing an initial configuration, see the hardware installation documentation that is provided with the original packaging of the product or go to the Product/Technologies Support area of Cisco.com at http://www.cisco.com/go/techdocs.

After you have performed the initial configuration and connected the device to your network, you can configure the device by using the console port or a remote access method, such as Telnet or Secure Shell (SSH), to access the CLI or by using the configuration method provided on the device, such as Security Device Manager.
Changing the Default Settings for a Console or AUX Port

There are only two changes that you can make to a console port and an AUX port:

- Change the port speed with the `config-register 0x` command. Changing the port speed is not recommended. The well-known default speed is 9600.
- Change the behavior of the port; for example, by adding a password or changing the timeout value.

Note

The AUX port on the Route Processor (RP) installed in a Cisco ASR 1000 series router does not serve any useful customer purpose and should be accessed only under the advisement of a customer support representative.

Using the CLI

This section describes the following topics:

- Understanding Command Modes, page ii
- Using the Interactive Help Feature, page v
- Understanding Command Syntax, page vi
- Understanding Enable and Enable Secret Passwords, page vii
- Using the Command History Feature, page viii
- Abbreviating Commands, page ix
- Using Aliases for CLI Commands, page ix
- Using the no and default Forms of Commands, page x
- Using the debug Command, page x
- Filtering Output Using Output Modifiers, page x
- Understanding CLI Error Messages, page xi

Understanding Command Modes

The CLI command mode structure is hierarchical, and each mode supports a set of specific commands. This section describes the most common of the many modes that exist.

Table 1 lists common command modes with associated CLI prompts, access and exit methods, and a brief description of how each mode is used.
Table 1 CLI Command Modes

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
<th>Mode Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Log in.</td>
<td>Router></td>
<td>Issue the logout or exit command.</td>
<td>• Change terminal settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Perform basic tests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Display device status.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>From user EXEC mode,</td>
<td>Router#</td>
<td>Issue the disable command or the exit command to return to user EXEC mode.</td>
<td>• Issue show and debug commands.</td>
</tr>
<tr>
<td></td>
<td>issue the enable</td>
<td></td>
<td></td>
<td>• Copy images to the device.</td>
</tr>
<tr>
<td></td>
<td>command.</td>
<td></td>
<td></td>
<td>• Reload the device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Manage device configuration files.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Manage device file systems.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>From privileged EXEC</td>
<td>Router(config)#</td>
<td>Issue the exit command or the end command to return to privileged EXEC mode.</td>
<td>Configure the device.</td>
</tr>
<tr>
<td></td>
<td>mode, issue the configure terminal command.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface configuration</td>
<td>From global configuration mode, issue the interface command.</td>
<td>Router(config-if)#</td>
<td>Issue the exit command to return to global configuration mode or the end command to return to privileged EXEC mode.</td>
<td>Configure individual interfaces.</td>
</tr>
<tr>
<td>Line configuration</td>
<td>From global configuration mode, issue the line vty or line console command.</td>
<td>Router(config-line)#</td>
<td>Issue the exit command to return to global configuration mode or the end command to return to privileged EXEC mode.</td>
<td>Configure individual terminal lines.</td>
</tr>
</tbody>
</table>
ROM monitor: From privileged EXEC mode, issue the `reload` command. Press the Break key during the first 60 seconds while the system is booting.

- The # symbol represents the line number and increments at each prompt.
- Issue the `continue` command.

Diagnostic (available only on Cisco ASR 1000 series routers)

The router boots or enters diagnostic mode in the following scenarios. When a Cisco IOS process or processes fail, in most scenarios the router will reload.

- A user-configured access policy was configured using the transport-map command, which directed the user into diagnostic mode.
- The router was accessed using an RP auxiliary port.
- A break signal (Ctrl-C, Ctrl-Shift-6, or the `send break` command) was entered, and the router was configured to enter diagnostic mode when the break signal was received.

The router boots or enters diagnostic mode in the following scenarios. When a Cisco IOS process or processes fail, in most scenarios the router will reload.

- A user-configured access policy was configured using the transport-map command, which directed the user into diagnostic mode.
- The router was accessed using an RP auxiliary port.
- A break signal (Ctrl-C, Ctrl-Shift-6, or the `send break` command) was entered, and the router was configured to enter diagnostic mode when the break signal was received.

Table 1 CLI Command Modes (continued)

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
<th>Mode Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM monitor</td>
<td>From privileged EXEC mode, issue the <code>reload</code> command. Press the Break key during the first 60 seconds while the system is booting.</td>
<td>rommon # ></td>
<td>Issue the <code>continue</code> command.</td>
<td>Run as the default operating mode when a valid image cannot be loaded.</td>
</tr>
<tr>
<td>Diagnostic (available only on Cisco ASR 1000 series routers)</td>
<td>The router boots or enters diagnostic mode in the following scenarios. When a Cisco IOS process or processes fail, in most scenarios the router will reload.</td>
<td>Router(diag)#</td>
<td>If a Cisco IOS process failure is the reason for entering diagnostic mode, the failure must be resolved and the router must be rebooted to exit diagnostic mode.</td>
<td>Inspect various states on the router, including the Cisco IOS state.</td>
</tr>
<tr>
<td></td>
<td>The router was accessed using an RP auxiliary port.</td>
<td></td>
<td>If the router is in diagnostic mode because of a transport-map configuration, access the router through another port or use a method that is configured to connect to the Cisco IOS CLI.</td>
<td>Replace or roll back the configuration.</td>
</tr>
<tr>
<td></td>
<td>A break signal (Ctrl-C, Ctrl-Shift-6, or the <code>send break</code> command) was entered, and the router was configured to enter diagnostic mode when the break signal was received.</td>
<td></td>
<td>If the RP auxiliary port was used to access the router, use another port for access. Accessing the router through the auxiliary port is not useful for customer purposes.</td>
<td>Provide methods of restarting the Cisco IOS software or other processes.</td>
</tr>
<tr>
<td></td>
<td>If a Cisco IOS process failure is the reason for entering diagnostic mode, the failure must be resolved and the router must be rebooted to exit diagnostic mode.</td>
<td></td>
<td>Transfer files into or off of the router using remote access methods such as FTP, TFTP, and SCP.</td>
<td>Reboot hardware (such as the entire router, an RP, an ESP, a SIP, a SPA) or other hardware components.</td>
</tr>
</tbody>
</table>
EXEC commands are not saved when the software reboots. Commands that you issue in a configuration mode can be saved to the startup configuration. If you save the running configuration to the startup configuration, these commands will execute when the software is rebooted. Global configuration mode is the highest level of configuration mode. From global configuration mode, you can enter a variety of other configuration modes, including protocol-specific modes.

ROM monitor mode is a separate mode that is used when the software cannot load properly. If a valid software image is not found when the software boots or if the configuration file is corrupted at startup, the software might enter ROM monitor mode. Use the question symbol (?) to view the commands that you can use while the device is in ROM monitor mode.

```
rommon 1 >
alias       set and display aliases command
boot        boot up an external process
confreg     configuration register utility
cont        continue executing a downloaded image
context     display the context of a loaded image
cookie      display contents of cookie PROM in hex

rommon 2 >
```

The following example shows how the command prompt changes to indicate a different command mode:

```
Router> enable
Router# configure terminal
Router(config)# interface ethernet 1/1
Router(config-if)# ethernet
Router(config-line)# exit
Router(config)# end
Router#
```

Note

A keyboard alternative to the `end` command is Ctrl-Z.

Using the Interactive Help Feature

The CLI includes an interactive Help feature. Table 2 describes the purpose of the CLI interactive Help commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Provides a brief description of the Help feature in any command mode.</td>
</tr>
<tr>
<td>?</td>
<td>Lists all commands available for a particular command mode.</td>
</tr>
<tr>
<td>partial command?</td>
<td>Provides a list of commands that begin with the character string (no space between the command and the question mark).</td>
</tr>
<tr>
<td>partial command<Tab></td>
<td>Completes a partial command name (no space between the command and <Tab>).</td>
</tr>
<tr>
<td>command ?</td>
<td>Lists the keywords, arguments, or both associated with the command (space between the command and the question mark).</td>
</tr>
<tr>
<td>command keyword ?</td>
<td>Lists the arguments that are associated with the keyword (space between the keyword and the question mark).</td>
</tr>
</tbody>
</table>
The following examples show how to use the help commands:

```
help
Router> help
Help may be requested at any point in a command by entering a question mark '?'. If nothing matches, the help list will be empty and you must backup until entering a '?' shows the available options.
Two styles of help are provided:
1. Full help is available when you are ready to enter a command argument (e.g. 'show ?') and describes each possible argument.
2. Partial help is provided when an abbreviated argument is entered and you want to know what arguments match the input (e.g. 'show pr?'.)
```

```
?  
Router# ?
Exec commands:
   access-enable Create a temporary access-List entry
   access-profile Apply user-profile to interface
   access-template Create a temporary access-List entry
   alps ALPS exec commands
   archive manage archive files
   <snip>
```

```
partial command?
Router(config)# zo?
zone  zone-pair
```

```
partial command<Tab>
Router(config)# we<Tab> webvpn
```

```
command?
Router(config-if)# pppoe ?
   enable Enable pppoe
   max-sessions Maximum PPPOE sessions
```

```
command keyword?
Router(config-if)# pppoe enable ?
   group  attach a BBA group
   <cr>
```

Understanding Command Syntax

Command syntax is the format in which a command should be entered in the CLI. Commands include the name of the command, keywords, and arguments. Keywords are alphanumeric strings that are used literally. Arguments are placeholders for values that a user must supply. Keywords and arguments may be required or optional.

Specific conventions convey information about syntax and command elements. Table 3 describes these conventions.
Using the Command-Line Interface in Cisco IOS Software

Using the CLI

The following examples show syntax conventions:

```
Router(config)# ethernet cfm domain ?
  WORD  domain name

Router(config)# ethernet cfm domain dname ?
  level

Router(config)# ethernet cfm domain dname level ?
  <0-7>  maintenance level number

Router(config)# smtp-server file-transfer access-group 10 ?
  protocol  protocol options

Router(config)# logging host ?
  Hostname or A.B.C.D  IP address of the syslog server
  ipv6  Configure IPv6 syslog server
```

Table 3 CLI Syntax Conventions

<table>
<thead>
<tr>
<th>Symbol/Text</th>
<th>Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>< > (angle brackets)</td>
<td>Indicate that the option is an argument.</td>
<td>Sometimes arguments are displayed without angle brackets.</td>
</tr>
<tr>
<td>A.B.C.D.</td>
<td>Indicates that you must enter a dotted decimal IP address.</td>
<td>Angle brackets (< >) are not always used to indicate that an IP address is an argument.</td>
</tr>
<tr>
<td>WORD (all capital letters)</td>
<td>Indicates that you must enter one word.</td>
<td>Angle brackets (< >) are not always used to indicate that a WORD is an argument.</td>
</tr>
<tr>
<td>LINE (all capital letters)</td>
<td>Indicates that you must enter more than one word.</td>
<td>Angle brackets (< >) are not always used to indicate that a LINE is an argument.</td>
</tr>
<tr>
<td><cr> (carriage return)</td>
<td>Indicates the end of the list of available keywords and arguments, and also indicates when keywords and arguments are optional. When <cr> is the only option, you have reached the end of the branch or the end of the command if the command has only one branch.</td>
<td>—</td>
</tr>
</tbody>
</table>

Understanding Enable and Enable Secret Passwords

Some privileged EXEC commands are used for actions that impact the system, and it is recommended that you set a password for these commands to prevent unauthorized use. Two types of passwords, enable (not encrypted) and enable secret (encrypted), can be set. The following commands set these passwords and are issued in global configuration mode:

- **enable password**
- **enable secret password**
Using an enable secret password is recommended because it is encrypted and more secure than the enable password. When you use an enable secret password, text is encrypted (unreadable) before it is written to the config.text file. When you use an enable password, the text is written as entered (readable) to the config.text file.

Each type of password is case sensitive, can contain from 1 to 25 uppercase and lowercase alphanumeric characters, and can start with a numeral. Spaces are also valid password characters; for example, “two words” is a valid password. Leading spaces are ignored, but trailing spaces are recognized.

Both password commands have numeric keywords that are single integer values. If you choose a numeral for the first character of your password followed by a space, the system will read the number as if it were the numeric keyword and not as part of your password.

When both passwords are set, the enable secret password takes precedence over the enable password. To remove a password, use the no form of the commands: no enable password or no enable secret password.

Using the Command History Feature

The command history feature saves, in a command history buffer, the commands that you enter during a session. The default number of saved commands is 10, but the number is configurable within the range of 0 to 256. This command history feature is particularly useful for recalling long or complex commands.

To change the number of commands saved in the history buffer for a terminal session, issue the terminal history size command:

Router# terminal history size num

A command history buffer is also available in line configuration mode with the same default and configuration options. To set the command history buffer size for a terminal session in line configuration mode, issue the history command:

Router(config-line)# history [size num]

To recall commands from the history buffer, use the following methods:

- Press Ctrl-P or the Up Arrow key—Recalls commands beginning with the most recent command. Repeat the key sequence to recall successively older commands.
- Press Ctrl-N or the Down Arrow key—Recalls the most recent commands in the history buffer after they have been recalled using Ctrl-P or the Up Arrow key. Repeat the key sequence to recall successively more recent commands.

The arrow keys function only on ANSI-compatible terminals such as the VT100.

- Issue the show history command in user EXEC or privileged EXEC mode—Lists the most recent commands that you entered. The number of commands that are displayed is determined by the setting of the terminal history size and history commands.
The command history feature is enabled by default. To disable this feature for a terminal session, issue the `terminal no history` command in user EXEC or privileged EXEC mode or the `no history` command in line configuration mode.

Abbreviating Commands

Typing a complete command name is not always required for the command to execute. The CLI recognizes an abbreviated command when the abbreviation contains enough characters to uniquely identify the command. For example, the `show version` command can be abbreviated as `sh ver`. It cannot be abbreviated as `s ver` because `s` could mean `show`, `set`, or `systat`. The `sh v` abbreviation also is not valid because the `show` command has `vrrp` as a keyword in addition to `version`. (Command and keyword examples are from Cisco IOS Release 12.4(13)T.)

Using Aliases for CLI Commands

To save time and the repetition of entering the same command multiple times, you can use a command alias. An alias can be configured to do anything that can be done at the command line, but an alias cannot move between modes, type in passwords, or perform any interactive functions.

Table 4 shows the default command aliases.

<table>
<thead>
<tr>
<th>Command Alias</th>
<th>Original Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>help</td>
</tr>
<tr>
<td>lo</td>
<td>logout</td>
</tr>
<tr>
<td>p</td>
<td>ping</td>
</tr>
<tr>
<td>s</td>
<td>show</td>
</tr>
<tr>
<td>u or un</td>
<td>undebug</td>
</tr>
<tr>
<td>w</td>
<td>where</td>
</tr>
</tbody>
</table>

To create a command alias, issue the `alias` command in global configuration mode. The syntax of the command is `alias mode command-alias original-command`. Following are some examples:

- `Router(config)# alias exec prt partition`—privileged EXEC mode
- `Router(config)# alias configure sb source-bridge`—global configuration mode
- `Router(config)# alias interface rl rate-limit`—interface configuration mode

To view both default and user-created aliases, issue the `show alias` command.

Using the Command-Line Interface in Cisco IOS Software

Using the CLI

Using the no and default Forms of Commands

Most configuration commands have a **no** form that is used to reset a command to its default value or disable a feature or function. For example, the **ip routing** command is enabled by default. To disable this command, you would issue the **no ip routing** command. To re-enable IP routing, you would issue the **ip routing** command.

Configuration commands may also have a **default** form, which returns the command settings to their default values. For commands that are disabled by default, using the **default** form has the same effect as using the **no** form of the command. For commands that are enabled by default and have default settings, the **default** form enables the command and returns the settings to their default values.

The **no** form is documented in the command pages of command references. The **default** form is generally documented in the command pages only when the **default** form performs a different function than the plain and **no** forms of the command. To see what **default** commands are available on your system, enter **default ?** in the appropriate command mode.

Using the debug Command

A **debug** command produces extensive output that helps you troubleshoot problems in your network. These commands are available for many features and functions within Cisco IOS software. Some **debug** commands are **debug all**, **debug aaa accounting**, and **debug mpls packets**. To use **debug** commands during a Telnet session with a device, you must first enter the **terminal monitor** command. To turn off debugging completely, you must enter the **undebug all** command.

Caution

Debugging is a high priority and high CPU utilization process that can render your device unusable. Use **debug** commands only to troubleshoot specific problems. The best times to run debugging are during periods of low network traffic and when few users are interacting with the network. Debugging during these periods decreases the likelihood that the **debug** command processing overhead will affect network performance or user access or response times.

Filtering Output Using Output Modifiers

Many commands produce lengthy output that may use several screens to display. Using output modifiers, you can filter this output to show only the information that you want to see.

The following three output modifiers are available:

- **begin regular-expression**—Displays the first line in which a match of the regular expression is found and all lines that follow.
- **include regular-expression**—Displays all lines in which a match of the regular expression is found.
- **exclude regular-expression**—Displays all lines except those in which a match of the regular expression is found.

To use one of these output modifiers, type the command followed by the pipe symbol (|), the modifier, and the regular expression that you want to search for or filter. A regular expression is a case-sensitive alphanumeric pattern. It can be a single character or number, a phrase, or a more complex string.
The following example illustrates how to filter output of the `show interface` command to display only lines that include the expression “protocol.”

```
Router# show interface | include protocol
```

```
FastEthernet0/0 is up, line protocol is up
Serial4/0 is up, line protocol is up
Serial4/1 is up, line protocol is up
Serial4/2 is administratively down, line protocol is down
Serial4/3 is administratively down, line protocol is down
```

Understanding CLI Error Messages

You may encounter some error messages while using the CLI. Table 5 shows the common CLI error messages.

Table 5 Common CLI Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Meaning</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Ambiguous command: “show con”</td>
<td>You did not enter enough characters for the command to be recognized.</td>
<td>Reenter the command followed by a space and a question mark (?). The keywords that you are allowed to enter for the command appear.</td>
</tr>
<tr>
<td>% Incomplete command.</td>
<td>You did not enter all the keywords or values required by the command.</td>
<td>Reenter the command followed by a space and a question mark (?). The keywords that you are allowed to enter for the command appear.</td>
</tr>
<tr>
<td>% Invalid input detected at “^” marker.</td>
<td>You entered the command incorrectly. The caret (^) marks the point of the error.</td>
<td>Enter a question mark (?) to display all the commands that are available in this command mode. The keywords that you are allowed to enter for the command appear.</td>
</tr>
</tbody>
</table>

For more system error messages, see the following document:

- *Cisco IOS Release 12.4T System Message Guide*

Saving Changes to a Configuration

To save changes that you made to the configuration of a device, you must issue the `copy running-config startup-config` command or the `copy system:running-config nvram:startup-config` command. When you issue these commands, the configuration changes that you made are saved to the startup configuration and saved when the software reloads or power to the device is turned off or interrupted. The following example shows the syntax of the `copy running-config startup-config` command:

```
Router# copy running-config startup-config
Destination filename [startup-config]?
```

You press Enter to accept the startup-config filename (the default), or type a new filename and then press Enter to accept that name. The following output is displayed indicating that the configuration was saved.
Building configuration...
[OK]
Router#

On most platforms, the configuration is saved to NVRAM. On platforms with a Class A flash file system, the configuration is saved to the location specified by the CONFIG_FILE environment variable. The CONFIG_FILE variable defaults to NVRAM.

Additional Information

- “Using the Cisco IOS Command-Line Interface” section of the *Cisco IOS Configuration Fundamentals Configuration Guide*

- Cisco Product/Technology Support

- Support area on Cisco.com (also search for documentation by task or product)

- Software Download Center (downloads; tools; licensing, registration, advisory, and general information) (requires Cisco.com user ID and password)

- Error Message Decoder, a tool to help you research and resolve error messages for Cisco IOS software

- Command Lookup Tool, a tool to help you find detailed descriptions of Cisco IOS commands (requires Cisco.com user ID and password)

- Output Interpreter, a troubleshooting tool that analyzes command output of supported `show` commands

 https://www.cisco.com/pcgi-bin/Support/OutputInterpreter/home.pl

© 2008–2009 Cisco Systems, Inc. All rights reserved.
About Cisco IOS Software Documentation

Last Updated: November 20, 2009

This document describes the objectives, audience, conventions, and organization used in Cisco IOS software documentation. Also included are resources for obtaining technical assistance, additional documentation, and other information from Cisco. This document is organized into the following sections:

- Documentation Objectives, page i
- Audience, page i
- Documentation Conventions, page i
- Documentation Organization, page iii
- Additional Resources and Documentation Feedback, page xii

Documentation Objectives

Cisco IOS documentation describes the tasks and commands available to configure and maintain Cisco networking devices.

Audience

The Cisco IOS documentation set is intended for users who configure and maintain Cisco networking devices (such as routers and switches) but who may not be familiar with the configuration and maintenance tasks, the relationship among tasks, or the Cisco IOS commands necessary to perform particular tasks. The Cisco IOS documentation set is also intended for those users experienced with Cisco IOS software who need to know about new features, new configuration options, and new software characteristics in the current Cisco IOS release.

Documentation Conventions

In Cisco IOS documentation, the term router may be used to refer to various Cisco products; for example, routers, access servers, and switches. These and other networking devices that support Cisco IOS software are shown interchangeably in examples and are used only for illustrative purposes. An example that shows one product does not necessarily mean that other products are not supported.
This section contains the following topics:

- Typographic Conventions, page ii
- Command Syntax Conventions, page ii
- Software Conventions, page iii
- Reader Alert Conventions, page iii

Typographic Conventions

Cisco IOS documentation uses the following typographic conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>^ or Ctrl</td>
<td>Both the ^ symbol and Ctrl represent the Control (Ctrl) key on a keyboard. For example, the key combination ^D or Ctrl-D means that you hold down the Control key while you press the D key. (Keys are indicated in capital letters but are not case sensitive.)</td>
</tr>
<tr>
<td>string</td>
<td>A string is a nonquoted set of characters shown in italics. For example, when setting a Simple Network Management Protocol (SNMP) community string to public, do not use quotation marks around the string; otherwise, the string will include the quotation marks.</td>
</tr>
</tbody>
</table>

Command Syntax Conventions

Cisco IOS documentation uses the following command syntax conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>Bold text indicates commands and keywords that you enter as shown.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic text indicates arguments for which you supply values.</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional keyword or argument.</td>
</tr>
<tr>
<td>...</td>
<td>An ellipsis (three consecutive nonbolded periods without spaces) after a syntax element indicates that the element can be repeated.</td>
</tr>
<tr>
<td>1</td>
<td>A vertical line, called a pipe, that is enclosed within braces or square brackets indicates a choice within a set of keywords or arguments.</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
<tr>
<td>[x {y</td>
<td>z}]</td>
</tr>
</tbody>
</table>
Software Conventions

Cisco IOS software uses the following program code conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courier font</td>
<td>Courier font is used for information that is displayed on a PC or terminal screen.</td>
</tr>
<tr>
<td>Bold Courier font</td>
<td>Bold Courier font indicates text that the user must enter.</td>
</tr>
<tr>
<td>< ></td>
<td>Angle brackets enclose text that is not displayed, such as a password. Angle brackets also are used in contexts in which the italic font style is not supported; for example, ASCII text.</td>
</tr>
<tr>
<td>!</td>
<td>An exclamation point at the beginning of a line indicates that the text that follows is a comment, not a line of code. An exclamation point is also displayed by Cisco IOS software for certain processes.</td>
</tr>
<tr>
<td>[]</td>
<td>Square brackets enclose default responses to system prompts.</td>
</tr>
</tbody>
</table>

Reader Alert Conventions

Cisco IOS documentation uses the following conventions for reader alerts:

- **Caution**

 Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

- **Note**

 Means *reader take note*. Notes contain helpful suggestions or references to material not covered in the manual.

- **Timesaver**

 Means *the described action saves time*. You can save time by performing the action described in the paragraph.

Documentation Organization

This section describes the Cisco IOS documentation set, how it is organized, and how to access it on Cisco.com. It also lists the configuration guides, command references, and supplementary references and resources that comprise the documentation set. It contains the following topics:

- Cisco IOS Documentation Set, page iv
- Cisco IOS Documentation on Cisco.com, page iv
- Configuration Guides, Command References, and Supplementary Resources, page v
Cisco IOS Documentation Set

The Cisco IOS documentation set consists of the following:

- Release notes and caveats provide information about platform, technology, and feature support for a release and describe severity 1 (catastrophic), severity 2 (severe), and select severity 3 (moderate) defects in released Cisco IOS software. Review release notes before other documents to learn whether updates have been made to a feature.
- Sets of configuration guides and command references organized by technology and published for each standard Cisco IOS release.
 - Configuration guides—Compilations of documents that provide conceptual and task-oriented descriptions of Cisco IOS features.
 - Command references—Compilations of command pages in alphabetical order that provide detailed information about the commands used in the Cisco IOS features and the processes that comprise the related configuration guides. For each technology, there is a single command reference that supports all Cisco IOS releases and that is updated at each standard release.
- Lists of all the commands in a specific release and all commands that are new, modified, removed, or replaced in the release.
- Command reference book for debug commands. Command pages are listed in alphabetical order.
- Reference book for system messages for all Cisco IOS releases.

Cisco IOS Documentation on Cisco.com

The following sections describe the organization of the Cisco IOS documentation set and how to access various document types.

Use Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

New Features List
The New Features List for each release provides a list of all features in the release with hyperlinks to the feature guides in which they are documented.

Feature Guides
Cisco IOS features are documented in feature guides. Feature guides describe one feature or a group of related features that are supported on many different software releases and platforms. Your Cisco IOS software release or platform may not support all the features documented in a feature guide. See the Feature Information table at the end of the feature guide for information about which features in that guide are supported in your software release.

Configuration Guides
Configuration guides are provided by technology and release and comprise a set of individual feature guides relevant to the release and technology.
Command References

Command reference books contain descriptions of Cisco IOS commands that are supported in many different software releases and on many different platforms. The books are organized by technology. For information about all Cisco IOS commands, use the Command Lookup Tool at http://tools.cisco.com/Support/CLILookup or the Cisco IOS Master Command List, All Releases, at http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html.

Cisco IOS Supplementary Documents and Resources

Supplementary documents and resources are listed in Table 2 on page xi.

Configuration Guides, Command References, and Supplementary Resources

Table 1 lists, in alphabetical order, Cisco IOS software configuration guides and command references, including brief descriptions of the contents of the documents. The Cisco IOS command references contain commands for Cisco IOS software for all releases. The configuration guides and command references support many different software releases and platforms. Your Cisco IOS software release or platform may not support all these technologies.

Table 2 lists documents and resources that supplement the Cisco IOS software configuration guides and command references. These supplementary resources include release notes and caveats; master command lists; new, modified, removed, and replaced command lists; system messages; and the debug command reference.

For additional information about configuring and operating specific networking devices, and to access Cisco IOS documentation, go to the Product/Technologies Support area of Cisco.com at the following location:

http://www.cisco.com/go/techdocs

Table 1 Cisco IOS Configuration Guides and Command References

<table>
<thead>
<tr>
<th>Configuration Guide and Command Reference Titles</th>
<th>Features/Protocols/Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cisco IOS AppleTalk Configuration Guide</td>
<td>AppleTalk protocol.</td>
</tr>
<tr>
<td>• Cisco IOS AppleTalk Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Asynchronous Transfer Mode Configuration Guide</td>
<td>LAN ATM, multiprotocol over ATM (MPoA), and WAN ATM.</td>
</tr>
<tr>
<td>• Cisco IOS Asynchronous Transfer Mode Command Reference</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 Cisco IOS Configuration Guides and Command References (continued)

<table>
<thead>
<tr>
<th>Configuration Guide and Command Reference Titles</th>
<th>Features/Protocols/Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Cisco IOS Bridging and IBM Networking Configuration Guide</td>
<td></td>
</tr>
<tr>
<td>- Cisco IOS Bridging Command Reference</td>
<td></td>
</tr>
<tr>
<td>- Cisco IOS IBM Networking Command Reference</td>
<td>Transparent and source-route transparent (SRT) bridging, source-route bridging (SRB), Token Ring Inter-Switch Link (TRISL), and token ring route switch module (TRRRSM).</td>
</tr>
<tr>
<td>- Cisco IOS Broadband Access Aggregation and DSL Configuration Guide</td>
<td>PPP over ATM (PPPoA) and PPP over Ethernet (PPPoE).</td>
</tr>
<tr>
<td>- Cisco IOS Broadband Access Aggregation and DSL Command Reference</td>
<td></td>
</tr>
<tr>
<td>- Cisco IOS Carrier Ethernet Configuration Guide</td>
<td>Operations, Administration, and Maintenance (OAM); Ethernet connectivity fault management (CFM); ITU-T Y.1731 fault management functions; Ethernet Local Management Interface (ELMI); MAC address support on service instances, bridge domains, and pseudowire; IEEE 802.3ad Link Bundling; Link Aggregation Control Protocol (LACP) support for Ethernet and Gigabit Ethernet links and EtherChannel bundles; LACP support for stateful switchover (SSO), in service software upgrade (ISSU), Cisco nonstop forwarding (NSF), and nonstop routing (NSR) on Gigabit EtherChannel bundles; and Link Layer Discovery Protocol (LLDP) and media endpoint discovery (MED).</td>
</tr>
<tr>
<td>- Cisco IOS Carrier Ethernet Command Reference</td>
<td></td>
</tr>
<tr>
<td>- Cisco IOS Configuration Fundamentals Configuration Guide</td>
<td>Autoinstall, Setup, Cisco IOS command-line interface (CLI), Cisco IOS file system (IFS), Cisco IOS web browser user interface (UI), basic file transfer services, and file management.</td>
</tr>
<tr>
<td>- Cisco IOS Configuration Fundamentals Command Reference</td>
<td></td>
</tr>
<tr>
<td>- Cisco IOS DECnet Configuration Guide</td>
<td>DECnet protocol.</td>
</tr>
<tr>
<td>- Cisco IOS DECnet Command Reference</td>
<td></td>
</tr>
<tr>
<td>- Cisco IOS Dial Technologies Configuration Guide</td>
<td>Asynchronous communications, dial backup, dialer technology, dial-in terminal services and AppleTalk remote access (ARA), dial-on-demand routing, dial-out, ISDN, large scale dial-out, modem and resource pooling, Multilink PPP (MLP), PPP, and virtual private dialup network (VPDN).</td>
</tr>
<tr>
<td>- Cisco IOS Dial Technologies Command Reference</td>
<td></td>
</tr>
<tr>
<td>- Cisco IOS Flexible NetFlow Command Reference</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 Cisco IOS Configuration Guides and Command References (continued)

<table>
<thead>
<tr>
<th>Configuration Guide and Command Reference Titles</th>
<th>Features/Protocols/Technologies</th>
</tr>
</thead>
</table>
| • Cisco IOS High Availability Configuration Guide
• Cisco IOS High Availability Command Reference | A variety of high availability (HA) features and technologies that are available for different network segments (from enterprise access to service provider core) to facilitate creation of end-to-end highly available networks. Cisco IOS HA features and technologies can be categorized in three key areas: system-level resiliency, network-level resiliency, and embedded management for resiliency. |
| • Cisco IOS Integrated Session Border Controller Command Reference | A VoIP-enabled device that is deployed at the edge of networks. An SBC is a toolkit of functions, such as signaling interworking, network hiding, security, and quality of service (QoS). |
| • Cisco IOS Intelligent Services Gateway Configuration Guide
• Cisco IOS Intelligent Services Gateway Command Reference | Subscriber identification, service and policy determination, session creation, session policy enforcement, session life-cycle management, accounting for access and service usage, and session state monitoring. |
| • Cisco IOS Interface and Hardware Component Configuration Guide
• Cisco IOS Interface and Hardware Component Command Reference | LAN interfaces, logical interfaces, serial interfaces, virtual interfaces, and interface configuration. |
| • Cisco IOS IP Addressing Services Configuration Guide
• Cisco IOS IP Addressing Services Command Reference | Address Resolution Protocol (ARP), Network Address Translation (NAT), Domain Name System (DNS), Dynamic Host Configuration Protocol (DHCP), and Next Hop Address Resolution Protocol (NHRP). |
| • Cisco IOS IP Application Services Configuration Guide
| • Cisco IOS IP Mobility Configuration Guide
• Cisco IOS IP Mobility Command Reference | Mobile ad hoc networks (MANet) and Cisco mobile networks. |
| • Cisco IOS IP Multicast Configuration Guide
• Cisco IOS IP Multicast Command Reference | Protocol Independent Multicast (PIM) sparse mode (PIM-SM), bidirectional PIM (bidir-PIM), Source Specific Multicast (SSM), Multicast Source Discovery Protocol (MSDP), Internet Group Management Protocol (IGMP), and Multicast VPN (MVPN). |
| • Cisco IOS IP Routing: BFD Configuration Guide
• Cisco IOS IP Routing: BFD Command Reference | Bidirectional forwarding detection (BFD). |
| • Cisco IOS IP Routing: BGP Configuration Guide
• Cisco IOS IP Routing: BGP Command Reference | Border Gateway Protocol (BGP), multiprotocol BGP, multiprotocol BGP extensions for IP multicast. |
| • Cisco IOS IP Routing: EIGRP Configuration Guide
| • Cisco IOS IP Routing: ISIS Configuration Guide
Table 1 Cisco IOS Configuration Guides and Command References (continued)

<table>
<thead>
<tr>
<th>Configuration Guide and Command Reference Titles</th>
<th>Features/Protocols/Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cisco IOS IP Routing: ODR Configuration Guide</td>
<td>On-Demand Routing (ODR).</td>
</tr>
<tr>
<td>• Cisco IOS IP Routing: ODR Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS IP Routing: OSPF Configuration Guide</td>
<td>Open Shortest Path First (OSPF).</td>
</tr>
<tr>
<td>• Cisco IOS IP Routing: OSPF Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS IP Routing: Protocol-Independent Configuration Guide</td>
<td>IP routing protocol-independent features and commands. Generic policy-based routing (PBR) features and commands are included.</td>
</tr>
<tr>
<td>• Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS IP Routing: RIP Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS IP SLAs Configuration Guide</td>
<td>Cisco IOS IP Service Level Agreements (IP SLAs).</td>
</tr>
<tr>
<td>• Cisco IOS IP SLAs Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS IP Switching Configuration Guide</td>
<td>Cisco Express Forwarding, fast switching, and Multicast Distributed Switching (MDS).</td>
</tr>
<tr>
<td>• Cisco IOS IP Switching Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS IPv6 Configuration Guide</td>
<td>For IPv6 features, protocols, and technologies, go to the IPv6 “Start Here” document.</td>
</tr>
<tr>
<td>• Cisco IOS IPv6 Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS ISO CLNS Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS LAN Switching Configuration Guide</td>
<td>VLANs, Inter-Switch Link (ISL) encapsulation, IEEE 802.10 encapsulation, IEEE 802.1Q encapsulation, and multilayer switching (MLS).</td>
</tr>
<tr>
<td>• Cisco IOS LAN Switching Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Mobile Wireless Gateway GPRS Support Node Configuration Guide</td>
<td>Cisco IOS Gateway GPRS Support Node (GGSN) in a 2.5-generation general packet radio service (GPRS) and 3-generation universal mobile telecommunication system (UMTS) network.</td>
</tr>
<tr>
<td>• Cisco IOS Mobile Wireless Gateway GPRS Support Node Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Mobile Wireless Home Agent Configuration Guide</td>
<td>Cisco Mobile Wireless Home Agent, an anchor point for mobile terminals for which mobile IP or proxy mobile IP services are provided.</td>
</tr>
<tr>
<td>• Cisco IOS Mobile Wireless Home Agent Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Mobile Wireless Packet Data Serving Node Configuration Guide</td>
<td>Cisco Packet Data Serving Node (PDSN), a wireless gateway that is between the mobile infrastructure and standard IP networks and that enables packet data services in a code division multiple access (CDMA) environment.</td>
</tr>
<tr>
<td>• Cisco IOS Mobile Wireless Packet Data Serving Node Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Mobile Wireless Radio Access Networking Command Reference</td>
<td></td>
</tr>
<tr>
<td>Configuration Guide and Command Reference Titles</td>
<td>Features/Protocols/Technologies</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>• Cisco IOS Multiprotocol Label Switching Configuration Guide</td>
<td>MPLS Label Distribution Protocol (LDP), MPLS Layer 2 VPNs, MPLS Layer 3 VPNs, MPLS traffic engineering (TE), and MPLS Embedded Management (EM) and MIBs.</td>
</tr>
<tr>
<td>• Cisco IOS Multiprotocol Label Switching Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Multi-Topology Routing Configuration Guide</td>
<td>Unicast and multicast topology configurations, traffic classification, routing protocol support, and network management support.</td>
</tr>
<tr>
<td>• Cisco IOS Multi-Topology Routing Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS NetFlow Configuration Guide</td>
<td>Network traffic data analysis, aggregation caches, and export features.</td>
</tr>
<tr>
<td>• Cisco IOS NetFlow Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Network Management Configuration Guide</td>
<td>Basic system management; system monitoring and logging; troubleshooting, logging, and fault management; Cisco Discovery Protocol; Cisco IOS Scripting with Tool Control Language (Tcl); Cisco networking services (CNS); DistributedDirector; Embedded Event Manager (EEM); Embedded Resource Manager (ERM); Embedded Syslog Manager (ESM); HTTP; Remote Monitoring (RMON); SNMP; and VPN Device Manager Client for Cisco IOS software (XSM Configuration).</td>
</tr>
<tr>
<td>• Cisco IOS Network Management Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Novell IPX Configuration Guide</td>
<td>Novell Internetwork Packet Exchange (IPX) protocol.</td>
</tr>
<tr>
<td>• Cisco IOS Novell IPX Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Optimized Edge Routing Configuration Guide</td>
<td>Optimized edge routing (OER) monitoring; Performance Routing (PfR); and automatic route optimization and load distribution for multiple connections between networks.</td>
</tr>
<tr>
<td>• Cisco IOS Optimized Edge Routing Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Quality of Service Solutions Configuration Guide</td>
<td>Traffic queueing, traffic policing, traffic shaping, Modular QoS CLI (MQC), Network-Based Application Recognition (NBAR), Multilink PPP (MLP) for QoS, header compression, AutoQoS, Resource Reservation Protocol (RSVP), and weighted random early detection (WRED).</td>
</tr>
<tr>
<td>• Cisco IOS Quality of Service Solutions Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Security Command Reference</td>
<td>Access control lists (ACLs); authentication, authorization, and accounting (AAA); firewalls; IP security and encryption; neighbor router authentication; network access security; network data encryption with router authentication; public key infrastructure (PKI); RADIUS; TACACS+; terminal access security; and traffic filters.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Security Configuration Guide: Securing the Data Plane</td>
<td>Access Control Lists (ACLs); Firewalls: Context-Based Access Control (CBAC) and Zone-Based Firewall; Cisco IOS Intrusion Prevention System (IPS); Flexible Packet Matching; Unicast Reverse Path Forwarding (uRPF); Threat Information Distribution Protocol (TIDP) and TMS.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1 Cisco IOS Configuration Guides and Command References (continued)

<table>
<thead>
<tr>
<th>Configuration Guide and Command Reference Titles</th>
<th>Features/Protocols/Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cisco IOS Security Configuration Guide: Securing User Services</td>
<td>AAA (includes 802.1x authentication and Network Admission Control [NAC]); Security Server Protocols (RADIUS and TACACS+); Secure Shell (SSH); Secure Access for Networking Devices (includes Autosecure and Role-Based CLI access); Lawful Intercept.</td>
</tr>
<tr>
<td>• Cisco IOS Security Configuration Guide: Secure Connectivity</td>
<td>Internet Key Exchange (IKE) for IPsec VPNs; IPsec Data Plane features; IPsec Management features; Public Key Infrastructure (PKI); Dynamic Multipoint VPN (DMVPN); Easy VPN; Cisco Group Encrypted Transport VPN (GETVPN); SSL VPN.</td>
</tr>
<tr>
<td>• Cisco IOS Service Advertisement Framework Configuration Guide</td>
<td>Cisco Service Advertisement Framework.</td>
</tr>
<tr>
<td>• Cisco IOS Service Advertisement Framework Command Reference</td>
<td>Subscriber authentication, service access, and accounting.</td>
</tr>
<tr>
<td>• Cisco IOS Service Selection Gateway Configuration Guide</td>
<td>An orchestrated collection of processes and components to activate Cisco IOS software feature sets by obtaining and validating Cisco software licenses.</td>
</tr>
<tr>
<td>• Cisco IOS Service Selection Gateway Command Reference</td>
<td>Installation and basic configuration of software modularity images, including installations on single and dual route processors, installation rollbacks, software modularity binding, software modularity processes, and patches.</td>
</tr>
<tr>
<td>• Cisco IOS Terminal Services Configuration Guide</td>
<td>DEC, local-area transport (LAT), and X.25 packet assembler/disassembler (PAD).</td>
</tr>
<tr>
<td>• Cisco IOS Terminal Services Command Reference</td>
<td>Virtual switch redundancy, high availability, and packet handling; converting between standalone and virtual switch modes; virtual switch link (VSL); Virtual Switch Link Protocol (VSLP).</td>
</tr>
<tr>
<td>• Cisco IOS Virtual Switch Command Reference</td>
<td>Note For information about virtual switch configuration, see the product-specific software configuration information for the Cisco Catalyst 6500 series switch or for the Metro Ethernet 6500 series switch.</td>
</tr>
<tr>
<td>• Cisco IOS Voice Configuration Library</td>
<td>Cisco IOS support for voice call control protocols, interoperability, physical and virtual interface management, and troubleshooting. The library includes documentation for IP telephony applications.</td>
</tr>
<tr>
<td>• Cisco IOS Voice Command Reference</td>
<td>Layer 2 Tunneling Protocol (L2TP) dial-out load balancing and redundancy; L2TP extended failover; L2TP security VPDN; multihop by Dialed Number Identification Service (DNIS); timer and retry enhancements for L2TP and Layer 2 Forwarding (L2F); RADIUS Attribute 82 (tunnel assignment ID); shell-based authentication of VPDN users; tunnel authentication via RADIUS on tunnel terminator.</td>
</tr>
</tbody>
</table>
Table 1 Cisco IOS Configuration Guides and Command References (continued)

<table>
<thead>
<tr>
<th>Configuration Guide and Command Reference Titles</th>
<th>Features/Protocols/Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cisco IOS Wide-Area Networking Configuration Guide</td>
<td>Frame Relay; Layer 2 Tunnel Protocol Version 3 (L2TPv3); L2VPN Pseudowire Redundancy; L2VPN Interworking; Layer 2 Local Switching; Link Access Procedure, Balanced (LAPB); and X.25.</td>
</tr>
<tr>
<td>• Cisco IOS Wide-Area Networking Command Reference</td>
<td></td>
</tr>
<tr>
<td>• Cisco IOS Wireless LAN Configuration Guide</td>
<td>Broadcast key rotation, IEEE 802.11x support, IEEE 802.1x authenticator, IEEE 802.1x local authentication service for Extensible Authentication Protocol-Flexible Authentication via Secure Tunneling (EAP-FAST), Multiple Basic Service Set ID (BSSID), Wi-Fi Multimedia (WMM) required elements, and Wi-Fi Protected Access (WPA).</td>
</tr>
<tr>
<td>• Cisco IOS Wireless LAN Command Reference</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 lists documents and resources that supplement the Cisco IOS software configuration guides and command references.

Table 2 Cisco IOS Supplementary Documents and Resources

<table>
<thead>
<tr>
<th>Document Title or Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Master Command List, All Releases</td>
<td>Alphabetical list of all the commands documented in all Cisco IOS releases.</td>
</tr>
<tr>
<td>Cisco IOS New, Modified, Removed, and Replaced Commands</td>
<td>List of all the new, modified, removed, and replaced commands for a Cisco IOS release.</td>
</tr>
<tr>
<td>Cisco IOS System Message Guide</td>
<td>List of Cisco IOS system messages and descriptions. System messages may indicate problems with your system, may be informational only, or may help diagnose problems with communications lines, internal hardware, or system software.</td>
</tr>
<tr>
<td>Cisco IOS Debug Command Reference</td>
<td>Alphabetical list of debug commands including brief descriptions of use, command syntax, and usage guidelines.</td>
</tr>
<tr>
<td>Release Notes and Caveats</td>
<td>Information about new and changed features, system requirements, and other useful information about specific software releases; information about defects in specific Cisco IOS software releases.</td>
</tr>
<tr>
<td>MIBs</td>
<td>Files used for network monitoring. To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator.</td>
</tr>
<tr>
<td>RFCs</td>
<td>Standards documents maintained by the Internet Engineering Task Force (IETF) that Cisco IOS documentation references where applicable. The full text of referenced RFCs may be obtained at the following URL: http://www.rfc-editor.org/</td>
</tr>
</tbody>
</table>
Additional Resources and Documentation Feedback

What’s New in Cisco Product Documentation is released monthly and describes all new and revised Cisco technical documentation. The *What’s New in Cisco Product Documentation* publication also provides information about obtaining the following resources:

- Technical documentation
- Cisco product security overview
- Product alerts and field notices
- Technical assistance

Cisco IOS technical documentation includes embedded feedback forms where you can rate documents and provide suggestions for improvement. Your feedback helps us improve our documentation.
Bridging
Overview of Bridging

The Bridging section of this guide discusses the following software components for bridging and routing protocols in Cisco routers:

- Transparent and Source-Route Transparent (SRT) Bridging, page 1
- Source-Route Bridging (SRB), page 6
- Token Ring Inter-Switch Link (TRISL), page 7
- Token Ring Route Switch Module (TRRSM), page 8

This overview chapter gives a high-level description of each technology. For configuration information, refer to the corresponding chapter in this publication.

Note: All commands supported on the Cisco 7500 series routers are also supported on the Cisco 7000 series routers.

Transparent and Source-Route Transparent (SRT) Bridging

Cisco IOS software supports transparent bridging for Ethernet, Fiber Distributed Data Interface (FDDI), and serial media, and supports source-route transparent (SRT) bridging for Token Ring media. In addition, Cisco supports all the mandatory Management Information Base (MIB) variables specified for transparent bridging in RFC 1286.

This section contains the following topics:

- Transparent Bridging Features, page 1
- Integrated Routing and Bridging, page 2
- SRT Bridging Features, page 5

Transparent Bridging Features

The Cisco transparent bridging software implementation has the following features:

- Complies with the IEEE 802.1D standard.
Overview of Bridging

- Provides the ability to logically segment a transparently bridged network into virtual LANs.
- Provides two Spanning Tree Protocols—an older bridge protocol data unit (BPDU) format that is compatible with Digital and other LAN bridges for backward compatibility and the IEEE standard BPDU format. In addition to features standard with these Spanning Tree Protocols, the Cisco proprietary software provides for multiple domains for spanning trees. The spanning-tree parameters are configurable.
- Allows frame filtering based on Media Access Control (MAC) address, protocol type, or the vendor code. Additionally, the bridging software can be configured to selectively filter local-area transport (LAT) multicast service announcements.
- Provides deterministic load distribution while maintaining a loop-free spanning tree.
- Provides the ability to bridge over Asynchronous Transfer Mode (ATM), dial-on-demand routing (DDR), FDDI, Frame Relay, multiprotocol Link Access Procedure, Balanced (LAPB), Switched Multimegabit Data Service (SMDS), and X.25 networks.
- Provides concurrent routing and bridging, which is the ability to bridge a given protocol on some interfaces in a router and concurrently route that protocol on other interfaces in the same router.
- Provides integrated routing and bridging, which is the ability to route a given protocol between routed interfaces and bridge groups, or to route a given protocol between bridge groups.
- Provides fast-switched transparent bridging for Frame Relay encapsulated serial and High-Speed Serial Interface (HSSI) interfaces, according to the format specified in RFC 1490.
- Provides fast-switched transparent bridging for the ATM interface on the Cisco 7000, according to the format specified in RFC 1483.
- Provides for compression of LAT frames to reduce LAT traffic through the network.
- Provides both bridging and routing of VLANs.

Cisco access servers and routers can be configured to serve as both multiprotocol routers and MAC-level bridges, bridging any traffic that cannot otherwise be routed. For example, a router routing the Internet Protocol (IP) can also bridge Digital’s LAT protocol or NetBIOS traffic.

Cisco routers also support remote bridging over synchronous serial lines. As with frames received on all other media types, dynamic learning and configurable filtering applies to frames received on serial lines.

Transit bridging of Ethernet frames across FDDI media is also supported. The term transit refers to the fact that the source or destination of the frame cannot be on the FDDI media itself. This allows FDDI to act as a highly efficient backbone for the interconnection of many bridged networks. The configuration of FDDI transit bridging is identical to the configuration of transparent bridging on all other media types.

Integrated Routing and Bridging

Although concurrent routing and bridging makes it possible to both route and bridge a specific protocol on separate interfaces within a router, the protocol is not switched between bridged and routed interfaces. Routed traffic is confined to the routed interfaces; bridged traffic is confined to bridged interfaces. A specified protocol may be either routed or bridged on a given interface, but not both.

Integrated routing and bridging makes it possible to route a specific protocol between routed interfaces and bridge groups, or route a specific protocol between bridge groups. Local or unroutable traffic can be bridged among the bridged interfaces in the same bridge group, while routable traffic can be routed to other routed interfaces or bridge groups. Figure 1 illustrates how integrated routing and bridging in a router interconnects a bridged network with a routed network.
You can configure the Cisco IOS software to route a specific protocol between routed interfaces and bridge groups or to route a specific protocol between bridge groups. Specifically, local or unroutable traffic is bridged among the bridged interfaces in the same bridge group, while routable traffic is routed to other routed interfaces or bridge groups. Using integrated routing and bridging, you can do the following:

- Switch packets from a bridged interface to a routed interface
- Switch packets from a routed interface to a bridged interface
- Switch packets within the same bridge group

Bridge-Group Virtual Interface

Because bridging operates in the data link layer and routing operates in the network layer, they follow different protocol configuration models. Taking the basic IP model as an example, all bridged interfaces would belong to the same network, while each routed interface represents a distinct network.

In integrated routing and bridging, the bridge-group virtual interface is introduced to avoid confusing the protocol configuration model when a specific protocol is both bridged and routed in a bridge group. Figure 2 illustrates the bridge-group virtual interface as a user-configured virtual interface residing within a router.

The bridge-group virtual interface is a normal routed interface that does not support bridging, but does represent its corresponding bridge group to the routed interface. It has all the network layer attributes (such as a network layer address and filters) that apply to the corresponding bridge group. The interface number assigned to this virtual interface corresponds to the bridge group that this virtual interface represents. This number is the link between the virtual interface and the bridge group.
When you enable routing for a given protocol on the bridge-group virtual interface, packets coming from a routed interface, but destined for a host in a bridged domain, are routed to the bridge-group virtual interface and are forwarded to the corresponding bridged interface. All traffic routed to the bridge-group virtual interface is forwarded to the corresponding bridge group as bridged traffic. All routable traffic received on a bridged interface is routed to other routed interfaces as if it is coming directly from the bridge-group virtual interface.

To receive routable packets arriving on a bridged interface but destined for a routed interface or to receive routed packets, the bridge-group virtual interface must also have the appropriate addresses. MAC addresses and network addresses are assigned to the bridge-group virtual interface as follows:

- The bridge-group virtual interface “borrows” the MAC address of one of the bridged interfaces in the bridge group associated with the bridge-group virtual interface.
- To route and bridge a given protocol in the same bridge group, you must configure the network layer attributes of the protocol on the bridge-group virtual interface. No protocol attributes should be configured on the bridged interfaces, and no bridging attributes can be configured on the bridge-group virtual interface.

Because there can be only one bridge-group virtual interface representing a bridge group, and the bridge group can be made up of different media types configured for several different encapsulation methods, you may need to configure the bridge-group virtual interface with the particular encapsulation methods required to switch packets correctly.

For example, the bridge-group virtual interface has default data link and network layer encapsulations that are the same as those available on Ethernet interfaces, but you can configure the bridge-group virtual interface with encapsulations that are not supported on an Ethernet interface. In some cases, the default encapsulations provide appropriate results; in other cases they do not. For example, with default encapsulation, Advanced Research Projects Agency (ARPA) packets from the bridge-group virtual interface are translated to Subnetwork Access Protocol (SNAP) when bridging IP to a Token Ring- or FDDI-bridged interface. But for Internet Packet Exchange (IPX), Novell-ether encapsulation from the bridge-group virtual interface is translated to raw-token or raw-FDDI when bridging IPX to a Token Ring- or FDDI-bridged interface. Because this behavior is usually not what you want, you must configure IPX SNAP or Service Advertisement Protocol (SAP) encapsulation on the bridge-group virtual interface.

Other Considerations

The following are additional facts regarding the support of integrated routing and bridging:

- Integrated routing and bridging is not supported on cBus platforms (AGS+ and Cisco 7000 series).
- Integrated routing and bridging is supported for transparent bridging, but not for source-route bridging (SRB).
- Integrated routing and bridging is supported on all media interfaces except X.25 and Integrated Services Digital Network (ISDN) bridged interfaces.
- Integrated routing and bridging supports three protocols: IP, IPX, and AppleTalk in both fast-switching and process-switching modes.
- Integrated routing and bridging and concurrent routing and bridging cannot operate at the same time.
SRT Bridging Features

Cisco routers support transparent bridging on Token Ring interfaces that support SRT bridging. Both transparent and SRT bridging are supported on all Token Ring interface cards that can be configured for either 4- or 16-MB transmission speeds.

As with other media, all the features that use `bridge-group` commands can be used on Token Ring interfaces. As with other interface types, the bridge group can be configured to run either the IEEE or Digital Spanning Tree Protocols. When configured for the IEEE Spanning Tree Protocol, the bridge cooperates with other SRT bridges and constructs a loop-free topology across the entire extended LAN.

You can also run the Digital Spanning Tree Protocol over Token Ring. Use it when you have other non-IEEE bridges on other media and you do not have any SRT bridges on Token Ring. In this configuration, all the Token Ring transparent bridges must be Cisco routers. This is because the Digital Spanning Tree Protocol has not been standardized on Token Ring.

As specified by the SRT bridging specification, only packets without a routing information field (RIF) (RII = 0 in the SA field) are transparently bridged. Packets with a RIF (RII = 1) are passed to the SRB module for handling. An SRT-capable Token Ring interface can have both SRB and transparent bridging enabled at the same time. However, with SRT bridging, frames that did not have a RIF when they were produced by their generating host never gain a RIF, and frames that did have a RIF when they were produced never lose that RIF.

Note
Because bridges running only SRT bridging never add or remove RIFs from frames, they do not integrate SRB with transparent bridging. A host connected to a source-route bridge that expects RIFs can never communicate with a device across a bridge that does not understand RIFs. SRT bridging cannot tie in existing source-route bridges to a transparent bridged network. To tie in existing bridges, you must use source-route translational bridging (SR/TLB) instead. SR/TLB is described in the “Configuring Source-Route Bridging” chapter.

Bridging between Token Ring and other media requires certain packet transformations. In all cases, the MAC addresses are bit-swapped because the bit ordering on Token Ring is different from that on other media. In addition, Token Ring supports one packet format, logical link control (LLC), while Ethernet supports two formats (LLC and Ethernet).

The transformation of LLC frames between media is simple. A length field is either created (when the frame is sent to non-Token Ring) or removed (when the frame is sent to Token Ring). When an Ethernet format frame is sent to Token Ring, the frame is translated into an LLC-1 SNAP packet. The destination service access point (DSAP) value is AA, the source service access point (SSAP) value is AA, and the organizational unique identifier (OUI) value is 0000F8. Likewise, when a packet in LLC-1 format is bridged onto Ethernet media, the packet is translated into Ethernet format.

Caution
Bridging between dissimilar media presents several problems that can prevent communication from occurring. These problems include bit order translation (or using MAC addresses as data), maximum transmission unit (MTU) differences, frame status differences, and multicast address usage. Some or all these problems might be present in a multimedia bridged LAN. Because of differences in the way end nodes implement Token Ring, these problems are most prevalent when bridging between Token Ring and Ethernet or between Ethernet and FDDI LANs.

Problems currently occur with the following protocols when bridged between Token Ring and other media: Novell IPX, DECnet Phase IV, AppleTalk, Banyan VINES, Xerox Network Systems (XNS), and IP. Further, problems can occur with the Novell IPX and XNS protocols when bridged between FDDI and other media. We recommend that these protocols be routed whenever possible.
Source-Route Bridging (SRB)

The Cisco IOS bridging software includes SRB capability. A source-route bridge connects multiple physical Token Rings into one logical network segment. If the network segment bridges only Token Ring media to provide connectivity, the technology is termed SRB. If the network bridges Token Ring and non-Token Ring media is introduced into the bridged network segment, the technology is termed remote source-route bridging (RSRB).

SRB enables routers to simultaneously act as a Level 3 router and a Level 2 source-route bridge. Thus, protocols such as Novell’s IPX or XNS can be routed on Token Rings, while other protocols such as Systems Network Architecture (SNA) or NetBIOS are source-route bridged.

SRB technology is a combination of bridging and routing functions. A source-route bridge can make routing decisions based on the contents of the MAC frame header. Keeping the routing function at the MAC, or Level 2, layer allows the higher-layer protocols to execute their tasks more efficiently and allows the LAN to be expanded without the knowledge of the higher-layer protocols.

As designed by IBM and the IEEE 802.5 committee, source-route bridges connect extended Token Ring LANs. A source-route bridge uses the RIF in the IEEE 802.5 MAC header of a datagram (Figure 3) to determine which rings or Token Ring network segments the packet must transit.

Figure 3 IEEE 802.5 Token Ring Frame Format

 Transparent spanning-tree bridging requires time to recompute a topology in the event of a failure; SRB, which maintains multiple paths, allows fast selection of alternate routes in the event of failure. Most importantly, SRB allows the end stations to determine the routes the frames take.

SRB Features

The Cisco SRB implementation has the following features:

• Provides configurable fast-switching software for SRB.

• Provides for a local source-route bridge that connects two or more Token Ring networks.

• Provides ring groups to configure a source-route bridge with more than two network interfaces. A ring group is a collection of Token Ring interfaces in one or more routers that are collectively treated as a virtual ring.

• Provides two types of explorer packets to collect RIF information—an all-routes explorer packet, which follows all possible paths to a destination ring, and a spanning-tree explorer packet, which follows a statically configured limited route (spanning tree) when looking for paths.

• Provides a dynamically determined RIF cache based on the protocol. The software also allows you to add entries manually to the RIF cache.
- Provides for filtering by MAC address, link service access point (LSAP) header, and protocol type.
- Provides for filtering of NetBIOS frames either by station name or by a packet byte offset.
- Provides for translation into transparently bridged frames to allow source-route stations to communicate with nonsource-route stations (typically on Ethernet).
- Provides support for the SRB MIB variables as described in the IETF draft “Bridge MIB” document, “Definition of Managed Objects for Bridges,” by E. Decker, P. Langille, A. Rijssinghani, and K. McCloghrie, June 1991. Only the SRB component of the Bridge MIB is supported.
- Provides support for the Token Ring MIB variables as described in RFC 1231, *IEEE 802.5 Token Ring MIB*, by K. McCloghrie, R. Fox, and E. Decker, May 1991. Cisco implements the mandatory tables (Interface Table and Statistics Table), but not the optional table (Timer Table) of the Token Ring MIB. The Token Ring MIB has been implemented for the 4/16-Mb Token Ring cards that can be user adjusted for either 4- or 16-Mb transmission speeds (CSC-1R, CSC-2R, CSC-R16M, or CSC-C2CTR).
- SRB is supported over FDDI on Cisco 7200 series routers.
- Particle-based switching is supported (over FDDI and Token Ring) by default on Cisco 7200 series routers.
- Complies with RFC 1483 in Cisco IOS Release 12.0(3)T and later by offering the ability to encapsulate SRB traffic using RFC 1483 bridged LLC encapsulation. This support enables SRB over ATM functionality that is interoperable with other vendors’ implementations of SRB over ATM.

Token Ring Inter-Switch Link (TRISL)

ISL is a Layer 2 protocol that enables switches and routers to transport Ethernet frames from multiple VLANs across Fast Ethernet or Gigabit Ethernet links. The Cisco TRISL protocol extends the ISL model to include the transport of Token Ring frames from multiple VLANs across these same links.

TRISL support on Cisco routers provides inter-VLAN routing and bridging across a 100 Mb Fast Ethernet link. ISL and TRISL together provide routing and bridging between Token Ring and Ethernet LANs, ELANS, and VLANs.

TRISL is supported on the following platforms with any one of the following port adapters:

- Cisco 7500 or Cisco 7200 series routers
 - Two-port Fast Ethernet/ISL 100BaseTX
 - Two-port Fast Ethernet/ISL 100BaseFX
 - One-port Fast Ethernet 100BaseTX
 - One-port Fast Ethernet 100BaseFX
- Cisco 4500 or 4700 series routers
 - NM-1FE
- Cisco 3600 or 2600 series routers
 - NM-1FE1CT1
 - NM-1FE2CT1
 - NM-1FE1CE1
Note: The two-port Fast Ethernet/ISL port adapters support frame sizes up to 17800 bytes and the one-port Fast Ethernet port adapters support a frame size of up to 1500 bytes.

TRISL provides the following new capabilities and features:

- IP routing for source-routed and nonsource-routed frames between TRISL VLANs and any LAN, ELAN, or VLAN.
- IPX routing for source-routed and nonsource-routed frames between TRISL VLANs and any LANs, ELANs, or VLANs.
- SRB between TRISL VLANs and SRB-capable LANs, ELANs, or VLANs.
- SRT between TRISL VLANs and SRT-capable LANs, ELANs, or VLANs.
- SR/TLB between TRISL VLANs and Ethernet LANs, ELANs, or VLANs.
- Duplicate Ring Protocol (DRiP), which prevents external loops that could result if the router’s virtual ring number were duplicated elsewhere in the network.

Note: VLAN Trunk Protocol (VTP) is not supported for TRISL on the routers in this release.

Token Ring Route Switch Module (TRRSM)

The Token Ring VLAN support on the Route Switch Module (RSM) adds the capability to do multi-protocol routing and bridging for Token Ring VLANs on the RSM. The RSM is a router module running Cisco IOS software that plugs into a Token Ring switch backplane.

This section contains a brief overview of Token Ring switching, which is described in the following topics:

- Switching Overview, page 8
- Usability of Switching, page 9
- VLAN, page 10
- Token Ring VLANs, page 10
- Token Ring VLAN Support on the RSM, page 11

Switching Overview

The term switching was originally used to describe packet-switch technologies such as Link Access Procedure, Balanced (LAPB), Frame Relay, Switched Multimegabit Data Service (SMDS), and X.25. Today, LAN switching refers to a technology that is similar to a bridge in many ways.

Like bridges, switches connect LAN segments and use information contained in the frame to determine the segment to which a datagram needs to be sent. Switches, however, operate at much higher speeds than bridges, and can support new functionality, such as virtual LANs (VLANs). See the “VLAN” section on page 10 and the “Token Ring VLANs” section on page 10.

Token Ring switches first appeared in 1994. The first-generation Token Ring switches can be divided into two basic categories:
Overview of Bridging

Token Ring Route Switch Module (TRRSM)

- Processor-based switches—These switches use reduced instruction set computer (RISC) processors to switch Token Ring frames. Although they typically have a lot of function, they are slow and relatively expensive. These switches have been deployed mainly as backbone switches because of their high cost.

- Application-specific integrated circuit (ASIC)-based switches with limited functionality—These switches are fast and relatively inexpensive, but have very limited function. Typically, they offer little to no filtering, limited management information, limited support for bridging modes, and limited VLANs. Today, although these switches are less expensive than processor-based switches, they are still too expensive and limited for widespread use of dedicated Token Ring to the desktop.

In 1997, a second generation of Token Ring switches was introduced. The Cisco second-generation Token Ring switches use ASIC-based switching, but they provide increased functionality resulting in a higher speed and lower cost. They also provide a wider variety of function than their predecessors, including support for multiple bridging modes, Dedicated Token Ring (DTR) on all ports, high-port density, high-speed links, filtering, Remote Monitoring (RMON) management, broadcast control, and flexible VLANs.

The family of second-generation Token Ring switches can be used for backbone switching, workgroup microsegmentation, and dedicated Token Ring to the desktop. Token Ring switches currently being offered include:

- The Catalyst 3900, which is a stackable workgroup switch that provides support for all switching modes, filtering, RMON, DTR, and SNMP management, and support for ATM and Inter-Switch Link (ISL).
- The Catalyst 3920, which is also a stackable workgroup switch that provides support for all switching modes, filtering, RMON, DTR, and SNMP management.
- The Catalyst 5000, which is a modular switch that supports Ethernet, Fast Ethernet, FDDI, ATM, and now Token Ring.

The Catalyst Token Ring switches support the following bridging modes: SRB, SRT, and source-route switching.

Usability of Switching

The traditional method of connecting multiple Token Ring segments is to use a SRB. For example, bridges are often used to link workgroup rings to the backbone ring. However, the introduction of the bridge can significantly reduce performance at the user’s workstation. Further problems may be introduced by aggregate traffic loading on the backbone ring.

To maintain performance and avoid overloading the backbone ring, you can locate servers on the same ring as the workgroup that needs to access the server. However, dispersing the servers throughout the network makes them more difficult to back up, administer, and secure than if they are located on the backbone ring. Dispersing the servers also limits the number of servers that particular stations can access.

Collapsed backbone routers may offer greater throughput than bridges, and can interconnect a larger number of rings without becoming overloaded. Routers provide both bridging and routing functions between rings and have sophisticated broadcast control mechanisms. These mechanisms become increasingly important as the number of devices on the network increases.

The main drawback of using routers as the campus backbone is the relatively high price per port and the fact that the throughput typically does not increase as ports are added. A Token Ring switch is designed to provide wire speed throughput regardless of the number of ports in the switch. In addition, the Catalyst 3900 Token Ring switch can be configured to provide very low latency between Token Ring ports by using cut-through switching.
As a local collapsed backbone device, a Token Ring switch offers a lower per-port cost and can incur lower interstation latency than a router. In addition, the switch can be used to directly attach large numbers of clients or servers, thereby replacing concentrators. Typically, a Token Ring switch is used in conjunction with a router, providing a high-capacity interconnection between Token Ring segments while retaining the broadcast control and wide-area connectivity provided by the router.

VLAN

A VLAN is a logical group of LAN segments, independent of physical location, with a common set of requirements. For example, several end stations might be grouped as a department, such as engineering or accounting. If the end stations are located close to one another, they can be grouped into a LAN segment. If any of the end stations are on a different LAN segment, such as different buildings or locations, they can be grouped into a VLAN that has the same attributes as a LAN even though the end stations are not all on the same physical segment. The information identifying a packet as part of a specific VLAN is preserved across a Catalyst switch connection to a router or another switch if they are connected via trunk ports, such as ISL or ATM.

Token Ring VLANs

Because a VLAN is essentially a broadcast domain, a Token Ring VLAN is slightly more complex than an Ethernet VLAN. In transparent bridging, there is only one type of broadcast frame and, therefore, only one level of broadcast domain and one level of VLAN. In source routing, however, there are two types of broadcast frames:

- Those that are confined to a single ring
- Those that traverse the bridged domain

Therefore, there are two levels of VLANs in a Token Ring switched network. These two categories of broadcast frames result in a broadcast domain that is hierarchical in nature, just as a local ring domain can exist only within a domain of all the interconnected rings.

The first level is the Token Ring Concentrator Relay Function (TrCRF). In a Token Ring VLAN, logical ring domains are formed by defining groups of ports that have the same ring number. The IEEE calls such a port group a Concentrator Relay Function (CRF). On Catalyst switches, such a grouping of Token Ring ports is called a Token Ring CRF (TrCRF). At this level, the VLAN is a logical ring and, as such, is assigned a ring number. On a Token Ring switch, the logical ring (TrCRF) contains one or more physical ports. source-route switching is used to forward frames within a TrCRF based on MAC address or Route Descriptor. On an RSM, a logical ring (TrCRF) can be defined that does not contain any physical ports, but rather is used only in processing source-routed traffic to terminate the RIF.

The second level of VLAN is the Token Ring Bridge Relay Function (TrBRF). This is the parent VLAN to which TrCRF VLANs are assigned. The domain of interconnected rings is formed using an internal multiport bridge function that the IEEE calls a Bridge Relay Function (BRF). On Catalyst switches, such a grouping of logical rings is called a Token Ring BRF (TrBRF). At this level, the VLAN is a logical bridge and, as such, is assigned a bridge number. The TrBRF is responsible for forwarding frames between groups of ports with the same ring number (TrCRFs) via either SRB or SRT.

Figure 4 depicts the relationship between TrCRF and TrBRF VLANs.
Token Ring VLAN Support on the RSM

The Token Ring VLAN support on the RSM adds the capability to do multiprotocol routing and bridging for Token Ring VLANs on the RSM. The RSM can be used alone to do inter-VLAN routing, or it can be paired with a Catalyst VIP2 to provide external network connections with the same port adapters used on Cisco 7500 series routers. The RSM/VIP2 combination provides routing between VLANs and Catalyst VIP2 port adapters. A complete description of the RSM can be found in the *Catalyst 5000 Series Route Switch Module Installation and Configuration Note* and the *Route Switch Module Catalyst VIP2-15 and VIP2-40 Installation and Configuration Note*.

The Token Ring VLAN support on the RSM adds the following functionality to the Catalyst 5000 switch:

- IP routing for source-routed and non-source-routed frames between Token Ring (TrBRF) or Ethernet VLANs and VIP2 interfaces
- IPX routing for source-routed and non-source-routed frames between Token Ring (TrBRF) or Ethernet VLANs and VIP2 interfaces
- SRB between Token Ring (TrBRF) VLANs and VIP2 interfaces
- SR/TB between Token Ring (TrBRF) VLANs and Ethernet VLANs and VIP2 interfaces
- SRT between Token Ring (TrBRF) VLANs and SRT-capable VLANs and VIP2 interfaces

Both APPN and DLSw+ are supported for Token Ring VLANs on the RSM. However, RSRB is not supported on the RSM.

For information on how Token Ring VLANs are implemented on switches, refer to the *Catalyst Token Ring Switching Implementation Guide*, the *Catalyst 5000 Series Token Ring Configuration Notes*, the *Catalyst 3900 Token Ring Switching User Guide*, and the *Catalyst 3920 Token Ring Switching User Guide*.

The RSM is a router module running Cisco IOS router software that directly interfaces (plugs into) the Catalyst switch backplane. From the Token Ring VLAN perspective, the interface to the RSM is at the Token Ring bridged network (TrBRF) level. With the RSM, it is possible to route or bridge between separate Token Ring and Ethernet domains.

When routing or bridging between TrBRF VLANs that are defined as SRB domains, it is necessary to create a logical ring on the RSM for proper RIF processing. This logical ring is defined as a TrCRF VLAN that does not contain any external Token Ring switch ports. *Figure 5* illustrates the logical view of IP routing between two source-route bridged VLANs on the RSM. In this view, the RSM appears to have an interface to both ring 100 and ring 110.
The Token Ring RSM feature is supported on the RSM in the Catalyst 5000 platform. Support for the Token Ring RSM feature was first introduced in the Cisco IOS Release 11.3(5)T. The Token Ring RSM feature is supported on all Cisco IOS Release 12.0 T software release images. A list of the supported Cisco IOS releases and software images are located in the Release Notes for Catalyst 5000 Series RSM/VIP2 Cisco IOS 12.0 T Software Releases publication. For a complete functional description of the RSM, refer to the Catalyst 5000 Series RSM Installation and Configuration Note.
Configuring Transparent Bridging
Configuring Transparent Bridging

The Cisco IOS software bridging functionality combines the advantages of a spanning-tree bridge and a full multiprotocol router. This combination provides the speed and protocol transparency of an adaptive spanning-tree bridge, along with the functionality, reliability, and security of a router.

This chapter describes how to configure transparent bridging and source-route transparent (SRT) bridging. This chapter also describes the concepts of virtual networking, transparent bridging of virtual LANs (VLANs), and routing between VLANs. For a complete description of the transparent bridging commands mentioned in this chapter, refer to the “Transparent Bridging Commands” chapter in the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2). To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter contains the following sections:

- Technology Overview, page 1
- Transparent and SRT Bridging Configuration Task List, page 6
- Tuning the Transparently Bridged Network, page 37
- Monitoring and Maintaining the Transparent Bridge Network, page 39
- Transparent and SRT Bridging Configuration Examples, page 39

Technology Overview

The following sections provide an overview of transparent bridging in the Cisco IOS software:

- Transparent and SRT Bridging, page 2
- Transparent Bridging Features, page 2
- Integrated Routing and Bridging, page 3
- SRT Bridging Features, page 5
Transparent and SRT Bridging

Cisco IOS software supports transparent bridging for Ethernet, Fiber Distributed Data Interface (FDDI), and serial media, and supports source-route transparent (SRT) bridging for Token Ring media. In addition, Cisco supports all the mandatory Management Information Base (MIB) variables specified for transparent bridging in RFC 1286.

Transparent Bridging Features

Cisco’s transparent bridging software implementation has the following features:

- Complies with the IEEE 802.1D standard.
- Provides the ability to logically segment a transparently bridged network into virtual LANs.
- Provides two Spanning Tree Protocols—an older bridge protocol data unit (BPDU) format that is compatible with Digital Equipment Corporation (DEC) and other LAN bridges for backward compatibility and the IEEE standard BPDU format. In addition to features standard with these Spanning Tree Protocols, Cisco’s proprietary software provides for multiple domains for spanning trees. The spanning-tree parameters are configurable.
- Allows frame filtering based on Media Access Control (MAC) address, protocol type, or the vendor code. Additionally, the bridging software can be configured to selectively filter local-area transport (LAT) multicast service announcements.
- Provides deterministic load distribution while maintaining a loop-free spanning tree.
- Provides the ability to bridge over Asynchronous Transfer Mode (ATM), dial-on-demand routing (DDR), FDDI, Frame Relay, multiprotocol Link Access Procedure, Balanced (LAPB), Switched Multimegabit Data Service (SMDS), and X.25 networks.
- Provides concurrent routing and bridging, which is the ability to bridge a given protocol on some interfaces in a router and concurrently route that protocol on other interfaces in the same router.
- Provides integrated routing and bridging, which is the ability to route a given protocol between routed interfaces and bridge groups, or to route a given protocol between bridge groups.
- Provides fast-switched transparent bridging for Frame Relay encapsulated serial and High-Speed Serial Interface (HSSI) interfaces, according to the format specified in RFC 1490.
- Provides fast-switched transparent bridging for the ATM interface on Cisco 7000 series routers, Cisco 4500, and Cisco 4000 series routers, according to the format specified in RFC 1483.
- Provides for compression of LAT frames to reduce LAT traffic through the network.
- Provides both bridging and routing of VLANs.

Cisco access servers and routers can be configured to serve as both multiprotocol routers and MAC-level bridges, bridging any traffic that cannot otherwise be routed. For example, a router routing the IP can also bridge DEC’s LAT protocol or NetBIOS traffic.

Cisco routers also support remote bridging over synchronous serial lines. As with frames received on all other media types, dynamic learning and configurable filtering applies to frames received on serial lines. Transit bridging of Ethernet frames across FDDI media is also supported. The term transit refers to the fact that the source or destination of the frame cannot be on the FDDI media itself. This allows FDDI to act as a highly efficient backbone for the interconnection of many bridged networks. The configuration of FDDI transit bridging is identical to the configuration of transparent bridging on all other media types.
Integrated Routing and Bridging

While concurrent routing and bridging makes it possible to both route and bridge a specific protocol on separate interfaces within a router, the protocol is not switched between bridged and routed interfaces. Routed traffic is confined to the routed interfaces; bridged traffic is confined to bridged interfaces. A specified protocol may be either routed or bridged on a given interface, but not both.

Integrated routing and bridging makes it possible to route a specific protocol between routed interfaces and bridge groups, or route a specific protocol between bridge groups. Local or unroutable traffic can be bridged among the bridged interfaces in the same bridge group, while routable traffic can be routed to other routed interfaces or bridge groups. Figure 1 illustrates how integrated routing and bridging in a router interconnects a bridged network with a routed network.

You can configure the Cisco IOS software to route a specific protocol between routed interfaces and bridge groups or to route a specific protocol between bridge groups. Specifically, local or unroutable traffic is bridged among the bridged interfaces in the same bridge group, while routable traffic is routed to other routed interfaces or bridge groups. Using integrated routing and bridging, you can do the following:

- Switch packets from a bridged interface to a routed interface
- Switch packets from a routed interface to a bridged interface
- Switch packets within the same bridge group

Bridge-Group Virtual Interface

Because bridging operates in the data link layer and routing operates in the network layer, they follow different protocol configuration models. Taking the basic IP model as an example, all bridged interfaces would belong to the same network, while each routed interface represents a distinct network.

In integrated routing and bridging, the bridge-group virtual interface is introduced to avoid confusing the protocol configuration model when a specific protocol is both bridged and routed in a bridge group. Figure 2 illustrates the bridge-group virtual interface as a user-configured virtual interface residing within a router.
The bridge-group virtual interface is a normal routed interface that does not support bridging, but does represent its corresponding bridge group to the routed interface. It has all the network layer attributes (such as a network layer address and filters) that apply to the corresponding bridge group. The interface number assigned to this virtual interface corresponds to the bridge group that this virtual interface represents. This number is the link between the virtual interface and the bridge group.

When you enable routing for a given protocol on the bridge-group virtual interface, packets coming from a routed interface, but destined for a host in a bridged domain, are routed to the bridge-group virtual interface and are forwarded to the corresponding bridged interface. All traffic routed to the bridge-group virtual interface is forwarded to the corresponding bridge group as bridged traffic. All routable traffic received on a bridged interface is routed to other routed interfaces as if it is coming directly from the bridge-group virtual interface.

To receive routable packets arriving on a bridged interface but destined for a routed interface or to receive routed packets, the bridge-group virtual interface must also have the appropriate addresses. MAC addresses and network addresses are assigned to the bridge-group virtual interface as follows:

- The bridge-group virtual interface “borrows” the MAC address of one of the bridged interfaces in the bridge group associated with the bridge-group virtual interface.
- To route and bridge a given protocol in the same bridge group, you must configure the network layer attributes of the protocol on the bridge-group virtual interface. No protocol attributes should be configured on the bridged interfaces, and no bridging attributes can be configured on the bridge-group virtual interface.

When a bridged domain contains learning devices (such as switches or bridges) that can learn the MAC address of a bridge-group virtual interface, the virtual interface must be configured with its own MAC address—separate from the MAC addresses of the bridged interfaces in the bridge group that are associated with the virtual interface. The MAC address is configured by using the `mac-address` virtual interface command.

Because there can be only one bridge-group virtual interface representing a bridge group, and the bridge group can be made up of different media types configured for several different encapsulation methods, you may need to configure the bridge-group virtual interface with the particular encapsulation methods required to switch packets correctly.

For example, the bridge-group virtual interface has default data link and network layer encapsulations that are the same as those available on Ethernet interfaces, but you can configure the bridge-group virtual interface with encapsulations that are not supported on an Ethernet interface. In some cases, the default encapsulations provide appropriate results; in other cases they do not. For example, with default encapsulation, Advanced Research Projects Agency (ARPA) packets from the bridge-group virtual interface are translated to Subnetwork Access Protocol (SNAP) when bridging IP to a Token Ring- or FDDI-bridged interface. But for Internet Packet Exchange (IPX), Novell-ether encapsulation from the

Note

Because there can be only one bridge-group virtual interface representing a bridge group, and the bridge group can be made up of different media types configured for several different encapsulation methods, you may need to configure the bridge-group virtual interface with the particular encapsulation methods required to switch packets correctly.
bridge-group virtual interface is translated to raw-token or raw-FDDI when bridging IPX to a Token Ring- or FDDI-bridged interface. Because this behavior is usually not what you want, you must configure IPX SNAP or Service Advertisement Protocol (SAP) encapsulation on the bridge-group virtual interface.

Other Considerations

The following are additional facts regarding the support of integrated routing and bridging:

- Integrated routing and bridging is not supported on cBus platforms (AGS+ and Cisco 7000 series routers).
- Integrated routing and bridging is supported for transparent bridging, but not for source-route bridging (SRB).
- Integrated routing and bridging is supported on all media interfaces except X.25 and Integrated Services Digital Network (ISDN) bridged interfaces.
- Integrated routing and bridging supports three protocols: IP, IPX, and AppleTalk in both fast-switching and process-switching modes.
- Integrated routing and bridging and concurrent routing and bridging cannot operate at the same time.
- With integrated routing and bridging configured, associate Layer-3 attributes only on the bridge-group virtual interface and not on the bridging interfaces. Having IP addresses both on the bridge-group virtual interface and on the bridging interfaces is known to produce inconsistent behavior.
- The IEEE 802.1Q standard enables integrated routing and bridging to support connectivity for multiple VLANs using a Bridge-Group Virtual Interface (BVI) to associate a bridge group.

SRT Bridging Features

Cisco routers support transparent bridging on Token Ring interfaces that support SRT bridging. Both transparent and SRT bridging are supported on all Token Ring interface cards that can be configured for either 4- or 16-MB transmission speeds.

As with other media, all the features that use `bridge-group` commands can be used on Token Ring interfaces. As with other interface types, the bridge group can be configured to run either the IEEE or DEC Spanning Tree Protocols. When configured for the IEEE Spanning Tree Protocol, the bridge cooperates with other SRT bridges and constructs a loop-free topology across the entire extended LAN.

You can also run the DEC Spanning Tree Protocol over Token Ring. Use it when you have other non-IEEE bridges on other media and you do not have any SRT bridges on Token Ring. In this configuration, all the Token Ring transparent bridges must be Cisco routers. This is because the DEC Spanning Tree Protocol has not been standardized on Token Ring.

As specified by the SRT bridging specification, only packets without a routing information field (RIF) (RII = 0 in the SA field) are transparently bridged. Packets with a RIF (RII = 1) are passed to the SRB module for handling. An SRT-capable Token Ring interface can have both SRB and transparent bridging enabled at the same time. However, with SRT bridging, frames that did not have a RIF when they were produced by their generating host never gain a RIF, and frames that did have a RIF when they were produced never lose that RIF.
Because bridges running only SRT bridging never add or remove RIFs from frames, they do not integrate SRB with transparent bridging. A host connected to a source-route bridge that expects RIFs can never communicate with a device across a bridge that does not understand RIFs. SRT bridging cannot tie in existing source-route bridges to a transparent bridged network. To tie in existing bridges, you must use source-route translational bridging (SR/TLB) instead. SR/TLB is described in the chapter “Configuring Source-Route Bridging.”

Bridging between Token Ring and other media requires certain packet transformations. In all cases, the MAC addresses are bit-swapped because the bit ordering on Token Ring is different from that on other media. In addition, Token Ring supports one packet format, logical link control (LLC), while Ethernet supports two formats (LLC and Ethernet).

The transformation of LLC frames between media is simple. A length field is either created (when the frame is sent to non-Token Ring) or removed (when the frame is sent to Token Ring). When an Ethernet format frame is sent to Token Ring, the frame is translated into an LLC-1 SNAP packet. The destination service access point (DSAP) value is AA, the source service access point (SSAP) value is AA, and the organizational unique identifier (OUI) value is 0000F8. Likewise, when a packet in LLC-1 format is bridged onto Ethernet media, the packet is translated into Ethernet format.

Bridging between dissimilar media presents several problems that can prevent communication from occurring. These problems include bit order translation (or using MAC addresses as data), maximum transmission unit (MTU) differences, frame status differences, and multicast address usage. Some or all of these problems might be present in a multimedia bridged LAN. Because of differences in the way end nodes implement Token Ring, these problems are most prevalent when bridging between Token Ring and Ethernet or between Ethernet and FDDI LANs.

Problems currently occur with the following protocols when bridged between Token Ring and other media: Novell IPX, DECnet Phase IV, AppleTalk, Banyan VINES, Xerox Network Systems (XNS), and IP. Further, problems can occur with the Novell IPX and XNS protocols when bridged between FDDI and other media. We recommend that these protocols be routed whenever possible.
Configuring Transparent Bridging and SRT Bridging

To configure transparent and SRT bridging, you must perform the following tasks:

- Assigning a Bridge Group Number and Defining the Spanning Tree Protocol, page 7
- Assigning Each Network Interface to a Bridge Group, page 7
- Choosing the OUI for Ethernet Type II Frames, page 8

Assigning a Bridge Group Number and Defining the Spanning Tree Protocol

The first step in setting up your transparent bridging network is to define a Spanning Tree Protocol and assign a bridge group number. You can choose either the IEEE 802.1D Spanning Tree Protocol, the earlier DEC protocol upon which this IEEE standard is based or VLAN bridge Spanning Tree Protocol. Cisco expanded the original 802.1D Spanning Tree Protocol by providing VLAN bridge Spanning Tree Protocol support and increased port identification capability. Furthermore, the enhancement provides:

- More than one byte on a port number to distinguish interfaces
- An improved way to form the port ID

Port Number size of the Port ID support is applied only to IEEE and VLAN-bridge Spanning Tree Protocols. The DEC protocol only has 8 bits on the Port ID, so the extension of the Port ID cannot be applied.

The expansion of the Port Number field into the port priority portion of the Port ID changes the useful values the port priority can be assigned.

The way to calculate the Port Path Cost is only supported in IEEE and VLAN-bridge Spanning Tree Protocol environment.

To assign a bridge group number and define a Spanning Tree Protocol, use the following command in global configuration mode:

```
Router(config)# bridge bridge-group protocol (ieee | dec | vlan-bridge)
```

Assigns a bridge group number and defines a Spanning Tree Protocol as IEEE 802.1D standard, DEC or VLAN bridge.

The IEEE 802.1D Spanning Tree Protocol is the preferred way of running the bridge. Use the DEC Spanning Tree Protocol only for backward compatibility. The VLAN-bridge Spanning Tree Protocol supports the following media: Ethernet, Fast Ethernet, FDDI, ATM and serial (HDLC, PPP, Frame Relay IETF, SMDS, X.25).

Assigning Each Network Interface to a Bridge Group

A bridge group is an internal organization of network interfaces on a router. Bridge groups cannot be used outside the router on which it is defined to identify traffic switched within the bridge group. Bridge groups within the same router function as distinct bridges; that is, bridged traffic and bridge protocol data units (BPDUs cannot be exchanged between different bridge groups on a router. Furthermore, bridge groups cannot be used to multiplex or de-multiplex different streams of bridged traffic on a LAN.
An interface can be a member of only one bridge group. Use a bridge group for each separately bridged (topologically distinct) network connected to the router. Typically, only one such network exists in a configuration.

The purpose of placing network interfaces into a bridge group is twofold:

- To bridge all nonrouted traffic among the network interfaces making up the bridge group. If the packet’s destination address is known in the bridge table, it is forwarded on a single interface in the bridge group. If the packet’s destination is unknown in the bridge table, it is flooded on all forwarding interfaces in the bridge group. The bridge places source addresses in the bridge table as it learns them during the process of bridging.

- To participate in the spanning-tree algorithm by receiving, and in some cases sending, BPDUs on the LANs to which they are attached. A separate spanning process runs for each configured bridge group. Each bridge group participates in a separate spanning tree. A bridge group establishes a spanning tree based on the BPDUs it receives on only its member interfaces.

For SRT bridging, if the Token Ring and serial interfaces are in the same bridge group, changing the serial encapsulation method causes the state of the corresponding Token Ring interface to be reinitialized. Its state will change from “up” to “initializing” to “up” again within a few seconds.

After you assign a bridge group number and define a Spanning Tree Protocol, assign each network interface to a bridge group by using the following command in interface configuration mode:

```
Router(config-if)# bridge-group bridge-group
```

Assigns a network interface to a bridge group.

Choosing the OUI for Ethernet Type II Frames

For SRT bridging networks, you must choose the organizational unique identifier (OUI) code that will be used in the encapsulation of Ethernet Type II frames across Token Ring backbone networks. To choose the OUI, use the following command in interface configuration mode:

```
Router(config-if)# ethernet-transit-oui [90-compatible | standard | cisco]
```

Selects the Ethernet Type II OUI encapsulation code.

Transparently Bridged VLANs for ISL

Traditionally, a bridge group is an independently bridged subnetwork. In this definition, bridge groups cannot exchange traffic with other bridge groups, nor can they multiplex or de-multiplex different streams of bridged traffic. The transparently bridged VLAN feature in Cisco IOS software permits a bridge group to extend outside the router to identify traffic switched within the bridge group.

While bridge groups remain internal organizations of network interfaces functioning as distinct bridges within a router, transparent bridging on subinterfaces permits bridge groups to be used to multiplex different streams of bridged traffic on a LAN or HDLC serial interface. In this way, bridged traffic may be switched out of one bridge group on one router, multiplexed across a subinterface, and demultiplexed into a second bridge group on a second router. Together, the first bridge group and the second bridge group form a transparently bridged VLAN. This approach can be extended to impose logical topologies upon transparently bridged networks.
The primary application of transparently bridged VLANs constructed in this way is to separate traffic between bridge groups of local network interfaces, to multiplex bridged traffic from several bridge groups on a shared interface (LAN or HDLC serial), and to form VLANs composed of collections of bridge groups on several routers. These VLANs improve performance because they reduce the propagation of locally bridged traffic, and they improve security benefits because they completely separate traffic.

In Figure 3, different bridge groups on different routers are configured into three VLANs that span the bridged network. Each bridge group consists of conventionally bridged local interfaces and a subinterface on the backbone FDDI LAN. Bridged traffic on the subinterface is encapsulated and “colored” with a VLAN identifier known as a security association identifier common to all bridge groups participating in the VLAN. In addition, bridges only accept packets bearing security association identifiers for which they have a configured subinterface. Thus, a bridge group is configured to participate in a VLAN if it contains a subinterface configured with the VLAN’s characteristic security association identifier. See the “Complex Integrated Routing and Bridging Example” section on page 42 for an example configuration of the topology shown in Figure 3.

Note
The 802.10 encapsulation used to “color” transparently bridged packets on subinterfaces might increase the size of a packet so that it exceeds the MTU size of the LAN from which the packet originated. To avoid MTU violations on the shared network, the originating LANs must either have a smaller native MTU than the shared network (as is the case from Ethernet to FDDI), or the MTU on all packet sources on the originating LAN must be configured to be at least 16 bytes less than the MTU of the shared network.

Figure 3 Transparently Bridged VLANs on an FDDI Backbone

To configure a VLAN on a transparently bridged network, use the following commands beginning in global configuration mode:

- Bridge group 18 "Striped" packets
- Bridge group 54 "Dot" packets
- Bridge group 3 "Sliced" packets
- Bridge group 7 "Sliced" packets
- Bridge group 8 "Dot" packets
- Bridge group 1 "Sliced" packets
- Bridge group 6 "Striped" packets
Configuring Transparent Bridging

Transparent and SRT Bridging Configuration Task List

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type slot/port.subinterface-number</td>
<td>Specifies a subinterface.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# encapsulation sde said</td>
<td>Specifies the IEEE 802.10 Security data exchange security association identifier (in other words, specifies the “color”).</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# bridge-group bridge-group</td>
<td>Associates the subinterface with an existing bridge group.</td>
</tr>
</tbody>
</table>

Transparently bridged VLANs are supported in conjunction with only the IEEE Spanning Tree Protocol. When you logically segment a transparently bridged network into VLANs, each VLAN computes its own spanning-tree topology. Configuring each VLAN to compute its own spanning-tree topology provides much greater stability than running a single spanning tree throughout. Traffic bridged within one VLAN is unaffected by physical topology changes occurring within another VLAN.

Note
The current implementation of SDE encapsulation is not recommended for serial or Ethernet media.

Routing between ISL VLANs

Our VLAN Routing implementation is designed to operate across all router platforms. However, the Inter-Switch Link (ISL) VLAN trunking protocol currently is defined on 100 BaseTX/FX Fast Ethernet interfaces only and therefore is appropriate to the Cisco 7000 and higher-end platforms only. The IEEE 802.10 protocol can run over any LAN or HDLC serial interface. VLAN traffic is fast switched. The actual format of these VLAN encapsulations are detailed in the IEEE Standard 802.10-1992 Secure Data Exchange and in the Inter-Switch Link (ISL) Protocol Specification.

Our VLAN Routing implementation treats the ISL and 802.10 protocols as encapsulation types. On a physical router interface that receives and sends VLAN packets, you can select an arbitrary subinterface and map it to the particular VLAN “color” embedded within the VLAN header. This mapping allows you to selectively control how LAN traffic is routed or switched outside of its own VLAN domain. In the VLAN routing paradigm, a switched VLAN corresponds to a single routed subnet, and the network address is assigned to the subinterface.

To route a received VLAN packet the Cisco IOS software VLAN switching code first extracts the VLAN ID from the packet header (this is a 10-bit field in the case of ISL and a 4-byte entity known as the security association identifier in the case of IEEE 802.10), then demultiplexes the VLAN ID value into a subinterface of the receiving port. If the VLAN color does not resolve to a subinterface, the Cisco IOS software can transparently bridge the foreign packet natively (without modifying the VLAN header) on the condition that the Cisco IOS software is configured to bridge on the subinterface itself. For VLAN packets that bear an ID corresponding to a configured subinterface, received packets are then classified by protocol type before running the appropriate protocol specific fast switching engine. If the subinterface is assigned to a bridge group then non-routed packets are de-encapsulated before they are bridged. This is termed “fall-back bridging” and is most appropriate for nonroutable traffic types.

In Figure 4, Router A provides inter-VLAN connectivity between multiple Cisco switching platforms where there are three distinct virtual topologies present. For example, for VLAN 300 across the two Catalyst 1200A segments, traffic originating on LAN interface 1 is “tagged” with a VLAN ID of 300 as it is switched onto the FDDI ring. This ID allows the remote Catalyst 1200A to make an intelligent forwarding decision and only switch the traffic to local interfaces configured as belonging to the same
VLAN broadcast domain. Router A provides an inter-VLAN mechanism that lets Router A function as a gateway for stations on a given LAN segment by sending VLAN encapsulated traffic to and from other switched VLAN domains or simply sending traffic in native (non-VLAN) format.

Figure 4 illustrates the following scenarios:

- Clients on VLAN 300 want to establish sessions with a server attached to a port in a different VLAN (600). In this scenario, packets originating on LAN interface 3 of the Catalyst 1200B switch are tagged with an 802.10 header with a security association identifier of 300 as they are forwarded onto the FDDI ring. Router A can accept these packets because it is configured to route VLAN 300, classify and make a Layer 3 forwarding decision based on the destination network address and the route out (in this case Fast Ethernet 3/1), and adding the ISL VLAN header (color 200) appropriate to the destination subnet as the traffic is switched.

- There is a network requirement to bridge two VLANs together through the system rather than selectively route certain protocols. In this scenario the two VLAN IDs are placed in the same bridge group. Note that they form a single broadcast domain and spanning tree, effectively forming a single VLAN.

See the “Routing Between VLANs Configuration Example” section on page 47 for an example configuration of the topology shown in Figure 4.

To configure routing between VLANs, enter the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port/subinterface-number</td>
</tr>
<tr>
<td></td>
<td>Specifies a subinterface.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# encapsulation {sde</td>
</tr>
<tr>
<td></td>
<td>Specifies the encapsulation type (either ISL or SDE) and the VLAN domain.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# bridge-group bridge-group</td>
</tr>
<tr>
<td></td>
<td>Associates the subinterface with the VLAN.</td>
</tr>
</tbody>
</table>
Configuring a Subscriber Bridge Group

The digital subscriber line (DSL) bridge support feature enables you to configure a router for intelligent bridge flooding for DSL and other bridge applications. To configure a subscriber bridge group, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>`Router(config)# bridge bridge-group protocol {ieee</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>Router(config)# bridge bridge-group subscriber-policy policy</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router(config)# subscriber-policy policy [{no}] [default] packet {permit} [deny]</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>Router(config)# interface type number</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>Router(config-if)# bridge-group bridge-group [subscriber-trunk]</code></td>
</tr>
</tbody>
</table>

Note

Standard access lists can coexist with the subscriber policy. However, subscriber policy will take precedence over the access list by being checked first. A packet permitted by the subscriber policy will be checked against the access list if it is specified. A packet denied by subscriber policy will be dropped with no further access list checking.

Configuring Transparent Bridging over WANs

You can configure transparent bridging over a variety of networks, as described in the following sections:

- Configuring Fast-Switched Transparent Bridging over ATM, page 12
- Configuring Transparent Bridging over DDR, page 13
- Configuring Transparent Bridging over Frame Relay, page 14
- Configuring Transparent Bridging over Multiprotocol LAPB, page 15
- Configuring Transparent Bridging over SMDS, page 16
- Configuring Transparent Bridging over X.25, page 16

Configuring Fast-Switched Transparent Bridging over ATM

Our bridging implementation supports IEEE 802.3 frame formats and IEEE 802.10 frame formats. Our implementation can transparently bridge ARPA style Ethernet packets (also known as Ethernet version 2).

Fast-switched transparent bridging over Asynchronous Transfer Mode (ATM) supports AAL5-SNAP encapsulated packets only. All bridged AAL5-SNAP encapsulated packets are fast switched. Fast-switched transparent bridging supports Ethernet, FDDI, and Token Ring packets sent in AAL5-SNAP encapsulation over ATM. See the “Fast-Switched Transparent Bridging over ATM Example (Cisco 7000)” section on page 54 for an example configuration of fast-switched transparent bridging over ATM.
Support for RFC 1483 was added in Cisco IOS Release 12.0(3)T, enabling transparent bridging between Token Ring LANs (using AAL5-SNAP PVCs) and LANs, VLANs or ELANS (using bridged PDUs). RFC 1483 defines an encapsulation type for transferring LAN data via ATM networks.

For more information on configuring ATM, refer to the “Configuring ATM” chapter in the Cisco IOS Wide-Area Networking Configuration Guide.

Configuring Transparent Bridging over DDR

The Cisco IOS software supports transparent bridging over dial-on-demand routing (DDR) and provides you some flexibility in controlling access and configuring the interface.

To configure DDR for bridging, complete the tasks in the following sections:

- Defining the Protocols to Bridge, page 13
- Specifying the Bridging Protocol, page 13
- Determining Access for Bridging, page 14
- Configuring an Interface for Bridging, page 14

For an example of configuring transparent bridging over DDR, see the “Transparent Bridging over DDR Examples” section on page 55.

Defining the Protocols to Bridge

IP packets are routed by default unless they are explicitly bridged; all others are bridged by default unless they are explicitly routed.

To bridge IP packets, use the following command in global configuration mode:

```
Router(config)# no ip routing
```

Disables IP routing.

If you choose not to bridge another protocol, use the relevant command to enable routing of that protocol. For more information about tasks and commands, refer to the relevant protocol chapters in the following publications:

- Cisco IOS IP and IP Routing Configuration Guide
- Cisco IOS AppleTalk and Novell IPX Configuration Guide
- Cisco IOS Apollo Domain, Banyan VINES, DECnet, ISO CLNS, and XNS Configuration Guide

Specifying the Bridging Protocol

You must specify the type of spanning-tree bridging protocol to use and also identify a bridge group. To specify the Spanning Tree Protocol and a bridge group number, use the following command in global configuration mode:

```
Router(config)# bridge bridge-group protocol {ieee | dec | vlan-bridge}
```

Defines the type of Spanning Tree Protocol and identifies a bridge group.

The bridge group number is used when you configure the interface and assign it to a bridge group. Packets are bridged only among members of the same bridge group.
Determining Access for Bridging

You can determine access by either permitting all bridge packets or by controlling access according to Ethernet type codes.

To permit all transparent bridge packets, use the following command in global configuration mode:

```
Router(config)# dialer-list dialer-group protocol bridge permit
```

To control access by Ethernet type codes, use the following commands in global configuration mode:

1. **Command**
 - `Router(config)# access-list access-list-number {permit | deny} type-code [mask]`
 - **Purpose**: Permits packets according to Ethernet type codes (access list numbers must be in the range 200 to 299).

2. **Command**
 - `Router(config)# dialer-list dialer-group protocol bridge list access-list-number`
 - **Purpose**: Defines a dialer list for the specified access list.

For a table of some common Ethernet types codes, see the “Ethernet Types Codes” appendix in the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2).

Configuring an Interface for Bridging

You can configure serial interfaces or ISDN interfaces for DDR bridging. To configure an interface for DDR bridging, use the following commands beginning in global configuration mode:

1. **Command**
 - `Router(config)# interface type number`
 - **Purpose**: Specifies the serial or ISDN interface and initiates interface configuration mode.

2. **Command**
 - `Router(config-if)# dialer string dial-string dialer map bridge [name hostname] [broadcast]dial-string[isdn-subaddress]`
 - **Purpose**: Configures the dial string to call.
 - **Alternatively**: Configures a dialer bridge map.

3. **Command**
 - `Router(config-if)# bridge-group bridge-group`
 - **Purpose**: Assigns the specified interface to a bridge group.

Configuring Transparent Bridging over Frame Relay

The transparent bridging software supports bridging of packets over Frame Relay networks. This ability is useful for such tasks as sending packets from proprietary protocols across a Frame Relay network. Bridging over a Frame Relay network is supported both on networks that support a multicast facility and those that do not. Both cases are described in this section.

Fast-Switched Transparent Bridging

The transparent bridging software provides fast-switched transparent bridging for Frame Relay encapsulated serial and High-Speed Serial Interface (HSSI) networks.

Switched virtual circuits (SVCs) are not supported for transparent bridging in this release. All the Permanent virtual circuits (PVCs) configured on a subinterface must belong to the same bridge group.
Bridging in a Frame Relay Network with No Multicasts

The Frame Relay bridging software uses the same spanning-tree algorithm as the other bridging functions, but allows packets to be encapsulated for sending across a Frame Relay network. You specify IP-to-data-link connection identifier (DLCI) address mapping and the system maintains a table of both the Ethernet address and the DLCIs.

To configure bridging in a network that does not support a multicast facility, define the mapping between an address and the DLCI used to connect to the address. To bridge with no multicasts, use the following command in interface configuration mode:

```
frame-relay map bridge dlci broadcast
```

An example configuration is provided in the “Frame Relay Transparent Bridging Examples” section on page 52. Frame Relay is discussed in more detail in the “Configuring Frame Relay” chapter in the Cisco IOS Wide-Area Networking Configuration Guide.

Bridging in a Frame Relay Network with Multicasts

The multicast facility is used to learn about the other bridges on the network, eliminating the need for you to specify any mappings with the `frame-relay map bridge broadcast` command. An example configuration is provided in the “Frame Relay Transparent Bridging Examples” section on page 52 for use as a configuration guide. Frame Relay is discussed in more detail in the “Configuring Frame Relay” chapter in the Cisco IOS Wide-Area Networking Configuration Guide.

Configuring Transparent Bridging over Multiprotocol LAPB

Cisco IOS software implements transparent bridging over multiprotocol Link Access Protocol-Balanced (LAPB) encapsulation on serial interfaces. To configure transparent bridging over multiprotocol LAPB, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# interface serial number</code></td>
<td>Specifies the serial interface.</td>
</tr>
<tr>
<td><code>Router(config-if)# no ip address</code></td>
<td>Specifies no IP address to the interface.</td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation lapb multi</code></td>
<td>Configures multiprotocol LAPB encapsulation.</td>
</tr>
<tr>
<td><code>Router(config-if)# bridge-group bridge-group</code></td>
<td>Assigns the interface to a bridge group.</td>
</tr>
<tr>
<td>`Router(config-if)# bridge bridge-group protocol {ieee</td>
<td>dec</td>
</tr>
</tbody>
</table>

Note

Transparent bridging over multiprotocol LAPB requires use of the `encapsulation lapb multi` command. You cannot use the `encapsulation lapb protocol` command with a `bridge` keyword to configure this feature.

For an example of configuring transparent bridging over multiprotocol LAPB, see the “Transparent Bridging over Multiprotocol LAPB Example” section on page 54.”
Configuring Transparent Bridging over SMDS

We support fast-switched transparent bridging for Switched Multimegabit Data Service (SMDS) encapsulated serial and HSSI networks. Standard bridging commands are used to enable bridging on an SMDS interface.

To enable transparent bridging over SMDS, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router(config)# interface serial number</td>
<td>Specifies the serial interface.</td>
</tr>
<tr>
<td>2</td>
<td>Router(config-if)# encapsulation smds</td>
<td>Configures SMDS encapsulation on the serial interface.</td>
</tr>
<tr>
<td>3</td>
<td>Router(config-if)# bridge-group bridge-group</td>
<td>Associates the interface with a bridge group.</td>
</tr>
<tr>
<td>4</td>
<td>Router(config-if)# smds multicast bridge smds-address</td>
<td>Enables transparent bridging of packets across an SMDS network.</td>
</tr>
</tbody>
</table>

Broadcast Address Resolution Protocol (ARP) packets are treated differently in transparent bridging over an SMDS network than in other encapsulation methods. For SMDS, two packets are sent to the multicast address. One is sent using a standard (SMDS) ARP encapsulation; the other is sent with the ARP packet encapsulated in an 802.3 MAC header. The native ARP is sent as a regular ARP broadcast.

Our implementation of IEEE 802.6i transparent bridging for SMDS supports 802.3, 802.5, and FDDI frame formats. The router can accept frames with or without frame check sequence (FCS). Fast-switched transparent bridging is the default and is not configurable. If a packet cannot be fast switched, it is process switched.

An example configuration is provided in the “Fast-Switched Transparent Bridging over SMDS Example” section on page 55. For more information on SMDS, refer to the “Configuring SMDS” chapter in the Cisco IOS Wide-Area Networking Configuration Guide.

Configuring Transparent Bridging over X.25

The transparent bridging software supports bridging of packets in X.25 frames. This ability is useful for such tasks as sending packets from proprietary protocols across an X.25 network.

The X.25 bridging software uses the same spanning-tree algorithm as the other bridging functions, but allows packets to be encapsulated in X.25 frames and sent across X.25 media. You specify the IP-to-X.121 address mapping, and the system maintains a table of both the Ethernet and X.121 addresses. To configure X.25 transparent bridging, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 map bridge x.121-address broadcast [options-keywords]</td>
<td>Specifies IP-to-X.121 mapping for bridging over X.25.</td>
</tr>
</tbody>
</table>

For more information about configuring X.25, refer to the “Configuring X.25 and LAPB” chapter in the Cisco IOS Wide-Area Networking Configuration Guide.
Configuring Concurrent Routing and Bridging

You can configure the Cisco IOS software to route a given protocol among one group of interfaces and concurrently bridge that protocol among a separate group of interfaces, all within one router. The given protocol is not switched between the two groups. Rather, routed traffic is confined to the routed interfaces and bridged traffic is confined to the bridged interfaces. A protocol may be either routed or bridged on a given interface, but not both.

The concurrent routing and bridging capability is, by default, disabled. While concurrent routing and bridging is disabled, the Cisco IOS software absorbs and discards bridgeable packets in protocols that are configured for routing on any interface in the router.

When concurrent routing and bridging is first enabled in the presence of existing bridge groups, it will generate a bridge route configuration command for any protocol for which any interface in the bridge group is configured for routing. This is a precaution that applies only when concurrent routing and bridging is not already enabled, bridge groups exist, and the `bridge crb` command is encountered.

To enable concurrent routing and bridging in the Cisco IOS software, use the following command in global configuration mode:

```
Router(config)# bridge crb
```

Information about which protocols are routed and which are bridged is stored in a table, which can be displayed with the `show interfaces crb` privileged EXEC command.

When concurrent routing and bridging has been enabled, you must configure an explicit bridge route command for any protocol that is to be routed on the interfaces in a bridge group in addition to any required protocol-specific interface configuration.

To configure specific protocols to be routed in a bridge group, use the following command in interface configuration mode:

```
Router(config-if)# bridge bridge-group route protocol
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bridge crb</code></td>
<td>Enables concurrent routing and bridging.</td>
</tr>
</tbody>
</table>

Configuring Integrated Routing and Bridging

Perform one or more of the following tasks to configure integrated routing and bridging on your router:

- Assigning a Bridge Group Number and Defining the Spanning Tree Protocol, page 7
- Configuring Interfaces, page 18
- Enabling Integrated Routing and Bridging, page 18
- Configuring the Bridge-Group Virtual Interface, page 18
- Configuring Protocols for Routing or Bridging, page 19
Assigning a Bridge Group Number and Defining the Spanning Tree Protocol

Prior to configuring the router for integrated routing and bridging, you must enable bridging by setting up a bridge group number and specifying a Spanning Tree Protocol. You can choose either the IEEE 802.1D Spanning Tree Protocol or the earlier Digital protocol upon which this IEEE standard is based.

To assign a bridge group number and define a Spanning Tree Protocol, use the following command in global configuration mode:

```
Router(config)# bridge bridge-group protocol (ieee | dec | vlan-bridge)
```

The IEEE 802.1D Spanning Tree Protocol is the preferred way of running the bridge. Use the Digital Spanning Tree Protocol only for backward compatibility.

Configuring Interfaces

To configure a router interface in the Cisco IOS software, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# port</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# bridge-group bridge-group</td>
</tr>
</tbody>
</table>

Enabling Integrated Routing and Bridging

After you have set up the interfaces in the router, you can enable integrated routing and bridging.

To enable integrated routing and bridging in the Cisco IOS software, use the following command in global configuration mode:

```
Router(config)# bridge irb
```

Use the `show interfaces irb` privileged EXEC command to display the protocols that a given bridged interface can route to the other routed interface when the packet is routable, and to display the protocols that a given bridged interface bridges.

Configuring the Bridge-Group Virtual Interface

The bridge-group virtual interface resides in the router. It acts like a normal routed interface that does not support bridging, but represents the entire corresponding bridge group to routed interfaces within the router. The bridge-group virtual interface is assigned the number of the bridge group that it represents. The bridge-group virtual interface number is the link between the bridge-group virtual interface and its
bridge group. Because the bridge-group virtual interface is a virtual routed interface, it has all the network layer attributes, such as a network address and the ability to perform filtering. Only one bridge-group virtual interface is supported for each bridge group.

When you enable routing for a given protocol on the bridge-group virtual interface, packets coming from a routed interface but destined for a host in a bridged domain are routed to the bridge-group virtual interface, and are forwarded to the corresponding bridged interface. All traffic routed to the bridge-group virtual interface is forwarded to the corresponding bridge group as bridged traffic. All routable traffic received on a bridged interface is routed to other routed interfaces as if it is coming directly from the bridge-group virtual interface.

To create a bridge-group virtual interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# interface bvi bridge-group</td>
<td>Enables a bridge-group virtual interface.</td>
</tr>
</tbody>
</table>

When you intend to bridge and route a given protocol in the same bridge group, you must configure the network-layer attributes of the protocol on the bridge-group virtual interface. Do not configure protocol attributes on the bridged interfaces. No bridging attributes can be configured on the bridge-group virtual interface.

Although it is generally the case that all bridged segments belonging to a bridge group are represented as a single segment or network to the routing protocol, there are situations where several individual networks coexist within the same bridged segment. To make it possible for the routed domain to learn about the other networks behind the bridge-group virtual interface, configure a secondary address on the bridge-group virtual interface to add the corresponding network to the routing process.

Configuring Protocols for Routing or Bridging

When integrated routing and bridging is enabled, the default route/bridge behavior in a bridge group is to bridge all packets.

You could then explicitly configure the bridge group to route a particular protocol, so that routable packets of this protocol are routed, while nonroutable packets of this protocol or packets for protocols for which the bridge group is not explicitly configured to route will be bridged.

You could also explicitly configure the bridge group so that it does not bridge a particular protocol, so that routable packets of this protocol are routed when the bridge is explicitly configured to route this protocol, and nonroutable packets are dropped because bridging is disabled for this protocol.

Note

Packets of nonroutable protocols such as LAT are only bridged. You cannot disable bridging for the nonroutable traffic.

To configure specific protocols to be routed or bridged in a bridge group, use one or more of the following commands in global configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# bridge bridge-group route protocol</td>
<td>Enables the routing of a specified protocol in a specified bridge group.</td>
</tr>
<tr>
<td>Router(config)# no bridge bridge-group route protocol</td>
<td>Disables the routing of a specified protocol in a specified bridge group.</td>
</tr>
</tbody>
</table>
When a bridge group contains Token Ring interfaces, the Token Ring packets must not include RIF. The IEEE 802.1d transparent bridge standard specifies that frames with source routing information are to be dropped by transparent bridges; therefore, if Token Ring traffic includes RIF, it will be dropped. RIF is designated by the RII, which is the first bit of the MAC address. RII=1 indicates that the packet comes with RIF, RII=0 indicates that the frame does not come with RIF.

For example, to bridge AppleTalk, bridge and route IPX, and route IP in the same bridge group, you would do the following:

- Bridge AppleTalk—Because integrated routing and bridging bridges everything by default, no configuration is required to bridge AppleTalk.
- Bridge and route IPX—After using the `bridge irb` command to enable integrated routing and bridging, and the `interface bvi` command to create the bridge-group virtual interface for the bridge group, you would use the `bridge route` command to both bridge and route IPX (bridging is already enabled by default; the `bridge route` command enables routing).
- Route IP—Use the `bridge route` command to enable routing, and then use the `no bridge bridge protocol` command to disable bridging.

When integrated routing and bridging is not enabled, routing a given protocol means that protocol is not bridged, and bridging a protocol means that protocol is not routed. When integrated routing and bridging is enabled, the disjunct relationship between routing and bridging is broken down, and a given protocol can be switched between routed and bridged interfaces on a selective, independent basis.

Configuring Transparent Bridging Options

You can configure one or more transparent bridging options. To configure transparent bridging options, perform one or more of the tasks in the following sections:

- Disabling IP Routing, page 21
- Enabling Autonomous Bridging, page 21
- Configuring LAT Compression, page 22
- Establishing Multiple Spanning-Tree Domains, page 22
- Preventing the Forwarding of Dynamically Determined Stations, page 23
- Forwarding Multicast Addresses, page 23
- Configuring Bridge Table Aging Time, page 23
Disabling IP Routing

If you want to bridge IP, you must disable IP routing because IP routing is enabled by default on the Cisco IOS software. You can enable IP routing when you decide to route IP packets. To disable or enable IP routing, use one of the following commands in global configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# no ip routing</td>
<td>Disables IP routing.</td>
</tr>
<tr>
<td>Router(config)# ip routing</td>
<td>Enables IP routing.</td>
</tr>
</tbody>
</table>

All interfaces in the bridge group that are bridging IP should have the same IP address. However, if you have more than one bridge group, each bridge group should have its own IP address.

Enabling Autonomous Bridging

Normally, bridging takes place on the processor card at the interrupt level. When autonomous bridging is enabled, bridging takes place entirely on the ciscoBus2 controller, significantly improving performance. Autonomous bridging is a high-speed switching feature that allows bridged traffic to be forwarded and flooded on the ciscoBus2 controller between resident interfaces. If you are using the ciscoBus2 controller, you can maximize performance by enabling autonomous bridging on the following ciscoBus2 interfaces:

- MEC
- FCIT transparent
- HSSI HDLC

Although performance improvements will be seen most in the resident interfaces, the autonomous bridging feature can also be used in bridge groups that include interfaces that are not on the ciscoBus2 controller. These interfaces include the CTR, FCI with encapsulation bridging, and HSSI with encapsulation other than HDLC, such as X.25, Frame Relay, or SMDS, MCI, STR, or SBE16.

If you enable autonomous bridging for a bridge group that includes a combination of interfaces that are resident on the ciscoBus2 controller and some that are not, the ciscoBus2 controller forwards only packets between resident interfaces. Forwarding between nonresident and resident interfaces is done in either the fast or process paths.Flooding between resident interfaces is done by the ciscoBus2 controller. Flooding between nonresident interfaces is done conventionally. If a packet is forwarded from a nonresident to a resident interface, the packet is conventionally forwarded. If packets are flooded from a nonresident interface to a resident interface, the packet is autonomously flooded.

To enable autonomous bridging on a per-interface basis, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# bridge-group cbus-bridging</td>
<td>Enables autonomous bridging (if using the ciscoBus2 controller).</td>
</tr>
</tbody>
</table>

Note: You can filter by MAC-layer address on an interface only when autonomous bridging is enabled on that interface. If any filters or priority queueing is configured, autonomous bridging is automatically disabled.
Configuring LAT Compression

The local-area transport (LAT) protocol used by Digital and Digital-compatible terminal servers is one of the common protocols that lacks a well-defined network layer (Layer 3) and so always must be bridged.

To reduce the amount of bandwidth that LAT traffic consumes on serial interfaces, you can specify a LAT-specific form of compression. Doing so applies compression to LAT frames being sent out by the Cisco IOS software through the interface in question. To configure LAT compression, use the following command in interface configuration mode:

```
LAT compression
```

LAT compression can be specified only for serial interfaces. For the most common LAT operations (user keystrokes and acknowledgment packets), LAT compression reduces LAT’s bandwidth requirements by nearly a factor of two.

Establishing Multiple Spanning-Tree Domains

The Cisco IEEE 802.1D bridging software supports spanning-tree domains of bridge groups. Domains are a feature specific to Cisco. This feature is only available if you have specified IEEE as the Spanning Tree Protocol. A domain establishes an external identification of the BPDUs sent from a bridge group. The purpose of this identification is as follows:

- Bridge groups defined within the domain can recognize that BPDU as belonging to them.
- Two bridged subnetworks in different domains that are sharing a common connection can use the domain identifier to identify and then ignore the BPDUs that belong to another domain. Each bridged subnetwork establishes its own spanning tree based on the BPDUs that it receives. The BPDUs it receives must contain the domain number to which the bridged subnetwork belongs. Bridged traffic is not domain identified.

```
Note
Domains do not constrain the propagation of bridged traffic. A bridge bridges nonrouted traffic received on its interfaces regardless of domain.
```

You can place any number of routers or bridges within the domain. Only the devices within a domain share spanning-tree information.

When multiple routers share the same cable and you want to use only certain discrete subsets of those routers to share spanning-tree information with each other, establish spanning-tree domains. This function is most useful when running other applications, such as IP User Datagram Protocol (UDP) flooding, that use the IEEE spanning tree. You also can use this feature to reduce the number of global reconfigurations in large bridged networks.

To establish multiple spanning-tree domains, use the following command in global configuration mode:

```
Command
Router(config)# bridge bridge-group domain domain-number
Purpose
Establishes a multiple spanning-tree domain.
```
For an example of how to configure domains, see the “Complex Transparent Bridging Network Topology Example” section on page 56.

Preventing the Forwarding of Dynamically Determined Stations

Normally, the system forwards any frames for stations that it has learned about dynamically. By disabling this activity, the bridge will only forward frames whose address have been statically configured into the forwarding cache. To prevent or allow forwarding of dynamically determined stations, use one of the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# no bridge bridge-group acquire</code></td>
<td>Filters out all frames except those whose addresses have been statically configured into the forwarding cache.</td>
</tr>
<tr>
<td><code>Router(config)# bridge bridge-group acquire</code></td>
<td>Forwards any frames for stations that the system has learned about dynamically.</td>
</tr>
</tbody>
</table>

Forwarding Multicast Addresses

A packet with a RIF, indicated by a source address with the multicast bit turned on, is not usually forwarded. However, you can configure bridging support to allow the forwarding of frames that would otherwise be discarded because they have a RIF. Although you can forward these frames, the bridge table will not be updated to include the source addresses of these frames.

To forward frames with multicast addresses, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# bridge bridge-group multicast-source</code></td>
<td>Allows the forwarding of frames with multicast source addresses.</td>
</tr>
</tbody>
</table>

Configuring Bridge Table Aging Time

A bridge forwards, floods, or drops packets based on the bridge table. The bridge table maintains both static entries and dynamic entries. Static entries are entered by the network manager or by the bridge itself. Dynamic entries are entered by the bridge learning process. A dynamic entry is automatically removed after a specified length of time, known as aging time, from the time the entry was created or last updated.

If hosts on a bridged network are likely to move, decrease the aging-time to enable the bridge to adapt to the change quickly. If hosts do not send continuously, increase the aging time to record the dynamic entries for a longer time and thus reduce the possibility of flooding when the hosts send again.

To set the aging time, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# bridge-group bridge-group aging-time seconds</code></td>
<td>Sets the bridge table aging time.</td>
</tr>
</tbody>
</table>
Filtering Transparently Bridged Packets

A bridge examines frames and sends them through the internetwork according to the destination address; a bridge will not forward a frame back to its originating network segment. The bridge software allows you to configure specific administrative filters that filter frames based upon information other than paths to their destinations. You can perform administrative filtering by performing one of the tasks in the following sections:

- Setting Filters at the MAC Layer, page 24
- Filtering LAT Service Announcements, page 28

Note
When setting up administrative filtering, remember that there is virtually no performance penalty in filtering by Media Access Control (MAC) address or vendor code, but there can be a significant performance penalty when filtering by protocol type.

When configuring transparent bridging access control, keep the following points in mind:

- You can assign only one access list to an interface.
- The conditions in the access list are applied to all outgoing packets not sourced by the Cisco IOS software.
- Access lists are scanned in the order you enter them; the first match is used.
- An implicit deny everything entry is automatically defined at the end of an access list unless you include an explicit permit everything entry at the end of the list.
- All new entries to an existing list are placed at the end of the list. You cannot add an entry to the middle of a list. This means that if you have previously included an explicit permit everything entry, new entries will never be scanned. The solution is to delete the access list and retype it with the new entries.
- You can create extended access lists to specify more detailed filters, such as address match only.
- You should not use extended access lists on FDDI interfaces doing transit bridging as opposed to translational bridging.
- Configuring bridging access lists of type 700 may cause a momentary interruption of traffic flow.

For more information on access lists, refer to the “Traffic Filtering and Firewalls” chapter of the Cisco IOS Security Configuration Guide.

Setting Filters at the MAC Layer

You can filter the sending of frames at the MAC layer by performing tasks in one of the following sections:

- Filtering by Specific MAC Address, page 25
- Filtering by Vendor Code, page 25
- Filtering by Protocol Type, page 26

When filtering by a MAC-layer address, you can use two kinds of access lists: standard access lists that specify a simple address, and extended access lists that specify two addresses. You can also further restrict access by creating filters for these lists. After you have completed one of the preceding tasks, perform the task in the “Defining and Applying Extended Access Lists” section on page 27.
Configuring Transparent Bridging

Transparent and SRT Bridging Configuration Task List

Note

MAC addresses on Ethernets are “bit swapped” when compared with MAC addresses on Token Ring and FDDI. For example, address 0110.2222.3333 on Ethernet is 8008.4444.CCCC on Token Ring and FDDI. Access lists always use the canonical Ethernet representation. When using different media and building access lists to filter on MAC addresses, keep this point in mind. Note that when a bridged packet traverses a serial link, it has an Ethernet-style address.

Filtering by Specific MAC Address

You can filter frames with a particular MAC-layer station source or destination address. Any number of addresses can be configured into the system without a performance penalty. To filter by MAC-layer address, use the following command in global configuration mode:

Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# bridge bridge-group address mac-address {forward</td>
<td>discard}[interface]</td>
</tr>
</tbody>
</table>

When filtering specific MAC destination addresses, allow for multicast or broadcast packets that are required by the bridged network protocols. Refer to the example in the “Multicast or Broadcast Packets Bridging Example” section on page 50 to guide you in building your configuration to allow for multicast or broadcast packets.

Filtering by Vendor Code

The bridging software allows you to create access lists to administratively filter MAC addresses. These access lists can filter groups of MAC addresses, including those with particular vendor codes. There is no noticeable performance loss in using these access lists, and the lists can be of indefinite length. You can filter groups of MAC addresses with particular vendor codes by performing the first task and one or both of the other tasks that follow:

- Establish a vendor code access list
- Filter source addresses
- Filter destination addresses

To establish a vendor code access list, use the following command in global configuration mode:

Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# access-list access-list-number (permit</td>
<td>deny) address mask</td>
</tr>
</tbody>
</table>

The vendor code is the first three bytes of the MAC address (left to right). For an example of how to filter by vendor code, see the “Multicast or Broadcast Packets Bridging Example” section on page 50.

Note

Remember that, as with any access list using MAC addresses, Ethernets swap their MAC address bit ordering, and Token Rings and FDDI do not. Therefore, an access list that works for one medium might not work for others.
Once you have defined an access list to filter by a particular vendor code, you can assign an access list to a particular interface for filtering on the MAC source addresses of packets received on that interface or the MAC destination addresses of packets that would ordinarily be forwarded out that interface. To filter by source or destination addresses, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# bridge-group bridge-group input-address-list access-list-number</td>
<td>Assigns an access list to a particular interface.</td>
</tr>
<tr>
<td>Router(config-if)# bridge-group bridge-group output-address-list access-list-number</td>
<td>Assigns an access list to an interface for filtering by the MAC destination addresses.</td>
</tr>
</tbody>
</table>

Filtering by Protocol Type

You can filter by protocol type by using the access-list mechanism and specifying a protocol type code. To filter by protocol type, perform the first task and one or more of the other tasks that follow:

- Establish a protocol type access list
- Filter Ethernet- and SNAP-encapsulated packets on input
- Filter Ethernet- and SNAP-encapsulated packets on output
- Filter IEEE 802.2-encapsulated packets on input
- Filter IEEE 802.2-encapsulated packets on output

Note

It is a good idea to have both input and output type code filtering on different interfaces.

The order in which you enter `access-list` commands affects the order in which the access conditions are checked. Each condition is tested in succession. A matching condition is then used to execute a permit or deny decision. If no conditions match, a “deny” decision is reached.

Note

Protocol type access lists can have an impact on system performance; therefore, keep the lists as short as possible and use wildcard bit masks whenever possible.

Access lists for Ethernet- and IEEE 802.2-encapsulated packets affect only bridging functions. It is not possible to use such access lists to block frames with protocols that are being routed.

You can establish protocol type access lists. Specify either an Ethernet type code for Ethernet-encapsulated packets or a DSAP/SSAP pair for 802.3 or 802.5-encapsulated packets. Ethernet type codes are listed in the “Ethernet Type Codes” appendix of the *Cisco IOS Bridging and IBM Networking Command Reference* (Volume 1 of 2).

To establish protocol type access lists, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# access-list access-list-number (permit</td>
<td>deny) type-code wild-mask</td>
</tr>
</tbody>
</table>
You can filter Ethernet- and SNAP-encapsulated packets on input. For SNAP-encapsulated frames, the access list you create is applied against the two-byte TYPE field given after the DSAP/SSAP/OUI fields in the frame. The access list is applied to all Ethernet and SNAP frames received on that interface prior to the bridge learning process. SNAP frames also must pass any applicable IEEE 802.2 DSAP/SSAP access lists.

You can also filter Ethernet- and SNAP-encapsulated packets on output. The access list you create is applied just before sending out a frame to an interface.

To filter these packets on input or output, use the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# bridge-group bridge-group input-type-list access-list-number</td>
<td>Adds a filter for Ethernet- and SNAP-encapsulated packets on input.</td>
</tr>
<tr>
<td>Router(config-if)# bridge-group bridge-group output-type-list access-list-number</td>
<td>Adds a filter for Ethernet- and SNAP-encapsulated packets on output.</td>
</tr>
</tbody>
</table>

You can filter IEEE 802-encapsulated packets on input. The access list you create is applied to all IEEE 802 frames received on that interface prior to the bridge-learning process. SNAP frames also must pass any applicable Ethernet type-code access list.

You can also filter IEEE 802-encapsulated packets on output. SNAP frames also must pass any applicable Ethernet type-code access list. The access list you create is applied just before sending out a frame to an interface.

To filter these packets on input or output, use the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# bridge-group bridge-group input-lsap-list access-list-number</td>
<td>Adds a filter for IEEE 802-encapsulated packets on input.</td>
</tr>
<tr>
<td>Router(config-if)# bridge-group bridge-group output-lsap-list access-list-number</td>
<td>Adds a filter for IEEE 802-encapsulated packets on output.</td>
</tr>
</tbody>
</table>

Access lists for Ethernet- and IEEE 802-encapsulated packets affect only bridging functions. You cannot use such access lists to block frames with protocols that are being routed.

Defining and Applying Extended Access Lists

If you are filtering by the MAC-layer address, whether it is by a specific MAC address, vendor code, or protocol type, you can define and apply extended access lists. Extended access lists allow finer granularity of control. They allow you to specify both source and destination addresses and arbitrary bytes in the packet.

To define an extended access list, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# access-list access-list-number {permit</td>
<td>deny} source source-mask destination destination-mask offset size operator operand</td>
</tr>
</tbody>
</table>
To apply an extended access list to an interface, use the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# bridge-group bridge-group input-pattern-list access-list-number</code></td>
<td>Applies an extended access list to the packets being received by an interface.</td>
</tr>
<tr>
<td><code>Router(config-if)# bridge-group bridge-group output-pattern-list access-list-number</code></td>
<td>Applies an extended access list to the packet being sent by an interface.</td>
</tr>
</tbody>
</table>

After an access list is created initially, any subsequent additions (possibly entered from the terminal) are placed at the end of the list. In other words, you cannot selectively add or remove access list command lines from a specific access list.

⚠️ Caution

Because of their complexity, only use extended access lists if you are very familiar with the Cisco IOS software. Further, do not specify an offset value that is greater than the size of the packet.

Filtering LAT Service Announcements

The bridging software allows you to filter LAT frames. LAT bridge filtering allows the selective inclusion or exclusion of LAT multicast service announcements on a per-interface basis.

🔍 Note

The LAT filtering commands are not implemented for Token Ring interfaces.

In the LAT protocol, a group code is defined as a decimal number in the range 0 to 255. Some of the LAT configuration commands take a list of group codes; this is referred to as a group code list. The rules for entering numbers in a group code list follow:

- Entries can be individual group code numbers separated with a space. (The Digital LAT implementation specifies that a list of numbers be separated by commas; however, our implementation expects the numbers to be separated by spaces.)
- Entries can also specify a range of numbers. This is done by separating an ascending order range of group numbers with hyphens.
- Any number of group codes or group code ranges can be listed in one command; just separate each with a space.

In LAT, each node sends a periodic service advertisement message that announces its existence and availability for connections. Within the message is a group code list; this is a mask of up to 256 bits. Each bit represents a group number. In the traditional use of LAT group codes, a terminal server only will connect to a host system when there is an overlap between the group code list of the user on the terminal server and the group code list in the service advertisement message. In an environment with many bridges and many LAT hosts, the number of multicast messages that each system has to deal with becomes unreasonable. The 256 group codes might not be enough to allocate local assignment policies, such as giving each DECserver 200 device its own group code in large bridged networks. LAT group code filtering allows you to have very fine control over which multicast messages actually get bridged. Through a combination of input and output permit and deny lists, you can implement many different LAT control policies.
You can filter LAT service advertisements by performing any of the tasks in the following sections:

- Enabling LAT Group Code Service Filtering, page 29
- Specifying Deny or Permit Conditions for LAT Group Codes on Input, page 29
- Specifying Deny or Permit Conditions for LAT Group Codes on Output, page 29

Enabling LAT Group Code Service Filtering

You can specify LAT group-code filtering to inform the system that LAT service advertisements require special processing. To enable LAT group-code filtering, use the following command in global configuration mode:

```
Router(config)# bridge bridge-group lat-service-filtering
```

Specifying Deny or Permit Conditions for LAT Group Codes on Input

You can specify the group codes by which to deny or permit access upon input. Specifying deny conditions causes the system to not bridge any LAT service advertisement that contain any of the specified groups. Specifying permit conditions causes the system to bridge only those service advertisements that match at least one group in the specified group list.

To specify deny or permit conditions for LAT groups on input, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# bridge-group bridge-group input-lat-service-deny group-list</td>
<td>Specifies the group codes with which to deny access upon input.</td>
</tr>
<tr>
<td>Router(config-if)# bridge-group bridge-group input-lat-service-permit group-list</td>
<td>Specifies the group codes with which to permit access upon input.</td>
</tr>
</tbody>
</table>

If a message specifies group codes in both the deny and permit list, the message is not bridged.

Specifying Deny or Permit Conditions for LAT Group Codes on Output

You can specify the group codes by which to deny or permit access upon output. Specifying deny conditions causes the system to not bridge onto the output interface any LAT service advertisements that contain any of the specified groups. Specifying permit conditions causes the system to bridge onto the output interface only those service advertisements that match at least one group in the specified group list.

To specify deny or permit conditions for LAT groups on output, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# bridge-group bridge-group output-lat-service-deny group-list</td>
<td>Specifies the group codes with which to deny access upon output.</td>
</tr>
<tr>
<td>Router(config-if)# bridge-group bridge-group output-lat-service-permit group-list</td>
<td>Specifies the group codes with which to permit access upon output.</td>
</tr>
</tbody>
</table>

If a message matches both a deny and a permit condition, it will not be bridged.
Adjusting Spanning-Tree Parameters

You might need to adjust certain spanning-tree parameters if the default values are not suitable for your bridge configuration. Parameters affecting the entire spanning tree are configured with variations of the `bridge` global configuration command. Interface-specific parameters are configured with variations of the `bridge-group` interface configuration command.

You can adjust spanning-tree parameters by performing any of the tasks in the following sections:

- Setting the Bridge Priority, page 30
- Setting an Interface Priority, page 30
- Assigning Path Costs, page 31
- Adjusting BPDU Intervals, page 31
- Disabling the Spanning Tree on an Interface, page 32

Note

Only network administrators with a good understanding of how bridges and the Spanning Tree Protocol work should make adjustments to spanning-tree parameters. Poorly planned adjustments to these parameters can have a negative impact on performance. A good source on bridging is the IEEE 802.1D specification; see the “References and Recommended Reading” appendix in the *Cisco IOS Configuration Fundamentals Command Reference* for other references.

Setting the Bridge Priority

You can globally configure the priority of an individual bridge when two bridges tie for position as the root bridge, or you can configure the likelihood that a bridge will be selected as the root bridge. This priority is determined by default; however, you can change it. To set the bridge priority, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# bridge bridge-group priority number</code></td>
<td>Sets the bridge priority.</td>
</tr>
</tbody>
</table>

Setting an Interface Priority

You can set a priority for an interface. When two bridges tie for position as the root bridge, you configure an interface priority to break the tie. The bridge with the lowest interface value is elected. To set an interface priority, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# bridge-group bridge-group priority number</code></td>
<td>Establishes a priority for a specified interface.</td>
</tr>
</tbody>
</table>
Assigning Path Costs

Each interface has a path cost associated with it. By convention, the path cost is 1000/data rate of the attached LAN, in millions of bits per second (Mbps). You can set different path costs. Refer to the entry for this command in the *Cisco IOS Bridging and IBM Networking Command Reference* (Volume 1 of 2) for the various media defaults. To assign path costs, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# bridge-group bridge-group path-cost cost</td>
<td>Sets a path cost different from the defaults.</td>
</tr>
</tbody>
</table>

Adjusting BPDU Intervals

You can adjust BPDU intervals as described in the following sections:

- Adjusting the Interval between Hello BPDUs, page 31
- Defining the Forward Delay Interval, page 31
- Defining the Maximum Idle Interval, page 32

Note

Each bridge in a spanning tree adopts the interval between hello BPDUs, the forward delay interval, and the maximum idle interval parameters of the root bridge, regardless of what its individual configuration might be.

Adjusting the Interval between Hello BPDUs

You can specify the interval between hello BPDUs. To adjust this interval, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# bridge bridge-group hello-time seconds</td>
<td>Specifies the interval between hello BPDUs.</td>
</tr>
</tbody>
</table>

Defining the Forward Delay Interval

The forward delay interval is the amount of time spent listening for topology change information after an interface has been activated for bridging and before forwarding actually begins. To change the default interval setting, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# bridge bridge-group forward-time seconds</td>
<td>Sets the default of the forward delay interval.</td>
</tr>
</tbody>
</table>
Defining the Maximum Idle Interval

If a bridge does not hear BPDUs from the root bridge within a specified interval, it assumes that the network has changed and recomputes the spanning-tree topology. To change the default interval setting, using the following command in global configuration mode:

```
Router(config)# bridge bridge-group max-age seconds
```

Disabling the Spanning Tree on an Interface

When a loop-free path exists between any two bridged subnetworks, you can prevent BPDUs generated in one transparent bridging subnetwork from impacting nodes in the other transparent bridging subnetwork, yet still permit bridging throughout the bridged network as a whole. For example, when transparently bridged LAN subnetworks are separated by a WAN, BPDUs can be prevented from traveling across the WAN link.

To disable the spanning tree on an interface, use the following command in interface configuration mode:

```
Router(config-if)# bridge-group spanning-disabled
```

Configuring Transparent and IRB Bridging on a PA-12E/2FE Ethernet Switch

The PA-12E/2FE Ethernet switch port adapter provides Cisco 7200 series routers with up to twelve 10-Mbps and two 10/100-Mbps switched Ethernet (10BASE-T) and Fast Ethernet (100BASE-TX) interfaces for an aggregate bandwidth of 435 Mbps, full-duplex. The PA-12E/2FE port adapter supports the Ethernet, IEEE 802.3, and IEEE 802.3u specifications for 10-Mbps and 100-Mbps transmission over UTP cables.

The PA-12E/2FE port adapter offloads Layer 2 switching from the host CPU by using store-and-forward or cut-through switching technology between interfaces within the same VLAN on the PA-12E/2FE port adapter. The PA-12E/2FE port adapter supports up to four VLANs (bridge groups).

The PA-12E/2FE port adapter is a dual-width port adapter, which means it occupies two horizontally aligned port adapter slots when installed in a Cisco 7200 series router. (Single-width port adapters occupy individual port adapter slots in a Cisco 7200 series router.)

All interfaces on the PA-12E/2FE port adapter support autosensing and autonegotiation of the proper transmission mode (half-duplex or full-duplex) with an attached device. The first two PA-12E/2FE interfaces (port 0 and port 1) also support autosensing and autonegotiation of the proper connection speed (10 Mbps or 100 Mbps) with an attached device. If an attached device does not support autosensing and autonegotiation of the proper transmission mode, the PA-12E/2FE interfaces attached to the device automatically enter half-duplex mode. Use the `show running-config` command to determine if a PA-12E/2FE interface is autosensing and autonegotiating the proper transmission mode with an attached device. Use the `full-duplex` and the `half-duplex` commands to change the transmission mode of a PA-12E/2FE interface. After changing the transmission mode, use the `show interfaces` command to verify the interface’s transmission mode.
Configuring Transparent Bridging

Note

If you use the **full-duplex** and the **half-duplex** commands to change the transmission mode of the first two PA-12E/2FE interfaces (port 0 and port 1), the transmission speed of the two PA-12E/2FE interfaces automatically defaults to 100-Mbps. The first two PA-12E/2FE interfaces only operate at 10-Mbps when the interfaces are autosensing and autonegotiating the proper connection speed (10-Mbps or 100-Mbps) with an attached device.

To configure the PA-2E/2FE port adapter, perform the tasks in the following sections. The first task is required, all other tasks are optional.

- Configuring the PA-12E/2FE Port Adapter, page 33
- Monitoring and Maintaining the PA-12E/2FE Port Adapter, page 35
- Configuring Bridge Groups Using the 12E/2FE VLAN Configuration WebTool, page 35

Note

If you plan to use a PA-12E/2FE interface to boot from a network (TFTP), ensure that the interface is configured for a loop-free environment, an IP address is configured for the interface’s bridge-group virtual interface, and system boot image in release 11.2(10)P is installed on your router (use the `show version` command to view your router’s system boot image). Then, before booting from the network server, use the `bridge-group bridge-group number spanning-disabled` command to disable the Spanning Tree Protocol configured on the interface to keep the TFTP server from timing out and closing the session.

For detailed information about boot from a network (TFTP), loading a system image from a network server, and configuring the Spanning Tree Protocol on your Cisco 7200 series router, refer to the *PA-12E/2FE Ethernet Switch 10BASE-T and 100BASE-TX Port Adapter Installation and Configuration* that accompanies the hardware and to the *Cisco IOS Configuration Fundamentals Configuration Guide* and *Cisco IOS Bridging and IBM Networking Configuration Guide* publications.

For information on other commands that can be used to configure a PA-12E/2FE port adapter, refer to the “Configuring Interfaces” chapter in the *Cisco IOS Configuration Fundamentals Configuration Guide*.

For PA-2E/2FE port adapter configuration examples, see the “Configuration of Transparent Bridging for PA-12E/2FE Port Adapter Example” section on page 61 and the “Configuration of IRB for PA-12E/2FE Port Adapter Example” section on page 61.

Configuring the PA-12E/2FE Port Adapter

This section provides instructions for a basic configuration. You might also need to enter other configuration commands depending on the requirements for your system configuration and the protocols you plan to route on the interface.
To configure the interfaces on the PA-12E/2FE port adapter, perform the following tasks beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# bridge bridge-group protocol ieee Specifies the type of Spanning Tree Protocol. The PA-12E/2FE port adapter supports DEC and IEEE Spanning Tree Protocols; however, we recommend using the IEEE protocol when configuring bridge groups.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface fastethernet slot/port (for ports 0 and 1) interface ethernet slot/port (for ports 2 through 13) Enters the interface you want to configure.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# bridge-group bridge-group Assigns a bridge group to the interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# cut-through [receive</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# full-duplex (Optional) if an attached device does not support autosensing or autonegotiation, configures the transmission mode for full-duplex. The default is half-duplex.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-if)# no shutdown Changes the shutdown state to up.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-if)# exit Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Repeat Step 1 through Step 7 for each interface.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Router(config)# exit Exits global configuration mode.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Router# copy running-config startup-config Saves the new configuration to memory.</td>
</tr>
</tbody>
</table>

To enable integrated routing and bridging on the bridge groups, perform the following tasks beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# bridge irb Enables integrated routing and bridging.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface bvi bridge-group Enables a virtual interface on a bridge group.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip address address mask Assigns an IP address and subnet mask to the bridge group virtual interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# no shutdown Changes the shutdown state to up.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# exit Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Repeat Step 1 through Step 5 for each interface.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config)# bridge bridge-group route protocol Specifies the protocol for each bridge group.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config)# exit Exits global configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Router# copy running-config startup-config Saves the new configuration to memory.</td>
</tr>
</tbody>
</table>
Configuring Transparent Bridging

Transparent and SRT Bridging Configuration Task List

Monitoring and Maintaining the PA-12E/2FE Port Adapter

After configuring the new interface, you can display its status and verify other information. To display information about the PA-12E/2FE port adapter, perform the following tasks in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show version</td>
<td>Displays the configuration of the system hardware, the software version, the names and sources of configuration files, and the boot image.</td>
</tr>
<tr>
<td>Router# show controllers</td>
<td>Displays all current port adapters and their interfaces.</td>
</tr>
<tr>
<td>Router# show interface fastethernet slot/port</td>
<td>Verifies the interfaces have the correct slot number and that the interface and line protocol are in the correct state.</td>
</tr>
<tr>
<td>show interface ethernet slot/port</td>
<td>(for ports 0 and 1)</td>
</tr>
<tr>
<td>Router# show bridge group</td>
<td>Verifies all bridge groups and their interfaces.</td>
</tr>
<tr>
<td>show bridge group</td>
<td></td>
</tr>
<tr>
<td>Router# show interface ethernet slot/port irb</td>
<td>Verifies the correct routed protocol is configured for each interface.</td>
</tr>
<tr>
<td>show interface fastethernet slot/port irb</td>
<td>(for ports 2 through 13)</td>
</tr>
<tr>
<td>show interface ethernet slot/port</td>
<td>(for ports 2 through 13)</td>
</tr>
<tr>
<td>Router# show protocols</td>
<td>Displays the protocols configured for the entire system and specific interfaces.</td>
</tr>
<tr>
<td>show protocols</td>
<td></td>
</tr>
<tr>
<td>Router# show pas eswitch addresses fastethernet slot/port</td>
<td>Displays the Layer 2 learned addresses for each interface.</td>
</tr>
<tr>
<td>show pas eswitch addresses ethernet slot/port</td>
<td>(for ports 0 and 1)</td>
</tr>
<tr>
<td>show pas eswitch addresses ethernet slot/port</td>
<td>(for ports 2 through 13)</td>
</tr>
<tr>
<td>Router# show running-config</td>
<td>Displays the running configuration file.</td>
</tr>
<tr>
<td>Router# show startup-config</td>
<td>Displays the configuration stored in NVRAM.</td>
</tr>
</tbody>
</table>

Configuring Bridge Groups Using the 12E/2FE VLAN Configuration WebTool

The 12E/2FE VLAN Configuration WebTool, shown in Figure 5, is a Web browser-based Java applet that displays configured interfaces and bridge groups for PA-12E/2FE port adapters installed in Cisco routers. With the WebTool you can perform the following tasks:

- Create and delete bridge groups (also referred to as VLANs)
- Add and remove PA-12E/2FE interfaces from bridge groups
- Assign colors to bridge groups and PA-12E/2FE interfaces
- Administratively shut down (disable) and bring up (enable) PA-12E/2FE interfaces
- View the bridge-group status of each PA-12E/2FE interface

You can access the 12E/2FE VLAN Configuration WebTool from your router’s home page. For more information on the router’s home page, refer to the Cisco IOS Configuration Fundamentals Configuration Guide.
For complete procedures on how to use the VLAN Configuration WebTool, refer to the *PA-12E/2FE Ethernet Switch 10BASE-T and 100BASE-TX Port Adapter Installation and Configuration* that accompanies the hardware.

Figure 5 Example Home Page for a Cisco 7200 Series Router (Cisco 7206 Shown)

![Example Home Page for a Cisco 7200 Series Router](image)

Cisco Systems

Accessing Cisco 7206 “corenm7206–3”

Telnet – to the router.

- `show interfaces` – display the status of the interfaces.
- `show diagnostic log` – display the diagnostic log.
- `monitor the router` – HTML access to the command line interface.
- `connectivity test` – ping the nameserver.
- `platform` – platform utilities. Send comments to cs-html (below).
- `VLAN Configuration WebTool` – Send comments to cs-html (below).

- `show tech-support` – display information commonly needed by tech support.

Help resources

1. [CCO](http://www.cisco.com) – Cisco Connection Online, including the Technical Assistance Center (TAC).
2. tac@cisco.com – e-mail the TAC.
3. 1-800-553-2447 or +1-408-526-7209 – phone the TAC.
4. cs-html@cisco.com – e-mail the HTML interface development group.

Note

You must use a Java enabled Web browser to access the 12E/2FE VLAN Configuration WebTool from your router’s home page.

All Cisco routers running Cisco IOS Release 11.0 or later have a home page. If your router has an installed PA-12E/2FE port adapter, you can access the 12E/2FE VLAN Configuration WebTool from the router’s home page.
Configuring Transparent Bridging

Tuning the Transparently Bridged Network

The following sections describe how to configure features that enhance network performance by reducing the number of packets that traverse the backbone network:

- Configuring Circuit Groups, page 37
- Configuring Constrained Multicast Flooding, page 38

Configuring Circuit Groups

In the process of loop elimination, the spanning-tree algorithm always blocks all but one of a group of parallel network segments between two bridges. When those segments are of limited bandwidth, it might be preferable to augment the aggregate bandwidth between two bridges by forwarding across multiple parallel network segments. Circuit groups can be used to group multiple parallel network segments between two bridges to distribute the load while still maintaining a loop-free spanning tree.

Deterministic load distribution distributes traffic between two bridges across multiple parallel network segments grouped together into a single circuit group. As long as one port of the circuit group is in the forwarding state, all ports in that circuit group will participate in load distribution regardless of their spanning-tree port states. This process guarantees that the computed spanning tree is still adaptive to any topology change and the load is distributed among the multiple segments. Deterministic load distribution guarantees packet ordering between source-destination pairs, and always forwards traffic for a source-destination pair on the same segment in a circuit group for a given circuit-group configuration.

You should configure all parallel network segments between two bridges into a single circuit group. Deterministic load distribution across a circuit group adjusts dynamically to the addition or deletion of network segments, and to interface state changes.

If a circuit-group port goes down and up as a result of configuration or a line protocol change, the spanning-tree algorithm will bypass port transition and will time out necessary timers to force the eligible circuit-group ports to enter the forwarding state. This avoids the long disruption time caused by spanning-tree topology recomputation and therefore resumes the load distribution as quickly as possible.

To tune the transparently bridged network, perform the following tasks:

1. Define a circuit group.
2. Optionally, configure a transmission pause interval.
3. Modify the load distribution strategy.
To define a circuit group, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# bridge-group bridge-group circuit-group circuit-group</code></td>
<td>Adds a serial interface to a circuit group.</td>
</tr>
</tbody>
</table>

For circuit groups of mixed-bandwidth serial interfaces, it might be necessary to configure a pause interval during which the sending of data is suspended to avoid ordering packets incorrectly following changes in the composition of a circuit group. Changes in the composition of a circuit group include the addition or deletion of an interface and interface state changes. To configure a transmission pause interval, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# bridge bridge-group circuit-group circuit-group pause milliseconds</code></td>
<td>Configures a transmission pause interval.</td>
</tr>
</tbody>
</table>

For applications that depend on the ordering of mixed unicast and multicast traffic from a given source, load distribution must be based upon the source MAC address only. To modify the load distribution strategy to accommodate such applications, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# bridge bridge-group circuit-group circuit-group source-based</code></td>
<td>Distributes base load on the source MAC address only.</td>
</tr>
</tbody>
</table>

For an example of how to configure a circuit group, see the “Complex Transparent Bridging Network Topology Example” section later in this chapter.

Configuring Constrained Multicast Flooding

In a transparent bridge, multicast packets are flooded on all forwarding ports on the bridge. For some protocols, it is possible for a bridge to determine the membership of multicast groups, and constrain the flooding of multicasts to a subset of the forwarding ports. Constrained multicast flooding enables a bridge to determine group membership of IP multicast groups dynamically and flood multicast packets only on those ports that reach group members.

To enable constrained multicast flooding, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# bridge cmf</code></td>
<td>Enables constrained multicast flooding for all configured bridge groups.</td>
</tr>
</tbody>
</table>
Monitoring and Maintaining the Transparent Bridge Network

To monitor and maintain activity on the bridged network, use one of the following commands in privileged EXEC mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# clear bridge bridge-group</td>
<td>Removes any learned entries from the forwarding database and clears the transmit and receive counts for any statically configured forwarding entries.</td>
</tr>
<tr>
<td>Router# clear bridge [bridge-group] multicast [router-ports</td>
<td>groups</td>
</tr>
<tr>
<td>Router# clear sse</td>
<td>Reinitializes the Silicon Switch Processor (SSP) on the Cisco 7000 series router.</td>
</tr>
<tr>
<td>Router# clear vlan statistics</td>
<td>Removes VLAN statistics from any statically or system-configured entries.</td>
</tr>
<tr>
<td>Router# show bridge [bridge-group] [interface]</td>
<td>Displays details of the bridge group.</td>
</tr>
<tr>
<td>Router# show bridge [bridge-group] [interface] [address</td>
<td>mask] [verbose]</td>
</tr>
<tr>
<td>Router# show bridge [bridge-group] circuit-group [circuit-group] [src-mac-address</td>
<td>dst-mac-address]</td>
</tr>
<tr>
<td>Router# show bridge [bridge-group] multicast [router-ports</td>
<td>groups] [group-address]</td>
</tr>
<tr>
<td>Router# show bridge group [verbose]</td>
<td>Displays information about configured bridge groups.</td>
</tr>
<tr>
<td>Router# show bridge vlan</td>
<td>Displays IEEE 802.10 transparently bridged VLAN configuration.</td>
</tr>
<tr>
<td>Router# show interfaces crb</td>
<td>Displays the configuration for each interface that has been configured for routing or bridging.</td>
</tr>
<tr>
<td>Router# show interfaces [interface] irb</td>
<td>Displays the protocols that can be routed or bridged for the specified interface.</td>
</tr>
<tr>
<td>Router# show span</td>
<td>Displays the spanning-tree topology known to the router, including whether or not filtering is in effect.</td>
</tr>
<tr>
<td>Router# show sse summary</td>
<td>Displays a summary of SSP statistics.</td>
</tr>
<tr>
<td>Router# show subscriber-policy policy</td>
<td>Displays the details of a subscriber policy.</td>
</tr>
<tr>
<td>Router# show vlans</td>
<td>Displays VLAN subinterfaces.</td>
</tr>
</tbody>
</table>

Transparent and SRT Bridging Configuration Examples

The following sections provide example configurations that you can use as a guide to configuring your bridging environment:

- Basic Bridging Example, page 40
- Concurrent Routing and Bridging Example, page 41
- Basic Integrated Routing and Bridging Example, page 42
- Complex Integrated Routing and Bridging Example, page 42
- Integrated Routing and Bridging with Multiple Bridge Groups Example, page 44
- Transparently Bridged VLANs Configuration Example, page 44
- Routing Between VLANs Configuration Example, page 47
- Ethernet-to-FDDI Transparent Bridging Example, page 47
- Ethernet Bridging Example, page 48
- SRT Bridging Example, page 49
- Multicast or Broadcast Packets Bridging Example, page 50
- X.25 Transparent Bridging Example, page 51
- Frame Relay Transparent Bridging Examples, page 52
- Transparent Bridging over Multiprotocol LAPB Example, page 54
- Fast-Switched Transparent Bridging over ATM Example (Cisco 7000), page 54
- Transparent Bridging over DDR Examples, page 55
- Fast-Switched Transparent Bridging over SMDS Example, page 55
- Complex Transparent Bridging Network Topology Example, page 56
- Fast Ethernet Subscriber Port, Frame Relay Trunk Example, page 59
- ATM Subscriber Ports, ATM Trunk Example, page 59
- Configuration of Transparent Bridging for PA-12E/2FE Port Adapter Example, page 61
- Configuration of IRB for PA-12E/2FE Port Adapter Example, page 61

Basic Bridging Example

Figure 6 is an example of a basic bridging configuration. The system has two Ethernets, one Token Ring, one FDDI port, and one serial line. IP traffic is routed and everything else is bridged. The Digital-compatible bridging algorithm with default parameters is being used.

![Figure 6 Example of Basic Bridging](image)

The configuration file for the router in Figure 6 is as follows:

```plaintext
interface tokenring 0
  ip address 131.108.1.1 255.255.255.0
  bridge-group 1

interface fddi 0
  ip address 131.108.2.1 255.255.255.0
  bridge-group 1
```
Concurrent Routing and Bridging Example

In the following example DECnet and IPX are concurrently routed and bridged. IP and AppleTalk are routed on all interfaces, DECnet and IP are routed on all interfaces not in the bridge group, and all protocols other than IP and AppleTalk are bridged on all interfaces in the bridge group:

```plaintext
! interface Ethernet0/0
  ip address 172.19.160.65 255.255.255.0
  ipx network 160
  appletalk address 160.65
  decnet cost 7
!
interface Ethernet0/1
  ip address 172.19.161.65 255.255.255.0
  ipx network 161
  appletalk address 161.65
  decnet cost 7
!
interface Ethernet0/2
  ip address 172.19.162.65 255.255.255.0
  appletalk address 162.65
  bridge-group 1
!
interface Ethernet0/3
  ip address 172.19.14.65 255.255.255.0
  appletalk address 14.65
  appletalk zone california
  bridge-group 1
!
router igrp 666
network 172.19.0.0
!
!
bridge crb
bridge 1 protocol ieee
bridge 1 route appletalk
bridge 1 route ip
!
```
Basic Integrated Routing and Bridging Example

Figure 7 is an example of integrated routing and bridging that uses Bridge-Group 1 to bridge and route IP. The router has three bridged Ethernet interfaces and one routed Ethernet interface.

The following example shows the relevant portions of the configuration for the router in Figure 7:

```conf
interface Ethernet 0
  bridge-group 1
!
interface Ethernet 1
  bridge-group 1
!
interface Ethernet 2
  bridge-group 1
!
interface Ethernet 3
  ip address 5.0.0.1 255.0.0.0
!
interface BVI 1
  ip address 3.0.0.1 255.0.0.0
!
bridge irb
bridge 1 protocol ip
bridge 1 route ip
```

Complex Integrated Routing and Bridging Example

Figure 8 is a more complex example of integrated routing and bridging, where bridge group 1 is used to route IP traffic, bridge IPX traffic, and bridge and route AppleTalk traffic.
The following example shows the relevant portions of the configuration for the router:

```
appletalk routing
!
interface Ethernet 1
    ip address 5.0.0.1 255.0.0.0
    appletalk cable-range 35-35 35.1
    appletalk zone Engineering
!
interface Ethernet 2
    ip address 3.0.0.1 255.0.0.0
    bridge-group 1
!
interface Ethernet 3
    ip address 7.0.0.1 255.0.0.0
    bridge-group 1
!
interface BVI 1
    no ip address
    appletalk cable-range 33-33 33.1
    appletalk zone Accounting
!
bridge irb
bridge 1 protocol ieee
bridge 1 route appletalk
bridge 1 route ip
no bridge 1 bridge ip
```
Integrated Routing and Bridging with Multiple Bridge Groups Example

In the example illustrated in Figure 9, integrated routing and bridging is used to route and bridge IP between two bridge groups.

![Figure 9 Integrated Routing and Bridging with Multiple Bridge Groups](image)

The following example shows the relevant portions of the configuration for the router in Figure 9:

```bash
interface Ethernet 1
  bridge-group 1

interface Ethernet 2
  bridge-group 1

interface Ethernet 3
  bridge-group 2

interface Ethernet 4
  bridge-group 2

interface BVI 1
  ip address 3.0.0.1 255.0.0.0

interface BVI 2
  ip address 5.0.0.1 255.0.0.0

bridge irb
bridge 1 protocol ieee
bridge 1 route ip
bridge 2 protocol ieee
bridge 2 route ip
```

Transparently Bridged VLANs Configuration Example

The following example shows the configuration for the topology in Figure 3. The “striped” VLAN is identified as security association identifier 45; the “dot” VLAN is identified as security association identifier 1008; the “sliced” VLAN is identified as security association identifier 4321. Note that the assignment of bridge group, interface, and subinterface numbers is of local significance only. You must coordinate only the configuration of a common Security Association Identifier across bridges.

Router One

```bash
bridge 18 protocol ieee
interface ethernet 0/1
  bridge-group 18

interface ethernet 0/2
  bridge-group 18
```
! interface ethernet 0/3
 bridge-group 18
!
interface fddi 4/0.8
 encapsulation sde 45
 bridge-group 18
!
 bridge 54 protocol ieee
interface ethernet 1/1
 bridge-group 54
!
 interface ethernet 1/2
 bridge-group 54
!
 interface ethernet 1/3
 bridge-group 54
!
interface fddi 4/0.13
 encapsulation sde 1008
 bridge-group 54
!
 bridge 3 protocol ieee
!
 interface ethernet 2/1
 bridge-group 3
!
 interface ethernet 2/2
 bridge-group 3
!
 interface ethernet 2/3
 bridge-group 3
!
interface fddi 4/0.30
 encapsulation sde 4321
 bridge-group 3

Router Two
!
 bridge 7 protocol ieee
interface ethernet 0/1
 bridge-group 7
!
 interface ethernet 0/2
 bridge-group 7

interface ethernet 0/3
 bridge-group 7
!
 interface ethernet 0/4
 bridge-group 7
!
interface fddi 2/0.11
 encapsulation sde 4321
 bridge-group 7
!

! bridge 8 protocol ieee
interface ethernet 1/1
 bridge-group 8
!
 interface ethernet 1/2
bridge-group 8
!
interface ethernet 1/3
 bridge-group 8
!
interface ethernet 1/4
 bridge-group 8
!
interface fddi 2/0.14
 encapsulation sde 1008
 bridge-group 8

Router Three
bridge 1 protocol ieee
interface ethernet 0/1
 bridge-group 1
!
interface ethernet 0/2
 bridge-group 1
!
interface ethernet 0/3
 bridge-group 1
!
interface fddi 2/0.5
 encapsulation sde 4321
 bridge-group 1
!
bridge 6 protocol ieee
interface ethernet 1/1
 bridge-group 6
!
interface ethernet 1/2
 bridge-group 6
!
interface ethernet 1/3
 bridge-group 6
!
interface fddi 2/0.3
 encapsulation sde 45
 bridge-group 6
Routing Between VLANs Configuration Example

The following example shows the configuration for the topology shown in Figure 4. IP traffic is routed to and from switched VLAN domains 300, 400, and 600 to any other IP routing interface, as is IPX for VLANs 500 and 600. Because Fast Ethernet interfaces 2/1.20 and 3/1.40 are combined in bridge group 50, all other nonrouted traffic is bridged between these two subinterfaces.

interface FDDI 1/0.10
 ip address 131.108.1.1 255.255.255.0
 encaps sde 300
!
interface Fast Ethernet 2/1.20.
 ip address 171.69.2.2 255.255.255.0
 encaps isl 400
 bridge-group 50
!
interface Fast Ethernet 2/1.30
 ipx network 1000
 encaps isl 500
!
interface Fast Ethernet 3/1.40
 ip address 198.92.3.3 255.255.255.0
 ipx network 1001
 encaps isl 600
 bridge-group 50
!
bridge 50 protocol ieee

Ethernet-to-FDDI Transparent Bridging Example

The following configuration example shows the configuration commands that enable transparent bridging between Ethernet and FDDI interfaces. Transparent bridging on an FDDI interface is allowed only on the CSC-C2FCIT interface card.

hostname tester
!
 buffers small min-free 20
 buffers middle min-free 10
 buffers big min-free 5
!
 no ip routing
!
 interface ethernet 0
 ip address 131.108.7.207 255.255.255.0
 no ip route-cache
 bridge-group 1
!
 interface ethernet 2
 ip address 131.108.7.208 255.255.255.0
 no ip route-cache
 bridge-group 1
!
 interface Fddi 0
 ip address 131.108.7.209 255.255.255.0
 no ip route-cache
 no keepalive
 bridge-group 1
!
 bridge 1 protocol ieee
If the other side of the FDDI ring were an FDDI interface running in encapsulation mode rather than in transparent mode, the following additional configuration commands would be needed:

```
interface fddi 0
fddi encapsulate
```

Ethernet Bridging Example

In the following example, two buildings have networks that must be connected via a T1 link. For the most part, the systems in each building use either IP or DECnet, and therefore, should be routed. There are some systems in each building that must communicate, but they can use only a proprietary protocol.

The example places two Ethernets in each building. One of the Ethernets is attached to the hosts that use a proprietary protocol, and the other is used to attach to the rest of the building network running IP and DECnet. The Ethernet attached to the hosts using a proprietary protocol is enabled for bridging to the serial line and to the other building.

Figure 10 shows an example configuration. The interfaces marked with an asterisk (*) are configured as part of spanning tree 1. The routers are configured to route IP and DECnet. This configuration permits hosts on any Ethernet to communicate with hosts on any other Ethernet using IP or DECnet. In addition, hosts on Ethernet 1 in either building can communicate using protocols not supported for routing.

Figure 10 Ethernet Bridging Configuration Example

Router/Bridge in Building 1

The configuration file for the router in Building 1 would be as follows. Note that no bridging takes place over Ethernet 0. Both IP and DECnet routing are enabled on all interfaces.

```
decnet address 3.34
interface ethernet 0
  ip address 128.88.1.6 255.255.255.0
decnet cost 10
!interface serial 0
  ip address 128.88.2.1 255.255.255.0
  bridge-group 1
decnet cost 10
!interface ethernet 1
  ip address 128.88.3.1 255.255.255.0
  bridge-group 1
decnet cost 10
!
bridge 1 protocol dec
```
Router/Bridge in Building 2

The configuration file for the router in Building 2 is similar to Building 1:

```
decnet address 3.56
!
interface ethernet 0
    ip address 128.88.11.9 255.255.255.0
    decnet cost 10
!
interface serial 0
    ip address 128.88.2.2 255.255.255.0
    bridge-group 1
    decnet cost 10
!
interface ethernet 1
    ip address 128.88.16.8 255.255.255.0
    bridge-group 1
    decnet cost 10
!
bridge 1 protocol dec
```

SRT Bridging Example

In Figure 11, a Token Ring and an Ethernet at a remote sales site in New York City must be configured to pass unroutable bridged traffic across a satellite link to the backbone Token Ring at the corporate headquarters in Thule, Greenland. IP is the only routed protocol. They are running the IEEE Spanning Tree Protocol to comply with the SRT bridging standard.

If there were source-routed traffic to bridge, the `source-bridge` command would also be used to configure source routing.

Figure 11 Network Configuration Example

Configuration for the New York City Router

```
interface tokenring 0
```
Multicast or Broadcast Packets Bridging Example

When filtering specific MAC destination addresses, allow for multicast or broadcast packets that are required by the bridged network protocols.

Assume you are bridging IP in your network as illustrated in Figure 12.

Figure 12
Network Demonstrating Output Address List Filtering

The MAC address of Host A is 0800.0907.0207, and the MAC address of Host B is 0260.8c34.0864. The following configuration would work as expected, because input addresses work on the source address on the incoming interface:

```
access-list 700 permit 0260.8c34.0864 0000.0000.0000
access-list 700 deny 0000.0000.0000 FFFF.FFFF.FFFF
interface ethernet 0
  bridge-group 1 input-address-list 700
```

However, the following configuration might work initially but will eventually fail. The failure occurs because the configuration does not allow for an ARP broadcast with a destination address of FFFF.FFFF.FFFF, even though the destination address on the output interface is correct:

```
access-list 700 permit 0260.8c34.0864 0000.0000.0000
access-list 700 deny 0000.0000.0000 FFFF.FFFF.FFFF
interface ethernet 0
  bridge-group 1 output-address-list 700
```
The correct access list would be as follows:

```plaintext
access-list 700 permit 0260.8c34.0864 0000.0000.0000
access-list 700 permit FFFF.FFFF.FFFF 0000.0000.0000
access-list 700 deny 0000.0000.0000 FFFF.FFFF.FFFF
interface ethernet 0
  bridge-group 1 output-address-list 700
```

X.25 Transparent Bridging Example

Figure 13 is an example configuration illustrating three bridges connected to each other through an X.25 network.

Figure 13 X.25 Bridging Examples

Following are the configuration commands for each of the bridges depicted in Figure 13:

Configuration for Bridge 1

```plaintext
interface ethernet 2
  bridge-group 5
  ip address 128.88.11.9 255.255.255.0
!
interface serial 0
  encapsulation x25
  x25 address 31370019027
  bridge-group 5
  x25 map bridge 31370019134 broadcast
  x25 map bridge 31370019565 broadcast
!
  bridge 5 protocol ieee
```

Configuration for Bridge 2

```plaintext
interface serial 1
  encapsulation x25
  x25 address 31370019134
  bridge-group 5
  x25 map bridge 31370019027 broadcast
  x25 map bridge 31370019565 broadcast
!
  bridge 5 protocol ieee
```

Configuration for Bridge 3

```plaintext
interface serial 0
  encapsulation x25
  x25 address 31370019565
  bridge-group 5
  x25 map bridge 31370019027 broadcast
```
Frame Relay Transparent Bridging Examples

Figure 14 illustrates three bridges connected to each other through a Frame Relay network.

Bridging in a Frame Relay Network with No Multicasts

The Frame Relay bridging software uses the same spanning-tree algorithm as the other bridging functions, but allows packets to be encapsulated for sending across a Frame Relay network. The command specifies IP-to-DLCI address mapping and maintains a table of both the Ethernet and DLCIs. Following are the configuration commands for each of the bridges in a network that does not support a multicast facility:

Configuration for Bridge 1

```
interface ethernet 2
  bridge-group 5
  ip address 128.88.11.9 255.255.255.0

interface serial 0
  encapsulation frame-relay
  bridge-group 5
  frame-relay map bridge 134 broadcast
  frame-relay map bridge 565 broadcast

bridge 5 protocol ieee
```

Configuration for Bridge 2

```
interface serial 1
  encapsulation frame-relay
  bridge-group 5
  frame-relay map bridge 27 broadcast
  frame-relay map bridge 565 broadcast

bridge 5 protocol ieee
```

Configuration for Bridge 3

```
interface serial 0
  encapsulation frame-relay
  bridge-group 5
```
frame-relay map bridge 27 broadcast
frame-relay map bridge 134 broadcast
!
bridge 5 protocol ieee

Bridging in a Frame Relay Network with Multicasts

The multicast facility is used to learn about the other bridges on the network, eliminating the need for the frame-relay map commands.

Following are the configuration commands for each of the bridges in a network that supports a multicast facility:

Configuration for Bridge 1

```
interface ethernet 2
  bridge-group 5
  ip address 128.88.11.9 255.255.255.0
! interface serial 0
  encapsulation frame-relay
  bridge-group 5
!
bridge 5 protocol ieee
```

Configuration for Bridge 2

```
interface serial 1
  encapsulation frame-relay
  bridge-group 5
!
bridge 5 protocol ieee
```

Configuration for Bridge 3

```
interface serial 0
  encapsulation frame-relay
  bridge-group 5
!
bridge 5 protocol ieee
```
Transparent Bridging over Multiprotocol LAPB Example

The following example illustrates a router configured for transparent bridging over multiprotocol LAPB encapsulation:

```plaintext
! no ip routing
!
interface ethernet 1
  no ip address
  no mop enabled
  bridge-group 1
!
interface serial 0
  no ip address
  encapsulation lapb multi
  bridge-group 1
!
bridge 1 protocol ieee
```

Fast-Switched Transparent Bridging over ATM Example (Cisco 7000)

The following configuration example enables fast-switched transparent bridging over ATM:

```plaintext
interface atm 4/0
  ip address 1.1.1.1 255.0.0.0
  atm pvc 1 1 1 aal5snap
  atm pvc 2 2 2 aal5snap
  atm pvc 3 3 3 aal5snap
  bridge-group 1
!
bridge 1 protocol dec
```
Transparent Bridging over DDR Examples

The following two examples differ only in the packets that cause calls to be placed. The first example specifies by protocol (any bridge packet is permitted to cause a call to be made); the second example allows a finer granularity by specifying the Ethernet type codes of bridge packets.

The first example configures the serial 1 interface for DDR bridging. Any bridge packet is permitted to cause a call to be placed.

```plaintext
no ip routing
!
interface Serial1
  no ip address
  encapsulation ppp
dialer in-band
dialer enable-timeout 3
dialer map bridge name urk broadcast 8985
dialer hold-queue 10
dialer-group 1
  ppp authentication chap
  bridge-group 1
  pulse-time 1
!
dialer-list 1 protocol bridge permit
  bridge 1 protocol ieee
  bridge 1 hello 10
```

The second example also configures the serial 1 interface for DDR bridging. However, this example includes an `access-list` command that specifies the Ethernet type codes that can cause calls to be placed and a `dialer list protocol list` command that refers to the specified access list.

```plaintext
no ip routing
!
interface Serial1
  no ip address
  encapsulation ppp
dialer in-band
dialer enable-timeout 3
dialer map bridge name urk broadcast 8985
dialer hold-queue 10
dialer-group 1
  ppp authentication chap
  bridge-group 1
  pulse-time 1
!
access-list 200 permit 0x0800 0xFFF8
!
dialer-list 1 protocol bridge list 200
  bridge 1 protocol ieee
  bridge 1 hello 10
```

Fast-Switched Transparent Bridging over SMDS Example

The following configuration example enables fast-switched transparent bridging over SMDS:

```plaintext
interface serial 0
  encapsulation smds
  bridge-group 1
  smds multicast bridge c141.5797.1313.ffff
```
Complex Transparent Bridging Network Topology Example

Figure 15 shows a network topology made up of four bridged subnetworks. Each bridged subnetwork is defined by the scope of a spanning tree. However, the scope of each spanning tree is not shown in detail because it is unnecessary for purposes of this discussion. Instead, it is shown by a half cloud labeled “To other parts of BSN.”

For proper bridging operation, the bridged subnetworks cannot have connections between them, but they can be connected to the same backbone. In this example, three of the four bridged subnetworks are connected to the FDDI backbone and each belongs to a separate domain.

Domains used in this topology allow the bridged subnetworks to be independent of one another while still bridging traffic onto the backbone destined for other connected bridged subnetworks. Domains can be used in this manner only if the bridged subnetworks have a single point of attachment to one another. In this case, the connection to the FDDI backbone is that single point of attachment.
Each router on which a domain is configured and that has a single point of attachment to the other bridged subnetworks, checks whether a BPDU on the backbone is its own. If the BPDU does not belong to the bridged subnetwork, the Cisco IOS software ignores the BPDU.

Separate bridged subnetworks, as in this example, allow spanning-tree reconfiguration of individual bridged subnetworks without disrupting bridging among the other bridged subnetworks.

Note
To get spanning-tree information by bridge group, use the `show span` command. Included in this information is the root bridge of the spanning tree. The root bridge for each spanning tree can be any router in the spanning tree.

The routers in this network are configured for bridging and demonstrate some of the bridging features available.

Configuration for Router A

Router A demonstrates multiple bridge groups in one router for bridged traffic separation.

In Router A, the Token Ring interfaces are bridged together entirely independently of the other bridged interfaces in the router and belong to bridge group 1. Bridge group 1 does not use a bridge domain because the interfaces are bridged independently of other bridged subnetworks in the network topology and it has no connection to the FDDI backbone.

Also in Router A, the Ethernet interfaces belong to bridge group 3. Bridge group 3 has a connection to the FDDI backbone and has a domain defined for it so that it can ignore BPDUs for other bridged subnetworks.

```
interface ethernet 0
  bridge-group 3
!
interface ethernet 1
  bridge-group 3
!
interface ethernet 2
  bridge-group 3
!
interface ethernet 3
  bridge-group 3
!
interface fddi 0
  bridge-group 3
!
interface tokenring 1
  bridge-group 1
!
interface tokenring 2
  bridge-group 1
!
bridge 1 protocol ieee
bridge 3 domain 1
bridge 3 protocol ieee
```
Configuration for Router B

Router B demonstrates a simple bridge configuration. It is connected to the FDDI backbone and has domain 2 defined. As such it can bridge traffic with the other FDDI-connected BSNs. Note that bridge group 1 has no relationship to bridge group 1 in Router A; bridge groups are an organization internal to each router.

```
interface ethernet 1
  bridge-group 1
!
interface ethernet 2
  bridge-group 1
!
interface fddi 0
  bridge-group 1
!
bridge 1 domain 2
bridge 1 protocol ieee
```

Configuration for Router C

Router C and Router D combine to demonstrate load balancing by means of circuit groups. Circuit groups are used to load balance across multiple parallel serial lines between a pair of routers. The router on each end of the serial lines must have a circuit group defined. The circuit group number can be the same or can be different. In this example, they are different.

Router C and Router D are configured with the same domain, because they must understand one another’s BPDUs. If they were configured with separate domains, Router D would ignore Router C’s BPDUs and vice versa.

```
interface fddi 0
  bridge-group 2
!
interface serial 0
  bridge-group 2
  bridge-group 2 circuit-group 7
!
interface serial 1
  bridge-group 2
  bridge-group 2 circuit-group 7
!
interface serial 2
  bridge-group 2
  bridge-group 2 circuit-group 7
!
bridge 2 domain 3
bridge 2 protocol ieee
```

Configuration for Router D

```
interface ethernet 4
  bridge-group 5
!
interface ethernet 5
  bridge-group 5
!
interface serial 0
  bridge-group 5
  bridge-group 5 circuit-group 4
!
interface serial 1
  bridge-group 5
  bridge-group 5 circuit-group 4
!```
interface serial 2
  bridge-group 5
  bridge-group 5 circuit-group 4
!
bridge 5 domain 3
bridge 5 protocol ieee

Fast Ethernet Subscriber Port, Frame Relay Trunk Example

The following example uses the Fast Ethernet subinterface as the subscriber port and Frame Relay as the trunk:

bridge 1 protocol ieee

# Form a subscriber bridge group using policy 1
# bridge 1 subscriber-policy 1
bridge 1 protocol ieee
interface fast0.1
encapsulation isl 1
#
# Put fast0.1 into subscriber group 1
# bridge-group 1
interface fast0.2
encapsulation isl 2
#
# put fast0.2 into subscriber group 1
# bridge-group 1
interface serial0
encapsulation frame-relay
int s0.1 point-to-point
#
# Use PVC 155 as the signal channel for setting up connections with the access-server
# frame-relay interface-dlci 155
#
# Set the trunk to go upstream
# bridge-group 1 trunk

ATM Subscriber Ports, ATM Trunk Example

The following example uses ATM subinterfaces as the subscriber ports and the ATM as the trunk:

bridge 1 protocol ieee
#
# Use subscriber policy 3
# bridge 1 subscriber-policy 3
#
# Change the ARP behavior from permit to deny
# subscriber-policy 3 arp deny
#
# Change the multicast from permit to deny
# subscriber-policy 3 multicast deny
int atm0
int atm0.1 point-to-point
#
# Use AAL5 SNAP encapsulation
#
atm pvc 1 0 101 aal5snap
bridge-group 1
int atm0.2
#
# Use AAL5 SNAP encapsulation
#
atm pvc 2 0 102 aal5snap
bridge-group 1
#
# Configure ATM trunk port
#
int atm1.1
#
# Use AAL5 SNAP encapsulation
#
atm pvc 1 0 101 aal5snap
#
# Specify trunk
#
bridge-group 1 trunk
Configuration of Transparent Bridging for PA-12E/2FE Port Adapter Example

Following is an example of a configuration for the PA-12E/2FE port adapter interface. Bridge groups 10, 20, and 30 use IEEE Spanning Tree Protocol. The first four interfaces of a PA-12E/2EF port adapter in port adapter slot 3 use bridge groups 10 and 20. Each interface is assigned to a bridge group and the shutdown state is set to up. The PA-12E/2FE port adapter supports store-and-forward or cut-through switching technology between interfaces within the same bridge group; store-and-forward is the default. In the following example, the **cut-through** command is used to configure each interface for cut-through switching of received and sent data.

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# bridge 10 protocol ieee
Router(config)# bridge 20 protocol ieee
Router(config)# bridge 30 protocol ieee

Router(config)# int fastethernet 3/0
Router(config-if)# bridge-group 10
Router(config-if)# cut-through
Router(config-if)# no shutdown
Router(config-if)# exit
Router(config)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Fast Ethernet3/0, changed state to up
%LINK-3-UPDOWN: Interface Fast Ethernet3/0, changed state to up

Router(config)# int fastethernet 3/1
Router(config-if)# bridge-group 10
Router(config-if)# cut-through
Router(config-if)# no shutdown
Router(config-if)# exit
Router(config)#
%LINEPROTO-5-5-UPDOWN: Line protocol on Interface Fast Ethernet3/1, changed state to up
%LINK-3-UPDOWN: Interface Fast Ethernet3/1, changed state to up

Router(config)# int ethernet 3/2
Router(config-if)# bridge-group 20
Router(config-if)# cut-through
Router(config-if)# no shutdown
Router(config-if)# exit
Router(config)#
%LINEPROTO-5-5-UPDOWN: Line protocol on Interface Ethernet3/2, changed state to up
%LINK-3-5-UPDOWN: Interface Ethernet3/2, changed state to up

Router(config)# int ethernet 3/3
Router(config-if)# bridge-group 20
Router(config-if)# cut-through
Router(config-if)# no shutdown
Router(config-if)# exit
Router(config)#
%LINEPROTO-5-5-UPDOWN: Line protocol on Interface Ethernet3/3, changed state to up
%LINK-3-5-UPDOWN: Interface Ethernet3/3, changed state to up

Configuration of IRB for PA-12E/2FE Port Adapter Example

The following example shows integrated routing and bridging enabled on the bridge groups. Bridge group 10 is assigned an IP address and subnet mask and the shutdown state is changed to up. Bridge group 10 is configured to route IP.
Router(config)# bridge irb
Router(config)# interface bvi 10
Router(config-if)# ip address 1.15.1 255.255.255.0
Router(config-if)# no shutdown
Router(config-if)# exit
Router(config)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface BVI10, changed state to up

Router(config)# bridge 10 route ip
Router(config)# exit
Router#
The Bridge Control Protocol (BCP) Support feature provides support for BCP to Cisco devices, as described in RFC 3518. The Cisco implementation of BCP is a VLAN infrastructure that does not require the use of subinterfaces to group Ethernet 802.1Q trunks and the corresponding PPP links. This approach enables users to process VLAN encapsulated packets without having to configure subinterfaces for every possible VLAN configuration.

**Feature History for the BCP Support feature**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(2)T</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.3(4)T</td>
<td>This feature was modified to enhance the performance of the bridging of Ethernet packets over PPP-encapsulated interfaces. The <strong>ppp bcp tagged-frame</strong> command was introduced to provide the option to either enable or disable the negotiation of IEEE 802.1Q-tagged packets.</td>
</tr>
</tbody>
</table>

**Finding Support Information for Platforms and Cisco IOS Software Images**

Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at [http://www.cisco.com/go/fn](http://www.cisco.com/go/fn). You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

**Contents**

- Restrictions for BCP Support, page 2
- Information About BCP Support, page 2
- How to Bridge a Range of VLAN IDs, page 2
- Configuration Examples for BCP Support, page 5
- Additional References, page 6
- Command Reference, page 7
Restrictions for BCP Support

Each individual VLAN ID can be configured only once, as either part of a single VLAN ID range or on a subinterface.

Information About BCP Support

To configure the BCP Support feature, you must understand the following concept:

- VLAN ID Ranges, page 2

VLAN ID Ranges

In the traditional, subinterface-based approach to VLANs, a subinterface is created for every necessary VLAN ID, and then the application or protocol attributes are configured on every subinterface. In the VLAN range approach, a single VLAN ID range is created, and the application or protocol attributes are configured on the range as a whole.

How to Bridge a Range of VLAN IDs

This section contains the following procedures:

- Configuring a Range of VLAN IDs, page 2
- Enabling the Negotiation of IEEE 802.1Q-Tagged Packets, page 4

Configuring a Range of VLAN IDs

In this task, you create a range of VLAN IDs and then assign the VLAN ID range to the serial interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. no ip routing
4. bridge number protocol ieee
5. interface type number
6. vlan-range dot1q start-range end-range [native]
7. description description
8. bridge-group number
9. exit
10. interface type number
11. encapsulation ppp
12. bridge-group number
## Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1    | `enable`          | Enters privileged EXEC mode.  
  
  **Example:**  
  ```
 Router(config)# enable
  ```  
  - Enter your password if prompted. |
| 2    | `configure terminal` | Enters global configuration mode.  
  
  **Example:**  
  ```
 Router(config)# configure terminal
  ``` |
| 3    | `no ip routing`   | Disables all routing.  
  
  **Example:**  
  ```
 Router(config)# no ip routing
  ``` |
| 4    | `bridge number protocol ieee` | Enables bridge and spanning-tree protocols.  
  
  **Example:**  
  ```
 Router(config)# bridge 1 protocol ieee
  ``` |
| 5    | `interface type number` | Enters interface configuration mode.  
  
  **Example:**  
  ```
 Router(config)# interface ethernet 0
  ```  
  - This is the Ethernet interface that is connected to the 802.1Q trunk. Both the Ethernet interface and the serial interface must be assigned to the same bridge group. |
| 6    | `vlan-range dot1q start-range end-range native` | Configures the range of VLAN IDs the interface is to bridge and enters VLAN range configuration mode.  
  
  **Example:**  
  ```
 Router(config-if)# vlan-range dot1q 1 99
  ```  
  - Configuring the `native` keyword instructs the interface to bridge untagged (native) packets. |
| 7    | `description description` | (Optional) Describes the VLAN ID range.  
  
  **Example:**  
  ```
 Router(config-if-vlan-range)# description 1 to 99
  ``` |
| 8    | `bridge-group number` | Assigns the VLAN ID range to a bridge group.  
  
  **Example:**  
  ```
 Router(config-if-vlan-range)# bridge-group 1
  ``` |
| 9    | `exit`            | Exits to global configuration mode.  
  
  **Example:**  
  ```
 Router(config-if-vlan-range)# exit
  ``` |
| 10   | `interface type number` | Enters interface configuration mode.  
  
  **Example:**  
  ```
 Router(config)# interface serial 1
  ``` |
How to Bridge a Range of VLAN IDs

Enabling the Negotiation of IEEE 802.1Q-Tagged Packets

In this task, you enable the negotiation of IEEE 802.1Q-tagged packets.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface type number
4. ppp bcp tagged-frame

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface serial 4/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 ppp bcp tagged-frame</td>
<td>Enables the negotiation of IEEE 802.1Q-tagged packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ppp bcp tagged-frame</td>
<td></td>
</tr>
</tbody>
</table>
**Configuration Examples for BCP Support**

This section provides the following configuration examples:

- Bridging a Range of VLAN IDs: Example, page 5
- Bridging a Range of VLAN IDs over Multiple Interfaces: Example, page 5
- Bridging a Range of VLAN IDs from Untagged Packets: Example, page 5
- Enabling the Negotiation of IEEE 802.1Q-Tagged Packets: Example, page 6

**Bridging a Range of VLAN IDs: Example**

The following example bridges tagged 802.1Q packets that have VLAN IDs from 1 to 500. Ingress packets that have VLAN IDs outside of this range are dropped.

```
no ip routing
!
bridge 1 protocol ieee
!
interface ethernet 0
 vlan-range dot1q 1 500
 bridge-group 1
!
interface serial 0
 encapsulation ppp
 bridge-group 1
```

**Bridging a Range of VLAN IDs over Multiple Interfaces: Example**

The following example bridges two ranges of VLAN IDs. Packets with a VLAN ID from 1 to 600 are bridged by serial interface 0, and packets with a VLAN ID from 800 to 4000 are bridged by serial interface 1.

```
no ip routing
!
bridge 1 protocol ieee
bridge 2 protocol ieee
!
interface ethernet 0
 vlan-range dot1q 1 600
 bridge-group 1
 vlan-range dot1q 800 4000
 bridge-group 2
!
interface serial 0
 encapsulation ppp
 bridge-group 1
!
interface serial 1
 encapsulation ppp
 bridge-group 2
```

**Bridging a Range of VLAN IDs from Untagged Packets: Example**

The following example bridges untagged packets with a VLAN ID from 1 to 500:
Enabling the Negotiation of IEEE 802.1Q-Tagged Packets: Example

The following example enables the negotiation of IEEE 802.1Q-tagged packets on serial interface 4/0:

```
interface serial 4/0
ppp bcp tagged-frame
```

Additional References

The following sections provide references related to BCP support:

**RFCs**

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3518</td>
<td><em>Point-to-Point Protocol (PPP) Bridging Control Protocol (BCP)</em></td>
</tr>
<tr>
<td>2878</td>
<td><em>Point-to-Point Protocol (PPP) Bridging Control Protocol (BCP)</em></td>
</tr>
<tr>
<td>1638</td>
<td><em>PPP Bridging Control Protocol (BCP)</em></td>
</tr>
</tbody>
</table>

**Technical Assistance**

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/public/support/tac/home.shtml">http://www.cisco.com/public/support/tac/home.shtml</a></td>
</tr>
</tbody>
</table>
Command Reference


New Commands

- debug tbridge virtual-port
- ppp bcp tagged-frame
- vlan-id dot1q
- vlan-range dot1q

CCDE, CCENT, CCSI, Cisco Eos, Cisco HealthPresence, Cisco IronPort, the Cisco logo, Cisco Nurse Connect, Cisco Pulse, Cisco SensorBase, Cisco StackPower, Cisco StadiumVision, Cisco TelePresence, Cisco Unified Computing System, Cisco WebEx, DCE, Flip Channels, Flip for Good, Flip Mino, Flipshare (Design), Flip Ultra, Flip Video, Flip Video (Design), Instant Broadband, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn, Cisco Capital, Cisco Capital (Design), Cisco-Financed (Stylized), Cisco Store, Flip Gift Card, and One Million Acts of Green are service marks; and Access Registrar, Aironet, AllTouch, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Lumin, Cisco Nexus, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, Continuum, EtherFast, EtherSwitch, Event Center, Explorer, Follow Me Browsing, GainMaker, iLYNX, IOS, iPhone, IronPort, the IronPort logo, Laser Link, LightStream, Linksys, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, PCNow, PIX, PowerKEY, PowerPanels, PowerTV, PowerTV (Design), PowerVu, Prisma, ProConnect, ROSA, SenderBase, SMARTnet, Spectrum Expert, StackWise, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0910R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.
Configuring Remote Source-Route Bridging

This chapter describes how to configure remote source-route bridging (RSRB). For a complete description of the RSRB commands mentioned in this chapter, refer to the “Remote Source-Route Bridging Commands” chapter of the *Cisco IOS Bridging and IBM Networking Command Reference* (Volume 1 of 2). To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter contains the following sections:

- Technology Overview, page 1
- RSRB Configuration Task List, page 4
- RSRB Network Tuning Configuration Task List, page 13
- Monitoring and Maintaining the RSRB Network, page 15
- RSRB Configuration Examples, page 15

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release.

Technology Overview

In contrast to Source-Route Bridging (SRB), which involves bridging between Token Ring media only, RSRB is Cisco’s first technique for connecting Token Ring networks over *non-Token Ring* network segments. (DLSw+ is Cisco’s strategic method for providing this function.)

Cisco’s RSRB software implementation includes the following features:

- Provides for multiple routers separated by non-Token Ring segments. Three options are available:
  - Encapsulate the Token Ring traffic inside IP datagrams passed over a Transmission Control Protocol (TCP) connection between two routers.
  - Use Fast-Sequenced Transport (FST) to transport RSRB packets to their peers without TCP or User Datagram Protocol (UDP) header or processor overhead.
  - Use data link layer encapsulations over a single serial line, Ethernet, Token Ring, or Fiber Distributed Data Interface (FDDI) ring connected between two routers attached to Token Ring networks.
- Provides for configurable limits to the size of the TCP backup queue.

Figure 1 shows an RSRB topology. The virtual ring can extend across any non-Token Ring media supported by RSRB, such as serial, Ethernet, FDDI, and WANs. The type of media you select determines the way you set up RSRB.

**Figure 1  RSRB Topology**

If you bridge across Token Ring media, it is recommended that you do not use RSRB. Use SRB instead. Refer to the chapter “Configuring Source-Route Bridging.”

**Configuration Considerations**

Only use IP encapsulation over a TCP connection within complex meshed networks to support connections between peers that are separated by multiple hops and can potentially use multiple paths, and where performance is not an issue. Use direct encapsulation in point-to-point connections. In a point-to-point configuration, using TCP adds unnecessary processing overhead. Multiple peer types, however, can be combined to in a single router by following the directions for each peer type. For example, for a peer to support both TCP and FST remote-peers, you would need to define both a source-bridge fstpeername and a source-bridge remote-peer command for the local router, using the same local IP address.

FST is fast-switched when it receives or sends frames from Ethernet, Token Ring, or FDDI interfaces. It is also fast-switched when it sends and receives from serial interfaces configured with the High-Level Data Link Control (HDLC) encapsulation. In all other cases, FST is slow-switched.

In cases where FST is fast-switched, in either the Cisco routers configured for FST or in the routers contained within the IP “cloud” between a pair of FST peers, only one path is used at a given time between the two FST peers. A single path greatly decreases the likelihood that frames arrive out of sequence. In the rare cases where frames do arrive out of sequence, the FST code on the receiving peer discards the out-of-order frame. Thus the Token Ring end hosts rarely lose a frame over the FST router cloud, and performance levels remain adequate.

The same conditions are true for any slow-switched topology that provides only a single path (for example, a single X.25 network cloud) between the peers. Similarly, if two slow-switched paths are of very different costs such that one always will be chosen over the other, the chances of having frames received out of sequence are also rare.

However, if two or more slow-switched paths of equal cost exist between the two routers (such as two parallel X.25 networks), the routers alternate in sending packets between the two or more equal-cost paths. This results in a high probability of frames arriving out of sequence at the receiver. In such cases, the FST code disposes of every out-of-sequence packet, leading to a large number of drops. This requires that the end hosts resend frames, greatly reducing overall throughput.
When parallel paths exist, we strongly recommend choosing one as the preferred path. Choose a preferred path by specifying a higher bandwidth for the path that contains the direct connections to the two or more parallel paths on the router.

Do not use FST when the probability exists for frames to lose their order in your network. If you have a network where frames are routinely reordered, it is better to use the TCP protocol for remote source-route bridging. TCP provides the overhead necessary to bring frames back in order on the receiving router. FST, to remain fast, does not provide for such a mechanism, and will discard out-of-order frames.

Logical Link Control, type 2 (LLC2) local acknowledgment can only be enabled with TCP remote peers (as opposed to LAN or direct serial interface remote peers) because the Cisco IOS software needs the reliability of TCP to provide the same reliability that an LLC2 LAN end-to-end connection provides. Therefore, the direct media encapsulation options for the `source-bridge remote-peer` command cannot be used.

If the LLC2 session between the local host and the router terminates on either side of the connection, the other device will be informed to terminate its connection to its local host.

If the TCP queue length of the connection between the two routers reaches 90 percent of its limit, they send Receiver-not-Ready (RNR) messages to the local hosts until the queue limit is reduced to below this limit.

The configuration of the LLC2 parameters for the local Token Ring interfaces can affect overall performance. Refer to the “Configuring LLC2 and SDLC Parameters” chapter for more details about fine-tuning your network through the LLC2 parameters.

---

**Note**

Local acknowledgment for LLC2 is meant only for extreme cases in which communication is not possible otherwise. Because the router must maintain a full LLC2 session, the number of simultaneous sessions it can support before performance degrades depends on the mix of other protocols and their loads.

The routers at each end of the LLC2 session execute the full LLC2 protocol, which can result in some overhead. The decision to turn on local acknowledgment for LLC2 should be based on the speed of the backbone network in relation to the Token Ring speed. For LAN segments separated by slow-speed serial links (for example, 56 kbps), the T1 timer problem could occur more frequently. In such cases, it may be wise to turn on local acknowledgment for LLC2. For LAN segments separated by a FDDI backbone, backbone delays will be minimal; in such cases, local acknowledgment for LLC2 should not be turned on. Speed mismatch between the LAN segments and the backbone network is one criterion to be used in the decision to use local acknowledgment for LLC2.

There are some situations (such as host B failing between the time host A sends data and the time host B receives it) in which host A would behave as if, at the LLC2 layer, data was received when it actually was not, because the device acknowledges that it received data from host A before it confirms that host B can actually receive the data. But because both NetBIOS and SNA have error recovery in situations where an end device goes down, these higher-level protocols will resend any missing or lost data. These transaction request/confirmation protocols exist above LLC2, so they are not affected by tight timers, as is LLC2. They also are transparent to local acknowledgment.

If you are using NetBIOS applications, note that there are two NetBIOS timers—one at the link level and one at the next higher level. Local acknowledgment for LLC2 is designed to solve session timeouts at the link level only. If you are experiencing NetBIOS session timeouts, you have two options:

- Experiment with increasing your NetBIOS timers.
- Avoid using NetBIOS applications on slow serial lines.
In a configuration scenario where RSRB is configured between Router A and Router B and both routers are not routing IP, a Host connected to router A through Token Ring (or other LAN media) has no IP connectivity to router B. This restriction exists because IP datagrams received from the Host by Router A are encapsulated and sent to router B where they can only be de-encapsulated and source-bridged to a tokenring. In this scenario, IP routing is recommended. To enable the Host to reach Router B in this scenario, IP routing should be enabled on Router A’s Token Ring interface to which the Host is attached.

RSRB Configuration Task List

To configure RSRB, perform the tasks in one of the following sections:

- Configuring RSRB Using Direct Encapsulation, page 4
- Configuring RSRB Using IP Encapsulation over an FST Connection, page 6
- Configuring RSRB Using IP Encapsulation over a TCP Connection, page 7
- Configuring RSRB Using TCP and LLC2 Local Acknowledgment, page 8
- Configuring Direct Frame Relay Encapsulation Between RSRB Peers, page 11
- Establishing SAP Prioritization, page 12

See the “RSRB Configuration Examples” section on page 15 for examples.

Configuring RSRB Using Direct Encapsulation

Configuring RSRB using the direct encapsulation method uses an HDLC-like encapsulation to pass frames over a single physical network connection between two routers attached to Token Rings. Use this method when you run source-route bridge traffic over point-to-point, single-hop, serial, or LAN media. Although this method does not have the flexibility of the TCP method, it provides better performance because it involves less overhead. To configure a remote source-route bridge to use a point-to-point serial line or a single Ethernet, or single FDDI hop, perform the tasks in the following sections:

- Defining a Ring Group in RSRB Context, page 4
- Identifying the Remote Peers (Direct Encapsulation), page 5
- Enabling SRB on the Appropriate Interfaces, page 5

Defining a Ring Group in RSRB Context

In our implementation of RSRB, whenever you connect Token Rings using non-Token Ring media, you must treat that non-Token Ring media as a virtual ring by assigning it to a ring group. Every router with which you wish to exchange Token Ring traffic must be a member of this same ring group. These routers are referred to as remote peer bridges. The ring group is therefore made up of interfaces that reside on separate routers.

A ring group must be assigned a ring number that is unique throughout the network. It is possible to assign different interfaces on the same router to different ring groups, if, for example, you plan to administer them as interfaces in separate domains.

To define or remove a ring group, use one of the following commands in global configuration mode, as needed:
Configuring Remote Source-Route Bridging

RSRB Configuration Task List

5: Identifying the Remote Peers (Direct Encapsulation)

The interfaces that you identify as remote peer bridges must be serial, Ethernet, FDDI, or Token Ring interfaces. On a serial interface, you must use HDLC encapsulation. To identify remote-peer bridges, use the following command in global configuration mode:

Command | Purpose
--- | ---
Router(config)# source-bridge ring-group ring-group [virtual-mac-address] | Defines a ring group.

When using direct encapsulation, you do not need to configure a local router ID.

Note

If the medium being used for the direct connection is a multipoint medium (for example, Ethernet or FDDI), then you may have to specify a target Media Access Control (MAC) address for the remote peer. If so, this MAC address should be the MAC address of the interface on the remote peer that is connected to the transport medium (the medium shared by the local and remote peers).

To assign a keepalive interval to the remote source-bridging peer, use the following command in interface configuration mode:

Command | Purpose
--- | ---
Router(config-if)# source-bridge keepalive seconds | Defines the keepalive interval of the remote source-bridging peer.

Enabling SRB on the Appropriate Interfaces

Enable Source-Route Bridging (SRB) on each interface through which SRB traffic will pass. The value you specify in the target ring parameter should be the ring group number you have assigned to the interface. To enable SRB on an interface, use the following command in interface configuration mode:

Command | Purpose
--- | ---
Router(config-if)# source-bridge local-ring bridge-number target-ring | Enables SRB on an interface.
Configuring RSRB Using IP Encapsulation over an FST Connection

Encapsulating the source-route bridged traffic inside IP datagrams passed over an FST connection between two routers is not as fast as using direct encapsulation. It does, however, outperform IP encapsulation over a TCP connection because it has lower overhead. However, this method is fast-switched and does not support any IP-level functions, including local acknowledgment or fragmentation. Nor is it suitable for use in networks that tend to reorder frame sequences.

To configure a remote source-route bridge to use IP encapsulation over an FST connection, you must perform the tasks in the following sections:

- Setting Up an FST Peer Name and Assigning an IP Address, page 6
- Identifying the Remote Peers (FST Connection), page 6
- Enabling SRB on the Appropriate Interfaces, page 7

**Note**
FST encapsulation preserves the dynamic media-independent nature of IP routing to support SNA and NetBIOS applications.

For an example of how to configure RSRB over an FST connection, see the “RSRB Using IP Encapsulation over an FST Connection Example” section on page 18.

Setting Up an FST Peer Name and Assigning an IP Address

To set up an FST peer name and provide an IP address to be used by the local router, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# source-bridge fst-peername local-interface-address</td>
<td>Sets up an FST peer name and provide the local router with an IP address.</td>
</tr>
</tbody>
</table>

In our implementation of RSRB, whenever you connect Token Rings using non-Token Ring media, you must treat that non-Token Ring media as a virtual ring by assigning it to a ring group. Every router with which you want to exchange Token Ring traffic must be a member of this same ring group. Therefore, after you set up an FST peer name, define a ring group. For more information about defining a ring group, see the “Define a Ring Group in SRB Context” section of the “Configuring Source-Route Bridging” chapter.

Identifying the Remote Peers (FST Connection)

All the routers with which you want to exchange Token Ring traffic are referred to as remote peer bridges. The remote peers can be at the other end of an FST connection. To identify the remote peers, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# source-bridge remote-peer ring-group fst ip-address [if size]</td>
<td>Identifies your peers and specify an FST connection.</td>
</tr>
</tbody>
</table>
Specify one `source bridge remote peer` command for each peer router that is part of the virtual ring. Also specify one `source bridge remote peer` command to identify the IP address of the local router. The IP address you specify should be the IP address you want the router to reach.

You can assign a keepalive interval to the RSRB peer. Use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# source-bridge keepalive seconds</code></td>
<td>Defines the keepalive interval of the RSRB peer.</td>
</tr>
</tbody>
</table>

**Enabling SRB on the Appropriate Interfaces**

Enable SRB on each interface through which SRB traffic passes. Make the value of the target ring parameter you specify the ring group number you assigned to the interface. To enable SRB on an interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# source-bridge local-ring bridge-number target-ring</code></td>
<td>Enables local SRB on a Token Ring interface.</td>
</tr>
</tbody>
</table>

**Configuring RSRB Using IP Encapsulation over a TCP Connection**

Encapsulating the source-route bridged traffic inside IP datagrams passed over a TCP connection between two routers offers lower performance, but is the appropriate method to use under the following conditions:

- You plan to connect Token Ring networks across arbitrary media including Ethernet, FDDI, serial interfaces, and X.25 networks.
- You plan to connect Token Ring networks across a multiprotocol backbone network.
- You plan to load balance over multiple, redundant paths. Using this topology, when a path fails there is no need for hosts to resend explorer packets. IP routing handles the network reconfiguration transparently to the Token Ring hosts.

To configure a remote source-route bridge to use IP encapsulation over a TCP connection, you must perform the tasks in the following sections:

- Identifying the Remote Peer (TCP Connection), page 7
- Enabling SRB on the Appropriate Interfaces, page 8

**Identifying the Remote Peer (TCP Connection)**

In our implementation, whenever you connect Token Rings using non-Token Ring media, you must treat that non-Token Ring media as a virtual ring by assigning it to a ring group. Every router with which you want to exchange Token Ring traffic must be a member of this same ring group. For more information about defining a ring group, see the “Define a Ring Group in SRB Context” section of the “Configuring Source-Route Bridging” chapter.
To identify the remote peers, use the following command in global configuration mode:

```
Router(config)# source-bridge remote-peer
 ring-group tcp ip-address [if size]
 [tcp-receive-window size] [local-ack]
 [priority]
```

Identifies the IP address of a peer in the ring group with which to exchange source-bridge traffic using TCP.

Specify one `source-bridge remote peer` command for each peer router that is part of the virtual ring. Configure an additional `source-bridge remote peer` command to identify the IP address to be used by the local router.

You can assign a keepalive interval to the RSRB peer. Use the following command in interface configuration mode:

```
Router(config-if)# source-bridge keepalive
 seconds
```

Defines the keepalive interval of the remote source-bridging peer.

### Enabling SRB on the Appropriate Interfaces

To enable SRB on an interface, use the following command in interface configuration mode:

```
Router(config-if)# source-bridge local-ring
 bridge-number target-ring
```

Enables local source-route bridging on a Token Ring interface.

The value of the target ring parameter you specify should be the ring group number.

### Configuring RSRB Using TCP and LLC2 Local Acknowledgment

Encapsulating source-route bridged traffic inside IP datagrams that traverse a TCP connection between two routers with local acknowledgment enabled is appropriate when you have LANs separated by wide geographic distances and you want to avoid time delays, multiple resending, or loss of user sessions.

LLC2 is an ISO standard data link level protocol used in Token Ring networks. LLC2 was designed to provide reliable sending of data across LAN media and to cause minimal or at least predictable time delays. However, RSRB and WAN backbones created LANs that are separated by wide, geographic distances spanning countries and continents. As a result, LANs have time delays that are longer than LLC2 allows for bidirectional communication between hosts. Local acknowledgment addresses the problem of unpredictable time delays, multiple resending, and loss of user sessions.

In a typical LLC2 session, when one host sends a frame to another host, the sending host expects the receiving host to respond positively or negatively in a predefined period of time commonly called the T1 time. If the sending host does not receive an acknowledgment of the frame it sent within the T1 time, it retries a few times (normally 8 to 10 times). If there is still no response, the sending host drops the session.
Figure 2 illustrates an LLC2 session. A 37x5 on a LAN segment can communicate with a 3x74 on a different LAN segment separated via a wide-area backbone network. Frames are transported between Router A and Router B using RSRB. However, the LLC2 session between the 37x5 and the 3x74 is still end-to-end; that is, every frame generated by the 37x5 traverses the backbone network to the 3x74, and the 3x74, on receipt of the frame, acknowledges it.

Figure 2  LLC2 Session without Local Acknowledgment

On backbone networks consisting of slow serial links, the T1 timer on end hosts could expire before the frames reach the remote hosts, causing the end host to resend. Resending results in duplicate frames reaching the remote host at the same time as the first frame reaches the remote host. Such frame duplication breaks the LLC2 protocol, resulting in the loss of sessions between the two IBM machines.

One way to solve this time delay is to increase the timeout value on the end nodes to account for the maximum transit time between the two end machines. However, in networks consisting of hundreds or even thousands of nodes, every machine would need to be reconfigured with new values. With local acknowledgment for LLC2 enabled, the LLC2 session between the two end nodes would not be end-to-end, but instead, would terminate at two local routers. Figure 3 shows the LLC2 session with the 37x5 ending at Router A and the LLC2 session with the 3x74 ending at Router B. Both Router A and Router B execute the full LLC2 protocol as part of local acknowledgment for LLC2.

Figure 3  LLC2 Session with Local Acknowledgment

With local acknowledgment for LLC2 enabled in both routers, Router A acknowledges frames received from the 37x5. The 37x5 still operates as if the acknowledgments it receives are from the 3x74. Router A looks like the 3x74 to the 37x5. Similarly, Router B acknowledges frames received from the 3x74. The 3x74 operates as if the acknowledgments it receives are from the 37x5. Router B looks like the 3x74 to 37x5. The end stations do not time out and lose sessions because the frames no longer have to travel the WAN backbone networks to be acknowledged. Instead, they are locally acknowledged by routers,
Enabling local acknowledgment for LLC2 has the following advantages:

- Local acknowledgment for LLC2 solves the T1 timer problem without having to change any configuration on the end nodes. The end nodes are unaware that the sessions are locally acknowledged. In networks consisting of hundreds or even thousands of machines, this is a definite advantage. All the frames acknowledged by the Cisco IOS software appear to the end hosts to be coming from the remote IBM machine. In fact, by looking at a trace from a protocol analyzer, one cannot say whether a frame was acknowledged by the local router or by a remote IBM machine. The MAC addresses and the RIFs generated by the Cisco IOS software are identical to those generated by the remote IBM machine. The only way to find out whether a session is locally acknowledged is to use either a `show local-ack` command or a `show source-bridge` command on the router.

- All the supervisory (RR, RNR, REJ) frames that are locally acknowledged go no farther than the router. Without local acknowledgment for LLC2, every frame traverses the backbone. With local acknowledgment, only data (I-frames) traverse the backbone, resulting in less traffic on the backbone network. For installations in which customers pay for the amount of traffic passing through the backbone, this could be a definite cost-saving measure. A simple protocol exists between the two peers to bring up or down a TCP session.

To configure a remote source-route bridge to use IP encapsulation over a TCP connection, perform the tasks in the following sections:

- Enabling LLC2 Local Acknowledgment Between Two Remote Peer Bridges, page 10
- Enabling SRB on the Appropriate Interfaces, page 10

**Enabling LLC2 Local Acknowledgment Between Two Remote Peer Bridges**

In our implementation, whenever you connect Token Rings using non-Token Ring media, you must treat that non-Token Ring media as a virtual ring by assigning it to a ring group. Every router with which you wish to exchange Token Ring traffic must be a member of this same ring group. For more information about defining a ring group, see the “Define a Ring Group in SRB Context” section of the “Configuring Source-Route Bridging” chapter.

To enable LLC2 local acknowledgment, use the following command in global configuration mode:

```
Router(config)# source-bridge remote-peer
ring-group tcp ip-address local-ack
```

Use one instance of the `source-bridge remote-peer` command for each interface you configure for RSRB.

**Enabling SRB on the Appropriate Interfaces**

To enable SRB on an interface, use the following command in interface configuration mode:

```
Router(config-if)# source-bridge local-ring
bridge-number target-ring
```

The value of the target ring parameter you specify should be the ring group number.
For an example of how to configure RSRB with local acknowledgment, see the “RSRB with Local Acknowledgment Example” section on page 20.

### Enabling Local Acknowledgment and Passthrough

To configure some sessions on a few rings to be locally acknowledged while the remaining sessions are passed through, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source-bridge passthrough</code></td>
<td>Configures the Cisco IOS software for passthrough.</td>
</tr>
</tbody>
</table>

### Configuring Direct Frame Relay Encapsulation Between RSRB Peers

You can configure direct Frame Relay encapsulation to allow the RSRB peers to send RSRB protocol packets on a Frame Relay PVC. This configuration eliminates the overhead introduced by TCP/IP encapsulated Frame Relay packets.

Figure 4 illustrates direct Frame Relay encapsulation between RSRB peers.

![Figure 4 RSRB Direct Frame Relay Encapsulation](image)

The RSRB direct encapsulation design can use RFC 1490 format or Cisco Frame Relay encapsulation for routed packets.

To configure RSRB direct Frame Relay encapsulation, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Specifies the serial interface on which Frame Relay is configured.</td>
</tr>
<tr>
<td><code>source-bridge remote-peer</code></td>
<td><code>frame-relay interface name [mac-address] [dlci-number] [if size]</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Specifies the DLCI number onto which the RSRB traffic is to be mapped.</td>
</tr>
<tr>
<td><code>frame-relay map rsrb</code></td>
<td><code>dlci-number</code></td>
</tr>
</tbody>
</table>

**Note**
Direct encapsulation over Frame Relay is supported only for an encapsulation type of cisco, configured using the `encapsulation frame-relay` command.
Establishing SAP Prioritization

The SAP prioritization feature allows you to use SAP priority lists and filters to specify the priority of one protocol over another across an RSRB or SDLLC WAN.

Defining a SAP Priority List

To establish a SAP priority list, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# sap-priority-list number queue-keyword [dsap ds] [ssap ss] [dmac dm] [smac sm]</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# sap-priority list-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# priority-group list-number</td>
</tr>
</tbody>
</table>

Defining SAP Filters

You can define SAP filters and NetBIOS filters on Token Ring and Ethernet interfaces.

To filter by local service access point (LSAP) address on the RSRB WAN interface, use the following global configuration commands, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# rsrb remote-peer ring-group tcp ip-address lsap-output-list access-list-number</td>
<td>Filters by LSAP address (TCP encapsulation).</td>
</tr>
<tr>
<td>Router(config)# rsrb remote-peer ring-group fst ip-address lsap-output-list access-list-number</td>
<td>Filters by LSAP address (FST encapsulation).</td>
</tr>
<tr>
<td>Router(config)# rsrb remote-peer ring-group interface name lsap-output-list access-list-number</td>
<td>Filters by LSAP address (direct encapsulation).</td>
</tr>
</tbody>
</table>

To filter packets by NetBIOS station name on an RSRB WAN interface, use one of the following global configuration commands, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# rsrb remote-peer ring-group tcp ip-address netbios-output-list name</td>
<td>Filters by NetBIOS station name (TCP encapsulation).</td>
</tr>
<tr>
<td>Router(config)# rsrb remote-peer ring-group fst ip-address netbios-output-list name</td>
<td>Filters by NetBIOS station name (FST encapsulation).</td>
</tr>
<tr>
<td>Router(config)# rsrb remote-peer ring-group interface type netbios-output-list host</td>
<td>Filters by NetBIOS station name (direct encapsulation).</td>
</tr>
</tbody>
</table>
RSRB Network Tuning Configuration Task List

The following sections describe how to configure features that enhance network performance by reducing the number of packets that traverse the backbone network:

- Prioritizing Traffic Based on SNA Local LU Addresses, page 13
- Enabling Class of Service, page 14
- Assigning a Priority Group to an Input Interface, page 14
- Configuring the Largest Frame Size, page 14

Prioritizing Traffic Based on SNA Local LU Addresses

You can prioritize Systems Network Architecture (SNA) traffic on an interface configured for either serial tunnel (STUN) or RSRB communication. The SNA local logical unit (LU) address prioritization feature allows SNA traffic to be prioritized according to the address of the LUs on the FID2 transmission headers. Currently, only dependent LUs are supported. The prioritization takes place on LU-LU traffic between an SNA Node type 5 or Node type 4, and Node type 2.

Figure 5 shows how SNA local address prioritization can be used.

In Figure 5, the IBM mainframe is channel-attached to a 3x75 FEP, which is connected to a cluster controller via RSRB. Multiple 3270 terminals and printers, each with a unique local LU address, are then attached to the cluster controller. By applying SNA local LU address prioritization, each LU associated with a terminal or printer can be assigned a priority; that is, certain users can have terminals that have better response time than others, and printers can have lowest priority.

Note

Both local acknowledgment and TCP priority features for STUN or RSRB must be turned on for SNA local address prioritization to take effect.
With the SNA local LU address prioritization feature, you can establish queueing priorities based on the address of the logical unit. To prioritize traffic, use the following commands in global configuration mode:

### Command Purpose

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# <code>locaddr-priority-list list-number address-number queue-keyword [dsap ds] [dmac dm] [ssap ss] [smac sm]</code></td>
<td>Maps LUs to TCP port numbers.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# <code>priority-list list-number protocol protocol-name queue-keyword</code></td>
<td>Sets the queueing priority of TCP port numbers.</td>
<td></td>
</tr>
</tbody>
</table>

### Enabling Class of Service

To prioritize SNA traffic across the SNA backbone network, you can enable the class of service feature. This feature is useful only between FEP-to-FEP (PU 4-to-PU 4) communication across the non-SNA backbone. It allows important FEP traffic to flow on high-priority queues.

To enable class of service, IP encapsulation over a TCP connection and LLC2 local acknowledgment must be enabled.

To enable class of service, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# <code>source-bridge cos-enable</code></td>
<td>Enables class-of-service.</td>
</tr>
</tbody>
</table>

### Assigning a Priority Group to an Input Interface

To assign a priority group to an input interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>locaddr-priority list-number</code></td>
<td>Assigns a priority group to an input interface.</td>
</tr>
</tbody>
</table>

### Configuring the Largest Frame Size

You can configure the largest frame size that is used to communicate with any peers in the ring group. Generally, the router and the LLC2 device with which it communicates should support the same maximum SDLC I-frame size. The larger this value, the more efficiently the line is used, thus increasing performance.

Faster screen updates to 3278-style terminals often result by configuring the Token Ring FEP to send as large an I-frame as possible and then allowing the Cisco IOS software to segment the frame into multiple SDLC I-frames.

After you configure the Token Ring FEP to send the largest possible I-frame, configure the software to support the same maximum I-frame size. The default is 516 bytes and the maximum value is 8144 bytes.
To configure the largest frame size, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# source-bridge largest-frame</code></td>
<td>Specifies the largest frame size used to communicate with any peers in the ring group.</td>
</tr>
</tbody>
</table>

**Monitoring and Maintaining the RSRB Network**

To display a variety of information about the RSRB network, use one or more of the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# show controllers token</code></td>
<td>Displays internal state information about the Token Ring interfaces in the system.</td>
</tr>
<tr>
<td><code>Router# show interfaces</code></td>
<td>Provides high-level statistics about the state of source bridging for a particular interface.</td>
</tr>
<tr>
<td><code>Router# show local-ack</code></td>
<td>Shows the current state of any current local acknowledgment for both LLC2 and SDLLC connections.</td>
</tr>
</tbody>
</table>

In addition to the EXEC-mode commands to maintain the RSRB network, you can use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# source-bridge tcp-queue-max number</code></td>
<td>Limits the size of the backup queue for RSRB to control the number of packets that can wait for transmission to a remote ring before they start being discarded.</td>
</tr>
</tbody>
</table>

**RSRB Configuration Examples**

The following sections provide RSRB configuration examples:

- RSRB Direct Frame Relay Encapsulation Example, page 16
- RSRB Using IP Encapsulation over a TCP Connection Example, page 16
- RSRB/TCP Fast-Switching Configuration Example, page 17
- RSRB Using IP Encapsulation over an FST Connection Example, page 18
- RSRB Using All Types of Transport Methods Example, page 19
- RSRB with Local Acknowledgment Example, page 20
- RSRB with Local Acknowledgment and Passthrough Example, page 23
- Local Acknowledgment for LLC2 Example, page 25
- IP for Load Sharing over RSRB Example, page 28
- Configuring Priority for Locally Terminated Token Ring Interfaces in RSRB Example, page 29
**RSRB Direct Frame Relay Encapsulation Example**

The following is the configuration file for direct Frame Relay encapsulation between RSRB peers:

```
source-bridge ring-group 200
source-bridge remote-peer 200 frame-relay interface serial0 30
!
interface serial 0
 mtu 3000
 no ip address
 encapsulation frame-relay
 clockrate 56000
 frame-relay lmi-type ansi
 frame-relay map rsrb 30
!
interface TokenRing 0
 ip address 10.10.10.1 255.255.255.0
 ring-speed 16
 multiring all
 source-bridge active 102 1 200
 source-bridge spanning
```

**RSRB Using IP Encapsulation over a TCP Connection Example**

Figure 6 illustrates two routers configured for RSRB using TCP as a transport. Each router has two Token Rings. They are connected by an Ethernet segment over which the source-route bridged traffic will pass. The first router configuration is a source-route bridge at address 131.108.2.29.

![RSRB Using TCP as a Transport](image)

Using TCP as the transport, the configuration for the source-route bridge at address 131.108.2.29 as depicted in Figure 6 is as follows:

```
source-bridge ring-group 5
source-bridge remote-peer 5 tcp 131.108.2.29
source-bridge remote-peer 5 tcp 131.108.1.27
!
interface ethernet 0
 ip address 131.108.4.4 255.255.255.0
!
interface tokenring 0
 ip address 131.108.2.29 255.255.255.0
 source-bridge 1000 1 5
 source-bridge spanning
```
interface tokenring 1
  ip address 131.108.128.1 255.255.255.0
  source-bridge 1001 1 5
  source-bridge spanning

The configuration of the source-route bridge at 131.108.1.27 is as follows:

  source-bridge ring-group 5
  source-bridge remote-peer 5 tcp 131.108.2.29
  source-bridge remote-peer 5 tcp 131.108.1.27
  !
  interface ethernet 0
  ip address 131.108.4.5 255.255.255.0
  !
  interface tokenring 0
  ip address 131.108.1.27 255.255.255.0
  source-bridge 10 1 5
  source-bridge spanning
  !
  interface tokenring 1
  ip address 131.108.131.1 255.255.255.0
  source-bridge 11 1 5
  source-bridge spanning

**RSRB/TCP Fast-Switching Configuration Example**

The following configuration enables RSRB/TCP fast switching:

  source-bridge ring group 100
RSRB Using IP Encapsulation over an FST Connection Example

Figure 7 shows two routers connecting IBM hosts on Token Rings through an Ethernet backbone.

This configuration example enables IP encapsulation over an FST connection. In this configuration, the `source-bridge fst-peername` global configuration command is used to provide an IP address for the local router. The `source-bridge ring-group` global configuration command is used to define a ring group. The `source-bridge remote peer` command with the `fst` option is used to associate the remote peer’s IP address with the router’s ring group and specify the remote peer’s remote source-route bridging protocol version number. Because all FST peers support version 2 RSRB, the `version` keyword is always specified.

The configuration of the source-route bridge at 131.108.2.29 is as follows:

```
source-bridge fst-peername 131.108.2.29
source-bridge ring-group 5
source-bridge remote-peer 5 fst 131.108.1.27
!
interface ethernet 0
ip address 131.108.4.4 255.255.255.0
!
interface tokenring 0
ip address 131.108.2.29 255.255.255.0
source-bridge 1000 1 5
source-bridge spanning
!
interface tokenring 1
ip address 131.108.128.1 255.255.255.0
source-bridge 1001 1 5
source-bridge spanning
```

The configuration of the source-route bridge at 131.108.1.27 is as follows:

```
source-bridge fst-peername 131.108.1.27
source-bridge ring-group 5
source-bridge remote-peer 5 fst 131.108.2.29
!
interface ethernet 0
```
RSRB Using All Types of Transport Methods Example

Figure 8 shows a router configured for RSRB using all types of transport methods.

Figure 8  RSRB Using All Types of Transport Methods

The configuration for the network in Figure 8 is as follows:

```
source-bridge fst-peername 131.108.251.1
source-bridge ring-group 5
source-bridge remote-peer 5 interface serial0
source-bridge remote-peer 5 interface serial1
source-bridge remote-peer 5 interface Ethernet0 0000.0c00.1234
source-bridge remote-peer 5 tcp 131.108.251.1
source-bridge remote-peer 5 fst 131.108.252.4
source-bridge remote-peer 5 tcp 131.108.253.5

interface tokenring 0
source-bridge 1 1 5
source-bridge spanning

interface ethernet 0
ip address 131.108.251.1 255.255.255.0
```

The two peers using the serial transport method only function correctly if routers at the other end of the serial line have been configured to use the serial transport. The peers must also belong to the same ring group.
RSRB with Local Acknowledgment Example

In Figure 9, a triangular configuration provides the maximum reliability with minimal cost, and one of the links is doubled to gain better bandwidth. In addition to IP and SRB traffic, AppleTalk is also routed between all the sites. In this configuration, all the sessions between Router C and Router D are locally acknowledged. All the sessions between Router C and Router E are not locally acknowledged and are configured for normal remote source-route bridging. This example shows that not every peer must be locally acknowledged and that local acknowledgment can be turned on or off at the customer’s discretion.

**Figure 9**  RSRB with Local Acknowledgment—Simple Configuration

The configuration for each of the routers in Figure 9 follows.

**Router C**

appletalk routing

`source-bridge ring-group 5`
`source-bridge remote-peer 5 tcp 132.21.1.1`
`source-bridge remote-peer 5 tcp 132.21.2.6 local-ack`
`source-bridge remote-peer 5 tcp 132.21.10.200`

`interface tokenring 0`
`ip address 132.21.1.1 255.255.255.0`
`source-bridge 1 1 5`
`source-bridge spanning`
`multiring all`

`interface ethernet 0`
`ip address 132.21.4.25 255.255.255.0`
`appletalk address 4.25`
`appletalk zone Twilight`

`interface serial 0`
`ip address 132.21.16.1 255.255.255.0`
`appletalk address 16.1`
appletalk zone Twilight
!
interface serial 1
  ip address 132.21.17.1 255.255.255.0
  appletalk address 17.1
  appletalk zone Twilight
!
interface serial 2
  ip address 132.21.18.1 255.255.255.0
  appletalk address 18.1
  appletalk zone Twilight
!
routing igrp 109
  network 132.21.0.0
!
hostname RouterC

**Router D**

appletalk routing
!
source-bridge ring-group 5
source-bridge remote-peer 5 tcp 132.21.1.1 local-ack
source-bridge remote-peer 5 tcp 132.21.2.6
source-bridge remote-peer 5 tcp 132.21.10.200
!
interface tokenring 0
  ip address 132.21.2.6 255.255.255.0
  source-bridge 2 1 5
  source-bridge spanning
  multiring all
!
interface ethernet 0
  ip address 132.21.5.1 255.255.255.0
  appletalk address 5.1
  appletalk zone Twilight
!
interface serial 0
  ip address 132.21.16.2 255.255.255.0
  appletalk address 16.2
  appletalk zone Twilight
!
interface serial 1
  ip address 132.21.19.1 255.255.255.0
  appletalk address 19.1
  appletalk zone Twilight
!
routing igrp 109
  network 132.21.0.0
!
hostname RouterD

**Router E**

appletalk routing
!
source-bridge ring-group 5
source-bridge remote-peer 5 tcp 132.21.1.1
source-bridge remote-peer 5 tcp 132.21.2.6
source-bridge remote-peer 5 tcp 132.21.10.200
!
interface tokenring 0
  ip address 132.21.10.200 255.255.255.0
  source-bridge 10 1 5
source-bridge spanning
multiring all
!
interface ethernet 0
  ip address 132.21.7.1 255.255.255.0
  appletalk address 7.1
  appletalk zone Twilight
!
interface serial 0
  ip address 132.21.19.2 255.255.255.0
  appletalk address 19.2
  appletalk zone Twilight
!
interface serial 1
  ip address 132.21.17.2 255.255.255.0
  appletalk address 17.2
  appletalk zone Twilight
!
interface serial 2
  ip address 132.21.18.2 255.255.255.0
  appletalk address 18.2
  appletalk zone Twilight
!
router igrp 109
  network 132.21.0.0
!
hostname RouterE
RSRB with Local Acknowledgment and Passthrough Example

Figure 10 shows two routers configured for RSRB with local acknowledgment and passthrough over the three serial lines that connect these routers. In the example, five Token Rings connect to each of these routers.

The configuration files for each of these routers follows.

**Router A**

```plaintext
source-bridge ring-group 2048
source-bridge remote-peer 2048 tcp 159.76.1.250 local-ack version 2
source-bridge remote-peer 2048 tcp 159.76.7.250 version 2
source-bridge passthrough 1281
source-bridge passthrough 1282
source-bridge passthrough 1283
source-bridge passthrough 1284
!
interface tokenring 0
 ip address 159.76.7.250 255.255.255.0
 llc2 ack-max 1
 llc2 t1-time 1800
 llc2 idle-time 29000
 llc2 ack-delay-time 5
 source-bridge 1024 1 2048
 source-bridge spanning
 early-token-release
 multiring all
!
interface tokenring 1
 ip address 159.76.8.250 255.255.255.0
 clns-speed 4
 clns mtu 464
 source-bridge 1281 1 2048
 source-bridge spanning
 multiring all
!
interface tokenring 2
 ip address 159.76.9.250 255.255.255.0
 ring-speed 4
 clns mtu 4464
 source-bridge 1282 1 2048
```
source-bridge spanning
multiring all
!
interface tokenring 3
ip address 159.76.10.250 255.255.255.0
ring speed 4
clns mtu 4444
source-bridge 1283 1 2048
source-bridge spanning
multiring all
!
interface tokenring 4
ip address 159.78.11.250 255.255.255.0
ring speed 4
clns mtu 4444
source-bridge 1284 1 2048
source-bridge spanning
multiring all
!
interface serial 0
ip address 159.76.20.2 255.255.255.0
!
interface serial 1
ip address 159.76.21.4 255.255.255.0
!
interface serial 2
ip address 159.76.22.6 255.255.255.0
shutdown
!
interface serial 3
no ip address
shutdown

Router B

source-bridge ring-group 2048
source-bridge remote-peer 2048 tcp 159.76.1.250 version 2
source-bridge remote-peer 2048 tcp 159.76.7.250 local-ack version 2
!
interface tokenring 0
ip address 159.76.1.250 255.255.255.0
llc2 ack-max 2
llc2 t1-time 1900
llc2 idle-time 29000
llc2 ack-delay-time 5
source-bridge 512 1 2048
source-bridge spanning
early-token-release
multiring all
!
interface tokenring 1
ip address 159.76.2.250 255.255.255.0
ring-speed 16
clns mtu 8136

!
source-bridge 513 1 2048
source-bridge spanning
early-token-release
multiring all
!
interface tokenring 2
ip address 159.76.3.250 255.255.255.0
ring-speed 16
Local Acknowledgment for LLC2 Example

Figure 11 shows an IBM FEP located in San Francisco communicating with IBM 3174 cluster controller hosts in Sydney, Paris, and Los Angeles. The session between the FEP and the IBM 3174 system in Los Angeles is not locally terminated, because the distance is great enough to cause timeouts on the line. However, the sessions to Paris and Sydney are locally terminated.
The configuration for each of these routers follows.

**Router/Bridge 4 in San Francisco**

```plaintext
source-bridge ring-group 100
! use direct encapsulation across serial link to Los Angeles
source-bridge remote-peer 100 direct 131.108.32.2
! use fast sequenced transport with local termination to Paris
source-bridge remote-peer 100 tcp 131.108.18.48 local-ack
! use tcp encapsulation with local termination to Sydney
source-bridge remote-peer 100 tcp 131.108.141.4 local-ack

! interface tokenring 0
! source ring 1, bridge 4, destination ring 100
source-bridge 1 4 100
! receive up to seven frames before sending an acknowledgment
llc2 ack-max 7
! allow a 30 msec delay before I-frames must be acknowledged
llc2 ack-delay-time 30

! interface tokenring 1
! source ring 100, bridge 4, destination ring 1
source-bridge 100 4 1
```

**Router/Bridge 7 in Sydney**

```plaintext
source-bridge ring-group 100
! use tcp encapsulation with local termination from Sydney
source-bridge remote-peer 100 tcp 131.108.6.88 local-ack
interface tokenring 0
! source ring 1, bridge 7, destination ring 100
source-bridge 1 7 100
! receive up to seven frames before sending an acknowledgment
llc2 ack-max 7
! allow a 30 msec delay before I-frames must be acknowledged
llc2 ack-delay-time 30
```

Figure 11  **RSRB with Local Acknowledgment—Complex Configuration**
llc2 ack-max 7
! allow a 30 msec delay before I-frames must be acknowledged
llc2 ack-delay-time 30
!
interface tokenring 1
! source ring 100, bridge 7, destination ring 1
source-bridge 100 7 1

Router/Bridge 6 in Paris

source-bridge ring-group 100
! use fast sequenced transport with local termination from Paris
source-bridge remote-peer 100 tcp 131.108.6.88 local-ack
interface tokenring 0
! source ring 1, bridge 6, destination ring 100
source-bridge 1 6 100
! receive up to seven frames before sending an acknowledgment
llc2 ack-max 7
! allow a 30 msec delay before I-frames must be acknowledged
llc2 ack-delay-time 30
!
interface tokenring 1
! source ring 100, bridge 6, destination ring 1
source-bridge 100 6 1

Router/Bridge 5 in Los Angeles

source-bridge ring-group 100
! use direct encapsulation across serial link from Los Angeles
source-bridge remote-peer 100 direct 131.108.6.88
interface tokenring 0
! source ring 1, bridge 5, destination ring 100
source-bridge 1 5 100
! receive up to seven frames before sending an acknowledgment
llc2 ack-max 7
! allow a 30 msec delay before I-frames must be acknowledged
llc2 ack-delay-time 30
!
interface tokenring 1
! source ring 100, bridge 5, destination ring 1
source-bridge 100 5 1

Note

Both peers need to be configured for LLC2 local acknowledgment. If only one is so configured, undesirable results occur.
IP for Load Sharing over RSRB Example

As Figure 12 shows, two routers are connected by two serial lines. Each is configured as a basic remote dual-port bridge, but extended to include both reliability and IP load sharing. When both serial lines are up, traffic is split between them, effectively combining the bandwidth of the connections. If either serial line goes down, all traffic is routed to the remaining line with no disruption. This happens transparently with respect to the end connections, unlike other source-route bridges that would abort those connections.

Figure 12  RSRB—Simple Reliability

The sample configuration files that enable this configuration follow.

Configuration for Router/Bridge A

```plaintext
source-bridge ring-group 5
source-bridge remote-peer 5 tcp 204.31.7.1
source-bridge remote-peer 5 tcp 204.31.8.1
! interface tokenring 0
 ip address 204.31.7.1 255.255.255.0
source-bridge spanning
 multiring all
! interface serial 0
 ip address 204.31.9.1 255.255.255.0
! interface serial 1
 ip address 204.31.10.1 255.255.255.0
! router igrp 109
 network 204.31.7.0
 network 204.31.9.0
 network 204.31.10.0
! hostname RouterA
```

Configuration for Router/Bridge B

```plaintext
source-bridge ring-group 5
source-bridge remote-peer 5 tcp 204.31.7.1
source-bridge remote-peer 5 tcp 204.31.8.1
! interface tokenring 0
 ip address 204.31.8.1 255.255.255.0
source-bridge spanning
 multiring all
! interface serial 0
 ip address 204.31.9.2 255.255.255.0
```
Configuring Priority for Locally Terminated Token Ring Interfaces in RSRB Example

Figure 13 shows a network that uses RSRB to bridge Token Ring traffic.

The configuration for each of the routers in Figure 13 follows.

**Router/Bridge A**

source-bridge ring-group 2624
source-bridge remote-peer 2624 tcp 1.0.0.1
source-bridge remote-peer 2624 tcp 1.0.0.2 local-ack priority
!
interface tokenring 0
source-bridge 2576 8 2624
source-bridge spanning
multiring all
locaddr-priority 1
!
interface ethernet 0
ip address 1.0.0.1 255.255.255.0
priority-group 1
!
locaddr-priority-list 1 02 high
locaddr-priority-list 1 03 high
locaddr-priority-list 1 04 medium
locaddr-priority-list 1 05 low
!
priority-list protocol ip high tcp 1996
priority-list protocol ip medium tcp 1987
priority-list protocol ip normal tcp 1988
priority-list protocol ip low tcp 1989

Router/Bridge B
source-bridge ring-group 2624
source-bridge remote-peer 2624 tcp 1.0.0.2
csource-bridge remote-peer 2624 tcp 1.0.0.1 local-ack priority
! interface tokenring 0
source-bridge 2626 8 2624
source-bridge spanning
multiring all
locaddr-priority 1
! interface ethernet 0
ip address 1.0.0.2 255.255.255.0
priority-group 1
! locaddr-priority-list 1 02 high
locaddr-priority-list 1 03 high
locaddr-priority-list 1 04 medium
locaddr-priority-list 1 05 low
! priority-list protocol ip high tcp 1996
priority-list protocol ip medium tcp 1987
priority-list protocol ip normal tcp 1988
priority-list protocol ip low tcp 1989
Configuring Token Ring Inter-Switch Link

This chapter explains how to configure Token Ring Inter-Switch Link (TRISL) on Cisco routers. The chapter describes TRISL in the context of the Inter-Switch Link (ISL) protocol and the Token Ring VLAN concept.

For a complete description of the Token Ring Inter-Switch Link commands in this chapter, refer to the “Token Ring Inter-Switch Link Commands” chapter in the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2). To locate documentation of other commands that appear in this chapter, use the command reference master index or search online. For information on how Token Ring VLANs are implemented on switches, refer to the Catalyst Token Ring Switching Implementation Guide, the Catalyst 5000 Series Token Ring Configuration Notes, the Catalyst 3900 Token Ring Switching User Guide, and the Catalyst 3920 Token Ring Switching User Guide.

This chapter contains the following sections:

- Technology Overview, page 1
- TRISL Configuration Task List, page 5
- Monitoring TRISL Statistics, page 10
- TRISL Configuration Examples, page 11

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release.

Technology Overview

Cisco’s TRISL Implementation

This section contains information related to Cisco’s implementation of TRISL that you should understand before you proceed to the “TRISL Configuration Task List” section on page 5.
ISL and TRISL

ISL is a Layer 2 protocol that enables switches and routers to transport Ethernet frames from multiple VLANs across Fast Ethernet or Gigabit Ethernet links. Cisco’s TRISL protocol extends the ISL model to include the transport of Token Ring frames from multiple VLANs across these same links.

TRISL support on Cisco routers provides inter-VLAN routing and bridging across a 100-Mb Fast Ethernet link. ISL and TRISL together provide routing and bridging between Token Ring and Ethernet LANs, ELANS, and VLANs.

TRISL is supported on the following platforms with any one of the following port adapters:
- Cisco 7500 or Cisco 7200 series routers
  - Two-port Fast Ethernet/ISL 100BaseTX
  - Two-port Fast Ethernet/ISL 100BaseFX
  - One-port Fast Ethernet 100BaseTX
  - One-port Fast Ethernet 100BaseFX
- Cisco 4500 or 4700 series routers
  - NM-1FE
- Cisco 3600 or 2600 series routers
  - NM-1FE1CE1
  - NM-1FE1CT1
  - NM-1FE1R2W
  - NM-1FE2CE1
  - NM-1FE2CT1
  - NM-1FE2W
  - NM-2FE2W

Note
The two-port Fast Ethernet/ISL port adapters support frame sizes up to 17800 bytes and the one-port Fast Ethernet port adapters support a frame size of up to 1500 bytes.

TRISL provides the following capabilities and features, which will be described in the “TRISL Configuration Task List” section on page 5 and the “TRISL Configuration Examples” section on page 11:
- IP routing for source-routed and non-source-routed frames between TRISL VLANs and any LAN, ELAN, or VLAN.
- IPX routing for source-routed and non-source-routed frames between TRISL VLANs and any LANs, ELANS, or VLANs.
- Source-Route Bridging (SRB) between TRISL VLANs and SRB-capable LANs, ELANS, or VLANs.
- Source-Route Transparent Bridging (SRT) between TRISL VLANs and SRT-capable LANs, ELANS, or VLANs.
- Source-Route Translational Bridging (SR/TLB) between TRISL VLANs and Ethernet LANs, ELANS, or VLANs.
• Duplicate Ring Protocol (DRiP), which prevents external loops that could result if the router’s virtual ring number were duplicated elsewhere in the network.

**Note**

VLAN Trunk Protocol (VTP) is currently not supported for TRISL on the routers.

### Token Ring VLANs

A VLAN is essentially a broadcast domain. In transparent bridging, there is only one type of broadcast frame and, therefore, only one level of broadcast domain and one level of VLAN. In source routing, however, there are two types of broadcast frames:

- Those that are confined to a single ring
- Those that traverse the bridged domain

Therefore, there are two levels of VLANs in a Token Ring switched network.

The first level is the Token Ring Concentrator Relay Function (TrCRF). At this level, the VLAN is a logical ring and, as such, is assigned a ring number. On a Token Ring switch, the logical ring (TrCRF) contains one or more physical ports. On a router, the logical ring (TrCRF) does not contain any physical ports, but rather is used only in processing source-routed traffic to terminate the routing information field (RIF).

The second level is the Token Ring Bridge Relay Function (TrBRF). This is the parent VLAN to which TrCRF VLANs are assigned. At this level, the VLAN is a logical bridge and, as such, is assigned a bridge number. The logical bridge (TrBRF) contains the virtual ports that establish a connection between the TrBRF and its TrCRFs. The TrBRF can be extended across a network of switches and routers via ISL, as shown in Figure 1.

![Figure 1: Physical View of Switches Interconnected via ISL](image1)

When you extend the TrBRF across an ISL link, you are essentially extending the bridge across devices, as shown in Figure 2.

![Figure 2: Logical View of Switches Interconnected via ISL](image2)
Therefore, if you use source-route bridging between the TrCRFs that belong to the TrBRF, only one hop appears in the RIF.

Traffic is switched between the ports in a TrCRF and bridged via SRB or SRT between the TrCRFs in a TrBRF.
Figure 3 illustrates a TrBRF that contains TrCRFs on both a router and a switch.

**TRISL Configuration Task List**

To configure and monitor TRISL in your network, perform one or more of the following tasks:

- Configuring IP Routing over TRISL, page 5
- Configuring Hot Standby Router Protocol over TRISL, page 6
- Configuring IPX Routing over TRISL, page 7
- Configuring Source-Route Bridging over TRISL, page 8
- Configuring Source-Route Transparent Bridging over TRISL, page 8
- Configuring Source-Route Translational Bridging over TRISL, page 9

See the “TRISL Configuration Examples” section on page 11 for examples.

**Configuring IP Routing over TRISL**

The IP routing over TRISL VLANs feature extends IP routing capabilities to include support for routing IP frame types in VLAN configurations. To configure IP routing over TRISL, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip routing</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface type slot/port.subinterface-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# encapsulation tr-isl trbrf-vlan vlanid bridge-num bridge-number</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# ip address ip-address mask</td>
</tr>
</tbody>
</table>
You can configure TRISL to route source-routed traffic by enabling the collection and use of RIF information on a TRISL subinterface. This creates a “pseudoring” to terminate the RIF path on a ring. Without RIF information, a packet could not be bridged across a source-route bridged network connected to this interface.

To route source-routed traffic, use the following additional commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# multiring trcrf-vlan vlanid ring ring-number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# multiring {protocol-keyword [all-routes</td>
</tr>
</tbody>
</table>

Note: TRISL encapsulation must be specified for a subinterface before an IP address can be assigned to that subinterface.

### Configuring Hot Standby Router Protocol over TRISL

The Hot Standby Router Protocol (HSRP) provides fault tolerance and enhanced routing performance for IP networks. HSRP allows Cisco routers to monitor each other’s operational status and very quickly assume packet forwarding responsibility in the event the current forwarding device in the HSRP group fails or is taken down for maintenance. The standby mechanism remains transparent to the attached hosts and can be deployed on any LAN type. With multiple hot-standby groups, routers can simultaneously provide redundant backup and perform load-sharing across different IP subsets.

To configure HSRP over TRISL between VLANs, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port subinterface-number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# encapsulation tr-isl trbrf-vlan vlanid bridge-num bridge-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip address ip-address mask [secondary]</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# standby [group-number] ip [ip-address [secondary]]</td>
</tr>
</tbody>
</table>
To customize hot standby group attributes, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# standby [group-number] timers hellotime holdtime</code></td>
<td>Configures the time between hello packets and the hold time before other routers declare the active router to be down.</td>
</tr>
<tr>
<td><code>Router(config-if)# standby [group-number] priority priority</code></td>
<td>Sets the hot standby priority used to choose the active router.</td>
</tr>
<tr>
<td><code>Router(config-if)# standby [group-number] preempt</code></td>
<td>Specifies that if the local router has priority over the current active router, the local router should attempt to take its place as the active router.</td>
</tr>
<tr>
<td><code>Router(config-if)# standby [group-number] track type-number [interface-priority]</code>.</td>
<td>Configures the interface to track other interfaces, so that if one of the other interfaces goes down, the hot standby priority for the device is lowered.</td>
</tr>
<tr>
<td><code>Router(config-if)# standby [group-number] authentication string</code></td>
<td>Enables the automatic spanning-tree function on a group of bridged interfaces.</td>
</tr>
</tbody>
</table>

### Configuring IPX Routing over TRISL

The IPX Routing over ISL VLANs feature extends Novell NetWare routing capabilities to include support for routing all standard IPX encapsulations for Token Ring frame types in VLAN configurations. Users with Novell NetWare environments can configure either SAP or SNAP encapsulations to be routed using the TRISL encapsulation across VLAN boundaries.

Netware users can now configure consolidated VLAN routing over a single VLAN trunking interface. With configurable Token Ring encapsulation protocols on a per VLAN basis, users have the flexibility of using VLANs regardless of their NetWare Token Ring encapsulation. Encapsulation types and corresponding framing types are described in the “Configuring Novell IPX” chapter of the Cisco IOS AppleTalk and Novell IPX Configuration Guide.

**Note**

Only one type of IPX encapsulation can be configured per VLAN (subinterface). The IPX encapsulation used must be the same within any particular subnet. A single encapsulation must be used by all NetWare systems that belong to the same LAN.

To configure Cisco IOS software to route IPX on a router with connected VLANs, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>Router(config)# ipx routing [node]</code></td>
<td>Enables IPX routing globally.</td>
</tr>
<tr>
<td>2</td>
<td><code>Router(config)# interface type slot/port.subinterface-number</code></td>
<td>Specifies the subinterface on which TRISL will be used.</td>
</tr>
<tr>
<td>3</td>
<td><code>Router(config-if)# encapsulation tr-isl trbf-vlan vlanid bridge-num bridge-number</code></td>
<td>Defines the encapsulation for TRISL.</td>
</tr>
<tr>
<td>4</td>
<td><code>Router(config-if)# ipx encapsulation encapsulation-type</code></td>
<td>Specifies the IPX encapsulation.</td>
</tr>
<tr>
<td>5</td>
<td><code>Router(config-if)# ipx network network number</code></td>
<td>Specifies the IPX network.</td>
</tr>
</tbody>
</table>
The default IPX encapsulation format for Token Ring in Cisco IOS routers is SAP. Therefore, you only need to explicitly configure the IPX encapsulation type if your Token Ring network requires SNAP encapsulation instead of SAP.

When routing source-routed traffic for specific VLANs, use the following additional commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config-if)# <code>multiring trcrf-vlan vlanid trcrf-ring ring-number</code></td>
<td>Creates a pseudoring to terminate the RIF and assign it to a VLAN.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# `multiring (protocol-keyword [all-routes</td>
<td>spanning</td>
</tr>
</tbody>
</table>

### Configuring Source-Route Bridging over TRISL

To configure SRB over TRISL, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# <code>source-bridge ring-group vring-num</code></td>
<td>Configures a virtual ring for the router.</td>
</tr>
<tr>
<td>Step 2 Router(config)# <code>interface type slot/port.subinterface-number</code></td>
<td>Specifies the subinterface on which TRISL will be used.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# <code>encapsulation tr-isl trbrf-vlan vlanid bridge-num bridge-number</code></td>
<td>Defines the encapsulation for TRISL.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# <code>source-bridge trcrf-vlan vlanid ring-group ring-number</code></td>
<td>Attaches a TrCRF VLAN identifier to the router's virtual ring.</td>
</tr>
</tbody>
</table>

### Configuring Source-Route Transparent Bridging over TRISL

To configure transparent bridging over TRISL, use the following command beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# <code>interface type slot/port.subinterface-number</code></td>
<td>Specifies the subinterface on which TRISL will be used.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# <code>encapsulation tr-isl trbrf-vlan vlanid bridge-num bridge-number</code></td>
<td>Defines the encapsulation for TRISL.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# <code>bridge-group bridge-group number</code></td>
<td>Specifies the bridge group to which the TRISL subinterface belongs.</td>
</tr>
</tbody>
</table>
Configuring Source-Route Translational Bridging over TRISL

To configure source-route translational bridging over TRISL, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# source-bridge ring-group vring-num</td>
<td>Configures a virtual ring for the router.</td>
</tr>
<tr>
<td>Step 2 Router(config)# source-bridge transparent ring-group pseudoring bridge-number tb-group [oui]</td>
<td>Enables bridging between transparent bridging and source-route bridging.</td>
</tr>
<tr>
<td>Step 3 Router(config)# interface type sl/port.subinterface-number</td>
<td>Specifies the subinterface on which TRISL will be used.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# encapsulation tr-isl trbrf-vlan vlanid bridge-num bridge-number</td>
<td>Defines the encapsulation for TRISL.</td>
</tr>
<tr>
<td>Step 5 Router(config-if)# source-bridge trcrf-vlan vlanid ring-group ring-number</td>
<td>Assigns a VLAN ID to the router’s virtual ring.</td>
</tr>
</tbody>
</table>

**Note**

For a complete description of SR/TLB, including configuring translation compatibility with IBM 8209 bridges and configuring Token Ring LLC2 to Ethernet Type II (0x80d5) and Token Ring LLC2 to Ethernet 802.3 LLC2 (standard) translations, please refer to the “Configuring Source-Route Bridging” chapter in this publication and “Source-Route Bridging Commands” chapter in the *Cisco IOS Bridging and IBM Command Reference* (Volume 1 of 2).

Configuring Automatic Spanning Tree

The automatic spanning-tree function supports automatic resolution of spanning trees in SRB networks, which provides a single path for spanning explorer frames to traverse from a given node in the network to another. Spanning explorer frames have a single-route broadcast indicator set in the routing information field. Port identifiers consist of ring numbers and bridge numbers associated with the ports. The spanning-tree algorithm for SRB does not support Topology Change Notification Bridge Protocol Data Unit (BPDU).

Although the automatic spanning-tree function can be configured with Source-Route Translational Bridging (SR/TLB), the SRB domain and transparent bridging domain have separate spanning trees. Each Token Ring interface can belong to only one spanning tree. Only one bridge group can run the automatic spanning-tree function at a time.

To create a bridge group that runs an automatic spanning-tree function compatible with the IBM SRB spanning-tree implementation, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# bridge bridge-group protocol ibm</td>
<td>Creates a bridge group that runs the automatic spanning-tree function.</td>
</tr>
</tbody>
</table>
To enable the automatic spanning-tree function for a specified group of bridged interfaces in SRB or SR/TLB, use the following command in interface configuration mode:

```
Router(config-if)# source-bridge spanning bridge-group
```

### Monitoring TRISL Statistics

You can collect, clear, and display statistical information about the network.

The Duplicate Ring Protocol (DRiP) runs on Cisco routers and switches that support switched VLAN networking and is used to identify active Token Ring VLANs (TrCRFs).

DRiP maintains the status of TrCRFs and uses this information to determine whether there are multiple TrCRFs active in a TrBRF.

DRiP information is used for the following:

- **All-routes explorer filtering**
  DRiP information is used in conjunction with the local configuration to determine which of the TrCRFs configured within a TrBRF have active ports. This information is used on the base switch to correctly filter all-routes explorers and on the ISL module to discard AREs that have already been on an attached ring.

- **Detecting the configuration of duplicate TrCRFs across routers and switches, which would cause a TrCRF to be distributed across ISL trunks**
  DRiP information is used in conjunction with the local configuration information to determine which TrCRFs are already active on the switches. If a TrCRF is enabled on more than one switch or router, the ports associated with the TrCRF are disabled on all switches. A router will not disable the internal ring used for SRB and for routing source-routed traffic. Instead, the router generates the following error message to indicate that two identical TrCRFs exist:

  ```
 DRIP conflict with CRF <vlan-id>
  ```

To show or clear DRiP or VLAN statistics, use one or all the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# clear drip counters</td>
<td>Clears DRiP counters.</td>
</tr>
<tr>
<td>Router# clear vlan statistics</td>
<td>Removes VLAN statistics from any statically configured or system configured entries.</td>
</tr>
<tr>
<td>Router# show drip</td>
<td>Displays DRiP information.</td>
</tr>
<tr>
<td>Router# show vlans</td>
<td>Displays a summary of VLAN subinterfaces.</td>
</tr>
</tbody>
</table>

### Note

When DRiP counters are cleared, the counter is reset to 0. Incrementing of DRiP counters indicates that the router is receiving packets across the TrBRF.
TRISL Configuration Examples

The following sections provide TRISL configuration examples:

- IP Routing Non-Source-Routed Frames Between a TRISL VLAN and a Token Ring Interface Example, page 12
- IP Routing Source-Routed Frames Between a TRISL VLAN and a Token Ring Interface Example, page 13
- IP Routing Source-Route Frames Between a TRISL VLAN and an Ethernet ISL VLAN Example, page 14
- IP Routing Source-Routed Frames Between TRISL VLANs Example, page 15
- IPX Routing Non-Source-Routed Frames Between a TRISL VLAN and a Token Ring Interface Example, page 16
- IPX Routing Source-Routed Frames Between a TRISL VLAN and a Token Ring Interface Example, page 17
- IPX Routing Source-Route Frames Between a TRISL VLAN and an Ethernet ISL VLAN Example, page 18
- IPX Routing Source-Routed Frames Between TRISL VLANs Example, page 19
- SRB Between Token Ring and TRISL VLAN Example, page 20
- SRB Between TRISL VLANs Example, page 21
- Transparent Bridging Between Token Ring and TRISL VLAN Example, page 23
- SR/TLB Between a TRISL VLAN and an Ethernet Interface Example, page 24
- SR/TLB Between a TRISL VLAN and an Ethernet ISL VLAN Example, page 25
- TRISL with Fast EtherChannel Example, page 26

Note
Because the VLAN Trunk Protocol (VTP) is not supported on the router configured with TRISL, the TrCRF configuration on the router must also be specified in the Catalyst 5000 switch configuration.
IP Routing Non-Source-Routed Frames Between a TRISL VLAN and a Token Ring Interface Example

Figure 4 illustrates IP routing between a TRISL VLAN and a Token Ring interface.

The following is the configuration for the router:

```
ip routing
interface TokenRing 3/1
 ip address 4.4.4.1 255.255.255.0
interface fastethernet4/0.1
 ip address 5.5.5.1 255.255.255.0
 encapsulation tr-isl trbrf 999 bridge-num 14
```

The following is the configuration for the Catalyst 5000 switch with the Token Ring switch module in slot 5. In this configuration, the Token Ring port 1 is assigned to the TrCRF VLAN 40.

```
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 999 name trbrf type trbrf bridge 0xe stp ieee
set vlan 40 name trcrf40 type trcrf parent 999 ring 0x1 mode srt
#add token port to trcrf 40
set vlan 40 5/1
set trunk 1/2 on
```
IP Routing Source-Routed Frames Between a TRISL VLAN and a Token Ring Interface Example

Figure 5 illustrates IP routing source-routed frames between a TRISL VLAN and a Token Ring interface.

The following is the configuration for the router:

```
ip routing
interface TokenRing 3/1
 ip address 4.4.4.1 255.255.255.0
!
interface fastethernet4/0.1
 ip address 5.5.5.1 255.255.255.0
 encapsulation tr-isl trbrf 999 bridge-num 14
 multiring trcrf-vlan 200 ring 100
 multiring all
```

The following is the configuration for the Catalyst 5000 switch with the Token Ring switch module in slot 5. In this configuration, the Token Ring port 5/1 is assigned to the TrCRF VLAN 40.

```
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 999 name trbrf type trbrf bridge 0xe stp ibm
set vlan 200 name trcrf200 type trcrf parent 999 ring 0x64 mode srb
set vlan 40 name trcrf40 type trcrf parent 999 ring 0x1 mode srb
#add token port to trcrf 40
set vlan 40 5/1
set trunk 1/2 on
```
IP Routing Source-Route Frames Between a TRISL VLAN and an Ethernet ISL VLAN Example

Figure 6 illustrates IP routing source-route frames between a TRISL VLAN and an Ethernet ISL VLAN.

The following is the configuration for the router:

```
interface fastethernet4/0.1
 ip address 5.5.5.1 255.255.255.0
 encapsulation tr-isl trbrf-vlan 999 bridge-num 14
 multiring trcrf-vlan 200 ring 100
 multiring all
interface fastethernet4/0.2
 ip address 4.4.4.1 255.255.255.0
 encapsulation isl 12
```

The following is the configuration for the Catalyst 5000 switch with the Ethernet module in slot 2 and a Token Ring switch module in slot 5. In this configuration, the Token Ring port is assigned with TrCRF VLAN 100 and the Ethernet port is assigned with VLAN 12.

```
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 999 name trbrf type trbrf bridge 0xe stp ibm
set vlan 100 name trcrf100 type trcrf parent 999 ring 0x1 mode srb
set vlan 200 name trcrf200 type trcrf parent 999 ring 0x64 mode srb
set vlan 12 name eisl12 type ethernet
#add token port to trcrf 100
set vlan 100 5/1
#add ethernet
set vlan 12 2/1
 set trunk 1/2 on
```
IP Routing Source-Routed Frames Between TRISL VLANs Example

Figure 7 illustrates IP routing source-routed frames between two TrBRF VLANs.

The following is the configuration for the router:

```plaintext
interface fastethernet4/0.1
 ip address 5.5.5.1 255.255.255.0
 encapsulation tr-isl trbrf-vlan 999 bridge-num 14
 multiring trcrf-vlan 200 ring 100
 multiring all
!
interface fastethernet4/0.2
 ip address 4.4.4.1 255.255.255.0
 encapsulation tr-isl trbrf-vlan 998 bridge-num 13
 multiring trcrf-vlan 300 ring 101
 multiring all
```

The following is the configuration for the Catalyst 5000 switch with the Token Ring switch module in slot 5. In this configuration, the Token Ring port attached to ring 102 is assigned with TrCRF VLAN 40 and the Token Ring port attached to ring 103 is assigned with TrCRF VLAN 50.

```plaintext
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 999 name trbrf type trbrf bridge 0xe stp ibm
set vlan 200 name trcrf200 type trcrf parent 999 ring 0x64 mode srb
set vlan 40 name trcrf40 type trcrf parent 999 ring 0x66 mode srb
set vlan 998 name trbrf type trbrf bridge 0xd stp ibm
set vlan 300 name trcrf300 type trcrf parent 998 ring 0x65 mode srb
set vlan 50 name trcrf50 type trcrf parent 998 ring 0x67 mode srb
#add token port to trcrf 40
set vlan 40 5/1
#add token port to trcrf 50
set vlan 50 5/2
set trunk 1/2 on
```
IPX Routing Non-Source-Routed Frames Between a TRISL VLAN and a Token Ring Interface Example

Figure 8 shows IPX routing non-source-routed frames between a TRISL VLAN and a Token Ring interface.

The following is the configuration for the router:

```plaintext
ipx routing
interface TokenRing 3/1
 ipx network 1
interface fastethernet4/0.1
 ipx network 10
 encapsulation tr-isl trbf 999 bridge-num 14
```

The following is the configuration for the Catalyst 5000 switch with the Token Ring switch module in slot 5. In this configuration, the Token Ring port attached to ring 1 is assigned to the TrCRF VLAN 40.

```plaintext
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 999 name trbf type trbf bridge 0xe stp ieee
set vlan 40 name trcrf40 type trcrf parent 999 ring 0x1 mode srt
#add token port to trcrf 40
set vlan 40 5/1
set trunk 1/2 on
```
**IPX Routing Source-Routed Frames Between a TRISL VLAN and a Token Ring Interface Example**

Figure 9 shows IPX routing source-routed frames between a TRISL VLAN and a Token Ring interface.

![Figure 9](image-url)

The following is the configuration for the router:

```plaintext
ipx routing
!
interface TokenRing 3/1
 ipx network 1
 multiring all
!
interface fastethernet4/0.1
 ipx network 10
 encapsulation tr-isl trbrf 999 bridge-num 14
 multiring trcrf-vlan 200 ring 100
 multiring all
```

The following is the configuration for the Catalyst 5000 switch with the Token Ring switch module in slot 5. In this configuration, the Token Ring port attached to ring 1 is assigned to the TrCRF VLAN 40.

```plaintext
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 999 name trbrf type trbrf bridge 0xe stp ibm
set vlan 200 name trcrf200 type trcrf parent 999 ring 0x64 mode srb
set vlan 40 name trcrf40 type trcrf parent 999 ring 0x1 mode srb
#add token port to trcrf 40
set vlan 40 5/1
set trunk 1/2 on
```
IPX Routing Source-Route Frames Between a TRISL VLAN and an Ethernet ISL VLAN Example

Figure 10 shows IPX routing source-route frames between a TRISL VLAN and an Ethernet ISL VLAN.

Figure 10  IPX Routing Source-Routed Frames Between a TRISL VLAN and an Ethernet ISL VLAN

The following is the configuration for the router:

```plaintext
ipx routing
interface fastethernet4/0.1
 ipx network 10
 encapsulation tr-isl trbrf-vlan 999 bridge-num 14
 multiring trcrf-vlan 20 ring 100
 multiring all
interface fastethernet4/0.2
 ipx network 30
 encapsulation isl 12
```

The following is the configuration for the Catalyst 5000 switch with the Ethernet module in slot 2 and a Token Ring switch module in slot 5. In this configuration, the Token Ring port is assigned with TrCRF VLAN 100 and the Ethernet port is assigned with VLAN 12.

```plaintext
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 999 name trbrf type trbrf bridge 0xe stp ibm
set vlan 100 name trcrf100 type trcrf parent 999 ring 0x1 mode srb
set vlan 20 name trcrf20 type trcrf parent 999 ring 0x64 mode srb
set vlan 12 name default type eisl12
#add token port to trcrf 100
set vlan 100 5/1
#add ethernet
set vlan 12 2/1
set trunk 1/2 on
```
IPX Routing Source-Routed Frames Between TRISL VLANs Example

Figure 11 shows IPX source-routed frames between TRISL VLANs.

The following is the configuration for the router:

```plaintext
ipx routing
interface fastethernet4/0.1
 ipx network 10
 encapsulation tr-isl trbrf-vlan 999 bridge-num 14
 multiring trcrf-vlan 200 ring 100
 multiring all
!interface fastethernet4/0.2
 ipx network 20
 encapsulation tr-isl trbrf-vlan 998 bridge-num 13
 multiring trcrf-vlan 300 ring 101
 multiring all
```

The following is the configuration for the Catalyst 5000 switch with the Token Ring switch module in slot 5. In this configuration, the Token Ring port attached to ring 102 is assigned with TrCRF VLAN 40 and the Token Ring port attached to ring 103 is assigned with TrCRF VLAN 50.

```plaintext
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 999 name trbrf type trbrf bridge 0xe stp ibm
set vlan 200 name trcrf200 type trcrf parent 999 ring 0x64 mode srb
set vlan 40 name trcrf40 type trcrf parent 999 ring 0x66 mode srb
set vlan 998 name trbrf type trbrf bridge 0xd stp ibm
set vlan 300 name trcrf300 type trcrf parent 998 ring 0x65 mode srb
set vlan 50 name trcrf50 type trcrf parent 998 ring 0x67 mode srb
#add token port to trcrf 40
set vlan 40 5/1
#add token port to trcrf 50
set vlan 50 5/2
```
set trunk 1/2 on

**SRB Between Token Ring and TRISL VLAN Example**

*Figure 12* illustrates SRB between a Token Ring interface on a router and a TRISL VLAN.

*Figure 12* **SRB Between a Token Ring Interface and TRISL VLAN**

The following is the configuration for the router with the Token Ring interface:

```bash
source-bridge ring-group 100

interface TokenRing3/1
 ring speed 16
 source-bridge 10 1 100
 source-bridge spanning

interface fastethernet4/0.1
 encapsulation tr-isl trbrf-vlan 999 bridge-num 14
 source-bridge trcrf-vlan 40 ring-group 100
 source-bridge spanning
```

The following is the configuration for the Catalyst 5000 switch:

```bash
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-cr df disable
#vlans
set vlan 999 name trbrf type trbrf bridge 0xe stp ibm
set vlan 40 name trcrf40 type trcrf parent 999 ring 0x64 mode srb
set vlan 50 name trcrf50 type trcrf parent 999 ring 0x14 mode srb
#add token port to trcrf 50
set vlan 50 5/1
```
SRB Between TRISL VLANs Example

Figure 13 illustrates SRB between two TrCRF VLANs.

The following is the configuration for the router:

```
source-bridge ring-group 101
!
interface fastethernet4/0.1
 encapsulation tr-isl trbrf 999 bridge-num 14
 source-bridge trcrf-vlan 100 ring-group 101
 source-bridge spanning
!
interface fastethernet4/0.2
 encapsulation tr-isl trbrf 998 bridge-num 13
 source-bridge trcrf-vlan 102 ring-group 101
 source-bridge spanning
```

The following is the configuration for the Catalyst 5000 switch with the Token Ring switch module in slot 5. The Token Ring port on 5/1 is assigned to TrCRF VLAN 40 and the Token Ring port on 5/2 is assigned to TrCRF VLAN 50.

In this configuration, the keyword name is optional and srb is the default mode.

```
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 999 name trbrf type trbrf bridge 0xe stp ibm
set vlan 100 name trcrf100 type trcrf parent 999 ring 0x65 mode srb
set vlan 40 name trcrf40 type trcrf parent 999 ring 0x1 mode srb
set vlan 998 name trbrf type trbrf bridge 0xd stp ibm
set vlan 102 name trcrf102 type trcrf parent 998 ring 0x65 mode srb
set vlan 50 name trcrf50 type trcrf parent 998 ring 0xa mode srb
#add token port to trcrf 40
set vlan 40 5/1
#add token port to trcrf 50
set vlan 50 5/2
```
#enable trunk
set trunk 1/2 on
**Transparent Bridging Between Token Ring and TRISL VLAN Example**

*Figure 14* illustrates transparent bridging between a router’s Token Ring interface and a TRISL VLAN.

The following is the configuration for the router:

```
bridge 1 protocol ieee
!
interface Tokenring0
 bridge-group 1
!
interface fastethernet0/0.1
 encapsulation tr-isl trbrf-vlan 50 bridge-num 11
 bridge-group 1
```

The following is the configuration for the Catalyst 5000 switch with a Token Ring switch module in slot 5:

```
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 50 name trbrf50 type trbrf bridge 0xb stp ieee
set vlan 100 name trcrf100 type trcrf ring 0x14 parent 50 mode srt
#enable trunk
set trunk 1/2 on
#add token port to trcrf 100
set vlan 100 5/1
```
SR/TLB Between a TRISL VLAN and an Ethernet Interface Example

Figure 15 illustrates SR/TLB between a TRISL VLAN and an Ethernet interface.

The following is the configuration for the router:

```
source-bridge ring-group 100
source-bridge transparent 100 101 6 1
! interface Ethernet2/0
 bridge-group 1
! interface fastethernet4/0.1
 encapsulation tr-isl trbrf-vlan 999 bridge-num 14
 source-bridge trcrf-vlan 200 ring-group 100
 source-bridge spanning
! bridge 1 protocol ieee
!
```

The following is the configuration for the Catalyst 5000 switch with an Ethernet card in module 5 and using port 1. The Token Ring port on 5/1 is assigned to TrCRF VLAN 40.

```
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
@drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 999 name trbrf999 type trbrf bridge 0xe stp ibm
set vlan 200 name trcrf200 type trcrf parent 999 ring 0x64 mode srb
set vlan 40 name trcrf40 type trcrf parent 999 ring 0x1 mode srb
#add token port to trcrf 40

set vlan 40 5/1
#enable trunk
set trunk 1/2 on
```
SR/TLB Between a TRISL VLAN and an Ethernet ISL VLAN Example

Figure 16 illustrates SR/TLB between a TRISL VLAN and an Ethernet ISL VLAN.

The following is the configuration for the router:

```
source-bridge ring-group 100
source-bridge transparent 100 101 6 1
!
interface fastethernet4/0.1
encapsulation tr-isl trbrf-vlan 999 bridge-num 14
source-bridge trcrf-vlan 20 ring-group 100
source-bridge spanning
!
interface fastethernet4/0.2
encapsulation isl 12
bridge-group 1
!
bridge 1 protocol ieee
```

The following is the configuration for the Catalyst 5000 switch with an Ethernet module in slot 2 and a Token Ring switch module in slot 5. In this configuration, the Token Ring port attached to ring 101 is assigned to TrCRF VLAN 21, and the router’s virtual ring is assigned to TrCRF VLAN 20.

```
#vtp
set vtp domain trisl
set vtp mode server
set vtp v2 enable
#drip
set tokenring reduction enable
set tokenring distrib-crf disable
#vlans
set vlan 999 type trbrf bridge 0xe stp ibm
set vlan 20 type trcrf parent 999 ring 0x64 mode srb
set vlan 21 type trcrf parent 999 ring 0x65 mode srb
#add token port to trcrf 21
set vlan 21 5/1
#add ethernet
set vlan 12 type ethernet
set vlan 12 2/1
set trunk 1/2 on
```
TRISL with Fast EtherChannel Example

Figure 17 illustrates TRISL with Fast EtherChannel.

The following is the configuration for the Cisco 7500:

```
source-bridge ring-group 50
interface Port-channel1
 no ip address
 no ip directed-broadcast
 no ip route-cache distributed
 hold-queue 300 in
interface Port-channel1.1
 encapsulation tr-isl trbrf-vlan 20 bridge-num 1
 ip address 10.131.25.1 255.255.255.0
 no ip redirects
 no ip directed-broadcast
 source-bridge trcrf-vlan 23 ring-group 50
 source-bridge spanning
interface Port-channel1.2
 encapsulation tr-isl trbrf-vlan 30 bridge-num 2
 ip address 10.131.24.1 255.255.255.0
 no ip redirects
 no ip directed-broadcast
 source-bridge trcrf-vlan 33 ring-group 50
 source-bridge spanning
interface fastethernet4/1/0
 no ip address
 no ip directed-broadcast
 no ip route-cache distributed
 channel-group 1
interface fastethernet4/1/1
 no ip address
 no ip directed-broadcast
 no ip route-cache distributed
 channel-group 1
```

The following is the configuration for the Catalyst 5000 Switch:

```
set vlan 10 name VLAN0010 type ethernet mtu 1500 said 100010 state active
set vlan 20 name VLAN0020 type trbrf mtu 4472 said 100020 state active bridge 0x1 stp leee
```
set vlan 30 name VLAN0030 type trbrf mtu 4472 said 100030 state active bridge 0x2 stp ieee

set vlan 22 name VLAN0022 type trcrf mtu 4472 said 100022 state active parent 20 ring 0x1 mode srt aremaxhop 7 stemaxhop 7
set vlan 23 name VLAN0023 type trcrf mtu 4472 said 100023 state active parent 20 ring 0x2 mode srt aremaxhop 7 stemaxhop 7
set vlan 32 name VLAN0032 type trcrf mtu 4472 said 100032 state active parent 30 ring 0x2 mode srt aremaxhop 7 stemaxhop 7
set vlan 33 name VLAN0033 type trcrf mtu 4472 said 100033 state active parent 30 ring 0x2 mode srt aremaxhop 7 stemaxhop 7

set port channel 1/1-2 on
set trunk 1/1 on isl 1-1005
set trunk 1/2 on isl 1-1005
add token port to crf 22
set vlan 22 5/1
add token port to crf 32
set vlan 32 5/2

TRISL with Fast EtherChannel only runs on the Cisco 7500. The MTU size can be set to more than 1500 if all the members of the port channel interface are 2FE/ISL adaptors. If, on the other hand, any member of the port channel interface is a non 2FE/ISL adaptor, then the MTU size is not configurable and defaults to 1500 bytes. Also, only IP utilizes all four links. Spanning Tree Protocol must be disabled if transparent bridging is configured on the FEC. The port-channel interface is the routed interface. Do not enable Layer 3 addresses on the physical Fast Ethernet interfaces. Do not assign bridge groups on the physical Fast Ethernet interfaces because it creates loops. Also, you must disable Spanning Tree Protocol if transparent bridging is configured on the FEC.
Overview of IBM Networking

The IBM networking technologies described in this publication can be categorized as network-related or host-related technologies. The IBM Networking section of the Cisco IOS Bridging and IBM Networking Configuration Guide discusses the following network-related software components:

- RSRB, page 2
- DLSw+, page 4
- STUN and BSTUN, page 11
- LLC2 and SDLC Parameters, page 15
- IBM Network Media Translation, page 17
- SNA FRAS, page 23
- NCIA, page 26
- ALPS, page 29

The IBM Networking section of the Cisco IOS Bridging and IBM Networking Configuration Guide discusses the following host-related software and hardware components:

- DSPU and SNA Service Point, page 30
- SNA Switching Services, page 31
- Cisco Transaction Connection, page 39
- CMCC Adapter Hardware, page 42

The following Cisco IOS software features are supported on the CMCC adapters:

- Common Link Access to Workstation, page 45
- TCP/IP Offload, page 45
- IP Host Backup, page 46
- Cisco Multipath Channel+, page 46
- Cisco SNA, page 47
- Cisco Multipath Channel, page 48
- TN3270 Server, page 48
This overview chapter gives a high-level description of each technology. For configuration information, refer to the corresponding chapters in this publication.

Note
All commands supported on the Cisco 7500 series routers are also supported on the Cisco 7000 series routers.

RSRB

In contrast to Source-Route Bridging (SRB), which involves bridging between Token Ring media only, RSRB is a Cisco technique for connecting Token Ring networks over non-Token Ring network segments. (DLSw+ is the Cisco strategic method for providing this function.)

The Cisco RSRB software implementation includes the following features:

- Provides for multiple routers separated by non-Token Ring segments. Three options are available:
  - Encapsulate the Token Ring traffic inside IP datagrams passed over a Transmission Control Protocol (TCP) connection between two routers.
  - Use Fast-Sequenced Transport (FST) to transport RSRB packets to their peers without TCP or User Datagram Protocol (UDP) header or processor overhead.
  - Use data link layer encapsulations over a single serial line, Ethernet, Token Ring, or Fiber Distributed Data Interface (FDDI) ring connected between two routers attached to Token Ring networks.
- Provides for configurable limits to the size of the TCP backup queue.

Figure 1 shows an RSRB topology. The virtual ring can extend across any non-Token Ring media supported by RSRB, such as serial, Ethernet, FDDI, and WANs. The type of media you select determines the way you set up RSRB.

Figure 1   RSRB Topology

Note
If you bridge across Token Ring media, it is recommended that you do not use RSRB. Use SRB instead. Refer to the chapter "Configuring Source-Route Bridging" for more information.
Configuration Considerations

Use IP encapsulation only over a TCP connection within complex meshed networks to support connections between peers that are separated by multiple hops and can potentially use multiple paths, and where performance is not an issue. Use direct encapsulation in point-to-point connections. In a point-to-point configuration, using TCP adds unnecessary processing overhead. Multiple peer types, however, can be combined to in a single router by following the directions for each peer type. For example, for a peer to support both TCP and FST remote-peers, you would need to define both a source-bridge fst peername and a source-bridge remote-peer command for the local router, using the same local IP address.

FST is fast-switched when it receives or sends frames from Ethernet, Token Ring, or FDDI interfaces. It is also fast-switched when it sends and receives from serial interfaces configured with the High-Level Data Link Control (HDLC) encapsulation. In all other cases, FST is slow-switched.

In cases where FST is fast-switched, in either the Cisco routers configured for FST or in the routers contained within the IP “cloud” between a pair of FST peers, only one path is used at a given time between the two FST peers. A single path greatly decreases the likelihood that frames arrive out of sequence. In the rare cases where frames do arrive out of sequence, the FST code on the receiving peer discards the out-of-order frame. Thus the Token Ring end hosts rarely lose a frame over the FST router cloud, and performance levels remain adequate.

The same conditions are true for any slow-switched topology that provides only a single path (for example, a single X.25 network cloud) between the peers. Similarly, if two slow-switched paths are of very different costs such that one always will be chosen over the other, the chances of having frames received out of sequence are also rare.

However, if two or more slow-switched paths of equal cost exist between the two routers (such as two parallel X.25 networks), the routers alternate in sending packets between the two or more equal-cost paths. This results in a high probability of frames arriving out of sequence at the receiver. In such cases, the FST code disposes of every out-of-sequence packet, leading to a large number of drops. This requires that the end hosts resend frames, greatly reducing overall throughput.

When parallel paths exist, we strongly recommend choosing one as the preferred path. Choose a preferred path by specifying a higher bandwidth for the path that contains the direct connections to the two or more parallel paths on the router.

Do not use FST when the probability exists for frames to lose their order in your network. If you have a network where frames are routinely reordered, it is better to use the TCP protocol for RSRB. TCP provides the overhead necessary to bring frames back in order on the receiving router. FST, to remain fast, does not provide for such a mechanism, and will discard out-of-order frames.

Logical Link Control, type 2 (LLC2) local acknowledgment can be enabled only with TCP remote peers (as opposed to LAN or direct serial interface remote peers) because the Cisco IOS software needs the reliability of TCP to provide the same reliability that an LLC2 LAN end-to-end connection provides. Therefore, the direct media encapsulation options for the source-bridge remote-peer command cannot be used.

If the LLC2 session between the local host and the router terminates on either side of the connection, the other device will be informed to terminate its connection to its local host.

If the TCP queue length of the connection between the two routers reaches 90 percent of its limit, they send Receiver-not-Ready (RNR) messages to the local hosts until the queue limit is reduced to below this limit.

The configuration of the LLC2 parameters for the local Token Ring interfaces can affect overall performance. Refer to the “Configuring LLC2 and SDLC Parameters” chapter for more details about fine-tuning your network through the LLC2 parameters.
As previously stated, local acknowledgment for LLC2 is meant only for extreme cases in which communication is not possible otherwise. Because the router must maintain a full LLC2 session, the number of simultaneous sessions it can support before performance degrades depends on the mix of other protocols and their loads.

The routers at each end of the LLC2 session execute the full LLC2 protocol, which can result in some overhead. The decision to turn on local acknowledgment for LLC2 should be based on the speed of the backbone network in relation to the Token Ring speed. For LAN segments separated by slow-speed serial links (for example, 56 kbps), the T1 timer problem could occur more frequently. In such cases, it might be wise to turn on local acknowledgment for LLC2. For LAN segments separated by a FDDI backbone, backbone delays will be minimal; in such cases, local acknowledgment for LLC2 should not be turned on. Speed mismatch between the LAN segments and the backbone network is one criterion to be used in the decision to use local acknowledgment for LLC2.

There are some situations (such as host B failing between the time host A sends data and the time host B receives it) in which host A would behave as if, at the LLC2 layer, data was received when it actually was not, because the device acknowledges that it received data from host A before it confirms that host B can actually receive the data. But because both NetBIOS and SNA have error recovery in situations where an end device goes down, these higher-level protocols will resend any missing or lost data. These transaction request/confirmation protocols exist above LLC2, so they are not affected by tight timers, as is LLC2. They also are transparent to local acknowledgment.

If you are using NetBIOS applications, note that there are two NetBIOS timers—one at the link level and one at the next higher level. Local acknowledgment for LLC2 is designed to solve session timeouts at the link level only. If you are experiencing NetBIOS session timeouts, you have two options:

- Experiment with increasing your NetBIOS timers.
- Avoid using NetBIOS applications on slow serial lines.

In a configuration scenario where RSRB is configured between Router A and Router B and both routers are not routing IP, a Host connected to router A through Token Ring (or other LAN media) has no IP connectivity to router B. This restriction exists because IP datagrams received from the Host by Router A are encapsulated and sent to router B where they can only be de-encapsulated and source-bridged to a Token Ring. In this scenario, IP routing is recommended. To enable the Host to reach Router B in this scenario, IP routing should be enabled on Router A’s Token Ring interface to which the Host is attached.

DLSw+

Data-Link Switching Plus (DLSw+) is a method of transporting SNA and NetBIOS. It complies with the DLSw standard documented in RFC 1795 and the DLSw Version 2 standard. DLSw+ is an alternative to RSRB that addresses several inherent problems that exist in RSRB, such as:

- SRB hop-count limits (SRB’s limit is seven)
- Broadcast traffic (including SRB explorer frames or NetBIOS name queries)
- Unnecessary traffic (acknowledgments and keepalives)
- Data-link control timeouts
This section contains a brief overview of DLSw+:

- DLSw Standard, page 5
- DLSw Version 2 Standard, page 5
- DLSw+ Features, page 6

**DLSw Standard**

The DLSw standard, documented in RFC 1795, defines the switch-to-switch protocol between DLSw routers. The standard also defines a mechanism to terminate data-link control connections locally and multiplex the traffic from the data-link control connections to a TCP connection. The standard always calls for the transport protocol to be TCP and always requires that data-link control connections be locally terminated (the equivalent of the Cisco local acknowledgment option). The standard also requires that the SRB RIF be terminated at the DLSw router. The standard describes a means for prioritization and flow control and defines error recovery procedures that ensure data-link control connections are appropriately disabled if any part of their associated circuits breaks.

The DLSw standard does not specify when to establish TCP connections. The capabilities exchange allows compliance to the standard, but at different levels of support. The standard does not specify how to cache learned information about MAC addresses, RIFs, or NetBIOS names. It also does not describe how to track either capable or preferred DLSw partners for either backup or load-balancing purposes. The standard does not provide the specifics of media conversion, but leaves the details up to the implementation. It does not define how to map switch congestion to the flow control for data-link control. Finally, the MIB is documented under a separate RFC.

**DLSw Version 2 Standard**

In the Version 1 standard, a network design requires fully meshed connectivity so that all peers were connect to every other peer. This design creates unnecessary broadcast traffic because an explorer propagates to every peer for every broadcast.

The Version 2 standard is documented in RFC 2166. It includes RFC 1795 and adds the following enhancements:

- IP Multicast, page 6
- UDP Unicast, page 6
- Enhanced Peer-on-Demand Routing Feature, page 6
- Expedited TCP Connection, page 6

Users implement DLSw+ Version 2 for scalability if they are using multivendor DLSw devices with an IP multicast network. DLSw Version 2 requires complex planning because it involves configuration changes across an IP network.
IP Multicast

Multicast service avoids duplication and excessive bandwidth of broadcast traffic because it replicates and propagates messages to its multicast members only as necessary. It reduces the amount of network overhead in the following ways:

- Avoids the need to maintain TCP Switch-to-Switch Protocol (SSP) connections between two DLSw peers when no circuits are available
- Ensures that each broadcast results in only a single explorer over every link

DLSw Version 2 is for customers who run a multicast IP network and do not need the advantages of border peering.

UDP Unicast

DLSw Version 2 uses UDP unicast in response to a IP multicast. When address resolution packets (CANUREACH_EX, NETBIOS_NQ_ex, NETBIOS_ANQ, and DATAFRAME) are sent to multiple destinations (IP multicast service) DLSw Version 2 sends the response frames (ICANREACH_ex and NAME_RECOGNIZED_ex) via UDP unicast.

Enhanced Peer-on-Demand Routing Feature

DLSw Version 2 establishes TCP connections only when necessary and the TCP connections are brought down when there are no circuits to a DLSw peer for a specified amount of time. This method, known as peer-on-demand routing, was recently introduced in DLSw Version 2, but has been implemented in Cisco DLSw+ border peer technology since Cisco IOS Release 10.3.

Expedited TCP Connection

DLSw Version 2 efficiently establishes TCP connections. Previously, DLSw created two unidirectional TCP connections and then disconnected one after the capabilities exchange took place. With DLSw Version 2, a single bidirectional TCP connection establishes if the peer is brought up as a result of an IP multicast/UDP unicast information exchange.

DLSw+ Features

DLSw+ is the Cisco version of DLSw and it supports several additional features and enhancements. DLSw+ is a means of transporting SNA and NetBIOS traffic over a campus or WAN. The end systems can attach to the network over Token Ring, Ethernet, Synchronous Data Link Control (SDLC) Protocol, Qualified Logical Link Control (QLLC), or FDDI. See the DLSw+ Design and Implementation Guide Appendix B, “DLSw+ Support Matrix,” for details. DLSw+ switches between diverse media and locally terminates the data links, keeping acknowledgments, keepalives, and polling off the WAN. Local termination of data links also eliminates data-link control timeouts that can occur during transient network congestion or when rerouting around failed links. Finally, DLSw+ provides a mechanism for dynamically searching a network for SNA or NetBIOS resources and includes caching algorithms that minimize broadcast traffic.
This section contains information on the following topics related to DLSw+ features:

- Local Acknowledgment, page 7
- Notes on Using LLC2 Local Acknowledgment, page 9
- DLSw+ Support for Other SNA Features, page 10

DLSw+ is fully compatible with any vendor’s RFC 1795 implementation and the following features are available when both peers are using DLSw+:

- Peer groups and border peers
- Backup peers
- Promiscuous and on-demand peers
- Explorer firewalls and location learning
- NetBIOS dial-on-demand routing feature support
- UDP unicast support
- Load balancing
- Support for LLC1 circuits
- Support for multiple bridge groups
- Support for RIF Passthru
- SNA type of service feature support
- Local acknowledgment for Ethernet-attached devices and media conversion for SNA PU 2.1 and PU 2.0 devices
- Conversion between LLC2 to SDLC between PU 4 devices
- Local or remote media conversion between LANs and either the SDLC Protocol or QLLC
- SNA View, Blue Maps, and Internetwork Status Monitor (ISM) support

MIB enhancements that allow DLSw+ features to be managed by the CiscoWorks Blue products, SNA Maps, and SNA View. Also, new traps alert network management stations of peer or circuit failures. For more information, refer to the current Cisco IOS release note for the location of the Cisco MIB website.

**Local Acknowledgment**

When you have LANs separated by wide geographic distances, and you want to avoid multiple resending or loss of user sessions that can occur with time delays, encapsulate the source-route bridged traffic inside IP datagrams passed over a TCP connection between two routers with local acknowledgment enabled.

LLC2 is an ISO standard data-link level protocol used in Token Ring networks. LLC2 was designed to provide reliable sending of data across LAN media and to cause minimal or at least predictable time delays. However, RSRB and WAN backbones created LANs that are separated by wide, geographic distances-spanning countries and continents. As a result, LANs have time delays that are longer than LLC2 allows for bidirectional communication between hosts. Local acknowledgment addresses the problem of unpredictable time delays, multiple resending, and loss of user sessions.

In a typical LLC2 session, when one host sends a frame to another host, the sending host expects the receiving host to respond positively or negatively in a predefined period of time commonly called the $T_1$ time. If the sending host does not receive an acknowledgment of the frame it sent within the $T_1$ time, it retries a few times (normally 8 to 10). If there is still no response, the sending host drops the session.
Figure 2 illustrates an LLC2 session in which a 37x5 on a LAN segment communicates with a 3x74 on a different LAN segment separated via a wide-area backbone network. Frames are transported between Router A and Router B by means of DLSw+. However, the LLC2 session between the 37x5 and the 3x74 is still end-to-end; that is, every frame generated by the 37x5 traverses the backbone network to the 3x74, and the 3x74, on receipt of the frame, acknowledges it.

On backbone networks consisting of slow serial links, the T1 timer on end hosts could expire before the frames reach the remote hosts, causing the end host to resend. Resending results in duplicate frames reaching the remote host at the same time as the first frame reaches the remote host. Such frame duplication breaks the LLC2 protocol, resulting in the loss of sessions between the two IBM machines.

One way to solve this time delay is to increase the timeout value on the end nodes to account for the maximum transit time between the two end machines. However, in networks consisting of hundreds or even thousands of nodes, every machine would need to be reconfigured with new values. With local acknowledgment for LLC2 enabled, the LLC2 session between the two end nodes would not be end-to-end, but instead, would terminate at two local routers. Figure 3 shows the LLC2 session with the 37x5 ending at Router A and the LLC2 session with the 3x74 ending at Router B. Both Router A and Router B execute the full LLC2 protocol as part of local acknowledgment for LLC2.

With local acknowledgment for LLC2 enabled in both routers, Router A acknowledges frames received from the 37x5. The 37x5 still operates as if the acknowledgments it receives are from the 3x74. Router A looks like the 3x74 to the 37x5. Similarly, Router B acknowledges frames received from the 3x74. The
3x74 operates as if the acknowledgments it receives are from the 37x5. Router B looks like the 3x74 to 37x5. Because the frames do not have to travel the WAN backbone networks to be acknowledged, but are locally acknowledged by routers, the end machines do not time out, resulting in no loss of sessions.

Enabling local acknowledgment for LLC2 has the following advantages:

- Local acknowledgment for LLC2 solves the T1 timer problem without having to change any configuration on the end nodes. The end nodes are unaware that the sessions are locally acknowledged. In networks consisting of hundreds or even thousands of machines, this is a definite advantage. All the frames acknowledged by the Cisco IOS software appear to the end hosts to be coming from the remote IBM machine. In fact, by looking at a trace from a protocol analyzer, one cannot say whether a frame was acknowledged by the local router or by a remote IBM machine. The MAC addresses and the RIFs generated by the Cisco IOS software are identical to those generated by the remote IBM machine. The only way to find out whether a session is locally acknowledged is to use either a `show local-ack` command or a `show source-bridge` command on the router.

- All the supervisory (RR, RNR, REJ) frames that are locally acknowledged go no farther than the router. Without local acknowledgment for LLC2, every frame traverses the backbone. With local acknowledgment, only data (I-frames) traverse the backbone, resulting in less traffic on the backbone network. For installations in which customers pay for the amount of traffic passing through the backbone, this could be a definite cost-saving measure. A simple protocol exists between the two peers to bring up or down a TCP session.

**Notes on Using LLC2 Local Acknowledgment**

LLC2 local acknowledgment is enabled with TCP and DLSw+ Lite remote peers.

If the LLC2 session between the local host and the router terminates in either router, the other will be informed to terminate its connection to its local host.

If the TCP queue length of the connection between the two routers reaches the high-water mark, the routers sends Receiver-Not-Ready (RNR) messages to the local hosts until the queue limit is reduced to below this limit. It is possible, however, to prevent the RNR messages from being sent by using the `dlsw llc2 nornr` command.

The configuration of the LLC2 parameters for the local Token Ring interfaces can affect overall performance. Refer to the chapter “Configuring LLC2 and SDLC Parameters” in this manual for more details about fine-tuning your network through the LLC2 parameters.

The routers at each end of the LLC2 session execute the full LLC2 protocol, which could result in some overhead. The decision to use local acknowledgment for LLC2 should be based on the speed of the backbone network in relation to the Token Ring speed. For LAN segments separated by slow-speed serial links (for example, 56 kbps), the T1 timer problem could occur more frequently. In such cases, it might be wise to turn on local acknowledgment for LLC2. For LAN segments separated by a T1, backbone delays will be minimal; in such cases, FST or direct should be considered. Speed mismatch between the LAN segments and the backbone network is one criterion to help you decide to use local acknowledgment for LLC2.

There are some situations (such as the receiving host failing between the time the sending host sends data and the time the receiving host receives it), in which the sending host would determine, at the LLC2 layer, that data was received when it actually was not. This error occurs because the router acknowledges that it received data from the sending host before it determines that the receiving host can actually receive the data. But because both NetBIOS and SNA have error recovery in situations where an end device goes down, these higher-level protocols will resend any missing or lost data. Because these transaction request/confirmation protocols exist above LLC2, they are not affected by tight timers, as is LLC2. They also are transparent to local acknowledgment.
If you are using NetBIOS applications, note that there are two NetBIOS timers—one at the link level and one at the next higher level. Local acknowledgment for LLC2 is designed to solve link timeouts only. If you are experiencing NetBIOS session timeouts, you have two options:

- Experiment with increasing your NetBIOS timers and decreasing your maximum NetBIOS frame size.
- Avoid using NetBIOS applications on slow serial lines.

Note

By default, the Cisco IOS software translates Token Ring LLC2 to Ethernet 802.3 LLC2. To configure the router to translate Token Ring LLC2 frames into Ethernet 0x80d5 format frames, refer to the section “Enable Token Ring LLC2-to-Ethernet Conversion” in the “Configuring Source-Route Bridging” chapter of the *Cisco IOS Bridging and IBM Networking Command Reference* (Volume 1 of 2).

DLSw+ Support for Other SNA Features

DLSw+ can be used as a transport for SNA features such as LAN Network Manager (LNM), DSPU, SNA service point, and SNA Switching Services (SNASw) through a Cisco IOS feature called virtual data-link control (VDLC).

LNM over DLSw+ allows DLSw+ to be used in Token Ring networks that are managed by IBM’s LNM software. Using this feature, LNM can be used to manage Token Ring LANs, control access units, and Token Ring attached devices over a DLSw+ network. All management functions continue to operate as they would in a source-route bridged network or an RSRB network.

DSPU over DLSw+ allows the Cisco DSPU feature to operate in conjunction with DLSw+ in the same router. DLSw+ can be used either upstream (toward the mainframe) or downstream (away from the mainframe) of DSPU. DSPU concentration consolidates the appearance of multiple physical units (PUs) into a single PU appearance to VTAM, minimizing memory and cycles in central site resources (VTAM, NCP, and routers) and speeding network startup.

SNA service point over DLSw+ allows the Cisco SNA service point feature to be used in conjunction with DLSw+ in the same router. Using this feature, SNA service point can be configured in remote routers, and DLSw+ can provide the path for the remote service point PU to communicate with NetView. This allows full management visibility of resources from a NetView 390 console, while concurrently offering the value-added features of DLSw+ in an SNA network.

SNASw over DLSw+ allows the Cisco APPN Branch Extender functionality to be used in conjunction with DLSw+ in the same router. With this feature, DLSw+ can be used to access SNASw in the data center. DLSw+ can also be used as a transport SNASw upstream connectivity, providing nondisruptive recovery from failures. The DLSw+ network can appear as a connection network to the SNASw nodes.

Using DLSw+ as a transport for other Cisco IOS SNA features requires a feature called VDLC. Cisco IOS data-link users (such as LNM, DSPU, SNA service point, and SNASw) write to a virtual data-link control interface. DLSw+ then reads from this interface and sends out the traffic. Similarly, DLSw+ can receive traffic destined for one of these Data Link Users and write it to the virtual data-link control interface, from which the appropriate Data Link User will read it.

In Figure 4, SNASw and DLSw+ use Token Ring and Ethernet, respectively, as “real” data-link controls, and use virtual data-link control to communicate between themselves. When one of the high-layer protocols passes data to the virtual data-link control, the virtual data-link control must pass it to a higher-layer protocol; nothing leaves the virtual data-link control without going through a data-link user.
Figure 4  
**VDLC Interaction with Higher-Layer Protocols**

The higher-layer protocols make no distinction between the VDLC and any other data-link control, but they do identify the VDLC as a destination. In the example shown in , SNASw has two ports: a physical port for Token Ring and a logical (virtual) port for the VDLC. In the case of the SNASw VDLC port, when you define the SNASw VDLC port, you can also specify the MAC address assigned to it. That means data going from DLSw+ to SNASw by way of the VDLC is directed to the VDLC MAC address. The type of higher-layer protocol you use determines how the VDLC MAC address is assigned.

**STUN and BSTUN**

The Cisco IOS software supports serial tunnel (STUN) and block serial tunnel (BSTUN). Our BSTUN implementation enhances Cisco 2500, 4000, 4500, 4700, 7200 series routers to support devices that use the Binary Synchronous Communication (Bisync) data-link protocol and asynchronous security protocols that include Adplex, ADT Security Systems, Inc., Diebold, and asynchronous generic traffic. BSTUN implementation is also supported on the 4T network interface module (NIM) on the Cisco 4000 and 4500 series routers. Our support of the bisync protocol enables enterprises to transport Bisync traffic and SNA multiprotocol traffic over the same network.

This section contains the following topics:

- STUN Networks, page 11
- STUN Features, page 12
- BSTUN Networks, page 15
- BSTUN Features, page 15

**STUN Networks**

STUN operates in two modes: passthrough and local acknowledgment. Figure 5 shows the difference between passthrough mode and local acknowledgment mode.

The upper half of Figure 5 shows STUN configured in passthrough mode. In passthrough mode, the routers act as a wire and the SDLC session remains between the end stations. In this mode, STUN provides a straight passthrough of all SDLC traffic, including control frames.

The lower half of Figure 5 shows STUN configured in local acknowledgment mode. In local acknowledgment mode, the routers terminate the SDLC sessions and send only data across the WAN. Control frames no longer travel the WAN backbone networks.
To enable STUN local acknowledgment, you first enable the routers for STUN and configure them to appear on the network as primary or secondary SDLC nodes. TCP/IP encapsulation must be enabled. The Cisco STUN local acknowledgment feature also provides priority queueing for TCP-encapsulated frames.

**STUN Features**

The Cisco STUN implementation provides the following features:

- Encapsulates SDLC frames in either the Transmission Control Protocol/Internet Protocol (TCP/IP) or the HDLC protocol.
- Allows two devices using SDLC- or HDLC-compliant protocols that are normally connected by a direct serial link to be connected through one or more Cisco routers, reducing leased-line costs.
  
  When you replace direct serial links with routers, serial frames can be propagated over arbitrary media and topologies to another router with a STUN link to an appropriate endpoint. The intervening network is not restricted to STUN traffic, but rather, is multiprotocol. For example, instead of running parallel backbones for DECnet and SNA/SDLC traffic, this traffic now can be integrated into an enterprise backbone network.

- Supports local acknowledgment for direct Frame Relay connectivity between routers, without requiring TCP/IP.
- Allows networks with IBM mainframes and communications controllers to share data using Cisco routers and existing network links. As an SDLC function, STUN fully supports the IBM SNA and allows IBM SDLC frames to be sent across the network media and shared serial links. Illustrates a typical network configuration without STUN and the same network configured with STUN.

- Encapsulates SDLC frame traffic packets and routes them over any of the supported network media (serial, FDDI, Ethernet, and Token Ring, X.25, SMDS, and T1/T3) using TCP/IP encapsulation. Because TCP/IP encapsulation is used, you can use any of the Cisco routing protocols to route the packets.

- Copies frames to destinations based on address. STUN in passthrough mode does not modify the frames in any way or participate in SDLC windowing or resending; these functions are left to the communicating hosts. However, STUN in local acknowledgment mode does participate in SDLC windowing and resending through local termination of the SDLC session.

- Ensures reliable sending of data across serial media having minimal or predictable time delays. With the advent of STUN and WAN backbones, serial links now can be separated by wide geographic distances spanning countries and continents. As a result, these serial links have time delays that are longer than SDLC allows for bidirectional communication between hosts. The STUN local acknowledgment feature addresses the problems of unpredictable time delays, multiple resending, or loss of sessions.

- Allows for configuration of redundant links to provide transport paths if part of the network goes down.
Figure 6 shows the difference between an IBM network with STUN and one without STUN.

**Figure 6  IBM Network Configuration without STUN and with STUN**
BSTUN Networks

The Bisync feature enables your Cisco 2500, 3600, 4000, 4500, 4700, and 7200 series router to support devices that use the Bisync data-link protocol. This protocol enables enterprises to transport Bisync traffic over the same network that supports their SNA and multiprotocol traffic, eliminating the need for separate Bisync facilities.

At the access router, traffic from the attached Bisync device is encapsulated in IP. The Bisync traffic can then be routed across arbitrary media to the host site where another router supporting Bisync will remove the IP encapsulation headers and present the Bisync traffic to the Bisync host or controller over a serial connection. HDLC can be used as an alternative encapsulation method for point-to-point links.

BSTUN Features

The Cisco implementation of BSTUN provides the following features:

- Encapsulates Bisync, Adplex, ADT Security Systems, Inc., Diebold, asynchronous generic, and Monitor Dynamics Inc., traffic for transfer over router links. The tunneling of asynchronous security protocols (ASP) feature enables your Cisco 2500, 3600, 4000, 4500, or 7200 series router to support devices that use the following asynchronous security protocols:
  - adplex
  - adt-poll-select
  - adt-vari-poll
  - diebold
  - async-generic
  - mdi
- Provides a tunnel mechanism for BSTUN over Frame Relay, without using TCP/IP encapsulation.
- Supports Bisync devices and host applications without modification.
- Uses standard synchronous serial interfaces on Cisco 2500 series and the 4T network interface module (NIM) on the Cisco 4000 series and Cisco 4500 series.
- Supports point-to-point, multidrop, and virtual multidrop configurations.

Note

The async-generic item is not a protocol name. It is a command keyword used to indicate generic support of other asynchronous security protocols that are not explicitly supported.

LLC2 and SDLC Parameters

The LLC2 and SDLC protocols provide data link layer support for higher-layer network protocols and features such as SDLC Logical Link Control (SDLLC) and RSRB with local acknowledgment. The features that are affected by LLC2 parameter settings are listed in the “The Cisco Implementation of LLC2” section on page 16. The features that require SDLC configuration and use SDLC parameters are listed in the “The Cisco Implementation of SDLC” section on page 16.

LLC2 and SDLC package data in frames. LLC2 and SDLC stations require acknowledgments from receiving stations after a set amount of frames have been sent before sending further data. The tasks described in this chapter modify default settings regarding the control field of the data frames. By
modifying the control field parameters, you can determine the number of acknowledgments sent for frames received and the level of polling used to determine available stations. In this manner, you can set the amount of resources used for frame checking and optimize the network load.

SDLC is used as the primary SNA link-layer protocol for WAN links. SDLC defines two types of network nodes: primary and secondary. Primary nodes poll secondary nodes in a predetermined order. Secondary nodes then send any outgoing data. When configured as primary and secondary nodes, our routers are established as SDLC stations.

The Cisco Implementation of LLC2

The Cisco LLC2 implementation supports the following features:

- Local acknowledgment for RSRB
  This feature is used in our implementation of RSRB as described in the chapter “Configuring Source-Route Bridging.”
  Because LANs are now connected through RSRB and WAN backbones, the delays that occur are longer than LLC2 allows for bidirectional communication between hosts. Our local acknowledgment feature addresses the problem of delays, resending, and loss of user sessions.

- IBM LNM support
  Routers using 4- or 16-Mbps Token Ring interfaces configured for SRB support Lan Network Manager (LNM) and provide all IBM bridge program functions. With LNM, a router appears as an IBM source-route bridge, and can manage or monitor any connected Token Ring interface.
  LNM support is described in the chapter “Configuring Source-Route Bridging.”

- SDLLL media translation
  The SDLLL feature provides media translation between the serial lines running SDLC and Token Rings running LLC2. SDLLL consolidates the IBM SNA networks running SDLC into a LAN-based, multiprotocol, multimedia backbone network.
  SDLLL is described in the chapter “Configuring IBM Network Media Translation.”

- ISO Connection-Mode Network Service (CMNS)
  The Cisco CMNS implementation runs X.25 packets over LLC2 so that X.25 can be extended to Ethernet, FDDI, and Token Ring media.

The Cisco Implementation of SDLC

The Cisco SDLC implementation supports the following features:

- Frame Relay Access Support (FRAS)
  With FRAS, a router functions as a Frame Relay Access Device (FRAD) for SDLC, Token Ring, and Ethernet-attached devices over a Frame Relay Boundary Network Node (BNN) link.
  Frame Relay access support is described in the chapter “Configuring SNA Frame Relay Access Support.”

- SDLLL media translation
  The SDLLL feature provides media translation between the serial lines running SDLC and Token Rings running LLC2. SDLLL consolidates the IBM SNA networks running SDLC into a LAN-based, multiprotocol, multimedia backbone network.
SDLLC is described in the chapter “Configuring IBM Network Media Translation.”

- SDLC local acknowledgment

SDLC local acknowledgment is used with SDLC STUN. TCP/IP must be enabled. With local acknowledgment, STUN SDLC connections can be terminated locally at the router, eliminating the need for acknowledgments to be sent across a WAN.

SDLC local acknowledgment is described in the section “Establish the Frame Encapsulation Method” in the chapter “Configuring STUN and BSTUN.”

**IBM Network Media Translation**

The Cisco IOS software includes the following media translation features that enable network communications across heterogeneous media:

- SDLLC media translation enables a device on a Token Ring to communicate with a device on a serial link.
- QLLC conversion enables an IBM device to communicate with an X.25 network without having to install the X.25 software on local IBM equipment.

SDLLC is a Cisco Systems proprietary software feature that enables a device on a Token Ring to communicate with a device on a serial link by translating between LLC2 and SDLC at the link layer.

SNA uses SDLC and LLC2 as link layer protocols to provide a reliable connection. The translation function between these industry-standard protocols takes place in the proprietary Cisco software.

This section contains a brief overview of IBM Network Media Translation:

- SDLLC Media Translation Features, page 18
- QLLC Conversion, page 20
- The Cisco Implementation of QLLC Conversion, page 21
- Comparing QLLC Conversion to SDLLC, page 22
- Other Implementation Considerations, page 23
Figure 7 illustrates how SDLLC provides data link layer support for SNA communication.

Figure 7  SNA Data Link Layer Support

SDLLC Media Translation Features

The SDLLC feature allows a PU 4, PU 2.1, or PU 2 to communicate with a PU 2 SDLC device as follows:

- SDLLC with direct connection—A 37x5 front-end processor (FEP) on a Token Ring and the 3x74 cluster controller connected to a serial line are each connected to an interface on the same router configured with SDLLC.
- SDLLC with RSRB—A 37x5 FEP on a Token Ring and a 3x74 cluster controller connected to a serial line are connected to different routers. Only the device to which the 3x74 is connected is configured with SDLLC. The routers communicate via RSRB using direct encapsulation, RSRB over an FST connection, or RSRB over a TCP connection.
- SDLLC with RSRB and local acknowledgment—A 37x5 FEP on a Token Ring and a 3x74 cluster controller connected to a serial line are connected to different routers. Only the device to which the 3x74 is connected is configured with SDLLC. The routers communicate via RSRB over a TCP connection that has local acknowledgment enabled.

In all these topologies, each IBM end node (the FEP and cluster controller) has no indication that its counterpart is connected to a different medium running a different protocol. The 37x5 FEP responds as if the 3x74 cluster controller were communicating over a Token Ring, whereas the 3x74 responds as though the 37x5 FEP were communicating over a serial line. That is, the SDLLC software makes translation between the two media transparent to the end nodes.

Virtual Token Ring Concept

Central to the Cisco SDLLC feature is the concept of a virtual Token Ring device residing on a virtual Token Ring. Because the Token Ring device expects the node with which it is communicating also to be on a Token Ring, each SDLLC device on a serial line must be assigned an SDLLC virtual Token Ring address (SDLLC VTRA). Like real Token Ring addresses, SDLLC VTRAs must be unique across the network.

In addition to the SDLLC VTRA, an SDLLC virtual ring number must be assigned to each SDLLC device on a serial line. (The SDLLC virtual ring number differs from the virtual ring group numbers that are used to configure RSRB and multiport bridging.)
As part of its virtual telecommunications access method (VTAM) configuration, the IBM node on the Token Ring has knowledge of the SDLLC VTRA of the serial device with which it communicates. The SDLC VTRA and the SDLLC virtual ring number are a part of the SDLLC configuration for the router’s serial interface. When the Token Ring host sends out explorer packets with the SDLLC VTRA as the destination address in the MAC headers, the router configured with that SDLLC VTRA intercepts the frame, fills in the SDLLC virtual ring number address and the bridge number in the RIF, then sends the response back to the Token Ring host. A route is then established between the Token Ring host and the router. After the Cisco IOS software performs the appropriate frame conversion, the system uses this route to forward frames to the serial device.

Resolving Differences in LLC2 and SDLC Frame Size

IBM nodes on Token Ring media normally use frame sizes greater than 1 KB, whereas the IBM nodes on serial lines normally limit frame sizes to 265 or 521 bytes. To reduce traffic on backbone networks and provide better performance, Token Ring nodes should send frames that are as large as possible. As part of the SDLLC configuration on the serial interface, the largest frame size the two media can support should be selected. The Cisco IOS software can fragment the frames it receives from the Token Ring device before forwarding them to the SDLC device, but it does not assemble the frames it receives from the serial device before forwarding them to the Token Ring device.

Maintaining a Dynamic RIF Cache

SDLLC maintains a dynamic RIF cache and caches the entire RIF; that is, the RIF from the source station to destination station. The cached entry is based on the best path at the time the session begins. SDLLC uses the RIF cache to maintain the LLC2 session between the router and the host FEP. SDLLC does not age these RIF entries. Instead, SDLLC places an entry in the RIF cache for a session when the session begins and flushes the cache when the session terminates. You cannot flush these RIFs because if you flush the RIF entries randomly, the Cisco IOS software cannot maintain the LLC2 session to the host FEP.

Other Considerations

The following are additional facts regarding SDLC and SDLLC:

- As part of the Cisco SDLC implementation, only modulus 8 Normal Response Mode (NRM) sessions are maintained for the SDLC session.
- SDLC sessions are always locally acknowledged. LLC2 sessions can be optionally configured for local acknowledgment.
- SDLLC does not apply to SNA subarea networks, such as 37x5 FEP-to-37x5 FEP communication.
- Parameters such as the maximum number of information frames (I-frames) outstanding before acknowledgment, frequency of polls, and response time to poll frames can be modified per interface. If local acknowledgment is not enabled, these parameters are modified on the SDLC interface. If local acknowledgment is enabled, these parameters are modified on the Token Ring interface.
- Local acknowledgment only applies when the remote peer is defined for RSRB using IP encapsulation over a TCP connection. If no local acknowledgment is used, the remote peer can be defined for RSRB using direct encapsulation, RSRB using IP encapsulation over an FST connection, or RSRB using IP encapsulation over a TCP connection.
QLLC Conversion

Qualified Logical Link Control (QLLC) is a data link protocol defined by IBM that allows SNA data to be transported across X.25 networks. (Although IBM has defined other protocols for transporting SNA traffic over an X.25 network, QLLC is the most widely used.) Figure 8 illustrates how QLLC conversion provides data link layer support for SNA communication.

Figure 8  SNA Data Link Layer Support

As shown in Figure 9, any devices in the SNA communication path that use X.25, whether end systems or intermediate systems, require a QLLC implementation.

Figure 9  SNA Devices Running QLLC

As shown in Figure 10, the QLLC conversion feature eliminates the need to install the X.25 software on local IBM equipment. A device attached locally to a Token Ring network can communicate through a router running the QLLC Conversion feature with a remote device attached to an X.25 network using QLLC. Typically, the locally attached device is an FEP, an AS 400, or a PS/2, and the remote device is a terminal controller or a PS/2. In this case, only the remote device needs an X.25 interface and the FEP can communicate with the terminal controller as if it were directly attached via a Token Ring network.

Figure 10  Router Running QLLC Conversion Feature

More elaborate configurations are possible. The router that implements QLLC conversion need not be on the same Token Ring network as the FEP. As shown in Figure 11, QLLC/LLC2 conversion is possible even when an intermediate IP WAN exists between the router connected to the X.25 network and the router connected to the Token Ring.
The Cisco Implementation of QLLC Conversion

SNA uses QLLC and X.25 as link layer protocols to provide a reliable connection. QLLC itself processes QLLC control packets. In a Token Ring environment, SNA uses LLC to provide a reliable connection. The LAN-to-X.25 (LNX) software provides a QLLC conversion function to translate between LLC and QLLC.

Figure 12 shows the simplest QLLC conversion topology: a single Token Ring device (for example, a 37x5 FEP) communicates with a single remote X.25 device (in this case a 3x74 cluster controller). In this example, a router connects the Token Ring network to the X.25 network.

In Figure 12, each IBM end node has no indication that its counterpart is connected to a different medium running a different protocol. The 37x5 FEP responds as if the 3x74 cluster controller were communicating over a Token Ring, whereas the 3x74 responds as though the 37x5 FEP were communicating over an X.25 network. This is accomplished by configuring the router’s X.25 interface as a virtual Token Ring, so that the X.25 virtual circuit appears to the Token Ring device (and to the router itself) as if it were a Token Ring to which the remote X.25 device is attached.

Also in this figure, the LLC2 connection extends from the 37x5 FEP across the Token Ring network to the router. The QLLC/X.25 session extends from the router across the X.25 network to the 3x74 cluster controller. Only the SNA session extends across the Token Ring and X.25 networks to provide an end-to-end connection from the 37x5 FEP to the 3x74 cluster controller.

As Figure 13 shows, a router need not directly connect the two IBM end nodes; instead, some type of backbone WAN can connect them. Here, RSRB transports packets between Router A and Router B, while Router B performs all conversion between the LLC2 and X.25 protocols. Only the router attached to the serial line (Router B) needs to be configured for QLLC conversion. Both Router A and Router B are configured for normal RSRB.
How communication sessions are established over the communication link varies depending on whether or not LLC2 local acknowledgment has been configured on Router A’s Token Ring interface. In both cases, the SNA session extends end-to-end and the QLLC/X.25 session extends from Router B to the 3x74 cluster controller. If LLC2 local acknowledgment has not been configured, the LLC2 session extends from the 37x5 FEP across the Token Ring network and the arbitrary WAN to Router B. In contrast, when LLC2 local acknowledgment has been configured, the LLC2 session extends from the 37x5 FEP Router A, where it is locally terminated. A TCP session is then used across the arbitrary WAN to Router B.

### Comparing QLLC Conversion to SDLLC

Although the procedures you use to configure QLLC are similar to those used to configure SDLLC, there are structural and philosophical differences between the point-to-point links that SDLC uses and the multiplexed virtual circuits that X.25 uses.

The most significant structural difference between QLLC conversion and SDLLC is the addressing. To allow a device to use LLC2 to transfer data, both SDLLC and QLLC provide virtual MAC addresses. In SDLLC, the actual MAC address is built by combining the defined virtual MAC (whose last byte is 0x00) with the secondary address used on the SDLC link; in this way, SDLLC supports multidrop. In QLLC conversion, multidrop is meaningless, so the virtual MAC address represents just one session and is defined as part of the X.25 configuration. Because one physical X.25 interface can support many simultaneous connections for many different remote devices, you only need one physical link to the X.25 network. The different connections on different virtual circuits all use the same physical link.

The most significant difference between QLLC conversion and SDLLC is the fact that a typical SDLC/SDLLC operation uses a leased line. In SDLC, dial-up connections are possible, but the maximum data rate is limited. In QLLC, both switched virtual circuits (SVCs) and permanent virtual circuits (PVCs) are available, but the favored use is SVC. While the router maintains a permanent connection to the X.25 network, a remote device can use each SVC for some bounded period of time and then relinquish it for use by another device. Using a PVC is very much like using a leased line.
Table 1 shows how the QLLC commands correspond to the SDLLC commands.

<table>
<thead>
<tr>
<th>QLLC Command</th>
<th>Analogous SDLLC Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>qllc largest-packet</td>
<td>sdlc ring-largest-frame, sdlc sdlc-largest-frame</td>
</tr>
<tr>
<td>qllc partner</td>
<td>sdlc partner</td>
</tr>
<tr>
<td>qllc sap</td>
<td>sdlc sap</td>
</tr>
<tr>
<td>qllc srb, x25 map qllc, x25 pvc qllc</td>
<td>sdlc traddr</td>
</tr>
<tr>
<td>qllc xid</td>
<td>sdlc xid</td>
</tr>
<tr>
<td>source-bridge qllc-local-ack</td>
<td>source-bridge sdlc-local-ack</td>
</tr>
</tbody>
</table>

Other Implementation Considerations

Consider the following when implementing QLLC conversion:

- To use the QLLC conversion feature, a router must have a physical link to an X.25 public data network (PDN). It must also have an SRB/RSRB path to an IBM FEP. This link could be a Token Ring or Ethernet interface, or even FDDI, if RSRB is being used.
- QLLC conversion can run on any router with at least one serial interface configured for X.25 communication and at least one other interface configured for SRB or RSRB.
- QLLC conversion security depends upon access control in SRB/RSRB and X.25 and upon XID validation.

You can configure DLSw+ for QLLC connectivity, which enables the following scenarios:

- Remote LAN-attached devices (physical units) or SDLC-attached devices can access an FEP or an AS/400 over an X.25 network.
- Remote X.25-attached SNA devices can access an FEP or an AS/400 over a Token Ring or over SDLC.

For information on configuring DLSw+ for QLLC conversion, refer to the “Configuring DLSw+” chapter.

You can configure DSPUs for QLLC. For more information on this configuration, refer to the “Configuring DSPU and SNA Service Point” chapter.

SNA FRAS

Using Frame Relay Access Support (FRAS), the Cisco IOS software allows branch SNA devices to connect directly to a central site front-end processor over a Frame Relay network. FRAS converts LAN or Synchronous Data-Link Control (SDLC) protocols to a Frame Relay format understood by the Network Control Program (NCP) that runs in an FEP. The Cisco IOS software and the NCP support two frame formats:

- RFC 1490 routed format for LLC2, specified in the FRF.3 Agreement from the Frame Relay Forum and known in NCP literature as Frame Relay Boundary Network Node (BNN) support. Support for this feature requires NCP 7.1 or higher.
- RFC 1490 802.5 source-route bridged format, known in NCP literature as Frame Relay Boundary Access Node (BAN) support. Support for this feature requires NCP 7.3 or higher.
Management service point support in FRAS allows the SNA network management application, NetView, to manage Cisco routers over the Frame Relay network as if it were an SNA downstream PU.

FRAS provides dial backup over RSRB in case the Frame Relay network is down. While the backup Public Switched Telephone Network (PSTN) is being used, the Frame Relay connection is tried periodically. As soon as the Frame Relay network is up, it will be used.

This section contains a brief overview of SNA FRAS which is described in the following topics:

- RFC 1490 Routed Format for LLC2 (BNN), page 24
- RFC 1490 Bridged Format for LLC2 (BAN), page 25

### RFC 1490 Routed Format for LLC2 (BNN)

RFC 1490 specifies a standard method of encapsulating multiprotocol traffic with data link (Level 2 of the OSI model) framing. The encapsulation for SNA data is specified in the FRF.3 Agreement.

The Frame Relay encapsulation method is based on the RFC 1490 frame format for “user-defined” protocols using Q.933 NLPID, as illustrated in Figure 14.

**Figure 14**  Frame Relay Encapsulation Based on RFC 1490

<table>
<thead>
<tr>
<th>DLCI address</th>
<th>Control</th>
<th>NLPID</th>
<th>L2 Protocol ID</th>
<th>L3 Protocol ID</th>
<th>DSAP</th>
<th>SSAP</th>
<th>Control</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.922</td>
<td>0x30</td>
<td>Q.933</td>
<td>0x08</td>
<td>0x04c (802.2)</td>
<td>0x08</td>
<td>0x80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note*

The protocol ID for SNA subarea FID4 is 0x81. The protocol ID for SNA subarea FID2 is 0x82. The protocol ID for APPN FID2 is 0x83.

FRAS allows the router acting as a FRAD to take advantage of the SNA BNN support for Frame Relay provided by ACF/NCP 7.1 and OS/400 V2R3. Downstream PU 2.0 and PU 2.1 devices can be attached to the router through SDLC, Token Ring, or Ethernet links. The router acting as a FRAD is connected to the Network Control Program (NCP) or AS/400 through a public or private Frame Relay network, as illustrated in Figure 15.

**Figure 15**  SNA BNN Support for Frame Relay

The frame format that communicates across the Frame Relay BNN link is defined in RFC 1490 for routed SNA traffic. From the perspective of the SNA host (for example an NCP or AS/400), the Frame Relay connection is defined as a switched resource similar to a Token Ring BNN link. Because the frame format does not include link addresses to allow the NCP to distinguish among SNA devices on the same
permanent virtual circuit, Cisco supports SAP multiplexing, which allows you to configure unique LLC2 SAPs for each downstream SNA device so that they can share a single permanent virtual circuit to an FEP.

The Cisco IOS software is responsible for terminating the local data-link control frames (such as SDLC and Token Ring frames) and for modifying the data-link control frames to 802.2 compliant LLC frames. The LLC provides a reliable connection-oriented link layer transport required by SNA. (For example, 802.2 LLC is used to provide link layer acknowledgment, sequencing, and flow control.)

The Cisco IOS software encapsulates these 802.2 LLC frames according to the RFC 1490 format for SNA traffic. The frames are then forwarded to the SNA host on a Frame Relay PVC. In the reverse direction, the software is responsible for de-encapsulating the data from the Frame Relay PVC, and for generating and sending the appropriate local data-link control frames to the downstream devices.

**RFC 1490 Bridged Format for LLC2 (BAN)**

BAN provides functionality similar to BNN except that it uses a bridged frame format, as illustrated in Figure 16.

**Figure 16 RFC 1490 Bridged Frame Format**

<table>
<thead>
<tr>
<th>Q.922 address</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0x03</td>
</tr>
<tr>
<td>NLPII SNAP</td>
<td>0x80</td>
</tr>
<tr>
<td>OUI 0x80-C2</td>
<td>(bridged)</td>
</tr>
<tr>
<td>PID 0x00-09</td>
<td></td>
</tr>
<tr>
<td>pad 0x00</td>
<td>Frame control</td>
</tr>
<tr>
<td>Destination/source MAC (12 bytes)</td>
<td></td>
</tr>
<tr>
<td>DSAP SSAP</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>SNA data</td>
<td></td>
</tr>
<tr>
<td>PCS</td>
<td></td>
</tr>
</tbody>
</table>

Because it includes the MAC header information in every frame, BAN supports multiple SNA devices sharing a single permanent virtual circuit without requiring SAP multiplexing. BAN also supports load balancing across duplicate data-link connection identifiers to the same or different front-end processors at the data center to enhance overall availability. BAN works for devices attached by either Token Ring or Ethernet.
NCIA

Native Client Interface Architecture (NCIA) is a new software architecture introduced by Cisco to make accessing IBM SNA applications over routed internetworks more scalable and flexible. NCIA is a component of the Cisco IOS software. The architecture is intended to combine the benefits of the native SNA interface at end stations and mainframes with those of TCP/IP across the network backbone.

NCIA extends the use of the TCP/IP protocol all the way to the SNA end station. Because of the wide range of media supported by TCP/IP, including dialup telephone lines for remotely located users, NCIA makes multiprotocol access to corporate backbone networks much more flexible for SNA users.

NCIA allows SNA end stations such as PCs or workstations to encapsulate SNA traffic in TCP/IP, rather than requiring the traffic to travel through routers. The first phase of NCIA (NCIA I), used Cisco RSRB encapsulation. The current phase (NCIA Server) uses a new client/server model. NCIA Server is not backward compatible to NCIA I.

This section contains a brief overview of NCIA:

- NCIA I, page 26
- NCIA Server, page 26
- Advantages of the Client/Server Model, page 28

NCIA I

The Cisco NCIA server feature implements RFC 2114, Data Link Switch Client Access Protocol. Using the Cisco RSRB technology, NCIA I encapsulates the Token Ring traffic inside IP datagrams passed over a TCP connection between a router and a client. A virtual ring is created to allow the router to interconnect any client. The virtual ring acts as a logical Token Ring in the router, so that all the Token Rings connected to the router are treated as if they are all on the same Token Ring. The virtual ring is called a ring group. The ring group number is used just like a physical ring number and shows up in any route descriptors contained in packets being bridged. A ring group must be assigned a ring number that is unique throughout the network.

An NCIA I client acts as both an RSRB router and an end station. It must have a “fake” ring number and a “fake” bridge number so that it looks like an end station sitting on a real Token Ring. The fake ring and bridge numbers are visible to both the RSRB router and the NCIA client. The client must also have an LLC2 so that it can handle the LLC2 sessions.

NCIA Server

The NCIA Server feature extends the scalability of NCIA I, enhances its functionality, and provides support for both the installed base of RSRB routers and the growing number of DLSw+ routers. The NCIA Server feature includes the following enhancements:

- You do not need to configure a ring number on the client.
- You do not need to configure each client on the router.
- The MAC address can be dynamically assigned by the NCIA server running on the router.
- SNA is directly on top of TCP/IP; LLC2 is no longer required at end station.
- A client is a true end station, not a router peer.
The NCIA Client/Server Model

The NCIA Server feature uses a client/server model (see Figure 17), where the NCIA server is a software module on a Cisco router and the NCIA client is a PC or workstation. The NCIA server performs two major functions:

- Establishes TCP to NCIA Data Link Control (NDLC) sessions with clients for the purpose of sending and receiving data.
- Uses the Cisco link services interface (CLSI) to communicate with other software modules in the router, such as SNASw, DLSw+, and DSPU, and acts as the data intermediary between them and NCIA clients. The NCIA server’s role as an intermediary is transparent to the client.

NCIA Data Link Control (NDLC) is the protocol used between clients and servers. NDLC serves two purposes:

- Establishes the peer connection
- Establishes the circuit between the client and the server

The peer session must be established before an end-to-end circuit can be set up. During the set up period for the peer session, the MAC address representing a client is defined. The MAC address can be defined by the client or by the server when the client does not have a MAC address.

The NCIA Server feature supports connect-in and connect-out (from the server’s perspective), but connect-out is not supported if the client station does not listen for the incoming connection. For a server to connect-out, clients must connect to the server first. After registering itself by providing its own MAC address, the client can then optionally disconnect from the server. When a server receives an explorer, and its destination MAC address is registered, an NCIA server will connect to that client if it is not connected. For NetBIOS explorers (addressed to functional address 0xC00000000080), the TCP session must remain up so that the server can broadcast the explorers to the client. If the TCP session is down, the server will not send the NetBIOS explorers to a client, even when the client is registered.
After the peer session has been established, the NDLC protocol establishes the circuit between the client and server. This circuit is used to transfer end-user data between the client and the server. Because the client and its target station are not on the same transport, they cannot form a direct, end-to-end circuit. Each client must form a circuit between the client and server, and the server must form another circuit between the server and the target station. The server links those two circuits to form an end-to-end circuit. The server acts as a mediator between the client and the target station so that packets can be transferred between them.

In the NCIA server only peer keepalive is maintained. There is no keepalive at circuit level. The NCIA server acts as a data-link provider, like Token Ring or Ethernet, in the router. It uses CLSI to communicate with other software modules, just as other data-link providers do. The network administrator configures the router to communicate with specific modules. For data-link users, such as SNASw, DLSw+, and DSPU, the NCIA server can interface to them directly. For other data-link providers, the NCIA server must go through a DLSw+ local peer to communicate with them. The DLSw+ local peer passes packets back and forth among different data-link providers.

Advantages of the Client/Server Model

The client/server model used in the NCIA Server feature extends the scalability of NCIA. In addition, it provides support for both the installed base of RSRB routers and the growing number of DLSw+ routers.

Extended Scalability

The client/server model minimizes the number of central site RSRB or DLSw+ peer connections required to support a large network of NCIA clients (see Figure 18). Rather than each client having a peer connection to a central site router, the clients attach to an IP backbone through an NCIA server that, in turn, has a single peer connection to a central site router. This scheme can greatly reduce the number of central site peer connections required. For example, in a network with 1000 clients and 10 NCIA servers, there would be only 10 central site peer connections. Note that there would still be 1000 LLC2 connections that must be locally acknowledged at the central site router, but this can easily be handled in a single central site router. When the number of LLC2 connections (or the number of clients) is in the tens of thousands, NCIA servers can take advantage of downstream PU concentration to minimize the number of LLC2 connections that must be supported by the central site routers.

Figure 18 NCIA Server Provides Extended Scalability to Support Large Networks
Migration Support

Using a client/server model allows the NCIA Server feature to be independent of the upstream implementation, allowing it to be implemented in a network that is still using RSRB and in a DLSw+ network. It also greatly simplifies migration from RSRB to DLSw+, because it requires no changes at the client. A single NCIA server can support either approach (but not both). As Figure 19 illustrates, a central site router can support RSRB and DLSw+ concurrently, allowing a portion of the NCIA servers to communicate using RSRB and another portion to communicate using DLSw+.

**Figure 19**  NCIA Server Provides Independence from the Upstream Network Implementation

ALPS

The Airline Product Set (ALPS) is a tunneling mechanism that transports airline protocol data across a TCP/IP network to a mainframe. ALPS provides connectivity between agent set control units (ASCUs) and a mainframe host that runs the airline reservation system.

**Figure 20** shows the basic ALPS topology and the protocols implemented in the feature. Three major components provide the end-to-end transportation of airline protocol traffic across the network: the P1024B Airline Control (ALC) or P1024C (UTS) protocol, the TCP/IP-based MATIP protocol conversion, and the TCP/IP access to the mainframe.
The Cisco ALPS feature provides an end-to-end solution for airlines and central reservation systems. The ALPS feature is integrated in the Cisco IOS software and allows airlines to replace their existing hardware and software with Cisco routers. For customers who already use Cisco routers, this feature allows them to consolidate networking overhead and functionality.

**DSPU and SNA Service Point**

Downstream physical unit (DSPU) is a software feature that enables the router to function as a PU concentrator for SNA PU type 2 nodes. PU concentration at the device simplifies the task of PU definition at the upstream host while providing additional flexibility and mobility for downstream PU devices.

The DSPU feature allows you to define downstream PU type 2 devices in the Cisco IOS software. DSPU reduces the complexity of host configuration by letting you replace multiple PU definitions that represent each downstream device with one PU definition that represents the router.

Because you define the downstream PUs at the router rather than the host, you isolate the host from changes in the downstream network topology. Therefore you can insert and remove downstream PUs from the network without making any changes on the host.

The concentration of downstream PUs at the router also reduces network traffic on the WAN by limiting the number of sessions that must be established and maintained with the host. The termination of downstream sessions at the router ensures that idle session traffic does not appear on the WAN.

SNA service point support in the Cisco IOS software assumes that NetView or an equivalent product is available at the SNA host. The user interacts with the network management feature in the router and at the SNA host. In the Cisco IOS software, you can configure the host connection and show the status of this connection. At the SNA host, you can use the NetView operator’s console to view alerts and to send and receive Cisco syntax commands to the Cisco device.
Figure 21 shows a router functioning as a DSPU concentrator.

**Figure 21** *Router Acting as a DSPU Concentrator*

Typically, a router establishes one or more upstream connections with one or more hosts and many downstream connections with PU type 2 devices. From an SNA perspective, the router appears as a PU type 2 device to the upstream host and assumes the role of a system services control point (SSCP) appearing as a PU type 5 device to its downstream PUs.

The SSCP sessions established between the router and its upstream host are completely independent of the SSCP sessions established between the router and its downstream PUs. SNA traffic is routed at a logical unit (LU) level using a routing algorithm that maps downstream LUs onto upstream LUs.

Figure 22 illustrates the SNA perspective of DSPU.

**Figure 22** *SNA Perspective of DSPU*

---

**SNA Switching Services**

---

**Note**

SNA Switching Services functionality supersedes all functionality previously available in the APPN feature in the Cisco IOS software. SNASw configuration will not accept the previous APPN configuration commands. Previous APPN users should use this chapter to configure APPN functionality using the new SNASw commands.
SNASw provides an easier way to design and implement networks with SNA routing requirements. Previously, this network design was accomplished using APPN with full network node (NN) support in the Cisco router. This type of support provided the SNA routing functionality needed, but was inconsistent with the trends in Enterprise networks today. The corporate intranet is replacing the SNA WAN. Enterprises are replacing their traditional SNA network with an IP infrastructure that supports traffic from a variety of clients, using a variety of protocols, requiring access to applications on a variety of platforms, including SNA applications on Enterprise servers.

While SNA routing is still required when multiple servers must be accessed, the number of nodes required to perform this function is decreasing as the IP infrastructure grows and as the amount of native SNA traffic in the network decreases.

SNASw enables an enterprise to develop their IP infrastructure, while meeting SNA routing requirements.

The number of NNs in the network and the amount of broadcast traffic are reduced. Configuration is simplified, and SNA data traffic can be transported within the IP infrastructure. The following features provide this functionality:

- HPR Capable SNA Routing Services, page 33
- Branch Extender, page 34
- Enterprise Extender (HPR/IP), page 35
- Usability Features, page 36
- Management Enhancements, page 37
- LAN and IP-Focused Connection Types, page 38

Benefits of SNASw

SNASw provides the following benefits:

- Scalable APPN Networks, page 32
- IP Infrastructure Support, page 33
- Reduced Configuration Requirements, page 33
- Network Design Simplicity, page 33
- Improved Availability, page 33
- Increased Management Capabilities, page 33
- Architectural Compliance, page 33

Scalable APPN Networks

With the Branch Extender (BEX) function, the number of network nodes and the amount of broadcast traffic are reduced.
Overview of IBM Networking

HPR Capable SNA Routing Services

IP Infrastructure Support

Limiting SNASw routers to the data center and using the BEX function eliminates SNA broadcasts from the IP network. With Enterprise Extender (EE), SNA traffic is routed using the IP routing infrastructure while maintaining end-to-end SNA services.

Reduced Configuration Requirements

By eliminating NNs and using the BEX function, configuration tasks are minimized. Additionally, Cisco has enhanced its auto-configuration capability to eliminate previously required commands.

Network Design Simplicity

By placing all SNA routers in the data center, few SNA routers are required, and they can be easily configured using virtually identical configurations.

Improved Availability

By adding Cisco-unique capabilities to connect-out and distribute traffic across multiple ports, access to resources is improved and traffic can be distributed across multiple ports. Additionally, by supporting the newest HPR Adaptive Rate-Based (ARB) flow control algorithm, bandwidth management for SNA traffic is improved.

Increased Management Capabilities

Two new traces, interprocess and data-link, provide an easier way to view SNASw activity. The APPN Trap MIB allows the user to notify the operator in event of a debilitating problem. Console message archiving provides better tracking of network activity. The ability to format traces in a format so that they are readable by other management products simplify network management because results are more readily available.

Architectural Compliance

Even though SNASw is easier to use and SNASw networks are easier to design, SNASw interfaces with SNA implementations on the market: upstream NNs, end nodes (ENs), low-entry networking (LEN) nodes and PU 2.0. It also provides full DLUR support to allow dependent PU and LU traffic to flow over the APPN network to SNA data hosts.

HPR Capable SNA Routing Services

SNASw provides the following SNA routing functions:

- Routes SNA sessions between clients and target SNA data hosts.
- Controls SNA traffic in a multiprotocol environment in conjunction with other Cisco IOS quality of service (QoS) features.
- Supports networks with a high proportion of SNA traffic and multiple enterprise servers, especially those that continue to support the traditional SNA endstation platform and new client types.
- Supports all types of SNA application traffic including traditional 3270 and peer LU 6.2.
- Supports an OS/390 Parallel Sysplex configuration, working in conjunction with the IBM Communications Server for S/390 (formerly VTAM) and the MVS Workload Manager, to provide higher availability in the data center using the High Performance Routing (HPR) feature.
- Supports System Services Control Point (SSCP) services to downstream SNA devices using the Dependent LU Requester (DLUR) feature.
- Provides dynamic link connectivity using connection networks (CNs), which eliminates much of the configuration required in networks with numerous data hosts.

### Branch Extender

The BEX function enhances scalability and reliability of SNA routing nodes by eliminating topology updates and broadcast directory storms that can cause network instability. BEX appears as an NN to downstream EN, LEN node, and PU devices, while also appearing as an EN to upstream devices. The BEX function eliminates APPN topology and APPN broadcast search flows between SNASw nodes and the SNA data hosts in the network. This feature is key to providing a reliable turn-key installation because the network administrator no longer needs to develop in-depth knowledge of the level and characteristics of broadcast directory search and topology update traffic in the network. Such knowledge and analysis was commonly required to build successful networks utilizing NN technology without BEX.

SNA Switching Services enables BEX functionality by default. SNASw treats all defined links as BEX “uplinks” and all dynamic links created by stations connecting into SNASw as BEX “downlinks.” No specific configuration is necessary to enable BEX functionality.
SNASw also supports the EE function. EE offers SNA HPR support directly over IP networks. EE also uses connectionless User Datagram Protocol (UDP) transport. SNA COS and transmission priority are maintained by mapping the transmission priority to the IP precedence and by mapping transmission priority to separate UDP port numbers, allowing the IP network to be configured based on these elements. The Cisco IP prioritization technologies, such as weighted fair queuing (WFQ), prioritize the traffic through the IP network. EE support on the IBM Communications Server for S/390 allows users to build highly reliable SNA routed networks that run natively over an IP infrastructure directly to the Enterprise servers. These network designs reduce points of failure in the network and provide reliable SNA networks.

Figure 23 illustrates the BEX functionality.

Figure 23  BEX Functionality

Enterprise Extender (HPR/IP)

**Enterprise Extender (HPR/IP)**

Figure 24 illustrates the EE functionality.

Figure 24  EE Functionality
Usability Features

SNASw contains the following usability features designed to make SNA networks easier to design and maintain:

- Dynamic CP Name Generation Support, page 36
- Dynamic SNA BTU Size, page 36
- DLUR Connect-Out, page 36
- Responsive Mode Adaptive Rate-Based Flow Control, page 36
- User-Settable Port Limits, page 37

Dynamic CP Name Generation Support

When scaling the SNASw function to hundreds or thousands of nodes, many network administrators find that defining a unique control point (CP) name on each node provides unnecessary configuration overhead. Dynamic CP name generation offers the ability to use the Cisco IOS hostname as the SNA CP name or to generate a CP name from an IP address. These facilities reuse one SNASw configuration across many routers and eliminate the specific configuration coordination previously required to configure a unique CP name for each SNA node in the network. Administrators can still explicitly configure the CP name within the SNASw configuration.

Dynamic SNA BTU Size

Most SNA node implementations require specific tuning of the SNA basic transmit unit (BTU) in the configuration. SNASw analyzes the interface maximum transfer units (MTUs) of the interfaces it uses and dynamically assigns the best MTU values for that specific port. For served dependent PU 2.0 devices, SNASw uses the downstream MAXDATA value from the host and dynamically sets the SNA BTU for that device to the MAXDATA value.

DLUR Connect-Out

SNASw can receive connect-out instructions from the IBM Communications Server for S/390. This function allows the system to dynamically connect-out to devices that are configured on the host with the appropriate connect-out definitions. This feature allows connectivity to SNA devices in the network that were traditionally configured for connect-out from the host.

Note

DLUR connect-out can be performed over any supported data-link type.

Responsive Mode Adaptive Rate-Based Flow Control

Early HPR implementations failed to perform well in environments subject to packet loss (for example, Frame Relay, IP transport) and performed poorly when combined with other protocols in multiprotocol networks. SNASw implements the second-generation HPR flow control architecture, called Responsive
Mode ARB architecture. Responsive Mode ARB addresses all the drawbacks of the earlier ARB implementation, providing faster ramp-up, better tolerance of lost frames, and better tolerance of multiprotocol traffic.

**User-Settable Port Limits**

SNASw offers full control over the number of devices supported by a specific port. The max-links configuration on the SNASw port controls the number of devices that are served by this port. When the max-links limit is reached, SNASw no longer responds to test frames attempting to establish new connections. SNASw allows load sharing among different SNASw nodes that offer service to the same SNA MAC addresses.

**Management Enhancements**

SNASw contains the following enhanced tools for managing SNA networks:
- Console Message Archiving, page 37
- Data-Link Tracing, page 37
- Interprocess Signal Tracing, page 37
- MIB Support for Advanced Network Management Awareness, page 38

**Console Message Archiving**

Messages issued by SNASw are archived in a buffer log that is queried and searched on the console or transferred to a file server for analysis. Each message has a single line that identifies the nature of the event that occurred. The buffer log also maintains more detailed information about the message issued.

**Data-Link Tracing**

SNA frames entering or leaving SNASw are traced to the console or to a cyclic buffer. These frames are analyzed at the router or transferred to a file server for analysis. The trace is sent to a file server in a SNA-formatted text file or in binary format readable by existing traffic analysis applications.

**Interprocess Signal Tracing**

The SNASw internal information is traced in binary form, offering valuable detailed internal information to Cisco support personnel. This information helps diagnose suspected defects in SNASw.
MIB Support for Advanced Network Management Awareness

SNASw supports the following Management Information Bases (MIBs):

- IETF draft standard DLUR MIB (RFC 2232), which defines objects for monitoring and controlling network devices with DLUR (Dependent LU Requester) capabilities.
- IETF draft standard APPN MIB (RFC 2455), which defines objects for monitoring and controlling network devices with Advanced Peer-to-Peer Networking (APPN) capabilities.
- APPN Traps MIB (RFC 2456), which defines objects for receiving notifications from network devices with APPN and DLUR capabilities. This MIB proactively send traps with information about changes in SNA resource status. This implementation reduces the frequency of SNMP polling necessary to manage SNA devices in the network.

The CiscoWorks Blue Maps application retrieves relevant SNASw data from these MIBs and displays it in a manner that simplifies and speeds up problem isolation and resolution.

LAN and IP-Focused Connection Types

SNASw supports several connection types to serve all SNA connectivity options, including the following types:

- Token Ring, Ethernet, and FDDI, page 38
- Virtual Token Ring, page 38
- Virtual Data-Link Control, page 39
- Native IP Data-Link Control (HPR/IP), page 39

Token Ring, Ethernet, and FDDI

SNASw natively supports connectivity to Token Ring, Ethernet, and FDDI networks. In this configuration mode, the MAC address used by SNASw is the local configured or default MAC address of the interface.

Virtual Token Ring

Using virtual Token Ring allows SNASw access to SRB, which allows the following configuration:

- Attachment to Local LANs, page 38
- Connection to Frame Relay Transport Technologies, page 39
- Connection to Channel Interface Processor and Channel Port Adapter, page 39

Attachment to Local LANs

Virtual Token Ring allows you to connect to local LAN media through SRB technology. Because there is no limit to the number of virtual Token Ring interfaces that can connect to a specific LAN, this technology allows configuration of multiple MAC addresses, which respond to SNA requests over the
same LAN. When using native LAN support, SNASw responds only to requests that target the MAC address configured on the local interface. Virtual Token Ring and SRB allow SNASw to respond to multiple MAC addresses over the same physical interface.

**Connection to Frame Relay Transport Technologies**

Virtual Token Ring and SRB connect SNASw to a SNA Frame Relay infrastructure. FRAS host and SRB Frame Relay are configured to connect virtual Token Ring interfaces that offer SNASw support for Frame Relay boundary access node (BAN) or boundary network node (BNN) technology.

**Connection to Channel Interface Processor and Channel Port Adapter**

Virtual Token Ring and SRB can be used to connect SNASw to the Channel Interface Processor (CIP) or Channel Port Adapter (CPA) in routers that support those interfaces.

**Virtual Data-Link Control**

SNASw uses Virtual Data-Link Control (VDLC) to connect to DLSw+ transport and local switching technologies. VDLC is used for a number of connectivity options, including the following two:

- **Transport over DLSw+ Supported Media**, page 39
- **DLC Switching Support for Access to SDLC and QLLC**, page 39

**Transport over DLSw+ Supported Media**

Using VDLC, SNASw gains full access to the DLSw+ transport facilities, including DLSw+ transport over IP networks, DLSw+ transport over direct interfaces, and DLSw+ support of direct Frame Relay encapsulation (without using IP).

**DLC Switching Support for Access to SDLC and QLLC**

Through VDLC, SNASw gains access to devices connecting through SDLC and QLLC. This access allows devices connecting through SDLC and QLLC access to SNASw.

**Native IP Data-Link Control (HPR/IP)**

SNASw support for the EE function provides direct HPR over UDP connectivity. This support is configured for any interface that has a configured IP address. HPR/IP uses the interface IP address as the source address for IP traffic originating from this node.

**Cisco Transaction Connection**

This section contains the following topics:

- **CTRC and CICS**, page 40
- **CTRC and DB2**, page 41
- **Benefits of CTRC**, page 42
The CTRC software feature provides the following functionality:

- CTRC allows Cisco routers to use the intersystem communication (ISC) protocol to provide a gateway between Customer Information Control System (CICS) clients (also known as common clients) running under Windows or UNIX on TCP/IP networks and CICS online transaction monitoring systems on IBM hosts.

- CTRC supports two interfaces to common clients: the Extended Call Interface (ECI), which lets non-CICS client programs call CICS transactions, and the Extended Presentation Interface (EPI), which lets distributed applications call CICS transactions that were originally accessed via 3270 terminals.

- CTRC supports the ability to configure routes for CICS transactions. Each transaction can be routed to a specific CICS region.

- In addition to its CICS-related functionality, CTRC includes the feature previously known as Cisco Database Connection (CDBC), which allows Cisco routers to use IBM’s distributed relational database architecture (DRDA) protocol to provide a gateway between client workstations running Open Database Connectivity (ODBC) compliant applications on TCP/IP networks and IBM DB2 databases on SNA networks. ODBC is a call-level interface developed by Microsoft Corporation that allows a single application to access database management systems from different vendors using a single interface. SNA is a large, complex, feature-rich network architecture developed by IBM.

- CTRC adds support for TCP/IP passthrough, allowing the use of a TCP/IP network, rather than a SNA network, between a Cisco router and a DB2 database if the database version supports direct TCP/IP access.

- To match functionality provided in DRDA over TCP/IP, CTRC adds support for Password Expiration Management (PEM) in SNA networks where PEM is supported.

- CTRC supports the following MIBs:
  - CISCO-DATABASE-CONNECTION-MIB.my - 93
  - CISCO-TRANSACTION-CONNECTION-MIB.my - 144

  For descriptions of supported MIBs and how to use MIBs, see the Cisco MIB website on Cisco.com.

**CTRC and CICS**

CTRC is a Cisco IOS software feature that is available in two environments:

- CICS
- DB2

When a router is configured to use CTRC for communications with CICS systems, the router converts ISC packets over TCP/IP to ISC packets over Advanced Program-to-Program Communications (APPC) LU 6.2 and then routes them to the appropriate CICS region. CTRC converts CICS client messages received via TCP/IP to SNA messages and uses Cisco SNA Switching Services to send them to the host. CTRC runs as a TCP/IP daemon on the router, accepting ISC client connections over TCP/IP. When a client connects to a CICS region on an IBM mainframe host, CTRC allocates an APPC conversation over SNA to an IBM server and acts as a gateway between ISC over TCP/IP and ISC over APPC.

Figure 25 illustrates how CTRC lets CICS client applications on TCP/IP networks interact with CICS transaction monitoring systems on IBM hosts.
CTRC and DB2

CTRC enables Cisco routers to implement IBM’s DRDA over TCP/IP. The Cisco router with CTRC exists in the TCP/IP network, and clients use a CTRC IP address and port on the router to connect to the IBM host system that exists in either an SNA network or a TCP/IP network.

When CTRC is appropriately configured on a router, client-based ODBC applications can connect to the following IBM DB2 relational databases:

- DB2 for OS/390 (MVS)
- DB2 for Virtual Machine (VM) (SQL/DS)
- DB2 for Virtual Storage Extended (VSE) (SQL/DS)
- DB2 for OS/400
- DB2 Universal Database (UNIX, Windows, OS/2)

For an SNA host connection, the router with CTRC converts DRDA packets over TCP/IP to DRDA packets over (APPC LU 6.2) and then routes them to DB2 databases. CTRC runs as a TCP/IP daemon on the router, accepting DRDA client connections over TCP/IP. When a client connects to the database on an IBM mainframe host, CTRC allocates an APPC conversation over SNA to an IBM server, and acts as a gateway between DRDA over TCP/IP and DRDA over APPC.

Figure 26 illustrates how the Cisco router configured with the CTRC feature enables the exchange of database information between ODBC client applications running DRDA in a TCP/IP network and a DRDA-based IBM system that accesses DB2 relational data.
For a TCP/IP host connection, the router with CTRC routes the DRDA packets over TCP/IP without protocol changes. To use this TCP/IP passthrough feature of CTRC, the host database version must support direct TCP/IP access. Figure 27 illustrates such a configuration.

**Figure 27** Cisco Router Configured with the CTRC Feature for DB2 Communications (TCP/IP Host Network)

When configured for DB2 communications on a router, the CTRC feature enables desktop applications to access data in remote databases located on IBM hosts. CTRC receives database access messages from the client over a TCP/IP link. CTRC either converts the messages to SNA and sends them to the host using APPC services provided by the Cisco SNA Switching Services, or routes the client messages to the TCP/IP-enabled host without protocol changes.

**Benefits of CTRC**

CTRC provides TCP/IP end-users and servers with fast, reliable, and secure access to IBM DB2 databases using the SNA protocol. CTRC replaces expensive and hard to manage UNIX and NT gateways for database access.

CTRC lets Windows or UNIX client applications call CICS transactions without requiring changes to the client or host software.

In addition, CTRC provides Cisco 7200 and 7500 series routers with the functionality previously available in CDBC, which gives ODBC client applications access to data in DB2 databases.

**CMCC Adapter Hardware**

A CMCC adapter is installed in a Cisco router to provide IBM channel attachment from the router to a mainframe host. The Cisco family of CMCC adapters consists of two basic types of adapters:

- **Channel Interface Processor** (CIP)—Installed on Cisco 7000 with RSP7000 and Cisco 7500 series routers
- **Channel Port Adapter** (CPA)—Installed on Cisco 7200 series routers

Each type of adapter (CIP or CPA) supports both ESCON and parallel channel attachment to the host and can eliminate the need for a separate FEP.

All CMCC adapters support the full range of channel software applications available in the Cisco IOS software including support for the Common Link Access to Workstation (CLAW) protocol, TCP/IP offload, IP host backup, Cisco SNA (CSNA), Cisco Multipath Channel (CMPC), Cisco Multipath Channel+ (CMPC+), and the TN3270 server.

Figure 28 shows the type of channel connections and environments supported by the CMCC adapters.
Channel Interface Processor

The CIP for the Cisco 7000 with RSP7000 and Cisco 7500 series routers is designed for high-end network environments that demand high-performance, high-port density, and high-capacity solutions. The CIP provides support for IBM ESCON and bus-and-tag parallel channel attachment using the following types of interfaces:

- ESCON Channel Adapter (ECA)
- Parallel Channel Adapter (PCA)

A single CIP can support up to two physical channel interfaces in any combination of either PCA or ECA. Each CIP is pre-configured with the appropriate channel adapters at manufacturing time.

The Cisco 7000 with RSP7000 and Cisco 7500 series routers support online insertion and removal (OIR), which allows you to install or remove CIPs while the system is operating.

Channel Port Adapter

The CPA is available for the Cisco 7200 series routers. The CPA expands the value of the Cisco IBM channel solution by providing channel connectivity to mid-range mainframe configurations.

The CPA is a standard, single-width port adapter that provides support for IBM ESCON and bus-and-tag parallel channel attachment using the following types of interfaces:

- ESCON Channel Port Adapter (ECPA)
- Parallel Channel Port Adapter (PCPA)

Each CPA provides a single channel interface (with a single I/O connector) for Cisco 7200 series routers. In some situations, this eliminates the need for a separate front-end processor (FEP).

The only differences between CMCC software applications running on the CIP and a CPA are performance and capacity. The performance difference is based upon differences in the internal bus architecture of a CIP and a CPA, and the capacity difference is based on the difference in maximum memory configurations (128 MB for CIP and 32 MB for CPA). For more information about differences between the CIP and CPA, see the “Differences Between the CIP and CPA” section on page 44.
The Cisco 7200 series router supports online insertion and removal (OIR), which allows you to install or remove port adapters while the system is operating.

In this chapter, references to Channel Port Adapter (CPA) correspond to both the ECPA and the PCPA. Refer to the *Cisco 7200 Series Port Adapter Hardware Configuration Guidelines* publication for more details.

**ESCON Channel Port Adapter**

An ECPA is classified as a high-speed port adapter providing a single ESCON physical channel interface. Current Cisco 7200 configuration guidelines recommend using no more than three high-speed port adapters in a single Cisco 7200 router.

**Parallel Channel Port Adapter**

A PCPA provides a single parallel channel physical interface supporting 3.0 or 4.5 Mbps data transfer rates.

**Differences Between the CIP and CPA**

Table 2 illustrates the differences between the CMCC adapters.

<table>
<thead>
<tr>
<th>Product Differences</th>
<th>CIP</th>
<th>ECPA</th>
<th>PCPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router platform</td>
<td>Cisco 7500</td>
<td>Cisco 7200</td>
<td>Cisco 7200</td>
</tr>
<tr>
<td></td>
<td>Cisco 7000 with RSP7000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel interfaces</td>
<td>ESCON Parallel</td>
<td>ESCON</td>
<td>Parallel</td>
</tr>
<tr>
<td>Maximum number of interfaces</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maximum memory</td>
<td>128 MB</td>
<td>32 MB</td>
<td>32 MB</td>
</tr>
<tr>
<td>Cisco IOS release support</td>
<td>Cisco IOS Release 10.2 and later</td>
<td>Cisco IOS Release 11.3(3)T and later</td>
<td>Cisco IOS Release 11.3(3)T and later</td>
</tr>
<tr>
<td>Virtual port number</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel interface state tracking (HSRP, SNMP alerts)</td>
<td>Yes</td>
<td>Disabled—Use the <em>state-tracks-signal</em> command to enable</td>
<td>Disabled—Use the <em>state-tracks-signal</em> command to enable</td>
</tr>
</tbody>
</table>
Supported Environments

The Cisco IOS software supports the following environments and features on the CMCC adapters:

- **TCP/IP Environments**—CLAW, TCP/IP offload, IP host backup, CMPC+, and TN3270 server features
- **SNA and APPN Environments**—CSNA, CMPC, and TN3270 server features

CMCC Adapter Features for TCP/IP Environments

The Cisco IOS software supports the following features for CMCC adapters in TCP/IP environments:

- Common Link Access to Workstation, page 45
- TCP/IP Offload, page 45
- IP Host Backup, page 46
- Cisco Multipath Channel+, page 46
- TN3270 Server, page 48

Common Link Access to Workstation

To transport data between the mainframe and a CMCC adapter in TCP/IP environments, Cisco IOS software implements the CLAW channel protocol. Each CLAW connection requires two devices out of a maximum of 256. Although this allows for a maximum of 128 CLAW connections per interface, a maximum of 32 CLAW connections per interface is recommended.

The CLAW packing feature enables the transport of multiple IP packets in a single channel operation and significantly increases throughput performance between a mainframe and a CMCC adapter. Currently, IBM’s TCP/IP stack does not support the CLAW packing feature.

The CLAW packing feature requires changes to the mainframe CLAW driver support. In partnership with Cisco, Interlink Computer Science (now Sterling Software) has made the corresponding CLAW driver change to Cisco IOS for S/390 Release 2 and Interlink TCPaccess 5.2. Customers must make the necessary changes to their host configurations to enable the CLAW packing feature.

For details about configuring a CMCC adapter for CLAW, see the “Configuring CLAW and TCP/IP Offload Support” chapter in this publication.

TCP/IP Offload

The Cisco TCP/IP offload feature supports IBM’s MVS, VM, and Transaction Processing Facility (TPF) operating systems. The TCP/IP offload feature for CMCC adapters delivers the same function as the TCP/IP offload function on the 3172 Interconnect Controller (Model 3), but with increased performance.

For details about configuring a CMCC adapter for TCP/IP offload, see the “Configuring CLAW and TCP/IP Offload Support” chapter in this publication.
IP Host Backup

You can connect multiple mainframes to a single CMCC adapter using an ESCON director. Often, these mainframes run using the ESCON Multiple Image Facility (EMIF), which permits the physical machine to be divided into multiple logical partitions (LPARs). By defining an unused partition on another mainframe, a user can move the operating system from a failed mainframe or mainframe partition to the unused partition. By having multiple paths to each device, the move is accomplished without changing the mainframe software. This function also permits moving an IP stack between multiple operating system images.

On the CMCC adapter, each IP connection is treated as a physical device. The CMCC adapter does not support multiple active paths to a single IP connection (or device). Prior to IP Host Backup, the router configuration had to be changed whenever the mainframe operating system was moved from one mainframe or LPAR to another. The IP Host Backup feature permits the mainframe operating system to be moved from one mainframe to another without requiring a change to the router configuration at the time of the move.

Note

IP Host Backup does not provide single system image or automatic failover to a waiting backup application. Host operator action on the mainframe is required in these instances.

For more information about configuring a CMCC adapter for IP host backup, see the “Configuring CLAW and TCP/IP Offload Support” chapter in this publication.

Cisco Multipath Channel+

CMPC+ is the Cisco implementation of IBM’s MPC+ feature. The CMPC+ feature supports the MPC+ features and protocols necessary to support IP. CMPC+ enables High Performance Data Transfer (HPDT). It allows TCP/IP connections to the host through CMCC adapters, using either the TCP/IP stack or the High Speed Access Services (HSAS) IP stack.

CMPC+ offers the following support:

- Support for TCP/IP and HSAS Transmission Group (TG)
- Support for one IP stack per MPC+ group
- Support for one read subchannel and one write subchannel per CMPC+ group. The read subchannel and write subchannel in an MPC+ group can be on different physical channels.
- Support for up to 64 KB per I/O block
- Runs on the CIP and the CPA

Up to 64 MPC+ groups can be configured on a CMCC, depending on memory configuration.

The CMPC+ feature can coexist with the CLAW, TCP/IP Offload, CSNA, CMPC, and TN3270 server features on the same CMCC adapter.

For details about configuring a CMCC adapter for CMPC+, see the “Configuring CMPC+” chapter in this publication.
CMCC Adapter Features for SNA Environments

The Cisco IOS software supports the following features for CMCC adapters in SNA environments:

- Cisco SNA, page 47
- Cisco Multipath Channel, page 48
- TN3270 Server, page 48

Cisco SNA

The CSNA feature provides support for SNA protocols to the IBM mainframe from Cisco 7500, Cisco 7200, and Cisco 7000 with RSP7000 series routers, using CMCC adapters (over both ESCON and parallel interfaces). As an IBM 3172 replacement, a CMCC adapter in a Cisco router supports the External Communications Adapter (XCA) feature of the Virtual Telecommunications Access Method (VTAM).

Support for the XCA feature allows VTAM to define the CMCC’s Token Ring devices as switched devices. XCA support also allows the CMCC adapter to provide an alternative to FEPs at sites where the NCP is not required for SNA routing functions.

The CSNA feature supports communication between a channel-attached mainframe and the following types of devices attached to a LAN or WAN:

- PU 2.0 SNA node
- PU 2.1 SNA node
- PU 5/4 SNA node

CSNA also supports communication between two mainframes running VTAM that are either channel-attached to the same CMCC adapter card, or channel-attached to different CMCC adapter cards.

The CSNA feature provides SNA connectivity through a MAC address that is defined on an internal adapter in a CMCC. The internal adapter is a virtual adapter that emulates the LAN adapter in an IBM 3172 Interconnect Controller. Each internal adapter is defined in a corresponding XCA major node in VTAM, which provides an access point (LAN gateway) to VTAM for SNA network nodes.

The internal adapter is configured on an internal (virtual) Token Ring LAN located in the CMCC. Each CMCC can be configured with multiple internal Token Ring LANs and internal adapters. Each internal Token Ring LAN must be configured to participate in source-route bridging to communicate with the LAN devices attached to the router.

By providing Cisco Link Services (CLS) and the LLC2 protocol stack on the CMCC adapter card, all frames destined to or from the CMCC adapter card are switched by the router. The presentation of LAN media types allows the CSNA feature to take advantage of current SRB, RSRB, DLSw+, SR/TLB, internal SDLLC, QLLC services, and APPN functionality through SNASw.

The CSNA feature can coexist with the CLAW, TCP/IP Offload, CMPC, CMPC+, and TN3270 server features on the same CMCC adapter.

For details about configuring a CMCC adapter for CSNA, see the “Configuring CSNA and CMPC” chapter in this publication.
Cisco Multipath Channel

CMPC is Cisco System’s implementation of IBM’s MultiPath Channel (MPC) feature on Cisco 7500, Cisco 7200, and Cisco 7000 with RSP7000 series routers. CMPC allows VTAM to establish Advanced-Peer-to-Peer Networking (APPN) connections using both High Performance Routing (HPR) and Intermediate Session Routing (ISR) through channel-attached router platforms.

Routers configured for CMPC can be deployed in Parallel MVS Systems Complex (sysplex) configurations.

CMPC can be used to establish an APPN connection between VTAM and the following types of APPN nodes:

- VTAM on another host that is channel-attached to the same CMCC adapter
- VTAM on another host that is channel-attached to a different CMCC adapter in the same router
- TN3270 server using Dependent LU Requester (DLUR) in the same CMCC adapter
- SNASw in the router with the CMCC adapter
- Other APPN nodes external to the CMCC adapter and router such as Communications Server/2, AS/400, other LAN- or WAN-attached VTAM hosts, or remote routers

One read subchannel and one write subchannel are supported for each MPC TG. The read subchannel and write subchannel may be split over two physical channel connections on the same CMCC adapter.

CMPC insulates VTAM from the actual network topology. The MPC protocols are terminated on the CMCC adapter and converted to LLC protocols. After they are converted to LLC protocols, other Cisco features can be used to connect VTAM to other APPN nodes in the network. CMPC can be used in conjunction with DLSw+, RSRB, SR/TLB, SRB, SDLLC, QLLC, ATM LAN emulation, and FRAS host to provide connectivity to VTAM.

CMPC supports connections to PU 2.1 nodes: APPN NN, APPN EN, and LEN. Subarea connections are not supported.

The CMPC feature can coexist with the CLAW, TCP/IP Offload, CSNA, CMPC+, and TN3270 server features on the same CMCC adapter.

For details about configuring a CMCC adapter for CMPC, see the “Configuring CSNA and CMPC” chapter of this guide.

TN3270 Server

TN3270 communications in a TCP/IP network consist of the following basic elements:

- TN3270 client—Emulates a 3270 display device for communication with a mainframe application through a TN3270 server over an IP network. The client can support the standard TN3270 functions (as defined by RFC 1576) or the enhanced functionality provided by TN3270E (defined in RFC 2355). TN3270 clients are available on a variety of operating system platforms.
- TN3270 server—Converts the client TN3270 data stream to SNA 3270 and transfers the data to and from the mainframe.
- Mainframe—Provides the application for the TN3270 client and communicates with the TN3270 server using VTAM.
The TN3270 server feature offers an attractive solution when the following conditions need to be supported in an SNA environment:

- Maintaining an IP backbone while providing support for SNA 3270-type clients.
- Offloading mainframe CPU cycles when using a TN3270 host TCP/IP stack with a TN3270 server.
- Providing support for high session density or high transactions per second.

The TN3270 server feature on a CMCC adapter card provides mapping between an SNA 3270 host and a TN3270 client connected to a TCP/IP network as shown in Figure 29. Functionally, it is useful to view the TN3270 server from two different perspectives:

- SNA Functions, page 49
- Telnet Server Functions, page 49

**SNA Functions**

From the perspective of an SNA 3270 host connected to the CMCC adapter, the TN3270 server is an SNA device that supports multiple PUs, with each PU supporting up to 255 LUs. The LU can be Type 1, 2, or 3. The SNA host is unaware of the existence of the TCP/IP extension on the implementation of these LUs.

The LUs implemented by the TN3270 server are dependent LUs. To route these dependent LU sessions to multiple VTAM hosts connected to the TN3270 server in the CMCC adapter card, rather than routing in the VTAM hosts, the TN3270 server implements a SNA session switch with EN DLUR function. SNA session switching allows you to eliminate SNA subarea routing between hosts of TN3270 traffic by establishing APPN links with the primary LU hosts directly.

Using the DLUR function is optional so that the TN3270 server can be used with VTAM versions prior to version 4.2, which provide no APPN support. In these non-APPN environments, access to multiple hosts is accomplished using direct PU configuration in the TN3270 server.

**Telnet Server Functions**

From the perspective of a TN3270 client, the TN3270 server is a high-performance Telnet server that supports Telnet connections, negotiation and data format. The server on the CMCC adapter card supports Telnet connection negotiation and data format as specified in RFC 1576 (referred to as *Traditional TN3270*) and RFC 2355 (referred to as *TN3270 Enhancements*).

Unless the TN3270 server uses a Token Ring connection to a FEP, or other LLC connectivity to the mainframe host, it requires CSNA or CMPC support. For more information about configuring CSNA or CMPC support, see the “Configuring CSNA and CMPC” chapter in this publication.
To enable the TN3270 server feature, you must have a CMCC adapter installed in a Cisco 7000 with RSP7000, Cisco 7500 series router, or a Cisco 7200 router.

For details about configuring the TN3270 server on a CMCC adapter, see the “Configuring the TN3270 Server” chapter in this publication.
Configuring Source-Route Bridging

This chapter describes source-route bridging (SRB) configuration tasks. For a discussion of remote source-route bridging (RSRB) configuration tasks, refer to the “Configuring Remote Source-Route Bridging” chapter in this publication.

For a complete description of the SRB commands mentioned in this chapter, refer to the “Source-Route Bridging Commands” chapter in the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2). To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter contains the following sections:

- Technology Overview, page 1
- SRB Configuration Task List, page 3
- Tuning the SRB Network Task List, page 34
- Monitoring and Maintaining the SRB Network, page 38
- SRB Configuration Examples, page 39

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release.

Technology Overview

Cisco’s IOS bridging software includes SRB capability. A source-route bridge connects multiple physical Token Rings into one logical network segment. If the network segment bridges only Token Ring media to provide connectivity, the technology is termed SRB. If the network bridges Token Ring and non-Token Ring media is introduced into the bridged network segment, the technology is termed RSRB.

SRB enables routers to simultaneously act as a Level 3 router and a Level 2 source-route bridge. Thus, protocols such as Novell’s IPX or XNS can be routed on Token Rings, while other protocols such as Systems Network Architecture (SNA) or NetBIOS are source-route bridged.

SRB technology is a combination of bridging and routing functions. A source-route bridge can make routing decisions based on the contents of the MAC frame header. Keeping the routing function at the MAC, or Level 2, layer allows the higher-layer protocols to execute their tasks more efficiently and allows the LAN to be expanded without the knowledge of the higher-layer protocols.
As designed by IBM and the IEEE 802.5 committee, source-route bridges connect extended Token Ring LANs. A source-route bridge uses the RIF in the IEEE 802.5 MAC header of a datagram (Figure 1) to determine which rings or Token Ring network segments the packet must transit.

![IEEE 802.5 Token Ring Frame Format](image)

The source station inserts the RIF into the MAC header immediately following the source address field in every frame, giving this style of bridging its name. The destination station reverses the routing field to reach the originating station.

The information in a RIF is derived from explorer packets generated by the source node. These explorer packets traverse the entire source-route bridge network, gathering information on the possible paths the source node might use to send packets to the destination.

Transparent spanning-tree bridging requires time to recompute a topology in the event of a failure; SRB, which maintains multiple paths, allows fast selection of alternate routes in the event of failure. Most importantly, SRB allows the end stations to determine the routes the frames take.

**SRB Features**

Cisco’s SRB implementation has the following features:

- Provides configurable fast-switching software for SRB.
- Provides for a local source-route bridge that connects two or more Token Ring networks.
- Provides ring groups to configure a source-route bridge with more than two network interfaces. A ring group is a collection of Token Ring interfaces in one or more routers that are collectively treated as a virtual ring.
- Provides two types of explorer packets to collect RIF information—an all-routes explorer packet, which follows all possible paths to a destination ring, and a spanning-tree explorer packet, which follows a statically configured limited route (spanning tree) when looking for paths.
- Provides a dynamically determined RIF cache based on the protocol. The software also allows you to add entries manually to the RIF cache.
- Provides for filtering by MAC address, link service access point (LSAP) header, and protocol type.
- Provides for translation of NetBIOS frames either by station name or by a packet byte offset.
- Provides support for the SRB MIB variables as described in the IETF draft “Bridge MIB” document, “Definition of Managed Objects for Bridges,” by E. Decker, P. Langille, A. Rijsinghani, and K. McCloghrie, June 1991. Only the SRB component of the Bridge MIB is supported.
- Provides support for the Token Ring MIB variables as described in RFC 1231, *IEEE 802.5 Token Ring MIB*, by K. McCloghrie, R. Fox, and E. Decker, May 1991. Cisco implements the mandatory tables (Interface Table and Statistics Table), but not the optional table (Timer Table) of the Token Ring MIB. The Token Ring MIB has been implemented for the 4/16-Mb Token Ring cards that can be user adjusted for either 4- or 16-Mb transmission speeds (CSC-1R, CSC-2R, CSC-R16M, or CSC-C2CTR).
SRB Configuration Task List

Perform the tasks in the following sections to configure SRB:

- Configuring Source-Route Bridging, page 3
- Configuring Bridging of Routed Protocols, page 10
- Configuring Translation Between SRB and Transparent Bridging Environments, page 12
- Configuring NetBIOS Support, page 16
- Configuring LNM Support, page 20
- Configuring ATM Support, page 26
- Securing the SRB Network, page 27
- Tuning the SRB Network Task List, page 34
- Establishing SRB Interoperability with Specific Token Ring Implementations, page 38

See the “SRB Configuration Examples” section on page 39 for examples.

Caution

The Cisco IOS software issues a warning if a duplicate bridge definition exists in a router. You must remove an old bridge definition before adding a new bridge definition.

Configuring Source-Route Bridging

The Cisco implementation of source-route bridging enables you to connect two or more Token Ring networks using either Token Ring or Fiber Distributed Data Interface (FDDI) media. You can encapsulate source-route bridging traffic over Frame Relay using RFC 1490 Bridged 802.5 encapsulation.

You can configure the Cisco IOS software for source-route bridging by performing the tasks in one of the first three sections and, optionally, the tasks in the last section:

- Configuring a Dual-Port Bridge, page 4
- Configuring a Multiport Bridge Using a Virtual Ring, page 5
- Configuring SRB over FDDI, page 6
- Configuring Fast-Switching SRB over FDDI, page 7
- Configuring SRB over Frame Relay, page 8
- Enabling the Forwarding and Blocking of Spanning-Tree Explorers, page 8
- Enabling the Automatic Spanning-Tree Function, page 9
- Limiting the Maximum SRB Hops, page 10
Configuring a Dual-Port Bridge

A dual-port bridge is the simplest source-route bridging configuration. When configured as a dual-port bridge, the access server or router serves to connect two Token Ring LANs. One LAN is connected through one port (Token Ring interface), and the other LAN is connected through the other port (also a Token Ring interface). Figure 2 shows a dual-port bridge.

Figure 2  Dual-Port Bridge

To configure a dual-port bridge that connects two Token Rings, you must enable source-route bridging on each of the Token Ring interfaces that connect to the two Token Rings. To enable source-route bridging, use the following command in interface configuration mode for each of the Token Ring interfaces:

```
Router(config-if)# source-bridge local-ring bridge-number target-ring
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# source-bridge local-ring bridge-number target-ring</td>
<td>Configures an interface for SRB.</td>
</tr>
</tbody>
</table>

Note

Ring numbers need to be unique across interfaces and networks, so that when you enable source-route bridging over an interface the local and target rings are defined. Each node on the network will know if it is the target of explorer packets sent on the network.

A dual-port bridge is a limitation imposed by IBM Token Ring chips; the chips can process only two ring numbers. If you have a router with two or more Token Ring interfaces, you can work around the two-ring number limitation. You can configure your router as multiple dual-port bridges or as a multiport bridge using a virtual ring.

You can define several separate dual-port bridges in the same router. However, the routers on the LANs cannot have any-to-any connectivity; that is, they cannot connect to every other router on the bridged LANs. Only the routers connected to the dual-port bridge can communicate with one another. Figure 3 shows two separate dual-port bridges (T0-T2 and T1-T3) configured on the same router.

Figure 3  Multiple Dual-Port Bridges

To configure multiple dual-port source-route bridges, use the following command in interface configuration mode for each Token Ring interface that is part of a dual-port bridge:
Configuring Source-Route Bridging

SRB Configuration Task List

If you want your network to use only SRB, you can connect as many routers as you need via Token Rings. Remember, source-route bridging requires you to bridge only Token Ring media.

Configuring a Multiport Bridge Using a Virtual Ring

A better solution for overcoming the two-ring number limitation of IBM Token Ring chips is to configure a multiport bridge using a virtual ring. A virtual ring on a multiport bridge allows the router to interconnect three or more LANs with any-to-any connectivity; that is, connectivity between any of the routers on each of the three LANs is allowed. A virtual ring creates a logical Token Ring internal to the Cisco IOS software, which causes all the Token Rings connected to the router to be treated as if they are all on the same Token Ring. The virtual ring is called a ring group. Figure 4 shows a multiport bridge using a virtual ring.

![Multiport Bridge Using a Virtual Ring](image)

To take advantage of this virtual ring feature, each Token Ring interface on the router must be configured to belong to the same ring group. For information about configuring a multiport bridge using a virtual ring, see the “Configuring a Multiport Bridge Using a Virtual Ring” section on page 5.

To configure a source-route bridge to have more than two network interfaces, you must perform the following tasks:

1. Define a ring group.
2. Enable source-route-bridging and assign a ring group to a Token Ring interface.

Once you have completed these tasks, the router acts as a multiport bridge, not as a dual-port bridge.

**Note**

Ring numbers need to be unique across interfaces and networks.

**Defining a Ring Group in SRB Context**

Because all IBM Token Ring chips can process only two ring numbers, we have implemented the concept of a ring group or virtual ring. A ring group is a collection of Token Ring interfaces in one or more routers that share the same ring number. This ring number is used just like a physical ring number.
showing up in any route descriptors contained in packets being bridged. Within the context of a multiport bridge that uses SRB rather than RSRB, the ring group resides in the same router. See the “Configuring Remote Source-Route Bridging” chapter to compare ring groups in the SRB and RSRB context.

A ring group must be assigned a ring number that is unique throughout the network. It is possible to assign different Token Ring interfaces on the same router to different ring groups, if, for example, you plan to administer them as interfaces in separate domains.

To define or remove a ring group, use one of the following commands in global configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source-bridge ring-group ring-group [virtual-mac-address]</code></td>
<td>Defines a ring group.</td>
</tr>
<tr>
<td><code>no source-bridge ring-group ring-group [virtual-mac-address]</code></td>
<td>Removes a ring group.</td>
</tr>
</tbody>
</table>

Enabling SRB and Assigning a Ring Group to an Interface

After you have defined a ring group, you must assign that ring group to those interfaces you plan to include in that ring group. An interface can only be assigned to one ring group. To enable any-to-any connectivity among the end stations connected through this multiport bridge, you must assign the same target ring number to all Token Ring interfaces on the router.

To enable SRB and assign a ring group to an interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source-bridge local-ring bridge-number target-ring</code></td>
<td>Configures an interface for SRB.</td>
</tr>
</tbody>
</table>

Configuring SRB over FDDI

Cisco’s implementation of SRB expands the basic functionality to allow autonomous switching of SRB network traffic for FDDI interfaces, adding counters to SRB accounting statistics, and implementing process-level switching of SRB over FDDI. This functionality provides a significant increase in performance for Token Rings interconnected across an FDDI backbone (Figure 5).

SRB over FDDI is supported on the Cisco 4000-M, Cisco 4500-M, Cisco 4700-M, Cisco 7000 series, Cisco 7200 series, and Cisco 7500 routers.
To configure autonomous FDDI SRB, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# interface fddi slot/port</td>
<td>Configures an FDDI interface.</td>
</tr>
<tr>
<td>Step 2: Router(config-if)# source-bridge local-ring bridge-number target-ring</td>
<td>Configures an interface for SRB.</td>
</tr>
<tr>
<td>Step 3: Router(config-if)# source-bridge route-cache cbus</td>
<td>Enables autonomous switching.</td>
</tr>
</tbody>
</table>

**Configuring Fast-Switching SRB over FDDI**

Fast-Switching SRB over FDDI enhances performance. For example, if you want to use access-lists, fast-switching SRB over FDDI provides fast performance and access-list filters capability.

To configure fast-switching SRB over FDDI, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# interface fddi slot/port</td>
<td>Configures an FDDI interface.</td>
</tr>
<tr>
<td>Step 2: Router(config-if)# source-bridge local-ring bridge-number target-ring</td>
<td>Configures an interface for SRB.</td>
</tr>
<tr>
<td>Step 3: Router(config-if)# source-bridge spanning</td>
<td>Enables source-bridge spanning.</td>
</tr>
<tr>
<td>Step 4: Router(config-if)# source-bridge route-cache</td>
<td>Enables fast-switching.</td>
</tr>
<tr>
<td>Step 5: Router(config-if)# multiring protocol-keyword</td>
<td>Enables the collection and use of RIF information.</td>
</tr>
</tbody>
</table>
Configuring SRB over Frame Relay

Cisco IOS software offers the ability to encapsulate SRB traffic using RFC 1490 Bridged 802.5 encapsulation. This provides SRB over Frame Relay functionality that is interoperable with other vendors’ implementations of SRB over Frame Relay and with some vendors’ implementations of FRAS BAN.

Note

In this release, SRB over Frame Relay does not support the Cisco IOS software proxy explorer, automatic spanning-tree, or LAN Network Manager functions.

To configure SRB over Frame Relay, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface serial number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# encapsulation frame-relay</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# interface serial slot/port.subinterface-number point-to-point</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# frame-relay interface-dlci dlci ietf</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# source-bridge source-ring-number bridge-number target-ring-number conserve-ring</td>
</tr>
</tbody>
</table>

Enabling the Forwarding and Blocking of Spanning-Tree Explorers

When trying to determine the location of remote destinations on a source-route bridge, the source device will need to send explorer packets. Explorer packets are used to collect routing information field (RIF) information. The source device can send spanning-tree explorers or all-routes explorers. Note that some older IBM devices generate only all-routes explorer packets, but many newer IBM devices are capable of generating spanning-tree explorer packets.

A spanning-tree explorer packet is an explorer packet that is sent to a defined group of nodes that comprise a statically configured spanning tree in the network. In contrast, an all-routes explorer packet is an explorer packet that is sent to every node in the network on every path.

Forwarding all-routes explorer packets is the default. However, in complicated source-route bridging topologies, using this default can generate an exponentially large number of explorers that are traversing the network. The number of explorer packets becomes quite large because duplicate explorer packets are sent across the network to every node on every path. Eventually each explorer packet will reach the destination device. The destination device will respond to each of these explorer packets. It is from these responses that the source device will collect the RIF and determine which route it will use to communicate with the destination device. Usually, the route contained in the first returned response will be used.

The number of explorer packets traversing the network can be reduced by sending spanning-tree explorer packets. Spanning-tree explorer packets are sent to specific nodes; that is, to only the nodes on the spanning tree, not to all nodes in the network. You must manually configure the spanning-tree topology over which the spanning-tree explorers are sent. You do this by configuring which interfaces on the routers will forward spanning-tree explorers and which interfaces will block them.
To enable forwarding of spanning-tree explorers on an outgoing interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source-bridge spanning</code></td>
<td>Enables the forwarding of spanning-tree explorer packets on an interface.</td>
</tr>
</tbody>
</table>

**Note** While enabling the forwarding of spanning-tree explorer packets is not an absolute requirement, it is strongly recommended in complex topologies. Configuring an interface to block or forward spanning-tree explorers has no effect on how that interface handles all-routes explorer packets. All-routes explorers can always traverse the network.

To block forwarding of spanning tree explorers on an outgoing interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>no source-bridge spanning</code></td>
<td>Blocks spanning-tree explorer packets on an interface.</td>
</tr>
</tbody>
</table>

### Enabling the Automatic Spanning-Tree Function

The automatic spanning-tree function supports automatic resolution of spanning trees in SRB networks, which provides a single path for spanning explorer frames to traverse from a given node in the network to another. Spanning explorer frames have a single-route broadcast indicator set in the routing information field. Port identifiers consist of ring numbers and bridge numbers associated with the ports. The spanning-tree algorithm for SRB does not support Topology Change Notification bridge protocol data unit (BDPU).

**Note** Although the automatic spanning-tree function can be configured with source-route translational bridging (SR/TLB), the SRB domain and transparent bridging domain have separate spanning trees. Each Token Ring interface can belong to only one spanning tree. Only one bridge group can run the automatic spanning-tree function at a time.

To create a bridge group that runs an automatic spanning-tree function compatible with the IBM SRB spanning-tree implementation, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bridge bridge-group protocol ibm</code></td>
<td>Creates a bridge group that runs the automatic spanning-tree function.</td>
</tr>
</tbody>
</table>

To enable the automatic spanning-tree function for a specified group of bridged interfaces, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source-bridge spanning bridge-group</code></td>
<td>Enables the automatic spanning-tree function on a group of bridged interfaces.</td>
</tr>
</tbody>
</table>
To assign a path cost for a specified interface, use the following command in interface configuration mode:

```
Router(config-if)# source-bridge spanning
bridge-group path-cost path-cost
```

**Purpose**
Assigns a path cost for a specified group of bridged interfaces.

---

**Note**
Ports running IEEE and IBM protocols form a spanning tree together on the LAN, but they do not mix in the router itself. Make sure the configurations are correct and that each LAN runs only one protocol.

See the end of this chapter for an example of source-route bridging with the automatic spanning-tree function enabled.

### Limiting the Maximum SRB Hops

You can minimize explorer storms if you limit the maximum number of source-route bridge hops. For example, if the largest number of hops in the best route between two end stations is six, it might be appropriate to limit the maximum source-route bridging hops to six to eliminate unnecessary traffic. This setting affects spanning-tree explorers and all-routes explorers sent from source devices.

To limit the number of SRB hops, use one of the following commands in interface configuration mode, as needed:

```
Router(config-if)# source-bridge max-hops count
```

**Purpose**
Controls the forwarding or blocking of all-routes explorer frames received on this interface.

```
Router(config-if)# source-bridge max-in-hops count
```

**Purpose**
Controls the forwarding or blocking of spanning-tree explorer frames received on this interface.

```
Router(config-if)# source-bridge max-out-hops count
```

**Purpose**
Controls the forwarding or blocking of spanning-tree explorer frames sent from this interface.

### Configuring Bridging of Routed Protocols

Source-route bridges use Media Access Control (MAC) information, specifically the information contained in the RIF, to bridge packets. A RIF contains a series of ring and bridge numbers that represent the possible paths the source node might use to send packets to the destination. Each ring number in the RIF represents a single Token Ring in the source-route bridged network and is designated by a unique 12-bit ring number. Each bridge number represents a bridge that is between two Token Rings in the SRB network and is designated by a unique 4-bit bridge number. The information in a RIF is derived from explorer packets traversing the source-route bridged network. Without the RIF information, a packet could not be bridged across a source-route bridged network.

Unlike source-route bridges, Level 3 routers use protocol-specific information (for example, Novell Internetwork Packet Exchange (IPX) or Xerox Network Systems (XNS) headers) rather than MAC information to route datagrams. As a result, the Cisco IOS software default for routed protocols is to not collect RIF information and to not be able to bridge routed protocols. However, if you want the software to bridge routed protocols across a source-route bridged network, the software must be able to collect
Configuring Source-Route Bridging

and use RIF information to bridge packets across a source-route bridged network. You can configure the software to append RIF information to routed protocols so that routed protocols can be bridged. Figure 6 shows a network topology in which you would want to use this feature.

Figure 6 Topology for Bridging Routed Protocols across a Source-Route Bridged Network

To configure the Cisco IOS software to bridge routed protocols, perform the following tasks:

- Enabling Use of the RIF, page 11 (Required)
- Configuring a Static RIF Entry, page 12 (Optional)
- Configuring the RIF Timeout Interval, page 12 (Optional)

Enabling Use of the RIF

You can configure the Cisco IOS software so that it will append RIF information to the routed protocols. This allows routed protocols to be bridged across a source-route bridged network. The routed protocols that you can bridge are as follows:

- Apollo Domain
- AppleTalk
- ISO Connectionless Network Service (CLNS)
- DECnet
- IP
- IPX
- VINES
- XNS

Enable use of the RIF only on Token Ring interfaces on the router.

To configure the Cisco IOS software to append RIF information, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# multiring (protocol-keyword [all-routes</td>
<td>spanning]</td>
</tr>
<tr>
<td>all</td>
<td>other)</td>
</tr>
</tbody>
</table>

For an example of how to configure the software to bridge routed protocols, see the “SRB and Routing Certain Protocols Example” section on page 42.
Configuring Source-Route Bridging

Configuring a Static RIF Entry

If a Token Ring host does not support the use of IEEE 802.2 TEST or XID datagrams as explorer packets, you might need to add static information to the RIF cache of the router.

To configure a static RIF entry, use the following command in global configuration mode:

```
Router(config)# rif mac-address rif-string
(interface-name | ring-group ring)
```

Enters static source-route information into the RIF cache.

Configuring the RIF Timeout Interval

RIF information that can be used to bridge routed protocols is maintained in a cache whose entries are aged.

**Note**
The `rif validate enable` commands have no effect on remote entries learned over RSRB.

To configure the number of minutes an inactive RIF entry is kept in the cache, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# rif timeout minutes</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# rif validate-enable</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# rif validate-enable-age</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# rif validate-enable-route-cache</td>
</tr>
</tbody>
</table>

Configuring Translation Between SRB and Transparent Bridging Environments

Source-route translational bridging (SR/TLB) is a Cisco IOS software feature that allows you to combine SRB and transparent bridging networks without the need to convert all of your existing source-route bridges to source-route transparent (SRT) nodes. As such, it provides a cost-effective connectivity path between Ethernets and Token Rings, for example.

When a router is configured for SR/TLB, the router operates in fast-switching mode by default, causing packets to be processed in the interrupt handler when the packets first arrive, rather than queueing them for scheduled processing. You can also use the `no source-bridge transparent fastswitch` command to disable fast-switched SR/TLB, causing the router to handle packets by process switching. For more information on disabling fast-switched SR/TLB, refer to the “Disabling Fast-Switched SR/TLB” section on page 15.

**Note** When you are translationally bridging, you will have to route routed protocols and translationally bridge all others, such as local-area transport (LAT).
Overview of SR/TLB

You can bridge packets between an SRB domain and a transparent bridging domain. Using this feature, a software “bridge” is created between a specified virtual ring group and a transparent bridge group. To the source-route station, this bridge looks like a standard source-route bridge. There is a ring number and a bridge number associated with a ring that actually represents the entire transparent bridging domain. To the transparent bridging station, the bridge represents just another port in the bridge group.

When bridging from the SRB (typically, Token Ring) domain to the transparent bridging (typically, Ethernet) domain, the source-route fields of the frames are removed. The RIFs are cached for use by subsequent return traffic.

When bridging from the transparent bridging domain to the SRB domain, the router checks the packet to see if it has a multicast or broadcast destination or a unicast (single host) destination. If it is multicast, the packet is sent as a spanning-tree explorer. If it is a unicast destination, the router looks up the path to the destination in the RIF cache. If a path is found, it will be used; otherwise, the router will send the packet as a spanning-tree explorer.

An example of a simple SR/TLB topology is shown in Figure 7.

Figure 7    Example of a Simple SR/TLB Topology

The Spanning Tree Protocol messages used to prevent loops in the transparent bridging domain are not passed between the SRB domain and the transparent bridging domain. Therefore, you must not set up multiple paths between the SRB and transparent bridging domains.

The following notes and caveats apply to all uses of SR/TLB:

- Multiple paths cannot exist between the source-route bridged domain and the transparent bridged domain. Such paths can lead to data loops in the network, because the spanning-tree packets used to avoid these loops in transparent bridging networks do not traverse the SRB network.

- Some devices, notably PS/2s under certain configurations running OS/2 Extended Edition Version 1.3, do not correctly implement the “largest frame” processing on RIFs received from remote source-route bridged hosts. The maximum Ethernet frame size is smaller than that allowed for Token Ring. As such, bridges allowing for communication between Ethernet and Token Ring will tell the Token Ring hosts, through the RIF on frames destined to the Token Ring, that hosts on the Ethernet cannot receive frames larger than a specified maximum, typically 1472 bytes. Some machines ignore this run-time limit specification and send frames larger than the Ethernet can accept. The router and any other Token Ring/Ethernet bridge has no choice but to drop these frames. To allow such hosts to successfully communicate across or to an Ethernet, you must configure their maximum frame sizes manually. For the PS/2, this can be done through Communications Manager.
Configuring Source-Route Bridging

SRB Configuration Task List

1. Any access filters applied on any frames apply to the frames as they appear on the media to which the interface with the access filter applies. This is important because in the most common use of SR/TLB (Ethernet and Token Ring connectivity), the bit ordering of the MAC addresses in the frame is swapped. Refer to the SR/TLB examples in the “SRB Configuration Examples” section of this chapter.

Caution

Bridging between dissimilar media presents several problems that can prevent communication from occurring. These problems include bit order translation (or usage of MAC addresses as data), maximum transmission unit (MTU) differences, frame status differences, and multicast address usage. Some or all of these problems might be present in a multimedia bridged LAN and prevent communication from taking place. Because of differences in the way end nodes implement Token Ring, these problems are most prevalent when bridging between Token Rings and Ethernets or between Token Ring and FDDI LANs.

Problems can occur with the following protocols when bridged between Token Ring and other media: Novell IPX, DECnet Phase IV, AppleTalk, VINES, XNS, and IP. Further, problems can occur with the Novell IPX and XNS protocols when bridged between FDDI and other media. Cisco recommends that these protocols be routed whenever possible.

To enable SR/TLB, you must perform the task in the following section:

- Enabling Bridging between Transparent Bridging and SRB, page 14

In addition, you can also perform the tasks in the following sections:

- Disabling Fast-Switched SR/TLB, page 15
- Enabling Translation Compatibility with IBM 8209 Bridges, page 15
- Enabling Token Ring LLC2-to-Ethernet Conversion, page 15

Enabling Bridging between Transparent Bridging and SRB

Before enabling bridging, you must have completely configured your router using multiport SRB and transparent bridging. Once you have done this, to establish bridging between transparent bridging and source-route bridging, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source-bridge transparent ring-group pseudo-ring bridge-number tb-group [oui]</code></td>
<td>Enables bridging between transparent bridging and SRB.</td>
</tr>
</tbody>
</table>
Disabling Fast-Switched SR/TLB

To disable fast-switched SR/TLB and cause the router to handle packets by process switching, use the following command in global configuration mode:

```
Router(config)# no source-bridge transparent ring-group fastswitch
```

Disables fast-switched SR/TLB.

Enabling Translation Compatibility with IBM 8209 Bridges

To transfer data between IBM 8209 Ethernet/Token Ring bridges and routers running the SR/TLB software (to create a Token Ring backbone to connect Ethernets), use the following command on each Token Ring interface in interface configuration mode:

```
Router(config-if)# ethernet-transit-oui
```

Moves data between IBM 8209 Ethernet/Token Ring bridges and routers running translational bridging software.

Enabling Token Ring LLC2-to-Ethernet Conversion

The Cisco IOS software supports the following types of Token Ring-to-Ethernet frame conversions using Logical Link Control, type 2 (LLC2) Protocol:

- Token Ring LLC2 to Ethernet Type II (0x80d5 processing)
- Token Ring LLC2 to Ethernet 802.3 LLC2 (standard)

For most non-IBM hosts, Token Ring LLC2 frames can be translated in a straightforward manner into Ethernet 802.3 LLC2 frames. This is the default conversion in the Cisco IOS software. However, many Ethernet-attached IBM devices use nonstandard encapsulation of LLC2 on Ethernet. Such IBM devices, including PS/2s running OS/2 Extended Edition and RT-PCs, do not place their LLC2 data inside an 802.3 format frame, but rather place it into an Ethernet Type 2 frame whose type is specified as 0x80d5. This nonstandard format is called 0x80d5, named after the type of frame. This format is also sometimes called RT-PC Ethernet format because these frames were first widely seen on the RT-PC. Hosts using this nonstandard 0x80d5 format cannot read the standard Token Ring LLC2 to Ethernet 802.2 LLC frames.

To enable Token Ring LLC2 to Ethernet LLC2 conversion, you can perform one or both of the following tasks:

- **Enable 0x80d5 Processing, page 15**
- **Enable Standard Token Ring LLC2-to-Ethernet LLC2 Conversion, page 16**

**Enable 0x80d5 Processing**

You can change the Cisco IOS software’s default translation behavior of translating Token Ring LLC to Ethernet 802.3 LLC to translate Token Ring LLC2 frames into Ethernet 0x80d5 format frames. To enable this nonstandard conversion, use the following command in global configuration mode:

```
Router(config)# source-bridge enable-80d5
```

Changes the Ethernet/Token Ring translation behavior to translate Token Ring LLC2 frames into Ethernet 0x80d5 format frames.
Enable Standard Token Ring LLC2-to-Ethernet LLC2 Conversion

After you change the translation behavior to perform Token Ring LLC2 frames into Ethernet 0x80d5 format frames, some of the non-IBM hosts in your network topology might use the standard Token Ring conversion of Token Ring LLC2 to 802.3 LLC2 frames. If this is the case, you can change the translation method of those hosts to use the standard translation method on a per-DSAP basis. The translation method for all the IBM hosts would still remain as Token Ring LLC2 to Ethernet 0x80d5 translation.

To define non-IBM hosts in your network topology to use the standard translation method while the IBM hosts use the nonstandard method, use the following command in global configuration mode:

```
Router(config)# source-bridge sap-80d5 dsap
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source-bridge sap-80d5 dsap</code></td>
<td>Allows some other devices to use normal LLC2/IEEE 802.3 translation on a per-DSAP basis.</td>
</tr>
</tbody>
</table>

Configuring NetBIOS Support

NetBIOS is a nonroutable protocol that was originally designed to send messages between stations, typically IBM PCs, on a Token Ring network. NetBIOS allows messages to be exchanged between the stations using a name rather than a station address. Each station knows its name and is responsible for knowing the names of other stations on the network.

---

**Note**

In addition to this type of NetBIOS, which runs over LLC2, we have implemented another type of NetBIOS that runs over IPX. For information on the IPX type of NetBIOS, refer to the chapter “Configuring Novell IPX” in the Cisco IOS AppleTalk and Novell IPX Configuration Guide.

NetBIOS name caching allows the Cisco IOS software to maintain a cache of NetBIOS names, which avoids the high overhead of sending many of the broadcasts used between client and server NetBIOS PCs (IBM PCs or PS/2s) in an SRB environment.

When NetBIOS name caching is enabled, the software performs the following actions:

- Notices when any hosts send a series of duplicated “query” frames and reduces them to one frame per period. The time period is configurable.
- Keeps a cache of mappings between NetBIOS server and client names and their MAC addresses. By watching NAME_QUERY and NAME_RECOGNIZED request and response traffic between clients and servers, the Cisco IOS software can forward broadcast requests sent by clients to find servers (and by servers in reply to their clients) directly to their needed destinations, rather than forwarding them for broadcast across the entire bridged network.

The software will time out the entries in the NetBIOS name cache after a specific interval of their initial storage. The timeout value is a user-configurable value. You can configure the timeout value for a particular Token Ring if the NetBIOS name cache is enabled on the interface connecting to that Token Ring. In addition, you can configure static name cache entries that never time out for frequently accessed servers whose locations or paths typically do not change. Static RIF entries are also specified for such hosts.

Generally, NetBIOS name caching is most useful when a large amount of NetBIOS broadcast traffic creates bottlenecks on WAN media connecting distant locations, and the WAN media is overwhelmed with this traffic. However, when two high-speed LAN segments are directly interconnected, the packet savings of NetBIOS name caching is probably not worth the processor overhead associated with it.
NetBIOS name caching is not recommended to be turned on in backbone routers, particularly if you have it enabled in all the routers connected to the backbone. NetBIOS caching should be distributed among multiple routers. NetBIOS name caching can be used only between Cisco routers that are running software Release 9.1 or later.

To enable NetBIOS name caching, you must perform the tasks in the following sections:

- Enabling the Proxy Explorers Feature on the Appropriate Interface, page 17
- Specifying Timeout and Enabling NetBIOS Name Caching, page 18

In addition, you can configure NetBIOS name caching as described in the following sections:

- Configuring the NetBIOS Cache Name Length, page 18
- Enabling NetBIOS Proxying, page 18
- Creating Static Entries in the NetBIOS Name Cache, page 19
- Specifying Dead-Time Intervals for NetBIOS Packets, page 19

### Enabling the Proxy Explorers Feature on the Appropriate Interface

To enable NetBIOS name caching on an interface, the proxy explorers feature must first be enabled on that interface. This feature must either be enabled for response to all explorer packets or for response to NetBIOS packets only.

To determine whether the proxy explorers feature has been enabled, use the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# more nvram:startup-config</td>
<td>Displays the startup configuration file contained in NVRAM or specified by the CONFIG_FILE environment variable.</td>
</tr>
</tbody>
</table>

To determine whether proxy explorers has been configured for response to all explorer packets, look in the configuration file for the `source-bridge proxy-explorer` entry for the appropriate interface. For example, if the appropriate interface is Token Ring 0, look for an entry similar to the following:

```
interface tokenring 0
source-bridge proxy-explorer
```

If that entry does not exist, look for the `source-bridge proxy-netbios-only` entry for the appropriate interface.

If neither entry exists, proxy explorers has not yet been enabled for the appropriate interface. To enable proxy explorers for response to all explorer packets, refer to the section “Configure Proxy Explorers” later in this chapter.

Otherwise, enable proxy explorers only for the NetBIOS name caching function by using the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# source-bridge proxy-netbios-only</td>
<td>Enables use of proxy explorers only for the NetBIOS name caching function and not for their general local response to explorers.</td>
</tr>
</tbody>
</table>
Specifying Timeout and Enabling NetBIOS Name Caching

After you have ensured that the proxy explorers feature has been enabled for the appropriate interface, you can specify a cache timeout and enable NetBIOS name caching. To do this, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# netbios name-cache timeout minutes Enables NetBIOS name caching and sets the time that entries can remain in the NetBIOS name cache.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# netbios enable-name-cache Enables NetBIOS name caching.</td>
</tr>
</tbody>
</table>

Configuring the NetBIOS Cache Name Length

To specify how many characters of the NetBIOS type name that the name cache will validate, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# netbios name-cache name-len length Specifies how many characters of the NetBIOS type name the name cache will validate.</td>
<td></td>
</tr>
</tbody>
</table>

Enabling NetBIOS Proxying

The Cisco IOS software can act as a proxy and send NetBIOS datagram type frames. To enable this capability, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# netbios name-cache proxy-datagram seconds Enables the Cisco IOS software to act as a proxy and send NetBIOS datagram type frames.</td>
<td></td>
</tr>
</tbody>
</table>

To define the validation time when the software is acting as a proxy for NetBIOS NAME_QUERY command or for explorer frames, use the following global configuration command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# rif validate-age seconds Defines validation time.</td>
<td></td>
</tr>
</tbody>
</table>
Creating Static Entries in the NetBIOS Name Cache

If the router communicates with one or more NetBIOS stations on a regular basis, adding static entries to the NetBIOS name cache for these stations can reduce network traffic and overhead. You can define a static NetBIOS name cache entry that associates the server with the NetBIOS name and the MAC address. If the router acts as a NetBIOS server, you can specify that the static NetBIOS name cache is available locally through a particular interface. If a remote router acts as the NetBIOS server, you can specify that the NetBIOS name cache is available remotely. To do this, use one of the following commands in global configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# netbios name-cache mac-address netbios-name interface-name</code></td>
<td>Defines a static NetBIOS name cache entry, tying the server with the name netbios-name to the mac-address, and specifying that the server is accessible locally through the interface-name specified.</td>
</tr>
<tr>
<td><code>Router(config)# netbios name-cache mac-address netbios-name ring-group group-number</code></td>
<td>Defines a static NetBIOS name cache entry, tying the server with the name netbios-name to the mac-address, and specifying that the server is accessible remotely through the ring-group group-number specified.</td>
</tr>
</tbody>
</table>

If you have defined a NetBIOS name cache entry, you must also define a RIF entry. For an example of how to configure a static NetBIOS entry, see the “NetBIOS Support with a Static NetBIOS Cache Entry Example” section on page 50.

Specifying Dead-Time Intervals for NetBIOS Packets

When NetBIOS name caching is enabled and default parameters are set on the router (and the NetBIOS name server and the NetBIOS name client), approximately 20 broadcast packets per login are kept on the local ring where they are generated. The broadcast packets are of the type ADD_NAME_QUERY, ADD_GROUP_NAME, and STATUS_QUERY.

The Cisco IOS software also converts pairs of FIND_NAME and NAME_RECOGNIZED packets received from explorers, which traverse all rings, to specific route frames that are sent only between the two machines that need to see these packets.

You can specify a query-timeout, or “dead-time” interval to prevent repeat or duplicate broadcast of these type of packets for the duration of the interval.

To specify dead time intervals, use the following commands in global configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# netbios name-cache query-timeout seconds</code></td>
<td>Specifies a dead time interval during which the Cisco IOS software drops any broadcast (NetBIOS ADD_NAME_QUERY, ADD_GROUP_NAME, or STATUS_QUERY) frames if they are duplicate frames sent by the same host.</td>
</tr>
<tr>
<td><code>Router(config)# netbios name-cache recognized-timeout seconds</code></td>
<td>Specifies a dead time interval during which the software drops FIND_NAME and NAME_RECOGNIZED frames if they are duplicate frames sent by the same host.</td>
</tr>
</tbody>
</table>
Configuring LNM Support

LAN Network Manager (LNM), formerly called LAN Manager, is an IBM product for managing a collection of source-route bridges. Using either a proprietary protocol or the Simple Network Management Protocol (SNMP), LNM allows you to monitor the entire collection of Token Rings that comprise your source-route bridged network. You can use LNM to manage the configuration of source-route bridges, monitor Token Ring errors, and gather information from Token Ring parameter servers.

Note

LNM is supported on the 4/16-Mb Token Ring cards that can be configured for either 4- or 16-Mb transmission speeds. LNM support is not provided on CSC-R16M cards with SBEMON 2.0.

LNM is not limited to managing locally attached Token Ring networks; it also can manage any other Token Rings in your source-route bridged network that are connected through non-Token Ring media. To accomplish this task, LNM works in conjunction with the IBM Bridge Program. The IBM Bridge Program gathers data about the local Token Ring network and relays it back to LNM. In this manner, the bridge program becomes a proxy for information about its local Token Ring. Without this ability, you would require direct access to a device on every Token Ring in the network. This process would make managing an SRB environment awkward and cumbersome.

Figure 8 shows some Token Rings attached through a cloud and one LNM linking to a source-route bridge on each local ring.

Figure 8 LNM Linking to a Source-Route Bridge on Each Local Ring

If LNM requires information about a station somewhere on a Token Ring, it uses a proprietary IBM protocol to query to one of the source-route bridged network that are connected through non-Token Ring media. If the bridge can provide the requested information, it simply responds directly to LNM. If the bridge does not have the necessary information, it queries the station using a protocol published in the IEEE 802.5 specification. In either case, the bridge uses the proprietary protocol to send a valid response back to LNM, using the proprietary protocol.

As an analogy, consider a language translator who sits between a French-speaking diplomat and a German-speaking diplomat. If the French diplomat asks the translator a question in French for the German diplomat and the translator knows the answer, he or she simply responds without translating the original question into German. If the French diplomat asks a question the translator does not know how to answer, the translator must first translate the question to German, wait for the German diplomat to answer, and then translate the answer back to French.
Similarly, if LNM queries a source-route bridge in the proprietary protocol and the bridge knows the answer, it responds directly using the same protocol. If the bridge does not know the answer, it must first translate the question to the IEEE 802.5 protocol, query the station on the ring, and then translate the response back to the proprietary protocol to send to LNM.

Figure 9 illustrates requests from the LNM originating in an IBM proprietary protocol and then translated into IEEE 802.5 MAC-level frames.

**Figure 9**  
LAN Network Manager Monitoring and Translating

Notice that the proprietary protocol LNM uses to communicate with the source-route bridge is an LLC2 connection. Although its protocol cannot be routed, LNM can monitor or manage anything within the SRB network.

**How a Router Works with LNM**

Cisco routers using 4/16-Mbps Token Ring interfaces configured for SRB support the proprietary protocol that LNM uses. These routers provide all functions the IBM Bridge Program currently provides. Thus LNM can communicate with a router as if it were an IBM source-route bridge, such as the IBM 8209, and can manage or monitor any Token Ring connected to the router.

Through IBM Bridge support, LNM provides three basic services for the SRB network:

- The Configuration Report Server (CRS) monitors the current logical configuration of a Token Ring and reports any changes to LNM. CRS also reports various other events, such as the change of an active monitor on a Token Ring.
- The Ring Error Monitor (REM) monitors errors reported by any station on the ring. In addition, REM monitors whether the ring is in a functional or a failure state.
- The Ring Parameter Server (RPS) reports to LNM when any new station joins a Token Ring and ensures that all stations on a ring are using a consistent set of reporting parameters.

IBM Bridge support for LNM also allows asynchronous notification of some events that can occur on a Token Ring. Examples of these events include notification of a new station joining the Token Ring or of the ring entering failure mode, known as *beaconing*. Support is also provided for LNM to change the operating parameters in the bridge. For a complete description of LNM, refer to the IBM product manual supplied with the LNM program.
LNM support in our source-route bridges is a powerful tool for managing SRB networks. Through the ability to communicate with LNM and to provide the functionality of the IBM Bridge Program, our device appears as part of the IBM network. You therefore gain from the interconnectivity of our products without having to learn a new management product or interface.

When SRB is enabled on the router, configuring the Cisco IOS software to perform the functions of an IBM Bridge for communication with LNM occurs automatically. Therefore, if SRB has been enabled, you do not need to perform any tasks to enable LNM support. However, the LNM software residing on a management station on a Token Ring on the network should be configured to properly communicate with the router.

There are several options for modifying LNM parameters in the Cisco IOS software, but none are required for basic functionality. For example, because users can now modify the operation of the Cisco IOS software through SNMP and through LNM, there is an option to exclude a user from modifying the Cisco IOS software configuration through LNM. You also can specify which of the three LNM services (CRS, REM, RPS) the source-route bridge will perform.

To configure LNM support, perform the tasks in the following sections:

- Configuring LNM Software on the Management Stations to Communicate with the Router, page 22
- Disabling LNM Functionality, page 22
- Disabling Automatic Report Path Trace Function, page 23
- Preventing LNM Stations from Modifying Cisco IOS Software Parameters, page 23
- Enabling Other LRMs to Change Router Parameters, page 23
- Applying a Password to an LNM Reporting Link, page 24
- Enabling LNM Servers, page 24
- Changing Reporting Thresholds, page 24
- Changing an LNM Reporting Interval, page 25
- Enabling the RPS Express Buffer Function, page 25
- Monitoring LNM Operation, page 25

**Configuring LNM Software on the Management Stations to Communicate with the Router**

Because configuring an LNM station is a fairly simple task and is well covered in the LNM documentation, it is not covered in depth here. However, it is important to mention that you must enter the MAC addresses of the interfaces comprising the ports of the bridges as adapter addresses. When you configure the router as a multiport bridge, configuring an LNM station is complicated by the virtual ring that is involved. The basic problem extends from the fact that LNM is designed to only understand the concept of a two-port bridge, and the router with a virtual ring is a multiport bridge. The solution is to configure a virtual ring into the LNM Manager station as a series of dual-port bridges.

**Disabling LNM Functionality**

Under some circumstances, you can disable all LNM server functions on the router without having to determine whether to disable a specific server, such as the ring parameter server or the ring error monitor on a given interface.

To disable LNM functionality, use the following command in global configuration mode:
Configuring Source-Route Bridging

Disabling Automatic Report Path Trace Function

Under some circumstances, such as when new hardware has been introduced into the network and is causing problems, the automatic report path trace function can be disabled. The new hardware may be setting bit-fields B1 or B2 (or both) of the routing control field in the routing information field embedded in a source-route bridged frame. This condition may cause the network to be flooded by report path trace frames if the condition is persistent. The `lnm pathtrace-disabled` command, along with its options, allows you to alleviate network congestion that may be occurring by disabling all or part of the automatic report path trace function within LNM.

To disable the automatic report path trace function, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# lnm pathtrace-disabled origin</code></td>
<td>Disables LNM automatic report path trace function.</td>
</tr>
</tbody>
</table>

Preventing LNM Stations from Modifying Cisco IOS Software Parameters

Because there is more than one way to remotely change parameters in a router (either using SNMP or the proprietary IBM protocol), some method is needed to prevent such changes from detrimentally interacting with each other. You can prevent any LNM station from modifying parameters in the Cisco IOS software. It does not affect the ability of LNM to monitor events, only to change parameters on the router.

To prevent the modification of Cisco IOS software parameters by an LNM station, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# lnm snmp-only</code></td>
<td>Prevents LNM stations from modifying LNM parameters in the Cisco IOS software.</td>
</tr>
</tbody>
</table>

Enabling Other LRM to Change Router Parameters

LNM has a concept of reporting links and reporting link numbers. A reporting link is simply a connection (or potential connection) between a LAN Reporting Manager (LRM) and a bridge. A reporting link number is a unique number used to identify a reporting link. An IBM bridge allows four simultaneous reporting links numbered 0 through 3. Only the LRM attached on the lowest-numbered connection is allowed to change LNM parameters in the router, and then only when that connection number falls below a certain configurable number. In the default configuration, the LRM connected through link 0 is the only LRM that can change LNM parameters.
To enable other LRMs to change router parameters, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# lnm alternate number</td>
<td>Enables a LRM other than that connected through link 0 to change router parameters.</td>
</tr>
</tbody>
</table>

### Applying a Password to an LNM Reporting Link

Each reporting link has its own password that is used not only to prevent unauthorized access from an LRM to a bridge but to control access to the different reporting links. This is important because it is possible to change parameters through some reporting links.

To apply a password to an LNM reporting link, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# lnm password number string</td>
<td>Applies a password to an LNM reporting link.</td>
</tr>
</tbody>
</table>

### Enabling LNM Servers

As in an IBM bridge, the router provides several functions that gather information from a local Token Ring. All of these functions are enabled by default, but also can be disabled. The LNM servers are explained in the “How a Router Works with LNM” section on page 21.

To enable LNM servers, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# lnm crs</td>
<td>Enables the LNM Configuration Report Server (CRS).</td>
</tr>
<tr>
<td>Router(config-if)# lnm rem</td>
<td>Enables the LNM Ring Error Monitor (REM).</td>
</tr>
<tr>
<td>Router(config-if)# lnm rps</td>
<td>Enables the LNM Ring Parameter Server (RPS).</td>
</tr>
</tbody>
</table>

### Changing Reporting Thresholds

The Cisco IOS software sends a message to all attached LNMs whenever it begins to drop frames. The threshold at which this report is generated is based on a percentage of frames dropped compared with those forwarded. This threshold is configurable, and defaults to a value of 0.10 percent. You can configure the threshold by entering a single number, expressing the percentage loss rate in hundredths of a percent. The valid range is 0 to 9999.
To change reporting thresholds, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# lnm loss-threshold number</td>
<td>Changes the threshold at which the Cisco IOS software reports the frames-lost percentage to LNM.</td>
</tr>
</tbody>
</table>

**Changing an LNM Reporting Interval**

All stations on a Token Ring notify the Ring Error Monitor (REM) when they detect errors on the ring. In order to prevent excessive messages, error reports are not sent immediately, but are accumulated for a short interval and then reported. A station learns the duration of this interval from a router (configured as a source-route bridge) when it first enters the ring. This value is expressed in tens of milliseconds between error messages. The default is 200, or 2 seconds. The valid range is 0 to 65535.

To change an LNM reporting interval, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# lnm softerr milliseconds</td>
<td>Sets the time interval in which the Cisco IOS software will accumulate error messages before sending them.</td>
</tr>
</tbody>
</table>

**Enabling the RPS Express Buffer Function**

The RPS express buffer function allows the router to set the express buffer bit to ensure priority service for frames required for ring station initiation. When this function is enabled, the router sets the express buffer bit in its initialize ring station response. This allows Token Ring devices to insert into the ring during bursty conditions.

To enable LNM to use the RPS express buffer function, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# lnm express-buffer</td>
<td>Enables the LNM RPS express buffer function.</td>
</tr>
</tbody>
</table>

**Monitoring LNM Operation**

Once LNM support is enabled, you can monitor LNM operation. To observe the configuration of the LNM bridge and its operating parameters, use the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router# show lnm bridge</td>
<td>Displays all configured bridges and their global parameters.</td>
</tr>
<tr>
<td>2</td>
<td>Router# show lnm config</td>
<td>Displays the logical configuration of all bridges configured in the router.</td>
</tr>
<tr>
<td>3</td>
<td>Router# show lnm interface [type number]</td>
<td>Displays LNM information for an interface or all interfaces of the router.</td>
</tr>
<tr>
<td>4</td>
<td>Router# show lnm ring [ring-number]</td>
<td>Displays LNM information about a Token Ring or all Token Rings on the network.</td>
</tr>
<tr>
<td>5</td>
<td>Router# show lnm station [address]</td>
<td>Displays LNM information about a station or all known stations on all rings.</td>
</tr>
</tbody>
</table>
Configuring ATM Support

Cisco IOS software supports RFC 1483, enabling the transfer of network interconnect traffic over ATM AAL5 layer using LLC encapsulation. RFC 1483 defines an encapsulation type for transferring LAN data via ATM networks. All LAN protocols that use the LLC format and run on Ethernet, Token Ring, or ATM networks are encapsulated in LLC data packets transported via ATM networks. This enhancement provides an SRB over ATM functionality that is interoperable with other vendors’ implementations of SRB over ATM.

RFC 1483 also provides the following benefits:

- Flexibility to implement traffic policies pertaining to traffic shaping and various congestion control mechanisms
- Load balancing of traffic guarantees that LAN data is sent
- Cost effectiveness of using PVCs instead of LANE in small networks
- Transfer of connectionless LAN data over a connection-oriented ATM network
- Support for IP and IPX routing, using RFC 1483 Routed PDUs

RFC 1483 enables SRB between Token Ring LANs connected over and ATM network, using RFC 1483 bridged PDUs in the following scenarios:

- Two-port and multiport SRB between Token Ring LANs connected via RFC 1483 AAL5Snap permanent virtual circuits (PVCs), using bridged PDUs.
- Two-port and multiport SRB between Token Ring LANs (using RFC 1483 AAL5Snap PVCs) and LANs, VLANs, or ELANs with SRB (using bridged PDUs).

RFC 1483 also supports two-port and multiport Source Route/Translational Bridging (SR/TLB) between Token Ring, Ethernet and their respective emulated LANS, using RFC 1483 bridged PDUs.

SR/TLB can be configured to connect transparent bridging and SRB domains. Transparent bridging forwards incoming packets based on a destination MAC address that yields a RIF to be added to the packet. SRB forwards packets based on destination MAC address, which is listed in the transparent bridging table. Both SRB explorers and transparent bridging multicast packets are forwarded and extended.

The following guidelines apply to RFC 1483 configuration:

- Assign a unique number to the PVC that connects two nodes. When SRB is configured, the router determines the PVC on which the frame is to be forwarded and treats it as a Token Ring interface. In a large network, the availability of enough unique virtual ring numbers for PVCs might be a limitation.
- Conserve the virtual ring number on the PVC and configure the routers so that they use the same ring numbers that are assigned to the PVCs.

To configure SRB over ATM, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> Router(config)# interface atm slot/port</td>
<td>Specifies the ATM interface.</td>
</tr>
<tr>
<td><strong>Step 2</strong> Router(config-if)# interface atm slot/port [subinterface- number {multipoint</td>
<td>point-to-point}]</td>
</tr>
</tbody>
</table>
For more information, see one of the following sections:

- Back-to-Back Routers ATM Configuration Example, page 59
- Single ATM PVC and Single Virtual Ring Per Router Configuration Example, page 60
- Multiple ATM PVCs and Multiple Virtual Rings on One Router Configuration Example, page 61
- Multiple ATM PVCs with a Single Virtual Ring on the Router Configuration Example, page 62

### Securing the SRB Network

This section describes how to configure three features that are used primarily to provide network security: NetBIOS access filters, administrative filters, and access expressions that can be combined with administrative filters. In addition, these features can be used to increase network performance because they reduce the number of packets that traverse the backbone network.

### Configuring NetBIOS Access Filters

NetBIOS packets can be filtered when sent across a Token Ring bridge. Two types of filters can be configured:

- Host access list
  Used for source and destination station names
- Byte offset access list
  Used for arbitrary byte patterns in the packet itself.

As you configure NetBIOS access filters, keep the following issues in mind:

- The access lists that apply filters to an interface are scanned in the order they are entered.
- There is no way to put a new access list entry in the middle of an access list. All new additions to existing NetBIOS access lists are placed at the end of the existing list.
- Access list arguments are case sensitive. The software makes a literal translation, so that a lowercase “a” is different from an uppercase “A.” (Most nodes are named in uppercase letters.)
- A host NetBIOS access list and byte NetBIOS access list can each use the same name. The two lists are identified as unique and bear no relationship to each other.
The station names included in the access lists are compared with the source name field for NetBIOS commands 00 and 01 (ADD_GROUP_NAME_QUERY and ADD_NAME_QUERY), and with the destination name field for NetBIOS commands 08, 0A, and 0E (DATAGRAM, NAME_QUERY, and NAME_RECOGNIZED).

If an access list does not contain a particular station name, the default action is to deny the access to that station.

To minimize any performance degradation, NetBIOS access filters do not examine all packets. Rather, they examine certain packets that are used to establish and maintain NetBIOS client/server connections, thereby effectively stopping new access and load across the router. However, applying a new access filter does not terminate existing sessions immediately. All new sessions will be filtered, but existing sessions could continue for some time.

There are two ways you can configure NetBIOS access filters:

- Configure NetBIOS Access Filters Using Station Names, page 28
- Configuring NetBIOS Access Filters Using a Byte Offset, page 28

### Configure NetBIOS Access Filters Using Station Names

To configure access filters using station names, you must do the following:

1. Assign the station access list name.
2. Specify the direction of the message to be filtered on the interface.

The NetBIOS station access list contains the station name to match, along with a permit or deny condition. You must assign the name of the access list to a station or set of stations on the network.

To assign a station access list name, use the following command in global configuration mode:

```plaintext
Router(config)# netbios access-list host name (permit | deny) pattern
```

When filtering by station name, you can choose to filter either incoming or outgoing messages on the interface. To specify the direction, use one of the following commands in interface configuration mode, as needed:

```plaintext
Router(config-if)# netbios input-access-filter host name
Router(config-if)# netbios output-access-filter host name
```

### Configure NetBIOS Access Filters Using a Byte Offset

To configure access filters you must do the following:

1. Assign a byte offset access list name.
2. Specify the direction of the message to be filtered on the interface.
Keep the following notes in mind while configuring access filters using a byte offset:

- When an access list entry has an offset plus the length of the pattern that is larger than the packet’s length, the entry will not make a match for that packet.
- Because these access lists allow arbitrary byte offsets into packets, these access filters can have a significant impact on the amount of packets per second transiting across the bridge. They should be used only when situations absolutely dictate their use.

The NetBIOS byte offset access list contains a series of offsets and hexadecimal patterns with which to match byte offsets in NetBIOS packets. To assign a byte offset access list name, use the following command in global configuration mode:

```
Router(config)# netbios access-list bytes name (permit | deny) offset pattern
```

**Note**

Using NetBIOS Byte Offset access filters disables the autonomous or fast switching of source-route bridging frames.

When filtering by byte offset, you can filter either incoming or outgoing messages on the interface. To specify the direction, use one of the following commands in interface configuration mode, as needed:

```
Router(config-if)# netbios input-access-filter bytes name
```

```
Router(config-if)# netbios output-access-filter bytes name
```

### Configuring Administrative Filters for Token Ring Traffic

Source-route bridges normally filter frames according to the routing information contained in the frame. That is, a bridge will not forward a frame back to its originating network segment or any other network segment that the frame has already traversed. This section describes how to configure another type of filter—the administrative filter.

Administrative filters can filter frames based on the following methods:

- Protocol type—IEEE 802 or Subnetwork Access Protocol (SNAP)
- Token Ring vendor code
- Source address
- Destination address

Whereas filtering by Token Ring address or vendor code causes no significant performance penalty, filtering by protocol type significantly affects performance. A list of SNAP (Ethernet) type codes is provided in the “Ethernet Type Codes” appendix in the *Cisco IOS Bridging and IBM Networking Command Reference* (Volume 1 of 2).
Filtering Frames by Protocol Type

You can configure administrative filters by protocol type by specifying protocol type codes in an access list. You then apply that access list to either IEEE 802.2 encapsulated packets or to SNAP-encapsulated packets on the appropriate interface.

The order in which you specify these elements affects the order in which the access conditions are checked. Each condition is tested in succession. A matching condition is then used to execute a permit or deny decision. If no conditions match, a deny decision is reached.

Note

If a single condition is to be denied, there must be an `access-list` command that permits everything as well, or all access is denied.

To filter frames by protocol type, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# access-list access-list-number {permit</td>
<td>deny} {type-code wild-mask</td>
</tr>
</tbody>
</table>

You can filter IEEE 802-encapsulated packets on either input or output. The access list you specify is the one you created that includes the protocol type codes.

To enable filtering on input or output, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# source-bridge input-lsap-list access-list-number</code></td>
<td>Enables filtering of IEEE 802-encapsulated packets on input by type code.</td>
</tr>
<tr>
<td><code>Router(config-if)# source-bridge output-lsap-list access-list-number</code></td>
<td>Enables filtering of IEEE 802-encapsulated packets on output by type code.</td>
</tr>
</tbody>
</table>

You can filter SNAP-encapsulated packets on either input or output. The access list you specify is the one you created that includes the protocol type codes.

To enable filtering on input or output, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# source-bridge input-type-list access-list-number</code></td>
<td>Filters SNAP-encapsulated packets on input by type code.</td>
</tr>
<tr>
<td><code>Router(config-if)# source-bridge output-type-list access-list-number</code></td>
<td>Filters SNAP-encapsulated frames on output by type code.</td>
</tr>
</tbody>
</table>
Filtering Frames by Vendor Code

To configure administrative filters by vendor code or address, define access lists that look for Token Ring addresses or for particular vendor codes for administrative filtering. To do so, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# access-list access-list-number (permit</td>
<td>deny) address mask</td>
</tr>
</tbody>
</table>

Filtering Source Addresses

To configure filtering on IEEE 802 source addresses, assign an access list to a particular input interface for filtering the Token Ring or IEEE 802 source addresses. To do so, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# source-bridge input-address-list access-list-number</td>
<td>Enables filtering on IEEE 802 source addresses.</td>
</tr>
</tbody>
</table>

Filtering Destination Addresses

To configure filtering on IEEE 802 destination addresses, assign an access list to a particular output interface. To do so, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# source-bridge output-address-list access-list-number</td>
<td>Enables filtering on IEEE 802 destination addresses.</td>
</tr>
</tbody>
</table>

Configuring Access Expressions that Combine Administrative Filters

You can use access expressions to combine access filters to establish complex conditions under which bridged frames can enter or leave an interface. Using access expressions, you can achieve levels of control on the forwarding of frames that otherwise would be impossible when using only simple access filters. Access expressions are constructed from individual access lists that define administrative filters for the following fields in packets:

- LSAP and SNAP type codes
- MAC addresses
- NetBIOS station names
- NetBIOS arbitrary byte values

Note

For any given interface, an access expression cannot be used if an access list has been defined for a given direction. For example, if an input access list is defined for MAC addresses on an interface, no access expression can be specified for the input side of that interface.
In Figure 10, two routers each connect a Token Ring to an FDDI backbone. On both Token Rings, SNA and NetBIOS bridging support is required. On Token Ring A, NetBIOS clients must communicate with any NetBIOS server off Token Ring B or any other, unpictured router. However, the two 3174 cluster controllers off Token Ring A must only communicate with the one FEP off of Token Ring B, located at MAC address 0110.2222.3333.

Without access expressions, this scenario cannot be achieved. A filter on Router A that restricted access to only the FEP would also restrict access of the NetBIOS clients to the FEP. What is needed is an access expression that would state “If it is a NetBIOS frame, pass through, but if it is an SNA frame, only allow access to address 0110.2222.3333.”

**Figure 10 Access Expression Example**

Using access-expressions that combine access filters disables the autonomous or fast switching of source-route bridging frames.

**Configuring Access Expressions**

To configure an access expression perform the following tasks:

- Design the access expression.
- Configure the access lists used by the expression.
- Configure the access expression into the router.

When designing an access expression, you must create some phrase that indicates, in its entirety, all the frames that will pass the access expression. This access expression is designed to apply on frames coming from the Token Ring interface on Router A in Figure 10:

“Pass the frame if it is a NetBIOS frame or if it is an SNA frame destined to address 0110.2222.3333.”

In Boolean form, this phrase can be written as follows:

“Pass if ‘NetBIOS or (SNA and destined to 0110.2222.3333).’”

The preceding statement requires three access lists to be configured:

- An access list that passes a frame if it is a NetBIOS frame (SAP = 0xF0F0)
- An access list that passes a frame if it is an SNA frame (SAP = 0x0404)
- An access list that passes a MAC address of 0110.2222.3333

The following configuration allows for all these conditions:
Configuring Source-Route Bridging

SRB Configuration Task List

Command Purpose
---
Router(config-if)# **access-expression** *in* | *out* expression | Defines a per-interface access expression.

Optimizing Access Expressions

It is possible to combine access expressions. Suppose you wanted to send SNA traffic through to a single address, but allow other traffic through the router without restriction. The phrase could be written as follows:

“Allow access if the frame is not an SNA frame, or if it is going to host 0110.2222.3333.”

More tersely, this would be:

“Not SNA or destined to 0110.2222.3333.”

The access lists defined in the previous section create the following configuration:

```plaintext
interface tokenring 0
 access-expression in ~lsap(202) | dmac(701)
 access-list 202 permit 0x0404 0x0001 ! Permits SNA frames (command or response)
 access-list 202 permit 0x0004 0x0001 ! Permits SNA Explorers with NULL DSAP
 access-list 701 permit 0110.2222.3333
```

This is a better and simpler access list than the one originally introduced and will probably result in better run-time execution as a result. Therefore, it is best to simplify your access expressions as much as possible before configuring them into the Cisco IOS software.

**Note**

An “access-expression” type filter cannot exist with a “source-bridge” type filter on the same interface. The two types of filters are mutually exclusive.

Altering Access Lists Used in Access Expressions

Because access expressions are composed of access lists, special care must be taken when deleting and adding access lists that are referenced in these access expressions.

If an access list that is referenced in an access expression is deleted, the access expression merely ignores the deleted access list. However, if you want to redefine an access list, you can create a new access list with the appropriate definition and use the same name as the old access list. The newly defined access list replaces the old one of the same name.
For example, if you want to redefine the NetBIOS access list named MIS that was used in the preceding example, you would use the following sequence of configuration commands:

```plaintext
! Replace the NetBIOS access list
interface tokenring 0
 access-expression in (smac(701) & netbios-host(accept))
 no netbios access-list host accept permit CISCO*
```

### Tuning the SRB Network Task List

The following sections describe how to configure features that enhance network performance by reducing the number of packets that traverse the backbone network:

- Enabling or Disabling the Source-Route Fast-Switching Cache, page 34
- Enabling or Disabling the Source-Route Autonomous-Switching Cache, page 34
- Enabling or Disabling the SSE, page 35
- Establishing the Connection Timeout Interval, page 35
- Optimizing Explorer Processing, page 36
- Configuring Proxy Explorers, page 37

**Note**

In some situations, you might discover that default settings for LLC2 configurations are not acceptable. In such a case, you can configure LLC2 for optimal use. The chapter “Configuring LLC2 and SDLC Parameters” in this publication describes how you can use them to optimize your network performance.

### Enabling or Disabling the Source-Route Fast-Switching Cache

Rather than processing packets at the process level, the fast-switching feature enables the Cisco IOS software to process packets at the interrupt level. Each packet is transferred from the input interface to the output interface without copying the entire packet to main system memory. Fast switching allows for faster implementations of local SRB between 4/16-MB Token Ring cards in the same router, or between two routers using the 4/16-Mb Token Ring cards and direct encapsulation.

By default, fast-switching software is enabled when SRB is enabled. To enable or disable source-route fast-switching, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# source-bridge route-cache</td>
<td>Enables fast-switching.</td>
</tr>
<tr>
<td>Router(config-if)# no source-bridge route-cache</td>
<td>Disables fast-switching.</td>
</tr>
</tbody>
</table>

**Note**

Using either NetBIOS Byte Offset access filters or access expressions that combine access filters disables the fast switching of source-route bridging frames.

### Enabling or Disabling the Source-Route Autonomous-Switching Cache

Autonomous switching is a feature that enables the Cisco IOS software to send packets from the input ciscoBus card to the output ciscoBus card without any involvement on the part of the router processor.
Autonomous switching is available for local SRB between ciscoBus Token Ring (CTR) cards in the same router. Autonomous switching provides higher switching rates than does fast switching between 4/16-Mb Token Ring cards. Autonomous switching works for both two-port bridges and multiport bridges that use ciscoBus Token Ring cards.

In a virtual ring that includes both ciscoBus Token Ring and 4/16-Mb Token Ring interfaces, frames that flow from one CTR interface to another are autonomously switched, and the remainder of the frames are fast switched. The switching that occurs on the CTR interface takes advantage of the high-speed ciscoBus controller processor.

To enable or disable source-route autonomous switching, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# source-bridge route-cache cbus</td>
<td>Enables autonomous switching.</td>
</tr>
<tr>
<td>Router(config-if)# no source-bridge route-cache cbus</td>
<td>Disables autonomous switching.</td>
</tr>
</tbody>
</table>

**Note**
Using either NetBIOS Byte Offset access filters or access-expressions that combine access filters disables the autonomous switching of SRB frames.

**Enabling or Disabling the SSE**

The Silicon Switch Engine (SSE) acts as a programmable cache to speed the switching of packets. To enable or disable the SSE, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# source-bridge route-cache sse</td>
<td>Enables the SSE function.</td>
</tr>
<tr>
<td>Router(config-if)# no source-bridge route-cache sse</td>
<td>Disables the SSE function.</td>
</tr>
</tbody>
</table>

**Establishing the Connection Timeout Interval**

It might be necessary to adjust timeout intervals in a complex topology such as a large multihop WAN with virtual rings or satellite links. The timeout interval is used when a connection to a remote peer is attempted. If the timeout interval expires before a response is received, the connection attempt is aborted.

To set the connection timeout interval, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# source-bridge connection-timeout seconds</td>
<td>Sets the connection timeout interval.</td>
</tr>
</tbody>
</table>
Optimizing Explorer Processing

Efficient explorer processing is vital to the operation of SRB. The default configuration is satisfactory for most situations. However, there might be circumstances that create unexpected broadcast storms. You can optimize the handling of explorer frames, thus reducing processor overhead and increasing explorer packet throughput. Optimizing explorer processing enables the router to perform substantially better during explorer broadcast storms.

In networks with redundant topologies—two or more routers connected to the same set of Token Rings and doing source-route bridging—a station on one Token Ring trying to get to a station on another Token Ring may choose a less than optimal route through unnecessary routers, causing explorer storms due to excessive forwarding of explorer frames. For example, in the redundant topology example shown in Figure 11, if Station X on Token Ring 1 attempts to get to Station Z on Token Ring 4 by going through Router A, Token Ring 2, and Router B—a less than optimal route, excessive forwarding of explorer frames may cause explorer storms.

Figure 11 Controlling Explorer Storms in Redundant Network Topologies

The source-bridge explorer-dup-ARE-filter command can be used to reduce explorer traffic by filtering explorer frames.
To optimize explorer processing, use one of the following commands in global configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source-bridge explorer-q-depth depth</code></td>
<td>Sets the maximum explorer queue depth.</td>
</tr>
<tr>
<td><code>source-bridge explorer-dup-ARE-filter</code></td>
<td>Prevents explorer storms in redundant network topologies by filtering explorers that have already been forwarded once.</td>
</tr>
<tr>
<td><code>source-bridge explorer-maxrate maxrate</code></td>
<td>Sets the maximum byte rate of explorers per ring.</td>
</tr>
</tbody>
</table>

You must also disable explorer fast-switching which is, by default, enabled. To disable explorer fast-switching, use the following command in global configuration mode:

```
Router(config)# no source-bridge explorer-fastswitch
```

To enable explorer fast-switching after it has been disabled, use the following command in global configuration mode:

```
Router(config)# source-bridge explorer-fastswitch
```

**Configuring Proxy Explorers**

You can use the proxy explorers feature to limit the amount of explorer traffic propagating through the source-bridge network.

To configure proxy explorers, use the following command in interface configuration mode:

```
Router(config-if)# source-bridge proxy-explorer
```

The Cisco IOS software does not propagate proxy responses for a station. Instead, the software obtains the RIF path from the RIF cache, changes the explorer to a specific frame, and forwards this frame to the destination. If a response is not received before the validation timer expires, the RIF entry is marked as invalid. The invalid RIF entry is flushed from the cache table when another explorer for this station is received, and an explorer is forwarded to discover a path to this station.
Establishing SRB Interoperability with Specific Token Ring Implementations

This section describes how you can establish interoperability between routers and specific Token Ring implementations. It includes the following sections:

- Establishing SRB Interoperability with TI MAC Firmware, page 38
- Reporting Spurious Frame-Copied Errors, page 38

Establishing SRB Interoperability with TI MAC Firmware

You can use a workaround to establish interoperability with Texas Instruments MAC firmware. There is a known defect in earlier versions of the Texas Instruments Token Ring MAC firmware. This implementation is used by Proteon, Apollo, and IBM RTs. A host using a MAC address whose first two bytes are zeros (such as a Cisco router) will not properly communicate with hosts using that version of Texas Instruments firmware.

There are two solutions. The first involves installing a static RIF entry for every faulty node with which the router communicates. If there are many such nodes on the ring, this may not be practical.

You also can set the MAC address of our Token Ring to a value that works around the problem. Resetting the MAC address forces the use of a different MAC address on the specified interface, thereby avoiding the TI MAC firmware problem. However, you must ensure that no other host on the network is using that MAC address.

To reset the MAC address, use the following command in interface configuration mode:

```
Router(config-if)# mac-address ieee-address
```

Purpose:
Resets the MAC address of the Token Ring interface to a value that provides a workaround to a problem in Texas Instruments Token Ring MAC firmware.

Reporting Spurious Frame-Copied Errors

An IBM 3174 cluster controller can be configured to report frame-copied errors to IBM LAN Network Manager software. These errors indicate that another host is responding to the MAC address of the 3174 cluster controller. Both the 3174 cluster controller and the IBM LAN Network Manager software can be configured to ignore frame-copied errors.

Monitoring and Maintaining the SRB Network

You can display a variety of information about the SRB network. To display the information you require, use one of the following commands in EXEC mode, as needed:

```
Router# show access-expression [begin|exclude|include]
```

Purpose:
Displays the defined input and output access list expressions.

```
Router# show controllers token
```

Purpose:
Displays internal state information about the Token Ring interfaces in the system.

```
Router# show interfaces tokenring
```

Purpose:
Provides high-level statistics for a particular interface.
To maintain the SRB network, use one of the following commands in privileged EXEC mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show interfaces</td>
<td>Provides high-level statistics about the state of source bridging for a particular interface.</td>
</tr>
<tr>
<td>Router# show lnm bridge</td>
<td>Displays all currently configured bridges and all parameters that are related to the bridge as a whole and not to one of its interfaces.</td>
</tr>
<tr>
<td>Router# show lnm config</td>
<td>Displays the logical (multiport bridge) configuration of the Cisco IOS software.</td>
</tr>
<tr>
<td>Router# show lnm interface [type number]</td>
<td>Displays all LNM-relevant information about a specific interface.</td>
</tr>
<tr>
<td>Router# show lnm ring [ring-number]</td>
<td>Displays all LNM-relevant information about a specific ring number.</td>
</tr>
<tr>
<td>Router# show lnm station [address]</td>
<td>Displays all LNM-relevant information about a specific station or about all known stations on the ring.</td>
</tr>
<tr>
<td>Router# show local-ack</td>
<td>Shows the current state of any current local acknowledgment for both LLC2 and SDLLC connections.</td>
</tr>
<tr>
<td>Router# show netbios-cache</td>
<td>Displays the contents of the NetBIOS cache.</td>
</tr>
<tr>
<td>Router# show rif</td>
<td>Displays the contents of the RIF cache.</td>
</tr>
<tr>
<td>Router(config)# show source-bridge [interface]</td>
<td>Displays the current source bridge configuration and miscellaneous statistics.</td>
</tr>
<tr>
<td>Router# show span</td>
<td>Displays the spanning-tree topology for the router.</td>
</tr>
<tr>
<td>Router# show sse summary</td>
<td>Displays a summary of Silicon Switch Processor (SSP) statistics.</td>
</tr>
</tbody>
</table>

In addition to the EXEC-mode commands to maintain the SRB network, you can use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# clear netbios-cache</td>
<td>Clears the entries of all dynamically learned NetBIOS names.</td>
</tr>
<tr>
<td>Router(config)# clear rif-cache</td>
<td>Clears the entire RIF cache.</td>
</tr>
<tr>
<td>Router(config)# clear source-bridge</td>
<td>Clears the SRB statistical counters.</td>
</tr>
<tr>
<td>Router(config)# clear sse</td>
<td>Reinitializes the SSP on the Cisco 7000 series.</td>
</tr>
</tbody>
</table>

Limits the size of the backup queue for RSRB to control the number of packets that can wait for transmission to a remote ring before they are thrown away.

### SRB Configuration Examples

The following sections provide SRB configuration examples:

- Basic SRB with Spanning-Tree Explorers Example, page 40
- SRB with Automatic Spanning-Tree Function Configuration Example, page 41
- Optimized Explorer Processing Configuration Example, page 41
Basic SRB with Spanning-Tree Explorers Example

Figure 12 illustrates a simple two-port bridge configuration. Token Rings 129 and 130 are connected through the router.

Figure 12  Dual-Port Source-Route Bridge Configuration

The example that follows routes IP, but source-route bridges all other protocols using spanning-tree explorers:

interface tokenring 0
ip address 131.108.129.2 255.255.255.0
source-bridge 129 1 130
source-bridge spanning
multiring all
!
interface tokenring 1
  ip address 131.108.130.2 255.255.255.0
  source-bridge 130 1 129
  source-bridge spanning
! use RIFs, as necessary, with IP routing software
multiring all

SRB with Automatic Spanning-Tree Function Configuration Example

The following example of a Cisco series 7000 router configuration illustrates how to enable the automatic spanning-tree function on an SRB network:

```
source-bridge ring-group 100
interface tokenring 0/0
 no ip address
 ring-speed 16
 multiring all
 source-bridge active 1 10 100
 source-bridge spanning 1
!
interface tokenring 0/1
 no ip address
 ring-speed 16
 multiring all
 source-bridge active 2 10 100
 source-bridge spanning 1
!
bridge 1 protocol ibm
```

Optimized Explorer Processing Configuration Example

The following configuration example improves the handling of explorer frames, enabling the Cisco IOS software to perform substantially better during explorer broadcast storms. In this configuration, the maximum byte rate of explorers is set to 100000.

```
source-bridge explorer-maxrate 100000
source-bridge explorerq-depth 100
no source-bridge explorer-fastswitch
```

SRB-Only Example

The following example shows that all protocols are bridged, including IP. Because IP is being bridged, the system has only one IP address.

```
no ip routing
!
interface tokenring 0
 ip address 131.108.129.2 255.255.255.0
 source-bridge 129 1 130
 source-bridge spanning
!
interface tokenring 1
 ip address 131.108.129.2 255.255.255.0
 source-bridge 130 1 129
```
source-bridge spanning

interface ethernet 0
  ip address 131.108.129.2 255.255.255.0

**SRB and Routing Certain Protocols Example**

In the following configuration, IP, XNS, and IPX are routed, while all other protocols are bridged between rings. While not strictly necessary, the Novell IPX and XNS network numbers are set consistently with the IP subnetwork numbers. This makes the network easier to maintain.

xns routing 0000.0C00.02C3

! novell routing 0000.0C00.02C3

! interface tokenring 0
  ip address 131.108.129.2 255.255.255.0
  xns network 129
  novell network 129
  source-bridge 129 1 130
  source-bridge spanning
  multiring all

! interface tokenring 1
  ip address 131.108.130.2 255.255.255.0
  xns network 130
  novell network 130
  source-bridge 130 1 129
  source-bridge spanning
  multiring all

! interface ethernet 0
  ip address 131.108.2.68 255.255.255.0
  xns network 2
  novell network 2

**Multiport SRB Example**

Figure 13 shows an example configuration of a four-port Token Ring source-route bridge. Rings 1000, 1001, 1002, and 1003 are all source-route bridged to each other across ring group 7.

**Figure 13 Four-Port Source-Route Bridge**

The following is a sample configuration file:

source-bridge ring-group 7
interface tokenring 0
source-bridge 1000 1 7
source-bridge spanning
!
interface tokenring 1
source-bridge 1001 1 7
source-bridge spanning
!
interface tokenring 2
source-bridge 1002 1 7
source-bridge spanning
!
interface tokenring 3
source-bridge 1003 1 7
source-bridge spanning
SRB with Multiple Virtual Ring Groups Example

Two virtual ring groups can only be connected through an actual Token Ring. Figure 14 shows virtual rings 100 and 200 connected through Token Ring 3.

Figure 14  Two Virtual Rings Connected by an Actual Token Ring

Configuration for Router A

source-bridge ring-group 100

! interface tokenring 0
  source-bridge 3 4 100
  source-bridge spanning

! interface tokenring 1
  source-bridge 1 4 100
  source-bridge spanning

Configuration for Router B

source-bridge ring-group 200

! interface tokenring 0
  source-bridge 3 1 200
  source-bridge spanning

! interface tokenring 2
  source-bridge 2 1 200
  source-bridge spanning
SRB over FDDI Configuration Examples

The following examples show the configuration for SRB over FDDI as illustrated in Figure 15.

Figure 15  SRB over FDDI Configuration

Router A

dlsw local-peer peer-id 132.11.11.2
dlsw remote-peer 0 tcp 132.11.11.3
interface Fddi0
  no ip address
  multiring all
  source-bridge 26 1 10
  source-bridge spanning

Router B

dlsw local-peer peer-id 132.11.11.2
dlsw remote-peer 0 tcp 132.11.11.3
interface TokenRing0
  no ip address
  ring-speed 16
  multiring all
  source-bridge 25 1 10
  source-bridge spanning

SRB over FDDI Fast-Switching Example

The following example shows SRB over FDDI fast-switching:

interface fddi 2/0
source-bridge 1 10 2
source-bridge spanning
source-bridge route-cache
multiring ip
SRB over Frame Relay Configuration Example

Figure 16 illustrates a network with the following characteristics:

- Virtual Ring Number of Router A = 100
- Virtual Ring Number of FRAD B = 200
- Virtual Ring Number of FRAD C = 300
- DLCI number for PVC between Router A and FRAD B = 30
- DLCI number for PVC between Router A and FRAD C = 31

In this example, we configure a new option, conserve-ring, on the source-bridge interface configuration command. When this option is configured, the SRB software does not add the ring number associated with the Frame Relay PVC (the partner’s virtual ring) to outbound explorer frames. This option is permitted for Frame Relay subinterfaces only.

This approach does not require a separate ring number per DLCI. The router configures the partner FRAD’s virtual ring number as the ring number for the PVC. FRAD B configures its virtual ring as 200 and the ring for the PVC as 100. FRAD C configures its virtual ring as 300 and the ring for the PVC as 100.

Configuration of Router A

source-bridge ring-group 100

interface Serial1
  encapsulation frame-relay
  !
interface Serial1.1 point-to-point
  frame-relay interface-dlci 30 ietf
  source-bridge 200 1 100 conserve-ring
  source-bridge spanning
  !
interface Serial1.2 point-to-point
  frame-relay interface-dlci 31 ietf
  source-bridge 300 1 100 conserve-ring
  source-bridge spanning
  !
interface TokenRing0
  source-bridge 500 1 100
**Configuration on Router B**

source-bridge ring-group 200
![interface Serial0
  encapsulation frame-relay
  !interface Serial0.30 point-to-point
  frame-relay interface-dlci 30 ietf
  source-bridge 100 1 200 conserve-ring
  source-bridge spanning
  !interface TokenRing0
  source-bridge 600 1 200

**Configuration on Router C**

source-bridge ring-group 300
![interface Serial0
  encapsulation frame-relay
  !interface Serial0.31 point-to-point
  frame-relay interface-dlci 31 ietf
  source-bridge 100 1 300 conserve-ring
  source-bridge spanning
  !interface TokenRing0
  source-bridge 900 1 300

**Adding a Static RIF Cache Entry Example**

In the example configuration in Figure 17, the path between rings 8 and 9 connected via Bridge 1 is described by the route descriptor 0081.0090. The full RIF, including the route control field, is 0630.0081.0090.

*Figure 17 Assigning a RIF to a Source-Route Bridge*

The static RIF entry would be submitted to the router on the left as follows:

rif 1000.5A12.3456 0630.0081.0090
Adding a Static RIF Cache Entry for a Two-Hop Path Example

In Figure 18, assume that a datagram was sent from a router on ring 21 (15 hexadecimal) across Bridge 5 to ring 256 (100 hexadecimal), then across Bridge 10 (A hexadecimal) to ring 1365 (555 hexadecimal) for delivery to a destination host on that ring.

Figure 18 Assigning a RIF to a Two-Hop Path

The RIF in the router on the left describing this two-hop path is 0830.0155.100a.5550 and is entered as follows:

```
rif 1000.5A01.0203 0830.0155.100a.5550
```

SR/TLB for a Simple Network Example

In the simple example illustrated in Figure 19, a four-port router with two Ethernets and two Token Rings is used to connect transparent bridging on the Ethernets to SRB on the Token Rings.

Figure 19 Example of a Simple SR/TLB Configuration

Assume that the following configuration for SRB and transparent bridging existed before you wanted to enable SR/TLB:

```
interface tokenring 0
 source-bridge 1 1 2
interface tokenring 1
 source-bridge 2 1 1
interface ethernet 0
 bridge-group 1
interface ethernet 0
 bridge-group 1
bridge 1 protocol dec
```
To enable SR/TLB, one aspect of this configuration must change immediately—a third ring must be configured. Before SR/TLB, the two Token Ring interfaces were communicating with two-port local source-route bridging; after SR/TLB, these two interfaces must be reconfigured to communicate through a virtual ring, as follows:

```
source-bridge ring-group 10
!
interface tokenring 0
 source-bridge 1 1 10
!
interface tokenring 1
 source-bridge 2 1 10
!
interface ethernet 0
 bridge-group 1
!
interface ethernet 1
 bridge-group 1
!
bridge 1 protocol dec
```

Now you are ready to determine two things:

- A ring number for the pseudo-ring that is unique throughout the source-route bridged network. For the preceding example configuration, use the number 3.
- A bridge number for the path to the pseudo-ring. For the preceding example configuration, use the number 1.

Once you have determined the ring number and the bridge number, you can add the `source-bridge transparent` command to the file, including these two values as parameters for the command. The following partial configuration includes this `source-bridge transparent` entry:

```
source-bridge ring-group 10
source-bridge transparent 10 3 1 1
!
interface tokenring 0
 source-bridge 1 1 10
!
interface tokenring 1
 source-bridge 2 1 10
!
interface ethernet 0
 bridge-group 1
!
interface ethernet 1
 bridge-group 1
!
bridge 1 protocol dec
```

**SR/TLB with Access Filtering Example**

In the example shown in Figure 20, you want to connect only a single machine, Host E, on an Ethernet to a single machine, Host R, on the Token Ring.
You want to allow only these two machines to communicate across the router. Therefore, you might create the following configuration to restrict the access. However, this configuration will not work, as explained in the paragraph following the sample configuration file.

```
interface tokenring 0
 access-expression output smac(701) !
interface ethernet 0
 bridge-group 1 input-address-list 701 !
 access-list 701 permit 0110.2222.3333 !
```

The command for the Token Ring interface specifies that the access list 701 be applied on the source address of frames going out to the Token Ring, and the command for the Ethernet interface specifies that this access list be applied on the source address frames entering the interface from Ethernet. This would work if both interfaces used the same bit ordering, but Token Rings and Ethernets use opposite (swapped) bit orderings in their addresses in relationship to each other. Therefore, the address of Host E on the Token Ring is not 0110.2222.3333, but rather 8008.4444.cccc, resulting in the following configuration. The following configuration is better. This example shows that access lists for Token Ring and Ethernet should be kept completely separate from each other.

```
interface tokenring 0
 source-bridge input-address-list 702 !
interface ethernet 0
 bridge-group 1 input-address-list 701 !
 access-list 701 permit 0110.2222.3333 !
 access-list 702 permit 0110.1234.5678
```

**NetBIOS Support with a Static NetBIOS Cache Entry Example**

Figure 21 shows a NetBIOS client on a Token Ring connected through a cloud to a NetBIOS server on another Token Ring.
Figure 21  Specifying a Static Entry

In Figure 21, a static entry is created in the router attached to ring 1 on the client side of the ring group. The static entry is to the server DEF, which is reached through the router attached to ring 3. If server DEF has the MAC address 0110.2222.3333, the configuration for the static entry on the client side is as follows:

rif 0110.2222.3333 0630.0021.0030 ring-group 2
netbios name-cache 0110.2222.3333 DEF ring-group 2
LNM for a Simple Network Example

Figure 22 shows a router with two Token Rings configured as a local source-route bridge.

![Diagram](https://via.placeholder.com/150)

**Figure 22**  Router with Two Token Rings Configured as a Local Source-Route Bridge

The associated configuration file follows:

```text
interface tokenring 0
 source-bridge 1 2 3
!
interface tokenring 1
 source-bridge 3 2 1
```

The `show lnm config` command displays the logical configuration of this bridge, including the LNM configuration information that needs to be entered at the LNM Station. A sample `show lnm config` display follows:

```
Wayfarer# show lnm config

Bridge(s) currently configured:
From ring 001, address 0000.3000.abc4
Across bridge 002
To ring 003, address 0000.3000.5735
```

In this example, the MAC addresses 0000.3000.abc4 and 000.3000.5735 must be configured as adapter addresses at the LNM Station.
LNM for a More Complex Network Example

Figure 23 shows a router with three Token Rings configured as a multiport bridge, thus employing the concept of the virtual ring.

**Figure 23  Router with Three Token Rings Configured as a Multiport Bridge**

Physical configuration

Logical configuration

The associated configuration file follows.

```
source-bridge ring-group 8
!
interface tokenring 0
 source-bridge 1 1 8
!
interface tokenring 1
 source-bridge 2 2 8
!
interface tokenring 2
 source-bridge 3 3 8
```

The **show lnm config** command displays the logical configuration of this bridge, including all the pertinent information for configuring this router into LNM:

Wayfarer# **show lnm config**

Bridge(s) currently configured:

```
From ring 001, address 0000.0028.abcd
Across bridge 001
To ring 008, address 4000.0028.abcd

From ring 002, address 0000.3000.abc4
Across bridge 002
To ring 008, address 4000.3000.abc4
```
From     ring 003, address 0000.3000.5735  
Across bridge 003  
To       ring 008, address 4000.3000.5735  

In this example, six station definitions must be entered at the LNM Station, one for each of the MAC addresses listed in this sample show lnm config display.

**NetBIOS Access Filters Example**

The following command permits packets that include the station name ABCD to pass through the router, but denies passage to packets that do not include the station name ABCD:

```
netbios access-list host marketing permit ABCD
```

The following command specifies a prefix where the pattern matches any name beginning with the characters DEFG. Note that the string DEFG itself is included in this condition.

```
netbios access-list host marketing deny DEFG *
```

The following command permits any station name with the letter W as the first character and the letter Y as the third character in the name. The second and fourth letters in the name can be any character. This example would allow stations named WXYZ and WAYB; however, stations named WY and WXY would not be included in this statement, because the question mark must match some specific character in the name.

```
netbios access-list host marketing permit W?Y?
```

The following command illustrates how to combine wildcard characters:

```
netbios access-list host marketing deny AC? *
```

The command specifies that the marketing list deny any name beginning with AC that is at least three characters in length (the question mark would match any third character). The string ACBD and ACB would match, but the string AC would not.

The following command removes the entire marketing NetBIOS access list.

```
no netbios access-list host marketing
```

To remove single entries from the list, use a command such as the following:

```
no netbios access-list host marketing deny AC? *
```

This example removes only the list that filters station names with the letters AC at the beginning of the name.

Access lists are scanned in order. In the following example, the first list denies all entries beginning with the letters ABC, including one named ABCD. This voids the second command, because the entry permitting a name with ABCD comes after the entry denying it.

```
netbios access-list host marketing deny ABC *
netbios access-list host marketing permit ABCD
```

**Filtering Bridged Token Ring Packets to IBM Machines Example**

The example in Figure 45 disallows the bridging of Token Ring packets to all IBM workstations on Token Ring 1.
This example assumes that all hosts on Token Ring 1 have Token Ring addresses with the vendor code 1000.5A00.0000. The first line of the access list denies access to all IBM workstations, while the second line permits everything else. The access list is assigned to the input side of Token Ring 1.

```plaintext
! deny access to all IBM workstations
access-list 700 deny 1000.5A00.0000 8000.00FF.FFFF
! permit all other traffic
access-list 700 permit 0000.0000.0000 FFFF.FFFF.FFFF
!
interface token ring 1
! apply access list 700 to the input side of Token Ring 1
source-bridge input-address-list 700
```
Administrative Access Filters—Filtering SNAP Frames on Output Example

Figure 25 shows a router connecting four Token Rings.

The following example allows only AppleTalk Phase 2 packets to be source-route bridged between Token Rings 0 and 1, and allows Novell packets only to be source-route bridged between Token Rings 2 and 3.

```
source-bridge ring-group 5
!
interface tokenring 0
 ip address 131.108.1.1 255.255.255.0
 source-bridge 1000 1 5
 source-bridge spanning
 source-bridge input-type-list 202
!
interface tokenring 1
 ip address 131.108.1.1 255.255.255.0
 source-bridge 1001 1 5
 source-bridge spanning
 source-bridge input-type-list 202
!
interface tokenring 2
 ip address 131.108.101.1 255.255.255.0
 source-bridge 1002 1 5
 source-bridge spanning
 source-bridge input-lsap-list 203
!
interface tokenring 3
 ip address 131.108.101.1 255.255.255.0
 source-bridge 1003 1 5
 source-bridge spanning
 source-bridge input-lsap-list 203
!
! SNAP type code filtering
! permit ATp2 data (0x809B)
! permit ATp2 AARP (0x80F3)
access-list 202 permit 0x809B 0x0000
access-list 202 permit 0x80F3 0x0000
access-list 202 deny 0x0000 0xFFFF
!
! LSAP filtering
```
Configuring Source-Route Bridging

SRB Configuration Examples

! permit IPX (0xE0E0)
access-list 203 permit 0xE0E0 0x0101
access-list 203 deny 0x0000 0xFFFF

Note
It is not necessary to check for an LSAP of 0xAAAA when filtering SNAP-encapsulated AppleTalk packets, because for source-route bridging, the use of type filters implies SNAP encapsulation.

Creating Access Filters Example

In math, you have the following:

\[ 3 \times 4 + 2 = 14 \text{ but } 3 \times (4 + 2) = 18 \]

Similarly, the following access expressions would return TRUE if lsap(201) and dmac(701) returned TRUE or if smac(702) returned TRUE:

\[ \text{lsap}(201) \& \text{dmac}(701) | \text{smac}(702) \]

However, the following access expression would return TRUE only if lsap(201) returned TRUE and either of dmac(701) or smac(702) returned TRUE:

\[ \text{lsap}(201) \& (\text{dmac}(701) | \text{smac}(702)) \]

Referring to the earlier example, “An Example Using NetBIOS Access Filters,” we had the phrase:

“Pass the frame if it is NetBIOS, or if it is an SNA frame destined to address 0110.2222.3333.”

This phrase was converted to the simpler form of:

Pass if “NetBIOS or (SNA and destined to 0110.2222.3333).”

So, for the following configuration:

! Access list 201 passes NetBIOS frames (command or response)
access-list 201 permit 0xF0F0 0x0001
!
access-list 202 permit 0x0404 0x0001 ! Permits SNA frames (command or response)
access-list 202 permit 0x0004 0x0001 ! Permits SNA Explorers with NULL DSAP
!
! Access list 701 will permit the FEP MAC address
! of 0110.2222.3333
access-list 701 permit 0110.2222.3333

The following access expression would result:

\[ \text{access-expression in lsap}(201) | (\text{lsap}(202) \& \text{dmac}(701)) \]
Access Filters Example

Figure 26 shows two routers connecting two Token Rings to an FDDI backbone.

Figure 26  Network Configuration Using NetBIOS Access Filters

Suppose you want to permit the IBM 3174 cluster controllers to access the FEP at address 0110.2222.3333, and also want the NetBIOS clients to access the NetBIOS server named FILESVR3. The following set of router configuration commands would meet this need:

```bash
netbios access-list host MIS permit FILESVR3
netbios access-list host MIS deny *
!
access-list 202 permit 0x0404 0x0001 ! Permits SNA frames (command or response)
access-list 202 permit 0x0004 0x0001 ! Permits SNA Explorers with NULL DSAP
!
access-list 701 permit 0110.2222.3333
!
interface tokenring 0
access-expression in (lsap(202) & dmac(701)) | netbios-host(MIS)
```

Fast-Switching Example

The following example disables fast switching between two Token Ring interfaces in the same router. Frames entering Token Ring interfaces 0 or 1 will not be fast switched to the other interface.

```bash
! global command establishing the ring group for the interface configuration commands
source-bridge ring-group 2
!
! commands that follow apply to interface token 0
interface tokenring 0
! enable srb between local ring 1, bridge 1, and target ring 2
source-bridge 1 1 2
!disable source-route fast-switching cache on interface token 0
no source-bridge route-cache
!
interface token 1
! enable srb between local ring 2, bridge 1, and target ring 1
source-bridge 2 1 1
no source-bridge route-cache
```
**Autonomous Switching Example**

The following example enables use of autonomous switching between two ciscoBus Token Ring interfaces in the same router. Frames entering Token Ring interfaces 0 or 1 will be autonomously switched to the other interface.

```
! global command to apply interface configuration commands to the ring group
source-bridge ring-group 2
!
! commands that follow apply to interface token 0
interface tokenring 0
! enable srb between local ring 1, bridge 1, and target ring 2
source-bridge 1 1 2
! enable autonomous switching for interface token 0
source-bridge route-cache cbus
!
interface tokenring 1
! enable srb between local ring 2, bridge 1, and target ring 1
source-bridge 2 1 1
source-bridge route-cache cbus
```

**Back-to-Back Routers ATM Configuration Example**

Figure 27 shows a back-to-back scenario with two ATM adapters that are connected. There is no ATM switch in this example.

![Connecting Routers Back-to-Back](image)

Following are the configurations for routers A and B:

**Router A**

```
interface atm slot/port
atm clock
interface atm slot/port.1 point-to-point
atm pvc 1 10 12 aal5snap
source-bridge 200 1 100 conserve-ring
source-bridge spanning
```

**Router B**

```
interface atm slot/port.1 point-to-point
atm pvc 2 10 12 aal5snap
source-bridge 100 1 200 conserve-ring
source-bridge spanning
```
Single ATM PVC and Single Virtual Ring Per Router Configuration Example

Figure 28 shows an example with frames from Token Ring 1 destined to Token Ring 2 and an ATM switch connecting the routers.

**Figure 28  Single ATM PVC and Single Virtual Ring Per Router**

Router A

```plaintext
interface atm slot/port
interface atm slot/port.1 point-to-point
 atm pvc 1 10 12 aal5snap
 source-bridge 200 1 100 conserve-ring
 source-bridge spanning
```

Router B

```plaintext
interface atm slot/port.1 point-to-point
 atm pvc 2 0 12 aal5snap
 source-bridge 100 1 200 conserve-ring
 source-bridge spanning
```

The following configuration does not use the `conserve-ring` argument in the configuration and the PVC is allocated its own virtual ring number.

Router A

```plaintext
source-bridge ring-group 100
```

Router B

```plaintext
source-bridge ring-group 200
```
Multiple ATM PVCs and Multiple Virtual Rings on One Router Configuration Example

Figure 29 shows multiple ATM PVCs and multiple virtual rings on a router.

Following are the configurations for routers A, B, and C:

**Router A**

```
interface atm slot/port.1 point-to-point
 atm pvc 1 10 12 aal5snap
 source-bridge 200 1 100 conserve-ring
 source-bridge spanning

interface atm slot/port.2 point-to-point
 atm 2 0 12 aal5snap
 source-bridge 300 2 101 conserve-ring
 source-bridge spanning
```

**Router B**

```
interface atm slot/port.1 point-to-point
 atm pvc 3 0 12 aal5snap
 source-bridge 100 1 200 conserve-ring
 source-bridge spanning
```

**Router C**

```
interface atm slot/port.1 point-to-point
 atm pvc 4 0 12 aal5snap
 source-bridge 101 2 300 conserve-ring
 source-bridge spanning
```
Multiple ATM PVCs with a Single Virtual Ring on the Router Configuration Example

Figure 30 shows traffic going from Token Ring 1 to Token Ring 2 and Token Ring 3.

Figure 30  Multiple ATM PVCs with a Single Virtual Ring on the Router

Following are the configurations for routers A, B, and C:

Router A

```
interface atm slot/port.1 point-to-point
atm pvc 1 0 12 aal5snap
source-bridge 200 1 100 conserve-ring
source-bridge spanning

interface atm slot/port.2 point-to-point
atm pvc 2 0 2 aal5snap
source-bridge 300 2 100 conserve-ring
source-bridge spanning
```

Router B

```
interface atm slot/port.1 point-to-point
atm pvc 3 0 2 aal5snap
source-bridge 100 1 200 conserve-ring
source-bridge spanning
```

Router C

```
interface atm slot/port.1 point-to-point
atm pvc 4 1 3 aal5snap
source-bridge 100 2 300 conserve-ring
source-bridge spanning
```

CCDE, CCENT, CCSL, Cisco Eos, Cisco HealthPresence, Cisco IronPort, the Cisco logo, Cisco Nurse Connect, Cisco Pulse, Cisco SensorBase, Cisco StackPower, Cisco StadiumVision, Cisco TelePresence, Cisco Unified Computing System, Cisco WebEx, DCE, Flip Channels, Flip for Good, Flip Mino, Flipshare (Design), Flip Ultra, Flip Video, Flip Video (Design), Instant Broadband, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn, Cisco Capital, Cisco Capital (Design), Cisco:Financed (Stylized), Cisco Store, Flip Gift Card, and One Million Acts of Green are service marks; and Access Registrar, Aironet, AllTouch, AsyncOS, Bringing the Meeting To You, Catalyst, CCDCA, CCDE, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Lumin, Cisco Nexus, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, Continuum, EtherFast, EtherSwitch, Event Center, Explorer, Follow Me Browsing, GainMaker, iLYNX, IOS, iPhone, IronPort, the IronPort logo, Laser Link, LightStream, Linksys, MeetingPlace, MeetingPlace Chime Sound, MGX, Networks, Networking Academy, PCNow, PIX, PowerKEY, PowerPanels, PowerTV, PowerTV (Design), PowerVu, Prisma, ProConnect, ROSA, SenderBase, SMARTnet, Spectrum Expert, StackWise, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0910R)
Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.
Configuring Data-Link Switching Plus

First Published: May 18, 2001
Last Updated: July 14, 2009

This chapter describes how to configure data-link switching plus (DLSw+), Cisco’s implementation of the DLSw standard for Systems Network Architecture (SNA) and NetBIOS devices. Refer to the DLSw+ Design and Implementation Guide for more complex configuration instructions. For a complete description of the DLSw+ commands mentioned in this chapter, refer to the “DLSw+ Commands” chapter of the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2). To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Platform Support for Cisco IOS Software Features” section on page lv in the “Using Cisco IOS Software” chapter.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information for Configuring Data-Link Switching Plus, page 67.

Use Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About Configuring Data-Link Switching Plus

To configure Data-Link Switching Plus, you should understand the following concepts:

- Technology Overview, page 2
- DLSw Standard, page 2
- DLSw Version 2 Standard, page 3
- Local Acknowledgment, page 4

Technology Overview

DLSw+ is a method of transporting Systems Network Architecture (SNA) and Network Basic Input/Output System (NetBIOS). It complies with the DLSw standard documented in RFC 1795 and the DLSw Version 2 standard. DLSw+ is an alternative to Remote Source-Route Bridging (RSRB) that addresses several inherent problems that exist in RSRB, such as:

- Source Route Bridging (SRB) hop-count limits (SRB’s limit is seven)
- Broadcast traffic (including SRB explorer frames or NetBIOS name queries)
- Unnecessary traffic (acknowledgments and keepalives)
- Data-link control timeouts

DLSw Standard

The DLSw standard, documented in RFC 1795, defines the switch-to-switch protocol between DLSw routers. The standard also defines a mechanism to terminate data-link control connections locally and multiplex the traffic from the data-link control connections to a TCP connection. The standard always calls for the transport protocol to be Transport Control Protocol (TCP) and always requires that data-link control connections be locally terminated (the equivalent of Cisco’s local acknowledgment option). The standard also requires that the SRB RIF be terminated at the DLSw router. The standard describes a means for prioritization and flow control and defines error recovery procedures that ensure data-link control connections are appropriately disabled if any part of their associated circuits breaks.

The DLSw standard does not specify when to establish TCP connections. The capabilities exchange allows compliance to the standard, but at different levels of support. The standard does not specify how to cache learned information about MAC addresses, Routing Information Protocols (RIFs), or NetBIOS names. It also does not describe how to track either capable or preferred DLSw partners for either backup
or load-balancing purposes. The standard does not provide the specifics of media conversion, but leaves the details up to the implementation. It does not define how to map switch congestion to the flow control for data-link control. Finally, the MIB pass is documented under a separate RFC.

**DLSw Version 2 Standard**

In the Version 1 standard, a network design requires fully meshed connectivity so that all peers were connect to every other peer. This design creates unnecessary broadcast traffic because an explorer propagates to every peer for every broadcast.

The Version 2 standard is documented in RFC 2166. It includes RFC 1795 and adds the following enhancements:

- IP Multicast, page 3
- User Datagram Protocol (UDP) Unicast, page 33
- Enhanced Routing Feature, page 4
- Expedited TCP Connection, page 4

Users implement DLSw Version 2 for scalability if they are using multivendor DLSw devices with an IP multicast network. DLSw Version 2 requires complex planning because it involves configuration changes across an IP network.

**IP Multicast**

Multicast service avoids duplication and excessive bandwidth of broadcast traffic because it replicates and propagates messages to its multicast members only as necessary. It reduces the amount of network overhead in the following ways:

- Avoids the need to maintain TCP Switch-to-Switch Protocol (SSP) connections between two DLSw peers when no circuits are available
- Ensures that each broadcast results in only a single explorer over every link

DLSw Version 2 is for customers who run a multicast IP network and do not need the advantages of border peering.

**User Datagram Protocol (UDP) Unicast**

DLSw Version 2 uses UDP unicast in response to an IP multicast. When address resolution packets (CANUREACH_EX, NETBIOS_NQ_EX, NETBIOS_ANQ, and DATAFRAME) are sent to multiple destinations (IP multicast service), DLSw Version 2 sends the response frames (ICANREACH_EX and NAME_RECOGNIZED_ex) via UDP unicast.

UDP unicast uses UDP source port 0. However, some firewall products treat packets that use UDP source port 0 as security violations, discarding the packets and preventing DLSw connections. To avoid this situation, use one of the following procedures:

- Configure the firewall to allow UDP packets to use UDP source port 0.
- Use the `dlsw udp-disable` command to disable UDP unicast and send address resolution packets in the existing TCP session.
Enhanced Routing Feature

DLSw Version 2 establishes TCP connections only when necessary and the TCP connections are brought down when there are no circuits to a DLSw peer for a specified amount of time. This method, known as routing, was recently introduced in DLSw Version 2, but has been implemented in Cisco DLSw+ border peer technology since Cisco IOS Release 10.3.

Expedited TCP Connection

DLSw Version 2 efficiently establishes TCP connections. Previously, DLSw created two unidirectional TCP connections and then disconnected one after the capabilities exchange took place. With DLSw Version 2, a single bidirectional TCP connection establishes if the peer is brought up as a result of an IP multicast/UDP unicast information exchange.

Local Acknowledgment

When you have LANs separated by wide geographic distances, and you want to avoid sending data multiple times, and the loss of user sessions that can occur with time delays, encapsulate the source-route bridged traffic inside IP datagrams passed over a TCP connection between two routers with local acknowledgment enabled.

Logical Link Control, type 2 (LLC2) is an ISO standard data-link level protocol used in Token Ring networks. LLC2 was designed to provide reliable sending of data across LAN media and to cause minimal or at least predictable time delays. However, DLSw+ and WAN backbones created LANs that are separated by wide, geographic distances-spanning countries and continents. As a result, LANs have time delays that are longer than LLC2 allows for bidirectional communication between hosts. Local acknowledgment addresses the problem of unpredictable time delays, multiple sendings, and loss of user sessions.

In a typical LLC2 session, when one host sends a frame to another host, the sending host expects the receiving host to respond positively or negatively in a predefined period of time commonly called the T1 time. If the sending host does not receive an acknowledgment of the frame it sent within the T1 time, it retries a few times (normally 8 to 10). If there is still no response, the sending host drops the session.

Figure 1 illustrates an LLC2 session in which a 37x5 on a LAN segment communicates with a 3x74 on a different LAN segment separated via a wide-area backbone network. Frames are transported between Router A and Router B by means of DLSw+. However, the LLC2 session between the 37x5 and the 3x74 is still end-to-end; that is, every frame generated by the 37x5 traverses the backbone network to the 3x74, and the 3x74, on receipt of the frame, acknowledges it.
On backbone networks consisting of slow serial links, the T1 timer on end hosts could expire before the frames reach the remote hosts, causing the end host to resend. Resending results in duplicate frames reaching the remote host at the same time as the first frame reaches the remote host. Such frame duplication breaks the LLC2 protocol, resulting in the loss of sessions between the two IBM machines.

One way to solve this time delay is to increase the timeout value on the end nodes to account for the maximum transit time between the two end machines. However, in networks consisting of hundreds or even thousands of nodes, every machine would need to be reconfigured with new values. With local acknowledgment for LLC2 enabled, the LLC2 session between the two end nodes would not be end-to-end, but instead, would terminate at two local routers. Figure 2 shows the LLC2 session with the 37x5 ending at Router A and the LLC2 session with the 3x74 ending at Router B. Both Router A and Router B execute the full LLC2 protocol as part of local acknowledgment for LLC2.

With local acknowledgment for LLC2 enabled in both routers, Router A acknowledges frames received from the 37x5. The 37x5 still operates as if the acknowledgments it receives are from the 3x74. Router A looks like the 3x74 to the 37x5. Similarly, Router B acknowledges frames received from the 3x74. The 3x74 operates as if the acknowledgments it receives are from the 37x5. Router B looks like the 3x74 to 37x5. Because the frames do not have to travel the WAN backbone networks to be acknowledged, but are locally acknowledged by routers, the end machines do not time out, resulting in no loss of sessions.
Enabling local acknowledgment for LLC2 has the following advantages:

- Local acknowledgment for LLC2 solves the T1 timer problem without having to change any configuration on the end nodes. The end nodes are unaware that the sessions are locally acknowledged. In networks consisting of hundreds or even thousands of machines, this is a definite advantage. All the frames acknowledged by the Cisco IOS software appear to the end hosts to be coming from the remote IBM machine. In fact, by looking at a trace from a protocol analyzer, one cannot say whether a frame was acknowledged by the local router or by a remote IBM machine. The MAC addresses and the RIFs generated by the Cisco IOS software are identical to those generated by the remote IBM machine. The only way to find out whether a session is locally acknowledged is to use either a `show local-ack` command or a `show source-bridge` command on the router.

- All the supervisory (RR, RNR, REJ) frames that are locally acknowledged go no farther than the router. Without local acknowledgment for LLC2, every frame traverses the backbone. With local acknowledgment, only data (I-frames) traverse the backbone, resulting in less traffic on the backbone network. For installations in which customers pay for the amount of traffic passing through the backbone, this could be a definite cost-saving measure. A simple protocol exists between the two peers to bring up or down a TCP session.

**Notes on Using LLC2 Local Acknowledgment**

LLC2 local acknowledgment is enabled with TCP and DLSw+ Lite remote peers.

If the LLC2 session between the local host and the router terminates in either router, the other will be informed to terminate its connection to its local host.

If the TCP queue length of the connection between the two routers reaches the high-water mark, the routers send Receiver-Not-Ready (RNR) messages to the local hosts until the queue limit is reduced to below this limit. It is possible, however, to prevent the RNR messages from being sent by using the `dlsw llc2 nornr` command.

The configuration of the LLC2 parameters for the local Token Ring interfaces can affect overall performance. Refer to the chapter “Configuring LLC2 and SDLC Parameters” in this manual for more details about fine-tuning your network through the LLC2 parameters.

The routers at each end of the LLC2 session execute the full LLC2 protocol, which could result in significant router overhead. The decision to use local acknowledgment for LLC2 should be based on the speed of the backbone network in relation to the Token Ring speed. For LAN segments separated by slow-speed serial links (for example, 56 kbps), the T1 timer problem could occur more frequently. In such cases, it might be wise to turn on local acknowledgment for LLC2. For LAN segments separated by a T1, backbone delays will be minimal; in such cases, DLSw+, FST or direct encapsulation should be considered in order to disable local acknowledgment. Speed mismatch between the LAN segments and the backbone network is one criterion to help you decide to use local acknowledgment for LLC2.

There are some situations (such as the receiving host failing between the time the sending host sends data and the time the receiving host receives it), in which the sending host would determine, at the LLC2 layer, that data was received when it actually was not. This error occurs because the router acknowledges that it received data from the sending host before it determines that the receiving host can actually receive the data. But because both NetBIOS and SNA have error recovery in situations where an end device goes down, these higher-level protocols will resend any missing or lost data. Because these transaction request/confirmation protocols exist above LLC2, they are not affected by tight timers, as is LLC2. They also are transparent to local acknowledgment.
If you are using NetBIOS applications, note that there are two NetBIOS timers—one at the link level and one at the next higher level. Local acknowledgment for LLC2 is designed to solve link timeouts only. If you are experiencing NetBIOS session timeouts, you have two options:

- Experiment with increasing your NetBIOS timers and decreasing your maximum NetBIOS frame size.
- Avoid using NetBIOS applications on slow serial lines.

By default, the Cisco IOS software translates Token Ring LLC2 to Ethernet 802.3 LLC2. To configure the router to translate Token Ring LLC2 frames into Ethernet 0x80d5 format frames, refer to the section “Enable Token Ring LLC2-to-Ethernet Conversion” in the “Configuring Source-Route Bridging” chapter of the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2).

MIB enhancements that allow DLSw+ features to be managed by the CiscoWorks Blue products, SNA Maps, and SNA View. Also, new traps alert network management stations of peer or circuit failures. For more information, refer to the current Cisco IOS release note for the location of the Cisco MIB website.

**DLSw+ Support for Other SNA Features**

DLSw+ can be used as a transport for SNA features such as LNM, DSPU, SNA service point, and SNA Switching Services (SNASw) through a Cisco IOS feature called virtual data-link control (VDLC).

LNM over DLSw+ allows DLSw+ to be used in Token Ring networks that are managed by IBM’s LNM software. Using this feature, LNM can be used to manage Token Ring LANs, control access units, and Token Ring attached devices over a DLSw+ network. All management functions continue to operate as they would in a source-route bridged network or an RSRB network.

DSPU over DLSw+ allows Cisco’s DSPU feature to operate in conjunction with DLSw+ in the same router. DLSw+ can be used either upstream (toward the mainframe) or downstream (away from the mainframe) of DSPU. DSPU concentration consolidates the appearance of multiple PUs into a single PU appearance to VTAM, minimizing memory and cycles in central site resources (VTAM, NCP, and routers) and speeding network startup.

SNA service point over DLSw+ allows Cisco’s SNA service point feature to be used in conjunction with DLSw+ in the same router. Using this feature, SNA service point can be configured in remote routers, and DLSw+ can provide the path for the remote service point PU to communicate with NetView. This allows full management visibility of resources from a NetView 390 console, while concurrently offering the value-added features of DLSw+ in an SNA network.

SNASw over DLSw+ allows Cisco’s APPN Branch Extender functionality to be used in conjunction with DLSw+ in the same router. With this feature, DLSw+ can be used to access SNASw in the data center. DLSw+ can also be used as a transport for SNASw upstream connectivity, providing nondisruptive recovery from failures.

Using DLSw+ as a transport for other Cisco IOS SNA features requires a feature called VDLC. Cisco IOS data-link users (such as LNM, DSPU, SNA service point, and SNASw) write to a virtual data-link control interface. DLSw+ then reads from this interface and sends out the traffic. Similarly, DLSw+ can receive traffic destined for one of these data-link users and write it to the virtual data-link control interface, from which the appropriate data-link user will read it.

In Figure 3, SNASw and DLSw+ use Token Ring and Ethernet, respectively, as “real” data-link controls, and use virtual data-link control to communicate between themselves. When one of the high-layer protocols passes data to the virtual data-link control, the virtual data-link control must pass it to a higher-layer protocol; nothing leaves the virtual data-link control without going through a data-link user.
How to Configure Data Link Switching Plus

DLSw+ supports local or remote media conversion between LANs and SDLC or QLLC.

To configure DLSw+, complete the tasks in the following sections:

- Defining a DLSw+ Local Peer for the Router, page 8 (required)
- Defining a DLSw+ Remote Peer, page 10 (required)
- Mapping DLSw+ to a Local Data-Link Control, page 13 (required)
- Configuring Advanced Features, page 21 (optional)
- Configuring DLSw+ Timers, page 39 (optional)

Defining a DLSw+ Local Peer for the Router

Specify all local DLSw+ parameters as part of the local peer definition.

SUMMARY STEPS

1. enable
2. configure terminal
3. dlsw local-peer [cluster cluster-id] [peer-id ip-address] [group group] [border] [cost cost] [If size] [keepalive seconds] [passive] [promiscuous] [biu-segment] [init-pacing-window size] [max-pacing-window size]
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  - Enter your password if prompted. |
| Example:          |         |
| Router> enable    |         |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example:          |         |
| Router# configure terminal |         |
| **Step 3** dlsw local-peer [cluster cluster-id] [peer-id ip-address] [group group] [border] [cost cost] [lf size] [keepalive seconds] [passive] [promiscuous] [biu-segment] [init-pacing-window size] [max-pacing-window size] | Defines the DLSw+ local peer.  
  - **cluster cluster-id** — (Optional) Implements the DLSw+ Peer Clusters feature and defines the router as part of a particular cluster. The valid range is 1 to 255.  
  - **peer-id ip-address** — (Optional) Local peer IP address. This address is required when Fast-Sequenced Transport (FST) or TCP is used.  
  - **group group** — (Optional) Peer group number for this router. The valid range is 1 to 255.  
  - **border** — (Optional) Enables the router as a border peer. The group option must be specified to use the border peer option.  
  - **cost cost** — (Optional) Peer cost advertised to remote peers in the capabilities exchange. The valid range is 1 to 5.  
  - **lf size** — (Optional) Largest frame size for this local peer. Valid maximum frame sizes are as follows:  
    - 516-516 bytes  
    - 1470-1470 bytes  
    - 1500-1500 bytes  
    - 2052-2052 bytes  
    - 4472-4472 bytes  
    - 8144-8144 bytes  
    - 11407-11407 bytes  
    - 11454-11454 bytes  
    - 17800-17800 bytes  
  - **keepalive seconds** — (Optional) Default remote peer keepalive interval in seconds. The valid range is 0 to 1200 seconds. The default is 30 seconds. The value 0 means no keepalives. |
| Example:          |         |
| Router(config)#dlsw local-peer peer-id 10.2.17.1 group 2 |         |
Defining a DLSw+ Remote Peer

Defining a remote peer in DLSw+ is optional, however, usually at least one side of a peer connection has a `dlsw remote-peer` statement. If you omit the `dlsw remote-peer` command from a DLSw+ peer configuration, then you must configure the `promiscuous` keyword on the `dlsw local-peer` statement. Promiscuous routers will accept any peer connection requests from other routers that are not preconfigured. To define a remote peer, use the `dlsw remote-peer` command in global configuration mode.

DLSw+ offers four different encapsulation options. These options vary in terms of the processing path they use, their WAN overhead, and the media they support. The encapsulation options are TCP, TCP/IP with RIF Passthrough, FST, direct, and LLC2.

One of the options in the remote peer statement is to specify an encapsulation type. Use the `dlsw remote-peer` command to configure one of the following types of encapsulations:

- TCP Encapsulation
- TCP/IP with RIF Passthrough Encapsulation
- FST Encapsulation
- Direct Encapsulation
- DLSw Lite Encapsulation

Note DLSw+ peer keepalives are Cisco proprietary messages. Additional peer keepalives are sent only in peer idle times. When there is a regular traffic over the DLSw+ peer, then these peer keepalives are not sent.

Which encapsulation type you choose depends on several factors, including whether you want to terminate the LLC flows. TCP and DLSw+ Lite terminate the LLC, but the other encapsulation types do not. For details on each encapsulation type, see the DLSw+ Design and Implementation Guide. See the “Local Acknowledgement” section in the overview chapter of this publication for a discussion on local acknowledgement.

Specify the TCP encapsulation parameters as part of the DLSw+ remote peer.
SUMMARY STEPS

1. enable
2. configure terminal
3. `dlsw remote-peer list-number tcp ip-address [ip-address | frame-relay interface serial number dlci-number | interface name]] [bytes-netbios-out bytes-list-name] [circuit-weight weight] [cluster cluster-id] [cost cost] [dest-mac mac-address] [dmac-output-list access-list-number] [host-netbios-out host-list-name] [inactivity] [dynamic] [keepalive seconds] [ifs size] [linger minutes] [lsap-output-list list] [no-llc minutes] [passive] [priority] [rif-passthru virtual-ring-number] [tcp-queue-max size] [timeout seconds]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
| Example: Router> enable | - Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: Router# configure terminal | |
| **Step 3** dlsw remote-peer list-number tcp ip-address | Defines a remote peer with TCP encapsulation.  
| [ip-address | frame-relay interface serial number dlci-number | interface name]] | - list-number—Remote peer ring group list number. This ring group list number default is 0. Otherwise, this value must match the number you specify with the `dlsw ring-list`, `dlsw port-list` or `dlsw bgroup-list` command.  
| [bytes-netbios-out bytes-list-name] [circuit-weight weight] [cluster cluster-id] [cost cost] [dest-mac mac-address] [dmac-output-list access-list-number] [host-netbios-out host-list-name] [inactivity] [dynamic] [keepalive seconds] [ifs size] [linger minutes] [lsap-output-list list] [no-llc minutes] [passive] [priority] [rif-passthru virtual-ring-number] [tcp-queue-max size] [timeout seconds] | - tcp ip-address—IP address of the remote peer with which the router is to communicate.  
| dlsw local-peer peer-id 10.2.17.1 group 2 | - frame-relay interface serial number dlci number—(Optional) Serial interface and DLCI number of the existing direct LLC2 frame-relay peer for which this peer is the backup peer.  
| | - interface name—(Optional) Interface name of the existing direct peer for which this peer is the backup peer.  
| | - bytes-netbios-out bytes-list-name—(Optional) Configures NetBIOS bytes output filtering for this peer. The bytes-list-name argument is the name of the previously defined NetBIOS bytes access list filter.  
| | - cost cost—(Optional) The cost to reach this remote peer. The valid range is 1 to 5. |
### Command or Action

**Example:**

```
Router(config)#dlsw remote-peer 0 tcp 10.23.4.5
dlsw remote-peer 0 tcp 10.2.23.5 rif-passthru 100
dlsw remote-peer 0 fast 10.2.23.5
dlsw remote-peer 0 frame-relay interface serial 01 pass-thru
dlsw remote-peer 0 interface serial 01
dlsw remote-peer 0 frame-relay interface serial 01
dlsw remote-peer 0 frame-relay interface serial 01
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>linger minutes</code>— (Optional)</td>
<td>Configures length of time the backup peer remains connected after the primary peer connection is reestablished. The valid range is 1 to 300 minutes. The default is 5 minutes.</td>
</tr>
<tr>
<td><code>lsap-output-list list</code>— (Optional)</td>
<td>Filters output IEEE 802.5 encapsulated packets. Valid access list numbers are in the range 200 to 299.</td>
</tr>
<tr>
<td><code>no-llc minutes</code>— (Optional)</td>
<td>Configures the length of time a remote peer remains connected after all LLC2 connections are gone. The valid range is 1 to 300 minutes. The default is 5 minutes.</td>
</tr>
<tr>
<td><code>passive</code>— (Optional)</td>
<td>Designates this remote peer as passive.</td>
</tr>
<tr>
<td><code>priority</code>— (Optional)</td>
<td>Enables prioritization features for this remote peer. Valid TCP port numbers are the following:</td>
</tr>
</tbody>
</table>
- High—2065
- Medium—1981
- Normal—1982
- Low—1983
| `rif-passthru virtual-ring-number`— (Optional) | Configures the remote peer as RIF-passthru. The virtual ring number value is the same number as the ring number value assigned in the source-bridge ring-group commands of the DLSw+ Passthrough peers. |
| `tcp-queue-max size`— (Optional) | Maximum output TCP queue size for this remote peer. The valid maximum TCP queue size is a number in the range 10 to 2000. The default queue size is 200. |
| `timeout seconds`— (Optional) | Configures the retransmit time limit for TCP. The valid range is 5 to 1200 seconds. The default is 90 seconds. |

**Note**

Direct encapsulation is supported over High-Level Data Link Control (HDLC) and Frame Relay. Direct encapsulation over Frame Relay comes in two forms: DLSw Lite (LLC2 encapsulation) and Passthrough. Specifying the `pass-thru` option configures the router so that the traffic will not be locally acknowledged. (DLSw+ normally locally acknowledges traffic to keep traffic on the WAN to a minimum.)
Mapping DLSw+ to a Local Data-Link Control

In addition to configuring local and remote peers, you must map one of the following local data-link controls to DLSw+:

- Configuring Token Ring, page 13 (required)
- Configuring Ethernet, page 14 (required)
- Configuring SDLC, page 17 (required)
- Configuring QLLC, page 19 (required)
- Configuring FDDI, page 21 (required)

Configuring Token Ring

Traffic that originates from Token Ring is source-route bridged from the local ring onto a source-bridge ring group and then picked up by DLSw+. You must include a `source-bridge ring-group` command that specifies a virtual ring number when configuring Token Ring with DLSw+. In addition, you must configure the `source-bridge` command that tells the DLSw+ router to bridge from the physical Token Ring to the virtual ring.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface fastethernet 0/0`
4. `source-bridge ring-group ring-group [virtual-mac-address]`
5. `source-bridge source-ring-number bridge-number target-ring-number`
6. `source-bridge spanning`
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface fastethernet 0/0</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# interface fastethernet 0/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> source-bridge ring-group ring-group [virtual-mac-address]</td>
<td>Defines a virtual ring number.</td>
</tr>
<tr>
<td><strong>Step 5</strong> source-bridge source-ring-number bridge-number target-ring-number</td>
<td>Enables DLSw+ to bridge from the physical Token Ring ring to the virtual ring.</td>
</tr>
<tr>
<td><strong>Step 6</strong> source-bridge spanning</td>
<td>Enables single-route explorers.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a source-bridge ring-group and a virtual ring with a value of 100 to DLSw+:

```
source-bridge ring-group 100
int T0
 source-bridge 1 1 100
 source-bridge spanning
```

The ring-group number specified in the `source-bridge` command must be the number of a defined source-bridge ring-group or DLSw+ will not see this interface.

**Configuring Ethernet**

Traffic that originates from Ethernet is picked up from the local Ethernet interface bridge group and transported across the DLSw+ network. Therefore, you must map a specific Ethernet bridge group to DLSw+.

**SUMMARY STEPS**

1. enable
2. configuration terminal
3. interface fastethernet 0/0
4. dlsw bridge-group group-number [llc2 [N2 number] [ack-delay-time milliseconds] [ack-max number] [idle-time milliseconds] [local-window number] [t1-time milliseconds] [busy-time milliseconds] [tpf-time milliseconds] [trej-time milliseconds] [txq-max number] [xid-neg-val-time milliseconds] [xid-retry-time milliseconds]] [locaddr-priority lu address priority list number] [sap-priority priority list number]
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface fastethernet 0/0</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# interface fastethernet 0/0</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

```plaintext
dlsw bridge-group group-number [llc2 |N2 number] [ack-delay-time milliseconds] [ack-max number] [idle-time milliseconds] [local-window number] [t1-time milliseconds] [tbusy-time milliseconds] [tpf-time milliseconds] [txq-max number] [xid-neg-val-time milliseconds] [xid-retry-time milliseconds] [locaddr-priority lu address priority list number] [sap-priority priority list number]
```

### Purpose

Links DLSw+ to the bridge group of the Ethernet LAN.

- **group-number** — The transparent bridge group to which DLSw+ will be attached. Range is from 1 to 63.
- **llc2** — (Optional) LLC2 interface subcommands.
- **N2 number** — (Optional) Number of times router should retry various operations. The valid range is 1 to 255.
- **ack-delay-time milliseconds** — (Optional) Max time the router allows incoming I-frames to stay unacknowledged. The valid range is 1 to 60000.
- **ack-max number** — (Optional) Max number of I-frames received before an acknowledgment must be sent. The valid range is 1 to 255.
- **idle-time milliseconds** — (Optional) Frequency of polls during periods of idle traffic. The valid range is 1 to 60000.
- **local-window number** — (Optional) Max number of I-frames to send before waiting for an acknowledgment. The valid range is 1 to 127.
- **t1-time milliseconds** — (Optional) How long router waits for an acknowledgment to transmitted I-frames. The valid range is 1 to 60000.
- **tbusy-time milliseconds** — (Optional) Amount of time router waits while the other LLC2 station is in a busy state before attempting to poll the remote station. The valid range is 1 to 60000.
- **tpf-time milliseconds** — (Optional) Amount of time router waits for a final response to a poll frame before re-sending the original poll frame. The valid range is 1 to 60000.
Configuring Data-Link Switching Plus

How to Configure Data Link Switching Plus

17

Configuring SDLC

Configuring SDLC devices is more complicated than configuring Ethernet and Token Ring. There are several considerations that affect which interface commands are configured. See the DLSw+ Design and Implementation Guide for more details.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface fastethernet 0/0
4. encapsulation sdlc
5. sdlc role {none | primary | secondary | prim-xid-poll}
6. sdlc vmac mac-address
7. sdlc address hexbyte [echo]
8. sdlc partner mac-address sdlc-address {inbound | outbound}
9. sdlc xid
10. sdlc dlsw {sdlc-address | default | partner mac-address [inbound | outbound]}
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>interface fastethernet 0/0</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# interface fastethernet 0/0</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>encapsulation sdlc</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-if)#encapsulation sdlc</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>sdlc role {none</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-if)#sdlc role</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>sdlc vmac mac-address [</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-if)#sdlc vmac mac-address</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>sdlc address hexbyte [echo]</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-if)#sdlc address 10 echo</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>sdlc partner mac-address</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-if)#sdlc partner 10.1.2.3 10.0.0.2</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>sdlc xid</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-if)#sdlc xid</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>sdlc dlsw {sdlc-address</td>
</tr>
</tbody>
</table>
1. The last byte of the MAC address must be 00.

Use the **default** option if you have more than 10 SDLC devices to attach to the DLSw+ network. To configure an SDLC multidrop line downstream, you configure the SDLC role as either **primary** or **prim-xid-poll**. SDLC role **primary** specifies that any PU without the **xid-poll** parameter in the **sdlc address** command is a PU 2.0 device. SDLC role **prim-xid-poll** specifies that every PU is type 2.1. We recommend that you specify **sdlc role primary** if all SDLC devices are type PU 2.0 or a mix of PU 2.0 and PU 2.1. Specify **sdlc role prim-xid-poll** if all devices are type PU 2.1.

To configure DLSw+ to support LLC2-to-SDLC conversion for PU 4 or PU 5 devices, specify the **echo** option in the **sdlc address** command. A PU 4-to-PU 4 configuration requires that **none** be specified in the **sdlc role** command.

See “DLSw+ with SDLC Multidrop Support Configuration Examples” section on page 51 and the “DLSw+ with LLC2-to-SDLC Conversion Between PU 4-to-PU 4 Communication Example” section on page 52 for sample configurations.

The following configuration shows a DLSw+ router configured for SDLC:

```bash
dlsw local-peer peer-id 10.2.2.2
dlsw remote-peer 0 tcp 10.1.1.1
interface Serial1
mtu 6000
no ip address
encapsulation sdlc
no keepalive
nrzi-encoding
clockrate 9600
sdlc vmac 4000.3745.0000
sdlc N1 48016
sdlc address 04 echo
sdlc partner 4000.1111.0020 04
sdlc dlsw 4
```

### Configuring QLLC

SNA devices use QLLC when connecting to X.25 networks. QLLC essentially emulates SDLC over (X.25, X caps). Therefore, configuring QLLC devices is also complicated. There are several considerations that affect which interface commands are configured. See the *DLSw+ Design and Implementation Guide* for details.

You can configure DLSw+ for QLLC connectivity, which enables both of the following scenarios:

- Remote LAN-attached devices (physical units) or SDLC-attached devices can access an FEP or an AS/400 over an X.25 network.

  Our QLLC support allows remote X.25-attached SNA devices to access an FEP without requiring X.25 NCP Packet Switching Interface (NPSI) in the FEP. This may eliminate the requirement for NPSI (if GATE and DATE are not required), thereby eliminating the recurring license cost. In addition, because the QLLC attached devices appear to be Token Ring-attached to the Network Control Program (NCP), they require no preconfiguration in the FEP. Remote X.25-attached SNA devices can also connect to an AS/400 over Token Ring using this support.

- Remote X.25-attached SNA devices can access an FEP or an AS/400 over a Token Ring or over SDLC.

  For environments just beginning to migrate to LANs, our QLLC support allows deployment of LANs in remote sites while maintaining access to the FEP over existing NPSI links. Remote LAN-attached devices (physical units) or SDLC-attached devices can access a FEP over an X.25
network without requiring X.25 hardware or software in the LAN-attached devices. The Cisco IOS software supports direct attachment to the FEP over X.25 without the need for routers at the data center for SNA traffic.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface fastethernet 0/0
4. encapsulation x 25
5. x25 address subaddress
6. x25 map qllc virtual-mac-addr x121-addr [cud cud-value] [x25-map-options]
7. qllc dlsw [subaddress subaddress | pvc pvc-low [pvc-high]] [vmac vmacaddr [poolsize]] [partner partner-macaddr] [sap ssap dsap] [xid xidstring] [npsi-poll]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface fastethernet 0/0</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Router# interface fastethernet 0/0</td>
</tr>
<tr>
<td>Step 4</td>
<td>encapsulation x 25</td>
</tr>
<tr>
<td></td>
<td>Specifies an interface as an X.25 device.</td>
</tr>
<tr>
<td>Step 5</td>
<td>25 address subaddress</td>
</tr>
<tr>
<td></td>
<td>Activates X.25 subaddresses.</td>
</tr>
<tr>
<td>Step 6</td>
<td>x25 map qllc virtual-mac-addr x121-addr [cud cud-value] [x25-map-options]</td>
</tr>
<tr>
<td></td>
<td>Associates a virtual MAC address with the X.121 address of the remote X.25 device.</td>
</tr>
<tr>
<td>Step 7</td>
<td>qllc dlsw [subaddress subaddress</td>
</tr>
<tr>
<td></td>
<td>Enables DLSw+ over QLLC.</td>
</tr>
</tbody>
</table>

The following configuration enables QLLC connectivity for DLSw+:

dlsw local-peer peer-id 10.3.12.7
dlsw remote-peer 0 tcp 10.3.1.4
interface S0
encapsulation x25
x25 address 3110212011
x25 map qllc 1000.0000.0001 3 1104150101
qllc dlsw partner 4000.1151.1234
Configuring FDDI

Configure an FDDI interface the same as a Token Ring or Ethernet interface, depending on whether you are configuring SRB or Transparent Bridging. If you are configuring the router for SRB, configure the FDDI interface for Token Ring. If you are configuring the router for Transparent Bridging, configure the FDDI interface for Ethernet.

Configuring Advanced Features

DLSw+ goes beyond the standard to include additional functionality in the following areas:

- **Scalability, page 21**—Constructs IBM internetworks in a way that reduces the amount of broadcast traffic, which enhances their scalability.
- **Availability, page 31**—Dynamically finds alternate paths and, optionally, load-balances across multiple active peers, ports, and channel gateways.
- **Modes of Operation, page 35**—Dynamically detects the capabilities of the peer router and operates according to those capabilities.
- **Network Management, page 35**—Works with enhanced network management tools such as CiscoWorks Blue Maps, CiscoWorks SNA View, and CiscoWorks Blue Internetwork Status Monitor (ISM).
- **Traffic Bandwidth and Queueing Management, page 36**—Offers several bandwidth management and queueing features to enhance the overall performance of your DLSw+ network. Controls different types of explorer traffic using multiple queues, each with a wide range of depth settings.
- **Access Control, page 36**—Provides access control to various resources throughout a network.

Scalability

One significant factor that limits the size of Token Ring internetworks is the amount of explorer traffic that traverses the WAN. DLSw+ includes the following features to reduce the number of explorers:

- **Peer Groups and Border Peers, page 22**
- **Explorer Firewalls, page 24**
- **NetBIOS Dial-on-Demand Routing, page 25**
- **SNA Dial-on-Demand Routing, page 26**
- **UDP Unicast Feature, page 27**
- **Dynamic Peers, page 28**
- **Promiscuous Peer Defaults, page 30**
Peer Groups and Border Peers

Perhaps the most significant optimization in DLSw+ is a feature known as peer groups. Peer groups are designed to address the broadcast replication that occurs in a fully meshed network. When any-to-any communication is required (for example, for NetBIOS or Advanced Peer-to-Peer Networking [APPN] environments), RSRB or standard DLSw implementations require peer connections between every pair of routers. This setup is not only difficult to configure, but it results in branch access routers having to replicate search requests for each peer connection. This setup wastes bandwidth and router cycles. A better concept is to group routers into clusters and designate a focal router to be responsible for broadcast replication. This capability is included in DLSw+.

With DLSw+, a cluster of routers in a region or a division of a company can be combined into a peer group. Within a peer group, one or more of the routers is designated to be the border peer. Instead of all routers peering to one another, each router within a group peers to the border peer; and border peers establish peer connections with each other. When a DLSw+ router receives a TEST frame or NetBIOS NAME-QUERY, it sends a single explorer frame to its border peer. The DLSw+ border peer router checks its local, remote and group cache for any reachability information before forwarding the explorer. If no match is found, the border peer forwards the explorer on behalf of the peer group member. If a match is found, the border peer sends the explorer to the appropriate peer or border peer. This setup eliminates duplicate explorers on the access links and minimizes the processing required in access routers.

You can further segment DLSw+ routers within the same border peer group that are serving the same LANs into a peer cluster. This segmentation reduces explorers because the border peer recognizes that it only has to forward an explorer to one member within a peer cluster. Only TCP encapsulation can be used with the DLSw+ Peer Clusters feature.

The DLSw+ Peer Clusters feature is configured locally on the member peer or on a border peer. Although both options can be configured, we recommend that the cluster-id of a particular peer is defined in either the border peer or on the member peer, but not both because of potential configuration confusion. To define peer groups, configure border peers and assign the local peer to a peer cluster, follow the steps in Defining a DLSw+ Local Peer for the Router, page 8.

Use the group keyword to define a peer group, the border keyword to define a border peer and the cluster keyword to assign the local peer to a peer cluster. When the user defines the cluster option in the dlsw local-peer command on the member peer router, the cluster information is exchanged with the border peer during the capabilities exchange as the peers become active. The border peer uses this information to make explorer replication and forwarding decisions.

The following command configures the router as the Border peer that is a member of group 2:

dlsw local-peer peer-id 10.2.13.4 group 2 border

Configure the cluster option in the dlsw remote-peer command on a border peer to enable the DLSw+ Peer Clusters feature without forcing every DLSw+ router in the network to upgrade their software. To enable the DLSw+ Peer Clusters feature on a Border Peer, follow the steps in Defining a DLSw+ Remote Peer, page 10.

The following command configures a border router as a member of cluster 5:

dlsw remote-peer tcp 10.2.13.5 cluster 5

A peer is a non-configured remote-peer that was connected because of an LLC2 session established through a border peer DLSw+ network. On-demand peers greatly reduce the number of peers that must be configured. You can use on-demand peers to establish an end-to-end circuit even though the DLSw+ routers servicing the end systems have no specific configuration information about the peers. This
configuration permits casual, any-to-any connection without the burden of configuring the connection in
advance. It also allows any-to-any switching in large internetworks where persistent TCP connections
would not be possible.

SUMMARY STEPS

1. enable
2. configure terminal
3. dlsw -defaults [fst] [bytes-netbios-out bytes-list-name] [cost cost] [dest-mac destination
   mac-address] [dmac-output-list access-list-number] [host-netbios-out host-list-name] [inactivity
   minutes] [keepalive seconds] [If size] [lsap-output-list list] [port-list port-list-number] [priority]
   [tcp-queue-max]
4. dlsw group-cache max-entries number
5. clear dlsw reachability
6. clear dlsw statistics
7. dlsw group-cache disable
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **enable**<br>Enables privileged EXEC mode.  
- Enter your password if prompted. |
| **Example:** | **Router> enable** | | | | |
| **Step 2** | **configure terminal**<br>Enters global configuration mode. |
| **Example:** | **Router# configure terminal** |
| **Step 3** | **dlsw -defaults [fst] [bytes-netbios-out bytes-list-name] [cost cost] [dest-mac destination mac-address] [dmac-output-list access-list-number] [host-netbios-out host-list-name] [inactivity minutes] [keepalive seconds] [if size] [lsap-output-list list] [port-list port-list-number] [priority] [tcp-queue-max]**<br>Configures dlsw defaults. |
| **Step 4** | **dlsw group-cache max-entries number**<br>Defines the maximum entries in a group cache. |
| **Step 5** | **exit**<br>Exits global configuration mode. |
| **Example:** | **Router(config)#exit** |
| **Step 6** | **clear dlsw reachability**<br>Removes all entries from the DLSw+ reachability cache. |
| **Step 7** | **clear dlsw statistics**<br>Resets to zero the number of frames that have been processed in the local, remote, and group caches. |
| **Step 8** | **dlsw group-cache disable**<br>Disables the border peer caching feature. |
| **Step 9** | **show dlsw reachability [group [value] | local | remote] | [mac-address [address] | [netbios-names [name]**<br>Displays content of group, local and remote caches. |

**Note** To verify that the peer cluster feature is enabled or that the border peer is configured, issue the **show dlsw capabilities** command on the router. To verify the cluster id number of which the peer is a member, issue the **show dlsw capabilities local** command on the local router. Use the **group** keyword to display the reachability information for the border peer.

### Explorer Firewalls

An explorer firewall permits only a single explorer for a particular destination MAC address or NetBIOS name to be sent across the WAN. While an explorer is outstanding and awaiting a response from the destination, subsequent explorers for that MAC address or NetBIOS name are merely stored. When the explorer response is received at the originating DLSw+, all explorers receive an immediate local
response. This eliminates the start-of-day explorer storm that many networks experience. Configure the `dlsw timer` command to enable explorer firewalls. See the “Configuring DLSw+ Timers” section on page 34 for details of the command.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `dlsw timer {icannotreach-block-time | netbios-cache-timeout | netbios-explorer-timeout | netbios-group-cache | netbios-retry-interval | netbios-verify-interval | sna-cache-timeout | explorer-delay-time | sna-explorer-timeout | explorer-wait-time | sna-group-cache | sna-retry-interval | sna-verify-interval} time`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1  | `enable` Enables privileged EXEC mode.  
  • Enter your password if prompted.  
  **Example:**  
  `Router> enable` |
| Step 2  | `configure terminal` Enters global configuration mode.  
  **Example:**  
  `Router# configure terminal` |

**NetBIOS Dial-on-Demand Routing**

This feature allows you to transport NetBIOS in a dial-on-demand routing (DDR) environment by filtering NetBIOS Session Alive packets from the WAN. NetBIOS periodically sends Session Alive packets as LLC2 I-frames. These packets do not require a response and are superfluous to the function of proper data flow. Furthermore, these packets keep dial-on-demand interfaces up and this up time causes unwanted per-packet charges in DDR networks. By filtering these NetBIOS Session Alive packets, you reduce traffic on the WAN and you reduce some costs that are associated with dial-on-demand routing.

Use the `dlsw netbios keepalive-filter` command to enable NetBIOS DDR.
SUMMARY STEPS

1. enable
2. configure terminal
3. dlsw netbios keepalive-filter

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 dlsw netbios keepalive-filter</td>
<td>Enables NetBIOS DDR.</td>
</tr>
</tbody>
</table>

SNA Dial-on-Demand Routing

This feature allows you to run DLSw+ over a switched line and have the Cisco IOS software take the switched line down dynamically when it is not in use. Utilizing this feature gives the IP Routing table more time to converge when a network problem hinders a remote peer connection. In small networks with good IP convergence time and ISDN lines that start quickly, it is not as necessary to use the keepalive option. To use this feature, you must set the keepalive value to zero, and you may need to use a lower value for the timeout option than the default, which is 90 seconds.

Use the dlsw remote-peer command to configure SNA DDR.

SUMMARY STEPS

1. enable
2. configure terminal
3. dlsw netbios keepalive-filter
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| enable            | Enables privileged EXEC mode.  
|                   | • Enter your password if prompted. |
| Example:
| Router> enable    | |
| **Step 2**
| configure terminal | Enters global configuration mode. |
| Example:
| Router# configure terminal | |
| **Step 3**
| dlsw remote-peer list-number tcp ip-address  
| [backup-peer [ip-address | frame-relay  
| interface serial number dlci-number | interface name]] [bytes-netbios-out bytes-list-name]  
| [circuit-weight weight] [cluster cluster-id]  
| [cost cost] [dest-mac mac-address]  
| [dmac-output-list access-list-number]  
| [host-netbios-out host-list-name] [inactivity]  
| [dynamic] [keepalive seconds] [lf size] [linger minutes] [lsap-output-list list] [no-llc minutes] [passive] [priority] [rif-passthru virtual-ring-number] [tcp-queue-max size] [timeout seconds] | Configures SNA DDR. |
| Example:
| dlsw remote-peer 0 tcp 10.2.13.4 keepalive 0 | |

### UDP Unicast Feature

The UDP Unicast feature sends the SSP address resolution packets via UDP unicast service rather than TCP. (SSP packets include: CANUREACH_EX, NETBIOS_NQ_ex, NETBIOS_ANQ, and DATAFRAME.) The UDP unicast feature allows DLSw+ to better control address resolution packets and unnumbered information frames during periods of congestion. Previously, these frames were carried over TCP. TCP resends frames that get lost or delayed in transit, and hence aggravate congestion. Because address resolution packets and unnumbered information frames are not sent on a reliable transport on the LAN, sending them reliably over the WAN is unnecessary. By using UDP for these frames, DLSw+ minimizes network congestion.

**Note**

UDP unicast enhancement has no affect on DLSw+ FST or direct peer encapsulation.

Use the dlsw udp-disable command to disable User Datagram Protocol (UDP) Unicast.

### SUMMARY STEPS

1. enable
2. configure terminal
3. dlsw udp-disable
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
| Example: Router> enable |  
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: Router# configure terminal | |
| **Step 3** dlsw udp-disable | Disables UDP Unicast. |

**LLC1 Circuits**

Support for LLC1 circuits more efficiently transports LLC1 UI traffic across a DLSw+ cloud. With LLC1 circuit support, the LLC1 unnumbered information frames (UI) are no longer subject to input queueing and are guaranteed to traverse the same path for the duration of the flow. This feature improves transportation of LLC1 UI traffic because there is no longer the chance of having a specifically routed LLC1 UI frame broadcast to all remote peers. The circuit establishment process has not changed except that the circuit is established as soon as the specifically routed LLC1 UI frame is received and the DLSw+ knows of reachability for the destination MAC address. Furthermore, the connection remains in the CIRCUIT_ESTABLISHED state (rather than proceeding to the CONNECT state) until there is no UI frame flow for a MAC/SAP pair for 10 minutes.

This feature is enabled by default.

**Dynamic Peers**

In TCP encapsulation, the dynamic option and its suboptions no-llc and inactivity allow you to specify and control the activation of dynamic peers, which are configured peers that are activated only when required. Dynamic peer connections are established only when there is DLSw+ data to send. The dynamic peer connections are taken down when the last LLC2 connection using them terminates and the time period specified in the no-llc option expires. You can also use the inactivity option to take down dynamic peers when the circuits using them are inactive for a specified number of minutes.

*Note* Because the inactivity option may cause active LLC2 sessions to be terminated, you should not use this option unless you want active LLC2 sessions to be terminated.

Use the dlsw remte-peer command to configure a dynamic peer.
SUMMARY STEPS

1. enable
2. configure terminal
3. dlsw remote-peer list-number tcp ip-address [backup-peer [ip-address | frame-relay interface serial number dlci-number | interface name]] [bytes-netbios-out bytes-list-name] [circuit-weight weight] [cluster cluster-id] [cost cost] [dest-mac mac-address] [dmac-output-list access-list-number] [host-netbios-out host-list-name] [inactivity] [dynamic] [keepalive seconds] [lf size] [linger minutes] [lsap-output-list list] [no-llc minutes] [passive] [priority] [rif-passthru virtual-ring-number] [tcp-queue-max size] [timeout seconds]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td>Enables privileged EXEC mode.</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>dlsw remote-peer list-number tcp ip-address</td>
</tr>
<tr>
<td>Example:</td>
<td>dlsw remote-peer 0 tcp 10.23.4.5 dynamic</td>
</tr>
<tr>
<td>Configures a dynamic peer.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>dlsw prom-peer-defaults bytes-netbios-out bytes-list-name cost cost dest-mac destination-mac-address dmac-output-list access-list-number host-list-name keepalive seconds tcp-queue-max size</td>
</tr>
<tr>
<td>Example:</td>
<td>dlsw prom-peer-defaults bytes-netbios-out bytes-list-name cost cost dest-mac destination-mac-address dmac-output-list access-list-number host-list-name keepalive seconds tcp-queue-max size</td>
</tr>
<tr>
<td>Configures promiscuous peer defaults.</td>
<td></td>
</tr>
</tbody>
</table>

Promiscuous Peer Defaults

If you do not configure a `dlsw remote-peer` statement on the DLSw+ router, then you must specify the `promiscuous` keyword on the `dlsw local-peer` statement. The `promiscuous` keyword enables the router to accept peer connection requests from those routers that are not preconfigured. Setting the `dlsw prom-peer-defaults` command allows the user to determine various settings for the promiscuous transport.
Availability

The following features allow DLSw+ to find alternate paths quickly and optionally. These features also help in load balancing across multiple active peers, ports, and channel gateways:

- Load Balancing, page 31
- Ethernet Redundancy, page 33
- Backup Peers, page 34

Load Balancing

DLSw+ offers enhanced availability by caching multiple paths to a given MAC address or NetBIOS name (where a path is either a remote peer or a local port). Maintaining multiple paths per destination is especially attractive in SNA networks. A common technique used in the hierarchical SNA environment is assigning the same MAC address to different Token Ring interface couplers (TICs) on the IBM FEPs. DLSw+ ensures that duplicate TIC addresses are found, and, if multiple DLSw+ peers can be used to reach the FEPs, they are cached.

The way that multiple capable peers are handled with DLSw+ can be configured to meet either of the following network needs:

- Fault tolerance—To rapidly reconnect if a data-link connection is lost. If load balancing is not enabled, the Cisco IOS software, by default, maintains a preferred path and one or more capable paths to each destination. The preferred path is either the peer or port that responds first to an explorer frame or the peer with the least cost. If the preferred path to a given destination is unavailable, the next available capable path is promoted to the new preferred path. No additional broadcasts are required, and recovery through an alternate peer is immediate. Maintaining multiple cache entries facilitates a timely reconnection after session outages.
  
  A peer with the least cost can also be the preferred path. You can specify cost in either the `dlsw local peer` or `dlsw remote peer` commands. See the DLSw+ Design and Implementation Guide for details on how cost can be applied to control which path sessions use.

- Load balancing—To distribute the network traffic over multiple DLSw+ peers in the network. Alternately, when there are duplicate paths to the destination end system, you can configure load balancing. DLSw+ alternates new circuit requests in either a round-robin or enhanced load balancing fashion through the list of capable peers or ports. If round-robin is configured, the router distributes the new circuit in a round-robin fashion, basing its decision on which peer or port established the last circuit. If enhanced load balancing is configured, the router distributes new circuits based on existing loads and the desired ratio. It detects the path that is underloaded in comparison to the other capable peers and will assign new circuits to that path until the desired ratio is achieved.

  For multiple peer connections, peer costs must be applied. The DLSw+ Enhanced Load Balancing feature works only with the lowest (or equal) cost peers. For example, if the user specifies dlswrt1, dlswrt2 and dlswrt3 with costs of 4, 3, and 3 respectively, DLSw+ establishes new circuits with only dlswrt2 and dlswrt3.

  Use the `dlsw load-balance` and `dlsw remote-peer` commands to enable the DLSw+ Enhanced Load Balancing feature on the local router.

  Use the `dlsw timer` command to configure the amount of time needed for all the explorer responses to be received.
How to Configure Data Link Switching Plus

SUMMARY STEPS

1. enable
2. configure terminal
3. dlsw load-balance [round-robin | circuit count circuit-weight]
4. dlsw remote-peer tcp [circuit-weight value]
5. dlsw remote-peer frame-relay interface serial number dci number [circuit-weight value]
6. dlsw timer {explorer-wait-time}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 4</td>
<td>dlsw remote-peer tcp [circuit-weight value]</td>
</tr>
<tr>
<td>Step 5</td>
<td>dlsw remote-peer frame-relay interface serial number dci number [circuit-weight value]</td>
</tr>
<tr>
<td>Step 6</td>
<td>dlsw timer {explorer-wait-time}</td>
</tr>
</tbody>
</table>
The circuit-weight of a remote peer controls the number of circuits that peer can take. If multiple, equally low-cost peers can reach a remote source, the circuits to that remote source are distributed among the remote peers based on the ratio of their configured circuit-weights. The peer with the highest circuit-weight takes more circuits. Because a DLSw+ peer selects its new circuit paths from within its reachability cache, the user must configure the `dlsw timer explorer-wait-time` command with enough time to allow for all the explorer responses to be received. If the new DLSw+ Enhanced Load Balancing Feature is enabled, a message is displayed on the console to alert the user if the timer is not set.

See the *DLSw+ Design and Implementation Guide* for details on how to configure load balancing in DLSw+. See “DLSw+ with Enhanced Load Balancing Configuration Example” section on page 60 for a sample configuration.

**Ethernet Redundancy**

The DLSw+ Ethernet Redundancy feature, introduced in Cisco IOS Release 12.0(5)T, provides redundancy and load balancing between multiple DLSw+ peers in an Ethernet environment. It enables DLSw+ to support parallel paths between two points in an Ethernet environment, ensuring resiliency in the case of a router failure and providing load balancing for traffic load. The feature also enables DLSw+ to support multiple DLSw+ routers on the same transparent bridged domain that can reach the same MAC address in a switched environment.

Use the `dlsw transparent redundancy-enable` to enable the DLSw+ Ethernet Redundancy feature. Use the `dlsw transparent switch-support` to enable the DLSw+ Ethernet Redundancy feature in a switched environment.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface fastethernet 0/0
4. dlsw transparent redundancy-enable
5. dlsw transparent switch-support
6. dlsw transparent map local
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>interface fast ethernet 0/0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>dlsw transparent redundancy-enable</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>dlsw transparent switch-support</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>dlsw transparent map local mac mac address remote mac mac address neighbor mac address</td>
</tr>
</tbody>
</table>

The Ethernet Redundancy feature is a complex feature. See the DLSw+ Design and Implementation Guide for more details. Refer to the “DLSw+ with Ethernet Redundancy Configuration Example” section on page 55 and the “DLSw+ with Ethernet Redundancy Enabled for Switch Support Configuration Example” section on page 56 for sample configurations.

Backup Peers

The backup-peer option is common to all encapsulation types on a remote peer and specifies that this remote peer is a backup peer for the router with the specified IP-address, Frame Relay Data-Link Control Identifier (DLCI) number, or interface name. When the primary peer fails, all circuits over this peer are disconnected and the user can start a new session via their backup peer. Prior to Cisco IOS Release 11.2(6)F, you could configure backup peers only for primary FST and TCP.

Also, when you specify the backup-peer option in a dlsw remote-peer tcp command, the backup peer is activated only when the primary peer becomes unreachable. Once the primary peer is reactivated, all new sessions use the primary peer and the backup peer remains active only as long as there are LLC2 connections using it. You can use the linger option to specify a period (in minutes) that the backup peer remains connected after the connection to the primary peer is reestablished. When the linger period expires, the backup peer connection is taken down.

**Note**

If the linger keyword is set to 0, all existing sessions on the backup router immediately drop when the primary recovers. If the linger keyword is omitted, all existing sessions on the backup router remain active (as long as the session is active) when the primary recovers, however, all new sessions establish via the primary peer. If the linger keyword is set to x minutes, all existing sessions on the backup router remain active for x minutes once the primary recovers, however, all new sessions establish via the primary peer. Once x minutes expire, all existing sessions on the backup router drop and the backup peer connection is terminated. The linger keyword
can be used to minimize line costs if the backup peer is accessed over dial lines, but can be set high enough to allow an operator warning to be sent to all the SNA end users. It will not, however, pass explorers and will not create any new circuits while the primary is up.

To configure a backup peer, use the `dlsw remote peer backup-peer ip-address` in global configuration mode.

**Modes of Operation**

It is sometimes necessary for DLSw+ and RSRB to coexist in the same network and in the same router (for example, during migration from RSRB to DLSw+). Cisco DLSw+ supports this environment. In addition, DLSw+ must also interoperate with other vendors’ implementations that are based upon other DLSw RFC standards, such as DLSw Version 1 and Version 2.

Cisco routers, implementing Cisco DLSw+, automatically supports three different modes of operation:

- **Dual mode**—A Cisco router can communicate with some remote peers using RSRB and with others using DLSw+, providing a smooth migration path from RSRB to DLSw+; in dual mode, RSRB and DLSw+ coexist on the same box; the local peer must be configured for both RSRB and DLSw+; and the remote peers must be configured for either RSRB or DLSw, but not both.

- **Standards compliance mode**—DLSw+ can detect automatically (via the DLSw capabilities exchange) if the participating router is manufactured by another vendor, therefore operating in DLSw standard mode (DLSw Version 1 RFC 1795 and DLSw Version 2 RFC 2166).

- **Enhanced mode**—DLSw+ can detect automatically that the participating router is another DLSw+ router, therefore operating in enhanced mode, making all of the features of DLSw+ available to the SNA and NetBIOS end systems.

**Note**

DLSw+ does not interoperate with the DLSw RFC 1434 standard.

Some enhanced DLSw+ features are also available when a Cisco router is operating in standards compliance mode with another vendor’s router. In particular, enhancements that are locally controlled options on a router can be accessed even though the remote router does not have DLSw+. These include reachability caching, explorer firewalls and media conversion.

**Network Management**

There are several network management tools available to the user to help them more easily manage and troubleshoot their DLSw+ network. CiscoWorks Blue Maps provides a logical view of the portion of your router network relevant to DLSw+ (there is a similar tool for RSRB and APPN). CiscoWorks Blue SNA View adds to the information provided by Maps by correlating SNA PU and LU names with DLSw+ circuits and DLSw+ peers. CiscoWorks Blue Internetwork Status Monitor (ISM) support allows you to manage your router network from the mainframe console using IBM’s NetView or Sterling’s SOLVE:Netmaster. See the *DLSw+ Design and Implementation Guide* “Using CiscoWorks Blue: Maps, SNA View, and Internetwork Status Monitor” chapter for more details.
Traffic Bandwidth and Queueing Management

Cisco offers several bandwidth management and queueing features (such as DLSw+ RSVP) to enhance the overall performance of your DLSw+ network. The queueing and bandwidth management features are described in detail in the *DLSw Design and Implementation Guide* “Bandwidth Management Queueing” chapter.

Access Control

DLSw+ offers the following features that allow it to control access to various resources throughout a network:

- Defining DLSw+ Ring List, Port List, or Bridge Group List, page 36
- Static Paths and Static Resources Capabilities Exchange, page 38

Defining DLSw+ Ring List, Port List, or Bridge Group List

DLSw+ ring lists map traffic on specific local rings to remote peers. You can create a ring list of local ring numbers and apply the list to remote peer definitions. Traffic received from a remote peer is only forwarded to the rings specified in the ring list. Traffic received from a local interface is only forwarded to peers if the input ring number appears in the ring list applied to the remote peer definition. The definition of a ring list is optional. If you want all peers and all rings to receive all traffic, you do not have to define a ring list. Simply specify 0 for the list number in the remote peer statement.

The definition of a port list is optional. If you want all peers and all interfaces to receive all traffic, you do not have to define a port list. Simply specify 0 for the list number in the remote peer statement.

DLSw+ bridge group lists map traffic on the local Ethernet bridge group interface to remote peers. You can create a bridge group list and apply the list to remote peer definitions. Traffic received from a remote peer is only forwarded to the bridge group specified in the bridge group list. Traffic received from a local interface is only forwarded to peers if the input bridge group number appears in the bridge group list applied to the remote peer definition. The definition of a bridge group list is optional. Because each remote peer has a single list number associated with it, if you want traffic to go to a bridge group and to either a ring list or port list, you should specify the same list number in each definition.

Use the `dlsw ring-list`, `dlsw port-list`, and `dlsw bgroup-list` to define ring list, port list, and bridge group list respectively.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `dlsw ring-list list-number rings ring-number`
4. `dlsw port-list list-number type number`
5. `dlsw bgroup-list list-number bgroups number`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
- Enter your password if prompted. |
| **Example:** Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal | |
| **Step 3** dlsw ring-list list-number rings ring-number | Defines a ring list. |
| **Step 4** dlsw port-list list-number type number | Defines a port list. |
| **Step 5** dlsw bgroup-list list-number bgroups number | Defines a bridge group list. |

DLSw+ port lists map traffic on a local interface (either Token Ring or serial) to remote peers. Port lists do not work with Ethernet interfaces, or any other interface types connected to DLSw+ by means of a bridge group. You can create a port list of local ports and apply the list to remote peer definitions. Traffic received from a remote peer is only forwarded to peers if the input port number appears in the port list applied to the remote peer definition. The port list command provides a single command to specify both serial and Token Ring interfaces. Figure 4 shows how port lists are used to map traffic.

**Figure 4  Mapping Traffic Using Port Lists**
Static Paths and Static Resources Capabilities Exchange

Static path definitions allow a router to setup circuits without sending explorers. The path specifies the peer to use to access a MAC address or NetBIOS name.

To reduce explorer traffic destined for this peer, the peer can send other peers a list of resources for which it has information (icanreach) or does not have information (icannotreach). This information is exchanged as part of a capabilities exchange.

Use the `dlsw mac-addr` command to configure static paths to minimize explorer traffic originating in this peer.

Use the `dlsw icannot reach saps` command configure static resources that will be exchanged as part of a capabilities exchange.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `dlsw mac-addr`
4. `dlsw icannot reach saps sap [sap...]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Data-Link Switching Plus

How to Configure Data Link Switching Plus

Filter Lists in the Remote-Peer Command

The `dest-mac` and `dmac-output-list` options allow you to specify filter lists as part of the `dlsw remote-peer` command to control access to remote peers. For static peers in direct, FST, or TCP encapsulation, these filters control which explorers are sent to remote peers. For dynamic peers in TCP encapsulation, these filters also control the activation of the dynamic peer. For example, you can specify at a branch office that a remote peer is activated only when there is an explorer frame destined for the Media Access Control (MAC) address of an FEP.

The `dest-mac` option permits the connection to be established only when there is an explorer frame destined for the specified MAC address. The `dmac-output-list` option permits the connection to be established only when the explorer frame passes the specified access list. To permit access to a single MAC address, use the `dest-mac` option, because it is a configuration “shortcut” compared to the `dmac-output-list` option.

Configuring DLSw+ Timers

Use the `dlsw timer` command to configure the DLSw+ timers.

SUMMARY STEPS

1. enable
2. configure terminal
3. dlsw timer a
# How to Configure Data Link Switching Plus

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| `enable` | Enables privileged EXEC mode.
| **Example:**
| `Router> enable` | Enter your password if prompted. |
| **Step 2**
| `configure terminal` | Enters global configuration mode.
| **Example:**
| `Router# configure terminal` | |
| **Step 3**
| **Example:**
| `Router# dlsw timer {icannotreach-block-time | netbios-cache-timeout | netbios-explorer-timeout | netbios-group-cache | netbios-retry-interval | netbios-verify-interval | sna-cache-timeout | sna-explorer-timeout | sna-group-cache | sna-retry-interval | sna-verify-interval} 120` | |
| `icannotreach-block-time`—Cache life of unreachable resource; during this time searches for the resource are blocked. The valid range is 1 to 86400 seconds. The default is 0 (disabled).
| `netbios-cache-timeout`—Cache life of NetBIOS name location for the local and remote reachability caches. The valid range is 1 to 86400 seconds. The default is 960 seconds (16 minutes).
| `netbios-explorer-timeout`—Length of time that the Cisco IOS software waits for an explorer response before marking a resource unreachable (on both a LAN and a WAN). The valid range is 1 to 86400 seconds. The default is 6 seconds.
| `netbios-group-cache`—Cache life of NetBIOS entries in the group cache. The valid range is 1 to 86000 seconds. The default is 240 seconds (4 minutes).
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>netbios-retry-interval</code></td>
<td>NetBIOS explorer retry interval (on a LAN only). The valid range is 1 to 86400 seconds. The default is 1 second.</td>
</tr>
<tr>
<td><code>netbios-verify-interval</code></td>
<td>Number of seconds between a cache entry's creation and its marking as stale. If a search request comes in for a stale cache entry, a directed verify query is sent to ensure the cache still exists. The valid range is 1 to 86400 seconds. The default is 240 seconds (4 minutes).</td>
</tr>
<tr>
<td><code>sna-cache-timeout</code></td>
<td>Length of time that an SNA MAC/service access point (SAP) location cache entry exists before it is discarded (for local and remote caches). The valid range is 1 to 86400 seconds. The default is 960 seconds (16 minutes).</td>
</tr>
<tr>
<td><code>sna-explorer-timeout</code></td>
<td>Length of time that the Cisco IOS software waits for an explorer response before marking a resource unreachable (on a LAN and WAN). The valid range is 1 to 86400 seconds. The default is 180 seconds (3 minutes).</td>
</tr>
<tr>
<td><code>sna-group-cache</code></td>
<td>Cache life of SNA entries in the group cache. The valid range is 1 to 86000 seconds. The default is 240 seconds (4 minutes).</td>
</tr>
<tr>
<td><code>sna-retry-interval</code></td>
<td>Interval between SNA explorer retries (on a LAN). The valid range is 1 to 86400 seconds. The default is 30 seconds.</td>
</tr>
<tr>
<td><code>sna-verify-interval</code></td>
<td>Number of seconds between a cache entry's creation and its marking as stale. If a search request comes in for a stale cache entry, a directed verify query is sent to ensure that the cache still exists. The valid range is 1 to 86400 seconds. The default is 240 seconds (4 minutes).</td>
</tr>
</tbody>
</table>

See the DLSw+ Design and Implementation Guide “Customization” chapter and the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2) for command details.
Verifying DLSw+

Use the `show dlsw capabilities local` command, and `show running configuration` command to verify that DLSw+ is configured on the router.

**SUMMARY STEPS**

1. `enable`
2. `show dlsw capabilities local`
3. `show running configuration`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>show dlsw capabilities local</code></td>
<td>Displays the DLSw+ configuration of a specific peer.</td>
</tr>
<tr>
<td>Step 3 <code>show running configuration</code></td>
<td>Displays the running configuration of a device.</td>
</tr>
</tbody>
</table>

The following sample shows that DLSw+ is configured on router milan:

```bash
milan# show dlsw capabilities local
DLSw:Capabilities for peer 1.1.1.6(2065)
vendor id (OUI) : '00C' (cisco)
version number : 1
release number : 0
init pacing window : 20
unsupported saps : none
num of tcp sessions : 1
loop prevent support : no
icanreach mac-exclusive : no
icanreach netbios-excl. : no
reachable mac addresses : none
reachable netbios names : none
cisco version number : 1
peer group number : 0
border peer capable : no
peer cost : 3
biu-segment configured : no
UDP Unicast support : yes
local-ack configured : yes
priority configured : no
Cisco Internetwork Operating System IOS GS Software (GS7-K-M), Experimental Version 11.1(10956) [sbales 139]
Copyright (c) 1986-1996 by cisco Systems, Inc.
Compiled Thu 30-May-96 09:12 by sbales8
```

If only a command prompt appears, then DLSw+ is not configured for the router.

The global DLSw+ configuration statements, including the `dlsw local-peer` statement, appear in the output before the interface configuration statements. The following sample shows that DLSw+ is configured on router milan:

```bash
milan# show run
```
version 12.0
!
hostname Sample
!
source-bridge ring-group 110
dlsw local-peer peer-id 10.1.1.1 promiscuous
!
interface TokenRing0/0
no ip address
ring-speed 16
source-bridge 222 1 110
source-bridge spanning
!

Monitoring and Maintaining the DLSw+ Network

Use the commands `show dlsw capabilities interface`, `show dlsw capabilities ip-address`, `show dlsw capabilities local`, `show dlsw circuits`, `show dlsw fastcache`, `show dlsw local-circuit`, `show dlsw peers`, `show dlsw reachability`, `dlsw disable`, `show dlsw statistics`, and `clear dlsw circuit` commands to monitor and maintain activity on the DLSw+ network.

**SUMMARY STEPS**

1. `show dlsw capabilities interface type number`
2. `show dlsw capabilities ip-address ip-address`
3. `show dlsw capabilities local`
4. `show dlsw circuits`
5. `show dlsw fastcache`
6. `show dlsw local-circuit`
7. `show dlsw peers`
8. `show dlsw reachability`
9. `dlsw disable`
10. `show dlsw statistics [border-peers]`
11. `clear dlsw circuit`
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>show dlsw capabilities interface type number</code> Displays capabilities of a direct-encapsulated remote peer.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>show dlsw capabilities ip-address ip-address</code> Displays capabilities of a TCP/FST remote peer.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>show dlsw capabilities local</code> Displays capabilities of the local peer.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show dlsw circuits</code> Displays DL Sw+ circuit information.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>show dlsw fastcache</code> Displays the fast cache for FST and direct-encapsulated peers.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>show dlsw local-circuit</code> Displays DL Sw+ circuit information when doing local conversion.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><code>show dlsw peers</code> Displays DL Sw+ peer information.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><code>show dlsw reachability</code> Displays DL Sw+ reachability information.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><code>dlsw disable</code> Disables and re-enable DL Sw+ without altering the configuration.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><code>show dlsw statistics [border-peers]</code> Displays the number of frames that have been processed in the local, remote, and group caches.</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><code>clear dlsw circuit</code> Closes all the DL Sw+ circuits(^1). Also used to reset to zero the number of frames that have been processed in the local, remote, and group cache.</td>
</tr>
</tbody>
</table>

\(^1\) Issuing the `clear dlsw circuits` command will cause the loss of any associated LLC2 sessions.

See the *DLSw+ Design and Implementation Guide* “Using Show and Debug Commands” chapter and the *Cisco IOS Bridging and IBM Networking Command Reference* (Volume 1 of 2) for details of the commands.

**DLSw+ Configuration Examples**

The following sections provide DL Sw+ configuration examples:

- **DLSw+ Using TCP Encapsulation and LLC2 Local Acknowledgment—Basic Configuration Example**, page 36
- **DLSw+ Using TCP Encapsulation with Local Acknowledgment—Peer Group Configuration Example 1**, page 38
- **DLSw+ Using TCP Encapsulation with Local Acknowledgment—Peer Group Configuration Example 2**, page 40
- **DLSw+ with SDLC Multidrop Support Configuration Examples**, page 42
- **DLSw+ with LLC2-to-SDLC Conversion Between PU 4-to-PU 4 Communication Example**, page 43
- **DLSw+ Translation Between Ethernet and Token Ring Configuration Example**, page 44
- **DLSw+ Translation Between FDDI and Token Ring Configuration Example**, page 45
- **DLSw+ Translation Between SDLC and Token Ring Media Example**, page 46
- **DLSw+ over Frame Relay Configuration Example**, page 48
- **DLSw+ over QLLC Configuration Examples**, page 49
- **DLSw+ with RIF Passthrough Configuration Example**, page 50
- **DLSw+ with Enhanced Load Balancing Configuration Example**, page 51
DLSw+ Peer Cluster Feature Configuration Example, page 52
DLSw+ RSVP Bandwidth Reservation Feature Configuration Example, page 53
DLSw+ RSVP Bandwidth Reservation Feature with Border Peers Configuration Example, page 54
DLSw+ with Ethernet Redundancy Configuration Example, page 55
DLSw+ with Ethernet Redundancy Enabled for Switch Support Configuration Example, page 56

**DLSw+ Using TCP Encapsulation and LLC2 Local Acknowledgment—Basic Configuration Example**

This sample configuration requires the following tasks, which are described in earlier sections of this document:

- Define a Source-Bridge Ring Group for DLSw+
- Define a DLSw+ Local Peer for the Router
- Define DLSw+ Remote Peers
- Assign DLSw+ to a local data-link control
Figure 5 illustrates a DLSw+ configuration with local acknowledgment. Because the RIF is terminated, the ring group numbers do not have to be the same.

**Figure 5  DLSw+ with Local Acknowledgment—Simple Configuration**

**Router A**

source-bridge ring-group 10

! dlsw local-peer peer-id 10.2.25.1
dlsw remote-peer 0 tcp 10.2.5.2
interface loopback 0
ip address 209.165.201.1 255.255.255.0

! interface tokenring 0
no ip address
ring-speed 16
source-bridge 25 1 10
source-bridge spanning

**Router B**

source-bridge ring-group 12
dlsw local-peer peer-id 10.2.5.2
dlsw remote-peer 0 tcp 10.2.25.1
interface loopback 0
ip address 10.2.5.2 255.255.255.0

! interface tokenring 0
no ip address
ring-speed 16
source-bridge 5 1 12
source-bridge spanning
DLSw+ Using TCP Encapsulation with Local Acknowledgment—Peer Group Configuration Example 1

Figure 6 illustrates border peers with TCP encapsulation. Router A is configured to operate in promiscuous mode, and border peers Routers B and C forward broadcasts. This configuration reduces processing requirements in Router A (the access router) and still supports any-to-any networks. Configure Border peer B and C so that they peer to each other.

**Figure 6  DLSw+ with Peer Groups Specified (Example 1)**

**Router A**

```
hostname Router A

source-bridge ring group 31
dlsw local-peer peer-id 128.207.152.5 group 70 promiscuous
dlsw remote peer 0 tcp 128.207.150.8
interface loopback 0
 ip address 128.207.152.5 255.255.255.0

interface serial 0
 ip unnumbered tokenring
 clockrate 56000

interface tokenring 0
 ip address 209.165.201.1 255.255.255.0
 ring-speed 16
 source-bridge 200 13 31
 source-bridge spanning

router igrp 777
 network 128.207.0.0
```

**Router B**

```
hostname Router B

source-bridge ring-group 31
dlsw local-peer peer-id 128.207.150.8 group 70 border promiscuous
dlsw remote-peer 0 tcp 128.207.169.3
interface loopback 0
 ip address 128.207.150.8 255.255.255.0
```

interface serial 0  
ip unnumbered tokenring 0  
bandwidth 56  
!  
interface tokenring 0  
ip address 209.165.201.1 255.255.255.0  
ring-speed 16  
source-bridge 3 14 31  
source-bridge spanning  
!  
router igrp 777  
network 128.207.0.0

Router C  
hostname Router C  
!  
source-bridge ring-group 69  
dlsw local-peer peer-id 128.207.169.3 group 69 border promiscuous  
dlsw remote-peer 0 tcp 128.207.150.8  
interface loopback 0  
ip address 128.207.169.3 255.255.255.0  
!  
interface tokenring 3/0  
description fixed to flashnet  
ip address 209.165.200.225 255.255.255.0  
ring-speed 16  
multiring all  
!  
interface tokenring 3/1  
ip address 128.207.169.3 255.255.255.0  
ring-speed 16  
source-bridge 33 2 69  
source-bridge spanning  
!  
router igrp 777  
network 128.207.0.0
DLSw+ Using TCP Encapsulation with Local Acknowledgment—Peer Group Configuration Example 2

Figure 7 illustrates a peer group configuration that allows any-to-any connection except for Router B. Router B has no connectivity to anything except router C because the **promiscuous** keyword is omitted.

**Figure 7  DLSw+ with Peer Groups Specified (Example 2)**

---

**Router A**

hostname Router A

! source-bridge ring-group 2000
dlw local-peer peer-id 150.150.99.1 group 2 promiscuous
dlw remote-peer 0 tcp 150.150.100.1

! interface loopback 0
  ip address 209.165.200.225 255.255.255.192

! interface tokenring 0
  no ip address
  ring-speed 16
  source-bridge 99 1 2000
  source-bridge spanning

! router eigrp 202
  network 150.150.0.0

**Router B**

hostname Router B

! source-bridge ring-group 2000
dlsw local-peer peer-id 150.150.98.1 group 2
dlsw remote-peer 0 tcp 150.150.100.1

Router C
hostname Router C

Router D
hostname Router D

no ip address
ring-speed 16
source-bridge 92 1 2000
source-bridge spanning
!
.interface tokenring 0/2
no ip address
ring-speed 16
source-bridge 93 1 2000
source-bridge spanning
!
router eigrp 202
network 150.150.0.0

Router E
hostname Router E
!
source-bridge ring-group 2000
dlsw local-peer peer-id 150.150.97.1 group 1 promiscuous
dlsw remote-peer 0 tcp 150.150.96.1
!
interface loopback 0
ip address 209.165.201.1 255.255.255.192
!
interface tokenring 0
no ip address
ring-speed 16
source-bridge 97 1 2000
source-bridge spanning
!
router eigrp 202
network 150.150.0.0

DLSw+ with SDLC Multidrop Support Configuration Examples

In the following example, all devices are type PU 2.0:

interface serial 2
mtu 4400
no ip address
encapsulation sdlc
no keepalive
clockrate 19200
sdlc role primary
sdlc vmac 4000.1234.5600
sdlc address C1
sdlc xid C1 05DCCCC1
sdlc partner 4001.3745.1088 C1
sdlc address C2
sdlc xid C2 05DCCCC2
sdlc partner 4001.3745.1088 C2
sdlc dlsw C1 C2

The following example shows mixed PU 2.0 (device using address C1) and PU 2.1 (device using address C2) devices:

interface serial 2
mtu 4400
no ip address
encapsulation sdlc
no keepalive
clockrate 19200
dsdlc role primary
dsdlc vmac 4000.1234.5600
dsdlc address C1
dsdlc xid C1 05DCCCC1
dsdlc partner 4001.3745.1088 C1
dsdlc address C2 xid-poll
dsdlc partner 4001.3745.1088 C2
dsdlc dlsw C1 C2

In the following example, all devices are type PU 2.1 (Method 1):

interface serial 2
mtu 4400
no ip address
classification sdlc
no keepalive
clockrate 19200
sdlc role primary
sdlc vmac 4000.1234.5600
sdlc address C1 xid-poll
sdlc partner 4001.3745.1088 C1
sdlc address C2 xid-poll
sdlc partner 4001.3745.1088 C2
sdlc dlsw C1 C2

In the following example, all devices are type PU 2.1 (Method 2):

interface serial 2
mtu 4400
no ip address
classification sdlc
no keepalive
clockrate 19200
sdlc role prim-xid-poll
sdlc vmac 4000.1234.5600
sdlc address C1
sdlc partner 4001.3745.1088 C1
sdlc address C2
sdlc partner 4001.3745.1088 C2
sdlc dlsw C1 C2

DLSw+ with LLC2-to-SDLC Conversion Between PU 4-to-PU 4 Communication Example

The following example is a sample configuration for LLC2-to-SDLC conversion for PU 4-to-PU 4 communication as shown in Figure 8:

Figure 8 LLC2-to-SDLC Conversion for PU 4-to-PU 4 Communication

Router A
source-bridge ring-group 1111
DLSw+ Translation Between Ethernet and Token Ring Configuration Example

DLSw+ also supports Ethernet media. The configuration is similar to other DLSw+ configurations, except for configuring for a specific media. The following example shows Ethernet media (see Figure 9).

Figure 9  DLSw+ Translation Between Ethernet and Token Ring

Router A
hostname Router A
!
dlsw local-peer peer-id 128.207.111.1
dlsw remote-peer 0 tcp 128.207.1.145
dlsw bridge-group 5
!
interface loopback 0
ip address 128.207.111.1 255.255.255.0
interface Ethernet 0
no ip address
  bridge-group 5
!
bridge 5 protocol ieee

Router B
hostname Router B
!
source-bridge transparent 500 1000 1 5
dlsw local-peer peer-id 128.207.1.145
dlsw remote-peer 0 tcp 128.207.111.1
dlsw bridge-group 5
!
interface loopback 0
ip address 209.165.201.1 255.255.255.0
interface ethernet 1/2
no ip address
  bridge-group 5
!
interface tokenring 2/0
no ip address
  ring-speed 16
  source-bridge 7 1 500
  source-bridge spanning
!
bridge 5 protocol ieee

Because DLSw+ does not do local translation between different LAN types, Router B must be configured for SR/TLB by issuing the source-bridge transparent command. Also, note that the bridge groups are configured on the ethernet interfaces.

DLSw+ Translation Between FDDI and Token Ring Configuration Example

DLSw+ also supports FDDI media. The configuration is similar to other DLSw+ configurations except for configuring for a specific media type. The following example shows FDDI media (see Figure 10).

Figure 10 DLSw+ Translation Between FDDI and Token Ring

In the following configuration, an FDDI ring on Router A is connected to a Token Ring on Router B across a DLSw+ link.

Router A
source-bridge ring-group 10
dlsw local-peer peer-id 132.11.11.2
dlsw remote-peer 0 tcp 132.11.11.3
interface loopback 0
ip address 132.11.11.2 255.255.255.0
interface fddi 0
no ip address
  source-bridge 26 1 10
source-bridge spanning

Router B
source-bridge ring-group 10
dlsw local peer peer-id 132.11.11.3
dlsw remote-peer 0 tcp 132.11.11.2
interface loopback 0
ip address 209.165.200.225 255.255.255.0
interface tokenring 0
no ip address
source-bridge 25 1 10
source-bridge spanning

DLSw+ Translation Between SDLC and Token Ring Media Example

DLSw+ provides media conversion between local or remote LANs and SDLC. For additional information about configuring SDLC parameters, refer to the chapter “Configuring LLC2 and SDLC Parameters.”

Figure 11 illustrates DLSw+ with SDLC encapsulation. For this example, 4000.1020.1000 is the MAC address of the FEP host (PU 4.0). The MAC address of the AS/400 host is 1000.5aed.1f53, which is defined as Node Type 2.1. Router B serves as the primary station for the remote secondary station 01. Router B can serve as either primary station or secondary station to remote station D2.

Figure 11  DLSw+ Translation Between SDLC and Token Ring Media

Router A
hostname Router A
!
source-bridge ring-group 2000
dlsw local-peer peer-id 150.150.10.2
dlsw remote-peer 0 tcp 150.150.10.1
!
interface loopback 0
ip address 150.150.10.2 255.255.255.0
interface serial 8
  ip address 209.165.200.225 255.255.255.192
  clockrate 56000

! interface tokenring 0
  no ip address
  ring-speed 16
  source-bridge 500 1 2000
  source-bridge spanning

! router eigrp 202
  network 150.150.0.0

Router B

hostname Router B

! source-bridge ring-group 2000
dlsw local-peer peer-id 150.150.10.1
dlsw remote-peer 0 tcp 150.150.10.2

! interface loopback 0
  ip address 209.165.202.129 255.255.255.0
interface serial 0
  ip address 209.165.200.225 255.255.255.192

! interface serial 1
  description PU2 with SDLC station role set to secondary
  no ip address
  encapsulation sdlc
  no keepalive
  clockrate 9600
  sdlc role primary
  sdlc vmac 4000.9999.0100
  sdlc address 01
  sdlc xid 01 05d20006
  sdlc partner 4000.1020.1000 01
  sdlc dlsw 1

! interface serial 2
  description Node Type 2.1 with SDLC station role set to negotiable or primary
  encapsulation sdlc
  sdlc role prim-xid-poll
  sdlc vmac 1234.3174.0000
  sdlc address d2
  sdlc partner 1000.5aed.1f53 d2
  sdlc dlsw d2

! interface tokenring 0
  no ip address
  ring-speed 16
  source-bridge 100 1 2000
  source-bridge spanning

! interface tokenring 1
  no ip address
  ring-speed 16
  source-bridge 400 1 2000
  source-bridge spanning

! router eigrp 202
DLSw+ over Frame Relay Configuration Example

Frame Relay support extends the DLSw+ capabilities to include Frame Relay in direct mode. Frame Relay support includes permanent virtual circuit capability. DLSw+ runs over Frame Relay with or without local acknowledgement. It supports the Token Ring-to-Token Ring connections similar to FST and other direct data link controls. Figure 12 illustrates a DLSw+ configuration over Frame Relay with RIF Passthrough.

The following configuration examples are based on Figure 13. The Token Rings in the illustration are in Ring 2.

**Router A**

source-bridge ring-group 100
dlw local-peer 10.2.23.1
dlw remote-peer 0 frame-relay interface serial 0 30 passthru
interface loopback 0
ip address 209.165.200.225 255.255.255.0
interface tokenring 0
  ring-speed 16
  source-bridge spanning 1 1 100
! interface serial 0
  mtu 3000
  no ip address
  encapsulation frame-relay
  frame-relay lmi-type ansi
  frame-relay map dlsw 30

**Router B**

source-bridge ring-group 100
dlw local-peer 10.2.23.2
dlw remote-peer 0 frame-relay interface serial 0 30 passthru
interface loopback 0
ip address 209.165.202.129 255.255.255.0
interface tokenring 0
  ring-speed 16
  source-bridge spanning 2 1 100
! interface serial 0
  mtu 3000
  no ip address
DLSw+ over QLLC Configuration Examples

The following three examples describe QLLC support for DLSw+.

Example 1
In this configuration, DLSw+ is used to allow remote devices to connect to a DLSw+ network over an X.25 public packet-switched network.

In this example, all QLLC traffic is addressed to destination address 4000.1161.1234, which is the MAC address of the FEP.

The remote X.25-attached IBM 3174 cluster controller is given a virtual MAC address of 1000.0000.0001. This virtual MAC address is mapped to the X.121 address of the 3174 (31104150101) in the X.25 attached router.

```
interface serial 0
capsulation x25
x25 address 3110212011
x25 map qllc 1000.0000.0001 31104150101
qllc dlsw partner 4000.1161.1234
```

Example 2
In this configuration, a single IBM 3174 cluster controller needs to communicate with both an AS/400 and a FEP. The FEP is associated with subaddress 150101 and the AS/400 is associated with subaddress 151102.

If an X.25 call comes in for 33204150101, the call is mapped to the FEP and forwarded to MAC address 4000.1161.1234. The IBM 3174 appears to the FEP as a Token Ring-attached resource with MAC address 1000.0000.0001. The IBM 3174 uses a source SAP of 04 when communicating with the FEP, and a source SAP of 08 when communicating with the AS/400.

```
interface serial 0
capsulation x25
x25 address 31102
x25 map qllc 1000.0000.0001 33204
qllc dlsw subaddress 150101 partner 4000.1161.1234
qllc dlsw subaddress 150102 partner 4000.2034.5678 sap 04 08
```
Example 3
In this example, two different X.25 resources want to communicate over X.25 to the same FEP.

In the router attached to the X.25 network, every X.25 connection request for X.121 address 31102150101 is directed to DLSw+. The first SVC to be established will be mapped to virtual MAC address 1000.0000.0001. The second SVC to be established will be mapped to virtual MAC address 1000.0000.0002.

```
interface serial 0
 encapsulation x25
 x25 address 31102
 x25 map qllc 33204
 x25 map qllc 35765
 qllc dlsw subaddress 150101 vmacaddr 1000.0000.0001 2 partner 4000.1611.1234
```

DLSw+ with RIF Passthrough Configuration Example

Figure 13 is a sample configuration for DLSw+ using the RIF Passthrough feature.

**Figure 13** Network Configuration with RIF Passthrough

**Router A**

source-bridge ring-group 100
dlw local-peer peer id 10.1.12.1
dlw remote-peer 0 tcp 10.1.14.2 rif-passthru 100
interface loopback 0
  ip address 209.165.200.225 255.255.255.0
interface tokenring 0
  ring-speed 16
  source-bridge 25 1 100
  source-bridge spanning

**Router B**

source-bridge ring-group 100
dlw local-peer peer id 10.1.14.2
dlw remote-peer 0 tcp 10.1.12.1 rif-passthru 100
interface loopback 0
  ip address 209.165.201.1 255.255.255.0
interface tokenring 0
  ring-speed 16
  source-bridge 51 1 100
  source-bridge spanning
DLSw+ with Enhanced Load Balancing Configuration Example

Figure 14 shows DLSw+ with the Enhanced Load Balancing feature.

Figure 14  DLSw+ with Enhanced Load Balancing

Router A is configured for the DLSw+ Enhanced Load Balancing feature to load balance traffic among the DLSw+ remote peers B, C, and D.

**Router A**

dlaw local-peer 10.2.19.1
dlaw remote-peer 0 tcp 10.2.24.2 circuit-weight 10
dlaw remote-peer 0 tcp 10.2.19.5 circuit-weight 6
dlaw remote-peer 0 tcp 10.2.20.1 circuit-weight 20
dlaw load-balance circuit-count
dlaw timer explorer-wait-time 100

**Router B**

dlaw local-peer 10.2.24.2 cost 1 promiscuous

**Router C**

dlaw local-peer 10.2.19.5 cost 1 promiscuous

**Router D**

dlaw local-peer 10.2.20.1 cost 1 promiscuous
DLSw+ Peer Cluster Feature Configuration Example

Figure 15 shows a DLSw+ network configured with the DLSw+ Peer Clusters feature.

Because BP2 is configured as the border peer with the DLSw+ Peer Clusters feature, it does not forward explorers to both MPA and MPB since they are part of the same peer cluster.

BP2
source-bridge ring-group 310
dlsw local-peer 10.1.1.3 border group 2 promiscuous

MPA
source-bridge ring-group 310
dlsw local-peer 10.1.1.1 group 2 promiscuous cluster 5
dlsw remote-peer 0 tcp 10.1.1.3

MPB
source-bridge ring-group 310
dlsw local-peer 10.1.1.2 group 2 promiscuous cluster 5
dlsw remote-peer tcp 0 10.1.1.3

MPC
dlsw local-peer 10.1.1.4 group 2 promiscuous
dlsw remote-peer tcp 0 10.1.1.3
DLSW+ RSVP Bandwidth Reservation Feature Configuration Example

Figure 16 shows a DLSw+ network with the DLSw+ RSVP Bandwidth Reservation feature configured.

DLSW+ RSVP Bandwidth Reservation Feature Configured

DLSWRTR 1 and DLSWRTR 2 are configured for the DLSw+ RSVP Bandwidth Reservation feature with an average bit rate of 40 and a maximum-burst rate of 10.

DLSWRTR 1

dlsw local-peer peer id 10.2.17.1
ndlsw remote-peer 0 tcp 10.2.24.3
dlsw rsvp 40 10

DLSWRTR 2

dlsw local-peer peer id 10.2.24.3
ndlsw remote-peer 0 tcp 10.2.17.1
dlsw rsvp 40 10

The following output of the `show ip rsvp sender` command on the DLSWRTR2 verifies that PATH messages are being sent from DLSWRTR2:

```
DLSWRTR2# show ip rsvp sender
To From Pro DPort Sport Prev Hop I/F BPS Bytes
10.2.17.1 10.2.24.3 TCP 2065 11003 10K 28K
10.2.24.3 10.2.17.1 TCP 11003 2065 10.2.17.1 Et1/1 10K 28K
```

The following output of the `show ip rsvp req` command on the DLSWRTR2 verifies that RESV messages are being sent from DLSWRTR2:

```
DLSWRTR2# show ip rsvp req
To From Pro DPort Sport Next Hop I/F Fi Serv BPS Bytes
10.2.24.3 10.2.17.1 TCP 11003 2065 10.2.17.1 Et1/1 FF RATE 10K 28K
10.2.17.1 10.2.24.3 TCP 2065 11003 10.2.17.1 Et1/1 FF RATE 10K 28K
```

If the IP cloud is able to guarantee the bandwidth requested and the `show ip rsvp sender` and `show ip rsvp req` commands are successful, issue the `show ip rsvp res` command to verify that a reservation was made from DLSWRTR1 to DLSWRTR2:

```
DLSWRTR2# show ip rsvp res
To From Pro DPort Sport Next Hop I/F Fi Serv BPS Bytes
10.2.17.1 10.2.24.3 TCP 11003 2065 10.2.17.1 Et1/1 FF RATE 10K 28K
10.2.24.3 10.2.17.1 TCP 11003 2065 FF RATE 10K 28K
```

Workstation 1

Workstation 3

Workstation 4

Workstation 2
DLSw+ RSVP Bandwidth Reservation Feature with Border Peers Configuration Example

Figure 17 shows a DLSw+ border peer network configured with DLSw+ RSVP.

The following example configures DLSWRTR1 to send PATH messages at rates of 40 kbps and 10 kbps and DLSWRTR2 to send PATH messages at rates of 10.

**DLSWRTR1**

dlsw local-peer peer-id 10.2.17.1 group 1 promiscuous
dlsw rsvp default
dlsw remote-peer 0 tcp 10.3.15.2
dlsw -defaults rsvp 40 10

**IPRTR1**

dlsw local-peer peer-id 10.3.15.2 group 1 border promiscuous
dlsw remote-peer 0 tcp 10.3.16.2

**IPRTR2**

dlsw local-peer peer-id 10.3.16.2 group 2 border promiscuous
dlsw remote-peer 0 tcp 10.3.15.2

**DLSWRTR2**

dlsw local-peer peer-id 10.14.25.2 group 2 promiscuous
dlsw rsvp default
dlsw remote-peer 0 tcp 10.3.16.2

The following output of the `show ip rsvp sender` command on DLSWRTR2 verifies that PATH messages are being sent from DLSWRTR2:

```
DLSWRT2# show ip rsvp sender
To From Pro DPort Sport Prev Hop I/F BPS Bytes
10.2.17.1 10.14.25.2 TCP 2065 11003 10K 28K
10.14.25.2 10.2.17.1 TCP 11003 2065 10.2.17.1 Et1/1 10K 28K
```

The following output of the `show ip rsvp request` command on DLSWRTR2 verifies that RESV messages are being sent from DLSWRTR 2:

```
DLSWRT2# show ip rsvp req
To From Pro DPort Sport Next Hop I/F Fi Serv BPS Bytes
10.14.25.2 10.2.17.1 TCP 11003 2065 10.2.17.1 Et1/1 FP RATE 10K 28K
```
The following output of the `show ip rsvp res` command on the DLSWRTR1 verifies that the RSVP reservation was successful:

```
DLSWRTR1# show ip rsvp res
To From Pro DPort Sport Next Hop I/F Fi Serv BPS Bytes
10.2.17.1 10.14.25.2 TCP 2065 11003 10.14.25.2 Et1/1 FF RATE 10K 28K
10.14.25.2 10.2.17.1 TCP 11003 2065 FF RATE 10K 28K
```

**DLSw+ with Ethernet Redundancy Configuration: Example**

Figure 18 shows that Router A, Router B, and Router C advertise their presence on the Ethernet via their Ethernet interfaces to the multicast MAC address 9999.9999.9999. Because Router B is the master router, it keeps a database of all circuits handled within the domain and grants or denies permission for new circuit requests for Router A and Router C. There is no special configuration required for the end stations or for the remote peer. Only the DLSw+ devices on the LAN need the extra configuration.

Master Router B waits 1.5 seconds after it receives the first IWANTIT primitive before assigning the new SNA circuit to one of its ethernet redundancy peers because of the `dlsw transparent timers sna 1500` command.

**Figure 18  DLSw+ with Ethernet Redundancy**

- **Router A**
  - `dlsw local-peer peer id 10.2.24.2`
  - `dlsw remote-peer 0 tcp 10.2.17.1`
  - `interface loopback 0`
  - `ip address 209.165.201.1 255.255.255.0`
  - `int e1`
  - `ip address 209.165.201.1 255.255.255.0`
  - `dlsw transparent redundancy-enable 9999.9999.9999`

- **Router B**
  - `dlsw local-peer peer-id 10.2.24.3`
DLSw+ with Ethernet Redundancy Enabled for Switch Support Configuration: Example

Figure 19 is a sample configuration of the DLSw+ Ethernet Redundancy feature in a switched environment. The ethernet switch sees the device with MAC address 4000.0010.0001 one port at a time because Router A and Router B have mapped different MAC addresses to it. This configuration is known as MAC-address mapping. Router A is configured so that MAC address 4000.0001.0000 maps to the actual device with MAC address 4000.0010.0001. Router B is configured so that MAC address 4000.0201.0001 maps to the actual device with MAC address 4000.0010.0001. Router A and B backup one another. Router A is configured as the master with a default priority of 100. Master Router A waits 1.5 seconds after it receives the first IWANTIT primitive before assigning the new SNA circuit to one of its ethernet redundancy peers because of the `dlsw transparent timers sna 1500` command.

Figure 19  
DLSw+ with Ethernet Redundancy in a Switched Environment
Router A

dlsw local peer peer-id 10.2.17.1
dlsw remote-peer 0 tcp 10.3.2.1
dlsw transparent switch-support
interface loopback 0
ip address 209.165.202.129 255.255.255.0

int e 0
mac-address 4000.0000.0001
ip address 209.165.202.129 255.255.255.0
dlsw transparent redundancy-enable 9999.9999.9999 master-priority
dlsw transparent map local-mac 4000.0001.0000 remote-mac 4000.0010.0001
neighbor 4000.0000.0011
dlsw transparent timers sna 1500

Router B

dlsw local peer peer-id 10.2.17.2
dlsw remote-peer 0 tcp 10.3.2.1
dlsw transport switch-support
interface loopback 0
ip address 209.165.201.1 255.255.255.0

int e 1
mac-address 4000.0000.0011
ip address 209.165.201.1 255.255.255.0
dlsw transparent redundancy-enable 9999.9999.9999
dlsw transparent map local-mac 4000.0201.0001 remote-mac 4000.0010.0001
neighbor 4000.0000.0001

Additional References

The following sections provide references related to the <<Feature Name>> feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLSW+ Features</td>
<td>DLSW+ Design and Implementation Guide.</td>
</tr>
<tr>
<td>IBM Networking</td>
<td>Configuring Remote Source-Route Bridging.</td>
</tr>
<tr>
<td>DLSw+ Commands</td>
<td>Cisco IOS Bridging and IBM Networking Command Reference.</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
Feature Information for Configuring Data-Link Switching Plus

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases,</td>
</tr>
<tr>
<td></td>
<td>and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>

### Feature Information for Configuring Data-Link Switching Plus

Table 5 lists the release history for this feature.

Not all commands may be available in your Cisco IOS software release. For release information about a specific command, see the command reference documentation.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which Cisco IOS and Catalyst OS software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to [http://www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

**Note** Table 5 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data-Link Switching Plus</td>
<td>11.2(1)</td>
<td>DLSw+ is Cisco’s version of DLSw and it supports several additional features and enhancements.</td>
</tr>
<tr>
<td></td>
<td>12.0(7)T</td>
<td>DLSw+ is a means of transporting SNA and NetBIOS traffic over a campus or WAN. The end systems can attach to the network over Token Ring, Ethernet, Synchronous Data Link Control (SDLC) Protocol, Qualified Logical Link Control (QLLC), or Fiber Distributed Data Interface (FDDI). See the DLSw+ Design and Implementation Guide Appendix B, “DLSw+ Support Matrix,” for details. DLSw+ switches between diverse media and locally terminates the data links, keeping acknowledgments, keepalives, and polling off the WAN. Local termination of data links also eliminates data-link control timeouts that can occur during transient network congestion or when rerouting around failed links. Finally, DLSw+ provides a mechanism for dynamically searching a network for SNA or NetBIOS resources and includes caching algorithms that minimize broadcast traffic. DLSw+ is fully compatible with any vendor’s RFC 1795 implementation and the following features are available when both peers are using DLSw+:</td>
</tr>
<tr>
<td></td>
<td>12.1(5)T</td>
<td>• Peer groups and border peers</td>
</tr>
<tr>
<td></td>
<td>12.2(4)T</td>
<td>• Backup peers</td>
</tr>
<tr>
<td></td>
<td>12.2(8)T</td>
<td>• Promiscuous and on-demand peers</td>
</tr>
<tr>
<td></td>
<td>12.2(15)T</td>
<td>• Explorer firewalls and location learning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NetBIOS dial-on-demand routing feature support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• UDP unicast support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Load balancing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Support for LLC1 circuits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Support for multiple bridge groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Support for RIF Passthrough</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SNA type of service feature support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Local acknowledgment for Ethernet-attached devices and media conversion for SNA PU 2.1 and PU 2.0 devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SNA View, Blue Maps, and Internetwork Status Monitor (ISM) support</td>
</tr>
</tbody>
</table>
CCDE, CCENT, CCSI, Cisco Eos, Cisco HealthPresence, Cisco IronPort, the Cisco logo, Cisco Nurse Connect, Cisco Pulse, Cisco SensorBase, Cisco StackPower, Cisco StadiumVision, Cisco TelePresence, Cisco Unified Computing System, Cisco WebEx, DCE, Flip Channels, Flip for Good, Flip Mino, Flipshare (Design), Flip Ultra, Flip Video, Flip Video (Design), Instant Broadband, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn, Cisco Capital, Cisco Capital (Design), Cisco:Financed (Stylized), Cisco Store, Flip Gift Card, and One Million Acts of Green are service marks; and Access Registrar, Aironet, AllTouch, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Lumin, Cisco Nexus, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, Continuum, EtherFast, EtherSwitch, Event Center, Explorer, Follow Me Browsing, GainMaker, iLYNX, IOS, iPhone, IronPort, the IronPort logo, Laser Link, LightStream, Linksy, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, PCNow, PIX, PowerKEY, PowerPanels, PowerTV, PowerVu (Design), PowerVu, Prisma, ProConnect, ROSA, SenderBase, SMARTnet, Spectrum Expert, StackWise, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0910R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2001–2009 Cisco Systems, Inc. All rights reserved.
Configuring Serial Tunnel and Block Serial Tunnel
Configuring Serial Tunnel and Block Serial Tunnel

This chapter describes how to configure serial tunnel (STUN) and block serial tunnel (BSTUN). For a complete description of the STUN and BSTUN commands in this chapter, refer to the “STUN and BSTUN Commands” chapter of the *Cisco IOS Bridging and IBM Networking Command Reference*, Volume 1 of 2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter contains the following sections:

- Serial Tunnel Overview, page 1
- STUN Configuration Task List, page 2
- Monitoring and Maintaining STUN Network Activity, page 14
- STUN Configuration Examples, page 15
- Block Serial Tunneling (BSTUN) Overview, page 24
- BSTUN Configuration Task List, page 29
- Monitoring and Maintaining the Status of BSTUN, page 36
- BSTUN Configuration Examples, page 36

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release.

**Serial Tunnel Overview**

Cisco’s STUN implementation allows Synchronous Data Link Control (SDLC) protocol devices and High-Level Data Link Control (HDLC) devices to connect to one another through a multiprotocol internetwork rather than through a direct serial link. STUN encapsulates SDLC frames in either the Transmission Control Protocol/Internet Protocol (TCP/IP) or the HDLC protocol. STUN provides a straight passthrough of all SDLC traffic (including control frames, such as Receiver Ready) end-to-end between Systems Network Architecture (SNA) devices.
Cisco’s SDLC local acknowledgment provides local termination of the SDLC session so that control frames no longer travel the WAN backbone networks. This means end nodes do not time out, and a loss of sessions does not occur. You can configure your network with STUN, or with STUN and SDLC local acknowledgment. To enable SDLC local acknowledgment, the Cisco IOS software must first be enabled for STUN and routers configured to appear on the network as primary or secondary SDLC nodes. TCP/IP encapsulation must be enabled. Cisco’s SDLC Transport feature also provides priority queueing for TCP encapsulated frames.

Cisco’s BSTUN implementation enables Cisco series 2500, 4000, 4500, 4700 and 7200 series routers to support devices that use the Binary Synchronous Communications (Bisync) data-link protocol and asynchronous security protocols that include Adplex, ADT Security Systems, Inc., Diebold, and asynchronous generic traffic. BSTUN implementation is also supported on the 4T network interface module (NIM) on the Cisco router 4000 and 4500 series. Our support of the Bisync protocol enables enterprises to transport Bisync traffic and SNA multiprotocol traffic over the same network.

**STUN Configuration Task List**

To configure and monitor STUN or STUN local acknowledgment, perform the tasks in the following sections:

- **Enabling STUN**, page 2
- **Specifying STUN Protocol Group**, page 3
- **Enabling STUN Keepalive**, page 5
- **Enabling STUN Remote Keepalive**, page 5
- **Enabling STUN Quick-Response**, page 5
- **Enabling STUN Interfaces**, page 6
- **Configuring SDLC Broadcast**, page 6
- **Establishing the Frame Encapsulation Method**, page 7
- **Configuring STUN with Multilink Transmission Groups**, page 11
- **Setting Up STUN Traffic Priorities**, page 12

The “STUN Configuration Examples” section on page 15 follows these configuration tasks.

**Enabling STUN**

To enable STUN, use the following command in global configuration mode:

```
Router(config)# stun peer-name ip-address
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# stun peer-name ip-address</td>
<td>Enables STUN for a particular IP address.</td>
</tr>
</tbody>
</table>

When configuring redundant links, ensure that the STUN peer names you choose on each router are the IP addresses of the most stable interfaces on each device, such as a loopback or Ethernet interface. See the “STUN Configuration Examples” section on page 15.
You must also configure SDLC address FF on Router A for each of the STUN peers. To do so, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# stun route address address-number tcp ip-address [local-ack] [priority] [tcp-queue-max] [passive]</code></td>
<td>Configures SDLC address FF on Router A for each STUN peer.</td>
</tr>
</tbody>
</table>

**Specifying STUN Protocol Group**

Place each STUN interface in a group that defines the ISO 3309-compliant framed protocol running on that link. Packets will only travel between STUN interfaces that are in the same protocol group.

There are three predefined STUN protocols:
- Basic
- SDLC
- SDLC transmission group (TG)

You can also specify a custom STUN protocol.

To specify STUN protocols, you must perform the tasks in the following sections:
- Specifying a Basic STUN Group, page 3
- Specifying an SDLC Group, page 4
- Specifying an SDLC Transmission Group, page 4
- Creating and Specifying a Custom STUN Protocol, page 4

If you want to use the STUN Local Acknowledgment feature, you must specify either the SDLC protocol or the SDLC TG protocol.

**Note** Before you can specify a custom protocol, you must first define the protocol; see the “Creating and Specifying a Custom STUN Protocol” section on page 4 for the procedure.

**Specifying a Basic STUN Group**

The basic STUN protocol does not depend on the details of serial protocol addressing and is used when addressing is not important. Use this when your goal is to replace one or more sets of point-to-point (not multidrop) serial links by using a protocol other than SDLC. Use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# stun protocol-group group-number basic</code></td>
<td>Specifies a basic protocol group and assigns a group number.</td>
</tr>
</tbody>
</table>
Specifying an SDLC Group

You can specify SDLC protocol groups to associate interfaces with the SDLC protocol. Use the SDLC STUN protocol to place the routers in the midst of either point-to-point or multipoint (multidrop) SDLC links. To define an SDLC protocol group, enter the following command in global configuration mode:

```
Router(config)# stun protocol-group group-number sdlc
```

If you specify an SDLC protocol group, you cannot specify the `stun route all` command on any interface of that group.

For an example of how to configure an SDLC protocol group, see the “Serial Link Address Prioritization Using STUN TCP/IP Encapsulation Example” section on page 17.

Specifying an SDLC Transmission Group

An SNA TG is a set of lines providing parallel links to the same pair of SNA front-end-processor (FEP) devices. This provides redundancy of paths for fault tolerance and load sharing. To define an SDLC TG, use the following command in global configuration mode:

```
Router(config)# stun protocol-group group-number sdlc sdlc-tg
```

All STUN connections in a TG must connect to the same IP address and use the SDLC local acknowledgment feature.

Creating and Specifying a Custom STUN Protocol

To define a custom protocol and tie STUN groups to the new protocol, use the following commands in global configuration mode:

```
Step 1
Router(config)# stun schema name offset constant-offset length address-length format format-keyword

Step 2
Router(config)# stun protocol-group group-number schema
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# stun schema</td>
<td>Creates a custom protocol.</td>
</tr>
<tr>
<td>name offset constant-offset</td>
<td></td>
</tr>
<tr>
<td>length address-length format</td>
<td></td>
</tr>
<tr>
<td>format-keyword</td>
<td></td>
</tr>
<tr>
<td>Router(config)# stun</td>
<td>Specifies the custom protocol group and assigns a group number.</td>
</tr>
<tr>
<td>protocol-group group-number</td>
<td></td>
</tr>
<tr>
<td>schema</td>
<td></td>
</tr>
</tbody>
</table>
Enabling STUN Keepalive

To define the number of times to attempt a peer connection before declaring the peer connection to be down, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# stun keepalive-count</td>
<td>Specifies the number of times to attempt a peer connection.</td>
</tr>
</tbody>
</table>

Enabling STUN Remote Keepalive

To enable detection of the loss of a peer, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# stun remote-peer-keepalive seconds</td>
<td>Enables detection of the loss of a peer.</td>
</tr>
</tbody>
</table>

Enabling STUN Quick-Response

You can enable STUN quick-response, which improves network performance when used with local acknowledgment. When STUN quick-response is used with local acknowledgment, the router responds to an exchange identification (XID) or a Set Normal Response Mode (SNRM) request with a Disconnect Mode (DM) response when the device is not in the CONNECT state. The request is then passed to the remote router and, if the device responds, the reply is cached. The next time the device is sent an XID or SNRM, the router replies with the cached DM response.

**Note**

Using STUN quick-response avoids an AS/400 line reset problem by eliminating the Non-Productive Receive Timer (NPR) expiration in the AS/400. With STUN quick-response enabled, the AS/400 receives a response from the polled device, even when the device is down. If the device does not respond to the forwarded request, the router continues to respond with the cached DM response.

To enable STUN quick-response, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# stun quick-response</td>
<td>Enables STUN quick-response.</td>
</tr>
</tbody>
</table>
Enabling STUN Interfaces

Caution

When STUN encapsulation is enabled or disabled on an RSP platform, the memory reallocates memory pools (recarve) and the interface shuts down and restarts. The recarve is caused by the change from STUN to another protocol, which results in a change in the MTU size. No user configuration is required.

You must enable STUN on serial interfaces and place these interfaces in the protocol groups you have defined. To enable STUN on an interface and to place the interface in a STUN group, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# encapsulation stun</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# stun group group-number</td>
</tr>
</tbody>
</table>

When a given serial link is configured for the STUN function, it is no longer a shared multiprotocol link. All traffic that arrives on the link will be transported to the corresponding peer as determined by the current STUN configuration.

Configuring SDLC Broadcast

The SDLC broadcast feature allows SDLC broadcast address FF to be replicated for each of the STUN peers, so each of the end stations receives the broadcast frame. For example, in Figure 1, the FEP views the end stations 1, 2, and 3 as if they are on an SDLC multidrop link. Any broadcast frame sent from the FEP to Router A is duplicated and sent to each of the downstream routers (B and C).

![SDLC Broadcast across Virtual Multidrop Lines](image)

To enable SDLC broadcast, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# sdlc virtual-multidrop</td>
<td>Enables SDLC broadcast.</td>
</tr>
</tbody>
</table>

Only enable SDLC broadcast on the device that is configured to be the secondary station on the SDLC link (Router A in Figure 1).
Establishing the Frame Encapsulation Method

To allow SDLC frames to travel across a multimedia, multiprotocol network, you must encapsulate them using one of the methods in the following sections:

- Configuring HDLC Encapsulation without Local Acknowledgment, page 7
- Configuring TCP Encapsulation without Local Acknowledgment, page 8
- Configuring TCP Encapsulation with SDLC Local Acknowledgment and Priority Queueing, page 8
- Configuring Local Acknowledgment for Direct Frame Relay Connectivity, page 11

Configuring HDLC Encapsulation without Local Acknowledgment

You can encapsulate SDLC or HDLC frames using the HDLC protocol. The outgoing serial link can still be used for other kinds of traffic. The frame is not TCP encapsulated. To configure HDLC encapsulation, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# stun route all interface serial number</td>
<td>Forwards all HDLC or SDLC traffic of the identified interface number.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# stun route all interface serial number direct</td>
<td>Forwards all HDLC or SDLC traffic on a direct STUN link.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# stun route address address-number interface serial number</td>
<td>Forwards HDLC or SDLC traffic of the identified address.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# stun route address address-number interface serial number direct</td>
<td>Forwards HDLC or SDLC traffic of the identified address across a direct STUN link.</td>
</tr>
</tbody>
</table>

Use the **no** forms of these commands to disable HDLC encapsulation.

*Note* You can forward all traffic only when you are using basic STUN protocol groups.
Configuring TCP Encapsulation without Local Acknowledgment

If you do not want to use SDLC local acknowledgment and only need to forward all SDLC frames encapsulated in TCP, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config-if)# stun route all tcp ip-address [passive]</td>
<td>Forwards all TCP traffic for this IP address.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# stun route address address-number tcp ip-address [local-ack] [priority] [tcp-queue-max] [passive]</td>
<td>Specifies TCP encapsulation.</td>
</tr>
</tbody>
</table>

Use the no form of these commands to disable forwarding of all TCP traffic.

This configuration is typically used when two routers can be connected via an IP network as opposed to a point-to-point link.

Configuring TCP Encapsulation with SDLC Local Acknowledgment and Priority Queueing

You configure SDLC local acknowledgment using TCP encapsulation. When you configure SDLC local acknowledgment, you also have the option to enable support for priority queueing.

Note

To enable SDLC local acknowledgment, you must specify an SDLC or SDLC TG.

SDLC local acknowledgment provides local termination of the SDLC session so that control frames no longer travel the WAN backbone networks. This means that time-outs are less likely to occur.

Figure 2 illustrates an SDLC session. IBM 1, using a serial link, can communicate with IBM 2 on a different serial link separated by a wide-area backbone network. Frames are transported between Router A and Router B using STUN, but the SDLC session between IBM 1 and IBM 2 is still end-to-end. Every frame generated by IBM 1 traverses the backbone network to IBM 2, which, upon receipt of the frame, acknowledges it.

Figure 2 SDLC Session Without Local Acknowledgment

With SDLC local acknowledgment, the SDLC session between the two end nodes is not end-to-end, but instead terminates at the two local routers, as shown in Figure 3. The SDLC session with IBM 1 ends at Router A, and the SDLC session with IBM 2 ends at Router B. Both Router A and Router B execute the full SDLC protocol as part of SDLC Local Acknowledgment. Router A acknowledges frames received...
from IBM 1. The node IBM 1 treats the acknowledgments it receives as if they are from IBM 2. Similarly, Router B acknowledges frames received from IBM 2. The node IBM 2 treats the acknowledgments it receives as if they are from IBM 1.

**Figure 3  SDLC Session with Local Acknowledgment**

To configure TCP encapsulation with SDLC local acknowledgment and priority queueing, perform the tasks in the following sections:

- Assigning the Router an SDLC Primary or Secondary Role, page 9
- Enabling the SDLC Local Acknowledgment Feature, page 10
- Establishing Priority Queueing Levels, page 10

**Assigning the Router an SDLC Primary or Secondary Role**

To establish local acknowledgment, the router must play the role of an SDLC primary or secondary node. Primary nodes poll secondary nodes in a predetermined order. Secondaries then send if they have outgoing data.

For example, in an IBM environment, an FEP is the primary station and cluster controllers are secondary stations. If the router is connected to an FEP, the router should appear as a cluster controller and must be assigned the role of a secondary SDLC node. If the router is connected to a cluster controller, the router should appear as an FEP and must be assigned the role of a primary SDLC node. Devices connected to SDLC primary end-stations must play the role of an SDLC secondary and routers attached to SDLC secondary end stations must play the role of an SDLC primary station.

To assign the router a primary or secondary role, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# stun sdlc-role primary</td>
<td>Assigns the STUN-enabled router an SDLC primary role. or</td>
</tr>
<tr>
<td>or</td>
<td>Assigns the STUN-enabled router an SDLC secondary role.</td>
</tr>
<tr>
<td>Router(config-if)# stun sdlc-role secondary</td>
<td></td>
</tr>
</tbody>
</table>
Enabling the SDLC Local Acknowledgment Feature

To enable SDLC local acknowledgment, use the following command in interface configuration mode:

```
Router(config-if)# stun route address address-number tcp ip-address [local-ack] [priority] [tcp-queue-max] [passive]
```

The `stun route address 1 tcp local-ack priority tcp-queue-max` interface configuration command enables local acknowledgment and TCP encapsulation. Both options are required to use TGs. You should specify the SDLC address with the echo bit turned off for TG interfaces. The SDLC broadcast address 0xFF is routed automatically for TG interfaces. The `priority` keyword creates multiple TCP sessions for this route. The `tcp-queue-max` keyword sets the maximum size of the outbound TCP queue for the SDLC. The default TCP queue size is 100. The value for `hold-queue` should be greater than the value for `tcp-queue-max`.

You can use the `priority` keyword (to set up the four levels of priorities to be used for TCP encapsulated frames) at the same time you enable local acknowledgment. The `priority` keyword is described in the following section. Use the `no` form of this command to disable SDLC Local Acknowledgment. For an example of how to enable local acknowledgment, see the “Serial Link Address Prioritization Using STUN TCP/IP Encapsulation Example” section on page 17.

Establishing Priority Queueing Levels

With SDLC local acknowledgment enabled, you can establish priority levels used in priority queueing for serial interfaces. The priority levels are as follows:

- Low
- Medium
- Normal
- High

To set the priority queueing level, use the following command in interface configuration mode:

```
Router(config-if)# stun route address address-number tcp ip-address [local-ack] priority [tcp-queue-max] [passive]
```

Use the `no` form of this command to disable priority settings. For an example of how to establish priority queueing levels, see the “Serial Link Address Prioritization Using STUN TCP/IP Encapsulation Example” section on page 17.
Configuring Local Acknowledgment for Direct Frame Relay Connectivity

To implement STUN with local acknowledgment using direct Frame Relay encapsulation, use the following command in interface configuration mode:

```
Router(config-if)# stun route address sdlc-addr
interface frame-relay-port dlci number localsap
local-ack cls
```

Configures Frame Relay encapsulation between STUN peers with local acknowledgment.

Configuring STUN with Multilink Transmission Groups

You can configure multilink SDLC TGs across STUN connections between IBM communications controllers such as IBM 37x5s. Multilink TGs allow you to collapse multiple WAN leased lines into one leased line.

SDLC multilink TGs provide the following features:

- Network Control Program (NCP) SDLC address allowances, including echo and broadcast addressing.
- Remote NCP load sequence. After a SIM/RIM exchange but before a SNRM/UA exchange, NCPs send numbered I-frames. During this period, I-frames are not locally acknowledged, but instead are passed through. After the SNRM/UA exchange, local acknowledgment occurs.
- Rerouting of I-frames sent by the Cisco IOS software to the NCP if a link is lost in a multilink TG.
- Flow control rate tuning causes a sending NCP to “feel” WAN congestion and hold frames that would otherwise be held by the Cisco IOS software waiting to be sent on the WAN. This allows the NCP to perform its class-of-service algorithm more efficiently based on a greater knowledge of network congestion.

STUN connections that are part of a TG must have local acknowledgment enabled. Local acknowledgment keeps SDLC poll traffic off the WAN and reduces store-and-forward delays through the router. It also might minimize the number of NCP timers that expire due to network delay. Also, these STUN connections must go to the same IP address. This is because SNA TGs are parallel links between the same pair of IBM communications controllers.

Design Recommendations

This section provides some recommendations that are useful in configuring SDLC multilink TGs.

The bandwidth of the WAN should be larger than or equal to the aggregate bandwidth of all serial lines to avoid excessive flow control and to ensure response timed does not degrade. If other protocols are also using the WAN, ensure that the WAN bandwidth is significantly greater than the aggregate SNA serial line bandwidth to ensure that the SNA traffic does not monopolize the WAN.

When you use a combination of routed TGs and directly connected NCP TGs, you need to plan the configuration carefully to ensure that SNA sessions do not stop unexpectedly. Assuming that hardware reliability is not an issue, single-link routed TGs are as reliable as direct NCP-to-NCP single-link TGs. This is true because neither the NCP nor the Cisco IOS software can reroute I-frames when a TG has only one link. Additionally, a multilink TG directed between NCPs and a multilink TG through a router are equally reliable. Both can perform rerouting.
However, you might run into problems if you have a configuration in which two NCPs are directly connected (via one or more TG links) and one link in the TG is routed. The NCPs treat this as a multilink TG. However, the Cisco IOS software views the TG as a single-link TG.

A problem can arise in the following situation: Assume that an I-frame is being sent from NCP A (connected to router A) to NCP B (connected to router B) and that all SDLC links are currently active. Router A acknowledges the I-frame sent from NCP A and sends it over the WAN. If, before the I-frame reaches Router B, the SDLC link between router B and NCP B goes down, Router B attempts to reroute the I-frame on another link in the TG when it receives the I-frame. However, because this is a single-link TG, there are no other routes, and Router B drops the I-frame. NCP B never receives this I-frame because Router A acknowledges its receipt, and NCP A marks it as sent and deletes it. NCP B detects a gap in the TG sequence numbers and waits to receive the missing I-frame. Router B waits forever for this I-frame, and does not send or receive any other frames. NCP B is technically not operational and all SNA sessions through NCP B are lost.

Finally, consider a configuration in which one or more lines of an NCP TG are connected to a router and one or more lines are directly connected between NCPs. If the network delay associated with one line of an NCP TG is different from the delay of another line in the same NCP TG, the receiving NCP spends additional time resequencing PIUs.

### Setting Up STUN Traffic Priorities

To determine the order in which traffic should be handled on the network, use the methods described in the following sections:

- Assigning Queueing Priorities, page 12
- Prioritizing STUN Traffic over All Other Traffic, page 14

### Assigning Queueing Priorities

To assign queueing priorities, perform the tasks in one of the following sections:

- Prioritizing by Serial Interface Address or TCP Port, page 12
- Prioritizing by Logical Unit Address, page 13

### Prioritizing by Serial Interface Address or TCP Port

You can prioritize traffic on a per-serial-interface address or TCP port basis. You might want to do this so that traffic between one source-destination pair is always sent before traffic between another source-destination pair.

---

**Note**

You must first enable local acknowledgment and priority levels as described earlier in this chapter.
To prioritize traffic, use one of the following commands in global configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# priority-list list-number protocol stun queue address group-number address-number</td>
<td>Assigns a queueing priority to the address of the STUN serial interface.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config)# priority-list list-number protocol ip queue tcp tcp-port-number</td>
<td>Assigns a queueing priority to a TCP port.</td>
</tr>
</tbody>
</table>

You must also use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# priority-group list-number</td>
<td>Assigns a priority list to a priority group.</td>
</tr>
</tbody>
</table>

Figure 4 illustrates serial link address prioritization. Device A communicates with Device C, and Device B communicates with Device D. With the serial link address prioritization, you can choose to give A-C a higher priority over B-D across the serial tunnel.

To disable priorities, use the no forms of these commands.

For an example of how to prioritize traffic according to serial link address, see the “Serial Link Address Prioritization Using STUN TCP/IP Encapsulation Example” section on page 17.

**Prioritizing by Logical Unit Address**

SNA local logical unit (LU) address prioritization is specific to IBM SNA connectivity and is used to prioritize SNA traffic on either STUN or remote source-route bridging (RSRB). To set the queueing priority by LU address, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# locaddr-priority-list list-number address-number queue-keyword</td>
<td>Assigns a queueing priority based on the LU address.</td>
</tr>
</tbody>
</table>
In Figure 5, LU address prioritization can be set so that particular LUs receive data in preference to others or so that LUs have priority over the printer, for example.

**Figure 5  SNA LU Address Prioritization**

To disable this priority, use the `no` form of this command.

For an example of how to prioritize traffic according to logical unit address, see the “LOCADDR Priority Groups for STUN Example” section on page 22.

**Prioritizing STUN Traffic over All Other Traffic**

You can prioritize STUN traffic to be routed first before all other traffic on the network. To give STUN traffic this priority, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# priority-list list-number protocol stun queue address group-number address-number</td>
<td>Prioritizes STUN traffic in your network over that of other protocols.</td>
</tr>
</tbody>
</table>

To disable this priority, use the `no` form of this command.

For an example of how to prioritize STUN traffic over all other traffic, see the “Serial Link Address Prioritization Using STUN TCP/IP Encapsulation Example” section on page 17.

**Monitoring and Maintaining STUN Network Activity**

You can list statistics regarding STUN interfaces, protocol groups, number of packets sent and received, local acknowledgment states, and more. To get activity information, use the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show stun</td>
<td>Lists the status display fields for STUN interfaces.</td>
</tr>
</tbody>
</table>
STUN Configuration Examples

The following sections provide STUN configuration examples:

- STUN Priorities Using HDLC Encapsulation Example, page 15
- SDLC Broadcast Example, page 16
- Serial Link Address Prioritization Using STUN TCP/IP Encapsulation Example, page 17
- STUN Multipoint Implementation Using a Line-Sharing Device Example, page 19
- STUN Local Acknowledgment for SDLC Example, page 20
- STUN Local Acknowledgment for Frame Relay Example, page 21
- LOCADDR Priority Groups Example, page 21
- LOCADDR Priority Groups for STUN Example, page 22

STUN Priorities Using HDLC Encapsulation Example

Assume that the link between Router A and Router B in Figure 6 is a serial tunnel that uses the simple serial transport mechanism. Device A communicates with Device C (SDLC address C1) with a high priority. Device B communicates with Device D (SDLC address A7) with a normal priority.

Figure 6  STUN Simple Serial Transport

The following configurations set the priority of STUN hosts A, B, C, and D.

Router A

```
stun peer-name 10.0.0.1
stun protocol-group 1 sdlc
stun protocol-group 2 sdlc
!
interface serial 0
no ip address
encapsulation stun
stun group 1
stun route address C1 interface serial 2
!
interface serial 1
no ip address
encapsulation stun
stun group 2
stun route address A7 interface serial 2
!

interface serial 2
ip address 10.0.0.1 255.0.0.0
```
STUN Configuration Examples

Configuring Serial Tunnel and Block Serial Tunnel

Router B

```
priority-group 1
!
priority-list 1 protocol stun high address 1 C1
priority-list 1 protocol stun low address 2 A7
```

```
Router B
stun peer-name 10.0.0.2
stun protocol-group 1 sdlc
stun protocol-group 2 sdlc
!
interface serial 0
 no ip address
 encapsulation stun
 stun group 1
 stun route address C1 interface serial 1
!
interface serial 1
 ip address 10.0.0.2 255.0.0.0
 priority-group 1
!
interface serial 2
 no ip address
 encapsulation stun
 stun group 2
 stun route address A7 interface serial 1
!
priority-list 1 protocol stun high address 1 C1
priority-list 1 protocol stun low address 2 A7
```

SDLC Broadcast Example

In the following example, an FEP views end stations 1, 2, and 3 as if they were on an SDLC multidrop link. Any broadcast frame sent from the FEP to Router A is duplicated and sent to each of the downstream routers (B and C.)

```
stun peer-name xxx.xxx.xxx.xxx
stun protocol-group 1 sdlc
interface serial 1
 encapsulation stun
 stun group 1
 stun sdlc-role secondary
 sdlc virtual-multidrop
 sdlc address 1
 sdlc address 2
 sdlc address 3
 stun route address 1 tcp yyy.yyy.yyy.yyy local-ack
 stun route address 2 tcp zzz.zzz.zzz.zzz local-ack
 stun route address 3 tcp zzz.zzz.zzz.zzz local-ack
 stun route address FF tcp yyy.yyy.yyy.yyy
 stun route address FF tcp zzz.zzz.zzz.zzz
```
Serial Link Address Prioritization Using STUN TCP/IP Encapsulation Example

Assume that the link between Router A and Router B is a serial tunnel that uses the TCP/IP encapsulation as shown in Figure 7. Device A communicates with Device C (SDLC address C1) with a high priority. Device B communicates with Device D (SDLC address A7) with a normal priority. The configuration file for each router follows the figure.

![STUN TCP/IP Encapsulation](image)

### Router A

```plaintext
stun peer-name 10.0.0.1
stun protocol-group 1 sdlc
stun protocol-group 2 sdlc
!
interface serial 0
no ip address
encapsulation stun
stun group 1
stun route address C1 tcp 10.0.0.2 local-ack priority
priority-group 1
!
interface serial 1
do ip address
encapsulation stun
stun group 2
stun route address A7 tcp 10.0.0.2 local-ack priority
priority-group 2
!
interface ethernet 0
ip address 10.0.0.1 255.0.0.0
priority-group 3
!
interface ethernet 1
ip address 10.0.0.3 255.0.0.0
priority-group 3
!
This list tells interface Serial 0 which tcp port numbers on the WAN interface correspond to the high, medium, normal and low priority queues.
priority-list 1 protocol ip high tcp 1994
priority-list 1 protocol ip medium tcp 1990
priority-list 1 protocol ip normal tcp 1991
priority-list 1 protocol ip low tcp 1992
priority-list 1 protocol stun high address 1 C1
```

### Router B

```plaintext
stun peer-name 10.0.0.1
stun protocol-group 1 sdlc
stun protocol-group 2 sdlc
!
interface serial 0
no ip address
encapsulation stun
stun group 1
stun route address C1 tcp 10.0.0.2 local-ack priority
priority-group 1
!
interface serial 1
do ip address
encapsulation stun
stun group 2
stun route address A7 tcp 10.0.0.2 local-ack priority
priority-group 2
!
interface ethernet 0
ip address 10.0.0.1 255.0.0.0
priority-group 3
!
interface ethernet 1
ip address 10.0.0.3 255.0.0.0
priority-group 3
!
This list tells interface Serial 1 which tcp port numbers on the WAN interface correspond to the high, medium, normal and low priority queues.
priority-list 1 protocol ip high tcp 1994
priority-list 1 protocol ip medium tcp 1990
priority-list 1 protocol ip normal tcp 1991
priority-list 1 protocol ip low tcp 1992
priority-list 1 protocol stun high address 1 C1
```
priority-list 2 protocol stun normal address 2 A7
! This list establishes the high, medium, normal, and low
! priority queues on the WAN interfaces.
priority-list 3 protocol ip high tcp 1994
priority-list 3 protocol ip medium tcp 1990
priority-list 3 protocol ip normal tcp 1991
priority-list 3 protocol ip low tcp 1992
!
hostname routerA
router igrp
network 1.0.0.0

Router B

stun peer-name 10.0.0.2
stun protocol-group 1 sdlc
stun protocol-group 2 sdlc
!
interface serial 0
 no ip address
 encapsulation stun
 stun group 1
 stun route address C1 tcp 10.0.0.1 local-ack priority
 priority-group 1
!
interface serial 2
 no ip address
 encapsulation stun
 stun group 2
 stun route address A7 tcp 10.0.0.1 local-ack priority
 priority-group 2
!
interface ethernet 0
 ip address 10.0.0.2 255.0.0.0
 priority-group 3
!
interface ethernet 1
 ip address 10.0.0.4 255.0.0.0
 priority-group 3
! This list tells interface Serial 0 which tcp port numbers
! on the WAN interface correspond to the high, medium, normal
! and low priority queues.
priority-list 1 protocol ip high tcp 1994
priority-list 1 protocol ip medium tcp 1990
priority-list 1 protocol ip normal tcp 1991
priority-list 1 protocol ip low tcp 1992
priority-list 1 protocol stun high address 1 C1

! This list tells interface Serial 2 which tcp port numbers
! on the WAN interface correspond to the high, medium, normal
! and low priority queues.
priority-list 2 protocol ip high tcp 1994
priority-list 2 protocol ip medium tcp 1990
priority-list 2 protocol ip normal tcp 1991
priority-list 2 protocol ip low tcp 1992
priority-list 2 protocol stun normal address 2 A7
! This list establishes the high, medium, normal, and low
! priority queues on the WAN interface(s).
priority-list 3 protocol ip high tcp 1994
priority-list 3 protocol ip medium tcp 1990
priority-list 3 protocol ip normal tcp 1991
priority-list 3 protocol ip low tcp 1992
!
hostname routerB
router igrp 109
network 1.0.0.0

**STUN Multipoint Implementation Using a Line-Sharing Device Example**

In Figure 8, four separate PS/2 computers are connected to a line-sharing device off of Router B. Each PS/2 computer has four sessions open on an AS/400 device attached to Router A. Router B functions as the primary station, while Router A functions as the secondary station. Both routers locally acknowledge packets from the IBM PS/2 systems.

![Figure 8: STUN Communication Involving a Line-Sharing Device](image)

The configuration file for the routers shown in Figure 8 follows.

**Router A**

! enter the address of the stun peer
stun peer-name 172.16.134.86
! specify that group 4 uses the SDLC protocol
stun protocol-group 4 sdlc
stun remote-peer-keepalive
!
interface ethernet 1
! enter the IP address for the Ethernet interface
ip address 172.16.134.86 255.255.255.0
! description of IBM AS/400 link
interface serial 2
! description of IBM AS/400 link; disable the IP address on a serial interface
no ip address
! enable STUN encapsulation on this interface
encapsulation stun
! apply previously defined stun group 4 to serial interface 2
stun group 4
! establish this router as a secondary station
stun sdlc-role secondary
! wait up to 63000 msec for a poll from the primary before timing out
sdlc poll-wait-timeout 63000
! list addresses of secondary stations (PS/2 systems) attached to link
sdlc address C1
sdlc address C2
sdlc address C3
sdlc address C4
! use tcp encapsulation to send frames to SDLC stations C1, C2, C3, or
! C4 and locally terminate sessions with these stations
stun route address C1 tcp 172.16.134.58 local-ack
stun route address C2 tcp 172.16.134.58 local-ack
stun route address C3 tcp 172.16.134.58 local-ack
stun route address C4 tcp 172.16.134.58 local-ack

Router B
! enter the address of the stun peer
stun peer-name 172.16.134.58
! this router is part of SDLC group 4
stun protocol-group 4 sdlc
stun remote-peer-keepalive
!
interface ethernet 1
! enter the IP address for the Ethernet interface
ip address 172.16.134.58 255.255.255.0
!
! description of PS/2 link
interface serial 4
! disable the IP address on a serial interface
no ip address
! enable STUN encapsulation on this interface
encapsulation stun
! apply previously defined stun group 4 to serial interface 2
stun group 4
! establish this router as a primary station
sdlc line-speed 9600
! wait 2000 milliseconds for a reply to a frame before resending it
sdlc t1 2000
! resend a frame up to four times if not acknowledged
sdlc n2 4
!
! list addresses of secondary stations (PS/2 systems) attached to link
sdlc address C1
sdlc address C2
sdlc address C3
sdlc address C4
! use tcp encapsulation to send frames to SDLC stations C1, C2, C3, or C4 and locally terminate sessions with these stations
stun route address C3 tcp 172.16.134.86 local-ack
stun route address C1 tcp 172.16.134.86 local-ack
stun route address C4 tcp 172.16.134.86 local-ack
stun route address C2 tcp 172.16.134.86 local-ack
! set the clock rate on this interface to 9600 bits per second
! clock rate 9600

STUN Local Acknowledgment for SDLC Example

The following example shows a sample configuration for a pair of routers performing SDLC local acknowledgment.

Router A
stun peer-name 172.16.64.92
stun protocol-group 1 sdlc
stun remote-peer-keepalive
!
interface Serial 0
no ip address
Configuring Serial Tunnel and Block Serial Tunnel

STUN Configuration Examples

encapsulation stun
stun group 1
stun sdlc-role secondary
sdlc address C1
stun route address C1 tcp 172.16.64.93 local-ack
clock rate 19200

Router B

stun peer-name 172.16.64.93
stun protocol-group 1 sdlc
stun remote-peer-keepalive
!
interface Serial 0
no ip address
encapsulation stun
stun group 1
stun sdlc-role primary
sdlc line-speed 19200
sdlc address C1
stun route address C1 tcp 172.16.64.92 local-ack
clock rate 19200

STUN Local Acknowledgment for Frame Relay Example

The following example describes an interface configuration for Frame Relay STUN with local acknowledgment:

stun peer-name 10.1.21.1 cls 4
stun protocol-group 120 sdlc
!
interface Serial1
no ip address
encapsulation frame-relay
frame-relay lmi-type ansi
frame-relay map llc2 22
!
interface Serial4
no ip address
encapsulation stun
clock rate 9600
stun group 120
stun sdlc-role secondary
sdlc address C1
sdlc address C2
stun route address C1 interface Serial1 dlci 22 04 local-ack
stun route address C2 interface Serial1 dlci 22 08 local-ack

LOCADDR Priority Groups Example

The following example shows how to establish queueing priorities on a STUN interface based on an LU address:

stun peer-name 131.108.254.6
stun protocol-group 1 sdlc
! give locaddr-priority-list 1 a high priority for LU 02
locaddr-priority-list 1 02 high
! give locaddr-priority-list 1 a low priority for LU 05
locaddr-priority-list 1 05 low
!
Configuring Serial Tunnel and Block Serial Tunnel

STUN Configuration Examples

```plaintext
interface serial 0
! disable the ip address for interface serial 0
no ip address
! enable the interface for STUN
encapsulation stun
stun group 2
stun route address 10.10.10.10 tcp 131.108.254.8 local-ack priority
! assign priority group 1 to the input side of interface serial 0
locaddr-priority 1
priority-group 1
```

LOCADDR Priority Groups for STUN Example

The following configuration example shows how to assign a priority group to an input interface:

**Router A**

```plaintext
stun peer-name 10.0.0.1
stun protocol-group 1 sdlc
locaddr-priority-list 1 02 high
locaddr-priority-list 1 03 high
locaddr-priority-list 1 04 medium
locaddr-priority-list 1 05 low
!
interface serial 0
no ip address
encapsulation stun
stun group 1
stun route address C1 tcp 10.0.0.2 local-ack priority
clock rate 19200
locaddr-priority 1
priority-group 1
!
interface Ethernet 0
ip address 10.0.0.1 255.255.255.0
!
priority-list 1 protocol ip high tcp 1994
priority-list 1 protocol ip medium tcp 1990
priority-list 1 protocol ip normal tcp 1991
priority-list 1 protocol ip low tcp 1992
```

**Router B**

```plaintext
stun peer-name 10.0.0.2
stun protocol-group 1 sdlc
locaddr-priority-list 1 02 high
locaddr-priority-list 1 03 high
locaddr-priority-list 1 04 medium
locaddr-priority-list 1 05 low
!
interface serial 0
no ip address
encapsulation stun
stun group 1
stun route address C1 tcp 10.0.0.1 local-ack priority
clock rate 19200
locaddr-priority 1
priority-group 1
!
interface Ethernet 0
ip address 10.0.0.2 255.255.255.0
!```
priority-list 1 protocol ip high tcp 1994
priority-list 1 protocol ip medium tcp 1990
priority-list 1 protocol ip normal tcp 1991
priority-list 1 protocol ip low tcp 1992
Block Serial Tunneling (BSTUN) Overview

This section describes how to configure BSTUN and contains the following sections:

- BSTUN Configuration Task List, page 29
- BSTUN Configuration Examples, page 36

Cisco's implementation of BSTUN provides the following features:

- Encapsulates Bisync, Adplex, ADT Security Systems, Inc., Diebold, and asynchronous generic traffic for transfer over router links. The tunneling of asynchronous security protocols (ASP) feature enables your Cisco 2500, 3600, 4000, 4500, or 7200 series router to support devices that use the following asynchronous security protocols:
 - adplex
 - adt-poll-select
 - adt-vari-poll
 - diebold
 - async-generic
 - mdi
- Provides a tunnel mechanism for BSTUN over Frame Relay, without using TCP/IP encapsulation.
- Supports Bisync devices and host applications without modification.
- Uses standard synchronous serial interfaces on Cisco 2500 series and the 4T network interface module (NIM) on the Cisco 4000 series and Cisco 4500 series.
- Supports point-to-point, multidrop, and virtual multidrop configurations.

Note

The async-generic item is not a protocol name. It is a command keyword used to indicate generic support of other asynchronous security protocols that are not explicitly supported.

Bisync Network Overview

The Bisync feature enables your Cisco 2500, 3600, 4000, 4500, 4700, and 7200 series routers to support devices that use the Bisync data-link protocol. This protocol enables enterprises to transport Bisync traffic over the same network that supports their SNA and multiprotocol traffic, eliminating the need for separate Bisync facilities.

At the access router, traffic from the attached Bisync device is encapsulated in IP. The Bisync traffic can then be routed across arbitrary media to the host site where another router supporting Bisync will remove the IP encapsulation headers and present the Bisync traffic to the Bisync host or controller over a serial connection. HDLC can be used as an alternative encapsulation method for point-to-point links. Figure 9 shows how you can reconfigure an existing Bisync link between two devices and provide the same logical link without any changes to the existing Bisync devices.
Figure 9 Routers Consolidating Bisync Traffic by Encapsulation in IP or HDLC

The routers transport all Bisync blocks between the two devices in pass-through mode using BSTUN as encapsulation. BSTUN uses the same encapsulation architecture as STUN, but is implemented on an independent tunnel.

Point-to-Point and Multidrop Support

The Bisync feature supports point-to-point, multidrop, and virtual multidrop Bisync configurations. In point-to-point operation, the Bisync blocks between the two point-to-point devices are received and forwarded transparently by the Cisco IOS software. The contention to acquire the line is handled by the devices themselves.

Cisco’s Bisync multipoint operation is provided as a logical multipoint configuration. Figure 10 shows how a multipoint Bisync link is reconfigured using Cisco routers. Router A is configured as Bisync secondary. It monitors the address field of the polling or selection block and uses this address information to put into the BSTUN frame for BSTUN to deliver to the correct destination router. To simulate the Bisync multidrop, an EOT block is sent by the Bisync primary router before a poll or selection block. This ensures that Bisync tributary stations are in control mode before being polled or selected.
Multidrop configurations are common in Bisync networks where up to 8 or 10 Bisync devices are frequently connected to a Bisync controller port over a single low-speed link. Bisync devices from different physical locations in the network appear as a single multidrop line to the Bisync host or controller. Figure 11 illustrates a multidrop Bisync configuration before and after implementing routers.
Asynchronous Network Overview

These protocols enable enterprises to transport polled asynchronous traffic over the same network that supports their SNA and multiprotocol traffic, eliminating the need for separate facilities. Figure 12 shows how you can reconfigure an existing asynchronous link between two security devices and provide the same logical link without any changes to the existing devices.

Figure 12 Routers Consolidate Polled Asynchronous Traffic Using Encapsulation in IP or HDLC

Router A is configured as the secondary end of the BSTUN asynchronous link and is attached to the security control station; Router B is configured as the primary end of the BSTUN asynchronous link and has one or more alarm panels attached to it.

At the downstream router, traffic from the attached alarm panels is encapsulated in IP. The asynchronous (alarm) traffic can be routed across arbitrary media to the host site where the upstream router supporting these protocols removes the IP encapsulation headers and presents the original traffic to the security control station over a serial connection. High-Level Data Link Control (HDLC) can be used as an alternative encapsulation method for point-to-point links.

The routers transport all asynchronous (alarm) blocks between the two devices in passthrough mode using BSTUN for encapsulation. BSTUN uses the same encapsulation architecture as STUN, but is implemented on an independent tunnel. As each asynchronous frame is received from the line, a BSTUN header is added to create a BSTUN frame, and then BSTUN is used to deliver the frame to the correct destination router.

The Cisco routers do not perform any local acknowledgment or cyclic redundancy check (CRC) calculations on the asynchronous alarm blocks. The two end devices are responsible for error recovery in the asynchronous alarm protocol.
Virtual Multidrop Support for Multipoint Security Network Configurations

Multipoint configurations are common in security networks, where a number of alarm panels are frequently connected to a security control station over a single low-speed link. Our virtual multidrop support allows alarm panels from different physical locations in the network to appear as a single multidrop line to the security control station. Both Adplex and ADT are virtual multidropped protocols. Multidrop operation is provided as a logical multipoint configuration. Figure 13 shows how a multipoint security network is reconfigured using Cisco routers. Router A is configured as an alarm secondary node, routers B and C are configured as alarm primary nodes. Router A monitors the address field of the polling or selection block and puts this address information in the BSTUN frame so BSTUN can deliver the frame to the correct downstream node.

Figure 13 Multipoint Asynchronous Security Protocol Link Reconfigured Using Routers

Frame Sequencing

Both Bisync and asynchronous alarm protocols are half-duplex protocols; data can be sent in either direction, but only in one direction at a time. Each block sent is acknowledged explicitly by the remote end. To avoid the problem associated with simultaneous sending of data, there is an implicit role of primary and secondary station.

Frame Sequencing in Bisync Networks

In a multidrop setup in Bisync networks, the Bisync control station is primary and the tributary stations are secondary. In a point-to-point configuration, the primary role is assumed by the Bisync device that has successfully acquired the line for sending data through the ENQ bidding sequence. The primary role stays with this station until it sends EOT.
To protect against occasional network latency, which causes the primary station to time out and resend the block before the Bisync block sent by the secondary is received, the control byte of the encapsulating frame is used as a sequence number. This sequence number is controlled and monitored by the primary Bisync router. This allows the primary Bisync router to detect and discard “late” Bisync blocks sent by the secondary router and ensure integrity of the Bisync link.

Note
Frame sequencing is implemented in passthrough mode only.

Frame Sequencing in Asynchronous Networks

Network delays in asynchronous networks make it possible for a frame to arrive “late,” meaning that the poll-cycling mechanism at the security control station has already moved on to poll the next alarm panel in sequence when it receives the poll response from the previous alarm panel.

To protect against this situation, routers configured for adplex or for adt-poll-select protocols use a sequence number built into the encapsulating frame to detect and discard late frames. The “upstream” router (connected to the security control station) inserts a frame sequence number into the protocol header, which is shipped through the BSTUN tunnel and bounced back by the “downstream” router (connected to the alarm panel). The upstream router maintains a frame-sequence count for the line, and checks the incoming frame-sequence number from the downstream router. If the two frame-sequence numbers do not agree, the frame is considered late (out of sequence) and is discarded.

Because the adt-vari-poll option allows the sending of unsolicited messages from the alarm panel, frame sequencing is not supported for this protocol.

Note
Polled asynchronous (alarm) protocols are implemented only in passthrough mode. There is no support for local acknowledgment.

BSTUN Configuration Task List

The Bisync feature is configured similar to SDLC STUN, but is configured as a protocol within a BSTUN feature. To configure and monitor Bisync with BSTUN, perform the tasks in the following sections:

- Enabling BSTUN, page 30
- Defining the Protocol Group, page 30
- Enabling BSTUN Keepalive, page 31
- Enabling BSTUN Remote Keepalive, page 31
- Enabling Frame Relay Encapsulation, page 31
- Defining Mapping Between BSTUN and DLCI, page 32
- Configuring BSTUN on the Serial Interface, page 32
- Placing a Serial Interface in a BSTUN Group, page 32
- Specifying How Frames Are Forwarded, page 33
- Setting Up BSTUN Traffic Priorities, page 34
- Configuring Protocol Group Options on a Serial Interface, page 34
Enabling BSTUN

To enable BSTUN in IP networks, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# bstun peer-name ip-address</td>
<td>Enables BSTUN.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config)# bstun lisnsap sap-value</td>
<td>Configures a SAP on which to listen for incoming calls.</td>
</tr>
</tbody>
</table>

The IP address in the `bstun peer-name` command defines the address by which this BSTUN peer is known to other BSTUN peers that are using the TCP transport. If this command is unconfigured or the `no` form of this command is specified, all BSTUN routing commands with IP addresses are deleted. BSTUN routing commands without IP addresses are not affected by this command.

The `bstun lisnsap` command specifies a SAP on which to detect incoming calls.

Defining the Protocol Group

Define a BSTUN group and specify the protocol it uses. To define the protocol group, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# bstun protocol-group group-number {bsc</td>
<td>bsc-local-ack</td>
</tr>
</tbody>
</table>

The `bsc-local-ack` protocol option only works for 3270 Bisync uses.

The block serial protocols include bsc, bsc-local-ack, adplex, adt-poll-select, adt-vari-poll, diebold, async-generic, and mdi.

Traditionally, the adt-poll-select protocol is used over land-based links, while the adt-vari-poll protocol is used over satellite (VSAT) links. The adt-vari-poll protocol typically uses a much slower polling rate when alarm consoles poll alarm panels because adt-vari-poll allows alarm panels to send unsolicited messages to the alarm console. In an adt-vari-poll configuration, alarm panels do not have wait for the console to poll them before responding with an alarm, they automatically send the alarm.

Interfaces configured to run the adplex protocol have their baud rate set to 4800 bps, use even parity, 8 data bits, 1 start bit, and 1 stop bit.

Interfaces configured to run the adt-poll-select and adt-vari-poll protocols have their baud rate set to 600 bps, use even parity, 8 data bits, 1 start bit, and 1.5 stop bits. If different line configurations are required, use the `rxspeed`, `txspeed`, `databits`, `stopbits`, and `parity` line configuration commands to change the line attributes.
Interfaces configured to run the diebold protocol have their baud rate set to 300 bps, use even parity, 8 data bits, 1 start bit, and 2 stop bits. If different line configurations are required, use the \texttt{rxspeed}, \texttt{txspeed}, \texttt{databits}, and \texttt{parity} line configuration commands to change the line attributes.

Interfaces configured to run the async-generic protocol have their baud rate set to 9600 bps, use no parity, 8 data bits, 1 start bit, and 1 stop bit. If different line configurations are required, use the \texttt{rxspeed}, \texttt{txspeed}, \texttt{databits}, \texttt{stopbits}, and \texttt{parity} line configuration commands to change the line attributes.

Interfaces configured to run the mdi protocol have their baud rate set to 600 bps, use even parity, 8 data bits, 1 start bit, and 1.5 stop bits. If different line configurations are required, use the \texttt{rxspeed}, \texttt{txspeed}, \texttt{databits}, \texttt{stopbits}, and \texttt{parity} line configuration commands to change the line attributes. The mdi protocol allows alarm panels to be sent to the MDI alarm console.

Enabling BSTUN Keepalive

To define the number of times to attempt a peer connection before declaring the peer connection be down, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{Router(config)# bstun keepalive-count}</td>
<td>Specifies the number of times to attempt a peer connection.</td>
</tr>
</tbody>
</table>

Enabling BSTUN Remote Keepalive

To enable detection of the loss of a peer, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{Router(config)# bstun remote-peer-keepalive seconds}</td>
<td>Enables detection of the loss of a peer.</td>
</tr>
</tbody>
</table>

Enabling Frame Relay Encapsulation

To enable Frame Relay encapsulation, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>\texttt{Router(config)# interface serial number}</td>
<td>Specifies a serial port.</td>
</tr>
<tr>
<td>Step 2</td>
<td>\texttt{Router(config)# encapsulation frame-relay}</td>
<td>Enables Frame Relay encapsulation on the serial port.</td>
</tr>
</tbody>
</table>
Defining Mapping Between BSTUN and DLCI

To configure the mapping between BSTUN and the DLCI, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>frame-relay map bstun dlci</code></td>
<td>Defines the mapping between BSTUN and the DLCI when using BSC passthrough.</td>
</tr>
<tr>
<td><code>frame-relay map llc2 dlci</code></td>
<td>Defines the mapping between BSTUN and the DLCI when using BSC local acknowledgment.</td>
</tr>
</tbody>
</table>

Note Direct encapsulation over Frame Relay is supported only for an encapsulation type of cisco, configured using the **encapsulation frame-relay** command.

Configuring BSTUN on the Serial Interface

Configure BSTUN on the serial interface before issuing any further BSTUN or protocol configuration commands for the interface. To configure the BSTUN function on a specified interface, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface serial number</code></td>
<td>Specifies a serial port.</td>
</tr>
<tr>
<td><code>encapsulation bstun</code></td>
<td>Configures BSTUN on an interface.</td>
</tr>
</tbody>
</table>

Note Configure the encapsulation bstun command on an interface before configuring any other BSTUN commands for the interface.

Placing a Serial Interface in a BSTUN Group

Each BSTUN-enabled interface on a router must be placed in a previously defined BSTUN group. Packets will only travel between BSTUN-enabled interfaces that are in the same group. To assign a serial interface to a BSTUN group, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bstun group group-number</code></td>
<td>Assigns a serial interface to a BSTUN group.</td>
</tr>
</tbody>
</table>
Specifying How Frames Are Forwarded

To specify how frames are forwarded when received on a BSTUN interface, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bstun route address address-number interface serial number</code></td>
<td>Propagates the serial frame that contains a specific address. HDLC encapsulation is used to propagate the serial frames.</td>
</tr>
<tr>
<td><code>bstun route all interface serial number</code></td>
<td>Propagates all BSTUN traffic received on the input interface, regardless of the address contained in the serial frame. HDLC encapsulation is used to propagate the serial frames.</td>
</tr>
<tr>
<td><code>bstun route address address-number tcp ip-address</code></td>
<td>Propagates the serial frame that contains a specific address. TCP encapsulation is used to propagate frames that match the entry.</td>
</tr>
<tr>
<td><code>bstun route all tcp ip-address</code></td>
<td>Propagates all BSTUN traffic received on the input interface, regardless of the address contained in the serial frame. TCP encapsulation is used to propagate frames that match the entry.</td>
</tr>
<tr>
<td><code>bstun route address cu-address interface serial serial-int [dlci dlci]</code></td>
<td>Propagates the serial frame that contains a specific address. Specifies the control unit address for the Bisync end station. Frame Relay encapsulation is used to propagate the serial frames.</td>
</tr>
<tr>
<td><code>bstun route all interface serial serial-int [dlci dlci]</code></td>
<td>Propagates all frames regardless of the control unit address for the Bisync end station. Frame Relay encapsulation is used to propagate the serial frames in bisync passthrough mode.</td>
</tr>
<tr>
<td><code>bstun route address cu-address interface serial serial-int [dlci dlci rsap] [priority priority]</code></td>
<td>Propagates the serial frame that contains a specific address. Specifies the control unit address for the bisync end station. Frame Relay encapsulation is used to propagate the serial frames for Bisync local acknowledgment mode.</td>
</tr>
<tr>
<td><code>bstun route all interface serial serial-int [dlci dlci rsap] [priority priority]</code></td>
<td>Propagates all BSTUN traffic received on the input interface, regardless of the address contained in the serial frame. Frame Relay encapsulation is used to propagate the serial frames.</td>
</tr>
</tbody>
</table>

1. The `bstun route all tcp` command functions in either passthrough or local acknowledgment mode.

Note

Every BSTUN route statement must have a corresponding route statement on the BSTUN peer. For example, a `bstun route address address1 tcp peer2ip` statement on PEER1 must have a corresponding `bstun route address address1 tcp peer1ip` statement on PEER2. Similarly, a `bstun route address` statement cannot map to a `bstun route all` statement, and vice versa.

For Bisync local acknowledgment, we recommend that you use the `bstun route all tcp` command. This command reduces the amount of duplicate configuration detail that would otherwise be needed to specify devices at each end of the tunnel.
Setting Up BSTUN Traffic Priorities

You can assign BSTUN traffic priorities based on either the BSTUN header or the TCP port. To prioritize traffic, use one of the following commands in global configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# priority-list list-number protocol bstun queue [gt packetsize] [lt packetsize] address bstun-group bsc-addr</code></td>
<td>Establishes BSTUN queueing priorities based on the BSTUN header.</td>
</tr>
<tr>
<td><code>Router(config)# priority-list list-number protocol ip queue tcp tcp-port-number</code></td>
<td>Assigns a queueing priority to TCP port.</td>
</tr>
</tbody>
</table>

You can customize BSTUN queueing priorities based on either the BSTUN header or TCP port. To customize priorities, use one of the following commands in global configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# queue-list list-number protocol bstun queue [gt packetsize] [lt packetsize] address bstun-group bsc-addr</code></td>
<td>Customizes BSTUN queueing priorities based on the BSTUN header.</td>
</tr>
<tr>
<td><code>Router(config)# queue-list list-number protocol ip queue tcp tcp-port-number</code></td>
<td>Customizes BSTUN queueing priorities based on the TCP port.</td>
</tr>
</tbody>
</table>

Note Because the asynchronous security protocols share the same tunnels with Bisync when configured on the same routers, any traffic priorities configured for the tunnel apply to both Bisync and the various asynchronous security protocols.

Configuring Protocol Group Options on a Serial Interface

Depending on the selected block serial protocol group, you must configure one or more options for that protocol group. The options for each of these protocol groups are explained in the following sections:

- Configuring Bisync Options on a Serial Interface, page 34
- Configuring Asynchronous Security Protocol Options on a Serial Interface, page 35

Configuring Bisync Options on a Serial Interface

To configure Bisync options on a serial interface, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config-if)# bsc char-set {ascii</td>
<td>ebcdic}`</td>
</tr>
<tr>
<td><code>Router(config-if)# bsc contention address</code></td>
<td>Specifies an address on a contention interface.</td>
</tr>
</tbody>
</table>
Configuring Serial Tunnel and Block Serial Tunnel

BSTUN Configuration Task List

Configuring Asynchronous Security Protocol Options on a Serial Interface

To configure asynchronous security protocol options on a serial interface, use one or more of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bsc dial-contention timeout</code></td>
<td>Specifies that the router at the central site will behave as a central router with dynamic allocation of serial interfaces. The timeout value is the length of time an interface can be idle before it is returned to the idle interface pool.</td>
</tr>
<tr>
<td><code>bsc extended-address poll-address select-address</code></td>
<td>Specifies a nonstandard Bisync address.</td>
</tr>
<tr>
<td><code>full-duplex</code></td>
<td>Specifies that the interface can run Bisync in full-duplex mode.</td>
</tr>
<tr>
<td><code>bsc pause time</code></td>
<td>Specifies the amount of time between the start of one polling cycle and the next.</td>
</tr>
<tr>
<td><code>bsc poll-timeout time</code></td>
<td>Specifies the timeout for a poll or a select sequence.</td>
</tr>
<tr>
<td><code>bsc host-timeout time</code></td>
<td>Specifies the timeout for a nonreception of poll or a select sequence from the host. If the frame is not received within this time, the remote connection will be deactivated.</td>
</tr>
<tr>
<td><code>bsc primary</code></td>
<td>Specifies that the router is acting as the primary end of the Bisync link.</td>
</tr>
<tr>
<td><code>bsc retries retry-count</code></td>
<td>Specifies the number of retries before a device is considered to have failed.</td>
</tr>
<tr>
<td><code>bsc secondary</code></td>
<td>Specifies that the router is acting as the secondary end of the Bisync link.</td>
</tr>
<tr>
<td><code>bsc spec-poll</code></td>
<td>Specifies specific polls, rather than general polls, used on the host-to-router connection.</td>
</tr>
<tr>
<td><code>bsc servlim servlim-count</code></td>
<td>Specifies the number of cycles of the active poll list that are performed between polls to control units in the inactive poll list.</td>
</tr>
</tbody>
</table>

Asynchronous Security Protocol Options on a Serial Interface

To configure asynchronous security protocol options on a serial interface, use one or more of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>asp role primary</code></td>
<td>Specifies that the router is acting as the primary end of the polled asynchronous link.</td>
</tr>
<tr>
<td><code>asp role secondary</code></td>
<td>Specifies that the router is acting as the secondary end of the polled asynchronous link.</td>
</tr>
<tr>
<td><code>asp addr-offset address-offset</code></td>
<td>Configures an asynchronous port to send and receive polled asynchronous traffic through a BSTUN tunnel.</td>
</tr>
<tr>
<td><code>asp rx-ift interframe-timeout</code></td>
<td>For asynchronous-generic configurations, specifies the timeout period between frames to delineate the end of one frame being received from the start of the next frame.</td>
</tr>
</tbody>
</table>
Configuring Direct Serial Encapsulation for Passthrough Peers

To configure direct serial encapsulation for passthrough peers, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>frame relay map bstun</code></td>
<td>Configures the Frame Relay interface for passthrough.</td>
</tr>
</tbody>
</table>

Configuring Local Acknowledgment Peers

To configure local acknowledgment peers, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>frame-relay map llc2 dlc1</code></td>
<td>Configures the Frame Relay interface for local acknowledgment.</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining the Status of BSTUN

To list statistics for BSTUN interfaces, protocol groups, number of packets sent and received, local acknowledgment states, and other activity information, use the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show bstun [group bstun-group-number] [address address-list]</code></td>
<td>Lists the status display fields for BSTUN interfaces.</td>
</tr>
<tr>
<td>Router# <code>show bsc [group bstun-group-number] [address address-list]</code></td>
<td>Displays status of the interfaces on which Bisync is configured.</td>
</tr>
</tbody>
</table>

BSTUN Configuration Examples

The following sections provide BSTUN configuration examples:

- Simple Bisync Configuration Example, page 37
- Bisync Addressing on Contention Interfaces Example, page 41
- Nonstandard Bisync Addressing Example, page 41
- Priority Queueing: With Priority Based on BSTUN Header Example, page 41
- Priority Queueing: With Priority Based on BSTUN Header and Packet Sizes Example, page 42
- Priority Queueing: With Priority Based on BSTUN Header and Bisync Address Example, page 42
- Priority Queueing: With Priority Based on BSTUN TCP Ports Example, page 42
- Priority Queueing: With Priority Based on BSTUN TCP Ports and Bisync Address Example, page 43
- Custom Queueing: With Priority Based on BSTUN Header Example, page 43
Simple Bisync Configuration Example

Figure 14 shows a simple Bisync configuration example.

The configuration files for the routers shown in Figure 14 follows.

Router 45ka

```plaintext
version 10.2
!
hostname 45ka
!
no ip domain-lookup
!
bstun peer-name 172.30.254.201
bstun protocol-group 1 bsc
!
interface ethernet 0
   ip address 198.92.0.201 255.255.255.0
   media-type 10BaseT
!
interface ethernet 1
   no ip address
   shutdown
   media-type 10BaseT
```

Figure 14 shows a simple Bisync configuration example.
interface serial 0
 no ip address
 encapsulation bstun
 clock rate 19200
 bstun group 1
 bsc char-set ebcdic
 bsc secondary
 bstun route address C9 tcp 172.30.254.210
 bstun route address C8 tcp 172.30.254.210
 bstun route address C7 tcp 172.30.254.208
 bstun route address C6 tcp 172.30.254.208
 bstun route address C5 tcp 172.30.254.208
 bstun route address C4 tcp 172.30.254.208
 bstun route address C3 tcp 172.30.254.207
 bstun route address C2 tcp 172.30.254.207
 bstun route address C1 tcp 172.30.254.207
 bstun route address 40 tcp 172.30.254.207

! interface serial 1
 no ip address
 shutdown

! interface serial 2
 no ip address
 shutdown

! interface serial 3
 no ip address
 shutdown

! interface tokenring 0
 no ip address
 shutdown

! interface tokenring 1
 ip address 172.30.254.201 255.255.255.0
 ring-speed 16

! line con 0
! line aux 0
! line vty 0 4
 login

! end

Router 25ka

version 10.2

hostname 25ka

no ip domain-lookup

bstun peer-name 172.30.254.207
bstun protocol-group 1 bsc

! interface serial 0
 no ip address
 shutdown

!
Configuring Serial Tunnel and Block Serial Tunnel

BSTUN Configuration Examples

```
interface serial 1
    no ip address
    encapsulation bstun
    clock rate 19200
    bstun group 1
    bsc char-set ebcdic
    bsc primary
    bstun route address C3 tcp 172.30.254.201
    bstun route address C2 tcp 172.30.254.201
    bstun route address C1 tcp 172.30.254.201
    bstun route address 40 tcp 172.30.254.201

! interface tokenring 0
    ip address 172.30.254.207 255.255.255.0
    ring-speed 16

! interface bri 0
    no ip address
    shutdown

! line con 0
! line aux 0
! line vty 0 4
    login

! end

**Configuration for Router 4kc**

```
version 10.2
!
hostname 4kc
!
no ip domain-lookup
!
bstun peer-name 172.30.254.210
bstun protocol-group 1 bsc
!
interface ethernet 0
 ip address 198.92.0.210 255.255.255.0
 media-type 10BaseT
!
interface serial 0
 no ip address
 encapsulation bstun
 clock rate 19200
 bstun group 1
 bsc char-set ebcdic
 bsc primary
 bstun route address C9 tcp 172.30.254.201
 bstun route address C8 tcp 172.30.254.201
!
interface serial 1
 no ip address
 shutdown
!
interface serial 2
 no ip address
 shutdown
!

interface serial 3
 no ip address
```
shutdown
!
interface tokenring 0
 ip address 172.30.254.210 255.255.255.0
 ring-speed 16
!
interface tokenring 1
 no ip address
 shutdown!
 line con 0
 line aux 0
 line vty 0 4
 login
!
end

Router 25kb

version 10.2
!
hostname 25kb
!
no ip domain-lookup
!
bstun peer-name 172.30.254.208
bstun protocol-group 1 bsc
!
interface serial 0
 no ip address
 encapsulation bstun
 no keepalive
 clock rate 19200
 bstun group 1
 bsc char-set ebc dic
 bsc primary
 bstun route address C7 tcp 172.30.254.201
 bstun route address C6 tcp 172.30.254.201
 bstun route address C5 tcp 172.30.254.201
 bstun route address C4 tcp 172.30.254.201
!
interface serial 1
 no ip address
 shutdown
!
interface tokenring 0
 ip address 172.30.254.208 255.255.255.0
 ring-speed 16
!
!
line con 0
 line aux 0
 line vty 0 4
 login
!
end
Bisync Addressing on Contention Interfaces Example

The following examples show user-configurable addressing on contention interfaces:

Remote Devices

bstun peer-name 1.1.1.20
bstun protocol-group 1 bsc
interface serial 0
bstun group 1
bsc contention 20
bstun route address 20 tcp 1.1.1.1

Host Device

bstun peer-name 1.1.1.1
bstun protocol-group 1 bsc
interface serial 0
bstun group 1
bsc dial-contention 100
bstun route address 20 tcp 1.1.1.20
bstun route address 21 tcp 1.1.1.21

Nonstandard Bisync Addressing Example

This example specifies an extended address on serial interface 0:

bstun peer-name 1.1.1.1
bstun protocol-group 1 bsc
!
interface serial 0
bstun group 1
bsc extended-address 23 83
bsc extended-address 87 42
bsc primary
bstun route address 23 tcp 1.1.1.20

Priority Queueing: With Priority Based on BSTUN Header Example

In the following example, the output interface examines header info and places packets with the BSTUN header on specified output queue:

priority-list 1 protocol bstun normal
interface serial 0
priority-group 1
interface serial 1
capsulation bstun
bstun group 1
bsc char-set ebcdic
bstun route all interface serial 0
...or...
bstun route address C1 interface serial 0
Priority Queueing: With Priority Based on BSTUN Header and Packet Sizes Example

In the following example, the output interface examines header information and packet size and places packets with the BSTUN header that match criteria (gt or lt specified packet size) on specified output queue:

```plaintext
priority-list 1 protocol bstun low gt 1500
priority-list 1 protocol bstun hi lt 500
interface serial 0
 priority-group 1
 interface serial 1
 encapsulation bstun
 bstun group 1
 bsc char-set ebcidc
 bstun route all interface serial 0
...or...
bstun route address C1 interface serial 0
```

Priority Queueing: With Priority Based on BSTUN Header and Bisync Address Example

In the following example, the output interface examines header information and Bisync address and places packets with the BSTUN header that match Bisync address on specified output queue:

```plaintext
priority-list 1 protocol bstun normal address 1 C1
interface serial 0
 priority-group 1
 interface serial 1
 encapsulation bstun
 bstun group 1
 bsc char-set ebcidc
 bstun route address C1 interface serial 0
```

Priority Queueing: With Priority Based on BSTUN TCP Ports Example

In the following example, the output interface examines TCP port number and places packets with the BSTUN port number (1976) on specified output queue:

```plaintext
priority-list 1 protocol ip high tcp 1976
interface serial 0
 priority-group 1
 interface serial 1
 encapsulation bstun
 bstun group 1
 bstun route all tcp 200.190.30.1
```
Priority Queueing: With Priority Based on BSTUN TCP Ports and Bisync Address Example

In the following example, four TCP/IP sessions (high, medium, normal, and low) are established with BSTUN peers using BSTUN port numbers. The input interface examines the Bisync address and uses the specified output queue definition to determine which BSTUN TCP session to use for sending the packet to the BSTUN peer.

The output interface examines the TCP port number and places packets with the BSTUN port numbers on the specified output queue.

```
priority-list 1 protocol ip high tcp 1976
priority-list 1 protocol ip medium tcp 1977
priority-list 1 protocol ip normal tcp 1978
priority-list 1 protocol ip low tcp 1979
! priority-list 1 protocol bstun normal address 1 C1
! interface serial 0
 priority-group 1
! interface serial 1
 encapsulation bstun
 bstun group 1
 bsc char-set ebcdic
 bstun route address C1 tcp 200.190.30.1 priority
 priority-group 1
```

Custom Queueing: With Priority Based on BSTUN Header Example

In the following example, the output interface examines header info and places packets with the BSTUN header on specified output queue.

```
queue-list 1 protocol bstun normal
! interface serial 0
 custom-queue-list 1
! interface serial 1
 encapsulation bstun
 bstun group 1
 bstun route all interface serial 0
```
Custom Queueing: With Priority Based on BSTUN Header and Packet Size Example

In the following example, the output interface examines header information and packet size and places packets with the BSTUN header that match criteria (gt or lt specified packet size) on specified output queue.

```plaintext
queue-list 1 protocol bstun low gt 1500
queue-list 1 protocol bstun high lt 500
interface serial 0
 custom-queue-list 1
interface serial 1
encapsulation bstun
bstun group 1
bstun route all interface serial 0
```

Custom Queueing: With Priority Based on BSTUN Header and Bisync Address Example

In the following example, the output interface examines header info and Bisync address and places packets with the BSTUN header that match Bisync address on specified output queue.

```plaintext
queue-list 1 protocol bstun normal address 1 C1
interface serial 0
 custom-queue-list 1
interface serial 1
encapsulation bstun
bstun group 1
bsc char-set ebcidic
bstun route address C1 interface serial 0
```

Custom Queueing: With Priority Based on BSTUN TCP Ports Example

In the following example, the output interface examines the TCP port number and places packets with the BSTUN port number (1976) on specified output queue:

```plaintext
queue-list 1 protocol ip high tcp 1976
interface serial 0
custom-queue-list 1
interface serial 1
encapsulation bstun
bstun group 1
bstun route all tcp 200.190.30.1
```
Custom Queueing: With Priority Based on BSTUN TCP Ports and Bisync Address Example

In the following example, four TCP/IP sessions (high, medium, normal, and low) are established with BSTUN peers using BSTUN port numbers. The input interface examines the Bisync address and uses the specified output queue definition to determine which BSTUN TCP session to use.

The output interface examines the TCP port number and places packets with the BSTUN port numbers on the specified output queue.

For Bisync addressing, output queues map as shown in Table 1:

<table>
<thead>
<tr>
<th>Output Queue</th>
<th>Session Mapped</th>
<th>BSTUN Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Medium</td>
<td>1977</td>
</tr>
<tr>
<td>2</td>
<td>Normal</td>
<td>1978</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>1979</td>
</tr>
<tr>
<td>4–10</td>
<td>High</td>
<td>1976</td>
</tr>
</tbody>
</table>

```
queue-list 1 protocol ip high tcp 1976
queue-list 1 protocol ip medium tcp 1977
queue-list 1 protocol ip normal tcp 1978
queue-list 1 protocol ip low tcp 1979
!
priority-list 1 protocol bstun normal address 1 C1
!
interface serial 0
 custom-queue-list 1
!
interface serial 1
 encapsulation bstun
 bstun group 1
 bsc char-set ebcdic
 bstun route address C1 tcp 200.190.30.1 priority
 custom-queue-list 1
```
Asynchronous Configuration Example

In the following example, Router A and Router B are configured for both Adplex and Bisync across the same BSTUN as shown in Figure 15.

**Figure 15  Combined Adplex and Bisync Configuration Example**

**Router A**

```plaintext
version 11.0
!
hostname router-a
!
bstun peer-name 172.28.1.190
bstun protocol-group 1 bsc
bstun protocol-group 2 adplex
bstun protocol-group 3 adplex
!
interface serial 0
 no ip address
!
interface serial 1
 no ip address
!
interface serial 2
 physical-layer async
description Connection to 1st Security Alarm Console.
 no ip address
 encapsulation bstun
 no keepalive
 bstun group 2
 bstun route address 2 tcp 172.28.1.189
 bstun route address 3 tcp 172.28.1.189
 adplex secondary
!

interface serial 3
 description Connection to BSC 3780 host.
 no ip address
 encapsulation bstun
```
no keepalive
clock rate 9600
bstun group 1
bstun route all tcp 172.28.1.189
bsc char-set ebcdic
bsc contention
!
interface serial 4
  physical-layer async
description Connection to 2nd Security Alarm Console.
  no ip address
  encapsulation bstun
  no keepalive
  bstun group 3
  bstun route address 2 tcp 172.28.1.189
  bstun route address 3 tcp 172.28.1.189
  adplex secondary
!
interface serial 5
  no ip address
!
interface serial 6
  no ip address
!
interface serial 7
  no ip address
!
interface serial 8
  no ip address
!
interface serial 9
  no ip address
!
interface tokenring 0
  ip address 172.28.1.190 255.255.255.192
  ring-speed 16
!
interface BRI0
  ip address
  shutdown
!
  ip host ss10 172.28.0.40
  ip host s2000 172.31.0.2
  ip route 0.0.0.0 0.0.0.0 172.28.1.129
!
  snmp-server community public RO
!
line con 0
  exec-timeout 0 0
line 2
  no activation-character
  transport input-all
  parity even
  stopbits 1
  rxspeed 4800
  txspeed 4800
line 4
  transport input all
  parity even
  stopbits 1
  rxspeed 4800
  txspeed 4800
line aux 0
  transport input all
line vty 0 4
  password mango
  login
  !
  end

Router B

version 11.0
!
hostname router-b
!
bstun peer-name 172.28.1.189
bstun protocol-group 1 bsc
bstun protocol-group 2 adplex
bstun protocol-group 3 adplex
source-bridge ring-group 100
!
interface serial 0
  no ip address
interface serial 1
  no ip address
interface serial 2
  physical-layer async
description Connection to Security Alarm Panel.
  no ip address
encapsulation bstun
no keepalive
bstun group 2
bstun route all tcp 172.28.1.190
adplex primary
!
interface serial 3
description Connection to BSC 3780 device.
  no ip address
encapsulation bstun
no keepalive
clock rate 9600
bstun group 1
bstun route all tcp 172.28.1.190
bsc char-set ebcdic
bsc contention
!
interface serial 4
  physical-layer async
description Connection to async port on NCD (VT100 terminal emulation).
  no ip address
!

interface serial 5
  no ip address
encapsulation sdlc-primary
no keepalive
nrzi-encoding
clock rate 9600
sdllc traddr 4000.0000.4100 222 2 100
sdllc address C1
sdllc xid C1 05D40003
sdllc partner 4000.0000.0307 C1
!
interface serial 6
description Connection to alarm panel.
physical-layer async
no ip address
encapsulation bstun
no keepalive
bstun group 3
bstun route all tcp 172.28.1.190
adplex primary
!interface serial 7
no ip address

!interface serial 8
no ip address

!interface serial 9
no ip address

!interface tokenring 0
  ip address 172.28.1.189 255.255.255.192
  ring-speed 16
  source-bridge 4 1 100

!interface BRI0
  ip address
  shutdown

!ip host ss10 172.28.0.40
ip host s2000 172.31.0.2
ip route 0.0.0.0 0.0.0.0 172.28.1.129

!snmp-server community public RO

!line con 0
  exec-timeout 0 0
line 2
  no activation-character
  transport input-all
  parity even
  stopbits 1
  rxspeed 4800
  txspeed 4800
line 4
  transport input all
  stopbits 1
line 6
  transport input all
  parity even
  stopbits 1
  rxspeed 4800
  txspeed 4800
line 7
  transport input all
line aux 0
  transport input all
line vty 0 4
  password mango
  login

! end
BSTUN-over-Frame Relay Configuration with Local Acknowledgment Example

The following example configures BSTUN over Frame Relay with local acknowledgment configured:

```bash
bstun protocol-group 1 bsc-local-ack

interface Serial1
 encapsulation frame-relay ietf
 clock rate 125000
 frame-relay map llc2 16

interface Serial4
 no ip address
 encapsulation bstun
 bstun group 1
 bsc secondary
 bstun route address C3 interface Serial1 dlci 16 C
 bstun route address C2 interface Serial1 dlci 16 8
 bstun route address C1 interface Serial1 dlci 16 4
```

BSTUN-over-Frame Relay Configuration with Passthrough Example

The following example configures BSTUN over Frame Relay with Passthrough configured:

```bash
bstun protocol-group 1 bsc

interface Serial1
 encapsulation frame-relay
 clock rate 125000
 frame-relay map bstun 16
 frame-relay map llc 16

interface Serial4
 no ip address
 encapsulation bstun
 bstun group 1
 bsc secondary
 bstun route address C3 interface Serial1 dlci 16
 bstun route address C2 interface Serial1 dlci 16
 bstun route address C1 interface Serial1 dlci 16
```
Configuring LLC2 and SDLC Parameters

You do not need to configure Logical Link Control, type 2 (LLC2) Protocol because it is already enabled on Token Ring interfaces. This chapter describes how to modify the default settings of LLC2 parameters as needed.

To support the Synchronous Data Link Control (SDLC) protocol, you must configure the router to act as a primary or secondary SDLC station. You also can change default settings on any SDLC parameters. Configuration examples for both LLC2 and SDLC are given at the end of the chapter.

For a complete description of the LLC2 and SDLC commands mentioned in this chapter, refer to the “LLC2 and SDLC Commands” chapter in the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2). To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter contains the following sections:

- LLC2 Configuration Task List, page 9
- Monitoring and Maintaining LLC2 Stations, page 13
- SDLC Configuration Task List, page 14
- Monitoring and Maintaining SDLC Stations, page 20
- LLC2 and SDLC Configuration Examples, page 21

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release.

Technology Overview

The LLC2 and SDLC protocols provide data link layer support for higher-layer network protocols and features such as SDLC Logical Link Control (SDLLC) and RSRB with local acknowledgment. The features that are affected by LLC2 parameter settings are listed in the “The Cisco Implementation of LLC2” section on page 2. The features that require SDLC configuration and use SDLC parameters are listed in the “The Cisco Implementation of SDLC” section on page 2.

LLC2 and SDLC package data in frames. LLC2 and SDLC stations require acknowledgments from receiving stations after a set amount of frames have been sent before sending further data. The tasks described in this chapter modify default settings regarding the control field of the data frames. By
modifying the control field parameters, you can determine the number of acknowledgments sent for frames received and the level of polling used to determine available stations. In this manner, you can set the amount of resources used for frame checking and optimize the network load.

SDLC is used as the primary SNA link-layer protocol for WAN links. SDLC defines two types of network nodes: primary and secondary. Primary nodes poll secondary nodes in a predetermined order. Secondary nodes then send any outgoing data. When configured as primary and secondary nodes, our routers are established as SDLC stations.

The Cisco Implementation of LLC2

The Cisco LLC2 implementation supports the following features:

- **Local acknowledgment for Remote Source-Route Bridging (RSRB)**
  
  This feature is used in our implementation of RSRB as described in the chapter “Configuring Source-Route Bridging.”
  
  Because LANs are now connected through RSRB and WAN backbones, the delays that occur are longer than LLC2 allows for bidirectional communication between hosts. Our local acknowledgment feature addresses the problem of delays, resending data, and loss of user sessions.

- **IBM LNM support**
  
  Routers using 4- or 16-Mbps Token Ring interfaces configured for Source-Route Bridging (SRB) support LAN Network Manager (LNM) and provide all IBM bridge program functions. With LNM, a router appears as an IBM source-route bridge, and can manage or monitor any connected Token Ring interface.
  
  LNM support is described in the chapter “Configuring Source-Route Bridging.”

- **SDLLC media translation**
  
  The SDLLC feature provides media translation between the serial lines running SDLC and Token Rings running LLC2. SDLLC consolidates the IBM SNA networks running SDLC into a LAN-based, multiprotocol, multimedia backbone network.
  
  SDLLC is described in the chapter “Configuring IBM Network Media Translation.”

- **ISO Connection-Mode Network Service (CMNS)**
  
  Cisco’s CMNS implementation runs X.25 packets over LLC2 so that X.25 can be extended to Ethernet, Fiber Distributed Data Interface (FDDI), and Token Ring media.

The Cisco Implementation of SDLC

The Cisco SDLC implementation supports the following features:

- **Frame Relay Access Support (FRAS)**
  
  With FRAS, a router functions as a Frame Relay Access Device (FRAD) for SDLC, Token Ring, and Ethernet-attached devices over a Frame Relay Boundary Network Node (BNN) link.
  
  Frame Relay access support is described in the chapter “Configuring SNA Frame Relay Access Support.”
- SDLLC media translation
  The SDLLC feature provides media translation between the serial lines running SDLC and Token Rings running LLC2. SDLLC consolidates the IBM SNA networks running SDLC into a LAN-based, multiprotocol, multimedia backbone network.
  SDLLC is described in the chapter “Configuring IBM Network Media Translation.”
- SDLC local acknowledgment
  SDLC local acknowledgment is used with SDLC STUN. TCP/IP must be enabled. With local acknowledgment, STUN SDLC connections can be terminated locally at the router, eliminating the need for acknowledgments to be sent across a WAN.
  SDLC local acknowledgment is described in the section “Establish the Frame Encapsulation Method” in the chapter “Configuring STUN and BSTUN.”

**IBM Network Media Translation**

The Cisco IOS software includes the following media translation features that enable network communications across heterogeneous media:
- SDLLC media translation enables a device on a Token Ring to communicate with a device on a serial link.
- QLLC conversion enables an IBM device to communicate with an X.25 network without having to install the X.25 software on local IBM equipment.

SDLLC is Cisco’s proprietary software feature that enables a device on a Token Ring to communicate with a device on a serial link by translating between LLC2 and SDLC at the link layer.

SNA uses SDLC and LLC2 as link layer protocols to provide a reliable connection. The translation function between these industry-standard protocols takes place in the proprietary Cisco software.

Figure 1 illustrates how SDLLC provides data link layer support for SNA communication.

**Figure 1**  
**SNA Data Link Layer Support**

![Diagram of SNA Data Link Layer Support](image)

**SDLLC Media Translation Features**

The SDLLC feature allows a PU 4, PU 2.1, or PU 2 to communicate with a PU 2 SDLC device as follows:
- SDLLC with direct connection—A 37x5 FEP on a Token Ring and the 3x74 cluster controller connected to a serial line are each connected to an interface on the same router configured with SDLLC.
Configuration LLC2 and SDLC Parameters

Technology Overview

- **SDLLC with RSRB**—A 37x5 FEP on a Token Ring and a 3x74 cluster controller connected to a serial line are connected to different routers. Only the device to which the 3x74 is connected is configured with SDLLC. The routers communicate via RSRB using direct encapsulation, RSRB over an FST connection, or RSRB over a TCP connection.

- **SDLLC with RSRB and local acknowledgment**—A 37x5 FEP on a Token Ring and a 3x74 cluster controller connected to a serial line are connected to different routers. Only the device to which the 3x74 is connected is configured with SDLLC. The routers communicate via RSRB over a TCP connection that has local acknowledgment enabled.

In all these topologies, each IBM end node (the FEP and cluster controller) has no indication that its counterpart is connected to a different medium running a different protocol. The 37x5 FEP responds as if the 3x74 cluster controller were communicating over a Token Ring, whereas the 3x74 responds as though the 37x5 FEP were communicating over a serial line. That is, the SDLLC software makes translation between the two media transparent to the end nodes.

**Virtual Token Ring Concept**

Central to Cisco’s SDLLC feature is the concept of a virtual Token Ring device residing on a virtual Token Ring. Because the Token Ring device expects the node with which it is communicating also to be on a Token Ring, each SDLLC device on a serial line must be assigned an SDLLC virtual Token Ring address (SDLLC VTRA). Like real Token Ring addresses, SDLLC VTRAs must be unique across the network.

In addition to the SDLLC VTRA, an SDLLC virtual ring number must be assigned to each SDLLC device on a serial line. (The SDLLC virtual ring number differs from the virtual ring group numbers that are used to configure RSRB and multiport bridging.)

As part of its virtual telecommunications access method (VTAM) configuration, the IBM node on the Token Ring has knowledge of the SDLLC VTRA of the serial device with which it communicates. The SDLC VTRA and the SDLLC virtual ring number are a part of the SDLLC configuration for the router’s serial interface. When the Token Ring host sends out explorer packets with the SDLLC VTRA as the destination address in the MAC headers, the router configured with that SDLLC VTRA intercepts the frame, fills in the SDLLC virtual ring number address and the bridge number in the RIF, then sends the response back to the Token Ring host. A route is then established between the Token Ring host and the router. After the Cisco IOS software performs the appropriate frame conversion, the system uses this route to forward frames to the serial device.

**Resolving Differences in LLC2 and SDLC Frame Size**

IBM nodes on Token Ring media normally use frame sizes greater than 1 KB, whereas the IBM nodes on serial lines normally limit frame sizes to 265 or 521 bytes. To reduce traffic on backbone networks and provide better performance, Token Ring nodes should send frames that are as large as possible. As part of the SDLLC configuration on the serial interface, the largest frame size the two media can support should be selected. The Cisco IOS software can fragment the frames it receives from the Token Ring device before forwarding them to the SDLC device, but it does not assemble the frames it receives from the serial device before forwarding them to the Token Ring device.

**Maintaining a Dynamic RIF Cache**

SDLLC maintains a dynamic RIF cache and caches the entire RIF; that is, the RIF from the source station to destination station. The cached entry is based on the best path at the time the session begins. SDLLC uses the RIF cache to maintain the LLC2 session between the router and the host FEP. SDLLC does not age these RIF entries. Instead, SDLLC places an entry in the RIF cache for a session when the session
begins and flushes the cache when the session terminates. You cannot flush these RIFs because if you flush the RIF entries randomly, the Cisco IOS software cannot maintain the LLC2 session to the host FEP.

Other Considerations

The following are additional facts regarding SDLC and SDLLC:

- As part of Cisco’s SDLC implementation, only modulus 8 Normal Response Mode (NRM) sessions are maintained for the SDLC session.
- SDLC sessions are always locally acknowledged. LLC2 sessions can be optionally configured for local acknowledgment.
- SDLLC does not apply to SNA subarea networks, such as 37x5 FEP-to 37x5 FEP communication.
- Parameters such as the maximum number of information frames (I-frames) outstanding before acknowledgment, frequency of polls, and response time to poll frames can be modified per interface. If local acknowledgment is not enabled, these parameters are modified on the SDLC interface. If local acknowledgment is enabled, these parameters are modified on the Token Ring interface.
- Local acknowledgment only applies when the remote peer is defined for RSRB using IP encapsulation over a TCP connection. If no local acknowledgment is used, the remote peer can be defined for RSRB using direct encapsulation, RSRB using IP encapsulation over an Fast-Sequenced Transport (FST) connection, or RSRB using IP encapsulation over a TCP connection.

QLLC Conversion

Qualified Logical Link Control (QLLC) is a data link protocol defined by IBM that allows Systems Network Architecture (SNA) data to be transported across X.25 networks. (Although IBM has defined other protocols for transporting SNA traffic over an X.25 network, QLLC is the most widely used.)
Figure 2 illustrates how QLLC conversion provides data link layer support for SNA communication.

**Figure 2**  
*SNA Data Link Layer Support*

![Diagram of SNA Data Link Layer Support](image)

As shown in Figure 3, any devices in the SNA communication path that use X.25, whether end systems or intermediate systems, require a QLLC implementation.

**Figure 3**  
*SNA Devices Running QLLC*

![Diagram of SNA Devices Running QLLC](image)

As shown in Figure 4, the QLLC conversion feature eliminates the need to install the X.25 software on local IBM equipment. A device attached locally to a Token Ring network can communicate through a router running the QLLC Conversion feature with a remote device attached to an X.25 network using QLLC. Typically, the locally attached device is an FEP, an AS 400, or a PS/2, and the remote device is a terminal controller or a PS/2. In this case, only the remote device needs an X.25 interface and the FEP can communicate with the terminal controller as if it were directly attached via a Token Ring network.

**Figure 4**  
*Router Running QLLC Conversion Feature*

![Diagram of Router Running QLLC Conversion Feature](image)

More elaborate configurations are possible. The router that implements QLLC conversion need not be on the same Token Ring network as the FEP. As shown in Figure 5, QLLC/LLC2 conversion is possible even when an intermediate IP WAN exists between the router connected to the X.25 network and the router connected to the Token Ring.
Configuring LLC2 and SDLC Parameters

Technology Overview

The Cisco Implementation of QLLC Conversion

SNA uses QLLC and X.25 as link layer protocols to provide a reliable connection. QLLC itself processes QLLC control packets. In a Token Ring environment, SNA uses LLC to provide a reliable connection. The LAN-to-X.25 (LNX) software provides a QLLC conversion function to translate between LLC and QLLC.

Figure 6 shows the simplest QLLC conversion topology: a single Token Ring device (for example, a 37x5 FEP) communicates with a single remote X.25 device (in this case a 3x74 cluster controller). In this example, a router connects the Token Ring network to the X.25 network.

In Figure 6, each IBM end node has no indication that its counterpart is connected to a different medium running a different protocol. The 37x5 FEP responds as if the 3x74 cluster controller were communicating over a Token Ring, whereas the 3x74 responds as though the 37x5 FEP were communicating over an X.25 network. This is accomplished by configuring the router’s X.25 interface as a virtual Token Ring, so that the X.25 virtual circuit appears to the Token Ring device (and to the router itself) as if it were a Token Ring to which the remote X.25 device is attached.

Also in this figure, the LLC2 connection extends from the 37x5 FEP across the Token Ring network to the router. The QLLC/X.25 session extends from the router across the X.25 network to the 3x74 cluster controller. Only the SNA session extends across the Token Ring and X.25 networks to provide an end-to-end connection from the 37x5 FEP to the 3x74 cluster controller.

As Figure 7 shows, a router need not directly connect the two IBM end nodes; instead, some type of backbone WAN can connect them. Here, RSRB transports packets between Router A and Router B, while Router B performs all conversion between the LLC2 and X.25 protocols. Only the router attached to the serial line (Router B) needs to be configured for QLLC conversion. Both Router A and Router B are configured for normal RSRB.
How communication sessions are established over the communication link varies depending on whether or not LLC2 local acknowledgment has been configured on Router A’s Token Ring interface. In both cases, the SNA session extends end-to-end and the QLLC/X.25 session extends from Router B to the 3x74 cluster controller. If LLC2 local acknowledgment has not been configured, the LLC2 session extends from the 37x5 FEP across the Token Ring network and the arbitrary WAN to Router B. In contrast, when LLC2 local acknowledgment has been configured, the LLC2 session extends from the 37x5 FEP Router A, where it is locally terminated. A TCP session is then used across the arbitrary WAN to Router B.

Comparing QLLC Conversion to SDLLC

Although the procedures you use to configure QLLC are similar to those used to configure SDLLC, there are structural and philosophical differences between the point-to-point links that SDLC uses and the multiplexed virtual circuits that X.25 uses.

The most significant structural difference between QLLC conversion and SDLLC is the addressing. To allow a device to use LLC2 to transfer data, both SDLLC and QLLC provide virtual MAC addresses. In SDLLC, the actual MAC address is built by combining the defined virtual MAC (whose last byte is 0x00) with the secondary address used on the SDLC link; in this way, SDLLC supports multidrop. In QLLC conversion, multidrop is meaningless, so the virtual MAC address represents just one session and is defined as part of the X.25 configuration. Because one physical X.25 interface can support many simultaneous connections for many different remote devices, you only need one physical link to the X.25 network. The different connections on different virtual circuits all use the same physical link.

The most significant difference between QLLC conversion and SDLLC is the fact that a typical SDLC/SDLLC operation uses a leased line. In SDLC, dial-up connections are possible, but the maximum data rate is limited. In QLLC, both switched virtual circuits (SVCs) and permanent virtual circuits (PVCs) are available, but the favored use is SVC. While the router maintains a permanent connection to the X.25 network, a remote device can use each SVC for some bounded period of time and then relinquish it for use by another device. Using a PVC is very much like using a leased line.
Table 1 shows how the QLLC commands correspond to the SDLLC commands.

<table>
<thead>
<tr>
<th>QLLC Command</th>
<th>Analogous SDLLC Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>qllc largest-packet</td>
<td>sdllc ring-largest-frame, sdllc sdlc-largest-frame</td>
</tr>
<tr>
<td>qllc partner</td>
<td>sdllc partner</td>
</tr>
<tr>
<td>qllc sap</td>
<td>sdllc sap</td>
</tr>
<tr>
<td>qllc srb, x25 map</td>
<td>sdllc traddr</td>
</tr>
<tr>
<td>qllc xid</td>
<td>sdllc xid</td>
</tr>
<tr>
<td>source-bridge qllc-local-ack</td>
<td>source-bridge sdllc-local-ack</td>
</tr>
</tbody>
</table>

Other Implementation Considerations

Consider the following when implementing QLLC conversion:

- To use the QLLC conversion feature, a router must have a physical link to an X.25 public data network (PDN). It must also have an SRB/RSRB path to an IBM Front-End Processor (FEP). This link could be a Token Ring or Ethernet interface, or even FDDI, if RSRB is being used.
- QLLC conversion can run on any router with at least one serial interface configured for X.25 communication and at least one other interface configured for SRB or RSRB.
- QLLC conversion security depends upon access control in SRB/RSRB and X.25 and upon exchange identification (XID) validation.

You can configure DLSw+ for QLLC connectivity, which enables the following scenarios:

- Remote LAN-attached devices (physical units) or SDLC-attached devices can access an FEP or an AS/400 over an X.25 network.
- Remote X.25-attached SNA devices can access an FEP or an AS/400 over a Token Ring or over SDLC.

For information on configuring DLSw+ for QLLC conversion, refer to the “Configuring DLSw+” chapter.

You can configure DSPUs for QLLC. For more information on this configuration, refer to the “Configuring DSPU and SNA Service Point Support” chapter.

LLC2 Configuration Task List

Because LLC2 is already enabled on a Token Ring, you do not need to enable it on the router. However, you can enhance LLC2 performance by completing the following tasks:

- Controlling Transmission of I-Frames, page 10
- Establishing the Polling Level, page 12
- Setting Up XID Transmissions, page 13

See the “LLC2 and SDLC Configuration Examples” section on page 21 for examples.
Controlling Transmission of I-Frames

Control the number of information frames (I-frames) and acknowledgments sent on the LLC2 network by completing the tasks described in the following sections:

- Setting the Maximum Number of I-Frames Received Before Sending an Acknowledgment, page 10
- Setting the Maximum Delay for Acknowledgments, page 10
- Setting the Maximum Number of I-Frames Sent Before Requiring Acknowledgment, page 10
- Setting the Number of Retries Allowed, page 11
- Setting the Time for Resending I-Frames, page 11
- Setting the Time for Resending Rejected Frames, page 11

### Setting the Maximum Number of I-Frames Received Before Sending an Acknowledgment

You can reduce overhead on the network by increasing the maximum number of frames the Cisco IOS software can receive at once before it must send the sender an acknowledgment. To do so, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# llc2</td>
<td>Sets maximum number of I-frames the router can receive before it sends an</td>
</tr>
<tr>
<td>ack-max packet-count</td>
<td>acknowledgment.</td>
</tr>
</tbody>
</table>

### Setting the Maximum Delay for Acknowledgments

You can ensure timely receipt of acknowledgments so that sending data is not delayed. Even if the maximum amount of frames has not been reached, you can set a timer forcing the router to send an acknowledgment and reset the maximum amount counter to 0.

To set the maximum delay time, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# llc2</td>
<td>Sets the I-frame acknowledgment time.</td>
</tr>
<tr>
<td>ack-delay-time milliseconds</td>
<td></td>
</tr>
</tbody>
</table>

### Setting the Maximum Number of I-Frames Sent Before Requiring Acknowledgment

You can set the maximum number of I-frames that the router sends to an LLC2 station before the software requires an acknowledgment from the receiving end. A higher value reduces overhead on the network. Ensure that the receiving LLC2 station can handle the number of frames set by this value.

To set this value, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# llc2</td>
<td>Sets the maximum number of I-frames the router sends before it requires an</td>
</tr>
<tr>
<td>local-window packet-count</td>
<td>acknowledgment.</td>
</tr>
</tbody>
</table>
Setting the Number of Retries Allowed

You can set the number of times the router will re-send a frame when the receiving station does not acknowledge the frame. Once this value is reached, the session is dropped. This value also is used to determine how often the software will retry polling a busy station. Use this command in conjunction with the `llc2 t1-time` command described in the “Setting the Time for Resending I-Frames” section on page 11. Using them together ensures that the sending of frames is monitored at a reasonable level, while limiting the number of unsuccessful repeated tries.

To set the number of retries, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# llc2 n2 retry-count</td>
<td>Establishes the number of times the router will re-send unacknowledged frames or try polling a busy station.</td>
</tr>
</tbody>
</table>

Setting the Time for Resending I-Frames

You can set the amount of time the router waits before resending unacknowledged I-frames. This interval is called the T1 time. Use this command in conjunction with setting the number of retries and setting the transit poll-frame timer. Using these commands in conjunction with each other provides a balance of network monitoring and performance.

To set the T1 time, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# llc2 t1-time milliseconds</td>
<td>Controls how long the router waits for an acknowledgment of transmitted I-frames.</td>
</tr>
</tbody>
</table>

Note

Ensure that you allow enough time for the round trip between the router and its LLC2-speaking stations. Under heavy network loading conditions, resending I-frames every 3000 ms is appropriate.

Setting the Time for Resending Rejected Frames

You can set the amount of time that the router will wait for an expected frame before sending a reject command (REJ). Typically, when an LLC2 station sends an I-frame, a sequence number is included in the frame. The LLC2 station that receives these frames will expect to receive them in order. If it does not, it can reject a frame and indicate which frame it is expecting to receive instead. If the correct frame is not sent to the software before the reject timer expires, the software sends a REJ to the remote station and disconnects the LLC2 session.

To set the reject timer, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# llc2 trej-time milliseconds</td>
<td>Sets the time the Cisco IOS software waits for a resend of a rejected frame before sending a reject command to the remote station.</td>
</tr>
</tbody>
</table>
Establishing the Polling Level

You can control the amount of polling that occurs on the LLC2 network by completing the tasks described in the following sections:

- Setting the Polling Frequency, page 12
- Setting the Polling Interval, page 12
- Setting the Transmit-Poll-Frame Timer, page 12

Setting the Polling Frequency

You can set the optimum interval of time after which the router sends Receiver Ready messages or frames that tell other LLC2 stations that the router is available. These polls occur during periods of idle time on the network.

To set polling frequency, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# llc2</td>
<td></td>
</tr>
<tr>
<td>idle-time milliseconds</td>
<td>Controls the polling frequency during idle traffic.</td>
</tr>
</tbody>
</table>

Setting the Polling Interval

The amount of time the router waits until repolling a busy station can also be set. Use this command in conjunction with setting the number of retries. Typically, you do not need to use this command unless an LLC2 station has unusually long busy periods before clearing the busy state. In this case, you should increase the value so that the station does not time out.

To set the polling interval, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# llc2</td>
<td></td>
</tr>
<tr>
<td>tbusy-time milliseconds</td>
<td>Sets the amount of time the router will wait before repolling a busy station.</td>
</tr>
</tbody>
</table>

Setting the Transmit-Poll-Frame Timer

When the router sends a command that must receive a response, a poll bit is sent in the frame. When the software sends the poll bit, it cannot send any other frame with the poll bit set until the receiver replies to that poll frame with a frame containing a final bit set. When the timer expires, the software assumes that it can send another frame with a poll bit.

Set the transmit-poll-frame timer to reduce problems with receiving stations that are faulty and cannot send the frame with the final bit set by using the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# llc2</td>
<td></td>
</tr>
<tr>
<td>tpf-time milliseconds</td>
<td>Sets the amount of time the router waits for a final response to a poll frame before the resending it.</td>
</tr>
</tbody>
</table>
This value should be larger than the T1 time. The T1 time determines how long the software waits for receipt of an acknowledgment before sending the next set of frames. See the “Setting the Time for Resending I-Frames” section on page 11 for more information.

## Setting Up XID Transmissions

You can control the number of frames used for identification on the LLC2 network by completing the tasks described in the following sections:

- Setting the Frequency of XID Transmissions, page 13
- Setting the Time for XID Retries, page 13

### Setting the Frequency of XID Transmissions

XID frames identify LLC2 stations at a higher level than the MAC address and contain information about the configuration of the stations. You can set how often the router sends an XID frame by using the following command in interface configuration mode:

```
Router(config-if)# llc2
xid-neg-val-time milliseconds
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# llc2 xid-neg-val-time milliseconds</td>
<td>Sets the frequency of XID transmissions.</td>
</tr>
</tbody>
</table>

⚠️ **Caution**: Do not change the value unless requested by your technical support representative.

### Setting the Time for XID Retries

You can set the amount of time the router waits for a reply to the XID frames it sends to remote stations. The value should be larger than the T1 time, which indicates how long the software waits for an acknowledgment before dropping the session.

To set the time for XID retries, use the following command in interface configuration mode:

```
Router(config-if)# llc2
xid-retry-time milliseconds
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# llc2 xid-retry-time milliseconds</td>
<td>Sets how long the router waits for a reply to the XID frames it sends to remote stations.</td>
</tr>
</tbody>
</table>

## Monitoring and Maintaining LLC2 Stations

You can display the configuration of LLC2 stations to determine which LLC2 parameters need adjustment. Use the following command in privileged EXEC mode:

```
Router# show llc2
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show llc2</td>
<td>Displays the configuration of LLC2 stations.</td>
</tr>
</tbody>
</table>
SDLC Configuration Task List

The SDLC tasks described in this section configure the router as an SDLC station. (This is in contrast to a router configured for SDLC Transport, where the device is not an SDLC station, but passes SDLC frames between two SDLC stations across a mixed-media, multiprotocol environment.) The first task is required; you accomplish it with the appropriate set of commands for your network needs. The remaining tasks are optional: you can perform them as necessary to enhance SDLC performance.

- Enabling the Router as a Primary or a Secondary SDLC Station, page 14
- Enabling SDLC Two-Way Simultaneous Mode, page 16
- Determining the Use of Frame Rejects, page 17
- Setting SDLC Timer and Retry Counts, page 17
- Setting SDLC Frame and Window Sizes, page 18
- Controlling the Buffer Size, page 18
- Controlling Polling of Secondary Stations, page 18
- Configuring an SDLC Interface for Half-Duplex Mode, page 19
- Specifying the XID Value, page 20
- Specifying the SAPs, page 20
- Setting the Largest SDLC I-Frame Size, page 20

See the “LLC2 and SDLC Configuration Examples” section on page 21 for examples.

Enabling the Router as a Primary or a Secondary SDLC Station

SDLC defines two types of network nodes: primary and secondary. Primary nodes poll secondary nodes in a predetermined order. Secondaries then send if they have outgoing data. When configured as primary and secondary nodes, our devices are established as SDLC stations.

Depending on your particular network needs, perform the tasks in one of the following sections to enable the router as an SDLC station:

- Establishing an SDLC Station for Frame Relay Access Support, page 14
- Establishing an SDLC Station for DLSw+ Support, page 15
- Establishing an SDLC Station for SDLLC Media Translation, page 16

Establishing an SDLC Station for Frame Relay Access Support

You can establish the router to be any of the following:

- Primary SDLC station
- Secondary SDLC station
- Either primary or secondary, depending on the role of the end stations or on XID negotiations
- Primary Node Type 2.1 (NT2.1) node
Configuring LLC2 and SDLC Parameters

To establish devices as SDLC stations when you plan to configure Frame Relay access support, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(config-if)# encapsulation sdlc</code> Sets the encapsulation type of the serial interface to SDLC.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`Router(config-if)# sdlc role {none</td>
</tr>
</tbody>
</table>

1. For information on the `nrzi-encoding` interface configuration command, refer to the *Cisco IOS Configuration Fundamentals Configuration Guide*.

If the interface does not play a role, the router can be either primary or secondary, depending on the end stations. The SDLC end station must be configured as negotiable or primary NT2.1. When the end stations are configured as physical unit (PU) type 2, you can set the role of the interface to primary or secondary. When the end station is configured as secondary NT2.1, you must set the role of the interface to poll the primary XID.

**Note** Currently, Frame Relay access support does not support the secondary role.

Establishing an SDLC Station for DLSw+ Support

To establish devices as SDLC stations when you plan to configure our DLSw+ feature, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(config-if)# encapsulation sdlc</code> Sets the encapsulation type of the serial interface to SDLC.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`Router(config-if)# sdlc role {none</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router(config-if)# sdlc vmac mac-address</code> Configures a MAC address for the serial interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>`Router(config-if)# sdlc partner mac-address sdlc-address {inbound</td>
</tr>
<tr>
<td>Step 5</td>
<td>`Router(config-if)# sdlc dlsw {sdlc-address</td>
</tr>
</tbody>
</table>

To configure an SDLC multidrop line downstream, you configure the SDLC role as either `primary` or `prim-xid-poll`. SDLC role `primary` specifies that any PU without the xid-poll parameter in the `sdlc address` command is a PU 2.0 device. SDLC role `prim-xid-poll` specifies that every PU is type 2.1. We recommend that you specify `sdlc role primary` if all SDLC devices are type PU 2.0 or a mix of PU 2.0 and PU 2.1. Use the `sdlc role prim-xid-poll` command if all devices are type PU 2.1.

For additional DLSw+ configuration commands, refer to the “Configuring DLSw+” chapter in this publication.
Establishing an SDLC Station for SDLLC Media Translation

To establish devices as SDLC stations when you plan to configure our SDLLC media translation feature, use the commands in the order listed in the following table. One serial interface can have two or more secondary stations attached to it through a modem sharing device. Each secondary station address must be assigned to the primary station. You must use the following commands in interface configuration mode for the serial interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>Router(config-if)# encapsulation sdlc-primary</strong> Establishes a router as the primary SDLC station on the serial line.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>Router(config-if)# encapsulation sdlc-secondary</strong> Establishes other routers as secondary SDLC stations.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>Router(config-if)# sdlc address hexbyte [echo]</strong> Assigns secondary stations to a primary station.</td>
</tr>
</tbody>
</table>

Use the `show interfaces` command to list the configuration of the SDLC serial lines. Use the `no sdlc address` command to remove a secondary address assignment. Addresses are hexadecimal (base 16).

Enabling SDLC Two-Way Simultaneous Mode

SDLC two-way simultaneous mode allows SDLC link stations to a full-duplex serial line efficiently. With a two-way simultaneous mode, the primary link station can send data to a secondary link station while there is an outstanding poll.

For a primary link station, SDLC two-way simultaneous mode operates in either a multidrop link environment or point-to-point link environment.

In a multidrop link environment, a two-way simultaneous primary station is able to poll a secondary station, receive data from the station, and send data (I-frames) to other secondary stations by using the `sdlc simultaneous half-datamode` command.

In a point-to-point link environment, a two-way simultaneous primary station can send data (I-frames) to a secondary station, although there is an outstanding poll, as long as the window limit is not reached by using the `sdlc simultaneous full-datamode` command.

For a secondary link station, the SDLC two-way simultaneous mode operates only in a point-to-point link environment and allows data (I-frames) to be received after a poll frame has already been received by using the `sdlc simultaneous full-datamode` command.

To enable a two-way simultaneous mode, use one of the following commands in interface configuration mode, as needed:
**Determining the Use of Frame Rejects**

You can specify that a secondary station does not send frame reject messages, or reject commands indicating frame errors. If you do so, the router drops an SDLC connection if the system receives an error from the secondary station.

To determine handling of frame rejects, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# sdlc frmr-disable</code></td>
<td>Specifies that this secondary station does not support frame rejects.</td>
</tr>
</tbody>
</table>

To specify that the secondary station does support frame rejects, use the `no sdlc frmr-disable` command.

**Setting SDLC Timer and Retry Counts**

When an SDLC station sends a frame, it waits for an acknowledgment from the receiver indicating that this frame has been received. You can modify the time the router allows for an acknowledgment before resending the frame. You can also determine the number of times that a software re-sends a frame before terminating the SDLC session. By controlling these values, you can reduce network overhead while continuing to check sending of frames.

Use the SNRM timer only if you want to have a unique timeout period to wait for a reply to a SNRM. To specify a SNRM timer that is different from the T1 response time, set the SDLC SNRM timer using the `sdlc snrm-timer` command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# sdlc t1 milliseconds</code></td>
<td>Controls the amount of time the Cisco IOS software waits for a reply. Default value is 3000 ms.</td>
</tr>
<tr>
<td><code>Router(config-if)# sdlc n2 retry-count</code></td>
<td>Determines the number of times that the Cisco IOS software resends a frame before terminating the SDLC session.</td>
</tr>
<tr>
<td><code>Router(config-if)# sdlc snrm-timer number</code></td>
<td>Specifies a SNRM timer that is different from the T1 response time.</td>
</tr>
</tbody>
</table>
**Setting SDLC Frame and Window Sizes**

You can set the maximum size of an incoming frame and set the maximum number of I-frames (or window size) the router will receive before sending an acknowledgment to the sender. By using higher values, you can reduce network overhead.

To set SDLC frame and window sizes, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# sdlc n1 bit-count</td>
<td>Sets the maximum size of an incoming frame.</td>
</tr>
<tr>
<td>Router(config-if)# sdlc k window-size</td>
<td>Sets the local window size of the router.</td>
</tr>
<tr>
<td>Router(config-if)# sdlc poll-limit-value count</td>
<td>Controls how many times a single secondary station can be polled for input before the next station must be polled.</td>
</tr>
<tr>
<td>Router(config-if)# sdlc address hexbyte [echo] [ack-mode] [xid-poll] [switched] [seconly] [xid-passthru] [passive] [K num]</td>
<td>Specifies the address used on the SDLC line, and any other unique options on how the address is treated.</td>
</tr>
</tbody>
</table>

**Note** The `ack-mode` option supports applications that require local termination of an SDLC connection with address ff. This option is available only if the hexbyte parameter is configured with a value of ff. You should use this option only if you use the SDLC address ff as a regular (not a broadcast) address.

**Controlling the Buffer Size**

You can control the buffer size on the router. The buffer holds data that is waiting to be sent to a remote SDLC station. This command is particularly useful in the case of the SDLLC media translator, which allows an LLC2-speaking SNA station on a Token Ring to communicate with an SDLC-speaking SNA station on a serial link. The frame sizes and window sizes on Token Rings are often much larger than those acceptable for serial links, and serial links are often slower than Token Rings.

To control backlogs that can occur during periods of high data transfer from the Token Ring to the serial line, use the following command in interface configuration mode on a per-address basis:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# sdlc holdq address queue-size</td>
<td>Sets the maximum number of packets held in queue before transmitting.</td>
</tr>
</tbody>
</table>

**Controlling Polling of Secondary Stations**

You can control the intervals at which the router polls secondary stations, the length of time a primary station can send data to a secondary station, and how often the software polls one secondary station before moving on to the next station.

Keep the following points in mind when using these commands:
Secondary stations cannot send data until they are polled by a primary station. Increasing the poll-pause timer increases the response time of the secondary stations. Decreasing the timer can flood the serial link with unneeded polls, requiring secondary stations to spend wasted CPU time processing them.

Increasing the value of the poll limit allows for smoother transactions between a primary station and a single secondary station, but can delay polling of other secondary stations.

To control polling of secondary stations, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# sdlc poll-pause-timer milliseconds</td>
<td>Controls how long the Cisco IOS software pauses between sending each poll frame to secondary stations on a single serial interface.</td>
</tr>
<tr>
<td>Router(config-if)# sdlc poll-limit-value count</td>
<td>Controls how many times a single secondary station can be polled for input before the next station must be polled.</td>
</tr>
</tbody>
</table>

To retrieve default polling values for these operations, use the `no` forms of these commands.

### Configuring an SDLC Interface for Half-Duplex Mode

By default, SDLC interfaces operate in full-duplex mode. To configure an SDLC interface for half-duplex mode, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# half-duplex</td>
<td>Configures an SDLC interface for half-duplex mode.</td>
</tr>
</tbody>
</table>

On an interface that is in half-duplex mode and that has been configured for DCE, you can adjust the delay between the detection of a Request To Send (RTS) signal and the assertion of the Clear To Send (CTS) signal. To do so, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# half-duplex timer cts-delay value</td>
<td>Delays the assertion of a CTS.</td>
</tr>
</tbody>
</table>

On an interface that is in half-duplex mode and that has been configured for DTE, you can adjust the time the interface waits for the DCE to assert CTS before dropping an RTS. To do so, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# half-duplex timer rts-timeout value</td>
<td>Adjusts the amount of time before interface drops an RTS.</td>
</tr>
</tbody>
</table>
Specifying the XID Value

The exchange of identification (XID) value you define on the router must match that of the IDBLK and IDNUM system generation parameters defined in VTAM on the Token Ring host to which the SDLC device will be communicating. To specify the XID value, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# sdlc xid address xid</td>
<td>Specifies the XID value to be associated with the SDLC station.</td>
</tr>
</tbody>
</table>

Specifying the SAPs

SAPs are used by the CMCC adapter to establish communication with VTAM on the mainframe and to identify Logical Link Control (LLC) sessions on a CMCC’s internal adapter. To configure SAPs in SDLC, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# sdlc saps address ssap dsap</td>
<td>Configures SDLC-to-LLC sessions with respect to the SSAP and DSAP on the LLC.</td>
</tr>
</tbody>
</table>

Setting the Largest SDLC I-Frame Size

Generally, the router and the SDLC device with which it communicates should support the same maximum SDLC I-frame size. The larger this value, the more efficient the line usage, thus increasing performance.

After the SDLC device has been configured to send the largest possible I-frame, you must configure the router to support the same maximum I-frame size. The default is 265 bytes. The maximum value the software can support must be less than the value of the LLC2 largest frame value defined when setting the largest LLC2 I-frame size.

To set the largest SDLC I-frame size, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# sdlc sdlc-largest-frame address size</td>
<td>Sets the largest I-frame size that can be sent or received by the designated SDLC station.</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining SDLC Stations

To monitor the configuration of SDLC stations to determine which SDLC parameters need adjustment, use the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show interfaces serial</td>
<td>Displays SDLC station configuration information.</td>
</tr>
</tbody>
</table>
You determine the status of end stations by sending an SDLC test frame to a physical unit via its SDLC address and router interface. You can either send out the default information string or a predefined one. You can send a preset number of test frames a continuous stream that can later be halted. The `sdlc test serial` command pre-check for correct interface and SDLC address of the end station. You can view the results of the test frames after the frames have been sent or a SDLC test frame stop has been executed.

To send an SDLC test frame, use the following command in privileged EXEC mode:

```
Router# sdlc test serial number address [iterations | continuous | stop | string string]
```

Sends an SDLC test frame.

---

**Note**

Only a device configured as primary is allowed to send test frames.

### LLC2 and SDLC Configuration Examples

The following sections provide LLC2 and SDLC configuration examples:

- LLC2 Configuration Example, page 21
- SDLC Two-Way Simultaneous Mode Configuration Example, page 22
- SDLC Encapsulation for Frame Relay Access Support Configuration Examples, page 22
- SDLC Configuration for DLSw+ Example, page 23
- Half-Duplex Configuration Example, page 23
- SDLC-to-LLC2 FID4 Frame Conversion Examples, page 23

### LLC2 Configuration Example

You can configure the number of LLC2 frames received before an acknowledgment. For this example, assume that at time 0, two I-frames are received. The maximum amount of three has not been reached, so no acknowledgment for these frames is sent. If a third frame, which would force the router to send an acknowledgment, is not received within 800 ms, an acknowledgment is sent anyway, because the delay timer alarm is activated.

```
interface tokenring 0
llc2 ack-max 3
llc2 ack-delay-time 800
```

At this point, because all frames are acknowledged, the counter for the maximum amount of I-frames will be reset to zero.
SDLC Two-Way Simultaneous Mode Configuration Example

The following configuration defines serial interface 0 as the primary SDLC station with two SDLC secondary stations, C1 and C2, attached to it through a modem-sharing device. Two-way simultaneous mode is enabled.

```
interface serial 0
 encapsulation sdlc-primary
 sdlc address c1
 sdlc address c2
 sdlc simultaneous half-datamode
```

The network for this configuration is shown in Figure 8.

SDLC Encapsulation for Frame Relay Access Support Configuration Examples

The following examples describe possible SDLC encapsulation configurations if you plan to configure Frame Relay access support.

The following configuration is appropriate if the SDLC station is a negotiable or primary Node Type 2.1 station:

```
interface serial 2/6
 no ip address
 encapsulation sdlc
 clockrate 9600
 fras map sdlc C1 serial 2/0 frame-relay 32 4 4
 sdlc address C1
```

The following configuration is appropriate if the SDLC station is a secondary Node Type 2.1 station:

```
interface serial 2/6
 no ip address
 encapsulation sdlc
 clockrate 9600
 fras map sdlc C1 serial 2/0 frame-relay 32 4 4
 sdlc role prim-xid-poll
 sdlc address C1
```

The following configuration is appropriate if the SDLC station is a secondary PU 2 station:
Configuring LLC2 and SDLC Parameters

LLC2 and SDLC Configuration Examples

interface serial 2/6
no ip address
encapsulation sdlc
clockrate 9600
fras map sdlc C1 serial 2/0 frame-relay 32 4 4
sdlc role primary
sdlc address C1
sdlc xid C1 01700001

SDLC Configuration for DLSw+ Example

The following example describes the SDLC configuration with DLSw+ support implemented. In this example, 4000.3745.001 is the MAC address of the host. The router serves as the primary station, while the remote secondary stations, C1, C2, and C3, are reserved for DLSw+ and cannot be used by any other data-link user. The SNRM timer is configured with a value of 2500 ms.

If the k parameter is not specified on the sdlc address command, the value will be the setting of the sdlc k parameter, which is specified as 1; thus C1 and C2 will use k value of 1, but the C3 station will have more bandwidth because it has a specified k value of 7.

interface serial 0
encapsulation sdlc
sdlc role primary
sdlc vmac 4000.3174.0000
sdlc k 1
sdlc address c1
sdlc xid c1 01712345
sdlc partner 4000.3745.0001 c1
sdlc address c2
sdlc xid c2 01767890
sdlc partner 4000.3745.0001 c2

sdlc addr c3 k 7
sdlc xid c3 01794321
sdlc partner 4000.3745.0001 c3
sdlc snrm-timer 2500
sdlc dlsw c1 c2 c3

Note: If the no form of this command is specified, the value of the t1 timer will be used for the SNRM timer.

Half-Duplex Configuration Example

In the following example, an SDLC interface has been configured for half-duplex mode:

encapsulation sdlc-primary
half-duplex

SDLC-to-LLC2 FID4 Frame Conversion Examples

The following sample configurations demonstrate SDLC-to-LLC2 conversions for FID4 frames. When you implement these conversion, keep the following considerations in mind:

- If NCP is the primary, the first PU 4 line uses SDLC address 0x01, the second uses 0x02, and so on.
• The SDLC address is used to modify the last byte of the SDLC virtual MAC address (sdlc vmac). This modified value is coded in the XCA subarea major node.

• Specify the echo option in the sdlc address command. With the echo option specified, the primary polls with an address in the range 01 to 7E, and the secondary replies with the first bit set to 1. For example, if the primary polls with 04 (0000 0100), the secondary replies with 84 (1000 0100).

• Set mtu slightly larger than the maximum packet size used by NCP. Set sdlc N1 equal to (mtu + 2) * 8, which is mtu, plus 2 bytes for the SDLC header, times 8 (because N1 is coded in bits, not bytes).

• If the router is providing a clock for the FEP, specify a clockrate.

• If the SDLC line has NRZI=YES, specify nrzi-encoding.

• Ensure that the SDLC-attached FEP is the SDLC primary device, using one of the following methods:
  – Ensure that the SDLC FEP has a higher subarea than the Token Ring-attached FEP (or Token Ring-attached host).
  – Do not configure a secondary SDLCST entry on the GROUP statement for the SDLC line:

    ```
 SDLCPRIM SDLCST GROUP=xxxx
 SDLCSEC SDLCST GROUP=yyyy
 GROUP SDLCST=(SDLCPRIM,,)
 NAME1 LINE ADDR=n.nn
 NAME2 PU PUTYPE=4
    ```

• The SDLC connection requires modulo 8. Ensure that the SDLC group/line and the SDLCST groups are configured with modulo = 8 and maxout = 7.

### DLSW Remote Peer Connection Configuration Example

The following sample configurations are for a DLSW remote peer connection using two routers. Two different sample configurations are given for the remote DLSW peer:

• Connected to a CIP-attached router

• Connected to a Token Ring-attached subarea, such as NTRI FEP

### Configuration for SDLC-Attached Router

The following configuration statements are for the SDLC-attached router:

```
dslw local-peer peer-id 10.2.2.2
dslw remote-peer 0 tcp 10.1.1.1
interface Serial1
description sdlc configuration PU4/PU4
mtu 6000
no ip address
capsulation sdlc
no keepalive
nrzi-encoding
clockrate 9600
sdlc vmac 4000.3745.0000
sdlc N1 48016
sdlc address 04 echo
sdlc partner 4000.1111.0020 04
sdlc dlsw 4
```
Configuration for Remote DLSW Peer Connected to a CIP-Attached Router

The following configuration statements are for a remote DLSW peer connected to a CIP-attached router:

```
source-bridge ring-group 1111
dlsw local-peer peer-id 10.1.1.1
dlsw remote-peer 0 tcp 10.2.2.2
interface Channel5/0
csna 0100 20
interface Channel5/2
lan TokenRing 0
source-bridge 1 1 1111
adapter 0 4000.1111.0020
```

Configuration for Remote DLSW Peer Connected to a Token Ring-Attached Subarea

The following configuration statements are for a remote DLSW peer connected to a Token Ring-attached subarea, such as NTRI FEP:

```
source-bridge ring-group 1111
dlsw local-peer peer-id 10.1.1.1
dlsw remote-peer 0 tcp 10.2.2.2
interface token ring 6/0
ring-speed 16
source-bridge 2 1 1111
```

DLSW Local-Switching Connection Configuration Example

The following sample configurations are for a DLSW local-switching connection, using one router. Two different sample configurations are given:
- Connection to a CIP-attached router
- Connection to a Token Ring-attached subarea, such as NTRI FEP

Configuration for a Connection to a CIP-Attached Router

The following configuration statements are for a connection to a CIP-attached router:

```
source-bridge ring-group 1111
dlsw local-peer
interface Serial1/0
description sdlc configuration PU4/PU4
mtu 6000
no ip address
encapsulation sdlc
no keepalive
nrzi-encoding
clockrate 9600
sdlc vmac 4000.3745.0000
sdlc N1 48016
sdlc address 04 echo
sdlc partner 4000.1111.0020 04
sdlc dlsw 4
interface Channel5/0
csna 0100 20
interface Channel5/2
lan TokenRing 0
source-bridge 1 1 1111
adapter 0 4000.1111.0020
```
Configuration for a Connection to a Token Ring-Attached Subarea

The following configuration statements are for a connection to a Token Ring-attached subarea, such as NTRI FEP:

```
source-bridge ring-group 1111
dlsw local-peer
description sdlc configuration PU4/PU4
mtu 6000
no ip address
encapsulation sdlc
no keepalive
nrzi-encoding
clockrate 9600
sdlc vmac 4000.3745.0000
sdlc N1 48016
sdlc address 04 echo
dsdlc partner 4000.1111.0020 04
dsdlc dlsw 4
interface token ring 6/0
ring-speed 16
source-bridge 2 1 1111
```

SDLC FEP Configuration

The following configuration statements are for the SDLC FEP:

```
00084 **
00085 SDLCPRIM SDLCST GROUP=INNPRIM, SDLC STATEMENTS FOR INN *
00086 MAXOUT=7, *
00087 MODE=PRIMARY, *
00088 PASSLIM=254, *
00089 RETRIES=(5,2,5), *
00090 SERVLIM=4 *
00091 SDLCSEC SDLCST GROUP=INNSEC, SDLC STATEMENTS FOR INN *
00092 MAXOUT=7, *
00093 MODE=SECONDARY, *
00094 PASSLIM=254, *
00095 RETRIES=(5,2,5) *
00286 **
00287 * **
00288 * GROUP MACROS FOR INN CONNECTIONS **
00289 * **
00290 **
00291 GRPINN GROUP ACTIVTO=60, SEC WAIT FOR PRIM *
00292 ANS=CONT, *
00293 CLOCKNG=EXT, *
00294 DATRATE=HIGH, *
00295 DIAL=NO, *
00296 DUPLEX=FULL, *
00297 IRETRY=NO, *
00298 ISTATUS=ACTIVE, *
00299 LNCTL=SDLC, *
00300 MAXOUT=7, *
00301 MAXPU=1, *
00302 MONLINK=YES, *
00303 NEWSYNC=NO, *
00304 NRZI=NO, *
00305 PASSLIM=254, *
00306 PAUSE=0.2, *
00307 REPLYTO=1, *
00308 RETRIES=(3,1,3), *
```
Configuring LLC2 and SDLC Parameters

**LLC2 and SDLC Configuration Examples**

```
00309 SDLCST=(SDLCPRIM,SDLCSEC), *
00310 SERVLIM=255, *
00311 TGN=2, *
00312 TRANSFR=27, *
00313 TYPE=NCP *
00314 **
00315 ERNLN012 LINE ADDRESS=012, ISTATUS=ACTIVE
00316 ERNPU012 PU PUTYPE=4
00317 **

Token Ring FEP Subarea Configuration

The following configuration statements are for the Token Ring FEP subarea:

```
********************************************************
* SDLCST STATEMENT FOR SDLC CONNECTED NCP-NCP LINKS *
********************************************************
N46DPRIS SDLCST GROUP=N46DPRIG, *
MAXOUT=7, * FRAMES RECEIVED BEFORE RESPONSE
MODE=PRIMARY, * PRIMARY MODE
PASSLIM=254, * MAXIMUM # OF PIUS SENT TO PU
RETRIES=(3,2,30), * RETRIES
SERVLIM=4 * REGULAR / SPECIAL SCANS
N46DSECS SDLCST GROUP=N46DSECG, *
MAXOUT=7, *
MODE=SECONDARY, *
PASSLIM=254, *
RETRIES=3 *
***********************************************************************
* TOKEN RING PHYSICAL DEFINITIONS *
***********************************************************************
N46DPRTR1 GROUP ECLTYPE=(PHYSICAL,SUBAREA), *
NPACOLL=YES *
N46LYA LINE ADDRESS=(1088,FULL), TIC ADDRESS *
ISTATUS=ACTIVE, *
OWNER=H53, *
PORTADD=1, *
MAXTSL=1108, *
RCVBUCF=4095, MAX FROM RING TO NCP *
LOCADD=400000001C46 3745 ADDRESS ON RING *
N46PXA47 PU ADDR=04400037450004 *
* STATOPT=OMIT *
***********************************************************************
* TOKEN RING LOGICAL DEFINITIONS - SUBAREA LINKS *
***********************************************************************
N46DLTR1 GROUP ECLTYPE=(LOGICAL,SUBAREA), *
NPACOLL=YES, *
OWNER=H53, *
PHYSRSC=N46PYA *
N46LXA47 LINE SDLCST=(N46DPRIS,N46DSECS), ISTATUS=ACTIVE *
N46PXAx47 PU ADDR=04400037450004 *
```

VTAM XCA Subarea Major Node

The following configuration statements are for the VTAM XCA subarea major node:

```
00001    VBUILD TYPE=XCA *
00002    SUBAPRT PORT ADAPNO=0, *
00003    CUADDR=100, *
00004    MEDIUM=RING, *
```
LLC2 and SDLC Configuration Examples

00005 SAPADDR=4, *
00006 TIMER=30
00007 SUBAGRP GROUP DIAL=NO
00008 SUBALN LINE USER=SNA
00009 SUBAPU PU MACADDR=4000374500004, *
00010 PUTYPE=4, *
00011 SAPADDR=4, *
00012 SUBAREA=63, *
00013 TGN=2

CCDE, CCENT, CCSL, Cisco Eos, Cisco HealthPresence, Cisco IronPort, the Cisco logo, Cisco Nurse Connect, Cisco Pulse, Cisco SensorBase, Cisco StackPower, Cisco StadiumVision, Cisco TelePresence, Cisco Unified Computing System, Cisco WebEx, DCE, Flip Channels, Flip for Good, Flip Mino, Flipshare (Design), Flip Ultra, Flip Video, Flip Video (Design), Instant Broadband, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn, Cisco Capital, Cisco Capital (Design), Cisco:Financed (Stylized), Cisco Store, Flip Gift Card, and One Million Acts of Green are service marks; and Access Registrar, Aironet, AllTouch, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Lumin, Cisco Nexus, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, Continuum, EtherFast, EtherSwitch, Event Center, Explorer, Follow Me Browsing, GainMaker, iLYNX, IOS, iPhone, IronPort, the IronPort logo, Laser Link, LightStream, Linksys, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, PCNow, PIX, PowerKEY, PowerPanels, PowerTV, PowerTV (Design), PowerVu, Prisma, ProConnect, ROSA, SenderBase, SMARTnet, Spectrum Expert, StackWise, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0910R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.
Configuring NCIA Client/Server

This chapter describes native client interface architecture (NCIA) support for Systems Network Architecture (SNA) devices. NCIA server and the NCIA client/server model extends the scalability of NCIA I, the earlier NCIA implementation, by minimizing the number of central-site remote source-route bridging (RSRB) or data-link switching plus (DLSw+) peer connections required to support a large number of NCIA clients. For a complete description of the NCIA client/server commands mentioned in this chapter, refer to the “NCIA Server Configuration Commands” chapter of the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2). To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter contains the following sections:

- Technology Overview, page 1
- Configuring NCIA Server Session to Local Token Ring Using DLSw+ Local Switch, page 5
- Configuring NCIA Server Session with DLSw+, page 7
- Configuring NCIA Server Session with DSPU, page 10
- Configuring NCIA Server Session with RSRB, page 12
- Monitoring and Maintaining an NCIA Server Network, page 15
- NCIA Server Configuration Examples, page 15

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Platform Support for Cisco IOS Software Features” section on page li in the “Using Cisco IOS Software” chapter.

Technology Overview

Cisco’s NCIA server feature implements RFC 2114, Data Link Switch Client Access Protocol. Using Cisco’s RSRB technology, NCIA I encapsulates the Token Ring traffic inside IP datagrams passed over a TCP connection between a router and a client. A virtual ring is created to allow the router to interconnect any client. The virtual ring acts as a logical Token Ring in the router, so that all the Token Rings connected to the router are treated as if they are all on the same Token Ring. The virtual ring is
called a ring group. The ring group number is used just like a physical ring number and shows up in any route descriptors contained in packets being bridged. A ring group must be assigned a ring number that is unique throughout the network.

An NCIA client acts as both an RSRB router and an end station. It must have a “fake” ring number and a “fake” bridge number so that it looks like an end station sitting on a real Token Ring. The fake ring and bridge numbers are visible to both the RSRB router and the NCIA client. The client must also have an LLC2 so that it can handle the LLC2 sessions.

NCIA Server

The NCIA Server feature extends the scalability of NCIA, enhances its functionality, and provides support for both the installed base of RSRB routers and the growing number of DLSw+ routers. The NCIA Server feature includes the following enhancements:

- You do not need to configure a ring number on the client.
- You do not need to configure each client on the router.
- The MAC address can be dynamically assigned by the NCIA server running on the router.
- SNA is directly on top of TCP/IP; LLC2 is no longer required at end station.
- A client is a true end station, not a router peer.
- The NCIA Server communicates with other components in the router, such as RSRB, SNA Switching Services (SNASw), DLSw+, and DSPU.
- Supports both connect-in and connect-out.
- The NCIA client/server model is independent of the upstream implementation.
- It is an efficient protocol between client and server.

NCIA Client/Server Model

The NCIA Server feature uses a client/server model (Figure 1), where the NCIA server is a software module on a Cisco router and the NCIA client is a PC or workstation. The NCIA server performs two major functions:

- Establishes TCP to NCIA data-link Control (NDLC) sessions with clients for the purpose of sending and receiving data.
- Uses the Cisco link services interface (CLSI) to communicate with other software modules in the router, such as SNASw, DLSw+, and DSPU, and acts as the data intermediary between them and NCIA clients. The NCIA server’s role as an intermediary is transparent to the client.
Configuring NCIA Client/Server

Technology Overview

Figure 1 NCIA Server Client/Server Model

- SNASw
- DLSw+
- DLSw local switch
- DSPU
- SNA
- LLC2
- NCIA server
- RSRB
- NCIA client
- Ethernet
- Token Ring
- TCP/IP
- NDLC

NDLC is the protocol used between clients and servers. NDLC serves two purposes:

- Establishes the peer connection.
- Establishes the circuit between the client and the server.

The peer session must be established before an end-to-end circuit can be set up. During the set up period for the peer session, the MAC address representing a client is defined. The MAC address can be defined by the client or by the server when the client does not have a MAC address.

The NCIA Server feature supports connect-in and connect-out (from the server’s perspective), but connect-out is not supported if the client station does not listen for the incoming connection. For a server to connect-out, clients must connect to the server first. After registering itself by providing its own MAC address, the client can then optionally disconnect from the server. When a server receives an explorer, and its destination MAC address is registered, an NCIA server will connect to that client if it is not connected. For NetBIOS explorers (addressed to functional address 0xC0000000080), the TCP session must remain up so that the server can broadcast the explorers to the client. If the TCP session is down, the server will not send the NetBIOS explorers to a client, even when the client is registered.

After the peer session has been established, the NDLC protocol establishes the circuit between the client and server. This circuit is used to transfer end-user data between the client and the server. Because the client and its target station are not on the same transport, they cannot form a direct, end-to-end circuit. Each client must form a circuit between the client and server, and the server must form another circuit between the server and the target station. The server links those two circuits to form an end-to-end circuit. The server acts as a mediator between the client and the target station so that packets can be transferred between them.

In the NCIA server only peer keepalive is maintained. There is no keepalive at circuit level.

The NCIA server acts as a data-link provider, like Token Ring or Ethernet, in the router. It uses CLSI to communicate with other software modules, just as other data-link providers do. The network administrator configures the router to communicate with specific modules. For data-link users, such as SNASw, DLSw+, and DSPU, the NCIA server can interface to them directly. For other data-link providers, the NCIA server must go through a DLSw+ local peer to communicate with them. The DLSw+ local peer passes packets back and forth among different data-link providers.

Advantages of the Client/Server Model

The client/server model used in the NCIA Server feature extends the scalability of NCIA. In addition, it provides support for both the installed base of RSRB routers and the growing number of DLSw+ routers.
Extended Scalability

The client/server model minimizes the number of central site RSRB or DLSw+ peer connections required to support a large network of NCIA clients (Figure 2). Rather than each client having a peer connection to a central site router, the clients attach to an IP backbone through an NCIA server that, in turn, has a single peer connection to a central site router. This scheme can greatly reduce the number of central site peer connections required. For example, in a network with 1000 clients and 10 NCIA servers, there would be only 10 central site peer connections. Note that there would still be 1000 LLC2 connections that must be locally acknowledged at the central site router, but this can easily be handled in a single central site router. When the number of LLC2 connections (or the number of clients) is in the tens of thousands, NCIA servers can take advantage of downstream PU concentration to minimize the number of LLC2 connections that must be supported by the central site routers.

Figure 2 NCIA Server Provides Extended Scalability to Support Large Networks

Migration Support

Using a client/server model allows the NCIA Server feature to be independent of the upstream implementation, allowing it to be implemented in a network that is still using RSRB and in a DLSw+ network. It also greatly simplifies migration from RSRB to DLSw+, because it requires no changes at the client. A single NCIA server can support either approach (but not both). As Figure 3 illustrates, a central site router can support RSRB and DLSw+ concurrently, allowing a portion of the NCIA servers to communicate using RSRB and another portion to communicate using DLSw+.
Figure 3 NCIA Server Provides Independence from the Upstream Network Implementation

Figure 4 shows a network configuration that includes NCIA clients connecting to a front-end processor (FEP) on a Token Ring through a local router (the NCIA server). The virtual ring is used in conjunction with DLSw+ local switch. The routing information field (RIF) of each circuit is terminated on the virtual ring. Figure 5 shows a logical view of an NCIA server session using a DLSw+ local switch (connected to a local Token Ring). In addition to Token Ring, an NCIA server also supports Ethernet, Synchronous Data Link Control (SDLC) Protocol, and Qualified Logical Link Control (QLLC) network connections, and Channel Interface Processor (CIP) connections through a DLSw+ local switch. For more information on the different media types that a DLSw+ local switch supports, refer to the “Configuring DLSw+” chapter.
Configuration Task List

To configure an NCIA server session connected to a local Token Ring, perform the tasks in the following sections:

- Defining a Source-Bridge Ring Group for DLSw+, page 6
- Defining a DLSw+ Local Peer for the Router, page 7
- Configuring an NCIA Server on the Router, page 7

For a configuration example, see the “NCIA Server Session to Local Token Ring Using DLSw+ Local Switch Example” section on page 15.

Defining a Source-Bridge Ring Group for DLSw+

In DLSw+, the source-bridge ring group specifies the virtual ring that will appear to be the last ring in the RIF. This ring is transparent to the NCIA client. From the host’s point of view, all NCIA clients look like stations sitting on the virtual ring. To define a source-bridge ring group for DLSw+, use the following command in global configuration mode:
Defining a DLSw+ Local Peer for the Router

Defining a DLSw+ local peer for a router enables a DLSw+ local switch. You specify all local DLSw+ parameters as part of the local peer definition. To define a local peer, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dlsw local-peer [peer-id ip-address] [group group] [border] [cost cost] [if size] [keepalive seconds] [passive] [promiscuous] [blu-segment]</td>
<td>Defines the DLSw+ local peer.</td>
</tr>
</tbody>
</table>

Configuring an NCIA Server on the Router

Configuring an NCIA server on a router enables the router to perform two roles:

- Establish TCP/NDLC sessions with clients for the purpose of sending and receiving data.
- Use the standard interface (CLSI) to communicate with other software modules in the router, such as DLSw+, and DSPU, and act as the data intermediary between them and the clients of the NCIA server.

To configure an NCIA server, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ncia server server-number server-ip-address server-virtual-mac-address virtual-mac-address virtual-mac-range [inbound-only] [keepalive seconds] [tcp_keepalive minutes]</td>
<td>Configures the NCIA server.</td>
</tr>
</tbody>
</table>

Configuring NCIA Server Session with DLSw+

In the network configuration shown in Figure 6, the NCIA server uses DLSw+ to connect its clients to the FEP through a remote router. Figure 7 shows a logical view of the NCIA Server session with DLSw+.
Figure 6 **NCIA Server Session with DLSw+**

![Diagram of NCIA Server Session with DLSw+](image)

Figure 7 **Logical View of NCIA Server with DLSw+**

![Diagram of Logical View](image)

DLSw+ Configuration Task List

To configure an NCIA server session connected to a remote router using DLSw+, perform the tasks in the following sections:

- Defining a Source-Bridge Ring Group for DLSw+, page 9
- Defining a DLSw+ Local Peer for the Router, page 9
- Defining a DLSw+ Remote Peer, page 9
- Configuring an NCIA Server on the Local Router, page 9

For a configuration example, see the “NCIA Server Session with DLSw+ Example” section on page 17.
Defining a Source-Bridge Ring Group for DLSw+

The source-bridge ring can be shared between DLSw+ and SRB/RSRB. In DLSw+, the source-bridge ring group specifies the virtual ring that will appear to be the last ring in the RIF. Because RIFs are terminated at the router, there is no correlation between the ring-group number specified in DLSw+ peers. The numbers can be the same for management simplicity, but they do not have to be. To define a source-bridge ring group for DLSw+, use the following command in global configuration mode:

```
Router(config)# source-bridge ring-group ring-group
{virtual-mac-address}
```

Defines a ring group.

Defining a DLSw+ Local Peer for the Router

Defining a DLSw+ local peer for a router enables DLSw+. You specify all local DLSw+ parameters as part of the local peer definition. To define a local peer, use the following command in global configuration mode:

```
Router(config)# dlsw local-peer {peer-id ip-address} [group group]
{border} [cost cost] [if size] [keepalive seconds] [passive]
{promiscuous} {blu-segment}
```

Defines the DLSw+ local peer.

Defining a DLSw+ Remote Peer

To configure TCP encapsulation on a remote peer, use the following command in global configuration mode:

```
Router(config)# dlsw remote-peer list-number tcp ip-address
{backup-peer ip-address} {bytes-netbios-out bytes-list-name} {cost
cost} {dest-mac mac-address} {dmac-output-list access-list-number}
{dynamic} {host-netbios-out host-list-name} {inactivity minutes}
{keepalive seconds} {lf size} {linger minutes} {lsap-output-list
list} {no-llc minutes} {priority} {tcp-queue-max size} {timeout
seconds}
```

Defines a TCP encapsulation remote peer.

Configuring an NCIA Server on the Local Router

Configuring an NCIA server on the local router enables the router to perform two roles:

- Establish TCP/NDLC sessions with clients to send and receive data.
- Use the standard interface (CLSI) to communicate with other software modules in the router, such as DLSw+, and DPU, and act as the data intermediary between them and the NCIA clients.

To configure an NCIA server, use the following command in global configuration mode:
Configuring NCIA Server Session with DSPU

In the network configuration shown in Figure 8, the NCIA server uses DSPU to connect its clients to the FEP through a remote router. Figure 9 shows a logical view of the NCIA server session with RSRB/DLSw+ and DSPU.

Figure 8 NCIA Server Session with DSPU

Figure 9 Logical View of NCIA Server with DSPU
DSPU Configuration Task List

To configure an NCIA server session connected to a remote router using DSPU, perform the tasks in the following sections:

- Defining a DSPU Upstream Host, page 11
- Explicitly Defining DSPU, page 11
- Defining Dedicated LU, page 11
- Configuring the NCIA Server as the Underlying Transport Mechanism, page 12

For a configuration example, see the “NCIA Server Session with DSPU Example” section on page 18.

Defining a DSPU Upstream Host

To define a DSPU host over Token Ring, Ethernet, Fiber Distributed Data Interface (FDDI), RSRB, or virtual data link control (VDLC) connections, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu host host-name xid-snd xid rmac remote-mac [rsap remote-sap] [lsap local-sap] [interface slot/port] [window window-size] [maxframe max-iframe] [retries retry-count] [retry-timeout retry-timeout] [focalpoint]</td>
<td>Defines a DSPU host over Token Ring, Ethernet, FDDI, RSRB, or VDLC connections.</td>
</tr>
</tbody>
</table>

Explicitly Defining DSPU

To explicitly define a DSPU over Token Ring, Ethernet, FDDI, RSRB, VDLC, or NCIA connections, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu pu pu-name [rmac remote-mac] [rsap remote-sap] [lsap local-sap] [xid-rcv xid] [interface slot/port] [window window-size] [maxframe max-iframe] [retries retry-count] [retry-timeout retry-timeout]</td>
<td>Explicitly defines a DSPU over Token Ring, Ethernet, FDDI, RSRB, VDLC, or NCIA connections.</td>
</tr>
</tbody>
</table>

Defining Dedicated LU

To define a dedicated logical unit (LU) or a range of dedicated LUs for an upstream host and DSPU, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu lu lu-start [lu-end] {host host-name host-lu-start</td>
<td>pool pool-name} [pu pu-name]</td>
</tr>
</tbody>
</table>
Configuring the NCIA Server as the Underlying Transport Mechanism

To configure the NCIA server as the underlying transport mechanism, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu ncia [server-number]</td>
<td>Configures the NCIA server as the underlying transport mechanism.</td>
</tr>
</tbody>
</table>

To enable a local service access point (SAP) on the NCIA server for use by DSPUs, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu ncia enable-pu [lsap local-sap]</td>
<td>Enables local SAP for DSPUs.</td>
</tr>
</tbody>
</table>

Configuring NCIA Server Session with RSRB

The network configuration shown in Figure 10 includes NCIA clients that connect to a FEP on a Token Ring through a remote router. Figure 11 shows a logical view of the NCIA Server session with RSRB (to a remote Token Ring). Because DLSw+ is the latest technology provided by Cisco, Cisco does not encourage using the NCIA Server feature with RSRB. If the router on the host side is running DLSw+, then RSRB should not be used. Support for the NCIA Server feature with RSRB is provided to encourage RSRB users to migrate to DLSw+.

Figure 10 NCIA Server Session with RSRB
RSRB Configuration Task List

To configure an NCIA server session connected to a remote Token Ring using RSRB, perform the tasks in the following sections:

- Defining a Source-Bridge Ring Group for DLSw+ and RSRB, page 13
- Identifying the Remote Peer (TCP Connection), page 13
- Defining a DLSw+ Local Peer for the Local Router, page 14
- Configuring an NCIA Server on the Router, page 14
- Configuring an RSRB Ring for the NCIA Server on the Local Router, page 14

For a configuration example, see the “NCIA Server Session with DLSw+ Example” section on page 17.

Defining a Source-Bridge Ring Group for DLSw+ and RSRB

The source-bridge virtual ring can be shared between DLSw+ and SRB/RSRB. In DLSw+, the source-bridge ring group specifies the virtual ring that will appear to be the last ring in the RIF. Because RIFs are terminated at the router, the ring group numbers specified in commands to set up DLSw+ peers can be different. The ring group numbers can be the same for management simplicity, but they do not have to be.

To define a source-bridge ring group for DLSw+, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# source-bridge ring-group ring-group {virtual-mac-address}</td>
<td>Defines a ring group.</td>
</tr>
</tbody>
</table>

Identifying the Remote Peer (TCP Connection)

In our implementation, whenever you connect Token Rings using non-Token Ring media, you must treat that non-Token Ring media as a virtual ring by assigning it to a ring group. Every router with which you want to exchange Token Ring traffic must be a member of this same ring group. For more information about defining a ring group, see the “Define a Ring Group in SRB Context” section of the “Configuring Source-Route Bridging” chapter of this document.

To identify the remote peers, use the following command in global configuration mode:
Specify one `source-bridge remote-peer` command for each peer router that is part of the virtual ring. Also specify one `source-bridge remote-peer` command to identify the IP address of the local router.

NCIA server supports only RSRB pass-through mode. Local acknowledgment is not supported.

Defining a DLSw+ Local Peer for the Local Router

Defining a DLSw+ local peer for the local router enables DLSw+. You specify all local DLSw+ parameters as part of the local peer definition. To define a local peer, use the following command in global configuration mode:

```
Router(config)# dlsw local-peer [peer-id] ip-address [group] [border] [cost] [if size] [keepalive seconds] [passive] [promiscuous] [biu-segment]
```

- Defines the DLSw+ local peer.

Configuring an NCIA Server on the Router

Configuring an NCIA server on a router enables the router to perform two roles:

- Establish TCP/NDLC sessions with clients for the purpose of sending and receiving data.
- Use the standard interface (CLSI) to communicate with other software modules in the router, such as DLSw+, and DSPU, and to act as the data intermediary between them and the NCIA clients.

To configure an NCIA server, use the following command in global configuration mode:

```
Router(config)# ncia server server-number server-ip-address server-virtual-mac-address virtual-mac-address [inbound-only] [keepalive seconds] [tcp_keepalive minutes]
```

- Configures the NCIA server.

Configuring an RSRB Ring for the NCIA Server on the Local Router

Configuring an RSRB ring to associate with the NCIA server on the local router provides the virtual ring that connects the DLSw ring within the local router and the target ring between the local router and the remote router.

To configure an RSRB ring for the NCIA server on the local router, use the following command in global configuration mode:

```
Router(config)#
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>config)# source-bridge remote-peer ring-group tcp ip-address [if size] [tcp-receive-window wsize] [local-ack] [priority]</code></td>
<td>Identifies the IP address of a peer in the ring group with which to exchange source-bridge traffic using TCP.</td>
</tr>
</tbody>
</table>
Monitoring and Maintaining an NCIA Server Network

You can monitor and maintain the operation of an NCIA server network. To display information about the state of the NCIA server feature and perform maintenance tasks, use the following commands in EXEC mode:

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ncia rsrb virtual-ring local-bridge local-ring ncia-bridge ncia-ring virtual-mac-address</td>
<td>Defines the NCIA/RSRB interface.</td>
</tr>
<tr>
<td>Router# clear ncia circuit [id-number]</td>
<td>Drops an NCIA circuit.</td>
</tr>
<tr>
<td>Router# clear ncia client [ip-address]</td>
<td>Terminates an NCIA client connection.</td>
</tr>
<tr>
<td>Router# clear ncia client registered [ip-address]</td>
<td>Terminates the active connection to the specified client and release all control blocks of the registered client.</td>
</tr>
<tr>
<td>Router# ncia start</td>
<td>Restarts an NCIA server.</td>
</tr>
<tr>
<td>Router# ncia stop</td>
<td>Stops an NCIA server.</td>
</tr>
<tr>
<td>Router# show ncia circuits [id-number]</td>
<td>Shows the status of an NCIA circuit.</td>
</tr>
<tr>
<td>Router# show ncia client [sap-list] [ip-address]</td>
<td>Shows the status of the NCIA client.</td>
</tr>
<tr>
<td>Router# show ncia server [server-number]</td>
<td>Shows the status of the NCIA server.</td>
</tr>
</tbody>
</table>

NCIA Server Configuration Examples

The following sections provide NCIA server configuration examples:

- NCIA Server Session to Local Token Ring Using DLSw+ Local Switch Example, page 15
- NCIA Server Session with DLSw+ Example, page 17
- NCIA Server Session with DSpU Example, page 18
- NCIA Server Session with RSRB Example, page 19

NCIA Server Session to Local Token Ring Using DLSw+ Local Switch Example

Figure 12 illustrates the use of DLSw+ local peer with an NCIA server session to a local Token Ring.
The following is a configuration for the network example shown in Figure 12:

```conf
source-bridge ring-group 44
dlsw local-peer
ncia server 1 10.2.20.4 4000.3174.0001 4000.0000.0001 128
!
interface token ring 0
   ring-speed 16
   source-bridge 21 3 44
```
NCIA Server Session with DLSw+ Example

Figure 13 illustrates the use of DLSw+ with an NCIA server session.

Figure 13 NCIA Server Session with DLSw+

The following is a configuration for the network example shown in Figure 13:

```
source-bridge ring-group 44
dlsw local-peer peer-id 10.2.20.4
dlsw remote-peer 0 tcp 10.2.20.3
ncia server 1 10.2.20.4 4000.3174.0001 4000.0000.0001 128
```
NCIA Server Session with DSPU Example

Figure 14 illustrates an NCIA server session with RSRB/DLSw+ and DSPU.

The following is a configuration for the network example shown in Figure 14:

```
nzia server 1 10.2.20.4 4000.3745.0001 4000.0000.0001 128
!
  dspu ncia 1
  dspu ncia enable-pu lsap 8
!  dspu host HOST-9370 xid-snd 11100001 rmac 4000.1060.1000 rsap 4 lsap 4
!  dspu pu CISCOPU-A xid-rcv 01700001
  dspu lu 2 6 host HOST-9370 2
!  interface TokenRing 0
    ring-speed 16
    llc2 xid-retry-time 0
  dspu enable-host lsap 4
  dspu start HOST-9370
```
NCIA Server Session with RSRB Example

Figure 15 illustrates the use of RSRB with an NCIA server session.

Figure 15 NCIA Server Session with RSRB

The following is a configuration for router Cisco 2 for the network example shown in Figure 15:

```
source-bridge ring-group 44
source-bridge ring-group 22
source-bridge remote-peer 22 tcp 10.2.20.3
source-bridge remote-peer 22 tcp 10.2.20.4
dlsw local-peer
ncia server 1 10.2.20.4 4000.3174.0001 4000.0000.0001 128
ncia rsrb 22 2 33 4 44 1111.1111.2222
```

CCDE, CCENT, CCSI, Cisco Eos, Cisco HealthPresence, Cisco IronPort, the Cisco logo, Cisco Nurse Connect, Cisco Pulse, Cisco SensorBase, Cisco StackPower, Cisco StadiumVision, Cisco TelePresence, Cisco Unified Computing System, Cisco WebEx, DCE, Flip Channels, Flip for Good, Flip Mino, Flipshare (Design), Flip Video, Flip Video (Design), Instant Broadband, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn, Cisco Capital, Cisco Capital (Design), Cisco:Financed (Stylized), Cisco Store, Flip Gift Card, and One Million Acts of Green are service marks; and Access Registrar, Aironet, AsyncOS, Brings the Meeting To You, Catalyst, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Lumin, Cisco Nexus, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, Continuum, EtherFast, EtherSwitch, Event Center, Explorer, Follow Me Browsing, iLYNX, IOS, iPhone, IronPort, the IronPort logo, Laser Link, LightStream, Linksys, MeetingPlace, MeetingPlace Chime Sound, MGX, Networks, Networking Academy, PCNow, PIX, PowerKEY, PowerPanels, PowerTV, PowerTV (Design), PowerVu, Prisma, ProConnect, ROSA, SenderBase, SMARTnet, Spectrum Expert, StackWise, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0910R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.
Configuring the Airline Product Set

This chapter describes how to configure the Airline Product Set (ALPS). For a complete description of the ALPS commands in this chapter, refer to the “Airline Product Set Configuration Commands” chapter in the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2). To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter contains the following sections:

- ALPS Overview, page 1
- ALPS Configuration Task List, page 4
- Monitoring and Maintaining ALPS, page 13
- ALPS Configuration Examples, page 13

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Platform Support for Cisco IOS Software Features” section on page li in the “Using Cisco IOS Software” chapter.

ALPS Overview

ALPS is a tunneling mechanism that transports airline protocol data across a Cisco router-based TCP/IP network to a mainframe. This feature provides connectivity between agent set control units (ASCUs) and a mainframe host that runs the airline reservation system.

The ALPS feature was released in three phases. The first two phases of ALPS enabled the network migration to TCP/IP without requiring any changes in the hardware or software of the endstations (ASCUs and mainframes). ALPS phase I and II utilized a new protocol, ALPS Tunneling Protocol (ATP), to tunnel airline protocol traffic (P1024B Airline Control [ALC] or P1024C Universal Terminal Support [UTS] data) through the TCP/IP network between peer Cisco routers. ALPS phase I provided support for the ALC protocol and the transport of the data from the ASCUs to a reservations system on an IBM mainframe. ALPS phase II provided support for the UTS protocol and the transport of the data from the ASCUs to a reservations system on a Unisys host system.
Figure 1 shows a basic ALPS topology with ALC, UTS, AX.25 and Exchange of Mixed Traffic over X.25 SVCs (EMTOX) protocols. Three major components provide the end-to-end transportation of airline protocol traffic across the network: the P1024B ALC or P1024C UTS protocol, the TCP-based transport protocol, and the AX.25/EMTOX access to the mainframe.

Figure 1 ALPS with ALC and UTS Architecture

ALPS phase III provides support for Mapping of Airline Traffic over Internet Protocol (MATIP). MATIP is an industry standard protocol for transporting airline protocol traffic across a TCP/IP network. This enhancement enables the end-to-end delivery of ALC and UTS data streams between a Cisco router and the mainframe using TCP/IP. ALPS with MATIP removes the X.25 (AX.25 or EMTOX) requirements for communication with the host reservation system by enabling TCP/IP communication between the router and the airline host reservation system.

Figure 2 shows the basic ALPS topology and the MATIP architecture implemented in Phase III. Three major components provide the end-to-end transportation of airline protocol traffic across the network: the P1024B ALC or P1024C UTS protocol, the TCP/IP-based MATIP protocol conversion, and the TCP/IP access to the mainframe.

Figure 2 ALPS with MATIP Architecture
In Cisco IOS Release 12.1(2)T and later, ALPS supports service messages additions and extensions to the ALPS P1024B ALC protocol support. The additions include customized options to configure the format, address, and sending of service messages. The ALPS ALC support is extended to be more scalable. The ALPS ASCU debug support is extended to include trace capability for the six-bit International Programmable Airline Reservation System (IPARS) format.

The Cisco ALPS feature provides the following benefits:

- Provides an end-to-end solution for airlines and central reservation systems.
- Allows airlines to replace their existing hardware and software with Cisco routers because the ALPS feature is integrated in the Cisco IOS software. For customers who already use Cisco routers, this feature allows them to consolidate networking overhead and functionality.
- Enables the end-to-end delivery of ALC and UTS data between a remote router or gateway and the mainframe using TCP/IP encapsulation.
- Eliminates network overhead for error detection and transmission logic associated with X.25 links.
- Replaces IBM front-end processors (FEPs) with Channel Interface Processors (CIPs).
- Eliminates the use of dedicated, leased, slow-speed ALC and UTS serial lines and migrates the reservation system networks to a modern networking paradigm. Once the mainframe reservation system is enabled to use TCP/IP, new applications can be written for PCs or network computers (NCs).
- Supports standards-based MATIP protocol for transporting data across the TCP/IP network.

In Cisco IOS Release 12.1(2)T and later, ALPS includes the following debug, ALC, and service message enhancements.

Debug Enhancement

The ALPS ASCU debug support additions provide new capabilities that enable you to display `debug alps ascu` command trace output in IPARS format.

ALC Enhancements

The ALPS ALC protocol stack includes the following extensions:

- Automatic ASCU reset
- T1 timer range increase
- Modification of the accepted ASCU IA value list

Service Message Enhancements

The additions to the ALPS service messages provide new capabilities that enable you to:

- Specify sita or apollo service message format
- Disable the forwarding of service messages for ALPS circuit status changes
- Specify where to retrieve the terminal address for dropped-data service messages
- Disable specific service messages
- Configure service message text with an increased character length

In Cisco IOS Release 12.1(3)T and later, ALPS includes the following ALC enhancement.

ALC Enhancement

The ALPS ALC protocol stack includes the following extensions:
• Nonpolled ALC ASCU support

The ALPS feature supports only type A conversational protocol traffic. The ALPS feature does not support MATIP type A host-to-host protocol traffic and MATIP type B messaging protocol traffic.

Remote routers must have the Cirrus Logic CD2430 chipset on a synchronous serial interface module to connect to the ALC or UTS ASCUs. The CD2430 chipset is supported on the following router platforms:

• Cisco 2520, 2521, 2522, and 2523
• Cisco 2600 series
• Cisco 3600 series
• Cisco 4500
• Cisco 4700

Note: The Cisco 4500 and Cisco 4700 platforms must have a high-density, low-speed serial card installed. Sixteen low-speed ports are available for performing the remote router functions.

The ALPS feature supports the following standards, MIBs and RFCs:

Standards

• P1024B Communication Control Protocol Specification, Societe Internationale de Telecommunications Aeronautiques
• P1024C Communication Control Protocol Specification, Societe Internationale de Telecommunications Aeronautiques
• MATIP Implementation Guide, Societe Internationale de Telecommunications Aeronautiques

MIBs

The ALPS feature supports the CISCO-ALPS-MIB and the following MIB enhancements:

• Extensions to the alpsIfP1024Table
• Extension to the alpsAscuTable
• Addition of Simple Network Management Protocol (SNMP) notifications for ALPS circuit open request failure and ALPS circuit open request with a partial rejection

For descriptions of supported MIBs and how to use them, see the Cisco MIB website on Cisco.com.

RFCs

• RFC 2351, Mapping of Airline Reservation, Ticketing, and Messaging Traffic over IP, May 1998

ALPS Configuration Task List

See the following sections for configuration tasks for the ALPS feature. Each task in the list indicates if the task is optional or required. The tasks in the “Configuring the Remote Routers” section on page 5 are the only required tasks for ALPS with MATIP.

For a complete description of the ALPS commands in this feature module, refer to the “Airline Product Set Configuration Commands” chapter in the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2). To locate documentation of other commands, use the command reference master index or search online.
Configuring the Remote Routers

Note To configure ALPS with MATIP, you must perform only the following tasks. The tasks also apply to EMTOX and AX.25, but are not required.

Perform the tasks in the following sections to configure the ALPS feature on the remote routers:

- Specifying the ALPS Local Peer IP Address, page 5
- Specifying the ALPS Remote Peer IP Address, page 5
- Specifying the ALPS Circuit, page 6
- Specifying Each ASCU, page 7

Specifying the ALPS Local Peer IP Address

You must identify an IP address as an ALPS local peer on the remote router. Only one ALPS local peer is permitted on a router.

To specify the ALPS local peer IP address, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# alps local-peer ipaddress [promiscuous]</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# alps keepalive [interval time] [retry count]</td>
</tr>
</tbody>
</table>

Specifying the ALPS Remote Peer IP Address

You must specify a partner IP address (remote peer) on the remote router. The peer connection may be permanent or dynamic (established on demand). You can configure an ATP connection to be permanent or dynamic by configuring the optional dynamic keyword.

Note MATIP sessions are dynamic, whether or not the dynamic keyword is configured. To simulate a permanent connection in MATIP, configure the dynamic keyword with an inact-timer value of zero.
To specify the partner IP address for one or more TCP peer connections to the configured IP address, use the following command in global configuration mode:

```
Router(config)# alps remote-peer ip-addr [protocol {atp | matip-a}] [status-interval interval] [status-retry retries] [dynamic [inactive-timer] [no-circuit no-circuit-timer]] [tcp-qlen [num]]
```

Specifies the ALPS Circuit

An ALPS circuit is a communication path across a TCP connection for one or more ASCUs. The ALPS circuit must have a configured association with an ALPS remote peer to establish a connection to the host. Additionally, an ALPS circuit configuration may specify a different remote peer as a backup peer to the host. Each MATIP circuit maps to a single TCP connection. For ATP, ALPS circuits can be multiplexed across to a single TCP connection.

To specify an ALPS circuit, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# alps circuit name Specifies an ALPS circuit at the remote router and enters ALPS circuit submode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-alps-circ)# alps primary-peer ip-addr [backup-peer ip-addr] Specifies the primary TCP peer and an optional backup peer for this ALPS circuit.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-alps-circ)# alps local-hld loc-hld remote-hld rem-hld Specifies the local high-level designator (HLD) for this ALPS circuit. The remote-hld keyword is not applicable for ALPS with MATIP. The loc-hld is the hld of the device that is being replaced. The rem-hld is the hld of the host mainframe.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-alps-circ)# alps hostlink number {ax25 lcn</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-alps-circ)# alps connection-type permanent [retry-timer] (Optional) Specifies that this circuit should be established when the circuit is enabled.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-alps-circ)# alps lifetime-timer timer (Optional) Specifies how long messages can be queued in the ALPS circuit queue.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-alps-circ)# alps service-msg-interval seconds (Optional) Specifies the interval between the transmission of a service message to an ASCU and the transmission of a PLEASE RETRY message. The PLEASE RETRY message is transmitted only to ASCUs that use circuits with a dynamic connection type.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config-alps-circ)# alps service-msg-list list (Optional) Defines the service message list to be used for this circuit.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Router(config-alps-circ)# alps matip-close-delay time (Optional) Specifies the interval between the closing and reopening of the MATIP circuit connection.</td>
</tr>
</tbody>
</table>
Specifying Each ASCU

You must configure each ASCU within the context of the serial interface configuration. You must configure ASCU addressing information and association with an ASCU. You can configure the timers, maximum frame sizes, retry values, and polling mode optional configuration parameters for each ASCU. Appropriate default parameters are used for unspecified parameters. Once you configure the first ASCU, you can configure additional ASCUs using only Steps 8 through 14.

To specify an ASCU, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10</td>
<td>Router(config-alps-circ)# alps idle-timer timer</td>
</tr>
<tr>
<td>Step 11</td>
<td>Router(config-alps-circ)# alps mpx (group</td>
</tr>
<tr>
<td>Step 12</td>
<td>Router(config-alps-circ)# alps enable-circuit</td>
</tr>
</tbody>
</table>
ALPS Configuration Task List

Step 10
Command
`Router(config-if)# half-duplex`

Purpose
Specifies half-duplex mode on a serial interface.

This command specifies whether hardware flow control (constant or switched Request to Send [RTS]) is to be used between a DTE and DCE device.

- If half-duplex is specified for a DTE, the DTE raises RTS and waits for the DCE to raise Clear to Send (CTS) before sending.
- If half-duplex is specified for a DCE, the DCE waits for the DTE to raise RTS, then the DCE raises CTS to allow the DTE to send.
- If full-duplex is specified, RTS is assumed and CTS is not monitored.

Note
ALPS supports the serial interface commands that are available if half-duplex mode is specified. This support applies to an interface that is configured as data circuit-terminating equipment (DCE) and data terminal equipment (DTE).

Step 11
Command
`Router(config-if)# alps poll-pause msec`

Purpose
(Optional) Specifies the minimum interval, in milliseconds, between initiations of the polling cycle.

Step 12
Command
`Router(config-if)# alps service-msg data-drop {msg-term | config-term}`

Purpose
(Optional) Specifies where to retrieve the terminal address to use when a service message is sent to an ASCU as a result of a dropped data message from a terminal.

Step 13
Command
`Router(config-if)# alps service-msg format {sita | apollo}`

Purpose
(Optional) Specifies the protocol format of service messages sent from the router to an ASCU.

Step 14
Command
`Router(config-if)# alps service-msg status-change`

Purpose
(Optional) Specifies that service messages for ALPS circuit status changes will be sent to ASCUs on the serial interface.

Step 15
Command
`Router(config-if)# alps ascu id`

Purpose
Specifies a physical ASCU identity (the ASCU interchange address value for ALC) and enters ALPS ASCU submode.

Step 16
Command
`Router(config-alps-ascu)# alps default-circuit name`

Purpose
Specifies the ALPS circuit that this ASCU uses.

Step 17
Command
`Router(config-alps-ascu)# alps a1-map a1-value a2-map a2-value`

Purpose
Specifies the A1 and A2 logical ASCU identification information.

Step 18
Command
`Router(config-alps-ascu)# alps retry-option [resend | reenter]`

Purpose
(Optional) Specifies the retry option when an ALC message with a bad cyclic check character (CCC) is received.

Step 19
Command
`Router(config-alps-ascu)# alps max-msg-length value`

Purpose
(Optional) Specifies maximum input message length.
Configuring the Airline Product Set

ALPS Configuration Task List

Step 20

Command

```
Router(config-alps-ascu)# alps error-display
number1 number2
```

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Specifies where error messages are displayed:</td>
</tr>
<tr>
<td>- For P1024B ALC, the <code>number1</code> argument specifies the terminal address (TA) where these service messages are sent and the <code>number2</code> argument specifies the screen line number where service messages are displayed.</td>
</tr>
<tr>
<td>- For P1024C UTS, the <code>number1</code> argument specifies the screen line number where service messages are displayed and <code>number2</code> argument specifies the column number where service messages are displayed.</td>
</tr>
</tbody>
</table>

Step 21

Command

```
Router(config-alps-ascu)# alps auto-reset
```

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Automatically resets non-responsive ALC ASCUs in the DOWN state.</td>
</tr>
</tbody>
</table>

Step 22

Command

```
Router(config-alps-ascu)# alps alias
alias-interchange-address
```

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Specifies that an ALC ASCU is to operate in nonpolling mode and specifies the parent ASCU interchange address to which this ASCU is aliased.</td>
</tr>
</tbody>
</table>

Step 23

Command

```
Router(config-alps-ascu)# alps enable-ascu
```

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polls the ASCU.</td>
</tr>
</tbody>
</table>

Configuring the Data Center Router

Note

These tasks apply to EMTOX and AX.25, only.

Perform the tasks in the following sections to configure the ALPS feature on the data center router:

- Specifying the ALPS Host Local Peer Address, page 9
- Specifying AX.25, page 10
- Specifying EMTOX, page 10

Specifying the ALPS Host Local Peer Address

You must identify an IP address to use as the ALPS local peer IP address. Only one ALPS host local peer is permitted on a router. The promiscuous option, which allows any remote router to connect, is recommended at the central CPE.

To specify the ALPS host local peer address, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `
Router(config)# alps local-peer ip-address [promiscuous]` | Specifies the IP address of the local peer. |
Specifying AX.25

To enable AX.25 on an X.25 interface, the ALPS host HLD and hostlink number must be configured and AX.25 must be specified on an X.25 serial interface. At circuit-establishment time, the remote router forwards the host HLD, the logical channel number (LCN), and the hostlink number for the permanent virtual circuit (PVC), to be used for the ASCU group.

To configure AX.25 on an X.25 interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# interface type number</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2: Router(config-if)# encapsulation x25</td>
<td>Specifies a serial interface as an X.25 device.</td>
</tr>
<tr>
<td>Step 3: Router(config-if)# alps host-hld hld host-link num {{ax25 [damp-tmr value]}</td>
<td>{emtox x.121 [pseudo-conv]}} [life-tmr value]</td>
</tr>
</tbody>
</table>

Specifying EMTOX

To enable EMTOX on an X.25 interface, the host HLD and the hostlink number must be configured and EMTOX must be specified on an X.25 serial interface. At circuit-establishment time, the remote router forwards the X.121 address to be used as the calling address in the X.25 call and the host HLD and the hostlink number. If the host performs a call out, a correlation between the X.121 called address and a remote router peer IP address must be configured.

To configure EMTOX on an X.25 interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# interface type number</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2: Router(config-if)# encapsulation x25</td>
<td>Specifies a serial interface as an X.25 device.</td>
</tr>
<tr>
<td>Step 3: Router(config-if)# alps host-hld hld host-link num {{ax25 [damp-tmr value]}</td>
<td>{emtox x.121 [pseudo-conv]}} [life-tmr value]</td>
</tr>
<tr>
<td>Step 4: Router(config-if)# alps translate x.121-addr ip-addr</td>
<td>Maps an X.121 address to an IP address on a remote peer.</td>
</tr>
</tbody>
</table>

Customizing the Service Messages

You can customize the contents of the service messages and service message list. To specify the service message number and the content of the message, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# alps service-msg-list list number number msg</td>
<td>Specifies service message numbers and content.</td>
</tr>
</tbody>
</table>
The default service message is used if no service message list number is specified. If you configure a particular service message on a list, the default service message still is used for the rest of the messages on that list.

Once the `alps service-msg-list number` command has been configured, you can define the service message list to be used on the circuit by configuring the `alps service-msg-list` command.

You can configure the handling of service messages using the `alps service-msg data-drop`, `alps service-msg format`, and `alps service-msg status-change` interface configuration-level commands.

Table 1 shows the default service message text strings:

<table>
<thead>
<tr>
<th>Message Number</th>
<th>Event</th>
<th>Text String</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ALPS circuit to host is opened.</td>
<td>CONNECTION UP</td>
</tr>
<tr>
<td>2</td>
<td>X.25 virtual circuit at the host has been cleared.</td>
<td>DISC BY THE HOST</td>
</tr>
<tr>
<td>3</td>
<td>X.25 interface at the host is down.</td>
<td>HOST ISOLATED</td>
</tr>
<tr>
<td>4</td>
<td>No response from the host router when trying to establish a connection.</td>
<td>NETWORK PROBLEM</td>
</tr>
<tr>
<td>5</td>
<td>Connection to host was disconnected because of inactivity.</td>
<td>READY TO CONNECT</td>
</tr>
<tr>
<td>6</td>
<td>Network is congested.</td>
<td>CONGESTION</td>
</tr>
<tr>
<td>7</td>
<td>Network congestion has cleared.</td>
<td>PLEASE PROCEED</td>
</tr>
<tr>
<td>8</td>
<td>Network operator has disabled the path to the host.</td>
<td>DISC BY NET OPERAT</td>
</tr>
</tbody>
</table>

Customizing the Alarm Notifications

You can enable and customize alarms (error messages) and SNMP traps. To enable and customize alarms for the ALPS ASCUs, circuits, or peers, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# alps enable-alarms ascu [interface id]</code></td>
<td>Enables alarms for the ALPS ASCUs.</td>
</tr>
<tr>
<td><code>Router(config)# alps enable-alarms circuit [name]</code></td>
<td>Enables alarms for the ALPS circuits.</td>
</tr>
<tr>
<td><code>Router(config)# alps enable-alarms peer [ip-address]</code></td>
<td>Enables alarms for the ALPS peers.</td>
</tr>
</tbody>
</table>

Updating a Circuit

You can clear or update the circuits on the ALPS network. If a specific name is entered, the update action will be executed only on a configured circuit with that name; otherwise, the action will be performed on all configured circuits. If the circuit uses the ATP protocol, an update consists of a closing and reopening
of the ALPS circuit (the same action performed when clearing the circuit). If the circuit is a MATIP
circuit, the update results in the sending of a configuration update (in the form of a MATIP Session Open
command). You can update the circuit only on enabled or active (opened or opening state) ALPS circuits.
To update one or more ALPS circuits, use the following command in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# alps update-circuit [name]</td>
<td>Specifies name of circuit to update.</td>
</tr>
</tbody>
</table>

Verifying ALPS

Perform the tasks in the following steps to verify the components of the ALPS network:

Step 1 Verify that the connection between the router and the ASCU is up by polling the ASCU. Enter the `show alps ascu` command and check the state field. UP indicates that the ASCU is responding to the polling. DOWN indicates that the connection is not responding to the polling.

```
router# show alps ascu
```

```
interface  dlc   id   a1   a2   circuit    pkt_tx  pkt_rx  state
--------------------------------------------------------------
Serial6     ALC   42   60   70   CKT_ALC_1  416     416     UP
Serial6     ALC   45   60   72   CKT_ALC_1  600     600     UP
Serial6     ALC   46   62   78   CKT_ALC_2  0       0       DOWN
Serial7     UTS   21   22   13   CKT_UTS   4830    4830    UP
```

Step 2 Verify that the peer between the router and the host is connected. Enter the `show alps peer` command and check the state field. OPENED indicates that the circuit is connected. DISCONN indicates that the circuit is disconnected.

```
router# show alps peers
```

```
local_peer : ip_address = 192.168.25.2
```

```
ip_address     conn_id             state    pkt_t  pkt_rx
--------------------------------------------------------------
192.168.20.3   MATIP_A_CKT_UTS     OPENED   1023   1023
192.168.70.2   MATIP_A_CKT_ALC_1   OPENED   4852   4757
192.168.70.2   MATIP_A_CKT_ALC_2   OPENED   1      1
192.168.70.3   MATIP_A_CKT_ALC_1   DISCONN  0      0
192.168.70.3   MATIP_A_CKT_ALC_2   DISCONN  0      0
```

Step 3 Verify that the ALPS circuit to the peer host is open and connected. Enter the `show alps circuits` command and check the state field. OPEN indicates that the circuit is connected. INOP indicates that the circuit is disconnected.

```
router# show alps circuits
```

```
name        pri_peer       curr_peer      dlc   state  pkt_tx  pkt_rx
--------------------------------------------------------------
ALC_EMTOX   192.168.45.2   192.168.45.2   ALC   OPEN   944     944
UTS_AX25    192.168.45.2   192.168.45.2   UTS   OPEN   425     425
```
Monitoring and Maintaining ALPS

To monitor the status of the ALPS feature, use the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show alps ascu [interface] [id] [detail]</td>
<td>Displays the status of the ALPS ASCU.</td>
</tr>
<tr>
<td>Router# show alps circuits [peer ip address] [name name] [detail]</td>
<td>Displays the status of the ALPS circuits.</td>
</tr>
<tr>
<td>Router# show alps peers [ipaddress addr] [detail]</td>
<td>Displays the status of the ALPS remote peers.</td>
</tr>
</tbody>
</table>

ALPS Configuration Examples

This section provides the following configuration examples:

- ALPS with MATIP Configuration for ALC and UTS Example, page 14
- ALPS Configuration for ALC and AX.25 Example, page 16
- ALPS Configuration for UTS and EMTOX Example, page 18
ALPS with MATIP Configuration for ALC and UTS Example

Figure 3 shows a simple example of a router topology for the ALPS with MATIP feature. The configuration corresponding to this topology follows.

Figure 3 Router Topology for the ALPS with MATIP Configuration Example

IBM mainframe
192.168.70.2
(primary peer)

Unisys host system
192.168.20.3

Frame Relay

Remote router
192.168.25.2

ASCUs running UTS
RID = 21

IA = interchange address
RID = remote identifier

ALC/UTS Router Configuration

```
(config)# hostname alps-rcpe
(config)# alps local-peer 192.168.25.2
(config)# alps keepalive interval 45 retry 2
(config)# alps remote-peer 192.168.20.3 protocol matip-a dynamic status-interval 60
(config)# alps remote-peer 192.168.70.2 protocol matip-a dynamic 0 no-circuit 10
(config)# alps remote-peer 192.168.70.3 protocol matip-a dynamic 45
(config)# alps enable-alarms peer 192.168.70.2
(config)# alps enable-alarms ascu

(config)# alps circuit CKT_ALC_1
(config-alps-circ)# alps primary-peer 192.168.70.2 backup-peer 192.168.70.3
(config-alps-circ)# alps connection-type permanent
(config-alps-circ)# alps local-hld 2525
(config-alps-circ)# alps enable-circuit

(config)# alps circuit CKT_UTS
(config-alps-circ)# alps primary-peer 192.168.20.3
(config-alps-circ)# alps mpv single
(config-alps-circ)# alps idle-timer 90
(config-alps-circ)# alps local-hld 2527
(config-alps-circ)# alps enable-circuit
(config-alps-circ)# alps service-msg-interval 2

(config)# interface Loopback0
(config-if)# ip address 192.168.25.2 255.255.255.0

(config)# interface Serial0
(config-if)# ip address 210.100.50.2 255.255.255.0
```
config-if)# encapsulation frame-relay IETF
(config-if)# frame-relay map ip 210.100.60.2 40
(config-if)# frame-relay map ip 210.100.70.2 50
!
(config)# interface Serial6
(config-if)# encapsulation alc
(config-if)# alps t1 6
(config-if)# alps t2 8
(config-if)# alps poll-pause 100
(config-if)# clockrate 9600
!
(config-if)# alps ascu 42
(config-alps-ascu)# alps default-circuit CKT_ALC_1
(config-alps-ascu)# alps a1-map 60 a2-map 70
(config-alps-ascu)# alps enable-ascu
!
(config-if)# alps ascu 45
(config-alps-ascu)# alps default-circuit CKT_ALC_1
(config-alps-ascu)# alps a1-map 60 a2-map 72
(config-alps-ascu)# alps enable-ascu
!
(config)# interface Serial7
(config-if)# encapsulation uts
(config-if)# alps n3 4
(config-if)# alps poll-pause 125
(config-if)# clockrate 4800
!
(config-if)# alps ascu 21
(config-alps-ascu)# alps default-circuit CKT_UTS
(config-alps-ascu)# alps a1-map 22 a2-map 13
(config-alps-ascu)# alps enable-ascu
!
ALPS Configuration for ALC and AX.25 Example

Figure 4 shows a simple router topology for the ALPS feature with ALC encapsulation. The configuration for this topology follows.

Figure 4 Router Topology for the ALPS Configuration for ALC Encapsulation Example

Remote CPE Configuration

```
(config)# alps local-peer 172.22.0.90
(config)# alps keepalive interval 60
(config)# alps remote-peer 172.22.0.91
(config)# alps remote-peer 172.22.0.92 dynamic 60
(config)# alps service-msg-list 1 number 2 TERMINAL OFF

(config)# alps circuit CKT1
(config-alps-circ)# alps primary-peer 172.22.0.91 backup-peer 172.22.0.92
(config-alps-circ)# alps local-hld 4B09 remote-hld 5C00
(config-alps-circ)# alps connection-type permanent 30
(config-alps-circ)# alps lifetime-timer 3
(config-alps-circ)# alps hostlink 3 ax25 120 winout 3 winin 3
(config-alps-circ)# alps service-msg-interval 3
(config-alps-circ)# alps service-msg-list 1
(config-alps-circ)# alps enable-circuit

(config)# alps circuit CKT2
(config-alps-circ)# alps primary-peer 172.22.0.91 backup-peer 172.22.0.92
(config-alps-circ)# alps local-hld 4C01 remote-hld 5C00
(config-alps-circ)# alps hostlink 3 ax25 1500 winout 4 winin 5
(config-alps-circ)# alps enable-circuit

(config)# alps circuit CKT3
(config-alps-circ)# alps primary-peer 172.22.0.91
(config-alps-circ)# alps local-hld 4B10 remote-hld 5C00
(config-alps-circ)# alps connection-type permanent 30
(config-alps-circ)# alps lifetime-timer 6
```
(config-alps-circ)# alps hostlink 3 ax25 905
(config-alps-circ)# alps enable-circuit
!
(config)# interface serial 1
(config-if)# ip address 172.22.0.90 255.255.255.0
!
(config)# interface serial 2
(config-if)# encapsulation alc
(config-if)# alps t1 3
(config-if)# alps t2 6
(config-if)# alps n1 3
(config-if)# alps n2 2
(config-if)# alps servlim 20
!
(config-if)# alps ascu 51
(config-alps-ascu)# alps default-circuit CKT1
(config-alps-ascu)# alps a1-map 40 a2-map 2D
(config-alps-ascu)# alps retry-option resend
(config-alps-ascu)# alps max-msg-length 1950
(config-alps-ascu)# alps error-display 6d 78
(config-alps-ascu)# alps enable-ascu
!
(config-if)# alps ascu 44
(config-alps-ascu)# alps default-circuit CKT1
(config-alps-ascu)# alps a1-map 40 a2-map 2E
(config-alps-ascu)# alps max-msg-length 590
(config-alps-ascu)# alps error-display 6d 78
(config-alps-ascu)# alps enable-ascu
!
(config-if)# alps ascu 7E
(config-alps-ascu)# alps default-circuit CKT2
(config-alps-ascu)# alps a1-map 40 a2-map 2F
(config-alps-ascu)# alps retry-option re-send
(config-alps-ascu)# alps max-msg-length 2000
(config-alps-ascu)# alps error-display 6d 78
(config-alps-ascu)# alps enable-ascu

(config)# interface serial 3
(config-if)# encapsulation alc
(config-if)# alps t1 5
(config-if)# alps t2 6
(config-if)# alps n1 1
(config-if)# alps n2 2
(config-if)# alps servlim 20
!
(config-if)# alps ascu 4B
(config-alps-ascu)# alps default-circuit CKT3
(config-alps-ascu)# alps a1-map 63 a2-map 41
(config-alps-ascu)# alps retry-option re-send
(config-alps-ascu)# alps max-msg-length 1960
(config-alps-ascu)# alps error-display 6d 78
(config-alps-ascu)# alps enable-ascu

(config-if)# alps ascu 66
(config-alps-ascu)# alps default-circuit CKT2
(config-alps-ascu)# alps a1-map 71 a2-map 21
(config-alps-ascu)# alps max-msg-length 3800
(config-alps-ascu)# alps error-display 6d 78
(config-alps-ascu)# alps enable-ascu
Central CPE Configuration (Main)

AX.25 Host

(config)# alps local-peer 172.22.0.91 promiscuous
(config)# interface serial 0
(config-if)# encapsulation x25 ax25
(config-if)# x25 ltc 1024
(config-if)# alps host-hld 5C00 host-link 3 ax25

Central CPE Configuration (Backup)

AX.25 Host

(config)# alps local-peer 172.22.0.92 promiscuous
(config)# interface serial 0
(config-if)# encapsulation x25 ax25
(config-if)# x25 ltc 1024
(config-if)# alps host-hld 5C00 host-link 3 ax25

ALPS Configuration for UTS and EMTOX Example

The following configuration is an example of routing P1024C UTS data frames across the network between central and remote equipment.

Remote Router Configuration

(config)# hostname alps-rcpe
(config)# alps local-peer 200.100.25.2
(config)# alps keepalive interval 45 retry 5
(config)# alps remote-peer 200.100.40.2
(config)# alps enable-alarms peer 200.100.40.2
(config)# alps enable-alarms ascu

(config)# alps circuit UTS_EMTOX
(config-alps-circ)# alps primary-peer 200.100.40.2
(config-alps-circ)# alps idle-timer 90
(config-alps-circ)# alps local-hld 2525 remote-hld 5050
(config-alps-circ)# alps mpox single
(config-alps-circ)# alps hostlink 6 emtox 1100 ops 512 ips 512
(config-alps-circ)# alps service-msg-interval 2
(config-alps-circ)# alps enable-circuit

(config)# interface Loopback0
(config-if)# ip address 200.100.25.2 255.255.255.0

(config)# interface Serial0
(config-if)# ip address 200.100.50.2 255.255.255.0
(config-if)# encapsulation frame-relay IETF
(config-if)# frame-relay map ip 200.100.50.3 20

(config)# interface Serial1
(config-if)# encapsulation uts
(config-if)# alps n1 5
(config-if)# alps n3 4
(config-if)# alps poll-pause 200
(config-if)# clockrate 4800

(config-if)# alps ascu 21
(config-alps-ascu)# alps default-circuit UTS_EMTOX
(config-alps-ascu)# alps a1-map 22 a2-map 13
(config-alps-ascu)# alps enable-ascu
!

Central CPE Configuration

(config)# hostname alps-ccpe
(config)# alps local-peer 200.100.40.2 promiscuous
(config)# alps enable-alarms circuit
!
(config)# interface Loopback0
(config-if)# ip address 200.100.40.2 255.255.255.0
!
(config)# interface Serial0
(config-if)# ip address 200.100.50.3 255.255.255.0
(config-if)# encapsulation frame-relay IETF
(config-if)# clockrate 56000
(config-if)# frame-relay map ip 200.100.50.2 20
!
(config)# interface Serial2
(config-if)# encapsulation x25 dce
(config-if)# alps host-hld 5050 host-link 6 emtox 2222
(config-if)# alps translate 110* 200.100.25.2
(config-if)# clockrate 64000

CCDE, CCENT, CCSI, Cisco Eos, Cisco HealthPresence, Cisco IronPort, the Cisco logo, Cisco Nurse Connect, Cisco Pulse, Cisco SensorBase, Cisco StackPower, Cisco StadiumVision, Cisco TelePresence, Cisco Unified Computing System, Cisco WebEx, DCE, Flip Channels, Flip for Good, Flip Mino, Flipshare (Design), Flip Ultra, Flip Video, Flip Video (Design), Instant Broadband, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn, Cisco Capital, Cisco Capital (Design), Cisco:Financed (Stylized), Cisco Store, Flip Gift Card, and One Million Acts of Green are service marks; and Access Registrar, Aironet, AllTouch, AsyncOS, Bringing the Meeting To You, Catalyst, CCD, CCDP, CCIE, CCIP, CCNA, CCNP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Lumin, Cisco Nexus, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, Continuum, EtherFast, EtherSwitch, Event Center, Explorer, Follow Me Browsing, GainMaker, iLYNX, IOS, iPhone, IronPort, the IronPort logo, Laser Link, LightStream, Linksys, MeetingPlace, MeetingPlace Chime Sound, MGX, Networks, Networking Academy, PCNow, PIX, PowerKEY, PowerPanels, PowerTV, PowerVu, Prism, ProConnect, ROSA, SenderBase, SMARTnet, Spectrum Expert, StackWise, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0910R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.
Configuring DSPU and SNA Service Point Support

This chapter describes Cisco IOS support for Systems Network Architecture (SNA) downstream physical unit (DSPU) devices and SNA Service Point. For a complete description of the DSPU and SNA Service Point commands mentioned in this chapter, refer to the “DSPU and SNA Service Point Configuration Commands” chapter of the Cisco IOS Bridging and IBM Networking Command Reference (Volume 2 of 2). To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter contains the following sections:

- Technology Overview, page 1
- DSPU Configuration Task List, page 3
- Configuring SNA Service Point Support, page 16
- Monitoring and Maintaining DSPU and SNA Service Point Feature Status, page 21
- DSPU and SNA Service Point Configuration Examples, page 22

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Platform Support for Cisco IOS Software Features” section on page li in the “Using Cisco IOS Software” chapter.

Technology Overview

DSPU is a software feature that enables the router to function as a physical unit (PU) concentrator for SNA PU type 2 nodes. PU concentration at the device simplifies the task of PU definition at the upstream host while providing additional flexibility and mobility for downstream PU devices.

The DSPU feature allows you to define downstream PU type 2 devices in the Cisco IOS software. DSPU reduces the complexity of host configuration by letting you replace multiple PU definitions that represent each downstream device with one PU definition that represents the router.

Because you define the downstream PUs at the router rather than the host, you isolate the host from changes in the downstream network topology. Therefore you can insert and remove downstream PUs from the network without making any changes on the host.
The concentration of downstream PUs at the router also reduces network traffic on the WAN by limiting the number of sessions that must be established and maintained with the host. The termination of downstream sessions at the router ensures that idle session traffic does not appear on the WAN.

SNA service point support in the Cisco IOS software assumes that NetView or an equivalent product is available at the SNA host. The user interacts with the network management feature in the router and at the SNA host. In the Cisco IOS software, you can configure the host connection and show the status of this connection. At the SNA host, you can use the NetView operator’s console to view alerts and to send and receive Cisco syntax commands to the Cisco device.

Figure 1 shows a router functioning as a DSPU concentrator.

Typically, a router establishes one or more upstream connections with one or more hosts and many downstream connections with PU type 2 devices. From an SNA perspective, the router appears as a PU type 2 device to the upstream host and assumes the role of a system services control point (SSCP) appearing as a PU type 5 device to its downstream PUs.

The SSCP sessions established between the router and its upstream host are completely independent of the SSCP sessions established between the router and its downstream PUs. SNA traffic is routed at a logical unit (LU) level using a routing algorithm that maps downstream LUs onto upstream LUs.

Figure 2 illustrates the SNA perspective of DSPU.
DSPU Configuration Task List

To configure DSPU, perform the tasks in the following sections:

- Defining DSPU Upstream Hosts, page 3 (Required)
- Defining Downstream PUs, page 4 (Required)
- Defining DSPU LUs, page 6 (Required)
- Configuring DSPU to Use a Data-Link Control, page 7 (Optional)
- Defining the Number of Outstanding, Unacknowledged Activation RUs, page 15 (Optional)

See the “DSPU and SNA Service Point Configuration Examples” section on page 22 for examples.

Defining DSPU Upstream Hosts

The upstream host provides logical units (LUs) that the Cisco IOS software assigns for use by its downstream PUs. Because one upstream host can only provide a maximum of 255 LUs, the DSPU feature supports multiple hosts. Multiple upstream host support allows the DSPU router to provide more than 255 LUs for use by its downstream PUs.

To define a DSPU host over Token Ring, Ethernet, Fiber Distributed Data Interface (FDDI), remote source-route bridging (RSRB), or virtual data-link control connections, use the following command in global configuration mode:

```
Router(config)# dspu host host-name xid-snd xid rmac remote-mac [rsap remote-sap] [lsap local-sap] [interface slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout] [focalpoint]
```

Defines a DSPU host over Token Ring, Ethernet, FDDI, RSRB, or virtual data-link control connections.

To define a DSPU host over a Synchronous Data-Link Control (SDLC) connection, use the following command in global configuration mode:
Configuring DSPU and SNA Service Point Support

DSPU Configuration Task List

4 To define a DSPU host over an X.25/Qualified Logical Link Control (QLLC) connection, use the following command in global configuration mode:

Command
Router(config)# dspu host host-name xid-snd xid sdlc sdlc-addr [interface slot/port] [window window-size] [maxframe max-iframe] [retries retry-count] [retry-timeout retry-timeout] [focalpoint]

Purpose
Defines a DSPU host over an SDLC connection.

To define a DSPU host over an X.25/QLLC connection, use the following command in global configuration mode:

Command
Router(config)# dspu host host-name xid-snd xid x25 remote-x121-addr [qllc local-x121-subaddr] [interface slot/port] [window window-size] [maxframe max-iframe] [retries retry-count] [retry-timeout retry-timeout] [focalpoint]

Purpose
Defines a DSPU host over an X.25/QLLC connection.

To define a DSPU host over a Frame Relay connection, use the following command in global configuration mode:

Command
Router(config)# dspu host host-name xid-snd xid dlci dlci-number [rsap remote-sap] [lsap local-sap] [interface slot/port] [window window-size] [maxframe max-iframe] [retries retry-count] [retry-timeout retry-timeout] [focalpoint]

Purpose
Defines a DSPU host over a Frame Relay connection.

Defining Downstream PUs

To define the downstream PUs, perform either of the tasks in the following sections, depending on your circumstances:

- Explicitly Defining a Downstream PU, page 4
- Enabling the Default PU Option, page 6

Explicitly Defining a Downstream PU

Explicitly define a downstream PU if you require the Cisco IOS software to perform verification checking on incoming downstream connections or to initiate an outgoing downstream connection.

For Cisco IOS Release 11.3 and later releases, the number of DSPU PUs you can configure is 1024.

To explicitly define a downstream PU over Token Ring, Ethernet, FDDI, RSRB, virtual data-link control, or native client interface architecture (NCIA) connections, use the following command in global configuration mode:
To explicitly define a downstream PU over an SDLC connection, use the following command in global configuration mode:

```
Router(config)# dspu pu pu-name [sdlc sdlc-addr] [xid-rcv xid] [interface slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout]
```

Explicitly defines a downstream PU over an SDLC connection.

To explicitly define a downstream PU over an X.25/QLLC connection, use the following command in global configuration mode:

```
Router(config)# dspu pu pu-name [x25 remote-x121-addr] [qllc local-x121-subaddr] [xid-rcv xid] [interface slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout]
```

Explicitly defines a downstream PU over an X.25/QLLC connection.

To explicitly define a downstream PU over a Frame Relay connection, use the following command in global configuration mode:

```
Router(config)# dspu pu pu-name [dlci dlci-number] [rsap remote-sap] [lsap local-sap] [xid-rcv xid] [interface type slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout]
```

Explicitly defines a downstream PU over a Frame Relay connection.

A PU definition must have either an xid-rcv parameter or an address (rmac, sdlc, x25 or dlci) parameter. If the Cisco IOS software will perform verification checking on incoming downstream connections, there are several combinations of parameters that you can configure for verification matching. Note that the address parameter, when specified, is considered to be the primary key on the PU definition. Therefore, if both an address and xid-rcv are configured, the matching algorithm will match on the address and ignore the xid-rcv parameter.

- Match on xid-rcv value only

 User may define a downstream PU using only the xid-rcv value so that any connecting PU that specifies the value of the configured XID will match that PU definition.

- Match on xid-rcv and interface values

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu pu pu-name [rmac remote-mac] [rsap remote-sap] [lsap local-sap] [xid-rcv xid] [interface slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout]</td>
<td>Explicitly defines a downstream PU over Token Ring, Ethernet, FDDI, RSRB, virtual data-link control, or NCIA connections.</td>
</tr>
<tr>
<td>Router(config)# dspu pu pu-name [sdlc sdlc-addr] [xid-rcv xid] [interface slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout]</td>
<td>Explicitly defines a downstream PU over an SDLC connection.</td>
</tr>
<tr>
<td>Router(config)# dspu pu pu-name [x25 remote-x121-addr] [qllc local-x121-subaddr] [xid-rcv xid] [interface slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout]</td>
<td>Explicitly defines a downstream PU over an X.25/QLLC connection.</td>
</tr>
<tr>
<td>Router(config)# dspu pu pu-name [dlci dlci-number] [rsap remote-sap] [lsap local-sap] [xid-rcv xid] [interface type slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout]</td>
<td>Explicitly defines a downstream PU over a Frame Relay connection.</td>
</tr>
</tbody>
</table>
User may define a downstream PU using the xid-rcv and interface values so that any PU connecting into the configured interface that specifies the value of the configured XID will match the PU definition.

- Match on addressing values only
 User may define a downstream PU using only the addressing values (RMAC/RSAP/LSAP, SDLC, DLCI/RSAP/LSAP, or X25/QLLC) so that any connecting PU with addressing that matches the configured addressing will match that PU definition. If no PU definition is found to match the incoming RSAP, then a match is accepted on a PU that has the correct RMAC/LSAP or DLCI/LSAP.

- Match on addressing and interface values
 User may define a downstream PU using the interface and addressing values (RMAC/RSAP/LSAP, SDLC, DLCI/RSAP/LSAP, or X25/QLLC) so that any PU connecting into the configured interface with addressing that matches the configured addressing will match the PU definition. If no PU definition is found to match the incoming RSAP, then a match is accepted on a PU that has the correct RMAC/LSAP or DLCI/LSAP and interface.

The Cisco IOS software rejects any incoming downstream connections that do not match the parameters of a defined downstream PU unless the default PU option is also enabled.

Enabling the Default PU Option

Configure the DSPU default PU option if you do not require the Cisco IOS software to verify incoming downstream connections. The default PU option allows the software to accept incoming downstream connections without an explicit definition for the downstream PU.

To enable the default PU option, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu default-pu [window window-size] [maxiframe max-iframe]</td>
<td>Enables the default PU option.</td>
</tr>
</tbody>
</table>

Defining DSPU LUs

Specify the LU routing algorithm used to map the upstream LUs to the downstream LUs and to define all LUs for each upstream and downstream PU.

The DSPU feature assigns upstream LUs to downstream LUs based on the selected LU routing algorithm and performs the mapping necessary for SNA data transfer. The DSPU feature supports two alternative mapping algorithms that are described in the following sections:

- Defining Dedicated LU Routing, page 6
- Defining Pooled LU Routing, page 7

An upstream host PU or downstream PU can support up to 255 LU sessions. The DSPU feature allows each LU to be individually configured for either dedicated LU routing or pooled LU routing.

Defining Dedicated LU Routing

You can configure an upstream LU so that it is reserved, or dedicated, for use by a specific downstream LU.
To define a dedicated LU or a range of dedicated LUs for an upstream host and downstream PU, use the following command in global configuration mode:

```
Router(config)# dspu lu lu-start [lu-end] (host host-name host-lu-start | pool pool-name) [pu pu-name]
```

Defines a dedicated LU or a range of dedicated LUs for a downstream PU.

See the “Dedicated LU Routing Example” section on page 22 for an example of dedicated LU routing.

Defining Pooled LU Routing

You can configure an upstream host LU so that it is a member of a pool of LUs. When a downstream connection is established and the downstream LU is configured as a pooled LU, the Cisco IOS software selects an upstream LU from the pool for assignment to the downstream LU.

Pooled LU routing allows a limited number of upstream host LUs to be shared (at different times) among many downstream LUs.

To define a host LU or a range of host LUs in an LU pool, use the following command in global configuration mode:

```
Router(config)# dspu pool pool-name host host-name lu lu-start [lu-end] [inactivity-timeout inactivity-minutes]
```

Defines a host LU or a range of host LUs in an LU pool.

You can configure a downstream LU as a pooled LU. When a downstream connection is established and the downstream LU is configured as a pooled LU, the software selects an upstream LU from the specified pool for assignment to the downstream LU.

To define a pooled LU or a range of pooled LUs for a downstream PU, use the following command in global configuration mode:

```
Router(config)# dspu lu lu-start [lu-end] pool pool-name pu pu-name
```

Defines a pooled LU or a range of pooled LUs for a downstream PU.

See the “Pooled LU Routing Example” section on page 23 for an example of pooled LU routing.

Configuring DSPU to Use a Data-Link Control

The final step in configuring DSPU is to define the data-link controls that will be used for upstream host and downstream PU connections.

The DSPU feature supports the data-link controls described in the following sections:

- Configuring DSPU to Use Token Ring, Ethernet, or FDDI, page 8
- Configuring DSPU to Use RSRB, page 8
- Configuring DSPU to Use RSRB with Local Acknowledgment, page 10
You can configure DSPU to use the Token Ring, Ethernet, or FDDI data-link controls by enabling a service access point (SAP) address on the interface. Each interface can support up to 254 local SAPs enabled for either upstream or downstream connections; a local SAP cannot be enabled for both upstream and downstream connections on the same interface.

To enable a local SAP on the Token Ring, Ethernet, or FDDI interfaces for use by upstream hosts, use the following command in interface configuration mode:

```
Router(config-if)# dspu enable-host [lsap
local-sap]
```

Enables local SAP for upstream hosts.

To enable a local SAP on the Token Ring, Ethernet, or FDDI interfaces for use by downstream PUs, use the following command in interface configuration mode:

```
Router(config-if)# dspu enable-pu [lsap
local-sap]
```

Enables local SAP for downstream PUs.

Once a local SAP is enabled, it is ready to accept incoming connection attempts from the remote device (upstream host or downstream PU). Alternately, initiate an outgoing connection to the remote device by using the following command in interface configuration mode:

```
Router(config-if)# dspu start {host-name
pu-name}
```

Initiates a connection with an upstream host or a downstream PU via Token Ring or Ethernet.

Configuring DSPU to Use RSRB

To configure DSPU to use RSRB, you must create a DSPU/RSRB data-link control.

Cisco’s implementation of DSPU/RSRB data-link control uses the concept of a virtual Token Ring device residing on a virtual Token Ring to represent the Cisco IOS software to upstream hosts and downstream PUs across an RSRB network. This is similar to Cisco’s implementation of SDLLC.

Because the upstream host and downstream PU expects its peer to also be on a Token Ring, you must assign a virtual Token Ring address (the DSPU virtual MAC address) to the DSPU/RSRB data-link control. Like real Token Ring addresses, the DSPU virtual MAC address must be unique across the network.
In addition to assigning the DSPU virtual MAC address, you must also assign a DSPU virtual ring number to the DSPU/RSRB data-link control. The DSPU virtual ring number must be unique across the network.

Note

The DSPU virtual ring number is a different number from the virtual ring group numbers that you use to configure RSRB and multiport bridging.

The combination of the DSPU virtual MAC address and the DSPU virtual ring number identifies the DSPU/RSRB data-link control interface to the rest of an RSRB network.

When an end station (either an upstream host or a downstream PU) attempts to connect with the DSPU software, the following events occur:

1. The end station sends explorer packets with the locally administered MAC address on the router interface to which the end station is connected.
2. The router configured with that locally administered MAC address or with the hardware MAC address intercepts the frame, fills in the DSPU virtual ring number and the DSPU bridge number in the routing information field (RIF), and sends a response to the end station.
3. The end station establishes a session with the DSPU router.

To define the DSPU/RSRB data-link control interface, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# source-bridge ring-group ring-group [virtual-mac-address]</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# source-bridge remote-peer ring-group tcp ip-address local-ack</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# dspu rsrb local-virtual-ring bridge-number target-virtual-ring virtual-macaddr</td>
</tr>
</tbody>
</table>

After you define the DSPU RSRB data-link control, configure DSPU to use the RSRB data-link control by enabling a local SAP for either upstream or downstream connections.

To enable a local SAP on RSRB for use by upstream hosts, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu rsrb enable-host [lsap local-sap]</td>
<td>Enables local SAP for upstream hosts.</td>
</tr>
</tbody>
</table>

To enable a local SAP on RSRB for use by downstream PUs, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu rsrb enable-pu [lsap local-sap]</td>
<td>Enables local SAP for downstream PUs.</td>
</tr>
</tbody>
</table>
Once a local SAP is enabled, it is ready to accept incoming connection attempts from the remote device (upstream host or downstream PU) over RSRB. Alternatively, initiate an outgoing connection to the remote device by using the following command in global configuration mode:

```
Router(config)# dspu rsrb start (host-name | pu-name)
```

Initiates a connection with an upstream host or a downstream PU via RSRB.

Configuring DSPU to Use RSRB with Local Acknowledgment

Configuring DSPU to use RSRB with local acknowledgment is identical to configuring RSRB with local acknowledgment. If you add the `local-ack` keyword to the `source-bridge remote-peer` configuration command, DSPU will use local acknowledgment for any end stations that connect to DSPU from that peer.

To configure DSPU to use RSRB with local acknowledgment, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# source-bridge ring-group ring-group [virtual-mac-address]</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# source-bridge remote-peer ring-group tcp ip-address local-ack</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# dspu rsrb local-virtual-ring bridge-number target-virtual-ring virtual-macaddr</td>
</tr>
</tbody>
</table>

Configuring DSPU to Use Virtual Data-Link Control

To configure DSPU to use virtual data-link control, you must create a DSPU virtual data-link control interface.

Similar to our implementation of SDLLC, the DSPU virtual data-link control interface uses the concept of a virtual Token Ring device residing on a virtual Token Ring to represent the Cisco IOS software to upstream hosts and downstream PUs across a network.

Because the upstream host and downstream PU expects its peer to also be on a Token Ring, you must assign a virtual Token Ring address (the DSPU virtual MAC address) to the DSPU virtual data-link control interface. Like real Token Ring addresses, the DSPU virtual MAC address must be unique across the network.

In addition to assigning the DSPU virtual MAC address, you must also identify the source-route bridging virtual ring number with which the DSPU virtual MAC address will be associated. The source-route bridging virtual ring number is set using the `source-bridge ring-group` command. This is documented in the “Source-Route Bridging Commands” chapter of the *Cisco IOS Bridging and IBM Networking Command Reference* (Volume 1 of 2).

The combination of the DSPU virtual MAC address and the source-route bridging virtual ring number identifies the DSPU virtual data-link control interface to the rest of the DLSw+ network.
When an end station (either an upstream host or a downstream PU) attempts to connect with the DSPU software, the following events occur:

1. The end station sends explorer packets with the locally administered MAC address on the router interface to which the end station is connected.
2. The router configured with that locally administered MAC address intercepts the frame, DLSw+ adjusts the routing information field (RIF), and sends a response to the end station.
3. The end station establishes a session with the DSPU router.

Prior to creating the DSPU virtual data-link control interface, you must also configure DLSw+ peers so that DLSw+ can provide the communication path. The commands for defining DLSw+ local and remote peers are documented in the “DLSw+ Configuration Commands” chapter of the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2).

To define the DSPU virtual data-link control interface, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu vdlc ring-group</td>
<td>Defines the DSPU virtual data-link control interface.</td>
</tr>
<tr>
<td>virtual-mac-address</td>
<td></td>
</tr>
</tbody>
</table>

After you define the DSPU virtual data-link control interface, configure DSPU to use virtual data-link control by enabling a local SAP for either upstream or downstream connections.

To enable a local SAP on the virtual data-link control for use by upstream hosts, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu vdlc enable-host [lsap</td>
<td>Enables local SAP for upstream hosts.</td>
</tr>
<tr>
<td>local-sap]</td>
<td></td>
</tr>
</tbody>
</table>

To enable a local SAP on the virtual data-link control for use by downstream PUs, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu vdlc enable-pu [lsap</td>
<td>Enables local SAP for downstream PUs.</td>
</tr>
<tr>
<td>local-sap]</td>
<td></td>
</tr>
</tbody>
</table>

Once a local SAP is enabled, it is ready to accept incoming connection attempts from the remote device (upstream host or downstream PU) using virtual data-link control. Alternately, initiate an outgoing connection to the remote device by using the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu vdlc start (host-name</td>
<td>Initiates a connection with an upstream host or a downstream PU via</td>
</tr>
<tr>
<td>pu-name)</td>
<td>virtual data-link control.</td>
</tr>
</tbody>
</table>

Configuring DSPU to Use SDLC

Before DSPU may be configured to use the SDLC data-link control, the serial interface must be defined for SDLC encapsulation and assigned an SDLC role.
To define the serial interface to use SDLC and specify the SDLC role, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation sdlc</td>
<td>Enables SDLC encapsulation on the serial interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# sdlc role {none</td>
<td>primary</td>
</tr>
</tbody>
</table>

For the connection to be established without XID exchange, the SDLC role must be **primary** if DSPU will be initiating connections to the SDLC partner. The SDLC role must be **secondary** or **none** if the SDLC partner will be initiating connections with DSPU.

When an XID exchange is required, the SDLC role must be **prim-xid-poll** or **none** if DSPU will be initiating connections to the SDLC partner. The role must be **none** if the SDLC partner will be initiating connections with DSPU.

The SDLC addresses used on the SDLC link must also be defined. If DSPU is configured to initiate the connection, then the SDLC address identifies the SDLC partner. If the remote SDLC device initiates the connection, then the SDLC address identifies the address for which a connection will be accepted.

To configure the SDLC address, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# sdlc address hexbyte</td>
<td>Defines the SDLC address.</td>
</tr>
</tbody>
</table>

Finally, the SDLC address must be enabled for use by DSPU. Each interface can support up to 255 SDLC addresses enabled for either upstream or downstream connections; an SDLC address cannot be enabled for both upstream and downstream connections on the same interface. If the SDLC role is **none**, there can be only one SDLC address on that interface.

To enable an SDLC address for use by upstream host connections, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dspu enable-host sdlc sdlc-address</td>
<td>Enables the SDLC address for an upstream host.</td>
</tr>
</tbody>
</table>

To enable an SDLC address for use by downstream PU connections, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dspu enable-pu sdlc sdlc-address</td>
<td>Enables the SDLC address for the downstream PU.</td>
</tr>
</tbody>
</table>

When the SDLC role is configured as **primary**, DSPU initiates a connection with the remote device by sending set normal response mode (SNRM) when the SDLC address is enabled for DSPU.

When the SDLC role is configured as **prim-xid-poll**, DSPU initiates a connection with the remote device by sending a NULL XID when the SDLC address is enabled for DSPU.

When the SDLC role is configured as **secondary**, DSPU will not be ready to respond to SNRM until a **dspu start pu-name** command is issued.
When the SDLC role is configured as none, DSPU is ready to respond to a received XID or SNRM when the SDLC address is enabled for DSPU; otherwise, the connection may be initiated by issuing the `dspu start pu-name` command.

To configure DSPU to respond to SNRM when the SDLC role is configured as secondary, or to initiate a connection when the SDLC role is configured as none, use the following command in interface configuration mode:

```
Router(config-if)# dspu start pu-name
```

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dspu start pu-name</code></td>
<td>Initiates a connection with a remote device when the SDLC role is configured as secondary or none.</td>
</tr>
</tbody>
</table>

Configuring DSPU to Use QLLC

Before DSPU may be configured to use the QLLC data-link control, the serial interface must be defined for X.25 encapsulation and assigned an X.121 address.

To define the serial interface to use X.25, use the following commands in interface configuration mode:

```
Router(config-if)# encapsulation x25 [dce]
Router(config-if)# x25 address x121-addr
```

X.25 routing must also be configured so that incoming calls to the local X.121 address can be appropriately routed to the serial interface and mapped into the QLLC data-link control.

To define X.25 routing, use the following commands in global configuration mode:

```
Router(config)# x25 routing
Router(config)# x25 route *local-x121-addr.* alias serial slot/port
```

To define which calls get mapped into QLLC, use the following command in interface configuration mode:

```
Router(config-if)# x25 map qllc x121-addr
```

Finally, the local X.121 subaddress must be enabled for use by DSPU. An X.121 subaddress can be enabled for either upstream or downstream connections; an X.121 subaddress cannot be enabled for both upstream and downstream connections on the same interface.

To enable an X.121 subaddress for use by upstream host connections via QLLC, use the following command in interface configuration mode:

```
Router(config-if)# dspu enable-host qllc x121-subaddress
```

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dspu enable-host qllc x121-subaddress</code></td>
<td>Enables an X.121 subaddress for an upstream host.</td>
</tr>
</tbody>
</table>
To enable an X.121 subaddress for use by downstream PU connections via QLLC, use the following command in interface configuration mode:

Command

Router(config-if)# dspu enable-pu qllc

Purpose

Enables an X.121 subaddress for a downstream PU.

Once an X.121 subaddress is enabled, it is ready to accept incoming connection attempts from the remote device (upstream host or downstream PU) over QLLC. Alternatively, initiate an outgoing connection to the remote device by using the following command in interface configuration mode:

Command

Router(config-if)# dspu start {host-name | pu-name}

Purpose

Initiates a connection with an upstream host or a downstream PU via QLLC.

Configuring DSPU to Use Frame Relay

Before DSPU may be configured to use the LLC2/Frame Relay data-link control, the serial interface must be defined for Frame Relay encapsulation.

To define the serial interface for Frame Relay encapsulation, use the following command in interface configuration mode:

Command

Router(config-if)# encapsulation frame-relay ietf

Purpose

Enables Frame Relay encapsulation on a serial interface.

The DLCI used on the Frame Relay link must be mapped into LLC2.

To configure the mapping of a DLCI into LLC2, use the following command in interface configuration mode:

Command

Router(config-if)# frame-relay map llc2
dlci-number

Purpose

Configures DLCI mapping into LLC2.

Finally, the local SAP address must be enabled for use by DSPU. A SAP address can be enabled for either upstream or downstream connections; a SAP address cannot be enabled for both upstream and downstream connections on the same interface.

To enable a local SAP on the LLC2/Frame Relay interface for use by upstream hosts, use the following command in interface configuration mode:

Command

Router(config-if)# dspu enable-host [lsap local-sap]

Purpose

Enables local SAP for upstream hosts.

To enable a local SAP for the LLC2/Frame Relay interface for use by downstream PUs, use the following command in interface configuration mode:
Once a local SAP is enabled, it is ready to accept incoming connection attempts from the remote device (upstream host or downstream PU) over Frame Relay. Alternatively, initiate an outgoing connection to the remote device by using the following command in interface configuration mode:

```
Router(config-if)# dspu enable-pu [lsap local-sap]
```

Enables local SAP for downstream PUs.

Defining the Number of Outstanding, Unacknowledged Activation RUs

The DSPU feature allows you to define the number of activation request/response units (RUs) such as ACTLUs or DDDLU NMVTs that can be sent by the Cisco IOS software before waiting for responses from the remote PU.

The DSPU activation window provides pacing to avoid depleting the router buffer pool during PU activation. Increasing the window size allows more LUs to become active in a shorter amount of time (assuming the required buffers for activation RUs are available). Decreasing the window size limits the amount of buffers the DSPU may use during PU activation. Typically, you do not need to change the default window size.

To define the number of unacknowledged activation RUs that can be outstanding, use the following command in global configuration mode:
Cisco’s implementation of SNA Service Point support includes support for three commands: Alerts, RUNCMD, and Vital Product Data support.

Alert support is provided as the Cisco IOS software sends unsolicited Alerts to NetView (or an equivalent network management application) at the host. This function occurs at the various router interfaces and protocol layers within the device.

RUNCMD support enables you to send commands to the router from the NetView console using the NetView RUNCMD facility, and the router sends the relevant replies back to the RUNCMD screen. Some commands, such as `telnet`, `rsh`, `rlogin`, and `tn3270`, are not supported.

Vital Product Data support allows you to request Vital Product Data from the NetView console. The router replies to NetView with the relevant information.

To configure SNA Service Point support, perform the tasks in the following sections:

- Defining a Link to an SNA Host, page 16
- Configuring Service Point Support to Use a Data-Link Control, page 17
- Specifying Names for All Attached LANs, page 21
- Specifying the Physical Location of the Router, page 21

Note: You must define the Service Point PU at the SNA host by using either ANS=STOP, or you can omit the ANS keyword. Do not use ANS=CONTINUE to define the Service Point PU at the SNA host. Coordinate this with your SNA host systems programmer.

Note: You do not need to perform the tasks in the next section if you have configured a DSPU host with the `focalpoint` parameter.

Defining a Link to an SNA Host

To define a link to an SNA host over Token Ring, Ethernet, FDDI, RSRB, or virtual data-link control connections, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snuc host host-name xid-and xid rmac remote-mac [rsap remote-sap] [lsap local-sap] [interface slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout] [focalpoint]</code></td>
<td>Defines a link to an SNA host over Token Ring, Ethernet, FDDI, RSRB, or virtual data-link control connections.</td>
</tr>
</tbody>
</table>
To define a link to an SNA host over an SDLC connection, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# sna host host-name xid-md sdlc sdlic-addr [interface slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout] [focalpoint]</td>
<td>Defines a link to an SNA host over an SDLC connection.</td>
</tr>
</tbody>
</table>

To define a link to an SNA host over an X.25/QLLC connection, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# sna host host-name xid-md xid x25 remote-x121-addr [qllc local-x121-subaddr] [interface slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout] [focalpoint]</td>
<td>Defines a link to an SNA host over an X.25/QLLC connection.</td>
</tr>
</tbody>
</table>

To define a link to an SNA host over a Frame Relay connection, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# sna host host-name xid-md xid dlci dlci-number [rsap remote-sap] [lsap local-sap] [interface slot/port] [window window-size] [maxiframe max-iframe] [retries retry-count] [retry-timeout retry-timeout] [focalpoint]</td>
<td>Defines a link to an SNA host over a Frame Relay connection.</td>
</tr>
</tbody>
</table>

Configuring Service Point Support to Use a Data-Link Control

To configure Service Point to use a data-link control, perform the tasks in one of the following sections:

- Configuring Service Point to Use Token Ring, Ethernet, or FDDI, page 18
- Configuring Service Point to Use RSRB, page 18
- Configuring Service Point to Use RSRB with Local Acknowledgment, page 18
- Configuring Service Point to Use Virtual Data-Link Control, page 19
- Configuring Service Point Support for Frame Relay, page 20
- Configuring Service Point Support for SDLC, page 20
- Configuring Service Point Support for X.25, page 20

Note

You do not need to perform this task if you have configured a DSPU host with the `focalpoint` parameter and have configured the DSPU host to use a data-link control.
Configuring DSPU and SNA Service Point Support

Configuring Service Point to Use Token Ring, Ethernet, or FDDI

To enable a local SAP on the Token Ring, Ethernet, or FDDI interfaces for use by SNA Service Point, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# sna enable-host [lsap lsap-address]</code></td>
<td>Enables local SAP for Service Point.</td>
</tr>
</tbody>
</table>

Once a local SAP is enabled, it is ready to accept incoming connection attempts from the remote host. Alternately, initiate an outgoing connection to the remote host by using the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# sna start host-name</code></td>
<td>Initiates a connection with a host via Token Ring, Ethernet, or FDDI.</td>
</tr>
</tbody>
</table>

Configuring Service Point to Use RSRB

To define the Service Point/RSRB data-link control interface, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Step 1 Router(config)# source-bridge ring-group ring-group [virtual-mac-address]</code></td>
<td>Defines an RSRB ring group.</td>
</tr>
<tr>
<td><code>Step 2 Router(config)# sna rsrb local-virtual-ring bridge-number target-virtual-ring virtual-macaddr</code></td>
<td>Defines the Service Point/RSRB interface.</td>
</tr>
</tbody>
</table>

To enable a local SAP on RSRB for use by hosts, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# sna rsrb enable-host [lsap local-sap]</code></td>
<td>Enables local SAP for hosts.</td>
</tr>
</tbody>
</table>

Once a local SAP is enabled, it is ready to accept incoming connection attempts from the remote host over RSRB. Alternatively, initiate an outgoing connection to the remote host by using the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# sna rsrb start host-name</code></td>
<td>Initiates a connection with a host via RSRB.</td>
</tr>
</tbody>
</table>

Configuring Service Point to Use RSRB with Local Acknowledgment

To configure Service Point to use RSRB with local acknowledgment, use the following commands in global configuration mode:
Configuring SNA Service Point Support

Configuring Service Point to Use Virtual Data-Link Control

To configure SNA Service Point to use virtual data-link control, you must create an SNA virtual data-link control interface.

Similar to our implementation of SD LLC, the SNA virtual data-link control interface uses the concept of a virtual Token Ring device residing on a virtual Token Ring to represent the Cisco IOS software to upstream hosts and downstream PUs across a network.

Because the upstream host and downstream PU expect their peer to also be on a Token Ring, you must assign a virtual Token Ring address (the SNA virtual data-link control virtual MAC address) to the SNA virtual data-link control interface. Like real Token Ring addresses, the SNA virtual MAC address must be unique across the network.

You must also identify the source-route bridging virtual ring number with which the SNA virtual MAC address will be associated. The source-route bridging virtual ring number is set using the `source-bridge ring-group` command, which is documented in the “Source-Route Bridging Commands” chapter of the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2).

The combination of the SNA virtual MAC address and the source-route bridging virtual ring number identifies the SNA virtual data-link control interface to the rest of the DLSw+ network.

When an end station (either an upstream host or a downstream PU) attempts to connect with the SNA Service Point software, the following events occur:

1. The end station sends explorer packets with the locally administered MAC address on the router interface to which the end station is connected.

2. The router configured with that locally administered MAC address intercepts the frame, DLSw+ adjusts the RIF and sends a response to the end station.

3. The end station establishes a session with the SNA Service Point router.

Prior to creating the SNA virtual data-link control interface, you must also configure DLSw+ peers so that DLSw+ can provide the communication path. The commands for defining DLSw+ local and remote peers are documented in the “DLSw+ Configuration Commands” chapter of the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2).

To define the Service Point virtual data-link control interface, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# sna vdlc ring-group virtual-mac-address</code></td>
<td>Defines the Service Point virtual data-link control interface.</td>
</tr>
</tbody>
</table>
After you create the SNA virtual data-link control interface, configure SNA Service Point to use virtual data-link control by enabling a local SAP for upstream connections. To enable a local SAP on virtual data-link control for use by hosts, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# sna vdlc enable-host [lsap local-sap]</td>
<td>Enables local SAP for hosts.</td>
</tr>
</tbody>
</table>

Once a local SAP is enabled, it is ready to accept incoming connection attempts from the remote host using virtual data-link control. Alternatively, initiate an outgoing connection to the remote host by using the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# sna vdlc start host-name</td>
<td>Initiates a connection with a host via virtual data-link control.</td>
</tr>
</tbody>
</table>

Configuring Service Point Support for Frame Relay

To configure Service Point support for Frame Relay, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config-if)# frame-relay map llc2 dlci-number</td>
<td>Defines DLCI mapping into LLC2.</td>
</tr>
<tr>
<td>Step 2: Router(config-if)# sna enable-host lsap lsap-address</td>
<td>Enables a local SAP for hosts.</td>
</tr>
</tbody>
</table>

Configuring Service Point Support for SDLC

To configure Service Point support for SDLC, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config-if)# sdlc role {none</td>
<td>primary</td>
</tr>
<tr>
<td>Step 2: Router(config-if)# sdlc address hexbyte</td>
<td>Defines the SDLC address.</td>
</tr>
<tr>
<td>Step 3: Router(config-if)# sna enable-host sdlc sdlc-address</td>
<td>Enables the SDLC address for the host.</td>
</tr>
</tbody>
</table>

Configuring Service Point Support for X.25

To configure Service Point support for X.25, use the following commands in interface configuration mode:
Specifying Names for All Attached LANs

You can specify names for all Token Ring or Ethernet LANs attached to the router. These names are used to identify the LAN when the Cisco IOS software sends an Alert to the host. To specify names for all attached LANs, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# lan-name lan-name</td>
<td>Defines the name of an attached LAN.</td>
</tr>
</tbody>
</table>

Specifying the Physical Location of the Router

You can specify the physical location of the router if you intend requesting vital product information from the router. To specify the physical location, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# location location-description</td>
<td>Defines the physical location of the router.</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining DSPU and SNA Service Point Feature Status

You can monitor the status of the DSPU and SNA Service Point features. To display information about the state of the DSPU and SNA Service Point features, use the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show dspu</td>
<td>Shows the status of all DSPU resources.</td>
</tr>
<tr>
<td>Router# show dspu pu (host-name</td>
<td>pu-name) [all]</td>
</tr>
<tr>
<td>Router# show dspu pool pool-name [all]</td>
<td>Shows the status of a DSPU pool.</td>
</tr>
</tbody>
</table>
To control the reporting of DSPU notification events (DSPU-specific SNMP Traps and Unsolicited SNA Messages to Operator), use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show sna</td>
<td>Shows the status of all SNA hosts.</td>
</tr>
<tr>
<td>Router# show sna pu host-name [all]</td>
<td>Shows the status of an SNA host.</td>
</tr>
</tbody>
</table>

To control the reporting of DSPU notification events, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dspu notification-level {off</td>
<td>low</td>
</tr>
</tbody>
</table>

DSPU and SNA Service Point Configuration Examples

The following sections provide DSPU and SNA Service Point configuration examples:

- Dedicated LU Routing Example, page 22
- Pooled LU Routing Example, page 23
- Upstream Host via RSRB DSPU Configuration Example, page 24
- DSPU over DLSw+ using Virtual Data-Link Control Configuration Example, page 24
- Downstream PU via SDLC DSPU Configuration Example, page 25
- Upstream Host via SDLC DSPU Configuration Example, page 25
- Downstream PU via QLLC/X.25 DSPU Configuration Example, page 26
- Upstream Host via Frame Relay DSPU Configuration Example, page 26
- DSPU NCIA Configuration Example, page 27
- SNA Service Point Support Configuration Example, page 27
- SNA Service Point over DLSw+ Using Virtual Data-Link Control Configuration Example, page 28

Dedicated LU Routing Example

Figure 3 illustrates the use of dedicated LU routing. Each upstream host LU is dedicated for use by a specific downstream LU.
Figure 3 Dedicated LU Routing

The following is a configuration file for the dedicated LU routing shown in Figure 3:

dspu host ciscohost xid-snd 06500001 rmac 4000.3745.0001
dspu pu ciscopu-a xid-rcv 05D00001 rmac 1000.5AED.0001
dspu lu 1 2 host ciscohost 2
dspu lu 3 3 host ciscohost 20
dspu pu ciscopu-b xid-rcv 05D00002 rmac 1000.5AED.0002
dspu lu 1 2 host ciscohost 4
dspu lu 3 3 host ciscohost 21

Pooled LU Routing Example

Figure 4 illustrates the use of pooled LU routing. Each upstream LU is configured in the LU pool and each downstream LU is configured as a pooled LU.

Figure 4 Pooled LU Routing

The following is a configuration file for the pooled LU routing shown in Figure 4:
Upstream Host via RSRB DSPU Configuration Example

The following configuration example represents one possible definition for the network topology shown in Figure 3. This example demonstrates the configuration of an upstream host via RSRB (with local acknowledgment) and downstream PUs via Token Ring.

```plaintext
source-bridge ring-group 99
source-bridge remote-peer 99 tcp 150.10.13.1
source-bridge remote-peer 99 tcp 150.10.13.2 local-ack

dspu rsrb 88 1 99 4000.ffff.0001
dspu rsrb enable-host lsap 4

dspu host ciscohost xid-snd 06500001 rmac 4000.3172.0001 rsap 4 lsap 4
dspu pool ciscopool host ciscohost lu 2 8
dspu rsrb start ciscohost

dspu pu ciscopu1 xid-rcv 05d00001
dspu lu 2 3 pool ciscopool

dspu pu ciscopu2 xid-rcv 05d00002
dspu lu 2 4 pool ciscopool

dspu pu ciscopu3 xid-rcv 05d00003
dspu lu 2 2 pool ciscopool

dspu pu ciscopu4 xid-rcv 05d00004
dspu lu 2 2 pool ciscopool
dspu lu 3 3 host ciscohost 9

interface tokenring 0
description tokenring connection for downstream PUs
ring-speed 16
dspu enable-pu lsap 8
```

DSPU over DLSw+ using Virtual Data-Link Control Configuration Example

The following example illustrates pooled LU routing over DLSw+ using virtual data-link control:

```plaintext
source-bridge ring-group 99
dlsw local-peer peer-id 150.10.16.2
dlsw remote-peer 0 tcp 150.10.16.1

dspu vd1c 99 4000.4500.01f0

dspu vd1c enable-pu lsap 8
dspu vd1c enable-host lsap 12

dspu host HOST-B xid-snd 065bbbb0 rmac 4000.7000.01f1 rsap 4 lsap 12 focalpoint
dspu pool pool-b host HOST-B lu 2 254
```
Downstream PU via SDLC DSPU Configuration Example

The following example demonstrates the configuration of downstream PUs via SDLC and an upstream host via Token Ring:

dspu host ciscohost xid-snd 06500001 rmac 4000.3172.0001 rsap 4 lsap 12
dspu pool ciscopool host ciscohost lu 2 11
!
dspu pu-sdlc0 sdlc C1 interface serial 0
dspu lu 2 6 pool ciscopool
!
dspu pu-sdlc1 sdlc C1 interface serial 1
dspu lu 2 6 pool ciscopool
!
interface serial 0
description SDLC connection for pu-sdlc0
encapsulation sdlc
sdlc role primary
sdlc address C1
dspu enable-pu sdlc C1
clockrate 56000
!
interface serial 1
description SDLC connection for pu-sdlc1
encapsulation sdlc
sdlc role primary
sdlc address C1
dspu enable-pu sdlc C1
clockrate 56000
!
interface tokenring 0
description tokenring connection for ciscohost
ring-speed 16
dspu enable-host lsap 12
dspu start ciscohost

Upstream Host via SDLC DSPU Configuration Example

The following example demonstrates the configuration of an upstream host via SDLC and downstream PUs via Token Ring and Ethernet:

dspu host ciscohost xid-snd 06500001 sdlc C1 interface serial 0
dspu pool ciscopool host ciscohost lu 2 11
!
DSPU and SNA Service Point Configuration Examples

Configuring DSPU and SNA Service Point Support

DSPU and SNA Service Point Configuration Examples

26

Downstream PU via QLLC/X.25 DSPU Configuration Example

The following example demonstrates the configuration of a downstream PU via QLLC/X.25 and upstream host via Ethernet:

```
x25 routing
!
dspu host ciscohost xid-snd 06500001 rmac 0200.2222.0001 rsap 4 lsap 12
dspu pool ciscopool host ciscohost lu 2 11
!
dspu pu pu-qllc x25 320108 qllc 08
dspu lu 2 11 pool ciscopool
!
interface serial 0
description QLLC connection for pu-qllc
encapsulation x25
x25 address 3202
x25 map qllc 320108
dspu enable-pu qllc 8
!
interface ethernet 0
description Ethernet connection for pu-ether
dspu enable-host lsap 12
dspu start ciscohost
!
x25 route ^3202.* alias serial 0
```

Upstream Host via Frame Relay DSPU Configuration Example

The following example demonstrates the configuration of an upstream host via Frame Relay and downstream PUs via Token Ring and Ethernet:

```
dspu host ciscohost xid-snd 06500001 dlc 200 rsap 4 lsap 12
dspu pool ciscopool host ciscohost lu 2 11
!
dspu pu pu-token rmac 4000.4444.0001 rsap 4 lsap 8
```
Configuring DSPU and SNA Service Point Support

DSPU and SNA Service Point Configuration Examples

dspu lu 2 6 pool ciscopool
! dspu pu pu-ether rmac 0200.2222.0001 rsap 4 lsap 8
dspu lu 2 6 pool ciscopool
! interface serial 0
description Frame Relay connection for ciscohost
encapsulation frame-relay ietf
frame-relay map llc2 200
dspu enable-host lsap 12
dspu start ciscohost
! interface tokenring 0
description tokenring connection for pu-token
ring-speed 16
dspu enable-pu lsap 8
! interface ethernet 0
description Ethernet connection for pu-ether
dspu enable-pu lsap 8

DSPU NCIA Configuration Example

The following example illustrates an NCIA client/server session using DSPU:

ncia server 1 10.2.20.4 4000.3745.0001 1000.0000.0001 128
! dspu ncia 1
dspu enable-pu lsap 8
! dspu host HOST-9370 xid-snd 11100001 rmac 4000.1060.1000 rsap 4 lsap 4
! interface TokenRing 0
ring-speed 16
llc2 xid-retry-time 0
dspu enable-host lsap 4
dspu start HOST-9370

SNA Service Point Support Configuration Example

The following is an example of an RSRB configuration that implements SNA Service Point:

source-bridge ring-group 99
source-bridge remote-peer 99 tcp 150.10.13.2 local-ack
! sna rsrb 88 1 99 4000.ffff.0001
! sna host CNM02 xid-snd 05dbc000 rmac 4001.3745.1088 rsap 4 lsap 4 focalpoint
sna rsrb enable-host lsap 4
sna rsrb start CNM02
!
SNA Service Point over DLSw+ Using Virtual Data-Link Control Configuration Example

The following is an example of an SNA Service Point configuration that uses virtual data-link control over DLSw+:

```
source-bridge ring-group 99
dlsw local-peer peer-id 150.10.16.2
dlsw remote-peer 0 tcp 150.10.16.1
!
sna vdlc 99 4000.4500.01f0
sna vdlc enable-host lsap 12
!
sna host HOST-B xid-snd 065bbbb0 rmac 4000.7000.01f1 rsap 4 lsap 12 focalpoint
!
sna vdlc start HOST-B
!
interface serial 3
description IP connection to dspu7k
ip address 150.10.16.2 255.255.255.0
clockrate 4000000
```
Configuring SNA Frame Relay Access Support

This chapter describes Frame Relay Access Support (FRAS) for Systems Network Architecture (SNA) devices. It also explains how to configure FRAS and how to use a FRAS host to connect Cisco Frame Relay Access Devices (FRADs) to channel-attached mainframes, LAN-attached front-end processors (FEPs), and LAN-attached AS/400s through a Cisco router.

For a complete description of the FRAS commands in this chapter, refer to the “SNA Frame Relay Access Support Commands” chapter of the Cisco IOS Bridging and IBM Networking Command Reference (Volume 1 of 2). To locate documentation of specific commands, use the command reference master index or search online.

This chapter contains the following sections:

- Technology Overview, page 1
- SNA FRAS Configuration Task List, page 3
- Monitoring and Maintaining FRAS, page 9
- Configuring FRAS Host, page 10
- FRAS Host Configuration Task List, page 12
- FRAS and FRAS Host Configuration Examples, page 14

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Platform Support for Cisco IOS Software Features” section on page li in the “Using Cisco IOS Software” chapter.

Technology Overview

FRAS, the Cisco IOS software allows branch SNA devices to connect directly to a central site FEP over a Frame Relay network. FRAS converts LAN or Synchronous Data-Link Control (SDLC) protocols to a Frame Relay format understood by the Network Control Program (NCP) that runs in an FEP. The Cisco IOS software and the NCP support two frame formats:

- RFC 1490 routed format for LLC2, specified in the FRF.3 Agreement from the Frame Relay Forum and known in NCP literature as Frame Relay Boundary Network Node (BNN) support. Support for this feature requires NCP 7.1 or higher.
• RFC 1490 802.5 source-route bridged format, known in NCP literature as Frame Relay Boundary Access Node (BAN) support. Support for this feature requires NCP 7.3 or higher.

Management service point support in FRAS allows the SNA network management application, NetView, to manage Cisco routers over the Frame Relay network as if it were an SNA downstream PU.

FRAS provides dial backup over RSRB in case the Frame Relay network is down. While the backup Public Switched Telephone Network (PSTN) is being used, the Frame Relay connection is tried periodically. As soon as the Frame Relay network is up, it will be used.

RFC 1490 Routed Format for LLC2 (BNN)

RFC 1490 specifies a standard method of encapsulating multiprotocol traffic with data link (Level 2 of the OSI model) framing. The encapsulation for SNA data is specified in the FRF.3 Agreement.

The Frame Relay encapsulation method is based on the RFC 1490 frame format for “user-defined” protocols using Q.933 NLPID, as illustrated in Figure 1.

<table>
<thead>
<tr>
<th>DLCI</th>
<th>Control</th>
<th>NLPI</th>
<th>L2 Protocol ID</th>
<th>L3 Protocol ID</th>
<th>DSAP</th>
<th>SSAP</th>
<th>Control</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.922</td>
<td>0x30 Q.933</td>
<td>0x08</td>
<td>0x4c (802.2)</td>
<td>0x08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The protocol ID for SNA subarea FID4 is 0x81. The protocol ID for SNA subarea FID2 is 0x82. The protocol ID for APPN FID2 is 0x83.

FRAS allows the router acting as a FRAD to take advantage of the SNA BNN support for Frame Relay provided by ACF/NCP 7.1 and OS/400 V2R3. Downstream PU 2.0 and PU 2.1 devices can be attached to the router through SDLC, Token Ring, or Ethernet links. The router acting as a FRAD is connected to the Network Control Program (NCP) or AS/400 through a public or private Frame Relay network, as illustrated in Figure 2.

The frame format that communicates across the Frame Relay BNN link is defined in RFC 1490 for routed SNA traffic. From the perspective of the SNA host (for example an NCP or AS/400), the Frame Relay connection is defined as a switched resource similar to a Token Ring BNN link. Because the frame format does not include link addresses to allow the NCP to distinguish among SNA devices on the same permanent virtual circuit, Cisco supports SAP multiplexing, which allows you to configure unique LLC2 SAPs for each downstream SNA device so that they can share a single permanent virtual circuit to an FEP.
The Cisco IOS software is responsible for terminating the local data-link control frames (such as SDLC and Token Ring frames) and for modifying the data-link control frames to 802.2 compliant LLC frames. The LLC provides a reliable connection-oriented link layer transport required by SNA. (For example, 802.2 LLC is used to provide link-layer acknowledgment, sequencing, and flow control.)

The Cisco IOS software encapsulates these 802.2 LLC frames according to the RFC 1490 format for SNA traffic. The frames are then forwarded to the SNA host on a Frame Relay permanent virtual circuit (PVC). In the reverse direction, the software is responsible for de-encapsulating the data from the Frame Relay PVC, and for generating and sending the appropriate local data-link control frames to the downstream devices.

RFC 1490 Bridged Format for LLC2 (BAN)

BAN provides functionality similar to BNN except that it uses a bridged frame format, as illustrated in Figure 3.

![Figure 3](image)

Because it includes the MAC header information in every frame, BAN supports multiple SNA devices sharing a single permanent virtual circuit without requiring SAP multiplexing. BAN also supports load balancing across duplicate data-link connection identifiers to the same or different FEPs at the data center to enhance overall availability. BAN works for devices attached by either Token Ring or Ethernet.

SNA FRAS Configuration Task List

To configure FRAS, perform the tasks described in the following sections:
- Configuring FRAS BNN Statically, page 4
- Configuring FRAS BNN Dynamically, page 4
- Configuring FRAS BAN Support, page 5
- Configuring SRB over Frame Relay, page 5
Configuring FRAS BNN Statically

To configure FRAS BNN statically, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# fras map llc mac-address lan-lsap lan-rsap serial port frame-relay dlci fr-lsap fr-rsap [pfid2</td>
<td>afid2</td>
</tr>
<tr>
<td>Router(config-if)# fras map sdlc sdlc-address serial port frame-relay dlci fr-lsap fr-rsap [pfid2</td>
<td>afid2</td>
</tr>
</tbody>
</table>

In this implementation, you configure and define each end station MAC and SAP address pair statically. Because Frame Relay itself does not provide a reliable transport as required by SNA, the RFC 1490 support of SNA uses LLC2 as part of the encapsulation to provide link-level sequencing, acknowledgment, and flow control. The serial interface configured for Internet Engineering Task Force (IETF) encapsulation (RFC 1490) accepts all LLC2 interface configuration commands.

Configuring FRAS BNN Dynamically

To configure FRAS BNN dynamically, use one of the following commands in interface configuration mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# fras map llc lan-lsap serial interface frame-relay dlci fr-rsap</td>
<td>Associates an LLC connection with a Frame Relay DLCI.</td>
</tr>
<tr>
<td>Router(config-if)# fras map sdlc sdlc-address serial port frame-relay dlci fr-lsap fr-rsap [pfid2</td>
<td>afid2</td>
</tr>
</tbody>
</table>

When you associate an LLC connection with a Frame Relay DLCI, the router “learns” the MAC/SAP information as it forwards packets to the host. The FRAS BNN feature provides seamless processing at the router regardless of end station changes. End stations can be added or deleted without reconfiguring the router.

When you associate an SDLC link with a Frame Relay DLCI, you configure and define each end station MAC and SAP address pair statically.
Because Frame Relay itself does not provide a reliable transport as required by SNA, the RFC 1490 support of SNA uses LLC2 as part of the encapsulation to provide link-level sequencing, acknowledgment, and flow control. The serial interface configured for IETF encapsulation (RFC 1490) can take all LLC2 interface configuration commands.

Configuring FRAS BAN Support

To configure Frame Relay BAN, use the following command in interface configuration mode:

```
Router(config-if)# fras ban local-ring
            bridge-number ring-group ban-dlci-mac dlci dlci#1 [dlci#2 ... dlci#5] [bni mac-addr]
```

BAN simplifies router configuration when multiple LLC sessions are multiplexed over the same DLCI. By comparison, SAP multiplexing requires static definitions and maintenance overhead. By using BAN, the Token Ring MAC address is included in every frame to uniquely identify the LLC session. Downstream devices can be dynamically added and deleted with no configuration changes required on the router.

Configuring SRB over Frame Relay

To configure SRB over Frame Relay, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>Router(config-if)# interface serial number</code></td>
<td>Specifies the serial port.</td>
</tr>
<tr>
<td>2</td>
<td><code>Router(config-if)# encapsulation frame-relay</code></td>
<td>Enables Frame Relay encapsulation.</td>
</tr>
<tr>
<td>3</td>
<td><code>Router(config-if)# interface serial slot/port.subinterface-number point-to-point</code></td>
<td>Configures a Frame Relay point-to-point subinterface.</td>
</tr>
<tr>
<td>4</td>
<td><code>Router(config-if)# frame-relay interface-dlci dlci ietf</code></td>
<td>Configures a DLCI number for the point-to-point subinterface.</td>
</tr>
<tr>
<td>5</td>
<td><code>Router(config-if)# source-bridge source-ring-number bridge-number target-ring-number conserve-ring</code></td>
<td>Assigns a ring number to the Frame Relay permanent virtual circuit.</td>
</tr>
</tbody>
</table>

Cisco IOS software offers the ability to encapsulate source-route bridging traffic using RFC 1490 Bridged 802.5 encapsulation. This provides SRB over Frame Relay functionality. This SRB over Frame Relay feature is interoperable with other vendors’ implementations of SRB over Frame Relay and with some vendors’ implementations of FRAS BAN.

SRB over Frame Relay does not support the following Cisco IOS software functions:

- Proxy explorer
- Automatic spanning tree
- LAN Network Manager
Configuring FRAS Congestion Management

FRAS provides a congestion control mechanism based on the interaction between congestion notification bits in the Frame Relay packet and the dynamic adjustment of the LLC2 send window. This window shows the number of frames the Cisco IOS software can send before waiting for an acknowledgment. The window size decreases with the occurrence of backward explicit congestion notification (BECN) and increases when no BECN frames are received.

To configure congestion management, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# llc2 local-window packet-count</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# llc2 dynwind [nw nw-number] [dwc dwc-number]</td>
</tr>
</tbody>
</table>

You can enable the dynamic window mechanism only if you are using Frame Relay IETF encapsulation.

Configuring FRAS DLCI Backup

To configure FRAS DLCI backup, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router(config-if)# fras ddr-backup interface interface dlci-number</td>
</tr>
</tbody>
</table>

FRAS DLCI backup is an enhancement to Cisco’s FRAS implementation that lets you configure a secondary path to the host to be used when the Frame Relay network becomes unavailable. When the primary Frame Relay link to the Frame Relay WAN fails, the FRAS DLCI backup feature causes the router to reroute all sessions from the main Frame Relay interface to the secondary interface. The secondary interface can be either serial or ISDN and must have a data-link connection identifier (DLCI) configured.
Figure 4 illustrates Frame Relay backup over an ISDN connection.

Figure 4 FRAS DLCI Backup over ISDN

![Diagram of Frame Relay backup over ISDN](image)

Note
This feature provides backup for the local end of the Frame Relay connection, not the complete end-to-end connection.

Configuring Frame Relay RSRB Dial Backup

When the Frame Relay network is down, the Cisco IOS software checks whether the dial backup feature is configured for the particular DLCI number. If it is configured, the software removes the FRAS to the downstream device connection and establishes the RSRB to this downstream device connection.

To configure RSRB dial backup, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# fras backup rsrb vmaaddr local-ring-number target-ring-number host-mac-address</td>
<td>Activates Frame Relay RSRB dial backup.</td>
</tr>
</tbody>
</table>

Configuring Frame Relay DLSw+ Dial Backup

The FRAS dial backup over DLSw+ feature provides a secondary path that is used when the Frame Relay network becomes unavailable. If preconfigured properly, when the primary link to the Frame Relay WAN fails, FRAS dial backup over DLSw+ feature moves existing sessions to the alternate link automatically. When the primary link is restored, existing sessions are kept on the backup connection so they can be moved non-disruptively to the primary link at the user’s discretion.
To enable FRAS dial backup over DLSw+, use the following command in interface configuration mode:

```
Router(config-if)# fras backup dlsw
virtual-mac-address target-ring-number
host-mac-address
[retry number]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fras backup dlsw</code></td>
<td>Configures an auxiliary (backup) route between the end stations and</td>
</tr>
<tr>
<td><code>virtual-mac-address</code></td>
<td>the host for use when the DLCI connection to the Frame Relay</td>
</tr>
<tr>
<td><code>target-ring-number</code></td>
<td>network is lost.</td>
</tr>
<tr>
<td><code>host-mac-address</code></td>
<td></td>
</tr>
<tr>
<td><code>retry number</code></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5 shows a Frame Relay network with FRAS dial backup over DLSw+.
Figure 6 shows the active FRAS dial backup over DLSw+ when the Frame Relay connection to the NCP is lost.

Figure 6
FRAS Dial Backup over DLSw+ when Frame Relay is Unavailable

Monitoring and Maintaining FRAS

To display information about the state of FRAS, use the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# show fras</code></td>
<td>Displays the mapping and connection state of the FRAS.</td>
</tr>
</tbody>
</table>
Configuring FRAS Host

The FRAS host provides a scalable and efficient solution for SNA FRAD access to channel-attached hosts and to LAN-attached hosts. The FRAS host function operates in two modes, which are documented in the following sections:

- **FRAS Host LLC2 Passthrough, page 10**—In this mode, the LLC2 sessions are not locally terminated in the router’s LLC2 stack. This is the recommended solution if your scenario includes a Channel Interface Processor (CIP) interface to the mainframe.

- **FRAS Host LLC2 Local Termination, page 11**—In this mode, the LLC2 sessions are locally terminated in the router’s LLC2 stack. This is the recommended solution if either of the following is true:
 - Your scenario includes a LAN-attached AS/400 or mainframe.
 - Your scenario includes conversion from RFC1490 encapsulation to DLSw+ encapsulation.

FRAS Host LLC2 Passthrough

The FRAS host LLC passthrough feature combines with a CIP-attached Cisco router’s high-speed channel access to provide FEP-class performance at a fraction of what it would cost to achieve similar functionality using a FEP. If the CIP SNA feature is used to interface with the mainframe, then FRAS host LLC2 passthrough mode is the recommended solution. In this topology the LLC2 passthrough solution to the CIP-SNA LLC2 stack provides better performance, is more robust, and responds well to different types of congestion.

To prevent LLC2 session timeout, LLC2 characteristics (windows and timers) may be tuned on the CIP internal LAN adapter. The CIP/SNA LLC2 stack reacts to congestion by dynamically adjusting its LLC2 send window for that LLC2 session in response to dropped frames.

With the FRAS host LLC passthrough feature, you gain performance benefits of a channel attachment without FEP upgrades such as the addition of a Frame Relay interface, an upgrade to NCP (with its associated increase in monthly charges), and a possible increase in system memory.
Figure 7 illustrates Cisco FRAD access to a mainframe through a channel-attached Cisco router.

Figure 7 Cisco FRAD Access to a Mainframe through a Cisco 7500

FRAS Host LLC2 Local Termination

If the FRAS host feature is used to allow remote FRADs to communicate with a LAN-attached IBM 3745 or AS/400, then LLC2 termination via DLSw+ local switching is the recommended solution. With this approach, the LLC2 sessions are terminated at the Route Processor. To prevent LLC2 session timeout, LLC2 characteristics (windows and timers) may be tuned on the virtual Token Ring interface. If the dynamic window algorithm is enabled on the virtual Token Ring interface, LLC2 local termination will react to congestion by dynamically adjusting its LLC2 send window in response to occurrence of Frame Relay BECN.

When you use the FRAS host LLC2 local termination feature on a Token Ring-attached FEP, the FRAS host Cisco router shields the FEP from having to manage the interface to the Frame Relay network. This avoids interface, memory, and NCP upgrades. The FRAS host Cisco router simply provides LLC2 sessions to the FEP over the LAN.

If used in an environment with AS/400s, FRAS host LLC2 local termination provides an even more valuable function. The Cisco FRAS host router offloads the management of the Frame Relay connections from the AS/400. This reduces AS/400 system hardware requirements and frees AS/400 CPU cycles for user applications.
Figure 8 illustrates Cisco FRAD access to a LAN-attached SNA host through a Cisco router.

Figure 8
Cisco FRAD Access to a LAN-Attached AS/400 through a Cisco 4500

Congestion Management

Both passthrough and local acknowledgment environments support frame discard eligibility (DE) for additional congestion management. In both environments, you can further tune the interface to the Frame Relay network by taking advantage of the Cisco IOS Frame Relay features. Taken together, these features increase overall throughput dramatically by comparison to generic FRADs, which typically cannot use the network with the same degree of efficiency.

FRAS Host Configuration Task List

To configure the FRAS host migration feature, perform the tasks in the following sections:

- Creating a Virtual Token Ring Interface, page 13
- Configuring Source-Route Bridging on the Virtual Token Ring Interface, page 13
- Accepting Default LLC2 Passthrough or Enabling LLC2 Local Termination, page 13
- Enabling the FRAS Host Feature for BAN or BNN, page 14
- Monitoring LLC2 Sessions Using FRAS Host, page 14

See the “FRAS and FRAS Host Configuration Examples” section on page 14 for examples.
Creating a Virtual Token Ring Interface

To configure a virtual Token Ring interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# interface virtual-tokenring number</td>
<td>Configures a virtual Token Ring interface.</td>
</tr>
</tbody>
</table>

Configuring Source-Route Bridging on the Virtual Token Ring Interface

To configure SRB on the Token Ring interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# source-bridge ring-group ring-group virtual-mac-address</td>
<td>Enables local SRB.</td>
</tr>
<tr>
<td>Step 2: Router(config)# source-bridge local-ring bridge-number target-ring</td>
<td>Enables FRAS host traffic to access the SRB domain.</td>
</tr>
</tbody>
</table>

Note

If you are using LLC2 passthrough with an Ethernet-attached host, you must configure the Cisco source-route translational bridging (SR/TLB) feature.

Accepting Default LLC2 Passthrough or Enabling LLC2 Local Termination

LLC2 passthrough is the default operational mode for all FRAS host connections that use a virtual Token Ring interface. You do not need to perform any configuration to accept the default LLC2 passthrough mode.

To enable LLC2 local termination for FRAS host connections using the virtual Token Ring, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# dlsw local-peer</td>
<td>Defines the parameters of the DLSw+ local peer.</td>
</tr>
<tr>
<td>Step 2: Router(config)# fras-host dlsw-local-ack</td>
<td>Enables LLC2 local termination for FRAS host connections.</td>
</tr>
</tbody>
</table>
Enabling the FRAS Host Feature for BAN or BNN

To enable the FRAS host for BAN or BNN, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configures the FRAS host for BNN.</td>
</tr>
<tr>
<td>Router(config-if)# fras-host bnn interface fr-lsap sap vmtc virt-mac hmac hmac [hsap hsm]</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Configures the FRAS host for BAN.</td>
</tr>
<tr>
<td>Router(config-if)# fras-host ban interface hmac hmac [bni bni-mac]</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring LLC2 Sessions Using FRAS Host

To display the status of LLC2 sessions using FRAS host, use the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show fras-host [interface] [dlci dlci-num] [detail]</td>
<td>Displays the status of LLC2 sessions using FRAS host.</td>
</tr>
</tbody>
</table>

FRAS and FRAS Host Configuration Examples

The following sections provide both FRAS and FRAS host configuration examples:

- LAN-Attached SNA Devices Example, page 15
- SDLC-Attached SNA Devices Example, page 15
- FRAS BNN Topology Example, page 16
- FRAS BNN Example, page 18
- FRAS BAN Example, page 19
- SRB over Frame Relay Example, page 20
- FRAS DLCI Backup over Serial Interface Example, page 21
- FRAS Dial Backup over DLSw+ Example, page 22
- Cisco FRAD or FRAS Router Configuration Examples, page 23
- FRAS Host CIP Connection to VTAM Configuration Example, page 24
- FRAS Host Ethernet Connection to AS/400 Configuration Example, page 25
LAN-Attached SNA Devices Example

Figure 9 illustrates the configuration of SNA devices attached to a LAN.

Figure 9 LAN-Attached SNA Devices

The configuration for the network shown in Figure 9 is as follows:

```
interface tokenring 0
  no ip address
  no keepalive
  ring-speed 16
  fras map llc 0800.5a8f.8802 4 4 serial 0 frame-relay 200 4 4

interface serial 0
  mtu 2500
  no ip address
  encapsulation frame-relay IETF
  keepalive 12
  frame-relay lmi-type ansi
  frame-relay map llc2 200
```

SDLC-Attached SNA Devices Example

Figure 10 illustrates the configuration of SDLC-attached SNA devices.

Figure 10 SDLC-Attached SNA Devices

The configuration file for the network shown in Figure 10 is as follows:

```
interface serial 1
  no ip address
  encapsulation sdlc
  no keepalive
  clockrate 56000
```
Configuring SNA Frame Relay Access Support

FRAS and FRAS Host Configuration Examples

sdlc address C1
sdlc xid C1 05D01501
sdlc role primary
fras map sdlc C1 serial 0 frame-relay 200 4 4
interface serial 0
mtu 2500
no ip address
encapsulation frame-relay ietf
keepalive 12
frame-relay lmi-type ansi
frame-relay map llc2 200

FRAS BNN Topology Example

FRAS BNN transports SNA traffic across different media through a Cisco router and then through a Frame Relay link to the host. SNA PU 2.0 and PU 2.1 devices may be attached to the remote router through Token Ring, SDLC, or Ethernet to access the Frame Relay network. The FRAS BNN topology is illustrated in Figure 11.

Figure 11 FRAS BNN Topology

The original Frame Relay BNN feature transports traffic from multiple PUs over a single DLCI. This function is called SAP multiplexing. The router uses a unique SAP address (fr-lsap) for each downstream PU when communicating with the host. In this implementation, each end station’s MAC/SAP address pair must be statically defined to the router. Consequently, the router must be reconfigured each time an end station is moved, added, or deleted. The configuration overhead for this implementation can be high.
The FRAS BNN feature, where the router “learns” the MAC/SAP information as it forwards packets to the host, offers several advantages over the original FRAS BNN implementation. The BNN enhancement alleviates the need to reconfigure the router when end stations are moved, added, or deleted. The configuration is simple: one map definition in the router is sufficient for multiple downstream devices. The router “learns” the addresses of the downstream devices in the normal course of communication (as shown in Figure 12).

Figure 12 illustrates the Frame Relay BNN configuration for both the original implementation and the enhanced implementation.

If the end station initiates the LLC session, the router acquires the Token Ring address and the SAP value of the end station from the incoming frame. Instead of mapping the end station’s MAC/SAP address pair (as was done in the original FRAS BNN implementation), the destination MAC/SAP address pair of the incoming frame is mapped to the Frame Relay DLCI. If the destination SAP specified by the end station is equal to the lan-lsap address, the router associates the LLC (LAN) connection with the Frame Relay DLCI. The MAC address and the SAP address of the end station are no longer required in the router configuration. Thus, in the enhanced FRAS BNN implementation one configuration command achieves the same result for the end stations as did multiple configuration commands in the original FRAS BNN implementation.
FRAS BNN Example

The following configuration example enables the FRAS BNN feature. The topology is illustrated in Figure 13.

Figure 13 FRAS BNN Configuration

interface Serial0
 no ip address
 encapsulation frame-relay IETF
 frame-relay lmi-type ansi
 frame-relay map llc2 16
 !
 interface TokenRing0
 no ip address
 ring-speed 16
 fras map llc 0800.5aab.0856 04 04 Serial 0 frame-relay 16 04 04
 fras map llc 04 Serial 0 frame-relay dlci 16 04

Note

In this configuration example, the second to last line describes the old configuration for workstation A. The last line describes the configuration for the new workstations B and C.
FRAS BAN Example

The following configuration shows FRAS BAN support for Token Ring and serial interfaces. You must specify the `source-bridge ring-group` global command before you configure the `fras ban` interface command. When Token Ring is configured, the `source-bridge` interface command includes the `local-ring`, `bridge-number`, and the `target-ring` values. The `source-bridge` command enables local source-route bridging on a Token Ring interface.

```ascii
source-bridge ring-group 200
!
interface serial 0
  mtu 4000
  encapsulation frame-relay ietf
  frame-relay lmi-type ansi
  frame-relay map llc2 16
  frame-relay map llc2 17
  fras ban 120 1 200 4000.1000.2000 dlci 16 17
!
interface tokenring 0
  source-bridge 100 5 200
```

For SDLC connections, you must include SDLC configuration commands as follows:

```ascii
!
interface Serial1
  description SDLC line PU2.0
  mtu 265
  no ip address
  encapsulation sdlc
  no keepalive
  clockrate 9600
  sdlc role primary
  sdlc vmac 4000.0000.0000
  sdlc address C2
  sdlc xid C2 05D01502
  sdlc partner 4000.0000.2345 C2
  sdlc address C8
  sdlc xid C8 05D01508
  sdlc partner 4000.0000.2345 C8
  sdlc address C9
  sdlc xid C9 05D01509
  sdlc partner 4000.0000.2345 C9
  fras ban frame-relay Serial0 4000.0000.2345 dlci 16
!
interface Serial2
  description SDLC line PU2.1
  no ip address
  encapsulation sdlc
  no keepalive
  clockrate 19200
  sdlc role prim-xid-poll
  sdlc vmac 2000.0000.0000
  sdlc address C6
  sdlc partner 1000.2000.3000 C6
  fras ban frame-relay serial0 1000.2000.3000 dlci 16
```
SRB over Frame Relay Example

Figure 14 illustrates the interoperability provided by SRB over Frame Relay. FRADs B and C forward frames from their locally attached Token Rings over the Frame Relay network using SRB.

Figure 14 FRAD Using SRB over Frame Relay to Connect to a Cisco Router

Figure 14 illustrates a network with the following characteristics:

- Virtual ring number of Router A = 100
- Virtual ring number of FRAD B = 200
- Virtual ring number of FRAD C = 300
- DLCI number for the partner’s virtual ring (PVC) between Router A and FRAD B = 30
- DLCI number for PVC between Router A and FRAD C = 31

In this example we configure a new option, *conserve-ring*, on the *source-bridge* interface configuration command. When this option is configured, the SRB software does not add the ring number associated with the Frame Relay PVC to outbound explorer frames. This option is permitted for Frame Relay subinterfaces only.

The router configures the partner FRAD’s virtual ring number as the ring number for the PVC.

This approach does not require a separate ring number per DLCI. The router configures the partner FRAD’s virtual ring number as the ring number for the PVC.

FRAD B configures its virtual ring as 200 and the ring for the PVC as 100. FRAD C configures its virtual ring as 300 and the ring for the PVC as 100.
FRAS DLCI Backup over Serial Interface Example

The following example shows a configuration for FRAS DLCI backup over a serial interface:

interface serial0
 mtu 3000
 no ip address
 encapsulation frame-relay IETF
 bandwidth 56
 keepalive 11
 frame-relay map llc2 277
 frame-relay map llc2 278
 frame-relay lmi-type ansi
 fras ddr-backup interface serial1 188

interface serial1
 mtu 3000
 no ip address
 encapsulation frame-relay IETF
 no cdp enable
 frame-relay map llc2 188
 frame-relay lmi-type ansi

interface serial2
 no ip address
 encapsulation sdlc
 no keepalive
 clock rate 19200
 sdlc role prim-xid-poll
 sdlc address D6
 fras map sdlc D6 s0 frame-relay 277 8 4

interface tokenring0
 no ip address
 ring-speed 16
 fras map llc 0000.f63a.2f70 4 4 serial0 frame-relay 277 4 4

Router A

source-bridge ring-group 100

interface Serial1
 encapsulation frame-relay

interface Serial1.1 point-to-point
 frame-relay interface-dlci 30 ietf
 source-bridge 200 1 100 conserve-ring
 source-bridge spanning

interface Serial1.2 point-to-point
 frame-relay interface-dlci 31 ietf
 source-bridge 300 1 100 conserve-ring
 source-bridge spanning

interface TokenRing0
 source-bridge 500 1 100
FRAS Dial Backup over DLSw+ Example

The following examples show configurations for FRAS dial backup over DLSw+:

FRAS Dial Backup on a Subinterface

```conf
source-bridge ring-group 200
dlsw local-peer peer-id 10.8.8.8
dlsw remote-peer 0 tcp 10.8.8.7 dynamic
interface ethernet0
  ip address 10.8.8.8 255.255.255.0
!
interface serial0
  no ip address
  encapsulation frame-relay IETF
  frame-relay lmi-type ansi
!
interface Serial0.1 point-to-point
description fras backup dlsw+ listening on dlc1 16 configuration example
  no ip address
  frame-relay interface-dlci 16
  fras backup dlsw 4000.1000.2000 200 1000.5aed.1f53
!
interface TokenRing0
  no ip address
  ring-speed 16
  fras map llc 0000.f63a.2f50 4 4 Serial0.1 frame-relay 16 4 4
```

FRAS Dial Backup on a Main Interface

```conf
source-bridge ring-group 200
dlsw local-peer peer-id 10.8.8.8
dlsw remote-peer 0 tcp 10.8.8.7 dynamic
interface ethernet0
  ip address 10.8.8.8 255.255.255.0
!
interface serial0
  no ip address
  encapsulation frame-relay IETF
  frame-relay lmi-type ansi
  frame-relay map llc2 16
  fras backup dlsw 4000.1000.2000 200 1000.5aed.1f53
!
interface Serial1
  ip address 10.8.8.8
!
interface TokenRing0
  no ip address
  ring-speed 16
  fras map llc 0000.f63a.2f50 4 4 Serial0.1 frame-relay 16 4 4
```
Cisco FRAD or FRAS Router Configuration Examples

This section provides the following configuration examples (see Figure 15):

- Cisco FRAD or FRAS Router A with BNN Configuration Example, page 23
- Cisco FRAD or FRAS Router B with BAN Configuration Example, page 23
- Cisco FRAD or FRAS Router C with BAN Configuration Example, page 24

![Figure 15 FRAS Host CIP Connection to VTAM](image-url)

Cisco FRAD or FRAS Router A with BNN Configuration Example

```plaintext
interface Serial0
  encapsulation frame-relay IETF
  frame-relay map llc2 16
!
interface TokenRing0
  fras map llc 4001.2222.0000 4 4 Serial0 frame-relay 16 4 4
```

Cisco FRAD or FRAS Router B with BAN Configuration Example

```plaintext
source-bridge ring-group 200
!
interface Serial0
  encapsulation frame-relay IETF
  frame-relay map llc2 37
  fras ban 10 1 200 4000.3745.0000 dlci 37
!
interface TokenRing0
  source-bridge 20 1 200
```
Cisco FRAD or FRAS Router C with BAN Configuration Example

source-bridge ring-group 400
!
interface Serial0
 encapsulation frame-relay IETF
 frame-relay map llc2 46
 fras ban 50 1 400 4000.3745.0220 dlci 46 bni 4001.3745.1088
!
interface TokenRing0
 source-bridge 60 1 400

FRAS Host CIP Connection to VTAM Configuration Example

The following example shows the configuration for the network shown in Figure 16.

source-bridge ring-group 100
!
interface Serial0/1
 encapsulation frame-relay IETF
 frame-relay map llc2 16
 frame-relay map llc2 46
!
interface Serial0/2
 encapsulation frame-relay IETF
!
interface Serial0/2.37 point-to-point
 frame-relay interface-dlci 37
!
interface Channel4/0
 no keepalive
!
interface Channel4/1
 no keepalive
 lan TokenRing 0
 source-bridge 104 1 100
 adapter 0 4001.3745.1008
!
interface Virtual-TokenRing0
 source-bridge 47 1 100
 source-bridge spanning
 fras-host bnn Serial 0/1 fr-lsap 04 vmac 4005.3003.0000 hmac 4001.3745.1088
 fras-host ban Serial 0/1 hmac 4001.3745.1088 bni 4001.3745.1088
 fras-host ban Serial 0/2.37 hmac 4001.3745.1088
FRAS Host Ethernet Connection to AS/400 Configuration Example

The configuration example in this section is shown in Figure 16.

Figure 16 FRAS Host Ethernet Connection to AS/400

```
source-bridge ring-group 226
dlsw local-peer
ndlsw bridge-group 1
!
interface Ethernet0
  bridge-group 1
!
interface Serial2
  encapsulation frame-relay IETF
  frame-relay map llc2 502
  frame-relay lmi-type ansi
!
interface Virtual-TokenRing0
  no ip address
  ring-speed 16
  source-bridge 1009 1 226
  fras-host dlsw-local-ack
  fras-host bnn Serial2 fr-lsap 04 v mac 4000.1226.0000 hmac 0800.5ae1.151d
```
Configuring Cisco Transaction Connection

This chapter describes how to configure the Cisco Transaction Connection (CTRC) feature. For a complete description of the CTRC commands mentioned in this chapter, refer to the “Cisco Transaction Connection Commands” chapter of the *Cisco IOS Bridging and IBM Networking Command Reference* (Volume 2 of 2). To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter contains the following sections:

- Technology Overview, page 1
- Configuration CTRC Task List, page 4
- Defining the CTRC Router to VTAM, page 6
- Preparing a CICS Host for Remote Access, page 7
- Preparing a DB2 Host for Remote Access, page 11
- Configuring the CTRC Router, page 15
- Verifying the CTRC Configuration, page 18
- Configuring CTRC Clients, page 21
- Monitoring and Maintaining CTRC, page 25
- CTRC Configuration Examples, page 27

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release.

Technology Overview

CTRC provides TCP/IP end-users and servers with fast, reliable, and secure access to IBM DB2 databases and Customer Information Control System (CICS) transaction programs. The CTRC feature of the Cisco router provides a flexible, cost-effective, and scalable solution for enterprise-wide database access and transaction processing. CTRC allows Windows or UNIX client applications to call CICS transactions without changes to the client or host software. Any client running a Distributed Relational Database Architecture (DRDA) requestor, which is included in most Open Database Connectivity (ODBC) applications, can use CTRC to access data in DB2 databases.
With CTRC, you can continue using current CICS client/server applications on a more robust, higher-performing platform than the general-purpose operating system gateways. CTRC provides protocol independence between client workstations and the host, enabling the applications to communicate directly with CICS and DB2 without costly mainframe application upgrades or expensive middleware servers.

The CTRC software feature provides:

- Access to DB2 databases from TCP/IP clients
- Access to CICS applications from TCP/IP clients
- A keepalive timer to maintain the TCP/IP connection
- Integration with the Cisco IOS software to provide intelligent network services for application connectivity, workload management, and fault tolerance

CTRC is a standards-based solution that can be managed either from the host, using mainframe management software, or from a Simple Network Management Protocol (SNMP) workstation. The following MIBs allow monitoring the CTRC router from the management platform of choice:

- CISCO-DB2-MIB.my - 93
- CISCO-CICS-MIB.my - 144

For descriptions of supported MIBs and how to use MIBs, see the Cisco MIB website on Cisco.com.

Using CTRC for CICS Access

When a router is configured to use CTRC for communications with CICS systems, the router converts Inter-System Communications (ISC) packets over TCP/IP to ISC packets over Advanced Program-to-Program Communications (APPC) LU 6.2, and then routes them to the appropriate CICS region. CTRC converts CICS client messages received via TCP/IP to SNA messages and uses Cisco SNA Switching Services (SNASw) to send them to the host.

When a client connects to a CICS region on an IBM mainframe host, CTRC allocates an APPC conversation over SNA to an IBM server and acts as a gateway between ISC over TCP/IP and ISC over APPC. CTRC allows you to configure specific routes for CICS transactions, giving you control over which transaction is routed to which CICS region.

CTRC supports connectivity to CICS from the IBM Universal Client (also referred to as the Common Client), TXSeries clients, and Microsoft Common Object Module Transaction Interface (COMTI) clients. See the Configuration CTRC Task List, page 4 for details on the hardware and software that CTRC supports.

Figure 1 illustrates how CTRC allows CICS client applications on TCP/IP networks to interact with CICS transaction monitoring systems on IBM hosts.
Using CTRC for DB2 Access

In addition to its CICS-related functionality, CTRC includes the feature previously known as Cisco Database Connection (CDBC). CTRC allows Cisco routers to use IBM’s DRDA protocol to provide a gateway between client workstations on TCP/IP networks and IBM DB2 databases on SNA networks. CTRC also provides full duplex TCP passthrough to DB2 systems that support direct TCP/IP access.

Clients use a CTRC IP address and port on the router to connect to the IBM host system in either an SNA network or a TCP/IP network.

Figure 2 illustrates how the Cisco router configured with the CTRC feature enables the exchange of database information between an ODBC client application running DRDA in a TCP/IP network and a DB2 system in an SNA network. For an SNA host connection, the CTRC router converts DRDA packets over TCP/IP to DRDA packets over APPC (LU 6.2) and then routes them to DB2 databases. When a client connects to the database on an IBM mainframe host, CTRC allocates an APPC conversation over SNA to an IBM server and acts as a gateway between DRDA over TCP/IP and DRDA over APPC.

Figure 3 illustrates a configuration where CTRC supports direct TCP/IP access to DB2. For a TCP/IP host connection, CTRC routes the DRDA packets over TCP/IP without protocol changes. To use this TCP/IP passthrough feature of CTRC, the host database version must support direct TCP/IP access and the SNA Switching Services must be available.

Note

Licensing of the CTRC router is based on the cpname assigned to the router in the SNA Switching Services configuration. You must install and start SNA Switching Services with at least a minimal configuration to support the TCP/IP connections. Refer to the “Configuring SNA Switching Services” section on page 17, for more information about configuring the CTRC license and the SNA Switching Services that CTRC requires.
Using the CTRC Keepalive Timer

In environments where there is heavy network traffic or limited processing capabilities, TCP/IP connections can time out before transactions are completed. The Keepalive Timer feature enables CTRC servers to send acknowledgment messages to clients at specific intervals to maintain the TCP/IP connection. CTRC servers that support direct TCP/IP connections to a DB2 host also can be configured to send keepalive messages to the host. The Keepalive Timer feature keeps TCP/IP connections active so they do not time out from inactivity.

Configuration CTRC Task List

CTRC can be configured for use with CICS, with DB2, or both. Both CICS and DB2 configurations require Cisco SNA Switching Services.

General Tasks

Setting up CTRC involves the following general tasks:

- Defining the CTRC Router to VTAM, page 6
- Preparing a CICS Host for Remote Access, page 7
- Preparing a DB2 Host for Remote Access, page 11
- Configuring the CTRC Router, page 15
- Verifying the CTRC Configuration, page 18
- Configuring CTRC Clients, page 21

To configure CTRC for use with both CICS and DB2, complete all the configuration tasks. Otherwise, skip the sections that are related only to CICS or DB2, as appropriate for your needs. The “CTRC Configuration Examples” section on page 27 provides example configurations for using CTRC in various network topologies.

The following sections describe the hardware and software required to use CTRC.
Router Requirements

CTRC became available in Cisco IOS Release 12.05(XN). It is available for the following platforms:

- Cisco 7200 series routers
- Cisco 7500 series routers

CTRC consists of a system image and a microcode image, which are virtually bundled as one combined image. Within the Cisco IOS software listings, look for a software feature called Enterprise/SNASw Plus.

If you want to run CTRC on a router with a CIP card, also be sure to download the CIP hardware microcode appropriate for the Cisco IOS software level you are using.

Host Requirements

Mainframe hosts using SNA with the CTRC server must be running VTAM V3.0 or later.

CICS Host Requirements

Using CTRC for CICS access requires CICS Version 4.0 or later. CTRC supports the following CICS servers:

- CICS Transaction Server for OS/390, Version 1 or later
- CICS/400, Version 3.1
- CICS on Open Systems and NT (TXSeries)
- CICS/ESA, Version 3.3*
- CICS/ESA, Version 4.1
- CICS/MVS, Version 2.12.*
- CICS/VSE, Version 2.2*
- CICS/VSE, Version 2.3
- CICS for OS/2, Version 2.01 or later

Note: Versions marked with an asterisk (*) have limited server support. These versions support ECI but they do not support EPI or the Terminal Emulation function.

DB2 Host Requirements

When CTRC is configured for access to DB2 in an SNA network, client-based ODBC applications can connect to the following IBM DB2 relational databases:

- DB2 for OS/390 (DB2/MVS), Version 2.3 or later
- SQL/DS (DB2 for VM and VSE), Version 3.3 or later
- DB2/400 (OS/400), Version 2.2 or later
- DB2 Universal Database for UNIX, OS/2, and Windows NT, Version 5.1 or later
- DB2 Common Server, Version 2.1 or later
CTRC for DB2 access via direct TCP/IP is supported for the following versions of DB2:

- DB2 for OS/390, Version 5.1 or later (requires OS/390 Version 1.3 or later)
- DB2 for VM and VSE, Version 6.1 or later
- DB2/400 (OS/400), Version 4 Release 2 or later
- DB2 Universal Database for UNIX, OS/2, and Windows NT, Version 5.1 or later

Client Requirements

CTRC supports connectivity to DB2 from any client that supports the Level 3 DRDA. Many of the available workstation-based DRDA requestors are ODBC client applications, such as StarSQL.

CTRC supports connectivity to CICS from the following clients:

- IBM Universal Client, version 2.0 or later, using the Extended Presentation Interface (EPI) or the Extended Call Level Interface (ECI)
- IBM TXSeries for AIX or NT, version 4.2 or later, running as clients
- Microsoft COMTI

Defining the CTRC Router to VTAM

Regardless of whether you want to connect to a CICS or a DB2 host, the CTRC router must be defined to VTAM so that the host recognizes and accepts session initiation requests from it. VTAM handles network communications for MVS for direct VTAM and SNA gateway configurations. For each CTRC router, the VTAM system programmer must create a logmode table entry and major node definitions for the CTRC router link.

The following sections provide information about the logmode table entry and major node definitions required for CTRC. Consult your VTAM documentation for detailed instructions on configuring VTAM. You also may want to take advantage of VTAM’s support for dynamic definition of independent LU’s, which is described in the VTAM documentation.

Logmode Table Entry

The logmode table entry contains information that governs how conversations take place in VTAM. It defines pacing, RU sizes and class of service (COS) parameters. The mode entry can be placed in any mode table under VTAM—the default mode table or the one used in the APPL statement for the LU definitions. (See the “Defining the CICS Subsystem to VTAM” section on page 7 and the “Defining the DB2 Subsystem to VTAM” section on page 11 for example APPL statements).

The following example shows a logmode table entry for APPC, with a LOGMODE name of IBMRDB. Make a note of the LOGMODE name because you must use the same name for the DLOGMODE value in the major node definitions and also in the SNA configuration. The PSERVIC field identifies the LU traffic protocol—the value shown in the following example is for an independent LU using LU6.2.

```
IBMRDB MODEENT LOGMODE=IBMRDB,
FMPROF=X’13’,
TSPROF=X’01’,
PRIPROT=X’B0’,
SECPROT=X’B0’,
COMPROT=X’50A1’
```
RUSIZES=X’8989’,
TYPE=0,
PSNDPAC=X’03’,
SRVCPAC=X’03’,
SSNDPAC=X’02’,
PSERVIC=X’060200000000000000002F00’

Major Node Definitions

The VTAM system programmer creates an XCA major node definition for the connection to the CTRC router. Additionally, a switched major node definition and a Cross Domain Resource definition can be created to represent the LU for the CTRC router.

In the switched major node definition, the DLOGMOD value must match the LOGMODE value in the mode table entry. The name of IBMRDB is specified for both the LOGMODE value in the previous example and in the following switched major node definition example. Make a note of the values for the LU and PU names, and the CPNAME, DLOGMOD, and CONNTYPE parameters because you must specify the same values in the SNA configuration.

```
S02CTRC   VBUILD   TYPE=SWNET
  * CTRC DOWNSTREAM PU
CTRCPU   PU    ADDR=01,
  CPNAME=CTRCBOX,
  ANS=CONT,
  DISCNT=NO,
  IRETRY=NO,
  ISTATUS=ACTIVE,
  PUTYPE=2,
  SECNET=NO,
  MAXDATA=521,
  MAXOUT=2,
  MAXPATH=1,
  USSTAB=USSS,
  MODETAB=ISTINCLM,
  DLOGMOD=IBMRDB,
  CONNTYPE=APPN
  * CTRCCIP PATH GRPNM=G02E20A,CALL=IN
  *
CTRBOX LU    LOCADDR=00,    INDEPENDENT LU
  DLOGMOD=IBMRDB,
```

Preparing a CICS Host for Remote Access

CTRC connects to CICS using the SNA LU6.2 (APPC) communication protocol. The SNA functions are provided by a separate SNA product on the host, and CICS uses the services of that product. On a mainframe host, the SNA product is VTAM (also known as eNetwork Communications Server). You must configure both the CICS subsystem and VTAM to enable ISC.

Defining the CICS Subsystem to VTAM

The APPL statement defines the CICS subsystem to VTAM to support remote access. If your CICS subsystem is not already supporting remote access, you must create an appropriate APPL statement.
The following example shows an APPL statement that defines CICS to VTAM. Make a note of the APPL statement label, which is CICSB in this example, and the password, if one is specified, because you must specify the same values in the SNA configuration. Note that the DLOGMOD value, IBMRDB in this example, must match the LOGMODE value that is specified in the VTAM mode table entry (see the “Logmode Table Entry” section on page 6).

```plaintext
A02CICS VBUILD TYPE=APPL
CICSB APPL AUTH=(ACQ, SPO, PASS, VPACE),
       MODETAB=ISTINCLM,
       DLOGMOD=IBMRDB,
       HAVAIL=YES,
       VPACING=9,
       EAS=10000,
       PARSESS=YES,
       APPC=NO,
       SONSCIP=YES
```

Configuring CICS for ISC

To use CTRC to communicate with CICS, you must configure CICS for APPC connections. If you have configured another product, such as TXSeries for AIX, to connect to CICS, some of these steps might be completed already.

Step 1
Set the ISC parameter in the CICS system initialization table (SIT) to YES. The following example overrides the CICS SIT parameters with the APPL statement label (CICSB in this example), and a value of YES for the ISC parameter.

```plaintext
APPLID=(CICSB),
GMTEXT='CICS TS V1.2',
AUXTR=OFF,
EDSALIM=80M,
FCT=NO,
ISC=YES,
MXT=100
```

Step 2
Install the CICS-supplied resource definition group, DFHCLNT. This installation includes definitions of the CICS internal transactions, CCIN and CTIN, and of the programs they use.

Step 3
When a CICS client sends a request, the server controller calls a routine that supports code page translations and data conversions. Regardless of whether translations and conversions are required, you need to create or modify a DFHCNV table to allow the server controller to handle incoming requests. The use of the DFHCNV macro for defining the table is described in the CICS Family, Communicating from CICS on System/390 document. The following example shows the DFHCNV table entries:

```plaintext
PRINT NOGEN
DFHCNV TYPE=INITIAL, SRVERCP=037, CLINTCP=437
DFHCNV TYPE=FINAL
END DFHCNVBA
```

Note
It is not necessary to code the pages used with CICS clients on the CLINTCP and SRVERCP operands of the DFHCNV TYPE=INITIAL macro.
Defining APPC Connections to CTRC

You must install APPC connections to define the CTRC connection to CICS. This section describes the definitions and methods for installing them.

In the CONNECTION definition you specify information about the CTRC router and how it connects to CICS. The following example shows a CONNECTION definition named CTRC. Note that the NETNAME value must be the same as the CTRC router LU name, which is CTRCBOX in this example. Setting the AUTOCONNECT option to YES allows CICS to dynamically activate the router connection. See the “Supporting CICS Security Models” section on page 10 for information about specifying security parameters in the CONNECTION definition.

```
DEFINE
CONNECTION(CTRC)
    DESCRIPTION(CTRC)
    AUTOCONNECT(YES)
    NETNAME(CTRCBOX)
    ACCESSMETHOD(VTAM)
    PROTOCOL(APPC)
    SINGLESESS(NO)
    ATTACHSEC(IDENTIFY)
    BINDPASSWORD(NO)
    BINDSECURITY(NO)
    USEDFLTUSER(YES)
```

Following is an example SESSIONS definition. Note that the value for the CONNECTION parameter must be the same as the name of the CONNECTION definition, which is CTRC for this example.

```
DEFINE
SESSIONS(CTRC)
    CONNECTION(CTRC)
    MODENAME(IBMRDB)
    PROTOCOL(APPC)
    MAXIMUM(64,1)
    SENDSIZE(4096)
    RECEIVESIZE(4096)
```

The connections can be single- or parallel-session links. Install APPC connections to CICS either by creating static definitions for the router or using an autoinstall. The installation methods are addressed in the following sections.

Creating Static Definitions for Router Connections

You can use the CICS CEDA transaction DEFINE and INSTALL commands to create static definitions. For more information about defining APPC connections, refer to the *CICS Intercommunication Guide*.

Step 4 Messages relating to client support are written to the CSCC transient data queue, which you must define to CICS. There is a sample definition in the supplied resource definition group, DFHDCTG. The sample defines CSCC as an indirect extra partition destination, pointing to CSSL.
Using Autoinstall for Router Connections

Another method of installing router connections is to use autoinstall. If you use autoinstall you must create suitable CONNECTION and SESSIONS template definitions. For information about autoinstall and defining templates, see the CICS Resource Definition Guide. For information about customizing your autoinstall user program to handle APPC connections, see the CICS Customization Guide.

Installing Client Virtual Terminals

Virtual terminals are used by the EPI and terminal emulator functions of the CICS client products. Both IBM-supplied autoinstall programs support virtual terminal autoinstall. Refer to the CICS Customization Guide for detailed information on autoinstall for virtual terminals.

Supporting CICS Security Models

This section addresses how to configure the the Bind, Link, and User security models that are supported in CICS.

Bind Security

Bind-time security currently cannot be configured on the Cisco router. Therefore, specify BINDSECURITY(NO) in the CONNECTION definitions that define the router to CICS.

Link Security

Link security provides the lowest level of resource security for intercommunication links. It defines the total set of resources that can be accessed across the connection.

To set link security for a CICS client connection, specify a userid for the link for the SECURITYNAME option of the CONNECTION definition. Then define a profile to your External Security Manager for the link userid. Users of the connection will be able to access only those resources that the link userid is authorized to access.

If you do not specify a userid for the SECURITYNAME option, the authority of the link is that of the CICS default user.

User Security

User (attach-time) security defines how individual users of an intercommunication link are to be checked. It also affects the resources that individual users are able to access. Unless you specify LOCAL user security (in which case all potential users share the authority of the link userid), you must define user profiles to your External Security Manager.
Preparing a DB2 Host for Remote Access

CTRC provides a gateway between DRDA client requests over TCP/IP to DB2 in SNA networks. CTRC also provides full duplex TCP passthrough to DB2 systems that support direct TCP/IP access. Perform the steps in this section if you want to use CTRC to provide access to DB2 hosts. Otherwise, skip to the “Configuring the CTRC Router” section on page 15.

Defining the DB2 Subsystem to VTAM

The APPL statement defines the DB2 subsystem to VTAM to support remote access. If your DB2 system is not already supporting remote access, you must create an appropriate APPL statement.

The following is an example of an APPL statement. Make a note of the APPL statement label, which is DSNV510 in the following example, and the password, if one is specified. You need to specify the same values when you configure or update the distributed data facility (DDF) record in the Bootstrap Data Set (BSDS) as described in the next section.

```
DB2APPL VBUILD TYPE=APPL
DSNV510 APPL AUTH=(ACQ),
         APPC=YES,
         AUTOSES=1,
         DMINNL=10,
         DMINNR=10,
         DSESLLIM=20,
         MODETAB=ISTINCLM,
         SECACPT=ALREADYV,
         SRBEXIT=YES,
         VERIFY=NONE,
         VPACING=2
```

Configuring DB2 for Remote Access

To use CTRC as a gateway between TCP/IP clients and the DB2 host, you need to configure and start DDF and define the CTRC router in the DB2 communications database table.

Configuring DDF

DB2 reads the BSDS during start up to obtain the system installation parameters. The DDF record in the BSDS contains information used by DB2 to connect to VTAM. If the DB2 system supports direct TCP/IP access, the DDF record specifies which port to use for TCP/IP communications.
If you are installing DB2, use the DDF installation panel DSNTIPR to provide the following parameters. If DB2 is already installed, use the change log inventory utility DSNJU003 to update this information in BSDS.

- DDF location name
- DDF LUNAME
- Password used when connecting DB2 to VTAM, if a password is required
- IP port to use for TCP/IP access

The following example updates the BSDS with a location name of DB2510, LU name of DSNV510 for SNA access, a password of STARPASS, and a port of 446 for TCP/IP communications. The RESREPORT and PORT parameters are required only for TCP/IP access and can be omitted if using only SNA.

```
/*
//DSNTLOG EXEC PGM=DSNJU003,COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=DSN510.SDSNLOAD
//SYSUT1 DD DISP=OLD,DSN=DSN5CAT.BSDS01
//SYSUT2 DD DISP=OLD,DSN=DSN5CAT.BBSD02
//SYSPRINT DD SYSOUT=* 
//SYSPRINT DD SYSOUT=* 
//SYSIN DD *
   DDF LOCATION=DB2510,LUNAME=DSNV510,
               PASSWORD=STARPASS,RESREPORT=5020,PORT=446
/*
```

LOCATION is used as the Remote Database (RDB) name. If your system does not require a password to connect DB2 to VTAM, replace the PASSWORD parameter with NOPASSWD. Note the DDF LUNAME because you must specify the same value in the SNA configuration. Also make a note of the LOCATION name because you must specify the same value as the Database Server Name during data source configuration on the desktop (described in the “Setting Up DB2 DRDA Client Connections” section on page 21).

You also can determine the DDF location name from the syslog. The DB2 message “DSNL004I (starting DDF)” contains the location name.

For complete information about configuring DDF, consult IBM’s DB2/MVS installation documentation.

Starting DDF

Use the following command, which requires authority of SYSOPR or higher, to start DDF:

```
START DDF
```

When DDF starts successfully, the following messages are displayed:

```
DSNL003I - DDF IS STARTING
DSNL004I - DDF START COMPLETE LOCATION locname LU netname.luname
```

If DDF has not been properly installed, the START DDF command fails and displays the following message:

```
DSN9032I - REQUESTED FUNCTION IS NOT AVAILABLE
```

If DDF has already been started, the START DDF command fails and displays the following message:

```
DSNL001I - DDF IS ALREADY STARTED
```
Defining CTRC in the DB2 Communications Database

The DB2 host maintains a database table that defines the network attributes of remote systems. To enable communication between a CTRC client and the DB2 host, there must be an entry in this table. On DB2 for OS/390 or later versions, the name of this table is SYSIBM.LUNAMES. For DB2 on MVS v4.1, the name of this table is SYSIBM.SYSLUNAMES. Table 1 describes the table entry parameters and indicates which are applicable to one or both versions of the table.

Table 1: DB2 Communications Database Table Entry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SYSLUNAMES</th>
<th>LUNAMES</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME</td>
<td>Yes</td>
<td>Yes</td>
<td>LUNAME of the remote system. An empty string means that any LU is valid for this row.</td>
</tr>
<tr>
<td>SYSMODENAME</td>
<td>Yes</td>
<td>Yes</td>
<td>VTAM login mode name used for DB2 for MVS/ESA intersystem conversations. A blank frame indicates that IBMDB2LM should be used. Use the mode name specified in the logmode table.</td>
</tr>
<tr>
<td>ENCRYPTPSWDS</td>
<td>Yes</td>
<td>Yes</td>
<td>Indicates whether passwords exchanged with this partner are encrypted. Use the default value of NO for passing passwords between a client and DB2 host using CTRC.</td>
</tr>
<tr>
<td>MODESELECT</td>
<td>Yes</td>
<td>Yes</td>
<td>If ‘Y,’ the SYSMODESELECT table is used to obtain the mode name for each outbound distributed database request. If not ‘Y,’ the mode name IBMDB2LM is used for system-directed access requests, and the mode name IBMRDB is used for DRDA requests.</td>
</tr>
<tr>
<td>USERNAMES</td>
<td>Yes</td>
<td>Yes</td>
<td>Indicates the level of come-from checking and user ID translation required. It also specifies the security parameters this DB2 for MVS/ESA subsystem uses when requesting data from the remote partner (outbound security requirements). ‘I’ indicates an “inbound” ID is subject to translation. ‘O’ indicates an “outbound” ID, sent to the corresponding LUNAME, is subject to translation. ‘B’ indicates that both inbound and outbound IDs are subject to translation. A blank indicates no translation for inbound or outbound IDs.</td>
</tr>
<tr>
<td>USERSECURITY</td>
<td>Yes</td>
<td>—</td>
<td>Network security acceptance options required of the remote system when the DB2 for MVS/ESA system acts as a server for the remote system (inbound security requirements).</td>
</tr>
<tr>
<td>SECURITY_IN</td>
<td>—</td>
<td>Yes</td>
<td>Defines the security options that are accepted by this host when an SNA client connects. ‘V’ for “verify” indicates that the incoming connection request must include a password. ‘A’ for “already verified” indicates the request does not require a password, although the password is checked if it is sent.</td>
</tr>
<tr>
<td>SECURITY_OUT</td>
<td>—</td>
<td>Yes</td>
<td>Defines the security option that is used when local DB2 SQL applications connect to any remote server associated with this LUNAME. ‘A’ for “already verified” indicates that outbound connection requests contain an authorization id and no password. ‘P’ for “password” indicates that outbound connection requests contain an authorization id and password. ‘R’ for “RACF PassTicket” indicates that outbound connection requests contain a userid and RACF PassTicket.</td>
</tr>
</tbody>
</table>
The following command inserts a row into the SYSIBM.SYSLUNAMES table that any LU can use because the value of the LUNAME column is an empty string:

\[
\text{INSERT INTO SYSIBM.SYSLUNAMES (LUNAME, SYSMODENAME, USERSECURITY, ENCRYPTPSWDS, MODESELECT, USERNAMES) VALUES (' ', ' ', 'C', 'N', 'N', ' ');}\]

The following command inserts a row into the SYSIBM.LUNAMES table that any LU can use:

\[
\text{INSERT INTO SYSIBM.LUNAMES (LUNAME, SECURITY_IN, ENCRYPTPSWDS, USERNAMES) VALUES (' ', 'V', 'N', ' ')};\]

Configuring Password Expiration Management

Users of DRDA-based applications, such as StarSQL, can change their host password using CTRC’s Password Expiration Management (PEM) feature. This feature is supported by CTRC using IP passthrough and APPC. PEM support for IP passthrough is provided by DB2 for OS390 V5 or later. PEM support when using APPC is provided by either APPC/MVS or CICS.

PEM Support for IP Passthrough

There is no CTRC configuration required for PEM support as it is native in DRDA over TCP/IP. However, the DB2 host must be enabled to support PEM. To enable PEM support on DB2 for OS390 V5 or later, you must configure and use extended security using either:

- The DSNTIPR (DDF) panel on the DB2 installation dialog
- A customized configuration job DSNTIJUZ, with the option EXTSEC=YES specified

Refer to the DB2 Installation Guide for details on setting up and using extended security.

Note

If you are using DB2 for OS390 V5, install the maintenance fix PTF UQ21052. The IBM APAR PQ15977 describes the problems fixed by this PTF. This maintenance fix is not required for later releases.

PEM Support for APPC

The CTRC PEM support over APPC is implemented using SNA architecture TPs. Therefore, CTRC requires that a surrogate subsystem such as APPC/MVS or CICS be used to change passwords. Both APPC/MVS and CICS support the SNA architecture TPs.

To allow PEM support for DB2 connections, use the `dbconn pem` command to turn on PEM support as needed for the CTRC routers handling the connections. In the `dbconn pem` command statement, specify the LU name of the APPC/MVS base configuration. APPC/MVS configuration statements are in SYS1.PARMLIB(APPCPMxx). Consult your MVS systems programmer to obtain the name of the target LU that will be used by CTRC. The PEM support does not require any explicit definitions of the SNA architecture TPs. The following example shows a LUADD statement, such as found in SYS1.PARMLIB.

```
LUADD ACBNAME(MVSLU01) BASE TPDATA(SYS1.APPCTP)
```

The following is an example VTAM APPL definition for the APPC/MVS LU:

```
MVSLU01 APPL  ACBNAME=MVSLU01, ACBNAME FOR APPC
            APPC=YES, AUTOSES=0,
            DDRAINL=NALLOW, DLOGMOD=IBMRDB,
```
Another alternative for providing PEM support is through the CICS support for SNA architecture TPs, which is provided in resource group DFHISC. To use this method, define the connection to CTRC as described in the “Defining APPC Connections to CTRC” section on page 9, and use the CICS APPLID as the rlu value in the `dbconn pem` command.

Configuring the CTRC Router

After you define the CTRC router to VTAM and prepare the CICS and DB2 hosts for remote access, you must configure the router.

Configuring CTRC for CICS Communications

To configure CTRC to communicate with CICS, you must define a destination and specify a particular server process. You also can define specific routes to be used for particular transaction programs.

Configuring a CTRC Destination for CICS

To configure CTRC to communicate with CICS, you must configure a CTRC destination. A CTRC destination is typically a single CICS system defined in terms of its remote LU name and APPC mode.

To configure a destination, use the following global configuration command:

```
Router(config)# txconn destination destination-name
rlu rlu-name mode mode-name
```

If you want to assign more than one CICS system or region to a single CTRC destination name, such as to help balance the workload, repeat the `txconn destination` command with the same destination name and different remote LU and mode values. If a CTRC destination is configured in this way, the CTRC server sends traffic to the destination’s defined CICS regions on a rotating basis. A Cisco router can be configured to communicate with multiple CTRC destinations, whether each of those destinations is defined as an individual pair of remote LU and mode values or as a set of such values.

Configuring a CTRC Server for CICS

After you have configured a CICS destination, configure a CTRC server process to handle communications with that CICS system. Additional CTRC servers can be configured on the same router for communications with other CICS destinations. To configure a CTRC server process to communicate with CICS, use the following global configuration command:
When a client attempts to connect to a CTRC server for CICS, the server’s port and IP address determine whether that connection is accepted. By default, the CTRC server port for CICS client communications is 1435. You can create multiple CTRC server processes for both CICS and DB2 on one router.

Configuring a CTRC Route for CICS

After you have configured one or more destinations and server processes for communicating with CICS, you have the option of explicitly configuring CTRC routes that will direct traffic to the appropriate destination based on a transaction ID. If you do not explicitly configure CTRC routes, the CTRC server routes traffic to its own defined default destination. To configure a CTRC route, use the following global configuration command:

```
Router(config)# txconn route [server server-name] tranid
transaction-id destination destination-name
```

This command configures a particular route for traffic with the specified transaction ID.

Configuring CTRC for DB2 Communications

To configure a CTRC server process for APPC communications with DB2, use the `dbconn server` command in global configuration mode. To configure a CTRC server to communicate with an IP-enabled DB2 database, use the `dbconn tcpserver` global configuration command.

Command Purpose

Command

```
Router(config)# dbconn server server-name [idle-timeout minutes] [ipaddress ip-address] [keepalive attempts number] [keepalive interval seconds] [port port-number] [rdbname rdbname] [tp-name tp-name] [window-size bytes] [wlm {off | on}]
```

Purpose

Configures a CTRC server for APPC communications with DB2.

Command

```
Router(config)# dbconn tcpserver server-name remote-hostname remote-hostname|remote-ip remote-ipaddress [idle-timeout minutes] [ip ip-address] [keepalive attempts number] [keepalive interval seconds] [port port-number] [rdbname rdbname] [remote-keepalive attempts number] [remote-keepalive interval seconds] [remote-port remote-port] [window-size bytes] [wlm {off | on}]
```

Purpose

Configures a CTRC server to communicate with IP-enabled DB2 databases.

When a client attempts to connect to a CTRC server for DB2, the server’s port, IP address, and RDB name determine whether that connection is accepted. By default, the CTRC server port for client requests for DB2 communications is 446. You can create multiple CTRC server processes for both CICS and DB2 on one router.
Configuring SNA Switching Services

CTRC uses the SNA Switching Services (SNASw) of the Cisco router. Even if you do not need to convert client messages received over TCP/IP to SNA messages (such as in a TCP/IP passthrough topology), SNASw must be present, and you must specify a CPNAME for the CTRC router. The following command illustrates the minimal SNASw configuration required to enable the CTRC license:

```
snasw cpname netid.cpname
```

To configure basic SNASw, complete the following steps beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# snasw cpname (netid.cpname</td>
</tr>
<tr>
<td></td>
<td>Defines an SNASw control point name. For the netid variable, specify the fully qualified CP name for the router, which consists of both network ID and cpname.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# snasw port portname [hpr-ip</td>
</tr>
<tr>
<td></td>
<td>Associates an SNASw port with an interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# snasw link linkname port portname rmac mac-address</td>
</tr>
<tr>
<td></td>
<td>Configures upstream links.</td>
</tr>
</tbody>
</table>

For a LEN-level connection between SNASw and the host, you also need to configure the snasw location configuration command for the specific resource names to be contacted on the host. Do not define locations if APPN connectivity is being used between SNASw and the host. See the “Cisco IOS Software Configuration” section on page 35 for an example of the SNASw configuration statements.

For additional information about configuring SNASw, consult the SNA Switching Services chapter of this document.

Configuring the CTRC License

An unlicensed installation of CTRC allows up to two DB2 connections, two CICS conversations, or one DB2 connection and one CICS conversation for evaluation purposes. To use more than two connections or conversations, you must configure the CTRC license.

The CTRC license key is locked to one node and is based on the SNASw control point name (cpname) for the router. Use the show config | include cpname command to determine the cpname for the router you want to license. Then contact your Cisco representative and request a CTRC license key. You will receive a license key along with information about the number of connections you are licensing and, if the license has a time limit, the expiration date.

For communications with DB2, CTRC checks the number of connections in use against the licensed number of connections. For communications with CICS, CTRC checks the number of concurrent and queued conversations. One license key is used for both CICS and DB2 communications, so you can use
either of the following global configuration commands to configure the CTRC license. If your license is not for an unlimited number of connections and period of time you must specify the number of connections and expiration date.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dbconn license license-key [connections licensed-connections] [expiration-date yyyyMMdd]</td>
<td>Configures a CTRC license.</td>
</tr>
<tr>
<td>Router(config)# txconn license license-key [connections licensed-connections] [expiration-date yyyyMMdd]</td>
<td>Configures a CTRC license.</td>
</tr>
</tbody>
</table>

Verifying the CTRC Configuration

After preparing the host systems and configuring the CTRC router, perform the following steps to ensure CTRC can communicate with the host systems:

Step 1
To verify that you have SNA connectivity between the router and each host system, use the `ping sna` command, specifying the mode and the fully-qualified remote LU name appropriate for your environment in place of IBMRDB and STARW.BUDDY in the following example.

```
ping sna -m IBMRDB STARW.BUDDY
```

Step 2
If you configured CTRC for communications with CICS, perform the following steps to verify the router is properly configured. Skip to Step 3 if you are using CTRC only for DB2 communications.

a. Enter the `show txconn destination` command in EXEC or privileged EXEC mode. Make sure that all CICS destinations you configured are listed with the RLU and mode values you specified.

```
Router# show txconn destination
Name              Remote LU          Mode        Hits
----------------- ------------------ ----------- --------
CICSB             CICSB              IBMRDB    0
GEN               CICSB              IBMRDB    0
               CICSC              IBMRDB    0
GUAVA             GUAVA              IBMRDB    0
               CICSC              IBMRDB    0
```

b. For each CICS destination shown in the previous step, enter the `txconn ping` command to verify that the router can communicate with that destination.

```
Router# txconn ping CICSB
Trying CICSB CICSB:IBMRDB
Destination CICSB successfully contacted!
Elapsed time was 00:00:00.600
```

c. Enter the `show txconn server` command. Make sure that all CTRC servers you defined for communications with CICS are listed with the configuration values you specified.

```
Router# show txconn server
Server     Port  IP Address   Dest      State     NumConn
---------- ----- ------------ --------- --------- -------
CICSB      1435  0.0.0.0      CICSB     enabled   0
CICSB&C    1436  0.0.0.0      GEN       enabled   0
               1434  0.0.0.0      CICSC     enabled   0
GUAVA      1437  0.0.0.0      GUAVA     enabled   0
```

Use the `show txconn server server-name` form of the command to display detailed information for an individual server.
Router# show txconn server CICS
server: CICS
 destination: CICS
 server state: enabled (accepting connections)
 ip address: 0.0.0.0
 port: 1435
 client timeout: 0 (none)
 host timeout: 0 (none)
 window size: 4096 bytes
 fold program name: on
 CCSID: 037
 number of connections: 0
 number of transactions: 0
 client type: CICS

If you defined any routes for specific transaction IDs to take to CICS destinations, enter the show txconn route command. Make sure that all CTRC routes you defined are listed with the configuration values you specified. A <default> in the SERVER column indicates a global route that can be used by all txconn servers on the router. A <default> in the TranID column indicates the default route for the listed txconn server.

<table>
<thead>
<tr>
<th>Server</th>
<th>TranID</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICSC</td>
<td><default></td>
<td>CICSC</td>
</tr>
<tr>
<td>CICSB</td>
<td><default></td>
<td>CICSB</td>
</tr>
<tr>
<td>CICSB&C</td>
<td><default></td>
<td>GEN</td>
</tr>
<tr>
<td>GUAVA</td>
<td><default></td>
<td>GUAVA</td>
</tr>
<tr>
<td><default></td>
<td>CPMI</td>
<td>CICSC</td>
</tr>
<tr>
<td>CICSB</td>
<td>CPMI</td>
<td>CICSB</td>
</tr>
</tbody>
</table>

Step 3 If you configured CTRC for communications with DB2, perform the following steps to verify the router is properly configured. If you are using CTRC only for CICS communications, skip to Step 4.

If you defined any routes for specific transaction IDs to take to CICS destinations, enter the show txconn route command. Make sure that all CTRC routes you defined are listed with the configuration values you specified. A <default> in the SERVER column indicates a global route that can be used by all txconn servers on the router. A <default> in the TranID column indicates the default route for the listed txconn server.

<table>
<thead>
<tr>
<th>Server</th>
<th>TranID</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICSC</td>
<td><default></td>
<td>CICSC</td>
</tr>
<tr>
<td>CICSB</td>
<td><default></td>
<td>CICSB</td>
</tr>
<tr>
<td>CICSB&C</td>
<td><default></td>
<td>GEN</td>
</tr>
<tr>
<td>GUAVA</td>
<td><default></td>
<td>GUAVA</td>
</tr>
<tr>
<td><default></td>
<td>CPMI</td>
<td>CICSC</td>
</tr>
<tr>
<td>CICSB</td>
<td>CPMI</td>
<td>CICSB</td>
</tr>
</tbody>
</table>

Step 3 If you configured CTRC for communications with DB2, perform the following steps to verify the router is properly configured. If you are using CTRC only for CICS communications, skip to Step 4.

Enter the show dbconn server command. Make sure the servers you defined are listed with the configuration values you specified.

```plaintext
Router# show dbconn server
Server  Port IPAddress RDBName State NumConn
SERVERA 446 0.0.0.0 MATTY enabled 0
SERVERB 446 0.0.0.0 SCU_DSNM enabled 0
SERVERC 446 0.0.0.0 DSN4 enabled 0
SERVERD 446 0.0.0.0 MKTG enabled 0
SERVERE 446 0.0.0.0 ABBY enabled 0
SERVERF 446 0.0.0.0 DB2510 enabled 0
SERVERG 446 0.0.0.0 EILLE enabled 0
SERVERH 446 0.0.0.0 SUNSET enabled 0
SERVERI 446 0.0.0.0 NELL enabled 0
SERVERJ 446 198.989.999.32 SAMPLE enabled 0
SERVERK 446 0.0.0.0 DB2410 enabled 0
SERVERL 446 0.0.0.0 SQLDS enabled 0
SERVERM 446 0.0.0.0 STELLA enabled 0
SERVERN 446 10.10.19.4 OAK enabled 0
SERVERO 446 0.0.0.0 DB2510 enabled 0
BUDDY   446 0.0.0.0 DB2510 enabled 0
```

Use the show dbconn server server-name form of the command to display more information for an individual server.

```plaintext
Router# show dbconn server BUDDY
server: BUDDY
  server state: enabled (accepting connections)
  ip-address: 0.0.0.0
```
Verifying the CTRC Configuration

Port: 446
rdbname: DB2510
connection type: SNA
rlu: STARM.DSNV510
mode: IBMRDDB
tpname: \x076DB
idle-timeout: 0 (none)
window-size: 4096 bytes
database server name: (unknown)
database product id: (unknown)
PEM: not configured
number of connections: 0
RDB server: active
WLM: inactive-enabled

b. For each dbconn server shown in the previous step, enter the `dbconn ping` command to verify that the router can communicate with the DB2 systems associated with that server.

```
Router# dbconn ping BUDDY
......
RDB named DB2510 on database server BUDDY successfully contacted!
Elapsed time was 00:00:00
```

Step 4 Verify that the CTRC license configuration matches the number of licensed connections that you purchased. Enter either the `show dbconn license` command or the `show txconn license` command as shown below.

```
Router# show txconn license
Router# show dbconn license
```

The command displays information about the license, as shown in the following example:

```
CTRC is licensed for 4990 connections, no licensed connections in use
This is a permanent license
```
Configuring CTRC Clients

This section provides information about setting up DRDA client connections for DB2 access, and for setting up the supported CICS clients.

Setting Up DB2 DRDA Client Connections

To configure a connection between a DRDA-based client and a DB2 database, you must define a data source to the ODBC driver. For each DB2 database that will be accessed, you need to specify the following data source information to configure the DRDA requestor to use the CTRC router:

- The RDB name of the DB2 database you want to access. This value must match the rdbname that you specify with the `dbconn server` command to configure the CTRC router for communicating with DB2 (see the “Configuring CTRC for DB2 Communications” section on page 16). The RDB name also must match the DDF location defined on the DB2 host (see the “Configuring DDF” section on page 11).
- The router’s host name or the IP address of the interface that will accept the connection requests.
- The port number on which the CTRC router is listening for connection requests. The default is 446.

The procedures for configuring a data source are specific to the client implementation. Refer to the documentation for your DRDA client for details.

Setting Up CICS Clients

CTRC supports IBM CICS Universal Client, IBM TXSeries, and Microsoft COMTI clients. These clients connect to the Cisco router via TCP/IP.

Setting Up CICS Universal Client Connections

To set up the CICS Universal Client, perform the following tasks:

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Install the Universal Client for your platform.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Choose TCP/IP as your network connection.</td>
</tr>
<tr>
<td>Step 3</td>
<td>To have the Universal Client connect to your CTRC server, add an entry in the Server section of the CICSCLI.INI file to define the CTRC server. The following example entry defines a server named CTRCSERV with a TCP/IP hostname (NetName) of CTRCBOX. Substitute the LU name of your router for the NetName.</td>
</tr>
</tbody>
</table>

```
Server = CTRCSERV
Description = TCP/IP Server
Protocol = TCPIP
NetName = CTRCBOX
Port = 1435
```


Step 4

If necessary, stop and restart the Universal Client to have the changes take effect and connect to the CTRC server.

To connect through multiple servers, increase the MaxServers value in the Client section of the CICSCLLINI file from the default of 1. If you have multiple servers configured in CICSCLLINI, some applications may display a list of servers from which to choose. If security is turned on in CICS, a user/password dialog may appear after selecting a CICS Server.

If you have specified UseDfltUser=NO and AttachSec=Verify in your APPC CONNECTION definition on CICS (see the “Defining APPC Connections to CTRC” section on page 9), a userid and password will be required to use the CICS Terminal. If you are using ECI, pass the userid and password using a command such as:

cicscli /c=ctrcserv /u=p390 /p=p390

The CICS Terminal status line displays the virtual terminal name. When you enter a command on the terminal (such as “CEOT”), you will see the SYSID and APPLID of the CICS system to which you are connected.

Setting Up TXSeries as a CTRC Client

To connect a machine running TXSeries to another CICS host through a CTRC connection, you must create the following CICS resource definitions:

- Listener Definition
- Communications Definition
- Program Definition for each remote program you want to use

You can create these resource definitions using the cicsadd command, or you can use the CICS System Management Interface Tool (SMIT) to build the commands. The following sections describe both methods.

Note

The procedures in the following sections show how to create the resource definitions for TXSeries on AIX. If you are using TXSeries on Windows NT, refer to your TXSeries documentation for the commands and configuration panels provided for creating resource definitions on that platform.

Using cicsadd to Create the Definitions

To use the cicsadd command to add CICS resource definitions on TXSeries for AIX, specify the values appropriate for your definition in place of the variables shown in italic in the following command syntax.

cicsadd -c className[-r regionName] [-P | -B] [-f fileName] [-m modelId] resourceName [attributeName=attributeValue ...]

To use the CTRC router, the value for the resourceName in the Communications Definition (CD) must be the same as the attributeValue specified for the RemoteSysId attribute in the Program Definition. And, the ListenerName specified in the CD must match the name of the Listener Definition. For example, issuing the following command creates a Communications Definition for the CTRC router with a resourceName of CTRC and a ListenerName of TCP:

cicsadd -c cd -r TX6000 -B CTRC ResourceDescription="Connection thru CTRC"
ConnectionType=cics_tcp ListenerName=TCP OutboundUserIds=\$sent RemoteCodePageTR="IBM-037"
RemoteNetworkName="CICSB" RemoteSysSecurity=trusted RemoteTCPAddress="ctrcbox"
RemoteTCPPort=1435 RemoteLUName="CTRCBOX"
To use a remote program named PNG1, the Program Definition for PNG1 must set the RemoteSysId attribute to CTRC, as shown in the following command.

cicsadd -c pd -r TX6000 -B PNG1 ResourceDescription="eciPing back end" RemoteSysId=CTRC RemoteName=PNG1 RSLKey=public

You specify the protocol that the CICS client will use in the Listener Definition. For example, to allow the TXSeries client to connect to the CICS region specified in the above example commands, TX6000, add a Listener Definition for TCP/IP as shown in the following command.

cicsadd -c ld -r TX6000 -B TCP ResourceDescription="TCP/IP Listener" Protocol=TCP

Using SMIT to Create the Definitions

To use SMIT to build the commands for creating the resource definitions, start SMIT and display the Manage Resources menu, which lists the types of definitions you can create.

Following are example definitions, assuming the values below for the CTRC-related parameters:
- TX6000—Name of the CICS region on an RS/6000 running TXSeries.
- CTRCBOX—IP host name of CTRC router.
- CICSB—APPLID of CICS server running on a mainframe.
- PNG1—ECI host program running on the mainframe.

Listener Definition Example

* New Listener Identifier [TCP]
* Listener Identifier TCP
* Region name TX6000
 Update Permanent Database OR
 Install OR Both Both
 Group to which resource belongs []
 Activate resource at cold start? yes
 Resource description [Listener Definition]
* Number of updates 0
 Protect resource from modification? no
 Protocol type TCP
 TCP adapter address [198.147.235.8]
 TCP service name []
 local SNA Server Protocol Type TCP
 local SNA Server Identifier []
 local SNA Node Name []
 local Named Pipe name []
Communication Definition Example

The following definition shows a TCP/IP link to a CICS host STARW.CICSB through the CTRC router named CTRCBOX:

New Communication Identifier [CTRC]
Communication Identifier CTRC
Region name TX6000
Update Permanent Database OR Install OR Both Both
Group to which resource belongs []
Activate the resource at cold start? yes
Resource description [Communications Definition]
* Number of updates 2
Protect resource from modification? no
Connection type cics_tcp
Name of remote system [CICSB]
SNA network name for the remote system [STARW]
SNA profile describing the remote system []
Default modename for a SNA connection []
Gateway Definition (GD) entry name []
Listener Definition (LD) entry name [TCP]
TCP address for the remote system [CTRCBOX]
TCP port number for the remote system [1435]
DCE cell name of remote system [/.:]
Timeout on allocate (in seconds) [60]
Code page for transaction routing [IBM-037]
Set connection in service? yes
Send userids on outbound requests? sent
Security level for inbound requests verify
UserId for inbound requests []
Transaction Security Level (TSL) Key Mask [none]
Resource Security Level (RSL) Key Mask [none]
Transmission encryption level none

Program Definition Example

The following definition describes a program named PNG1 that is running on the remote system accessed through the Communication Definition named CTRC (see the “Communication Definition Example” section on page 24):

New Program Identifier [PNG1]
Program Identifier PNG1
Region name TX6000
Update Permanent Database OR Install OR Both Both
Group to which resource belongs []
Activate the resource at cold start? yes
Resource description [Program Definition]
* Number of updates 0
Protect resource from modifications? no
Program enable status enabled
Remote system on which to run program [CTRC]
Name to use for program on remote system [PNG1]
Transaction name on remote system for program []
Resource Level Security Key [public]
Program path name []
Program type program []
User Exit number [0]
Is a user conversion template defined? no
Is this a program that should be cached? no

Refer to the IBM TXSeries CICS documentation for more information about specifying CICS resource definitions on TXSeries.
Setting Up COMTI Client Connections

When a COMTI application is built using Microsoft’s COMTI Component Builder, it must be defined with the following information to provide remote access to CICS.

- “CICS and IMS via TCP/IP” as the remote environment type
- “CICS” as the target environment
- “MS Link” as the server mode

For the COMTI client to access CICS using the CTRC router, you must define CTRC as a TCP Remote Environment. Use Microsoft’s COMTI Manager to define the remote environment with the following values.

- Select “CICS and IMS using TCP/IP” as the remote environment type
- Specify the IP address and TCP port address as configured on the CTRC router
- Specify a name and comment for the new remote environment

Refer to the *Microsoft COM Transaction Integrator Online Guide* for details about setting up and using COMTI.

Monitoring and Maintaining CTRC

This section describes commands used to monitor and maintain CTRC. Commands for CICS communications and DB2 communications are shown separately.

Note

CTRC commands related to communications with CICS contain the word `txconn`. CTRC commands related to communications with DB2 contain the word `dbconn`. With the exception of commands related to licensing, `dbconn` and `txconn` commands act independently of each other.

Monitoring and Maintaining CTRC Communications with CICS

To monitor and maintain CTRC communications with CICS, use the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# clear txconn connection connection-id</code></td>
<td>Terminates the specified CTRC connection to a CICS client and all associated transactions.</td>
</tr>
<tr>
<td>`Router# clear txconn statistic name {allocatetime</td>
<td>clientreceived</td>
</tr>
<tr>
<td><code>Router# clear txconn transaction transaction-id</code></td>
<td>Terminates the specified CTRC transaction.</td>
</tr>
<tr>
<td>`Router# debug txconn {all</td>
<td>appc</td>
</tr>
<tr>
<td><code>Router# show debugging</code></td>
<td>Displays current status of debugging for the router.</td>
</tr>
</tbody>
</table>
Monitoring and Maintaining CTRC Communications with DB2

To monitor and maintain CTRC communications with DB2, use the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show txconn connection [server server-name]</td>
<td>Displays a list of all CTRC connections to CICS clients from the current router, or a particular server’s CICS client connections.</td>
</tr>
<tr>
<td>Router# show txconn connection connection-id</td>
<td>Displays detailed status information for the specified CTRC connection to a CICS client.</td>
</tr>
<tr>
<td>Router# show txconn destination destination-name</td>
<td>Displays a list of all the current router’s destinations for CICS communications, or detailed status information for the specified CTRC destination.</td>
</tr>
<tr>
<td>Router# show txconn license or show dbconn license</td>
<td>Shows the status of the CTRC license.</td>
</tr>
<tr>
<td>Router# show txconn route [server server-name]</td>
<td>Displays a list of CTRC routes to CICS for the current router or a particular server.</td>
</tr>
<tr>
<td>Router# show txconn server</td>
<td>Lists the CTRC servers that are configured for CICS communications on the current router.</td>
</tr>
<tr>
<td>Router# show txconn server server-name</td>
<td>Displays detailed status information for the specified CTRC server.</td>
</tr>
<tr>
<td>Router# show txconn transaction [server server-name</td>
<td>connection connection-id]</td>
</tr>
<tr>
<td>Router# show txconn transaction transaction-id</td>
<td>Displays detailed status information for the specified CTRC transaction.</td>
</tr>
<tr>
<td>Router# show txconn statistic [kind {histogram</td>
<td>summary}] name {activeconnections</td>
</tr>
<tr>
<td>Router# txconn ping destination-name</td>
<td>Tests communications between the CTRC router and a CTRC destination (a host defined by a pair of RLU and mode values).</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining CTRC Communications with DB2

To monitor and maintain CTRC communications with DB2, use the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# clear dbconn connection connection-id</td>
<td>Breaks the specified client connection to the server.</td>
</tr>
<tr>
<td>Router# clear dbconn statistic connectionsdown</td>
<td>ConnectionsUp</td>
</tr>
<tr>
<td>Router# dbconn ping server-name [userid userid] [password password] [dbname dbname]</td>
<td>Verifies connectivity to the specified DB2 database.</td>
</tr>
<tr>
<td>Router# debug dbconn {all</td>
<td>appc</td>
</tr>
</tbody>
</table>
Configuring Cisco Transaction Connection

CTRC Configuration Examples

The following sections provide CTRC configuration examples:

- CTRC Servers with IP Addresses Configuration Example (DB2), page 28
- CTRC Servers with IP Addresses, RDB Names, and Ports Configuration Example 1 (DB2), page 28
- CTRC Servers with IP Addresses, RDB Names, and Ports Configuration Example 2 (DB2), page 29
- Server Selection by IP Addresses, RDB Names, and Ports Configuration Example (DB2), page 29
- CTRC with CIP and DB2 on VTAM Configuration Example (DB2), page 30
- CTRC Servers Using Token Ring to a LEN Configuration Example (CICS and DB2), page 33
- CTRC Servers with IP Addresses, Routes, and Multi-Valued Destinations Configuration Example (CICS), page 36

Command	Purpose
Router# show dbconn connection | Displays the status of each CTRC connection to DB2.
Router# show dbconn connection connection-id | Displays a detailed status of the specified CTRC connection to DB2.
Router# show dbconn connection server server-name | Displays the status of CTRC connections to DB2 for the specified server.
Router# show dbconn connection userid userid | Displays the status of a user connected to CTRC for DB2 communications.
Router# show dbconn connection rdbname rdb-name | Displays a status of each connection to DB2 that matches the specified RDB name.
Router# show dbconn license or Router# show txconn license | Displays the status of the CTRC license for both DB2 and CICS.
Router# show dbconn ports | Displays information on all ports through which CTRC servers are accepting connections to DB2.
Router# show dbconn server | Displays a summary of information about each CTRC server configured to communicate with DB2.
Router# show dbconn server server-name | Displays a detailed status of the specified CTRC server for DB2 communications.
Router# show dbconn statistic {kind (histogram | summary)} name {chains | clientturnaround | connectionsdown | connectionsup | dump | hostreceived | hostresponse | hostsent | latency | maxconnections} | Displays current statistics related to CTRC communications with DB2.
Router# show debugging | Displays current status of debugging for CTRC.
CTRC Servers with IP Addresses Configuration Example (DB2)

Figure 4 shows a CTRC configuration where the CTRC servers are configured to listen on port 446 (by default) for IP addresses specified for these servers in the router’s configuration for CTRC. When an ODBC client attempts to make a connection to DB2, a CTRC server accepts the connection if the IP address specified in its configuration matches the IP address to which the client wants to connect.

In this illustration, Servers A and B are configured with IP addresses 172.0.10.2 and 172.0.45.3. Servers A and B accept any connection that targets their IP addresses. Server C accepts any connection that targets any IP address of router on the target port of 446 and an RDB name of IOWA.

Figure 4 **CTRC Servers’ Configuration with IP Addresses (for DB2 Communications)**

The following are the commands that configure Server A, Server B, and Server C in the Cisco router:

- `dbconn server SERVERA ip-address 172.0.10.2 rdbname nevada`
- `dbconn server SERVERB ip-address 172.0.45.3`
- `dbconn server SERVERC rdbname iowa`

CTRC Servers with IP Addresses, RDB Names, and Ports Configuration Example 1 (DB2)

When a client request comes in for a server, and multiple servers are configured in the router, the three configured attributes of IP address, RDB name, and port determine which server is chosen for the connection. When a server is selected for a connection, the client remains associated with that server for the duration of that connection. The APPC attributes configured for that server are used to connect to the IBM system. If a server is unconfigured while active connections exist, the active connections with that server will break.

Only one CTRC server can be configured with a unique combination of IP address, port, and RDB name. If a situation arises where multiple servers in a router meet the criteria for accepting a client connection, the CTRC server that meets the most specific criteria accepts the connection. For example, in Figure 5 Servers A and B are listening on port 446 for client connections that match their IP address of 161.55.122.80. Server A is configured to accept RDB name NEVADA and Server B is configured to accept any RDB name. A client connecting to port 446 for RDB name NEVADA matches the criteria for both servers. In this situation, Server A is selected to accept the connection because its configuration includes a specific RDB name NEVADA as compared to Server B whose configuration accepts any RDB name.
CTRC Server Configuration with IP Address and RDB Name Defined

CTRC Servers with IP Addresses, RDB Names, and Ports Configuration Example 2 (DB2)

The IP address and port specified for a server in a router's configuration also determines which server accepts a connection. For example, Server C is configured to listen on any local IP address on port 446 and RDB name IOWA. Server D is configured to listen for IP address 145.56.180.34 on port 446 and RDB name IOWA. When a client attempts to connect to IP address 145.56.180.34 on port 446 for RDB name IOWA, both servers meet the criteria in accepting the connection. In this case, CTRC selects a connection based on the IP address first, then the port, and finally, the RDB name.

Server Selection by IP Addresses, RDB Names, and Ports Configuration Example (DB2)

If multiple servers in a router meet the criteria for accepting a client connection, the CTRC server that meets the most specific criteria accepts the connection. In Figure 6, the Cisco router contains four server configurations. All four servers listen for client connections on port 446 by default. Both Servers A and B are configured with the same IP address, 161.55.122.80. Servers A and C are configured to accept RDB name NEVADA. Servers B and D are configured to accept any RDB name.

If a client connects to IP address 161.55.122.80 on port 446 and sends RDB name NEVADA in the DRDA data stream, all four servers match the criteria for accepting the client connection. However, Server A will be selected to accept the connection because it meets the most specific criteria for IP address, RDB name, and port. If Server A was not configured, Server B would be the second choice because it meets the criteria for the IP address and port. The IP address specified in a server always has precedence when matching a connection to a server.
The following is the configuration for Servers A, B, C, and D in the Cisco router:

```
hostname routera
!
enable password allie

dbconn server SERVERA ip-address 161.55.122.80 rdbname NEVADA

dbconn server SERVERB ip-address 161.55.122.80

dbconn server SERVERC rdbname NEVADA

dbconn server SERVERD
```

CTRC with CIP and DB2 on VTAM Configuration Example (DB2)

Figure 7 illustrates a Cisco router with a CIP that is configured with CTRC. The CIP is networked and connected to VTAM on the mainframe. DB2 is configured on VTAM.

The configuration in Figure 7 uses router commands to configure SNA Switching Services over CIP and CSNA via SRB. The following examples show the configuration in more detail.
In the VTAM host definitions, the variable CONNTYPE=APPN is optional, but is recommended if you use APPN in your SNA environment. If CP-to-CP is set to YES and CONNTYPE is set to APPN, this configuration enables the Cisco router to establish CP-to-CP sessions with VTAM. By allowing CP-to-CP sessions, you gain the benefit of APPN’s dynamic features such as the availability of directory and topology for locating resources and calculating optimal routes.

VTAM Partner PU and LU Definition

<table>
<thead>
<tr>
<th>CTRCPU</th>
<th>ADDR=01,</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDBLK=05D,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>IDNUM=00501,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CPNAME=CTRBCBOX,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>ANS=CONT,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>DISCNT=NO,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>IRETRY=NO,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>ISTATUS=ACTIVE,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>PUTYPE=2,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>SECNET=NO,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>MAXDATA=521,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>MAXOUT=7,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>MAXPATH=1,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>USSTAB=USSS,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>MODETAB=ISTINCLM,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>DLOGMOD=IBMRCDB,</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CONNTYPE=APPN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CTRCBOX</th>
<th>LOCADDR=00,</th>
<th>INDEPENDENT LU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DLOGMOD=IBMRCDB</td>
<td></td>
</tr>
</tbody>
</table>

VTAM APPLID for DB2

| DSNV510 | APPL | APPC=YES, X00006012
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUTH=ACQ, X00007012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUTOSES=1, X00008012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMINWL=1024, X00009012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMINWR=1024, X00009112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSESLIM=2048, X00009212</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EAS=65535, X00009312</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODETAB=ISTINCLM, X00009412</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SECACPT=CONV, X00009512</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRBEXIT=YES, X00009612</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VERIFY=NONE, X00009712</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VPACING=1, X00009812</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYNCLVL=SYNCP, X00009912</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATNLOSS=ALL, 00010012</td>
<td></td>
</tr>
</tbody>
</table>

XCA for a CIP-Attached Router

<table>
<thead>
<tr>
<th>XCAE20</th>
<th>VBUILD</th>
<th>TYPE=XCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPE20R</td>
<td>PORT</td>
<td>CIADDR=E20,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADAPNO=5,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAPADDR=4,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEDIUM=RING,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELAY=0,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIMER=60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G02E20A</th>
<th>GROUP</th>
<th>ANSWER=ON, CALL=INOUT, DIAL=YES, ISTATUS=ACTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K02T201S</td>
<td>LINE</td>
<td></td>
</tr>
<tr>
<td>P02T201S</td>
<td>PU</td>
<td></td>
</tr>
<tr>
<td>K02T202S</td>
<td>LINE</td>
<td></td>
</tr>
<tr>
<td>P02T202S</td>
<td>PU</td>
<td></td>
</tr>
</tbody>
</table>
Cisco IOS Software Configuration

In this example, the router CTRCBOX is attached to the host BUDDY using a CIP processor. Note that the source-bridge ring-group of 100 matches the source bridge of 10 2 100 for interface Channel 13/2 to enable SNA Switching Services to run over SRB. In addition, the destination LAN address used by the SNASw link station BUDDY corresponds to the virtual MAC address used by the adapter for Channel 13/2.

```plaintext
! source-bridge ring-group 100
!
interface Ethernet2/1
  mac-address 4200.0000.0501
  ip address 198.147.235.11 255.255.255.0
  no ip directed-broadcast
  no ip mroute-cache
!
interface Channel3/0
  ip address 192.168.1.1 255.255.255.0
  no ip directed-broadcast
  no keepalive
  channel-protocol S4
  claw 0100 22 192.168.1.2 BUDDY CIPTCP TCP/IP TCP/IP
  csna 0100 20
!
interface Channel3/2
  no ip address
  no ip directed-broadcast
  no keepalive
  lan TokenRing 1
  source-bridge 10 2 100
  adapter 1 4000.0123.9999
!
interface Virtual-TokenRing0
  mac-address 4000.2222.3333
  source-bridge 50 1 100
  source-bridge spanning
!
snasw cpname STARW.CTRCBOX
s nasw port SRB Virtual-TokenRing0
s nasw link BUDDY port SRB rmac 4000.0123.9999
s nasw location DSNV510 owning-cp STARW.BUDDY (see Note below)
!
dbconn server DB2BUDD rdbname DB2510 rlu STARW.DSNV510 mode IBMRDB
!
ip default-gateway 198.147.235.12
ip classless
```

Note

Do not use an `s nasw location` statement if you are using an APPN connection between the host and SNASw.
CTRC Servers Using Token Ring to a LEN Configuration Example (CICS and DB2)

This section provides a configuration example for a router named CTRCBOX, beginning with the VTAM definition for the router, which is the same as for the previous example.

The router is connected to the host via Token Ring. The control point name of the host is BUDDY; its Token Ring MAC address is 4000.0200.0448.

The host is configured as a Subarea Node (APPN LEN); if a host is configured as an APPN Network Node, the SNASw location statements are unnecessary.

Figure 8 shows a CTRC configuration for communication with DB2 and CICS.

Figure 8 CTRC Configuration for Communication with DB2 and CICS

![CTR Configuration Diagram]

VTAM Partner PU and LU Definition

```
CTRCPU  PU  ADDR=01,        X
        IDBLK=05D,        X
        IDNUM=00501,        X
        CPNAME=CTRCBOX,        X
        ANS=CONT,        X
        DISCNT=NO,        X
        IRETRY=NO,        X
        ISTATUS=ACTIVE,        X
        PUTYPE=2,        X
        SECNET=NO,        X
        MAXDATA=521,        X
        MAXOUT=7,        X
        MAXPATH=1,        X
        USSTAB=USSS,        X
        MODETAB=ISTINCLM,        X
        DLOGMOD=IBMRDB,        X
        ONNTYPE=APPN

CTRCBOX  LU  LOCADDR=00,  INDEPENDENT LU  X
        DLOGMOD=IBMRDB
```
VTAM APPLID for CICS

CICSAPl VBUILD TYPE=APPL 001001
** 001000
* CICS APPL DEFINITION FOR LU62 CLIENT/SERVER SUPPORT 001000
** 001000
CICSB APPL AUTH=(ACQ,SPO,PASS,VPACE), X
MODETAB=ISTINCLM, X
VPACING=0,EAS=100,PARSESS=YES, X
APPC=NO, X
SONSCIP=YES, X
ACBNAME=CICSB

VTAM APPLID for DB2

DSNV510 APPL APPC=YES, X0006012
AUTH=ACQ, X0007012
AUTOSES=1, X0008012
DMINWNL=1024, X0009012
DMINWNR=1024, X0009112
DSESLIM=2048, X0009212
EAS=65535, X0009312
MODETAB=ISTINCLM, X0009412
SECACPT=CONV, X0009512
SRBEXIT=YES, X0009612
VERIFY=NONE, X0009712
VPACING=1, X0009812
SYNCLVL=SYNCPT, X0009912
ATNLOSS=ALL 00100012

VTAM APPLID for PEM Support

MVSLU01 APPL ACBNAME=MVSLU01, X ACBNAME FOR APPC
APPC=YES, X
AUTOSES=0, X
DDRAINL=NALLOW, X
DLOGMOD=IBMRDB, X
DMINWNL=5, X
DMINWNR=5, X
DRESPL=NALLOW, X
DSESLIM=10, X
LMDENT=19, X
PARSESS=YES, X
SECACPT=CONV, X
SRBEXIT=YES, X
VPACING=1

DB2 BSDS DDF Record

The following example updates the BSDS with a location name of DB2510, LU name of DSNV510 for SNA access, a password of STARPASS, and a port of 446 for TCP/IP communications. The RESREPORT and PORT parameters are required only for TCP/IP access and can be omitted if using only SNA.

/*
//DSNTLOG EXEC PGM=DSNJU003,COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=DSN510.SDSNLOAD
//SYSUT1 DD DISP=OLD,DSN=DSN5CAT.BSDS01
//SYSUT2 DD DISP=OLD,DSN=DSN5CAT.BSDS02
//SYSPRINT DD SYSOUT=*
//SYSUDIMP DD SYSOUT=*
//SYSIN DD *
DDF LOCATION=DB2510, LUNAME=DSNV510, PASSWORD=STARPASS, RESREPORT=5020, PORT=446
/*
XCA for Token Ring Attached Router

XCAE40 VBUILD TYPE=XCA
XPE40R PORT CUADDR=E40, ADAPNO=1, SAPADDR=4, MEDIUM=RING, DELAY=0, TIMER=30
G02E40A GROUP DIAL=YES, CALL=INOUT, ANSWER=ON, ISTATUS=ACTIVE
*
K02T001S LINE
P02T001S PU
*
K02T002S LINE
P02T002S PU

Cisco IOS Software Configuration

cisco-bootflash:

source-bridge ring-group 100
!
!
interface TokenRing0/1
 mac-address 4000.1111.0501
 ip address 198.147.236.196 255.255.255.0
 no ip directed-broadcast
 no ip mrouting
 early-token-release
 ring-speed 16
 multiring all
!
interface Ethernet2/1
 mac-address 4000.0000.0501
 ip address 198.147.235.11 255.255.255.0
 no ip directed-broadcast
 no ip mrouting
!

sna svw cpname STARW.CTRCBOX
sna svw port TR0 TokenRing0/1
sna svw link BUDDY port TR0 rmac 4000.0200.0448
sna svw location STARW.DSNV510 owning-cp STARW.BUDDY
sna svw location STARW.CICSB owning-cp STARW.BUDDY
!
dbconn server DB2BUDD rdbname DB2510 rlu STARW.DSNV510 mode IBMRDB
dbconn tcpserver BUDDTCP port 446 rdbname DB2510 remote-ip-address 198.147.235.39 remote-port 446
dbconn pem DB2BUDD rlu MVSLU01 mode #INTER
!
txconn destination DESTBUDD rlu STARW.CICSB mode IBMRDB
txconn server CICSBUDD destination DESTBUDD port 1435
ip default-gateway 198.147.235.12
ip classless
CTRC Servers with IP Addresses, Routes, and Multi-Valued Destinations
Configuration Example (CICS)

Figure 9 shows a CTRC configuration that includes multiple CTRC servers, routes, default and non-default ports, and one multi-valued CTRC destination. This example illustrates the following CTRC configuration principles:

- One router can run multiple CTRC txconn servers.
- One txconn server can communicate with multiple logical destinations.
- One CTRC logical destination can correspond to multiple CICS destination systems.
- More than one txconn server can use a single port number, provided that each server listens on a different IP address.
- More than one txconn server can direct traffic to a single logical destination.

Figure 9 CTRC Configuration with IP Addresses, Routes, and Multiple CICS Destinations
In Figure 9, a single router is configured to run three CTRC servers for communication with CICS. These txconn servers are shown as CTRC server A, CTRC server C, and CTRC server D. Server A listens on the default port, 1435, for all of the router’s IP addresses. Server C listens on port 1436 for IP address 191.9.200.8. Server D listens on port 1436 for IP address 191.9.200.37.

Server A is configured to communicate with two logical destinations. If a client communication has the value of TEST for its transaction ID (TRANID), server A sends it to logical Destination B. This is a multi-valued destination that allows communication with two CICS systems, system B (with RLU B and mode B) and system X (with RLU X and mode X). CTRC allocates transactions to these two destination systems on a round-robin basis.

If a client communication for server A does not have a value of TEST for TRANID, server A sends it to Destination A, which corresponds to CICS system A (with RLU A and mode A).

Server C is also configured to communicate with two logical destinations. If server C receives a client communication that has the value of TEST2 for its transaction ID, server C sends it to logical Destination D, which corresponds to CICS system D (with RLU D and mode D). Server C sends client communications with other transaction IDs to logical Destination C (CICS system C, with RLU C and mode C). Server D is configured to send client communications to logical Destination D.
Overview

This section provides a brief introduction to the environments where the TN3270 server feature is used and describes some of the primary benefits and functions of the TN3270 server.

The following sections in this topic provide background information about the TN3270 Server:
Benefits

The TN3270 server provides the following benefits:

- Supports clients using the ASSOCIATE request.
- Maintains knowledge of printer and terminal relationships when an association is defined between LU resources.
- Enables clients to acquire a terminal LU and its associated printer without desktop configuration to specific LUs by grouping LUs in clusters.
- Enables you to capture response-time statistics for individual sessions and clients or for groups of sessions and clients.
- Supports specification of LU names for dynamic definition of dependent LUs (DDDLUs).
- Controls how keepalives are generated and keepalive responses are handled by the CMCC adapter.
- Prevents VTAM security problems when the UNBIND request is used with CICS.
- Supports deletion of LUs automatically on session termination.
- Supports Dynamic LU Naming.
- Supports Inverse DNS Nailing.
- Provides security through SSL Encryption.

TN3270 Server Environments

TN3270 communications in a TCP/IP network consist of the following basic elements:

- TN3270 client—Emulates a 3270 display device for communication with a mainframe application through a TN3270 server over an IP network. The client can support the standard TN3270 functions (as defined by RFC 1576) or the enhanced functionality provided by TN3270E (defined in RFC 2355). TN3270 clients are available on a variety of operating system platforms.
• TN3270 server—Converts the client TN3270 data stream to SNA 3270 and transfers the data to and from the mainframe.
• Mainframe—Provides the application for the TN3270 client and communicates with the TN3270 server using Virtual Telecommunications Access Method (VTAM).

The TN3270 server feature offers an attractive solution when the following conditions need to be supported in an SNA environment:
• Maintaining an IP backbone while providing support for SNA 3270-type clients.
• Offloading mainframe CPU cycles when using a TN3270 host TCP/IP stack with a TN3270 server.
• Providing support for high session density or high transactions per second.

The TN3270 server feature on a CMCC adapter card provides mapping between an SNA 3270 host and a TN3270 client connected to a TCP/IP network as shown in Figure 1. Functionally, it is useful to view the TN3270 server from two different perspectives:
• SNA Functions, page 3
• Telnet Server Functions, page 4

Figure 1

![TN3270 Implementation]

SNA Functions

From the perspective of an SNA 3270 host connected to the CMCC adapter, the TN3270 server is an SNA device that supports multiple PUs, with each PU supporting up to 255 logical units (LUs). The LU can be Type 1, 2, or 3. The SNA host is unaware of the existence of the TCP/IP extension on the implementation of these LUs.

The LUs implemented by the TN3270 server are dependent LUs. To route these dependent LU sessions to multiple VTAM hosts connected to the TN3270 server in the CMCC adapter card, rather than routing in the VTAM hosts, the TN3270 server implements a SNA session switch with end node (EN) dependent LU requester (DLUR) function. SNA session switching allows you to eliminate SNA subarea routing between hosts of TN3270 traffic by establishing Advanced Peer-to-Peer Networking (APPN) links with the primary LU hosts directly.

Using the DLUR function is optional so that the TN3270 server can be used with VTAM versions prior to version 4.2, which provide no APPN support. In these non-APPN environments, access to multiple hosts is accomplished using direct PU configuration in the TN3270 server.
Telnet Server Functions

From the perspective of a TN3270 client, the TN3270 server is a high-performance Telnet server that supports Telnet connections, negotiation and data format. The server on the CMCC adapter card supports Telnet connection negotiation and data format as specified in RFC 1576 (referred to as Traditional TN3270) and RFC 2355 (referred to as TN3270 Enhancements).

Unless the TN3270 server uses a Token Ring connection to a front-end processor (FEP), or other LLC connectivity to the mainframe host, it will require CSNA or CMPC support. For more information about configuring CSNA or CMPC support, see the “Configuring CSNA and CMPC” chapter in this publication.

TN3270 Server Architecture

The Cisco TN3270 server can be placed on a channel-attached router or a remote router. If the router is directly connected to the host, the TN3270 server resides on a CIP or CPA that is connected to the mainframe using Enterprise Systems Connection (ESCON) or bus-and-tag channel attachment.

Alternatively, you can use the TN3270 server on a remote router as an intermediate step toward using the CIP or CPA as a direct host connection. In this case, the TN3270 server resides on a router that is connected to the mainframe using a channel connection device, such as the FEP or a CIP or CPA.

The TN3270 server feature is implemented on the following CMCC adapters:

- CIP—Installed in a Cisco 7000 with RSP7000 or 7500 series router. Each CIP has up to two ESCON or two bus-and-tag (parallel) interfaces and a single virtual interface. The TN3270 server is installed on the virtual interface. Therefore, each CIP can have a single TN3270 server.
- CPA—ECPA or PCPA installed in a Cisco 7200 series router. Each CPA combines the function of an ESCON interface and a virtual interface on a single interface. As with the CIP, a single TN3270 server can be installed on each CPA.

Because a router can accommodate more than one CIP or CPA, each router can support multiple TN3270 servers.

Supported PU Types

The TN3270 server supports two types of PUs:

- Direct PUs—Used in subarea SNA
- DLUR PUs—Used with APPN

Direct PUs and DLUR PUs can coexist on the same CIP or CPA. Both types of PUs support either static or dynamic LUs. However, the LU type is defined only in VTAM and is not explicitly defined in the TN3270 server.

Direct PUs

The TN3270 server supports direct PUs when you want to configure a PU entity that has a direct link to a host. Direct PUs are used in non-APPN environments.

The definition of each direct PU within the router requires that you define a local service access point (SAP). Each PU on the TN3270 server must have a unique local/remote media access control (MAC)/SAP quadruple. If you want to connect PUs on the same adapter to the same remote MAC (RMAC) and remote SAP (RSAP), then you must configure each PU with a different link SAP (LSAP).
With direct PUs, the LU names in the TN3270 server do not necessarily match the LU names defined in VTAM. However, there are a couple of ways to accomplish matching LU names for direct PUs:

- **LU seed configuration**—To ensure that the LU seed configurations in the router and VTAM match for direct PUs, you need to define the value for the `lu-seed` parameter in the `pu` (TN3270) or `pu` (listen-point) command in the router, the same as the LUSEED value in the VTAM PU definition.

- **INCLUD0E function available as of VTAM version 4.4**—To allow the XCA to provide the LU name in the ACTLU message, use the INCLUD0E function. The TN3270 server then uses the LU name provided by the ACTLU.

DLUR PUs

When the SNA network uses APPN and the TN3270 server can reach multiple hosts, the DLUR function of the TN3270 server is recommended. Note that by using the DLUR function of the TN3270 server, all of the LUs in the server can be defined and owned by a controlling VTAM. When a client requests an application residing on a different VTAM host, the controlling VTAM will issue the request to the target host which will send a BIND directly to the client. All LU-LU data will then flow directly between the target host and the client without needing to go through the controlling VTAM.

DLUR allows the routing of TN3270 LUs to be performed in the CMCC adapter card using SNA session switching to multiple VTAM hosts rather than routing the sessions on the VTAM hosts. This feature is especially important with the multi-CPU CMOS mainframe, which comprises up to 16 CPUs that appear as separate VTAMs.

The implementation of TN3270 server LUs under DLUR also allows the server to learn about the LU names from VTAM in the ACTLU message, which greatly simplifies the configuration to support specifically requestable LUs such as printers.

Supported LU Types

The TN3270 server supports two types of LUs:

- **Static LUs**—Defined explicitly within VTAM. Allocation of static LUs requires a client to specify the PU and LU name. LU name requests are only supported by TN3270E clients.

- **Dynamic LUs**—Use the DDDLU feature of VTAM. Allocation of dynamic LUs requires a client to specify only a terminal type. LU name requests to be fulfilled by DDDLUs for PUs configured with the `generic-pool deny` command are supported.

The type of LU that is allocated is defined only in the VTAM switched major node. The TN3270 server does not specify the LU type.

LU Names in the TN3270 Server

Where SNA session switching is configured using DLUR PUs, the TN3270 server learns the LU names (static or dynamic) from VTAM in the ACTLU message. Direct PUs can also learn names from VTAM in the ACTLU message if the INCLUD0E parameter (available in VTAM version 4.4) is used in the switched major node definition.

However, for direct PUs, the TN3270 server can also specify a naming convention that it will use for any dynamic LUs that are allocated. For direct PUs a “seed” name can be configured on the PU in the TN3270 server configuration by using the `lu-seed` argument of the `pu` (TN3270) or `pu` (listen-point)
command. The LU seed name defines a prefix for the LU name. The TN3270 server uses the LU seed name in conjunction with the LOCADDR to generate the name by which the TN3270 server recognizes that LU. It is important to note that VTAM also generates LU names using its own LUSEED parameter. When using the \texttt{lu-seed} parameter in the TN3270 server configuration, it is best to use the same naming convention as the host to prevent situations where the LU name that the TN3270 server recognizes differs from the corresponding LU name assigned in VTAM.

Several factors determine how LUs are assigned and named. For more information about the different factors that influence LU naming, see the \textit{TN3270 Design and Implementation Guide} available on Cisco.com.

\section*{LU Allocation}

This section provides information about the following aspects of LU allocation:

\begin{itemize}
 \item Formation of LU Model Type and Number, page 6
 \item Static LU Allocation, page 7
 \item Dynamic LU Allocation, page 7
 \item Dynamic LU Naming, page 8
 \item LU Nailing, page 8
 \item Inverse DNS Nailing, page 9
 \item LU Pooling and ASSOCIATE Requests, page 9
 \item Pooled LU Allocation, page 12
\end{itemize}

\section*{Formation of LU Model Type and Number}

VTAM requires a model type and number in the Reply PSID NMVT from the TN3270 server to find an appropriate LU template in the LUGROUP major node. The model type is a four character string and the model number is a two or three character string.

The TN3270 server translates the following formats of terminal type string from a client:

\begin{itemize}
 \item IBM-<XXXX>-<Y>-E: Specifies “XXXX0Y” or “XXXX0YE” in the model type and number field of the Reply PSID NMVT.
 \item IBM-DYNAMIC: Specifies “DYNAMIC” in the model type and number field of the Reply PSID NMVT. The VTAM configuration also must have “DYNAMIC” defined as a template in the LUGROUP.
\end{itemize}

All other terminal strings that do not match the above syntax examples are forwarded as is to VTAM. For example, a string of “IBM-ZZ..Z,” where “ZZ..Z” does not match the preceding syntax, is forwarded as “ZZ..Z.”

In all cases, the string is translated from ASCII to EBCDIC and truncated at seven characters.

Clients that do not support TN3270E typically require a 3270 datastream on the System Services Control Point (SSCP)-LU flow. Clients that are TN3270E compliant typically use the SNA Character Set (SCS) on the SSCP-LU session. In order to accommodate these two classes of clients, the TN3270 server
Configuring the TN3270 Server

Directs them to different LUGROUP entries at the host. To make this as easy as possible, the SCS requirement is also encoded into the model string sent to the host. Following the previously described terminal type string formats accepted by the server, this additional condition is applied:

If the client has negotiated TN3270E support, the character “S” is overlaid on the fifth character of the string, or appended if the string is less than five characters as shown in Table 1.

<table>
<thead>
<tr>
<th>String from Client (ASCII)</th>
<th>BIND-IMAGE Requested?</th>
<th>String to Host (EBCDIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM-3278-4</td>
<td>No</td>
<td>327804</td>
</tr>
<tr>
<td>IBM-3279-5E</td>
<td>No</td>
<td>327905E</td>
</tr>
<tr>
<td>IBM-3279-3-E</td>
<td>Yes</td>
<td>327955E</td>
</tr>
<tr>
<td>IBM-DYNAMIC</td>
<td>Yes</td>
<td>DYNASIC</td>
</tr>
<tr>
<td>ABC</td>
<td>Yes</td>
<td>ABCS</td>
</tr>
<tr>
<td>ABCDEFGH</td>
<td>Yes</td>
<td>ABCDSFG</td>
</tr>
</tbody>
</table>

Static LU Allocation

A TN3270E client can request a specific LU name by using the TN3270E command CONNECT as documented in RFC 2355. The name requested must match the name by which the TN3270 server knows the LU and the host must have activated the LU with an ACTLU.

TN3270 clients can also use static LUs if client nailing is configured on the TN3270 server.

Dynamic LU Allocation

Dynamic LU allocation, using VTAM’s DDDLU feature, is the most common form of request from TN3270 clients emulating a TN3270 terminal. The user typically requests connection as a particular terminal type and normally is not interested in what LOCADDR or LU name is allocated by the host, as long as a network solicitor logon menu is presented. In fact, only TN3270E clients can request specific LUs by name.

The TN3270 server performs the following functions with this type of session request:

- Forms an EBCDIC string based on the model type and number requested by the client (see the “Formation of LU Model Type and Number” section on page 6 for information about the algorithm used). This string is used as a field in a Reply product set ID (PSID) network management vector transport (NMVT).
- Allocates a LOCADDR from the next available LU in the generic LU pool. This LOCADDR is used in the NMVT.
- Sends the formatted Reply PSID NMVT to VTAM.

To support DDDLU, the PUs used by the TN3270 server have to be defined in VTAM with LUSEED and LUGROUP parameters. When VTAM receives the NMVT it uses the EBCDIC model type and number string to look up an LU template under the LUGROUP. For example, the string “327802E” finds a match in the sample VTAM configuration shown in Figure 5 in the “VTAM Host Configuration Considerations” section on page 18. An ACTLU is sent and a terminal session with the model and type requested by the client is established.
LU name requests to be fulfilled by DDDLUs for PUs configured with the `generic-pool deny` command are supported.

For more information about defining the LUSEED and LUGROUP parameters in VTAM, see the “VTAM Host Configuration Considerations” section on page 18.

Dynamic LU Naming

The Dynamic LU Naming enhancement allows the user to configure named logical units (LUs) from the TN3270 server side. This enhancement allows the TN3270 server to pass an LU name to the Virtual Telecommunications Access Method (VTAM) software running on the mainframe and have VTAM dynamically create an LU with that name. The LU name is then sent to the mainframe as part of subvector 86 in the Reply PSID NMVT power-on frame. The TN3270 client can connect to any of the available TN3270 servers and the selected server can request a specific LU name for the client. In addition, the LU naming conventions have been modified to allow for more flexibility when specifying lu-seed names.

LU Nailing

The TN3270 server allows a client IP address to be mapped or “nailed” to one or more LU local addresses on one or more physical units (PUs) by means of router configuration commands. LU nailing allows you to control the relationship between the TN3270 client and the LU.

Using LU nailing, clients from traditional TN3270 (non-TN3270E) devices can connect to specific LUs, which overcomes a limitation of TN3270 devices that cannot specify a “CONNECT LU.” LU nailing is useful for TN3270E clients because it provides central control of your configuration at the router rather than at the client.

The “model matching” feature of Cisco’s TN3270 server is designed for efficient use of dynamic LUs. Each TN3270E client specifies a terminal model type at connection. When a non-nailed client connects and does not request a specific LU, the LU allocation algorithm attempts to allocate an LU that operated with that terminal model the last time it was used. If no such model is available, the next choice is an LU that has not been used since the PU was last activated. Failing that, any available LU is used; however, for dynamic LUs only, there is a short delay in connecting the session.

When a client or set of clients is nailed to a set of more than one LU, the same logic applies. If the configured LU nailing maps a screen client to a set of LUs, the LU nailing algorithm attempts to match the client to a previously used LU that was most recently used with the same terminal model type as requested by the client for this connection. If a match is found, then that LU is used. If a match is not found, any LU in the set that is not currently in use is chosen. If there is no available LU in the set, the connection is rejected.

For example, the following LUs are nailed to clients at address 192.195.80.40, and LUs BAGE1004 and BAGE1005, which were connected but are now disconnected.

<table>
<thead>
<tr>
<th>lu</th>
<th>name</th>
<th>client-ip:tcp</th>
<th>nail state</th>
<th>model</th>
<th>frames in</th>
<th>out</th>
<th>idle for</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BAGE1001</td>
<td>192.195.80.40:3822</td>
<td>Y P-BIND</td>
<td>327904E</td>
<td>4</td>
<td>4</td>
<td>0:22:35</td>
</tr>
<tr>
<td>2</td>
<td>BAGE1002</td>
<td>192.195.80.40:3867</td>
<td>Y ACT/SESS</td>
<td>327904E</td>
<td>8</td>
<td>7</td>
<td>0:21:20</td>
</tr>
<tr>
<td>3</td>
<td>BAGE1003</td>
<td>192.195.80.40:3981</td>
<td>Y ACT/SESS</td>
<td>327803E</td>
<td>13</td>
<td>14</td>
<td>0:10:13</td>
</tr>
<tr>
<td>4</td>
<td>BAGE1004</td>
<td>192.195.80.40:3991</td>
<td>Y ACT/NA</td>
<td>327803E</td>
<td>8</td>
<td>9</td>
<td>0:0:7</td>
</tr>
<tr>
<td>5</td>
<td>BAGE1005</td>
<td>192.195.80.40:3997</td>
<td>Y ACT/NA</td>
<td>327805</td>
<td>8</td>
<td>9</td>
<td>0:7:8</td>
</tr>
</tbody>
</table>

If a client at IP address 192.195.80.40 requests a terminal model of type IBM-3278-5, LU BAGE1005 will be selected over BAGE1004.

<table>
<thead>
<tr>
<th>lu</th>
<th>name</th>
<th>client-ip:tcp</th>
<th>nail state</th>
<th>model</th>
<th>frames in</th>
<th>out</th>
<th>idle for</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BAGE1001</td>
<td>192.195.80.40:3822</td>
<td>Y P-BIND</td>
<td>327904E</td>
<td>4</td>
<td>4</td>
<td>0:23:29</td>
</tr>
<tr>
<td>2</td>
<td>BAGE1002</td>
<td>192.195.80.40:3867</td>
<td>Y ACT/SESS</td>
<td>327904E</td>
<td>8</td>
<td>7</td>
<td>0:22:14</td>
</tr>
</tbody>
</table>
Inverse DNS Nailing

The Inverse DNS Nailing enhancement enables the TN3270 server to nail a pool of LUs to client machine names or to an entire domain. This enhancement allows dynamic IP addressing on the TN3270 client machines. This addressing is used in network design scenarios (for example, a Dynamic Host Configuration Protocol [DHCP] environment) and in individual network configuration scenarios (for example, a machine is moved and needs a new network address).

The Cisco IOS software inverse nailing support uses the DNS in routers to look up the symbolic name associated with a client IP address. The TN3270 server uses this symbolic name to assign a predefined LU pool for the user. This eliminates the need for nailed TN3270 clients to have statically defined IP addresses. If you configure inverse DNS nailing on the TN3270 server, you do not need to modify the DNS nailing statements in the router configuration.

LU Pooling and ASSOCIATE Requests

The TN3270 server enhancements introduced in Cisco IOS Release 12.0(5)T add support for the ASSOCIATE request through LU pooling. The LU pooling feature enables the TN3270 server to identify the relationships between screen and printer LUs.

The LU pool configuration is an option to the LU nailing feature that allows clients to be nailed to LUs. The LU pooling feature allows you to configure clients in the router and nail clients into groups of LUs. These groups of LUs are called clusters. Each cluster is given a unique pool name. An LU pool consists of one or more LU clusters that are related to each other. This allows logically related clients to connect to LUs that have the same logical relationship with the host. A cluster can contain screen LUs and their associated printer LUs. The pool name can be used instead of a device name on a CONNECT request. LU nailing is supported for LU pools.

The pool name can be used instead of a device name on a CONNECT request. The pool name must be eight characters or less in length and must comply with VTAM naming rules, which allow the following characters (alphabetic characters are not case sensitive):

- 1st character—Alphabetic (A-Z) and national characters ‘@’, ‘#’, and ‘$’
- 2nd-8th characters—Alphabetic (A-Z), numeric (0-9), and national characters ‘@’, ‘#’, and ‘$’

These naming rules are enforced by the TN3270 server when configuring a pool name and when processing the name received on a CONNECT request from the client. The TN3270 server rejects an invalid name and truncates the name received in the CONNECT request from the client to eight characters or at an invalid character (whichever comes first) when processing the CONNECT request.
Support for the ASSOCIATE request enables you to define a partner printer in the TN3270 server for a given terminal LU pool or single terminal. As a result, the TN3270 server maintains a knowledge of printer and terminal relationships. The client does not need to know the LU name of the partner printer in advance. Typically, a client can request a pool name, a specific LU, or a resource without citing a pool name or LU name.

If the client sends an ASSOCIATE request for a resource name to the TN3270 server, the server provides the client with a resource LU name.
In Figure 3, the client requests an LU from *unixpool* and is granted an LU from the specified pool. The client then initiates a new process by requesting the printer device associated with the given resource LU name.

The client requests a printer LU associated with *termabc* and the server grants the printer LU associated with *termabc*. Based on the configuration in the router that specifies the clusters of printer and screen LUs for pools, the TN3270 server assigns and allows the client to use the printer LU associated with its terminal LU.

Figure 3 **Client Request for LU from a Specific Pool and Printer LU Association**

![Diagram](image)

Figure 4 shows the client request for a specific LU *termxyz* and then a request for a printer LU associated with the LU *termxyz*. The TN3270 server grants the screen LU and connects the printer associated with *termxyz*.
Configuring the TN3270 Server

Benefits

Figure 4 Client Request for a Specific LU and Printer LU Association

Pooled LU Allocation

When configured, the pool becomes one of several criteria used by the TN3270 server to assign an LU to a client. When a client requests a connection, the TN3270 server determines the authorized capabilities of the client. For example, the TN3270 server attempts to determine whether LU nailing definitions exist for the client.

When the client criteria is processed, the TN3270 server assigns the first available LU in the group to the client. If an appropriate LU is not found, the TN3270 connection is closed.

Screen and printer LUs for a cluster in a pool are allocated according to the following connection scenarios in the TN3270 server:

- The first client with an IP address that is nailed to a pool connects to the TN3270 server—A cluster is reserved for that client IP address. The first appropriate LU in the cluster that satisfies the client connection request is assigned.

- A client, with the same nailed IP address as a currently connected client, connects to the TN3270 server.
 - Depending on the type of LU requested by the client (screen or printer LU), the first available screen or printer LU within a cluster that is reserved for that nailed IP address is allocated.
 - If there is not an available screen or printer LU in an assigned cluster for the client connection, a new cluster is reserved for clients with that IP address. Then, the first appropriate LU in the cluster that satisfies the client connection request is assigned.
• A client, with a new IP address that is nailed to the same pool as other clients, connects to the TN3270 server—The next available cluster is reserved for that client IP address.

• A client requests a specific pool when connecting to the TN3270 server, but the client IP address is not nailed to the pool—The first available LU in the generic pool is allocated to the client.

For a detailed example of these LU allocation scenarios for a TN3270 server configuration using LU pooling, see the “LU Pooling Configuration Example” section on page 65.

Session Termination

The TN3270 server supports two configuration options that determine how the server responds when a client turns off the device or disconnects:

• LU Termination, page 13
• LU Deletion, page 13

LU Termination

In Cisco IOS Release 12.0(5)T and later, the TN3270 server supports LU termination options for sending either an UNBIND or a TERMSELF RU when a client turns off the device or disconnects from the server.

The termself keyword for the lu termination command orders termination of all sessions and session requests associated with an LU when a user turns off the device or disconnects from the server. This is an important feature for applications such as IBM’s Customer Information Control System (CICS).

If you use an UNBIND request for session termination with CICS, Virtual Telecommunication Access Method (VTAM) security problems can arise. When CICS terminates a session from an UNBIND request, the application may reestablish a previous user’s session with a new user, who is now assigned to the same freed LU.

LU Deletion

In Cisco IOS Release 12.0(5)T and later, the TN3270 server adds support for LU deletion options.

The lu deletion command specifies whether the TN3270 server sends a REPLY-PSID poweroff request to VTAM when a client disconnects. This command is recommended in host environments running VTAM version 4.4.1. Previous versions of VTAM are not compatible with Network Management Vector Transport (NMVT) REPLY-PSID.

Session Termination Scenarios

Sessions are terminated in the following conditions:

• The client logs off the LU-LU session and the LU is configured to disconnect on UNBIND.
• The client disconnects at the TCP layer.
• The client is idle too long or will not respond to a DO TIMING MARK message.
Any of the above conditions cause the server to do one of the following, depending upon how the \textit{lu termination} command is configured:

- \textbf{Unbind} is configured—The TN3270 server sends an UNBIND followed by a NOTIFY (Secondary LU (SLU) DISABLED) message to the host. If the \textbf{lu deletion} command is configured to send a REPLY-PSID poweroff request, then the TN3270 server sends the request upon receipt of the NOTIFY response from the host.

- \textbf{Termself} is configured—The TN3270 server sends a NOTIFY (SLU DISABLED) to the host. Upon receipt of the NOTIFY response from the host, the TN3270 server sends a TERMSELF request to the host. If the \textbf{lu deletion} command is configured to send a REPLY-PSID poweroff request, then the TN3270 server sends the request upon receipt of the TERMSELF response.

\textbf{Response-Time Collection}

Response-time MIB support enables you to capture response-time statistics on the router for either individual sessions and clients or for groups of sessions and clients.

If SNMP is enabled on the router, a network management system (NMS) or users can use well-known and router-configured client group names to obtain response-time statistics. Response-time data collection is always enabled for all in-session clients, excluding printer clients. \textbf{Table 2} shows the types of client groups that are monitored:

\begin{table}[h]
\centering
\begin{tabular}{|l|p{0.7\textwidth}|l|}
\hline
\textbf{Client Group Type} & \textbf{Description} & \textbf{Client Group Name} \\
\hline
Client Subnet & All clients belonging to one or more IP subnets, where the IP subnets and client group name are configured on the router. & User defined \\
\hline
Other & All clients not belonging to an IP subnet configured for a Client Subnet-type group. & CLIENT SUBNET OTHER \\
\hline
Global & All in-session clients. & CLIENT GLOBAL \\
\hline
Application & All clients in session with a specific VTAM APPL ID. & APPL VTAM-\textit{//application-name} \\
\hline
Host Link & All clients using a specific host link in use by a PU configured on the router. & DIRECT LINK \textit{pu-name} \\
& & DLUR LINK \textit{link-name} \\
\hline
Listen Point & All clients connected to a specific listen point configured on the router. & LP \textit{ip-address: tcp-port} \\
\hline
\end{tabular}
\caption{Client Group Types and Names}
\end{table}

The names and IP subnets for the “client subnet” type of response-time group are user-defined. All other client groups are established dynamically by the TN3270 server as clients enter and exit applications. These client groups are named according to the format shown in the column labeled Client Group Name in \textbf{Table 1}.

In Cisco IOS Release 12.2, traps are not generated by the MIB.

Response-time data is collected using the following methods:

- \textbf{Sliding-Window Average Response Times}, page 15
- \textbf{Response-Time Buckets}, page 15
Sliding-Window Average Response Times

The sliding-window response-time method uses a moving average. It reflects the most recent response time and discounts the old response times. When there is no activity, this method preserves the old response times. The algorithm used for the sliding-window method is similar to the moving-average method. For detailed information about sliding-window average times, refer to the TN3270E-RT-MIB.

Response-Time Buckets

Response-time buckets contain counts of transactions with total response times that fall into a set of specified ranges. Response-time data gathered into a set of five buckets is suitable for verifying service-level agreements or for identifying performance problems through a network management application. The total response times collected in the buckets is governed by whether IP network transit times are included in the totals.

In Figure 5, four bucket boundaries are specified for a response-time collection, which results in five buckets.

Figure 5 Response-Time Boundaries

The first response-time bucket counts transactions with total response times that are less than or equal to boundary 1 (B-1), the second bucket counts transactions with response times greater than B-1 but less than or equal to B-2, and so on. The fifth bucket is unbounded, and it counts all transactions with response times greater than boundary 4.

The four bucket boundaries have default values of 1 second, 2 seconds, 5 seconds, and 10 seconds, respectively.

For a detailed explanation of response-time buckets, refer to the TN3270E-RT-MIB.

SSL Encryption Support

The SSL Encryption Support enhancement allows TN3270 clients and servers to negotiate authentication and encryption schemes using the Secure Socket Layer (SSL) technology. The TN3270 server uses SSL version 3.0 to establish secure sessions.
Preparing to Configure the TN3270 Server

Read the following sections to find important information that is useful to know before you configure the TN3270 server:

- Hardware and Software Requirements, page 16
- Design Considerations, page 18
- Configuring Host Connections, page 18
- VTAM Host Configuration Considerations, page 18
- TN3270 Server Configuration Modes, page 21

Hardware and Software Requirements

This section provides the following information about the hardware and software required to use the TN3270 server:

- Router Requirements, page 16
- Mainframe Requirements, page 17
- TN3270 Client Requirements, page 18

Router Requirements

The Cisco TN3270 server consists of a system image and a microcode image, which are virtually bundled as one combined image.

The following versions of hardware microcode are supported for the CIP and CPA in Cisco IOS Release 12.1:

- CIP hardware microcode—CIP27-2 and later
- CPA hardware microcode—XCPA27-2 and later

The following versions of hardware microcode are supported for the TN3270 Server Connectivity Enhancements feature on the CIP and CPA in Cisco IOS Release 12.1(5)T:

- CIP hardware microcode—CIP28-1 and later
- CPA hardware microcode—XCPA28-1 and later

To enable the TN3270 server feature, you must have a CMCC adapter installed in a Cisco 7000 with RSP7000, Cisco 7200 series router, or a Cisco 7500 series router.

For additional information about what is supported in the various releases of the Cisco IOS software and the CIP microcode, see the information on Cisco.com.

Inverse DNS Nailing

To use inverse DNS Nailing on the TN3270 server, you must specify which DNS servers are required to resolve the TN3270 server client IP addresses. To specify the DNS servers, use the following commands:

- ip domain-lookup
- ip domain-name
- ip name-server
SSL Encryption

To use TN3270 server SSL encryption, you must be running an IOS image with IPSec support. The strength of the SSL encryption support on the TN3270 server is determined by the strength of the IPSec image.

A server digital certificate loaded on the TN3270 router is also required.

Mainframe Requirements

Mainframe hosts using SNA with the TN3270 server must be running VTAM V4R2 or later.

⚠️ Note ⚠️

You can use VTAM V3R4, but DLUR operation is not supported in V3R4 and proper DDDLUA operation may require program temporary fixes (PTFs) to be applied to VTAM.

Dynamic LU Naming

The TN3270 server creates and deletes LUs dynamically on VTAM by sending Reply PSID poweron and Reply PSID poweroff messages when the named LU is connected and disconnected. To properly delete the dynamically created LUs, VTAM requires the following APARS:

- OW41274
- OW41686
- OW40315

You must replace the default exit ISTEXCSD with the VTAM User Exit for TN3270 Name Pushing, which you can download from the IBM website: http://www.ibm.com. This exit causes VTAM to ignore the LUSEED parameter on the PU statement, and instead use the SLU name sent by the router in the subvector 86 when a client connects in. If you do not configure this exit, VTAM ignores the subvector 86 and the specified LU name.

- If you specify the LUSEED operand for the PU definition in VTAM, and the subvector 86 specifies an LU name, the VTAM User Exit for TN3270 Name Pushing ignores the LUSEED operand.
- If you do not specify the LUSEED operand for the PU definition in VTAM, and the subvector 86 is not present, then the VTAM User Exit for TN3270 Name Pushing cannot generate an LU name. VTAM does not log this failure, and the TN3270 server does not receive the ACTLU request. The TN3270 server displays the following message:

 *Apr 17 12:40:53:%CIP2-3-MSG:slot2 :%TN3270S-3-NO_DYN_ACTLU_REQ_RCVD
 No ACTLU REQ received on LU JJDL1.6

Inverse DNS Nailing

If there are legacy and inverse DNS nailing statements, the inverse DNS nailing statements take precedence. The TN3270 server attempts an inverse DNS lookup before it checks for any legacy nailing configuration.

Cisco strongly recommends that you configure inverse DNS nailing on a PU that does not support generic LUs, or on a PU that has the generic-pool command configured but also has the deny keyword specified.
TN3270 Client Requirements

Based on the RFC standards, the Cisco TN3270 server supports any client that implements the TN3270 or TN3270E protocols.

Design Considerations

The number of sessions that a single TN3270 server can handle is directly related to the number of transactions per second and the amount of memory available to the CIP or CPA. There are other issues to be considered depending upon the environment that you want to support with the TN3270 server.

For comprehensive information about VTAM and router configuration issues and implementing specific TN3270 server scenarios, refer to the *TN3270 Design and Implementation Guide*.

Handling Large Configurations

The maximum size nonvolatile random-access memory (NVRAM) for the Cisco 7000, Cisco 7200, and Cisco 7500 series routers is 128 KB. The maximum number of nailing commands (commands that map IP addresses to LUs) that can be stored in a 128 KB NVRAM is approximately 4000. However, large configurations may contain as many as 10,000 nailing commands.

To maintain a configuration file that exceeds 128 KB there are two alternatives:

- Store the configuration file compressed in NVRAM.
- Store the configuration file in Flash memory (either internal Flash or on a PCMCIA card).

For more information about maintaining configuration files, refer to the *Cisco IOS Configuration Fundamentals Configuration Guide*. For information about router hardware and memory, refer to the hardware configuration guide for your Cisco router series.

Configuring Host Connections

Before configuring the TN3270 server, host connectivity must be configured using one of the following methods:

- Configuring CMPC support
- Configuring CSNA support
- Configuring Token Ring attachment to an FEP

For information about configuring CMPC or CSNA, see the “Configuring CSNA and CMPC” chapter in this publication.

VTAM Host Configuration Considerations

Other non-Cisco implementations of TN3270 support depend on predefined, static pools of LUs to support different terminal types requested by the TN3270 clients. The Cisco TN3270 server implementation on the CMCC adapter removes the static nature of these configurations by using a VTAM release 3.4 feature called DDDLU. DDDLU dynamically requests LUs using the terminal type provided by TN3270 clients. The dynamic request eliminates the need to define any LU configuration in the server to support TN3270 clients emulating a generic TN3270 terminal.
To support DDLLU, the PUs used by the TN3270 server have to be defined in VTAM with LUSEED and LUGROUP parameters, as shown in the following sample configuration:

Example VTAM host values defining LUSEED and LUGROUP name parameters:

```
TN3270PU PU
   .
   * Defines other PU parameters
   IDBLK=05D,
   IDNUM=30001,
   LUSEED=TN3X1###,
   * Defines the seed component of
   the LU names created by DDLLU
   (e.g. LOCADDR 42 will have the
   name TN3X1042)
   LUGROUP=AGROUP
   *
   TN3X1100 LU
   LOCADDR=100,
   * Defines a terminal which
   MODETAB=AMODETAB
   requires a specific LU name
   *
   TN3X1101 LU
   LOCADDR=101,
   DLOGMODE=M3287CS
   * Defines a printer which requires
   a specific LU name
```

Example VTAM host values defining LUGROUP name, AGROUP:

```
AGROUP LUGROUP
   *
   TN3X1100 LU
   LOCADDR=100,
   USSTAB=USSXXX,
   LOGAPPL=TPXP001,
   DLOGMOD=SNX32702,
   * Defines template to support IBM
   SSCPFM=USS3270
   327802E LU
   USSTAB=USSXXX,
   LOGAPPL=TPXP001,
   DLOGMOD=SNX32702,
   * Defines template to support IBM
   SSCPFM=USS3270
   3278S2E LU
   USSTAB=USSYYY,
   LOGAPPL=TPXP001,
   DLOGMOD=SNX32702,
   * Defines template to support IBM
   SSCPFM=USSSCS
   327805 LU
   USSTAB=USSXXX,
   LOGAPPL=TPXP001,
   DLOGMOD=D4C32785,
   * Defines template to support IBM
   SSCPFM=USS3270
   8 LU
   USSTAB=USSXXX,
   LOGAPPL=TPXP001,
   DLOGMOD=D4A32772,
   * Defines the default template to
   SSCPFM=USS3270
   match any other terminal types
```

With the configuration shown above defined in the host, the ACTPU sent by VTAM for the PU TN3270PU will have the “Unsolicited NMVT Support” set in the SSCP capabilities control vector. This allows the PU to dynamically allocate LUs by sending network management vector transport (NMVT) with a “Reply Product Set ID” control vector.

After the TN3270 server sends a positive response to the ACTPU, it will wait for VTAM to send ACTLUs for all specifically defined LUs. In the sample configuration shown in Figure 5, ACTLUs will be sent for TN3X1100 and TN3X1101. The server sends a positive response and sets SLU DISABLED. The LOCADDRs of the TN3X1100 and TN3X1101 LUs are put into the specific LU cache and reserved for specific LU name requests only.
To allow sufficient time for the VTAM host to send all the ACTLUs, a 30-second timer is started and restarted when an ACTLU is received. When the timer expires it is assumed that all ACTLUs defined in VTAM for the PU have been sent. All LUs that have not been activated are available in a generic LU pool to be used for DDDLU unless they have been reserved by the configuration using the `generic-pool deny` TN3270 configuration command.

After the VTAM activation, the server can support session requests from clients using dynamic or specific LU allocation.

For more information about DDDLU in VTAM, refer to the VTAM operating system manuals for your host system under the descriptions for LUGROUP.

Note

If your host computer is customized for a character set other than U.S. English EBCDIC, you might need to code some VTAM configuration tables differently than indicated in the examples provided by Cisco.

Some VTAM configurations include the number sign (#) and at symbol (@). In the U.S. English EBCDIC character set, these characters are stored as the hexadecimal values 7B and 7C, respectively. VTAM will look for those hexadecimal values when processing the configuration file.

The characters used to enter these values are different in other EBCDIC National Language character sets. Table 3 lists the languages that have different characters for the 7B and 7C hexadecimal values and the corresponding symbols used to enter the characters.

For example, a parameter with a value of TN3X1### would have a value of TN3X1£££ for the French National Language character set.

Table 3 International Character Sets for Hexadecimal Values

<table>
<thead>
<tr>
<th>Hexadecimal Value</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>Symbol</td>
<td>7B</td>
<td>Symbol</td>
</tr>
<tr>
<td>German</td>
<td>#</td>
<td>Number sign</td>
<td>§</td>
</tr>
<tr>
<td>German (alternate)</td>
<td>À</td>
<td>A-dieresis</td>
<td>Ö</td>
</tr>
<tr>
<td>Belgian</td>
<td>#</td>
<td>Number sign</td>
<td>à</td>
</tr>
<tr>
<td>Brazilian</td>
<td>Ö</td>
<td>O-tild</td>
<td>Ä</td>
</tr>
<tr>
<td>Danish/Norwegian</td>
<td>ÅE</td>
<td>AE-ligature</td>
<td>Ø</td>
</tr>
<tr>
<td>English (U.S./UK)</td>
<td>#</td>
<td>Number sign</td>
<td>@</td>
</tr>
<tr>
<td>Finnish/Swedish</td>
<td>À</td>
<td>A-dieresis</td>
<td>Ö</td>
</tr>
<tr>
<td>French</td>
<td>£</td>
<td>Pound sterling</td>
<td>à</td>
</tr>
<tr>
<td>Greek</td>
<td>£</td>
<td>Pound sterling</td>
<td>§</td>
</tr>
<tr>
<td>Icelandic</td>
<td>#</td>
<td>Number sign</td>
<td>D</td>
</tr>
<tr>
<td>Italian</td>
<td>£</td>
<td>Pound sterling</td>
<td>§</td>
</tr>
<tr>
<td>Portuguese</td>
<td>Ö</td>
<td>O-tild</td>
<td>Â</td>
</tr>
<tr>
<td>Spanish</td>
<td>N</td>
<td>N-tild</td>
<td>@</td>
</tr>
<tr>
<td>Turkish</td>
<td>Ö</td>
<td>O-dieresis</td>
<td>S</td>
</tr>
</tbody>
</table>
TN3270 Server Configuration Modes

Figure 6 shows the TN3270 configuration modes that are supported in Cisco IOS Release 12.2 and which are described in the following sections of this topic:

- TN3270 Server Configuration Mode, page 23
- Listen-Point Configuration Mode, page 23
- Listen-Point PU Configuration Mode, page 23
- DLUR Configuration Mode, page 23
- DLUR PU Configuration Mode, page 24
- DLUR SAP Configuration Mode, page 24
- Response-Time Configuration Mode, page 24
- PU Configuration Mode, page 24
- Security Configuration Mode, page 25
- Profile Configuration Mode, page 25

The TN3270 server can be configured only on the virtual interface of a CMCC adapter. Some configuration commands create entities on the CMCC adapter. For most of these commands, the command changes to the mode associated with that entity (for example, a PU).

When preparing to configure the TN3270 server it is important to understand how to access and move between these different configuration modes. See the “Moving Between Configuration Modes” section on page 25 for more information.
The DLUR, DLUR SAP, DLUR PU and PU configuration modes existed in Cisco IOS Release 12.0(5)T and earlier. DLUR PU and PU configuration modes (shown in the shaded boxes) are legacy configuration modes, whose functions can be replaced by the listen-point configuration modes in Cisco IOS Release 12.0(5)T and later. For more information about the relationship of these legacy configuration modes to the new listen-point configuration modes, see the “Configuring the TN3270 Server with LU Pooling” section on page 41.
TN3270 Server Configuration Mode

From interface configuration mode, the following `tn3270-server` command puts you in TN3270 server configuration mode:

```
router(config-if)# tn3270-server
```

The following prompt appears:

```
(cfg-tn3270)#
```

Note
For the CIP, enter interface configuration mode from the virtual channel interface using port 2; For the CPA, enter interface configuration mode from the physical channel interface using port 0.

Listen-Point Configuration Mode

From the TN3270 server configuration mode, the following `listen-point` command puts you in listen-point configuration mode:

```
router(cfg-tn3270)# listen-point ip-address [tcp-port [number]]
```

The following prompt appears:

```
(tn3270-lpoint)#
```

Listen-Point PU Configuration Mode

From listen-point configuration mode, you can create direct PUs and DLUR PUs:

- From the listen-point configuration mode, the following `pu` (listen-point) command creates a new direct PU:

```
router#(tn3270-lpoint)# pu pu-name idblk-idnum type adapno lsap [rmac rmac] [rsap rsap] [lu-seed lu-name-stem]
```

The `pu` (listen-point) command puts you in listen-point PU configuration mode and the following prompt appears:

```
(tn3270-lpoint-pu)#
```

- From listen-point configuration mode, the following `pu dlur` command creates a new PU for DLUR:

```
router#(tn3270-lpoint)# pu pu-name idblk-idnum dlur
```

The `pu dlur` command puts you in the listen-point PU configuration mode and the following prompt appears:

```
(tn3270-lpoint-pu)#
```

DLUR Configuration Mode

From TN3270 server configuration mode, the following `dlur` command puts you in DLUR configuration mode:

```
router(cfg-tn3270)# dlur fq-cpname fq-dlusname
```

The following prompt appears:

```
(tn3270-dlur)#
```
DLUR PU Configuration Mode

Note

DLUR PU configuration mode is a legacy configuration mode whose function to define DLUR PUs can be replaced by using the listen-point configuration modes in Cisco IOS Release 12.0(5)T and later. When you define listen-point configurations, you can create DLUR PUs within listen-point PU configuration mode using the `pu dlur` command instead.

From DLUR configuration mode, the following `pu` (DLUR) command creates a new PU for DLUR:

```
router(tn3270-dlur)# pu pu-name idblk-idnum ip-address
```

The `pu` (DLUR) command puts you in the DLUR PU configuration mode and the following prompt appears:

```
(tn3270-dlur-pu)#
```

DLUR SAP Configuration Mode

From DLUR server configuration mode, the following `lsap` command puts you in DLUR SAP configuration mode:

```
router(tn3270-dlur)# lsap type adapno [lsap]
```

The following prompt appears:

```
(tn3270-dlur-lsap)#
```

Response-Time Configuration Mode

From TN3270 server configuration mode, the following `response-time group` command puts you in response-time configuration mode:

```
router(cfg-tn3270)# response-time group name [bucket boundaries t1 t2 t3 t4...] [multiplier m]
```

The following prompt appears:

```
(tn3270-resp-time)#
```

PU Configuration Mode

Note

PU configuration mode is a legacy configuration mode whose function to define direct PUs can be replaced by using the listen-point configuration modes in Cisco IOS Release 12.0(5)T and later. When you define listen-point configurations, you can create direct PUs within listen-point PU configuration mode using the `pu` (listen-point) command instead.

From TN3270 server configuration mode, the following `pu` (TN3270) command creates a new direct PU:

```
router(cfg-tn3270)# pu pu-name idblk-idnum ip-address type adapno lsap [rmac rmac] [rsap [lu-seed lu-name-stem]
```

The `pu` (TN3270) command puts you in PU configuration mode and the following prompt appears:

```
(tn3270-pu)#
```
Security Configuration Mode

From the TN3270 server configuration mode, the following **security** command puts you in security configuration mode:

```
router(cfg-tn3270)# security
```

The following prompt appears:

```
(tn3270-security)#
```

Profile Configuration Mode

From security configuration mode, the following **profile** command puts you in profile configuration mode:

```
router(cfg-tn3270)# profile profilename {ssl | none}
```

The following prompt appears:

```
(tn3270-sec-profile)#
```

Moving Between Configuration Modes

In general, the parameters within a configuration mode can be grouped into two categories:

- Parameters to identify the specific instance of the entity (for example, a PU name).
- Parameters to set operating options.

To return to a mode later in the configuration process, use the same configuration command but specify only the first set of identification parameters. The following examples show how to create, access, and remove different TN3270 entities in their associated configuration modes.

Working with a Listen-Point Direct PU

The following example shows how to create, access, and remove a listen-point PU entity:

1. To create a listen-point direct PU entity called PU1 and enter listen-point PU configuration mode from listen-point configuration mode, use the **pu** (listen-point) command as shown in the following example:

```
router(tn3270-lpoint)# pu PU1 94201231 tok 1 10
```

2. To return later to the listen-point PU configuration mode for the PU1 entity, use the same **pu** (listen-point) command without the “94201231 tok 1 10” parameters from listen-point configuration mode:

```
router(tn3270-lpoint)# pu PU1
```

3. To remove the listen-point PU entity called PU1, use the same command with the **no** keyword:

```
router(tn3270-lpoint)# no pu PU1
```

Working with a Listen-Point DLUR PU

The following example shows how to create, access, and remove a listen-point DLUR PU entity:

1. To create a listen-point DLUR PU entity called PU2 and enter listen-point PU configuration mode from listen-point configuration mode, use the **pu dlur** command as shown in the following example:

```
router(tn3270-lpoint)# pu PU2 017ABCDE dlur
```
2. To return later to the listen-point PU configuration mode for the PU2 entity, use the same `pu dlur` command without the “017ABCDE dlur” parameters from listen-point configuration mode:

   ```
   router(tn3270-lpoint)# pu PU2
   ```

3. To remove the listen-point PU entity called PU2, use the same command with the `no` keyword:

   ```
   router(tn3270-lpoint)# no pu PU2
   ```

Working with a DLUR Entity

The following example shows how to create, access, and remove a DLUR entity:

1. To create a DLUR entity with a control point name NETA.RTR1 and enter DLUR configuration mode from TN3270 server configuration mode, use the `dlur` command as shown in the following example:

   ```
   router(cfg-tn3270)# dlur NETA.RTR1 NETA.HOST
   ```

2. To return later to the DLUR configuration mode for the NETA.RTR1 entity, use the same `dlur` command without the “NETA.RTR1 and NETA.HOST” parameters from TN3270 server configuration mode:

   ```
   router(cfg-tn3270)# dlur
   ```

3. To remove the NETA.RTR1 DLUR entity, use the same `dlur` command with the `no` keyword:

   ```
   router(cfg-tn3270)# no dlur
   ```

Working with a DLUR LSAP Entity

The following example shows how to create, access, and remove a DLUR LSAP entity:

1. To create a DLUR LSAP entity and enter DLUR SAP configuration mode from DLUR mode, type the following command:

   ```
   router(tn3270-dlur)# lsap token-adapter 1 84
   ```

2. To return later to the DLUR SAP configuration mode on the same entity, use the same `lsap` command without the “84” parameter from TN3270 DLUR mode:

   ```
   router(tn3270-dlur)# lsap token-adapter 1
   ```

3. To remove the DLUR LSAP entity, use the same identification parameters with the `no` keyword:

   ```
   router(tn3270-dlur)# no lsap token-adapter 1
   ```
Configuring the TN3270 Server

This section provides information about configuring and verifying the TN3270 server. It describes how to configure the commands that are applicable in multiple configuration modes, and how to configure the many options that are available in the TN3270 server.

This section also describes the tasks to configure the TN3270 server in certain environments, and references the configuration options that are available there. Older TN3270 server configurations that are still supported but are replaced by newer methods of configuration are discussed in the legacy configuration topic.

Finally, this section includes a basic procedure for verifying the TN3270 server configuration.

This section includes the following topics:

- Configuring TN3270 Siftdown Commands, page 27
- Configuring the TN3270 Server Options, page 29
- Configuring the TN3270 Server with LU Pooling, page 41
- Migrating from Legacy TN3270 Server Configuration Methods, page 52
- Verifying the TN3270 Server Configuration, page 54

See the “TN3270 Server Configuration Examples” section on page 63 for examples.

Configuring TN3270 Siftdown Commands

There are many siftdown commands supported by the TN3270 server in multiple configuration modes. Values that you enter for a siftdown command in a subsequent configuration mode might override the values that you have entered for the same command (for the applicable PU only) in a previous configuration mode as shown in the hierarchy in Figure 6.

Consider the following example in which the keepalive (TN3270) command is configured in more than one command mode:

```
tn3270-server
keepalive 300
listen-point 10.10.10.1 tcp-port 40
pu PU1 94223456 tok 1 08
   keepalive 10 send timing-mark 5
pu PU2 94223457 tok 2 12
```

In this example the keepalive (TN3270) command is first configured in TN3270 server configuration mode, which applies to all PUs supported by the TN3270 server. The keepalive command is specified again under the listen-point PU configuration mode for PU1, which overrides the previously specified keepalive 300 value, for PU1 only. PU2 continues to use the value of the keepalive command in the TN3270 server configuration level.
Table 4 provides a list of the TN3270 siftdown commands and the associated configuration modes in which they are supported. An X in the column indicates that the command is supported. A “–” indicates that the command is not supported.

<table>
<thead>
<tr>
<th>Siftdown Command</th>
<th>TN3270 Server (cfg-tn3270)#</th>
<th>Listen-Point (tn3270-lpoint)#</th>
<th>Listen-Point PU (tn3270-lpoint-PU)#</th>
<th>DLUR PU (tn3270-dlur-pu)</th>
<th>PU (tn3270-pu)#</th>
</tr>
</thead>
<tbody>
<tr>
<td>generic-pool</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>idle-time</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ip precedence</td>
<td>X</td>
<td>X</td>
<td>–</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ip tos</td>
<td>X</td>
<td>X</td>
<td>–</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>keepalive</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>lu deletion</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>lu termination</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>tcp-port</td>
<td>X</td>
<td>–</td>
<td>–</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>unbind-action</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Note: You cannot configure the siftdown commands shown in Table 4 while in DLUR, DLUR SAP, or response-time configuration modes for the TN3270 server.

The siftdown commands apply to the corresponding PUs, according to the configuration mode in which they are entered:

- TN3270 server configuration—The siftdown command at this level applies to all PUs supported by the TN3270 server.

- Listen-point configuration—The siftdown command at this level applies to all PUs defined at the listen point.

- Listen-point PU configuration—The siftdown command at this level applies to only the specified PU.

- PU configuration—The siftdown command at this level applies only to the specified PU.

The no form of a siftdown command typically inherits the value from the previously configured siftdown value from the entity above it according to the configuration mode hierarchy shown in Figure 6, or it returns to the default value.
Configuring the TN3270 Server Options

The TN3270 server supports many options, some of which are available in multiple configuration modes. The topics in this section explain background information about the TN3270 server options including why an option is useful and how you can configure it. The configuration procedures that are provided later in this chapter also indicate where the options are available in the configuration task list.

This section describes how to configure the following options for the TN3270 server:

- Configuring a Generic Pool of LUs, page 29
- Configuring Idle-Time, page 30
- Configuring IP Precedence, page 31
- Configuring IP ToS, page 31
- Configuring Keepalive, page 32
- Configuring LU Allocation and LU Nailing, page 33
- Configuring LU Deletion, page 34
- Configuring LU Termination, page 35
- Configuring the Maximum Number of Sessions Supported by the Server, page 35
- Configuring the Maximum Number of Sessions That Can be Obtained by a Single Client, page 36
- Configuring the TCP Port, page 37
- Configuring Timing Marks, page 37
- Configuring the Unbind Action, page 38
- Configuring SSL Encryption Support, page 38

Most of these options are available in multiple command modes and are called “siftdown” commands. For more information about how siftdown commands work, see the “Configuring TN3270 Siftdown Commands” section on page 27.

Refer to the “TN3270 Server Commands” chapter of the Cisco IOS Bridging and IBM Networking Command Reference (Volume 2 of 2) for additional information about the commands described in this section and chapter.

Configuring a Generic Pool of LUs

Configuring a generic pool of LUs in the TN3270 server specifies that “leftover” LUs from a pool of dynamic LUs are available to TN3270 sessions that do not request a specific LU or LU pool through TN3270E. All LUs in a generic pool are DDDLU capable.

A leftover LU is an inactive LU from a pool of dynamic LUs, which are defined in the switched major node in VTAM using the LU-SEED parameter and the LUGROUP parameter. A leftover LU is defined as an LU where all of the following conditions are true:

- The SSCP did not send an ACTLU during PU start-up.
- The PU controlling the LU is capable of carrying product set ID (PSID) vectors on NMVT messages, thus allowing DDDLU operation for that LU.

The default behavior is to permit a generic pool of LUs in the TN3270 server and allow leftover LUs to be used for dynamic connections. You might deny the use of the generic pool for security reasons.
To configure a generic pool of LUs for the TN3270 server, use the following command in TN3270 server, listen-point, listen-point PU, PU, or DLUR PU configuration modes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router# generic-pool {permit | (Optional) Specifies whether leftover LUs can be used from a generic LU pool.
| deny} | The available options for this command are: |
| | • permit—Specifies that leftover LUs can be used by clients that request a
| | generic session. Inactive LUs are immediately available for dynamic
| | connections. This is the default. |
| | • deny—Specifies that the TN3270 server does not allow any further dynamic
| | connections of any LUs on the PU. That is, only static LUs are supported.|

The generic-pool command takes effect immediately for all upcoming connections, but existing sessions are unaffected. Once the existing sessions are terminated, then future connections will abide by the latest generic pool configuration for that PU. Use the no form of this command to selectively remove the permit or deny condition of generic pool use for the corresponding PU and return to the previously configured siftdown value applicable to the PU, or to the default value.

The generic-pool command is a siftdown command that is available in multiple command modes. For more information about configuring siftdown commands, see “Configuring TN3270 Siftdown Commands” section on page 27.

Configuring Idle-Time

The idle time option in the TN3270 server specifies the allowable duration of inactivity in the client-server session before the TN3270 server disconnects an LU.

To prevent an LU session from being disconnected due to inactivity, specify an idle time value of 0 seconds. Note that TIMING-MARKS generated by the TN3270 server keepalive function are not considered “activity” on the client connection.

There are two TN3270 server options that can affect when a session is disconnected—idle time and keepalive. These two options operate independently of each other and both can be used to clean up partially disconnected sessions. Whichever option first detects that a session is eligible for disconnect immediately causes the TN3270 server to disconnect that session. If you are specifying both the idle time and keepalive options, then you might consider how the values for these options determine when client sessions are disconnected to achieve the response that you want.

To configure the allowable amount of idle time before the TN3270 server disconnects an LU, use the following command in TN3270 server, listen-point, listen-point PU, PU, or DLUR PU configuration modes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# idle-time seconds</td>
<td>(Optional) Specifies the number of seconds of inactivity before the TN3270 server disconnects an LU.</td>
</tr>
</tbody>
</table>
The default behavior in TN3270 server configuration mode is that the session is never disconnected (or, a value of 0). The default value in other configuration modes is the value currently configured for that PU in a previously supported mode. Use the **no** form of this command to cancel the idle time period and return to the default for the corresponding PU.

The **idle-time** command is a siftdown command that is available in multiple command modes. For more information about configuring siftdown commands, see “Configuring TN3270 Siftdown Commands” section on page 27.

Configuring IP Precedence

Configuring the IP precedence option in the TN3270 server allows you to assign different priority levels to IP traffic on a PU in the TN3270 server. IP precedence values are used with the weighted fair queueing (WFQ) or priority queueing features on a Cisco router to allow you to prioritize traffic. IP precedence and IP ToS values are used together to manage network traffic priorities.

The TN3270 server allows you to specify different IP precedence values for screen and printer clients because the communication requirements for each type of client is different. Screen clients are characterized by interactive communication which normally demands a higher priority of data transfer than printers. Printers are characterized by bulk data transfer where priority of sending the data is not as high.

To configure the traffic priority for screen and printer clients in the TN3270 server, use the following command in TN3270 server, listen-point, PU, or DLUR PU configuration modes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router# ip precedence {screen</td>
<td>printer} value`</td>
</tr>
</tbody>
</table>

Use the **no** form of this command to remove the screen or printer precedence value for the corresponding PU and return to the previously configured siftdown value applicable to the PU, or to the default value. However, you can enter new or different values for IP precedence without first using the **no** form of the command.

The **ip precedence** command in the TN3270 server is a siftdown command that is available in multiple command modes. For more information about configuring siftdown commands, see “Configuring TN3270 Siftdown Commands” section on page 27.

Configuring IP ToS

Configuring the IP ToS option in the TN3270 server allows you to assign different levels of service to traffic on a PU in the TN3270 server. IP ToS values are used with the WFQ and NetFlow switching features on a Cisco router. The Open Shortest Path First (OSPF) protocol can also discriminate between different routes based on IP ToS values. IP ToS and IP precedence values are used together to manage network traffic priorities.

The TN3270 server allows you to specify different IP ToS values for screen and printer clients because the communication requirements for each type of client is different. Screen clients are characterized by interactive communication which normally demands a higher priority of data transfer than printers. Printers are characterized by bulk data transfer where priority of sending the data is not as high.
To configure the level of service for screen and printer clients in the TN3270 server, use the following command in TN3270 server, listen-point, PU, or DLUR PU configuration modes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# ip tos {screen</td>
<td>printer} value</td>
</tr>
</tbody>
</table>

Use the no form of this command to remove the screen or printer ToS value for the corresponding PU and return to the previously configured siftdown value applicable to the PU, or to the default value. However, you can enter new or different values for IP ToS without first using the no form of the command.

The ip tos command is a siftdown command that is available in multiple command modes. For more information about configuring siftdown commands, see the “Configuring TN3270 Siftdown Commands” section on page 27.

Configuring Keepalive

The keepalive options for the TN3270 server allow you to monitor the availability of a TN3270 client session by sending timing marks or Telnet no operation (nop) commands. You can configure the frequency and the type of keepalive that the TN3270 server sends to a client and when the TN3270 server determines that a client is inactive.

When you configure the keepalive command to send Telnet nop commands, no response is required by the client. If you specify only the keepalive interval, then the TN3270 server sends timing marks.

The default behavior of the TN3270 server is to send timing marks every 30 minutes if there is no other traffic flowing between the TN3270 client and server. The TN3270 server disconnects a session if the client does not respond within 30 seconds.

The keepalive command affects currently active and future TN3270 sessions. For example, reducing the keepalive interval for timing marks to a smaller nonzero value causes an immediate burst of DO TIMING-MARKS on those sessions that have been inactive for a period of time greater than the new, smaller value.

Note

There are two TN3270 server options that can affect when a session is disconnected—idle time and keepalive. These two options operate independently of each other and both can be used to clean up partially disconnected sessions. Whichever option first detects that a session is eligible for disconnect immediately causes the TN3270 server to disconnect that session. If you are specifying both the idle time and keepalive options, then you might consider how the values for these options determine when client sessions are disconnected to achieve the response that you want.
To configure the keepalive options for the TN3270 server, use the following command in TN3270 server, listen-point, listen-point PU, or DLUR PU configuration modes:

```
Router# keepalive seconds [send (nop | timing-mark [max-response-time])]
```

(Optional) Specifies the number of seconds (from 0 to 65535) of inactivity to elapse before the TN3270 server transmits a DO TIMING-MARK or Telnet nop to the TN3270 client. A value of 0 means that no keepalive signals are sent. The default interval is 1800 seconds (30 minutes). The following options are available:

- **send nop**—Sends the Telnet command for no operation to the TN3270 client to verify the physical connection.
- **send timing-mark [max-response-time]**—Sends timing marks to verify the status of the client session and specifies the number of seconds (from 0 to 32767) within which the TN3270 server expects a response. The default maximum response time is 30 seconds if the keepalive interval is greater than or equal to 30 seconds. If the value of the keepalive interval is less than 30 seconds, then the default max-response-time is the value of the interval. The value of max-response-time should be less than or equal to the interval.

Use the no form of the command to cancel the current keepalive period and type and return to the previously configured sftdown value applicable to the PU, or to the default value.

The `keepalive` command is a sftdown command that is available in multiple command modes. For more information about configuring sftdown commands, see the “Configuring TN3270 Sftdown Commands” section on page 27.

Configuring LU Allocation and LU Nailing

With the addition of the LU pooling and listen-point configuration methods in Cisco IOS Release 12.0(5)T, the TN3270 server supports multiple methods of allocating LUs and assigning or “nailing” those LUs to a particular client or group of clients.

The TN3270 server supports nailing individual clients to a specific LU and nailing clients to pools. The individual nailing method is useful when a particular client must use a specific LU. Nailing clients to pools is useful when a client needs to have one of a group of LUs associated with a particular PU. For more information about these methods of LU nailing, see the “Methods of LU Nailing” section on page 53.

LU pooling configuration methods using listen points provides an efficient means of configuring clusters of screens and printer LUs into pools, and allocating LOCADDrs. Then, multiple clients can be assigned or “nailed” to those pools to be given access to those LUs.

Note

You cannot specify the same LOCADDR in both an individual LU nailing statement and in a pool. The CMCC adapter does not allow a LOCADDR to be allocated multiple times, so the LU allocations in the TN3270 server must not overlap.
Nailing Clients to Specific LUs

To nail a client to a specific LU use the following command in PU configuration mode or listen-point PU configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# client [printer] ip ip-address [mask] lu first-locaddr [last-locaddr]</code></td>
<td>(Optional) Allocates a specific LU or range of LUs to a client located at the IP address or subnet.</td>
</tr>
</tbody>
</table>

Nailing Clients to Pools

To nail a client to a pool of LUs use the following command in listen-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(3270-lpoint)# client ip ip-address [mask] pool poolname</code></td>
<td>(Optional) Nails a client located at the IP address or subnet to a pool.</td>
</tr>
</tbody>
</table>

Allocating LUs to Pools

To allocate LUs to a pool use the following command in listen-point PU configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(3270-lpoint-pu)# allocate lu lu-address pool poolname clusters count</code></td>
<td>(Optional) Assigns LUs to the pool beginning with the LOCADDR specified by <code>lu-address</code> for a total of <code>count</code> LUs.</td>
</tr>
</tbody>
</table>

Configuring LU Deletion

The LU deletion options for the TN3270 server specify whether the TN3270 server sends a REPLY-PSID poweroff request to VTAM to delete the corresponding LU when a client disconnects. The LU deletion command is useful to prevent screen LUs from attaching to an LU that was used by a previous session that designates an incompatible screen size for the current LU.

The default behavior of the TN3270 server is to never delete LUs upon disconnect. This option is useful when you only have screen LUs and they all use the same screen size.

To configure the LU deletion options for the TN3270 server, use the following command in TN3270 server, listen-point, listen-point PU, PU, or DLUR PU configuration modes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router# lu deletion {always</td>
<td>normal</td>
</tr>
<tr>
<td></td>
<td>- <code>always</code>—Specifies deletion of all dynamic LUs upon disconnect.</td>
</tr>
<tr>
<td></td>
<td>- <code>normal</code>—Specifies deletion of only screen LUs upon disconnect.</td>
</tr>
<tr>
<td></td>
<td>- <code>non-generic</code>—Specifies deletion of specified LUs. (Available when VTAM supports deletion of specifically-named LUs. Not available as of VTAM version 4.4.1.)</td>
</tr>
<tr>
<td></td>
<td>- <code>never</code>—Specifies that LUs are never deleted upon disconnect. This is the default.</td>
</tr>
</tbody>
</table>
Use the no form of the command to remove LU deletion from the current configuration scope and return to the previously configured siftdown value applicable to the PU, or to the default value.

The lu deletion command is a siftdown command that is available in multiple command modes. For more information about configuring siftdown commands, see the “Configuring TN3270 Siftdown Commands” section on page 27.

For additional information about how sessions are terminated, see the “Session Termination” section on page 13.

Configuring LU Termination

The LU termination options for the TN3270 server specify the type of RU sent by the TN3270 server upon LU disconnect. The default behavior of the TN3270 server is to send an UNBIND request to the application to terminate the session.

With some applications (such as CICS), VTAM security problems can arise from an UNBIND request. In some cases the application might reestablish a previous user’s session with a new user, who is now assigned to the same freed LU. To prevent this you can configure the TN3270 server to send a TERMSELF RU.

Use the termself keyword of the lu termination command when you want to be sure that the application terminates the session when the LU disconnects.

To configure the LU termination options for the TN3270 server, use the following command in TN3270 server, listen-point, listen-point PU, PU, or DLUR PU configuration modes:

```
Router# lu termination {termself | unbind}
```

(Optional) Specifies the type of RU sent by the TN3270 server when a client turns off the device or disconnects. The following options are available:

- **termself**—Orders termination of all sessions and session requests associated with an LU upon disconnect.
- **unbind**—Requests termination of the session by the application upon LU disconnect. This is the default.

Use the no form of the command to remove LU termination from the current configuration scope and return to the previously configured siftdown value applicable to the PU, or to the default value.

The lu termination command is a siftdown command that is available in multiple command modes. For more information about configuring siftdown commands, see the “Configuring TN3270 Siftdown Commands” section on page 27.

For additional information about how sessions are terminated, see the “Session Termination” section on page 13.

Configuring the Maximum Number of Sessions Supported by the Server

Configuring the maximum number of LU control blocks on the TN3270 server determines the limit on the number of sessions that the TN3270 server can support on the CMCC adapter. The practical limit (within the allowable range for the option) is determined in part by your licensing structure for the CMCC and on your hardware and usage characteristics.
Each control block uses about 1 KB of memory, with a possible 2 KB per LU additionally required for data during session activity. The TN3270 server attempts to allocate one LU control block for each LU activated by the host. For DDDLU, the control block is allocated when the client requests the LU, in anticipation of an ACTLU from the SSCP host.

By limiting the number of LU control blocks allocated, you can limit how much memory is used for the TN3270 server and be sure that memory is available to support other CMCC functions.

To configure the maximum number of LUs allowed for the TN3270 server, use the following command in TN3270 server configuration mode:

```
Router(cfg-tn3270)# maximum-lus number
```

Use the `no` form of the command to restore the default value. Although you can change the value of the `maximum-lus` command at any time, you must deactivate the PU (DACTPU) or use the `no pu` command to free allocated control blocks if you reduce the maximum number below the current number of allowable LU control blocks.

Configuring the Maximum Number of Sessions That Can be Obtained by a Single Client

Configuring the maximum number of LU sessions for a TN3270 client limits the number of LU sessions that a client at a specified IP address or IP subnet can establish with the TN3270 server. Establishing this limit prevents a single workstation from using all of the available resources on the TN3270 server. If you configure LU pools and maximum LU sessions, the maximum LU session value limits the number of LOCADDRs that a client can connect to across all pools to which the client belongs.

If you do not configure the maximum number of LU sessions, the default configuration specifies no limit on the number of concurrent sessions from one client IP address.

To configure the maximum number of LU sessions allowed for a TN3270 client, use the following command in TN3270 server configuration mode:

```
Router(cfg-tn3270)# client [ip [ip-mask]] lu maximum number
```

Use the `no` form of the command to remove a single LU limit associated with a particular IP address, or to restore a default value of 65535.

Note

There is no relationship between the `allocate lu` command and the `client lu maximum` command. The `allocate lu` command assigns named LOCADDRs to a pool. More than one TN3270 client can access pools and there is no relationship between the number of LUs assigned to a pool and the maximum number of LUs that one client can use.
Configuring the TCP Port

Configuring the TCP port option allows you to override the default TCP port setting of 23, which is the Internet Engineering Task Force (IETF) standard. The value of 65535 is reserved by the TN3270 server.

There are two ways that you can configure the TCP port:

- Using TN3270 server or PU configuration modes for the PU. This is the only method supported in legacy configurations, prior to Cisco IOS Release 12.0(5)T.
- In Cisco IOS Release 12.0(5)T and later, the TCP port can alternatively be configured in a listen point for the PU.

Legacy Configuration

To configure the TCP port in legacy configurations that do not implement a listen point, use the following command in TN3270 server, PU, or DLUR PU configuration modes:

```
Router(cfg-tn3270)# tcp-port number
```

(Optional) Specifies the TCP port (between 0 and 65534) to be used for the PU. The default TCP port number is 23.

Use the `no` form of the command to remove the TCP port from the current configuration scope and return to the previously configured siftdown value applicable to the PU, or to the default value.

The `tcp-port` command is a siftdown command that is available in multiple command modes. For more information about configuring siftdown commands, see the “Configuring TN3270 Siftdown Commands” section on page 27.

Listen-point Configuration

To configure the TCP port in listen-point configurations, use the following command in TN3270 server configuration mode:

```
Router(cfg-tn3270)# listen-point ip-address [tcp-port [number]]
```

Specifies the IP address and TCP port number to create a listen point. The default TCP port number is 23. This command changes the configuration mode from TN3270 to listen-point.

Use the `no` form of the command to remove a listen point for the TN3270 server.

Configuring Timing Marks

Configuring the timing marks option for the TN3270 server specifies whether the TN3270 server sends a WILL TIMING-MARK in response to a definite or pacing request by a host application.

The default behavior of the TN3270 server is to send timing marks only for the keepalive function. If you configure the TN3270 server to send timing marks to achieve an end-to-end response protocol, then a WILL TIMING-MARK is sent by the TN3270 server when any of the following conditions are true:

- The host application requests a pacing response.
- The host application requests a definite response (DR), and either the client is not using TN3270E, or the request is not Begin Chain.
The use of timing marks can degrade performance. Some clients do not support timing marks used in this way. Therefore you should only configure timing marks when both of the following conditions are true:

- All clients support this timing mark usage.
- The application benefits from end-to-end acknowledgment.

To configure the timing marks option for the TN3270 server, use the following command in TN3270 server configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(cfg-tn3270) # timing-mark</td>
<td>(Optional) Specifies that the TN3270 server sends a WILL TIMING-MARK in response to an application request for a pacing or definite response.</td>
</tr>
</tbody>
</table>

Use the no form of the command to disable the sending of WILL TIMING-MARK except as used by the keepalive function.

Configuring the Unbind Action

Configuring the unbind action for the TN3270 server allows you to specify how the TN3270 server responds when it receives an UNBIND request. The TN3270 server can either keep the session or disconnect.

The default behavior in TN3270 server configuration mode is to disconnect the client session upon receipt of an UNBIND. In other configuration modes the default behavior is the currently configured value in the configuration mode applicable to the PU.

To configure the unbind action for the TN3270 server, use the following command in TN3270 server, listen-point, listen-point PU, PU, or DLUR PU configuration modes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(cfg-tn3270) # unbind-action (keep</td>
<td>disconnect)</td>
</tr>
</tbody>
</table>

Use the no form of the command to remove the unbind action from the current configuration scope and return to the previously configured siftdown value applicable to the PU, or to the default value.

The unbind-action command is a siftdown command that is available in multiple command modes. For more information about configuring siftdown commands, see the “Configuring TN3270 Siftdown Commands” section on page 27.

Configuring SSL Encryption Support

Perform the tasks in the following sections to configure the SSL Encryption feature:

- Obtaining Server Digital Certificate from Certificate Authority, page 39 (Required)
- Loading Server Digital Certificate onto the Flash of the TN3270 Router, page 39 (Required)
- Configuring Security, page 39 (Required)
- Configuring the Profile, page 39 (Required)
- Configuring the Profile Options, page 40 (Optional)
• Configuring the Default Profile, page 40 (Optional)
• Configuring a Listen Point for Security, page 40 (Optional)

Obtaining Server Digital Certificate from Certificate Authority

To obtain a server digital certificate, first create a certificate signing request pointer to the Readme.csr file. The certificate must be in PEM or Base 64 format.

After you obtain the server digital certificate, append the private key file to the digital certificate.

Loading Server Digital Certificate onto the Flash of the TN3270 Router

Copy the digital certificate to the Flash card on the TN3270 router.

Configuring Security

To configure security on the TN3270 server, use the following command beginning in TN3270 server configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(cfg-tn3270)# security</td>
<td>Enables security on the TN3270 server and enters security configuration mode.</td>
</tr>
</tbody>
</table>

To enable and disable security on the TN3270 server, use the following commands beginning in security configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(tn3270-security)# enable</td>
<td>(Optional) Enables security in the TN3270 server.</td>
</tr>
<tr>
<td>Router(tn3270-security)# disable</td>
<td>(Optional) Disables the security feature in the TN3270 server.</td>
</tr>
</tbody>
</table>

Configuring the Profile

To configure a security profile on the TN3270 server, use the following command beginning in security configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(tn3270-security)# profile profilename (ssl</td>
<td>none)</td>
</tr>
</tbody>
</table>
Configuring the Profile Options

To configure the security profile options, use the following commands beginning in profile configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(tn3270-sec-profile)# keylen (40</td>
<td>128)</td>
</tr>
<tr>
<td>Router(tn3270-sec-profile)# servercert location</td>
<td>Specifies the location of the TN3270 server’s security certificate in the Flash memory. This command reads the security certificate from the specified location.</td>
</tr>
<tr>
<td>Router(tn3270-sec-profile)# certificate reload</td>
<td>(Optional) Reads the profile security certificate from the file specified in the servercert command.</td>
</tr>
</tbody>
</table>

Configuring the Default Profile

To configure the default security profile name to be applied to the listen-points, use the following command beginning in security configuration mode:

```
Note
The profile command must be specified before configuring a default-profile.
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(tn3270-security)# default-profile profilename</td>
<td>Specifies the name of the profile to be applied to the listen-points by default.</td>
</tr>
</tbody>
</table>

Configuring a Listen Point for Security

To configure a listen-point for security, use the following command beginning in TN3270 listen-point configuration mode:

```
Note
The sec-profile command is optional if the default-profile command has been configured.
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(tn3270-lpoint)# sec-profile profilename</td>
<td>Specifies the security profile to be associated with a listen-point.</td>
</tr>
</tbody>
</table>
Configuring the TN3270 Server with LU Pooling

This section describes the required tasks to configure the TN3270 server with LU pooling in an APPN environment using DLUR PUs and in a non-APPN environment using direct PUs.

Step 1 Before configuring the TN3270 server, follow the “Guidelines for Configuring LU Pooling” section on page 42.

Step 2 Before you begin configuring the TN3270 server, be sure that you have configured host connectivity to the router. For more information about configuring host connectivity, see the “Configuring Host Connections” section on page 18.

Step 3 Complete the following tasks to configure the TN3270 server with LU pooling in an APPN environment using DLUR:

- Configuring the TN3270 Server and Defining a Pool, page 42
- Configuring DLUR, page 43
- Configuring SAPs Under DLUR, page 44
- Configuring a Listen Point and Nailing Clients to Pools, page 44
- Configuring Inverse DNS Nailing, page 45
- Configuring a Listen-Point PU to Define DLUR PUs and Allocate LUs, page 47
- Configuring a Listen-Point PU to Define DLUR PUs using Dynamic LU Naming, page 48

Note You can also use DLUR to reach a mix of APPN and non-APPN hosts. The host owning the PUs must be an APPN network node that also supports the subarea (that is, an interchange node). When an SLU starts a session with any of the APPN hosts, it can use session switching to reach that host directly. When it starts a session with a non-APPN host, the traffic will be routed through the owning host.

Step 4 Complete the following tasks to configure the TN3270 server with LU pooling in a non-APPN environment:

- Configuring the TN3270 Server and Defining a Pool, page 49
- Configuring a Listen Point and Nailing Clients to Pools, page 50
- Configuring a Listen-Point PU to Define Direct PUs and Allocate LUs, page 51
- Configuring a Listen-Point PU to Define Direct PUs using Dynamic LU Naming, page 52

Note The differences between the configuration tasks in a non-APPN environment and the APPN configuration tasks are that you do not configure DLUR or SAPs under DLUR, and you configure direct PUs at the listen point instead of DLUR PUs. All other options are the same.

Refer to the “Configuring the TN3270 Server Options” section on page 29 of this publication and the “TN3270 Server Commands” chapter of the *Cisco IOS Bridging and IBM Networking Command Reference* (Volume 2 of 2) for additional information about the commands described in this section and chapter.
Guidelines for Configuring LU Pooling

To configure LU pools on the TN3270 server on a CMCC adapter, perform the following tasks:

1. Define a pool using the `pool` command.
2. Allocate specific LOCADDRs or LUs to the pool using the `allocate lu` command.
3. (Optional) Nail clients to the pool using the `client ip pool` command.

When configured, the pool becomes one of the several criteria used by the TN3270 server to assign an LU to a client. When a client requests a connection, the TN3270 server determines the authorized capabilities of the client. For example, the TN3270 server attempts to determine whether LU nailing definitions exist for the client.

Client preferences are taken into consideration. Examples of client preferences are:

- Device name on CONNECT request (TN3270E)
- LU name on `TERMINAL-TYPE` command (RFC 1576)
- Model type

When the client criteria is processed, the TN3270 server assigns the first available LU in the group to the client. If an appropriate LU is not found, the TN3270 connection is closed.

For more information about LU allocation in the TN3270 server, see the “LU Allocation” section on page 6. For an example of how LUs are allocated within LU pools, see the “LU Pooling Configuration Example” section on page 65.

Configuring the TN3270 Server and Defining a Pool

To establish a TN3270 server on the internal LAN interface on the CMCC adapter and configure LU pooling, use the following commands beginning in global configuration mode. When you use the `tn3270-server` command, you enter TN3270 server configuration mode and can use all other commands in the task list.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** Router(config)# `interface channel slot/port` | Selects the interface on which to configure the TN3270 server and enters interface configuration mode. The `port` value differs by the type of CMCC adapter:
 - CIP—`Port` value corresponds to the virtual interface, which is port 2.
 - CPA—`Port` value corresponds to port 0. |
| **Step 2** Router(config-if)# `tn3270-server` | Specifies a TN3270 server on the internal LAN interface and enters TN3270 server configuration mode. | |
| **Step 3** Router(config-tn3270)# `pool poolname [cluster layout [layout-spec-string]]` | Defines clusters of LUs and allocates LOCADDRs. |
| **Step 4** Router(config-tn3270)# `generic-pool {permit | deny}` | (Optional) Selects whether “leftover” LUs can be used from a generic LU pool. |
| **Step 5** Router(config-tn3270)# `idle-time seconds` | (Optional) Specifies the idle time for server disconnect. |
Configuring the TN3270 Server

Configuring the TN3270 Server

This task is required when configuring DLUR connected hosts. To configure DLUR parameters for the TN3270 server, use the following commands beginning in TN3270 server configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(cfg-tn3270)# dlur fq-cpname fq-dlusname</td>
<td>Creates a DLUR function in the TN3270 server and enters DLUR configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(tn3270-dlur)# dlus-backup dlusname2</td>
<td>(Optional) Specifies a backup DLUS for the DLUR function.</td>
</tr>
<tr>
<td>Step 3 Router(tn3270-dlur)# preferred-nnserver NNserver</td>
<td>(Optional) Specifies the preferred network node (NN) server.</td>
</tr>
</tbody>
</table>
Configuring the TN3270 Server

Configuring SAPs Under DLUR

To configure SAPs under the DLUR function, use the following commands beginning in DLUR configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
Router(tn3270-dlur)# `lsap` type adapno [*lsap]* | Creates a SAP function under DLUR and enters DLUR SAP configuration mode. |
| **Step 2**
Router(tn3270-dlur-lsap)# `vrn` vrn-name | (Optional) Identifies an APPN virtual routing node (VRN). |
| **Step 3**
Router(tn3270-dlur-lsap)# `link` name [*rmac rmac*] [*rsap*] | (Optional) Creates named links to hosts. A link should be configured to each potential NN server. (The alternative is to configure the NN servers to connect to DLUR.) If VRN is used it is not necessary to configure links to other hosts. Do not configure multiple links to the same host. |

Configuring a Listen Point and Nailing Clients to Pools

To configure a listen point on the internal LAN interface on the CMCC adapter and nail clients to pools, use the following commands beginning in TN3270 server configuration mode.

When you use the listen-point command, you enter listen-point configuration mode and can use all other commands in this task list. Values that you enter for setdown commands in listen-point configuration mode will override values that you previously entered in TN3270 server configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
Router(cfg-tn3270)# `listen-point` ip-address [*tcp-port* [*number*]] | Specifies the IP address and TCP port number to create a listen point. The default TCP port number is 23. This command changes the configuration mode from TN3270 to listen-point. |
| **Step 2**
Router(tn3270-lpoint)# `client` ip ip-address [*mask*] pool poolname | Nails a client located at the IP address or subnet to a pool. |
| **Step 3**
Router(tn3270-lpoint)# `generic-pool` {permit | deny} | (Optional) Selects whether “leftover” LUs can be used from a generic LU pool. |
| **Step 4**
Router(tn3270-lpoint)# `idle-time` seconds | (Optional) Specifies the idle time for server disconnect. |
| **Step 5**
Router(tn3270-lpoint)# `ip precedence` {screen | printer} value | (Optional) Specifies the precedence level for IP traffic in the TN3270 server. |
| **Step 6**
Router(tn3270-lpoint)# `ip tos` {screen | printer} value | (Optional) Specifies the ToS level for IP traffic in the TN3270 server. |
Configuring the TN3270 Server

Perform the tasks in the following section to configure the different methods of Inverse DNS Nailing feature:

- Nailing Clients to Pools by IP Address, page 45
- Nailing Clients to Pools by Device Name, page 46
- Nailing Clients to Pools by Device Name using a Domain ID, page 46
- Nailing Clients to Pools by Domain Name, page 46
- Nailing Clients to Pools by Domain Name Using a Domain ID, page 47

Note: You can configure Inverse DNS Nailing five different ways by using the same commands. This task table section presents the five different configuration methods as separate task tables.

Use the `domain-id` command only when you are going to configure the `client pool` command with the `name` keyword and `DNS-domain-identifier` option specified or with the `domain-id` keyword specified.

Nailing Clients to Pools by IP Address

To nail a client to a pool of LUs by IP address, use the following commands beginning in TN3270 server configuration mode.
Configuring the TN3270 Server

Nailing Clients to Pools by Device Name

To nail a client to a pool of LUs by device name, use the following commands beginning in TN3270 server configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(cfg-tn3270)# listen-point ip-address [tcp-port [number]]</td>
<td>Specifies the IP address and TCP port number to create a listen point. The default TCP port number is 23. This command changes the configuration mode from TN3270 to listen-point.</td>
</tr>
<tr>
<td>Step 2 Router(tn3270-lpoint)# client ip ip-address [ip-mask] pool poolname</td>
<td>Nails a client located at the IP address to a pool.</td>
</tr>
</tbody>
</table>

Nailing Clients to Pools by Device Name using a Domain ID

To nail a client to a pool of LUs by device name using a domain ID, use the following commands beginning in TN3270 server configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(cfg-tn3270)# listen-point ip-address [tcp-port [number]]</td>
<td>Specifies the IP address and TCP port number to create a listen point. The default TCP port number is 23. This command changes the configuration mode from TN3270 to listen-point.</td>
</tr>
<tr>
<td>Step 2 Router(tn3270-lpoint)# client name DNS-name pool poolname</td>
<td>Nails a client located at the DNS device name to a pool.</td>
</tr>
</tbody>
</table>

Nailing Clients to Pools by Domain Name

To nail a client to a pool of LUs by domain name, use the following commands beginning in TN3270 server configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(cfg-tn3270)# domain-id DNS-domain-identifier DNS-domain</td>
<td>(Optional) Specifies a domain name suffix to be appended to the configured machine names to form a fully qualified name.</td>
</tr>
<tr>
<td>Step 2 Router(cfg-tn3270)# listen-point ip-address [tcp-port [number]]</td>
<td>Specifies the IP address and TCP port number to create a listen point. The default TCP port number is 23. This command changes the configuration mode from TN3270 to listen-point.</td>
</tr>
<tr>
<td>Step 3 Router(tn3270-lpoint)# client name DNS-name DNS-domain-identifier pool poolname</td>
<td>Nails a client located at the IP address to a pool.</td>
</tr>
</tbody>
</table>

Nailing Clients to Pools by Domain Name

To nail a client to a pool of LUs by domain name, use the following commands beginning in TN3270 server configuration mode.
Nailing Clients to Pools by Domain Name Using a Domain ID

To nail a client to a pool of LUs by domain name using a domain ID, use the following commands beginning in TN3270 server configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Router(cfg-tn3270)# `domain-id
DNS-domain-identifier DNS-domain` | (Optional) Specifies a domain name suffix to be appended to the configured machine names to form a fully qualified name. |
| **Step 2** | Router(cfg-tn3270)# `listen-point
ip-address [tcp-port [number]]` | Specifies the IP address and TCP port number to create a listen point. The default TCP port number is 23. This command changes the configuration mode from TN3270 to listen-point. |
| **Step 3** | Router(tn3270-lpoint)# `client domain-id
DNS-domain-identifier pool poolname` | Nails a client located at the domain ID to a pool. |

Configuring a Listen-Point PU to Define DLUR PUs and Allocate LUs

To configure a listen-point PU on the internal LAN interface on the CMCC adapter and define DLUR PUs, use the following commands in listen-point configuration mode.

When you use the `pu` command, you enter listen-point PU configuration mode and can use all other commands in this task list. Values that you enter for `ifdown` commands in listen-point PU configuration mode will override values that you previously entered in listen-point or TN3270 server configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Router(tn3270-lpoint)# `pu pu-name
idblk-idnum dlur` | Creates a DLUR PU. This command changes the configuration mode from listen-point to listen-point PU. |
| **Step 2** | Router(tn3270-lpoint-pu)# `allocate lu
lu-address pool poolname clusters count` | Assigns LUs to the pool beginning with the LOCADDR specified by `lu-address` for a total of `count` LUs. |
| **Step 3** | Router(tn3270-lpoint-pu)# `generic-pool
{permit | deny}` | (Optional) Selects whether “leftover” LUs can be used from a generic LU pool. |
| **Step 4** | Router(tn3270-lpoint-pu)# `idle-time
seconds` | (Optional) Specifies the idle time for server disconnect. |
Configuring the TN3270 Server

48

Configuring a Listen-Point PU to Define DLUR PUs using Dynamic LU Naming

To configure a listen-point PU on the internal LAN interface on the CMCC adapter, and to define DLUR PUs using dynamic LU naming, use the following commands beginning in TN3270 server configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(cfg-tn3270)# listen-point ip-address [tcp-port [number]]</td>
<td>Specifies the IP address and TCP port number to create a listen point. The default TCP port number is 23. This command changes the configuration mode from TN3270 to listen-point.</td>
</tr>
<tr>
<td>Step 2 Router(tn3270-lpoint-pu)# pu pu-name idblk-idnum dlur [lu-seed lu-name-stem]</td>
<td>Creates a DLUR PU and enters listen-point PU configuration mode. The lu-seed optional keyword specifies the LU name that the client uses when a specific LU name request is needed.</td>
</tr>
<tr>
<td>Step 3 Router(tn3270-lpoint-pu)# lu deletion {always</td>
<td>normal</td>
</tr>
</tbody>
</table>

When you use the pu command, you enter listen-point PU configuration mode and can use all other commands in this task list. Values that you enter for siftdown commands (such as the lu deletion command) in listen-point PU configuration mode will override values that you previously entered in listen-point or TN3270 server configuration mode. For more information about configuring siftdown commands, see the “Configuring TN3270 Siftdown Commands” section on page 27.
Configuring the TN3270 Server and Defining a Pool

To establish a TN3270 server on the internal LAN interface on the CMCC adapter and configure LU pooling, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Router(config)# interface channel slot/port | Selects the interface on which to configure the TN3270 server and enters interface configuration mode. The `port` value differs by the type of CMCC adapter:
 - CIP—`port` value corresponds to the virtual interface, which is port 2.
 - CPA—`port` value corresponds to port 0. |
| Step 2 | Router(config-if)# tn3270-server | Specifies a TN3270 server on the internal LAN interface and enters TN3270 server configuration mode. |
| Step 3 | Router(cgfn-tn3270)# pool poolname [cluster layout [layout-spec-string]] | Defines clusters of LUs and allocates LOCADDrs. |
| Step 4 | Router(cgf-tn3270)# idle-time seconds | (Optional) Specifies the idle time for server disconnect. |
| Step 5 | Router(cgf-tn3270)# keepalive seconds [send {nop | timing-mark [max-response-time]}] | (Optional) Specifies the following keepalive parameters:
 - Number of seconds of inactivity to elapse before the TN3270 server transmits a DO TIMING-MARK or Telnet nop to the TN3270 client.
 - Maximum time within which the TN3270 server expects a response to the DO TIMING-MARK from the TN3270 client before the server disconnects. |
| Step 6 | Router(cgf-tn3270)# ip precedence {screen | printer} value | (Optional) Specifies the precedence level for IP traffic in the TN3270 server. | | |
| Step 7 | Router(cgf-tn3270)# ip tos {screen | printer} value | (Optional) Specifies the ToS level for IP traffic in the TN3270 server. |
| Step 8 | Router(cgf-tn3270)# unbind-action {keep | disconnect} | (Optional) Specifies whether the TN3270 session will disconnect when an UNBIND request is received. |
| Step 9 | Router(cgf-tn3270)# generic-pool {permit | deny} | (Optional) Selects whether “leftover” LUs can be used from a generic LU pool. |
| Step 10 | Router(cgf-tn3270)# lu deletion {always | normal | non-generic | never} | (Optional) Specifies whether the TN3270 server sends a REPLY-PSID poweroff request to VTAM to delete the corresponding LU when a client disconnects. |
| Step 11 | Router(cgf-tn3270)# lu termination {termself | unbind} | (Optional) Specifies the type of termination request that is sent by the TN3270 server when a client turns off or disconnects a device. |
Configuring a Listen Point and Nailing Clients to Pools

To configure a listen point on the internal LAN interface on the CMCC adapter and nail clients to pools, use the following commands beginning in TN3270 server configuration mode.

When you use the `listen-point` command, you enter listen-point configuration mode and can use all other commands in this task list. Values that you enter for `setdown` commands in listen-point configuration mode will override values that you previously entered in TN3270 server configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(cfg-tn3270)# <code>listen-point ip-address [tcp-port [number]]</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(tn3270-lpoint)# <code>client ip ip-address [mask] pool poolname</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(tn3270-lpoint)# <code>idle-time seconds</code></td>
</tr>
</tbody>
</table>
| Step 4 | Router(tn3270-lpoint)# `keepalive seconds [send {nop | timing-mark [max-response-time]}]` | (Optional) Specifies the following keepalive parameters:
- Number of seconds of inactivity to elapse before the TN3270 server transmits a DO TIMING-MARK or Telnet nop to the TN3270 client.
- Maximum time within which the TN3270 server expects a response to the DO TIMING-MARK from the TN3270 client before the server disconnects. |
| Step 5 | Router(tn3270-lpoint)# `ip precedence {screen | printer} value` | (Optional) Specifies the precedence level for IP traffic in the TN3270 server. | | |
| Step 6 | Router(tn3270-lpoint)# `ip tos {screen | printer} value` | (Optional) Specifies the ToS level for IP traffic in the TN3270 server. |
| Step 7 | Router(tn3270-lpoint)# `unbind-action {keep | disconnect}` | (Optional) Specifies whether the TN3270 session will disconnect when an UNBIND request is received. |
| Step 8 | Router(tn3270-lpoint)# `generic-pool {permit | deny}` | (Optional) Selects whether “leftover” LUs can be used from a generic LU pool. |
| Step 9 | Router(tn3270-lpoint)# `lu deletion {always | normal | non-generic | never}` | (Optional) Specifies whether the TN3270 server sends a REPLY-PSID poweroff request to VTAM to delete the corresponding LU when a client disconnects. |
| Step 10 | Router(tn3270-lpoint)# `lu termination {termself | unbind}` | (Optional) Specifies the type of termination request that is sent by the TN3270 server when a client turns off or disconnects a device. |
Configuring a Listen-Point PU to Define Direct PUs and Allocate LUs

To configure a listen-point PU on the internal LAN interface on the CMCC adapter and configure direct PUs, use the following commands beginning in listen-point configuration mode.

When you use the `pu` command, you enter listen-point PU configuration mode and can use all other commands in this task list. Values that you enter for siftdown commands in listen-point PU configuration mode will override values that you previously entered in listen-point or TN3270 server configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(tn3270-lpoint)# <code>pu pu-name idblk-idnum type adapter-number lsap [rmac rmac] [rsap rsap] [lu-seed lu-name-stem]</code></td>
<td>Creates a direct PU. This command changes the configuration mode from listen-point to listen-point PU.</td>
</tr>
<tr>
<td>Step 2 Router(tn3270-lpoint-pu)# <code>allocate lu lu-address pool poolname clusters count</code></td>
<td>Assigns LUs to the pool beginning with the LOCADDR specified by <code>lu-address</code> for a total of <code>count</code> LUs.</td>
</tr>
<tr>
<td>Step 3 Router(tn3270-lpoint-pu)# <code>idle-time seconds</code></td>
<td>(Optional) Specifies the idle time for server disconnect.</td>
</tr>
<tr>
<td>Step 4 Router(tn3270-lpoint-pu)# `keepalive seconds [send {nop</td>
<td>timing-mark {max-response-time}}]`</td>
</tr>
<tr>
<td></td>
<td>• Number of seconds of inactivity to elapse before the TN3270 server transmits a DO TIMING-MARK or Telnet nop to the TN3270 client.</td>
</tr>
<tr>
<td></td>
<td>• Maximum time within which the TN3270 server expects a response to the DO TIMING-MARK from the TN3270 client before the server disconnects.</td>
</tr>
<tr>
<td>Step 5 Router(tn3270-lpoint-pu)# `unbind-action {keep</td>
<td>disconnect}`</td>
</tr>
<tr>
<td>Step 6 Router(tn3270-lpoint-pu)# `generic-pool {permit</td>
<td>deny}`</td>
</tr>
<tr>
<td>Step 7 Router(tn3270-lpoint-pu)# `lu deletion {always</td>
<td>normal</td>
</tr>
<tr>
<td>Step 8 Router(tn3270-lpoint-pu)# `lu termination {termself</td>
<td>unbind}`</td>
</tr>
</tbody>
</table>
Configuring a Listen-Point PU to Define Direct PUs using Dynamic LU Naming

To configure a listen-point PU on the internal LAN interface on the CMCC adapter and configure direct PUs using dynamic LU naming, use the following commands beginning in listen-point configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
Router(cfg-tn3270)# listen-point ip-address [tcp-port [number]] | Specifies the IP address and TCP port number to create a listen point. The default TCP port number is 23. This command changes the configuration mode from TN3270 to listen-point. |
| **Step 2**
Router(tn3270-lpoint)# pu pu-name idblk-idnum type adapter-number lsap [rmac rmac] [rsap rsap] [lu-seed lu-name-stem] | Creates a direct PU and enters listen-point PU configuration mode. The **lu-seed** optional keyword specifies the LU name that the client uses when a specific LU name request is needed. |
| **Step 3**
Router(tn3270-lpoint-pu)# lu deletion {always | normal | non-generic | never | named} | Specifies whether the TN3270 server sends a REPLY-PSID poweroff request to VTAM to delete the corresponding LU when a client disconnects. **Note** You must specify the **named** option when configuring dynamic LU naming on the PU. |

When you use the **pu** command, you enter listen-point PU configuration mode and can use all other commands in this task list. Values that you enter for siftdown commands (such as the **lu deletion** command) in listen-point PU configuration mode will override values that you previously entered in listen-point or TN3270 server configuration mode. For more information about configuring siftdown commands, see the “Configuring TN3270 Siftdown Commands” section on page 27.

Migrating from Legacy TN3270 Server Configuration Methods

Prior to Cisco IOS Release 12.0(5)T, TN3270 server configuration did not directly support listen points and LU pool configurations. These earlier methods for configuring PUs are referred to as “legacy” configuration methods. The TN3270 server commands to configure PUs vary slightly depending on whether or not you are using legacy configuration methods or listen points and LU pooling to configure PUs. While the legacy TN3270 server configuration commands are still supported, it is important to understand these variations in configuration so that you are not confused by the similar, but distinct command usages implemented for LU pooling.

Note Be sure that you use only a single configuration method for any particular IP address. Do not configure the same IP address using legacy methods and the newer listen-point configuration methods.

Methods of Configuring Direct PUs

For example, there are two ways in which you can configure direct PUs in the TN3270 server:
• TN3270 server configuration—In this legacy configuration mode you can use the `pu` (TN3270) command with the `ip-address` argument to create a PU entity that has its own direct link to a host at that IP address.

• Listen-point configuration—In this configuration mode you can use a different version of the `pu` command, but without an `ip-address` argument, to also create a PU entity that has its own direct link to a host defined at the listen point. In this configuration scenario, the IP address of the host is defined using the `listen-point` command and not in the `pu` (listen-point) command. This usage of direct PU configuration at a listen point allows you to eliminate repetitive configuration of the host IP address for each PU.

For examples of these methods of direct PU configuration see the “Basic Configuration Example” section on page 63 and the “Listen-Point Direct PU Configuration Example” section on page 64.

Methods of Configuring DLUR PUs

Similarly, there are also two ways in which you can configure DLUR PUs in the TN3270 server:

• DLUR configuration—In this legacy configuration mode you can use a version of the `pu` command—`pu` (DLUR)—with `pu-name`, `idblk-idnum`, and `ip-address` arguments to create a PU entity that uses the SNA session switching facility to communicate with a host.

• Listen-point configuration—In this configuration mode you use a different command—the `pu dlur` command—with `pu-name` and `idblk-idnum` arguments to create a PU entity that uses the SNA session switching facility to communicate with a host addressed at the listen point.

For an example of these methods of DLUR PU configuration see the “Listen-Point DLUR PU Configuration Example” section on page 64.

Methods of LU Nailing

LU nailing is a method by which you can associate a client’s connection request with a specific LU or pool of LUs. Use the following different methods to nail LUs in the TN3270 server:

• Nailing Clients to Specific LUs, page 34

• Nailing Clients to Pools, page 34

• Using a Combination of Nailing Methods, page 54

Nailing Clients to Specific LUs

Use the `client ip lu` legacy command when you want to assign a specific LOCADDR to a particular client at an IP address or subnet. This method of nailing is useful when a particular client must use a specific LU. You can use the `client printer ip lu` command to assign a particular LOCADDR to a client printer at an IP address or subnet.

Nailing Clients to Pools

Use the `client ip pool` command in listen-point configuration mode when you want to assign a group of LUs from a pool defined in the TN3270 server for a client at an IP address or subnet. This method of nailing is useful when a client needs to have one of a group LUs associated with a particular PU.

This configuration method uses the `allocate lu` listen-point PU configuration command to assign the range of LOCADDRS to the pool. The `pool` command defines the pool as a cluster of screen and printer LUs. In this method, clients can use the ASSOCIATE request to access printers defined to the pool.
Using a Combination of Nailing Methods

You can use both methods of LU nailing in a particular TN3270 server configuration, but there is no precedence in the configuration statements. Therefore when you nail a client to a specific LU or to a pool, you must be sure that the LOCADDR has not already been allocated. You cannot specify the same LOCADDR in both an individual LU nailing statement and in a pool. The CMCC adapter does not allow a LOCADDR to be allocated multiple times, so the LU allocations in the TN3270 server must not overlap.

For example, the following configuration statements are in error because LU 5 is allocated to both the pool and to an individual client at IP address 10.20.30.40:

```plaintext
tn3270-server
  pool MYPOOL cluster layout 4s1p
  pu PU1 12345678 tok 0 10
  allocate lu 5 pool MYPOOL clusters 2
  client ip 10.20.30.40 lu 5
```

The following example shows a valid configuration where a client at IP address 10.20.30.40 is nailed to the pool named EXAMPLE, which is allocated LOCADDRs 1 through 10, and an individual client at IP address 10.20.30.50 that is nailed only to LU 150:

```plaintext
tn3270-server
  pool EXAMPLE cluster layout 2s2p
  listen-point 80.80.80.81
  client ip 10.20.30.40 pool EXAMPLE
  pu PU1 12345678 tok 0 10
  allocate lu 1 pool EXAMPLE clusters 10
  client ip 10.20.30.50 lu 150
```

Verifying the TN3270 Server Configuration

This section provides basic steps that you can use to verify TN3270 server configurations. For detailed examples of configuration verification procedures for specific TN3270 server scenarios, see the Cisco TN3270 Design and Implementation Guide.

- Verify a Server Configuration that Uses LU Pooling, page 54
- Verify Dynamic LU Naming on the TN3270 Server, page 55
- Verifying Inverse DNS Nailing on the TN3270 Server, page 57
- Verifying SSL Encryption Support on the TN3270 Server, page 58

Verify a Server Configuration that Uses LU Pooling

Step 1 To display the current router configuration, enter the `show run` command:

```plaintext
router#show run
Building configuration...

interface Channel6/1
  no ip address
  no keepalive
csna E160 40

interface Channel6/2
  ip address 172.18.4.17 255.255.255.248
  no keepalive
lan TokenRing 15
```
source-bridge 15 1 500
adapter 15 4000.b0ca.0015
lan TokenRing 16
source-bridge 16 1 500
adapter 16 4000.b0ca.0016
tn3270-server
pool PCPOOL cluster layout 4s1p
pool SIMPLE cluster layout 1a
pool UNIXPOOL cluster layout 49s1p
dlur NETA.SHEK NETA.MVSD
lsap token-adapter 15 04
link SHE1 rmac 4000.b0ca.0016
listen-point 172.18.4.18 tcp-port 23
pu PU1 91903315 dlur
allocate lu 1 pool PCPOOL clusters 10
allocate lu 51 pool UNIXPOOL clusters 2
allocate lu 200 pool SIMPLE clusters 50
listen-point 172.18.4.19 tcp-port 2023
pu PU2 91913315 token-adapter 16 08
allocate lu 1 pool UNIXPOOL clusters 2
allocate lu 101 pool SIMPLE clusters 100
allocate lu 201 pool PCPOOL clusters 10

Step 2
To display information about the client LUs associated with a specific PU including the cluster layout and pool name, enter the `show extended channel tn3270-server pu` command:

Router# show extended channel 6/2 tn3270-server pu pu1 cluster

<table>
<thead>
<tr>
<th>name(index)</th>
<th>ip:tcp</th>
<th>xid</th>
<th>state</th>
<th>link</th>
<th>destination</th>
<th>r-lsap</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUI(1)</td>
<td>172.18.4.18:23</td>
<td>91903315</td>
<td>ACTIVE</td>
<td>dlur</td>
<td>NETA.SHEPU1</td>
<td></td>
</tr>
<tr>
<td>idle-time</td>
<td>0</td>
<td>keeplive 1800</td>
<td>unbind-act discon</td>
<td>generic-pool perm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip-preced-screen</td>
<td>0</td>
<td>ip-preced-printer</td>
<td>0</td>
<td>ip-tos-screen</td>
<td>0</td>
<td>ip-tos-printer</td>
</tr>
<tr>
<td>lu-termination</td>
<td>unbind</td>
<td>lu-deletion</td>
<td>never</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bytes</td>
<td>27489 in, 74761 out; frames 1164 in, 884 out; NegRsp 0 in, 0 out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>actlus, dactlus</td>
<td>5, 0</td>
<td>binds</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: if state is ACT/NA then the client is disconnected

Verifying Dynamic LU Naming on the TN3270 Server

Complete the following steps to verify the Dynamic LU Naming enhancement:

Step 1
Issue the `show extended channel tn3270-server` command. Confirm that lu-deletion is set to named.

Router# show extended channel 3/2 tn3270-server
c

<table>
<thead>
<tr>
<th>server-ip:tcp</th>
<th>lu in-use</th>
<th>connect</th>
<th>disconn</th>
<th>fail</th>
<th>host</th>
<th>tcp</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.28.1.106:23</td>
<td>510</td>
<td>1</td>
<td>12</td>
<td>11</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>172.28.1.107:23</td>
<td>511</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>172.28.1.108:23</td>
<td>255</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>1276</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c
configured max_lu 20000
Configuring the TN3270 Server

Step 2 To verify that dynamic LU naming is configured on the PU named PU1, issue the `show extended channel` command. Confirm that lu-deletion is set to `named`.

```
Router# show extended channel 6/2 tn3270-server pu pu1
```

name(index) ip:tcp xid state link destination r-lsap
PU1(1) 172.18.4.18:23 91903315 ACTIVE dlur NETA.SHPU1

idle-time 0 keepalive 1800 unbind-action disconnect
tcp-port 23 generic-pool permit no timing-mark
lu-termination unbind lu-deletion named

troubleshooting Tips for Dynamic LU Naming

To troubleshoot dynamic LU naming, use the following tips:

- You must replace the default exit ITEXCSD with the VTAM User Exit for TN3270 Name Pushing, which you can download from the IBM website: http://www.ibm.com. This exit causes VTAM to ignore the LUSEED parameter on the PU statement, and instead use the SLU name sent by the router in the subvector 86 when a client connects in. If you do not configure this exit, VTAM ignores the subvector 86 and the specified LU name.

- If the LUSEED operand is specified on the mainframe, but the subvector 86 requires an LU name, the VTAM User Exit for TN3270 Name Pushing ignores the LUSEED operand.

- If the LUSEED operand is not specified on the mainframe, and the subvector 86 is not present, then the VTAM User Exit for TN3270 Name Pushing cannot generate an LU name. VTAM does not log this failure, and the TN3270 server does not receive the ACTLU request. The TN3270 server displays the following message:

*Apr 17 12:40:53:%CIP2-3-MSG:slot2 :
%TN3270S-3-NO_DYN_ACTLU_REQ_RCVD
No ACTLU REQ received on LU JJDL1.6

Specify the INCLUD0E=YES parameter on VTAM so that the TN3270 server will always receive the LU name generated by the VTAM User Exit for TN3270 Name Pushing.
Verifying Inverse DNS Nailing on the TN3270 Server

Complete the following steps to verify the Inverse DNS Nailing enhancement:

Step 1 To list all nailing statements with a specific nailed-domain name, enter the `show extended channel tn3270-server nailed-domain` command:

```
Router# show extended channel 1/2 tn3270-server nailed-domain .cisco.com
CISCO.COM listen-point 172.18.4.18  pool PCPOOL
```

Step 2 To list all nailing statements with a specific nailed machine name, enter the `show extended channel tn3270-server nailed-name` command:

```
Router# show extended channel 1/2 tn3270-server nailed-name myclient.cisco.com
MYCLIENT.CISCO.COM     listen-point 172.18.4.18  pool PCPOOL
HISCLIENT.CISCO.COM    listen-point 172.18.4.18  pool UNIXPOOL
HERCLIENT.CISCO.COM    listen-point 172.18.4.19  pool GENERALPOOL
```

Troubleshooting Tips for Inverse DNS Nailing

To troubleshoot inverse DNS nailing, use the following tips:

- If an inverse DNS lookup fails it could be because the DNS server is unavailable (either because it was not configured, or because it is down). In this case, you cannot tell if the client is nailed because it does not have a name. To complicate the scenario, assume there was not a legacy nailing match, but the PU supports LUs that have been assigned from a generic pool. In this situation, the client disconnects and the router displays the following console message:

 A connection attempt from client <ip address> was refused because its DNS name could not be obtained.

 This action removes any potential security risk but presents potential disadvantages—the client could be denied a valid LU, and the generic-pool permit and deny settings might be ignored. For these reasons, it is strongly recommended that users configure the Inverse DNS Nailing enhancement on a PU that does not support LUs that have been assigned from a generic pool or a PU that has the `generic-pool` command configured with the `deny` keyword specified.

- If an inverse DNS lookup succeeds, but the name is not nailed or the client has no machine name, then the client is not nailed and the TN3270 server reverts to the legacy LU nailing process.
Verifying SSL Encryption Support on the TN3270 Server

Complete the following steps to verify the SSL Encryption Support enhancement:

Step 1
To verify the security profile on the TN3270 server, enter the `show extended channel tn3270-server security` command using the `sec-profile` option. Confirm that the status is enabled (status: ENABLE), and that the security certificate is loaded (Certificate Loaded: YES).

```
Router# show extended channel 3/2 tn3270-server security sec-profile cert40
status:ENABLE Default Profile: (Not Configured)
Name               Active LUs  keylen encryptorder            Mechanism
CERT40                    0     40    RC4 RC2 RC5 DES 3DES    SSL
Servercert:slot0:coach188.pem
Certificate Loaded:YES Default-Profile:NO
```

Step 2
To verify the security profile on the TN3270 server listen-point, enter the `show extended channel tn3270-server security listen-point` command using the `listen-point` option. Confirm that the status is enabled (status: ENABLE) and that the state is active (State ACTIVE).

```
Router# show extended channel 3/2 tn3270-server security listen-point 172.18.5.188
status: ENABLE Default Profile: (Not Configured)
IPaddress      tcp-port   Security-Profile   active-sessions  Type    State
172.18.5.188    23        CERT40               0              Secure  ACTIVE
Active Sessions using Deleted Profile:0
```

Configuring the TN3270 Server for Response-Time Monitoring

To configure client subnet response-time groups, use the following commands in response-time configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

Router(tn3270-resp-time)# response-time group name
(bucket boundaries t1 t2 t3 t4) [multiplier m] | Configures the client subnet response-time group. |

Step 2

Router(tn3270-resp-time)# client ip ip-address [ip-mask] | Specifies the IP address of the subnet being added to this client group. |
Verifying Response-Time Configuration

To verify the configuration of the client subnet response-time groups, use the `show extended channel tn3270-server response-time subnet` command.

To display a complete list of client subnet groups and their response-time collection control parameters, use the following form of the command:

```
Router# show extended channel 3/2 tn3270-server response-time subnet
          group SUBNETGROUP1
            subnet 10.10.10.0 255.255.255.192
            aggregate NO excludeip NO dynamic definite response NO
            sample period multiplier 30
            bucket boundaries 10 20 50 100
          group SUBNETGROUP2
            subnet 10.10.10.128 255.255.255.192
            subnet 10.10.10.192 255.255.255.192
            aggregate NO exclude ip NO dynamic definite response NO
            sample period multiplier 40
            bucket boundaries 20 30 60 120
          group CLIENT SUBNET OTHER
            aggregate NO exclude ip NO dynamic definite response NO
            sample period multiplier 30
            bucket boundaries 10 20 50 100
```

To display the response-time collection parameters for a specific subnet, along with a list of the client members and their response-time statistics, use the following form of the command:

```
Router# show extended channel 3/2 tn3270-server response-time subnet 10.10.10.0 255.255.255.192 detail
          group SUBNETGROUP1
            subnet 10.10.10.0 255.255.255.192
            aggregate NO excludeip NO dynamic definite response NO
            sample period multiplier 30
            bucket boundaries 10 20 50 100
            client 10.10.10.129:23
              buckets 5 8 11 9 4
              average total response time 33 average IP response time 24
              number of transactions 37
            client 10.10.10.130:23
              buckets 6 9 10 10 2
              average total response time 32 average IP response time 25
              number of transactions 37
            client 10.10.10.131:23
              buckets 11 14 10 8 7
              average total response time 27 average IP response time 19
              number of transactions 50
```
Monitoring and Maintaining the TN3270 Server

Use the following `show` commands in the privileged EXEC mode to monitor the TN3270 server. The `port` value differs by the type of CMCC adapter:

- **CIP**—port value corresponds to the virtual interface, which is port 2
- **CPA**—port value corresponds to port 0

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show extended channel slot/port tn3270-server</code></td>
<td>Displays the current server configuration parameters and the status of the PUs defined in each server.</td>
</tr>
<tr>
<td>Router# `show extended channel slot/port tn3270-server client-ip-address ip-address [disconnected</td>
<td>in-session</td>
</tr>
<tr>
<td>Router# <code>show extended channel slot/port tn3270-server dlur</code></td>
<td>Displays information about the SNA session switch.</td>
</tr>
<tr>
<td>Router# <code>show extended channel slot/port tn3270-server dlurlink name</code></td>
<td>Displays information about the DLUR components.</td>
</tr>
<tr>
<td>Router# <code>show extended channel slot/port tn3270-server nailed-ip ip-address</code></td>
<td>Displays mappings between a nailed client IP address and nailed LUs.</td>
</tr>
<tr>
<td>Router# <code>show extended channel slot/virtual channel tn3270-server pu pu-name [cluster]</code></td>
<td>Displays information about the client LUs associated with a specified PU including the cluster layout and pool name.</td>
</tr>
<tr>
<td>Router# <code>show extended channel tn3270-server pu pu-name lu lu-number [history]</code></td>
<td>Displays the status of the LU.</td>
</tr>
<tr>
<td>Router# <code>show extended channel slot/port tn3270-server response-time application [appl-name [detail]]</code></td>
<td>Displays information about each client group application for the specified VTAM appl name. List each member of the client group with its individual response-time statistics.</td>
</tr>
<tr>
<td>Router# <code>show extended channel slot/port tn3270-server response-time global</code></td>
<td>Displays information about the global client groups.</td>
</tr>
<tr>
<td>Router# <code>show extended channel slot/port tn3270-server response-time link [link-name]</code></td>
<td>Displays information about the specified per-host-link client group.</td>
</tr>
<tr>
<td>Router# <code>show extended channel slot/port tn3270-server response-time listen-point</code></td>
<td>Displays information about listen-point type client groups.</td>
</tr>
<tr>
<td>Router# <code>show extended channel slot/port tn3270-server response-time subnet [ip-address ip-mask [detail]]</code></td>
<td>Displays information about the specified client group.</td>
</tr>
</tbody>
</table>

Other maintenance and monitoring options for the TN3270 include:

- Managing DLUR Links, page 61
- Monitoring Dynamic LU Naming, page 62
- Monitoring Inverse DNS Nailing, page 62
- Shutting Down the TN3270 Server and Its Entities, page 62
Managing DLUR Links

The CMCC adapter allows you to convert a dynamic link to a static link while the DLUR subsystem is running. Dynamic links are those links that are established outside of the scope of the TN3270 DLUR configuration. These links are either configured by the host or are established dynamically using the VRN function and are activated by DLUR or activated remotely.

There are several advantages of converting a dynamic link to a static link:

- Supports removing a DLUR link without having to shut down the entire DLUR subsystem.
- In Network Node server configurations, having two or three static links defined allows you to provide adequate redundancy. You might want to convert a dynamic link to a static link to provide this benefit.
- Static links allow better control from the router end to show and control them. Dynamic links cannot be specifically shown or controlled by the router. The links appear in show command output, but with locally assigned names such as @DLURnn which make them difficult to identify.

Converting a Dynamic Link to a Static Link

To convert a dynamic link to a static link the CMCC adapter allows you to re-enter the local/remote MAC/SAP quadruple in the link (TN3270) command, which the CMCC accepts as a request to convert the link to a static link, and does not reject the command due to a duplicate local/remote MAC/SAP quadruple.

For example, use the following link (TN3270) command to convert the existing dynamic link named HOST at RMAC 4000.0000.0001 and RSAP 4 to a static link:

```
link HOST rmap 4000.0000.0001 rsap 4
```

Removing a Dynamic Link

To remove a dynamic link use the following commands in DLUR SAP configuration mode to convert the dynamic link to a static link and then to remove the link:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(tn3270-dlur-lsap)# link name [rmap rmac] [rsap rsap]</td>
</tr>
<tr>
<td>Creates named links to hosts, or if this is an existing dynamic link, converts the dynamic link to a static link.</td>
<td></td>
</tr>
<tr>
<td>Step 1</td>
<td>Router(tn3270-dlur-lsap)# no link name</td>
</tr>
<tr>
<td>Removes the link definition.</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring Dynamic LU Naming

To monitor the status of the Dynamic LU Naming enhancement, use the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show extended channel tn3270-server</td>
<td>Displays current server configuration parameters and the status of the PUs defined for the TN3270 server.</td>
</tr>
<tr>
<td>Router# show extended channel tn3270-server pu client-name</td>
<td>Displays configuration parameters for a PU and all the LUs currently attached to the PU, with the client machine name substituted for the client IP address.</td>
</tr>
</tbody>
</table>

Monitoring Inverse DNS Nailing

To monitor the status of the Inverse DNS Nailing enhancement, use the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show extended channel tn3270-server client-name</td>
<td>Displays information about all connected clients with a specific machine name.</td>
</tr>
<tr>
<td>Router# show extended channel tn3270-server nailed-domain</td>
<td>Lists all nailing statements with a specific nailed-domain name.</td>
</tr>
<tr>
<td>Router# show extended channel tn3270-server nailed-name</td>
<td>Lists all nailing statements with a specific nailed-machine name.</td>
</tr>
<tr>
<td>Router# show extended channel tn3270-server pu client-name</td>
<td>Displays configuration parameters for a PU and all the LUs currently attached to the PU, with the client machine name substituted for the client IP address.</td>
</tr>
</tbody>
</table>

Shutting Down the TN3270 Server and Its Entities

To shut down the entire TN3270 server or to shut down individual TN3270 server entities, use the shutdown command in the appropriate configuration mode. The shutdown command is available in multiple configuration modes, including interface configuration mode for the CMCC adapter. This support allows you to have varying levels of control for different configurable entities.

For TN3270 server configurations, you can use the shutdown command in the following command modes:

- TN3270 server configuration mode—Shuts down the entire TN3270 server function.
- PU configuration mode—Shuts down an individual PU entity within the TN3270 server.
- DLUR configuration mode—Shuts down the whole DLUR subsystem within the TN3270 server.
- DLUR PU configuration mode—Shuts down an individual PU within the SNA session switch configuration in the TN3270 server.
- DLUR SAP configuration mode—Shuts down the local SAP and its associated links within the SNA session switch configuration.
Listen-point configuration mode—Shuts down a listen point and all of its associated configuration entities.

Listen-point PU configuration mode—Shuts down an individual PU within the listen point configuration.

To shut down the TN3270 server or a specific entity within the TN3270 server configuration, use the following command in the appropriate configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# shutdown</td>
<td>Shuts down the entities corresponding to the configuration level in which the <code>shutdown</code> command is entered.</td>
</tr>
</tbody>
</table>

TN3270 Server Configuration Examples

This section provides examples of router configurations for the TN3270 server. It provides LU pooling configuration examples with DLUR and with direct PU and legacy configuration examples without LU pooling:

- Basic Configuration Example, page 63
- Listen-Point Direct PU Configuration Example, page 64
- Listen-Point DLUR PU Configuration Example, page 64
- LU Pooling Configuration Example, page 65
- TN3270 Server Configuration Without LU Pooling Example, page 68
- TN3270 DLUR Configuration With CMPC Host Connection Example, page 70
- Removing LU Nailing Definitions Example, page 70
- TN3270 Server DLUR Using CMPC Example, page 72
- Dynamic LU Naming Example, page 74
- Inverse DNS Nailing Examples, page 75
- SSL Encryption Support Examples, page 77

Note: The first three configuration examples in this section apply only to users who are already using TN3270.

Basic Configuration Example

The following example shows a router with a legacy TN3270 server configuration and PU specification prior to LU pooling and listen-point configuration support:

```
tn3270-server
pu PU1 94223456 10.10.10.1 tok 1 08
tcp-port 40
keepalive 10
```

The following example shows the same router with a later TN3270 server configuration that replaces the existing configuration and uses the `listen-point` command to accomplish LU pooling. The `listen-point` command was first introduced in Cisco IOS Release 11.2(18)BC.

```
tn3270-server
```
listen-point 10.10.10.1 tcp-port 40
 pu PU1 94223456 tok 1 08
 keepalive 10

Note
In the new configuration, the IP address is not configured in the PU. Instead, the IP address is configured as a listen point and the PU is configured within the scope of the listen point. The tcp-port command is not configured within the scope of the PU, instead it is specified with the listen-point command.

Listen-Point Direct PU Configuration Example

The following example shows a router with a legacy TN3270 server configuration that contains different PUs configured with the same IP addresses:

```
tn3270-server
  pu PU1 94201231 10.10.10.2 tok 1 10
  pu PU2 94201232 10.10.10.3 tok 1 12
  pu PU3 94201234 10.10.10.3 tok 1 14
  pu PU4 94201235 10.10.10.4 tok 1 16
  tcp-port 40
  pu PU5 94201236 10.10.10.4 tok 2 08
```

The following example shows the same router replaced with a later TN3270 server configuration that uses the listen-point command introduced in Cisco IOS Release 11.2(18)BC:

```
tn3270-server
  listen-point 10.10.10.2
  pu PU1 94201231 tok 1 10
  listen-point 10.10.10.3
  pu PU2 94201232 tok 1 12
  pu PU3 94201234 tok 1 14
  listen-point 10.10.10.4
  pu PU5 94201236 tok 2 08
  listen-point 10.10.10.4 tcp-port 40
  pu PU4 94201235 tok 1 16
```

In this example, PU2 and PU3 are grouped into one listen point because they have the same IP address. Note that even though PU4’s IP address is identical to PU5’s IP address, they are not configured within the same listen point because the listen point indicates a unique IP address and TCP port pair. If you do not specify the TCP port, the default port value is 23.

Listen-Point DLUR PU Configuration Example

The following example shows a router with a legacy TN3270 server configuration for DLUR:

```
ten3270-server
dlur NETA.RTR1 NETA.HOST
dlus-backup NETA.HOST
  lsap token-adapter 15 08
  link MVS2TN  rmac 4000.b0ca.0016
  pu PU1 017ABCDE 10.10.10.6
```

The following example shows the same router replaced with a later TN3270 server configuration that uses the new listen-point command introduced in Cisco IOS Release 11.2(18)BC:

```
ten3270-server
dlur NETA.RTR1 NETA.HOST
```
dlus-backup NETA.HOST
lsap token-adapter 15 08
link MVS2TN rmac 4000.b0ca.0016
listen-point 10.10.10.6
pu PU1 017ABCDE dlur

In this example, the PU is not configured within the scope of DLUR. Instead the PU is configured within the listen-point scope. The keyword dlur differentiates the listen-point direct PU from the listen-point DLUR PU. Note that the DLUR configuration must be completed before PU1 is configured.

Any siftdown commands configured within the scope of listen point are automatically inherited by the PUs that are configured within the scope of that listen point. To override the siftdown configurations, you can explicitly configure the siftdown configuration commands within the scope of the listen-point PU.

LU Pooling Configuration Example

Figure 7 shows a router running the TN3270 server (with DLUR PUs) and its LU pooling configuration.

Figure 7 TN3270 Server Using LU Pooling

To understand how LUs are allocated for clients that are nailed to pools in the TN3270 server, consider the router configuration for PU2 on the following pages, and assume that cluster 1 for PCPOOL has no LUs currently assigned to clients.

For a PC client with IP address 20.40.34.1, the TN3270 server reserves LUs 201–205 for cluster 1 of the PCPOOL. PCPOOL is defined with a cluster layout of “4s1p” for a total of 5 LUs (*Figure 9*). Because the cluster 1 LUs are reserved, a second PC client with IP address 20.40.34.7 (also nailed to the PCPOOL) is given LUs 206 to 210 for cluster 2 of the PCPOOL (provided that cluster 2 is the next available cluster without LUs currently allocated).

Next, consider that a total of 4 clients with IP address 20.40.34.1 have connected with a request for a screen LU. These clients are allocated LUs 201 to 204 (cluster 1) because according to the cluster definition “4s1p”, the first 4 LUs are screen LUs. According to the cluster definition the last (5th) LU is a printer LU.

This means that cluster 1 is fully allocated for screen LUs. In this example, the next client with IP address 20.40.34.1 that connects with a request for a screen LU reserves the next available cluster, with LUs 211 to 215. This client is allocated LU 211, which is a screen LU.
The first client with IP address 20.40.34.1 to request a printer LU from the TN3270 server is allocated LU 205. LU 205 is the first available printer LU in the first cluster of reserved LUs for IP address 20.40.34.1.

Clients that connect with a request for a specific pool but that are not nailed to that pool are allocated an LU from the generic pool. In this example, an available LU in the range 251 to 255 is allocated.

The following router configuration shows an example of commands used to define the TN3270 server with LU pools.

Router Configuration

logging buffered

! logs Cisco IOS software messages to the internal buffer using the default
! buffer size for the router platform

interface Channel 6/1
no ip address
no keepalive
csna E160 40
!
interface Channel 6/2
ip address 172.18.4.17 255.255.255.248
no keepalive
lan TokenRing 15
source-bridge 15 1 500
adapter 15 4000.b0ca.0015
lan TokenRing 16
source-bridge 16 1 500
adapter 16 4000.b0ca.0016
tn3270-server
pool NEREGION cluster layout 1a
pool PCPOOL cluster layout 4s1p
pool UNIXPOOL cluster layout 49s1p
dlur NETA_SHEK NETA_MVSD
lsap token-adapter 15 04
link SHE1 rmac 4000.b0ca.0016
listen-point 172.18.4.18
client ip 10.20.20.30 pool UNIXPOOL
client ip 10.20.40.0 255.255.255.0 pool PCPOOL
client ip 10.20.30.0 255.255.255.128 pool NEREGION
pu PU1 91903315 dlur
allocate lu 1 pool PCPOOL clusters 10
allocate lu 51 pool UNIXPOOL clusters 2
allocate lu 200 pool NEREGION clusters 50
!
listen-point 172.18.4.19
client ip 20.30.40.40 pool UNIXPOOL
client ip 20.40.34.0 255.255.255.0 pool PCPOOL
client ip 20.40.50.0 255.255.255.128 pool NEREGION
pu PU2 91913315 dlur
allocate lu 1 pool UNIXPOOL clusters 2
allocate lu 101 pool NEREGION clusters 100
allocate lu 201 pool PCPOOL clusters 10

Figure 8 shows cluster layouts for PU1 in the TN3270 server.
Figure 8 Cluster Layouts for PU1 in the TN3270 Server

PCPOOL
1 2 3 4 5
s s s s p
Cluster 1

46 47 48 49 50
s s s s p
Cluster 10

Cluster layout 4s1p

UNIXPOOL
51 52 53 54 55 ... 100
Cluster 1

101 102 103 104 ... 150
Cluster 2

Cluster layout 49s1p

Generic-pool LUs
151 152 153 154 155 ... 199

NEREGION
200 201 202 203 ... 250
50 Clusters

Cluster layout 1a

Generic-pool LUs
251 252 253 254 255
Figure 9 shows cluster layouts for PU2 in the TN3270 server.

TN3270 Server Configuration Without LU Pooling Example

The following configuration shows three PUs using DLUR and two more with direct connections without LU pooling.

The initial CIP configuration is as follows:

```
interface Channel2/2
ip address 10.10.20.126 255.255.255.128
no ip redirects
no ip directed-broadcast
no keepalive
lan TokenRing 0
source-bridge 223 1 2099
adapter 0 4100.cafe.0001
llc2 N1 2057
adapter 1 4100.cafe.0002
llc2 N1 2057
```

Configuration dialog to configure the TN3270 function follows:

```sh
! HOSTA is channel-attached and will open SAP 8 on adapter 0.
! HOSTB is reached via token-ring
! HOSTC is channel-attached non-APPN and will open SAP 4 on adapter 0.

! enter interface configuration mode for the virtual interface in slot 2
router(config)#int channel 2/2

! create TN3270 Server entity
router(config-if)#tn3270-server

! set server-wide defaults for PU parameters
router(cfg-tn3270)#keepalive 0
router(cfg-tn3270)#unbind-action disconnect
router(cfg-tn3270)#generic-pool permit
```
! define DLUR parameters and enter DLUR configuration mode
router(cfg-tn3270)#dlur SYD.TN3020 SYD.VMG

! create a DLUR LSAP and enter DLUR LSAP configuration mode
router(tn3270-dlur-pu)#lsap token-adapter 1

! specify the VRN name of the network containing this lsap
router(tn3270-dlur-lsap)#vrn syd.lan4

! create a link from this lsap
router(tn3270-dlur-lsap)#link hosta rmac 4100.cafe.0001 rsap 8
router(tn3270-dlur-lsap)#link hostb rmac 4000.7470.0009 rsap 4
router(tn3270-dlur-lsap)#exit
router(tn3270-dlur)#exit

! create listen-points and DLUR PUs
router(cfg-tn3270)#listen-point 10.10.20.1
router(tn3270-lpoint)#pu pu0 05d99001 dlur
router(tn3270-lpoint-pu)#exit
router(tn3270-lpoint)#pu pu1 05d99002 dlur
router(tn3270-lpoint-pu)#exit
router(tn3270-lpoint)#exit

router(cfg-tn3270)#listen-point 10.10.20.2
router(tn3270-lpoint)#pu pu2 05d99003 dlur
router(tn3270-lpoint-pu)#exit
router(tn3270-lpoint)#exit

! create direct PUs for the non-APPN Host
! note that they must use different LSAPs because they go to the same Host

router(cfg-tn3270)#listen-point 10.10.20.5
router(tn3270-lpoint)#pu pu3 05d00001 tok 1 24 rmac 4100.cafe.0001 lu-seed pu3###
router(tn3270-lpoint-pu)#exit
router(tn3270-lpoint)#pu pu4 05d00002 tok 1 28 rmac 4100.cafe.0001 lu-seed pu4###
router(tn3270-lpoint-pu)#end

The following configuration results from the initial CIP configuration and the configuration dialog:

interface Channel12/2
ip address 10.10.20.126 255.255.255.128
no ip redirects
no keepalive
lan TokenRing 0
source-bridge 223 1 2099
adapter 0 4100.cafe.0001
llc2 N1 2057
adapter 1 4100.cafe.0002
llc2 N1 2057
tn3270-server
dlur SYD.TN3020 SYD.VMG
lsap token-adapter 1
vrn SYD.LAN4
link HOSTB rmac 4000.7470.0009
link HOSTA rmac 4100.cafe.0001 rsap 08
listen-point 10.10.20.1
pu PU0 05d99001 dlur
pu PU1 05d99002 dlur
listen-point 10.10.20.2
pu PU2 05d99003 dlur
listen-point 10.10.20.5
pu PU3 05d00001 tok 1 24 rmac 4100.cafe.0001 lu-seed PU3###
pu PU4 05d00002 tok 1 28 rmac 4100.cafe.0001 lu-seed PU4###
TN3270 DLUR Configuration With CMPC Host Connection Example

The following example shows a DLUR PU with a CMPC host connection:

```
logging buffered
! logs Cisco IOS software messages to the internal buffer using the default
! buffer size for the router platform
interface Channel0/0
  no ip address
  no keepalive
cmpc C010 E5 LPAR1TG READ
cmpc C010 E6 LPAR1TG WRITE
cmpc C020 00 LPAR2TG READ
cmpc C020 01 LPAR2TG WRITE
!
interface Channel0/2
  ip address 172.18.5.1 255.255.255.224
  no keepalive
  lan TokenRing 0
    source-bridge 100 1 8
    adapter 0 4000.4040.0000 ! for cmpc
    adapter 1 4000.6060.0000 ! TN3270 server
    adapter 2 4000.7070.0000
  tn3270-server
    maximum-lus 20000 ! optional
    idle-time 64800 ! optional
    timing-mark ! optional
    tcp-port 24 ! optional
    client 10.10.10.0 255.255.255.0 lu maximum 10000 ! optional

dlur NETA.TN3270CP NETA.CPAC
dlus-backup NETA.MVS2 ! optional
preferred-NNserver NETA.CPAC ! optional
lsap token-adapter 1 04 ! TN3270 server uses cmcc adapter 1 and sap=04
  link LINK1 rmac 4000.4040.0000 rsap 08 ! link to cmpc on adapter 0
lsap token-adapter 2 04
  link LINK2 rmac 4000.7070.0000 rsap 08 ! link to cmpc on adapter 2
listen-point 172.18.5.2
  pu TNPU1 01754321 dlur
!
tg LPAR1TG llc token-adapter 0 08 rmac 4000.6060.0000 rsap 04 ! rsap optional
tg LPAR2TG llc token-adapter 2 08 rmac 4000.7070.0000 ! rsap=04 by default
```

Removing LU Nailing Definitions Example

In the following example, locaddrs 1 to 50 are reserved for all remote screen devices in the 171.69.176.0 subnet:

```
interface channel 2/2
tn3270-server
  pu BAGE4
client ip 171.69.176.28 255.255.255.0 lu 1 50
```

To remove a nailing definition, the complete range of LOCADDRES must be specified as configured. So for the example above, the following command would remove the LU nailing definition:

```
no client ip 171.69.176.28 255.255.255.0 lu 1 50
```

If an attempt is made to remove a subset of the range of configured LOCADDRES then the command is rejected:
no client ip 171.69.176.28 255.255.255.0 lu 1 20
% client ip 171.69.176.28 lu not matched with configured lu 1 50
TN3270 Server DLUR Using CMPC Example

Figure 10 shows the physical components for this example. Figure 11 shows the various parameters for each component in the configuration example.

In Figure 10, the following activity occurs:

- The TN3270 server on the CMCC adapter takes on the role of an APPN EN running DLUR.
- The APPN NN in VTAM communicates with the CMPC driver over the channel.
- The CMPC driver on the CMCC adapter passes the data to the LLC2 stack on the CIP via a fast-path loopback driver to the TN3270 server on the CIP.
- The TN3270 server converts the 3270 data stream to a TN3270 data stream and forwards the packets to the IP TN3270 clients in the IP network.

The TN3270 server does not have to be in the same CMCC adapter as the CMPC driver.
The following configurations apply to the example shown in Figure 11.

mvs2trle

```
MVS2TRLE VBUILD TYPE=TRL
MVS2TRLE TRL E LNCTL=MPC, MAXBFU=8, REPLYTO=3.0,
READ=(2F8),
WRITE=(2F9)
```

mvs2lne

```
MVS2LNE VBUILD TYPE=LOCAL
MVS2LNE PU TRLE=MVS2TRLE,
ISTATUS=ACTIVE,
XID=YES, CONNTYPE=APPN, CPCP=YES
```

swlagtn

```
SWLAGTN VBUILD TYPE=SWNET, MAXGRP=10, MAXNO=10, MAXDLUR=10
LAGTNPU PU ADDR=01, MAXPATH=1, IDBLK=017, IDNUM=RFEED,
PUTYPE=2, MAXDATA=4096,
LUGROUP=TNGRP1, LUSEED=LAGLU##
```

tngrp1

```
TNGRP1E VBUILD TYPE=LUGROUP
TNGRP1 LUGROUP
DYNAMIC LU DLOGMOD=D4C32XX3, X
MODETAB=ISTINCLM, USSTAB=USSTCPIP, SSCPFM=USS3270
```

Additional Router Configuration for Router Honduras

```
logging buffered
! logs Cisco IOS software messages to the internal buffer using the default
```
TN3270 Server Configuration Examples

Configuring the TN3270 Server

TN3270 Server Configuration Examples

! buffer size for the router platform
interface Channel6/1
 cmpc C020 F8 CONFIGE READ
 cmpc C020 F9 CONFIGE WRITE
!
interface Channel6/2
 lan TokenRing 0
 source-bridge 88 3 100
 adapter 5 4000.eeee.eeee
 adapter 6 4000.0000.eeee
 tn3270-server
 dlur NETA.HOND327S NETA.MVS2
 lsap token-adapter 6 54
 listen-point 172.18.1.218
 pu TNPU 017EFEED dlur
 tg CONFIGE llc token-adapter 6 50 rmac 4000.eeee.eeee rsap 54

Activate the Configuration

On the MVS system, use the following commands to activate the configuration:

v net,act,id=mvstrle,update=add
v net,act,id=mvsline
v net,act,id=swhondpu
v net,act,id=swhagtn
v net,act,id=swhondcp
v net,act,id=tngrp1

Dynamic LU Naming Example

Router configuration

The following router configuration is an example of the TN3270 server configured with LU pooling. A listen-point PU is configured to define DLUR PUs using dynamic LU naming. Note the following lines in the configuration:

- The lu deletion command must be configured with the named option.
- The PU pu1 is defined with lu-seed abc##pqr. Using hexadecimal numbers for ##, the LU names for this PU are ABC01PQR, ABC02PQR, ABC03PQR... up to ABCFFPQR. Similarly, the PU pu2 is defined with lu-seed pqr###. Using decimal numbers for ###, the LU names for this PU are PQR001, PQR002... up to PQR255.

The LUs ABC01PQR through ABC32PQR and PQR100 through PQR199 are allocated to the pool SIMPLE. The LUs ABC64PQR through ABC96PQR and PQR010 through PQR035 are allocated to the pool PCPOOL. The remaining LUs are in the generic pool.

tn3270-server
 pool simple cluster layout 1s
 pool pcpool cluster layout 4s1p
 lu deletion named
 dlur neta.shek neta.mvsd
 lsap tok 15 04
 link she1 rmac 4000.b0ca.0016
 listen-point 172.18.4.18
 pu pu1 91903315 tok 16 08 lu-seed abc##pqr
 tg CONFIGE llc token-adapter 6 50 rmac 4000.eeee.eeee rsap 54

! The following statement allocates LUs ABC01PQR through ABC32PQR to the pool named simple.
!
allocate lu 1 pool simple clusters 50
The following statement allocates LUs ABC64PQR through ABC96PQR to the pool named pcpool.
! allocate lu 100 pool pcpool clusters 10
pu pu2 91913315 dlur lu-seed pqr###
! The following statement allocates LUs PQR010 through PQR035 to the pool named pcpool.
! allocate lu 10 pool pcpool clusters 5
! The following statement allocates LUs PQR100 through PQR199 to the pool named simple.
! allocate lu 100 pool simple clusters 100

Mainframe configuration

The following mainframe configuration is an example of the VTAM configuration that can be used if the TN3270 server is configured with the Dynamic LU Naming enhancement.

Note

PUs are defined with the LUGROUP command. It is not necessary to specify an LUSEED. If the LUSEED operand is specified, it is ignored.

Note

You must specify the INCLUD0E=YES parameter on VTAM so that the TN3270 server receives the LU name generated by the VTAM exit.

```
SWN72022 VBUILD TYPE=SNNET
PU1 PU ADDR=01, X
PUTYPE=2, X
IDBLK=919, X
IDNUM=03315, X
INCLUD0E=YES, X
LUGROUP=MYLUS
 *
PU2 PU ADDR=01, X
PUTYPE=2, X
IDBLK=919, X
IDNUM=13315, X
INCLUD0E=YES, X
LUGROUP=MYLUS
```

Inverse DNS Nailing Examples

Nailing Clients to Pools by Device Name, Domain Name, and Domain ID using a Domain ID

The following router configuration shows an example of commands used to define the TN3270 server with LU pools using inverse DNS nailing:

```
tn3270-server
domain-id 2 .cisco.com
domain-id 20 .yahoo.com
pool GENERAL cluster layout 4s1p
pool TEST cluster layout 4s1p
listen-point 172.18.5.168
pu T240CA 91922363 token-adapter 31 12 rmac 4000.4000.0001
allocate lu 1 pool GENERAL clusters 1
client name lucy49.cisco.com pool GENERAL
client name george 20 pool TEST
```
client name arthur 20 pool TEST
client name tyson 20 pool TEST
client name daisy 20 pool TEST
listen-point 172.18.5.169
pu T240CB 91922364 token-adapter 31 12 rmac 4000.4000.0002
allocate lu 1 pool TEST clusters 50
client domain-name cisco.com pool GENERAL
client domain-id 20 pool TEST

Nailing Clients to Pools by IP Address

The following router configuration shows an example of commands used to define the TN3270 server with LU pools using inverse DNS nailing. In this example, the client pool command is configured with the ip keyword. The command nails the client at IP address 10.1.2.3 with an IP mask of 255.255.255.0 to the pool named OMAHA:

tn3270-server
 pool OMAHA cluster layout 10s1p
 listen-point 172.18.4.18
 client ip 10.1.2.3 255.255.255.0 pool OMAHA

Nailing Clients to Pools by Device Name

The following router configuration shows an example of commands used to define the TN3270 server with LU pools using inverse DNS nailing. In this example the client pool command is configured with the name keyword. The command nails the client at device name george-isdn29.cisco.com to the pool named GENERAL:

tn3270-server
 pool GENERAL cluster layout 4s1p
 listen-point 172.18.5.168
 pu T240CA 91922363 token-adapter 31 12 rmac 4000.4000.0001
 allocate lu 1 pool GENERAL clusters 1
 client name george-isdn29.cisco.com pool GENERAL

Nailing Clients to Pools by Device Name using a Domain ID

The following router configuration shows an example of commands used to define the TN3270 server with LU pools using inverse DNS nailing. In this example the client pool command is configured with the name keyword and the optional DNS-domain-identifier argument. The command nails the client at device named lucy-isdn49.cisco.com to the pool named GENERAL:

tn3270-server
 domain-id 23 .cisco.com
 pool GENERAL cluster layout 4s1p
 listen-point 172.18.5.168
 pu T240CA 91922363 token-adapter 31 12 rmac 4000.4000.0001
 allocate lu 1 pool GENERAL clusters 1
 client name lucy-isdn49 23 pool GENERAL

Nailing Clients to Pools by Domain Name

The following router configuration shows an example of commands used to define the TN3270 server with LU pools using inverse DNS nailing. In this example the client pool command is configured with the domain-name keyword. The command nails any client at domain name .cisco.com to the pool named GENERAL:

tn3270-server
 pool GENERAL cluster layout 4s1p
 listen-point 172.18.5.168
 pu T240CA 91922363 token-adapter 31 12 rmac 4000.4000.0001
 allocate lu 1 pool GENERAL clusters 1
 client domain-name .cisco.com pool GENERAL
Nailing Clients to Pools by Domain Name Using a Domain ID

The following router configuration shows an example of commands used to define the TN3270 server with LU pools using inverse DNS nailing. In this example the client pool command is configured with the domain-id keyword. The command nails any client at domain name .cisco.com to the pool named GENERAL:

```
tn3270-server
domain-id 23 .cisco.com
  pool GENERAL cluster layout 4s1p
  listen-point 172.18.5.168
  pu T240CA  91922363 token-adapter 31 12 rmac 4000.4000.0001
  allocate lu 1 pool GENERAL clusters 1
client domain-id 23 pool GENERAL
```

SSL Encryption Support Examples

Mainframe configuration

The following mainframe configuration is an example of the VTAM configuration that can be used if the SSL Encryption Support enhancement is configured:

```
example PU definition:

* BMPU4 PU ADDR=01,
  PUTYPE=2,
  LOGAPPL=NETTMVSD,
  LUGROUP=BMCL13, LUSEED=BMPU4###,
  PACING=8, VPACING=8,
  IDBLK=919,
  IDNUM=36821
*

* BMPU5 PU ADDR=01,
  PUTYPE=2,
  LOGAPPL=NETTMVSD,
  LUGROUP=BMCL13, LUSEED=BMPU5###,
  PACING=8, VPACING=8,
  IDBLK=919,
  IDNUM=46821
*

* BMPU6 PU ADDR=01,
  PUTYPE=2,
  LOGAPPL=NETTMVSD,
  USSTAB=USSTCPMF,
  DLOGMOD=D4C32782,
  PACING=8, VPACING=8,
  IDBLK=919,
  IDNUM=56821
*

* BMPU6001 LU LOCADDR=01
  BMPU6002 LU LOCADDR=02
  BMPU6003 LU LOCADDR=03
  BMPU6004 LU LOCADDR=04
  BMPU6005 LU LOCADDR=05
  BMPU6006 LU LOCADDR=06
  BMPU6007 LU LOCADDR=07
  BMPU6008 LU LOCADDR=08
  BMPU6009 LU LOCADDR=09
  BMPU6010 LU LOCADDR=10
  BMPU6255 LU LOCADDR=255
*```
### Simple SSL Encryption Support Example

The following router configuration shows an example of commands used to define a simple configuration of the SSL Encryption Support enhancement. In this configuration, listen-point 172.18.5.187 is a secured listen-point using security profile cert40. Note that the security profile is using all of the default parameters.

```
interface Channel3/2
 ip address 172.18.5.185 255.255.255.248
 no keepalive
 lan TokenRing 15
 source-bridge 15 1 500
 adapter 15 4000.b0ca.0015
 lan TokenRing 16
 source-bridge 16 1 500
 adapter 16 4000.b0ca.0016
 tn3270-server
 security
 profile CERT40 SSL
 servercert slot0:verisign187.pem
 listen-point 172.18.5.187
 sec-profile CERT40
 pu BMPU5 91946821 token-adapter 15 08 rmac 4000.b0ca.0016
```

### Complex SSL Encryption Support Example

The following router configuration shows an example of commands used to define a more complex configuration of the SSL Encryption Support enhancement:

- Listen-point 172.18.5.186 is a non-secured listen point.
- Listen-point 172.18.5.187 is a secured listen-point using security-profile cert128 with the encryption order specified and a keylen of 128 which implies strong (domestic) encryption.
- Listen-point 172.18.5.188 is a secured listen-point using security profile cert40 with default security-profile parameters.

```
interface Channel3/2
 ip address 172.18.5.185 255.255.255.248
 no keepalive
 lan TokenRing 15
 source-bridge 15 1 500
 adapter 15 4000.b0ca.0015
 lan TokenRing 16
 source-bridge 16 1 500
 adapter 16 4000.b0ca.0016
```
tn3270-server
security
  profile CERT128 SSL
    servercert slot0:verisign128.pem
    encryptorder RC4 RC2 DES
    keylen 128
  profile CERT40 SSL
    servercert slot0:coach188.pem
listen-point 172.18.5.186
  pu BMPU4 91946821 token-adapter 15 04 rmac 4000.b0ca.0016
listen-point 172.18.5.187
  sec-profile CERT128
    pu BMPU5 91956821 token-adapter 15 08 rmac 4000.b0ca.0016
listen-point 172.18.5.188
  sec-profile CERT40
    pu BMPU6 91966821 token-adapter 15 0C rmac 4000.b0ca.0016

CCDE, CCENT, CCSI, Cisco Eos, Cisco HealthPresence, Cisco IronPort, the Cisco logo, Cisco Nurse Connect, Cisco Pulse, Cisco SensorBase, Cisco StackPower, Cisco StadiumVision, Cisco TelePresence, Cisco Unified Computing System, Cisco WebEx, DCE, Flip Channels, Flip for Good, Flip Mino, Flipshare (Design), Flip Ultra, Flip Video, Flip Video (Design), Instant Broadband, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn, Cisco Capital, Cisco Capital (Design), Cisco-Financed (Stylized), Cisco Store, Flip Gift Card, and One Million Acts of Green are service marks; and Access Registrar, Aironet, AllTouch, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Lumin, Cisco Nexus, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, Continuum, EtherFast, EtherSwitch, Event Center, Explorer, Follow Me Browsing, GainMaker, iLYNX, IOS, iPhone, IronPort, the IronPort logo, Laser Link, LightStream, Linksys, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, PCNow, PIX, PowerKEY, PowerPanels, PowerTV, PowerTV (Design), PowerVu, Prisma, ProConnect, ROSA, SenderBase, SMARTnet, Spectrum Expert, StackWise, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0910R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.