Cisco GGSN Release 6.0 Configuration Guide

Cisco IOS Release 12.4(2)XB10
Cisco 7200 and Catalyst 6500/Cisco 7600 Platforms

Last updated July 2008
CONTENTS

CHAPTER 1
Overview of GPRS and UMTS 1-1
 Overview 1-1
 Benefits 1-5
 New Features in Cisco IOS Release 12.4(2)XB 1-7

CHAPTER 2
Planning to Configure the GGSN 2-1
 Supported Platforms 2-1
 Prerequisites 2-1
 Before You Begin 2-1
 Cisco 7200 Series Platform Prerequisites 2-2
 Catalyst 6500/Cisco 7600 Series Platform Prerequisites 2-2
 Hardware and Software 2-2
 Required Base Configuration 2-5
 Restrictions 2-11
 Supported Standards, MIBs, and RFCs 2-11
 Related Documents 2-13

CHAPTER 3
Configuring GGSN GTP Services 3-1
 GTP Overview 3-1
 Configuring GGSN Services 3-2
 GGSN Services Configuration Task List 3-2
 Enabling GGSN Services 3-3
 Creating a Loopback Interface 3-3
 Creating a Virtual Template Interface for GGSN 3-4
 Enabling CEF Switching 3-4
 Configuring the GGSN Compliance Baseline 3-5
 Configuring Echo Timing on a GGSN 3-6
 Overview of the Echo Timing on the GGSN 3-6
 Overview of the Default Echo Timer 3-6
 Overview of the Dynamic Echo Timer 3-8
Echo Timing Configuration Task List 3-11
 Customizing the Default Echo Timer 3-12
 Configuring the Dynamic Echo Timer 3-12
 Disabling the Echo Timer 3-13
 Verifying the Echo Timing Configuration 3-13
 Verifying Echo Timing Parameters 3-13
 Verifying the Dynamic Echo Timer by GTP Path 3-14

Customizing the GGSN Configuration 3-15
 Configuring GTP Signaling Options 3-16
 Configuring Other GTP Signaling Options 3-16
 Configuring the Maximum Number of PDP Contexts on the GGSN 3-17
 Configuring the Maximum Number of PDP Contexts When Using DFP with Load Balancing 3-18

Controlling Sessions on the GGSN 3-18
 Overview of the Session Idle Timer and the Absolute Session Timer on the GGSN 3-18
 Configuring the Session Idle Timer 3-19
 Configuring the Absolute Session Timer 3-21
 Verifying the Timer Configuration 3-22

Configuring Flow Control for GTP Error Messages 3-23

Using the Service-Mode Function 3-24
 Configuring Global Maintenance Mode 3-24
 Configuring APN Maintenance Mode 3-25
 Configuring Charging Maintenance Mode 3-27

Monitoring and Maintaining GTP on the GGSN 3-28

Configuration Examples 3-29
 GGSN Configuration Example 3-29
 Dynamic Echo Timer Configuration Example 3-30

CHAPTER 4 Configuring GGSN GTP Session Redundancy 4-1

GTP Session Redundancy Overview 4-1
 Prerequisites 4-2
 Limitations and Restrictions 4-3

Enabling GTP Session Redundancy 4-4
 Configuring the GTP Session Redundancy Inter-Device Infrastructure 4-4
 Configuring HSRP 4-4
 Enabling Inter-Device Redundancy 4-6
 Configuring the Inter-Device Communication Transport 4-7
 Configuring GTP-SR on the GGSN 4-9

Disabling GTP Session Redundancy 4-9
 Configuring Charging-Related Synchronization Parameters 4-10
Monitoring and Maintaining GTP-SR 4-12
Upgrading GGSN Images in a GTP-SR Environment 4-12
Configuration Examples 4-12
 Primary Supervisor Configuration Example 4-13
 Standby Supervisor Configuration Example 4-16
 Primary GGSN Configuration Example 4-18
 Secondary GGSN Configuration Example 4-20

CHAPTER 5
Configuring Charging on the GGSN 5-1
Configuring an Interface to the Charging Gateway 5-1
 Verifying Interface Configuration to the Charging Gateway 5-3
Configuring the Default Charging Gateway 5-5
 Configuring the GGSN to Switchover to the Highest Priority Charging Gateway 5-6
 Changing the Default Charging Gateway 5-6
Configuring the GGSN Memory Threshold 5-6
Configuring the Transport Protocol for the Charging Gateway 5-7
 Configuring TCP as the Charging Gateway Path Protocol 5-7
 Configuring UDP as the Charging Gateway Path Protocol 5-7
Configuring the Charging Release 5-8
Configuring Charging for Roamers 5-8
 Configuring PLMN IP Address Ranges 5-9
 Enabling Charging for Roamers 5-10
Customizing the Charging Gateway 5-10
Disabling Charging Processing 5-13
Using Charging Profiles 5-14
 Configuring a Charging Profile 5-14
 Defining the Charging Characteristics and Triggers of the Charging Profile 5-16
 Applying a Default Charging Profile to an APN 5-17
 Applying a Global Default Charging Profile 5-17
 Configuring How the GGSN Handles PDPs with Unmatched Charging Profiles 5-17
Configuring G-CDR Backup and Auto-Retrieval using a PSD 5-18
Monitoring and Maintaining Charging on the GGSN 5-20
Configuration Examples 5-21
 Global Charging Configuration 5-21
 Charging Profiles Configuration 5-23
CHAPTER 6
Configuring Enhanced Service-Aware Billing 6-1

Service-Aware GGSN Overview 6-1
Service-Aware GGSN Data Flows 6-3
Prerequisites 6-4
Limitations and Restrictions 6-5

Configuring a Service-Aware GGSN 6-5
Enabling Service-Aware Billing Support 6-5
Enabling Enhanced G-CDRs 6-6
Configuring the Cisco CSG/Quota Server Interface Support 6-6
 Configuring a Cisco CSG Server Group 6-7
 Configuring the Quota Server Process on the GGSN 6-7
 Advertising the Next Hop Address For Downlink Traffic 6-9
 Configuring the GGSN to use the Cisco CSG as an Authentication and Accounting Proxy 6-9

Monitoring and Maintaining 6-10
Configuring Diameter/DCCA Interface Support 6-11
 Configuring the Diameter Base 6-12
 Configuring the DCCA Client Process on the GGSN 6-19
 Enabling Support for Vendor-Specific AVPs in DCCA Messages 6-21

Configuring the Enhanced Billing Parameters in Charging Profiles 6-22
 Specifying a Default Rulebase ID 6-22
 Specifying a DCCA Client Profile to Use for Online Billing 6-23
 Suppressing CDRs for Prepaid Users 6-23
 Configuring the Time and Volume Thresholds for Postpaid Users 6-23
 Configuring the Validity Timer for Postpaid Users 6-24

GTP-Session Redundancy for Service-Aware PDPs Overview 6-24
Configuring OCS Address Selection Support 6-25

Configuration Example 6-26

CHAPTER 7
Configuring Network Access to the GGSN 7-1

Configuring an Interface to the SGSN 7-1
 Verifying the Interface Configuration to the SGSN 7-3

Configuring a Route to the SGSN 7-5
 Configuring a Static Route to the SGSN 7-6
 Configuring OSPF 7-6
 Verifying the Route to the SGSN 7-7
Contents

Configuring Access Points on the GGSN 7-10
 Overview of Access Points 7-11
 Description of Access Points in a GPRS/UMTS Network 7-11
 Access Point Implementation on the Cisco GGSN 7-12
 Basic Access Point Configuration Task List 7-13
 Configuring the GPRS Access Point List on the GGSN 7-13
 Creating an Access Point and Specifying Its Type on the GGSN 7-13
Configuring Real Access Points on the GGSN 7-14
 PDN Access Configuration Task List 7-15
 VPN Access Using VRF Configuration Task Lists 7-16
 Configuring Additional Real Access Point Options 7-24
 Verifying the Real Access Point Configuration 7-30
Configuring Virtual Access Points on the GGSN 7-36
 Overview of the Virtual Access Point Feature 7-36
 Virtual Access Point Configuration Task List 7-38
 Verifying the Virtual Access Point Configuration 7-40
Configuring Access to External Support Servers 7-45
Blocking Access to the GGSN by Foreign Mobile Stations 7-45
 Overview of Blocking Foreign Mobile Stations 7-45
 Blocking Foreign Mobile Stations Configuration Task List 7-45
 Configuring the MCC and MNC Values 7-45
 Enabling Blocking of Foreign Mobile Stations on the GGSN 7-46
 Verifying the Blocking of Foreign Mobile Stations Configuration 7-46
Controlling Access to the GGSN by MSs with Duplicate IP Addresses 7-48
Configuring Routing Behind the Mobile Station on an APN 7-48
 Enabling Routing Behind the Mobile Station 7-49
 Verifying the Routing Behind the Mobile Station Configuration 7-49
Configuring Proxy-CSCF Discovery Support on an APN 7-52
 Creating P-CSCF Server Groups on the GGSN 7-52
 Specifying a P-CSCF Server Groups for an APN 7-52
 Verifying the P-CSCF Discovery Configuration 7-54
Configuration Examples 7-54
 Static Route to SGSN Example 7-54
 Access Point List Configuration Example 7-56
 VRF Tunnel Configuration Example 7-56
 Virtual APN Configuration Example 7-59
 Blocking Access by Foreign Mobile Stations Configuration Example 7-62
 Duplicate IP Address Protection Configuration Example 7-62
 P-CSCF Discovery Configuration Example 7-63
CHAPTER 8 Configuring PPP Support on the GGSN 8-1

Overview of PPP Support on the GGSN 8-1

Configuring GTP-PPP Termination on the GGSN 8-3

Overview of GTP-PPP Termination on the GGSN 8-3

Benefits 8-3

Preparing to Configure PPP over GTP on the GGSN 8-4

GTP-PPP Termination Configuration Task List 8-4

Configuring a Loopback Interface 8-5

Configuring a PPP Virtual Template Interface 8-5

Associating the Virtual Template Interface for PPP on the GGSN 8-7

Configuring GTP-PPP with L2TP on the GGSN 8-7

Overview of GTP-PPP with L2TP on the GGSN 8-7

Benefits 8-8

Restrictions 8-8

GTP-PPP With L2TP Configuration Task List 8-8

Configuring the GGSN as a LAC 8-9

Configuring AAA Services for L2TP Support 8-10

Configuring a Loopback Interface 8-12

Configuring a PPP Virtual Template Interface 8-12

Associating the Virtual Template Interface for PPP on the GGSN 8-13

Configuring GTP-PPP Regeneration on the GGSN 8-14

Overview of GTP-PPP Regeneration on the GGSN 8-14

Restrictions 8-14

GTP-PPP Regeneration Configuration Task List 8-15

Configuring the GGSN as a LAC 8-15

Configuring AAA Services for L2TP Support 8-17

Configuring a PPP Virtual Template Interface 8-18

Associating the Virtual Template Interface for PPP Regeneration on the GGSN 8-20

Configuring PPP Regeneration at an Access Point 8-20

Monitoring and Maintaining PPP on the GGSN 8-21

Configuration Examples 8-22

GTP-PPP Termination on the GGSN Configuration Examples 8-22

GTP-PPP–Over–L2TP Configuration Example 8-24

GTP-PPP Regeneration Configuration Example 8-25

AAA Services for L2TP Configuration Example 8-27
CHAPTER 9 Configuring QoS on the GGSN 9-1

Overview of QoS Support on the GGSN 9-1

Configuring GPRS QoS on the GGSN 9-2

Configuring Canonical QoS on the GGSN 9-2

Overview of Canonical QoS 9-2

Canonical QoS Configuration Task List 9-4

Verifying the Canonical QoS Configuration 9-7

Configuring Delay QoS on the GGSN 9-8

Overview of Delay QoS 9-8

Delay QoS Configuration Task List 9-9

Verifying the Delay QoS Configuration 9-10

Configuring UMTS QoS on the GGSN 9-12

Overview of UMTS QoS 9-12

Configuring UMTS QoS Task Lists 9-13

Enabling UMTS QoS Mapping on the GGSN 9-14

Mapping UMTS QoS Traffic Classes to a DiffServ PHB Group 9-14

Assigning a DSCP to a DiffServ PHB Group 9-15

Configuring the DSCP in the Subscriber Datagram 9-17

Configuring the Catalyst 6500 / Cisco 7609 Platform GGSN UMTS QoS Requirements 9-18

Verifying the UMTS QoS Configuration 9-21

Configuring the GGSN Default QoS as Requested QoS 9-25

Configuring Call Admission Control on the GGSN 9-25

Configuring Maximum QoS Authorization 9-26

Configuring a CAC Maximum QoS Policy 9-27

Enabling the CAC Maximum QoS Policy Function and Attaching a Policy to an APN 9-28

Configuring Bandwidth Management 9-28

Configuring a CAC Bandwidth Pool 9-29

Enabling the CAC Bandwidth Management Function and Applying a Bandwidth Pool to an APN 9-29

Configuring Per-PDP Policing 9-30

Restrictions 9-31

Per-PDP Policing Configuration Task List 9-31

Creating a Class Map with PDP Flows as the Match Criterion 9-32

Creating a Policy Map and Configuring Traffic Policing 9-32

Attaching the Policy to an APN 9-33

Resetting APN Policing Statistics 9-34

Monitoring and Maintaining QoS on the GGSN 9-34

show Command Summary 9-34

Monitoring GPRS QoS 9-35
Displaying GPRS QoS Information for a PDP Context 9-35
Displaying GPRS QoS Status on the GGSN 9-38
Displaying PDP Contexts by GPRS QoS Canonical QoS Precedence Class 9-39
Displaying GPRS QoS Delay QoS Status on the GGSN 9-39
Displaying PDP Contexts by GPRS QoS Delay QoS Class 9-40
Monitoring UMTS QoS 9-40
Displaying UMTS QoS Status on the GGSN 9-40
Displaying UMTS QoS Information for a PDP Context 9-41

Configuration Examples 9-42
Canonical QoS Configuration Examples 9-42
Delay QoS Configuration Example 9-44
UMTS QoS Configuration Examples 9-45
CAC Configuration Example 9-48
Per-PDP Policing Configuration Example 9-49

CHAPTER 10
Configuring Security on the GGSN 10-1
Overview of Security Support on the GGSN 10-2
AAA Server Group Support 10-2
Configuring AAA Security Globally 10-4
Configuring RADIUS Server Communication Globally 10-5
Configuring RADIUS Server Communication at the GGSN Configuration Level 10-6
Configuring Non-Transparent Access Mode 10-6
Specifying an AAA Server Group for All Access Points 10-7
Specifying an AAA Server Group for a Particular Access Point 10-8
Configuring AAA Accounting Services at an Access Point 10-8
Configuring Additional RADIUS Services 10-10
Configuring RADIUS Attributes in Access Requests to the RADIUS Server 10-10
Configuring the CHAP Challenge 10-11
Configuring the MSISDN IE 10-11
Configuring the NAS-Identifier 10-11
Configuring the Charging ID in the Acct-Session-ID Attribute 10-12
Configuring the MSISDN in the User-Name Attribute 10-12
Configuring the Vendor-Specific Attribute in Access Requests to the RADIUS Server 10-12
Suppressing Attributes for RADIUS Authentication 10-14
Suppressing the MSISDN Number for RADIUS Authentication 10-14
Suppressing the 3GPP-IMSI VSA Sub-Attribute for RADIUS Authentication 10-15
Suppressing the 3GPP-GPRS-QoS Profile VSA Sub-Attribute for RADIUS Authentication 10-15
Suppressing the 3GPP-GPRS-SGSN-Address VSA Sub-Attribute for RADIUS Authentication 10-16
Obtaining DNS and NetBIOS Address Information from a RADIUS Server 10-16
Configuring the RADIUS Packet of Disconnect 10-16
Configuring the GGSN to Wait for a RADIUS Response 10-18
Configuring Access to a RADIUS Server Using VRF 10-19
 Enabling AAA Globally 10-20
 Configuring a VRF-Aware Private RADIUS Server Group 10-21
 Configuring Authentication, Authorization, and Accounting Using Named Method Lists 10-22
 Configuring a VRF Routing Table 10-22
 Configuring VRF on an Interface 10-22
 Configuring VRF Under an Access Point for Access to the Private RADIUS Server 10-24
 Configuring a Route to the RADIUS Server Using VRF 10-28
Configuring IPSec Network Security 10-29
 IPSec Network Security on the Catalyst 6500/Cisco 7600 Series Platform 10-29
 Configuring IPSec Network Security on the Cisco 7200 Series Platform 10-30
 Configuring an IKE Policy 10-30
 Configuring Pre-Shared Keys 10-32
 Configuring Transform Sets 10-32
 Configuring IPSec Profiles 10-34
 Configuring Crypto Map Entries That Use IKE to Establish Security Associations 10-34
Securing the GGSN Mobile (Gn) Interface 10-36
 Configuring Address Verification 10-36
 Configuring Mobile-to-Mobile Traffic Redirection 10-37
 Rediracting All Traffic 10-37
Configuration Examples 10-38
 AAA Security Configuration Example 10-38
 RADIUS Server Global Configuration Example 10-39
 RADIUS Server Group Configuration Example 10-39
 RADIUS Response Message Configuration Example 10-41
 IPSec Configuration Examples 10-42
 IPSec Configuration using Crypto Map Entries 10-42
 IPSec Configuration using VRF and IPSec Profile 10-44
 Address Verification and Mobile-to-Mobile Traffic Redirection Example 10-45
 Access to a Private RADIUS Server Using VRF Configuration Example 10-47

CHAPTER 11 Configuring Dynamic Addressing on the GGSN 11-1
Overview of Dynamic IP Addressing on the GGSN 11-1
Configuring DHCP on the GGSN 11-2
 Configuring DHCP Server Communication Globally 11-3
 Configuring DHCP at the GGSN Global Configuration Level 11-4
Configuring a Loopback Interface 11-4
Specifying a DHCP Server for All Access Points 11-5
Specifying a DHCP Server for a Particular Access Point 11-6
Configuring a Local DHCP Server 11-8
Configuration Example 11-8
Configuring MS Addressing via Local Pools on the GGSN 11-9
Configuration Example 11-11
Configuring MS Addressing via RADIUS on the GGSN 11-11
Configuring IP Overlapping Address Pools 11-11
Configuration Examples 11-12
Defining Local Address Pooling as the Global Default 11-12
Configuring Multiple Ranges of IP Addresses into One Pool 11-12
Configuring IP Overlapping Address Pools on a GGSN on the Catalyst 6500/Cisco 7600 Platform with Supervisor II / MSFC2 Example 11-13
Configuring the NBNS and DNS Address for an APN 11-15

CHAPTER 12 Configuring Load Balancing on the GGSN 12-1
Overview of GTP Load Balancing 12-1
Overview of Cisco IOS SLB 12-2
GGSN GTP Load Balancing Support 12-2
Overview of GTP Load Balancing on the Catalyst 6500/Cisco 7600 Platform 12-3
Supported GTP Load Balancing Types 12-3
Cisco IOS SLB Algorithms Supported for GTP Load Balancing 12-5
Dynamic Feedback Protocol for Cisco IOS SLB 12-6
GTP IMSI Sticky Database 12-7
GTP SLB Restrictions 12-7
Configuring GTP Load Balancing 12-8
GTP Load Balancing Configuration Task List 12-8
Configuration Guidelines 12-8
Configuring the Cisco IOS SLB for GTP Load Balancing 12-9
Configuring a Server Farm and Real Server 12-9
Configuring a Virtual Server 12-11
Configuring a GSN Idle Timer 12-13
Configuring DFP Support 12-14
Configuring the GGSN for GTP Load Balancing 12-14
Configuring a Loopback Interface for GTP SLB 12-14
Configuring DFP Support on the GGSN 12-14
Configuring Messaging from the GGSN to the Cisco IOS SLB 12-16
Configuring Support for GGSN-IOS SLB Messaging CAC Failure Notifications 12-16
Configuring Support for GGSN-IOS SLB Messaging Delete Notifications (GTP IMSI Sticky Database Support) 12-18
Verifying the Cisco IOS SLB Configuration 12-19
Verifying the Virtual Server 12-19
Verifying the Server Farm 12-20
Verifying Cisco IOS SLB Connectivity 12-20
Monitoring and Maintaining the Cisco IOS SLB Feature 12-21
Configuration Examples 12-22
Cisco 7200 Platform Configuration Examples 12-22
Cisco IOS SLB with GTP Load Balancing Configuration Example 12-22
Cisco IOS SLB with GTP Load Balancing and NAT Example 12-27
Cisco IOS SLB with GTP Load Balancing, NAT, and GTP Cause Code Inspection Example 12-30
Catalyst 6500/Cisco 7600 Platform Configuration Example 12-31
Cisco IOS SLB Configuration Statements 12-31
GGSN1 Configuration Statements 12-33

APPENDIX A
Monitoring Notifications 35
SNMP Overview 35
MIB Description 36
SNMP Notifications 36
SNMP Versions 37
SNMPv1 and SNMPv2c 38
SNMPv3 38
SNMP Security Models and Levels 38
Requests for Comments 39
Object Identifiers 39
Related Information and Useful Links 39
TAC Information and FAQs 40
SNMP Configuration Information 40
Configuring MIB Support 40
Determining MIBs Included for Cisco IOS Releases 40
Downloading and Compiling MIBs 41
Considerations for Working with MIBs 41
Downloading MIBs 42
Compiling MIBs 42
Enabling SNMP Support 43
Enabling and Disabling SNMP Notifications 43
Enabling and Disabling GGSN Notifications via the CLI 43
Enabling and Disabling PSD-Client SNMP Notifications via the CLI 45
Enabling and Disabling GGSN and PSD-Client SNMP Notifications via SNMP 45

GGSN Notifications 45
 Global Notifications 46
 Service-Aware Billing Notifications 48
 Charging Notifications 49
 Access-Point Notifications 50
 GTP Notification 51

PSD-Client Notifications 52
 Alarm Notifications 52
 cGgsnGlobalErrorNotif 54
 cGgsnAccessPointNameNotif 55
 cGgsnPacketDataProtocolNotif 57
 CgprsCgAlarmNotif 59
 cgprsAccPtCfgNotif 61

APPENDIX B Diameter Base System Messages B-1
Overview of GPRS and UMTS

This chapter provides a brief introduction to the 2.5G general packet radio service (GPRS) and the 3G Universal Mobile Telecommunication System (UMTS) technologies and their implementation in Cisco IOS GGSN software.

This chapter includes the following sections:

- Overview, page 1-1
- Benefits, page 1-5
- New Features in Cisco IOS Release 12.4(2)XB, page 1-7

Overview

GPRS and UMTS are evolutions of the global system for mobile communication (GSM) networks. GSM is a digital cellular technology that is used worldwide, predominantly in Europe and Asia. GSM is the world’s leading standard in digital wireless communications.

GPRS is a 2.5G mobile communications technology that enables mobile wireless service providers to offer their mobile subscribers packet-based data services over GSM networks. Common applications of GPRS include the following: Internet access, intranet/corporate access, instant messaging, and multimedia messaging. GPRS was standardized by the European Telecommunications Standards Institute (ETSI), but today is standardized by the Third Generation Partnership Program (3GPP).

UMTS is a 3G mobile communications technology that provides wideband code division multiple access (CDMA) radio technology. The CDMA technology offers higher throughput, real-time services, and end-to-end quality of service (QoS), and delivers pictures, graphics, video communications, and other multimedia information as well as voice and data to mobile wireless subscribers. UMTS is standardized by the 3GPP.

The GPRS/UMTS packet core comprises two major network elements:

- Gateway GPRS support node (GGSN)—a gateway that provides mobile cell phone users access to a public data network (PDN) or specified private IP networks. The GGSN function is implemented via Cisco IOS software on the Cisco 7200 series router or on the Cisco Multi-Processor WAN Application Module (MWAM) installed in a Catalyst 6500 series switch or Cisco 7600 series Internet router. Cisco IOS GGSN Release 4.0 and later provides both the 2.5G GPRS and 3G UMTS GGSN functions.
Serving GPRS support node (SGSN) — connects the radio access network (RAN) to the GPRS/UMTS core and tunnels user sessions to the GGSN. The SGSN sends data to and receives data from mobile stations, and maintains information about the location of a mobile station (MS). The SGSN communicates directly with the MS and the GGSN. SGSN support is available from Cisco partners or other vendors.

Figure 1-1 shows the basic GPRS/UMTS network components with GGSNs implemented on Cisco 7200 series routers.

Figure 1-1 GPRS/UMTS Network Components with GGSNs Implemented on Cisco 7200 Routers
Figure 1-2 shows the network components with the GGSNs implemented on the Cisco MWAM in the Catalyst 6500/Cisco 7600 platform.

Figure 1-2
GPRS/UMTS Network Components with GGSNs Implemented on the Cisco MWAM in the Catalyst 6500 / Cisco 7600 Platform

Note that, as Figure 1-1 and Figure 1-2 show, the RAN is made up of different components for 2.5G and 3G.

In a 2.5G environment, the RAN is composed of mobile stations that connect to a base transceiver station (BTS) that connects to a base station controller (BSC). In a 3G environment, the RAN is made up of mobile stations that connect to NodeB, which connects to a radio network controller (RNC).

The RAN connects to the GPRS/UMTS core through an SGSN, which tunnels user sessions to a GGSN that acts as a gateway to the services networks (for example, the Internet and intranet). The connection between the SGSN and the GGSN is enabled through a tunneling protocol called the GPRS tunneling protocol (GTP): GTP Version 0 (GTP V0) for 2.5G applications, and GTP Version 1 (GTP V1) for 3G applications. GTP is carried over IP. Multiple SGSNs and GGSNs within a network are referred to collectively as GPRS support nodes (GSNs).

Note
Depending on the specific operator configuration, the RAN, the GPRS/UMTS core, and the services networks can be made up of IP or Multiprotocol Label Switching (MPLS) networks.
To assign mobile sessions an IP address, the GGSN uses the Dynamic Host Configuration Protocol (DHCP), Remote Authentication Dial-In User Service (RADIUS) server, or a local address pool defined specified for an access point configured on the GGSN. The GGSN can use a RADIUS server to authorize and authenticate remote users. DHCP and RADIUS services can be specified either at the global configuration level or for each access point configured on the GGSN.

In Cisco IOS Release 12.1(5)T and later, the GGSN on the Cisco 7200 series router (with an Integrated Services Adapter [ISA] card) supports IP Security (IPSec) protocol to provide data confidentiality, data integrity, and data authentication between participating peers.

On the Cisco MWAM installed in a Catalyst 6500 series switch / Cisco 7600 series Internet router platform, IPSec encryption is performed on the IPSec Virtual Private Network (VPN) Acceleration Services Module.

GPRS Interface Reference Model

The 2.5G GPRS and 3G UMTS standards use the term *interface* to label (or identify) the communication path between different network elements. The GPRS/UMTS standards define the requirements and characteristics of communication between different GPRS/UMTS network elements over these interfaces. These interfaces are commonly referred to in descriptions of GPRS/UMTS networks.

Figure 1-3 shows the interfaces that are implemented in the Cisco IOS GGSN feature:

- **Gn interface**—Interface between GSNs within the same public land mobile network (PLMN) in a GPRS/UMTS network. GTP is a protocol defined on the Gn interface between GSNs in a GPRS/UMTS network.
- **Gi interface**—Reference point between a GPRS/UMTS network and an external packet data network.
- **Ga interface**—Interface between a GGSN and charging gateway (CG) in a GPRS/UMTS network.

![GPRS Interfaces Configured in the Cisco IOS GGSN Feature Implemented on the Cisco 7200 Series Router](image)

Virtual Template Interface

To facilitate configuration of connections between the GGSN and SGSN, and the GGSN and PDNs, the Cisco IOS GGSN software uses an internal interface called a virtual template interface. A virtual template is a logical interface that is not tied directly to a specific interface, but that can be associated dynamically with a interface.

As with a physical interface on a router, you can assign an IP address to the virtual template interface. You can also configure IP routing characteristics on the virtual template interface. You are required to configure certain GPRS/UMTS-specific elements on the virtual template interface, such as GTP encapsulation (which is necessary for communicating with the SGSN) and the access list that the GGSN uses to determine which PDNs are accessible on the network.
Access Points

The GPRS/UMTS standards define a network identity called an access point name (APN). An APN identifies the service or network to which a user can connect from a GGSN in a GPRS/UMTS network.

To configure APNs, the Cisco IOS GGSN software uses the following configuration elements:

- Access point—Defines an APN and its associated access characteristics, including security and method of dynamic addressing.
- Access point list—Logical interface that is associated with the virtual template of the GGSN. The access-point list contains one or more access points.
- Access group—An additional level of security that is configured at an access point to control access to and from a PDN. When an MS is permitted access to the GGSN as defined by a traditional IP access list, the IP access group further defines whether access is permitted to the PDN (at the access point). The IP access group configuration can also define whether access from a PDN to an MS is permitted.

For more detailed information on access-point configuration, refer to the “Configuring Access Points on the GGSN” section on page 7-10.

Benefits

The 2.5G GPRS technology provides the following benefits:

- Enables the use of a packet-based air interface over the existing circuit-switched GSM network, which allows greater efficiency in the radio spectrum because the radio bandwidth is used only when packets are sent or received
- Supports minimal upgrades to the existing GSM network infrastructure for network service providers who want to add GPRS services on top of GSM, which is currently widely deployed
- Supports enhanced data rates in comparison to the traditional circuit-switched GSM data service
- Supports larger message lengths than Short Message Service (SMS)
- Supports a wide range of access to data networks and services, including VPN/Internet service provider (ISP) corporate site access and Wireless Application Protocol (WAP).

In addition to the above, the 3G UMTS technology includes the following:

- Enhanced data rates of approximately
 - 144 kbps—Satellite and rural outdoor
 - 384 kbps—Urban outdoor
 - 2048 kbps—Indoor and low-range outdoor
- Supports connection-oriented Radio Access Bearers with specified QoS, enabling end-to-end QoS
GGSN Release 5.0 and later is a fully-compliant 2.5G and 3G GGSN that provides the following features:

- Release 99 (R99), Release 98 (R98) and Release 97 (R97) support and compliance
- GTPv0 and GTPv1 messaging
- IP Packet Data Protocol (PDP) and PPP PDP types
- Cisco Express Forwarding (CEF) switching for GTPv0 and GTPv1, and for IP and PPP PDP types
- Support of secondary PDP contexts for GTPv1 (up to 11)
- Virtual APN
- VRF support per APN
- Multiple APNs per VRF
- VPN support
 - Generic routing encapsulation (GRE) tunneling
 - Layer 2 Tunneling Protocol (L2TP) extension for PPP PDP type
 - PPP Regeneration for IP PDP type
 - 802.1Q virtual LANs (VLANs)
- Security features
 - Duplicate IP address protection
 - PLMN range checking
 - Blocking of Foreign Mobiles
 - Anti-spoofing
 - Mobile-to-mobile redirection
- Quality of service (QoS)
 - Support of UMTS classes and interworking with differentiated services (DiffServ)
 - Delay QoS
 - Canonical QoS
 - GPRS QoS (R97/R98) conversion to UMTS QoS (R99) and the reverse
 - Call Admission Control
 - Per-PDP policing
- Dynamic address allocation
 - External DHCP server
 - External RADIUS server
 - Local pools
- Per-APN statistics
- Anonymous access
- RADIUS authentication and accounting
- Accounting
 - Wait accounting
 - Per-PDP accounting
– Authentication and accounting using RADIUS server groups mapped to APNs
– 3GPP vendor-specific attributes (VSAs) for IP PDP type
– Transparent mode accounting
– Class attribute
– Interim updates
– Session idle timer
– Packet of Disconnect (PoD)

• Dynamic Echo Timer
• GGSN interworking between 2.5G and 3G SGSNs with registration authority (RA) update from
 – 2.5G to 2.5G SGSN
 – 2.5G to 3G SGSN
 – 3G to 3G SGSN
 – 3G to 2.5G SGSN
• Charging
 – Time trigger
 – Charging profiles
 – Tertiary charging gateway
 – Switchback to primary charging gateway
• Maintenance mode
• Multiple trusted PLMN IDs
• GGSN-IOS SLB messaging
• Session timeout

New Features in Cisco IOS Release 12.4(2)XB

This release of the GGSN software provides the following new GGSN features:

• Auto-retrieval of charging data records (CDRs) from a Cisco Persistent Storage Device (PSD) (Catalyst 6500/Cisco 7600 platform only)
• High Speed Downlink Data Packet Access (HSDPA) support and associated 3GPP R5 (as required).
• Enhanced Virtual APN
• Support for new information elements (IEs) sent from the SGSN (user location, radio access technology [RAT], MS time zone, Customized Application for Mobile Enhanced Logic [CAMEL] charging information, and user location information IEs)
• NPE-G1 support (Cisco GGSN Release 5.0 and later, Cisco 7200 platform)
• GTP SLB Stickiness
• P-CSCF Discovery
• Enhanced MIB Support - Cisco Content Services Gateway (CSG), Diameter Credit Control Application (DCCA), Persitent Storage Device (PSD) Client
Planning to Configure the GGSN

This chapter provides information that you should know before configuring a gateway GPRS support node (GGSN).

This chapter includes the following sections:
- Supported Platforms, page 2-1
- Prerequisites, page 2-1
- Restrictions, page 2-11
- Supported Standards, MIBs, and RFCs, page 2-11
- Related Documents, page 2-13

Supported Platforms

Cisco GGSN Release 6.0, Cisco IOS Release 12.4(2)XB, is supported on the Cisco 7200 and the Cisco Multi-Processor WAN Application Module (MWAM) for the Catalyst 6500 series switch / Cisco 7600 series Internet router platforms. However, certain GGSN features (for example service-aware billing and GTP-SR) are supported on the Catalyst 6500 series switch /Cisco 7600 series router platform only. Whether or not a feature is supported on one platform or the other is identified in the feature description.

Prerequisites

Depending on the platform on which you are implementing a GGSN, the prerequisites vary. The sections below provide general guidelines to follow before configuring a GGSN in your network:
- Before You Begin, page 2-1
- Cisco 7200 Series Platform Prerequisites, page 2-2
- Catalyst 6500/Cisco 7600 Series Platform Prerequisites, page 2-2

Before You Begin

Before you begin to configure a GGSN, you should know which networks your mobile users will be allowed to access using the GGSN. After you identify the networks, you can plan the interfaces to configure for those networks and plan the associated access points to those networks and configure them on the GGSN. For example, you might want to provide user access to the World Wide Web through a
public data network (PDN), plus access to two private corporate intranets. In this case, you need to set up three access points—one to enable user access to the PDN, and one for each of the two private intranets.

Cisco 7200 Series Platform Prerequisites

In addition to following the general guidelines documented in the “Before You Begin” section on page 2-1, ensure that, at minimum, the following hardware and software requirements are met before you implement a GGSN in a General Packet Radio Service/Universal Mobile Telephone Service (GPRS/UMTS) network on the Cisco 7200 series router platform:

- Cisco 7200 VXR router with network processing engine (NPE) models NPE-300 or NPE-400 running Cisco IOS Release 12.2(8)YW and later—(Required)
- Cisco VPN Acceleration Module 2 (VAM2)—(Optional) Provides IP security protocol (IPSec) support.

Catalyst 6500/Cisco 7600 Series Platform Prerequisites

In addition to following the general guidelines given in the “Before You Begin” section on page 2-1, when configuring GGSNs on the Catalyst 6500 series switch / Cisco 7600 series Internet router platform, ensure that requirements outlined in the following sections are met:

- Hardware and Software, page 2-2
- Required Base Configuration, page 2-5

Hardware and Software

The following sections list the minimum hardware and software requirements for implementing a GGSN on a Catalyst 6500/Cisco 7600 platform.

- GGSN Release 4.0 and GGSN Release 5.0, page 2-2
- GGSN Release 5.1—GTP-SR, page 2-4
- GGSN Release 5.2—Service-Aware GGSN, page 2-4
- GGSN Release 6.0, page 2-4

GGSN Release 4.0 and GGSN Release 5.0

Implementing GGSNs on the Catalyst 6500 series switch / Cisco 7600 series Internet router platform requires the following hardware and software:

- Catalyst 6500 series switch / Cisco 7600 series Internet router in which a Supervisor Engine 2 (Sup2) with the 512-MB Multilayer Switch Feature Card 2 (MSFC2) is installed and running Cisco IOS Release 12.2(14)ZA1 and later—(Required) Performs routing and/or switching and Cisco IOS GPRS Tunneling Protocol (GTP) Server Load Balancing (SLB) functions.
- Additional Supervisor Engine 2 (Sup2) with 512 MB MSFC2—(Optional) Functions as a redundant Supervisor Engine.
• Catalyst 6500/Cisco 7600 Fast Ethernet / Gigabit Ethernet port adapter (such as the Catalyst 6500 48-port 10/100)—(Required) Provides physical connectivity to the GPRS/UMTS network elements such as the SGSN, authentication, authorization, and accounting (AAA), and charging gateway (CG).
Cisco Multi-Processor WAN Application Module (MWAM) running the Cisco IOS Release 12.3(2) XB or later release GGSN feature—(Required) Enables up to 5 instances of a Cisco IOS mobile wireless application, such as a GGSN, to be configured and running on one module. Up to two MWAMs can be installed and configured in a Catalyst 6500/Cisco 7600 chassis, enabling the configuration of up to 10 GGSNs in one chassis. The interfaces to the IOS instances are Gigabit Ethernet 802.1Q trunk ports which carry VLAN-encapsulated traffic to and from the network through the switched fabric.

VPN IPSec Module—(Optional) Performs IPSec.

GGSN Release 5.1—GTP-SR

Implementing the GGSN Release 5.1 GTP-SR feature requires the following hardware and software:

- Two Cisco 7600 series routers with a Cisco Supervisor Engine 720 and third-generation policy feature card (PFC3BXL) with integrated Multilayer Switch Feature Card 3 (MSFC3). The MSFC3s must be running the same Cisco IOS software release.
- A Cisco Multi-Processor WAN Application Module (MWAM) in each of the Cisco 7600 series routers. The MWAMs must be running the same Cisco IOS GGSN software release.

GGSN Release 5.2—Service-Aware GGSN

Implementing the GGSN Release 5.2 service-aware GGSN feature requires the following hardware and software:

- Two Catalyst 6500 series switches / Cisco 7600 series Internet routers in which Sup720s with the 512-MB Multilayer Switch Feature Card 2 (MSFC2) are installed and running Cisco IOS Release 12.2(18)SXE and later.
- Depending on GGSN scaling and redundancy, Multiple Cisco Multi-Processor WAN Application Module (MWAMs), each with the 1 GB memory option.
- IPSec VPN card (for security)
- A Cisco Content Services Gateway (CSG) module in each of the Cisco 7600 series routers. The CSGs must be running the same Cisco CSG software release, Release 3.1(3)C6(1) or later.

GGSN Release 6.0

Implementing the GGSN Release 6.0, at minimum, requires the following hardware and software.

- Two Catalyst 6500 series switches/Cisco 7600 series Internet routers in which Sup720s with the 512-MB Multilayer Switch Feature Card 2 (MSFC2) are installed and running Cisco IOS Release 12.2(18)SXE and later.
- Depending on GGSN scaling and redundancy, Multiple Cisco Multi-Processor WAN Application Module (MWAMs), each with the 1 GB memory option.
- IPSec VPN card (for security)
- For Service-Aware GGSN support, a Cisco Content Services Gateway (CSG) module in each of the Cisco 7600 series routers. The CSGs must be running the same Cisco CSG software release, Release 3.1(3)C6(1) or later.
Chapter 2: Planning to Configure the GGSN

Prerequisites

Required Base Configuration

After connectivity has been established from the switch to the different elements in your network, ensure that you complete the following base configuration before implementing and customizing GGSNs on the Cisco MW AM:

1. On the Supervisor/MSFC2, ensure that
 a. A Layer-3–routed VLAN for each of the GPRS/UTMS interfaces has been created. Specifically, create a VLAN for the following interfaces:
 — Gn VLAN—Interconnects the Gn interfaces.
 — Ga VLAN—Interconnects the Ga interfaces.
 — AAA/OAM/DHCP VLAN—Interconnects the GGSN interfaces used for AAA, Operation, Administration, and Maintenance (OAM), and DHCP functions.
 — One VLAN per APN Gi interface

 You can configure the VLANs from VLAN database mode or global configuration mode.

 Note
 You cannot configure extended-range VLANs in VLAN database mode. You can configure extended-range VLANs only in global configuration mode.

 Note
 RPR+ redundancy does not support configurations entered in VLAN database mode. If you have a high-availability configuration with redundant Supervisor modules using RPR(+), configure the VLANs in global configuration mode and not through the VLAN database mode; otherwise, the VLAN information will not be synchronized to the redundant Supervisor module.

To configure a VLAN from global configuration mode:

```
Sup#conf terminal
Enter configuration commands, one per line. End with CNTL/Z.
Sup(config)#vlan 222
Sup(config-vlan)#end
Sup#
```

In the preceding examples, VLAN 222 is a Layer 2–switched VLAN. The subnet associated with it is not known by the MSFC2 routing table. To configure VLAN 222 as a Layer 3–switched VLAN (or routed VLAN), specify a VLAN 222 interface on the MSFC2 and assign an IP address to the interface:

```
Sup# configure terminal
Sup(config)# interface vlan222
Sup(config-if)# ip address n.n.n.n mask
Sup(config-if)# no ip redirects
```

The following is an example of the VLAN configuration on the MSFC2:

```
Sup# show running-config
!
   vlan 103,110,160,200,300-301,310
!
   interface Vlan103
      description Gn VLAN
      ip address 10.20.21.1 255.255.255.0
      no ip redirects
```
Prerequisites

! interface Vlan110
description OAM/AAA/DHCP VLAN
ip address 10.20.50.1 255.255.255.0
no ip redirects
!
interface Vlan200
description Ga Charging VLAN
no ip address
no ip redirects
!
interface Vlan310
description VLAN for APN Internet
ip address 10.20.51.1 255.255.255.0

For detailed information on configuring VLANs, see the Catalyst 6500 Series Software Configuration Guide.

b. The Cisco IOS software server load balancing (SLB) feature is installed and configured for GTP load balancing. For more information, see the IOS Server Load Balancing feature module and Chapter 12, “Configuring Load Balancing on the GGSN.”

c. The Cisco MWAM has been added to each of the VLANs you created, using the mwam module allowed-vlan command. For more information, see the Cisco Multiprocessor WAN Application Module Installation and Configuration Note.

Note VLAN IDs must be consistent be the same in the MSFC2 and Cisco MWAM configurations.

The following is an example of the mwam module allowed-vlan configuration:

! ...
!
mwam module 7 port 1 allowed-vlan 71,95,100,101
mwam module 7 port 2 allowed-vlan 71,95,100,101
mwam module 7 port 3 allowed-vlan 71,95,100,101
!
...
!

d. A static route is configured to each Cisco IOS instance configured as a GGSN on the Cisco MWAM:

! ...
!
ip route 10.20.30.1 255.255.255.255 10.20.21.20
ip route 10.20.30.2 255.255.255.255 10.20.21.21
ip route 10.20.30.3 255.255.255.255 10.20.21.22
ip route 10.20.30.4 255.255.255.255 10.20.21.23
ip route 10.20.30.5 255.255.255.255 10.20.21.24
!
...
!
2. On each GGSN instance configured on the Cisco MWAM, ensure that

 a. A static route is configured to the Supervisor/MSFC2.

      ```
      !
      ... 
      !
      ip route 0.0.0.0 0.0.0.0 10.20.21.1
      ... 
      !
      ```

 b. A subinterface is configured on which 802.1Q encapsulation is enabled to each of the VLANs you created on the MSFC2.

 The following is an example of a Ga/Gn subinterface configuration on the GGSN to VLAN 103 configured on the MSFC2:

      ```
      !
      ... 
      interface GigabitEthernet0/0.2
      description Ga/Gn Interface
      encapsulation dot1Q 101
      ip address 10.1.1.72 255.255.255.0
      no cdp enable
      ... 
      !
      ```

 For detailed information on configuring
 — Ga subinterfaces, see the “Configuring an Interface to the Charging Gateway” section on page 5-1.
 — Gn subinterfaces, see the “Configuring an Interface to the SGSN” section on page 7-1.
 — Gi subinterfaces, see the “Configuring an Interface to a PDN” section on page 7-15.

Configuration Examples

The following are base configuration examples for the Supervisor/MSFC2 and the GGSN instance running on the Cisco MWAM.

Supervisor / MSFC2

hostname Cat6500-a

```
! boot system flash
boot device module 7 cf:4

mwam module 7 port 1 allowed-vlan 71,95,100,101
mwam module 7 port 2 allowed-vlan 71,95,100,101
mwam module 7 port 3 allowed-vlan 71,95,100,101
vtp mode transparent
redundancy
mode rpr-plus
main-cpu
auto-sync running-config
auto-sync standard
!
```

```
power redundancy-mode combined
!
```

```
vlan 1
vlan1 1002
vlan2 1003
!
```
Prerequisites

```plaintext
vlan 2
  name SNIFFER
!
vlan 71,95
!
vlan 100
  name Internal_Gi_for_GGSN-MWAM
!
vlan 101
  name Internal_Gn/Ga
!
vlan 165
!
vlan 302
  name Gn_1
!
vlan 303
  name Ga_1
!
vlan 1002
  vlan 1
  vlan2 1003
!
vlan 1003
  vlan 1
  vlan2 1002
  parent 1005
  backupcrf enable
!
vlan 1004
  bridge 1
  stp type ibm
!
vlan 1005
  bridge 1
!
interface FastEthernet8/22
  description To SGSN
  no ip address
  switchport
  switchport access vlan 302
!
interface FastEthernet8/23
  description To CGF
  no ip address
  switchport
  switchport access vlan 302
!
interface FastEthernet8/26
  description To DHCP/RADIUS Servers
  no ip address
  switchport
  switchport access vlan 95
!
interface FastEthernet8/31
  description To BackBone
  no ip address
  switchport
  switchport access vlan 71
!
interface FastEthernet9/32
  description To CORPA
  no ip address
  switchport
```
switchport access vlan 165
no cdp enable
!
interface Vlan1
no ip address
shutdown
!
interface Vlan71
description VLAN to tftpserver
ip address 1.7.46.65 255.255.0.0
!
interface Vlan95
description VLAN for RADIUS and DHCP
ip address 10.2.25.1 255.255.255.0
!
interface Vlan100
description Internal VLAN SUP-to-MWAM G1
ip address 10.1.2.1 255.255.255.0
!
interface Vlan101
description VLAN to GGSN for GA/GN
ip address 10.1.1.1 255.255.255.0
!
interface Vlan165
description VLAN to CORPA
ip address 165.1.1.1 255.255.0.0
!
interface Vlan302
ip address 40.0.2.1 255.255.255.0
!
interface Vlan303
ip address 40.0.3.1 255.255.255.0
!
router ospf 300
log-adjacency-changes
summary-address 9.9.9.0 255.255.255.0
redistribute static subnets route-map GGSN-routes
network 40.0.2.0 0.0.0.255 area 300
network 40.0.3.0 0.0.0.255 area 300
!
ip classless
ip route 9.9.9.72 255.255.255.255 10.1.1.72
ip route 9.9.9.73 255.255.255.255 10.1.1.73
ip route 9.9.9.74 255.255.255.255 10.1.1.74
ip route 9.9.9.75 255.255.255.255 10.1.1.75
ip route 9.9.9.76 255.255.255.255 10.1.1.76
ip route 110.72.0.0 255.255.0.0 10.1.1.72
ip route 110.73.0.0 255.255.0.0 10.1.1.73
ip route 110.74.0.0 255.255.0.0 10.1.1.74
ip route 110.75.0.0 255.255.0.0 10.1.1.75
ip route 110.76.0.0 255.255.0.0 10.1.1.76
!
access-list 1 permit 9.9.9.0 0.0.0.255
!
routemap GGSN-routes permit 10
match ip address 1
!
Prerequisites

GGSN Instance on the Cisco MWAM

service gprs ggsn
!
hostname 6500-7-2
!
ip cef
!
interface Loopback0
description USED FOR DHCP gateway
ip address 110.72.0.2 255.255.255.255
!
interface Loopback100
description GPRS GTP V-TEMPLATE IP ADDRESS
ip address 9.9.9.72 255.255.255.0
!
interface GigabitEthernet0/0
no ip address
!
interface GigabitEthernet0/0.1
description Gi
encapsulation dot1Q 100
ip address 10.1.2.72 255.255.255.0
!
interface GigabitEthernet0/0.2
description Ga/Gn Interface
encapsulation dot1Q 101
ip address 10.1.1.72 255.255.255.0
no cdp enable
!
interface GigabitEthernet0/0.71
description TFTP or Backbone
encapsulation dot1Q 71
ip address 1.7.46.72 255.255.255.0
!
interface GigabitEthernet0/0.95
description CNR and CAR
encapsulation dot1Q 95
ip address 10.2.25.72 255.255.255.0
!
interface Virtual-Template1
description GTP v-access
ip unnumbered Loopback100
encapsulation gtp
gprs access-point-list gprs
!
ip classless
ip route 0.0.0.0 0.0.0.0 10.1.2.1
ip route 40.1.2.1 255.255.255.255 10.1.1.1
ip route 40.1.3.10 255.255.255.255 10.1.1.1
ip route 40.2.2.1 255.255.255.255 10.1.1.1
ip route 40.2.3.10 255.255.255.255 10.1.1.1
ip route 40.3.2.3 255.255.255.255 10.1.1.1
ip route 40.4.2.3 255.255.255.255 10.1.1.1
!
gprs access-point-list gprs
access-point 1
 access-point-name CORPA.com
 ip-address-pool dhcp-proxy-client
 aggregate auto
dhcp-server 10.2.25.90
dhcp-gateway-address 110.72.0.2
Restrictions

The number of PDP contexts supported on a GGSN is dependent on the memory and platform in use and the GGSN configuration (for example, whether or not a method of Point to Point Protocol [PPP] has been configured to forward packets beyond the terminal equipment and mobile termination, whether Dynamic Feedback Protocol [DFP] is being used or the memory protection feature is enabled, and what rate of PDP context creation will be supported).

Note

DFP weighs PPP PDPs against IP PDPs with one PPP PDP equal to eight IP PDPs.

Cisco 7200 Series Router

The following list shows the maximum number of PDP contexts supported on the GGSN according to the memory and Cisco 7206 series router in use when no method of PPP has been configured:

- Cisco 7206 VXR NPE-300 with 256 Mb RAM—80,000 IP PDP contexts
- Cisco 7206 VXR NPE-400 router with 512 Mb RAM—135,000 IP PDP contexts

Catalyst 6500 Series Switch / Cisco 7600 Series Router

The Cisco MWAM can support up to 60,000 IP PDP contexts per GGSN instance, with a maximum of 300,000 IP PDP contexts per MWAM on which five GGSNs are configured.

Supported Standards, MIBs, and RFCs

Standards

Cisco IOS GGSN Release 5.2 supports the following Third Generation Partnership Program (3GPP) standards:

- **Release 97/98**
 - 3G TS 03.03
 - 3G TS 03.60 (7.7.0)
 - 3G TS 04.08 (7.14.0)
 - 3G TS 09.02
 - 3G TS 09.60 (7.9.0)
 - 3G TS 09.61 (7.4.0)
 - 3G TS 12.15
- **Release 99**
 - 3G TS 22.107
 - 3G TS 23.003
 - 3G TS 23.107 (3.9.0)
 - 3G TS 23.060 (3.14.0)
 - 3G TS 24.008 (3.14.0)
 - 3G TS 29.002
 - 3G TS 29.060 (3.15.0)
Supported Standards, MIBs, and RFCs

- 3G TS 29.061 (3.11.0)
- 3G TS 32.015 (3.10.0)

- Release 4
 - 3G TS 23.107 (4.6.0)
 - 3G TS 23.060 (4.7.0)
 - 3G TS 24.008 (4.9.0)
 - 3G TS 29.060 (4.6.0)
 - 3G TS 29.061 (4.6.0)
 - 3G TS 32.215 (4.4.0)

- Release 5
 - 3G TS 23.107 (5.7.0)
 - 3G TS 23.060 (5.4.0)
 - 3G TS 24.008 (5.6.0)
 - 3G TS 29.060 (5.4.0)
 - 3G TS 29.061 (5.4.0)
 - 3G TS 32.215 (5.2.0)

The GGSN interfaces comply with the following SMG (Special Mobile Group) standards:

- Ga interface—SMG#28 R99
- Gn interface—SMG#31 R98

MIBs

- CISCO-GGSN-MIB
- CISCO-GGSN-QOS-MIB
- CISCO-GPRS-ACC-PT-MIB
- CISCO-GPRS-CHARGING-MIB
- CISCO-GPRS-GTP-CAPABILITY-MIB
- CISCO-GPRS-GTP-MIB
- CISCO-GTP-CAPABILITY-MIB
- CISCO-GTP-MIB

Note

The CISCO-GPRS-GTP-CAPABILITY-MIB describes the scope of objects supported in the CISCO-GPRS-GTP-MIB. The CISCO-GTP-CAPABILITY-MIB describes the scope of objects supported in the CISCO-GTP-MIB.

To obtain lists of supported MIBs by platform and Cisco IOS release, and to download MIB modules, go to the Cisco MIB website on Cisco.com at the following URL:

RFCs
- RFC 1518, An Architecture for IP Address Allocation with CIDR
- RFC 1519, Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy
- RFC 1661, The Point-to-Point Protocol (PPP)
- RFC 2475, An Architecture for Differentiated Services
- RFC 3588, Diameter Base Protocol

Related Documents

Cisco IOS Software Documentation
- Cisco IOS Dial Technologies Command Reference, Release 12.3
- Cisco IOS Interface Configuration Guide, Release 12.3
- Cisco IOS Interface Command Reference, Release 12.3
- Cisco IOS IP Configuration Guide, Release 12.3
- Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.3
- Cisco IOS IP Command Reference, Volume 3 of 3: Multicast, Release 12.3
- Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.3
- Cisco IOS Quality of Service Solutions Command Reference, Release 12.3
- Cisco IOS Security Command Reference, Release 12.3
- Cisco IOS Switching Services Configuration Guide, Release 12.3
- Cisco IOS Switching Services Command Reference, Release 12.3
- Cisco Multi-Processor WAN Application Module Installation and Configuration Note
CHAPTER 3

Configuring GGSN GTP Services

This chapter describes how to configure a gateway GPRS service node (GGSN) and how to configure GPRS tunneling protocol (GTP) options.

For a complete description of the GGSN commands in this chapter, refer to the Cisco GGSN Release 6.0 Command Reference.

To locate documentation of other commands that appear in this chapter, use the command reference master index or search online. See the “Related Documents” section on page 2-13 for a list of the other Cisco IOS software documentation that might be helpful while configuring the GGSN.

This chapter includes the following sections:

- GTP Overview, page 3-1
- Configuring GGSN Services, page 3-2
- Configuring the GGSN Compliance Baseline, page 3-5
- Configuring Echo Timing on a GGSN, page 3-6
- Customizing the GGSN Configuration, page 3-15
- Using the Service-Mode Function, page 3-24
- Monitoring and Maintaining GTP on the GGSN, page 3-28
- Configuration Examples, page 3-29

GTP Overview

GTP is the protocol used to tunnel multi-protocol packets through the general packet radio service/Universal Mobile Telecommunication System (GPRS/UMTS) network. It is defined on the Gn interface as the protocol between GSNs in the GPRS/UMTS backbone network.

With GGSN 4.0 in Cisco IOS 12.3(2)XB and later, the Cisco GGSN simultaneously supports both GTP Version 0 (GTP v0) and GTP Version 1 (GTP v1). GPRS R97/R98 uses GTP Version 0, and UMTS R99 uses GTP v1.

The GGSN automatically selects the GTP version to use according to the capabilities of the SGSN.
Configuring GGSN Services

The Cisco GGSN software uses a logical interface called a virtual template interface to configure a router or instance of Cisco IOS software on a Cisco Multi-Processor WAN Application Module (MWAM) as a GGSN. This section describes the primary tasks you need to complete when configuring for GGSN services. The subsequent configuration tasks describe how to establish connectivity from the GGSN to the serving GPRS support node (SGSN) and public data networks (PDNs) once the router or Cisco IOS instance has been configured as a GGSN.

The following requirements must be met when configuring a GGSN:

- **On the Cisco 7200 series router:**
 - Configure only a single GGSN entity on each router using the `service gprs ggsn` global configuration command.
 - Configure only a single virtual template interface (as virtual template number 1) with GTP encapsulation on the GGSN.
 - Ensure that the memory protection threshold has been configured appropriately, according to the router and memory size. For information on configuring the memory protection threshold, see “Configuring the GGSN Memory Threshold” section on page 5-6.

- **On the Cisco MWAM:**
 - Configure only a single GGSN entity per instance of Cisco IOS software, using the `service gprs ggsn` global configuration command. Up to five GGSNs can be configured on one MWAM—one GGSN per Cisco IOS instance.
 - Configure only a single virtual template interface (as virtual template number 1) with GTP encapsulation on each GGSN.
 - Ensure that the memory protection threshold has been configured appropriately, according to the router and memory size. For information on configuring the memory protection threshold, see “Configuring the GGSN Memory Threshold” section on page 5-6.

GGSN Services Configuration Task List

To configure a router or Cisco IOS software instance for GGSN services, perform the following tasks:

- Enabling GGSN Services, page 3-3
- Creating a Loopback Interface, page 3-3
- Creating a Virtual Template Interface for GGSN, page 3-4
- Enabling CEF Switching, page 3-4
Enabling GGSN Services

Configure only a single GGSN entity per router or instance of Cisco IOS software, using the `service gprs ggsn` global configuration command.

To enable GGSN services, use the following command in global configuration mode:

```
Router(config)# service gprs ggsn
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# service gprs ggsn</code></td>
<td>Specifies that the router or Cisco IOS instance functions as a GGSN.</td>
</tr>
</tbody>
</table>

Creating a Loopback Interface

Rather than directly configuring an IP address on the virtual template, we recommend that you create a loopback interface and then associate the loopback interface IP address to the virtual template used for GTP encapsulation using the `ip unnumbered loopback` interface configuration command.

Note

If the IP address of the loopback interface is not assigned to the virtual template interface using the `ip unnumbered loopback` command, packets will not be CEF-switched and performance will be affected.

A loopback interface is a software-only interface that emulates an interface that is always up. It is a virtual interface that is supported on all platforms. The interface number is the number of the loopback interface that you want to create or configure. There is no limit to the number of loopback interfaces that you can create. A GGSN uses loopback interfaces to support the configuration of several different features.

To create a loopback interface, use the following commands in global configuration mode:

```
Step 1
Router(config)# interface loopback number
```

```
Step 2
Router(config-if)# ip address ip-address mask
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# interface loopback number</code></td>
<td>Creates a loopback interface. A loopback interface is a virtual interface that is always up.</td>
</tr>
<tr>
<td><code>Router(config-if)# ip address ip-address mask</code></td>
<td>Assigns an IP address to the loopback interface.</td>
</tr>
</tbody>
</table>
Creating a Virtual Template Interface for GGSN

Configure only a single virtual template interface (as virtual template number 1) with GTP encapsulation on a GGSN.

To create a virtual template interface for GGSN, use the following command, beginning in global configuration mode:

```
Router(config)# interface virtual-template number
```

Where `number` identifies the virtual template interface. This command takes you to interface configuration mode.

Note
A GGSN supports only a single virtual template for the GTP virtual interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Creates a virtual template interface, where <code>number</code> identifies the virtual template interface. This command takes you to interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Assigns the previously defined loopback IP address to the virtual template interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies GTP as the encapsulation type for packets transmitted over the virtual template interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Specifies a name for a new access point list, or references the name of the existing access point list, and enters access-point list configuration mode.</td>
</tr>
</tbody>
</table>

Enabling CEF Switching

CEF switching uses a forwarding information base (FIB) table and an adjacency table to accomplish packet switching. The adjacency table is indexed by Layer 3 network addresses and contains the corresponding Layer 2 information to forward a packet.

CEF switching eliminates the use of the route-cache table, and the overhead that is required in aging out its table entries and repopulating the table. The FIB table mirrors the entire contents of the IP routing table, which eliminates the need for a route-cache table.

For more information about switching paths, refer to the *Cisco IOS Switching Services Configuration Guide*, Release 12.2.

When you enable CEF switching globally on the GGSN, all interfaces on the GGSN are automatically enabled for CEF switching.

Note
To ensure that CEF switching functions properly, wait a short period of time before enabling CEF switching after it has been disabled using the `no ip cef` command.
To enable CEF switching on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router(config)# ip cef</td>
<td>Enables CEF on the route processor card.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# gprs gtp ip udp ignore checksum</td>
<td>Disables verification of the UDP checksum to support CEF switching on the GGSN.</td>
</tr>
</tbody>
</table>

Caution

If you do not configure the `gprs gtp ip udp ignore checksum` command, G-PDUs (GTP PDUs) with a non-zero User Datagram Protocol (UDP) checksum will be process switched.

Configuring the GGSN Compliance Baseline

The 3rd Generation Partnership Project (3GPP) compliance baseline for GGSN 5.0 is as follows:

- R98—Same as in GGSN Release 4.0.
- R99—Upgraded to TSG #18.
- R4—New support with compliance baseline up to TSG #18

By default, the 3GPP compliance baseline is TSG #18. However, it can be shifted to that of GGSN 4.0 (TSG#16) using the `gprs compliance 3gpp ggsn r4.0` global configuration command.

To change the GGSN compliance baseline of GGSN 5.0 (TSG#18) to that of GGSN 4.0 (TSG#16), use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs compliance 3gpp ggsn r4.0</td>
<td>Changes the GGSN compliance baseline of GGSN 5.0 (TSG#18) back to that of GGSN 4.0 (TSG#16).</td>
</tr>
</tbody>
</table>

To return the compliance baseline to TSG#18, use the `no` form of this command.

To configure the GGSN to apply specification 29-060 CR 311 to Create PDP Context requests of existing GGSN 4.0 PDPs, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs gtp create-request v1 update-existing-pdp</td>
<td>Configures the GGSN to apply specification 29-060 CR 311 to Create PDP Context requests of existing GGSN 4.0 PDPs.</td>
</tr>
</tbody>
</table>
Chapter 3 Configuring GGSN GTP Services

Configuring Echo Timing on a GGSN

GGSN uses echo timing to determine whether an SGSN or external charging gateway is active.

For a GTP path to be active, the SGSN needs to be active. To determine that an SGSN is active, the GGSN and SGSN exchange echo messages. Although the GGSN supports different methods of echo message timing, the basic echo flow begins when the GGSN sends an echo request message to the SGSN. The SGSN sends a corresponding echo response message back to the GGSN.

If the GGSN does not receive a response after a certain number of retries (a configurable value), the GGSN assumes that the SGSN is not active. This indicates a GTP path failure, and the GGSN clears all PDP context requests associated with that path.

This section describes the different methods of echo timing that are supported on the GGSN and how to configure them. It includes the following topics:

- Overview of the Echo Timing on the GGSN, page 3-6
- Echo Timing Configuration Task List, page 3-11
- Verifying the Echo Timing Configuration, page 3-13
- Dynamic Echo Timer Configuration Example, page 3-30

Overview of the Echo Timing on the GGSN

The GGSN supports two different means of echo timing—the default echo timer and the dynamic echo timer. Only a single timer can be in use at any time on the GGSN. The following sections describe these two timers:

- Overview of the Default Echo Timer, page 3-6
- Overview of the Dynamic Echo Timer, page 3-8

Note

For simplicity, this document describes the operation of echo timing between the GGSN and an SGSN. If an external charging gateway is in use in the GPRS/UMTS network, the GGSN uses the same type of echo timers to maintain the charging gateway path.

Overview of the Default Echo Timer

The default echo timer is enabled on the GGSN automatically. However, you can choose to enable the dynamic echo timing method as an alternative.

When you are using the default echo timer on the GGSN, the following commands apply:

- `gprs gtp n3-requests`—Specifies the maximum number of times that the GGSN attempts to send an echo-request message. The default is 5 times.
- `gprs gtp path-echo-interval`—Specifies the number of seconds that the GGSN waits for a response from an SGSN or external charging gateway, and, after receiving a response, the number of seconds the GGSN waits before sending the next echo-request message. The default is 60 seconds.
- `gprs gtp t3-response`—Specifies the initial number of seconds that the GGSN waits before resending a signaling request message when a response to a request has not been received. This time is doubled for every retry. The default is 1 second.
Figure 3-1 shows the default echo request sequence when a response is successfully received within the specified path echo interval. If the GGSN receives the echo response within the path echo interval (as specified in the `gprs gtp path-echo-interval` command; the default is 60 seconds), it sends another echo request message after 60 seconds (or whatever time was configured in the `gprs gtp path-echo-interval` command). This message flow continues as long as the GGSN receives an echo response message from the SGSN within the specified path echo interval.

Figure 3-1 Default GTP Path Echo Interval Request Sequence in Path Success Mode

![Diagram of Default GTP Path Echo Interval Request Sequence in Path Success Mode]

Figure 3-2 shows the default echo request sequence when the GGSN fails to receive a response to its echo request within the specified path echo interval. If the GGSN fails to receive an echo response message from the SGSN within the path echo interval, it resends echo request messages until the N3-requests counter is reached (as specified by the `gprs gtp n3-requests` command; the default is 5). Because the initial request message is included in the N3-requests counter, the total number of retries is N3 - 1. The T3 timer increases by a factor of 2 for each retry (the factor value is not configurable).

Figure 3-2 Default Echo Timing Request Sequence in Path Failure Mode

![Diagram of Default Echo Timing Request Sequence in Path Failure Mode]

For example, if N3 is set to the default of 5, and T3 is set to the default of 1 second, the GGSN will resend 4 echo request messages (the initial request + 4 retries). If the GGSN does not receive an echo response from the SGSN during the 60-second path echo interval, then the GGSN immediately sends the first echo request retry message upon expiration of the path echo interval. The T3 time increases for each
additional echo request, by a factor of 2 seconds, as long as the GGSN does not receive an echo response. So, the GGSN resends another message in 2 seconds, 4 seconds, and 8 seconds. After the 5th message, the GGSN waits for a final period of 16 seconds for an echo response.

If the GGSN fails to receive an echo response message from the SGSN within the time period of the N3-requests counter, it deletes all of the PDP contexts and clears the GTP path. For this example, the total elapsed time from when the first request message is sent to when PDP contexts are cleared is 60 + 2 + 4 + 8 + 16 = 90 seconds

where 60 is the initial value of the path echo interval, and the remaining 4 time periods are the increments of the T3 timer for the subsequent retries. The path is cleared after another 60-second period, or 150 seconds.

If the GGSN receives an echo response within the N3 x T3 transmission period, it goes back to success mode for its echo request sequences.

Figure 3-3 shows the GGSN receiving an echo response message within N3 x T3 retransmissions of an echo request. In this scenario, the GGSN sent an initial echo request followed by 4 retries for a total of 5 requests, according to the default setting of 5 N3 requests. The GGSN receives the echo response after the 5th and final retry, within the remaining 16 seconds. Now the GGSN is back in success mode, and it waits 60 seconds (the value of the `gprs gtp path-echo-interval` command) before sending the next echo request message.

Figure 3-3 Default Echo Timing with Echo Response Received Within N3 x T3 Retransmissions

Overview of the Dynamic Echo Timer

Because the GGSN’s default echo timer cannot be configured to accommodate network congestion, the GTP path could be cleared prematurely. The dynamic echo timer feature enables the GGSN to better manage the GTP path during periods of network congestion. Use the `gprs gtp echo-timer dynamic enable` command to enable the GGSN to perform dynamic echo timing.

The dynamic echo timer is different from the default echo timer because it uses a calculated round-trip time (RTT), as well as a configurable factor or multiplier to be applied to the RTT statistic. Different paths can each have a different RTT, so the dynamic echo timer can vary for different paths.
When you are using the dynamic echo timer on the GGSN, the following commands apply:

- **gprs gtp echo-timer dynamic enable**—Enables the dynamic echo timer on the GGSN.
- **gprs gtp echo-timer dynamic minimum**—Specifies the minimum time period (in seconds) for the dynamic echo timer. If the RTT multiplied by the smooth factor is less than this value, the GGSN uses the value set in this command. The default is 5 seconds.
- **gprs gtp echo-timer dynamic smooth-factor**—Specifies the multiplier that the dynamic echo timer uses when calculating the time to wait to send retries, when it has not received a response from the SGSN within the path echo interval. The default is 2.
- **gprs gtp n3-requests**—Specifies the maximum number of times that the GGSN attempts to send an echo-request message. The default is 5 times.
- **gprs gtp path-echo-interval**—Specifies the number of seconds that the GGSN waits, after receiving a response from an SGSN or external charging gateway, before sending the next echo-request message. The default is 60 seconds.

Figure 3-4 shows the dynamic echo request sequence when a response is successfully received within the specified path echo interval. Just as in the default echo timing method, if the GGSN receives the echo response within the path echo interval (as specified in the **gprs gtp path-echo-interval** command; the default is 60 seconds), it sends another echo request message after 60 seconds (or whatever time was configured in the **gprs gtp path-echo-interval** command). This message flow continues as long as the GGSN receives an echo response message from the SGSN within the specified path echo interval.

Figure 3-4 Dynamic GTP Path Echo Interval Request Sequence in Path Success Mode

The GGSN calculates the RTT statistic for use by the dynamic echo timer. The RTT is the amount of time between sending a particular echo request message and receiving the corresponding echo response message. RTT is calculated for the first echo response received (see Figure 3-5); the GGSN records this statistic. Because the RTT value might be a very small number, there is a minimum time for the dynamic echo timer to use. This value is configured using the **gprs gtp echo-timer dynamic minimum** command.
Configuring Echo Timing on a GGSN

Figure 3-5 Dynamic Echo Timing Request Sequence RTT Calculation

![Diagram](image)

Figure 3-6 shows the dynamic echo timing request sequence in path failure mode. If the GGSN fails to receive an echo response message from the SGSN within the path echo interval, it goes into retransmission, or path failure mode. During path failure mode, the GGSN uses a value referred to as the T-dynamic. The T-dynamic is the greater of either the dynamic minimum, or the RTT statistic multiplied by the smooth factor.

Figure 3-6 Dynamic Echo Timing Request Sequence in Path Failure Mode

![Diagram](image)

The T-dynamic essentially replaces the use of the `gprs gtp t3-response` command, which is used in the default echo timer method on the GGSN. The T-dynamic timer increases by a factor of 2 for each retry (again, this factor is not configurable), until the N3-requests counter is reached (the N3-requests counter includes the initial request message).

For example, if the RTT is 6 seconds, the dynamic minimum is 5 seconds, N3 is set to 5, and the smooth factor is set to 3, then the GGSN will resend up to 4 echo request messages (initial request + 4 retries = 5) in path failure mode. If the GGSN does not receive an echo response from the SGSN during the 60-second path echo interval, then the GGSN immediately sends the first echo request retry message upon expiration of the path echo interval. The RTT x smooth factor equals 18 seconds (6 x 3), which is greater than the dynamic minimum of 5 seconds, so the dynamic minimum value is not used. The
T-dynamic value is 18 (RTT x smooth factor), so the GGSN sends another retry echo request message in 36 seconds (18 x 2), 72 seconds (18 x 4), and 144 seconds (18 x 8). After the fifth message, the GGSN waits for a final period of 288 seconds (18 x 16) for an echo response.

If the GGSN fails to receive an echo response message from the SGSN in this time period, it clears the GTP path and deletes all PDP contexts. The total elapsed time, from when the first request message is sent, to when the PDP contexts are cleared, is

\[60 + 36 + 72 + 144 + 288 = 600 \text{ seconds} \]

where 60 is the initial value of the path echo interval, and the remaining 4 time periods are the increments of the T-dynamic for the subsequent retries. The path is cleared after another 60-second period, or 660 seconds.

If the GGSN receives an echo response within the N3 x T-dynamic transmission period, it goes back to success mode for its echo request sequences. In success mode, the GGSN begins echo requests and awaits responses according to the specified path echo interval as shown in Figure 3-4.

Sequence Numbering for Retransmissions

The GGSN does not increment the sequence number of an echo request message during retransmissions. Therefore, during the period when an echo response has not been received by the GGSN, the GGSN continues to use the same sequence number for all echo request retries until the N3 requests limit has been reached, or until a response has been received. When a response is received, the sequence number of the next echo request message is incremented by 1.

If the GGSN has sent an echo request message with a higher sequence number, but still receives echo responses for sequence numbers lower than the current echo request message, the response is ignored.

Echo Timing Configuration Task List

This section describes the tasks required to customize the default echo timing method, or to enable and configure the dynamic echo timing method on the GGSN. By default, the GGSN activates the default echo timing method.

To configure echo timing on the GGSN, perform the following tasks:

- Customizing the Default Echo Timer, page 3-12 (Recommended, if used)
- Configuring the Dynamic Echo Timer, page 3-12 (Optional)
- Disabling the Echo Timer, page 3-13 (Optional)
Customizing the Default Echo Timer

The default echo timing method is enabled automatically on the GGSN. If you want to use the default echo timer, Cisco recommends that you modify the following commands to optimize your network as necessary.

To customize the default echo timing method on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# gprs gtp n3-requests requests</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# gprs gtp path-echo-interval interval</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# gprs gtp t3-response response-interval</td>
</tr>
</tbody>
</table>

Configuring the Dynamic Echo Timer

To activate the dynamic echo timing method on the GGSN, you must enable the dynamic echo timer. After you activate the dynamic echo timer, you can modify the corresponding options to optimize the timing parameters for your network.

To configure the dynamic echo timing method on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# gprs gtp echo-timer dynamic enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# gprs gtp echo-timer dynamic minimum number</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# gprs gtp echo-timer dynamic smooth-factor number</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# gprs gtp n3-requests requests</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# gprs gtp path-echo-interval interval</td>
</tr>
</tbody>
</table>
Disabling the Echo Timer

If for some reason you need to disable the GGSN from performing echo processing with an SGSN or external charging gateway, you can specify 0 seconds for the path echo interval.

To disable the echo timer, use the following command in global configuration mode:

```
Router(config)# gprs gtp path-echo-interval 0
```

Verifying the Echo Timing Configuration

This section describes how to verify the echo timing method on the GGSN. It includes the following topics:

- Verifying Echo Timing Parameters, page 3-13
- Verifying the Dynamic Echo Timer by GTP Path, page 3-14

Verifying Echo Timing Parameters

To verify the parameters in use by the GGSN for echo timing, you can use the `show gprs gtp parameters` or `show running-config` privileged EXEC command.

The GGSN automatically sets default values for the parameters applicable to the dynamic echo timer, even when the dynamic echo timer is not enabled. Therefore, the `show gprs gtp parameters` command does not indicate which echo timing method is currently activated.

Verifying Default Echo Timing Parameters

To verify the parameters in use by the default echo timer, use the `show gprs gtp parameters` privileged EXEC command, and observe the following parameters shown in bold text below:

```
GGSN# show gprs gtp parameters
GTP path echo interval = 60
GTP signal max wait time T3_response = 1
GTP max retry N3_request = 5
GTP dynamic echo-timer minimum = 5
GTP dynamic echo-timer smooth factor = 2
GTP buffer size for receiving N3_buffer = 8192
GTP max pdp context = 45000
```
Chapter 3 Configuring GGSN GTP Services

Verifying Dynamic Echo Timing Parameters

To verify the parameters in use by the dynamic echo timer, use the `show gprs gtp parameters` privileged EXEC command, and observe the parameters shown in bold text below:

```
GGSN# show gprs gtp parameters
GTP path echo interval                        = 60
GTP signal max wait time T3_response          = 1
GTP max retry N3_request                      = 5
GTP dynamic echo-timer minimum                = 5
GTP dynamic echo-timer smooth factor          = 2
GTP buffer size for receiving N3_buffer       = 8192
GTP max pdp context                           = 45000
```

Verifying the Dynamic Echo Timer by GTP Path

You can use the `show running-config` privileged EXEC command to verify whether the dynamic echo timer is enabled.

The value of the dynamic echo timer varies for each GTP path on the GGSN. To verify whether the dynamic echo timer is enabled on the GGSN, and to verify the value (in seconds) of the dynamic echo timer (T-dynamic), use the `show gprs gtp path` privileged EXEC command.

If the dynamic echo timer is not activated, the word “Disabled” appears beside the corresponding path in the dynamic echo timer output field.

Step 1
To verify that the dynamic echo timer is enabled, use the `show running-config` command, and verify that the `gprs gtp dynamic echo-timer enable` command appears as shown in bold text toward the end of the following sample output:

```
GGSN# show running-config
Current configuration : 6769 bytes
!
version 12.2
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service internal
service gprs ggsn
!
ip cef
!
!
interface loopback 1
  ip address 10.41.41.1 255.255.255.0
!!
interface Virtual-Template1
  ip unnumber loopback 1
  encapsulation gtp
  gprs access-point-list gprs
  !
  ...!
  gprs access-point-list gprs
  access-point 1
    access-point-name gprs.cisco.com
  exit
```
Step 2 To verify the T-dynamic values for the corresponding GTP paths, use the `show gprs gtp path all` privileged EXEC command.

The following example indicates that the dynamic echo timer is enabled on the GGSN and that the T-dynamic values of 5 seconds and 2 seconds are in use for the corresponding paths:

```
GGSN# show gprs gtp path all
Total number of path : 2

Local address           Remote address          GTP version Dynamic echo timer
10.41.41.1(3386)        10.18.18.200(3386)      0             5
10.10.10.1(2123)        10.10.10.4(2123)        1             2
```

Customizing the GGSN Configuration

This section describes some of the options that you can configure on the GGSN to further customize the default configuration.

For information about configuring GPRS/UMTS charging options, see the “Customizing the Charging Gateway” section on page 5-10.

This section includes the following topics:

- Configuring GTP Signaling Options, page 3-16
- Configuring the Maximum Number of PDP Contexts on the GGSN, page 3-17
- Controlling Sessions on the GGSN, page 3-18
- Configuring Flow Control for GTP Error Messages, page 3-23
Configuring GTP Signaling Options

In addition to the commands used to configure the router or configure an instance of Cisco IOS software for GGSN support, the GGSN feature supports several optional commands that you can use to customize your GTP configuration.

For certain GTP processing options, the default values represent recommended values. Other optional commands also are set to default values, but Cisco recommends modifying these commands to optimize your network as necessary, or according to your hardware. This section describes some of the commands that you should consider using to optimize GTP signaling.

To optimize your GTP signaling configuration, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs gtp n3-requests requests</code></td>
<td>(Optional) Specifies the maximum number of times that the GGSN attempts to send a signaling request. The default is 5.</td>
</tr>
<tr>
<td><code>Router(config)# gprs gtp path-echo-interval interval</code></td>
<td>(Optional) Specifies the number of seconds that the GGSN waits before sending an echo-request message to check for GTP path failure. The default is 60 seconds.</td>
</tr>
<tr>
<td><code>Router(config)# gprs gtp t3-response response_interval</code></td>
<td>(Optional) Specifies the the initial number of seconds that the GGSN waits before resending a signaling request message when a response to a request has not been received. This time is doubled for every retry. The default is 1 second.</td>
</tr>
</tbody>
</table>

Note
These GTP signaling commands are also used to support echo timing on the GGSN. For more information about echo timing on the GGSN, see the “Configuring Echo Timing on a GGSN” section on page 3-6.

Configuring Other GTP Signaling Options

This section describes some other GTP signaling options that you can modify as needed to support your network needs.

To configure other GTP signaling options, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs gtp map signalling tos tos-value</code></td>
<td>(Optional) Specifies an IP ToS mapping for GTP signaling packets. The default is 5.</td>
</tr>
<tr>
<td><code>Router(config)# gprs gtp n3-buffer-size bytes</code></td>
<td>(Optional) Specifies the size of the receive buffer that the GGSN uses to receive GTP signaling messages and packets sent through the tunneling protocol. The default is 8192 bytes.</td>
</tr>
</tbody>
</table>
Chapter 3 Configuring GGSN GTP Services

Customizing the GGSN Configuration

Configuring the Maximum Number of PDP Contexts on the GGSN

The practical upper limit for the maximum number of PDP contexts supported on a GGSN depends on the memory and platform in use and on the GGSN configuration (for example, whether or not a method of PPP has been configured to forward packets beyond the terminal equipment and mobile termination, whether Dynamic Feedback Protocol [DFP] is being used or the memory protection feature is enabled, and the rate of PDP context creation to be supported).

Note
DFP weighs PPP PDPs against IP PDPs, with one PPP PDP equal to eight IP PDPs.

Cisco 7200 Series Router

The following list shows the maximum number of PDP contexts supported on the GGSN according to the memory and Cisco 7206 router series in use when a method of PPP has not been configured:

- Cisco 7206 VXR NPE-300 with 256 MB RAM: 80,000 IP PDP contexts.
- Cisco 7206 VXR NPE-400 router with 512 MB RAM: 135,000 IP PDP contexts.

Catalyst 6500 Series Switch / Cisco 7600 Series Router

The Cisco MWAM can support up to 60,000 IP PDP contexts per GGSN instance, for a maximum of 300,000 IP PDP contexts per MWAM on which five GGSNs are configured.

Note
When the maximum allowable number of PDP contexts is reached, the GGSN refuses new PDP contexts (mobile sessions) until sessions are available.

To configure the maximum number of PDP contexts on the GGSN, use the following command, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs gtp response-message pco ipcp nack</td>
<td>(Optional) Specifies for the GGSN to return an IPCP Conf-Nack (Code 03) in the GTP PCO IE of a Create PDP Context response when returning IP Control Protocol (IPCP) options for which the granted values (non-zero) differ from those requested (IPCP Conf-Reject [Code 04] for those options for which the returned address values are zero). By default, the GGSN sends an IPCP Conf-Ack (Code 2) in the PCO IE of the create PDP context response for all the requested IPCP address options supported by the GGSN (the values returned might be the same as or differ from those requested, or be even zero.)</td>
</tr>
<tr>
<td>Router(config)# gprs gtp response-message pco ipcp message-length</td>
<td>Configures an extra field that indicates the message length to be added to the header in the PCO IE of the Create PDP Context response when returning IPCP options.</td>
</tr>
</tbody>
</table>

To configure the maximum number of PDP contexts on the GGSN, use the following command, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs maximum-pdp-context-allowed pdp-contexts</td>
<td>Specifies the maximum number of PDP contexts (mobile sessions) that can be activated on the GGSN.</td>
</tr>
</tbody>
</table>
Configuring the Maximum Number of PDP Contexts When Using DFP with Load Balancing

If you use DFP with GPRS/UMTS load balancing, you must also specify a maximum number of PDP contexts for each GGSN. Do not accept the default value of 10000 PDP contexts; a value of 45000 is recommended. Significantly lower values can affect performance in a GPRS/UMTS load-balancing environment.

Note

For more information about configuring GPRS/UMTS load balancing, see the IOS Server Load Balancing, 12.1(9)E documentation located at Cisco.com at the following URL:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121newft/121limit/121e/121e9/index.htm

To configure the maximum number of PDP contexts on the GGSN for DFP, use the following command, beginning in global configuration mode:

```
Router(config)# gprs maximum-pdp-context-allowed 45000
```

Specifies 45000 as the maximum number of PDP contexts (mobile sessions) that can be activated on the GGSN.

Controlling Sessions on the GGSN

GPRS/UMTS provides always-on services for mobile users. Sessions can be established with the GGSN that provide network connectivity, even though no activity may be occurring over that session. After a PDP context is established on the GGSN, whether there is activity over the session or not, resources are being used by the GGSN. Therefore, you might want to control the amount of time that a session can remain established on the GGSN before the PDP context (or contexts) is cleared. The GGSN can support only a certain number of PDP contexts. The number of PDP contexts supported depends upon the configuration and memory resources of the platform.

This section describes how you can configure the session idle time and absolute session time on the GGSN to control when the GGSN deletes a session. The section includes the following topics:

- Overview of the Session Idle Timer and the Absolute Session Timer on the GGSN, page 3-18
- Configuring the Session Idle Timer, page 3-19 (Optional)
- Configuring the Absolute Session Timer, page 3-21 (Optional)
- Disabling the Session Idle Timer on the GGSN, page 3-21
- Verifying the Timer Configuration, page 3-22

Overview of the Session Idle Timer and the Absolute Session Timer on the GGSN

The GGSN allows you to control the clearing of PDP contexts by configuring durations for a session idle timer (RADIUS attribute 28) and an absolute session timer (RADIUS attribute 27). The session idle timer and absolute session timer specify the amount of time that the GGSN waits before purging a mobile session.

The duration specified for the session idle time is the same for all of the PDP contexts belonging to a session (a GTPv1 mobile session can have multiple PDP contexts), but an individual timer is started for each PDP context of that session. Therefore, the session idle timer is per-PDP, but the timer duration is...
per-session. The absolute session timer is session-based and controls the absolute duration of a session (active or inactive). When the absolute session timer is exceeded, the GGSN deletes all PDP contexts of the session (those with the same IMSI or MS address).

The session idle timeout (RADIUS Attribute 28) support applies to IP PDPs, PPP PDPs terminated at the GGSN, and PPP regenerated PDPs (not PPP L2TP PDPs). The absolute session timeout (Attribute 27) support applies to IP PDPs and PPP PDPs terminated at the GGSN (not PPP Regen or PPP L2TP PDPs). If configured, a session idle timer is started on every PDP context; an absolute session timer is started on the session.

You can configure the timers globally on the GGSN for sessions occurring on all access points, and you can configure timers for a particular access point. In addition to the session idle timer and the absolute session timer that you can configure on the GGSN, RADIUS servers can also specify session timeout attributes.

The following list gives the order in which the GGSN implements the timers:

1. RADIUS server—If the access point is configured for non-transparent access mode and the RADIUS server returns a timeout attribute, then the GGSN sets the timeout value based on the attribute sent from the RADIUS server. The RADIUS server timeout attribute is given in seconds. If the value returned by the RADIUS server is less than 30 seconds, the GGSN sets the timeout value to 30 seconds. If the value is greater than 30 seconds, the GGSN sets the timeout value to the same value returned by the RADIUS server.

2. Access-point—If the access point is configured for transparent access mode, or is in non-transparent access mode and the RADIUS server does not return a timeout value, then the GGSN uses the value that you specified for the `gtp pdp-context timeout session` or `gtp pdp-context timeout idle` commands.

3. Global timer—If the GGSN does not receive a timeout value from the RADIUS server or the access point, then it uses the value that you specified for the `gprs gtp pdp-context timeout session` or `gprs gtp pdp-context timeout idle` commands.

In summary, the timeout values from the RADIUS server take precedence over the timer configurations on the GGSN, and the timers for a particular access point takes precedence over the globally configured timers.

The values for the `gtp pdp-context timeout session` and `gtp pdp-context timeout idle` commands override the values for the `gprs gtp pdp-context timeout session` or `gprs gtp pdp-context timeout idle` commands.

When you enable a session timer (idle or absolute), any GGSN CDRs (G-CDRs) triggered for the termination of a PDP context because a timer expires will have a cause value of “managementIntervention.”

Configuring the Session Idle Timer

GGSN supports the RADIUS Idle-Timeout (Attribute 28) field. The GGSN stores the attribute 28 value if it is present in the access request packets sent by the AAA server. When a PDP context is idle for an amount of time that exceeds the duration specified with this command, the GGSN terminates the context.

The duration specified for the timer applies to all PDP contexts of a session, however, a timer is started for each PDP context.
The session idle timer can be configured globally and at the APN. The values configured at the APN level override those configured globally.

Note

The session idle timer started for a PDP context is reset by TPDU traffic and GTP signaling messages for that PDP context. For example, if an Update PDP Context request is received, the session idle timer is reset for that PDP context.

Configuring the Session Idle Timer Globally on the GGSN

To configure the amount of time that the GGSN allows a PDP context to remain idle on any access point before purging the context, use the following command, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs gtp pdp-context timeout idle seconds [uplink]</td>
<td>Specifies the time, in seconds, that the GGSN allows a PDP context to remain idle on any access point before purging the context. Valid range is between 30 and 429467. The default is 259200 seconds (72 hours). Optionally, specify the uplink keyword option to enable the session idle timer in the uplink direction only. When the uplink keyword option is not specified, the session idle timer is enabled in both directions (uplink and downlink).</td>
</tr>
</tbody>
</table>

Note

Alternately, you can configure the session idle timer globally using the gprs idle-pdp-context purge-timer hours global configuration command, however, the two methods cannot be configured at the same time.

Configuring the Session Idle Timer for an Access Point on the GGSN

To configure the amount of time that the GGSN allows a PDP context to remain idle for a particular access point before purging the context, use the following command, beginning in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# gtp pdp-context timeout idle seconds [uplink]</td>
<td>Specifies the time, in seconds, that the GGSN allows a PDP context to remain idle for a particular access point before purging the context. Valid range is between 30 and 429467. The default is 259200 seconds (72 hours). Optionally, specify the uplink keyword option to enable the session idle timer in the uplink direction only. When the uplink keyword option is not specified, the session idle timer is enabled in both directions (uplink and downlink).</td>
</tr>
</tbody>
</table>
Note

Alternately, you can configure the session idle timer for an access-point using the `session idle-time` `hours` access-point configuration command, however, the two methods cannot be configured at the same time.

Disabling the Session Idle Timer on the GGSN

By default, for all access points, the GGSN purges the idle PDP contexts of a session after 72 hours. If you want to allow PDP contexts to remain idle for an indefinite period of time, you can disable the timer for a particular user by configuring 0 as the session idle time duration in the user profile on the RADIUS server. If the user is not authenticated by RADIUS, the session idle timer cannot be disabled.

Configuring the Absolute Session Timer

GGSN supports the RADIUS Session-Timeout (Attribute 27) field. When you enable the absolute session timer, the GGSN stores the attribute 27 value if it is present in the access request packets sent by the AAA server. When the duration of a session exceeds the value specified with this command, the GGSN terminates all PDP contexts belonging to the session (those with the same IMSI or MS address).

The absolute session timer can be configured globally and at the APN. The values configured at the APN level override those configured globally.

By default, the absolute session timer is disabled.

Note

The GGSN absolute session timer requires that you have enabled the GGSN to include the Session-Timeout (Attribute 27) in RADIUS requests using the `gprs radius attribute session-timeout` global configuration command.
Configuring the Absolute Session Timer Globally on the GGSN

To configure the amount of time that the GGSN allows a session to exist for any access point before ending the session and purging all PDP contexts belonging to the session, use the following command, beginning in global configuration mode:

Command

```
Router(config)# gprs gtp pdp-context timeout session seconds
```

Purpose

specifies the amount of time, in seconds, that the GGSN allows a session to exist on any access point before ending the session and purging all PDP contexts with the same IMSI or MS address. Valid range is between 30 and 4294967 seconds.

Configuring the Absolute Session Timer for an Access Point on the GGSN

To configure the amount of time that the GGSN allows a session to exist on a particular access point before ending the session and purging all PDP contexts belonging to the session, use the following command, beginning in access-point configuration mode:

Command

```
Router(config-access-point)# gtp pdp-context timeout session seconds
```

Purpose

specifies the amount of time, in seconds, that the GGSN allows a session to exist on a particularly access point before ending the session and purging all PDP contexts with the same IMSI or MS address. Valid range is between 30 and 4294967 seconds.

Disabling the Absolute Session Timer on the GGSN

By default, the absolute session timer is disabled on the GGSN. To return to the default configuration after enabling the absolute session timer, use the `no` form of the global or access-point configuration commands (no gprs gtp pdp-context timeout session or no gtp pdp-context timeout session).

Verifying the Timer Configuration

To display timer information for a particular PDP context, you can use the `show gprs gtp pdp-context` command, using the `tid` or `imsi` keywords. The following example shows sample output for the `show gprs gtp pdp-context tid` command for a PDP context with an session idle timer set at the value of 200 hours (720000 seconds) and an absolute session timer set at 24 hours (86400 seconds). The timer values are displayed in the `session timeout` and `idle timeout` fields shown in bold:

```
router# show gprs gtp pdp-context tid 1111111111111111
TID       MS Addr        Source SGSN Addr   APN
1111111111111111 10.1.1.1        Radius 10.8.8.1        dns.com

current time :Mar 18 2002 11:24:36
user_name (IMSI):1111111111111111 MS address:10.1.1.1
MS International PSTN/ISDN Number (MSISDN):ABC
sgsn_addr_signal:10.8.8.1 sgsn_addr_data:10.8.0.1
control teid local: 0x63493E0C
control teid remove: 0x000000121
data teid local: 0x63483E10
data teid remote: 0x000000121
```
Configuring Flow Control for GTP Error Messages

GTP error indication messages are sent by the GGSN to the SGSN when the SGSN sends data for PDP context the GGSN cannot locate. The error indication message informs the SGSN that the PDP context cannot be located so that the SGSN can clean up the PDP context on its end.

By default, the GGSN disables flow control for GTP error messages.

You can enable flow control for transmission of GTP error messages by using the `gprs gtp error-indication-throttle` global configuration command. This command sets the initial value of a counter which is decremented each time an error indication message is sent. When the counter reaches zero, the GGSN stops transmitting error indication messages. The GGSN resets this counter to the configured throttle value after one second.
To configure flow control for GTP error messages, use the following command, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs gtp error-indication-throttle window-size size</code></td>
<td>(Optional) Specifies the maximum number of error indication messages that the GGSN sends out in one second, where size is an integer between 0 and 256. There is no default value.</td>
</tr>
</tbody>
</table>

Using the Service-Mode Function

The GGSN service-mode function enables you to make configuration changes and test calls without affecting all active sessions on a GGSN. You can configure the service-mode state globally, for an access-point, and for the GGSN charging function. There are two service-mode states: operational and maintenance. The default is operational mode.

Configuring Global Maintenance Mode

When a GGSN is placed in global maintenance mode, it rejects all new Create PDP Context requests. Therefore, no new PDP contexts are activated for an entire GGSN while it is in global maintenance mode.

The following sections provide examples of how to use global maintenance mode:

Adding a New GGSN

1. Enable GGSN services and place the GGSN in maintenance mode

 `Router(config)# service ggsn`
 `Router(config)# gprs service-mode maintenance`

2. Configure the GGSN for your network.
3. Place the GGSN in operational mode.

 `Router(config)# gprs service-mode operational`

Modifying a GGSN

1. Place the GGSN in maintenance mode.

 `Router(config)# gprs service-mode maintenance`

 Wait for existing PDPs for all APNs to be released normally (average session time is approximately 1 hour) and for buffered CDRs to be sent to the charging gateway. If it is not possible for CDRs to be sent to the CG because there is not an active charging gateway, manually clear the CDRs by placing the charging function in maintenance mode using the `gprs charging service-mode` command and issuing the `clear gprs charging cdr all no-transfer` command. For more information on placing the charging function in maintenance mode, see the “Configuring Charging Maintenance Mode” section on page 3-27.

2. Modify the GGSN configuration as desired.
3. Return the GGSN to operational mode.

 `Router(config)# gprs service-mode operational`
Deactivating a GGSN

1. Place the GGSN in maintenance mode.

   ```
   Router(config)# gprs service-mode maintenance
   ```

 Wait for existing PDPs for all APNs to be released normally (average session time is approximately 1 hour) and for buffered CDRs to be sent to the charging gateway. If it is not possible for CDRs to be sent to the CG because there is not an active charging gateway, manually clear the CDRs by placing the charging function in maintenance mode using the `gprs charging service-mode` command and issuing the `clear gprs charging cdr all no-transfer` command. For more information on placing the charging function in maintenance mode, see the “Configuring Charging Maintenance Mode” section on page 3-27.

2. Remove the GGSN from service.

   ```
   Router(config)# no service gprs ggsn
   ```

 To configure the global service-mode state of the GGSN, use the following global configuration command:

   ```
   Command Purpose
   Router(config)# gprs service-mode [operational | maintenance] Configures the global service-mode state. The default is operational.
   ```

 Note When the GGSN is in global maintenance mode, all APNs are placed in maintenance mode as well.

Configuring APN Maintenance Mode

Configure the APN service-mode state to add a new APN or modify an existing APN without affecting sessions for other APNs in the GGSN.

When an APN is in maintenance mode, it does not accept Create PDP Context requests. Once active PDP contexts are released (or manually cleared using the `clear gprs gtp pdp-context access-point` command), all APN-related parameters can be configured or modified and the APN set to operational mode.

Additionally, once you have added and configured an APN, you can verify the configuration using the `gprs service-mode test imsi` global configuration command to set up a test user (one per GGSN) and performing a PDP context creation.

Note The GGSN must be in operational mode (`gprs service-mode operational` command) to test a PDP context creation from a test user using the `gprs service-mode test imsi` command.

To delete an APN, change the APN service-mode state to maintenance, wait for all existing PDPs to be released, and then remove the APN using the `no access-point-name` command.
To configure the service-mode state of an APN, use the following access-point configuration command:

```
Router(config)# service-mode [operational | maintenance]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# service-mode</td>
<td>Configures service-mode state of an APN.</td>
</tr>
<tr>
<td>operational</td>
<td></td>
</tr>
<tr>
<td>maintenance</td>
<td></td>
</tr>
</tbody>
</table>

The following sections provide examples of how to use APN maintenance mode:

Adding a new APN

1. Add a new APN and place it in maintenance mode (by default, an APN is in operational mode)

   ```
   Router(config-access-point)# access-point-name apn-num
   Router(config-access-point)# service-mode maintenance
   ```

2. Configure the APN.
3. Create a PDP context to test the APN configuration

   ```
   Router(config)# gprs service-mode test imsi imsi-value
   ```

4. Place the APN in operational mode.

   ```
   Router(config-access-point)# service-mode operational
   ```

Modifying an APN

1. Place the APN in maintenance mode.

   ```
   Router(config-access-point)# service-mode maintenance
   ```

 Wait for PDP contexts to be released or manually clear using the `gprs gtp pdp-contexts access-point` command.

2. Modify the APN.
3. Create a PDP context to test the APN configuration

   ```
   Router(config)# gprs service-mode test imsi imsi-value
   ```

4. Place the APN in operational mode.

   ```
   Router(config-access-point)# service-mode operational
   ```

Deleting an APN:

1. Place the APN in maintenance mode.

   ```
   Router(config-access-point)# service-mode maintenance
   ```

 Wait for PDP contexts to be released or manually clear them using the `gprs gtp pdp-contexts access-point` command.

2. Delete the APN.

   ```
   Router(config-access-point)# no access-point-name apn-num
   ```
Configuring Charging Maintenance Mode

The charging function of a GGSN primarily consists of collecting CDRs and transmitting CDRs to charging gateways. The service mode state of the GGSN charging function does not impact the collection of CDRs. However, when the charging function is placed in maintenance service-mode state, CDRs are not transmitted to the charging gateway (CG).

When the charging function is in maintenance mode, you can add, delete, or modify CGs (for example, change the IP address of the CGs, their priority, and number). If a new primary charging gateway is configured while the charging function is in maintenance mode, when the charging function of the GGSN is placed back in operational mode, all accumulated CDRs are sent to the new CG.

When in maintenance mode, all collected CDRs, and those in the pending queue, are stored on the GGSN. If desired, these stored CDRs can be cleared using the `clear gprs charging cdr all no-transfer` command. When cleared, they will not be transmitted to the CG when the charging function is returned to operational mode.

The following charging function configuration commands require the charging function to be in maintenance mode:

- `gprs charging path-protocol`
- `gprs charging header short`
- `gprs charging map data tos`
- `gprs charging message transfer-request command-ie`
- `gprs charging message transfer-response number-responded`
- `gprs charging port`
- `gprs default charging-gateway`
- `gprs charging send-buffer`

By default the charging function is in operational mode. To configure the service-mode state of the charging function, use the following global configuration command:

```
Router(config)# gprs charging service-mode [operational | maintenance]
```

The following section provide example of how to use charging maintenance mode:

Modifying a Charging Gateway

1. Place the GGSN charging function in maintenance mode.

   ```
   Router(config)# gprs charging service-mode maintenance
   ```

 CDRs are collected but not transmitted. All collected and buffered CDRs are stored until the charging function is returned to operational mode. At that time, they are sent to the CG.

2. Modify the charging configuration (number of gateways, path protocol, order, etc.).
3. If desired, clear all stored and pending CDRs so that they will not be sent to the CG once the charging function is returned to operational mode.

   ```
   Router(config)# clear gprs charging cdr all no-transfer
   ```

4. Return the charging function to operational mode.

   ```
   Router(config)# gprs charging service-mode operational
   ```
To manually clear all CDRs stored on the GGSN, including those in the pending queue, use the following global configuration command:

```
Router(config)# clear gprs charging cdr all
```

Purpose
Clears stored CDRs, including those in the pending queue, when the charging function is in maintenance mode.

Note
To clear CDRs, the GGSN must be in global maintenance mode (using the `gprs service-mode maintenance` command) and charging maintenance mode (using the `gprs charging service-mode maintenance` command).

Note
When the GGSN is in charging and global maintenance mode, the GGSN no longer creates CDRs for existing PDPs.

Monitoring and Maintaining GTP on the GGSN

This section provides a summary list of the `show` commands that you can use to monitor GTP on the GGSN.

The following privileged EXEC commands are used to monitor and maintain GTP on the GGSN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show gprs gtp parameters</td>
<td>Displays information about the current GTP configuration on the GGSN.</td>
</tr>
<tr>
<td>Router# show gprs gtp path {remote-address ip-address [remote-port-num]</td>
<td>version gtp-version</td>
</tr>
<tr>
<td>Router# show gprs gtp pdp-context {tid tunnel_id [service [all</td>
<td>id id_string]]</td>
</tr>
<tr>
<td>Note</td>
<td>The <code>show gprs gtp pdp-context</code> command options vary, depending on the type of QoS method that is enabled on the GGSN.</td>
</tr>
<tr>
<td>Router# show gprs gtp ms {imsi imsi</td>
<td>access-point access-point-index</td>
</tr>
<tr>
<td>Router# show gprs gtp statistics</td>
<td>Displays the current GTP statistics for the GGSN (such as information element (IE), GTP signaling, and GTP PDU statistics).</td>
</tr>
</tbody>
</table>
This section includes the following examples:

- GGSN Configuration Example, page 3-29
- Dynamic Echo Timer Configuration Example, page 3-30

GGSN Configuration Example

The following example shows part of a sample GGSN configuration with some of the commands that you use to configure basic GGSN GTP services:

```
GGSN# show running-config
Current configuration : 3521 bytes
!
version 12.2
no service single-slot-reload-enable
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Router# show gprs gtp status
Displays information about the current status of GTP on the GGSN.

Router# show gprs service-mode
Displays the current service mode of the GGSN and the last time the service mode was changed.
access-point-name gprt.cisco.com
exit
!
access-point 3
    access-point-name gpru.cisco.com
    access-mode non-transparent
    aaa-group authentication foo
    exit
!
Configures GTP parameters
!
gprs maximum-pdp-context-allowed 90000
gprs gtp path-echo-interval 0
gprs default charging-gateway 10.15.15.1
!
Enables the memory protection feature to become active if the memory threshold falls below 50 MB
!
gprs memory threshold 512
!
...

Dynamic Echo Timer Configuration Example

The following example shows part of a sample GGSN configuration for the dynamic echo timer. In this example, the dynamic echo timer is enabled, the smooth factor is changed from the default value of 2 to the value 5, and the dynamic minimum value is changed from the default value of 5 seconds to the value 10 seconds:

GGSN# show running-config

Current configuration : 6769 bytes
!
version 12.2
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service internal
service gprs ggsn
!
ip cef
!
!
interface loopback 1
    ip address 10.41.1.1 255.255.255.0
!
interface Virtual-Templatel
    ip unnumber loopback 1
    encapsulation gtp
gprs access-point-list gprs
!
...
!
gprs access-point-list gprs
    access-point 1
access-point-name gprs.cisco.com
exit
!
access-point 2
access-point-name gprt.cisco.com
access-mode non-transparent
aaa-group authentication test2
aaa-group accounting test2
ip-address-pool dhcp-proxy-client
dhcp-server 10.65.0.1
dhcp-gateway-address 10.65.0.1
exit
!
! Enables the dynamic echo timer
!
gprs gtp echo-timer dynamic enable
!
! Configures a smooth factor of 5
!
gprs gtp echo-timer dynamic smooth-factor 5
!
! Configures the dynamic minimum as 10 seconds
!
gprs gtp echo-timer dynamic minimum 10
gprs gtp response-message wait-accounting
!
end
CHAPTER 4

Configuring GGSN GTP Session Redundancy

This chapter describes how to configure GTP session redundancy (GTP-SR) between two GGSNs. For a complete description of the GGSN commands in this chapter, refer to the Cisco GGSN Release 6.0 Command Reference.

To locate documentation of other commands that appear in this chapter, use the command reference master index or search online. See the “Related Documents” section on page 2-13 for a list of the other Cisco IOS software documentation that might be helpful while configuring the GGSN.

This chapter includes the following sections:

- GTP Session Redundancy Overview, page 4-1
- Enabling GTP Session Redundancy, page 4-4
- Disabling GTP Session Redundancy, page 4-9
- Configuring Charging-Related Synchronization Parameters, page 4-10
- Monitoring and Maintaining GTP-SR, page 4-12
- Upgrading GGSN Images in a GTP-SR Environment, page 4-12
- Configuration Examples, page 4-12

GTP Session Redundancy Overview

Cisco GGSN Release 5.1 and later supports Active/Standby, 1-to-1 inter-device GTP session redundancy (GTP-SR). GTP-SR enables two GGSNs located on separate Cisco Multi-Processor WAN Application Modules (MWAMs) installed in separate Cisco 7600 series chassis to appear as one network entity and ensures that continuous service is provided to mobile subscribers in the event one of the GGSNs fails.

The Cisco IOS GGSN software uses the Cisco IOS Hot Standby Routing Protocol (HSRP), the Cisco IOS Check-point Facility (CF) and Redundancy Framework (CF), and Stream Control Transmission Protocol (SCTP) to provide inter-device redundancy and high availability.

In a GTP-SR implementation, the Active GGSN establishes and terminates PDP sessions and sends required stateful data to the Standby GGSN. To stay current on the states of active PDP sessions, the Standby GGSN receives the stateful data sent by the Active GGSN. As soon as the Standby GGSN detects that the Active GGSN has failed, it becomes active and assumes the responsibilities of the Active GGSN.
GTP Session Redundancy Overview

Figure 4-1 illustrates a GTP-SR implementation.

**Figure 4-1  GTP-SR Configuration**

Before GTP-SR can be enabled on the redundant GGSNs, a GTP-SR inter-device infrastructure must be configured. For information on configuring the GTP-SR inter-device infrastructure, see the “Configuring the GTP Session Redundancy Inter-Device Infrastructure” section on page 4-4.

**Prerequisites**

Proper GTP-SR operation requires the following:

- Two Cisco 7600 series routers with a Cisco Supervisor Engine 720 and third-generation policy feature card (PFC3BXL) with integrated Multilayer Switch Feature Card 3 (MSFC3). The MSFC3s must be running the same Cisco IOS software release.
- A Cisco Multi-Processor WAN Application Module (MWAM) in each of the Cisco 7600 series routers. The MWAMs must be running the same Cisco IOS GGSN software release.
- HSRP Version 2.
- The Active and Standby GGSNs have the same configuration, except for certain protocol-related configurations that need to be distinct such as the IP addresses of the HSRP-enabled interfaces and the remote IP addresses in the SCTP configuration.
  
  Each of the configurations must be completed in the same order on both of the units of the GTP-SR configuration.
- When loading or upgrading a new Cisco IOS GGSN image, both GGSNs must be loaded (virtually) together.
- On the SGSN, the values configured for the number GTP N3 requests and T3 retransmissions are larger than the switchover timer. This enables requests sent during a switchover to be serviced by the newly Active GGSN rather than dropped.

- RADIUS has been forced to use the IP address of a specified interface for all outgoing RADIUS packets using the `ip radius source-interface` global configuration command.

### Limitations and Restrictions

Before configuring GTP-SR, please note the following limitations and restrictions:

- **GTP-SR is supported on the Cisco 7600 platform only.**

- **PDP Contexts** —Redundancy is not supported for the following types of PDP contexts. In the case of a switchover, these PDP contexts require re-establishment on the Standby GGSN once it becomes active.
  - PPP type PDP
  - PPP Regeneration / L2TP access
  - Network Initiated

- **Timers**—Except for the session timer, GGSN timers are not synchronized to the Standby GGSN. When a switchover occurs, the timers on the newly Active GGSN are restarted with an increment to prevent many of them from expiring simultaneously.

  When a PDP context is recreated on the Standby GGSN, the session timer is restarted with the elapsed time subtracted from the initial session timer value. Once the session expires on the Standby GGSN, the PDP context is deleted.

- **Counters**—If a switchover occurs, status counters, such as “cgprsAccPtSuccMsActivatedPdps,” and some statistics counters will have a non-zero value that is the value of the counter at the time the switchover occurred. All other counters and statistics will be reset to zero.

  If a GGSN reload occurs, all counters are set back to zero.

- **Sequence numbers related to GTP signaling and data are not synchronized between the Active and Standby GGSNs.**

- **Charging**—All pertinent information to establish charging on the Standby GGSN for a PDP context is synchronized, however, the user data related charging information for a PDP context is not. Therefore all CDRs in the previously Active GGSN that were not sent to the charging gateway are lost when a switchover occurs.

- **Once a GTP-SR relationship is formed between two GGSNs, modifying the configuration of a GGSN might cause the GGSN to reload before the changes can be saved. To ensure that this does not occur, disable GTP-SR before modifying the configuration of a GGSN. For information on disabling GTP-SR, see “Disabling GTP Session Redundancy” section on page 4-9.**

- **In a GTP session redundancy (GTP-SR) environment, do not use the `clear gprs gtp pdp-context` command on the Standby GGSN. If you issue this command on the Standby GGSN, you are prompted to confirm before the command is processed. To confirm the state of a GGSN, issue the `show gprs redundancy` command.**
Enabling GTP Session Redundancy

To configure GTP-SR, complete the tasks, *in the order in which they are presented*, in the following sections:

- Configuring the GTP Session Redundancy Inter-Device Infrastructure, page 4-4
- Configuring GTP-SR on the GGSN, page 4-9
- Configuring Charging-Related Synchronization Parameters, page 4-10

Configuring the GTP Session Redundancy Inter-Device Infrastructure

The GGSN GTP-SR feature uses the Cisco IOS Check-point Facility (CF) to send stateful data over Stream Control Transmission Protocol (SCTP) to a redundant GGSN. Additionally, in conjunction with Cisco IOS HSRP, the GGSN uses the Cisco IOS Redundancy Facility (RF) to monitor and report transitions on Active and Standby GGSNs.

To configure the GTP-SR inter-device infrastructure before enabling GTP-SR on the redundant GGSNs, complete the tasks in the following sections

- Configuring HSRP, page 4-4
- Enabling Inter-Device Redundancy, page 4-6
- Configuring the Inter-Device Communication Transport, page 4-7

Configuring HSRP

The Hot Standby Router Protocol (HSRP) provides high network availability because it routes IP traffic from hosts on networks without relying on the availability of any single router. HSRP is used in a group of routers for selecting an Active router and a Standby router. HSRP monitors both the inside and outside interfaces so that if any interface goes down, the whole device is deemed to be down and the Standby device becomes active and takes over the responsibilities of an Active device.

Restrictions and Recommendations

When configuring HSRP, note that the following recommendation and restrictions apply:

- At minimum, HSRP must be enabled and an HSRP *primary* group defined on one interface per GGSN instance. Each additional HSRP interface on the GGSN, with its own separate VLAN, can be configured as a *follow* group using the *standby* interface configuration command with the *follow* keyword option specified with the same group number as the primary group.

  The follow group feature enables all interfaces configured with an HRSP follow group to share the HSRP parameters of the primary group. This facilitate HSRP group setup and maintenance in environments that contain a large number of GGSN interfaces and HSRP groups. The primary group and associated follow groups share the same group track states together and have the same priority.

  Typically, HRSP groups are needed on the following interfaces. One group is configured as the primary group and the rest as follow groups. Each interface must be configured on different VLANs.

  - Gn interface—primary group
  - Ga interface—follow group
  - DHCP (can be shared with the Gi interface)—follow group
  - Gi APN (per VRF)—follow group
The same HSRP group cannot be used on another Active/Standby GGSN pair mapped to the same physical VLAN.

When HSRP is configured on an interface, a preemption delay can be configured using the `standby preempt` interface configuration command. However, in a GTP-SR environment, we recommend that you do not configure a preemption delay unless absolutely necessary. This prevents any unnecessary switchovers. If a preemption delay must be configure, ensure that a sufficient delay is specified so that bulk synchronization can complete before preemption takes affect.

When the `standby use-bia` command is not used to allow bridge and gateways to learn the virtual MAC address, for optimization purposes, configure the `standby mac-refresh` command to a value greater than the default (hello messages are sent every 10 seconds) under the main interface (gig0/0). Once configured, all HSRP groups (primary and follow) will send Hello messages only if the node is in Active mode.

Use the same group number for each GGSN follow group as is defined for the primary group. Using the same group number for the primary and follow groups facilitates HRSP group setup and maintenance in an environment that contains a large number of GGSN interfaces and HRSP groups.

---

**Note**
A GGSN will reload if additional HSRP configurations are added after the initial HSRP setup has been configured.

For complete information on configuring Cisco IOS HSRP, see “Configuring the Hot Standby Router Protocol” section of the *Cisco IOS IP Configuration Guide*, Release 12.3.

---

**Enabling HSRP and Configuring an HSRP Primary Group**

To enable HSRP on an interface and configure the primary group, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> Router(config-if)# standby version 2</td>
<td>Changes the HSRP version to HSRP Version 2.</td>
</tr>
<tr>
<td><strong>Step 2</strong> Router(config-if)# standby [group-number] ip [ip-address [secondary]]</td>
<td>Enables the HSRP on the interface.</td>
</tr>
<tr>
<td><strong>Step 3</strong> Router(config-if)# standby [group-number] priority priority</td>
<td>Set the Hot Standby priority used in choosing the active router. The priority value range is from 1 to 255, where 1 denotes the lowest priority and 255 denotes the highest priority. Specify that, if the local router has priority over the current active router, the local router should attempt to take its place as the active router.</td>
</tr>
<tr>
<td><strong>Step 4</strong> Router(config-if)# standby [group-number] name name</td>
<td>Specifies the name of the standby group.</td>
</tr>
<tr>
<td><strong>Step 5</strong> Router(config-if)# standby use-bia [scope interface]</td>
<td>(Optional) Configures HSRP to use the burned-in address of an interface as its virtual MAC address instead of the preassigned MAC address.</td>
</tr>
</tbody>
</table>
Chapter 4 Configuring GGSN GTP Session Redundancy

Configuring HSRP Follow Groups

Once HSRP has been enabled and the primary group configured on a GGSN interface, additional GGSN interfaces can be configured to share the HSRP parameters of the primary group by configuring it as a HSRP follow group on the interface using the `standby` interface configuration command with the `follow` keyword option specified with the same group number as the primary group. Interfaces that share a group track states together and have the same priority.

**Note**

HSRP group parameters such as priority, name, tracking, and timers are configured under the primary group only. Do not configure these parameters under follow groups because they inherit them from the primary group.

To configure an interface to follow a primary group, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

Router(config-if)# standby group-number
follow group-name

Specifies the number of the follow group and the name of the primary group to follow and share status.

**Note** The group number specified must be the same as the primary group number.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

Router(config-if)# standby group-number
ip virtual-ip-address

Specifies the group number and virtual IP address of the follow group.

**Note** The group number specified must be the same as the primary group number.

Enabling Inter-Device Redundancy

The HSRP primary group is associated with Cisco IOS Redundancy Facility (RF) to enable session redundancy between two GGSNs.

To enable inter-device redundancy, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

Router(config)# redundancy inter-device

Configures redundancy and enters inter-device configuration mode.

To remove all inter-device configuration, use the `no` form of the command.

**Step 2**

Router(config-red-interdevice)# scheme standby
standby-group-name

Defines the redundancy scheme that is to be used. Currently, ”standby” is the only supported scheme.

- `standby-group-name`—Must match the standby name specified in the `standby name` interface configuration command (see the “Configuring HSRP” section on page 4-4). Also, the standby name should be the same on both GGSNs.

**Step 3**

Router(config-red-interdevice)# exit

Returns to global configuration mode.
Configuring the Inter-Device Communication Transport

Inter-device redundancy requires a transport for communication between the redundant GGSNs. This transport is configured using Interprocess Communication (IPC) commands.

To configure the inter-device communication transport between the two GGSNs, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ipc zone default</td>
<td>Configures the Inter-device Communication Protocol (IPC) and enters IPC zone configuration mode. Use this command to initiate the communication link between the Active device and the Standby device.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-ipczone)# association 1</td>
<td>Configures an association between two devices and enters IPC association configuration mode. In IPC association configuration mode, you configure the details of the association, such as the transport protocol, local port and local IP addresses, and the remote port and remote IP addresses. Valid association IDs range from 1 to 255. There is no default value.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-ipczone)# no shutdown</td>
<td>Restarts a disabled association and its associated transport protocol. <strong>Note</strong> Shutdown of the association is required for any changes to the transport protocol parameters.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-ipczone-assoc)# protocol sctp</td>
<td>Configures Stream Control Transmission Protocol (SCTP) as the transport protocol for this association and enables SCTP protocol configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-ipc-protocol-sctp)# local-port local_port_num</td>
<td>Defines the local SCTP port number to use to communicate with the redundant peer and enables IPC Transport-SCTP local configuration mode. Valid port numbers range from 1 to 65535. There is no default value. <strong>Note</strong> The local port number should be the same as the remote port number on the peer router.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-ipc-local-sctp)# local ip ip_addr</td>
<td>Defines the local IP address that is used to communicate with the redundant peer. The local IP address must match the remote IP address on the peer router.</td>
</tr>
</tbody>
</table>
### Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Router(config-ipc-local-sctp)# keepalive [period [retries]]</td>
<td>Enables keepalive packets and specifies the number of times that the Cisco IOS software tries to send keepalive packets with a response before bringing down the interface or tunnel protocol for a specific interface. Valid value for period is an integer value in seconds greater than 0. The default is 10. Valid value for retries is an integer value greater than one and less than 355. The default is the previously used value or 5 if there was no value previously specified.</td>
</tr>
<tr>
<td>8</td>
<td>Router(config-ipc-local-sctp)# retransmit-timeout interval</td>
<td>Configures the message retransmission time. Valid range is 300 to 60000 milliseconds. The default is minimum 300/maximum 600.</td>
</tr>
<tr>
<td>9</td>
<td>Router(config-ipc-local-sctp)# path-retransmit number</td>
<td>Configures the maximum number of keep-alive retries before the corresponding destination address is marked inactive. Valid range is 2 to 10. The default is 4.</td>
</tr>
<tr>
<td>10</td>
<td>Router(config-ipc-local-sctp)# assoc-retransmit number</td>
<td>Defines the maximum number of retransmissions over all destination addresses before an association is declared failed. Valid range is 2 to 10. The default is 4.</td>
</tr>
<tr>
<td>11</td>
<td>Router(config-ipc-local-sctp)# max-inbound-streams max-streams</td>
<td>Configures the maximum number of inbound streams allowed for the local port. Valid range is 2 to 25. The default is 17 streams.</td>
</tr>
<tr>
<td>12</td>
<td>Router(config-ipc-local-sctp)# init-timeout msec</td>
<td>Configures the maximum interval for the init packet retransmission time-out value. Valid range is 1000 to 60000 milliseconds. The default is 1000 milliseconds.</td>
</tr>
<tr>
<td>13</td>
<td>Router(config-ipc-local-sctp)# exit</td>
<td>Exits IPC transport - SCTP local configuration mode.</td>
</tr>
<tr>
<td>14</td>
<td>Router(config-ipc-protocol-sctp)# remote-port port_num</td>
<td>Defines the remote SCTP port that is used to communicate with the redundant peer and enables IPC Transport-SCTP remote configuration mode. Valid port numbers range from 1 to 65535. There is no default. <strong>Note</strong> The remote port number should be the same as the local port number on the peer device.</td>
</tr>
<tr>
<td>15</td>
<td>Router(config-ipc-remote-sctp)# remote-ip ip_addr</td>
<td>Defines the remote IP address of the redundant peer that is used to communicate with the local device. All remote IP addresses must refer to the same device.</td>
</tr>
</tbody>
</table>

To remove an association, use the no form of the command.
Configuring GTP-SR on the GGSN

To enable GTP-SR on a GGSN, use the following command in global configuration mode on both GGSNs of a redundant pair:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs redundancy</code></td>
<td>Enables GTP-SR on a GGSN.</td>
</tr>
</tbody>
</table>

Disabling GTP Session Redundancy

To disable GTP-SR (at both the application level and inter-device infrastructure level), complete the following tasks in the following example in the order in which they are listed. Ensure the GGSN is in Standby mode when you start these tasks.

1. Verify the GGSN is in standby mode and disable the GGSN application-level redundancy.

   ```
 Router(config)# show gprs redundancy
 ...
 Router(config)# no gprs redundancy

 The GGSN becomes a standalone active GGSN.
   ```

2. Remove the standby scheme configured under inter-device configuration mode.

   ```
 Router(config)# redundancy inter-device
 Router(config-red-interdevice)# no scheme standby HSRP-Gn
   ```

3. Save configuration changes to memory.

   ```
 Router(config)# write memory
   ```

4. Reload the router.

   ```
 Router# reload

 Once the GGSN comes back up, additional configuration changes can be made and saved without the GGSN reloading.
   ```

5. Disable SCTP by disabling the association between the two devices and deconfiguring SCTP.

   ```
 Router(config)# ip zone default
 Router(config-ipzone)# association 1
 Router(config-ipzone-assoc)# shutdown
 ...
 Router(config-ipzone-assoc)# no protocol sctp
   ```
6. To remove the HRSP configuration associated with an interface, use the no forms of the relevant HSRP commands. Remove the HRSP group configuration for the following groups first.

Router(config)# interface GigabitEthernet0/0.56001
Router(config-if)# no standby 52 ip 172.90.1.52
Router(config-if)# no standby 52 follow HSRP-Gn
Router(config-if)# no standby version 2
Router(config-if)# exit

Router(config)# interface GigabitEthernet0/0.401
Router(config-if)# no standby 52 ip 192.1268.1.52
Router(config-if)# no standby 52 name HSRP-Gn
Router(config-if)# no standby version 2
Router(config-if)# exit

7. Save configuration changes to memory:

Router(config)# write memory

Configuring Charging-Related Synchronization Parameters

Charging-related data necessary to establish charging for a PDP context is synchronized to the Standby GGSN. This data includes:

- Charging Identity (CID) associated with a PDP context
- Local sequence number
- Record sequence number
- GTP’ sequence number

Charging Identity (CID) and Local Record Sequence Number

When an established PDP context is synchronized, the CID assigned to the PDP context’s CDR is also synchronized to the Standby GGSN. When the Standby GGSN receives the synchronized data for the PDP context, if the CID value provided is greater than the current value of the global CID counter, it writes the value to the global CID counter. If a switchover occurs, the newly Active GGSN starts from the latest CID value that was written, plus a window/offset for all new PDP contexts created on the newly Active GGSN.

When the Active GGSN’s CID timer expires and it writes the global CID counter value to memory, the CID value and local record sequence (if configured) are synchronized to the Standby GGSN, which writes the information to its memory. If the local sequence number is also configured, when the write timer associated with the local sequence number expires, both the CID and the local sequence number are synchronized to the Standby GGSN. When the unit becomes active, it will use the local record sequence number, plus the latest CID value written to memory, plus a window/offset for subsequent PDP contexts created on the newly Active GGSN.

Record Sequence Number

The record sequence number is used by the charging gateway to detect duplicate CDRs associated with a PDP context.

To minimize the amount of data being synchronized to the Standby GGSN, the record sequence number is not synchronized each time a CDR is closed. Instead, a window threshold for the record sequence number is synchronized each time a CDR closes. The current value of the record sequence number and the record number last synchronized for a PDP context is checked. If the difference is the value
configured for the window size (using the `gprs redundancy charging sync-window cdr rec-seqnum` global configuration command), the current record sequence number is synchronized to the Standby GGSN.

When a Standby GGSN becomes the Active GGSN, it starts from the last value synchronized plus the window size.

To configure the window size used to determine when the CDR record sequence number needs to be synchronized to the Standby GGSN, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# gprs redundancy charging sync-window cdr rec-seqnum size</td>
<td>Configures the window size used to determine when the CDR record sequence number needs to be synchronized. Valid range is 1 to 20. The default is 10.</td>
</tr>
</tbody>
</table>

**GTP’ Sequence Number**

The GTP’ sequence number is used by the charging gateway to prevent the duplication of packets. The GGSN sends encoded CDRs associated with a PDP context in a GTP packet to the charging gateway. If the GTP packet is acknowledged by the charging gateway, it removes the packet from memory. If it is not acknowledged, it is retransmitted. The charging gateway cannot acknowledged GTP packets if the sequence number repeats.

To minimize the amount of data being synchronized to the Standby GGSN, the GTP’ sequence number is not synchronized each time a CDR is closed. Instead, a window threshold for the GTP’ sequence number is synchronized each time a CDR message is sent. The current value of the GTP’ sequence number and the gtp’ sequence number last synchronized for a PDP context is checked and if the difference is the value configured for the window size (using the `gprs redundancy charging sync-window gtp’ seqnum` global configuration command), the GTP prime sequence number is synchronized to the Standby GGSN.

When a Standby GGSN becomes the Active GGSN, it starts from the last value synchronized plus the window size.

To configure the window size used to determine when the GTP’ sequence number needs to be synchronized to the Standby GGSN, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# gprs redundancy charging sync-window gtp’ seqnum size</td>
<td>Configures the window size used to determine when the GTP’ sequence number needs to be synchronized. Valid range is 5 to 65535. The default is 10000.</td>
</tr>
</tbody>
</table>

**Note** Since a GGSN can transmit 128 GTP packets without any acknowledgement, we recommend that you configure the window size to be greater than 128.
Chapter 4  Configuring GGSN GTP Session Redundancy

Monitoring and Maintaining GTP-SR

The following privilege EXEC show commands can be used to monitor the different aspects of the GTP-SR configuration on the GGSN.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show gprs redundancy</td>
<td>Displays statistics related to GTP-SR.</td>
</tr>
<tr>
<td>Router# show redundancy [clients</td>
<td>counters</td>
</tr>
<tr>
<td>Router# show standby</td>
<td>Displays HSRP information.</td>
</tr>
</tbody>
</table>

Upgrading GGSN Images in a GTP-SR Environment

To upgrade to a new GGSN image on the MWAM, the following tasks must be completed.

1. Identify all application entities (GGSN images) on the MWAM using the show images PC command.
2. Remove all GGSNs belonging to the MWAM card from the GTP SLB list on the supervisor, using the Cisco IOS SLB no inservice command. This prevents a GGSN from receiving new create PDP context requests, but it continues to service existing PDP contexts.
3. Wait until all PDP contexts are cleared, or if desired, manually clear established PDP contexts using the clear gprs gtp pdp-context command.
4. Load the new images onto the MWAM and reset the MWAM using the Cisco MWAM hw-module module slot_number reset command.
5. Once the images have been reloaded, return the GGSNs to the GTP SLB list by using the Cisco IOS SLB inservice command on the supervisor.

For complete information on upgrading application images on the Cisco MWAM, see the Cisco Multiprocessor WAN Application Module User Guide.

Configuration Examples

This section provides examples of the following examples:

- Primary Supervisor Configuration Example, page 4-13
- Standby Supervisor Configuration Example, page 4-16
- Primary GGSN Configuration Example, page 4-18
- Secondary GGSN Configuration Example, page 4-20

Note: The following configurations examples are just samples of configurations. Actual configurations vary based on network design.
Primary Supervisor Configuration Example

The following configuration example shows part of a sample configuration on the Primary Supervisor with some of the commands that you use to configure GTP-SR highlighted in bold text:

```
sup-primary#show running-config
Building configuration...

Current configuration : 7144 bytes
!
! Last configuration change at 12:28:26 UTC Tue Oct 21 2003
! NVRAM config last updated at 13:32:08 UTC Thu Oct 16 2003
!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname sup-primary
!
...
!
mwam module x port y allowed-vlan 1-1000
ip subnet-zero
!
!
oip domain-lookup
!
!
ip slb probe PING-PROBE ping
 interval 3
 faildetect 5
!
ip slb serverfarm GGSN-SR-FARM
 probe PING-PROBE
 !
 real 10.20.30.11
 weight 4
 reassign 4
 faildetect numconns 1 numclients 1
 no inservice
 !
 real 10.20.30.12
 weight 4
 reassign 4
 faildetect numconns 1 numclients 1
 inservice
 !
 real 10.20.30.13
 weight 4
 reassign 4
 faildetect numconns 1 numclients 1
 no inservice
 !
 real 10.20.30.14
 weight 1
 faildetect numconns 1 numclients 1
 no inservice
```
real 10.20.30.15
  weight 1
  faildetect numconns 1 numclients 1
  no inservice
!
ip slb vserver VIRTUAL-GGSN-V0
  virtual 10.20.30.91 udp 3386 service gtp
  serverfarm GGSN-SR-FARM
  idle gtp request 180
  inservice
!
ip slb vserver VIRTUAL-GGSN-V1
  virtual 10.20.30.91 udp 2123 service gtp
  serverfarm GGSN-SR-FARM
  idle gtp request 180
  inservice
!
mls ldp logging neighbor-changes
mls flow ip destination
mls flow ipx destination
!
spanning-tree extend system-id
!
redundancy
  mode rpr-plus
  main-cpu
    auto-sync running-config
    auto-sync standard
!
interface GigabitEthernet2/1
  description "VLAN for Inter-dev SCTP"
  no ip address
  switchport
  switchport access vlan 498
  switchport mode access
  no cdp enable
!
interface FastEthernet3/25
  description "VLAN for Gn"
  no ip address
duplex full
switchport
  switchport access vlan 410
  switchport mode access
  no cdp enable
!
interface FastEthernet3/26
  description "VLAN for Gi"
  no ip address
duplex full
switchport
  switchport access vlan 420
  switchport mode access
!
interface Vlan1
  no ip address
  shutdown
**description** "Virtual LAN for Gn interface for all GGSNs on an MWAM"

```
ip address 10.20.21.1 255.255.255.0
no ip redirects
```

```
interface Vlan420
description "One Gi Vlan all GGSN images of mwam"
ip address 10.20.51.1 255.255.255.0
no ip redirects
```

```
interface Vlan498
description "VLAN for Inter-dev_SCTP"
ip address 10.70.71.1 255.255.255.0
```

```
router ospf 1
router-id 10.20.1.2
log-adjacency-changes
summary-address 10.20.30.0 255.255.255.0
redistribute static subnets route-map GGSN-routes
network 10.20.1.0 0.0.0.255 area 1
```

```
ip classless
ip route 0.0.0.0 0.0.0.0 128.107.234.100
ip route 1.8.0.0 255.255.0.0 1.8.0.1
ip route 1.12.0.0 255.255.0.0 1.12.0.1
ip route 10.2.5.0 255.255.255.0 10.2.15.1
ip route 10.20.30.11 255.255.255.255 10.20.21.81
ip route 10.20.30.12 255.255.255.255 10.20.21.82
ip route 10.20.30.13 255.255.255.255 10.20.21.83
ip route 10.20.30.14 255.255.255.255 10.20.21.84
ip route 10.20.30.15 255.255.255.255 10.20.21.85
ip route 110.1.0.0 255.255.0.0 10.20.51.91
ip route 120.1.0.0 255.255.0.0 10.20.51.92
ip route 128.107.234.185 255.255.255.255 128.107.234.161
ip route 130.1.0.0 255.255.0.0 10.20.51.93
ip route 140.1.0.0 255.255.0.0 10.20.51.94
ip route 150.1.0.0 255.255.0.0 10.20.51.95
ip route 172.19.23.55 255.255.255.255 172.19.24.1
ip route 223.0.0.0 255.0.0.0 1.8.0.1
ip route 223.0.0.0 255.0.0.0 1.12.0.1
no ip http server
no ip http secure-server
ip pim bidir-enable
```

```
access-list 1 permit 10.20.30.0 0.0.0.255
access-list 101 permit ip 128.107.234.160 0.0.0.31 any
access-list 102 permit ip any 128.107.234.160 0.0.0.31
arp 127.0.0.22 0000.2200.0000 ARPA
```

```
route-map GGSN-routes permit 10
match ip address 1
```

```
line con 0
exec-timeout 0 0
logging synchronous
line vty 0 4
exec-timeout 0 0
password abc
logging synchronous
transport input lat pad mop telnet rlogin udptn nasi
line vty 5 15
exec-timeout 0 0
password abc
```
configuration Examples

logging synchronous
!
ntp master
end

Standby Supervisor Configuration Example

The following configuration example shows part of a sample configuration on the Standby Supervisor with some of the commands that you use to configure GTP-SR highlighted in bold text:

sup-secondary#show running-config
Building configuration...

Current configuration : 6430 bytes
!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname sup-secondary
!
...
!
mwam module x port y allowed-vlan 1-1000
ip subnet-zero
!
!
no ip domain-lookup
!
...
!
ip slb vserver VIRTUAL-GGSN-V0
  virtual 10.20.30.91 udp 3386 service gtp
  serverfarm GGSN-SR-FARM
  idle gtp request 180
  inservice
!
ip slb vserver VIRTUAL-GGSN-V1
  virtual 10.20.30.91 udp 2123 service gtp
  serverfarm GGSN-SR-FARM
  idle gtp request 180
  inservice
!
...
!
interface FastEthernet2/25
  description “VLAN for Gn”
  no ip address
  switchport
  switchport access vlan 410
  switchport mode access
  no cdp enable
!
interface FastEthernet2/26
description "VLAN for Gi"
no ip address
switchport
switchport access vlan 420
switchport mode access
no cdp enable
!

interface Vlan410
description "Virtual LAN for Gm interface for all GGSNs on an MWAM"
ip address 10.20.21.2 255.255.255.0
no ip redirects
!
interface Vlan420
description "One Gi Vlan all GGSN images of mwam"
ip address 10.20.51.2 255.255.255.0
no ip redirects
!
interface Vlan498
description "VLAN for Inter-dev SCTP"
ip address 10.70.71.2 255.255.255.0
!
router ospf 1
router-id 10.20.1.2
log-adjacency-changes
summary-address 10.20.30.0 255.255.255.0
redistribute static subnets route-map GGSN-routes
network 10.20.1.0 0.0.0.255 area 1
!
ip classless
ip route 1.8.0.0 255.255.0.0 1.8.0.1
ip route 1.12.0.0 255.255.0.0 1.12.0.1
ip route 10.20.30.11 255.255.255.255 10.20.21.81
ip route 10.20.30.12 255.255.255.255 10.20.21.82
ip route 10.20.30.13 255.255.255.255 10.20.21.83
ip route 10.20.30.14 255.255.255.255 10.20.21.84
ip route 10.20.30.15 255.255.255.255 10.20.21.85
ip route 110.1.0.0 255.255.0.0 10.20.51.91
ip route 120.1.0.0 255.255.0.0 10.20.51.92
ip route 130.1.0.0 255.255.0.0 10.20.51.93
ip route 140.1.0.0 255.255.0.0 10.20.51.94
ip route 150.1.0.0 255.255.0.0 10.20.51.95
ip route 172.19.22.60 255.255.255.255 172.19.24.1
ip route 172.19.23.55 255.255.255.255 172.19.24.1
ip route 223.0.0.0 255.0.0.0 1.8.0.1
ip route 223.0.0.0 255.0.0.0 1.12.0.1
no ip http server
no ip http secure-server
ip pim bidir-enable
!
access-list 1 permit 10.20.30.0 0.0.0.255
!
route-map GGSN-routes permit 10
match ip address 1
!
line con 0
exec-timeout 0 0
logging synchronous
line vty 0 4
exec-timeout 0 0
password abc
logging synchronous
login
transport input lat pad mop telnet rlogin udptn nasi
line vty 5 15
exec-timeout 0 0
password abc
logging synchronous
login

ntp clock-period 17179775
ntp server 8.8.8.200
end

Primary GGSN Configuration Example

The following configuration example shows part of a sample GGSN configuration on the Primary GGSN with some of the commands that you use to configure GTP-SR highlighted in bold text:

Act_GGSN#show running-config
Building configuration...

Current configuration : 2942 bytes
!
version 12.3
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
service gprs ggsn
no service dhcp
!
hostname Act_GGSN
!
...
!
redundancy inter-device
scheme standby Gn
!
ipc zone default
association 1
no shutdown
protocol sctp
  local-port 5000
  local-ip 10.70.71.5
  keepalive 3000
  retransmit-timeout 300 10000
  path-retransmit 10
  assoc-retransmit 20
  remote-port 5000
  remote-ip 10.70.71.9
!
no aaa new-model
ip subnet-zero
!
!
no ip cef
no ip domain lookup
!

interface Loopback1
description VT address of processor3:GGSN"
ip address 10.20.30.12 255.255.255.255
!
interface Loopback2
  description "Loopback of GTP-SLB for dispatch mode"
ip address 10.20.30.91 255.255.255.255
!
interface GigabitEthernet0/0
  no ip address
  standby use-bia
!
interface GigabitEthernet0/0.3
  description "VLAN for Gn interface of UMTS"
  encapsulation dot1Q 410
  ip address 10.20.21.52 255.255.255.0
  no ip mroute-cache
  no keepalive
  no cdp enable
  standby version 2
  standby 7 ip 10.20.21.82
  standby 7 priority 190
  standby 7 name Gn
!
interface GigabitEthernet0/0.31
  description "VLAN for Gi interface of UMTS"
  encapsulation dot1Q 420
  ip vrf forwarding internet
  ip address 10.30.21.52 255.255.255.0
  standby 7 follow Gn
  standby 7 ip 10.30.21.82
!
interface GigabitEthernet0/0.71
  description "VLAN for inter-dev_SCTP"
  encapsulation dot1Q 498
  ip address 10.70.71.5 255.255.255.0
!
interface Virtual-Template1
  ip unnumbered Loopback1
  no ip redirects
  encapsulation gtp
  gprs access-point-list gprs
!
ip local pool APN1 110.1.0.1 110.1.10.255
  ip classless
  no ip http server
!
  gprs access-point-list gprs
    access-point 1
      access-point-name apn1
      ip-address-pool local APN1
!
!
gprs gtp path-echo-interval 0
  gprs gtp ip udp ignore checksum
!
gprs charging disable
  gprs redundancy
!
...
!
end
Secondary GGSN Configuration Example

The following configuration example shows part of a sample GGSN configuration on the Standby GGSN with some of the commands that you use to configure GTP-SR highlighted in bold text:

```
Stby_GGSN#show running config
Building configuration...

Current configuration : 2823 bytes
!
version 12.3
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname Stby_GGSN
!
! redundancy inter-device
 scheme standby Gn
 ipc zone default
 association 1
 no shutdown
 protocol sctp
 local-port 5000
 local-ip 10.70.71.9
 keepalive 3000
 retransmit-timeout 300 10000
 path-retransmit 10
 assoc-retransmit 20
 remote-port 5000
 remote-ip 10.70.71.5
! no aaa new-model
ip subnet-zero
!!
interface Loopback1
description VT address of processor3:GGSN"
ip address 10.20.30.12 255.255.255.255
! interface Loopback2
description "Loopback of GTP-SLB for dispatch mode"
ip address 10.20.30.91 255.255.255.255
! interface GigabitEthernet0/0
no ip address
 standby use-bia
! interface GigabitEthernet0/0.3
description "VLAN for Gn interface of UMTS"
encapsulation dot1q 410
ip address 10.20.21.62 255.255.255.255
```
no ip mroute-cache
no keepalive
no cdp enable
standby version 2
standby 7 ip 10.20.21.82
standby 7 priority 160
standby 7 name Gn

! interface GigabitEthernet0/0.31
description "VLAN for Gi interface of UMTS"
encapsulation dot1Q 420
ip vrf forwarding internet
ip address 10.30.21.62 255.255.255.0
standby 7 follow Gn
standby 7 ip 10.30.21.82

! interface GigabitEthernet0/0.71
description "VLAN for inter-dev_SCTP"
encapsulation dot1Q 498
ip address 10.70.71.9 255.255.255.0

! interface Virtual-Template1
  ip unnumbered Loopback1
  no ip redirects
  encapsulation gtp
  gprs access-point-list gprs
  !
ip local pool APN1 110.1.0.1 110.1.10.255
ip classless
no ip http server
!
!
! gprs access-point-list gprs
  access-point 1
  access-point-name apn1
  ip-address-pool local APN1
!
!
! gprs gtp ip udp ignore checksum
! gprs gtp create-request v1 update-existing-pdp
!
gprs charging disable

gprs redundancy
!
!
!
!
end

Stby_GGSN-3#
Configuring Charging on the GGSN

This chapter describes how to configure the charging function on a gateway GPRS support node (GGSN). If at minimum, one charging gateway is configured, by default, charging processing is enabled on the GGSN. There are several ways to customize communication with a charging gateway. Many of the default values for the charging options will provide a satisfactory configuration until you become more familiar with your network and decide to customize the charging interface.

For a complete description of the GGSN commands in this chapter, refer to the Cisco GGSN Release 6.0 Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter includes the following sections:

- Configuring an Interface to the Charging Gateway, page 5-1 (Required)
- Configuring the Default Charging Gateway, page 5-5 (Required)
- Configuring the GGSN Memory Threshold, page 5-6 (Optional)
- Configuring the Transport Protocol for the Charging Gateway, page 5-7 (Optional)
- Configuring the Charging Release, page 5-8 (Optional)
- Configuring Charging for Roamers, page 5-8 (Optional)
- Customizing the Charging Gateway, page 5-10 (Optional)
- Disabling Charging Processing, page 5-13 (Optional)
- Using Charging Profiles, page 5-14 (Optional)
- Configuring G-CDR Backup and Auto-Retrieval using a PSD, page 5-18 (Optional)
- Monitoring and Maintaining Charging on the GGSN, page 5-20
- Configuration Examples, page 5-21

Configuring an Interface to the Charging Gateway

To establish access to an external charging gateway in the general packet radio service/Universal Mobile Telecommunication System (GPRS/UMTS) network, you must configure an interface on the GGSN to connect to the network of the charging gateway. In GPRS/UMTS, the interface between the GGSN and the charging gateway is referred to as the Ga interface. GGSN Release 4.0 and later supports both a 2.5G Ga interface and 3G Ga interface.
On the Cisco 7200 series router platform, this interface is a physical one. On the Catalyst 6500 series switch / Cisco 7600 series Internet router platform, this interface is logical one (on which IEEE 802.1Q-encapsulation has been configured) to the Layer 3 routed Ga VLAN configured on the Supervisor/Multilayer Switch Feature Card 2 (MSFC2).

For more information about the Ga VLAN on the Supervisor/MSFC2, see “Catalyst 6500/Cisco 7600 Series Platform Prerequisites” section on page 2-2.

For more information about configuring interfaces, see the Cisco IOS Interface Configuration Guide and the Cisco IOS Interface Command Reference.

**Configuring Physical Interfaces**

To configure a physical interface to the charging gateway that supports Fast Ethernet, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>Defines a physical interface on the GGSN, where type is fastethernet, and slot/port is the hardware slot and port on the interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address ip-address mask [secondary]</td>
</tr>
<tr>
<td></td>
<td>Specifies an IP address for the interface, where:</td>
</tr>
<tr>
<td></td>
<td>• ip-address—Specifies the IP address of the interface in dotted decimal format.</td>
</tr>
<tr>
<td></td>
<td>• mask—Specifies a subnet mask in dotted decimal format.</td>
</tr>
<tr>
<td></td>
<td>• secondary—Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.</td>
</tr>
</tbody>
</table>

**Configuring 802.1Q-Encapsulated Subinterfaces**

To configure a subinterface that supports IEEE 802.1Q encapsulation to the Ga VLAN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface gigabitethernet slot/port.subinterface-number</td>
</tr>
<tr>
<td></td>
<td>Specifies the subinterface on which IEEE 802.1Q will be used.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# encapsulation dot1q vlanid</td>
</tr>
<tr>
<td></td>
<td>Defines the encapsulation format as IEEE 802.1Q (dot1q), and specifies the VLAN identifier.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip address ip-address mask</td>
</tr>
<tr>
<td></td>
<td>Sets a primary IP address for an interface.</td>
</tr>
</tbody>
</table>
Verifying Interface Configuration to the Charging Gateway

To verify the interface to the charging gateway (CG) you can first verify your GGSN configuration and then verify that the interface is available.

Cisco 7200 Platform

Step 1 To verify that you have properly configured a Ga interface on the GGSN, use the `show running-config` command. The following example is a portion of the output from the command showing a Fast Ethernet 5/1 physical interface configuration as the Ga interface to the charging gateway:

```
GGSN# show running-config
Building configuration...
Current configuration : 2875 bytes
!
version 12.2
!
interface FastEthernet5/1
 description Ga interface
 ip address 10.9.0.1 255.255.255.0
 no ip mroute-cache
duplex full

```

Step 2 To verify that a physical interface is available, use the `show ip interface brief` command. The following example shows that the Fast Ethernet 5/1 interface to the charging gateway is in “up” status and the protocol is also “up”. The information pertaining to the Fast Ethernet 5/1 interface is shown in bold.

```
GGSN #show ip interface brief
Interface IP-Address OK? Method Status Protocol
FastEthernet0/0 10.10.1.3 YES NVRAM up up
FastEthernet1/0 10.29.0.2 YES NVRAM up up
FastEthernet2/0 unassigned YES NVRAM administratively down down
FastEthernet5/1 10.9.0.1 YES NVRAM up up
Ethernet6/0 10.99.0.12 YES NVRAM up up
Ethernet6/1 unassigned YES NVRAM administratively down down
Ethernet6/2 unassigned YES NVRAM administratively down down
Ethernet6/3 unassigned YES NVRAM administratively down down
Ethernet6/4 unassigned YES NVRAM administratively down down
Ethernet6/5 unassigned YES NVRAM administratively down down
Ethernet6/6 unassigned YES NVRAM administratively down down
Ethernet6/7 10.35.35.2 YES NVRAM up up
Virtual-Access1 10.44.44.1 YES TFTP up up
Virtual-Template1 10.44.44.1 YES manual down down
```
Chapter 5      Configuring Charging on the GGSN

Catalyst 6500/Cisco 7600 Platform

Step 1  To verify that you have properly configured a Ga interface on the Supervisor/MSFC2, use the show running-config command. The following example is a portion of the output from the command showing the Fast Ethernet 8/22 physical interface configuration as the Ga interface to the SGSN. The configuration of the Fast Ethernet 8/22 physical interface is shown in bold.

Sup# show running-config
Building configuration...

Current configuration :12672 bytes
!
version 12.2
...
interface FastEthernet8/22
no ip address
switchport
switchport access vlan 302
!
interface Vlan101
description Vlan to GGSN for GA/GN
ip address 10.1.1.1 255.255.255.0
!
interface Vlan302
ip address 40.0.2.1 255.255.255.0

Step 2  To verify that the physical interface and the Ga VLAN are available, use the show interface command on the Supervisor/MSFC2. The following example shows that the Fast Ethernet 8/22 physical interface to the charging gateway is up as well as the Ga VLAN, VLAN 101:

Sup# show ip interface brief FastEthernet8/22
Interface                  IP-Address      OK? Method Status                Protocol
FastEthernet8/22           unassigned      YES unset  up                    up
Sup#
show ip interface brief Vlan302
Interface                  IP-Address      OK? Method Status                Protocol
Vlan302                    40.0.2.1        YES TFTP   up                    up
Sup#

Step 3  To verify the Ga VLAN configuration and availability, use the show vlan name command on the Supervisor/MSFC2. The following example shows the Gn VLAN Gn_1:

Sup# show vlan name Ga_1

VLAN Name                        Status  Ports
---- ----------------------------- ------ -------------------------------
302  Ga_1                         active  Gi4/1, Gi4/2, Gi4/3, Gi7/1
                                        Gi7/2, Gi7/3, Fa8/22, Fa8/26

VLAN Type  SAID  MTU  Parent  RingNo  BridgeNo  Stp  BrdgMode  Trans1  Trans2
-----  ------  ----  ------  ------  -------  ----  -------  -----  -----  
302    enet  100302   1500  -     -     -     -     -   0       0

Remote SPAN VLAN
Disabled

Primary Secondary Type  Ports

Step 4 On the GGSN, to verify that you have properly configured a Ga subinterface to the Ga VLAN, use the `show running-config` command. The following example is a portion of the output from the command which shows a Fast Ethernet 5/1 physical interface configuration as the Ga interface to the charging gateway:

```
GGSN# show running-config
Building configuration...

Current configuration :7390 bytes
!
! Last configuration change at 16:56:05 UTC Wed Jun 25 2003
! NVRAM config last updated at 23:40:27 UTC Fri Jun 13 2003
!
version 12.3
.....
interface GigabitEthernet0/0.2
 description Ga/Gn Interface
 encapsulation dot1Q 101
 ip address 10.1.1.72 255.255.255.0
 no cdp enable
!
.....
ip route 40.1.2.1 255.255.255.255 10.1.1.1
```

Step 5 To verify that the subinterface is available, use the `show ip interface brief` command. The following example shows that the Gigabit Ethernet 0/0.2 subinterface to the Ga VLAN is in “up” status and the protocol is also “up”:

```
GGSN# show ip interface brief GigabitEthernet0/0.2
Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0.2 10.1.1.72 YES NVRAM up up
```

Configuring the Default Charging Gateway

You can configure a primary charging gateway that the GGSN uses, by default, to communicate charging information. Additionally, you can specify a secondary and tertiary charging gateway as backups. All charging gateways share the same global charging parameters.

To configure a default charging gateway for a GGSN, use the following command in global configuration mode:

```
Router(config)# gprs default charging-gateway {ip-address | name} [{ip-address | name}] [{ip-address | name}] [{ip-address | name}]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# gprs default charging-gateway {ip-address</td>
<td>name} [{ip-address</td>
</tr>
<tr>
<td></td>
<td>• <code>ip-address</code>—Specifies the IP address of a charging gateway. The second (optional) <code>ip-address</code> argument specifies the IP address of a secondary charging gateway.</td>
</tr>
<tr>
<td></td>
<td>• <code>name</code>—Specifies the host name of a charging gateway. The second (optional) <code>name</code> argument specifies the host name of a secondary charging gateway.</td>
</tr>
</tbody>
</table>
Configuring the GGSN to Switchover to the Highest Priority Charging Gateway

When priority switchover has been configured on the GGSN using the `gprs charging switchover priority` command, regardless of the state of the current active charging gateway, when a gateway of higher priority comes up, the GGSN will switchover and send G-CDRs to that charging gateway.

To configuring priority switchover on the GGSN, use the following command in global configuration mode:

```
Router(config)# gprs charging switchover priority
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configures the GGSN to switch over to the gateway of higher priority when that gateway becomes active.</td>
</tr>
</tbody>
</table>

Changing the Default Charging Gateway

To change the default charging gateway of a GGSN, use the following commands, beginning in global configuration mode:

```
Router(config)# gprs default charging-gateway 10.9.0.2
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Specifies a primary charging gateway at IP address 10.9.0.2.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Removes the primary charging gateway at IP address 10.9.0.2.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies the new default primary charging gateway at IP address 10.9.0.3.</td>
</tr>
</tbody>
</table>

Configuring the GGSN Memory Threshold

The GGSN memory protection feature prevents processor memory from being drained during periods of abnormal conditions (such as when all charging gateways are down and the GGSN is buffering CDRs into memory. By default, the memory threshold is 10% of the total memory available at the time GGSN services are enabled using the `gprs ggsn service` global configuration command. You can use the `gprs memory threshold` global configuration command to configure the threshold according to the router and memory size.

When the amount of memory remaining on the system reaches the defined threshold, the memory protection feature activates and the GGSN performs the following actions to keep the processor memory from falling below the threshold:

- Rejects new create PDP requests with the cause value “No Resource.”
- Drops any existing PDPs for which an update is received with the cause value “Management Intervention.”
- Drops any PDPs for which a volume trigger has occurred.
While the memory protection feature is active, byte counts will be maintained and reported after the GGSN recovers. However, because some change conditions are not handled, some counts will not reflect the accurate charging condition (for example, QoS and tariff conditions).

To configure the memory threshold that when reached, activates the memory protection feature on the GGSN, use the following global configuration command:

```
Router(config)# gprs memory threshold threshold
```
Configures the memory threshold on the GGSN. Valid range is 0 to 1024. The default is 10% of the total memory available at the time GGSN services are enabled.

### Configuring the Transport Protocol for the Charging Gateway

You can configure a GGSN to support either Transport Control Protocol (TCP) or User Datagram Protocol (UDP) as the transport path protocol for communication with the charging gateway.

The GGSN default configuration specifies UDP, which is a connectionless protocol that is considered an unreliable transport method but can yield greater performance.

#### Configuring TCP as the Charging Gateway Path Protocol

TCP is a connection-based protocol that provides reliable transmission through packet acknowledgment. To specify TCP as the transport path protocol, use the following commands, beginning in global configuration mode:

```
Step 1
Router(config)# gprs charging cg-path-requests 1
```
Specifies the number of minutes that the GGSN waits before trying to establish the TCP path to the charging gateway when TCP is the specified path protocol. The default is 0 minutes, which disables the timer.

```
Step 2
Router(config)# gprs charging path-protocol tcp
```
Specifies that the TCP networking protocol is used by the GGSN to transmit and receive charging data.

#### Configuring UDP as the Charging Gateway Path Protocol

The GGSN default configuration specifies UDP as the transport path protocol to the charging gateway. If you need to reconfigure the charging gateway for UDP transport, use the following command in global configuration mode:

```
Router(config)# gprs charging path-protocol udp
```
Specifies that the UDP networking protocol is used by the GGSN to transmit and receive charging data. The default value is UDP.
Configuring the Charging Release

GGSN Release 4.0 and later support both 2.5G and 3G Ga interfaces and GPRS (R97/R98) and UMTS (R99) Quality of Service (QoS) profile formats. With GGSN Release 5.0 and later, the GGSN can be configured to comply with 3GPP TS 32.215 Release 4 or Release 5.

Depending on the CG and GGSN configuration, when specifying the 99 or 98 keyword, the following actions take place:

- If the GGSN is configured to present R97/R98 CDRs (gprs charging release 98 is configure):
  - If the PDP context is R98, the GGSN presents an R97/R98 G-CDR.
  - If the PDP context is R99, the GGSN presents an R97/R98 G-CDR by converting the R99 QoS profile to an R97/R98 QoS profile.

- If the GGSN is configured to present R99 CDRs (gprs charging release 99 is configure):
  - If the PDP context is R99, the GGSN presents an R99 G-CDR.
  - If the PDP context is R98, the GGSN presents an R99 CDR by converting the QoS profile.

To configure the charging release with which the GGSN complies when presenting G-CDRs, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs charging release (99</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Configures the format presented by the GGSN in CDRs.</td>
</tr>
<tr>
<td></td>
<td>- 99—R97, R98, and R99 QoS profile formats are presented.</td>
</tr>
<tr>
<td></td>
<td>- 98—R97/R98 QoS profile formats are presented.</td>
</tr>
<tr>
<td></td>
<td>The default value is 99.</td>
</tr>
<tr>
<td></td>
<td>Note When 99 is configured, the Charging Characteristics parameter is included in G-CDRs. When 4 or 5 is configured, the Charging Characteristics Selection Mode IE is included.</td>
</tr>
</tbody>
</table>

Configuring Charging for Roamers

A GGSN can be configured to generate G-CDRs for roaming mobile subscribers.

When the charging for roamers feature is enabled on the GGSN, when the GGSN receives a PDP context request, it first checks to see if both the GGSN and serving GPRS support node (SGSN) public land mobile network (PLMN) IDs are present and match (via the Routing Area Identity [RAI] field information element [IE]).

If not both are not present and match, the GGSN matches the IE containing the SGSN Signaling Address field against a list of PLMN IP address ranges that have been defined using the gprs plmn ip address command with the sgsn keyword option specified.
Chapter 5      Configuring Charging on the GGSN

Configuring Charging for Roamers

Note

To use the RAI IE in Create PDP Context requests to detect roamers, a valid home PLMN must be configured on the GGSN using the `gprs mcc mn` global configuration command. When a valid home PLMN is configured, or valid trusted PLMNs, a CDR will not be generated if the RAI matches the configured home (or trusted) PLMN. A CDR will be created for all PDPs with RAIIs that do not match a home or trusted PLMN.

Note

If the RAI field is not present in a Create PDP Context, and an address range has not been configured using the `gprs plmn ip address` command with the `sgsn` keyword option specified, the PDP will be classified as “unknown” and treated as a roamer.

If the GGSN determines that the SGSN that sent the Create PDP Context request is not located within the same PLMN as it is, the GGSN generates a call detail record (CDR). If the GGSN determines that the SGSN is located in the same PLMN, it will not generate a CDR until it receives notification that the SGSN has changed location to another PLMN.

To enable charging for roamers on the GGSN using the `gprs charging roamers` command, you should first define a set of IP address ranges for a PLMN, using the `gprs plmn ip address` command.

Note

It is important that you configure the `gprs plmn ip address` and `gprs charging roamers` commands in their proper order. After you configure the IP address range for a PLMN, use the `gprs charging roamers` command to enable the charging for roamers feature on the GGSN. You can change the IP address range by reissuing the `gprs plmn ip address` command.

To verify your configuration, use the `show gprs charging parameters` command to see if the charging for roamers feature is enabled. To verify your PLMN IP address ranges, use the `show gprs plmn ip address` command.

Configuring PLMN IP Address Ranges

Depending on how the PLMN IP address ranges have been defined using the `gprs plmn ip address start_ip end_ip [sgsn]` command, the charging for roamers feature operates as follows:

- If no PLMN IP address ranges are configured using the `gprs plmn ip address start_ip end_ip [sgsn]` command, the GGSN generates CDRs for all initiated PDP contexts regardless of whether the GGSN and SGSN are located within the same PLMN.

- If a list of PLMN IP address ranges has been configured using the `gprs plmn ip address start_ip end_ip [sgsn]` command, and one or more of those ranges has been defined using the `sgsn` keyword, the GGSN uses those ranges defined with the `sgsn` keyword to determine whether an SGSN is located within the same PLMN.

With this configuration, the following scenarios outline how the charging for roamers feature will function:

- MS1 is subscribed to PLMN1 and attaches to an SGSN in PLMN2. From PLMN2, MS1 initiates a PDP context with the GGSN in PLMN1. In this case, MS1 is a roamer and the GGSN generates a CDR because it determines that the SGSN is located in a different PLMN.

- MS1 is subscribed to PLMN1 and attaches to an SGSN in PLMN2. From PLMN2, MS1 initiates a PDP context with the GGSN in PLMN2. In this case, MS1 is not a roamer because the SGSN and GGSN are in the same PLMN. The GGSN does not create a G-CDR.
To configure PLMN IP address ranges, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs plmn ip address start_ip end_ip [sgsn]</code></td>
<td>Specifies the IP address range of a PLMN. Optionally, specifies that only the PLMN IP address ranges defined with the <code>sgsn</code> keyword specified be used to determine if an SGSN is located in a PLMN other than the GGSN.</td>
</tr>
</tbody>
</table>

### Enabling Charging for Roamers

To enable the charging for roamers feature on a GGSN, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs charging roamers</code></td>
<td>Enables charging for roamers on a GGSN.</td>
</tr>
</tbody>
</table>

### Customizing the Charging Gateway

For the GGSN charging options, the default values represent recommended values. Other optional commands are also set to default values; however, we recommend modifying these commands to optimize your network as necessary, or according to your hardware.

The GGSN uses echo timing to maintain the path between SGSNs and external charging gateways. However, the GGSN can implement only a single method of echo timing for all the paths that it needs to maintain. To learn more about echo timing on the GGSN, or to modify the echo timing feature, see the “Configuring Echo Timing on a GGSN” section on page 3-6 in the “Configuring GGSN GTP Services” chapter.

Use the following global configuration commands to fine-tune charging processing on the GGSN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs charging cdr-aggregation-limit CDR_limit</code></td>
<td>Specifies the maximum number of CDRs that a GGSN aggregates in a charging data transfer message to a charging gateway. The default is 255 CDRs.</td>
</tr>
<tr>
<td><code>Router(config)# gprs charging cdr-option apn [virtual]</code></td>
<td>Specifies that the APN IE be included or not included in G-CDRs. Optionally, specify the <code>virtual</code> keyword to include the virtual APN in G-CDRs, accounting records, and credit control requests (CCRs).</td>
</tr>
<tr>
<td><code>Router(config)# gprs charging cdr-option apn-selection-mode</code></td>
<td>Enables the GGSN to provide the reason code for access point name (APN) selection in G-CDRs. This is disabled by default.</td>
</tr>
<tr>
<td><code>Router(config)# gprs charging cdr-option cam-mobile-charge-info</code></td>
<td>Specifies that a copy of the tag and length of the Customized Application for Mobile Enhanced Logic (CAMEL) from the SGSN’s CDR be included in G-CDRs.</td>
</tr>
<tr>
<td><code>Router(config)# gprs charging cdr-option chch-selection-mode</code></td>
<td>Specifies that the charging characteristics selection mode parameter be included or not included in G-CDRs.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option dynamic-address</td>
<td>Specifies that the dynamic address flag IE be included or not included in G-CDRs.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option imeisv</td>
<td>Specifies that the International Mobile Equipment Identity IMEI software version (IMEISV) IE be included in G-CDRs. The IMEISV identifies the mobile equipment used by the subscriber.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option local-record-sequence-number</td>
<td>Enables the GGSN to use the local record sequence number IE in G-CDRs. This is disabled by default.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option ms-time-zone</td>
<td>Specifies that the MS Time Zone (MSTZ) IE be included in G-CDRs. The MSTZ IE indicates the offset between universal time and local time.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option nip</td>
<td>Specifies that the Network-Initiated PDP IE be included in G-CDRs.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option no-partial-cdr-generation [all]</td>
<td>Enables the GGSN to create fully-qualified partial G-CDRs. Optionally, on the Cisco 7200 platform, specify the all keyword option to configure the GGSN to copy the SGSN list for charging releases prior to Release 4 when an SGSN change limit trigger is configured as well. The default is fully-qualified partial CDR creation is enabled. <strong>Note</strong> Enable this feature only when there are no active PDP contexts. Enabling this feature will affect all subsequent PDP contexts.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option node-id</td>
<td>Enables the GGSN to specify the node that generated the CDR in the node ID field in G-CDRs. This is disabled by default.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option packet-count</td>
<td>Enables the GGSN to provide uplink and downlink packet counts in the optional record extension field in G-CDRs. This is disabled by default.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option pdp-address</td>
<td>Specifies that the PDP address IE be included or not included in G-CDRs.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option pdp-type</td>
<td>Specifies that the PDP type IE be included or not included in G-CDRs.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option rat-type</td>
<td>Specifies that the radio access technology (RAT) IE be included in G-CDRs. The RAT indicates whether the SGSN serves the user equipment (UE) by Universal Terrestrial Radio Access Network (UTRAN) or GSM/EDGE RAN (GERAN).</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option served-msisdn</td>
<td>Enables the GGSN to provide the mobile station ISDN (MSISDN) number from the Create PDP Context request in G-CDRs. This is disabled by default.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option service-record [value]</td>
<td>Enables the GGSN to generate per-service records. Optionally, the maximum number of services records in a CDR can be specified. When the limit is reached, the current G-CDR is closed and a new partial CDR is opened. If a maximum number is not specified, the default of 5 is used.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cdr-option sgsn-plmn</td>
<td>Configures the GGSN to include the SGSN PLMN ID in G-CDRs. This is disabled by default.</td>
</tr>
</tbody>
</table>
### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs charging cdr-option user-loc-info</td>
<td>Specifies that the user location information (ULI) IE be included in G-CDRs. The ULI provides the cell global identity (CGI) and service area identity (SAI) of the subscriber location.</td>
</tr>
<tr>
<td>Router(config)# gprs charging cg-path-requests minutes</td>
<td>Specifies the number of minutes that the GGSN waits before trying to establish the TCP path to the charging gateway when TCP is the specified path protocol. The default is 0 minutes, which disables the timer.</td>
</tr>
<tr>
<td>Router(config)# gprs charging container change-limit number</td>
<td>Specifies the maximum number of charging containers within each G-CDR from the GGSN. The default is 5.</td>
</tr>
<tr>
<td>Router(config)# gprs charging container sgsn-change-limit number</td>
<td>Specifies the maximum number of SGSN changes that can occur before closing a G-CDR for a particular PDP context. The default is 0, which disables the timer.</td>
</tr>
<tr>
<td>Router(config)# gprs charging container time-trigger number</td>
<td>Specifies a global time limit, that when exceeded by a PDP context causes the GGSN to close and update the G-CDR for that particular PDP context. The default is 0, which disables the timer.</td>
</tr>
<tr>
<td>Router(config)# gprs charging container volume-threshold threshold_value</td>
<td>Specifies the maximum number of bytes that the GGSN maintains in a user's charging container before closing it and updating the G-CDR. The default is 1,048,576 bytes (1 MB).</td>
</tr>
<tr>
<td>Router(config)# gprs charging disable</td>
<td>Disables charging transactions on the GGSN. Charging is enabled by default.</td>
</tr>
<tr>
<td>Router(config)# gprs charging flow-control private-echo</td>
<td>Implements an echo request with private extensions for maintaining flow control on packets transmitted to the charging gateway. This is disabled by default.</td>
</tr>
<tr>
<td>Router(config)# gprs charging header short</td>
<td>Enables the GGSN to use the GPRS tunneling protocol (GTP) short header (6-byte header) instead of the GTP long header. This is disabled by default.</td>
</tr>
<tr>
<td>Router(config)# gprs charging map data tos tos_value</td>
<td>Specifies an IP type of service (ToS) mapping for GPRS charging packets. The default is 3.</td>
</tr>
<tr>
<td>Router(config)# gprs charging message transfer-request possibly-duplicate</td>
<td>Specifies for the GGSN to retransmit Data Record Transfer Request messages (sent to a previously active charging gateway) with the value of the Packet Transfer Request IE set to Send Possibly Duplicate Data Record Packet (2).</td>
</tr>
<tr>
<td>Router(config)# gprs charging packet-queue-size queue_size</td>
<td>Specifies the maximum number of unacknowledged charging data transfer requests that the GGSN maintains in its queue. The default is 128 packets.</td>
</tr>
<tr>
<td>Router(config)# gprs charging path-protocol {udp</td>
<td>tcp}</td>
</tr>
<tr>
<td>Router(config)# gprs charging port port-num</td>
<td>Configures the destination port of the charging gateway. The default is 3386.</td>
</tr>
<tr>
<td>Router(config)# gprs charging send-buffer bytes</td>
<td>Configures the size of the buffer that contains the GTP PDU and signaling messages on the GGSN. The default is 1460 bytes.</td>
</tr>
<tr>
<td>Router(config)# gprs charging server-switch-timer seconds</td>
<td>Specifies a timeout value that determines when the GGSN attempts to find an alternate charging gateway after a destination charging gateway cannot be located or becomes unusable. The default is 60 seconds.</td>
</tr>
</tbody>
</table>
Chapter 5 Configuring Charging on the GGSN

Disabling Charging Processing

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Router(config)# gprs charging tariff-time time** | Specifies a time of day when GPRS/UMTS charging tariffs change. There is no default tariff time.  
**Note** If the system software clock is manually set using the the `clock set` privileged EXEC command at the supervisor console prompt, the time a tariff change will occur must be reconfigured. |
| **Router(config)# gprs charging message transfer-request command-ie** | Specifies for the GGSN to include the Packet Transfer Command information element (IE) in Data Record Transfer Response messages.  
**Note** Even though GGSN 4.0 and later supports the Packet Transfer Command IE, only the “Send Data Record Packet” value is used, even though the packet might be duplicated. The Cisco GGSN does not support the “Send Possibly Duplicated Data Record Packet,” “Cancel Data Record Packet,” or “Release Data Record Packet” values. Therefore, the CG or billing servers must have the ability to eliminate duplicate CDRs. |
| **Router(config)# gprs charging message transfer-response number-responded** | Specifies for the GGSN to use the Number of Requests Responded field instead of the Length field in the Requests Responded IE of Data Record Transfer Response messages. This is disabled by default. |
| **Router(config)# gprs charging reconnect minutes** | Configures the GGSN to periodically attempt to reconnect to a CG that is unreachable to determine when the link is back up.  
**Note** Configuring the GGSN to automatically attempt to reconnect to an unreachable CG is necessary only when UDP is used as the charging transport protocol and the charging gateway does not support echo requests. |
| **Router(config)# gprs charging transfer interval seconds** | Specifies the number of seconds that the GGSN waits before it transfers charging data to the charging gateway. The default is 105 seconds. |

For information about configuring GGSN GTP options, see the “Customizing the GGSN Configuration” section on page 3-15 in the “Configuring GGSN GTP Services” chapter.

**Disabling Charging Processing**

⚠️ **Caution**  
The `gprs charging disable` command removes charging data processing on a GGSN, which means that the data required to bill customers for network usage is neither being collected by the GGSN nor being sent to the charging gateway. We recommend that you avoid using this command in production GPRS/UMTS network environments. When it is necessary to use this command, use it with extreme care and reserve its usage only under nonproduction network conditions.

You can disable charging on the GGSN only after all the open CDRs have been processed and sent to the charging gateway. To clear the current GGSN CDRs, use the `clear gprs charging cdr` privileged EXEC command.
To disable charging processing on a GGSN, use the following command, beginning in global configuration mode:

```
Router(config)# gprs charging disable
```

Disables charging transactions on the GGSN.

### Using Charging Profiles

Cisco GGSN 5.0 and later allows you to apply different charging methods on a per-PDP basis using charging profiles that you create, customize, and specify as the default charging method to use for a specific type of user at an APN level and global level. Charging profiles provide the ability to offer flexible services that are customized to subscriber preferences.

When using charging profiles, please note the following:

- The GGSN must be configured to include the charging characteristics selection mode parameter in CDRs using the `gprs charging cdr-option chch-selection-mode` global configuration command.
- The GGSN must be configured to receive the charging characteristics selection mode IE in CDRs by using the `gprs charging release` global configuration command.

To apply charging methods on a per-PDP basis using GGSN charging profiles, you must complete the tasks outlined in the following sections:

- Configuring a Charging Profile, page 5-14
- Defining the Charging Characteristics and Triggers of the Charging Profile, page 5-16
- Applying a Default Charging Profile to an APN, page 5-17
- Applying a Global Default Charging Profile, page 5-17
- Configuring How the GGSN Handles PDPs with Unmatched Charging Profiles, page 5-17

### Configuring a Charging Profile

Charging profiles define the charging method to apply to a specific type of user (home, roamer, visitor). The GGSN supports up to 256 charging profiles numbered 0 to 255.

Profile 0 is a set profile that always exists on the GGSN. It is not created by a GGSN operator, however, it can be modified using the charging-related global configuration commands. Profiles 1 to 255 are user-defined and customized using charging profile configuration commands.
When a Create PDP Context request is received, an appropriate charging profile is selected based on the following sources of input:

- SGSN/HLR via the charging characteristics IE.
- Local defaults.
- Charging profile index AAA attribute.

The charging profile index received from AAA will take effect only if service-awareness has been configured globally on the GGSN (using the `gprs service-aware` global configuration command), and at the APN level (using the `service-aware` access-point configuration command).

For information on configuring a service-aware GGSN, see the "Configuring Enhanced Service-Aware Billing" chapter of the Cisco GGSN Configuration Guide.

The order in which a charging profile is selected for a PDP context, is as follows:

1. Charging profile index in the override rule on the APN—If a default charging profile has been configured at both the APN and global level to override the SGSN specification, the APN default charging profile is used first.
2. Charging profile index in the override rule on the box (global default charging profile)—If there is no default charging profile default configured at the APN, the default charging profile configured globally is used.
3. Charging profile index from AAA.
4. Charging profile index from SGSN/HLR
5. Charging profile index from the non-override rule on the APN.
6. Charging profile index from non-override rule on the box (global default charging profile).

If none of the above applies, the PDP context is rejected if the `gprs charging characteristics reject` global configuration command is configured and the create request is GTP v1. If the `gprs charging characteristics reject` command is not configured, the GTP v1 PDP context is created using charging profile 0.

The default charging profile, i.e. charging profile 0, is not supported for service-aware PDPs. These PDP create requests will be rejected with error code 199.

To create or modify a charging profile and enter charging profile configuration mode, use the following global configuration command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs charging profile chp-num</code></td>
<td>Creates a new charging profile (or modifies an existing one), and enters charging profile configuration mode. Valid values are 1 to 15.</td>
</tr>
</tbody>
</table>
Defining the Charging Characteristics and Triggers of the Charging Profile

To define the charging method of the charging profile, use the following charging profile configuration commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(ch-prof-conf)# category {hot</td>
<td>flat</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# cdr suppression</code></td>
<td>Specifies that CDRs be suppressed.</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# cdr suppression prepaid</code></td>
<td>Specifies that CDRs be suppressed for prepaid users.</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# content dcca profile profile-name</code></td>
<td>Specifies the profile to use to communicate with a DCCA server.</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# content postpaid time</code></td>
<td>Specifies as a trigger condition for postpaid users, the time duration limit that when exceeded, causes the GGSN to collect upstream and downstream traffic byte counts and close and update the G-CDR for a particular PDP context.</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# content postpaid validity</code></td>
<td>Specifies as a trigger condition in a charging profile, the amount of time quota granted to a postpaid user is valid.</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# content postpaid volume</code></td>
<td>Specifies as a trigger condition for postpaid users, the maximum number of bytes that the GGSN maintains across all containers for a particular PDP context before closing and updating the G-CDR.</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# content rulebase id</code></td>
<td>Defines a default rulebase ID to apply to PDP contexts.</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# description</code></td>
<td>Specifies the name or a brief description of a charging profile.</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# limit volume number [reset]</code></td>
<td>Specifies the maximum number of bytes that can be reported in each CDR from an active PDP context before the GGSN closes and updates the CDR, and opens a partial CDR for the PDP context while it remains in session on the GGSN. If the reset keyword option is configured, the volume trigger is reset if the CDR is closed by any other trigger. If the reset keyword is not specified, the volume trigger will not be reset when the time trigger expires (limit duration command), but it will be reset when any other trigger expires.</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# limit duration number [reset]</code></td>
<td>Specifies as a trigger condition, the time duration limit (in minutes) that when exceeded causes the GGSN to collect upstream and downstream traffic byte counts and close and update the G-CDR for a particular PDP context. If the reset keyword option is configured, the time trigger is reset if the CDR is closed by any other trigger. If the reset keyword is not specified, the time trigger will not be reset when the volume trigger expires (limit volume command), but it will be reset when any other trigger expires.</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# tariff-time</code></td>
<td>Specifies that a charging profile use the global tariff change time configured using the <code>gprs charging tariff-time</code> global configuration command.</td>
</tr>
<tr>
<td><code>Router(ch-prof-conf)# limit sgsn-change</code></td>
<td>Specifies that a charging profile use the global tariff changes configured using the <code>gprs charging tariff-time</code> global configuration command.</td>
</tr>
</tbody>
</table>
Applying a Default Charging Profile to an APN

To configure a default charging profile to use for a specific type of user at an APN, use the following access-point configuration command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# charging profile () (home</td>
<td>roaming</td>
</tr>
</tbody>
</table>

Applying a Global Default Charging Profile

Default charging profiles configured at the global level are used when a default charging profile has not been specified for an APN.

To configure a default charging profile to use for a specific type of user globally, use the following global configuration command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs charging profile default (home</td>
<td>roaming</td>
</tr>
</tbody>
</table>

Configuring How the GGSN Handles PDPs with Unmatched Charging Profiles

The GGSN can be configured to reject or accept GTPv1 Create PDP Context requests for which a profile cannot be matched. If configured to accept these PDP context requests, the charging method defined by charging profile 0 is applied. By default, the Create PDP Context requests are accepted and the charging method defined in charging profile 0 is applied.

The following restrictions apply to charging profiles selected for service-aware PDPs:

- All PDPs belonging to the same user must use the same charging profile as that of the primary PDP.
- The default charging profile, i.e. charging profile 0, is not supported for service-aware PDPs. These PDP create requests will be rejected with error code 199.

To configure a GGSN to reject Create PDP Context requests for which a charging profile cannot be matched, use the following global configuration command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs charging characteristics reject</td>
<td>Configures the GGSN to reject GTPv1 Create PDP Context requests for which a charging profile cannot be selected.</td>
</tr>
</tbody>
</table>
Configuring G-CDR Backup and Auto-Retrieval using a PSD

Up to three CGs can be configured for a GGSN. One gateway at a time functions as the active CG to which the GGSN sends G-CDRs, while the remaining two gateways function as standby CGs in case the active CG goes down. If all three CGs should become inactive, the GGSN buffers G-CDRs into its memory until one of the three CGs becomes active. This can affect the GGSN’s memory resources, and if the GGSN should fail, the G-CDRs buffered into memory are lost.

To avoid a situation in which the GGSN must buffer G-CDRs into memory, you can configure the GGSN to backup G-CDRs to, and retrieve G-CDRs from, a Cisco Persistent Storage Device (PSD).

Note
Backup and auto-retrieval of G-CDRs to a PSD is supported on the Catalyst 6500/Cisco 7600 platform only.

PSD Server Types
A PSD server can be configured to function as either a backup or retrieve-only server.

- Backup PSD
  The backup server is a local PSD (located within the same chassis) to which the GGSN writes G-CDRs if a CG is not available.
  A backup PSD shares the same properties of operation modes as a CG.

- Retrieve-Only PSD
  In a GTP-SR implementation, a “retrieve-only” server must be configured in addition to the local backup server. The retrieve-only server is a remote PSD, located within the same chassis as the second GGSN of the GTP session redundancy (GTP-SR) pair, from which the GGSN collect G-CDRs if a GGSN failover should occur. In other words, the remote PSD of a GGSN functions as the local PSD for the redundantly-configured GGSN and vice versa.

If a GGSN is running in a GTP session redundancy (GTP-SR) configuration, the GGSN writes only to its local PSD and always retrieves from both the remote and local PSDs to guarantee no wedged G-CDRs remain in the GGSN in case of a double failure.

For example, if a previously active GGSN writes G-CDRs to its local PSD and there is a GGSN switchover before it can completely retrieve all the G-CDRs from that PSD, then, upon a retrieval event, the newly active GGSN retrieves all the G-CDRs from the remote PSD that was local to the previously active GGSN before the switchover. The new GGSN does not write G-CDRs to the remote PSD.

The maximum rate of G-CDRs retrieved from the PSD during the auto-retrieve process can be configure (using the auto-retrieve PSD group configuration command) to avoid overwhelming the system with live-CDRs along with auto-retrieved G-CDRs.

Note
Up to two PSDs (one backup and one retrieve-only) can be configured in a PSD server group.

Note
One PSD server group can be configured per GGSN.
Triggering Events

The following events trigger a G-CDR backup or retrieval:

- **Backup Event**—When all paths to the configured CGs fail, a backup event is triggered. When this event is triggered, the GGSN begins to send G-CDRs to the PSD.

- **Retrieval Events**—When a CG becomes active from a previously undefined state, a retrieval event occurs. When this event is triggered, the GGSN starts to retrieve G-CDRs from the PSDs (local and remote if configured for GTP-SR) and forwards them to the newly active CG. When a CG becomes available, the GGSN can be configured to automatically retrieve G-CDRs from a group of PSDs by specifying the `auto-retrieve` command when configuring the PSD server group, or the G-CDRs can be manually retrieved via FTP.

To view counters that indicate the number of event triggers received, use the `show data-store statistics` command.

PSD Server Disk States

The state of a PSD disk is one of the following:

- **Full**—No disk space is available. When in a DISK FULL state, the PSD cannot be used for writing.

- **Available**—Disk space is available. By default, a GGSN assumes this disk state unless it receives a DISK FULL indication from the PSD.

To view the state of a PSD disk, use the `show data-store` command.

PSD Client States

The states of a PSD client can be one of the following:

- **Idle**—Server is available. When a PSD moves from a Writing state to an Idle state, the pending write requests are copied and sent to the active CG.

- **Writing**—Server is being written to. When a backup event occurs, a PSD client in Idle state or Retrieving state enters Writing state if the PSD disk state is not full. If the PSD disk state is full, the PSD is moved to an idle state.

- **Retrieving**—Server is being retrieved from. When a retrieval event occurs, a PSD client in Idle or Writing state enters Retrieving state. G-CDRs are retrieved from the PSD and forwarded to the active CG. If there are two PSDs configured in a PSD server group, G-CDRs are retrieved from retrieve-only PSD first, and then the backup PSD. After all records are retrieved, the PSD client moves to an Idle state.

To view the state of a PSD client, use the `show data-store` command.

PSD Operation Modes

The operation modes of the PSDs are as follows:

- **Undefined**—A PSD is configured on the GGSN but no network connection has been established. The operation mode of a retrieve-only PSD is always undefined.

- **Standby**—A local PSD is configured on the GGSN, a network connection has been established, but the PSD client (the GGSN) is neither nor retrieving G-CDRs from the PSD (G-CDRs are being sent to the CGs). If a backup event occurs, the GGSN moves to the PSD Active state.

- **Active**—G-CDRs are being sent to the local PSD. The operation characteristics configured for the CGs apply to the PSD.

To view the state of a PSD client, use the `show data-store` command.
To configure G-CDR auto-retrieval and backup support on the GGSN, complete the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# data-store psd-group-name Configures a PSD server group on the GGSN to use for GGSN-to-PSD communication and enters PSD group configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-data-store)# server psd-ip-address [retrieve-only] Defines the PSD server by IP address and optionally, specifies whether the server is a retrieve-only server.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-data-store)# auto-retrieve auto-retrieve-rate Configures the GGSN to automatically initiate a G-CDR retrieval from the PSD servers in a PSD group when a CG becomes active and specifies the maximum number of retrieval requests that can be sent from the GGSN to the PSDs per minute.</td>
</tr>
</tbody>
</table>

**Monitoring and Maintaining Charging on the GGSN**

This section provides a summary list of the `show` commands that you can use to monitor charging functions on the GGSN.

The following privileged EXEC commands are used to monitor and maintain charging on the GGSN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show gprs charging parameters Displays information about the current GGSN charging configuration.</td>
<td></td>
</tr>
<tr>
<td>Router# show gprs service-mode Displays the current global service mode state of the GGSN and the last time it was changed.</td>
<td></td>
</tr>
<tr>
<td>Router# show gprs charging statistics Displays cumulative statistics about the transfer of charging packets between the GGSN and charging gateways.</td>
<td></td>
</tr>
<tr>
<td>Router# show data-store statistics Displays the PSD client statistics, including the number of requests sent and DRT responses received.</td>
<td></td>
</tr>
<tr>
<td>Router# show data-store Displays the status of the PSD client and PSD server-related information.</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples

The following are examples of charging configurations implemented on the GGSN.

Global Charging Configuration

Cisco 7200 Platform
The following configuration example shows part of a sample GGSN configuration on the Cisco 7200 series platform with some of the commands that you use to configure charging services:

```
GGSN# show running-config
service gprs ggsn
 !
 ip cef
 !
 . . .
 !
 interface Ethernet5/1
 description Ga interface
 ip address 10.9.0.1 255.255.0.0
 duplex half
 !
 . . .
 !
 interface loopback 1
 ip address 10.40.40.1 255.255.255.0
 !
 interface Virtual-Template1
 ip unnumber loopback 1
 encapsulation gtp
 gprs access-point-list gprs
 !
 . . .
 !
 gprs access-point-list gprs
 access-point 1
 access-point-name auth-accounting
 access-mode non-transparent
 aaa-group authentication first
 aaa-group accounting second
 ip-address-pool dhcp-proxy-client
 dhcp-server 10.60.0.1
 dhcp-gateway-address 10.60.0.1
 exit
 !
 . . .
 !
 gprs default charging-gateway 10.9.0.2
 gprs charging send-buffer 1000
 gprs charging container volume-threshold 500000
 gprs charging container change-limit 3
 gprs charging cdr-aggregation-limit 10
 gprs charging cdr-option apn-selection-mode
 gprs charging cdr-option served-msisdn
 !
 gprs memory threshold 512
 !
 . . .
 !
end
```
Catalyst 6500/Cisco 7600 Platform

On the GGSN:

```
GGSN# show running-config
Building configuration...

Current configuration :7390 bytes
!
! Last configuration change at 16:56:05 UTC Wed Jun 25 2003
! NVRAM config last updated at 23:40:27 UTC Fri Jun 13 2003
!
version 12.3
.....
interface GigabitEthernet0/0.2
description Ga/Gn Interface
encapsulation dot1Q 101
ip address 10.1.1.72 255.255.255.0
no cdp enable
!
.....
ip route 40.1.2.1 255.255.255.255 10.1.1.1
!
gprs access-point-list gprs
 access-point 1
 access-point-name auth-accounting
 access-mode non-transparent
 aaa-group authentication first
 aaa-group accounting second
 ip-address-pool dhcp-proxy-client
 dhcp-server 10.60.0.1
 dhcp-gateway-address 10.60.0.1
 exit
!
!
gprs default charging-gateway 10.9.0.2
!
gprs charging send-buffer 1000
!
gprs charging container volume-threshold 500000
!
gprs charging container change-limit 3
!
gprs charging cdr-aggregation-limit 10
!
gprs charging cdr-option apn-selection-mode
!
gprs charging cdr-option served-msisdn
!
!
gprs memory threshold 512
!
!
end
```

On the Supervisor / MSFC2:

```
Sup# show running-config
Building configuration...

Current configuration :12672 bytes
!
version 12.2
...
interface FastEthernet8/22
 no ip address
 switchport
 switchport access vlan 302
!
```
description Vlan to GGSN for GA/GN
ip address 10.1.1.1 255.255.255.0
!
interface Vlan302
ip address 40.0.2.1 255.255.255.0

Charging Profiles Configuration

The following partial configuration example shows two charging profiles (charging profile 1 and charging profile 2) configured on the GGSN, with charging profile 1 being configured as the global default charging profile to be used for “any” type of user if a charging profile is not specified at the APN:

GGSN# show running-config
Building configuration...

Current configuration :7390 bytes
!
! Last configuration change at 16:56:05 UTC Wed Jun 25 2003
! NVRAM config last updated at 23:40:27 UTC Fri Jun 13 2003
!
version 12.3
......
interface GigabitEthernet0/0.2
description Ga/Gn Interface
encapsulation dot1Q 101
ip address 10.1.1.72 255.255.255.0
no cdp enable
!
......
ip route 40.1.2.1 255.255.255.255 10.1.1.1
!
!
!
gprs charging profile default any 1

gprs charging profile 1
description "roamer_profile"
limit volume 500000 reset
limit duration 30 reset
!
gprs charging profile 2
description "any_unmatched"
limit volume 1000000 reset
limit duration 60 reset
....
!
!
!
end
CHAPTER 6

Configuring Enhanced Service-Aware Billing

This chapter describes how to implement the Cisco Gateway GPRS Support Node (GGSN) as a service-aware GGSN that is capable of real-time credit-control for prepaid users, as well as service-aware billing for postpaid and prepaid users.

Note

Service-aware GGSN functionality is supported on the Catalyst 6500/Cisco 7600 platform only.

For a complete description of the GGSN commands in this chapter, refer to the Cisco GGSN Release 6.0 Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter includes the following sections:
- Service-Aware GGSN Overview, page 6-1
- Configuring a Service-Aware GGSN, page 6-5
- Configuration Example, page 6-25

Service-Aware GGSN Overview

With GGSN Release 5.2 and later, the Cisco GGSN can be configured with the Cisco Content Services Gateway (CSG) and Cisco IOS Diameter protocol/Diameter Credit Control Application (DCCA) to support real-time credit-control for prepaid users and service-aware billing for postpaid and prepaid users.

Note

With Cisco GGSN Release 6.0, Cisco IOS Release 12.4(2)XB2 and later, as an alternate online billing solution that does not include DCCA, the GGSN can be configured to support Online Charging Server (OCS) address selection. OCS address selection enables online credit control for prepaid users to be provided by an external OCS to which the Cisco CSG has a direct GTP’ interface. When this support is configured, the GGSN functions as a quota server for postpaid subscribers only and does not generate enhanced G-CDRs (eG-CDRs) for prepaid users. For more information about the OCS address selection support on the GGSN, see the “Configuring OCS Address Selection Support” section on page 6-24.

The GGSN and Cisco CSG together, function as a service-aware GGSN.

The Cisco CSG categorizes traffic, reports usage, and management quota. The GGSN provides a Diameter interface to the DCCA server via which the Cisco CSG can request quota and report usage. The GGSN also maintains all PDP contexts and determines if they are prepaid or postpaid.
If service-based charging is required (prepaid or postpaid), entries are created on the Cisco CSG. The Cisco CSG inspects the service categories and reports usage back to the GGSN. If the user is to be treated as a postpaid user (offline charging), the GGSN records usage information that is reported by the Cisco CSG in eG-CDRs. If the user is to be treated as a prepaid user (online charging), the GGSN records the reported usage information in eG-CDRs, and translates and sends the information to a DCCA server.

The GGSN also handles Gn-side triggers for quota reauthorization and server-initiated reauthorization or termination requests. The Cisco CSG sends the authorization requests, quota reports, and service stops to the GGSN, which in turn translates them into DCCA messages for transport over the Diameter interface. When the DCCA server responds with additional quota, the GGSN pushes it to the Cisco CSG.

Note

If RADIUS is not being used, the Cisco CSG must be configured as a RADIUS proxy.

Figure 6-1 provides illustrates the functions and characteristics the service-aware GGSN with DCCA providing online charging support.
**Supported Features**

The primary new features supported by the GGSN to enable the configuration of a service-aware GGSN, include the following:

- Diameter base protocol and DCCA client interface support for online/real-time credit control for prepaid users (IP PDP contexts only)
- Quota server functionality and interface to Cisco CSG for per-service billing
- Enhanced G-CDRs for service-based CDRs for prepaid and postpaid subscribers

Additionally, GGSN Release 5.2 and later provides enhancements to the following existing interfaces:

- AAA authentication interface—DCCA rulebase support and charging profile selection
- AAA accounting interface—Required for Cisco CSG Known User Table (KUT) population and Cisco CSG-based proxies
- Ga—Enhanced offline charging interface

**Unsupported Features**

The following features are not supported with the service aware feature in GGSN Release 5.2:

- Charging differentiation for secondary PDP contexts
- PPP PDP contexts
- PPP Regeneration
- Network Management
- Cell identity
- PDP contexts for both online DCCA exchange and offline service-based usage
- Dynamic configuration for blocking/forwarding traffic while waiting for quota reauthorization
- Diameter proxy, relay, or redirection
- Diameter transport layer security
- SCTP transport
- No Dual Quota Support (for receiving Volume and Time quota)

**Service-Aware GGSN Data Flows**

The following is a high-level overview of the flow of traffic during the creation of a PDP context for a prepaid subscriber in an enhanced service-aware billing implementation using the service-aware GGSN.

**PDP Context Creation Data Flow for Prepaid Users**

1. The SGSN sends a create PDP context request to the service-aware GGSN.
2. The GGSN sends an Access-Request message to the RADIUS server or Cisco CSG configured as a RADIUS proxy.
3. The RADIUS returns an Access-Accept response. From the Access-Accept response, the GGSN obtains a default rulebase ID, or if the response does not contain a default rulebase ID, the GGSN obtains the rulebase ID from a locally configured value in the charging profile selected for this create PDP context request.
4. The service-aware GGSN sends a Credit Control Request (CCR) to the DCCA server.
5. The DCCA server sends a Credit Control Answer (CCA) to the GGSN. This CCA may contain a rulebase and quota request.

6. If it contains a rulebase, the GGSN sends an Accounting-Start request with the selected rulebase to the RADIUS.

7. The RADIUS receives the Accounting-Start request and creates a KUT for the user.

8. The RAIDUS sends an Accounting Start response to the GGSN.

9. If the DCCA server sends a quota request is received in a CCA to the GGSN and the GGSN pushes the quota request to the Cisco CSG.

10. When the GGSN receives a quota push response from the Cisco CSG, it sends the create PDP context response to the SGSN and the context is established.

**PDP Context Creation Data Flow for Postpaid Users**

1. The SGSN sends a create PDP context request to the service-aware GGSN.

2. The GGSN sends an Accounting-Start request containing selected rulebase to the RADIUS endpoint (Cisco CSG configured as a RADIUS proxy).

3. The RADIUS proxy receives Accounting-Start request and creates a KUT for the user.

4. The RAIDUS sends an Accounting Start response to the GGSN.

5. The GGSN sends a create PDP context response to the SGSN and the context is established.

**Prerequisites**

Implementing a service-aware GGSN using GGSN Release 5.2 requires the following:

- Two Catalyst 6500 series switches/Cisco 7600 series Internet routers in which Sup720s with the 512-MB Multilayer Switch Feature Card 2 (MSFC2) are installed and running Cisco IOS Release 12.2(18)SXE and later.

- Depending on GGSN scaling and redundancy, Multiple Cisco Multi-Processor WAN Application Module (MWAMs), each with the 1 GB memory option.

- IPSec VPN card (for security)

- A Cisco Content Services Gateway (CSG) module in each of the Cisco 7600 series routers. The Cisco CSGs must be running the same Cisco CSG software release, Release 3.1(3)C6(1) or later.

- On the SGSN, the values configured for the number GTP N3 requests and T3 retransmissions must be larger than the sum of all possible server timers (RADIUS, DCCA, and Cisco CSG).

Specifically the SGSN N3*T3 must be greater than:

\[ 2 \times \text{RADIUS timeout} + N \times \text{DCCA timeout} + \text{Cisco CSG timeout} \]

where:

- 2 is for both authentication and accounting.
- \( N \) is for the number of diameter servers configured in the server group.
Limitations and Restrictions

Before implementing enhanced service-aware billing, please note the following:

- Service-aware GGSN functionality is supported on the Catalyst 6500/Cisco 7600 platform only.
- If session redundancy is needed, the GGSN supports a maximum of 21 categories per user.
- RADIUS accounting is enabled between the Cisco CSG and GGSN to populate the KUT entries with the PDP context user information.
- The Cisco CSG must be configured with the quota server addresses of all the GGSN instances.
- The service IDs on the Cisco CSG must be configured as numeric strings that match the category IDs on the DCCA server.
- If RADIUS is not being used, the Cisco CSG must be configured as a RADIUS proxy on the GGSN.

Configuring a Service-Aware GGSN

To configure a service-aware GGSN, complete the tasks in the following sections:

- Enabling Service-Aware Billing Support, page 6-5 (Required)
- Configuring the Cisco CSG/Quota Server Interface Support, page 6-6 (Required)
- Configuring Diameter/DCCA Interface Support, page 6-11 (Required)
- Configuring the Enhanced Billing Parameters in Charging Profiles, page 6-21 (Required)
- Configuring OCS Address Selection Support, page 6-24 (Optional)

Enabling Service-Aware Billing Support

Enhanced service-aware billing must be enabled on the GGSN before you can configure a service-aware GGSN.

To enable service-aware billing support on the GGSN, complete the following task while in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs service-aware</td>
<td>Configures a service-aware GGSN.</td>
</tr>
</tbody>
</table>

To enable service-aware billing support on a particular access-point, complete the following task while in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(access-point-config)# service-aware</td>
<td>Enables an APN to support service-aware billing.</td>
</tr>
</tbody>
</table>
If service-aware billing is enabled on an APN, the GGSN must be configured to wait for a RADIUS accounting response before sending a create PDP context response to the SGSN.

To configure the GGSN to wait for a RADIUS accounting response before sending a create PDP context response to the SGSN, complete the following task while in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs gtp response-message wait-accounting</td>
<td>Configures the GGSN to wait for a RADIUS accounting response before sending a create PDP context response to the SGSN.</td>
</tr>
</tbody>
</table>

### Enabling Enhanced G-CDRs

G-CDRs contain information for the entire duration of, or part of, a PDP context. The G-CDR includes information such as the subscriber (MSISDN, IMSI), APN used, QoS applied, SGSN ID (as the mobile access location), a time stamp and duration, the data volume recorded separately for the upstream and downstream direction, and volume thresholds for intermediate CDR generation and tariff time switches.

In addition to the above, an eG-CDR contains a service-record part that contains the usage data of each service flow used by a PDP session (specified by category ID). For example, the upstream and downstream volume, and the duration is recorded per service flow.

By default, the GGSN does not include the service-record information in G-CDRs. To support a service-aware GGSN implementation, the GGSN must be configured to generate eG-CDRs.

To configure the GGSN to include the service-record information in G-CDRs, use the following command while in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs charging cdr-option service-record [1-100]</td>
<td>Configures the GGSN to include service-record information in G-CDRs and specifies the maximum number of service records a G-CDR can contain before the G-CDR is closed and a partial G-CDR is opened. The default is 5.</td>
</tr>
</tbody>
</table>

### Configuring the Cisco CSG/Quota Server Interface Support

Together, the Cisco CSG and GGSN, configured as a service-aware GGSN, provide the following functions:

- The Cisco CSG:
  - Inspects packets and categorizes traffic
  - Requests quota and reports usage
  - Provides billing plans, service names, and content definitions
  - Acts as a RADIUS proxy for non-DCCA traffic
  - Functions in prepaid mode for each service-flow charge recording

For detailed information about configuring the Cisco CSG, seeCisco Content Services Gateway Installation and Configuration Guide.
• The GGSN:
  – Functions as a quota server to the Cisco CSG
  – Provides the Diameter interface to the DCCA server for quota requests and returns
  – Manages the quota requested by the Cisco CSG and received from the DCCA server
  – Maps DCCA server rulebases to Cisco CSG billing plans
  – Maps DCCA server category quota to Cisco CSG service quota

To configure the quota server interface on the GGSN, complete the tasks in the following sections:
• Configuring a Cisco CSG Server Group, page 6-7 (Required)
• Configuring the Quota Server Process on the GGSN, page 6-7 (Required)
• Configuring the GGSN to use the Cisco CSG as an Authentication and Accounting Proxy, page 6-9
  (Required if RADIUS is not being used)
• Monitoring and Maintaining, page 6-10

Configuring a Cisco CSG Server Group

We recommend that two Cisco CSGs (one Active, the other Standby) be configured to function as one
when interacting with the quota server process on the GGSN. When configuring the Cisco CSG group
that the quota server process will use to communicate with the Cisco CSG, a virtual IP address must be
specified along with the real IP addresses of each of the Cisco CSGs that make up the redundant pair.
The quota server process communicates with the virtual address and the active Cisco CSG listens to the
virtual IP address.

To configure a Cisco CSG group on the GGSN, complete the following tasks, beginning in global
configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# ggsn csg csg-group-name</td>
</tr>
<tr>
<td></td>
<td>Specifies a name for the Cisco CSG server group and enters Cisco CSG group configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-csg-group)# virtual-address ip-address</td>
</tr>
<tr>
<td></td>
<td>Specifies the virtual IP address of the Cisco CSG group. This is the IP address that the quota server process on the GGSN uses to communicate with the Cisco CSG.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-csg-group)# port port-number</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configures the port on which the Cisco CSG listens for communications from the quota server. The default is 3386.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> The Cisco CSG always sends messages to the quota server on port 3386.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config-csg-group)# real-address ip-address</td>
</tr>
<tr>
<td></td>
<td>Configures the IP address of a real Cisco CSG for source checking on inbound messages from a Cisco CSG. Configure an real IP address for each of the Cisco CSGs that make up the redundant pair.</td>
</tr>
</tbody>
</table>

Configuring the Quota Server Process on the GGSN

The quota server process on the GGSN supports the following attributes in Accounting Start messages
to the Cisco CSG:
• Billing Plan ID—Corresponds with the rulebase ID received from the DCCA server. The quota server process on the GGSN maps the rulebase ID to the billing plan ID.

• Quota server address and port—IP address and port of the quota server the Cisco CSG should use for a user.

By default, this is the IP address of the GGSN unless OCS address selection support is configured on the GGSN. For more information about OCS address selection support on the GGSN, see “Configuring OCS Address Selection Support” section on page 6-24.

• Downlink nexthop address—Next hop address (user address) for downlink traffic (Cisco CSG-to-GGSN).

In addition, the quota server process supports the following TLVs:

• Quota Consumption Timer (QCT). The QCT is assumed to be zero.
• Quota Holding Timer (QHT)
• Quota Threshold

For more information on enhancements to the quota server interface, billing plans, and the QCT and QHT, see the Cisco Content Services Gateway Installation and Configuration Guide.

Note One quota server process can be configured per GGSN. Configuring more than one quota server process will overwrite the existing process.

To configure the quota server process on the GGSN, complete the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# ggsn quota-server server-name</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-quota-server)# interface interface-name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-quota-server)# echo-interval [ 0</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config-quota-server)# n3-requests 1-65535</td>
</tr>
</tbody>
</table>
Advertising the Next Hop Address For Downlink Traffic

To configure the next hop address (the user address) for downlink traffic (Cisco CSG-to-GGSN) to be advertised in Accounting Start requests to the RADIUS endpoint, complete the following task while in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGSN(access-point-config)# advertise downlink next-hop ip-address</td>
<td>Configures the next hop address, to which downlink traffic destined for the GGSN will be routed, to be advertised in Accounting Start requests.</td>
</tr>
</tbody>
</table>

Configuring the GGSN to use the Cisco CSG as an Authentication and Accounting Proxy

If RADIUS is not being used, the Cisco CSG must be configured as a RADIUS endpoint.

To configure the GGSN to use the Cisco CSG as a RADIUS proxy, you must complete the following tasks:

1. Define the RADIUS server globally.
2. Define a AAA RADIUS server group and include the Cisco CSG as a server in the server group.
3. Specify the type of services the server group will support using AAA method lists.
4. Reference the method list in APNs that will use the Cisco CSG as a RADIUS proxy.

To specify the RADIUS server globally, complete the following tasks while in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# radius-server host {hostname</td>
<td>ip-address} [auth-port port-number] [acct-port port-number]</td>
</tr>
<tr>
<td>Step 2 Router(config)# radius-server key {0 string</td>
<td>7 string</td>
</tr>
</tbody>
</table>
To define a AAA RADIUS server group, and include the Cisco CSG as a server in the server group, complete the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# aaa group server radius group-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-sg-radius)# server ip_address [auth-port port-number] [acct-port port-number]</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-sg-radius)# exit</td>
</tr>
</tbody>
</table>

To specify the types of services the group will support using AAA method lists, complete the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# aaa authentication ppp list-name group-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# aaa authorization network list-name group-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# aaa accounting network list-name start-stop group group-name</td>
</tr>
</tbody>
</table>

To reference the method list in APNs that will use the Cisco CSG as a RADIUS proxy, complete the following tasks while in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(access-point-config)# aaa-group authentication server-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(access-point-config)# aaa-group accounting server-name</td>
</tr>
</tbody>
</table>

**Monitoring and Maintaining**

Use the following privilege EXEC commands to monitor and maintain the quota server-to-Cisco CSG configuration.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# clear ggsn quota-server statistics</td>
<td>Clears quota server-related statistics (messages and error counts).</td>
</tr>
<tr>
<td>Router# show ggsn quota-server [parameters</td>
<td>statistics]</td>
</tr>
<tr>
<td>Router# show ggsn csg [parameters</td>
<td>statistics]</td>
</tr>
</tbody>
</table>
Configuring Diameter/DCCA Interface Support

The GGSN functions as a DCCA client when communicating with a DCCA server to provide the following functions:

- Diameter interface to the DCCA server for online/real-time credit for prepaid subscribers
- Negotiates quota by sending quota requests from the Cisco CSG to the DCCA server and pushing quota returns from the DCCA server to the Cisco CSG
- Maps DCCA server rulebases to Cisco CSG billing plans
- Maps DCCA server category quota to Cisco CSG service quota

Messaging

The GGSN DCCA client process and DCCA server exchange the following messages:

- Credit Control Request (CCR)—Initial, Update, and Final
- Credit Control Answer (CCA)—Initial, Update, and Final

The GGSN Diameter interface supports the following Diameter base messages:

- Capability Exchange Request (CER) and Capability Exchange Answer (CEA)—The GGSN advertises DCCA support in CER messages. In addition, the GGSN can be configured to advertise support for vendor-specific AVPs using the `diameter vendor support` global configuration command.
- Disconnect Peer Request (DPR) and Disconnect Peer Answer (DPA)—The GGSN sends a DPR message when the CER with a Diameter peer fails or there is no Diameter server configured.
- Device Watchdog Request (DWR) and Device Watchdog Answer (DWA)—The GGSN uses DWR and DWA messages to detect transport failures with a Diameter peer. A watchdog timer can be configured for each Diameter peer using the `timer watchdog` Diameter peer configuration command.
- Re-auth Request (RAR) and Re-auth Answer (RAA)
- Abort Session Request (ASR)/Abort Session Answer (ASA)—Note that no Failed-AVP is sent in an ASA when an incorrect ASR is sent from the DCCA server.

Additionally, as a DCCA client, the GGSN receives the following notifications from Cisco IOS AAA:

- Receipts of CCA messages
- Asynchronous session termination requests
- Server-initiated RARs

To configure Diameter/DCCA support, complete the tasks in the following sections:

- Configuring the Diameter Base, page 6-12
- Configuring the DCCA Client Process on the GGSN, page 6-17
- Enabling Support for Vendor-Specific AVPs in DCCA Messages, page 6-19
Configuring the Diameter Base

To configure the Diameter protocol base, complete the tasks in the following sections:

- Configuring a Diameter Peer, page 6-12
- Enabling Diameter AAA, page 6-14
- Configuring Diameter Protocol Parameters Globally, page 6-15
- Monitoring and Maintaining the Diameter Base, page 6-17

Configuring a Diameter Peer

To configure a Diameter peer, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# diameter peer peer-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-dia-peer)# address ipv4 ip-address</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-dia-peer)# transport (tcp</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-dia-peer)# security ipsec</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-dia-peer)# source interface interface</td>
</tr>
</tbody>
</table>
Configuring a Service-Aware GGSN

### Step 6

**Router(config-dia-peer)# timer {connection | transaction | watchdog} value**

Configures Diameter base protocol timers for peer-to-peer communication. Valid range, in seconds, is 1 to 1000. The default is 30.

- **connection**—Maximum amount of time the GGSN attempts to reconnect to a Diameter peer after a connection to the peer has been brought down due to a transport failure. A value of 0 configures the GGSN to not try to reconnect.

- **transaction**—Maximum amount of time the GGSN waits for a Diameter peer to respond before trying another peer.

- **watchdog**—Maximum amount of time the GGSN waits for a Diameter peer to respond to a watchdog packet.

  When the watchdog timer expires, a DWR is sent to the Diameter peer and the watchdog timer is reset. If a DWA is not received before the next expiration of the watchdog timer, a transport failure to the Diameter peer has occurred.

  When configuring timers, note that the value for the transaction timer, should be larger than the TX-timeout value, and, on the SGSN, the values configured for the number GTP N3 requests and T3 retransmissions must be larger than the sum of all possible server timers (RADIUS, DCCA, and Cisco CSG). Specifically, the SGSN N3*T3 must be greater than 2 x RADIUS timeout + N x DCCA timeout + Cisco CSG timeout where:

  - 2 is for both authentication and accounting.
  - N is for the number of diameter servers configured in the server group.

### Step 7

**Router(config-dia-peer)# destination host string**

Configures the Fully Qualified Domain Name (FQDN) of a Diameter peer.
Chapter 6  Configuring Enhanced Service-Aware Billing

Configuring a Service-Aware GGSN

Enabling Diameter AAA

To enable Diameter AAA, complete the tasks in the following sections:

- Defining the Diameter AAA Server Group, page 6-14
- Defining an Authorization Method List for Prepaid Subscribers, page 6-15

**Defining the Diameter AAA Server Group**

For redundancy, Diameter servers should be configured as Diameter AAA server groups that consist of a primary and secondary server.

To define a Diameter AAA server group, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**  
Router(config)# aaa new-model | Enables AAA. |
| **Step 2**  
Router(config)# aaa group server diameter server | Defines a Diameter AAA server group. Configuring AAA server groups allows different servers to be used for each element of AAA. It also defines a redundant set of servers for each element. |
| **Step 3**  
Router(config-sg-diameter)# server name auth-port 1645 acct-port 1646 | Configures the name of the Diameter server for the Diameter AAA server group. The name specified for this command should match the name of a Diameter peer defined using the diameter peer command. **Note** The above port numbers are defaults, for authorization and accounting, respectively. Explicit port numbers are required only if non-default ports are used. |

**Command Purpose**

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Router(config-dia-peer)# destination realm string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configures the destination realm (part of the domain “@realm”) in which a Diameter peer is located. The realm might be added by the AAA client when sending a request to AAA. However, if the client does not add the attribute, then the value configured while in Diameter peer configuration mode is used when sending messages to the destination Diameter peer. If a value is not configured while in Diameter peer configuration mode, the value specified globally using the <strong>diameter destination realm</strong> global configuration command is used.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Router(config-dia-peer)# ip vrf forwarding name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associates a VRF with a Diameter peer. <strong>Note</strong> If a VRF name is not configure for a Diameter server, the global routing table will be used.</td>
<td></td>
</tr>
</tbody>
</table>
Defining an Authorization Method List for Prepaid Subscribers

To apply parameters that restrict access to a network for prepaid subscribers, use the following command while in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# aaa authorization prepaid method_list group server_group [group server_group]</code></td>
<td>Defines an authorization method list for prepaid subscribers and defines the Diameter AAA groups to send records.</td>
</tr>
</tbody>
</table>

Configuring Diameter Protocol Parameters Globally

Global Diameter protocol parameters are used if Diameter parameters have not been defined at a Diameter peer level.
To configure global Diameter parameters, complete the following tasks while in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**  
Router(config)# diameter timer {connection | transaction | watchdog} value | Configures Diameter base protocol timers to use if none have been configured at the Diameter peer level. Valid range, in seconds, is 0 to 1000. The default is 30.  
- **connection**—Maximum amount of time the GGSN attempts to reconnect to a Diameter peer after a connection to the peer has been brought down due to a transport failure. A value of 0 configures the GGSN to not try to reconnect.  
- **transaction**—Maximum amount of time the GGSN waits for a Diameter peer to respond before trying another peer.  
- **watchdog**—Maximum amount of time the GGSN waits for a Diameter peer to respond to a watchdog packet.  
When the watchdog timer expires, a DWR is sent to the Diameter peer and the watchdog timer is reset. If a DWA is not received before the next expiration of the watchdog timer, a transport failure to the Diameter peer has occurred.  
When configuring timers, note that the value for the transaction timers, should be larger than the value for the TX timer, and, on the SGSN, the values configured for the number GTP N3 requests and T3 retransmissions must be larger than the sum of all possible server timers (RADIUS, DCCA, and Cisco CSG). Specifically, the SGSN N3*T3 must be greater than 2 x RADIUS timeout + N x DCCA timeout + Cisco CSG timeout where:  
- 2 is for both authentication and accounting.  
- N is for the number of diameter servers configured in the server group. |
| **Step 2**  
Router(config)# diameter redundancy | Enables the Diameter node to be a Cisco IOS Redundancy Facility (RF) client and track session states.  
The Diameter base does not initiate a connection to a Diameter peer that is in standby mode. Upon a standby-to-active mode transition, a connection to the newly active peer is established.  
**Note** This command is required for Service-aware PDP session redundancy. For more information about service-aware PDP session redundancy, see the “GTP-Session Redundancy for Service-Aware PDPs Overview” section on page 6-23. |
| **Step 3**  
Router(config)# diameter origin realm string | Configures the realm of origin (part of the domain “@realm”) in which this Diameter node is located.  
Origin realm information is sent in requests to a Diameter peer. |
Monitoring and Maintaining the Diameter Base

Use the following privilege EXEC command to monitor and maintain Diameter peer configurations.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show diameter peer</td>
<td>Displays Diameter peer-related information.</td>
</tr>
</tbody>
</table>

Configuring the DCCA Client Process on the GGSN

The GGSN functions as a DCCA client when interacting with the DCCA server to obtain and request quota. As a DCCA client, the GGSN sends CCR messages to and receives CCAs from the DCCA server for credit control session (one credit control session per PDP session). In addition, the defaults configured in the DCCA client profile dictate how the GGSN handles credit control sessions if a server failover should occur and no instructions are sent by the server.

Failure Handling Defaults on the DCCA Client

Two AVPs determine how the CC sessions are handled if a failover occurs:

- **CC-Session-Failover AVP**—Indicates that a CC session should fail over to the alternate Diameter server (set using the `session-failover` DCCA client profile configuration command).
- **Credit-Control-Failure-Handling (CCFH)**—Determines how the GGSN behaves if a failure does occur (set using the `ccfh` DCCA client profile configuration command)

Defaults for these AVPs can be configured in the DCCA client profile for failure handling, however, values received from the DCCA server will override the defaults configured on the GGSN.

The CCFH AVP is determines the action the DCCA client takes on a session, when the following fault conditions occur:

- Tx timeout expires.
- CCA message containing protocol error (Result-Code 3xx) is received.
- CCA fails (for example, a CCA with a permanent failure notification [Result-Code 5xx]) is received.
- Failure-to-send condition exists (the DCCA client is not able to communicate with the desired destination).
- An invalid answer is received
To configure a DCCA client profile, in which the details of a DCCA client process are defined and is referenced from the charging profile, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Router(config)# gprs dcca profile name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Defines the DCCA client process on the GGSN and enters DCCA client profile configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Router(config-dcca-profile)# authorization method_list_name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Defines the method list that is used to specify the Diameter AAA server groups.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Router(config-dcca-profile)# tx-timeout seconds</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configures a TX timeout value, in seconds, used by this DCCA client to monitor the communication of Credit Control Requests (CCRs) with a Diameter server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid range is 1 to 1000 seconds. The default is 10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When configuring timers, note that the value for the transaction timer, should be larger than the TX-timeout value, and, on the SGSN, the values configured for the number GTP N3 requests and T3 retransmissions must be larger than the sum of all possible server timers (RADIUS, DCCA, and Cisco CSG). Specifically, the SGSN N3*T3 must be greater than 2 x RADIUS timeout + N x DCCA timeout + Cisco CSG timeout where:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 is for both authentication and accounting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• N is for the number of diameter servers configured in the server group.</td>
<td></td>
</tr>
</tbody>
</table>
Enabling Support for Vendor-Specific AVPs in DCCA Messages

The GGSN can be configured to send Vodafone vendor-specific AVPs in DCCA messages to the DCCA server.
Table 6-1 lists and describes the Vodafone vendor-specific AVPs that the GGSN can be configured to send in DCCA messages.

**Table 6-1 Vodafone Vendor-Specific AVPs in CCRs**

<table>
<thead>
<tr>
<th>Number</th>
<th>Vendor-Proprietary Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rulebase-ID</td>
<td>Billing Plan ID (string)</td>
</tr>
<tr>
<td></td>
<td>Context-Type</td>
<td>Type of PDP context (PRIMARY). For secondary PDP contexts, no CCR is sent. This AVP is sent in CCR (Initial) only.</td>
</tr>
<tr>
<td></td>
<td>User-Location-Info</td>
<td>Cell Global Identification (CGI) is used as geographical location type. RAI, obtained from the SGSN, is sent.</td>
</tr>
</tbody>
</table>

To enable the GGSN to send Vodafone vendor-specific AVPs in DCCA messages to the DCCA server, complete the following task while in global configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs dcca clci</td>
<td>Configures the GGSN to send Vodafone vendor-specific AVPs in DCCA messages to the server.</td>
</tr>
</tbody>
</table>
Configuring the Enhanced Billing Parameters in Charging Profiles

The GGSN supports up to 255 charging profiles (numbered 0 to 255). Charging profiles 1 through 255 are configurable, charging profile 0 is a box-level default configured while in global configuration mode. For information on how a charging profile is selecting and how to configure charging profiles, see the Configuring Charging chapter.

In addition to the previous charging profile support, with GGSN Release 5.2 and later, the charging profile can also be configured to:

- Allow eG-CDRs
- Specify a default charging type (to be used primarily for a prepaid or postpaid user)
- DCCA server to contact for quota requests (presence indicates online charging)
- Suppress G-CDRs for all or only online charging
- Default rulebase-ID to apply to a user

To configure service-aware billing characteristics in a charging profile, complete the tasks in the following sections:

- Specifying a Default Rulebase ID, page 6-21
- Specifying a DCCA Client Profile to Use for Online Billing, page 6-22
- Suppressing CDRs for Prepaid Users, page 6-22
- Configuring the Time and Volume Thresholds for Postpaid Users, page 6-22

Specifying a Default Rulebase ID

Rulebases contain the rules for defining categories of traffic; categories on which decisions such as whether to allow or disallow traffic, and how to measure the traffic, are based. The GGSN maps Diameter rulebase IDs to Cisco CSG billing plans.

To configure a default rulebase ID to apply to PDP contexts using a particular charging profile, use the following command while in charging profile configuration mode:

```
Router(ch-prof-conf)# content rulebase id
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(ch-prof-conf)# content rulebase id</td>
<td>Defines a default rulebase ID to apply to PDP contexts using this charging profile.</td>
</tr>
</tbody>
</table>

**Note**

The rulebase value presented in a RADIUS Access Accept message overrides the default rulebase ID configured in a charging profile. A rulebase ID received in a CCA initial message from a DCCA server overrides the rulebase ID received from the RADIUS server and the default rulebase ID configured in a charging profile.
Specifying a DCCA Client Profile to Use for Online Billing

The charging profile is selected when the primary PDP context is created. If a DCCA profile has been configured in the charging profile, online billing is indicated. Therefore, regardless of whether or not a subscriber is prepaid or postpaid, the GGSN will contact the DCCA server if the `content dcca profile` configuration is present. If the subscriber is to be treated as a postpaid user, the DCCA server will return a CAA with a result-code of CREDIT_CONTROL_NOT_APPLICABLE (4011) and the user will be treated as a postpaid user.

If a charging profile does not contain a DCCA profile configuration, users are treated as postpaid (offline billing).

To specify the DCCA client profile to use to communicate with a DCCA server, use the following command while in charging profile configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(ch-prof-conf)# content dcca profile profile-name</code></td>
<td>Specifies the profile to use to communicate with a DCCA server.</td>
</tr>
</tbody>
</table>

Suppressing CDRs for Prepaid Users

Charging for prepaid users is handled by the DCCA client, therefore, G-CDRs do not need to be generated for prepaid users.

To configure the GGSN to suppress G-CDRs for users with an active connection to a DCCA server, use the following command while in charging profile configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(ch-prof-conf)# cdr suppression prepaid</code></td>
<td>Specifies that CDRs be suppressed for prepaid users</td>
</tr>
</tbody>
</table>

Note: When enabled, if a Diameter server error occurs while a session is active, the user is reverted to postpaid status, but CDRs for the PDP context are not generated.

Configuring the Time and Volume Thresholds for Postpaid Users

If a user is a prepaid user, all the credit control, including thresholds and quota, is controlled by the DCCA server. If the user is a postpaid user, and service-aware billing is enabled, default values configured in a charging profile define the volume and time thresholds. These thresholds control how often usages should be reported.
To configure the time and volume thresholds for postpaid users, use the following commands while in charging profile configuration mode:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(ch-prof-conf)# content postpaid time value</code></td>
<td>Specifies as a trigger condition for postpaid users, the time duration limit that when exceeded, causes the GGSN to collect upstream and downstream traffic byte counts and close and update the G-CDR for a particular PDP context. Valid value is between 300 and 4294967295 seconds. The default is 1048576.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td><code>Router(ch-prof-conf)# content postpaid volume value</code></td>
<td>Specifies as a trigger condition for postpaid users, the maximum number of bytes that the GGSN maintains across all containers for a particular PDP context before closing and updating the G-CDR. Valid value is between 1 and 4294967295. The default is 1,048,576 bytes (1 MB).</td>
</tr>
</tbody>
</table>

**Configuring the Validity Timer for Postpaid Users**

To configure an amount of time granted quota for postpaid users is valid before it expires, use the following command while in charging profile configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(ch-prof-conf)# content postpaid validity seconds</code></td>
</tr>
</tbody>
</table>

**GTP-Session Redundancy for Service-Aware PDPs Overview**

GTP-Session Redundancy (GTP-SR) support was introduced in GGSN Release 5.1. It ensures that when an Active GGSN fails, a Standby GGSN has all the necessary information about a PDP context to continue service without interruption. In an enhanced service-aware billing environment, this means service-related information must also be synchronized from the Active to Standby service-aware GGSN. Therefore, with GGSN Release 5.2 and later, service-aware data necessary to establish charging for service-aware PDP sessions is synchronized to the Standby GGSN.

This includes data for the following:

- Per-PDP context services—Rulebase ID and DCCA failure handling settings (CCSF and CCSH AVPs).
- Per-category information—Category ID, Cisco CSG session, and category state and event triggers. Many category states are intermediate states, therefore, they are not synchronized to the Standby service-aware GGSN. The following category states are synchronized: blacklist, idle, and authorized.

All event triggers are recorded. At the end of the processing of an event on the Active GGSN, the clearing of the event’s trigger is synchronized to the Standby. If a switchover occurs, if an event trigger is found present on a category, the newly Active GGSN reinitiates the event.
Configuring Enhanced Service-Aware Billing

Configuring a Service-Aware GGSN

- Path states—The quota server process on the Active GGSN synchronizes the state of the path to a Cisco CSG to the quota server process on the Standby GGSN. The path echo timer on the Standby quota server is not started unless the Standby quota server becomes Active. Path sequence numbers are not synchronized. After a switchover occurs, the newly-active quota server starts from 0.

Note

Category usage data is not synchronized from an Active to the Standby GGSN. This prevents over-reporting of usage if a switchover occurs.

GTP-SR for Service-Aware PDP Sessions Guidelines

In addition to the prerequisites listed in Chapter 4, “Configuring GGSN GTP Session Redundancy,” to achieve session redundancy for service-aware PDP sessions, ensure that the following configurations exist on the redundantly configured service-aware GGSNs:

- GTP-SR is enabled on the GGSN using the `gprs redundancy` global configuration command. Also, the GGSN, functioning as a Diameter node, is enabled it to track session states by using the `diameter redundancy` global configuration command. See the “Configuring the Diameter Base” section on page 6-12 for information on configuring Diameter redundancy.

- The quota server process is configured the same on both the Active and Standby GGSNs. Specifically, on each Active/Standby pair, the quota server address is the same. To ensure that the Cisco CSG only talks to the active quota server process, it should be configured to always route messages for the quota server through the virtual HSRP address for the Gi interface. In reverse, the virtual Cisco CSG address is used by the GGSN to deliver messages to the Active Cisco CSG of a redundant pair. See “Configuring a Cisco CSG Server Group” section on page 6-7 for more information about configuring a virtual Cisco CSG address.

- A DCCA client source address must be configured on both the Active and Standby GGSN. This is the local address used in the TCP connection to the DCCA server. We recommend that a logical interface be used, that is routable via a virtual HRSP address between the Active and Standby GGSN.

For information on configuring Cisco IOS HRSP, see Configuring the Hot Standby Router Protocol section of the Cisco IOS IP Configuration Guide, Release 12.3. For detailed information on GTP-SR, see Chapter 4, “Configuring GGSN GTP Session Redundancy.” For information about fault-tolerance on the Cisco CSG, see Cisco Content Services Gateway Installation and Configuration Guide.

Configuring OCS Address Selection Support

As an alternate to the GGSN with DCCA online charging solution, with GGSN Release 6.0, Cisco IOS Release 12.4(2)XB2 and later, the GGSN can be configured to support OCS address selection. This support enables the Cisco CSG to communicate with an OCS, to which it has a direct GTP interface, for online credit control for prepaid users.

By default, the GGSN sends its own IP address in Accounting-Start messages to the Cisco CSG (functioning as a RADIUS proxy) to establish itself as the quota server for postpaid and prepaid users. However, when OCS address selection support is configured, if the IP address of an OCS is returned in the “csg:quota_server” attribute in an Access-Accept message from the AAA server, the GGSN forwards that address in the same attribute in an Accounting-Start message to the Cisco CSG. This informs the Cisco CSG that the external OCS is to be used as the quota server for this PDP context, and the GGSN will function as the quota server for only postpaid users.
The flow of traffic for the creation of a PDP context for a prepaid subscriber when OCS address selection is configured is as follows:

1. The GGSN receives a create PDP context request from the SGSN.
2. The GGSN sends an Access-Request message to the AAA server.
3. The AAA server determines if the user is prepaid, and if so, responds with an Access-Accept that includes the “csg:quota_server” attribute containing the IP address and port of the external OCS.
4. The GGSN receives this Access-Accept, and, because the csg_quota_server attribute is present, determines that the subscriber is a prepaid subscriber and sends an Accounting-Start request to the Cisco CSG that also includes the csg:quota_server attribute containing the OCS IP address and port.
   (If an Access-Accept does not contain the csg:quota_server attribute, the GGSN forwards its own IP address in the csg:quota_server field of the Accounting-Start request.)
5. The AAA server sends an Accounting Start response.
6. The GGSN sends a create PDP context response to the SGSN and context is established.

When an external OCS is used as the quota server for prepaid subscribers, the GGSN will receive service-level usage reports from the Cisco CSG for postpaid users and will generate eG-CDRs accordingly. The GGSN will not generate eG-CDRs for prepaid subscribers.

OCS address selection support on the GGSN requires the following conditions are met:

- Service-awareness is enabled globally and at the APN level (see “Enabling Service-Aware Billing Support” section on page 6-5).
- Wait accounting is enabled for the APN (using the gtp response-message wait-accounting access-point configuration command).
- GGSN is configured to communicate with the Cisco CSG (see “Configuring the Cisco CSG/Quota Server Interface Support” section on page 6-6).
- The GGSN is configured to generate eG-CDRs (see “Enabling Enhanced G-CDRs” section on page 6-6).
- The correct configuration exists on the AAA server.

To enable support for OCS address selection on the GGSN, use the following command while in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>Router(conf)# gprs radius attribute quota-server ocs-address</td>
<td>Specifies the amount of time, in seconds, that quota granted for a postpaid user is valid. Valid range is 900 to 4294967295 seconds. The default is no validity timer is configured.</td>
</tr>
</tbody>
</table>

**Configuration Example**

The following is an example of enhanced service-aware billing support configured on the GGSN.

```
Current configuration :3537 bytes
!
! Last configuration change at 15:26:45 UTC Fri Jan 7 2005
!
version 12.3
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
```
service gprs ggsn
!
hostname sup-mwamA
!
boot-start-marker
boot-end-marker
!
enable password abc
!
aaa new-model
!
!Configures the CSG RADIUS server group
!
  aaa group server radius CSG-group
  server 10.10.65.100 auth-port 1812 acct-port 1813
!
!Configures the Diameter server group
!
  aaa group server diameter DCCA
  server name DCCA
!
!Assigns AAA services to the CSG RADIUS and Diameter server groups
!
  aaa authentication ppp CSG-list group CSG-group
  aaa authorization prepaid DCCA group DCCA
  aaa authorization network CSG-list group CSG
  aaa accounting network CSG-list start-stop group CSG-group
  aaa session-id common
  ip subnet-zero
!
  ip cef
!
...
!
!
gprs access-point-list gprs
!
...
!
!Enables service-aware billing on the GGSN
!
  gprs service-aware
!
  gprs access-point-list gprs
  access-point 10
  access-point-name cisco.com
  access-mode non-transparent

  aaa-group authentication CSG-list
  aaa-group accounting CSG-list
  gtp response-message wait-accounting
  charging profile any 1 override

  service-aware
  advertise downlink next-hop 10.10.150.2
!
  access-point 20
  access-point-name yahoo.com
  access-mode non-transparent

  aaa-group authentication CSG
  aaa-group accounting CSG
gtp response-message wait-accounting
charging profile any 1 override
service-aware
!
!
!Configures a DCCA client profile
!
gprs dcca profile 1
  ccfh continue
  authorization CSG-list
  destination-realm cisco.com
!
gprs charging profile 1
  limit volume 64000
  limit duration 64000
  content rulebase PREPAID
  content dcca profile 1
  content postpaid volume 64000
  content postpaid time 1200
!
!Configures the quota server
!
ggsn quota-server qs
  interface Loopback2
  csg group csg_1
!
!Configures a CSG group
!
ggsn csg-group csg_1
  virtual-address 10.10.65.10
  port 4386
  real-address 10.10.65.2
!
tftp-server foobar
!
radius-server host 10.10.65.100 auth-port 1812 acct-port 1813
radius-server host 10.20.154.201 auth-port 1812 acct-port 1813
radius-server key abc
radius-server vsa send accounting
radius-server vsa send accounting 3gpp2
!
!Configures Diameter global parameters
!
diameter origin realm corporationA.com
diameter origin host sup-mwam42.corporationA.com
diameter vendor supported cisco
!
!Configures Diameter peer
!
diameter peer DCCA
  address ipv4 172.18.43.59
  transport tcp port 4100
  timer connection 20
  timer watchdog 25
  destination realm corporationA.com
!
!
!
end
CHAPTER 7

Configuring Network Access to the GGSN

This chapter describes how to configure access from the gateway GPRS support node (GGSN) to a serving GPRS support node (SGSN), public data network (PDN), and optionally to a Virtual Private Network (VPN). It also includes information about configuring access points on the GGSN.

For a complete description of the GGSN commands in this chapter, refer to the Cisco GGSN Release 6.0 Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter includes the following sections:

- Configuring an Interface to the SGSN, page 7-1 (Required)
- Configuring a Route to the SGSN, page 7-5 (Required)
- Configuring Access Points on the GGSN, page 7-10 (Required)
- Configuring Access to External Support Servers, page 7-45 (Optional)
- Blocking Access to the GGSN by Foreign Mobile Stations, page 7-45 (Optional)
- Controlling Access to the GGSN by MSs with Duplicate IP Addresses, page 7-48 (Optional)
- Configuring Routing Behind the Mobile Station on an APN, page 7-48 (Optional)
- Configuring Proxy-CSCF Discovery Support on an APN, page 7-51(Optional)
- Configuration Examples, page 7-52

Configuring an Interface to the SGSN

To establish access to an SGSN, you must configure an interface to the SGSN. In general packet radio service/Universal Mobile Telecommunication System (GPRS/UMTS), the interface between the GGSN and the SGSN is referred to as the Gn interface. GGSN Release 4.0 and later supports both a 2.5G and 3G Gn interface.

On the Cisco 7200 series router platform, this interface is a physical one. On the Catalyst 6500 series switch / Cisco 7600 series Internet router platform, this interface is logical one (on which IEEE 802.1Q encapsulation has been configured) to the Layer 3 routed Gn VLAN configured on the Supervisor/Multilayer Switch Feature Card 2 (MSFC2).

For more information about the Gn VLAN on the Supervisor/MSFC2, see Catalyst 6500/Cisco 7600 Series Platform Prerequisites, page 2-2.

For more information about configuring interfaces, see the Cisco IOS Interface Configuration Guide and the Cisco IOS Interface Command Reference.
Chapter 7  Configuring Network Access to the GGSN

Configuring Physical Interfaces

The type of physical interface that you configure on the GGSN depends on whether you are supporting an SGSN that is collocated with a GGSN, or an enterprise GGSN that is connected to the SGSN through a WAN interface.

When a GGSN is collocated with the SGSN, the physical interface is frequently configured for Fast Ethernet. The supported WAN interfaces for a remote SGSN include T1/E1, T3/E3, and Frame Relay. For information on configuring WAN interfaces, see the Cisco IOS Interface Configuration Guide and the Cisco IOS Interface Command Reference.

To configure a physical Gn interface to the SGSN that supports Fast Ethernet on a Cisco 7200 series router, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1  | Router(config)# interface type slot/port 

Defines a physical interface on the GGSN, where type is fastethernet, and slot/port is the hardware slot and port on the interface.

| Step 2  | Router(config-if)# ip address ip-address mask [secondary] 

Specifies an IP address for the interface, where:
- ip-address—Specifies the IP address of the interface in dotted decimal format.
- mask—Specifies a subnet mask in dotted decimal format.
- secondary—Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.

Configuring 802.1Q-Encapsulated Subinterfaces

To configure a subinterface that supports IEEE 802.1Q encapsulation to the Gn VLAN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1  | Router(config)# interface gigabitethernet slot/port.subinterface-number 

Specifies the subinterface on which IEEE 802.1Q will be used.

| Step 2  | Router(config-if)# encapsulation dot1q vlanid 

Defines the encapsulation format as IEEE 802.1Q (dot1q), and specifies the VLAN identifier.

| Step 3  | Router(config-if)# ip address ip-address mask 

Sets a primary IP address for an interface.
Cisco 7200 Platform

To verify the interface to the SGSN, you can first verify your GGSN configuration and then verify that the interface is available.

Step 1

To verify that you have properly configured a Gn interface on the GGSN, use the `show running-config` command. The following example is a portion of the output from the command showing the Fast Ethernet 0/0 physical interface configuration (see bold text) as the Gn interface to the SGSN:

```
GGSN# show running-config
Building configuration...

Current configuration : 2875 bytes
!
version 12.x
.
!
interface FastEthernet0/0
 description Gn interface to SGSN
 ip address 10.10.1.3 255.255.255.0
 no ip mroutecache
 duplex full
.
```

Step 2

To verify that a physical interface is available, use the `show ip interface brief` command. The following example shows that the Fast Ethernet 0/0 interface (see bold text) to the SGSN is in “up” status and that the protocol is also “up”:

```
GGSN# show ip interface brief

Interface IP-Address OK? Method Status Protocol
FastEthernet0/0 10.10.1.3 YES NVRAM up up
FastEthernet1/0 10.29.0.2 YES NVRAM up up
FastEthernet1/1 10.13.0.2 YES NVRAM up up
FastEthernet2/0 unassigned YES NVRAM administratively down down
Ethernet6/0 10.99.0.12 YES NVRAM up up
Ethernet6/1 unassigned YES NVRAM administratively down down
Ethernet6/2 unassigned YES NVRAM administratively down down
Ethernet6/3 unassigned YES NVRAM administratively down down
Ethernet6/4 unassigned YES NVRAM administratively down down
Ethernet6/5 unassigned YES NVRAM administratively down down
Ethernet6/6 unassigned YES NVRAM administratively down down
Ethernet6/7 10.35.35.2 YES NVRAM up up
Virtual-Access1 10.44.44.1 YES TFTP up up
Virtual-Template1 10.44.44.1 YES manual down down
```
To verify that you have properly configured a Gn interface on the Supervisor/MSFC2, use the `show running-config` command. The following example is a portion of the output from the command showing the Fast Ethernet 8/22 physical interface configuration (see bold text) as the Gn interface to the SGSN:

```
Sup# show running-config
Building configuration...

Current configuration :12672 bytes
!
version 12.x
...
interface FastEthernet8/22
no ip address
switchport
switchport access vlan 302
!
interface Vlan101
description Vlan to GGSN for GA/GN
ip address 10.1.1.1 255.255.255.0
!
interface Vlan302
ip address 40.0.2.1 255.255.255.0
```

To verify that the physical interface and the Gn VLAN are available, use the `show interface` command on the Supervisor/MSFC2. The following example shows that the Fast Ethernet 8/22 physical interface to the charging gateway is up, as is the Gn VLAN, VLAN 101.

```
Sup# show ip interface brief FastEthernet8/22
Interface IP-Address OK? Method Status Protocol
FastEthernet8/22 unassigned YES unset up up

Sup# show ip interface brief Vlan302
Interface IP-Address OK? Method Status Protocol
Vlan302 40.0.2.1 YES TFTP up up
```

To verify the Gn VLAN configuration and availability, use the `show vlan name` command on the Supervisor/MSFC2. The following example shows the Gn VLAN Gn_1:

```
Sup# show vlan name Gn_1

VLAN Name Status Ports
---- -------------------------------- --------- -------------------------------
302 Gn_1 active Gi4/1, Gi4/2, Gi4/3, Gi7/1
 Gi7/2, Gi7/3, Fa8/22, Fa8/26

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2
---- ----- -------- ------ ------- ------ ------- ------ ------- ------- -------
302 enet 100302 1500 - - - - 0 0

Remote SPAN VLAN

Disabled

Primary Secondary Type Ports

```

---

**Catalyst 6500/Cisco 7600 Platform**

**Step 1**

In this platform, use the `show running-config` command to verify the configuration of the Gn interface on the Supervisor/MSFC2. The following example shows the Fast Ethernet 8/22 physical interface configuration (see bold text) as the Gn interface to the SGSN:

```
Sup# show running-config
Building configuration...

Current configuration :12672 bytes
!
version 12.x
...
interface FastEthernet8/22
no ip address
switchport
switchport access vlan 302
!
interface Vlan101
description Vlan to GGSN for GA/GN
ip address 10.1.1.1 255.255.255.0
!
interface Vlan302
ip address 40.0.2.1 255.255.255.0
```

**Step 2**

Use the `show interface` command to verify that the physical interface and the Gn VLAN are available. The following example shows that the Fast Ethernet 8/22 physical interface to the charging gateway is up, as is the Gn VLAN, VLAN 101.

```
Sup# show ip interface brief FastEthernet8/22
Interface IP-Address OK? Method Status Protocol
FastEthernet8/22 unassigned YES unset up up

Sup# show ip interface brief Vlan302
Interface IP-Address OK? Method Status Protocol
Vlan302 40.0.2.1 YES TFTP up up
```

**Step 3**

Use the `show vlan name` command to verify the Gn VLAN configuration and availability. The following example shows the Gn VLAN Gn_1:

```
Sup# show vlan name Gn_1

VLAN Name Status Ports
---- -------------------------------- --------- -------------------------------
302 Gn_1 active Gi4/1, Gi4/2, Gi4/3, Gi7/1
 Gi7/2, Gi7/3, Fa8/22, Fa8/26

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2
---- ----- -------- ------ ------- ------ ------- ------ ------- ------- -------
302 enet 100302 1500 - - - - 0 0

Remote SPAN VLAN

Disabled

Primary Secondary Type Ports

Step 4 On the GGSN, to verify that you have properly configured a Gn subinterface to the Gn VLAN, use the `show running-config` command. The following example is a portion of the output from the command showing a Gigabit Ethernet 0/0.2 physical interface configuration as the Gn interface to the charging gateway:

```
GGSN# show running-config
Building configuration...

Current configuration :7390 bytes
!
! Last configuration change at 16:56:05 UTC Wed Jun 25 2003
! NVRAM config last updated at 23:40:27 UTC Fri Jun 13 2003
! version 12.3
.....
interface GigabitEthernet0/0.2
  description Ga/Gn Interface
  encapsulation dot1Q 101
  ip address 10.1.1.72 255.255.255.0
  no cdp enable
!
.....
ip route 40.1.2.1 255.255.255.255 10.1.1.1
```

Step 5 To verify that the subinterface is available, use the `show ip interface brief` command. The following example shows that the Gigabit Ethernet 0/0.2 subinterface to the Gn VLAN is in “up” status and that the protocol is also “up”:

```
GGSN# show ip interface brief GigabitEthernet0/0.2
Interface                  IP-Address      OK? Method Status                Protocol
GigabitEthernet0/0.2       10.1.1.72       YES NVRAM  up                    up
```

Configuring a Route to the SGSN

To communicate with the SGSN, you can use static routes or a routing protocol, such as Open Shortest Path First (OSPF).

Note For the SGSN to communicate successfully with the GGSN, the SGSN must also configure a static route, or be able to dynamically route to the IP address of the GGSN virtual template, not the IP address of a GGSN interface.

The following sections provide some basic commands that you can use to configure a static route or enable OSPF routing on the GGSN. For more information about configuring IP routes, see the Cisco IOS IP Configuration Guide and Cisco IOS IP Command References.

The following topics are included in this section:

- Configuring a Static Route to the SGSN, page 7-6
- Configuring OSPF, page 7-6
- Verifying the Route to the SGSN, page 7-7
Configuring a Route to the SGSN

A static route establishes a fixed route to the SGSN that is stored in the routing table. If you are not implementing a routing protocol, such as OSPF, then you can configure a static route to the SGSN, to establish the path between network devices.

To configure a static route from an interface to the SGSN, use the following commands, beginning in global configuration mode:

```
Router(config)# ip route prefix mask {ip-address | interface-type interface-number} [distance] [tag tag] [permanent]
```

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ip route prefix mask {ip-address</td>
<td>interface-type interface-number} [distance] [tag tag] [permanent]</td>
</tr>
<tr>
<td></td>
<td>• prefix—Specifies the IP route prefix for the destination. (This is the IP address of the SGSN.)</td>
</tr>
<tr>
<td></td>
<td>• mask—Specifies the prefix mask for the destination. (This is the subnet mask of the SGSN network.)</td>
</tr>
<tr>
<td></td>
<td>• ip-address—Specifies the IP address of the next hop that can be used to reach the destination network.</td>
</tr>
<tr>
<td></td>
<td>• interface-type interface-number—Specifies the network interface type and interface number that can be used to reach the destination network. (This is an interface on the GGSN for the Gn interface.)</td>
</tr>
<tr>
<td></td>
<td>• distance—Specifies an administrative distance for the route.</td>
</tr>
<tr>
<td></td>
<td>• tag tag—Specifies a tag value that can be used as a “match” value for controlling redistribution via route maps.</td>
</tr>
<tr>
<td></td>
<td>• permanent—Specifies that the route will not be removed, even if the interface shuts down.</td>
</tr>
</tbody>
</table>

Configuring OSPF

As with other routing protocols, enabling OSPF requires that you create an OSPF routing process, specify the range of IP addresses to be associated with the routing process, and assign area IDs to be associated with that range of IP addresses.

Note

On the Catalyst 6500/Cisco 7600 platform, the OSPF routing process is configured on the Supervisor/MSFC2 to advertise only the GPRS tunneling protocol (GTP) server load balancing (SLB) virtual server and the GGSN virtual template addresses.
To configure OSPF, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# router ospf process-id</td>
<td>Enables OSPF routing, and enters router configuration mode, where \textit{process-id} specifies an internally used identification parameter for an OSPF routing process. The \textit{process-id} is locally assigned and can be any positive integer. A unique value is assigned for each OSPF routing process.</td>
</tr>
</tbody>
</table>
| Step 2 | Router(config-router)# network ip-address wildcard-mask area area-id | Defines an interface on which OSPF runs and defines the area ID for that interface, where:
- \textit{ip-address}—Specifies the IP address to be associated with the OSPF network area.
- \textit{wildcard-mask}—Specifies the IP address mask that includes “don’t care” bits for the OSPF network area.
- \textit{area-id}—Specifies the area that is to be associated with the OSPF address range. It can be specified as either a decimal value or as an IP address. If you intend to associate areas with IP subnets, you can specify a subnet address as the area ID. |

\section*{Verifying the Route to the SGSN}

To verify the route to the SGSN, you can first verify your GGSN configuration and then verify that a route has been established.

\subsection*{Cisco 7200 Platform}

To verify the GGSN configuration, use the \texttt{show running-config} command and verify the static route that you configured to the SGSN or your OSPF configuration. The following example shows a partial configuration of an OSPF configuration for the 10.10.0.0 network (see bold text toward the end of the example) using the Fast Ethernet 0/0 interface (see bold text) to the SGSN:

\begin{verbatim}
GGSN# show running-config
Building configuration...

Current configuration : 2875 bytes
!
version 12.x
.
!
interface FastEthernet0/0
description On interface to SGSN
ip address 10.10.1.3 255.255.255.0
no ip mroute-cache
duplex full
!
interface FastEthernet6/0
ip address 172.16.43.243 255.255.255.240
no ip mroute-cache
duplex half
!
\end{verbatim}
interface loopback 1
ip address 10.11.11.1 255.255.255.0
!
interface Virtual-Template1
ip unnumber loopback 1
encapsulation gtp
!
router ospf 1
log-adjacency-changes
network 10.10.0.0 0.0.255.255 area 0
!
ip default-gateway 172.16.43.241
ip classless
ip route 10.22.22.1 255.255.255.255 FastEthernet2/0
ip route 192.64.0.0 255.0.0.0 172.16.43.241
ip route 172.16.0.0 255.255.0.0 172.16.43.241
no ip http server
no ip pim bidir-enable
...

Step 2 To verify that the GGSN has established a route to the SGSN, use the show ip route command, as shown in bold in the following example:

GGSN# show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
 * - candidate default, U - per-user static route, o - ODR
 P - periodic downloaded static route
Gateway of last resort is not set

 10.11.1.0/24 is subnetted, 1 subnets
 C 10.11.1.0 is directly connected, Virtual-Access1
 172.16.0.0/16 is variably subnetted, 1 subnets, 2 masks
 S 172.16.0.0/16 [1/0] via 172.16.43.241
 C 172.16.43.241/28 is directly connected, FastEthernet6/0
 10.0.0.0/24 is subnetted, 1 subnets
 O 10.10.1.0/16 [10/2] via 10.10.1.3, 00:00:10, FastEthernet0/0
 C 10.10.1.0 is directly connected, FastEthernet0/0

Catalyst 6500/Cisco 7600 Platform

Step 1 To verify the Supervisor/MSFC2 configuration, use the show running-config command and verify the route that you configured to the SGSN. The following example shows a partial configuration of a configuration to the SGSN:

Sup# show running-config
Building configuration...

Current configuration :3642 bytes
!
version 12.3
...
ip slb vserver V0-GGSN
 virtual 10.10.10.10 udp 3386 service gtp
! vlan 101
 name Internal_Gn/Ga
! vlan 302
 name Gn_1
! vlan 303
 name Ga_1
!
interface FastEthernet8/22
 no ip address
 switchport
 switchport access vlan 302
!
interface FastEthernet8/23
 no ip address
 switchport
 switchport access vlan 302
!
interface FastEthernet8/24
 no ip address
 switchport
 switchport access vlan 303
!
interface Vlan101
 description Vlan to GGSN for GA/GN
 ip address 10.1.1.1 255.255.255.0
!
interface Vlan302
 ip address 40.0.2.1 255.255.255.0
!
interface Vlan303
 ip address 40.0.3.1 255.255.255.0
!
router ospf 300
 log-adjacency-changes
 summary-address 9.9.9.0 255.255.255.0
 redistribute static subnets route-map GGSN-routes
 network 40.0.2.0 0.0.0.255 area 300
 network 40.0.3.0 0.0.0.255 area 300
!
ip route 9.9.9.42 255.255.255.255 10.1.1.42
ip route 9.9.9.43 255.255.255.255 10.1.1.43
ip route 9.9.9.44 255.255.255.255 10.1.1.44
ip route 9.9.9.45 255.255.255.255 10.1.1.45
ip route 9.9.9.46 255.255.255.255 10.1.1.46
ip route 9.9.9.72 255.255.255.255 10.1.1.72
ip route 9.9.9.73 255.255.255.255 10.1.1.73
ip route 9.9.9.74 255.255.255.255 10.1.1.74
ip route 9.9.9.75 255.255.255.255 10.1.1.75
ip route 9.9.9.76 255.255.255.255 10.1.1.76
!
access-list 1 permit 9.9.9.0 0.0.0.255
!
route-map GGSN-routes permit 10
 match ip address 1
Step 2 To verify the GGSN configuration, use the `show running-config` command. The following example shows a partial configuration of a configuration to the SGSN:

```
Sup# show running-config
Building configuration...

Current configuration :3642 bytes
!
version 12.3
!
...

interface GigabitEthernet0/0
  no ip address
!
interface GigabitEthernet0/0.2
  description Ga/Gn Interface
  encapsulation dot1Q 101
  ip address 10.1.1.72 255.255.255.0
  no cdp enable
!
ip route 40.1.2.1 255.255.255.255 10.1.1.1
ip route 40.2.2.1 255.255.255.255 10.1.1.1
ip route 40.1.3.10 255.255.255.255 10.1.1.1
ip route 40.2.3.10 255.255.255.255 10.1.1.1
```

Step 3 To verify that the Supervisor/MSFC2 has established a route to the SGSN, use the `show ip route` command as shown in bold in the following examples:

```
Sup# show ip route ospf 300
9.0.0.0/8 is variably subnetted, 12 subnets, 2 masks
O       9.9.9.0/24 is a summary, 1w1d, Null0
!
Sup# show ip route 9.9.9.72
Routing entry for 9.9.9.72/32
   Known via "static", distance 1, metric 0
   Redistributing via ospf 300
   Routing Descriptor Blocks:
      * 10.1.1.72
         Route metric is 0, traffic share count is 1
```

Configuring Access Points on the GGSN

Successful configuration of access points on the GGSN requires careful consideration and planning to establish the appropriate access for mobile sessions to external PDNs and private networks.

The following topics are included in this section:

- Overview of Access Points, page 7-11
- Basic Access Point Configuration Task List, page 7-13
- Configuring Real Access Points on the GGSN, page 7-14 (Required)
- Configuring Virtual Access Points on the GGSN, page 7-36 (Optional)
Configuration of access points on the GGSN also requires properly establishing communication with any supporting DHCP and RADIUS servers that you might be using to provide dynamic IP addressing and user authentication functions at the access point.

Details about configuring other services such as DHCP and RADIUS for an access point are discussed in the “Configuring Dynamic Addressing on the GGSN” and “Configuring Security on the GGSN” chapters.

Overview of Access Points

This section includes the following topics:

- Description of Access Points in a GPRS/UMTS Network, page 7-11
- Access Point Implementation on the Cisco GGSN, page 7-12

Description of Access Points in a GPRS/UMTS Network

The GPRS and UMTS standards define a network identity called an access point name (APN). An APN identifies the part of the network where a user session is established. In the GPRS/UMTS backbone, the APN serves as a reference to a GGSN. An APN is configured on and accessible from a GGSN in a GPRS/UMTS network.

An APN can provide access to a public data network (PDN), or a private or corporate network. An APN also can be associated with certain types of services such as Internet access or a Wireless Application Protocol (WAP) service.

The APN is provided by either the mobile station (MS) or by the SGSN to the GGSN in a Create PDP Context request message when a user requests a session to be established.

To identify an APN, a logical name is defined that consists of two parts:

- Network ID—A mandatory part of the APN that identifies the external network to which a GGSN is connected. The network ID can be a maximum of 63 bytes and must contain at least one label. A network ID of more than one label is interpreted as an Internet domain name. An example of a network ID might be “corporate.com.”
- Operator ID—An optional part of the APN that identifies the public land mobile network (PLMN) in which a GGSN is located. The operator ID contains three decimal-separated labels; the last label must be “gprs.” An example of an operator ID might be “mnc10.mcc200.gprs.”

When the operator ID exists, it is placed after the network ID, and it corresponds to the Domain Name System (DNS) name of a GGSN. The maximum length of an APN is 100 bytes. When the operator ID does not exist, a default operator ID is derived from the mobile network code (MNC) and mobile country code (MCC) information contained in the international mobile subscriber identity (IMSI).
Access Point Implementation on the Cisco GGSN

Configuring access points is one of the central configuration tasks on the Cisco GGSN. Proper configuration of access points is essential to successful implementation of the GGSN in the GPRS/UMTS network.

To configure APNs, the Cisco GGSN software uses the following configuration elements:

- **Access point list**—Logical interface that is associated with the virtual template of the Cisco GGSN. The access point list contains one or more access points.
- **Access point**—Defines an APN and its associated access characteristics, including security and method of dynamic addressing. An access point on the Cisco GGSN can be a virtual or real access point.
- **Access point index number**—Integer assigned to an APN that identifies the APN within the GGSN configuration. Several GGSN configuration commands use the index number to reference an APN.
- **Access group**—An additional level of router security on the router that is configured at an access point to control access to and from a PDN. When an MS is permitted access to the GGSN as defined by a traditional IP access list, the IP access group further defines whether access is permitted to the PDN (at the access point). The IP access group configuration can also define whether access from a PDN to an MS is permitted.

Access Point Types on the GGSN

Cisco IOS GGSN Release 3.0 and later support the following access point types:

- **Real**—Uses real access point types to configure the GGSN for direct access to a particular target network through an interface. The GGSN always uses real access points to reach an external network.

 For information on configuring real access points on the GGSN, see the “Configuring Real Access Points on the GGSN” section on page 7-14.

- **Virtual**—Uses virtual access point types to consolidate access to multiple target networks through a virtual APN access point at the GGSN. Because the GGSN always uses real access points to reach an external network, virtual access points should be used in combination with real access points on the GGSN.

 For information on configuring virtual access points on the GGSN, see the “Configuring Virtual Access Points on the GGSN” section on page 7-36.

Note

GGSN Release 1.4 and earlier only support real access points. To address provisioning issues in the PLMN, GGSN Release 3.0 and later support virtual access point types. Additionally, with GGSN Release 6.0, Cisco IOS Release 12.3(14)YU and later, you can configure virtual APNs to be dynamically mapped, per user, to the target APN during a “pre-authentication” phase. For more information, see the “Configuring Virtual Access Points on the GGSN” section on page 7-36.
Basic Access Point Configuration Task List

This section describes the basic tasks that are required to configure an access point on the GGSN. Detailed information about configuring access points for specialized functions such as for virtual APN access are described in separate sections of this chapter.

To configure an access point on the GGSN, perform the following basic tasks:

- Configuring the GPRS Access Point List on the GGSN, page 7-13 (Required)
- Creating an Access Point and Specifying Its Type on the GGSN, page 7-13 (Required)

Configuring the GPRS Access Point List on the GGSN

The GGSN software requires that you configure an entity called an access point list. You configure the GPRS access point list to define a collection of virtual and real access points on the GGSN.

When you configure the access point list in global configuration mode, the GGSN software automatically associates the access point list with the virtual template interface of the GGSN. Therefore, the GGSN supports only a single access point list.

Note

Be careful to observe that the GPRS access point list and an IP access list are different entities in the Cisco IOS software. A GPRS access point list defines access points and their associated characteristics, and an IP access list controls the allowable access on the router by IP address. You can define permissions to an access point by configuring both an IP access list in global configuration and configuring the `ip-access-group` command in your access point configuration.

To configure the GPRS access point list and configure access points within it, use the following command, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs access-point-list list-name</code></td>
<td>Specifies a name for a new access point list, or references the name of the existing access point list, and enters access-point list configuration mode.</td>
</tr>
</tbody>
</table>

Creating an Access Point and Specifying Its Type on the GGSN

You need to define access points within an access point list on the GGSN. Therefore, before you can create an access point, you must define a new access point list or specify the existing access point list on the GGSN to enter access-point list configuration mode.

When you create an access point, you must assign an index number to the access point, specify the domain name (network ID) of the access point, and specify the type of access point (virtual or real). Other options that you can configure for an access point are summarized in the “Configuring Additional Real Access Point Options” section on page 7-24.
To create an access point and specify its type, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# gprs access-point-list list-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-ap-list)# access-point access-point-index</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-access-point)# access-point-name apn-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-access-point)# access-type {virtual [pre-authenticate [default-apn apn-name]]</td>
</tr>
</tbody>
</table>

Configuring Real Access Points on the GGSN

The GGSN uses real access points to communicate to PDNs or private networks that are available over a Gi interface on the GGSN. Use real access point types to configure the GGSN for direct access to a particular target network through an interface.

If you have configured a virtual access point, you must also configure real access points to reach the target networks.

The GGSN supports configuration of access points to public data networks and to private networks. The following sections describe how to configure different types of real access points:

- PDN Access Configuration Task List, page 7-15
- VPN Access Using VRF Configuration Task Lists, page 7-16
PDN Access Configuration Task List

Configuring a connection to a public PDN includes the following tasks:

- Configuring an Interface to a PDN (Gi interface) (Required)
- Configuring an Access Point for a PDN (Required)

Configuring an Interface to a PDN

To establish access to a PDN in the GPRS/UMTS network, you must configure an interface on the GGSN to connect to the PDN. This interface is referred to as the *Gi interface*.

On the Cisco 7200 series router platform, this interface is a physical one. On the Catalyst 6500 series switch / Cisco 7600 series Internet router platform, this interface is a logical one (on which IEEE 802.1Q encapsulation has been configured) to a Layer 3 routed Gi VLAN configured on the Supervisor/MSFC2.

For more information about the Gi VLAN on the Supervisor/MSFC2, see “Catalyst 6500/Cisco 7600 Series Platform Prerequisites” section on page 2-2.

For more information about configuring interfaces, see the *Cisco IOS Interface Configuration Guide* and the *Cisco IOS Interface Command Reference*.

Configuring Physical Interfaces

To configure a physical interface to the PDN using Fast Ethernet over the Gi interface (Cisco 7200 series router platform), use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address ip-address mask [secondary]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

If you are using VPN routing and forwarding (VRF) for VPN access, you must enable Cisco Express Forwarding (CEF) switching on the GGSN. If you enable CEF switching at the global configuration level, then it is automatically enabled for each interface unless it has been specifically disabled at the interface.
Configuring 802.1Q-Encapsulated Subinterfaces

To configure a subinterface that supports IEEE 802.1Q encapsulation to the Gi VLAN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>Router(config)# interface gigabitethernet slot/port.subinterface-number</code></td>
<td>Specifies the subinterface on which IEEE 802.1Q will be used.</td>
</tr>
<tr>
<td>Step 2: <code>Router(config-if)# encapsulation dot1q vlanid</code></td>
<td>Defines the encapsulation format as IEEE 802.1Q (dot1q), and specifies the VLAN identifier.</td>
</tr>
<tr>
<td>Step 3: <code>Router(config-if)# ip address ip-address mask</code></td>
<td>Sets a primary IP address for an interface.</td>
</tr>
</tbody>
</table>

Configuring an Access Point for a PDN

To configure an access point for a PDN, you must define a real access point in the GPRS access point list. To configure a real access point on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>Router(config)# gprs access-point-list list-name</code></td>
<td>Specifies a name for a new access-point list, or references the name of an existing access-point list, and enters access-point list configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>Router(config-ap-list)# access-point access-point-index</code></td>
<td>Specifies an index number for a new access point definition, or references an existing access point definition, and enters access point configuration mode.</td>
</tr>
</tbody>
</table>
| Step 3: `Router(config-access-point)# access-point-name apn-name` | Specifies the network (or domain) name for a PDN that users can access from the GGSN at a defined access point.
Note The `apn-name` must match the APN that has been provisioned at the MS, HLR, and DNS server. |
| Step 4: `Router(config-access-point)# access-type real` | Specifies an APN type that corresponds to an interface to an external network on the GGSN. Real is the default value. |

For an example of a GPRS access point configuration, see the “Access Point List Configuration Example” section on page 7-54.

VPN Access Using VRF Configuration Task Lists

The Cisco IOS GGSN software supports connectivity to a VPN using VPN routing and forwarding (VRF).

The GGSN software provides a couple of ways that you can configure access to a VPN, depending on your platform, network configuration over the Gi interface between the GGSN and your PDNs, and the VPN that you want to access.
Note

VRF is not supported on the Catalyst 6500/Cisco 7600 Supervisor II / MSFC2; therefore, if using the Supervisor II, you must tunnel encapsulated VRF traffic through the Supervisor via a generic routing encapsulation (GRE) tunnel from the GGSN to the PDN. For more information on configuring a tunnel, see the “Configuring Access to a VPN With a Tunnel” section on page 7-22.

The Catalyst 6500/Cisco 7600 Sup720 supports VRF.

To configure VPN access using VRF on the GGSN, perform the following tasks:

- Enabling CEF Switching, page 7-17 (Required)
- Configuring a VRF Routing Table on the GGSN, page 7-17 (Required)
- Configuring a Route to the VPN Using VRF, page 7-18 (Required)
- Configuring an Interface to a PDN Using VRF, page 7-19 (Required)
- Configuring Access to a VPN, page 7-21 (Required)

For sample configurations, see the “VRF Tunnel Configuration Example” section on page 7-55.

Enabling CEF Switching

When you enable CEF switching globally on the GGSN, all interfaces on the GGSN are automatically enabled for CEF switching.

Note

To ensure that CEF switching functions properly, wait a short time before enabling CEF switching after it has been disabled using the no ip cef command.

To enable CEF switching for all interfaces on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip cef</td>
</tr>
<tr>
<td></td>
<td>Enables CEF on the route processor card.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# gprs gtp ip udp ignore checksum</td>
</tr>
<tr>
<td></td>
<td>Disables verification of the UDP checksum to support CEF switching on the GGSN.</td>
</tr>
</tbody>
</table>

Configuring a VRF Routing Table on the GGSN

To configure a VRF routing table on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip vrf vrf-name</td>
</tr>
<tr>
<td></td>
<td>Configures a VRF routing table, and enters VRF configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-vrf)# rd route-distinguisher</td>
</tr>
<tr>
<td></td>
<td>Creates routing and forwarding tables for a VRF and specifies the default route distinguisher for a VPN.</td>
</tr>
</tbody>
</table>
Configuring a Route to the VPN Using VRF

Be sure that a route exists between the GGSN and the private network that you want to access. You can verify connectivity by using the `ping` command from the GGSN to the private network address. To configure a route, you can use a static route or a routing protocol.

Configuring a Static Route Using VRF

To configure a static route using VRF, use the following command, beginning in global configuration mode:

```
Router(config)# ip route vrf vrf-name prefix mask [next-hop-address] [interface {interface-number}] [global] [distance] [permanent] [tag tag]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# <code>ip route vrf vrf-name prefix mask [next-hop-address] [interface {interface-number}] [global] [distance] [permanent] [tag tag]</code></td>
<td>Configures a static IP route, where:</td>
</tr>
<tr>
<td></td>
<td>• <code>vrf-name</code>—Specifies the name of the VPN routing/forwarding instance (VRF) for the static route.</td>
</tr>
<tr>
<td></td>
<td>• <code>prefix</code>—Specifies the IP route prefix for the destination.</td>
</tr>
<tr>
<td></td>
<td>• <code>mask</code>—Specifies the prefix mask for the destination.</td>
</tr>
<tr>
<td></td>
<td>• <code>next-hop-address</code>—Specifies the IP address of the next hop that can be used to reach the destination network.</td>
</tr>
<tr>
<td></td>
<td>• <code>interface interface-number</code>—Specifies the network interface type and interface number that can be used to reach the destination network.</td>
</tr>
<tr>
<td></td>
<td>• <code>global</code>—Specifies that the given next hop address is in the non-VRF routing table.</td>
</tr>
<tr>
<td></td>
<td>• <code>distance</code>—Specifies an administrative distance for the route.</td>
</tr>
<tr>
<td></td>
<td>• <code>permanent</code>—Specifies that the route will not be removed, even if the interface shuts down.</td>
</tr>
<tr>
<td></td>
<td>• <code>tag tag</code>—Specifies a tag value that can be used as a “match” value for controlling redistribution via route maps.</td>
</tr>
</tbody>
</table>

Verifying a Static Route Using VRF

To verify that the GGSN has established the static VRF route that you configured, use the `show ip route vrf` privileged EXEC command as shown in the following example:

```
GGSN# show ip route vrf vpn1 static
  172.16.0.0/32 is subnetted, 1 subnets
  U  172.16.0.0/16 [1/0] via 0.0.0.0, Virtual-Access2
  U  10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
  S  10.100.0.3/32 [1/0] via 10.110.0.13
```
Configuring an OSPF Route Using VRF

To configure an OSPF route using VRF, use the following command, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `Router(config)# router ospf process-id [vrf vrf-name]` | Enables OSPF routing, and enters router configuration mode, where,
 - `process-id`—Specifies an internally used identification parameter for an OSPF routing process. The `process-id` is locally assigned and can be any positive integer. A unique value is assigned for each OSPF routing process.
 - `vrf vrf-name`—Specifies the name of the VPN routing/forwarding instance. |

Configuring an Interface to a PDN Using VRF

To establish access to a PDN, an interface on the GGSN to connect to the PDN. This interface is referred to as the Gi interface.

On the Cisco 7200 series router platform, this interface is physical. On the Catalyst 6500 series switch / Cisco 7600 series Internet router platform, this interface is a logical one (on which IEEE 802.1Q encapsulation has been configured) to a Layer 3 routed Gi VLAN configured on the Supervisor/MSFC2.

For more information about the Gi VLAN on the Supervisor/MSFC2, see “Catalyst 6500/Cisco 7600 Series Platform Prerequisites” section on page 2-2.

For more information about configuring interfaces, see the Cisco IOS Interface Configuration Guide and the Cisco IOS Interface Command Reference.

Configuring Physical Interfaces

To configure a physical interface to the PDN using Fast Ethernet over the Gi interface, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# interface type slot/port</code></td>
<td>Defines a physical interface on the GGSN, where <code>type</code> is <code>fastethernet</code>, and <code>slot/port</code> is the hardware slot and port on the interface.</td>
</tr>
</tbody>
</table>
Configuring Access Points on the GGSN

Chapter 7 Configuring Network Access to the GGSN

Configuring Access Points on the GGSN

Note

If you are using VRF for VPN access, you must enable CEF switching on the GGSN. If you enable CEF switching at the global configuration level, then it is automatically enabled for each interface unless it has been specifically disabled at the interface.

Configuring 802.1Q-Encapsulated Subinterfaces

To configure a subinterface that supports IEEE 802.1Q encapsulation to the Gi VLAN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# interface gigabitethernet slot/port.subinterface-number</td>
<td>Specifies the subinterface on which IEEE 802.1Q will be used.</td>
</tr>
<tr>
<td>Step 2
Router(config-if)# encapsulation dot1q vlanid</td>
<td>Defines the encapsulation format as IEEE 802.1Q (dot1q), and specifies the VLAN identifier.</td>
</tr>
<tr>
<td>Step 3
Router(config-if)# ip address ip-address mask</td>
<td>Sets a primary IP address for an interface.</td>
</tr>
</tbody>
</table>

Step 2

Router(config-if)# ip vrf forwarding vrf-name
Associates a VRF with an interface or subinterface.
Note The vrf-name argument should match the name of the VRF that you configured using the ip vrf command.

Step 3

Router(config-if)# ip address ip-address mask [secondary]
Specifies an IP address for the interface, where:
- ip-address—Specifies the IP address of the interface in dotted decimal format.
- mask—Specifies a subnet mask in dotted decimal format.
- secondary—Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.
Configuring Access to a VPN

After you have completed the prerequisite configuration tasks on the Cisco 7200 platform, you can configure access to a VPN with a tunnel or without a tunnel.

VRF is not supported on the Catalyst 6500/Cisco 7600 Supervisor II / MSFC2; therefore, if using the Supervisor II, you must tunnel encapsulated VRF traffic through the Supervisor via a generic routing encapsulation (GRE) tunnel from the GGSN to the PDN.

Note
The Catalyst 6500/Cisco 7600 Sup720 supports VRF.

Figure 7-1 is a logical view of a GRE tunnel configured between the VRF-aware GGSN and PDN, which tunnels the encapsulated VRF information through the “VRF-unaware” Supervisor II / MSFC2.

Figure 7-1 Tunnel Configuration from the GGSN to PDN through the Catalyst 6500/Cisco 7600 Supervisor II

The following sections describe the different methods you can use to configure access to a VPN:

- Configuring Access to a VPN Without a Tunnel
- Configuring Access to a VPN With a Tunnel

Note
With GGSN Release 5.0 and later, you can assign multiple APNs to the same VRF.

Configuring Access to a VPN Without a Tunnel

On the Cisco 7200 platform, if you configure more than one Gi interface to different PDNs, and need to access a VPN off one of those PDNs, then you can configure access to that VPN without configuring an IP tunnel. To configure access to the VPN in this case, you need to configure the vrf access point configuration command.

Note
The Catalyst 6500/Cisco 7600 Supervisor II / MSFC2 does not support VRF; therefore, you must tunnel VRF traffic through the Supervisor via a GRE tunnel as described in the “Configuring Access to a VPN With a Tunnel” section on page 7-22.
To configure access to a VPN in the GPRS access point list, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# gprs access-point-list list-name Specifies a name for a new access point list, or references the name of the existing access point list, and enters access-point list configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-ap-list)# access-point access-point-index Specifies an index number for a new access point definition, or references an existing access point definition, and enters access point configuration mode.</td>
</tr>
</tbody>
</table>
| Step 3 | Router(config-access-point)# access-point-name apn-name Specifies the network (or domain) name for a PDN that users can access from the GGSN at a defined access point.
Note The *apn-name* must match the APN that has been provisioned at the MS, HLR, and Domain Name System (DNS) server. |
| Step 4 | Router(config-access-point)# access-type real Specifies an APN type that corresponds to an interface to an external network on the GGSN. Real is the default value. |
| Step 5 | Router(config-access-point)# vrf vrf-name Configures VRF at a GGSN access point and associates the access point with a particular VRF instance. |
| Step 6 | Router(config-access-point)# exit Exits access point configuration mode. |

For information about the other access point configuration options, see the “Configuring Additional Real Access Point Options” section on page 7-24.

Configuring Access to a VPN With a Tunnel

If you have only a single Gi interface to a PDN from which you need to access one or more VPNs, or if you are configuring access to a VPN via VRF on the Catalyst 6500/Cisco 7600 platform, you can configure an IP tunnel to access those private networks. On the Catalyst 6500/Cisco 7600 platform, you configure the tunnel to tunnel the VRF traffic through the Supervisor/MSFC2, which does not support VRF.

To configure access to the VPN using a tunnel, perform the following tasks:

- Configuring the VPN Access Point (Required)
- Configuring the IP Tunnel (Required)
Configuring the VPN Access Point

To configure access to a VPN in the GPRS access point list, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# gprs access-point-list list-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-ap-list)# access-point access-point-index</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-access-point)# access-point name apn-name</td>
</tr>
<tr>
<td></td>
<td>Note: The apn-name must match the APN that has been provisioned at the MS, HLR, and DNS server.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-access-point)# access-mode {transparent</td>
</tr>
<tr>
<td></td>
<td>• transparent—No security authorization or authentication is requested by the GGSN for this access point. This is the default value.</td>
</tr>
<tr>
<td></td>
<td>• non-transparent—GGSN acts as a proxy for authenticating.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-access-point)# access-type real</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-access-point)# ip-address-pool {dhcp-proxy-client</td>
</tr>
<tr>
<td></td>
<td>• dhcp-proxy-client—DHCP server provides the IP address pool.</td>
</tr>
<tr>
<td></td>
<td>• radius-client—RADIUS server provides the IP address pool.</td>
</tr>
<tr>
<td></td>
<td>• local— Specifies that a local pool provides the IP address. This option requires configuration of a local pool using the <code>ip local pool</code> global configuration command.</td>
</tr>
<tr>
<td></td>
<td>• disable—Turns off dynamic address allocation.</td>
</tr>
<tr>
<td></td>
<td>Note: If you are using a dynamic address allocation method, then you must configure this command according to the appropriate IP address pool source.</td>
</tr>
</tbody>
</table>
For information about the other access point configuration options, see the “Configuring Additional Real Access Point Options” section on page 7-24.

Configuring the IP Tunnel

When you configure a tunnel, you might consider using loopback interfaces as the tunnel endpoints instead of real interfaces because loopback interfaces are always up.

To configure an IP tunnel to a private network, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>Router(config-access-point)# vrf vrf-name</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config-access-point)# exit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface tunnel number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip vrf forwarding vrf-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip address ip-address mask [secondary]</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# tunnel source (ip-address</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# tunnel destination (hostname</td>
</tr>
</tbody>
</table>

Configuring Additional Real Access Point Options

This section summarizes the configuration options that you can specify for a GGSN access point. Some of these options are used in combination with other global router settings to configure the GGSN. Further details about configuring several of these options are discussed in other topics in this chapter and other chapters of this book.

Note Although the Cisco IOS software allows you to configure other access point options on a virtual access point, only the access-point-name and access-type commands are applicable to a virtual access point. Other access point configuration commands, if configured, will be ignored.
To configure options for a GGSN access point, use any of the following commands, beginning in access-point list configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-ap-list)# access-point access-point-index</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-access-point)# access-point-name apn-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-access-point)# aaa-accounting {enable</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-access-point)# aaa-group {authentication</td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5** Router(config-access-point)# access-type {virtual | real} | (Optional) Specifies the type of access point. The available options are:
- **virtual**—APN type that is not associated with any specific physical target network.
- **real**—APN type that corresponds to an interface to an external network on the GGSN. This is the default value.
Note The default access-type is real. Therefore, you only need to configure this command if the APN needs to be a virtual access point. |
| **Step 6** Router(config-access-point)# access-mode {transparent | non-transparent} | (Optional) Specifies whether the GGSN requests user authentication at the access point to a PDN. The available options are:
- **transparent**—No security authorization or authentication is requested by the GGSN for this access point. This is the default value.
- **non-transparent**—GGSN acts as a proxy for authenticating. |
| **Step 7** Router(config-access-point)# access-violation deactivate-pdp-context | (Optional) Specifies that a user’s session be ended and the user packets discarded when a user attempts unauthorized access to a PDN through an access point. |
| **Step 8** Router(config-access-point)# aggregate {auto | ip-network-prefix{/mask-bit-length | ip-mask}} | (Optional) Configures the GGSN to create an aggregate route in its IP routing table when receiving PDP requests from MSs on the specified network through a particular access point on the GGSN.
Note The aggregate auto command will not aggregate routes when using local IP address pools. |
| **Step 9** Router(config-access-point)# anonymous user username [password] | (Optional) Configures anonymous user access at an access point. |
| **Step 10** Router(config-access-point)# block-foreign-ms | (Optional) Restricts GGSN access at a particular access point based on the mobile user’s home PLMN. |
| **Step 11** Router(config-access-point)# dhcp-gateway-address ip-address | (Optional) Specifies a DHCP gateway to handle DHCP requests for mobile station (MS) users entering a particular PDN access point. |
| **Step 12** Router(config-access-point)# dhcp-server {ip-address} [ip-address] [vrf] | (Optional) Specifies a primary (and backup) DHCP server to allocate IP addresses to MS users entering a particular PDN access point. |
| **Step 13** Router(config-access-point)# dns primary ip-address secondary ip-address | (Optional) Specifies a primary (and backup) DNS to be sent in Create PDP Context responses at the access point.
For more information about configuring the DNS for an access point, see the “Configuring the NBNS and DNS Address for an APN” section on page 11-15. |
Configuring Access Points on the GGSN

Chapter 7 Configuring Network Access to the GGSN

Command

Step 14

Router(config-access-point)# gtp pdp-context single pdp-session [mandatory]

(Optional) Configures the GGSN to delete the primary PDP context, and any associated secondary PDP contexts, of a **hanging** PDP session upon receiving a new create request from the same MS that shares the same IP address of the hanging PDP context.

A hanging PDP context is a PDP context on the GGSN whose corresponding PDP context on the SGSN has already been deleted for some reason.

When a hanging PDP session occurs and the **gtp pdp-context single pdp-session** command is not configured, if the same MS (on the same APN) sends a new Create PDP Context request that has a different NSAPI but has been assigned the same IP address used by the hanging PDP session, the GGSN rejects the new Create PDP Context request.

When configure without the mandatory keyword specified, this feature applies only to those users for whom the Cisco vendor-specific attribute (VSA) “gtp-pdp-session=single-session” has been defined in their RADIUS user profile.

To enable this feature and apply it to all users on an APN regardless of their RADIUS user profiles, specify the mandatory keyword option.

Note

This feature is supported on the Cisco 7200 series platform.

Step 15

Router(config-access-point)# gtp response-message wait-accounting

(Optional) Configures the GGSN to wait for a RADIUS accounting response before sending a Create PDP Context response to the SGSN.

Step 16

Router(config-access-point)# ip-access-group access-list-number {in | out}

(Optional) Specifies access permissions between an MS and a PDN through the GGSN at a particular access point, where access-list-number specifies the IP access list definition to be used at the access point. The available options are:

- **in**—Applies the IP access list definition from the PDN to the MS.
- **out**—Applies the IP access list definition from the MS to the PDN.

Note

To disable the sending of ICMP messages, ensure that the **no ip unreachable** interface configuration command has been configured on the virtual template interface.
Command Purpose

| Step 17 | Route(config-access-point)# ip-address-pool
| | (dhcp-proxy-client | radius-client | local
| | pool-name | disable) | (Optional) Specifies a dynamic address allocation method using IP address pools for the current access point. The available options are:
| | | | • dhcp-proxy-client—DHCP server provides the IP address pool.
| | | | • radius-client—RADIUS server provides the IP address pool.
| | | | • local—Specifies that a local pool provides the IP address. This option requires that a local pool has been configured using the `ip local pool` global configuration command.
| | | | • disable—Turns off dynamic address allocation.
| | | | **Note** If you are using a dynamic address allocation method, then you must configure this command according to the appropriate IP address pool source.
| Step 18 | Route(config-access-point)# ip probe path
| | ip_address protocol udp [port port ttl ttl] | (Optional) Enables the GGSN to send a probe packet to a specific destination for each PDP context that is successfully established on an APN.
| Step 19 | Route(config-access-point)# msisdn suppression
| | [value] | (Optional) Specifies that the GGSN overrides the mobile station ISDN (MSISDN) number with a pre-configured value in its authentication requests to a RADIUS server.
| Step 20 | Route(config-access-point)# nbns primary
| | ip-address secondary ip-address | (Optional) Specifies a primary (and backup) NetBIOS Name Service (NBNS) to be sent in the Create PDP Context responses to at the access-point.
| | | For more information about configuring the NBNS for an access point, see the “Configuring the NBNS and DNS Address for an APN” section on page 11-15.
Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 21** | Router(config-access-point)# `ppp-regeneration max-session number | setup-time seconds | verify-domain | fix-domain] | (Optional) Enables an access point to support PPP regeneration, where:
- **max-session number**—Specifies the maximum number of PPP regenerated sessions allowed at the access point. The default value is device dependent and is determined by the maximum number of IDBs that can be supported by the router.
- **setup-time seconds**—Specifies the maximum amount of time (between 1 and 65535 seconds) within which a PPP regenerated session must be established. The default value is 60 seconds.
- **verify-domain**—Configures the GGSN to verify the domain sent in the protocol configuration option (PCO) IE sent in a Create PDP Context request against the APN sent out by the user when PPP-regeneration is being used.
If a mismatch occurs, the Create PDP Context request is rejected with the cause code “Service not supported.”
- **fix-domain**—Configures the GGSN to use the access point name as the domain name with which it initiates an L2TP tunnel to the user when PPP-regeneration is being used.
The **`ppp-regeneration fix-domain`** and **`ppp-regeneration verify-domain`** command configurations are mutually exclusive. When the **`ppp-regeneration fix-domain`** command is configured, domain verification cannot be performed. |
| **Step 22** | Router(config-access-point)# `radius attribute acct-session-id charging-id` | (Optional) Specifies that the charging ID in the Acct-Session-ID (attribute 44) is included in access requests. |
| **Step 23** | Router(config-access-point)# `radius attribute nas-id format` | (Optional) Specifies that the GGSN sends the NAS-Identifier in access requests at the APN where **format** is a string sent in attribute 32 containing an IP address (%i), a host name (%h), and a domain name (%d). |
| **Step 24** | Router(config-access-point)# `radius attribute suppress imsi` | (Optional) Specifies that the GGSN suppress the 3GPP-IMSI number in its authentication and accounting requests to a RADIUS server. |
| **Step 25** | Router(config-access-point)# `radius attribute suppress qos` | (Optional) Specifies that the GGSN suppress the 3GPP-GPRS-Qos Profile in its authentication and accounting requests to a RADIUS server. |
| **Step 26** | Router(config-access-point)# `radius attribute suppress sgsn-address` | (Optional) Specifies that the GGSN suppress the 3GPP-GPRS-SGSN-Address in its authentication and accounting requests to a RADIUS server. |
Verifying the Real Access Point Configuration

This section describes how to verify that you have successfully configured access points on the GGSN, and includes the following tasks:

- Verifying the GGSN Configuration, page 7-30
- Verifying Reachability of the Network Through the Access Point, page 7-33

Verifying the GGSN Configuration

To verify that you have properly configured access points on the GGSN, use the `show running-config` command and the `show gprs access-point` commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 27</td>
<td><code>radius attribute user-name msisd</code> (Optional) Specifies that the MSISDN is included in the User-Name (attribute 1) field in access requests.</td>
</tr>
<tr>
<td>Step 28</td>
<td><code>redirect all ip ip address</code> (Optional) Specifies that all traffic be redirected to a specific IP address.</td>
</tr>
<tr>
<td>Step 29</td>
<td><code>redirect intermobile ip ip address</code> (Optional) Specifies that mobile-to-mobile traffic be redirected.</td>
</tr>
<tr>
<td>Step 30</td>
<td><code>security verify source destination</code> Specifies that the GGSN verify the source or destination address in Transport Protocol Data Units (TPDUs) received from a Gn interface.</td>
</tr>
<tr>
<td>Step 31</td>
<td><code>session idle-time number</code> (Optional) Specifies the time (between 1 and 168 hours) that the GGSN waits before purging idle mobile sessions for the current access point.</td>
</tr>
<tr>
<td>Step 32</td>
<td><code>subscription-required</code> (Optional) Specifies that the GGSN checks the value of the selection mode in a PDP context request to determine if a subscription is required to access a PDN through the access point.</td>
</tr>
<tr>
<td>Step 33</td>
<td><code>vrf vrf-name</code> (Optional) Configures VPN routing and forwarding at a GGSN access point and associates the access point with a particular VRF instance.</td>
</tr>
</tbody>
</table>

Step 1

From global configuration mode, use the `show running-config` command as shown in the following example for the Cisco 7200 series platform. Verify that the `gprs access-point-list` command appears under the virtual template interface, and verify the individual access point configurations within the `gprs access-point-list` section of the output as shown in bold:

```
GGSN# show running-config
Building configuration...

Current configuration : 3521 bytes
```
! version 12.x
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service gprs ggsn
!
hostname ggsn
!
ip cef
!
no logging buffered
logging rate-limit console 10 except errors
!
! aaa new-model
aaa group server radius foo
 server 172.18.43.7 auth-port 1645 acct-port 1646
aaa authentication ppp foo group foo
aaa authorization network foo group foo
aaa accounting network foo start-stop group foo
!
ip subnet-zero
!
ip cef
no ip dhcp-client network-discovery
!
! interface Loopback1
 ip address 10.2.3.4 255.255.255.255
!
interface FastEthernet0/0
 ip address 172.18.43.174 255.255.255.240
duplex half
!
interface Ethernet1/0
 description Gi interface to gprt.cisco.com
 ip address 10.8.8.6 255.255.255.0
duplex half
!
interface Ethernet1/1
 description Gi interface to gprs.cisco.com
 ip address 10.9.9.4 255.255.255.0
duplex half
!
interface Ethernet1/2
 ip address 10.15.15.10 255.255.255.0
duplex half
!
interface loopback 1
 ip address 10.40.40.3 255.255.255.0
!
interface Virtual-Template1
 ip unnumber loopback 1
 encapsulation gtp
 gprs access-point-list gprs
!
ip default-gateway 172.18.43.161
ip kerberos source-interface any
ip classless
ip route 10.7.7.0 255.255.255.0 172.18.43.161
ip route 10.102.82.0 255.255.255.0 172.18.43.161
Chapter 7 Configuring Network Access to the GGSN

Configuring Access Points on the GGSN

```
ip route 192.168.0.0 255.255.0.0 172.18.43.161
ip route 172.18.0.0 255.255.0.0 172.18.43.161
no ip http server
!
!
gprs access-point-list gprs
!
  access-point 1
    access-point-name gprs.cisco.com
    access-mode non-transparent
    aaa-group authentication foo
    network-request-activation
    exit
!
  access-point 2
    access-point-name gpnt.cisco.com
    exit
!
  access-point 3
    access-point-name gpru.cisco.com
    ip-address-pool radius-client
    access-mode non-transparent
    aaa-group authentication foo
    exit
!
  gprs maximum-pdp-context-allowed 90000
  gprs gtp path-echo-interval 0
  gprs default charging-gateway 10.15.15.1
!
  gprs memory threshold 512
!
...
radius-server host 172.18.43.7 auth-port 1645 acct-port 1646 non-standard
radius-server retransmit 3
radius-server key 7 12150415
call rsrp-sync
!
no mgcp timer receive-rtcp
!
mgcp profile default
!
gatekeeper
shutdown
end
```

Step 2 To view the configuration of a specific access point on the GGSN in further detail, use the `show gprs access-point` command and specify the index number of the access point, as shown in the following example:

```
GGSN# show gprs access-point 2
  apn_index 2      apn_name = gpnt.cisco.com
  apn_mode: transparent
  apn-type: Real
  accounting: Disable
  wait_accounting: Disable
  dynamic_address_pool: not configured
  apn_dhcp_server: 0.0.0.0
  apn_dhcp_gateway_addr: 0.0.0.0
  apn_authentication_server_group:
  apn_accounting_server_group:
  apn_username: , apn_password:
  subscribe_required: No
  deactivate_pdp_context_on violation: No
```
network_activation_allowed: No
Block Foreign-MS Mode: Disable
VPN: Disable
GPRS vaccess interface: Virtual-Access1
number of ip_address_allocated 0

Total number of PDP in this APN :1

aggregate:
In APN: Disable
In Global: Disable

Step 3 To view a summary of every access point that is configured on the GGSN, use the `show gprs access-point all` command as shown in the following example:

GGSN# *show gprs access-point all*

There are 3 Access-Points configured

<table>
<thead>
<tr>
<th>Index</th>
<th>Mode</th>
<th>Access-type</th>
<th>AccessPointName</th>
<th>VRF Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>non-transparent</td>
<td>Real</td>
<td>gprs.cisco.com</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>transparent</td>
<td>Real</td>
<td>gprt.cisco.com</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>non-transparent</td>
<td>Real</td>
<td>gpru.cisco.com</td>
<td></td>
</tr>
</tbody>
</table>

Verifying Reachability of the Network Through the Access Point

The following procedure provides a basic methodology for verifying reachability from the MS to the destination network.

Note Many factors can affect whether you can successfully reach the destination network. Although this procedure does not attempt to fully address those factors, it is important for you to be aware that your particular configuration of the APN, IP routing, and physical connectivity of the GGSN, can affect end-to-end connectivity between a host and an MS.

To verify that you can reach the network from the MS, perform the following steps:

Step 1 From the MS (for example, using a handset), create a PDP context with the GGSN by specifying the APN to which you want to connect. In this example, you specify the APN `gprt.cisco.com`.

Step 2 From global configuration mode on the GGSN, use the `show gprs access-point` command and verify the number of created network PDP contexts (in the Total number of PDP in this APN output field).

The following example shows one successful PDP context request:

GGSN# *show gprs access-point 2*
apn_index 2 apn_name = gprt.cisco.com
apn_mode: transparent
apn-type: Real
accounting: Disable
wait_accounting: Disable
dynamic_address_pool: not configured
apn_dhcp_server: 0.0.0.0
apn_dhcp_gateway_addr: 0.0.0.0
apn_authentication_server_group:
apn_accounting_server_group:
apn_username: , apn_password:
subscribe_required: No
deactivate_pdp_context_on_violation: Yes
network_activation_allowed: No
Block Foreign-MS Mode: Disable
VPN: Disable
GPRS vaccess interface: Virtual-Access1
number of ip_address_allocated 0

Total number of PDP in this APN: 1
aggregate:
In APN: Disable

In Global: Disable
Step 3 To test further, generate traffic to the network. To do this, use the `ping` command from a handset, or from a laptop connected to the handset, to a host on the destination network, as shown in the following example:

```
ping 192.168.12.5
```

Note To avoid possible DNS configuration issues, use the IP address (rather than the host name) of a host that you expect to be reachable within the destination network. For this test to work, the IP address of the host that you select must be able to be properly routed by the GGSN.

In addition, the APN configuration and physical connectivity to the destination network through a Gi interface must be established. For example, if the host to be reached is in a VPN, the APN must be properly configured to provide access to the VPN.

Step 4 After you have begun to generate traffic over the PDP context, use the `show gprs gtp pdp-context` command to see detailed statistics including send and receive byte and packet counts.

Tip To find the Terminal Identifier (TID) for a particular PDP context on an APN, use the `show gprs gtp pdp-context access-point` command.

The following example shows sample output for a PDP context for TID 81726354453647FA:

```
GGSN# show gprs gtp pdp-context tid 81726354453647FA
 TID     MS Addr        Source  SGSN Addr       APN
81726354453647FA 10.2.2.1        Static  172.16.44.1     gprt.cisco.com
```

- **current time**: Dec 06 2001 13:15:34
- **user_name (IMSI)**: 1827364556374
- **MS address**: 10.2.2.1
- **MS International PSTN/ISDN Number (MSISDN)**: 243926901
- **signal_sequence**: 7
- **seq_tpdo_up**: 0
- **seq_tpdo_down**: 5380
- **upstream_signal_flow**: 371
- **downstream_signal_flow**: 1
- **RAupdate_flow**: 0
- **pdp_create_time**: Dec 06 2001 09:54:43
- **last_access_time**: Dec 06 2001 13:15:21
- **mnrgfla**: 0
- **tos mask map**: 00
- **gtp pdp idle time**: 72
- **gprs qos_req**: 091101
- **canonical Qos class(req.):** 01
- **gprs qos_neg**: 25131F
- **canonical Qos class(neg.):** 01
- **effective bandwidth**: 0.0
- **rcv_pkt_count**: 10026
- **rcv_byte_count**: 1824732
- **send_pkt_count**: 5380
- **send_byte_count**: 4207160
- **cef_up_pkt**: 10026
- **cef_up_byte**: 1824732
- **cef_down_pkt**: 5380
- **cef_down_byte**: 4207160
- **cef_drop**: 0
- **charging_id**: 12321224
- **pdp reference count**: 2
- **ntwk_init_pdp**: 0
Configuring Virtual Access Points on the GGSN

This section includes the following topics:

- Overview of the Virtual Access Point Feature, page 7-36
- Virtual Access Point Configuration Task List, page 7-38
- Verifying the Virtual Access Point Configuration, page 7-40

For a sample configuration, see the “Virtual APN Configuration Example” section on page 7-58.

Overview of the Virtual Access Point Feature

GGSN Release 3.0 and later support virtual APN access from the PLMN using the virtual access point type on the GGSN. The virtual APN feature on the GGSN allows multiple users to access different physical target networks through a shared APN access point on the GGSN.

In a GPRS/UMTS network, the user APN information must be configured at several of the GPRS/UMTS network entities, such as the home location register (HLR) and DNS server. In the HLR, the user subscription data associates the IMSI (unique per user) with each APN that the IMSI is allowed to access. At the DNS server, APNs are correlated to the GGSN IP address. If DHCP or RADIUS servers are in use, the APN configuration can also extend to those servers.

The virtual APN feature reduces the amount of APN provisioning required by consolidating access to all real APNs through a single virtual APN at the GGSN. Therefore, only the virtual APN needs to be provisioned at the HLR and DNS server, instead of each of the real APNs to be reached. The GGSN also must be configured for the virtual APN.

Note

On the Catalyst 6500/Cisco 7600 platform, identical virtual APN configurations must exist on each GGSN that is load-balanced by means of a virtual server.

Benefits of the Virtual APN Feature

The virtual APN feature provides the following benefits:

- Simplifies provisioning of APN information
- Improves scalability for support of large numbers of corporate networks, ISPs, and services
- Increases flexibility of access point selection
- Eases deployment of new APNs and services
- By setting the APN from the AAA server (pre-authentication-based virtual APN), operators can work with any APN from the handset, including the wildcard APN (*) because the target APN the user is not connected to is base on the user provisioning.

General Restrictions of the Virtual APN Feature

The virtual APN feature has the following restrictions:

- CDRs do not include domain information because for virtual APNs, the domain information is removed from the username attribute. By default, the associated real APN name is used in CDRs and authentication requests to a virtual APN. However, the GGSN can be configured to send the virtual APN in CDRs using the gprs charging cdr-option command with the apn virtual keyword options specified.
- Although the Cisco IOS software allows you to configure other access point options on a virtual access point, no other access point options are applicable if they are configured.
Domain-based Virtual Access Points

By default, the GGSN determines the ultimate target network for a session by receiving the Create PDP Context request at the virtual access point and extracting the domain name to direct the packet to the appropriate real APN. The real APN is the actual destination network. Domain-based APN resolution is the default.

Figure 7-2 shows how the GGSN, by default, supports a Create PDP Context request from an MS processed through a virtual APN on the GGSN.

![Figure 7-2 Default Virtual APN PDP Context Activation on the GGSN](image)

1. At the MS, the user connects to the network with a username in the form of login@domain, such as ciscouser@CorporateA.com. The SGSN sends a Create PDP Context request to the GGSN, using the virtual APN of “corporate.” The Create PDP Context request also includes the username in login@domain format in the protocol configuration option (PCO) information element.

2. The GGSN extracts the domain from the information in the PCO, which corresponds to the real target network on the GGSN. In this example, the GGSN finds CorporateA.com as the domain and directs the session to the appropriate real APN for the target network. In this case, the real APN is corporateA.com. The GGSN uses the complete username to do authentication.

3. The local or corporate AAA server is selected based on the domain part of the username, which is CorporateA.com in this case.

Pre-authentication-based Virtual Access Points

Cisco GGSN Release 6.0, Cisco IOS Release 12.3(14)YU and later, supports pre-authentication-based virtual access points.

The pre-authentication-based virtual APN feature utilizes AAA servers to provide dynamic, per-user mapping of a virtual APN to a target (real) APN.

When the **pre-authenticate** keyword option is specified when configuring a virtual APN, a pre-authentication phase is applied to Create PDP Context requests received that include a virtual APN in the APN information element.

Pre-authentication-based virtual APN requires that the AAA server be configured to provision user profiles to include the target APN. The AAA maps a user to the target using user identifications such as the IMSI, user name, or MSISDN, etc. Additionally, the target APN must be locally configured on the GGSN.
The following is the typical call flow with regard to external AAA servers when a virtual APN is involved:

1. The GGSN receives a Create PDP Context Request that includes a virtual APN. It locates the virtual APN and starts a pre-authentication phase for the PDP context by sending an Access-Request message to an AAA server.

2. The AAA server does a lookup based on the user identification (username, MSISDN, IMSI, etc.) included in the Access-Request message, and determines the target-APN for the user from the user profile. The target APN is returned as a Radius attribute in the Access-Accept message to the GGSN.

3. The GGSN checks for a locally-configured APN that matches the APN name in the target APN attribute in the Access-Accept message.
 - If a match is found, the virtual APN is resolved and the Create PDP Context Request is redirected to the target APN and is further processed using the target APN (just as if the target APN was included in the original Create PDP Context request). If the real APN is non-transparent, another Access-Request is sent out. Typically, the AAA server should be different.
 - If a match is not found, the Create PDP Context Request is rejected.
 - If there is no target APN included in the RADIUS attribute in the access-accept message to the GGSN, or if the target APN is not locally configured, the Create PDP Context Request is rejected.

4. GGSN receives an access-accept from the AAA server for the second round of authentication.

Restrictions of the Pre-authentication-based Virtual APN Feature

In addition to the restrictions listed in the “General Restrictions of the Virtual APN Feature” section on page 7-36, when configuring pre-authentication-based virtual APN functionality, please note the following:

- If a user profile on the AAA server is configured to include a target APN, then the target APN should be a real APN, and it should be configured on the GGSN.
- An APN can only be configured for domain-based virtual APN functionality or pre-authentication-based APN functionality, not both.
- The target APN returned from AAA must be a real APN, and if more than one APN is returned, the first one is used and the rest ignored.
- Configure anonymous user access under the virtual APN (using the anonymous-user access-point configuration command) to mobile stations (MS) to access without supplying the username and password (the GGSN uses the common password configured on the APN).
- At minimum, an AAA access-method must be configured under the virtual APN, or globally. If a method is not configured, the create PDP request will be rejected.

Virtual Access Point Configuration Task List

To configure the GGSN to support virtual APN access, you must configure one or more virtual access points. You also need to configure the real access points that provide the information required for connecting to the physical networks of the external PDNs or VPNs.

In addition to configuring the GGSN, you must also ensure proper provisioning of other GPRS/UMTS network entities as appropriate to successfully implement the virtual APN feature on the GPRS/UMTS network.
To configure virtual APN access on the GGSN, perform the following tasks:

- Configuring Virtual Access Points on the GGSN, page 7-39 (Required)
- Configuring Real Access Points on the GGSN, page 7-14 (Required)
 - PDN Access Configuration Task List, page 7-15
 - VPN Access Using VRF Configuration Task Lists, page 7-16
- Configuring Other GPRS/UMTS Network Entities With the Virtual APN, page 7-40 (Optional)

For a sample configuration, see the “Virtual APN Configuration Example” section on page 7-58.

Configuring Virtual Access Points on the GGSN

Use virtual access point types to consolidate access to multiple real target networks on the GGSN. Because the GGSN always uses real access points to reach an external network, virtual access points are used in combination with real access points on the GGSN.

You can configure multiple virtual access points on the GGSN. Multiple virtual access points can be used to access the same real networks. One virtual access point can be used to access different real networks.

Note

Be sure that you provision the HLR and configure the DNS server to properly correspond to the virtual APN domains that you have configured on the GGSN. For more information, see the “Configuring Other GPRS/UMTS Network Entities With the Virtual APN” section on page 7-40.

To configure a virtual access point on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# gprs access-point-list list-name</td>
</tr>
<tr>
<td></td>
<td>Specifies a name for a new access-point list, or references the name of the existing access-point list, and enters access-point list configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-ap-list)# access-point access-point-index</td>
</tr>
<tr>
<td></td>
<td>Specifies an index number for a new access point definition, or references an existing access point definition, and enters access point configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-access-point)# access-point-name apn-name</td>
</tr>
<tr>
<td></td>
<td>Specifies the network (or domain) name for a PDN that users can access from the GGSN at a defined access point.</td>
</tr>
<tr>
<td></td>
<td>Note The apn-name must match the APN that has been provisioned at the MS, HLR, and DNS server.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-access-point)# access-type virtual [pre-authenticate [default-apn apn-name]]</td>
</tr>
<tr>
<td></td>
<td>Specifies an APN type that is not associated with any specific physical target network on the GGSN. Optionally, can be configured to be dynamically mapped, per user, to a target (default) APN. The default access type is real.</td>
</tr>
</tbody>
</table>

Note

Even though the Cisco IOS software allows you to configure additional access point options on a virtual access point, none of those access point options will apply if they are configured.
Configuring Other GPRS/UMTS Network Entities With the Virtual APN

When you configure the GGSN to support virtual APN access, be sure that you also meet any necessary requirements for properly configuring other GPRS/UMTS network entities to support the virtual APN implementation.

The following GPRS/UMTS network entities might also require provisioning for proper implementation of virtual APN support:

- DHCP server—Requires configuration of the real APNs.
- DNS server—The DNS server that the SGSN uses to resolve the address of the GGSN must identify the virtual APN with the IP address of the GTP virtual template on the GGSN. If GTP SLB is implemented, then the virtual APN should be associated with the IP address of the GTP load balancing virtual server instance on the SLB router.
- HLR—Requires the name of the virtual APN in subscription data, as allowable for subscribed users.
- RADIUS server—Requires configuration of the real APNs.
- SGSN—Requires the name of the virtual APN as the default APN (as desired) when the APN is not provided in user subscription data.

Verifying the Virtual Access Point Configuration

This section describes how to verify that you have successfully configured virtual APN support on the GGSN, and includes the following tasks:

- Verifying the GGSN Configuration, page 7-40
- Verifying Reachability of the Network Through the Virtual Access Point, page 7-44

Verifying the GGSN Configuration

To verify that you have properly configured access points on the GGSN, use the `show running-config` command and the `show gprs access-point` commands.

Note
The `gprs access-point-list` command first appears in the output of the `show running-config` command under the virtual template interface, which indicates that the GPRS access point list has been configured and is associated with the virtual template. To verify your configuration of specific access points within the GPRS access point list, look further down in the `show` command output where the `gprs access-point-list` command appears again, followed by the individual access point configurations.

Step 1 From privileged EXEC mode, use the `show running-config` command as shown in the following example from the Cisco 7200 platform. Verify the interface configuration and virtual and real access points:

```
GGSN# show running-config
Building configuration...

Current configuration : 3521 bytes
!
version 12.x
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
```
! Enable the router for GGSN services
!
service gprs ggsn
!
hostname ggsn
!
ip cef
!
o logging buffered
logging rate-limit console 10 except errors
aaa new-model
aaa group server radius foo
 server 172.18.43.7 auth-port 1645 acct-port 1646
aaa authentication ppp foo group foo
aaa authorization network foo group foo
aaa accounting network foo start-stop group foo
!
ip subnet-zero
!
!
no ip dhcp-client network-discovery
!
interface Loopback1
 ip address 10.2.3.4 255.255.255.255
!
interface FastEthernet0/0
 ip address 172.18.43.174 255.255.255.240
duplex half
!
interface FastEthernet2/0
 description Gn interface
 ip address 192.168.10.56 255.255.255.0
!
! Define Gi physical interfaces to real networks
!
interface Ethernet1/0
 description Gi interface to corporatea.com
 ip address 10.8.8.6 255.255.255.0
 no ip mroute-cache
duplex half
!
interface Ethernet1/1
 description Gi interface to corporateb.com
 ip address 10.9.9.4 255.255.255.0
 no ip mroute-cache
duplex half
!
interface Ethernet1/2
 description Gi interface to corporatec.com
 ip address 10.15.15.10 255.255.255.0
 no ip mroute-cache
duplex half
!
interface loopback 1
 ip address 10.40.40.3 255.255.255.0
!
interface Virtual-Template1
 ip unnumber loopback 1
 encapsulation gtp

 gprs access-point-list gprs
!
ip default-gateway 172.18.43.161
ip kerberos source-interface any
ip classless
ip route 10.7.7.0 255.255.255.0 10.8.8.2
ip route 10.102.82.0 255.255.255.0 172.18.43.161
ip route 192.168.1.1 255.255.255.255 FastEthernet2/0
ip route 172.18.0.0 255.255.0.0 172.18.43.161
no ip http server
!
gprs access-point-list gprs
!
! Configure a domain-based virtual access point called corporate
!
access-point 1
 access-point-name corporate
 access-type virtual
 exit
!
! Configure three real access points called corporatea.com,
! corporateb.com, and corporatec.com
!
access-point 2
 access-point-name corporatea.com
 access-mode non-transparent
 aaa-group authentication foo
 exit
!
access-point 3
 access-point-name corporateb.com
 exit
!
access-point 4
 access-point-name corporatec.com
 access-mode non-transparent
 aaa-group authentication foo
 exit
!
! Configure a pre-authentication-based virtual access point called virtual-apn-all
!
access-point 5
 access-point-name virtual-apn-all
 access-mode non-transparent
 access-type virtual pre-authenticate default-apn a1b1c1.com
 anonymous user anyone 1z1z1z
 radius attribute user-name msisdn
 exit
!
gprs maximum-pdp-context-allowed 90000
gprs gtp path-echo-interval 0
gprs default charging-gateway 10.15.15.1
!
gprs memory threshold 512
radius-server host 172.18.43.7 auth-port 1645 acct-port 1646 non-standard
radius-server retransmit 3
radius-server key 7 12150415
call rsvp-sync
!
no mgcp timer receive-rtcp
!
mgcp profile default
!
gatekeeper
 shutdown
!
end
To view the configuration of a specific access point on the GGSN in further detail, use the `show gprs access-point` command and specify the index number of the access point, as shown in the following examples.

The following output shows information about a real access point:

```
GGSN#show gprs access-point 2
apn_index 2    apn_name = corporatea.com
apn_mode: non-transparent
apn-type: Real
accounting: Disable
wait_accounting: Disable
dynamic_address_pool: not configured
apn_dhcp_server: 0.0.0.0
apn_dhcp_gateway_addr: 0.0.0.0
apn_authentication_server_group: foo
apn_accounting_server_group:
apn_username: , apn_password:
subscribe_required: No
deactivate_pdp_context_on violation: No
network_activation_allowed: No
Block Foreign-MS Mode: Disable
VPN: Disable
GPRS vaccess interface: Virtual-Access1
number of ip_address_allocated 0

Total number of PDP in this APN :1
aggregate:  
In APN:  Disable
In Global: Disable
```

The following output shows information about a virtual access point:

```
GGSN#show gprs access-point 1
apn_index 1    apn_name = corporate
apn_mode: transparent
apn-type: Virtual
accounting: Disable
wait_accounting: Disable
dynamic_address_pool: not configured
apn_dhcp_server: 0.0.0.0
apn_dhcp_gateway_addr: 0.0.0.0
apn_authentication_server_group:
apn_accounting_server_group:
apn_username: , apn_password:
subscribe_required: No
deactivate_pdp_context_on violation: No
network_activation_allowed: No
Block Foreign-MS Mode: Disable
VPN: Disable
GPRS vaccess interface: Virtual-Access2
number of ip_address_allocated 0

Total number of PDP in this APN :0
aggregate:  
In APN:  Disable
In Global: Disable
```
The following output shows information about a pre-authentication-based virtual access point that is configured to be dynamically mapped to a default APN named a1b1c1.com:

```
GGSN# show gprs access-point 5
apn_index 1          apn_name = corporate
apn_mode: non-transparent
apn-type: Virtual pre-authenticate default-apn a1b1c1.com
accounting: Disable
wait_accounting: Disable
dynamic_address_pool: not configured
apn_dhcp_server: 0.0.0.0
apn_dhcp_gateway_addr: 0.0.0.0
apn_authentication_server_group:
apn_accounting_server_group:
apn_username: , apn_password:
subscribe_required: No
deactivate_pdp_context_on_violation: No
network_activation_allowed: No
Block Foreign-MS Mode: Disable
VPN: Disable
GPRS vaccess interface: Virtual-Access2
number of ip_address_allocated 0

Total number of PDP in this APN :0

aggregate:
  In APN: Disable
  In Global: Disable
```

Step 3

To view a summary of every access point that is configured on the GGSN, use the `show gprs access-point all` command as shown in the following example:

```
GGSN# show gprs access-point all

There are 4 Access-Points configured

<table>
<thead>
<tr>
<th>Index</th>
<th>Mode</th>
<th>Access-type</th>
<th>AccessPointName</th>
<th>VRF Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>transparent</td>
<td>Virtual</td>
<td>corporate</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>non-transparent</td>
<td>Real</td>
<td>corporatea.com</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>transparent</td>
<td>Real</td>
<td>corporateb.com</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>non-transparent</td>
<td>Real</td>
<td>corporatec.com</td>
<td></td>
</tr>
</tbody>
</table>
```

Verifying Reachability of the Network Through the Virtual Access Point

To verify reachability of the real destination network through the virtual access point, you can use the same procedure described in the “Verifying Reachability of the Network Through the Access Point” section on page 7-33.

In addition, you should meet the following guidelines for virtual access point testing:

- When you initiate PDP context activation at the MS, be sure that the username that you specify (in the form of login@domain in the Create PDP Context request) corresponds to a real APN that you have configured on the GGSN.
- When you generate traffic to the network, be sure to select a host on one of the real destination networks that is configured for APN support on the GGSN.
Configuring Access to External Support Servers

You can configure the GGSN to access external support servers to provide services for dynamic IP addressing of MSs using the Dynamic Host Configuration Protocol (DHCP) or using Remote Authentication Dial-In User Service (RADIUS). You can also configure RADIUS services on the GGSN to provide security, such as authentication of users accessing a network at an APN.

The GGSN allows you to configure access to DHCP and RADIUS servers globally for all access points, or to specific servers for a particular access point. For more information about configuring DHCP on the GGSN, see the “Configuring Dynamic Addressing on the GGSN” chapter. For more information about configuring RADIUS on the GGSN, see the “Configuring Security on the GGSN” chapter.

Blocking Access to the GGSN by Foreign Mobile Stations

This section describes how to restrict access to the GGSN from mobile stations outside their home PLMN. It includes the following topics:
- Overview of Blocking Foreign Mobile Stations, page 7-45
- Blocking Foreign Mobile Stations Configuration Task List, page 7-45

Overview of Blocking Foreign Mobile Stations

The GGSN allows you to block access by mobile stations that are outside of the PLMN. When you enable blocking of foreign mobile stations, the GGSN determines whether an MS is inside or outside of the PLMN, based on the mobile country code (MCC) and mobile network code (MNC). You must specify the MCC and MNC codes on the GGSN to properly configure the home public land mobile network (HPLMN) values.

When you enable the blocking foreign MS access feature on the access point, then whenever the GGSN receives a Create PDP Context request, the GGSN compares the MCC and MNC in the TID against the home operator codes that you configure on the GGSN. If the MS mobile operator code fails the matching criteria on the GGSN, then the GGSN rejects the Create PDP Context request.

Blocking Foreign Mobile Stations Configuration Task List

To implement blocking of foreign mobile stations on the GGSN, you must enable the function and specify the supporting criteria for determining whether an MS is outside its home PLMN.

To configure blocking of foreign mobile stations on the GGSN, perform the following tasks:
- Configuring the MCC and MNC Values, page 7-45 (Required)
- Enabling Blocking of Foreign Mobile Stations on the GGSN, page 7-46 (Required)
- Verifying the Blocking of Foreign Mobile Stations Configuration, page 7-46

Configuring the MCC and MNC Values

The MCC and MNC together identify a public land mobile network (PLMN). The values that you configure using the `gprs mcc mnc` command without the `trusted` keyword option specified, are those of the home PLMN ID, which is the PLMN to which the GGSN belongs.
Blocking Access to the GGSN by Foreign Mobile Stations

Only one home PLMN can be defined for a GGSN at a time. The GGSN compares the IMSI in Create PDP Context requests with the values configured using this command to determine if a request is from a foreign MS.

You can also configure up to 5 trusted PLMNs by specifying the trusted keyword when issuing the gprs mcc mnc command. A Create PDP Context request from an MS in a trusted PLMN is treated the same as a Create PDP Context request from an MS in the home PLMN.

To configure the MCC and MNC values that the GGSN uses to determine whether a request is from a roaming MS, use the following command in global configuration mode:

```
Router(config)## gprs mcc mcc-num mnc mnc-num [trusted]
```

Command Purpose

Configures the mobile country code and mobile network node that the GGSN uses to determine whether a Create PDP Context request is from a foreign MS. Optionally, use the trusted keyword to define up to 5 trusted PLMNs.

Note

The Create PDP Context requests from a trusted PLMN are treated the same as those from the home PLMN.

The GGSN automatically specifies values of 000 for the MCC and MNC. However, you must configure non-zero values for both the MCC and MNC before you can enable the GGSN to create CDRs for roamer.

Enabling Blocking of Foreign Mobile Stations on the GGSN

To enable the GGSN to block foreign mobile stations from establishing PDP contexts, use the following command in access-point configuration mode:

```
Router(config-access-point)## block-foreign-ms
```

Command Purpose

Restricts GGSN access at a particular access point based on the mobile user’s HPLMN.

Note

The MCC and MNC values that are used to determine whether a request is from a roaming MS must be configured before the GGSN can be enabled to block foreign mobile stations.

Verifying the Blocking of Foreign Mobile Stations Configuration

This section describes how to verify the blocking of foreign mobile stations configuration on the GGSN. It includes the following topics:

- Verifying Blocking of Foreign Mobile Stations at an Access Point, page 7-47
- Verifying the MCC and MNC Configuration on the GGSN, page 7-47
Verifying Blocking of Foreign Mobile Stations at an Access Point

To verify whether the GGSN is configured to support blocking of foreign mobile stations at a particular access point, use the `show gprs access-point` command. Observe the value of the Block Foreign-MS Mode output field as shown in bold in the following example:

```
GGSN# show gprs access-point 1
  apn_index 1          apn_name = gprs.corporate.com
  apn_mode: transparent
  apn-type: Real
  accounting: Disable
  wait_accounting: Disable
  dynamic_address_pool: dhcp-proxy-client
  apn_dhcp_server: 10.99.100.5
  apn_dhcp_gateway_addr: 10.27.1.1
  apn_authentication_server_group: foo
  apn_accounting_server_group: fool
  apn_username: , apn_password:
  subscribe_required: No
  deactivate_pdp_context_on_violation: Yes
  network_activation_allowed: Yes
  Block Foreign-MS Mode: Enable
  VPN: Enable (VRF Name : vpn1)
  GPRS vaccess interface: Virtual-Access2
  number of ip_address_allocated 0

  Total number of PDP in this APN :0

  aggregate:
    In APN: auto

    In Global: 30.30.0.0/16
               21.21.0.0/16
```

Verifying the MCC and MNC Configuration on the GGSN

To verify the configuration elements that the GGSN uses as matching criteria to determine whether a request is coming from a foreign mobile station, use the `show gprs plmn` privileged EXEC command. Observe the values of the output fields shown in bold in the following example. The example shows that the GGSN is configured for the USA country code (310) and for the Bell South network code (15) and four trusted PLMNs have been configured:

```
GGSN# show gprs plmn
Home PLMN
  MCC = 302  MNC = 678

Trusted PLMN
  MCC = 346  MNC = 123
  MCC = 234  MNC = 67
  MCC = 123  MNC = 45
  MCC = 100  MNC = 35
```

Note

For a reference table of some of the established MCC and MNC codes, refer to the “Table of MCC and MNC Codes” appendix.
Controlling Access to the GGSN by MSs with Duplicate IP Addresses

An MS cannot have the same IP address as another GPRS/UMTS network entity. You can configure the GGSN to reserve certain IP address ranges for use by the GPRS/UMTS network, and to disallow them from use by an MS.

During a Create PDP Context request, the GGSN verifies whether the IP address of an MS falls within the specified excluded range. If there is an overlap of the MS IP address with an excluded range, then the Create PDP Context request is rejected. This measure prevents duplicate IP addressing in the network.

You can configure up to 100 IP address ranges. A range can be one or more addresses. However, you can configure only one IP address range per command entry. To exclude a single IP address, you can repeat the IP address in the start-ip and end-ip arguments. IP addresses are 32-bit values.

Note

On the Catalyst 6500/Cisco 7600 platform, identical configurations must exist on each GGSN that is load-balanced by means of a virtual server.

To reserve IP address ranges for use by the GPRS/UMTS network and block their use by an MS, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs ms-address exclude-range start-ip end-ip</td>
<td>Specifies the IP address ranges used by the GPRS/UMTS network, and thereby excluded from the MS IP address range.</td>
</tr>
</tbody>
</table>

Configuring Routing Behind the Mobile Station on an APN

The routing behind the MS feature enables the routing of packets to IP addresses that do not belong to the PDP context (the MS), but exist behind it. The network address of the destination can be different than the MS address.

Before enabling routing behind the MS, the following requirements must be met:

- The MS must use RADIUS for authentication and authorization.
- At minimum, one Framed-Route, attribute 22 as defined in Internet Engineering Task Force (IETF) standard RFC 2865, must be configured in the RADIUS server for each MS that wants to use this feature.

When configured, the Framed-Route attribute is automatically downloaded to the GGSN during the authentication and authorization phase of the PDP context creation. If routing behind the MS is not enabled, the GGSN ignores the Framed-Route attribute. If multiple Framed-Route attributes have been configured for an MS, the GGSN uses the first attribute configured. When the MS session is no longer active, the route is deleted.

- For PPP Regen or PPP with L2TP sessions, the Framed-Route attribute must be configured in the RADIUS server of the LNS.
For PPP Regen sessions, if the `security verify source` command is configure, the Framed-Route attribute must also be configured in the user profile in the GGSN RADIUS server.

Static routes are not configured. Configuring static routes and the routing behind the mobile station feature (Framed Route, attribute 22) at the same time is not supported.

Enabling Routing Behind the Mobile Station

To enable routing behind an MS, use the following command in access-point configuration mode:

```bash
Router(config-access-point)# network-behind-mobile
```

Use the `show ip route` privilege EXEC command to view the current state of the routing table. To display a list of currently active mobile sessions, use the `show pdp` command.

Note

Packets routed behind the MS share the same 3GPP QoS settings of the MS.

Verifying the Routing Behind the Mobile Station Configuration

To verify the routing behind the mobile station configuration, use the following `show` commands.

Step 1

From privilege EXEC mode, use the `show gprs gtp pdp-context tid` and `show ip route` commands to view the framed route and the static route added for the framed route that uses the IP address of the PDP context as the gateway address:

```bash
GGSN# show gprs gtp pdp-context tid 1234567809000010
TID          MS Addr              Source  SGSN Addr       APN
1234567809000010 83.83.0.1            Static 2.1.1.1 ippdp1

current time :Feb 09 2004 12:52:49
user_name (IMSI):214365879000000 MS address:83.83.0.1
MS International PSTN/ISDN Number (MSISDN):123456789
sgsn_addr_signal:2.1.1.1 sgsn_addr_data: 2.1.1.1
control teid local: 0x637P00EC
control teid remote:0x010004611
data teid local: 0x637DFFFF4 data teid remote: 0x01204612
primary pdp:Y nsapli:1
signal_sequence: 11 seq_tpdu_up: 0
seq_tpdu_down: 0 upstream_signal_flow: 0 upstream_data_flow: 0
downstream_signal_flow:0 downstream_data_flow:0
RAupdate_flow: 0 pdp_create_time: Feb 09 2004 12:50:41
last_access_time: Feb 09 2004 12:50:41
mrnf_flag: 0 tos mask map:0
gtp pdp idle_time:72
gprs qos_req:000000 canonical Qos class(reg.):03
gprs qos_neg:000000 canonical Qos class(neg.):03
effective bandwidth:0.0
```
Step 2 From privilege EXEC mode, use the show gprs gtp statistics command to view network-behind-mobile-station statistics (displayed in bold in the following example):

```
GGSN# show gprs gtp statistics
GPRS GTP Statistics:
version_not_support 0 msg_too_short 0
unknown_msg 0 unexpected_sig_msg 0
unexpected_data_msg 0 unsupported_comp_exthdr 0
mandatory_ie_missing 0 mandatory_ie_incorrect 0
optional_ie_invalid 0 ie_unknown 0
ie_out_of_order 0 ie_unexpected 0
```
Configuring Proxy-CSCF Discovery Support on an APN

The GGSN can be configured to return a list of preconfigured Proxy Call Session Control Function (P-CSCF) server addresses for an APN when it receives a Create PDP Context Request that contains a “P-CSCF Address Request” field in the PCO.

The MS sets the P-CSCF Address Request field of the PCO in the Activate PDP Context Request. This request is forwarded to the GGSN in the Create PDP Context Request from the SGSN. Upon receiving, the GGSN returns in the “P-CSCF Address” field of the PCO, all the P-CSCF addresses configured. If a Create PDP Context Request does not contain the P-CSCF address request field in the PCO, or if no P-CSCF addresses are preconfigured, the Create PDP Context Response will not return any P-CSCF addresses. An error message will not be generated and the Create PDP Context Request will be processed.

The order of the addresses returned in the “P-CSCF Address Field” of the PCO is the same as the order in which they are defined in the P-CSCF server group and the groups are associated with the APN.

To enable the P-CSCF Discovery support on an APN, perform the following tasks:

- Creating P-CSCF Server Groups on the GGSN, page 7-52
- Specifying a P-CSCF Server Groups for an APN, page 7-52
Creating P-CSCF Server Groups on the GGSN

To configure a P-CSCF server group on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# gprs pcscf group-name</td>
</tr>
<tr>
<td></td>
<td>Configures a P-CSCF server group on the GGSN and enters P-CSCF group configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-pcscf-group)# server ipv4-address</td>
</tr>
<tr>
<td></td>
<td>Defines the P-CSCF server by IP address. Up to 10 P-CSCF servers can be defined in a P-CSCF server group.</td>
</tr>
</tbody>
</table>

Specifying a P-CSCF Server Groups for an APN

Before specifying a P-CSCF group for an APN, the group must be configured globally using the `gprs pcscf` global configuration command.

Note

Only one P-CSCF group can be defined per APN.

To specify a P-CSCF server group for an APN, use the following command while in access point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# pcscf group-name</td>
<td>Specifies a P-CSCF server group to be used for P-CSCF discovery by an APN.</td>
</tr>
</tbody>
</table>

Verifying the P-CSCF Discovery Configuration

Use the following show commands to verify the P-CSCF Discovery configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show gprs pcscf</td>
<td>Displays a summary of the P-CSCF server groups configured on the GGSN.</td>
</tr>
<tr>
<td>Router# show gprs access-point [group-name]</td>
<td>Displays a summary of the P-CSCF server group or groups configured on the GGSN.</td>
</tr>
</tbody>
</table>

Configuration Examples

This section includes the following configuration examples for configuring different types of network access to the GGSN:

- Static Route to SGSN Example, page 7-53
- Access Point List Configuration Example, page 7-54
Static Route to SGSN Example

Cisco 7200 Platform

The following example shows how to configure a static route from a physical interface on the GGSN to the SGSN.

Notice the following areas in the GGSN configuration shown in this example:

- Fast Ethernet 0/0 is the physical interface to the SGSN, which is known as the Gn interface.
- In this example, the SGSN is located at IP address 192.168.1.1. Using the `ip route` command, a static route is configured to the SGSN located at 192.168.1.1 from the Fast Ethernet 0/0 interface on the GGSN.

GGSN Configuration

```
! Configure Gn interface on GGSN to communicate with SGSN
!
interface FastEthernet0/0
 ip address 10.0.0.2 255.0.0.0
 no ip directed-broadcast
 no ip mroute-cache
 no keepalive
!
ip route 192.168.1.1 255.255.255.255 FastEthernet0/0
```

Note

For the SGSN to successfully communicate with the GGSN, the SGSN must configure a static route or must be able to dynamically route to the IP address used by the GGSN virtual template.

Catalyst 6500 / Cisco 7200 Platform

On the GGSN:

```
!
...
!
interface Loopback100
 description GPRS GTP V-TEMPLATE IP ADDRESS
 ip address 9.9.9.72 255.255.255.0
!
interface GigabitEthernet0/0.2
 description Ga/Gn Interface
 encapsulation dot1Q 101
 ip address 10.1.1.72 255.255.255.0
 no cdp enable
!
interface Virtual-Template1
 description GTP v-access
 ip unnumbered Loopback100
 encapsulation gtp
```
Access Point List Configuration Example

The following example (from the Cisco 7200 platform) shows a portion of the GGSN configuration for a GPRS access point list:

```
interface virtual-template 1
 ip unnumber loopback 1
 no ip directed-broadcast
 encapsulation gtp
 gprs access-point-list abc
 !
 ! Defines a GPRS access point list named abc
```
! with 3 access points
!
gprs access-point-list abc
 access-point 1
 access-point-name gprs.pdn1.com
 ip-address-pool dhcp-proxy-client
 dhcp-server 10.102.100.3
 dhcp-gateway-address 10.30.30.30
 exit
 access-point 2
 access-point-name gprs.pdn2.com
 ip-address-pool dhcp-proxy-client
 dhcp-server 10.60.0.1
 dhcp-gateway-address 10.27.27.27
 exit
 access-point 3
 access-point-name www.pdn3.com
 access-mode non-transparent
 dhcp-gateway-address 10.25.25.25
 aaa-group authentication foo
 exit
 ...

VRF Tunnel Configuration Example

Cisco 7200 Platform

The following example shows a partial configuration for a virtual private network named “vpn1” using VRF:

! Configure a VRF routing table
! and define an identifier
!
ip vrf vpn1
 rd 100:1
!
! Enable CEF switching
!
ip cef
!
interface Loopback101
 ip address 10.14.101.1 255.255.255.255
!
! Configure a tunnel interface
! to a private network using VRF
!
interface Tunnel1
 ip vrf forwarding vpn1
 ip address 10.1.101.1 255.255.255.0
 tunnel source 10.14.101.1
 tunnel destination 10.13.101.1
!
! Configure OSPF routing using VRF
!
router ospf 101 vrf vpn1
 log-adjacency-changes
 redistribute static subnets
 network 10.1.101.0 0.0.0.255 area 0
!
Configuration Examples

! Configure VRF at the access point
!
gprs access-point-list gprs
 access-point 1
 access-point-name gprs.cisco.com
 vrf vpn1
 exit

Catalyst 6500/Cisco 7600 Platform

The following examples show a partial configuration for two VPNs (VPN1 and VPN2) and their associated GRE tunnel configurations (Tunnel1 and Tunnel2).

On the GGSN:

 service gprs ggsn

 hostname 6500-7-2

 ip cef

 ip vrf vpn1
description GRE Tunnel 1
rd 100:1
!
ip vrf vpn2
description GRE Tunnel 3
rd 101:1
!
interface Loopback1
 ip address 150.1.1.72 255.255.0.0
!
interface Loopback100
description GPRS GTP V-TEMPLATE IP ADDRESS
 ip address 9.9.9.72 255.255.255.0
!
interface Tunnel1
description VRF-GRE to PDN 7500(13) Fa0/1
ip vrf forwarding vpn1
ip address 50.50.52.72 255.255.255.0
tunnel source 150.1.1.72
tunnel destination 165.2.1.13
!
interface Tunnel2
description VRF-GRE to PDN 7200(12) Fa3/0
ip vrf forwarding vpn2
ip address 80.80.82.72 255.255.255.0
tunnel source 150.1.1.72
tunnel destination 167.2.1.12
!
interface GigabitEthernet0/0.1
description Gi
 encapsulation dot1Q 100
ip address 10.1.2.72 255.255.255.0
!
interface Virtual-Template1
description GTP v-access
ip unnumbered Loopback100
encapsulation gtp
gprs access-point-list gprs
!
ip local pool vpn1_pool 100.2.0.1 100.2.255.255 group vpn1
ip local pool vpn2_pool 100.2.0.1 100.2.255.255 group vpn2
ip route vrf vpn1 0.0.0.0 0.0.0.0 Tunnel1
ip route vrf vpn2 0.0.0.0 0.0.0.0 Tunnel2

gprs access-point-list gprs
access-point 1
 access-point-name apn.vrf1.com
 access-mode non-transparent
 aaa-group authentication ipdbfms
 ip-address-pool local vpn1_pool
 vrf vpn1

access-point 2
 access-point-name apn.vrf2.com
 access-mode non-transparent
 aaa-group authentication ipdbfms
 ip-address-pool local vpn2_pool
 vrf vpn2

Related configuration on the Supervisor / MSFC2:

interface FastEthernet9/5
 no ip address
 switchport
 switchport access vlan 167
 no cdp enable

interface FastEthernet9/10
 no ip address
 switchport
 switchport access vlan 165
 no cdp enable

interface Vlan165
 ip address 165.1.1.1 255.255.0.0

interface Vlan167
 ip address 167.1.1.1 255.255.0.0

! provides route to tunnel endpoints on GGSNs
! ip route 150.1.1.72 255.255.255.255 10.1.2.72
! routes to tunnel endpoints on PDN
! ip route 165.2.0.0 255.255.0.0 165.1.1.13
ip route 167.2.0.0 255.255.0.0 167.1.1.12
Virtual APN Configuration Example

The following example shows a GGSN that is configured for a virtual APN access point that serves as the focal connection for three different real corporate networks.

Notice the following areas in the GGSN configuration shown in this example:

- Three physical interfaces (Gi interfaces) are defined to establish access to the real corporate networks: Ethernet 1/0, Ethernet 1/1, and Ethernet 1/2.
- Four access points are configured:
 - Access point 1 is configured as the virtual access point with an APN called corporate. No other configuration options are applicable at the virtual access point. The “corporate” virtual APN is the APN that is provisioned at the HLR and DNS server.
 - Access points 2, 3, and 4 are configured to the real network domains: corporatea.com, corporateb.com, and corporatec.com. The real network domains are indicated in the PCO of the PDP context request.

Figure 7-3 Virtual APN Configuration Example

GGSN Configuration

```
! version 12.x
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
! Enable the router for GGSN services
!
service gprs ggsn
!
hostname ggsn
```
interface Ethernet1/0
description Gi interface to corporatea.com
ip address 10.8.8.6 255.255.255.0
no ip mroute-cache
duplex half
!
interface Ethernet1/1
description Gi interface to corporateb.com
ip address 10.9.9.4 255.255.255.0
no ip mroute-cache
duplex half
!
interface Ethernet1/2
description Gi interface to corporatec.com
ip address 10.15.15.10 255.255.255.0
no ip mroute-cache
duplex half
!
interface loopback 1
 ip address 10.40.40.3 255.255.255.0
!
interface Virtual-Template1
 ip unnumber loopback 1
 encapsulation gtp
 gprs access-point-list gprs
!
 ip default-gateway 172.18.43.161
 ip kerberos source-interface any
 ip classless
 ip route 10.7.7.0 255.255.255.0 10.8.8.2
 ip route 10.21.21.0 255.255.255.0 Ethernet1/1
 ip route 10.102.82.0 255.255.255.0 172.18.43.161
 ip route 192.168.1.1 255.255.255.255 FastEthernet2/0
 ip route 172.18.0.0 255.255.0.0 172.18.43.161
no ip http server
!
gprs access-point-list gprs
!
! Configure a virtual access point called corporate
!
 access-point 1
 access-point-name corporate
 access-type virtual
 exit
!
! Configure three real access points called corporatea.com,
corporateb.com, and corporatec.com
!
 access-point 2
 access-point-name corporatea.com
 access-mode non-transparent
 aaa-group authentication foo
 exit
access-point 3
 access-point-name corporateb.com
 access-mode transparent
 ip-address-pool dhcp-client
dhcp-server 10.21.21.1
 exit
!
access-point 4
 access-point-name corporatec.com
 access-mode non-transparent
 aaa-group authentication foo
 exit
!
!
gprs maximum-pdp-context-allowed 90000
gprs gtp path-echo-interval 0
gprs default charging-gateway 10.15.15.1
!
gprs memory threshold 512
!
radius-server host 172.18.43.7 auth-port 1645 acct-port 1646 non-standard
radius-server retransmit 3
radius-server key 7 12150415
call rsvp-sync
!
no mgcp timer receive-rtcp
!
mgcp profile default
!
Blocking Access by Foreign Mobile Stations Configuration Example

The following example shows a partial configuration in which access point 100 blocks access by foreign mobile stations:

```
! version 12.x
no service single-slot-reload-enable
! Enables the router for GGSN services
! service gprs ggsn
! hostname ggsn
! ip cef
! gprs access-point-list gprs
! access-point 100
! Enables blocking of MS to APN 100
! that are outside of the PLMN
! block-foreign-ms
exit
!...
! Configures the MCC and MNC codes
! gprs mcc 123 mnc 456
```

Duplicate IP Address Protection Configuration Example

The following example shows a partial configuration that specifies three different sets of IP address ranges used by the GPRS/UMTS network (which are thereby excluded from the MS IP address range):

```
gprs ms-address exclude-range 10.0.0.1 10.20.40.50
gprs ms-address exclude-range 172.16.150.200 172.30.200.255
gprs ms-address exclude-range 192.168.100.100 192.168.200.255
```
P-CSCF Discovery Configuration Example

The following example shows a partial configuration in which P-CSCF server groups have been configured on the GGSN and assigned to an access point:

```bash
! version 12.x
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
! Enables the router for GGSN services
!
  service gprs ggsn
  !
  hostname ggsn
  !
  ip cef
  !
  gprs pcscf groupA
  server 172.10.1.1
  server 10.11.1.2
  !
  gprs pcscf groupB
  server 172.20.2.1
  server 10.21.2.2
  gprs access-point-list gprs
  !
  access-point 100
  access-point-name pcscf
  pcscf groupA
  !
```
Configuring PPP Support on the GGSN

The gateway GPRS support node (GGSN) supports the GPRS tunneling protocol (GTP) with the Point to Point Protocol (PPP) in three different ways. The different types of PPP support on the GGSN are differentiated by where the PPP endpoints occur within the network, whether Layer 2 Tunneling Protocol (L2TP) is in use, and where IP packet service occurs. This chapter describes the different methods of PPP support on the GGSN and how to configure those methods.

For a complete description of the GGSN commands in this chapter, refer to the Cisco GGSN Release 6.0 Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter includes the following sections:

- Overview of PPP Support on the GGSN, page 8-1
- Configuring GTP-PPP Termination on the GGSN, page 8-3
- Configuring GTP-PPP with L2TP on the GGSN, page 8-7
- Configuring GTP-PPP Regeneration on the GGSN, page 8-14
- Monitoring and Maintaining PPP on the GGSN, page 8-21
- Configuration Examples, page 8-22

Overview of PPP Support on the GGSN

Before GGSN Release 3.0, the GGSN supported a topology of IP over PPP between the terminal equipment (TE) and mobile termination (MT). Only IP packet services and routing were supported from the MT through the serving GPRS support node (SGSN), over the Gn interface and the GTP tunnel to the GGSN, and over the Gi interface to the corporate network. No PPP traffic flow was supported over the GTP tunnel or between the GGSN and the corporate network.
Figure 8-1 shows the implementation of IP over GTP without any PPP support within a GPRS network.

The PPP packet data protocol (PDP) type was added to the GSM standards in GSM 04.08 version 7.4.0 and GSM 09.60 version 7.0.0. PPP is a Layer 2 protocol that is widely used in a variety of WAN environments, including Frame Relay, ATM, and X.25 networks.

PPP provides security checking through the Password Authentication Protocol (PAP) and Challenge Handshake Authentication Protocol (CHAP), and it uses the IP Control Protocol (IPCP) sublayer to negotiate IP addresses. Perhaps the most important characteristic of PPP support within the general packet radio service/Universal Mobile Telecommunication System (GPRS/UMTS) network is PPP’s tunneling capability through a virtual private data network (VPDN) using L2TP. Tunneling allows PPP sessions to be transported through public networks to a private corporate network, without any security exposure in the process. Authentication and dynamic IP address allocation can be performed at the edge of the corporate network.

GGSN Release 6.0 provides the following three methods of PPP support on the GGSN:

- GTP-PPP
- GTP-PPP with L2TP
- GTP-PPP Regeneration

Note

Under optimal conditions, the GGSN supports 8000 PDP contexts when a PPP method is configured. However, the platform, amount of memory installed, method of PPP support configured, and rate of PDP context creation configured will all affect this number.

The following sections in this chapter describe each method in more detail and describe how to configure and verify each type of PPP support on the GGSN.
Configuring GTP-PPP Termination on the GGSN

This section provides an overview of and describes how to configure PPP over GTP on the GGSN. It includes the following topics:

- Overview of GTP-PPP Termination on the GGSN, page 8-3
- Preparing to Configure PPP over GTP on the GGSN, page 8-4
- GTP-PPP Termination Configuration Task List, page 8-4
- GTP-PPP Termination on the GGSN Configuration Examples, page 8-22

Overview of GTP-PPP Termination on the GGSN

The GGSN supports the PPP PDP type over GTP without using L2TP. In this topology, the GGSN provides PPP support from the terminal equipment (TE) and mobile termination (MT) or mobile station (MS) through the SGSN, over the Gn interface and the GTP tunnel to the GGSN. The PPP endpoints are at the terminal equipment (TE) and the GGSN. IP routing occurs from the GGSN over the Gi interface to the corporate network.

Figure 8-2 shows the implementation of PPP over GTP without L2TP support within a GPRS network.

Benefits

PPP over GTP support on the GGSN provides the following benefits:
- Different traffic types can be supported over GTP.
- Authentic negotiation of PPP options can occur for PPP endpoints (no need for proxy PPP negotiation).
- Provides the foundation for GTP to interwork with other PPP networking protocols, such as L2TP.
• Requirements for MT intelligence are simplified, with no need for support of a PPP stack on the MT.
• Additional session security is provided.
• Provides increased flexibility of IP address assignment to the TE.

Preparing to Configure PPP over GTP on the GGSN

Before you begin to configure PPP over GTP support on the GGSN, you need to determine the method that the GGSN will use to allocate IP addresses to users. There are certain configuration dependencies that are based on the method of IP address allocation that you want to support.

Be sure that the following configuration guidelines are met to support the type of IP address allocation in use on your network:

• RADIUS IP address allocation
 – Be sure that users are configured on the RADIUS server using the complete username@domain format.
 – Specify the no peer default ip address command at the PPP virtual template interface.
 – For more information about configuring RADIUS services on the GGSN, see the “Configuring Security on the GGSN” chapter in this guide.

• DHCP IP address allocation
 – Be sure that you configure the scope of the addresses to be allocated on the same subnet as the loopback interface.
 – Do not configure an IP address for users on the RADIUS server.
 – Specify the peer default ip address dhcp command at the PPP virtual template interface.
 – Specify the aaa authorization network method_list none command on the GGSN.
 – For more information about configuring DHCP services on the GGSN, see the “Configuring Dynamic Addressing on the GGSN” chapter in this guide.

• Local pool IP address allocation
 – Be sure to configure a local pool using the ip local pool command.
 – Specify the aaa authorization network method_list none command on the GGSN.
 – Specify the peer default ip address pool pool-name command.

GTP-PPP Termination Configuration Task List

To configure PPP over GTP support on the GGSN, perform the following tasks:

• Configuring a Loopback Interface, page 8-5 (Recommended)
• Configuring a PPP Virtual Template Interface, page 8-5 (Required)
• Associating the Virtual Template Interface for PPP on the GGSN, page 8-7 (Required)
Configuring a Loopback Interface

We recommend that you configure the virtual template interface as unnumbered, and associate its IP numbering with a loopback interface.

A loopback interface is a software-only interface that emulates an interface that is always up. It is a virtual interface supported on all platforms. The interface-number is the number of the loopback interface that you want to create or configure. There is no limit on the number of loopback interfaces that you can create. The GGSN uses loopback interfaces to support the configuration of several different features.

To configure a loopback interface on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface loopback interface-number</td>
</tr>
<tr>
<td></td>
<td>Defines a loopback interface on the GGSN, where interface-number identifies the loopback interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address ip-address mask [secondary]</td>
</tr>
<tr>
<td></td>
<td>Specifies an IP address for the interface, where:</td>
</tr>
<tr>
<td></td>
<td>- ip-address—Specifies the IP address of the interface in dotted decimal format.</td>
</tr>
<tr>
<td></td>
<td>- mask—Specifies a subnet mask in dotted decimal format.</td>
</tr>
<tr>
<td></td>
<td>- secondary—Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.</td>
</tr>
</tbody>
</table>

Configuring a PPP Virtual Template Interface

To support PPP over GTP, you must configure a virtual template interface on the GGSN that supports PPP encapsulation. Therefore, the GGSN will have two virtual template interfaces: one for GTP encapsulation and one for PPP encapsulation. The GGSN uses the PPP virtual template interface to create all PPP virtual access interfaces for PPP sessions on the GGSN.

We recommend that you configure the virtual template interface as unnumbered, and associate its IP numbering with a loopback interface.

Because it is the default, PPP encapsulation does not appear in the show running-config output for the interface.
To configure a PPP virtual template interface on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface virtual-template number</td>
</tr>
<tr>
<td></td>
<td>Creates a virtual template interface, where number identifies the virtual template interface. This command enters you into interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Note This number must match the number configured in the corresponding gprs gtp ppp vtemplate command.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip unnumbered type number</td>
</tr>
<tr>
<td></td>
<td>Enables IP processing on the virtual template interface without assigning an explicit IP address to the interface, where type and number specify another interface for which the router has been assigned an IP address.</td>
</tr>
<tr>
<td></td>
<td>For the GGSN, this can be a Gi interface or a loopback interface. We recommend using a loopback interface.</td>
</tr>
</tbody>
</table>
| **Step 3** | Router(config-if)# no peer default ip address (for RADIUS server)
or
Router(config-if)# peer default ip address dhcp (for DHCP server)
or
Router(config-if)# peer default ip address pool pool-name (for local pool) |
| | Specifies the prior peer IP address pooling configuration for the interface. | | |
| | If you are using a RADIUS server for IP address allocation, then you need to disable peer IP address pooling. |
| **Step 4** | Router(config-if)# encapsulation ppp |
| | (Optional) Specifies PPP as the encapsulation type for packets transmitted over the virtual template interface. PPP is the default encapsulation. |
| | **Note** PPP is the default encapsulation and does not appear in the output of the show running-config command for the virtual template interface unless you manually configure the command. |
| **Step 5** | Router(config-if)# ppp authentication {pap | chap | default} |
| | Enables CHAP or PAP or both and specifies the order in which CHAP and PAP authentication are selected on the interface, where |
| |
| | • pap [chap]—Enables PAP, CHAP, or both on the interface. |
| | • default—Name of the method list created with the aaa authentication ppp command. |
Chapter 8 Configuring PPP Support on the GGSN

Configuring GTP-PPP with L2TP on the GGSN

This section provides an overview of and describes how to configure PPP over GTP with L2TP support on the GGSN. It includes the following topics:

- **Overview of GTP-PPP with L2TP on the GGSN**, page 8-7
- **GTP-PPP With L2TP Configuration Task List**, page 8-8

Overview of GTP-PPP with L2TP on the GGSN

The GGSN supports PPP over GTP using L2TP, without IP routing. The GGSN provides PPP support from the TE and MT through the SGSN, over the Gn interface and the GTP tunnel to the GGSN, and over the Gi interface and an L2TP tunnel to the corporate network. In this scenario, the PPP termination endpoints are at the TE and the L2TP network server (LNS) at the corporate network.

With L2TP support, packets are delivered to the LNS by routing L2TP- and PPP-encapsulated IP payload. Without L2TP, pure IP payload is routed to the LNS at the corporate network.
Figure 8-3 shows the implementation of PPP over GTP with L2TP support within a GPRS network.

Benefits

PPP over GTP with L2TP support on the GGSN provides the following benefits:

- VPN security using L2TP tunnels provides secure delivery of user data over the public network to a corporate network.
- Real end-to-end PPP sessions, with authentication and address negotiation and assignment.
- Corporate networks can retain control over access to their servers and do not need to provide access by the GGSN to those servers.
- Configuration changes on corporate servers can occur without requiring an update to the GGSN.

Restrictions

The GGSN supports PPP over GTP with L2TP with the following restriction:

- At least one PPP authentication protocol must be enabled using the `ppp authentication` interface configuration command.

GTP-PPP With L2TP Configuration Task List

Configuring GTP over PPP with L2TP requires many of the same configuration tasks as those required to configure GTP over PPP without L2TP, with some additional tasks to configure the GGSN as an L2TP access concentrator (LAC) and to configure authentication, authorization, and accounting (AAA) services.

To configure PPP over GTP with L2TP support on the GGSN, perform the following tasks:

- Configuring the GGSN as a LAC, page 8-9 (Required)
- Configuring AAA Services for L2TP Support, page 8-10 (Required)
- Configuring a Loopback Interface, page 8-12 (Recommended)
Configuring the GGSN as a LAC

When you use L2TP services on the GGSN to the LNS in the corporate network, you need to configure the GGSN as a LAC by enabling VPDN services on the GGSN.

For more information about VPDN configuration and commands in the Cisco IOS software, refer to the Cisco IOS Dial Technologies Configuration Guide and Command Reference publications.

To configure the GGSN as a LAC where the tunnel parameters are configured locally on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
Router(config)# vpdn enable | Enables VPDN on the router or instance of Cisco IOS software and directs the router to look for tunnel definitions in a local database and on a remote authorization server (home gateway), if one is present.
Note Only this step is required if you are using a RADIUS server to provide tunnel parameters. |
| **Step 2**
Router(config)# vpdn-group group-number | Defines a VPDN group, and enters VPDN group configuration mode. |
| **Step 3**
Router(config-vpdn)# request-dialin | Enables the router or instance of Cisco IOS software to request dial-in tunnels, and enters request dial-in VPDN subgroup configuration mode. |
| **Step 4**
Router(config-vpdn-req-in)# protocol l2tp | Specifies the L2TP protocol for dial-in tunnels. |
| **Step 5**
Router(config-vpdn-req-in)# domain domain-name | Specifies that users with this domain name will be tunneled. Configure this command for every domain name you want to tunnel. |
| **Step 6**
Router(config-vpdn-req-in)# exit | Returns you to VPDN group configuration mode. |
| **Step 7**
Router(config-vpdn)# initiate-to ip ip-address [limit limit-number] [priority priority-number] | Specifies the destination IP address for the tunnel. |
| **Step 8**
Router(config-vpdn)# local name name | Specifies the local name that is used to authenticate the tunnel. |

Note You can configure the L2TP tunnel parameters locally on the GGSN, or the tunnel parameters can be provided by a RADIUS server. If a RADIUS server is providing the tunnel parameters, then in this procedure you only need to configure the `vpdn enable` command on the GGSN.
Configuring AAA Services for L2TP Support

Before the VPDN stack on the GGSN opens an L2TP tunnel to an LNS, it tries to authorize the tunnel first. The GGSN consults its local database to perform this authorization. Therefore, you need to configure the appropriate AAA services for the GGSN to support L2TP tunnel authorization. Note that this is for authorization of the tunnel itself—not for user authorization.

This section describes only those commands required to implement authorization for L2TP support on the GGSN. It does not describe all of the tasks required to configure RADIUS and AAA support on the GGSN. For more information about enabling AAA services and configuring AAA server groups on the GGSN, see the “Configuring Security on the GGSN” chapter in this book.

Note

To correctly implement authentication and authorization services on the GGSN for L2TP support, you must configure the same methods and server groups for both.

To configure authorization for L2TP support on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# aaa authorization network default</td>
<td>(Optional) Specifies that the GGSN consults its local database, as defined by the <code>username</code> command, for tunnel authorization.</td>
</tr>
</tbody>
</table>
Chapter 8 Configuring PPP Support on the GGSN

Configuring GTP-PPP with L2TP on the GGSN

Note
You can configure the L2TP tunnel parameters locally on the GGSN, or the tunnel parameters can be provided by a RADIUS server. If a RADIUS server is providing the tunnel parameters, then in this procedure you only need to configure the username command on the GGSN.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 2**
Router(config)# aaa authorization network (default | list-name) group group-name [group group-name...]] | Specifies one or more AAA methods for use on interfaces running PPP, where:
- **network**—Runs authorization for all network-related service requests, including SLIP1, PPP2, PPP NCPs3, and ARA4.
- **default**—Uses the listed authentication methods that follow this argument as the default list of methods when a user logs in.
- **list-name**—Specifies the character string used to name the list of authentication methods tried when a user logs in.
- **group group-name**—Uses a subset of RADIUS servers for authentication as defined by the aaa group server radius command.

Note
Be sure to use a method list and do not use the aaa authorization network default group radius form of the command. For L2TP support, the group-name must match the group that you specify in the aaa authentication ppp command.

| Step 3
Router(config)# username name password secret | Specifies the password to be used in CHAP caller identification, where name is the name of the tunnel.

Note
Usernames in the form of ciscouser, ciscouser@corporate1.com, and ciscouser@corporate2.com are considered to be three different entries.

Repeat this step to add a username entry for each remote system from which the local router or access server requires authentication.

Command Purpose
Configuring a Loopback Interface

We recommend that you configure the virtual template interface as unnumbered and that you associate its IP numbering with a loopback interface.

A loopback interface is a software-only interface that emulates an interface that is always up. It is a virtual interface supported on all platforms. The interface number is the number of the loopback interface that you want to create or configure. There is no limit on the number of loopback interfaces you can create. The GGSN uses loopback interfaces to support the configuration of several different features.

To configure a loopback interface on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface loopback interface-number</td>
</tr>
<tr>
<td></td>
<td>Defines a loopback interface on the GGSN, where interface-number identifies the loopback interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address ip-address mask [secondary]</td>
</tr>
<tr>
<td></td>
<td>Specifies an IP address for the interface, where:</td>
</tr>
<tr>
<td></td>
<td>- ip-address—Specifies the IP address of the interface in dotted decimal format.</td>
</tr>
<tr>
<td></td>
<td>- mask—Specifies a subnet mask in dotted decimal format.</td>
</tr>
<tr>
<td></td>
<td>- secondary—Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.</td>
</tr>
</tbody>
</table>

Note

IP addresses on the loopback interface are needed only for PPP PDPs that are not using L2TP. We recommend using IP addresses when PPP PDPs are destined to a domain that is not configured with L2TP.

Configuring a PPP Virtual Template Interface

To support PPP over GTP, you must configure a virtual template interface on the GGSN that supports PPP encapsulation. Therefore, the GGSN will have two virtual template interfaces: one for GTP encapsulation and one for PPP encapsulation. The GGSN uses the PPP virtual template interface to create all PPP virtual access interfaces for PPP sessions on the GGSN.

Note

If you are planning to support both GTP-PPP and GTP-PPP-L2TP (PPP PDPs with and without L2TP support), then you must use the same virtual template interface for PPP.

We recommend that you configure the virtual template interface as unnumbered and that you associate its IP numbering with a loopback interface.

Because PPP is the default encapsulation, it does not need to be explicitly configured, and it does not appear in the `show running-config` output for the interface.
To configure a PPP virtual template interface on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
Router(config)# `interface virtual-template number`
Creates a virtual template interface, where `number` identifies the virtual template interface. This command enters you into interface configuration mode.
Note
This number must match the `number` configured in the corresponding `gprs gtp ppp vtemplate` command. | |
| **Step 2**
Router(config-if)# `ip unnumbered type number`
Enables IP processing on the virtual template interface without assigning an explicit IP address to the interface, where `type` and `number` specify another interface for which the router has been assigned an IP address.
For the GGSN, this can be a Gi interface or a loopback interface. Cisco recommends using a loopback interface. | |
| **Step 3**
Router(config-if)# `encapsulation ppp`
Specifies PPP as the encapsulation type for packets transmitted over the virtual template interface. PPP is the default encapsulation.
Note
PPP is the default encapsulation and does not appear in the output of the `show running-config` command for the virtual template interface unless you manually configure the command. | |
| **Step 4**
Router(config-if)# `ppp authentication {protocol1 [protocol2...] [if-needed] [list-name | default] [callin] [one-time] [optional]`
Enables at least one PPP authentication protocol and specifies the order in which the protocols are selected on the interface. | |

Associating the Virtual Template Interface for PPP on the GGSN

Before you associate the virtual template interface for PPP, you must configure the virtual template interface. The number that you configure for the virtual template interface must correspond to the number that you specify in the `gprs gtp ppp vtemplate` command.

To associate the virtual template interface for GGSN, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config)# `gprs gtp ppp vtemplate number`
Associates the virtual template interface that defines the PPP characteristics with support for the PPP PDP type over GTP on the GGSN.
Note
This number must match the `number` configured in the corresponding `interface virtual-template` command. | |
Configuring GTP-PPP Regeneration on the GGSN

This section provides an overview of and describes how to configure PPP over GTP with L2TP support on the GGSN. It includes the following topics:

- Overview of GTP-PPP Regeneration on the GGSN, page 8-14
- GTP-PPP Regeneration Configuration Task List, page 8-15

Overview of GTP-PPP Regeneration on the GGSN

The GGSN supports PPP in two different areas of the network, with two different sets of PPP endpoints, and supports IP over GTP in between. First, IP over PPP is in use between the TE and MT. From there, IP packet support occurs between the MT through the SGSN, over the Gn interface and the GTP tunnel to the GGSN. The GGSN initiates a new PPP session on the Gi interface over an L2TP tunnel to the corporate network. So, the second set of PPP endpoints occurs between the GGSN and the LNS at the corporate network.

PPP regeneration on the GGSN supports the use of an IP PDP type in combination with PPP and L2TP. For each IP PDP context that the GGSN receives at an access point that is configured to support PPP regeneration, the GGSN regenerates a PPP session. The GGSN encapsulates any tunnel packet data units (TPDUs) in PPP and L2TP headers as data traffic and forwards them to the LNS.

PPP regeneration on the GGSN implements VPN routing and forwarding (VRF) to handle overlapping IP addresses. A VRF routing table is automatically enabled at each access point name (APN) when you configure PPP regeneration at that APN.

Restrictions

The GGSN supports PPP regeneration with the following restriction:

- Manual configuration of VRF is not supported.
- At least one PPP authentication protocol must be enabled using the `ppp authentication` interface configuration command.
- Ensure that the `no peer default ip address` command is configured under the PPP-Regen virtual template.

Caution

The creation of PPP-Regen contexts on the GGSN can lead to higher than usual CPU utilization on the GGSN when console logging is enabled (`logging console` command) and the link status log is not turned off under the PPP-Regen virtual template.
Figure 8-4 shows the implementation of PPP support within a GPRS network using PPP regeneration on the GGSN.

Figure 8-4 PPP Regeneration Topology on the GGSN

GTP-PPP Regeneration Configuration Task List

Configuring IP over GTP with PPP regeneration on the GGSN requires similar configuration tasks as those required to configure GTP over PPP with L2TP, with some exceptions in the implementation.

To configure GTP-PPP regeneration support on the GGSN, perform the following tasks:

- Configuring the GGSN as a LAC, page 8-15 (Required)
- Configuring AAA Services for L2TP Support, page 8-17 (Required)
- Configuring a PPP Virtual Template Interface, page 8-18 (Required)
- Associating the Virtual Template Interface for PPP Regeneration on the GGSN, page 8-20 (Required)
- Configuring PPP Regeneration at an Access Point, page 8-20 (Required)

Configuring the GGSN as a LAC

When you use L2TP services on the GGSN to the LNS in the corporate network, you need to configure the GGSN as a LAC by enabling VPDN services on the GGSN.

For more information about VPDN configuration and commands in the Cisco IOS software, refer to the *Cisco IOS Dial Technologies Configuration Guide* and *Command Reference* publications.
To configure the GGSN as a LAC where the tunnel parameters are configured locally on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Router(config)# vpdn enable | Enables VPDN on the router or instance of Cisco IOS software and directs the router or instance to look for tunnel definitions in a local database and on a remote authorization server (home gateway), if one is present.
Note Only this step is required if you are using a RADIUS server to provide tunnel parameters. |
| Step 2 | Router(config)# vpdn domain-delimiter characters [suffix | prefix] | (Optional) Specifies the characters to be used to delimit the domain prefix or domain suffix. Available characters are %, -, @, \, #, and /. The default is @.
Note If a backslash (\) is the last delimiter in the command line, enter it as a double backslash (\\). |
| Step 3 | Router(config)# vpdn-group group-number | Defines a VPDN group, and enters VPDN group configuration mode. |
| Step 4 | Router(config-vpdn)# request-dialin | Enables the router or instance of Cisco IOS software to request dial-in tunnels, and enters request dial-in VPDN subgroup configuration mode. |
| Step 5 | Router(config-vpdn-req-in)# protocol l2tp | Specifies use of the L2TP protocol for dial-in tunnels. |
| Step 6 | Router(config-vpdn-req-in)# domain domain-name | Specifies that users with this domain name will be tunneled. Configure this command for every domain name you want to tunnel. |
| Step 7 | Router(config-vpdn-req-in)# exit | Returns you to VPDN group configuration mode. |
| Step 8 | Router(config-vpdn)# initiate-to ip ip-address [limit limit-number] [priority priority-number] | Specifies the destination IP address for the tunnel. |
| Step 9 | Router(config-vpdn)# local name name | Specifies the local name that is used to authenticate the tunnel. |

Note You can configure the L2TP tunnel parameters locally on the GGSN, or the tunnel parameters can be provided by a RADIUS server. If a RADIUS server is providing the tunnel parameters, then in this procedure you only need to configure the `vpdn enable` command on the GGSN.
Configuring AAA Services for L2TP Support

Before the VPDN stack on the GGSN opens an L2TP tunnel to an LNS, it tries to authorize the tunnel first. The GGSN consults its local database to perform this authorization. Therefore, you need to configure the appropriate AAA services for the GGSN to support L2TP tunnel authorization. Note that this is for authorization of the tunnel itself—not for user authorization.

This section describes only those commands required to implement authorization for L2TP support on the GGSN. It does not describe all of the tasks required to configure RADIUS and AAA support on the GGSN. For more information about enabling AAA services and configuring AAA server groups on the GGSN, see the “Configuring Security on the GGSN” chapter in this book.

Note
To correctly implement authentication and authorization services on the GGSN for L2TP support, you must configure the same methods and server groups for both.

To configure authorization for L2TP support on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# aaa authorization network default</code></td>
<td>(Optional) Specifies that the GGSN consults its local database, as defined by the <code>username</code> command, for tunnel authorization.</td>
</tr>
<tr>
<td><code>local</code></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 8 Configuring PPP Support on the GGSN

Configuring GTP-PPP Regeneration on the GGSN

Note
You can configure the L2TP tunnel parameters locally on the GGSN, or the tunnel parameters can be provided by a RADIUS server. If a RADIUS server is providing the tunnel parameters, then in this procedure you only need to configure the username command on the GGSN.

Configuring a PPP Virtual Template Interface

To support IP over GTP with PPP regeneration, you must configure a virtual template interface on the GGSN that supports PPP encapsulation. Therefore, the GGSN will have two virtual template interfaces: one for GTP encapsulation and one for PPP encapsulation. The GGSN uses the PPP virtual template interface to create all PPP virtual access interfaces for PPP sessions on the GGSN.

Because PPP is the default encapsulation, it does not need to be explicitly configured, and it does not appear in the show running-config output for the interface.

Step 2
Router(config)# aaa authorization network {default | list-name} group group-name [group group-name...]

Specifies one or more AAA methods for use on interfaces running PPP, where:

- **network**—Runs authorization for all network-related service requests, including SLIP1, PPP2, PPP NCPs3, and ARA4.
- **default**—Uses the listed authentication methods that follow this argument as the default list of methods when a user logs in.
- **list-name**—Specifies the character string used to name the list of authentication methods tried when a user logs in.
- **group group-name**—Uses a subset of RADIUS servers for authentication as defined by the aaa group server radius command.

Note
Be sure to use a method list and do not use the `aaa authorization network default group radius` form of the command. For L2TP support, the `group-name` must match the group that you specify in the `aaa authentication ppp` command.

Step 3
Router(config)# username name password secret

Specifies the password to be used in CHAP caller identification, where `name` is the name of the tunnel.

Note
Usernames in the form of `ciscouser`, `ciscouser@corporate1.com`, and `ciscouser@corporate2.com` are considered to be three different entries.

Repeat this step to add a username entry for each remote system from which the local router or access server requires authentication.
Be aware that the configuration commands for the PPP virtual template interface to support PPP regeneration on the GGSN are different from the previous configurations shown for GTP over PPP support.

To configure a PPP virtual template interface on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Router(config)# interface virtual-template number
 Creates a virtual template interface, where number identifies the virtual template interface. This command enters you into interface configuration mode.
 Note This number must match the number configured in the corresponding gprs gtp ppp-regeneration vtemplate command. |
| Step 2 | Router(config-if)# ip address negotiated
 Specifies that the IP address for a particular interface is obtained via PPP/IPCP (IP Control Protocol) address negotiation. |
| Step 3 | Router(config-if)# no peer neighbor-route
 Disables creation of neighbor routes. |
| Step 4 | Router(config-if)# no peer default ip address
 Disables an IP address from being returned to a remote peer connecting to this interface. |
| Step 5 | Router(config-if)# encapsulation ppp
 (Optional) Specifies PPP as the encapsulation type for packets transmitted over the virtual template interface. PPP is the default encapsulation.
 Note PPP is the default encapsulation and does not appear in the output of the show running-config command for the virtual template interface unless you manually configure the command. |
| Step 6 | Router(config-if)# ppp authentication {protocol1 [protocol2...] [if-needed] [list-name | default | callin | one-time] [optional]
 Enables at least one PPP authentication protocol and specifies the order in which the protocols are selected on the interface. |
 Associating the Virtual Template Interface for PPP Regeneration on the GGSN

Before you associate the virtual template interface for PPP regeneration, you must configure a virtual template interface. The number that you configure for the virtual template interface must correspond to the number that you specify in the `gprs gtp ppp-regeneration vtemplate` command.

To associate the virtual template interface for PPP regeneration, use the following command in global configuration mode:

```
Command                  Purpose
Router(config)# gprs gtp ppp-regeneration vtemplate number

Associates the virtual template interface that defines the PPP characteristics with support for the PPP regeneration on the GGSN.

Note
This number must match the `number` configured in the corresponding `interface virtual-template` command.
```

 Configuring PPP Regeneration at an Access Point

To enable PPP regeneration on the GGSN, you must configure each access point for which you want to support PPP regeneration. There is no global configuration command for enabling PPP regeneration for all access points on the GGSN.

To create an access point and specify its type, use the following commands, beginning in global configuration mode:

```
Command                  Purpose
Step 1
Router(config)# gprs access-point-list list-name

Specifies a name for a new access point list, or references the name of the existing access point list, and enters access-point list configuration mode.

Step 2
Router(config-ap-list)# access-point access-point-index

Specifies an index number for a new access point definition, or references an existing access point definition, and enters access point configuration mode.

Step 3
Router(config-access-point)# access-point-name apn-name

Specifies the access point network ID, which is commonly an Internet domain name.

Note
The `apn-name` must match the APN that has been provisioned at the MS, home location register (HLR), and Domain Name System (DNS) server.
```
Monitoring and Maintaining PPP on the GGSN

This section provides a summary list of the `show` commands that you can use to monitor the different aspects of PPP configuration on the GGSN. Not all of the `show` commands apply to every method of configuration.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Router(config-access-point)# access-mode transparent</td>
<td>(Optional) Specifies that no security authorization or authentication is requested by the GGSN for this access point. Note Transparent access is the default value, but it must be manually configured to support PPP regeneration at the access point if the access mode was previously non-transparent.</td>
</tr>
<tr>
<td>5</td>
<td>Router(config-access-point)# ppp-regeneration [max-session number</td>
<td>setup-time seconds</td>
</tr>
</tbody>
</table>
Use the following privileged EXEC commands to monitor and maintain PPP status on the GGSN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show derived-config interface virtual-access number</td>
<td>Displays the PPP options that GTP has configured on the virtual access interface for PPP regenerated sessions.</td>
</tr>
<tr>
<td>Router# show gprs gtp pdp-context all</td>
<td>Displays all currently active PDP contexts.</td>
</tr>
<tr>
<td>Router# show gprs gtp pdp-context path ip-address</td>
<td>Displays all currently active PDP contexts for the specified SGSN path.</td>
</tr>
<tr>
<td>Router# show gprs gtp pdp-context pdp-type ppp</td>
<td>Displays all currently active PDP contexts that are transmitted using PPP.</td>
</tr>
<tr>
<td>Router# show gprs gtp status</td>
<td>Displays information about the current status of the GTP on the GGSN.</td>
</tr>
<tr>
<td>Router# show interfaces virtual-access number [configuration]</td>
<td>Displays status, traffic data, and configuration information about a specified virtual access interface.</td>
</tr>
<tr>
<td>Router# show vpdn session [all</td>
<td>packets</td>
</tr>
<tr>
<td>Router# show vpdn tunnel [all</td>
<td>packets</td>
</tr>
</tbody>
</table>

Configuration Examples

This section provides configuration examples for the different types of PPP support on the GGSN. It includes the following examples:

- GTP-PPP Termination on the GGSN Configuration Examples, page 8-22
- GTP-PPP–Over–L2TP Configuration Example, page 8-24
- GTP-PPP Regeneration Configuration Example, page 8-25
- AAA Services for L2TP Configuration Example, page 8-27

GTP-PPP Termination on the GGSN Configuration Examples

The following example shows a GGSN configuration on the Cisco 7200 series router platform for GTP over PPP using PAP authentication using a RADIUS server at 172.16.0.2 to allocate IP addresses:

```
GGSN# show running-config
Building configuration...
Current configuration : 3521 bytes
!
version 12.2
no service single-slot-reload-enable
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
! Enables the router for GGSN services
!```
service gprs ggsn
!
ip cef
!
no logging buffered
logging rate-limit console 10 except errors
!
! Enables AAA globally
!
aaa new-model
!
! Defines AAA server group
!
aaa group server radius gtp_ppp
  server 172.16.0.2 auth-port 2001 acct-port 2002
!
! Configures authentication and authorization
! methods for PPP support.
!
aaa authentication ppp gtp_ppp group gtp_ppp
aaa authorization network gtp_ppp group gtp_ppp
aaa accounting network default start-stop group gtp_ppp
!
ip subnet-zero
!
! Configures a loopback interface
! for the PPP virtual template interface
!
interface Loopback2
  ip address 10.88.0.4 255.255.0.0
!
interface FastEthernet0/0
  description GN interface
  ip address 10.6.6.78 255.0.0.0
  no ip mroute-cache
duplex half
!
interface Ethernet2/0
  ip address 172.16.0.54 255.255.0.0
  no ip mroute-cache
!
interface Ethernet2/7
  ip address 172.16.0.54 255.255.0.0
  no ip mroute-cache
!
interface FastEthernet3/0
  description Gi interface
  ip address 10.4.0.78 255.255.0.0
  no ip mroute-cache
duplex half
!
! Configures a VT interface for
! GTP encapsulation
!
interface loopback 1
  ip address 10.30.30.1 255.255.255.0
!
interface Virtual-Template1
  ip unnumber loopback 1
capsulation gtp
gprs access-point-list gprs
!
! Configures a VT interface for
! PPP encapsulation
Configuration Examples

Chapter 8 Configuring PPP Support on the GGSN

Configuration Examples

! interface Virtual-Template2
  ip unnumbered Loopback2
  no peer default ip address
  ppp authentication pap
  !
  ip kerberos source-interface any
  ip classless
  ip route 172.16.0.0 255.255.0.0 Ethernet2/0
  no ip http server
  !
  gprs access-point-list gprs
    access-point 1
      access-point-name gprs.cisco.com
      aaa-group authentication gtp_ppp
      aaa-group accounting gtp_ppp
      exit
    !
    ! Associates the PPP virtual template
    ! interface for use by the GGSN
    !
    gprs gtp ppp-vtemplate 2
    gprs default charging-gateway 10.7.0.2
    !
    gprs memory threshold 512
    !
    ! Configures a global RADIUS server host
    ! and specifies destination ports for
    ! authentication and accounting requests
    !
    radius-server host 172.16.0.2 auth-port 2001 acct-port 2002
    radius-server retransmit 3
    radius-server key cisco
    !
    end

GTP-PPP–Over–L2TP Configuration Example

The following example shows a partial configuration of the GGSN to support PPP over GTP with L2TP. Tunnel parameters are configured locally on the GGSN and are not provided by a RADIUS server.

! Enables AAA globally
! aaa new-model
! aaa authorization network default local
! vpdn enable
! ! Configures a VPDN group
! vpdn-group 1
  request-dialin
  protocol l2tp
  domain ppp-1ns
  initiate-to ip 4.0.0.78 priority 1
  local name nas
!
! Configures a loopback interface
! for the PPP virtual template interface
!
interface Loopback2
 ip address 10.88.0.1 255.255.255.255
!
interface Virtual-Template2
 description VT for PPP L2TP
 ip unnumbered Loopback2
 no peer default ip address
 no peer neighbor-route
 ppp authentication pap chap
!
gprs access-point-list gprs
 access-point 15
 access-point-name ppp-lns
 exit
!
! Associates the PPP virtual template
! interface for use by the GGSN
!
gprs gtp ppp vtemplate 2
!
...
Configuration Examples

ppp-regeneration
exit
!
! Associates the PPP-regeneration
! virtual template interface for use by the GGSN
!
gprs gtp ppp-regeneration vtemplate 2
AAA Services for L2TP Configuration Example

L2TP support is used on the GGSN to support both the PPP-over-GTP topology and the IP-over-GTP with PPP regeneration topology. The following examples shows a partial configuration of RADIUS and AAA services on the GGSN to provide L2TP support:

! Enables AAA globally
! aaa new-model
! Defines AAA server group
! aaa group server radius gtp_ppp
  server 172.16.0.2 auth-port 2001 acct-port 2002
! Configures authentication and authorization
! method gtp_ppp and AAA server group gtp_ppp
! for PPP support.
! NOTE: You must configure the same methods and groups
! to support L2TP as shown by the
! aaa authentication ppp gtp_ppp
! and aaa authorization network gtp_ppp commands.
! aaa authentication ppp gtp_ppp group gtp_ppp
aaa authorization network default local
aaa authorization network gtp_ppp group gtp_ppp
aaa accounting network default start-stop group radius
username nas password 0 lab
username hgw password 0 lab
! . .
! Configures a global RADIUS server host
! and specifies destination ports for
! authentication and accounting requests
! radius-server host 172.16.0.2 auth-port 2001 acct-port 2002
radius-server retransmit 3
radius-server key cisco
! . .
CHAPTER 9

Configuring QoS on the GGSN

This chapter describes how to configure quality of service (QoS) functions to differentiate traffic flow through the gateway GPRS support node (GGSN) on the Cisco 7200 platform and on the Cisco MWAM in the Catalyst 6500 / Cisco 7609 platform.

For a complete description of the GGSN commands in this chapter, refer to the Cisco GGSN Release 6.0 Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter includes the following sections:

- Overview of QoS Support on the GGSN, page 9-1
- Configuring GPRS QoS on the GGSN, page 9-2
- Configuring UMTS QoS on the GGSN, page 9-12
- Configuring the GGSN Default QoS as Requested QoS, page 9-25
- Configuring Call Admission Control on the GGSN, page 9-25
- Configuring Per-PDP Policing, page 9-30
- Monitoring and Maintaining QoS on the GGSN, page 9-34
- Configuration Examples, page 9-42

Overview of QoS Support on the GGSN

The GGSN Release 4.0 and later software supports 2.5G general packet radio service (GPRS) QoS (as defined in global system for mobile communication [GSM] standards 02.60, 03.60, and 04.08) and 3G Universal Mobile Telecommunication System (UMTS) QoS. Each GPRS/UMTS packet data protocol (PDP) context request contains either a GPRS QoS profile or UMTS QoS profile.

Note

GGSN on the Catalyst 6500 / Cisco 7609 platform supports UMTS QoS only.

The implementation of QoS support in the GPRS/UMTS public LAN mobile network (PLMN) varies by the service provider and the available resources in the network. The GSM standards define the GPRS QoS classes that can be requested by a GPRS mobile station (MS). The 3GPP standards define the UMTS QoS classes that can be defined by a UMTS MS. However, the resulting QoS is negotiated and variable within the GPRS/UMTS network backbone according to the implementations of the service provider.
GPRS QoS
The GPRS QoS profiles are considered a single parameter that defines the following data transfer class attributes according to the GSM standard:
- Precedence class
- Delay class
- Reliability class
- Peak throughput class
- Mean throughput class

UMTS QoS
To manage different levels of QoS, UMTS has defined the four QoS traffic classes based on delay, jitter, bandwidth, and reliability factors:
- Conversational
- Streaming
- Interactive
- Background

GGSN Release 4.0 and later delivers end-to-end UMTS QoS by implementing it using the Cisco IOS QoS differentiated services (Diffserv).

This chapter describes the QoS support that the GGSN provides for the GPRS and UMTS QoS classes.

Configuring GPRS QoS on the GGSN

GGSN Release 3.0 and later support two methods of GPRS QoS support, only one of which can be activated globally on the GGSN for all GPRS traffic processing:
- Canonical QoS—Maps GPRS QoS classes to canonical QoS classes.
- Delay QoS—Maps GPRS QoS classes to delay QoS classes.

Configuring Canonical QoS on the GGSN

This section describes how to configure the canonical QoS method on the GGSN. It includes the following topics:
- Overview of Canonical QoS, page 9-2
- Canonical QoS Configuration Task List, page 9-4
- Verifying the Canonical QoS Configuration, page 9-7

Overview of Canonical QoS

GGSN Release 1.2 and later support the canonical QoS method. The canonical QoS method on the GGSN supports three levels of QoS classification: best effort, normal, and premium.
When you enable canonical QoS, the GGSN examines the QoS profile in PDP context requests for three of the five GPRS QoS classes (delay, precedence, and mean throughput). Based on combinations of values for those GPRS QoS class attributes, the GGSN maps the resulting QoS class to best effort, normal, or premium classifications.

Table 9-1 shows how the GGSN maps the different combinations of GPRS QoS class attributes within a PDP context request to a particular canonical QoS class, when canonical QoS is enabled on the GGSN. For example, if the QoS profile of a PDP context request specifies the best-effort delay class, and any class of precedence and mean throughput, then the GGSN classifies that PDP context as the best-effort canonical class.

<table>
<thead>
<tr>
<th>Delay Class</th>
<th>Precedence Class</th>
<th>Mean Throughput Class</th>
<th>GGSN Canonical QoS Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best effort</td>
<td>Any</td>
<td>Any</td>
<td>Best effort</td>
</tr>
<tr>
<td>1, 2, or 3</td>
<td>Low</td>
<td>Any</td>
<td>Best effort</td>
</tr>
<tr>
<td>1, 2, or 3</td>
<td>Any</td>
<td>Best effort</td>
<td>Best effort</td>
</tr>
<tr>
<td>1, 2, or 3</td>
<td>Normal</td>
<td>Specified</td>
<td>Normal</td>
</tr>
<tr>
<td>1, 2, or 3</td>
<td>High</td>
<td>Specified</td>
<td>Premium</td>
</tr>
</tbody>
</table>

Once you have enabled the canonical QoS method on the GGSN, you can map the canonical QoS classes to IP type of service (ToS) categories. IP ToS mappings allow the GGSN to support differentiated services according to RFC 2475, *Architecture for Differentiated Services Framework*. For more information, see the “Mapping Canonical QoS Classes to IP ToS Precedence” section on page 9-4. For more information about configuring the GGSN for differentiated services support, refer to the *Cisco IOS Quality of Service Solutions Configuration Guide* and Command Reference publications.

For the canonical QoS method, the GGSN sets aside a configurable amount of resources to be used for QoS processing. The GGSN allocates a portion of this total available resource for canonical QoS upon PDP context activation, based on the QoS class to which the PDP context has been assigned. Typically, the GGSN uses more of its resources in support of the higher canonical QoS classes. As of GGSN Release 3.0, the total default amount of resources set aside by the GGSN for canonical QoS support is 3,145,728,000 bits per second. You can modify this value using the `gprs canonical-qos gsn-resource-factor` command. For more information, see the “Configuring Total GGSN Resources for Canonical QoS Support” section on page 9-5.

When a request for a user session comes in as a PDP context activation request, the GGSN determines whether the requested QoS for the session packets can be handled based on the amount of the `gprs canonical-qos gsn-resource-factor` that is available on the GGSN. Based on this determination, one of the following occurs:

- If the GGSN can provide the requested QoS, then the GGSN maintains that level of service.
- If the GGSN cannot provide the requested QoS, then the GGSN either lowers the QoS for the PDP context or it rejects the PDP context request.
Canonical QoS Configuration Task List

To implement the canonical QoS method on the GGSN, you must enable the function. From there, you can modify the canonical QoS options to support your network environment.

To configure canonical QoS on the GGSN, perform the following tasks:

- Enabling Canonical QoS on the GGSN, page 9-4 (Required)
- Mapping Canonical QoS Classes to IP ToS Precedence, page 9-4 (Optional)
- Customizing the Canonical QoS Configuration, page 9-5 (Optional)

Enabling Canonical QoS on the GGSN

Canonical QoS is not automatically enabled by the GGSN. To enable canonical QoS on the GGSN, use the following command in global configuration mode:

```
Router(config)#gprs qos map canonical-qos
```

Mapping Canonical QoS Classes to IP ToS Precedence

Once you have enabled the canonical QoS method on the GGSN, you can map the canonical QoS classes to IP ToS precedence. You can specify a mapping from the best effort, normal and premium canonical QoS categories to the ToS precedence bits (between 0 and 7, although 6 and 7 are not typically used). ToS precedence is reported in the IP header for packets transmitted over the Gn (GTP tunnel) and Gi interfaces.

All of the keyword arguments for the command are optional. However, if you specify a value for the `normal` argument, you must specify a value for the `premium` argument. And if you specify a value for the `best-effort` argument, then you must specify a value for both the `premium` and the `normal` arguments. The default ToS precedence values are 2 for premium, 1 for normal, and 0 for best effort.

The ToS precedence classes are defined as follows:

0 Routine
1 Priority
2 Immediate
3 Flash
4 Flash Override
5 Critical ECP
6 Internetwork Control
7 Network Control

---

Note

The GTP signaling messages should always have the highest precedence in the GPRS network to help ensure the expedited delivery of those control messages. You can configure the ToS for GTP signaling messages using the `gprs gtp map signalling tos` command. The default value is 5.
To map canonical QoS classes to IP ToS precedence bits, use the following command in global configuration mode:

```
Router(config)# gprs canonical-qos map tos [premium tos-value [normal tos-value [best-effort tos-value]]]
```

(Optional) Specifies a QoS mapping from the canonical QoS classes to an IP ToS precedence value, where *tos-value* is an integer between 0 and 7 (values of 6 and 7 are not typically used).

---

**Customizing the Canonical QoS Configuration**

This section describes some of the options that you can configure on the GGSN to further customize the default canonical QoS configuration.

Once you enable canonical QoS, the GGSN establishes default values for the allocation of GGSN resources to support canonical QoS processing. However, you most likely will want to modify the defaults based upon the GPRS traffic patterns and QoS profiles in use on your network.

This section includes the following topics:

- Configuring Total GGSN Resources for Canonical QoS Support, page 9-5
- Configuring GGSN Resources for the Best Effort Class, page 9-6
- Configuring the Deviation Factor for the Premium Class, page 9-6

**Configuring Total GGSN Resources for Canonical QoS Support**

For the canonical QoS method, the GGSN sets aside a configurable amount of resource that it uses for QoS processing. The GGSN allocates a portion of this total available resource for canonical QoS upon activating a PDP context, based on the QoS class that the GGSN assigns to the PDP context. Typically, the GGSN uses more of its resources in support of the higher canonical QoS classes.

The GGSN allocates a portion of the total resource, and deducts that portion from the total available resource on the GGSN, according to the canonical QoS classes as follows:

- **Best effort**—The GGSN allocates the amount of resource specified by the `gprs canonical-qos best-effort bandwidth-factor` command for a best-effort PDP context. The default is 10 bps.
- **Normal**—The GGSN allocates the amount of resource according to the mean throughput value requested in the PDP context.
- **Premium**—The GGSN allocates the amount of resource according to a calculation of the minimum value of the requested peak throughput and mean throughput in the PDP context, along with a configurable deviation factor. You can configure the deviation factor using the `gprs canonical-qos premium mean-throughput-deviation` command.

Once the GGSN allocates resources for a PDP context, it does not make the resource available again until it deletes the PDP context or it receives an update request that requires a change to the allocated resource.

The total default amount of resource set aside by the GGSN for canonical QoS support is 3,145,728,000 bits per second. The default value for this command was chosen to support 10,000 PDP contexts with a premium QoS class. If you require greater throughput for the GPRS data on your network, increase the resource factor value. However, be aware that if you select a value that is too high, you might exceed the actual processing capacity of the GGSN.
To configure the total GGSN resource for canonical QoS support, use the following command in global configuration mode:

Command
Router(config)# gprs canonical-qos gsn-resource-factor resource-factor

Purpose
(Optional) Specifies the total amount of resource that the GGSN uses to provide QoS service levels to mobile users. The default is 3,145,728,000 bits per second.

Configuring GGSN Resources for the Best Effort Class

You can also configure resources to be reserved for best-effort QoS classes on the GGSN by using the `gprs canonical-qos best-effort bandwidth-factor` command. This command specifies an average bandwidth that is expected to be used by best-effort QoS class mobile sessions. The default value is 10 bps. If you observe that users accessing the GGSN are using a higher average bandwidth, then you should increase the bandwidth value.

To modify the bandwidth factor for the best-effort canonical QoS class, use the following command in global configuration mode:

Command
Router(config)# gprs canonical-qos gsn-resource-factor resource-factor

Purpose
(Optional) Specifies the total amount of resource that the GGSN uses to provide QoS service levels to mobile users. The default is 3,145,728,000 bits per second.

Command
Router(config)# gprs canonical-qos best-effort bandwidth-factor bandwidth-factor

Purpose
(Optional) Specifies the bandwidth factor to be applied to the canonical best-effort QoS class. The default value is 10 bps.

Configuring the Deviation Factor for the Premium Class

The GGSN uses the minimum value of the requested peak throughput and mean throughput in the PDP context, along with a configurable deviation factor to determine how much resource to allocate for the premium QoS class.

You can configure a deviation factor (factor/1000) to adjust the result of the calculation that the GGSN uses to determine the amount of data throughput to allocate for premium QoS support.

The GGSN bases its calculation on the following formula, which includes the throughput deviation factor:

\[ EB = \text{Min}[p, m + a (p - m)] \]

Where

- \( EB \) = the effective bandwidth
- \( p \) = peak throughput from the GPRS QoS profile in the PDP context request
- \( m \) = mean throughput from the GPRS QoS profile in the PDP context request
- \( a \) = the deviation factor, \( a \), divided by 1000 (\( a/1000 \))

To configure the deviation factor that the GGSN uses for calculation of premium canonical QoS support, use the following command in global configuration mode:

Command
Router(config)# gprs canonical-qos premium mean-throughput-deviation deviation-factor

Purpose
(Optional) Specifies a mean throughput deviation factor that the GGSN uses to calculate the allowable data throughput for the premium QoS class. The default is 100.
Verifying the Canonical QoS Configuration

To verify your canonical QoS configuration, use the `show running-config` command and observe the canonical QoS parameters, as shown in bold in the following example:

```
Router# show running-config
Building configuration...

Current configuration : 3521 bytes
!
version 12.2
no service single-slot-reload-enable
service timestamps debug uptime
dependency
no service timestamps log uptime
no service password-encryption
service gprs ggsn
!

ip subnet-zero
!
no ip dhcp-client network-discovery
!
interface Loopback1
 ip address 10.100.3.4 255.255.255.255
!
interface FastEthernet0/0
 ip address 172.18.43.174 255.255.255.240
duplex half
!
interface Ethernet1/0
 description Gi interface to gprt.cisco.com
 ip address 10.8.8.6 255.255.255.0
 no ip route-cache
 no ip mroute-cache
duplex half
!
interface Ethernet1/1
 description G1 interface to gprs.cisco.com
 ip address 10.9.9.4 255.255.255.0
 no ip route-cache
 no ip mroute-cache
duplex half
!
interface Ethernet1/2
 ip address 10.15.15.10 255.255.255.0
duplex half
!
interface loopback 1
 ip address 10.40.40.3 255.255.255.0
!
interface Virtual-Template1
 ip unnumber loopback 1
 encapsulation gtp
gprs access-point-list gprs
!
!
gprs access-point-list gprs
 access-point 1
```
access-mode non-transparent
access-point-name www.pdn1.com
aaa-group authentication foo
!
access-point 2
access-mode non-transparent
access-point-name www.pdn2.com
!
access-point 4
access-point-name www.pdn4.com
aaa-accounting enable
aaa-group accounting foo1
!
access-point 5
access-point-name www.pdn5.com
!
gprs maximum-pdp-context-allowed 90000
gprs qos map canonical-qos
gprs canonical-qos gsn-resource-factor 4294967295
gprs canonical-qos best-effort bandwidth-factor 10000
gprs canonical-qos premium mean-throughput-deviation 500
gprs canonical-qos map tos premium 3 normal 2 best-effort 1
gprs gtp path-echo-interval 30
gprs default aaa-group authentication foo2
gprs default aaa-group accounting foo3
gprs default charging-gateway 10.15.15.1
!
gprs memory threshold 512
!
end

Configuring Delay QoS on the GGSN

This section describes how to configure the delay QoS method on the GGSN. It includes the following topics:

- Overview of Delay QoS, page 9-8
- Delay QoS Configuration Task List, page 9-9
- Verifying the Delay QoS Configuration, page 9-10
- Delay QoS Configuration Example, page 9-44

Overview of Delay QoS

GGSN Release 3.0 and later support the delay QoS method. The delay QoS method on the GGSN supports four levels of QoS classification: class 1, class 2, class 3 and best effort.

When you enable delay QoS, the GGSN examines the QoS profile in PDP context requests for three of the five GPRS QoS classes (delay, precedence, and mean throughput). Based on combinations of values for those GPRS QoS class attributes, the GGSN maps the resulting delay QoS class to class 1, class 2, class 3, or best-effort categories.
Table 9-2 shows how the GGSN maps the different combinations of GPRS QoS class attributes within a PDP context request to a particular delay QoS class, when delay QoS is enabled on the GGSN. For example, if the QoS profile of a PDP context request specifies the best-effort delay class, and any class of precedence and mean throughput, then the GGSN classifies that PDP context as the best-effort delay class.

### Table 9-2 GPRS QoS Class Attribute Combinations Mapped to GGSN Delay QoS Classes

<table>
<thead>
<tr>
<th>Delay Class Precedence Class Mean Throughput Class</th>
<th>GGSN Delay QoS Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined Any Any</td>
<td>Best effort</td>
</tr>
<tr>
<td>Best effort Any Any</td>
<td>Best effort</td>
</tr>
<tr>
<td>Class 1 Any Any</td>
<td>Class 1</td>
</tr>
<tr>
<td>Class 2 Any Any</td>
<td>Class 2</td>
</tr>
<tr>
<td>Class 3 Any Any</td>
<td>Class 3</td>
</tr>
</tbody>
</table>

**Delay QoS Configuration Task List**

To implement the delay QoS method on the GGSN, you must enable the function. From there, you can modify the delay QoS options to support your network environment.

To configure delay QoS on the GGSN, perform the following tasks:

- Enabling Delay QoS on the GGSN, page 9-9 (Required)
- Mapping Delay QoS Classes to IP ToS Precedence, page 9-9 (Optional)

**Enabling Delay QoS on the GGSN**

Delay QoS is not automatically enabled by the GGSN. To enable delay QoS on the GGSN, use the following command in global configuration mode:

```plaintext
Router(config)# gprs qos map delay
```

**Purpose**

Enables mapping of GPRS QoS categories to a delay QoS method that includes the class 1, class 2, class 3, and best effort classes.

**Mapping Delay QoS Classes to IP ToS Precedence**

Once you have enabled the delay QoS method on the GGSN, you can map the delay QoS classes to IP ToS precedence. You can specify a mapping from the class 1, class 2, class 3, or class best effort delay QoS categories to the ToS precedence bits (between 0 and 7, although 6 and 7 are not typically used). ToS precedence is reported in the IP header for packets transmitted over the Gn (GTP tunnel) and Gi interfaces.

The `class2`, `class3` and `class-best-effort` keyword arguments are optional. However, if you specify a value for the `class3` argument, you must specify a value for the `class2` argument. And, if you specify a value for the `class-best-effort` argument, then you must specify a value for both the `class2` and the `class3` arguments.
The ToS precedence classes are defined as follows:
0 Routine
1 Priority
2 Immediate
3 Flash
4 Flash Override
5 Critical ECP
6 Internetwork Control
7 Network Control

Note
The GTP signaling messages should always have the highest precedence in the GPRS network to help ensure the expedited delivery of those control messages. You can configure the ToS for GTP signaling messages by using the `gprs gtp map signalling tos` command. The default value is 5.

To map delay QoS classes to IP ToS precedence bits, use the following command in global configuration mode:

```
Router(config)# gprs delay-qos map tos class1
tos-value [class2 tos-value [class3 tos-value [class-best-effort tos-value]]]
```

(Optional) Specifies a QoS mapping from the delay QoS classes to an IP ToS precedence value, where `tos-value` is an integer between 0 and 5 (values of 6 and 7 are not typically used).

## Verifying the Delay QoS Configuration

To verify your delay QoS configuration, use the `show running-config` command and observe the delay QoS parameters, as shown in bold in the following example:

```
Router# show running-config
Building configuration...

Current configuration : 3521 bytes
!
version 12.2
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service gprs ggsn
!
...

ip subnet-zero
!
!
no ip dhcp-client network-discovery
!
!
interface Loopback1
 ip address 10.100.3.4 255.255.255.255
!
```

Command	Purpose
Router(config)# gprs delay-qos map tos class1 tos-value [class2 tos-value [class3 tos-value [class-best-effort tos-value]]] | (Optional) Specifies a QoS mapping from the delay QoS classes to an IP ToS precedence value, where `tos-value` is an integer between 0 and 5 (values of 6 and 7 are not typically used).
interface FastEthernet0/0
  ip address 172.18.43.174 255.255.255.240
duplex half
!
interface Ethernet1/0
  description Gi interface to gprt.cisco.com
  ip address 10.8.8.6 255.255.255.0
  no ip route-cache
  no ip mroute-cache
duplex half
!
interface Ethernet1/1
  description Gi interface to gprs.cisco.com
  ip address 10.9.9.4 255.255.255.0
  no ip route-cache
  no ip mroute-cache
duplex half
!
interface Ethernet1/2
  ip address 10.15.15.10 255.255.255.0
duplex half
!
interface loopback 1
  ip address 10.40.40.3 255.255.255.0
!
interface Virtual-Template1
  ip unnumber loopback 1
  encapsulation gtp
gprs access-point-list gprs
  . . .
!
gprs access-point-list gprs
access-point 1
  access-mode non-transparent
  access-point-name www.pdn1.com
  aaa-group authentication foo
!
access-point 2
  access-mode non-transparent
  access-point-name www.pdn2.com
!
access-point 4
  access-point-name www.pdn4.com
  aaa-accounting enable
  aaa-group accounting fool
!
access-point 5
  access-point-name www.pdn5.com
!
gprs maximum-pdp-context-allowed 45000

**gprs qos map delay**
gprs delay-qos map tos class1 4 class2 3 class3 2 class-best-effort 1

gprs gtp path-echo-interval 30
gprs default aaa-group authentication foo2
gprs default aaa-group accounting foo3
gprs default charging-gateway 10.15.15.1
!
gprs memory threshold 512
!
. . .
!
end
Configuring UMTS QoS on the GGSN

This section describes how to configure the UMTS QoS on the GGSN. It includes the following topics:

- Overview of UMTS QoS, page 9-12
- Configuring UMTS QoS Task Lists, page 9-13
- Enabling UMTS QoS Mapping on the GGSN, page 9-14
- Mapping UMTS QoS Traffic Classes to a DiffServ PHB Group, page 9-14
- Assigning a DSCP to a DiffServ PHB Group, page 9-15
- Configuring the DSCP in the Subscriber Datagram, page 9-17
- Configuring the Catalyst 6500 / Cisco 7609 Platform GGSN UMTS QoS Requirements, page 9-18
- Verifying the UMTS QoS Configuration, page 9-21

Overview of UMTS QoS

3GPP standards define four QoS traffic classes based on delay, jitter, bandwidth, and reliability for UMTS. Table 9-3 describes these UMTS traffic classes and their characteristics, applications, and the mapped Cisco IOS QoS Diffserv class.

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>Conversational (Real Time)</th>
<th>Streaming (Real Time)</th>
<th>Interactive (Best Effort)</th>
<th>Background (Best Effort)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Preserve time relation (variation) between information entities of the stream. Conversational pattern, therefore, very low delay and jitter.</td>
<td>Preserve time relation (variation) between information entities of the stream. Delay and jitter requirements are not as strict as with the conversational class.</td>
<td>Request/response pattern. Retransmission of payload content in-route.</td>
<td>Destination is not expecting the data with a stringent time. Retransmission of payload content in-route might occur.</td>
</tr>
<tr>
<td>Example Applications</td>
<td>Voice over IP</td>
<td>Streaming audio and video</td>
<td>Web browsing</td>
<td>Downloading email</td>
</tr>
<tr>
<td>Diffserv Class / Map to DSCP</td>
<td>Expedited Forwarding Class</td>
<td>Assured Forwarding 2 Class</td>
<td>Assured Forwarding 3 Class</td>
<td>Best Effort</td>
</tr>
</tbody>
</table>
GGSN Release 4.0 and later support end-to-end UMTS QoS by implementing it using the Cisco IOS Differentiated Services (DiffServ) model. The DiffServ model is a multiple-service model that can satisfy differing QoS requirements. With DiffServ, the network tries to deliver a particular kind of service based on the QoS specified by each packet. This specification can occur in different ways, for example, using the 6-bit differentiated services code point (DSCP) setting in IP packets or source and destination addresses. The network uses the QoS specification to classify, mark, shape, and police traffic, and to perform intelligent queueing.

For complete information on Cisco IOS QoS and the DiffServ service model, refer to the *Cisco IOS Quality of Service Solutions Configuration Guide*.

**Configuring UMTS QoS Task Lists**

To implement the UMTS QoS method on a GGSN, you must first enable the function. From there, you can modify the UMTS QoS options to support your network needs.

**Configuring GGSN UMTS QoS on the Cisco 7200 Platform Task List**

If configuring UMTS QoS on a GGSN on the Cisco 7200 platform, perform the following tasks:

- Enabling UMTS QoS Mapping on the GGSN, page 9-14 (Required)
- Mapping UMTS QoS Traffic Classes to a DiffServ PHB Group, page 9-14 (Optional)
- Assigning a DSCP to a DiffServ PHB Group, page 9-15 (Optional)
- Configuring the DSCP in the Subscriber Datagram, page 9-17 (Optional)
- Configuring Call Admission Control on the GGSN, page 9-25 (Optional)
- Verifying the UMTS QoS Configuration, page 9-21

**Configuring GGSN UMTS QoS on the Cisco 6500 / Cisco 7609 Platform Task List**

If configuring UMTS QoS on a GGSN on the Catalyst 6500/Cisco 7600 platform, perform the following tasks:

- Enabling UMTS QoS Mapping on the GGSN, page 9-14 (Required)
- Mapping UMTS QoS Traffic Classes to a DiffServ PHB Group, page 9-14 (Optional)
- Assigning a DSCP to a DiffServ PHB Group, page 9-15 (Optional)
- Configuring the DSCP in the Subscriber Datagram, page 9-17 (Optional)
- Configuring the Catalyst 6500 / Cisco 7609 Platform GGSN UMTS QoS Requirements, page 9-18 (Required)
- Configuring Call Admission Control on the GGSN, page 9-25 (Optional)
- Verifying the UMTS QoS Configuration, page 9-21
Enabling UMTS QoS Mapping on the GGSN

By default, UMTS QoS is not enabled on the GGSN. To enable UMTS QoS on the GGSN, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs qos map umts</td>
<td>Enables UMTS QoS mapping on the GGSN.</td>
</tr>
</tbody>
</table>

Mapping UMTS QoS Traffic Classes to a DiffServ PHB Group

Before you can specify a QoS mapping from the UMTS QoS traffic classes to a DiffServ per-hop behavior (PHB) group, you must enable UMTS QoS mapping using the `gprs qos map umts` global configuration command.

The default mapping values for UMTS QoS traffic classes are as follows:

- Conversational traffic class to the ef-class DiffServ PHB group
- Streaming traffic class to the af2-class DiffServ PHB group
- Interactive traffic class to the af3-class DiffServ PHB group
- Background traffic class to the best-effort DiffServ PHB group

If you wish to use mapping values other than these defaults, you can use the `gprs umts-qos map traffic-class` command to map a UMTS traffic class to another DiffServ PHB group.

*Note* To successfully map UMTS QoS traffic classes to a DiffServ PHB, the class maps must be configured using the `class map` and `match ip dscp` Cisco IOS software commands. For more information about configuring class maps, refer to the *Cisco IOS Quality of Service Solutions Configuration Guide*. 
To map a UMTS traffic class to a DiffServ PHB group, use the following command in global configuration mode:

```
Router(config)# gprs umts-qos map traffic-class traffic-class diffserv-phb-group
```

### Assigning a DSCP to a DiffServ PHB Group

By default, the default differentiated services code point (DSCP) value associated with a PHB class is used. Table 9-4 lists the default DSCP values for each PHB group.

<table>
<thead>
<tr>
<th>PHB Group</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td>101110</td>
</tr>
<tr>
<td>AF11</td>
<td>001010</td>
</tr>
<tr>
<td>AF12</td>
<td>001100</td>
</tr>
<tr>
<td>AF13</td>
<td>001110</td>
</tr>
<tr>
<td>AF21</td>
<td>010010</td>
</tr>
<tr>
<td>AF22</td>
<td>010100</td>
</tr>
<tr>
<td>AF23</td>
<td>010110</td>
</tr>
<tr>
<td>AF31</td>
<td>011010</td>
</tr>
<tr>
<td>AF32</td>
<td>011100</td>
</tr>
<tr>
<td>AF33</td>
<td>011110</td>
</tr>
<tr>
<td>AF41</td>
<td>100010</td>
</tr>
<tr>
<td>AF42</td>
<td>100100</td>
</tr>
</tbody>
</table>

Table 9-4 Default DSCP Values for PHB Groups
However, you can assign a DSCP to PHB groups.

For the Assured Forwarding (AF) PHB group, you can specify up to three DSCPs for each drop precedence. The signalling, EF, and best-effort classes do not have drop precedence, so only the first DSCP value is used. If you enter a value for the `dscp2` or `dscp3` arguments for these classes, it is ignored.

Drop precedence indicates the order in which a packet will be dropped when there is congestion on the network.

To successfully map UMTS QoS traffic classes to a DiffServ PHB and assign a DSCP value to a DiffServ PHB group, the class maps must be configured using the `class map` and `match ip dscp` commands. For more information about configuring class maps, see *Cisco IOS Quality of Service Solutions Configuration Guide* and *Cisco IOS Quality of Service Solutions Command Reference*.

By default, signalling class is assigned to CS5 (101000), which is the equivalent of IP precedence 5.

### Table 9-4  Default DSCP Values for PHB Groups (continued)

<table>
<thead>
<tr>
<th>PHB Group</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF43</td>
<td>100110</td>
</tr>
<tr>
<td>Best Effort</td>
<td>000000</td>
</tr>
</tbody>
</table>

---
To assign a DSCP value to a DiffServ PHB group, use the following command in global configuration mode:

```
Router(config)# gprs umts-qos map diffserv-phb
diffserv-phb-group [dscp1] [dscp2] [dscp3]
```

Assigns a DSCP to a DiffServ PHB group where the DiffServ PHB groups are:
- signalling
- ef-class
- af1-class
- af2-class
- af3-class
- af4-class
- best-effort

and the DSCPs are:
- dscp1—Required for all classes. Specifies one of 64 DSCP values from 0 to 63. This DSCP value corresponds to drop precedence 1.
- dscp2—(Optional for AF classes) Specifies one of 64 DSCP values from 0 to 63. This DSCP value corresponds to drop precedence 2.
- dscp3—(Optional for AF classes) Specifies one of 64 DSCP values from 0 to 63. This DSCP value corresponds to drop precedence 3.

### Configuring the DSCP in the Subscriber Datagram

By default, the DSCP in subscriber datagrams is re-marked with the DSCP assigned to the traffic class when the PDP context was created.

To specify that the subscriber datagram be forwarded through the GTP path without modifying its DSCP, use the following command in global configuration mode:

```
Router(config)# gprs umts-qos dscp unmodified [up | down | all]
```

Specifies that the subscriber datagram be forwarded through the GTP path without modifying its DSCP.

To return to the default value, issue the `no gprs umts-qos dscp unmodified` command.
Configuring the Catalyst 6500 / Cisco 7609 Platform GGSN UMTS QoS

Requirements

The information in this section applies to configuring QoS on a GGSN on the Catalyst 6500 / Cisco 7609 platform.

When configuring UMTS QoS for a GGSN running on a Cisco MW AM in the Catalyst 6500 / Cisco 7609 platform, the different components of the platform perform different QoS functions. Table 9-5 summarizes the QoS function performed by the Catalyst 6500 / Cisco 7609 platform component.

<table>
<thead>
<tr>
<th>Catalyst 6500 / Cisco 7609 Component</th>
<th>UMTS QoS Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst Line Card</td>
<td>Classification and ingress and egress scheduling</td>
</tr>
<tr>
<td>Supervisor / MSFC2</td>
<td>Classification and aggregate policing</td>
</tr>
<tr>
<td>Cisco IOS GGSN image on the Cisco MWAM</td>
<td>Classification, DSCP marking, and output queuing</td>
</tr>
</tbody>
</table>

Catalyst 6500 / Cisco 7609 Supervisor / MSFC2 and Line Card

The following list is a summary of the required tasks that need to be completed on the Catalyst 6500 / Cisco 7609 Supervisor2/MSFC2 and line card for UMTS QoS on a GGSN. For complete information each of these tasks, see the Catalyst 6500 Software Configuration Guide or Cisco 7600 Series Cisco IOS Software Configuration Guide.

1. Enable MultiLayer Switching QoS using the mls qos global configuration command.
   
   Router# mls qos

2. On the Supervisor/MSFC2, configure aggregate policing for Gi traffic.

   Note: Because there can be multiple Gn and Gi interfaces, but all the traffic eventually needs to go to a single GE port on the MWAM (one GE port for two GGSNs), we recommend that you use a Named Aggregate Policer to rate limit the traffic to the MWAM. We also recommend dropping all non-conforming traffic.

   The following example illustrates the configuration for a named aggregate policer. The named policer is attached to the Gi interface:

   Access-list 101 permit ip any any dscp ef
   Access-list 102 permit ip any any dscp af21
   Access-list 103 permit ip any any dscp af31
   Access-list 103 permit ip any any dscp af32
   Access-list 103 permit ip any any dscp af33
   Access-list 104 permit ip any any

   Class-map match-all conversational
   Match access-group 101
   Class-map match-all streaming
   Match access-group 102
   Class-map match-all interactive
Match access-group 103
Class-map match-all background
Match access-group 104

Mls qos aggregate-policer AGGREGATE-CONV bit-rate1 normal-burst max-burst
conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-STREAMING bit-rate1 normal-burst max-burst
conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-INTERACTIVE bit-rate1 normal-burst max-burst
conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-BACKGROUND bit-rate1 normal-burst max-burst
conform-action transmit exceed-action drop

Policy-map Gi-incoming
Class conversational
    Police aggregate AGGREGATE-CONV
Class streaming
    Police aggregate AGGREGATE-STREAMING
Class interactive
    Police aggregate AGGREGATE-INTERACTIVE
Class background
    Police aggregate AGGREGATE-BACKGROUND

Router(config-if)# service-policy input Gi-incoming

Note To monitor policing statistics, you can use the following show commands:
- show mls qos aggregate-policer name
- show policy-map interface interface
- show policy interface interface

3. Set the trust state of the ingress ports to trust-dscp mode using the mls qos trust dscp interface configuration command:
   Router(config)# interface FastEthernet2/1
   Router(config-if)# mls qos trust dscp

4. Configure egress port scheduling by completing the following tasks:
   a. Obtain the UMTS traffic class-to-DSCP mappings using the show gprs umts-qos traffic class
      privilege EXEC command on the GGSN instance running on the Cisco MWAM:
         GGSN1# ggsn show gprs umts-qos traffic-class
   b. Obtain the default DSCP-to-CoS mapping by displaying the QoS mapping information using
      the show mls qos maps privilege EXEC command.
      Router# show mls qos maps
   c. Obtain the default CoS-to-queue mapping by displaying the queueing statistics of an interface
      using the show queuing interface privilege EXEC command.
      Router# show queuing interface interface
d. Using the information obtained in Steps A, B, and C, determine if customized egress DSCP-to-CoS mapping is necessary and if so, define the mapping using the `mls qos map dscp-cos` global configuration command.

   Router(config)# mls qos map dscp-cos dscp to cos

   When customizing DSCP-CoS mapping, ensure that:
   - Conversational and streaming traffic are put into egress queue 4
   - Interactive and background traffic are equally distributed between the two normal queues.
   - Interactive traffic is mapped to different CoS values so that different thresholds can be configured on the queue to take advantage of WRED.

5. If the line card supports Weighted Random Early Detection (WRED), configure congestion avoidance by completing the following tasks:
   a. Enable WRED and specify the minimum and maximum threshold for specified queues using the `wrr-queue random-detect max-threshold` interface configuration command (the defaults are recommended).

      Router(config-if)# wrr-queue random-detect max-threshold queue percent-of-queue-size

   b. Map CoS values to drop thresholds using the `wrr-queue cos map` interface configuration command. When the threshold is exceeded, frames with specific CoS values will be dropped.

      `wrr-queue cos-map queue-id threshold-id cos-1 ... cos-n`

      In the following example, CoS values 3 and 4 are assigned to transmit queue 1/threshold 2 and transmit 2/threshold 1.

      Router(config-if)# wrr-queue cos-map 1 1 3
      Router(config-if)# wrr-queue cos-map 1 2 4

   c. Allocate bandwidth between standard transmit queue 1 (low priority) and standard transmit queue 2 (high priority) using the `wrr-queue bandwidth` interface configuration command.

      Router(config-if)# wrr-queue bandwidth weight1 weight2 weight3

Cisco GGSN

1. Configure an output queueing strategy for the UMTS traffic classes for each GGSN.

   Each MWAM processor complex can run two instances of GGSN, but has only one GE interface to the Supervisor / MSFC2. The GGSNs share that interface. You can configure a queueing strategy for each of the UMTS traffic classes for each GGSN.

   The following configuration example assumes that the UMTS traffic classes and class maps have been defined.

   Interface GigabitEthernet0/0
   Bandwidth <max-bandwidth>
   Service-policy output mwam-output

   Policy-map mwam-output
   Class conversational
      Priority percent 5
   Class streaming
      Priority percent 15
   Class interactive
      Bandwidth 20
   Class background
Verifying the UMTS QoS Configuration

Cisco 7200 Platform
To verify your UMTS QoS configuration, use the `show running-config` command and observe the UMTS QoS parameters, as shown in bold in the following example:

Router# show running-config
Building configuration...

Current configuration :11495 bytes
!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service gprs ggsn
!
...
!
ip subnet-zero
ip cef
!
!
no ip domain-lookup
!
!
...
!
class-map match-all conversational
   match ip dscp 46
class-map match-any background
   description default class
   match ip dscp 0
class-map match-any interactive
   match ip dscp 26
   match ip dscp 28
   match ip dscp 30
class-map match-any streaming
   match ip dscp 18
   match ip dscp 20
   match ip dscp 22
class-map match-all signaling
   match ip dscp 40
!
!
policy-map gi-policy-outbound
   class conversational
      priority percent 5
   class interactive
      bandwidth percent 50
   class streaming
      bandwidth percent 10
   class signaling
      bandwidth percent 10
policy-map gn-policy-outbound
   class conversational
      shape peak 5000000

Bandwidth 20
Class signaling
Bandwidth 15
priority percent 5
class interactive
  shape peak 50000000
  bandwidth percent 50
class streaming
  shape peak 10000000
  bandwidth percent 10
class signaling
  bandwidth percent 10
policy-map gi-police
  class conversational
    police cir 5000000 bc 100000
    conform-action transmit
    exceed-action transmit
    violate-action drop
  class streaming
    police cir 10000000 bc 100000
    conform-action transmit
    exceed-action transmit
    violate-action drop
  class interactive
    police cir 50000000 bc 100000
    conform-action transmit
    exceed-action transmit
    violate-action drop
!
...!
! description DHCP interface
!
interface Loopback0
  ip address 10.1.1.1 255.255.255.255
!
interface Loopback1
  description DHCP interface
  ip address 10.7.0.1 255.255.255.255
!
...!
! description Gn Interface
!
interface FastEthernet1/0
  ip address 10.10.2.3 255.255.255.0
  no keepalive
duplex full
speed 100
  service-policy output gn-policy-outbound
  no cdp enable
!
! description Gi Interface
!
interface FastEthernet1/1
  ip address 10.2.2.2 255.255.255.0
  no keepalive
duplex full
speed 100
  service-policy input gi-police
  service-policy output gi-policy-outbound
  no cdp enable
!
! description Ga Interface
!
interface FastEthernet2/0
  description Ga Interface
  ip address 10.3.3.3 255.255.255.0
no ip mroute-cache
no keepalive
duplex full
no cdp enable
!
interface Loopback 1
  ip address 10.40.40.3 255.255.255.0
!
interface Virtual-Templates1
  ip unnumber loopback 1
  encapsulation gtp
gprs access-point-list gprs
  !
  ...
  !
gprs maximum-pdp-context-allowed 200001
gprs gtp path-echo-interval 0
  !
  ...
  !
  ! Enable UMTS QoS
gprs qos map umts
  !
gprs charging transfer interval 100
gprs charging container volume-threshold 524288
gprs charging disable
snmp-server community public RO
!
!
! end

Catalyst 6500 / Cisco 7609 Platform

To verify your UMTS QoS configuration, use the show running-config command on the Supervisor / MSFC2 and the GGSN instance running on the Cisco MWAM and observe the UMTS QoS parameters as shown in bold in the following example:

On the Supervisor / MSFC2:

Mls qos

Mls qos map dscp-cos 18 20 22 to 5
Mls qos map dscp-cos 26 to 4
Mls qos map dscp-cos 28,30 to 3

Access-list 101 permit ip any any dscp ef
Access-list 102 permit ip any any dscp af21
Access-list 103 permit ip any any dscp af31
Access-list 103 permit ip any any dscp af32
Access-list 103 permit ip any any dscp af33
Access-list 104 permit ip any any

Class-map match-all conversational
  Match access-group 101
Class-map match-all streaming
  Match access-group 102
Class-map match-all interactive
  Match access-group 103
Class-map match-all background
  Match access-group 104
Mls qos aggregate-policer AGGREGATE-CONV <bit rate1> <normal-burst> <max-burst>
Conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-STREAMING <bit rate2> <normal-burst> <max-burst>
conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-INTERACTIVE <bit rate3> <normal-burst> <max-burst>
conform-action transmit exceed-action drop
Mls qos aggregate-policer AGGREGATE-BACKGROUND <bit rate4> <normal-burst> <max-burst>
conform-action transmit exceed-action drop

Policy-map Gi-incoming
Class conversational
  Police aggregate AGGREGATE-CONV
Class streaming
  Police aggregate AGGREGATE-STREAMING
Class interactive
  Police aggregate AGGREGATE-INTERACTIVE
Class background
  Police aggregate AGGREGATE-BACKGROUND

Interface FastEthernet2/1
  Description "Gi interface"
  Mls qos trust dscp
  Wrr-queue cos-map 1 1 3
    Wrr-queue cos-map 1 2 4
    Wrr-queue bandwidth 50 40 10
  Service-policy input Gi-incoming

Interface FastEthernet2/2
  Description "Gn interface"
  Mls qos trust dscp

On the GGSN:
Gprs qos map umts

Class-map match-all conversational
  Match ip dscp 46
Class-map match-any interactive
  Match ip dscp 26
  Match ip dscp 28
  Match ip dscp 30
Class-map match-any streaming
  Match ip dscp 18
  Match ip dscp 20
  Match ip dscp 22
Class-map match-all signaling
  Match ip dscp 40
Class-map match-any background
  Description default class
  Match ip dscp 0

Policy-map mwam-output
  Class conversational
    Priority percent 5
  Class streaming
    Priority percent 15
  Class interactive
    Bandwidth 20
  Class background
    Bandwidth 20
  Class signaling
    Bandwidth 15
Configuring the GGSN Default QoS as Requested QoS

If you are not using GPRS QoS or UMTS QoS mapping on the GGSN, you can configure the GGSN to set its default QoS values in the response message exactly as requested in the Create PDP Context request. By using this command, you can prevent the GGSN from lowering the requested QoS.

To configure the GGSN to set the requested QoS as the default QoS, use the following command, beginning in global configuration mode:

```
Router(config)# gprs qos default-response requested
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs qos default-response requested</td>
<td>(Optional) Specifies that the GGSN sets its default QoS values in the response message exactly as requested in the Create PDP Context request.</td>
</tr>
</tbody>
</table>

*Note* When the `gprs qos default-response requested` command is not configured, and GPRS canonical QoS is not enabled, the GGSN sets its default QoS class to best effort.

Configuring Call Admission Control on the GGSN

The Call Admission Control (CAC) feature on the GGSN ensures that required network resources are available for real-time data traffic such as voice and video. CAC is applied at the APN and consists of two functions: maximum QoS authorization and bandwidth management.

The following sections describe how to configure these functions on the GGSN:

- Configuring Maximum QoS Authorization, page 9-26
- Configuring Bandwidth Management, page 9-28
- Configuration Examples, page 9-42
- CAC Configuration Example, page 9-48

*Note* CAC on the GGSN requires that UMTS QoS has been enabled using the `gprs qos map umts` global configuration command and that traffic class criterion and traffic policies have been created.
Configuring Maximum QoS Authorization

The CAC maximum QoS authorization function ensures that the QoS requested by a create PDP context does not exceed the maximum QoS configured within an APN. Using a **CAC maximum QoS policy**, you define certain QoS parameters within a policy and attach the policy to an APN. The CAC maximum QoS policy limits the QoS requested by the PDP during its creation and modification process.

**Note**
A CAC maximum QoS policy can be attached to multiple APNs.

The following parameters can be defined in a CAC maximum QoS policy:

- **Maximum number of active PDP contexts**—Maximum number of active PDP contexts for an APN. If the total number of active PDPs on an APN exceeds the number configured with this parameter in a policy, the GGSN rejects the PDP context. Optionally, you can configure CAC to accept only PDP contexts with Allocation/Retention priority set to 1 after the threshold is reached.

- **Maximum bit rate**—Highest maximum bit rate (MBR) that can be allowed for each traffic class in both the uplink and downlink directions for an APN. If an MBR is configured in the policy, CAC ensures that the MBR is greater than the maximum GBR. If an MBR is not configured, CAC accepts any MBR requested by a PDP context.

- **Guaranteed bit rate**—Highest guaranteed bit rate (GBR) that can be accepted for real-time traffic (conversational and streaming) in both the uplink and downlink directions for an APN. If a GBR is not configured in the policy, the CAC accepts any GBR requested by a PDP context.

- **Highest traffic class**—Highest traffic class that can be accepted at an APN. If the requested traffic class is higher than the highest traffic class specified in the policy, the PDP context is rejected. If this parameter is not configured, any traffic class is accepted.

  The GGSN does not downgrade the traffic classes during PDP context creation, however, the GGSN does downgrade the traffic class during the PDP context modification if the highest traffic class configured in an APN is changed after the PDP context creation and the GGSN receives a request for a new traffic class (in a PDP context update request) that is greater than the new highest traffic class. If this occurs, the GGSN downgrades the request to the new highest traffic class.

- **Maximum traffic handling priority**—Specifies the maximum traffic handling priority for interactive traffic class that can be accepted at an APN. If this parameter is not specified, all traffic handling priorities are accepted.

- **Maximum delay class**—Defines the maximum delay class for R97/R98 QoS that can be accepted at an APN.

- **Maximum peak throughput class**—Defines the maximum peak throughput class for R97/R98 QoS that can be accepted at an APN.
## Configuring a CAC Maximum QoS Policy

To configure a CAC maximum QoS policy, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router(config)# gprs qos cac-policy policy-name</td>
<td>Creates or modifies a CAC maximum QoS policy.</td>
</tr>
<tr>
<td>2</td>
<td>Router(config-umts-cac-policy)# maximum pdp-context number [threshold number2]</td>
<td>Specifies the maximum number PDP contexts that can be created for a particular APN. Optionally, a second threshold can be configured that after reached, only PDP contexts with allocation/retention priority 1 are accepted.</td>
</tr>
<tr>
<td>3</td>
<td>Router(config-umts-cac-policy)# maximum traffic-class traffic-class-name [priority value]</td>
<td>Specifies the highest traffic class that can be accepted at an APN. Valid values are conversational, streaming, interactive, or background. Optionally, the highest traffic handling priority for the interactive traffic class can be specified.</td>
</tr>
<tr>
<td>4</td>
<td>Router(config-umts-cac-policy)# maximum peak-throughput value [reject]</td>
<td>Defines the maximum peak throughput for R97/R98 QoS that can be accepted at an APN. Valid values are between 1 and 9. By default, PDP contexts for which the peak throughput is higher than the configured value are downgraded to the configured value. Optionally, you can specify the reject keyword to have these PDP contexts rejected instead.</td>
</tr>
<tr>
<td>5</td>
<td>Router(config-umts-cac-policy)# maximum delay-class value [reject]</td>
<td>Specifies the maximum delay class for R97/R98 QoS that can be accepted at an APN. By default, PDP contexts for which the maximum delay-class is higher than the configured value are downgraded to the configured value. Optionally, you can specify the reject keyword to have these PDP contexts rejected instead.</td>
</tr>
</tbody>
</table>
### Enabling the CAC Maximum QoS Policy Function and Attaching a Policy to an APN

To enable the CAC maximum QoS policy function and attach a policy to an APN, use the following command in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# cac-policy</td>
<td>Enables the maximum QoS policy function of the CAC feature and applies a policy to an APN.</td>
</tr>
</tbody>
</table>

### Configuring Bandwidth Management

The CAC bandwidth management function ensures that there is sufficient bandwidth for real-time PDP contexts during the PDP context activation and modification process.
The CAC feature uses user-defined bandwidth pools to negotiate and reserve bandwidth. In these pools, you define the total bandwidth allocated to that pool and then allocate a percentage of that bandwidth to each traffic class.

In the following example, bandwidth pool (pool A) has been created with 100000 kbps allocated to it. Additionally, a percentage of that 100000 kbps of bandwidth has been allocated to each traffic class, creating four “traffic class-based” bandwidth pools.

```
gprs bandwidth-pool A
 bandwidth 100000
 traffic-class conversational percent 40
 traffic-class streaming percent 30
 traffic-class interactive percent 20
 traffic-class background percent 10
```

### Configuring a CAC Bandwidth Pool

The CAC bandwidth pool is used by CAC to negotiate and reserve bandwidth. However, to guarantee reserved bandwidth, a Cisco IOS QoS service policy that defines queuing and scheduling must be created and attached to the physical interface.

To configure a CAC bandwidth pool, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router(config)# gprs qos bandwidth-pool pool-name</td>
<td>Creates or modifies a CAC bandwidth pool.</td>
</tr>
<tr>
<td>2</td>
<td>Router(config-gprs-bw-pool)# bandwidth value</td>
<td>Specifies the total bandwidth, in kilobits per second, for a bandwidth pool. Valid value is a number from 1 to 4294967295.</td>
</tr>
<tr>
<td>3</td>
<td>Router(config-gprs-bw-pool)# traffic-class traffic-class [percent] value</td>
<td>Allocates bandwidth from a bandwidth pool to a specific traffic class in either a percentage (1 to 100% when used with the optional percent keyword), or absolute value in kilobits per second (0 to 4292967295). Note that the same unit (percentage or absolute value) must be used for all traffic classes.</td>
</tr>
</tbody>
</table>

### Enabling the CAC Bandwidth Management Function and Applying a Bandwidth Pool to an APN

To enable the CAC bandwidth management function and apply a bandwidth pool to an APN, use the following command in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# bandwidth pool (input</td>
<td>Enables the CAC bandwidth management function and applies a bandwidth pool to the input (Gn) interface in the downlink direction (input keyword) or output (Gi) interface in the uplink direction (output keyword) of an APN.</td>
</tr>
</tbody>
</table>
A CAC bandwidth pool can be applied to multiple APNs.

Configuring Per-PDP Policing

Per-PDP policing (session-based policing) is a GGSN Traffic Conditioner (3G TS 23.107) function that can be used to limit the maximum rate of traffic received on the Gi interface for a particular PDP context. The policing function enforces the CAC-negotiated data rates for a PDP context. The GGSN can be configured to either drop non-conforming traffic or mark non-conforming traffic for preferential dropping if congestion occurs.
The policing parameters used depend on the PDP context. Specifically,

- For GTPv1 PDPs with R99 QoS profiles, the MBR and GBR parameters from the CAC-negotiated QoS profile are used. For non real time traffic, only the MBR parameter is used.
- For GTPv1 PDPs with R98 QoS profiles and GTPv0 PDPs, the peak throughput parameter from the CAC-negotiated QoS policy is used.

**Restrictions**

Before configuring per-PDP policing, note the following:

- UMTS QoS mapping must be enabled on the GGSN.
- Cisco Express Forwarding (CEF) must be enabled on Gi interface.
- Per-PDP policing is supported for downlink traffic at the Gi interface only.
- The initial packets of a PDP context are not policed.
- Hierarchical policing is not supported.
- If flow-based policing is configured in a policy map that is attached to an APN, the `show policy-map apn` command displays the total number of packets received before policing and does not display the policing counters.
- A service policy that has been applied to an APN cannot be modified. To modify a service policy, remove the service policy from the APN, modify it, and then re-apply it.
- Multiple class maps, each with `match flow pdp` configured and a different differentiated services code point (DSCP), are supported in a policy map only if the DSCP is trusted (the `gprs umts-qos dscp unmodified` global configuration command has not been configured on the GGSN).

**Per-PDP Policing Configuration Task List**

To configure per-PDP policing on the GGSN, perform the following tasks:

- Creating a Class Map with PDP Flows as the Match Criterion, page 9-32
- Creating a Policy Map and Configuring Traffic Policing, page 9-32
- Attaching the Policy to an APN, page 9-33
- Resetting APN Policing Statistics, page 9-34
Creating a Class Map with PDP Flows as the Match Criterion

To create a class match and specify PDP flows as the match criterion, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# class-map &lt;name&gt;</td>
<td>Creates a class map to be used for matching packets.</td>
</tr>
<tr>
<td>Step 2: Router(config-cmap)# match flow pdp</td>
<td>Specifies PDP flows as the match criterion in a class map.</td>
</tr>
<tr>
<td>Step 3: Router(config-cmap)# exit</td>
<td>Exits class map configuration mode.</td>
</tr>
</tbody>
</table>

Note: Do not specify the **match-any** option when defining a class for PDP flow classification. The default is **match-all**.

Note: Additional match criteria can also be configured in the class map. DSCP and precedence-based classifications are supported.

Creating a Policy Map and Configuring Traffic Policing

To create a policy map and assign the class map, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# policy map &lt;name&gt;</td>
<td>Creates or modifies a policy map that can be attached to one or more APN to specify a service policy.</td>
</tr>
<tr>
<td>Step 2: Router(config-pmap)# class &lt;name&gt;</td>
<td>Specifies the name of the class whose policy you want to create or change.</td>
</tr>
</tbody>
</table>
Chapter 9 Configuring QoS on the GGSN

Configuring Per-PDP Policing

Attaching the Policy to an APN

To attach the policy map to an APN, use the following commands, beginning in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config-)# access-point index</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-access-point)# service-policy input policy-map-name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-access-point)# exit</td>
</tr>
</tbody>
</table>
Resetting APN Policing Statistics

To reset policing counters displayed by the `show policy-map apn` command, use the following command in global configuration mode:

```
Router(config)# clear gprs access-point statistics access-point-index
```

Monitoring and Maintaining QoS on the GGSN

This section describes the commands used to display QoS configuration parameters and status on the GGSN. It contains the following information:

- show Command Summary, page 9-34
- Monitoring GPRS QoS, page 9-35
- Monitoring UMTS QoS, page 9-40

show Command Summary

This section provides a summary list of the `show` commands that you can use to monitor GPRS and UMTS QoS on the GGSN. Not all commands provide information for all types of QoS methods on the GGSN.

The following privileged EXEC commands are used to monitor and maintain QoS on the GGSN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# clear gprs access-point statistics access-point-index</code></td>
<td>Clears statistics counters for a specific access point.</td>
</tr>
<tr>
<td><code>Router# show gprs bandwidth-pool status pool-name</code></td>
<td>Displays a list of configured CAC bandwidth pools, along with their status.</td>
</tr>
<tr>
<td><code>Router# show gprs gtp pdp-context imsi hex-data</code></td>
<td>Displays PDP contexts by international mobile subscriber identity (IMSI).</td>
</tr>
<tr>
<td>`Router# show gprs gtp pdp-context qos-delay {class1</td>
<td>class2</td>
</tr>
<tr>
<td>`Router# show gprs gtp pdp-context qos-precedence {low</td>
<td>normal</td>
</tr>
<tr>
<td><code>Router# show gprs gtp pdp-context tid hex-data</code></td>
<td>Displays PDP contexts by tunnel ID.</td>
</tr>
<tr>
<td>`Router# show gprs gtp pdp-context qos-umts-class (conversational</td>
<td>streaming</td>
</tr>
<tr>
<td><code>Router# show gprs qos status</code></td>
<td>Displays QoS statistics for the GGSN.</td>
</tr>
<tr>
<td><code>Router# show gprs umts-qos map traffic-class</code></td>
<td>Displays UMTS QoS mapping information.</td>
</tr>
<tr>
<td><code>Router# show gprs umts-qos police pdp tid tid</code></td>
<td>Displays policing statistics for a PDP context.</td>
</tr>
<tr>
<td><code>Router# show gprs umts-qos profile pdp tid tid</code></td>
<td>Displays requested and negotiated QoS information for a PDP context.</td>
</tr>
</tbody>
</table>
Monitoring GPRS QoS

This section describes the commands used to display GPRS QoS configuration parameters and status on the GGSN.

It includes the following topics:

- Displaying GPRS QoS Information for a PDP Context, page 9-35
- Displaying GPRS QoS Status on the GGSN, page 9-38
- Displaying PDP Contexts by GPRS QoS Canonical QoS Precedence Class, page 9-39
- Displaying GPRS QoS Delay QoS Status on the GGSN, page 9-39
- Displaying PDP Contexts by GPRS QoS Delay QoS Class, page 9-40

Displaying GPRS QoS Information for a PDP Context

To display GPRS QoS information for a particular PDP context, you can use the `show gprs gtp pdp-context` command with the `tid` or `imsi` keyword. The following example shows sample output for the `show gprs gtp pdp-context tid` command for a PDP context in the best-effort GPRS QoS canonical QoS class (canonical QoS class(neg)=01). The output fields displaying QoS information are shown in bold:

```
Router# show gprs gtp pdp-context tid 111111111111111
TID MS Addr Source SGSN Addr APN
1111111111111111 10.0.0.1 Static 10.39.39.1 www.corporate.com
current time: Nov 02 2001 15:36:42
user_name (IMSI): 111111111111111 MS address: 10.2.0.1
MS International PSTN/ISDN Number (MSISDN): 1111111111111
sgsn_addr_signal: 10.39.39.1 ggsn_addr_signal: 10.29.29.1
signal_sequence: 1 seq_tpd_up: 0
seq_tpd_down: 0
upstream_signal_flow: 40655 upstream_data_flow: 40656
downstream_signal_flow: 187 downstream_data_flow: 170
RAupdate_flow: 0
pdp_create_time: Nov 02 2001 15:36:22
last_access_time: Nov 02 2001 15:36:22
mnrgflag: 0 tos mask map: 20
ra_gtp_idle_time: 72 gprs_qos_req: 24430C
ra_gtp_idle_time: 72 gprs_qos_neg: 25131F
ra_gtp_idle_time: 72 canonical_qos_class(req.): 01
ra_gtp_idle_time: 72 canonical_qos_class(neg.): 01
effective_bandwidth: 10000
rcv_pkt_count: 0 rcv_byte_count: 0
send_pkt_count: 0 send_byte_count: 0
cef_up_pkt: 0 cef_up_byte: 0
cef_down_pkt: 0 cef_down_byte: 0
tmpid: 0
charging_id: 190604633
ntwk_init_pdp: 0

Note

The canonical QoS class and effective bandwidth output fields apply only when GPRS QoS canonical QoS is in use on the GGSN.
The following sections describe how you can interpret some of the GPRS QoS information that is provided by the `show gprs gtp pdp-context` command:

- Determining the ToS Precedence, page 9-36
- Interpreting the Requested and Negotiated GPRS QoS, page 9-36
- Interpreting the Effective Bandwidth for a PDP Context, page 9-37 (Canonical QoS only)

Determining the ToS Precedence

To determine the ToS precedence for a PDP context, you need to convert the hexadecimal value shown in the tos mask map output field of the `show gprs gtp pdp-context` command into binary format. From there, you can interpret the ToS precedence bits, which are the first 3 bits of the binary conversion.

In the following example, we use a tos mask map value of 20 to show this conversion:

Step 1 Convert the value of the tos mask map field (20) to binary, where 2=0010 and 0=0000. This results in the following binary format:

0010 0000

Step 2 Identify the first 3 bits of the binary representation, which is 001-0 in our example. (The remaining 0000 bits are ignored.)

Step 3 Convert the first 3 bits to a decimal number. In our example, 001=1. Therefore, the ToS precedence for this PDP context is 1.

Interpreting the Requested and Negotiated GPRS QoS

To determine the various GPRS QoS class attributes shown in the gprs qos_req and gprs qos_neg output fields of the `show gprs gtp pdp-context` command, you need to convert the values provided into binary format. From there, you can interpret the class attribute values according to the GSM specifications for QoS, which can be found in GSM standards 02.60, 03.60, and 04.08.

In the following example, we use a GPRS QoS value of 25131F to show this conversion:

Step 1 Convert the hexadecimal value of the gprs qos_req or gprs qos_neg field (25131F) to binary, where 2=0010, 5=0101, 1=0001, 3=0011, 1=0001, and F=1111. This results in the following binary format:

0010 0101 0001 0011 0001 1111

Step 2 Group the bits in the following manner:

<table>
<thead>
<tr>
<th>First 2 bits</th>
<th>Next 3 bits</th>
<th>Next 3 bits</th>
<th>Next 4 bits</th>
<th>Next 1 bit</th>
<th>Next 3 bits</th>
<th>Next 3 bits</th>
<th>Last 5 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>don’t care</td>
<td>delay</td>
<td>reliability</td>
<td>peak</td>
<td>don’t care</td>
<td>precedence</td>
<td>don’t care</td>
<td>mean throughput</td>
</tr>
</tbody>
</table>

00 100 101 0001 0 011 000 1111
Step 3

Convert the bit groups to decimal numbers, and correlate the value to the QoS classes according to the GSM specifications. For example, for the delay class, the binary 100=4, which corresponds to delay class 4.

In this example, the corresponding QoS classes are delay class 4, reliability class 5, peak class 1, precedence class 3, and mean throughput is best effort:

<table>
<thead>
<tr>
<th>First 2 bits</th>
<th>Next 3 bits</th>
<th>Next 3 bits</th>
<th>Next 4 bits</th>
<th>Next 1 bit</th>
<th>Next 3 bits</th>
<th>Next 3 bits</th>
<th>Last 5 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>100</td>
<td>101</td>
<td>0001</td>
<td>0</td>
<td>011</td>
<td>000</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>don’t care</td>
<td>delay</td>
<td>reliability</td>
<td>peak</td>
<td>don’t care</td>
<td>precedence</td>
<td>don’t care</td>
<td>mean throughput</td>
</tr>
<tr>
<td>class 4</td>
<td>class 5</td>
<td>class 1</td>
<td>class 3</td>
<td>best effort</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interpreting the Effective Bandwidth for a PDP Context

You can use the `show gprs gtp pdp-context tid` command to display an output field called *effective bandwidth* in bits per second. The effective bandwidth is determined according to the GPRS canonical QoS class (premium, normal, or best effort) for the PDP context. However, it is an estimate and does not represent the actual bandwidth in use by the PDP context.

You can calculate the potential number of supported PDP contexts for a class of QoS using the effective bandwidth value. To determine an estimate of the potential number of PDP contexts of a particular class that can be supported on the GGSN, you can divide the total bandwidth available on the GGSN by the effective bandwidth value for the GPRS QoS class.

The following example shows how to estimate the potential number of PDP contexts that the GGSN can support for a particular canonical QoS class at an expected effective bandwidth:

Step 1
Use the `show gprs gtp pdp-context` command with either the `tid` or `imsi` keywords and find the value of the effective bandwidth field. In our example, we will use 10000 bps.

Step 2
To estimate the number of best effort PDP contexts that the GGSN can support with an effective bandwidth of 10000 bps, divide the total amount of resource on the GGSN for canonical QoS by the effective bandwidth used.

In this example, we will use the default total resource value of 4294967295 and the following calculation:

\[\frac{4294967295}{10000} \]

where 4294957295 is the total resource. The result is an estimated 429496 best-effort PDP contexts.

Note
To verify the total amount of resource on the GGSN for canonical QoS, you can use the `show gprs qos status` command.
Displaying GPRS QoS Status on the GGSN

You can use the `show gprs qos status` command to display several different types of canonical QoS information, including GGSN resources in use, number of active PDP contexts by canonical QoS class, and mean throughput by canonical QoS class.

Note

The output of the `show gprs qos status` command varies depending on the type of QoS method in use on the GGSN.

The following example shows 2 active PDP contexts on the GGSN that are using the best effort canonical QoS class. The mean throughput for the 2 PDP contexts is 20,000 bps (a cumulative value, which corresponds to an effective bandwidth of 10,000 bps for each PDP context in this example). The following example displays the output from the `show gprs qos status` command for canonical QoS:

```
Router# show gprs qos status
GPRS QoS Status:
type:Canonical
 gsn_used_bandwidth:20000           total gsn_resource:4294967295
mean_throughput_premium:0.000
mean_throughput_normal:0.000       mean_throughput_besteffort 0.000
qos_high_pdp:0                     qos_normal_pdp:0
qos_low_pdp :2
qos_premium mean-throughput-deviation 0.500
```

Interpreting the GGSN Resources Allocated for GPRS Canonical QoS Support

When GPRS QoS is enabled on the GGSN, the `show gprs qos status` command shows cumulative values for the currently active PDP contexts on the GGSN (the total `gsn_resource` and `qos premium mean-throughput-deviation` values are not cumulative).

For multiple PDP contexts, the used resource is a cumulative value across all active PDP contexts and can represent different QoS classes. In the example, the `gsn_used_bandwidth` value of 20,000 bps represents the total bps in use for the 2 best effort PDP contexts.

To determine the amount of available GGSN resource remaining for canonical QoS support, you can subtract the current value of the `gsn_used_bandwidth` from the total `gsn_resource`. In this example, the calculation is:

\[
4294967295 - 20000
\]

which equals an estimated 4294947295 resource remaining for canonical QoS processing.
Displaying PDP Contexts by GPRS QoS Canonical QoS Precedence Class

When GPRS QoS is enabled on the GGSN, to display the current number of active PDP contexts by canonical QoS precedence class, perform the following steps:

Step 1
To verify the canonical QoS precedence class for which there are currently active PDP contexts, use the `show gprs qos status` command. The following example shows that 1 PDP context is currently active for the high precedence (or premium canonical QoS) class on the GGSN:

The following example displays output from the `show gprs qos status` command for canonical QoS:

```
Router# show gprs qos status
GPRS QoS Status:
type:Canonical
  gsn_used_bandwidth:800 total gsn_resource:1048576
  mean_throughput_premium:0.220 mean_throughput_normal:0.000
  mean_throughput_besteffort 0.000
  qos_high_pdp:1 qos_normal_pdp:0
  qos_low_pdp :0 qos_premium mean-throughput-deviation 0.100
```

Step 2
To display information about active PDP contexts in a particular precedence class, use the `show gprs gtp pdp-context qos-precedence` command. The following example shows information about the active PDP context in the high precedence (premium) class:

```
Router# show gprs gtp pdp-context qos-precedence high
TID            MS Addr     Source     SGSN Addr     APN
4444444444444444 10.2.0.4  Static  10.39.39.1  www.pdn2.com
```

Displaying GPRS QoS Delay QoS Status on the GGSN

To display the current number of active PDP contexts by delay QoS class, use the `show gprs qos status` command. The following example shows 1 active PDP context using delay class 1, 1 active PDP context using delay class 2, and 2 active PDP contexts using the delay best-effort class. The total number of 4 PDP contexts is indicated in the activated_pdp output field:

```
Router# show gprs qos status
GPRS QoS Status:
type:Delay
  qos_delay1_pdp: 1 qos_delay2_pdp: 1
  qos_delay3_pdp: 0 qos_delaybesteffort_pdp 2
```
Displaying PDP Contexts by GPRS QoS Delay QoS Class

To display the current number of active PDP contexts by delay QoS class, perform the following steps:

Step 1
To verify the delay QoS classes for which there are currently active PDP contexts, use the `show gprs qos status` command. The following examples shows that there are active PDP contexts for each of the delay classes except class 3:

```
Router# show gprs qos status
GPRS QoS Status:
type:Delay
qos_delay1_pdp:1 qos_delay2_pdp:    1
qos_delay3_pdp:0  qos_delaybesteffort_pdp 2
```

Step 2
To display information about PDP contexts in a particular delay class, use the `show gprs gtp pdp-context qos-delay` command as shown in the following examples:

Example 1
The following example shows information about the active PDP contexts in the best effort delay QoS class:

```
Router# show gprs gtp pdp-context qos-delay classbesteffort
TID               MS Addr         Source  SGSN Addr       APN
1111111111111111 10.8.8.1        Static  10.39.39.1      gprt.cisco.com
2222222222222222 10.8.8.2        Static  10.39.39.1      gprt.cisco.com
```

Example 2
The following example shows information about the active PDP context in delay class 1:

```
Router# show gprs gtp pdp-context qos-delay class1
TID               MS Addr         Source  SGSN Addr       APN
3333333333333333 10.8.8.4        Static  10.39.39.1      gprt.cisco.com
```

Monitoring UMTS QoS

This section describes the commands used to display UMTS QoS configuration parameters and status on the GGSN.

It includes the following topics:
- Displaying UMTS QoS Status on the GGSN, page 9-40
- Displaying UMTS QoS Information for a PDP Context, page 9-41

Displaying UMTS QoS Status on the GGSN

You can use the `show gprs qos status` command to display the number of current active PDP contexts by UMTS traffic class.

The following example shows 100 active PDP contexts on the GGSN that are using the UMTS QoS conversational traffic class, 140 active PDP contexts that have a streaming UMTS QoS traffic class, 1345 active PDP contexts that have an interactive UMTS traffic class, and 2000 active PDP contexts that have a background UMTS QoS traffic class.
The following example shows output from the `show gprs qos status` command for UMTS QoS:

```
Router# show gprs qos status
GPRS QoS Status:
  type: UMTS
    conversational_pdp 100  streaming_pdp 150
    interactive_pdp 1345  background_pdp 2000
```

Displaying UMTS QoS Information for a PDP Context

To display UMTS QoS information for a particular PDP context, you can use the `show gprs gtp pdp-context` command with the `tid` or `imsi` keyword. The following example shows sample output for the `show gprs gtp pdp-context tid` command for a PDP context in the XX UMTS QoS traffic class. The output fields displaying QoS information are shown in bold:

```
Router# show gprs gtp pdp-context tid 111111111111111

TID          MS Addr         Source  SGSN Addr       APN
111111111111111 10.0.0.1        Static  10.39.39.1      www.corporate.com

current time : Nov 12 2002 08:10:23
user_name (IMSI): 213000000000000
MS address: 2.0.0.1
MS International PSTN/ISDN Number (MSISDN): 987
sgsn_addr_signal: 15.15.0.2  sgsn_addr_data: 15.15.0.3
control teid local: 0x6309ABF4
control teid remote: 0x00000021
data teid local: 0x6308AA38
data teid remote: 0x00000022
primary pdp: Y
nsapi: 1
signal_sequence: 1 seq_tpdup: 0
seq_tpdudown: 0
upstream_signal_flow: 0 upstream_data_flow: 0
downstream_signal_flow: 0 downstream_data_flow: 0
RAupdate_flow: 0
pdp_create_time: Nov 12 2002 08:10:09
last_access_time: Nov 12 2002 08:10:09
mnrflag: 0
tos mask map: 68
gtp pdp idle time: 72
umts qos_req: 0911016901010111050101
umts qos_neg: 0911016901010111050101
QoS class: interactive
QoS for charging: qos_req: 000000  qos_neg: 000000
rcv_pkt_count: 0  rcv_byte_count: 0
send_pkt_count: 0  send_byte_count: 0
cef_up_pkt: 0  cef_up_byte: 0
cef_down_pkt: 0  cef_down_byte: 0
cef_drop: 0
charging_id: 223415403
pdp reference count: 2
primary dns: 0.0.0.0
secondary dns: 0.0.0.0
primary nbns: 0.0.0.0
secondary nbns: 0.0.0.0
ntwk_init_pdp: 0
```
Configuration Examples

This section includes the following examples:

- Canonical QoS Configuration Examples, page 9-42
- Delay QoS Configuration Example, page 9-44
- UMTS QoS Configuration Examples, page 9-45
- CAC Configuration Example, page 9-48

Canonical QoS Configuration Examples

Cisco 7200 Platform

The following example shows part of a sample GGSN configuration for the canonical QoS method:

Router# show running-config
Building configuration...

Current configuration : 3521 bytes

! version 12.2
! no service single-slot-reload-enable
! service timestamps debug uptime
! service timestamps log uptime
! no service password-encryption
! service gprs ggsn

! ip subnet-zero
!
! no ip dhcp-client network-discovery
!
! interface Loopback1
! ip address 10.100.3.4 255.255.255.255
!
! interface FastEthernet0/0
! ip address 172.18.43.174 255.255.255.240
duplex half
!
! interface Ethernet1/0
description Gi interface to gprt.cisco.com
! ip address 10.8.8.6 255.255.255.0
! no ip route-cache
! no ip mroutecache
duplex half
!
! interface Ethernet1/1
description Gi interface to gprs.cisco.com
! ip address 10.9.9.4 255.255.255.0
! no ip route-cache
! no ip mroute-cache
duplex half
!
! interface Ethernet1/2
! ip address 10.15.15.10 255.255.255.0
duplex half
! interface loopback 1
 ip address 10.40.40.3 255.255.255.0
!
interface Virtual-Template1
 ip unnumber loopback 1
 encapsulation gtp
 gprs access-point-list gprs
 . . .
!
 gprs access-point-list gprs
 access-point 1
 access-mode non-transparent
 access-point-name gprt.cisco.com
 aaa-group authentication foo
 !
 access-point 2
 access-mode non-transparent
 access-point-name gprs.cisco.com
 !
 access-point 4
 access-point-name gpru.cisco.com
 aaa-accounting enable
 aaa-group accounting foo
 !
 access-point 5
 access-point-name gprv.cisco.com
 !
 gprs maximum-pdp-context-allowed 90000
 !
 ! Enable canonical QoS
 !
 gprs qos map canonical-qos
 !
 ! Configure total resource available
 ! for canonical QoS processing
 !
 gprs canonical-qos gsn-resource-factor 4294967295
 !
 ! Configure bandwidth estimated for
 ! best effort canonical QoS class
 !
 gprs canonical-qos best-effort bandwidth-factor 10000
 !
 ! Configure deviation factor for mean throughput
 ! calculation for premium QoS class
 !
 gprs canonical-qos premium mean-throughput-deviation 500
 !
 ! Configure ToS precedence mapping to
 ! canonical QoS classes
 !
 gprs canonical-qos map tos premium 3 normal 2 best-effort 1
 gprs gtp path-echo-interval 30
 gprs default aaa-group authentication foo2
 gprs default aaa-group accounting foo3
 gprs default charging-gateway 10.15.15.1
 !
 gprs memory threshold 512
 !
 . . .
!
end
Delay QoS Configuration Example

Cisco 7200 Platform
The following example shows part of a sample GGSN configuration for the delay QoS method:

Router# show running-config
Building configuration...

Current configuration : 3521 bytes
!
version 12.2
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service gprs ggsn
!

ip subnet-zero
!
!
no ip dhcp-client network-discovery
!
!
interface Loopback1
 ip address 10.100.3.4 255.255.255.255
!
interface FastEthernet0/0
 ip address 172.18.43.174 255.255.255.240
duplex half
!
interface Ethernet1/0
 description Gi interface to gprt.cisco.com
 ip address 10.8.8.6 255.255.255.0
 no ip route-cache
 no ip mroute-cache
duplex half
!
interface Ethernet1/1
 description Gi interface to gprs.cisco.com
 ip address 10.9.9.4 255.255.255.0
 no ip route-cache
 no ip mroute-cache
duplex half
!
interface Ethernet1/2
 ip address 10.15.15.10 255.255.255.0
duplex half
!
interface loopback 1
 ip address 10.40.40.3 255.255.255.0
!
interface Virtual-Template1
 ip unnumber loopback 1
 encapsulation gtp
gprs access-point-list gprs
!
!
gprs access-point-list gprs
 access-point 1
access-mode non-transparent
access-point-name gprt.cisco.com
aaa-group authentication foo
!
access-point 2
access-mode non-transparent
access-point-name gprs.cisco.com
!
access-point 4
access-point-name gpru.cisco.com
aaa-accounting enable
aaa-group accounting foo1
!
access-point 5
access-point-name gprv.cisco.com
!
gprs maximum-pdp-context-allowed 45000
!
! Enable delay QoS
!
gprs qos map delay
!
! Configure ToS precedence mapping to
delay QoS classes
!
gprs delay-qos map tos class1 4 class2 3 class3 2 class-best-effort 1
gprs gtp path-echo-interval 30
gprs default aaa-group authentication foo2
gprs default aaa-group accounting foo3
gprs default charging-gateway 10.15.15.1
!
gprs memory threshold 512
!
!
end

UMTS QoS Configuration Examples

Cisco 7200 Platform
The following example shows part of a sample GGSN configuration with the UMTS QoS method enabled:

Router#show running-config
Building configuration...

Current configuration :11495 bytes
!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service gprs ggsn
!
...
!
ip subnet-zero
ip cef
!
!
no ip domain-lookup
!
...
!
class-map match-all conversational
 match ip dscp 46
!
class-map match-any background
 description default class
 match ip dscp 0
!
class-map match-any interactive
 match ip dscp 26
 match ip dscp 28
 match ip dscp 30
!
class-map match-any streaming
 match ip dscp 18
 match ip dscp 20
 match ip dscp 22
!
class-map match-all signaling
 match ip dscp 40
!
!
policy-map gi-policy-outbound
 class conversational
 priority percent 5
 class interactive
 bandwidth percent 50
 class streaming
 bandwidth percent 10
 class signaling
 bandwidth percent 10
!
!
policy-map gi-policy-outbound
 class conversational
 shape peak 5000000
 priority percent 5
 class interactive
 shape peak 50000000
 bandwidth percent 50
 class streaming
 shape peak 10000000
 bandwidth percent 10
 class signaling
 bandwidth percent 10
!
!
policy-map gi-police
 class conversational
 police cir 50000000 bc 100000
 conform-action transmit
 exceed-action transmit
 violate-action drop
 class streaming
 police cir 100000000 bc 1000000
 conform-action transmit
 exceed-action transmit
 violate-action drop
 class interactive
 police cir 500000000 bc 1000000
 conform-action transmit
 exceed-action transmit
 violate-action drop
!
...
!
interface Loopback0
 ip address 10.1.1.1 255.255.255.255
interface Loopback1
description DHCP interface
ip address 10.7.0.1 255.255.255.255
!
!
! description Gn Interface
!
interface FastEthernet1/0
ip address 10.10.2.3 255.255.255.0
no keepalive
duplex full
speed 100
service-policy output gn-policy-outbound
no cdp enable
!
!
! description Gi Interface
!
interface FastEthernet1/1
ip address 10.2.2.2 255.255.255.0
no keepalive
duplex full
speed 100
service-policy input gi-police
service-policy output gi-policy-outbound
no cdp enable
!
!
! description Ga Interface
!
interface FastEthernet2/0
description Ga Interface
ip address 10.3.3.3 255.255.255.0
no ip mroute-cache
no keepalive
duplex full
no cdp enable
!
interface Loopback 1
ip address 10.40.40.3 255.255.255.0
!
interface Virtual-Template1
ip unnumber loopback 1
capsulation gtp
gprs access-point-list gprs
!
!
gprs maximum-pdp-context-allowed 200001
gprs gtp path-echo-interval 0
!
!
! Enable UMTS QoS
gprs qos map umts
!
gprs charging transfer interval 100
gprs charging container volume-threshold 524288
gprs charging disable
snmp-server community public RO
!
!
end

CAC Configuration Example

The following is a configuration example of CAC and QoS implemented on a GGSN running on the Catalyst 6500 / Cisco 7609 MWAM.

!Enable UMTS QoS Mapping

gprs qos map umts

!Create CAC Maximum QoS authorization policy

gprs qos cac-policy abc_qos_policy1
maximum pdp-context 1200 threshold 1000
maximum traffic-class conversational
mbr traffic-class conversational 100 uplink
mbr traffic-class conversational 100 downlink
mbr traffic-class streaming 100 uplink
mbr traffic-class streaming 100 downlink
mbr traffic-class interactive 120 uplink
mbr traffic-class interactive 120 downlink
mbr traffic-class background 120 uplink
mbr traffic-class background 120 downlink
gbr traffic-class conversational 64 uplink
gbr traffic-class conversational 80 uplink
gbr traffic-class streaming 80 uplink
gbr traffic-class streaming 80 downlink
gbr traffic-class streaming 80 downlink

gprs qos cac-policy max_qos_policy2
maximum pdp-context 1500
maximum traffic-class interactive priority 1
mbr traffic-class interactive 200
mbr traffic-class background 150

! Create class-map to classify UMTS traffic class

class-map match-any conversational
 match ip dscp ef

class-map match-any streaming
 match ip dscp af21
 match ip dscp af22
 match ip dscp af23

class-map match-any interactive
 match ip dscp af31
 match ip dscp af32
 match ip dscp af33

class-map match-any background
 match ip dscp default

!Create traffic policy

policy-map ggsn1_traffic_policy
 class conversational
 priority percent 25

class streaming
 bandwidth percent 20

class interactive
 bandwidth percent 20
 random-detect dscp-based
class background
 bandwidth percent 10
 random-detect dscp-based

! Create bandwidth pool

gprs qos bandwidth-pool ggsn1_bw_pool
 bandwidth 500000
 traffic-class streaming percent 20
 traffic-class interactive percent 20
 traffic-class background percent 10

! Set interface bandwidth

int gigabitEthernet 0/0
 bandwidth 500000
 service-policy output ggsn1_traffic_policy

! Attach bandwidth pool to the APN

gprs access-point-list gprs
 access-point 1
 access-point-name abc.com
 cac-policy abc_qos_policy1
 bandwidth-pool output ggsn1_bw_pool
 bandwidth-pool input ggsn1_bw_pool

 access-point 2
 access-point-name xyz.com
 cac-policy xyz_qos_policy1
 bandwidth-pool output ggsn1_bw_pool
 bandwidth-pool input ggsn1_bw_pool

Per-PDP Policing Configuration Example

The following is a configuration example of per-pdp policing.

! Create a class for PDP flows
class-map class-pdp
 Match flow pdp

! Create a policy map and assign a class to the map
policy-map policy-gprs
 class class-pdp

! Configure traffic policing
 police rate pdp conform-action action exceed-action action violate-action action

! Attach a service policy to an APN
gprs access-point-list gprs
 access-point 1
 service-policy in policy-gprs
CHAPTER 10

Configuring Security on the GGSN

This chapter describes how to configure security features on the gateway GPRS support node (GGSN), including Authentication, Authorization, and Accounting (AAA), RADIUS, and on the Cisco 7200 series router platform, IP Security (IPSec).

The security configuration procedures and examples in this publication (aside from those related to GGSN-specific implementation) describe the basic commands that you can use to implement the security services.

For more detailed information about AAA, RADIUS, and IPSec security services in the Cisco IOS software, refer to the Cisco IOS Security Configuration Guide and Cisco IOS Security Command Reference publications. For information about IPSec security services on Catalyst 6500/Cisco 7600 platform, see the IPSec VPN Acceleration Services Module Installation and Configuration Note.

For a complete description of the GGSN commands in this chapter, refer to the Cisco GGSN Release 6.0 Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter includes the following sections:

- Overview of Security Support on the GGSN, page 10-2
- Configuring AAA Security Globally, page 10-4 (Required)
- Configuring RADIUS Server Communication Globally, page 10-5 (Required)
- Configuring RADIUS Server Communication at the GGSN Configuration Level, page 10-6 (Required)
- Configuring Additional RADIUS Services, page 10-10 (Optional)
- Configuring IPSec Network Security, page 10-29 (Optional)
- Securing the GGSN Mobile (Gn) Interface, page 10-36 (Optional)
- Configuration Examples, page 10-38
Overview of Security Support on the GGSN

The GGSN supports many of the same levels of security that are available through the Cisco IOS software on the router, including the following types of security:

- Authentication, authorization, and accounting (AAA) network security services and server groups
- RADIUS security services
- IP Security Protocol (IPSec)

In addition, the GGSN software provides the ability to configure additional security features such as the following:

- Address verification
- Traffic redirection
- IP access lists

AAA and RADIUS support provides the security services to authenticate and authorize access by mobile users to the GGSN and its access point names (APNs). IPSec support allows you to secure your data between the GGSN and its associated peers.

In some cases, such as with AAA and IPSec support (on the Cisco 7200 series router platform), the GGSN works with the standard Cisco IOS software configuration without requiring configuration of any additional GGSN commands.

On the Cisco 6500 series switch / Cisco 7600 series Internet router platform, IPSec is performed on the IPSec VPN Acceleration Services module.

In the case of RADIUS server configuration, the GGSN requires that you enable AAA security and establish RADIUS server communication globally on the router. From there, you can configure RADIUS security for all GGSN access points, or per access point, using new GGSN configuration commands.

In addition to the AAA, RADIUS, and IPSec security services, the GGSN also supports IP access lists to further control access to APNs. The Cisco IOS GGSN software implements the new ip-access-group access-point configuration command to apply IP access list rules at an APN.

AAA Server Group Support

The Cisco GGSN supports authentication and accounting at APNs using AAA server groups. By using AAA server groups, you gain the following benefits:

- You can selectively implement groups of servers for authentication and accounting at different APNs.
- You can configure different server groups for authentication services and accounting services in the same APN.
- You can control which RADIUS services you want to enable at a particular APN, such as AAA accounting.

For GPRS tunneling protocol (GTP)-PPP termination and GTP-PPP regeneration on the GGSN, transparent access mode is used to allow PPP to perform the appropriate AAA functions; however, you can still configure AAA server groups to specify the corresponding server groups for AAA support.
The GGSN supports the implementation of AAA server groups at both the global and access-point configuration levels. You can minimize your configuration by specifying the configuration that you want to support across most APNs, at the global configuration level. Then, at the access-point configuration level, you can selectively modify the services and server groups that you want to support at a particular APN. Therefore, you can override the AAA server global configuration at the APN configuration level.

To configure a default AAA server group to be used for all APNs on the GGSN, use the `gprs default aaa-group` global configuration command. To specify a different AAA server group to be used at a particular APN for authentication or accounting, use the `aaa-group` access-point configuration command.

If authentication is enabled on the APN, then the GGSN first looks for an authentication server group at the APN. If an authentication server group is not found at the APN, then the GGSN looks for a globally configured, General Packet Radio Service/Universal Mobile Telecommunication System (GPRS/UMTS) default authentication server group.

If accounting is enabled on the APN, then the GGSN looks for an accounting server group at the APN or globally in the following order:
- First, at the APN for an accounting server group—configured in the `aaa-group accounting` command.
- Second, for a global GPRS/UMTS default accounting server group—configured in the `gprs default aaa-group accounting` command.
- Third, at the APN for an authentication server group—configured in the `aaa-group authentication` command.
- Last, for a global GPRS/UMTS default authentication server group—configured in the `gprs default aaa-group authentication` command.

To complete the configuration, you also must specify the following configuration elements on the GGSN:
- Configure the RADIUS servers by using the `radius-server host` command.
- Define a server group with the IP addresses of the AAA servers in that group, using the `aaa group server` global configuration command.
- Enable the type of AAA services (accounting and authentication) to be supported on the APN.
 - The GGSN enables accounting by default for non-transparent APNs.
 You can disable accounting services at the APN by using the `aaa-accounting disable` command.
 - You can enable authentication at the APN level by configuring the `access-mode non-transparent` command. When you enable authentication, the GGSN automatically enables accounting on the APN. There is no a global configuration command for enabling or disabling authentication.
- Configure AAA accounting and authentication using the `aaa accounting` and `aaa authentication` global configuration commands.

For more information about AAA and RADIUS global configuration commands, see the Cisco IOS Security Command Reference.
Configuring AAA Security Globally

Authentication, authorization, and accounting (AAA) network security services provide the primary framework through which you set up access control on your GGSN. This section provides information about the basic commands used to implement AAA security on a Cisco router.

To enable AAA and configure authentication and authorization, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# aaa new-model</td>
<td>Enables AAA globally.</td>
</tr>
<tr>
<td>Step 2
Router(config)# aaa authentication ppp {default</td>
<td>list-name} method1 [method2...]</td>
</tr>
<tr>
<td>Step 3
Router(config)# aaa authorization {auth-proxy</td>
<td>network</td>
</tr>
<tr>
<td>Step 4
Router(config)# aaa accounting {system default [vrf vrf-name]</td>
<td>network {default</td>
</tr>
</tbody>
</table>

For more information about configuring AAA, refer to the *Cisco IOS Security Configuration Guide* and *Cisco IOS Security Command Reference* publications.
Configuring RADIUS Server Communication Globally

This section describes how to configure a global RADIUS server host that the GGSN can use to authenticate and authorize users. You can configure additional RADIUS server communication at the GGSN global configuration level.

To globally configure RADIUS server communication on the router, use the following commands, beginning in global configuration mode:

Command

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# radius-server host {hostname</td>
<td>ip-address} [auth-port port-number] [acct-port port-number] [timeout seconds] [retransmit retries] [key string]</td>
<td>Specifies the IP address or host name of the remote RADIUS server host. The following options are available:</td>
</tr>
<tr>
<td>• auth-port—Specifies the User Datagram Protocol (UDP) destination port for authentication requests.</td>
<td>• auth-port—Specifies the User Datagram Protocol (UDP) destination port for authentication requests.</td>
<td></td>
</tr>
<tr>
<td>• acct-port—Specifies the UDP destination port for accounting requests.</td>
<td>• acct-port—Specifies the UDP destination port for accounting requests.</td>
<td></td>
</tr>
<tr>
<td>• timeout—Specifies the time interval (in the range 1 to 1000 seconds) that the router waits for the RADIUS server to reply before retransmitting. This setting overrides the global value of the radius-server timeout command. If no timeout value is specified, the global value is used.</td>
<td>• timeout—Specifies the time interval (in the range 1 to 1000 seconds) that the router waits for the RADIUS server to reply before retransmitting. This setting overrides the global value of the radius-server timeout command. If no timeout value is specified, the global value is used.</td>
<td></td>
</tr>
<tr>
<td>• retransmit—Specifies the number of times (in the range 1 to 100) a RADIUS request is re-sent to a server, if that server is not responding or is responding slowly. This setting overrides the global value of the radius-server retransmit command.</td>
<td>• retransmit—Specifies the number of times (in the range 1 to 100) a RADIUS request is re-sent to a server, if that server is not responding or is responding slowly. This setting overrides the global value of the radius-server retransmit command.</td>
<td></td>
</tr>
<tr>
<td>• key—Specifies the authentication and encryption key used between the router and the RADIUS daemon running on this RADIUS server. This setting overrides the global value of the radius-server key command.</td>
<td>• key—Specifies the authentication and encryption key used between the router and the RADIUS daemon running on this RADIUS server. This setting overrides the global value of the radius-server key command.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# radius-server key string</td>
<td>Specifies the shared secret text string used between the router and the vendor-proprietary RADIUS server. The router and the RADIUS server use this text string to encrypt passwords and exchange responses.</td>
<td>Specifies the shared secret text string used between the router and the vendor-proprietary RADIUS server. The router and the RADIUS server use this text string to encrypt passwords and exchange responses.</td>
</tr>
</tbody>
</table>

For more information about configuring RADIUS security, refer to the Cisco IOS Security Configuration Guide and Cisco IOS Security Command Reference publications. For an example, see the “RADIUS Server Global Configuration Example” section on page 10-39.

Note

Although you can configure the radius-server host command multiple times, the Cisco IOS software supports only one RADIUS server at the same IP address.
Configuring RADIUS Server Communication at the GGSN Configuration Level

To complete the security configuration for the GGSN, you must configure non-transparent access for each access point. When you configure security at the GGSN global configuration level, you can also configure RADIUS server communication for all access points or for a specific access point.

Configuring RADIUS at the GGSN global configuration level includes the following tasks:

- Configuring Non-Transparent Access Mode, page 10-6 (Required)
- Specifying an AAA Server Group for All Access Points, page 10-7 (Optional)
- Specifying an AAA Server Group for a Particular Access Point, page 10-8 (Optional)
- Configuring AAA Accounting Services at an Access Point, page 10-8 (Optional)

Configuring Non-Transparent Access Mode

To support RADIUS authentication on the GGSN, you must configure the GGSN access points for non-transparent access. You must configure non-transparent access for every access point at which you want to support RADIUS services. There is no way to globally specify the access mode.

Note

For GTP-PPP termination and GTP-PPP regeneration on the GGSN, transparent access mode is used to allow PPP to perform the appropriate AAA functions; however, you can still configure AAA server groups to specify the corresponding server groups for AAA support.

To configure non-transparent access for a GGSN access point, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# gprs access-point-list list-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-ap-list)# access-point access-point-index</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-access-point)# access-mode non-transparent</td>
</tr>
</tbody>
</table>

For more information about configuring GGSN access points, see the “Configuring Access Points on the GGSN” section on page 7-10.
Specifying an AAA Server Group for All Access Points

After you have configured RADIUS server communication at the global level, you can configure a default AAA server group to be used by all GGSN access points.

To specify a default AAA server group for all GGSN access points, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs default aaa-group {authentication</td>
<td>Specifies a default AAA server group and assigns the type of AAA services to be supported by the server group for all access points on the GGSN, where:</td>
</tr>
<tr>
<td>accounting} server-group</td>
<td>• authentication—Assigns the selected server group for authentication services on all APNs.</td>
</tr>
<tr>
<td></td>
<td>• accounting—Assigns the selected server group for accounting services on all APNs.</td>
</tr>
<tr>
<td></td>
<td>• server-group—Specifies the name of an AAA server group to be used for AAA services on all APNs.</td>
</tr>
</tbody>
</table>

Note: The name of the AAA server group that you specify must correspond to a server group that you configure using the `aaa group server` command.
Specifying an AAA Server Group for a Particular Access Point

To override the default AAA server group configured for all access points, you can specify a different AAA server group for a particular access point. Or, if you choose not to configure a default AAA server group, you can specify an AAA server group at each access point.

To specify an AAA server group for a particular access point, use the following command in access-point configuration mode:

```
Router(config-access-point)# aaa-group {authentication | accounting} server-group
```

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# aaa-group {authentication</td>
<td>accounting} server-group</td>
</tr>
<tr>
<td></td>
<td>• authentication—Assigns the selected server group for authentication services on the APN.</td>
</tr>
<tr>
<td></td>
<td>• accounting—Assigns the selected server group for accounting services on the APN.</td>
</tr>
<tr>
<td></td>
<td>• server-group—Specifies the name of an AAA server group to be used for AAA services on the APN.</td>
</tr>
</tbody>
</table>

Note: The name of the AAA server group that you specify must correspond to a server group that you configure using the `aaa group server` command.

Configuring AAA Accounting Services at an Access Point

The Cisco GGSN has different defaults for enabling and disabling accounting services for transparent and non-transparent access points:

- If you configure an APN for non-transparent access using the `access-mode` command, the GGSN automatically enables accounting with authentication at the APN.

- If you configure an APN for transparent access, which is the default access mode, the GGSN automatically disables accounting at the APN.

Therefore, if you have configured a transparent access APN and you want to provide accounting at that APN, you need to configure the `aaa-accounting enable` command at the APN.

However, for accounting to occur, you also must complete the configuration by specifying the following other configuration elements on the GGSN:

- Enable AAA services by using the `aaa new-model` global configuration command.

- Define a server group with the IP addresses of the RADIUS servers in that group by using the `aaa group server` global configuration command.
• Configure the following AAA services:
 – AAA authentication using the `aaa authentication` global configuration command
 – AAA authorization using the `aaa authorization` global configuration command
 – AAA accounting using the `aaa accounting` global configuration command

• Assign the type of services that the AAA server group should provide. If you want the server group to only support accounting services, then you need to configure the server for accounting only. You can assign the AAA services to the AAA server groups either at the GGSN global configuration level by using the `gprs default aaa-group` command, or at the APN by using the `aaa-group` command.

• Configure the RADIUS servers by using the `radius-server host` command.

Note
For more information about AAA and RADIUS global configuration commands, see the Cisco IOS Security Command Reference.

To selectively disable accounting at specific APNs where you do not want that service, use the `aaa-accounting disable` access-point configuration command.

There is not a no form of this command.

Enabling and Disabling Accounting Services for an Access Point
The Cisco Systems GGSN has different defaults for enabling and disabling accounting services for transparent and non-transparent access points:

• If you configure an APN for non-transparent access using the `access-mode` command, the GGSN automatically enables accounting with authentication at the APN.

• If you configure an APN for transparent access, which is the default access mode, the GGSN automatically disables accounting at the APN.

To selectively disable accounting at specific APNs where you do not want that service, use the `aaa-accounting disable` access-point configuration command.

Configuring Interim Accounting for an Access Point
Using the `aaa-accounting interim` access-point configuration command, you can configure the GGSN to send Interim-Update Accounting requests to the AAA server when a routing area update (resulting in an SGSN change) or quality of service (QoS) change has occurred for a Packet Data Protocol (PDP) context. These changes are conveyed to the GGSN by an Update PDP Context request.

Note
Interim accounting support requires that accounting services be enabled for the APN and that the `aaa accounting update newinfo` global configuration command be configured.
To configure accounting services at an access point, use the following command in access-point configuration mode:

```
Router(config-access-point)# aaa-accounting [enable | disable | interim update]
```

This command configures accounting services for an access point on the GGSN, with the following options:

- **enable**—(Optional) Enables accounting services for an access point on the GGSN.
- **disable**—(Optional) Disables accounting services for an access point on the GGSN.
- **interim update**—(Optional) Enables interim accounting records to be sent to an accounting server when a routing area update (resulting in a serving GPRS support node [SGSN] change) or QoS change has occurred.

Configuring Additional RADIUS Services

This section describes how to configure RADIUS security services that the GGSN can use to authenticate and authorize users.

This section includes the following tasks:

- Configuring RADIUS Attributes in Access Requests to the RADIUS Server, page 10-10
- Configuring the Vendor-Specific Attribute in Access Requests to the RADIUS Server, page 10-12
- Suppressing Attributes for RADIUS Authentication, page 10-14
- Obtaining DNS and NetBIOS Address Information from a RADIUS Server, page 10-16
- Configuring the RADIUS Packet of Disconnect, page 10-16
- Configuring the GGSN to Wait for a RADIUS Response, page 10-18
- Configuring Access to a RADIUS Server Using VRF, page 10-19

Configuring RADIUS Attributes in Access Requests to the RADIUS Server

You configure the how the GGSN sends RADIUS attributes in access requests to the RADIUS server. This section includes the following tasks:

- Configuring the CHAP Challenge, page 10-11
- Configuring the MSISDN IE, page 10-11
- Configuring the NAS-Identifier, page 10-11
- Configuring the Charging ID in the Acct-Session-ID Attribute, page 10-12
- Configuring the MSISDN in the User-Name Attribute, page 10-12
Configuring the CHAP Challenge

To specify that the Challenge Handshake Authentication Protocol (CHAP) challenge always be included in the Challenge Attribute field (and not in the Authenticator field) in access requests to the RADIUS server, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs radius attribute chap-challenge</code></td>
<td>Specifies that the CHAP challenge is always included in the challenge attribute in a RADIUS request.</td>
</tr>
</tbody>
</table>

Note
When the `gprs radius attribute chap-challenge` command is configured, the CHAP challenge is always sent in the Challenge Attribute field of an access request to the RADIUS server and not in the Authenticator field. When the command is not configured, the CHAP challenge is sent in the Authenticator field unless the challenge exceeds 16 bytes, in which case, it is sent in the Challenge Attribute field of the Access Request.

Configuring the MSISDN IE

To specify that the first byte of the mobile station ISDN (MSISDN) information element (IE) is included in access requests to the RADIUS server, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs radius msisdn first-byte</code></td>
<td>Specifies that the first byte of the MSISDN IE is included in access requests.</td>
</tr>
</tbody>
</table>

Configuring the NAS-Identifier

You can configure the GGSN to send the network access server (NAS)-Identifier (RADIUS attribute 32) in access requests to a RADIUS server at a global or APN level. The APN-level configuration overrides the global-level configuration.

To specify that the NAS-Identifier be included in all access requests, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# radius-server attribute 32 include-in-access-req format format</code></td>
<td>Specifies that the GGSN sends the RADIUS attribute 32 (NAS-Identifier) in access requests where <code>format</code> is a string sent in attribute 32 containing an IP address (%i), a hostname (%h), and a domain name (%d).</td>
</tr>
</tbody>
</table>

To disable this global configuration, use the `no` form of this command while in global configuration mode.
To specify that the NAS-Identifier be included in all access requests at an APN, use the following command in access point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# radius attribute nas-id format</td>
<td>Specifies that the GGSN sends the NAS-Identifier in access requests at an APN where format is a string sent in attribute 32 containing an IP address (%i), a hostname (%h), and a domain name (%d).</td>
</tr>
</tbody>
</table>

To disable this APN configuration, use the `no` form of this command while in access point configuration mode.

Configuring the Charging ID in the Acct-Session-ID Attribute

To specify that the GGSN include the charging ID in the Acct-Session-ID (attribute 44) in accounting requests at an APN, use the following command in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# radius attribute acct-session-id charging-id</td>
<td>Specifies that the charging ID in the Acct-Session-ID (attribute 44) is included in accounting requests.</td>
</tr>
</tbody>
</table>

To disable this APN configuration, use the `no` form of this command while in access point configuration mode.

Configuring the MSISDN in the User-Name Attribute

To specify that the GGSN include the MSISDN in the User-Name attribute (attribute 1) in access requests at an APN, use the following command in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# radius attribute user-name msisdn</td>
<td>Specifies that the MSISDN is included in the User-Name (attribute 1) field in access requests.</td>
</tr>
</tbody>
</table>

To disable this APN configuration, use the `no` form of this command while in access point configuration mode.

Configuring the Vendor-Specific Attribute in Access Requests to the RADIUS Server

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating vendor-specific information to the RADIUS server by using the vendor-specific attribute (attribute 26). Vendor-specific attributes (VSAs) make a larger set of information available for communication by allowing vendors to support their own extended attributes not suitable for general use.
Table 10-1 lists and describes the Third Generation Partnership Project (3GPP) VSA sub-attributes that the GGSN can send in authentication and accounting requests to a RADIUS server when the attribute 26 is configured.

<table>
<thead>
<tr>
<th>Number</th>
<th>Vendor-Proprietary Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3GPP-IMSI</td>
<td>International Mobile Subscriber Identity (IMSI) number for a user. This sub-attribute can be suppressed using the <code>radius attribute suppress imsi</code> command.</td>
</tr>
<tr>
<td>2</td>
<td>3GPP-Charging-Id</td>
<td>Charging ID for this PDP context.</td>
</tr>
<tr>
<td>3</td>
<td>3GPP-PDP-Type</td>
<td>Type of PDP context (for example, IP or PPP).</td>
</tr>
<tr>
<td>4</td>
<td>3GPP-CG-Address</td>
<td>IP address of the current active charging gateway. If there is no current active charging gateway, GGSN sends 0.0.0.0.</td>
</tr>
<tr>
<td>5</td>
<td>3GPP-GPRS-QoS-Profile</td>
<td>QoS negotiated values. This sub-attribute can be suppressed using the <code>radius attribute suppress qos</code> command.</td>
</tr>
<tr>
<td>6</td>
<td>3GPP-SGSN-Address</td>
<td>IP address of the SGSN that is used by the GTP control plane for handling control messages. This address might be used to identify the public land mobile network (PLMN) to which the user is attached. This sub-attribute can be suppressed using the <code>radius attribute suppress sgsn-address</code> command.</td>
</tr>
<tr>
<td>7</td>
<td>3GPP-GGSN-Address</td>
<td>IP address of the GGSN that is used by the GTP control plane for the context establishment. This address is the same as the GGSN IP address used in G-CDRs.</td>
</tr>
<tr>
<td>8</td>
<td>3GPP-IMSI-MCC-MNC</td>
<td>Mobile country code (MCC) and mobile network code (MNC) extracted from the user’s IMSI number (the first 5 or 6 digits depending on the IMSI). This sub-attribute requires that the MCC and MNC values that the GGSN uses be configured using the <code>gprs mcc mnc</code> global configuration command.</td>
</tr>
<tr>
<td>9</td>
<td>3GPP-GGSN-MCC-MNC</td>
<td>MCC and MNC of the network to which the GGSN belongs. This sub-attribute requires that the MCC and MNC values that the GGSN uses be configured using the <code>gprs mcc mnc</code> global configuration command.</td>
</tr>
</tbody>
</table>
Chapter 10 Configuring Security on the GGSN

Configuring Additional RADIUS Services

To configure the GGSN to send and recognize VSAs as defined by RADIUS attribute 26, use the following command in global configuration mode:

```
Router(config)#radius-server vsa send [accounting | authentication]
```

(Optional) Enables the GGSN to send and recognized VSAs as defined by RADIUS IETF attribute 26.

For more information on configuring the use of vendor-specific attributes, refer to the Cisco IOS Security Configuration Guide and Cisco IOS Security Command Reference publications.

Suppression Attributes for RADIUS Authentication

You can configure the GGSN to suppress certain attributes in its access requests to a RADIUS server. The following sections describe the attributes you can suppress and how to do so.

The following topics are included in this section:

- Suppressing the MSISDN Number for RADIUS Authentication, page 10-14
- Suppressing the 3GPP-IMSI VSA Sub-Attribute for RADIUS Authentication, page 10-15
- Suppressing the 3GPP-GPRS-QoS Profile VSA Sub-Attribute for RADIUS Authentication, page 10-15
- Suppressing the 3GPP-GPRS-SGSN-Address VSA Sub-Attribute for RADIUS Authentication, page 10-16

Suppressing the MSISDN Number for RADIUS Authentication

Some countries have privacy laws that prohibit service providers from identifying the MSISDN number of mobile stations in authentication requests. Use the `msisdn suppression` command to specify a value that the GGSN sends instead of the MSISDN number in its authentication requests to a RADIUS server. If no value is configured, then no number is sent to the RADIUS server.

To use the `msisdn suppression` command, you must configure a RADIUS server either globally or at the access point and specify non-transparent access mode.
To specify that the GGSN override or suppress the MSISDN number in its access-requests sent to the RADIUS server, use the following command in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# msisdn suppression [value]</td>
<td>(Optional) Specifies that the GGSN overrides the MSISDN number with a preconfigured value in its access requests.</td>
</tr>
</tbody>
</table>

To disable this APN configuration, use the no form of this command while in access point configuration mode.

Suppressing the 3GPP-IMSI VSA Sub-Attribute for RADIUS Authentication

To configure the GGSN to suppress the Third Generation Partnership Project (3GPP) vendor-specific attribute (VSA) 3GPP-International Mobile Subscriber Identity (3GPP-IMSI) number in its authentication and accounting requests to a RADIUS server, use the radius attribute suppress imsi access point configuration command.

To configure the GGSN to suppress the 3GPP VSA 3GPP-IMSI number in its authentication and accounting requests to a RADIUS server, use the following command in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# radius attribute suppress imsi</td>
<td>(Optional) Configures the GGSN to suppress the 3GPP-IMSI number in its authentication and accounting requests to a RADIUS server.</td>
</tr>
</tbody>
</table>

To disable this APN configuration, use the no form of this command while in access point configuration mode.

Suppressing the 3GPP-GPRS-QoS Profile VSA Sub-Attribute for RADIUS Authentication

To configure the GGSN to suppress the 3GPP-GPRS-Qos Profile in its authentication and accounting requests to a RADIUS server, use the radius attribute suppress qos access point configuration command.

To configure the GGSN to suppress the 3GPP-GPRS-Qos Profile in its authentication and accounting requests to a RADIUS server, use the following command in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# radius attribute suppress qos</td>
<td>(Optional) Specifies that the GGSN suppresses the 3GPP-GPRS-Qos Profile in its authentication and accounting requests to a RADIUS server.</td>
</tr>
</tbody>
</table>
Suppressing the 3GPP-GPRS-SGSN-Address VSA Sub-Attribute for RADIUS Authentication

To configure the GGSN to suppress the 3GPP-GPRS-SGSN-Address in its authentication and accounting requests to a RADIUS server, use the **radius attribute suppress sgsn-address** access point configuration command.

To specify that the GGSN suppress the 3GPP-GPRS-SGSN-Address in its authentication and accounting requests to a RADIUS server, use the following command in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# radius attribute suppress sgsn-address</td>
<td>(Optional) Specifies that the GGSN suppresses the 3GPP-GPRS-SGSN-Address in its requests.</td>
</tr>
</tbody>
</table>

Obtaining DNS and NetBIOS Address Information from a RADIUS Server

To obtain Domain Name System (DNS) address and Network Basic Input/Output System (NetBIOS) address information from a RADIUS server, configure the GGSN to send and recognize VSAs as defined by RADIUS attribute 26 using the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# radius-server vsa send [accounting</td>
<td>authentication]</td>
</tr>
</tbody>
</table>

Note
For the DNS and NetBIOS address information to be sent to an MS, the dynamic address allocation method using an IP address pool supplied by a RADIUS server must be configured for the access point by using the **ip-address-pool radius-client** command. For more information about configuring an access point, see the “Configuring Access Points on the GGSN” section on page 7-10.

Configuring the RADIUS Packet of Disconnect

The RADIUS Packet of Disconnect (POD) feature is a method for terminating a user session after the session has been established. The POD is a RADIUS Disconnect-Req packet that is intended to be used in situations when an authenticating agent server wants to disconnect a user after a session has been accepted by the RADIUS Access-Accept packet. For example, in the case of pre-paid billing, a typical use of this feature would be for the pre-paid billing server to send a POD when the quota expires for a pre-paid user.

Upon receiving a POD, the GGSN performs the following actions:

- Identifies the PDP context for which the POD was generated by the attribute information present in the POD.

 The VSA sub-attributes 3GPP-IMSI and 3GPP-NSAPI uniquely identify a PDP context, and the presence of these sub-attributes in a POD also identifies that the POD is for a GPRS user session.
- Sends a Delete PDP Context request to the SGSN.
- Sends a Disconnect ACK or Disconnect NAK to the device that generated the POD.
The GGSN sends a Disconnect ACK when it is able to terminate a user session and sends a Disconnect NAK when it is unable to terminate a user session. The Disconnect ACK/NAK requests are RADIUS packets that contain no attributes.

Note
For the POD feature to function properly on the GGSN, ensure that the IMSI attribute has not been suppressed using the `radius attribute suppress imsi` command.

To configure a POD on the GGSN, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# aaa pod server [port port-number] [auth-type {any</td>
<td>all</td>
</tr>
</tbody>
</table>

- **port port-number**—(Optional) Network access server User Datagram Protocol (UDP) port to use for POD requests. Default value is 1700. This is the port on which GGSN listens for the POD requests.
- **auth-type**—(Optional) Type of authorization required for disconnecting sessions.
 - **any**—Session that matches all of the attributes sent in the POD packet is disconnected. The POD packet may contain one or more of four key attributes (user-name, framed-IP-address, session-ID, and session-key).
 - **all**—Session that matches all of the four key attributes is disconnected. All is the default.
 - **session-key**—Session with a matching session-key attribute is disconnected. All other attributes are ignored.

Note When configuring a POD on the GGSN, we recommend that you do not configure the `auth-type` keyword option.

- **server-key**—Configures the shared-secret text string.
- **encryption-type**—(Optional) Single-digit number that defines whether the text immediately following is encrypted, and, if so, what type of encryption is used. Defined encryption types are 0, which means that the text immediately following is not encrypted, and 7, which means that the text is encrypted using an encryption algorithm defined by Cisco.
- **string**—Shared-secret text string that is shared between the network access server and the client workstation. This shared-secret string must be the same on both systems.
Configuring the GGSN to Wait for a RADIUS Response

Use the `gtp response-message wait-accounting` command to configure the GGSN to wait for a RADIUS accounting response from the RADIUS accounting server before sending a Create PDP Context response to the SGSN.

If the GGSN does not receive a response from the RADIUS accounting server when you have configured the `gtp response-message wait-accounting` command, it rejects the PDP context request.

When broadcast accounting is used (accounting requests are sent to multiple RADIUS servers), if a RADIUS server responds with an accounting response, the GGSN sends a create PDP context response and does not wait for the other RADIUS servers to respond.

The GGSN supports configuration of RADIUS response message waiting at both the global and access-point configuration levels. You can minimize your configuration by specifying the configuration that you want to support across most APNs, at the global configuration level. Then, at the access-point configuration level, you can selectively modify the behavior that you want to support at a particular APN. Therefore, at the APN configuration level, you can override the global configuration of RADIUS response message waiting.

To configure the GGSN to wait for a RADIUS accounting response as the default behavior for all APNs, use the `gprs gtp response-message wait-accounting` global configuration command. To disable this behavior for a particular APN, use the `no gtp response-message wait-accounting` access-point configuration command.

To verify whether RADIUS response message waiting is enabled or disabled at an APN, you can use the `show gprs access-point` command and observe the value reported in the `wait_accounting` output field.

To configure the GGSN to wait for a RADIUS accounting response globally, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs gtp response-message wait-accounting</code></td>
<td>Configures the GGSN to wait for a RADIUS accounting response before sending a Create PDP Context response to the SGSN, for Create PDP Context requests received across all access points.</td>
</tr>
</tbody>
</table>

To configure the GGSN to wait for a RADIUS accounting response for a particular access point, use the following command in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-access-point)# gtp response-message wait-accounting</code></td>
<td>Configures the GGSN to wait for a RADIUS accounting response before sending a Create PDP Context response to the SGSN, for Create PDP Context requests received at a particular access point.</td>
</tr>
</tbody>
</table>
Configuring Access to a RADIUS Server Using VRF

The Cisco IOS GGSN software supports access to a RADIUS server using VRF. This Cisco IOS software feature is called Per VRF AAA and using this feature, Internet service providers (ISPs) can partition AAA services based on VRF. This permits the GGSN to communicate directly with the customer RADIUS server associated with the customer Virtual Private Network (VPN) without having to go through a RADIUS proxy. Thus, ISPs can scale their VPN offerings more efficiently because they no longer need to proxy AAA to provide their customers the flexibility demanded.

To support this configuration, AAA must be VRF aware. ISPs must define multiple instances of the same operational parameters—such as AAA server groups, method lists, system accounting, and protocol-specific parameters—and secure the parameters to the VRF partitions.

Note

VRF is not supported on the Catalyst 6500/Cisco 7600 Supervisor II / MSFC2; therefore, if using the Supervisor II, you must tunnel encapsulated VRF traffic through the Supervisor via a GRE tunnel between the GGSN to RADIUS server. For more information on configuration a GRE tunnel, see “Configuring Access to a RADIUS Server With a Tunnel” section on page 10-26.

The Catalyst 6500/Cisco 7600 Sup720 supports VRF.

If an AAA configuration, such as a method list, is uniquely defined many times, the specification of an AAA server that is based on IP addresses and port numbers might create an overlapping of private addresses between VRFs. Securing AAA method lists to a VRF can be accomplished from one or more of the following sources:

- Virtual Template—Used as a generic interface configuration.
- Service Provider AAA server—Used to associate a remote user with a specific VPN based on the domain name or Dialed Number Identification Service (DNIS). The server then provides the VPN-specific configuration for the virtual access interface, which includes the IP address and port number of the customer AAA server.
- Customer VPN AAA server—Used to authenticate the remote user and to provide user-specific configurations for the virtual access interface.

Note

Global AAA accounting configurations and some AAA protocol-specific parameters cannot be logically grouped under the Virtual Template configuration.

When configuring the Per VRF feature, keep in mind the following:

- To prevent possible overlapping of private addresses between VRFs, AAA servers must be defined in a single global pool that is to be used in the server groups.
- Servers can no longer be uniquely identified by IP addresses and port numbers.
- “Private” servers (servers with private addresses within the default server group that contains all the servers) can be defined within the server group and remain hidden from other groups. The list of servers in server groups includes references to the hosts in the global configuration as well as the definitions of private servers.

Note

If private server parameters are not specified, global configurations are used. If global configurations are not specified, default values are used.
• All server operational parameters can be configured per host, per server group, or globally. Per-host configurations have precedence over per-server group configurations. Per-server group configurations have precedence over global configurations.

Note
For complete information on configuring access to a RADIUS server using VRF, refer to the *Per VRF AAA feature module*.

This section describes configuring and establishing access to a private RADIUS server using VRF. For global RADIUS services, ensure that you have configured a globally located server.

To configure access to a RADIUS server using VRF, complete the following tasks:
• Enabling AAA Globally, page 10-20 (Required)
• Configuring a VRF-Aware Private RADIUS Server Group, page 10-21 (Required)
• Configuring Authentication, Authorization, and Accounting Using Named Method Lists, page 10-22 (Required)
• Configuring a VRF Routing Table, page 10-22 (Required)
• Configuring VRF on an Interface, page 10-22 (Required)
• Configuring VRF Under an Access Point for Access to the Private RADIUS Server, page 10-24 (Required)
• Configuring a Route to the RADIUS Server Using VRF, page 10-28 (Optional)

Enabling AAA Globally

If AAA has not been enabled globally on the GGSN, you will need to enable it before configuring access to a private RADIUS server via VRF.

To enable AAA globally, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# aaa new-model</td>
<td>Enables AAA globally.</td>
</tr>
</tbody>
</table>
Configuring a VRF-Aware Private RADIUS Server Group

To configure private server operational parameters, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
Router(config)# aaa group server radius group-name | Groups different RADIUS server hosts into distinct lists and distinct methods.
- **group-name**—Character string used to name the group of servers. |
| **Step 2**
Router(config-sg-radius)# server-private ip-address auth-port port_num acct-port port_num key string | Configures the IP address of the private RADIUS server for the group server.
- **ip-address**—Specifies the IP address of the private RADIUS server host.
- **auth-port port_num**—Specifies a port solely for authentication.
- **acct-port port_num**—Specifies a port solely for accounting.
- **string**—(Optional) Specifies the authentication and encryption key for all RADIUS communications between the router and the RADIUS server.
| **Note** | If private server parameters are not specified, global configurations are used.
If global configurations are not specified, default values are used. |
| **Step 3**
Router(config-sg-radius)# ip vrf forwarding vrf-name | Configures the VRF reference of the AAA RADIUS server group.
- **vrf-name**—Name assigned to a VRF. |
Chapter 10 Configuring Security on the GGSN

Configuring Authentication, Authorization, and Accounting Using Named Method Lists

To configure AAA using named method lists, perform the following tasks, beginning in global configuration mode:

Step 1

```
Router(config)# aaa authentication ppp {default | list-name} method1 [method2...]
```

Creates a local authentication method list, with the following options:
- **default**—Specifies that the authentication methods that follow this argument are the default list of authentication methods when a user logs in to the router.
- **method**—Specifies a valid AAA authentication method for PPP. For example, **group RADIUS** enables global RADIUS authentication.

Step 2

```
Router(config)# aaa authorization {auth-proxy | network | exec | commands level | reverse-access}
   {default | list-name} [method1 [method2...]]
```

Creates an authorization method list for a particular authorization type and enables authorization.

Step 3

```
Router(config)# aaa accounting {system default | vrf vrf-name | network {default | none | start-stop | stop-only | wait-start}}
   [group group-name]
```

Enables AAA accounting of requested services for billing or security purposes when you use RADIUS.

Configuring a VRF Routing Table

To configure a VRF routing table on the GGSN for access to the private RADIUS server, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# ip vrf vrf-name</code></td>
<td>Configures a VRF routing table, and enters VRF configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-vrf)# rd route-distinguisher</code></td>
<td>Creates routing and forwarding tables for a VRF and specifies the default route distinguisher for a VPN.</td>
</tr>
</tbody>
</table>

Configuring VRF on an Interface

To access the private RADIUS server, VRF must be configured on the interface to the server.

On the Cisco 7200 series router platform, this interface is physical. On the Catalyst 6500 series switch / Cisco 7600 series Internet router platform, this interface is a logical one (on which IEEE 802.1Q-encapsulation has been configured) to a Layer 3 routed VLAN configured on the Supervisor/MSFC2.

For more information about required VLANs on the Supervisor/MSFC2, see the “Catalyst 6500/Cisco 7600 Series Platform Prerequisites” section on page 2-2.

For more information about configuring interfaces, refer to the *Cisco IOS Interface Configuration Guide* and the *Cisco IOS Interface Command Reference*.
Configuring Physical Interfaces

To configure a physical interface using Fast Ethernet over the interface, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type slot/port</td>
<td>Defines a physical interface on the GGSN, where type is fastethernet, and slot/port is the hardware slot and port on the interface.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# ip vrf forwarding vrf-name</td>
<td>Associates a VRF with an interface or subinterface.</td>
</tr>
<tr>
<td>Note The vrf-name argument should match the name of the VRF that you configured using the ip vrf command in the “Configuring Authentication, Authorization, and Accounting Using Named Method Lists” section on page 10-22.</td>
<td></td>
</tr>
<tr>
<td>Note The IP address defined on the interface will get removed when you associate a VRF with the interface. Therefore, you will need to reconfigure the IP address for the interface.</td>
<td></td>
</tr>
<tr>
<td>Step 3 Router(config-if)# ip address ip-address mask [secondary]</td>
<td>Specifies an IP address for the interface, where:</td>
</tr>
<tr>
<td></td>
<td>ip-address—Specifies the IP address of the interface in dotted decimal format.</td>
</tr>
<tr>
<td></td>
<td>mask—Specifies a subnet mask in dotted decimal format.</td>
</tr>
<tr>
<td></td>
<td>secondary—Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.</td>
</tr>
</tbody>
</table>

Configuring 802.1Q-Encapsulated Subinterfaces

To configure a subinterface that supports IEEE 802.1Q encapsulation to the associated VLAN on the Supervisor/MSFC2, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface gigabitethernet slot/port.subinterface-number</td>
<td>Specifies the subinterface on which IEEE 802.1Q will be used.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# encapsulation dot1q vlanid</td>
<td>Defines the encapsulation format as IEEE 802.1Q (dot1q), and specifies the VLAN identifier.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# ip address ip-address mask</td>
<td>Sets a primary IP address for an interface.</td>
</tr>
</tbody>
</table>
Configuring VRF Under an Access Point for Access to the Private RADIUS Server

After you have completed the prerequisite configuration tasks on the Cisco 7200 platform, you can configure access to a RADIUS server with a tunnel or without a tunnel.

VRF is not supported on the Catalyst 6500/Cisco 7600 Supervisor II / MSFC2; therefore, if using the Supervisor II, you must tunnel encapsulated VRF traffic through the Supervisor via a GRE tunnel between the GGSN to RADIUS server.

Note
The Catalyst 6500/Cisco 7600 Sup720 supports VRF.

Figure 10-1 is a logical view of a GRE tunnel configured between the VRF-aware GGSN and RADIUS server, which tunnels the encapsulated VRF traffic through the VRF-unaware Supervisor II / MSFC2.

Figure 10-1 GRE Tunnel Configuration from the GGSN to RADIUS Server through the Catalyst 6500/Cisco 7600 Supervisor/MSFC2

The following sections describe the different methods you can use to configure access a RADIUS server:

- Configuring Access to a RADIUS Server Without a Tunnel
- Configuring Access to a RADIUS Server With a Tunnel

Configuring Access to a RADIUS Server Without a Tunnel

On the Cisco 7200 platform, to configure access to the RADIUS server without a tunnel, you need to configure the vrf access point configuration command.

Note
The Catalyst 6500/Cisco 7600 Supervisor/MSFC2 does not support VRR; therefore, you must tunnel VRF traffic through the Supervisor via a GRE tunnel as described in the “Configuring Access to a RADIUS Server With a Tunnel” section on page 10-26.
To configure access to a RADIUS server in the GPRS access point list, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# gprs access-point-list list-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-ap-list)# access-point access-point-index</td>
</tr>
</tbody>
</table>
| **Step 3** | Router(config-access-point)# access-point-name apn-name | Specifies the network (or domain) name for a PDN that users can access from the GGSN at a defined access point.
Note The `apn-name` must match the APN that has been provisioned at the MS, HLR, and DNS server. |
| **Step 4** | Router(config-access-point)# aaa-group authentication server-group | Specifies a default AAA server group and assigns the type of AAA services to be supported by the server group for a particular access point on the GGSN, where:
- **authentication**—Assigns the selected server group for authentication services on the APN.
- **server-group**—Specifies the name of a AAA server group to be used for AAA services on the APN.
Note The name of the AAA server group that you specify must correspond to a server group that you configure using the `aaa group server` command. |
| **Step 5** | Router(config-access-point)# access-mode non-transparent | Specifies for the GGSN to act as a proxy for authentication. |
| **Step 6** | Router(config-access-point)# ip-address-pool radius-client | Specifies for the RADIUS server to provide the IP address pool for the current access point.
Note If you are using a dynamic address allocation method, then you must configure this command according to the appropriate IP address pool source. |
Chapter 10 Configuring Security on the GGSN

Configuring Additional RADIUS Services

Configuring Access to a RADIUS Server With a Tunnel

If you have only a single interface to a RADIUS server from which you need to access one or more private RADIUS servers, or if you are configuring access to a RADIUS server via VRF on the Catalyst 6500/Cisco 7600 platform, you can configure an IP tunnel to access those private servers. On the Catalyst 6500/Cisco 7600 platform, you configure the tunnel to tunnel the VRF traffic through the Supervisor/MSFC2, which does not support VRF.

To configure access to the RADIUS server using a tunnel, perform the following tasks:

- Configuring the Private RADIUS Server Access Point (Required)
- Configuring the IP Tunnel (Required)

Configuring the Private RADIUS Server Access Point

To configure access to a private RADIUS server in the GPRS access point list, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# gprs access-point-list list-name</td>
<td>Specifies a name for a new access point list, or references the name of the existing access point list, and enters access-point list configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config-ap-list)# access-point access-point-index</td>
<td>Specifies an index number for a new access point definition, or references an existing access point definition, and enters access point configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 3** Router(config-access-point)# access-point name apn-name | Specifies the access point network ID, which is commonly an Internet domain name.
Note The `apn-name` must match the APN that has been provisioned at the mobile station (MS), home location register (HLR), and DNS server. |
Step 4
Router(config-access-point)# access-mode
(transparent | non-transparent)

(Optional) Specifies whether the GGSN requests user authentication at the access point. The available options are:
- transparent—No security authorization or authentication is requested by the GGSN for this access point. This is the default value.
- non-transparent—GGSN acts as a proxy for authenticating.

Step 5
Router(config-access-point)# access-type real

Specifies an APN type that corresponds to an interface to an external network on the GGSN. Real is the default value.

Step 6
Router(config-access-point)# ip-address-pool
{dhcp-proxy-client | radius-client | local pool-name | disable}

(Optional) Specifies a dynamic address allocation method using IP address pools for the current access point. The available options are:
- dhcp-proxy-client—DHCP server provides the IP address pool.
- radius-client—RADIUS server provides the IP address pool.
- local—Specifies that a local pool provides the IP address. This option requires that the address range be configured using the aggregate access point configuration command and that a local pool has been configured using the ip local pool global configuration command.
- disable—Turns off dynamic address allocation.

Note
If you are using a dynamic address allocation method, then you must configure this command according to the appropriate IP address pool source.

Step 7
Router(config-access-point)# vrf vrf-name

Configures VPN routing and forwarding at a GGSN access point and associates the access point with a particular VRF instance.

Step 8
Router(config-access-point)# exit

Exits access point configuration mode.

Configuring the IP Tunnel

When you configure a tunnel, you might consider using loopback interfaces as the tunnel endpoints instead of real interfaces because loopback interfaces are always up.

To configure an IP tunnel to a private network, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface tunnel number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip vrf forwarding vrf-name</td>
</tr>
</tbody>
</table>
Chapter 10 Configuring Security on the GGSN

Configuring Additional RADIUS Services

Configuring a Route to the RADIUS Server Using VRF

Be sure a route exists between the VRF instance and the RADIUS server. You can verify connectivity by using the ping command from the VRF to the RADIUS server. To configure a route, you can use a static route or a routing protocol.

Configuring a Static Route Using VRF

To configure a static route using, use the following command, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config)# ip route vrf vrf-name prefix mask [next-hop-address] [interface {interface-number}] [global] [distance] [permanent] [tag tag] | Configures a static IP route, where:
- vrf-name—Specifies the name of the VPN routing/forwarding (VRF) instance for the static route.
- prefix—Specifies the IP route prefix for the destination.
- mask—Specifies the prefix mask for the destination.
- next-hop-address—Specifies the IP address of the next hop that can be used to reach the destination network.
- interface interface-number—Specifies the network interface type and interface number that can be used to reach the destination network.
- global—Specifies that the given next hop address is in the non-VRF routing table.
- distance—Specifies an administrative distance for the route.
- permanent—Specifies that the route will not be removed, even if the interface shuts down.
- tag tag—Specifies a tag value that can be used as a “match” value for controlling redistribution via route maps. |
Verifying a Static Route Using VRF

To verify the static VRF route that you configured, use the `show ip route vrf` privileged EXEC command as shown in the following example:

```
GGSN# show ip route vrf vpn1 static

    172.16.0.0/16 is subnetted, 1 subnets
    C    172.16.0.1 is directly connected, Ethernet5/1
    C    10.100.0.3/8 is directly connected, Virtual-Access5
```

Configuring an OSPF Route Using VRF

To configure an OSPF route using VRF, use the following command, beginning in global configuration mode:

```
Router(config)# router ospf process-id [vrf vrf-name]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>router ospf process-id [vrf vrf-name]</code></td>
<td>Enables OSPF routing, and enters router configuration mode, where, • <code>process-id</code>—Specifies an internally used identification parameter for an OSPF routing process. The <code>process-id</code> is locally assigned and can be any positive integer. A unique value is assigned for each OSPF routing process. • <code>vrf vrf-name</code>—Specifies the name of the VPN routing/forwarding instance.</td>
</tr>
</tbody>
</table>

Configuring IPSec Network Security

In Cisco IOS Release 12.1(5)T and later, the GGSN software on the Cisco 7200 series router platform supports the IPSec for data authentication, confidentiality, encryption and integrity.

IPSec Network Security on the Catalyst 6500/Cisco 7600 Series Platform

IPSec on the Catalyst 6500 series switch / Cisco 7600 series Internet router platform is performed on the IPSec VPN Acceleration Services module and requires no configuration on the GGSNs running on the Cisco MWAM.

For information about configuring IPSec on the Catalyst 6500 series switch / Cisco 7600 series Internet router platform, refer to the *IPSEC VPN Acceleration Services Module Installation and Configuration Note*.
Configuring IPsec Network Security on the Cisco 7200 Series Platform

On the Cisco 7200 series platform, IPsec data security can be implemented between the GGSN and another router on the PDN.

Note

To support IPsec on the GGSN on the Cisco 7200 platform, you must install a Cisco VPN Acceleration Module 2 (VAM2) card on your router.

Configuring IPsec network security includes the following tasks:

- Configuring an IKE Policy, page 10-30 (Required)
- Configuring Pre-Shared Keys, page 10-32 (Required, when pre-shared authentication is configured)
- Configuring Transform Sets, page 10-32 (Optional)
- Configuring IPsec Profiles, page 10-34 (Optional, and the recommended configuration for VRF-aware GRE tunnel interfaces)
- Configuring Crypto Map Entries That Use IKE to Establish Security Associations, page 10-34 (Optional)

For more information about configuring IPsec, refer to the Cisco IOS Security Configuration Guide and Cisco IOS Security Command Reference publications.

For an example, see the “IPsec Configuration Examples” section on page 10-42.

Configuring an IKE Policy

You can create multiple Internet Key Exchange (IKE) policies, each with a different combination of parameter values. For each policy that you create, you assign a unique priority (1 through 10,000, with 1 being the highest priority).

You can configure multiple policies on each peer—but at least one of these policies must contain exactly the same encryption, hash, authentication, and Diffie-Hellman parameter values as one of the policies on the remote peer. For example, you can configure multiple policies on the GGSN to correlate with the policies for different PDNs.
To configure an IKE policy on the GGSN and corresponding PDN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# crypto isakmp policy priority</td>
</tr>
<tr>
<td></td>
<td>Identifies the IKE policy, where priority is an integer (from 1 to 10,000) that uniquely identifies the policy. This command enters you into Internet Security Association and Key Management Protocol (ISAKMP) policy configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-isakmp)# encryption des</td>
</tr>
<tr>
<td></td>
<td>Specifies the encryption algorithm, where:</td>
</tr>
<tr>
<td></td>
<td>- des—Specifies 56-bit Data Encryption Standard (DES)-Cipher Block Chaining (CBC). This is the default value.</td>
</tr>
<tr>
<td></td>
<td>Note: Triple DES, or 168-bit DES encryption, is supported in the Cisco IOS software. It can be configured by using this command and specifying the 3des optional keyword.</td>
</tr>
<tr>
<td></td>
<td>GGSN Release 1.4 in Cisco IOS Release 12.2 does not support the 3des optional keyword.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-isakmp)# hash (sha</td>
</tr>
<tr>
<td></td>
<td>Specifies the hash algorithm, where:</td>
</tr>
<tr>
<td></td>
<td>- sha—Specifies the Secure Hash Algorithm (SHA)-1. This is the default value.</td>
</tr>
<tr>
<td></td>
<td>- md5—Specifies the Message Digest 5 (MD5) hash algorithm.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-isakmp)# authentication (rsa-sig</td>
</tr>
<tr>
<td></td>
<td>Specifies the authentication method, where:</td>
</tr>
<tr>
<td></td>
<td>- rsa-sig—Specifies the public key encryption system developed by Ron Rivest, Adi Shamir, and Leonard Adleman (RSA), which provides non-repudiation. This is the default value.</td>
</tr>
<tr>
<td></td>
<td>- rsa-encr—Specifies RSA encrypted nonces, which provide repudiation.</td>
</tr>
<tr>
<td></td>
<td>- pre-share—Specifies a pre-shared key that does not require use of a certification authority. Pre-shared keys might be easier to configure in a small network with less than 10 nodes. RSA signatures can be considered more secure than pre-shared keys. If you configure pre-share authentication, then you must configure the pre-shared keys on both the local and remote peer (GGSN and PDN).</td>
</tr>
</tbody>
</table>
Configuring IPSec Network Security

For more information about IKE policy parameters, refer to the Cisco IOS Security Configuration Guide and Cisco IOS Security Command Reference publications.

Configuring Pre-Shared Keys

When you configure the pre-share authentication method for your IKE policy, you also must configure the pre-shared keys on the GGSN and remote peer, or PDN.

To configure pre-shared keys on the GGSN and corresponding PDN, use one of the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# crypto isakmp key keystring address peer-address or Router(config)# crypto isakmp key keystring hostname peer-hostname</td>
<td>Specifies the shared key to be used between a local peer (GGSN) and particular remote peer (PDN). If the remote peer, or PDN, specifies the ISAKMP identity with an address, use the address keyword; otherwise, use the hostname keyword. When configuring the pre-shared keys on the GGSN, use the address or host name of the PDN. When configuring the pre-shared keys on the PDN, use the address or host name of the GGSN.</td>
</tr>
</tbody>
</table>

Configuring Transform Sets

A transform set represents a certain combination of security protocols and algorithms. During the IPSec security association negotiation, the peers agree to use a particular transform set for protecting a particular data flow.
To configure a transform set on the GGSN and corresponding PDN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>Router(config)# crypto ipsec transform-set</code></td>
<td>Defines a transform set, and enters crypto transform configuration mode. Complex rules define which entries you can use for the transform arguments. For more information, refer to the Cisco IOS Security Configuration Guide and Cisco IOS Security Command Reference publications.</td>
</tr>
<tr>
<td></td>
<td><code>transform-set-name transform1 [transform2 [transform3]]</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`Router(config-crypto-transform)# mode [tunnel</td>
<td>transport]`</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• tunnel—Protects (encrypts, authenticates) and encapsulates the entire original IP packet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• transport—Protects (encrypts, authenticates) and encapsulates the payload or data portion of the IP packet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note The mode setting is applicable only to traffic whose source and destination addresses are the IPSec peer addresses; it is ignored for all other traffic.</td>
</tr>
</tbody>
</table>
Configuring IPSec Profiles

Using an IPSec profile configuration is the recommended configuration for IPSec on VRF-aware generic routing encapsulation (GRE) tunnel interface between the GGSN and a PDN.

The IPSec profile shares most of the same commands with the crypto map configuration, but only a subset of the commands are valid in an IPSec profile. Only commands that pertain to an IPSec policy can be issued under an IPSec profile; you cannot specify the IPSec peer address or the access control list (ACL) to match the packets that are to be encrypted.

The following valid commands can be configured under an IPSec profile:

- `set-transform-set`—Specifies a list of transform sets in order of priority.
- `set pfs`—Specifies perfect forward secrecy (PFS) settings.
- `set security-association`—Defines security association parameters.
- `set identity`—Specifies identity restrictions.

Note

After enabling this command, the transform set parameter must be defined using the `set transform-set` command.

To define the IPSec parameters that are to be used for IPSec encryption between the GGSN and PDN, use the following commands, beginning in global configuration mode:

To configure an IPSec profile on the GGSN and corresponding PDN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>crypto ipsec profile name</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>set transform-set transform-set-name1 [transform-set-name2...transform-set-name6]</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface tunnel100</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>tunnel protection ipsec-profile name [shared]</code></td>
</tr>
</tbody>
</table>

To delete an IPSec profile, use the `no` form of this command.

Configuring Crypto Map Entries That Use IKE to Establish Security Associations

When you use IKE to establish security associations, you can use a crypto map entry to specify a list of acceptable settings to be used during IPSec peer negotiation.
To configure crypto map entries on the GGSN and corresponding PDN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **Router(config)# crypto map map-name seq-num ipsec-isakmp**
Purpose | Creates or modifies a crypto map entry, and enters crypto map configuration mode. |
| **Step 2** | **Router(config-crypto-map)# match address access-list-id**
Purpose | Names an extended access list. This access list determines which traffic should be protected by IPSec and which traffic should not be protected by IPSec in the context of the current crypto map entry. |
| **Step 3** | **Router(config-crypto-map)# set peer (hostname | ip-address)**
Purpose | Specifies a remote IPSec peer. This is the peer to which IPSec-protected traffic can be forwarded. |
| **Step 4** | **Router(config-crypto-map)# set transform-set transform-set-name1 [transform-set-name2...transform-set-name6]**
Purpose | Specifies which transform sets are allowed for this crypto map entry. List multiple transform sets in order of priority (highest priority first). |
| **Step 5** | **Router(config-crypto-map)# set security-association lifetime seconds seconds**
and/or
Purpose | (Optional) Specifies a security association lifetime for the crypto map entry, if you want the security associations for the current crypto map entry to be negotiated using different IPSec security association lifetimes than the global lifetimes. |
| **Step 6** | **Router(config-crypto-map)# set security-association level per-host**
Purpose | (Optional) Specifies that separate security associations should be established for each source/destination pair.
Note | Use this command with care, as multiple streams between given subnets can rapidly consume resources. |
| **Step 7** | **Router(config-crypto-map)# set pfs [group1 | group2]**
Purpose | (Optional) Specifies that IPSec should ask for perfect forward secrecy (PFS) when requesting new security associations for the current crypto map entry, or should demand PFS in requests received from the IPSec peer. |
| **Step 8** | **Router(config-crypto-map)# exit**
Purpose | Exits crypto map configuration mode. |
| **Step 9** | **Router(config)# interface fastethernet slot/port**
Purpose | Accesses the Gi interface to which you want to apply the crypto map. |
| **Step 10** | **Router(config-if)# crypto map map-name**
Purpose | Applies the crypto map set to the interface. |
Securing the GGSN Mobile (Gn) Interface

The following features provide additional security for the GGSN mobile interface against attacks that can lead to illegal access to a network or even network downtime: address verification and mobile-to-mobile traffic redirection. The following tasks are necessary for configuring these features:

- Configuring Address Verification, page 10-36
- Configuring Mobile-to-Mobile Traffic Redirection, page 10-37
- Redirecting All Traffic, page 10-37

Configuring Address Verification

Use the `security verify source` access point configuration command to configure the GGSN to verify the source IP address of an upstream TPDU against the address previously assigned to an MS.

When the `security verify source` command is configured on an APN, the GGSN verifies the source address of a TPDU before GTP will accept and forward it. If the GGSN determines that the address differs from that previously assigned to the MS, it drops the TPDU and regards it as an illegal packet in its PDP context and APN. Configuring the `security verify source` access point configuration command protects the GGSN from faked user identities.

Use the `security verify destination` access point configuration command to have the GGSN verify the destination addresses of upstream TPDUs against global lists of PLMN addresses specified using the `gprs plmn ip address` command. If the GGSN determines that a destination address of a TPDU is within the range of a list of addresses, it drops the TPDU. If it determines that the TPDU contains a destination address that does not fall within the range of a list, it forwards the TPDU to its final destination.

Note

The `security verify destination` command is not applied to APNs using VRF. In addition, the verification of destination addresses does not apply to GTP-PPP regeneration or GTP-PPP with L2TP.

To configure address verification for a GGSN access point, use the following commands, beginning in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-point)# security verify {source</td>
<td>destination}</td>
</tr>
</tbody>
</table>

Note

Both the verification of destination addresses and source addresses can be configured on an APN.
Configuring Mobile-to-Mobile Traffic Redirection

Mobile-to-mobile traffic enters and exits through a Gn interface. Therefore, it is switched by the GGSN without ever going through a Gi interface on the network side. Because of this, firewalls deployed on the network side of a GGSN do not have an opportunity to verify this level of traffic.

Use the `redirect intermobile ip` access-point command to redirect mobile-to-mobile traffic to an external device (such as an external firewall) for verification.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-access-point)# redirect intermobile ip ip address</code></td>
<td>(Optional) Specifies that mobile-to-mobile traffic be redirected to an external device.</td>
</tr>
</tbody>
</table>

Note

On the Catalyst 6500 series switch / Cisco 7600 series internet router platform, the mobile-to-mobile redirection feature requires that policy based routing (PBR) is configured on the MSFC2 and incoming VLAN interface from the Cisco MWAM, and that the next hop to route the packets that match the criteria is set using the `set ip next-hop` command.

Note

Redirection of intermobile traffic does not occur on an ingress APN unless the TPDUs are exiting the same APN. In addition, redirection of TPDUs tunneled by L2TP from the ingress APN to the LNS of the PDN does not occur.

Redirecting All Traffic

The redirect all traffic feature enables you to do the following:

- Redirect all packets to a specified destination regardless of whether the destination address belongs to a mobile station (MS) on the same GGSN or not. If redirecting traffic using the Mobile-to-Mobile Redirect feature, only packets for which the destination address belongs to an MS that is active on the same GGSN can be redirected. If the receiving MS has no PDP context in the GGSN where the sending MS PDP context is created, the packets are dropped.
- Redirect all traffic to a specific destination when aggregate routes are configured.

To redirect all traffic to a specific IP address, issue the following command while in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-access-point)# redirect all ip ip address</code></td>
<td>Specifies that all traffic be redirected to an external device.</td>
</tr>
</tbody>
</table>
Configuration Examples

This section includes the following configuration examples for security on the GGSN:

- AAA Security Configuration Example, page 10-38
- RADIUS Server Global Configuration Example, page 10-39
- RADIUS Server Group Configuration Example, page 10-39
- RADIUS Response Message Configuration Example, page 10-41
- IPSec Configuration Examples, page 10-42
- Address Verification and Mobile-to-Mobile Traffic Redirection Example, page 10-45

AAA Security Configuration Example

The following example shows how to enable AAA security globally on the router and how to specify global RADIUS authentication and authorization:

```plaintext
! Enables AAA globally
aaa new-model
!
! Creates a local authentication list for use on serial interfaces running PPP using RADIUS
!
aaa authentication ppp foo group foo
!
! Enables authorization and creates an authorization method list for all network-related service requests
! and enables authorization using a RADIUS server
!
aaa authorization network network foo group foo
```

For more information about configuring AAA, refer to the Cisco IOS Security Configuration Guide and Cisco IOS Security Command Reference publications.
RADIUS Server Global Configuration Example

The following example shows how to globally configure RADIUS server communication on the router:

```
! Specifies a global RADIUS server host at IP address 10.100.0.2
! Port 1645 is destination port for authentication requests
! Port 1646 is the destination port for accounting requests
! Specifies the key "foo" for this radius host only
!
radius-server host 10.100.0.2 auth-port 1645 acct-port 1646 key foo
!
! Sets the authentication and encryption key to mykey for all
! RADIUS communications between the router and the RADIUS daemon
!
radius-server key mykey
```

Note

Although you can configure the radius-server host command multiple times, the Cisco IOS software supports only one RADIUS server at the same IP address.

For more information about configuring RADIUS security, refer to the Cisco IOS Security Configuration Guide and Cisco IOS Security Command Reference publications.

RADIUS Server Group Configuration Example

The following configuration example defines four AAA server groups on the GGSN: foo, foo1, foo2, and foo3, shown by the aaa group server commands.

Using the gprs default aaa-group command, two of these server groups are globally defined as default server groups: foo2 for authentication, and foo3 for accounting.

At access-point 1, which is enabled for authentication, the default global authentication server group of foo2 is overridden and the server group named foo is designated to provide authentication services on the APN. Notice that accounting services are not explicitly configured at that access point, but are automatically enabled because authentication is enabled. Because there is a globally defined accounting server-group defined, the server named foo3 will be used for accounting services.

At access-point 4, which is enabled for accounting using the aaa-accounting enable command, the default accounting server group of foo3 is overridden and the server group named foo1 is designated to provide accounting services on the APN.

Access-point 5 does not support any AAA services because it is configured for transparent access mode.

```
! Enables AAA globally
!
aaa new-model
!
! Defines AAA server groups
!
aaa group server radius foo
    server 10.2.3.4 auth-port 1645 acct-port 1646
    server 10.6.7.8 auth-port 1645 acct-port 1646
aaa group server radius foo1
    server 10.10.0.1 auth-port 1645 acct-port 1646
aaa group server foo2
    server 10.2.3.4 auth-port 1645 acct-port 1646
    server 10.10.0.1 auth-port 1645 acct-port 1646
aaa group server foo3
    server 10.6.7.8 auth-port 1645 acct-port 1646
    server 10.10.0.1 auth-port 1645 acct-port 1646
```
Configuration Examples

! Configures AAA authentication and authorization
aaa authentication ppp foo group foo
aaa authentication ppp foo2 group foo2
aaa authorization network foo group foo
aaa accounting network foo start-stop group foo
aaa accounting network foo1 start-stop group foo1
aaa accounting network foo2 start-stop group foo2
aaa accounting network foo3 start-stop group foo3

! gprs access-point-list gprs
 access-point 1
 access-mode non-transparent
 access-point-name www.pdn1.com

! Specifies a RADIUS server group for use by the GGSN to authenticate mobile users at this access point
aaa-group authentication foo

! Enables AAA accounting services
aaa-accounting enable

! Specifies a RADIUS server group for use by the GGSN for accounting services at this access point
aaa-group accounting foo1

! gprs default aaa-group authentication foo2
gprs default aaa-group accounting foo3

! Configures global RADIUS server hosts and specifies destination ports for authentication and accounting requests
radius-server host 10.2.3.4 auth-port 1645 acct-port 1646 non-standard
radius-server host 10.6.7.8 auth-port 1645 acct-port 1646 non-standard
radius-server host 10.10.0.1 auth-port 1645 acct-port 1646 non-standard
radius-server key ggsntel

Note
Although you can configure the radius-server host command multiple times, the Cisco IOS software supports only one RADIUS server at the same IP address.
RADIUS Response Message Configuration Example

The following example globally configures the GGSN to wait for a RADIUS accounting response from the RADIUS server before sending a Create PDP Context response to the SGSN. The GGSN waits for a response for PDP context requests received across all access points, except access-point 1. RADIUS response message waiting has been overridden at access-point 1 by using the `no gtp response-message wait-accounting` command:

```plaintext
! Enables AAA globally
!
aaa new-model
!
! Defines AAA server group
!
aaa group server radius foo
  server 10.2.3.4 auth-port 1645 acct-port 1646
  server 10.6.7.8 auth-port 1645 acct-port 1646
!
! Configures AAA authentication
! and authorization
!
aaa authentication ppp foo group foo
aaa authorization network foo group foo
aaa accounting network foo start-stop group foo
!
gprs access-point-list gprs
  access-point 1
    access-mode non-transparent
    access-point-name www.pdn1.com
    aaa-group authentication foo
!
! Disables waiting for RADIUS response
! message at APN 1
!
  no gtp response-message wait-accounting
exit
access-point 2
  access-mode non-transparent
  access-point-name www.pdn2.com
  aaa-group authentication foo
!
! Enables waiting for RADIUS response
! messages across all APNs (except APN 1)
!
gprs gtp response-message wait-accounting
!
! Configures global RADIUS server hosts
! and specifies destination ports for
! authentication and accounting requests
!
radius-server host 10.2.3.4 auth-port 1645 acct-port 1646 non-standard
radius-server host 10.6.7.8 auth-port 1645 acct-port 1646 non-standard
radius-server key ggsntel
```
IPSec Configuration Examples

Note

On the Catalyst 6500/Cisco 7600 platform, IPSec is performed on the IPSec VPN Acceleration Services Module and requires no configuration on the GGSN instances on the Cisco MWAM. For information about configuring IPSec on the Catalyst 6500 series switch / Cisco 7600 series Internet router platform, see the IPSEC VPN Acceleration Services Module Installation and Configuration Note.

IP Security Protocol is configured between two peers to establish data security services. For GPRS/UMTS, IPSec configuration is applicable between the GGSN and a router on a PDN.

The following examples show methods of IPSec configurations:

- IPSec Configuration using Crypto Map Entries, page 10-42
- IPSec Configuration using VRF and IPSec Profile, page 10-44

IPSec Configuration using Crypto Map Entries

The following example shows configuration of IPSec on the GGSN on the Cisco 7200 series router platform and an associated PDN, including the complete global and GGSN configuration commands, using crypto map entries:

GGSN configuration

```conf
! hostname ggsn1
! IPSec configuration for GGSN
crypto isakmp policy 1
  authentication pre-share
  group 2
! 10.58.0.8 is address of peer, or PDN
! crypto isakmp key sharedkey address 10.58.0.8
crypto ipsec transform-set auth2 esp-des esp-sha-hmac
crypto map test 10 ipsec-isakmp
  set peer 10.58.0.8
  set transform-set auth2
  match address 133
! Cisco VAM2 card is required for IPSec support
! controller VAM2 1/1
! interface loopback 1
  ip address 10.7.7.7 255.255.255.0
! interface FastEthernet0/0
  description CONNECT TO sgsn-a
  ip address 10.56.0.7 255.255.0.0
! interface FastEthernet4/0
  description CONNECT TO Gi
  ip address 10.58.0.7 255.255.0.0
  crypto map test
! interface Virtual-Template1
  ip unnumber loopback 1
```
encapsulation gtp
ip mroute-cache
gprs access-point-list gprs
!
router eigrp 10
 network 10.56.0.0
 network 10.58.0.0
!
! 10.2.0.0 is the network for Mobile Nodes
!
access-list 133 permit ip 10.2.0.0 0.0.255.255 10.59.0.0 0.0.255.255
!
!
gprs access-point-list gprs
 access-point 1
 access-point-name gprs.cisco.com
exit

PDN configuration
!
hostname pdn1a
!
! IPSec configuration on the PDN
!
crypto isakmp policy 1
 authentication pre-share
 group 2
!
! 10.58.0.7 is address of peer, or GGSN
!
crypto isakmp key sharedkey address 10.58.0.7
crypto ipsec transform-set auth2 esp-des esp-sha-hmac
crypto map test 10 ipsec-isakmp
 set peer 10.58.0.7
 set transform-set auth2
 match address 144
!
!
controller VAM2 1/1
!
interface FastEthernet0/0
 description CONNECT TO Intranet
 ip address 10.59.0.8 255.255.0.0
!
interface FastEthernet4/0
 description CONNECT TO Gi
 ip address 10.58.0.8 255.255.0.0
 crypto map test
!
!
! VAM2 card is required for IPSec support
router eigrp 10
 network 10.2.0.0
 network 10.58.0.0
 network 10.59.0.0
!
!
access-list 144 permit ip 10.59.0.0 0.0.255.255 10.2.0.0 0.0.255.255
!
IPSec Configuration using VRF and IPSec Profile

The following example shows configuration of IPSec on the GGSN on the Cisco 7200 series router platform and an associated PDN, including the complete global and GGSN configuration commands, using VRF and IPSec profiles:

GGSN configuration

```plaintext
! hostname ggsn1

! IPSec configuration for GGSN
crypto isakmp policy 1
authentication pre-share
group 2
!
! 10.58.0.8 is address of peer, or PDN
!
crypto isakmp key sharedkey address 10.58.0.8
crypto ipsec transform-set auth2 esp-des esp-sha-hmac
crypto ipsec profile tunnel
set transform-set auth2
!
! VAM2 card is required for IPSec support
!
controller VAM2 1/1
!
interface Tunnel100
ip vrf forwarding vpn1
ip address 10.58.0.7 255.255.0.0
tunnel source FastEthernet2/0
tunnel destination 14.0.0.3
tunnel protection ipsec profile tunnel
router eigrp 10
network 10.56.0.0
network 10.58.0.0
!
```

PDN configuration

```plaintext
! hostname pdn1a
!
!
! IPSec configuration on the PDN
!
crypto isakmp policy 1
authentication pre-share
group 2
!
! 10.58.0.7 is address of peer, or GGSN
!
crypto isakmp key sharedkey address 10.58.0.7
crypto ipsec transform-set auth2 esp-des esp-sha-hmac
crypto ipsec profile tunnel
set transform-set auth2
!
controller VAM2 1/1
!
!
interface Tunnel100
ip address 1.1.1.5 255.255.255.0
```
tunnel source FastEthernet2/0
tunnel destination 14.0.0.1
tunnel protection ipsec profile tunnel
!
! VAM2 card is required for IPsec support
!
router eigrp 10
network 10.2.0.0
network 10.58.0.0
network 10.59.0.0
!

Address Verification and Mobile-to-Mobile Traffic Redirection Example

The following examples show how to enable address verification and specify that mobile-to-mobile traffic be redirected to an external device.

Cisco 7200 Platform

! Defines PLMN address ranges
gprs plmn ip address 1.1.1.1 1.1.1.99
gprs plmn ip address 1.1.2.1 1.1.2.49
!
! Enters access-point configuration mode
! and turns on source and destination address
! verification and mobile-to-mobile traffic redirection
!
gprs access-point-list gprs
 access-point 1
 access-point-name www.abc.com
 security verify source
 security verify destination
 redirection intermobile ip 10.1.1.1
!

Catalyst 6500/Cisco 7600 Platform

On the GGSN:

```
service gprs ggsn
!
hostname t6500-7-2
!
ip cef
!
ip vrf vpn4
description abc_vrf
rd 104:4
!
interface Loopback2
   description USED FOR DHCP2 - range IN dup prot range
   ip address 111.72.0.2 255.255.255.255
!
interface Loopback100
   description GPRS GTP V-TEMPLATE IP ADDRESS
   ip address 9.9.9.72 255.255.255.0
!
interface GigabitEthernet0/0
   no ip address
!
interface GigabitEthernet0/0.2
   description Ga/Gn Interface
   encapsulation dot1Q 101
   ip address 10.1.1.72 255.255.255.0
   no cdp enable
!
interface GigabitEthernet0/0.3
   encapsulation dot1Q 103
   ip vrf forwarding vpn4
   ip address 10.1.3.72 255.255.255.0
   no cdp enable
!
interface GigabitEthernet0/0.95
   description CNR and CAR
   encapsulation dot1Q 95
   ip address 10.2.25.72 255.255.255.0
!
interface Virtual-Template1
   description GTP v-access
   ip unnumbered Loopback100
   encapsulation gtp
gprs access-point-list gprs
!
   ! In case the ms is on another MWAM GGSN
   ip route vrf vpn4 0.0.0.0 0.0.0.0 10.1.3.1
!
gprs access-point-list gprs
   access-point 7
      access-point-name ms_redirect.com
      ip-address-pool dhcp-proxy-client
      aggregate auto
dhcp-server 10.2.25.90
dhcp-gateway-address 111.72.0.2
vrf vpn4
!
   ! In case the ms is on this GGSN.
   redirect intermobile ip 10.1.3.1
```
Related configuration on the Supervisor/MSFC2:

hostname 6500-a

interface FastEthernet9/15
description OUT to Firewall
no ip address
duplex half
switchport
switchport access vlan 162
!
interface FastEthernet9/16
description In from Firewall
no ip address
switchport
switchport access vlan 163
!
interface Vlan103
description Vlan to GGSN redirect to FW
ip address 10.1.3.1 255.255.255.0
ip policy route-map REDIRECT-TO-FIREWALL
!
interface Vlan162
ip address 162.1.1.1 255.255.255.0
!
interface Vlan163
ip address 163.1.1.1 255.255.255.0
!
ip route 111.72.0.0 255.255.0.0 10.1.3.72
ip route 111.73.0.0 255.255.0.0 10.1.3.73
ip route 111.74.0.0 255.255.0.0 10.1.3.74
ip route 111.75.0.0 255.255.0.0 10.1.3.75
ip route 111.76.0.0 255.255.0.0 10.1.3.76
!
access-list 102 permit ip any any
!
route-map REDIRECT-TO-FIREWALL permit 10
match ip address 102
set ip next-hop 162.1.1.11
!

Access to a Private RADIUS Server Using VRF Configuration Example

The following examples shows an example of configuring access to a private RADIUS server using VRF.

Cisco 7200 Platform

! Enables AAA globally
aaa new-model
!
! Configures a VRF-Aware Private RADIUS Server Group named vrf_aware_radius
!
aaa group server radius vrf_aware_radius
 server-private 99.100.0.2 auth-port 1645 acct-port 1646 key cisco
 ip vrf forwarding vpn4
!
! Configures Authentication, Authorization, and Accounting using named method lists
!
aaa authentication ppp vrf_aware_radius group vrf_aware_radius
aaa authorization network default local group radius
aaa authorization network vrf_aware_radius group vrf_aware_radius
aaa accounting network vrf_aware_radius start-stop group vrf_aware_radius
Configuration Examples

Chapter 10 Configuring Security on the GGSN

aaa session-id common
!
! Configures a VRF routing table
!
ip vrf vpn4
 rd 104:1
!
! Configures VRF on an interface
!
interface FastEthernet0/0
 ip vrf forwarding vpn4
 ip address 99.108.0.4 255.255.255.0
!
! Configures VRF on an access point for access to the server
!
access-point 17
 access-point-name radius_vrf
 access-mode non-transparent
 aaa-group authentication vrf_aware_radius
 aaa-group accounting vrf_aware_radius
 ip-address-pool radius-client
 vrf vpn4
 exit

Catalyst 6500/Cisco 7600 Platform

On the GGSN:

aaa new-model
!

aaa group server radius vrf_aware_radius
 server-private 99.100.0.2 auth-port 1645 acct-port 1646 key cisco
 ip vrf
!

aaa authentication ppp vrf_aware_radius group vrf_aware_radius
 aaa authorization network default local group radius
 aaa authorization network vrf_aware_radius group vrf_aware_radius
 aaa accounting network vrf_aware_radius start-stop group vrf_aware_radius
 aaa session-id common
!

ip vrf vpn2
 rd 101:1
!
interface Loopback1
 ip address 150.1.1.72 255.255.0.0
!
interface Tunnel2
 ip vrf forwarding vpn2
 ip address 80.80.72.72 255.255.255.0
 tunnel source 150.1.1.72
tunnel destination 167.2.1.12
!
ip local pool vpn2_pool 100.72.0.1 100.72.255.255 group vpn2
ip route vrf vpn2 0.0.0.0 0.0.0.0 Tunnel2
!
gprs access-point-list gprs
 access-point 1
 access-point-name apn.vrf2.com
 access-mode non-transparent
 aaa-group authentication vrf_aware_radius
 aaa-group accounting vrf_aware_radius
ip-address-pool local vpn2_pool
aggregate 100.72.0.0 255.255.0.0
vrf vpn2
!

Related configuration on the Supervisor / MSFC2:

...!
interface FastEthernet9/5
 switchport
 switchport access vlan 167

interface Vlan167
 ip address 167.1.1.1 255.255.0.0

ip route 150.1.1.72 255.255.255.255 10.1.1.72
ip route 167.2.0.0 255.255.0.0 167.1.1.12
!
...

Overview of Dynamic IP Addressing on the GGSN

There are three methods for configuring the GGSN to assign IP addresses to mobile station users who need to access the public data network (PDN): Dynamic Host Configuration Protocol (DHCP) allocation, Remote Authentication Dial-In User Service (RADIUS) allocation, and local IP address pool allocation configured at the access point name (APN).

A method of dynamic IP addressing can be configured either globally or at the access-point configuration level.

Be sure that the following configuration guidelines are met to support the type of IP address allocation in use on your network:

- **DHCP IP address allocation**
 - Be sure that you configure the scope of the addresses to be allocated on the same subnet as the loopback interface.
 - Do not configure an IP address for users on the RADIUS server.
 - Specify the `peer default ip address dhcp` command at the PPP virtual template interface.
 - Specify the `aaa authorization network method_list none` command on the GGSN.
- **RADIUS IP address allocation**
 - Be sure that users are configured on the RADIUS server using the complete username@domain format.
 - Specify the `no peer default ip address` command at the PPP Virtual Template interface.
 - For more information about configuring RADIUS services on the GGSN, see the “Configuring Security on the GGSN” chapter in this book.

- **Local pool IP address allocation**
 - Be sure to configure a local pool using the `ip local pool` command.
 - Specify the `aaa authorization network method_list none` command on the GGSN.
 - Specify the `peer default ip address pool pool-name` command.

Note

On the Catalyst 6500/Cisco 7600 platform, dynamic address allocation using the DHCP or RADIUS server methods requires that the DHCP or RADIUS server be Layer 3 routeable from the Supervisor/MSFC2.

Configuring DHCP on the GGSN

You can use local DHCP services within the Cisco IOS software, or you can configure the GGSN to use an external DHCP server such as the Cisco Network Registrar (CNR). For information about configuring internal DHCP services in the Cisco IOS software, refer to the *Cisco IOS Configuration Fundamentals Configuration Guide*.

The DHCP server can be specified in two ways:

- At the global configuration level, using the `gprs default dhcp-server` command
- At the access-point configuration level, using the `dhcnp-server` command

To configure DHCP support on the GGSN, you must configure either the `gprs default ip-address-pool` global configuration command or the `ip-address-pool` access-point configuration command with the `dhcp-proxy-client` keyword option.

After you configure the access point for DHCP proxy client services, use the `dhcnp-server` access-point configuration command to specify a DHCP server.

Use the `ip-address` argument to specify the IP address of the DHCP server. The second, optional `ip-address` argument can be used to specify the IP address of a backup DHCP server to be used in the event that the primary DHCP server is unavailable. If you do not specify a backup DHCP server, then no backup DHCP server is available.

If you specify a DHCP server at the access-point level by using the `dhcnp-server` command, then the server address specified at the access point overrides the address specified at the global level. If you do not specify a DHCP server address at the access-point level, then the address specified at the global level is used.

Therefore, you can have a global address setting and also one or more local access-point level settings if you need to use different DHCP servers for different access points.

Use the `vrf` keyword when the DHCP server itself is located within the address space of a VRF interface on the GGSN. If the DHCP server is located within the VRF address space, then the corresponding loopback interface for the `dhcp-gateway-address` must also be configured within the VRF address space.
Chapter 11 Configuring Dynamic Addressing on the GGSN

This section contains the following information:

- Configuring DHCP Server Communication Globally, page 11-3
- Configuring DHCP at the GGSN Global Configuration Level, page 11-4
- Configuring a Local DHCP Server, page 11-8
- Configuration Example, page 11-8

Configuring DHCP Server Communication Globally

This section describes how to configure a global DHCP server host that the GGSN can use to assign IP addresses to mobile users. You can configure additional DHCP server communication at the GGSN global configuration level.

To globally configure DHCP server communication on the router or instance of Cisco IOS software, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip address-pool (dhcp-proxy-client</td>
</tr>
<tr>
<td></td>
<td>dhcp-proxy-client)—Specifies the router or instance of Cisco IOS software as the proxy-client between a third-party DHCP server and peers connecting to the router or IOS instance.</td>
</tr>
<tr>
<td></td>
<td>local)—Specifies the local address pool named “default”.</td>
</tr>
<tr>
<td>Note</td>
<td>There is no default option for the ip address-pool command. If you configure a local address pool using the local keyword, you can also configure the optional commands in Step 4 and Step 5.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# ip dhcp-server (ip-address</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# ip dhcp excluded address low-address [high-address] (Optional) Specifies IP addresses that a DHCP server should not assign to DHCP clients, where:</td>
</tr>
<tr>
<td></td>
<td>low-address)—Specifies the first IP address in an excluded address range. This address is typically the address of the DHCP server itself.</td>
</tr>
<tr>
<td></td>
<td>high-address)—(Optional) Specifies the last IP address in the excluded address range.</td>
</tr>
</tbody>
</table>
Configuring DHCP on the GGSN

Chapter 11 Configuring Dynamic Addressing on the GGSN

For more information about configuring global DHCP services, refer to the Cisco IOS IP Configuration Guide, Cisco IOS IP Command References, and the Cisco IOS Dial Technologies Command Reference publications.

Configuring DHCP at the GGSN Global Configuration Level

To complete the DHCP configuration for the GGSN, you can configure DHCP at the GGSN global configuration level. When you configure DHCP at the GGSN configuration level, you can configure DHCP server communication for all access points or for a specific access point.

Configuring DHCP at the GGSN configuration level includes the following tasks:

- Configuring a Loopback Interface, page 11-4 (Required)
- Specifying a DHCP Server for All Access Points, page 11-5 (Optional)
- Specifying a DHCP Server for a Particular Access Point, page 11-6 (Optional)

Configuring a Loopback Interface

When you configure a DHCP gateway address for DHCP services at an access point, and when you are supporting unique supernets across all access points on the GGSN for DHCP, then you must configure a loopback interface for each unique network.

A loopback interface is a software-only interface that emulates an interface that is always up. It is a virtual interface supported on all platforms. The interface number is the number of the loopback interface that you want to create or configure. There is no limit on the number of loopback interfaces you can create.

Command and Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Router(config)# ip dhcp pool name</td>
</tr>
<tr>
<td></td>
<td>(Optional—Supports ip address-pool local command only.) Configures a DHCP address pool, and enters DHCP pool configuration mode, where name can be either a symbolic string (such as “engineering”) or an integer (such as 0).</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-dhcp)# network network-number [mask</td>
</tr>
<tr>
<td></td>
<td>(Optional—Supports ip address-pool local command only.) Specifies the subnet network number and mask of the DHCP address pool. The prefix length specifies the number of bits in the address prefix. The prefix is an alternative way of specifying the network mask of the client. The prefix length must be preceded by a forward slash (/).</td>
</tr>
</tbody>
</table>
To configure a loopback interface on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface loopback interface-number</td>
</tr>
<tr>
<td></td>
<td>Defines a loopback interface on the GGSN, where interface-number identifies the loopback interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address ip-address mask [secondary]</td>
</tr>
<tr>
<td></td>
<td>Specifies an IP address for the interface, where:</td>
</tr>
<tr>
<td></td>
<td>• ip-address—Specifies the IP address of the interface in dotted decimal format.</td>
</tr>
<tr>
<td></td>
<td>• mask—Specifies a subnet mask in dotted decimal format.</td>
</tr>
<tr>
<td></td>
<td>• secondary—Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.</td>
</tr>
<tr>
<td></td>
<td>Note The ip-address corresponds to the IP address of the DHCP gateway address at the access point. The mask should be 255.255.255.255 to match the dhcp-gateway-address value exactly.</td>
</tr>
</tbody>
</table>

Specifying a DHCP Server for All Access Points

When processing DHCP address allocation, the GGSN software first checks to see whether a DHCP server has been specified at the access-point configuration level. If a server has been specified, the GGSN uses the DHCP server specified at the access point. If no DHCP server is specified at the access-point configuration level, then the GGSN uses the default GGSN DHCP server.
To specify a DHCP server for all GGSN access points, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# gprs default ip-address-pool (dhcp-proxy-client</td>
<td>radius-client</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Specifies a primary (and backup) DHCP server from which the GGSN obtains IP address leases for mobile users, where:</td>
</tr>
<tr>
<td>Router(config)# gprs default dhcp-server (ip-address</td>
<td>name) [{ip-address</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specifying a DHCP Server for a Particular Access Point

To override the default DHCP server configured for all access points, you can specify a different DHCP server for a particular access point. Or, if you choose not to configure a default GGSN DHCP server, you can specify a DHCP server at each access point.
To specify a DHCP server for a particular access point, use the following commands, beginning in access-point configuration mode:

| Step 1 | Router(config-access-point)# ip-address-pool
| dhcp-proxy-client | radius-client | local pool-name | disable |

(Optional) Specifies a dynamic address allocation method using IP address pools for the current access point. The available options are:
- **dhcp-proxy-client**—DHCP server provides the IP address pool.
- **radius-client**—RADIUS server provides the IP address pool.
- **local**—Specifies that a local pool provides the IP address. This option requires that a local pool has been configured using the `ip local pool` global configuration command.
- **disable**—Turns off dynamic address allocation.

Note If you are using a dynamic address allocation method, then you must configure this command according to the appropriate IP address pool source.

| Step 2 | Router(config-access-point)# dhcp-server
| ip-address | ip-address | vrf |

Specifies a primary (and backup) DHCP server that the GGSN uses at a particular access point to obtain IP address leases for mobile users for access to a PDN, where:
- **ip-address**—Specifies the IP address of a DHCP server. The second (optional) `ip-address` argument specifies the IP address of a backup DHCP server.
- **vrf**—DHCP server uses the VPN routing and forwarding (VRF) table that is associated with the APN.

| Step 3 | Router(config-access-point)# dhcp-gateway-address
| ip-address |

Specifies the subnet in which the DHCP server should return addresses for DHCP requests for MS users entering a particular PDN access point.

Note You must configure a corresponding loopback interface with the same IP address as the DHCP gateway address.
Configuring Dynamic Addressing on the GGSN

Chapter 11

Configuring a Local DHCP Server

Note

Using a local DHCP Server is not recommended on the Catalyst 6500/Cisco 7600 platform.

Although most networks use external DHCP servers, such as that available through the Cisco Network Registrar (CNR), you can also configure internal DHCP services on the GGSN. If you use local DHCP services on the GGSN, then there are a couple of commands that you should configure to improve the internal DHCP response times.

To optimize local DHCP services on the GGSN, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>Router(config)# ip dhcp ping packets 0</code></td>
<td>Specifies that the Cisco IOS DHCP Server sends 0 packets to a pool address as part of a ping operation.</td>
</tr>
<tr>
<td>Step 2: <code>Router(config)# ip dhcp ping timeout 100</code></td>
<td>Specifies that the Cisco IOS DHCP Server waits for a ping reply from an address pool for 100 milliseconds.</td>
</tr>
</tbody>
</table>

Configuration Example

The following example shows a VRF configuration for vpn3 (without tunneling) using the `ip vrf` global configuration command. Because the `ip vrf` command establishes both VRF and CEF routing tables, notice that `ip cef` also is configured at the global configuration level to enable CEF switching at all of the interfaces.

The following other configuration elements must also associate the same VRF named vpn3:

- FastEthernet0/0 is configured as the Gi interface using the `ip vrf forwarding interface` configuration command.
- Access-point 2 implements VRF using the `vrf` command access-point configuration command.

The DHCP server at access-point 2 also is configured to support VRF. Notice that access-point 1 uses the same DHCP server, but is not supporting the VRF address space. The IP addresses for access-point 1 will apply to the global routing table:

```plaintext
aaa new-model
!
aaa group server radius foo
  server 10.2.3.4
  server 10.6.7.8
!
aaa authentication ppp foo group foo
aaa authorization network foo group foo
aaa accounting network foo start-stop group foo
!
ip cef
!
ip vrf vpn3
  rd 300:3
!
interface Loopback1
  ip address 10.30.30.30 255.255.255.255
!
interface Loopback2
```

Command Purpose

Step 1

 Router(config)# ip dhcp ping packets 0
 Specifies that the Cisco IOS DHCP Server sends 0 packets to a pool address as part of a ping operation.

Step 2

 Router(config)# ip dhcp ping timeout 100
 Specifies that the Cisco IOS DHCP Server waits for a ping reply from an address pool for 100 milliseconds.
As the number of PDP contexts increases, allocating IP addresses via locally-configured address pools improves the PDP context activation rate. Whether or not addresses are allocated to MSs using local pools is specified at the access-point configuration level and requires that a local pool or pools of IP address have been configured on the GGSN using the `ip local pool` configuration command.
To configure a local IP address pool, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Router(config)#ip local pool {default | pool-name low-ip-address [high-ip-address]} | Configures a local pool of IP addresses to be used when a remote peer connects to a point-to-point interface, where:
- **default**—Defaults local address pool that is used if no other pool is named.
- **pool-name**—Name of a specific local address pool.
- **low-ip-address**—Lowest IP address in the pool.
- **high-ip-address**—(Optional) Highest IP address in the pool. If this value is omitted, only the low-ip-address IP address argument is included in the local pool. |

To configure a local IP address pool allocation on an access-point, use the following command in access-point configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Router(config-access-point)# ip-address-pool local pool-name | (Optional) Specifies that a local pool provides the IP address.
This option requires that the address range be configured using the *aggregate* access point configuration command. |

Note

Using VRF at the access point, you can configure APNs that use the same IP address pool (overlapping addresses). However, on the Catalyst 6500/Cisco 7600 platform, VRF is not supported on the Supervisor II / MSFC2. Therefore, if using a Supervisor II, you must tunnel the encapsulated VRF traffic through the Supervisor using a GRE tunnel.

For more information on configuring VPN access via VRF from an access point, see the “VPN Access Using VRF Configuration Task Lists” section on page 7-16.

The Catalyst 6500/Cisco 7600 Sup720 supports VRF.
Chapter 11 Configuring Dynamic Addressing on the GGSN

Configuring Dynamic Addressing via RADIUS on the GGSN

Dynamic IP addressing via a RADIUS server is configured at the access-point configuration level using the `ip-address-pool` access-point configuration command.

For more information about the `ip-address-pool` access-point configuration command, see “Configuring Additional Real Access Point Options” section on page 7-24. For more information about configuring RADIUS, see the Cisco IOS Security Configuration Guide.

Configuring IP Overlapping Address Pools

The IP Overlapping Address Pools feature improves flexibility in assigning IP addresses dynamically. This feature allows you to configure overlapping IP address pool groups to create different address spaces and concurrently use the same IP addresses in different address spaces.

IP Overlapping Address Pools gives greater flexibility in assigning IP addresses dynamically. It allows you to configure overlapping IP address pool groups to create different address spaces and concurrently use the same IP addresses in different address spaces.

With Cisco IOS Release 12.3(2)XB and later, the GGSN supports the concept of an IP address group to support multiple IP address spaces and still allow the verification of nonoverlapping IP address pools within a pool group. Pool names must be unique within the GGSN. The pool name carries an implicit group identifier because that pool name can be associated only with one group. Pools without an explicit group name are considered members of the base system group and are processed in the same manner as the original IP pool implementation.

Existing configurations are not affected by the new pool feature. The “group” concept is an extension of the existing `ip local pool` command. Processing of pools that are not specified as a member of a group is unchanged from the existing implementation.
To configure a local IP address pool group and verify that it exists, use the following commands in global configuration mode:

Configuration Examples

Defining Local Address Pooling as the Global Default, page 11-12

Configuring Multiple Ranges of IP Addresses into One Pool Example, page 11-12

Configuring IP Overlapping Address Pools on a GGSN on the Catalyst 6500/Cisco 7600 Platform with Supervisor II / MSFC2 Example, page 11-13

Command Examples

Step 1

```bash
Router(config)# ip local pool {default | pool-name} low-ip-address [high-ip-address]
```

Example:

```bash
GGSN(config)# ip local pool testpool 10.2.2.1 10.2.2.10 group testgroup cache-size 10000
```

Step 2

```bash
Router(config)# show ip local pool [poolname | [group group-name]]
```

Example:

```bash
GGSN(config)# show ip local pool group testgroup testpool
```

Configuration Examples

The following are configuration examples for configuring IP overlapping address pools.

- Defining Local Address Pooling as the Global Default, page 11-12
- Configuring Multiple Ranges of IP Addresses into One Pool Example, page 11-12
- Configuring IP Overlapping Address Pools on a GGSN on the Catalyst 6500/Cisco 7600 Platform with Supervisor II / MSFC2 Example, page 11-13

Defining Local Address Pooling as the Global Default

The following example shows how to configure local pooling as the global default mechanism:

```bash
ip address-pool local ip local pool default 192.169.15.15 192.68.15.16
```

Configuring Multiple Ranges of IP Addresses into One Pool Example

The following example shows how to configure two ranges of IP addresses for one IP address pool:

```bash
ip local pool default 192.169.10.10 192.169.10.20
ip local pool default 192.169.50.25 192.169.50.50
```
Configuring IP Overlapping Address Pools on a GGSN on the Catalyst 6500/Cisco 7600 Platform with Supervisor II / MSFC2 Example

The following example shows how to configure IP overlapping address pools on the Catalyst 6500/Cisco 7600 platform.

The following examples also show a partial configuration for two VPNs (vpn1 and vpn2) and their associated GRE tunnel configurations (Tunnel1 and Tunnel2).

On the GGSN:

```
service gprs ggsn
!
hostname 6500-7-2
!
ip cef
!
ip vrf vpn1
description GRE Tunnel 1
rd 100:1
!
ip vrf vpn2
description GRE Tunnel 3
rd 101:1
!
interface Loopback1
ip address 150.1.1.72 255.255.0.0
!
interface Loopback100
description GPRS GTP V-TEMPLATE IP ADDRESS
ip address 9.9.9.72 255.255.255.0
!
interface Tunnel1
description VRF-GRE to PDN 7500(13) Fa0/1
  ip vrf forwarding vpn1
  ip address 50.50.52.72 255.255.255.0
tunnel source 150.1.1.72
tunnel destination 165.2.1.13
!
interface Tunnel2
description VRF-GRE to PDN PDN 7200(12) Fa3/0
  ip vrf forwarding vpn2
  ip address 80.80.82.72 255.255.255.0
tunnel source 150.1.1.72
tunnel destination 167.2.1.12
!
interface GigabitEthernet0/0.1
description Gig
  encapsulation dot1Q 100
  ip address 10.1.2.72 255.255.255.0
!
interface Virtual-Template1
description GTP v-access
  ip unnumbered Loopback100
  encapsulation gtp
gprs access-point-list gprs
!
router ospf 10
  network 10.1.2.0 0.0.0.255 area 10
  network 150.1.0.0 0.0.255.255 area 10
!
ip local pool vpn1_pool 100.2.0.1 100.2.255.255 group vpn1
ip local pool vpn2_pool 100.2.0.1 100.2.255.255 group vpn2
```
ip route vrf vpn1 0.0.0.0 255.255.255.0 Tunnel1
ip route vrf vpn2 0.0.0.0 255.255.255.0 Tunnel2

gprs access-point-list gprs
 access-point 1
 access-point-name apn.vrf1.com
 access-mode non-transparent
 aaa-group authentication ipdbfms
 ip-address-pool local vpn1_pool
 vrf vpn1
 !
 access-point 2
 access-point-name apn.vrf2.com
 access-mode non-transparent
 aaa-group authentication ipdbfms
 ip-address-pool local vpn2_pool
 vrf vpn2
 !

Related configuration on the Supervisor / MSFC2:

interface FastEthernet9/5
 no ip address
 switchport
 switchport access vlan 167
 no cdp enable
!
interface FastEthernet9/10
 no ip address
 switchport
 switchport access vlan 165
 no cdp enable
!
interface Vlan165
 ip address 165.1.1.1 255.255.0.0
!
interface Vlan167
 ip address 167.1.1.1 255.255.0.0
!
! provides route to tunnel endpoints on GGSNs
router ospf 10
 network 10.1.2.0 0.0.0.255 area 10
!
! routes to tunnel endpoints on PDN
!
ip route 165.2.0.0 255.255.0.0 165.1.1.13
ip route 167.2.0.0 255.255.0.0 167.1.1.12
Configuring the NBNS and DNS Address for an APN

You can configure a primary and secondary NetBIOS Name Service (NBNS) and domain name system (DNS) under an APN. This feature is beneficial for address allocation schemes where there is no mechanism to obtain these addresses. Also, for a RADIUS-based allocation scheme, it prevents the operator from needing to configure NBNS and DNS under each user profile.

The NBNS and DNS addresses can come from three possible sources: DHCP server, RADIUS server, or local APN configuration. The criterion for selecting the addresses depends on the IP address allocation scheme configured under the APN. Depending on the configuration, the criterion for selecting the DNS and NBNS addresses is as follows:

1. DHCP-based IP address allocation scheme (local and external)—NBNS address returned from the DHCP server is sent to the MS. If the DHCP server does not return an NBNS address, the local APN configuration is used.
2. RADIUS-based IP address allocation scheme—NBNS address returned from the RADIUS server (in Access-Accept responses) is used. If the RADIUS server does not return an NBNS address, the local APN configuration is used.
3. Local IP Address Pool-based IP address allocation scheme—Local APN configuration is used.
4. Static IP Addresses—Local APN configuration is used.

Note
The GGSN sends NBNS and DNS addresses in the create PDP response only if the MS is requesting the DNS address in the PCO IE.

To specify a primary (and backup) NBNS to be sent in create PDP responses at the access point, use the nbns primary access-point configuration command. To remove the NBNS from the access-point configuration, use the no form of this command:

```
nbns primary ip-address [secondary ip-address]
```

To specify a primary (and backup) DNS to be sent in create PDP responses at the access point, use the dns primary access-point configuration command. To remove the DNS from the access-point configuration, use the no form of this command:

```
dns primary ip-address [secondary ip-address]
```
Configuring Load Balancing on the GGSN

This chapter describes how to configure a gateway GPRS support node (GGSN) to support load balancing functions using the Cisco IOS software Server Load Balancing (SLB) feature. GTP load balancing provides increased reliability and availability when you are using multiple Cisco GGSNs or non-Cisco GGSNs in your GPRS/UMTS network.

For a complete description of the GGSN commands in this chapter, refer to the *Cisco GGSN Release 6.0 Command Reference*. For a complete description of the other Cisco IOS SLB commands in this chapter, refer to the *IOS Server Load Balancing* feature module.

To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter includes the following sections:

- Overview of GTP Load Balancing, page 12-1
- Configuring GTP Load Balancing, page 12-8
- Configuring Messaging from the GGSN to the Cisco IOS SLB, page 12-16 (Optional)
- Monitoring and Maintaining the Cisco IOS SLB Feature, page 12-22
- Configuration Examples, page 12-23

Note

You can also use the GTP Director Module (GDM) to obtain simple, round-robin load balancing in environments where non-Cisco GGSNs are found. For more information about GDM and load balancing, see the *GTP Director Module* section of this book.

Overview of GTP Load Balancing

This section provides an overview of the Cisco IOS SLB feature and GTP load balancing support on the GGSN. It includes the following sections:

- Overview of Cisco IOS SLB, page 12-2
- GGSN GTP Load Balancing Support, page 12-2
- GTP SLB Restrictions, page 12-7
Overview of Cisco IOS SLB

The Cisco SLB feature is an IOS-based solution that provides IP server load balancing. Using the Cisco IOS SLB feature, you can define a virtual server that represents a group of real servers in a cluster of network servers known as a server farm. In this environment, the clients connect to the IP address of the virtual server. When a client initiates a connection to the virtual server, the Cisco IOS SLB feature chooses a real server for the connection, based on a configured load-balancing algorithm.

The Cisco IOS SLB feature also provides firewall load balancing, which balances flows across a group of firewalls called a firewall farm.

Figure 12-1 presents a logical view of a simple Cisco IOS SLB network.

GGSN GTP Load Balancing Support

Cisco IOS SLB provides GGSN GTP load balancing and increased reliability and availability for the GGSN. GGSN GTP load balancing supports a subset of the overall server load-balancing functions that are available in the Cisco IOS SLB feature. Therefore, the full scope of Cisco IOS SLB functions is not applicable to the general packet radio service/Universal Mobile Telecommunication System (GPRS/UMTS) environment. For more information about unsupported functions, see the “GTP SLB Restrictions” section on page 12-7.

When configuring GTP load balancing, a pool of GGSNs is configured as a server farm in Cisco IOS SLB. These are the GGSNs across which you want to load-balance GTP sessions. A virtual server instance is configured in IOS SLB to load balance GTP sessions across the GGSN farm. This virtual server is associated with the server farm that you configured in Cisco IOS SLB.
Overview of GTP Load Balancing on the Catalyst 6500/Cisco 7600 Platform

On the Catalyst 6500/Cisco 7600 platform, GTP load balancing is supported by using the Cisco IOS SLB feature on the Supervisor 2/MSFC2.

On receiving a Create PDP Context request, the SLB on the MSFC2 will process only the Create PDP Context request sent to the GGSN virtual IP address. On receiving a Create PDP Context request, a real GGSN is selected based on the load at that time. Once the PDP context has been established by the GGSN, all subsequent transactions corresponding to the PDP contexts occurs directly between that GGSN and corresponding SGSN, bypassing the Cisco IOS SLB on the MSFC2.

On the Catalyst 6500/Cisco 7600 platform:
- Multiple GGSN virtual farms are supported
- Load-balanced real servers can be internal or external to the Catalyst 6500/Cisco 7600 chassis
- Each GGSN virtual farm must have one unique public IP address that is reachable from the SGSNs
- Each virtual farm can correspond to one or more access point names (APNs).
- The Domain Name System (DNS) server used by the SGSNs to resolve the APNs to a GGSN IP address should use the GGSN virtual IP address

Supported GTP Load Balancing Types

The Cisco IOS SLB supports two types of GTP load balancing:
- GTP Load Balancing Without GTP Cause Code Inspection, page 12-3
- GTP Load Balancing With GTP Cause Code Inspection, page 12-4

GTP Load Balancing Without GTP Cause Code Inspection

GTP load balancing without GTP cause code inspection enabled is recommended for Cisco GGSNs. It has the following characteristics:
- Can operate in dispatched mode or in directed server Network Address Translation (NAT) mode, but not in directed client NAT mode. In dispatched mode, the GGSNs must be Layer 2–adjacent to the Cisco IOS SLB device.
- Does not support stateful backup.
- Delivers tunnel creation messages destined to the virtual GGSN IP address to one of the real GGSNs, using the weighted round-robin load-balancing algorithm. See the “Weighted Round-Robin” section on page 12-5 for more information about this algorithm.
- Requires Dynamic Feedback Protocol (DFP) to account for secondary PDP contexts in GTP v1.
GTP Load Balancing With GTP Cause Code Inspection

GTP load balancing with GTP cause code inspection enabled allows Cisco IOS SLB to monitor all PDP context signaling flows to and from GGSN server farms. This enables Cisco IOS SLB to monitor GTP failure cause codes, detecting system-level problems in both Cisco and non-Cisco GGSNs.

Table 12-1 lists the Create PDP Context response cause codes and the corresponding actions taken by Cisco IOS SLB.

<table>
<thead>
<tr>
<th>Cause Code</th>
<th>Cisco IOS SLB Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Accepted</td>
<td>Establish session</td>
</tr>
<tr>
<td>No Resource Available</td>
<td>Fail current real, reassign session, drop the response</td>
</tr>
<tr>
<td>All dynamic addresses are occupied</td>
<td>Fail current real, reassign session, drop the response</td>
</tr>
<tr>
<td>No memory is available</td>
<td>Fail current real, reassign session, drop the response</td>
</tr>
<tr>
<td>System Failure</td>
<td>Fail current real, reassign session, drop the response</td>
</tr>
<tr>
<td>Missing or Unknown APN</td>
<td>Forward the response</td>
</tr>
<tr>
<td>Unknown PDP Address or PDP type</td>
<td>Forward the response</td>
</tr>
<tr>
<td>User Authentication Failed</td>
<td>Forward the response</td>
</tr>
<tr>
<td>Semantic error in TFT operation</td>
<td>Forward the response</td>
</tr>
<tr>
<td>Syntactic error in TFT operation</td>
<td>Forward the response</td>
</tr>
<tr>
<td>Semantic error in packet filter</td>
<td>Forward the response</td>
</tr>
<tr>
<td>Syntactic error in packet filter</td>
<td>Forward the response</td>
</tr>
<tr>
<td>Mandatory IE incorrect</td>
<td>Forward the response</td>
</tr>
<tr>
<td>Mandatory IE missing</td>
<td>Forward the response</td>
</tr>
<tr>
<td>Optional IE incorrect</td>
<td>Forward the response</td>
</tr>
<tr>
<td>Invalid message format</td>
<td>Forward the response</td>
</tr>
<tr>
<td>Version not supported</td>
<td>Forward the response</td>
</tr>
<tr>
<td>PDP context without TFT already activated</td>
<td>Fail current real, reassign session, drop the response</td>
</tr>
</tbody>
</table>

GTP load balancing with GTP cause code inspection enabled has the following characteristics:

- Must operate in directed server NAT mode.
- Assigns PDP context creates from a specific International Mobile Subscriber ID (IMSI) to the same GGSN.
- Supports stateful backup.
- Tracks the number of open PDP contexts for each GGSN, which enables GGSN server farms to use the weighted least connections (leastconns) algorithm for GTP load balancing. See the “Weighted Least Connections” section on page 12-5 for more information about this algorithm.
- Enables Cisco IOS SLB to deny access to a virtual GGSN if the carrier code of the requesting IMSI does not match a specified value.
- Enables Cisco IOS SLB to support secondary PDP contexts, even without DFP.
Cisco IOS SLB Algorithms Supported for GTP Load Balancing

The following two Cisco IOS SLB algorithms are supported for GTP load balancing:

- Weighted Round-Robin, page 12-5
- Weighted Least Connections, page 12-5

Weighted Round-Robin

The weighted round-robin algorithm specifies that the real server used for a new connection to the virtual server is chosen from the server farm in a circular fashion. Each real server is assigned a weight, \(n \), that represents its capacity to handle connections, as compared to the other real servers associated with the virtual server. That is, new connections are assigned to a given real server \(n \) times before the next real server in the server farm is chosen.

For example, assume a server farm made up of three real servers: ServerA with \(n = 3 \), ServerB with \(n = 1 \), and ServerC with \(n = 2 \). The first three connections to the virtual server are assigned to ServerA, the fourth connection to ServerB, and the fifth and sixth connections to ServerC.

Note

Assigning a weight of \(n = 1 \) to all of the servers in the server farm configures the Cisco IOS SLB device to use a simple round-robin algorithm.

GTP load balancing without GTP cause code inspection enabled requires the weighted round-robin algorithm. A server farm that uses weighted least connections can be bound to a virtual server that provides GTP load balancing without GTP cause code inspection enabled, but you cannot place that virtual server INSERVICE. If you try to do so, Cisco IOS SLB issues an error message.

Weighted Least Connections

When GTP cause code inspection is enabled, GTP load balancing supports the Cisco IOS SLB weighted least connections algorithm.

The weighted least connections algorithm specifies that the next real server chosen from a server farm for a new connection to the virtual server is the server with the fewest active connections. Each real server is assigned a weight for this algorithm, also. When weights are assigned, the server with the fewest connections is determined on the basis of the number of active connections on each server and the relative capacity of each server. The capacity of a given real server is calculated as the assigned weight of that server divided by the sum of the assigned weights of all the real servers associated with that virtual server, or \(n_i/(n_1+n_2+n_3...) \).
For example, assume a server farm made up of three real servers: ServerA with \(n = 3 \), ServerB with \(n = 1 \), and ServerC with \(n = 2 \). ServerA would have a calculated capacity of \(\frac{3}{3+1+2} \), or half of all active connections on the virtual server, ServerB would have a calculated capacity of one-sixth of all active connections, and ServerC one-third of all active connections. At any point in time, the next connection to the virtual server would be assigned to the real server whose number of active connections is farthest below its calculated capacity.

Note
Assigning a weight of \(n = 1 \) to all of the servers in the server farm configures the Cisco IOS SLB device to use a simple least-connection algorithm.

GTP load balancing *without* GTP cause code inspection enabled *does not* support the weighted least connections algorithm.

GTP load balancing *with* GTP cause code inspection *does* support the weighted least connections algorithm.

Dynamic Feedback Protocol for Cisco IOS SLB

In GTP load balancing, Cisco IOS SLB detects when a PDP context is established, but it does not detect when PDP contexts are cleared, and therefore it cannot determine the number of open PDP contexts for each GGSN. Use the Cisco IOS SLB DFP to calculate GPRS/UMTS load-balancing weights dynamically.

With Cisco IOS SLB DFP support, a *DFP manager* in a load-balancing environment can initiate a TCP connection with a *DFP agent*. Thereafter, the DFP agent collects status information from one or more real host servers, converts the information to relative weights, and reports the weights to the DFP manager. The DFP manager factors in the weights when load balancing the real servers. In addition to reporting at user-defined intervals, the DFP agent sends an early report if there is a sudden change in a real server’s status.

The weights calculated by DFP override the static weights you define using the `weight (server farm)` command. If DFP is removed from the network, Cisco IOS SLB reverts to the static weights.

You can define Cisco IOS SLB as a DFP manager, as a DFP agent for another DFP manager (such as DistributedDirector), or as both at the same time. In such a configuration, Cisco IOS SLB sends periodic reports to DistributedDirector, which uses the information to choose the best server farm for each new connection request. Cisco IOS SLB then uses the same information to choose the best real server within the chosen server farm.

DFP also supports the use of multiple DFP agents from different client subsystems (such as Cisco IOS SLB and GPRS/UMTS) at the same time.

In GTP load balancing, you can define Cisco IOS SLB as a DFP manager and define a DFP agent on each GGSN in the server farm, and the DFP agent can report the weights of the GGSNs. The DFP agents calculate the weight of each GGSN, based on CPU utilization, processor memory, and the maximum number of PDP contexts (mobile sessions) that can be activated for each GGSN.

The weight for each GGSN is based primarily on the ratio of existing PDP contexts on the GGSN and the maximum number of allowed PDP contexts. CPU and memory utilization become part of the weight calculation only after the utilization exceeds 85%. Because the maximum number of allowed PDP contexts is considered to be the GGSNs maximum load, you should carefully consider the value that you configure in the `gprs maximum-pdp-context-allowed` command, which defaults to 10,000 PDP contexts.
GTP IMSI Sticky Database

Cisco IOS SLB can select a GGSN for a given International Mobile Subscriber ID (IMSI), and forward all subsequent Packet Data Protocol (PDP) create requests from the same IMSI to the selected GGSN.

To enable this feature, IOS SLB uses a GTP IMSI sticky database, which maps each IMSI to its corresponding real server, in addition to its session database.

The Cisco IOS SLB creates a sticky database object when it processes the first Create PDP Context request for a given IMSI. The Cisco IOS SLB removes the sticky object when it receives a notification to do so from the real server, or as a result of inactivity. When the last PDP belonging to an IMSI is deleted on the GGSN, the GGSN notifies Cisco IOS SLB to remove the sticky object.

GTP SLB Restrictions

The following restrictions apply when configuring GTP load balancing:

- For GTP load balancing without GTP cause code inspection enabled:
 - Operates in either dispatched mode or directed server NAT mode only
 - Cannot load balance network-initiated PDP context requests
 - Does not support the following Cisco IOS SLB functions:
 - Bind IDs
 - Client-assigned load balancing
 - Slow Start
 - Stateful backup (not supported on the Catalyst 6500/Cisco 7600 platform)
 - Weighted least connections load-balancing algorithm

- For GTP load balancing with GTP cause code inspection enabled:
 - Operates in directed server NAT mode only
 - Cannot load-balance network-initiated PDP context requests
 - Requires either the SGSN or the GGSN to echo its peer
 - Inbound and outbound traffic should be routed via Cisco IOS SLB
 - Does not support the following Cisco IOS SLB functions:
 - Bind IDs
 - Client-assigned load balancing
 - Slow Start
 - Sticky connections
Configuring GTP Load Balancing

This section includes the following topics:
- GTP Load Balancing Configuration Task List, page 12-8
- Configuration Guidelines, page 12-8

GTP Load Balancing Configuration Task List

This section lists the tasks used to configure GTP load balancing. Detailed configuration information is contained in the referenced sections of this document or other documents. Required and optional tasks are indicated.

1. On the Cisco IOS SLB, complete the following tasks:
 a. Configuring a Server Farm and Real Server, page 12-9 (Required)
 b. Configuring a Virtual Server, page 12-11 (Required)
 c. Configuring a GSN Idle Timer, page 12-13 (Optional if GTP cause code inspection is enabled)
 d. Configuring DFP Support, page 12-14 (Optional, but recommended)

2. On the GGSN, complete the following tasks:
 a. Configuring a Loopback Interface for GTP SLB, page 12-14 (Required)
 b. Configuring DFP Support on the GGSN, page 12-14 (Optional, but recommended)

3. Routing each GGSN to each associated serving GPRS support node (SGSN) (Required)
 The route can be static or dynamic but the GGSN needs to be able to reach the SGSN. For more information, see the “Configuring a Route to the SGSN” section on page 7-5.

4. On the SGSN, route each SGSN to the virtual templates on each associated GGSN, and to the GGSN load-balancing virtual server (Required)

5. Configuring Messaging from the GGSN to the Cisco IOS SLB, page 12-16 (Optional)

6. Configuring GTP IMSI

Configuration Guidelines

When configuring the network shared by Cisco IOS SLB and the GGSNs, keep the following considerations in mind:
- Specify static routes (using `ip route` commands) and real server IP addresses (using `real` commands) so that the Layer 2 information is correct and unambiguous.
- Configure the static route from the SGSN to the virtual server.
- Choose subnets carefully, using one of the following methods:
 - Do not overlap virtual template address subnets.
 - Specify next-hop addresses to real servers, not to interfaces on those servers.
- Cisco IOS SLB supports two types of GTP load balancing:
 - GTP Load Balancing Without GTP Cause Code Inspection, page 12-3
 - GTP Load Balancing With GTP Cause Code Inspection, page 12-4
Cisco IOS SLB supports both GTP v0 and GTP v1. Support for GTP enables Cisco IOS SLB to become “GTP aware,” extending Cisco IOS SLB’s knowledge into Layer 5.

On the Catalyst 6500/Cisco 7600 platform, the following apply:
- Multiple GGSN virtual farms are supported.
- Load balanced real servers can be internal or external to the Catalyst 6500/Cisco 7600 chassis.
- Each GGSN virtual farm must have one unique public IP address that is reachable from the SGSNs.
- Each virtual farm can correspond to one or more APNs.
- The DNS server used by the SGSNs to resolve the APNs to a GGSN IP address should use the GGSN virtual IP address.

Configuring the Cisco IOS SLB for GTP Load Balancing

To configure GTP load balancing, you must complete the following tasks on the Cisco IOS SLB:
- Configuring a Server Farm and Real Server, page 12-9 (Required)
- Configuring a Virtual Server, page 12-11 (Required)
- Configuring a GSN Idle Timer, page 12-13 (Optional)
- Configuring DFP Support, page 12-14 (Optional, but recommended)

Configuring a Server Farm and Real Server

When you configure the server farm and real server on the Cisco IOS SLB for GTP load balancing, use the following guidelines to ensure proper configuration:
- If GTP cause code inspection is not enabled, accept the default setting (the weighted round-robin algorithm) for the `predictor` command.
- If GTP cause code inspection is enabled, you can specify either the weighted round-robin algorithm (`roundrobin`) or the weighted least connections (`leastconns`) algorithm.
- Specify the IP addresses (virtual template addresses, for Cisco GGSNs) of the real servers performing the GGSN function, using the `real` command.
- Specify a reassign threshold less than the SGSN’s N3-REQUESTS counter value by using the `reassign` command.
To configure a Cisco IOS SLB server farm, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router-SLB(config)# ip slb serverfarm serverfarm-name</td>
<td>Adds a server farm definition to the Cisco IOS SLB configuration, and enters server farm configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Router(config-slb-sfarm)#</td>
<td>Specifies the algorithm to be used to determine how a real server is selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note In GTP load balancing without GTP cause code inspection enabled, you must accept the default setting (the weighted round-robin algorithm).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See the following sections for more details about each algorithm:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Weighted Round-Robin, page 12-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Weighted Least Connections, page 12-5</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router-SLB(config-slb-sfarm)# nat server</td>
<td>(Required if GTP cause code inspection is enabled; optional for GTP load balancing without cause code inspection enabled) Configures NAT server address translation mode on the server farm.</td>
</tr>
<tr>
<td></td>
<td>Router-SLB(config-slb-sfarm)# real ip-address [port]</td>
<td>Identifies a real GGSN as a member of a server farm, using the IP address of the GGSN’s virtual template interface, and enters real server configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Router-SLB(config-slb-real)# faildetect numconns number-conns [numclients number-clients]</td>
<td>(Optional) Specifies the number of consecutive connection failures and, optionally, the number of unique client connection failures, that constitute failure of the real server.</td>
</tr>
<tr>
<td></td>
<td>Router-SLB(config-slb-real)# maxconns number-conns</td>
<td>(Optional) Specifies the maximum number of active connections allowed on the real server at one time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note In GTP load balancing without cause code inspection enabled, the impact of this command is minimal because a session will last no longer than the duration specified with the ip gtp request command.</td>
</tr>
<tr>
<td></td>
<td>Router-SLB(config-slb-real)# reassign threshold</td>
<td>(Optional) Specifies the threshold of consecutive unacknowledged synchronizations or Create PDP Context requests that, if exceeded, results in an attempted connection to a different real server.</td>
</tr>
<tr>
<td></td>
<td>Router-SLB(config-slb-real)# retry retry-value</td>
<td>(Optional) Specifies the interval, in seconds, to wait between the detection of a server failure and the next attempt to connect to the failed server.</td>
</tr>
</tbody>
</table>
Configuring Load Balancing on the GGSN

Configuring GTP Load Balancing

When you configure the virtual server on the Cisco IOS SLB for GTP load balancing, use the following guidelines to ensure proper configuration:

- Configure a static route from the SGSN to the virtual server.
- Specify a virtual GGSN IP address as the virtual server, and use the `udp` keyword option.
- To load-balance GTP v1 sessions, specify port number **2123**, if the GGSNs and SGSNs are in compliance with the ETSI standard, or specify port number **0** or `any` to configure an all-port virtual server (that is, a virtual server that accepts flows destined for all ports).
- To load-balance GTP v0 sessions, specify port number **3386**, if the GGSNs and SGSNs are in compliance with the European Telecommunications Standards Institute (ETSI) standard, or specify port number **0** or `any` to configure an all-port virtual server.
- To enable GTP load balancing **without** GTP cause code inspection, specify the `service gtp` keyword option.
- To enable GTP load balancing **with** GTP cause code inspection, specify the `service gtp-inspect` keyword option.

Note: In GTP load balancing **without** GTP cause code inspection enabled, when you configure the GTP idle timer using the `idle` command, specify a GTP idle timer greater than the longest possible interval between PDP context requests on the SGSN.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Router-SLB(config-slb-real)# weight weighting-value</td>
<td>(Optional) Specifies the real server’s workload capacity relative to other servers in the server farm.</td>
</tr>
<tr>
<td></td>
<td>Note: If you use DFP, the static weights you define using the <code>weight (server farm)</code> command are overridden by the weights calculated by DFP. If DFP is removed from the network, Cisco IOS SLB reverts to the static weights.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Router-SLB(config-slb-real)# inservice</td>
<td>Enables the real server for use by Cisco IOS SLB.</td>
</tr>
</tbody>
</table>

Configuring a Virtual Server

When you configure the virtual server on the Cisco IOS SLB for GTP load balancing, use the following guidelines to ensure proper configuration:

- Configure a static route from the SGSN to the virtual server.
- Specify a virtual GGSN IP address as the virtual server, and use the `udp` keyword option.
- To load-balance GTP v1 sessions, specify port number **2123**, if the GGSNs and SGSNs are in compliance with the ETSI standard, or specify port number **0** or `any` to configure an all-port virtual server (that is, a virtual server that accepts flows destined for all ports).
- To load-balance GTP v0 sessions, specify port number **3386**, if the GGSNs and SGSNs are in compliance with the European Telecommunications Standards Institute (ETSI) standard, or specify port number **0** or `any` to configure an all-port virtual server.
- To enable GTP load balancing **without** GTP cause code inspection, specify the `service gtp` keyword option.
- To enable GTP load balancing **with** GTP cause code inspection, specify the `service gtp-inspect` keyword option.

In GTP load balancing **without** GTP cause code inspection enabled, when you configure the GTP idle timer using the `idle` command, specify a GTP idle timer greater than the longest possible interval between PDP context requests on the SGSN.
To configure an Cisco IOS SLB virtual server, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Command
Router-SLB(config)# ip slb vserver virtual_server-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Command
Router-SLB(config-slb-vserver)# virtual ip-addr [netmask [group]] {esp</td>
</tr>
<tr>
<td>Step 3</td>
<td>Command
Router-SLB(config-slb-vserver)# serverfarm primary-farm [backup backup-farm]</td>
</tr>
</tbody>
</table>
Configuring a GSN Idle Timer

When GTP cause code inspection is enabled, you can configure the amount of time that the Cisco IOS SLB will maintain sessions to and from idle GGSN or SGSN.

To configure a GSN idle timer, enter the following command in global configuration mode on the Cisco IOS SLB:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router-SLB(config)# ip slb timers gtp gsn duration</td>
<td>Changes the amount of time that Cisco IOS SLB maintains sessions to and from an idle GGSN or SGSN.</td>
</tr>
</tbody>
</table>
Configuring DFP Support

You can define Cisco IOS SLB as a DFP manager, as a DFP agent for another DFP manager (such as DistributedDirector), or as both at the same time. Depending on your network configuration, you might enter the commands for configuring Cisco IOS SLB as a DFP manager and the commands for configuring Cisco IOS SLB as a DFP agent on the same device or on different devices.

To configure Cisco IOS SLB as a DFP manager, and to identify a DFP agent with which Cisco IOS SLB can initiate connections, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router-SLB(config)# ip slb dfp [password [0</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router-SLB(config-slb-dfp)# agent ip_address port-number [timeout [retry_count [retry_interval]]]</td>
</tr>
</tbody>
</table>

Configuring the GGSN for GTP Load Balancing

To configure GTP load balancing on the GGSN, complete the tasks in the following sections:

- Configuring a Loopback Interface for GTP SLB, page 12-14 (Required if using dispatched mode without GTP cause code inspection enabled)
- Configuring DFP Support on the GGSN, page 12-14 (Optional, but recommended)

Configuring a Loopback Interface for GTP SLB

To enable GTP load balancing, a loopback interface must be configured with the same IP address as the virtual server on the Cisco IOS SLB on each GGSN in a farm.

To create a loopback interface, use the following commands, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router-GGSN(config)# interface loopback number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router-GGSN(config-if)# ip address ip-address mask</td>
</tr>
</tbody>
</table>

Configuring DFP Support on the GGSN

To configure DFP support for GTP SLB, you must complete the following tasks:

- Configuring the GGSN as a DFP Agent, page 12-15
- Configuring the Maximum DFP Weight for a GGSN, page 12-15
- Configuring the Maximum Number of PDP Contexts for a GGSN, page 12-15
Configuring the GGSN as a DFP Agent

For complete information on configuring a DFP agent, refer to the *DFP Agent Subsystem* feature module.

To define the port number to be used by the DFP manager (the Cisco IOS SLB in this instance) to connect to the DFP agent, enter the following commands in order, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router-GGSN(config)# ip dfp agent gprs</td>
<td>Identifies a DFP agent subsystem and initiates DFP agent configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router-GGSN(config-dfp)# interval seconds</td>
<td>(Optional) Configures a DFP agent weight recalculation interval.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router-GGSN(config-dfp)# password [0</td>
<td>7] password [timeout]</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router-GGSN(config-dfp)# port port-number</td>
<td>Defines the port number to be used by the DFP manager to connect to the DFP agent.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router-GGSN(config-dfp)# inservice</td>
<td>Enables the DFP agent for communication with a DFP manager. A DFP agent is inactive until both of the following conditions are met:</td>
</tr>
</tbody>
</table>

Configuring the Maximum DFP Weight for a GGSN

If you use DFP with GTP load balancing, each GGSN that acts as a DFP agent has a maximum weight that it can send to a DFP manager. For each GGSN, you can accept the default maximum weight, or you can specify a different maximum weight.

To specify the maximum weight for a GGSN, use the following command in global configuration mode on the GGSN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router-GGSN(config)# gprs dfp max-weight [max-weight-value]</td>
<td>Specifies the maximum weight of a GGSN that is acting as a DFP agent.</td>
</tr>
</tbody>
</table>

Configuring the Maximum Number of PDP Contexts for a GGSN

If you use DFP with GTP load balancing, you must specify a maximum number of PDP contexts for each GGSN, using the `gprs maximum-pdp-context-allowed` command. *Do not* accept the default value of 10000 PDP contexts. Significantly lower values, including the default value of 10,000, can impact capacity in a GPRS/UMTS load-balancing environment.
Configuring Messaging from the GGSN to the Cisco IOS SLB

The GGSN-IOS SLB messaging feature enables you to configure the GGSN to notify the Cisco IOS SLB when a certain condition exists that affects a session forwarded by the Cisco IOS SLB. The notification also instructs the Cisco IOS SLB on how to react to the condition.

There are two types of GGSN-IOS SLB notifications that can be configured using the `gprs slb notify` command—CAC failure notifications and delete notifications (for GTP IMSI sticky database support). The following sections describe how to configure each of them:

1. Configuring Support for GGSN-IOS SLB Messaging CAC Failure Notifications, page 12-16
2. Configuring Support for GGSN-IOS SLB Messaging Delete Notifications (GTP IMSI Sticky Database Support), page 12-19

Configuring Support for GGSN-IOS SLB Messaging CAC Failure Notifications

The GGSN can be configured to notify the Cisco IOS SLB when a UMTS QoS CAC failure has caused a Create PDP Context request to be rejected.

CAC failure notifications sent by the GGSN include the following information elements (IEs):

- **Type**—Notification type (reassign).
- **Session identifier**—Session key on the Cisco IOS SLB that identifies the session to which a notification belongs.
- **Create response**—Create response that the GGSN would send to the SGSN when a failure occurred. If there is not an alternate GGSN available to which to reassign the session, or if the maximum number of reassign attempts has been exceeded, the Cisco IOS SLB relays this information to the SGSN.

The way you configure support for CAC failure notifications depends on whether the Cisco IOS SLB is operating in dispatched mode or directed server NAT mode. For information on each procedure, see the following sections:

1. Configuring CAC Failure Notification Support when the Cisco IOS SLB is in Dispatched Mode, page 12-17
2. Configuring CAC Failure Notification Support when the Cisco IOS SLB is in Directed Server NAT Mode, page 12-18
Configuring CAC Failure Notification Support when the Cisco IOS SLB is in Dispatched Mode

If the Cisco IOS SLB is functioning in dispatched mode, the virtual server that forwarded the Create PDP Context request to the GGSN is known to the GGSN, and the GGSN can send CAC failure notifications directly to the server.
To configure the GGSN to send CAC failure notifications to the Cisco IOS SLB when the Cisco IOS SLB is in dispatched mode, use the following command in global configuration mode:

```
Step 1
Router-GGSN(config)# gprs slb mode dispatched
```

Defines dispatched as the Cisco IOS SLB operation mode for GGSN-IOS SLB messaging.

Note The default is dispatched mode.

```
Step 2
Router-GGSN(config)# gprs slb notify cac-failure
```

Enables the GGSN to notify the Cisco IOS SLB when a UMTS QoS CAC failure has caused a Create PDP Context request to be rejected.

To enable CAC failure notification support on the Cisco IOS SLB, use the following command in virtual server mode:

```
Router-SLB(config-slb-vserver)# gtp notification cac count
```

Enables support of GGSN-IOS SLB messaging CAC failure notifications and configures the maximum number of times a rejected Create PDP Context can be reassigned to a new real GGSN. The default is 2 (which is 3 real selections per session, including the initial send).

Configuring CAC Failure Notification Support when the Cisco IOS SLB is in Directed Server NAT Mode

If the Cisco IOS SLB is functioning in directed server NAT mode, the virtual server is not known to the GGSN. Therefore, in addition to configuring the GGSN to send CAC failure notifications to the Cisco IOS SLB, a list of virtual servers must be defined on the GGSN using the `gprs slb vserver` global configuration command, and the Cisco IOS SLB mode of operation must be defined using the `gprs slb mode` global configuration command.

Note If the Cisco IOS SLB operation mode and virtual servers are not defined on the GGSN when the Cisco IOS SLB is functioning in directed server NAT mode, support for CAC failure notification is not enabled, even if the `gprs slb notify cac-failure` and `gtp notification cac` commands are configured.
To enable the GGSN to send CAC failure notifications to the Cisco IOS SLB when the Cisco IOS SLB is in directed server NAT mode, use the following commands while in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router-GGSN(config)# gprs slb mode directed</td>
</tr>
<tr>
<td></td>
<td>Defines directed server NAT as the Cisco IOS SLB operation mode for GGSN-IOS SLB messaging.</td>
</tr>
<tr>
<td></td>
<td>Note The default is dispatched mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router-GGSN(config)# gprs slb notify cac-failure</td>
</tr>
<tr>
<td></td>
<td>Enables the GGSN to notify the Cisco IOS SLB when a UMTS QoS CAC failure has caused a Create PDP Context request to be rejected.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router-GGSN(config)# gprs slb vserver ip_address [next-hop ip ip-address [vrf name]]</td>
</tr>
<tr>
<td></td>
<td>Configures the Cisco IOS SLB virtual server(s) to be notified by a GGSN when the condition defined using the gprs slb notify command occurs. Optionally, also configures the IP address of the next-hop that can be used to reach the virtual server and specifies the VPN routing and forwarding instance.</td>
</tr>
</tbody>
</table>

To enable CAC failure notification support on the Cisco IOS SLB, use the following command in virtual server mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router-SLB(config-slb-vserver)# gtp notification cac count</td>
<td>Enables support of GGSN-IOS SLB messaging CAC failure notifications and configures the maximum number of times a rejected Create PDP Context can be reassigned to a new real GGSN. The default is 2 (including the initial send, 3 real selections per session).</td>
</tr>
</tbody>
</table>

Configuring Support for GGSN-IOS SLB Messaging Delete Notifications (GTP IMSI Sticky Database Support)

When support for delete notifications is configured on the GGSN and the Cisco IOS SLB, a sticky database entry is created on the Cisco IOS SLB when the first Create PDP Context request from a subscriber is received. When the last PDP context of that IMSI is deleted on the GGSN, the GGSN sends a delete notification to the Cisco IOS SLB that instructs the Cisco IOS SLB to remove the sticky entry from the database.

Note This configuration requires that the virtual virtual server configuration command be configured with the service gtp keywords specified.

Note If the sticky gtp imsi command is configured under multiple vservers, the group number configuration facilitate sharing of the sticky object in the event the same MS connects through different vservers. All vservers that have the same sticky group number share the sticky IMSI entry for a user.
To configure the GGSN to send a delete notification to the Cisco IOS SLB when the last PDP context of an IMSI is deleted on the GGSN, complete the following tasks while in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router-GGSN(config)# gprs slb mode (dispatched</td>
<td>directed)</td>
</tr>
<tr>
<td>Step 2 Router-GGSN(config)# gprs slb notify session-deletion</td>
<td>Configures the GGSN to send a delete notification message to the Cisco IOS SLB when the last PDP context associated with an IMSI is deleted.</td>
</tr>
<tr>
<td>Step 3 Router-GGSN(config)# gprs slb vservers ip_address [next-hop ip ip-address [vrf name]]</td>
<td>Configures the Cisco IOS SLB virtual server(s) to be notified by a GGSN when the condition defined using the gprs slb notify command occurs. Optionally, also configures the IP address of the next-hop that can be used to reach the virtual server and specifies the VPN routing and forwarding instance.</td>
</tr>
</tbody>
</table>

To configure GTP IMSI sticky database support on the Cisco IOS SLB, complete the following task while in virtual server configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router-SLB(config-slb-vserver)# sticky gtp imsi [group number]</td>
<td>Enables Cisco IOS SLB to load-balance GTP Create PDP Context requests to the same real server that processed all previous create requests for a given IMSI.</td>
</tr>
</tbody>
</table>

Verifying the Cisco IOS SLB Configuration

This section describes how to verify the Cisco IOS SLB configuration. It includes the following topics:

- Verifying the Virtual Server, page 12-20
- Verifying the Server Farm, page 12-21
- Verifying Cisco IOS SLB Connectivity, page 12-21

Verifying the Virtual Server

The following `show ip slb vserver` command verifies the configuration of the virtual servers PUBLIC_HTTP and RESTRICTED_HTTP:

```plaintext
Router-SLB# show ip slb vserver

slb vserver      prot  virtual               state         conns
-------------------------------------------------------------------
PUBLIC_HTTP      TCP   10.0.0.1:80           OPERATIONAL     0
RESTRICTED_HTTP  TCP   10.0.0.2:80           OPERATIONAL     0
IOSSLB#          
```
Verifying the Server Farm

The following `show ip slb real` command displays the status of server farms PUBLIC and RESTRICTED, the associated real servers, and their status:

```
Router-SLB# show ip slb real

real    farm name  weight  state          conns
---        -------   ------   ---------------  -----
10.1.1.1  PUBLIC    8       OPERATIONAL    0
10.1.1.2  PUBLIC    8       OPERATIONAL    0
10.1.1.3  PUBLIC    8       OPERATIONAL    0
10.1.1.20 RESTRICTED 8       OPERATIONAL   0
10.1.1.21 RESTRICTED 8       OPERATIONAL   0
IOSSLB#
```

The following `show ip slb serverfarm` command displays the configuration and status of server farms PUBLIC and RESTRICTED:

```
Router-SLB# show ip slb serverfarm

server farm  predictor    nat  reals   bind id
----------    -------      ---  -----   -----
PUBLIC       ROUNDROBIN   none 3       0
RESTRICTED   ROUNDROBIN   none 2       0
IOSSLB#
```

Verifying Cisco IOS SLB Connectivity

To verify that the Cisco IOS SLB feature has been installed and is operating correctly, ping the real servers from the Cisco IOS SLB switch, and then ping the virtual servers from the clients.

The following `show ip slb stats` command displays detailed information about the Cisco IOS SLB network status:

```
Router-SLB# show ip slb stats
Pkts via normal switching: 0
Pkts via special switching: 0
Pkts via slb routing: 0
Pkts Dropped: 0
Connections Created: 0
Connections Established: 0
Connections Destroyed: 0
Connections Reassigned: 0
Zombie Count: 0
Connections Reused: 0
Connection Flowcache Purges: 0
Failed Connection Allocs: 0
Failed Real Assignments: 0
RADIUS framed-ip Sticky Count: 0
RADIUS username Sticky Count: 0
```

See the “Monitoring and Maintaining the Cisco IOS SLB Feature” section on page 12-22 for additional commands used to verify Cisco IOS SLB networks and connections.
Monitoring and Maintaining the Cisco IOS SLB Feature

To clear, obtain, and display GTP SLB information on the GGSN, use the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear gprs slb statistics</code></td>
<td>clears Cisco IOS SLB statistics.</td>
</tr>
<tr>
<td><code>show gprs slb detail</code></td>
<td>displays all Cisco IOS SLB-related information, such as operation mode, virtual server addresses for GGSN-IOS SLB messaging, SLB notifications, and statistics.</td>
</tr>
<tr>
<td><code>show gprs slb mode</code></td>
<td>displays the Cisco IOS SLB mode of operation.</td>
</tr>
<tr>
<td><code>show gprs slb statistics</code></td>
<td>displays Cisco IOS SLB statistics.</td>
</tr>
<tr>
<td><code>show gprs slb vservers</code></td>
<td>displays a list of defined Cisco IOS SLB virtual servers for GGSN-IOS SLB messaging.</td>
</tr>
</tbody>
</table>

To obtain and display information about the GTP SLB on the Cisco IOS SLB, use the following commands in privileged EXEC mode on the Cisco IOS SLB:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show ip slb conns [vserver virtual_server-name</td>
<td>client ip-address</td>
</tr>
<tr>
<td>`show ip slb dfp [agent agent_ip_address</td>
<td>manager manager_ip_address</td>
</tr>
<tr>
<td>`show ip slb gtp [gsn [gsn-ip-address]</td>
<td>nsapi [nsapi-key]] [detail]`</td>
</tr>
<tr>
<td><code>show ip slb reals [sfarm server-farm] [detail]</code></td>
<td>displays information about the real servers defined to Cisco IOS SLB.</td>
</tr>
<tr>
<td><code>show ip slb replicate</code></td>
<td>displays information about the Cisco IOS SLB replication configuration.</td>
</tr>
<tr>
<td><code>show ip slb serverfarms [name serverfarm-name] [detail]</code></td>
<td>displays information about the server farms defined to Cisco IOS SLB.</td>
</tr>
<tr>
<td>`show ip slb sessions [gtp</td>
<td>gtp-inspect</td>
</tr>
</tbody>
</table>

Note

With GTP load balancing without cause code inspection, a session lasts no longer than the duration of the virtual server GTP idler time specified using the `idle gtp request` command.
Configuration Examples

This section provides real-world examples of the GGSN Cisco IOS SLB examples. For complete descriptions of the GGSN commands in this section, refer to the Cisco GGSN Release 6.0 Command Reference. For complete descriptions of the Cisco IOS SLB commands in this section, refer to the IOS Server Load Balancing feature module documentation.

This section includes the following information:

- Cisco 7200 Platform Configuration Examples, page 12-23
- Catalyst 6500/Cisco 7600 Platform Configuration Example, page 12-32

Cisco 7200 Platform Configuration Examples

This section includes the following examples:

- Cisco IOS SLB with GTP Load Balancing Configuration Example, page 12-23
- Cisco IOS SLB with GTP Load Balancing and NAT Example, page 12-28
- Cisco IOS SLB with GTP Load Balancing, NAT, and GTP Cause Code Inspection Example, page 12-31

Cisco IOS SLB with GTP Load Balancing Configuration Example

Figure 12-2 shows a typical GTP load-balancing configuration without GTP cause code inspection enabled. In this configuration:

- Cisco IOS SLB can balance GTP flows across multiple real GGSNs. The SGSN “sees” the real GGSNs as a single virtual GGSN. This configuration increases the flow-handling capability of the real GGSNs and increases the reliability and availability.
- The IP address of the SGSN is 10.111.111.111.
- The virtual template address of GGSN1 is 192.168.1.1.
- The virtual template address of GGSN2 is 192.168.2.2.
- The virtual template address of GGSN3 is 192.168.3.3.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router=SLB# show ip slb stats</td>
<td>Displays Cisco IOS SLB statistics.</td>
</tr>
<tr>
<td>Router-SLB# show ip slb sticky gtp imsi [id imsi]</td>
<td>Displays only entries of the Cisco IOS SLB sticky database associated with the Cisco IOS SLB GTP IMSI sticky database, and shows all of the Network Service Access Point Identifiers (NSAPIs) that the user has used as primary PDPs. Optionally, displays only those sticky database entries associated with the specified IMSI.</td>
</tr>
</tbody>
</table>
| Router-SLB# show ip slb vserver [name virtual_server] [redirect] [detail] | Displays information about the virtual servers defined to Cisco IOS SLB.
Following are the configuration statements for the configuration shown in Figure 12-2:

- Cisco IOS SLB Configuration Statements, page 12-24
- GGSN1 Configuration Statements, page 12-25
- GGSN2 Configuration Statements, page 12-26
- GGSN3 Configuration Statements, page 12-27

Detailed GGSN configuration examples are available throughout this book.

Cisco IOS SLB Configuration Statements

```
hostname GTP_SLB
!
ip domain-name gprs.com
!
ip slb serverfarm GPRS
real 192.168.1.1
  weight 1
  faildetect numconns 255 numclients 8
  inservice
!
real 192.168.2.2
  weight 1
  faildetect numconns 255 numclients 8
  inservice
!
real 192.168.3.3
  weight 1
```
faildetect numconns 255 numclients 8
!
ip slb vserver FOR_GPRS
virtual 10.10.10.10 udp 3386 service gtp
serverfarm GPRS
!
ip slb dfp password Cookies 0
agent 10.1.1.201 1111 30 0 10
agent 10.1.1.202 1111 30 0 10
agent 10.1.1.203 1111 30 0 10
!
!interface FastEthernet1/0
 description TO SERVERFARM GPRS
ip address 10.1.1.100 255.255.255.0
no ip redirects
duplex half
!
!interface FastEthernet3/0
 description TO SGSN
ip address 10.2.1.100 255.255.255.0
no ip mroute-cache
duplex half
!
ip route 10.111.111.111 255.255.255.255 FastEthernet1/0
ip route 192.168.1.1 255.255.255.255 10.1.1.201
ip route 192.168.2.2 255.255.255.255 10.1.1.202
ip route 192.168.3.3 255.255.255.255 10.1.1.203

GGSN1 Configuration Statements

service gprs ggsn
!
hostname GGSN1
!
ip cef
!
ip dfp agent gprs
 port 1111
password Cookies 0

!
ip domain-name gprs.com
!
interface loopback 1
 description LOOPBACK SAME AS IOS SLB VSERVER ADDRESS
ip address 10.10.10.10 255.255.255.255
no ip mroute-cache
!
interface FastEthernet1/0
 description TO SLB
ip address 10.1.1.201 255.255.255.0
ip directed-broadcast
no ip mroute-cache
duplex half
!
interface Virtual-Template1
 description GTP VIRTUAL TEMPLATE
ip address 192.168.1.1 255.255.255.0
encapsulation gtp
gprs access-point-list gprs1
!
Configuration Examples

章節 12 配置 GGSN 上的負載平衡

配置示例

```plaintext
ip route 10.111.111.111 255.255.255.255 FastEthernet1/0

gprs access-point-list gprs1
  access-point 1
    access-point-name gprs.company.com
    access-mode non-transparent
    ip-address-pool dhcp-proxy-client
    dhcp-server 10.100.0.5 10.100.0.6
    dhcp-gateway-address 10.27.3.1
    exit

  gprs maximum-pdp-context-allowed 45000
  gprs qos map canonical-qos
  gprs gtp path-echo-interval 0
  gprs dfp max-weight 32
```

GGSN2 配置語句

```plaintext
service gprs ggsn

hostname GGSN2

ip cef

ip dfp agent gprs
  port 1111
  password Cookies 0
  inservice

ip domain-name gprs.com

interface loopback 1
  description LOOPBACK SAME AS IOS SLB VSERVER ADDRESS
  ip address 10.10.10.1 255.255.255.255
  no ip mroute-cache

interface FastEthernet1/0
  description TO SLB
  ip address 10.1.1.202 255.255.255.0
  ip directed-broadcast
  no ip mroute-cache
duplex half

interface Virtual-Template1
  description GTP VIRTUAL TEMPLATE
  ip address 192.168.2.2 255.255.255.0
  encapsulation gtp
  gprs access-point-list gprs1

ip route 10.111.111.111 255.255.255.255 FastEthernet1/0
```
gprs access-point-list gprs1
 access-point 1
 access-point-name gprs.company.com
 access-mode non-transparent
 ip-address-pool dhcp-proxy-client
dhcp-server 10.100.0.5 10.100.0.6
dhcp-gateway-address 10.27.3.1
 exit
! gprs maximum-pdp-context-allowed 45000
gprs qos map canonical-qos
gprs gtp path-echo-interval 0
gprs dfp max-weight 32

GGSN3 Configuration Statements

service gprs ggsn
!
hostname GGSN3
!
ip cef
!
ip dfp agent gprs
 port 1111
 password Cookies 0
 inservice
!
ip domain-name gprs.com
!
interface loopback 1
 description LOOPBACK SAME AS IOS SLB VSERVER ADDRESS
 ip address 10.10.10.10 255.255.255.255
 no ip mroute-cache
!
interface FastEthernet1/0
 description TO SLB
 ip address 10.1.1.203 255.255.255.0
 ip directed-broadcast
 no ip mroute-cache
duplex half
!
interface Virtual-Template1
 description GTP VIRTUAL TEMPLATE
 ip address 192.168.3.3 255.255.255.0
 encapsulation gtp
gprs access-point-list gprs1
!
ip route 10.111.111.111 255.255.255.255 FastEthernet1/0
!

GGSN3 Configuration Statements

service gprs ggsn
!
hostname GGSN3
!
ip cef
!
ip dfp agent gprs
 port 1111
 password Cookies 0
 inservice
!
ip domain-name gprs.com
!
interface loopback 1
 description LOOPBACK SAME AS IOS SLB VSERVER ADDRESS
 ip address 10.10.10.10 255.255.255.255
 no ip mroute-cache
!
interface FastEthernet1/0
 description TO SLB
 ip address 10.1.1.203 255.255.255.0
 ip directed-broadcast
 no ip mroute-cache
duplex half
!
interface Virtual-Template1
 description GTP VIRTUAL TEMPLATE
 ip address 192.168.3.3 255.255.255.0
 encapsulation gtp
gprs access-point-list gprs1
!
ip route 10.111.111.111 255.255.255.255 FastEthernet1/0
!
Cisco IOS SLB with GTP Load Balancing and NAT Example

The following example uses the same basic configuration as in the “Cisco IOS SLB with GTP Load Balancing Configuration Example” section on page 12-23, including the network shown in Figure 12-2, but with the addition of NAT:

- Cisco IOS SLB Configuration Statements, page 12-28
- GGSN1 Configuration Statements, page 12-29
- GGSN2 Configuration Statements, page 12-30
- GGSN3 Configuration Statements, page 12-30

Cisco IOS SLB Configuration Statements

```
hostname GTP_SLB
!
ip domain-name gprs.com
!
ip slb serverfarm GPRS	nat server
real 192.168.1.1
weight 1
faildetect numconns 255 numclients 8
inservice
!
real 192.168.2.2
weight 1
faildetect numconns 255 numclients 8
inservice
!
real 192.168.3.3
weight 1
faildetect numconns 255 numclients 8
inservice
!
ip slb vserver FOR_GPRS
virtual 10.10.10.10 udp 3386 service gtp
serverfarm GPRS
inservice
!
ip slb dfp password Cookies 0
agent 10.1.1.201 1111 30 0 10
agent 10.1.1.202 1111 30 0 10
agent 10.1.1.203 1111 30 0 10
!
interface FastEthernet1/0

description TO SERVERFARM GPRS
ip address 10.1.1.100 255.255.255.0
no ip redirects
duplex half
!
interface FastEthernet3/0

description TO SGSN
ip address 10.2.1.100 255.255.255.0
no ip mroute-cache
duplex half
!
ip route 10.111.111.111 255.255.255.255 FastEthernet1/0
ip route 192.168.1.1 255.255.255.255 10.1.1.201
ip route 192.168.2.2 255.255.255.255 10.1.1.202
ip route 192.168.3.3 255.255.255.255 10.1.1.203
```
Chapter 12 Configuring Load Balancing on the GGSN

GGSN1 Configuration Statements

```
service gprs ggsn
!
hostname GGSN1
!
ip cef
!
ip dfp agent gprs
  port 1111
  password Cookies 0
  inservice
!
ip domain-name gprs.com
!
interface FastEthernet1/0
  description TO SLB
  ip address 10.1.1.201 255.255.255.0
  ip directed-broadcast
  no ip mrouting-cache
  duplex half
!
interface Virtual-Template1
  description GTP VIRTUAL TEMPLATE
  ip address 192.168.1.1 255.255.255.0
  encapsulation gtp
  gprs access-point-list gprs1
!
ip route 10.111.111.111 255.255.255.255 FastEthernet1/0
!
gprs access-point-list gprs1
  access-point 1
    access-point-name gprs.company.com
    access-mode non-transparent
    ip-address-pool dhcp-proxy-client
    dhcp-server 10.100.0.5 10.100.0.6
    dhcp-gateway-address 10.27.3.1
    exit
!

gprs maximum-pdp-context-allowed 45000

gprs qos map canonical-qos

gprs gtp path-echo-interval 0

gprs dfp max-weight 32
```
GGSN2 Configuration Statements

```
service gprs ggsn
!
hostname GGSN2
!
ip cef
!
ip dfp agent gprs
  port 1111
  password Cookies 0
  inservice
!
ip domain-name gprs.com
!
interface FastEthernet1/0
  description TO SLB
  ip address 10.1.1.202 255.255.255.0
  ip directed-broadcast
  no ip mroute-cache
  duplex half
!
interface Virtual-Template1
  description GTP VIRTUAL TEMPLATE
  ip address 192.168.2.2 255.255.255.0
  encapsulation gtp
  gprs access-point-list gprs1
  !
ip route 10.111.111.111 255.255.255.255 FastEthernet1/0
!
gprs access-point-list gprs1
  access-point 1
    access-point-name gprs.company.com
    access-mode non-transparent
    ip-address-pool dhcp-proxy-client
    dhcp-server 10.100.0.5 10.100.0.6
    dhcp-gateway-address 10.27.3.1
    exit
!
gprs maximum-pdp-context-allowed 45000

gprs qos map canonical-qos

gprs gtp path-echo-interval 0

gprs dfp max-weight 32
```

GGSN3 Configuration Statements

```
service gprs ggsn
!
hostname GGSN3
!
ip cef
!
ip dfp agent gprs
  port 1111
  password Cookies 0
  inservice
!
ip domain-name gprs.com
!
interface FastEthernet1/0
  description TO SLB
  ip address 10.1.1.203 255.255.255.0
  ip directed-broadcast
```
no ip mroute-cache
duplex half
!
interface Virtual-Templatel
description GTP VIRTUAL TEMPLATE
ip address 192.168.3.3 255.255.255.0
encapsulation gtp
gprs access-point-list gprs1
!
ip route 10.111.111.111 255.255.255.255 FastEthernet1/0
!
gprs access-point-list gprs1
 access-point 1
 access-point-name gprs.company.com
 access-mode non-transparent
 ip-address-pool dhcp-proxy-client
dhcp-server 10.100.0.5 10.100.0.6
dhcp-gateway-address 10.27.3.1
 exit
!
gprs maximum-pdp-context-allowed 45000
gprs qos map canonical-qos
gprs gtp path-echo-interval 0
gprs dfp max-weight 32

Cisco IOS SLB with GTP Load Balancing, NAT, and GTP Cause Code Inspection Example

The following example uses the same basic configuration as in the “Cisco IOS SLB with GTP Load Balancing and NAT Example” section on page 12-28, including the network shown in Figure 12-2, but with the GTP cause code inspection enabled. In this configuration:

- The GSN idle timer is set to 20 seconds.
- The GTP request idle timer is set to 15 seconds.
- The virtual server accepts PDP context creates only from international mobile subscriber identities (IMSI) with carrier code mcc 222 mnc 22.

Following are the configuration statements for the configuration shown in Figure 12-2, with the addition of NAT and GTP cause code inspection support:

- Cisco IOS SLB Configuration Statements, page 12-31
- GGSN1 Configuration Statements, page 12-29 (no change for GTP cause code inspection)
- GGSN2 Configuration Statements, page 12-30 (no change for GTP cause code inspection)
- GGSN3 Configuration Statements, page 12-30 (no change for GTP cause code inspection)

Cisco IOS SLB Configuration Statements

hostname GTP_SLB
!
ip domain-name gprs.com
!
ip slb timers gtp gsn 90
!
ip slb serverfarm GPRS
 nat server
 real 192.168.1.1
 weight 1
 faildetect numconns 255 numclients 8
 inservice
! real 192.168.2.2
 weight 1
 faildetect numconns 255 numclients 8
 inservice
!
real 192.168.3.3
 weight 1
 faildetect numconns 255 numclients 8
 inservice
!
ip slb vserver FOR_GPRS
 virtual 10.10.10.10 udp 0 service gtp-inspect
 client gtp carrier-code mcc 222 mnc 22
 serverfarm GPRS
 inservice
!
ip slb dfp password Cookies 0
 agent 10.1.1.201 1111 30 0 10
 agent 10.1.1.202 1111 30 0 10
 agent 10.1.1.203 1111 30 0 10
!
interface FastEthernet1/0
 description TO SERVERFARM GPRS
 ip address 10.1.1.100 255.255.255.0
 no ip redirects
 duplex half
!
interface FastEthernet3/0
 description TO SGSN
 ip address 10.2.1.100 255.255.255.0
 no ip mroute-cache
 duplex half
!
ip route 10.111.111.111 255.255.255.255 FastEthernet1/0
ip route 192.168.1.1 255.255.255.255 10.1.1.201
ip route 192.168.2.2 255.255.255.255 10.1.1.202
ip route 192.168.3.3 255.255.255.255 10.1.1.203

Catalyst 6500/Cisco 7600 Platform Configuration Example

This section includes examples of Cisco IOS SLB with GTP load balancing and NAT configured on the Catalyst 6500/Cisco 7600 platform:

- Cisco IOS SLB Configuration Statements, page 12-32
- GGSN1 Configuration Statements, page 12-34

Cisco IOS SLB Configuration Statements

hostname 6500-a
!
ip slb probe PINGPROBE ping
 interval 3
 faildetect 3
!
ip slb serverfarm MWAM1
 nat server
 probe PINGPROBE
!
real 9.9.9.72
reassign 4
faildetect numconns 255 numclients 8
inservice
!
real 9.9.9.73
reassign 4
faildetect numconns 255 numclients 8
inservice
!
real 9.9.9.74
reassign 4
faildetect numconns 255 numclients 8
inservice
!
real 9.9.9.75
reassign 4
faildetect numconns 255 numclients 8
inservice
!
real 9.9.9.76
reassign 4
faildetect numconns 255 numclients 8
inservice
!
ip slb vserver V0-GGSN
virtual 10.10.10.10 udp 3386 service gtp
serverfarm MWAM1
idle gtp request 100
inservice
!
ip slb vserver V1-GGSN
virtual 10.10.10.10 udp 2123 service gtp
serverfarm MWAM1
idle gtp request 100
inservice
!
ip slb dfp password ciscodfp 0
agent 9.9.9.72 1111 30 0 10
agent 9.9.9.73 1111 30 0 10
agent 9.9.9.74 1111 30 0 10
agent 9.9.9.75 1111 30 0 10
agent 9.9.9.76 1111 30 0 10
!
interface FastEthernet9/36
description TO SGSN
no ip address
switchport
switchport access vlan 302
!
interface Vlan101
description Vlan to GGSN for GN
ip address 10.1.1.1 255.255.255.0
!
interface Vlan302
ip address 40.0.2.1 255.255.255.0
!
routing ospf 300
log-adjacency-changes
summary-address 9.9.9.0 255.255.255.0
redistribute static subnets route-map GGSN-routes
network 40.0.0.0 255.255.255.0
network 40.0.0.0 255.255.255.0
!
Configuration Examples

```
ip route 9.9.9.72 255.255.255.255 10.1.1.72
ip route 9.9.9.73 255.255.255.255 10.1.1.73
ip route 9.9.9.74 255.255.255.255 10.1.1.74
ip route 9.9.9.75 255.255.255.255 10.1.1.75
ip route 9.9.9.76 255.255.255.255 10.1.1.76
!
access-list 1 permit 9.9.9.0 0.0.0.255
!
route-map GGSN-routes permit 10
  match ip address 1
!
```

GGSN1 Configuration Statements

```
!
ip dfp agent gprs
  port 1111
  password ciscodfp 0
  inservice
!
interface Loopback100
  description GPRS GTP V-TEMPLATE IP ADDRESS
  ip address 9.9.9.72 255.255.255.0
!
interface GigabitEthernet0/0.2
  description Gn Interface
  encapsulation dot1Q 101
  ip address 10.1.1.72 255.255.255.0
  no cdp enable
!
interface Virtual-Template1
  description GTP v-access
  ip unnumbered Loopback100
  encapsulation gtp
  gprs access-point-list gprs
!
route to SGSNs
ip route 40.1.2.1 255.255.255.255 10.1.1.1
ip route 40.2.2.1 255.255.255.255 10.1.1.1
```
Monitoring Notifications

This appendix describes enabling and monitoring Gateway GPRS Support Node (GGSN) SNMP notifications to manage GPRS/UMTS-related issues. SNMP uses notifications to report events on a managed device. The notifications are traps or informs for different events.

This appendix covers enabling and monitoring GGSN SNMP notifications only. Additional types of SNMP notifications can be enabled on your Cisco router. For more information about the types of SNMP notifications you can enable, see the Cisco IOS Configuration Fundamentals, Release 12.3 documentation.

Additionally, to display a list of notifications available on your Cisco router, enter the `snmp-server enable traps ?` command.

This appendix contains the following sections:
- SNMP Overview, page A-35
- Configuring MIB Support, page A-40
- Enabling SNMP Support, page A-43
- Enabling and Disabling SNMP Notifications, page A-43
- GGSN Notifications, page A-45
- PSD-Client Notifications, page A-52

SNMP Overview

The Simple Network Management Protocol (SNMP) is an application-layer protocol that provides a standardized framework and a common language used for monitoring and managing devices in a network.

The SNMP framework has three parts:
- SNMP manager—A system used to control and monitor the activities of network hosts using SNMP. The most common managing system is called a Network Management System (NMS). The term NMS can be applied to either a dedicated device used for network management, or the applications used on a network-management device. A variety of network management applications are available for use with SNMP. These features range from simple command-line applications to feature-rich graphical user interfaces (such as the CiscoWorks2000 line of products).
SNMP Overview

- SNMP agent—A software component in a managed device that maintains the data for the device and reports the data, as needed, to managing systems. The agent and MIB reside on the routing device (router, access server, or switch). To enable the SNMP agent on a managed device, you must define the relationship between the manager and the agent (see the “Enabling SNMP Support” section on page A-43).
- Management Information Base (MIB)—Collection of network-management information, organized hierarchically.

Instead of defining a large set of commands, SNMP places all operations in a get-request, get-next-request, and set-request format. For example, an SNMP manager can get a value from an SNMP agent or set a value in that SNMP agent.

MIB Description

A Management Information Base (MIB) is a collection of network-management information, organized hierarchically. The MIB consists of collections of managed objects identified by object identifiers. MIBs are accessed using a network-management protocol such as SNMP. A managed object (sometimes called a MIB object or an object) is one of a number of characteristics of a managed device, such as a router. Managed objects comprise one or more object instances, which are essentially variables. The Cisco implementation of SNMP uses the definitions of MIB II variables described in RFC 1213.

MIBs can contain two types of managed objects:
- Scalar objects—Define a single object instance (for example, ifNumber in the IF-MIB and bgpVersion in the BGP4-MIB).
- Columnar objects— Defines a MIB table that contains no rows or more than one row, and each row can contain one or more scalar objects, (for example, ifTable in the IF-MIB defines the interface).

System MIB variables are accessible through SNMP as follows:
- Accessing a MIB variable—Function is initiated by the SNMP agent in response to a request from the NMS. The agent retrieves the value of the requested MIB variable and responds to the NMS with that value.
- Setting a MIB variable—Function is initiated by the SNMP agent in response to a message from the NMS. The SNMP agent changes the value of the MIB variable to the value requested by the NMS.

SNMP Notifications

An SNMP agent can notify the manager when important system events occur, such as the following:
- An interface or card starts or stops running
- Temperature thresholds are crossed
- Authentication failures occur

When an agent detects an alarm condition, the agent:
- Logs information about the time, type, and severity of the condition
- Generates a notification message, which it then sends to a designated IP host
SNMP notifications are sent as either:

- Traps—Unreliable messages, which do not require receipt acknowledgment from the SNMP manager.
- Informs—Reliable messages, which are stored in memory until the SNMP manager issues a response. Informs use more system resources than traps.

Note: Many commands use the word traps in the command syntax. Unless there is an option in the command to select either traps or informs, the keyword traps refers to either traps, informs, or both. Use the `snmp-server host` command to specify whether to send SNMP notifications as traps or informs.

When an agent detects an alarm condition, it logs information about the time, type, and severity of the condition and generates a notification message, which it then sends to a designated IP host.

SNMP notifications can be sent as either *traps* or *informs*. See the “Enabling SNMP Support” section on page A-43 for instructions on how to enable traps on the GGSN. See the “GGSN Notifications” section on page A-45 for information about GGSN traps.

The Cisco implementation of SNMP uses the definitions of SNMP traps described in RFC 1215.

SNMP Versions

Cisco IOS software supports the following versions of SNMP:

- **SNMPv1**—The Simple Network Management Protocol: An Internet standard, defined in RFC 1157. Security is based on community strings.
- **SNMPv2c**—The community-string based administrative framework for SNMPv2. SNMPv2c is an update of the protocol operations and data types of SNMPv2p (SNMPv2 classic), and uses the community-based security model of SNMPv1.
- **SNMPv3**—Version 3 of SNMP. SNMPv3 uses the following security features to provide secure access to devices:
 - Message integrity—Ensuring that a packet has not been tampered with in transit.
 - Authentication—Determining that the message is from a valid source.
 - Encryption—Scrambling the contents of a packet to prevent it from being learned by an unauthorized source.
SNMP Overview

SNMPv1 and SNMPv2c

Both SNMPv1 and SNMPv2c use a community-based form of security. The community of managers who are able to access the agent MIB is defined by an IP address Access Control List and password.

SNMPv2c support includes a bulk-retrieval mechanism and more detailed error message reporting to management stations. The bulk-retrieval mechanism supports the retrieval of tables and large quantities of information, minimizing the number of round-trip transmissions required. SNMPv2c improved error handling support includes expanded error codes that distinguish different kinds of error conditions; these conditions are reported through a single error code in SNMPv1. Error return codes now report the error type. Three kinds of exceptions are also reported:

- no such object exceptions
- no such instance exceptions
- end of MIB view exceptions

SNMPv3

SNMPv3 provides the following security models and security levels:

- Security model—Authentication strategy that is set up for a user and the group in which the user resides.
- Security level—Permitted level of security within a security model.

A combination of a security model and a security level determines the security mechanism to be employed when handling an SNMP packet.

SNMP Security Models and Levels

Table A-1 describes the security models and levels provided by the different SNMP versions.

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses match on community string for authentication.</td>
</tr>
<tr>
<td>v2c</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses match on community string for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>noAuthNoPriv</td>
<td>User name</td>
<td>No</td>
<td>Uses match on user name for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>authNoPriv</td>
<td>MD5 or SHA</td>
<td>No</td>
<td>Provides authentication based on HMAC-MD5 or HMAC-SHA algorithm.</td>
</tr>
<tr>
<td>v3</td>
<td>authPriv</td>
<td>MD5 or SHA</td>
<td>DES</td>
<td>Provides authentication based on HMAC-MD5 or HMAC-SHA algorithm. Also provides DES 56-bit encryption based on CBC-DES (DES-56) standard.</td>
</tr>
</tbody>
</table>
You must configure the SNMP agent to use the version of SNMP supported by the management station. An agent can communicate with multiple managers; for this reason, you can configure the Cisco IOS software to support communications with one management station using the SNMPv1 protocol, one using the SNMPv2c protocol, and another using SNMPv3.

Requests for Comments

MIB modules are written in the SNMP MIB module language, and are typically defined in Request For Comments (RFC) documents submitted to the Internet Engineering Task Force (IETF). RFCs are written by individuals or groups for consideration by the Internet Society and the Internet community as a whole. Before being given RFC status, recommendations are published as Internet Draft (I-D) documents. RFCs that have become recommended standards are also labeled as standards (STD) documents. For more information, see the Internet Society and IETF websites (http://www.isoc.org and http://www.ietf.org). We provide private MIB extensions with each Cisco system. Cisco enterprise MIBs comply with the guidelines described in the relevant RFCs unless otherwise noted in the documentation.

Object Identifiers

An object identifier (OID) uniquely identifies a MIB object on a managed network device. The OID identifies the MIB object’s location in the MIB hierarchy, and provides a means of accessing the MIB object in a network of managed devices:

- Standard RFC MIB OIDs are assigned by the Internet Assigned Numbers Authority (IANA).
- Enterprise MIB OIDs are assigned by Cisco Assigned Numbers Authority (CANA).

Each number in the OID corresponds to a level of MIB hierarchy. For example, the OID 1.3.6.1.4.1.9.9.xyz represents the xyz-MIB whose location in the MIB hierarchy is as follows. Note that the numbers in parentheses are included only to help show correspondence to the MIB hierarchy. In actual use, OIDs are represented as numerical values only.

You can uniquely identify a managed object, such as ifNumber in the IF-MIB, by its object name (iso.org.dod.internet.mgmt.enterprises.interfaces.ifNumber) or by its OID (1.3.6.1.2.1.2.1).

For a list of OIDs assigned to MIB objects, go to the following URL:

Related Information and Useful Links

The following URL provides access to general information about Cisco MIBs. Use the links on this page to access MIBs for download, and to access related information (such as application notes and OID listings).

TAC Information and FAQs

The following URLs provide access to SNMP information developed by the Cisco Technical Assistance Center (TAC):

- http://www.cisco.com/warp/public/477/SNMP/index.html is the Cisco TAC page for SNMP. It provides links to general SNMP information and tips for using SNMP to gather data.
- http://www.cisco.com/warp/public/477/SNMP/mibs_9226.shtml is a list of frequently asked questions (FAQs) about Cisco MIBs.

SNMP Configuration Information

The following URLs provide information about configuring SNMP:

Configuring MIB Support

This chapter describes how to configure SNMP and MIB support on a Cisco router. It includes the following sections:

- Determining MIBs Included for Cisco IOS Releases, page A-40
- Downloading and Compiling MIBs, page A-41
- Enabling SNMP Support, page A-43

Determining MIBs Included for Cisco IOS Releases

Follow these steps to determine which MIBs are included in the Cisco IOS release you are using:

Step 1 Go to the Feature Navigator home page http://tools.cisco.com/ITDIT/MIBS/servlet/index.

Step 2 Click MIB Locator to launch the application. The MIB Locator application allows you to find a MIB in the following three ways:

a. By release, platform family, and feature set—From the MIB Locator page:
 - Click the drop-down menu and select the desired Cisco IOS software release.
 - From the Platform Family menu, select 7600-MWAM/Cat6000-MWAM or 7200 (depending on which platform you are using). If you select the platform first, the system displays only those releases and feature sets that apply to the platform you have selected.
 - From the Feature Set menu, select the appropriate GGSN release.
b. By image name—From the MIB Locator page, enter the GGSN image name you are using into the Search by Image Name field and click Submit: (the following image name is an example):
 c6svcmwam-g8is-mz.123-14.YQ.bin

 c. By MIB name—From the MIB Locator page, search for the MIB from the list of MIBs in the Search for a MIB menu. You can select one, or for a multiple selection, hold down the CTRL key, then click Submit.

 Note After you make a selection, follow the links and instructions.

Downloading and Compiling MIBs

The following sections provide information about how to download and compile MIBs for the GGSN:

- Considerations for Working with MIBs
- Downloading MIBs
- Compiling MIBs

Considerations for Working with MIBs

While working with MIBs, consider the following:

Mismatches on Datatype Definitions

- Mismatches on datatype definitions might cause compiler errors or warning messages. Although Cisco MIB datatype definitions are not mismatched, standard RFC MIBs do mismatch. For example:

 MIB A defines: SomeDatatype ::= INTEGER(0..100)
 MIB B defines: SomeDatatype ::= INTEGER(1..50)

 This example is considered to be a trivial error and the MIB loads successfully with a warning message.

 The next example is considered a nontrivial error (even though the two definitions are essentially equivalent), and the MIB is not successfully parsed.

 MIB A defines: SomeDatatype ::= DisplayString
 MIB B defines: SomeDatatype ::= OCTET STRING (SIZE(0..255))

 If your MIB compiler treats these as errors, or you want to delete the warning messages, edit one of the MIBs that define this same datatype so that the definitions match.

- Many MIBs import definitions from other MIBs. If your management application requires MIBs to be loaded, and you experience problems with undefined objects, you might want to load the following MIBs in this order:

 SNMPv2-SMI.my
 SNMPv2-TC.my
 SNMPv2-MIB.my
 RFC1213-MIB.my
 IF-MIB.my


```
CISCO-SMI.my
CISCO-PRODUCTS-MIB.my
CISCO-TC.my

- For additional information and SNMP technical tips, from the Locator page, click SNMP MIB Technical Tips and follow the links or go to the following URL:
  http://www.cisco.com/cgi-bin/Support/browse/psp_view.pl?p=Internetworking:SNMP&s=Implementation_and_Configuration#Samples_and_Tips

- For a list of SNMP object identifiers (OIDs) assigned to MIB objects, go to the following URL and click on SNMP Object Navigator and follow the links:
  http://tools.cisco.com/ITDIT/MIBS/servlet/index

Note: You must have a Cisco CCO name and password to access the MIB Locator.
```

- For information about how to download and compile Cisco MIBs, go to the following URL:

Downloading MIBs

Follow these steps to download the MIBs onto your system if they are not already there:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Review the considerations in the previous section (“Considerations for Working with MIBs”).</td>
</tr>
</tbody>
</table>
| **Step 2** | Go to one of the following Cisco URLs. If the MIB you want to download is not there, try the other URL; otherwise, go to one of the URLs in Step 5.
ftp://ftp.cisco.com/pub/mibs/v1 |
| **Step 3** | Click the link for a MIB to download that MIB to your system. |
| **Step 4** | Select File > Save or File > Save As to save the MIB on your system. |
| **Step 5** | You can download industry-standard MIBs from the following URLs:
- http://www.ietf.org
- http://www.atmforum.com |

Compiling MIBs

If you plan to integrate the Cisco router with an SNMP-based management application, then you must also compile the MIBs for that platform. For example, if you are running HP OpenView on a UNIX operating system, you must compile platform MIBs with the HP OpenView Network Management System (NMS). For instructions, see the NMS documentation.
Enabling SNMP Support

The following procedure summarizes how to configure the Cisco router for SNMP support. For detailed information about SNMP commands, see the following Cisco documents:

- *Cisco IOS Release 12.3 Configuration Fundamentals Configuration Guide*, “Monitoring the Router and Network” section, available at the following URL:

- *Cisco IOS Release 12.3 Configuration Fundamentals Command Reference*, Part 3: System Management Commands, “Router and Network Configuration Commands” section, available at the following URL:

To configure the Cisco router for SNMP support, follow these steps:

Step 1
Set up your basic SNMP configuration through the command line interface (CLI) on the router. Note that these basic configuration commands are issued for SNMPv2c. For SNMPv3, you must also set up SNMP users and groups. (See the preceding list of documents for command and setup information.)

a. Define SNMP read-only and read-write communities:

 `Router (config)# snmp-server community Read_Only_Community_Name ro`
 `Router (config)# snmp-server community Read_Write_Community_Name rw`

b. Configure SNMP views (to limit the range of objects accessible to different SNMP user groups):

 `Router (config)# snmp-server view view_name oid-tree {included | excluded}`

Enabling and Disabling SNMP Notifications

To enable and disable SNMP Notifications, perform the tasks in the following sections:

- Enabling and Disabling GGSN Notifications via the CLI, page A-43
- Enabling and Disabling PSD-Client SNMP Notifications via the CLI, page A-45
- Enabling and Disabling GGSN and PSD-Client SNMP Notifications via SNMP, page A-45

Enabling and Disabling GGSN Notifications via the CLI

To use the command line interface (CLI) to enable the Cisco router to send GGSN SNMP notifications (traps or informs), perform the following steps.

Step 1
Make sure SNMP is configured on the router (see the “Enabling SNMP Support” section on page A-43).

Step 2
Identify (by IP address) the host to receive traps from the Cisco router:

```
Router(config)# snmp-server host host-address version SNMP version community/user(V3) udp-port <UDP port No>
```
Step 3 Enable GGSN SNMP notifications on the Cisco router using the following command (enter a separate command for each type of notification you want to enable):

```
Router(config)#snmp-server enable traps gprs [apn | charging | ggsn | ggsn-apn | ggsn-general | ggsn-memory | ggsn-pdp | ggsn-service | gtp | csg | dcca]
```

Where:

- **apn**—Enables APN notifications.
- **charging**—Enables charging notifications.
- **ggsn**—Enables GGSN global notifications.

Note To prevent flooding, configuring the `snmp-server enable traps gprs ggsn` command enables all GGSN-related traps except for the cGgsnGlobalErrorNotif, cGgsnAccessPointNameNotif, and the cGgsnPacketDataProtocolNotif traps.

- **ggsn-apn**—Enables GGSN notifications specific to APN (cGgsnAccessPointNameNotif).
- **ggsn-general**—Enables GGSN general notifications (cGgsnGlobalErrorNotif).
- **ggsn-pdp**—Enables GGSN notifications specific to PDP (cGgsnPacketDataProtocolNotif).
- **ggsn-service**—Enables GGSN service-mode notifications.
- **gtp**—Enables GTP traps.
- **csg**—Enables GGSN CSG-specific notifications.
- **dcca**—Enables GGSN DCCA-specific notifications.

Note Issuing the `snmp-server enable traps gprs` command without a keyword option enables all GGSN SNMP notifications.

Step 4 To disable GGSN SNMP notifications on the Cisco router, enter the following command.

```
Router(config)# no snmp-server enable traps gprs
```

If you omit the notification type keyword (gprs in this example), all notifications are disabled.

Note We recommend that the `snmp-server enable traps gtp` command not be configured because all associated MIBs are deprecated.
Enabling and Disabling PSD-Client SNMP Notifications via the CLI

To use the command line interface (CLI) to enable the Cisco router to send PSD-Client SNMP notifications (traps or informs), perform the following steps.

Step 1
Make sure SNMP is configured on the router (see the “Enabling SNMP Support” section on page A-43).

Step 2
Identify (by IP address) the host to receive traps from the Cisco router:

```
Router(config)# snmp-server host host-address version SNMPP version community/user(V3) udp-port <UDP port No> data-store
```

Step 3
Enable GGSN SNMP notifications on the Cisco router using the following command (enter a separate command for each type of notification you want to enable):

```
Router(config)# snmp-server enable traps data-store
```

Step 4
To disable PSD-Client SNMP notifications on the Cisco router, enter the following command.

```
Router(config)# no snmp-server enable traps data-store
```

Enabling and Disabling GGSN and PSD-Client SNMP Notifications via SNMP

Additionally, GGSN and PSD-Client SNMP Notifications can be enabled or disabled by setting the following objects to true(1) or false(2).

- cGgsnServiceNotifEnabled—Enables/disables GGSN service-mode notifications.
- cGgsnMemoryNotifEnabled—Enables/disables memory related notifications
- cGgsnGlobalErrorNotifEnabled—Enables GGSN general notifications
- cGgsnAccessPointNotifEnabled—Enables/disables cGgsnAccessPointNameNotif notification
- cGgsnPdpNotifEnabled—Enables/disables cGgsnPacketsDataProtocolNotif notification
- cGgsnSACsgNotifEnabled—Enables/disables CSG state traps.
- cGgsnSADccaNotifEnabled—Enables/disables DCCA-related notifications
- cPsdClientNotifEnable—Enables/disables PSD-related notifications

GGSN Notifications

This section lists and briefly describes the notifications supported by GGSN MIBs and generated by the GGSN.

This section lists the following types of notifications:
- Global Notifications, page A-46
- Charging Notifications, page A-49
- Access-Point Notifications, page A-50
- Alarm Notifications, page A-52
Global Notifications

Table A-2 lists the global notifications supported by the CISCO-GGSN-MIB. To enable these notifications to be sent, use the `snmp-server enable traps grps` global configuration command, with the `ggsn, ggsn-apn, ggsn-memory, ggsn-pdp, ggsn-service, csg` and/or `dcca` keyword option specified.

Table A-2 Global Notifications

<table>
<thead>
<tr>
<th>Notification and Notification Objects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cGgsnInServiceNotif (1.3.6.1.4.1.9.9.240.2.0.2)</code></td>
<td>Sent when the GGSN is placed in operational (inService) mode. The GGSN is placed in operational mode using the <code>gprs service-mode operational</code> global configuration command or by setting the <code>cGgsnServiceMode</code> object to <code>inService(1)</code>. The service mode is identified by <code>cGgsnServiceModeStatus</code>. Enable the generation of this notification by setting <code>cGgsnServiceNotifEnabled</code> to <code>true(1)</code>.</td>
</tr>
<tr>
<td><code>cGgsnMaintenanceNotif (1.3.6.1.4.1.9.9.240.2.0.3)</code></td>
<td>Sent when the GGSN is placed in maintenance mode. The GGSN is placed in maintenance mode using the <code>gprs service-mode maintenance</code> global configuration command or by setting the <code>cGgsnServiceMode</code> object to <code>maintenance(2)</code>. The service mode is identified by <code>cGgsnServiceModeStatus</code>. Enable the generation of this notification by setting <code>cGgsnServiceNotifEnabled</code> to <code>true(1)</code>.</td>
</tr>
<tr>
<td><code>cGgsnMemThresholdReachedNotif (1.3.6.1.4.1.9.9.240.2.0.4)</code></td>
<td>Sent when the GGSN memory threshold has been reached. The memory threshold is set using the <code>gprs memory threshold</code> global configuration command or by setting <code>cGgsnMemoryThreshold</code>. Enable the generation of this notification by setting <code>cGgsnMemoryNotifEnabled</code> to <code>true(1)</code>.</td>
</tr>
<tr>
<td><code>cGgsnMemThresholdClearedNotif (1.3.6.1.4.1.9.9.240.2.0.5)</code></td>
<td>Sent when the GGSN retains the memory and falls below the configured threshold. The memory threshold is set using the <code>gprs memory threshold</code> global configuration command or by setting <code>cGgsnMemoryThreshold</code>. Enable the generation of this notification by setting <code>cGgsnMemoryNotifEnabled</code> to <code>true(1)</code>.</td>
</tr>
</tbody>
</table>

Note

Issue a separate command for each keyword option.

Note

`cGgsnNotification (1.2.6.1.4.1.9.9.240.2.0.1)` has been deprecated.
Global Notifications (continued)

<table>
<thead>
<tr>
<th>Notification and Notification Objects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cGgsnGlobalErrorNotif (1.3.6.1.4.1.9.9.240.2.0.8)</td>
<td>Sent when a GGSN-related alarm has occurred. If additional information is available for specific types of alarms, that information might be appended to the end of the notification in additional varbinds. Enable the generation of this notification by setting the cGgsnGlobalErrorNotifEnabled to true(1). Note To prevent flooding, cGgsnGlobalErrorNotif, cGgsnAccessPointNameNotif, and cGgsnPacketDataProtocolNotif replace cGgsnNotification in GGSN Release 5.1 and later. For information about cGgsnGlobalErrorNotif alarms, see the “cGgsnGlobalErrorNotif” section on page A-54.</td>
</tr>
<tr>
<td>cGgsnAccessPointNameNotif (1.3.6.1.4.1.9.9.240.2.0.9)</td>
<td>Sent when an APN-related alarm has occurred. If additional information is available for specific types of alarms, that information might be appended to the end of the notification in additional varbinds. Enable the generation of this notification by setting the cGgsnAccessPointNotifEnabled to true(1). Note To prevent flooding, cGgsnGlobalErrorNotif, cGgsnAccessPointNameNotif, and cGgsnPacketDataProtocolNotif replace cGgsnNotification in GGSN Release 5.1 and later. For information about cGgsnAccessPointNameNotif alarms, see the “cGgsnAccessPointNameNotif” section on page A-55.</td>
</tr>
<tr>
<td>cGgsnPacketDataProtocolNotif (1.3.6.1.4.1.9.9.240.2.0.10)</td>
<td>Sent when a user-related alarm has occurred. If additional information is available for specific types of alarms, that information might be appended to the end of the notification in additional varbinds. Enable the generation of this notification by setting the cGgsnPdpNotifEnabled to true(1). Note To prevent flooding, cGgsnGlobalErrorNotif, cGgsnAccessPointNameNotif, and cGgsnPacketDataProtocolNotif replace cGgsnNotification in GGSN Release 5.1 and later. For information about cGgsnPacketDataProtocolNotif alarms, see the “cGgsnPacketDataProtocolNotif” section on page A-57.</td>
</tr>
</tbody>
</table>
Service-Aware Billing Notifications

Table A-2 lists service-aware billing notifications supported by the CISCO-GGSN-SERVICE-AWARE-MIB. To enable these notifications to be sent, use the `snmp-server enable traps grps` global configuration command, with the `csg` and/or `dcca` keyword options specified.

Note: Issue a separate command for each keyword option.

<table>
<thead>
<tr>
<th>Notification and Notification Objects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cGgsnSACsgStateUpNotif (1.3.6.1.4.1.9.9.497.2.0.1)</code></td>
<td>Sent when the link to a CSG becomes active. If a port number is not configured in the CSG group, the <code>cGgsnSACsgPort</code> information will use the default value. Enable the generation of this notification by setting the <code>cGgsnSACsgNotifEnabled</code> to true(1).</td>
</tr>
<tr>
<td><code>cGgsnSACsgStateDownNotif (1.3.6.1.4.1.9.9.497.2.0.2)</code></td>
<td>Sent when the link to a CSG goes down. If a port number is not configured in the CSG group, the <code>cGgsnSACsgPort</code> information will use the default value. Enable the generation of this notification by setting the <code>cGgsnSACsgNotifEnabled</code> to true(1).</td>
</tr>
<tr>
<td><code>cGgsnSADccaEndUsrServDeniedNotif (1.3.6.1.4.1.9.9.497.2.0.3)</code></td>
<td>Sent when the credit control server denies the service request because of service restrictions. When this notification is received on the category level, the DCCA client discards all future user traffic for that category on that PDP. Enable the generation of this notification by setting the <code>cGgsnSADccaNotifEnabled</code> to true(1).</td>
</tr>
<tr>
<td><code>cGgsnSADccaCreditLimReachedNotif (1.3.6.1.4.1.9.9.497.2.0.4)</code></td>
<td>Sent when the credit limit is reached. The credit control server denies the service request since the end users account could not cover the requested service. The client behaves as it does with <code>CGgsnDccaEndUsrServDeniedNotif</code>. Enable the generation of this notification by setting the <code>cGgsnSADccaNotifEnabled</code> to true(1).</td>
</tr>
<tr>
<td><code>cGgsnSADccaUserUnknownNotif (1.3.6.1.4.1.9.9.497.2.0.5)</code></td>
<td>Sent when the specified end user is unknown to the credit-control server. Such permanent failures cause the client to enter an Idle state. The client shall reject or terminate the PDP context depending on whether the result code was received in a CCA(Initial) or a CCA(Update). Enable the generation of this notification by setting the <code>cGgsnSADccaNotifEnabled</code> to true(1).</td>
</tr>
</tbody>
</table>
Table A-4 Charging Notifications

<table>
<thead>
<tr>
<th>Notification and Notification Objects</th>
<th>Notes</th>
</tr>
</thead>
</table>
| cGgsnSADccaRatingFailedNotif (1.3.6.1.4.1.9.9.497.2.0.6)
cGgsnNotifPdpImsi
cGgsnNotifPdpMsisdn | Sent when the credit control server cannot rate the service request due to insufficient rating input, incorrect AVP combination or because of an AVP or AVP value that is not recognized or supported in the rating. Enable the generation of this notification by setting the cGgsnSADccaNotifEnabled to true(1). |
| cGgsnSADccaAuthRejectedNotif (1.3.6.1.4.1.9.9.497.2.0.7)
cGgsnNotifPdpImsi
cGgsnNotifPdpMsisdn | Sent when the credit control server failed to authorize an end user. The PDP context is deleted and the category blacklisted. Enable the generation of this notification by setting the cGgsnSADccaNotifEnabled to true(1). |

Charging Notifications

Table A-4 lists the charging-related traps supported in the CISCO-GPRS-CHARGING-MIB. To enable these notifications to be sent, use the `snmp-server enable traps gprs charging` global configuration command.

<table>
<thead>
<tr>
<th>Notification and Notification Objects</th>
<th>Notes</th>
</tr>
</thead>
</table>
| cgprsCgAlarmNotif (1.3.6.1.4.1.9.192.2.0.1)
cgprsCgAlarmHistType
cgprsCgAlarmHistAddrType
cgprsCgAlarmHistAddress
cgprsCgAlarmHistSeverity
cgprsCgAlarmHistInfo | Sent when a charging-related alarm is detected in the managed system. This alarm is sent after an entry has been added to the cgprsCgAlarmHistTable. Enable the generation of this notification by setting the cgprsCgAlarmEnable to true(1). For information about cgprsCgAlarmNotif alarms, see the “cgprsCgAlarmNotif” section on page A-59. |
| cgprsCgGatewaySwitchoverNotif (1.3.6.1.4.1.9.192.2.0.2)
cgprsCgActiveChgGatewayAddrType
cgprsCgActiveChgGatewayAddress
cgprsCgOldChgGatewayAddress | Sent when the active charging gateway has switched. The switchover to a new charging gateway occurs according to the value specified for the charging gateway switch timer. The charging gateway switch timer can be set using the cgprsCgSwitchOverTime. The priority in which a new charging gateway is selected can be configured using the cgprsCgSwitchOverPriority. Enable the generation of this notification by setting cgprsCGAlarmEnable to true(1). |
GGSN Notifications

Table A-4 Charging Notifications (continued)

<table>
<thead>
<tr>
<th>Notification and Notification Objects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cgprsCgInServiceModeNotif (1.3.6.1.4.1.9.9.192.2.0.3)</td>
<td>Sent when the GGSN charging function is placed in operational mode. The charging function of the GGSN is placed in operational mode using the <code><gprs charging service-mode></code> global configuration command or by setting the cgprsCgServiceMode object to operational(1). Enable the generation of this notification by setting cgprsCGAlarmEnable to true(1).</td>
</tr>
<tr>
<td>cgprsCgMaintenanceModeNotif (1.3.6.1.4.1.9.9.192.2.0.4)</td>
<td>Sent when the GGSN charging function is placed in maintenance mode. The charging function of the GGSN is placed in maintenance mode using the <code><gprs charging service-mode></code> global configuration command or by setting the cgprsCgServiceMode object to maintenance(2). Enable the generation of this notification by setting cgprsCGAlarmEnable to true(1).</td>
</tr>
</tbody>
</table>

Table A-5 Access-point Notifications

Table A-5 lists access-point-related notifications supported by the CISCO-GPRS-ACC-PT-MIB. To enable these notifications to be sent, use the `snmp-server enable traps gprs apn` global configuration command.

<table>
<thead>
<tr>
<th>Notification and Notification Objects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cgprsAccPtCfgNotif (1.3.6.1.4.1.9.9.183.2.0.1)</td>
<td>Sent when an access-point configuration has occurred. This notification is sent after an entry has been added to the cgprsAccPtCfgNotifHistTable. Enable the generation of this notification by setting cgprsAccPtCfgNotifEnable to true(1). For information about cgprsAccPtCfgNotif alarms, see the “cgprsAccPtCfgNotif” section on page A-61.</td>
</tr>
<tr>
<td>cgprsAccPtSecSrcViolNotif (1.3.6.1.4.1.9.9.183.2.0.2)</td>
<td>Sent when a security violation has occurred, specifically, the GGSN determines that the source address of an upstream TPDU differs from that previously assigned to the MS. Enable the generation of this notification using the <code>security verify source</code> access-point configuration command or by setting the cgprsAccPtVerifyUpStrTpduSrcAddr object to true(1).</td>
</tr>
<tr>
<td>cgprsAccPtSecDestViolNotif (1.3.6.1.4.1.9.9.183.2.0.3)</td>
<td>Sent when a security violation has occurred, specifically, the GGSN determines that the destination address of an upstream TPDU falls within the range of a user-defined global list of PLMN addresses. Enable the generation of this notification using the <code>security verify destination</code> access-point configuration command or by setting the cgprsAccPtVerifyUpStrTpduDstAddr object to true(1).</td>
</tr>
</tbody>
</table>
Table A-5 Access-point Notifications (continued)

<table>
<thead>
<tr>
<th>Notification and Notification Objects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cgprsAccPtMaintenanceNotif</td>
<td>Sent when the APN is placed in maintenance mode. An APN is placed in maintenance mode using the <code>service-mode maintenance</code> access-point configuration command or by setting the cgprsAccPtOperationMode object to maintenance(1). The service mode is identified by cGgsnServiceModeStatus. Enable the generation of this notification by setting cgprsAccPtMaintenanceNotif to true(1).</td>
</tr>
<tr>
<td>cgprsAccPtInServiceNotif</td>
<td>Sent when the APN is placed in operational mode. An APN is placed in operational mode using the <code>service-mode operational</code> access-point configuration command or by setting cgprsAccPtOperationMode to inService(0). The service mode is identified by cGgsnServiceModeStatus. Enable the generation of this notification by setting cgprsAccPtMaintenanceNotif to true(1).</td>
</tr>
</tbody>
</table>

GTP Notification

Table A-5 lists the GTP-related notification supported by the CISCO-GTP-MIB. To enable this notification to be sent, use the `snmp-server enable traps gprs gtp` global configuration command.

Table A-6 GTP Notification

<table>
<thead>
<tr>
<th>Notification and Notification Objects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cGtpPathFailedNotification</td>
<td>Sent when a GGSN peer (SGSN or charging gateway) fails to respond to the GTP echo request message for the time period of the N3-requests counter configured using the <code>gprs gtp n3-requests</code> global configuration command. Enable the generation of this notification by setting the cGtpNotifEnable to true(1).</td>
</tr>
</tbody>
</table>
PSD-Client Notifications

Table A-2 lists the PSD-client notifications supported by the CISCO-PSD-CLIENT-MIB. To enable these notifications to be sent, use the `snmp-server enable traps data-store` global configuration command.

Table A-7 PSD-Client Notifications

<table>
<thead>
<tr>
<th>Notification and Notification Objects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cPsdClientDownNotif (1.3.6.1.4.1.9.9.495.0.1)</td>
<td>Sent when the PSD server goes down. If the PSD was in a writing state, it will be stopped. If it is in a retrieving state, the retrieval will continue with the other PSD after its state is checked. Enable the generation of this notification by setting the cPsdClientNotifEnable to true(1).</td>
</tr>
<tr>
<td>cPsdClientUpNotif (1.3.6.1.4.1.9.9.495.0.2)</td>
<td>Sent when the PSD server comes up. The GTP path will be created fulfilling the requirements of the PSD interface. Enable the generation of this notification by setting the cPsdClientNotifEnable to true(1).</td>
</tr>
<tr>
<td>cPsdClientDiskFullNotif (1.3.6.1.4.1.9.9.495.0.3)</td>
<td>Sent when the PSD server’s disk is full. When this notification is received from the writable (local) PSD, it will appear to be received from a retrieve-only PSD and its operating mode is changed to UNDEFINED. If received from a retrieve-only (remote) PSD, no action is taken. Enable the generation of this notification by setting the cPsdClientNotifEnable to true(1).</td>
</tr>
</tbody>
</table>

Alarm Notifications

Depending on the severity level, notifications are considered alarms or informational events. Notifications with a severity level of critical, major, or minor are classified as alarms. An alarm must be reported when an alarm state changes (assuming the alarm does not have a nonreported severity).

Informational events do not require state changes. An informational event is a warning that an abnormal condition that does not require corrective action has occurred. The informational event needs to be reported but is transient. No corrective action is required to fix the problem.

Table A-8 lists the severity levels and the required responses.

Table A-8 Notification Severity Levels

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical</td>
<td>A serious condition exists. If an action is recommended, clear critical alarms immediately.</td>
</tr>
<tr>
<td>Major</td>
<td>A disruption of service has occurred. Clear this alarm immediately.</td>
</tr>
<tr>
<td>Minor</td>
<td>No disruption of service has occurred, but clear this alarm as soon as possible.</td>
</tr>
<tr>
<td>Informational</td>
<td>A warning that an abnormal condition that does not require corrective action has occurred. An informational event is reported but is transient. No corrective action is required by the management center to fix this problem.</td>
</tr>
</tbody>
</table>
Alarms have a trap type associated with them. Table A-9 identifies the trap types that can be associated with an Alarm.

Table A-9 Alarms Trap Types

<table>
<thead>
<tr>
<th>Trap Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (cleared)</td>
<td>Indicates a previous alarm condition has been cleared. It is not required, unless specifically stated elsewhere on a case-by-case basis, that an alarm condition that has been cleared will produce a notification or other event containing an alarm severity with this value.</td>
</tr>
<tr>
<td>2 (indeterminate)</td>
<td>Indicates that the severity level cannot be determined.</td>
</tr>
<tr>
<td>3 (critical)</td>
<td>A service-affecting condition has occurred and an immediate action is possibly required.</td>
</tr>
<tr>
<td>4 (major)</td>
<td>A service-affecting condition has occurred and an urgent corrective action is possibly required.</td>
</tr>
<tr>
<td>5 (minor)</td>
<td>A non-service-affecting condition exists and corrective action should be taken in order to prevent a more serious condition (for example, a safety-affecting condition).</td>
</tr>
<tr>
<td>6 (warning)</td>
<td>A potential or impending service or safety affection condition has been detected before any significant affects have been felt.</td>
</tr>
<tr>
<td>7 (info)</td>
<td>The alarm condition does not meet any other severity definition. This can include important, but non-urgent notices or informational events.</td>
</tr>
</tbody>
</table>

The following sections describe alarms supported by the following notifications:

- cGgsnGlobalErrorNotif, page A-54
- cGgsnAccessPointNameNotif, page A-55
- CgprsCgAlarmNotif, page A-59
- cgprsAccPtCfgNotif, page A-61
cGgsnGlobalErrorNotif

Table A-10 lists alarms supported by the cGgsnGlobalErrorNotif notification (CISCO-GGSN-MIB). Alarms supported by the cGgsnGlobalErrorNotif notification are global-related alarms.

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
</table>
| ggsnServiceUp | **Cause:**
GGSN service has been started. The `service gprs` global configuration command has been issued.

Severity Level and Trap Type:
The severity level is critical. The trap type is 3.

Recommended Action:
This is an informational event. No action is required.

| ggsnServiceDown | **Cause:**
GGSN service is down. The `no gprs service` global configuration command has been issued or the system service is down because of another reason.

Severity Level and Trap Type:
The severity level is critical. The trap type is 3.

Recommended Action:
Attempt to restart the GGSN service on the router by issuing the `service gprs` global configuration command and if the problem persists, contact your Cisco technical support representative with the error message.

| noDHCPServer | **Cause:**
A DHCP server is not configured. This error notification is generated when part of the DHCP server configuration is missing or is incorrect.

Severity Level and Trap Type:
The severity level is major. The trap type is 4.

Recommended Action:
Ensure that all elements of the DHCP configuration are properly configured.
cGgsnAccessPointNameNotif

Table A-11 lists alarms supported by the cGgsnAccessPointNameNotif notification (CISCO-GGSN-MIB). Alarms supported by the cGgsnAccessPointNameNotif notification are APN-related alarms.

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>noRadius</td>
<td>Cause: A RADIUS server is not configured. This error notification is generated when part of the RADIUS server configuration is missing.</td>
</tr>
<tr>
<td></td>
<td>Severity Level and Trap Type: The severity level is major. The trap type is 4.</td>
</tr>
</tbody>
</table>
| | **Recommended Actions:**
| | 1. Verify that the RADIUS server is properly configured and that you can ping it.
| | 2. Ensure that the RADIUS server is configured properly.
| | 3. Note the error message, issue a show running configuration and contact your Cisco technical support representative. |
Table A-11 cGgsnAccessPointNameNotif Alarms (continued)

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipAllocationFail</td>
<td>Cause:</td>
</tr>
<tr>
<td></td>
<td>Dynamic IP allocation failed because of one of the following reasons:</td>
</tr>
<tr>
<td></td>
<td>1. One of the following DHCP or RADIUS server problem might have occurred:</td>
</tr>
<tr>
<td></td>
<td>a. The DHCP/RADIUS server IP address is configured incorrectly in the GGSN.</td>
</tr>
<tr>
<td></td>
<td>b. The DHCP/RADIUS server is reachable, but the configuration to allocate IP addresses might be incorrect.</td>
</tr>
<tr>
<td></td>
<td>c. The DHCP or RADIUS server is properly configured, but cannot be reached.</td>
</tr>
<tr>
<td></td>
<td>2. Dynamic IP allocation is disabled in the APN configuration.</td>
</tr>
<tr>
<td></td>
<td>3. The PAP or CHAP username and password information is missing from the RADIUS client in transparent mode. Therefore, this information is missing in the PDP activation request.</td>
</tr>
<tr>
<td></td>
<td>Severity Level and Trap Type:</td>
</tr>
<tr>
<td></td>
<td>The severity level is major. The trap type is 4.</td>
</tr>
<tr>
<td></td>
<td>Recommended Actions:</td>
</tr>
<tr>
<td></td>
<td>1. Check the DHCP/RADIUS server configuration, ensuring that:</td>
</tr>
<tr>
<td></td>
<td>a. The DHCP/RADIUS server IP address configured on the GGSN is valid.</td>
</tr>
<tr>
<td></td>
<td>b. The DHCP/RADIUS server is properly configured to allocate IP addresses.</td>
</tr>
<tr>
<td></td>
<td>c. The DHCP/RADIUS server is reachable (via the ping command).</td>
</tr>
<tr>
<td></td>
<td>2. Configure IP allocation pool in the APN as either DHCP proxy client or RADIUS client.</td>
</tr>
<tr>
<td></td>
<td>3. If none of the above does not resolve the alarm condition, contact you Cisco technical support representative with the error message.</td>
</tr>
</tbody>
</table>

apnUnreachable	Cause:
	A PDP activation has failed because the APN requested in the create PDP context request is not configured on the GGSN.
	Severity Level and Trap Type:
	The severity level is major. The trap type is 4.
	Recommended Action:
	Check the configuration of the corresponding APN. If the configuration appears to be correct, contact your Cisco technical support representative with the error message and saved output of the show running-config and show gprs access-point all commands.
cGgsnPacketDataProtocolNotif

Table A-12 lists alarms supported by the cGgsnPacketDataProtocolNotif notification (CISCO-GGSN-MIB). Alarms supported by the cGgsnPacketDataProtocolNotif notification are PDP-related alarms.

Table A-12 cGgsnPacketDataProtocolNotif Alarms

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>noResource</td>
<td>Cause: Resources available to continue GGSN service are exhausted because of one of the following reasons:</td>
</tr>
<tr>
<td></td>
<td>• Maximum number of PDP contexts has been reached.</td>
</tr>
<tr>
<td></td>
<td>• Maximum number of PPP regenerated PDP contexts has been reached.</td>
</tr>
<tr>
<td></td>
<td>Severity Level and Trap Type: The severity level is critical. The trap type is 3.</td>
</tr>
<tr>
<td></td>
<td>Recommended Action: If possible, increase the number of PDP contexts that can be processed by the GGSN. If the problem persists, contact your Cisco technical support representative with the error message.</td>
</tr>
<tr>
<td>authenticationFail</td>
<td>Cause: A PDP activation has failed because of one of the following reasons:</td>
</tr>
<tr>
<td></td>
<td>1. There is no RADIUS server present for authentication because a RADIUS server is not configured or is unreachable.</td>
</tr>
<tr>
<td></td>
<td>2. An invalid username or password is used in the create PDP context request.</td>
</tr>
<tr>
<td></td>
<td>3. The PAP/CHAP information element is missing in the create PDP context request in non-transparent mode.</td>
</tr>
<tr>
<td></td>
<td>4. The username is not present in the create PDP context request.</td>
</tr>
<tr>
<td></td>
<td>5. There is a duplicate IP address to access the APN.</td>
</tr>
<tr>
<td></td>
<td>Severity Level and Trap Type: The severity level is warning. The trap type is 6.</td>
</tr>
<tr>
<td></td>
<td>Recommended Action: Verify that the RADIUS server is configured properly and is reachable using the ping command. If it is, contact your Cisco technical support representative with the error message and the saved output of the show running-config.</td>
</tr>
</tbody>
</table>
Appendix A Monitoring Notifications

PSD-Client Notifications

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
</table>
| **ccrInitFail** | **Cause:**
The CCR(Initial) is sent to a Diameter server and the Tx time expired before receiving a CCA(Initial) response.
Severity Level and Trap Type:
The severity level is major. The trap type is 4.
Recommended Action:
The action on the PDP context creation is determined by the credit control failure handling (CCFH) configuration. Check the Diameter server and DCCA Tx timer and CCFH configurations on the GGSN to ensure they have been configured correctly. |
| **quotaPushFail** | **Cause:**
The quota push failed because: 1) the path between the CSG and quota server process on the GGSN is down, or 2) the CSG sent a negative Quota Push response for a Quota Push request.
Severity Level and Trap Type:
The severity level is major. The trap type is 4.
Recommended Action:
Check the CSG configuration, and the quota server configuration on the GGSN and the path state between the two. If the condition persists, contact your Cisco technical support representative with the error message. |
Table A-13 lists alarms supported by the CgprsCgAlarmNotif notification (CISCO-GPRS-CHARGING-MIB). Alarms supported by the CgprsCgAlarmNotif notification are alarms related to the charging functions of the GGSN.

Table A-13
CgprsCgAlarmNotif Alarms

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
</table>
| CgprsCgAlarmCgDown | **Cause:** The charging gateway (primary, secondary, and tertiary) is down because it is not configured or there is a missing response to a nodealive request on the charging gateway path.
 Severity Level and Trap Type: The severity level is critical. The trap type is 3.
 Recommended Action: Verify that a charging gateway configuration exists and that the correct IP address is assigned. If it is, then the charging gateway is down. |
| CgprsCgAlarmCgUp | **Cause:** The charging gateway is up.
 Severity Level and Trap Type: The severity level is critical. The trap type is 3.
 Recommended Action: This is an informational event. No action is required. |
| CgprsCgAlarmTransFailure | **Cause:** The GGSN has repeatedly failed to receive a response from the charging gateway for data record transfer requests.
 Severity Level and Trap Type: The severity level is critical. The trap type is 3.
 Recommended Action: Verify that the charging gateways are properly configured on the GGSN and charging functionality is active. |
| CgprsCgAlarmTransSuccess | **Cause:** The GGSN has successfully sent data record transfer requests to the charging gateway after the failure.
 Severity Level and Trap Type: The severity level is critical. The trap type is 3.
 Recommended Action: This is an informational event. No action is required. |
| CgprsCgAlarmCapacityFull | **Cause:** The GGSN buffer is full and subsequent packets might be dropped.
 Severity Level and Trap Type: The severity level is critical. The trap type is 3.
 Recommended Action: Confirm the value configured for the gprs charging send-buffer global configuration command, and if possible, increase the number of bytes configured for the buffer. |
Table A-13 CgprsCgAlarmNotif Alarms (continued)

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cgprsCgAlarmCapacityFree</td>
<td>Cause: The GGSN is able to buffer G-CDR after a failure to buffer G-CDRs has occurred.</td>
</tr>
<tr>
<td></td>
<td>Severity Level and Trap Type: The severity level is critical. The trap type is 3.</td>
</tr>
<tr>
<td></td>
<td>Recommended Action: This is an informational event. No action is required.</td>
</tr>
<tr>
<td>cgprsCgAlarmEchoFailure</td>
<td>Cause: The GGSN has failed to receive an echo response from the charging gateway to an echo request.</td>
</tr>
<tr>
<td></td>
<td>Severity Level and Trap Type: The severity level is critical. The trap type is 3.</td>
</tr>
<tr>
<td></td>
<td>Recommended Action: Verify that the charging gateways are properly configured on the GGSN. If the condition persists, contact your Cisco technical support representative with the error message.</td>
</tr>
<tr>
<td>cgprsCgAlarmEchoRestored</td>
<td>Cause: The GGSN has received an echo response from the charging gateway after an cgprsCgAlarmEchoFailure was sent.</td>
</tr>
<tr>
<td></td>
<td>Severity Level and Trap Type: The severity level is critical. The trap type is 3.</td>
</tr>
<tr>
<td></td>
<td>Recommended Action: This is an informational event. No action required.</td>
</tr>
<tr>
<td>cgprsCgAlarmChargingDisabled</td>
<td>Cause: Indicates that charging transactions on the GGSN are disabled.</td>
</tr>
<tr>
<td></td>
<td>Severity Level and Trap Type: The severity level is critical. The trap type is 3.</td>
</tr>
<tr>
<td></td>
<td>Recommended Action: This is an informational event. No action is required.</td>
</tr>
<tr>
<td>cgprsCgAlarmChargingEnabled</td>
<td>Cause: Indicates that charging transactions on the GGSN are enabled.</td>
</tr>
<tr>
<td></td>
<td>Severity Level and Trap Type: The severity level is critical. The trap type is 3.</td>
</tr>
<tr>
<td></td>
<td>Recommended Action: This is an informational event. No action is required.</td>
</tr>
<tr>
<td>cgprsCgGatewaySwitchoverNotif</td>
<td>Cause: Indicates that the active charging gateway has switched.</td>
</tr>
<tr>
<td></td>
<td>Recommended Action: This is an informational event. Determine why the charging gateway switchover occurred.</td>
</tr>
</tbody>
</table>
Table A-13 CgprsCgAlarmNotif Alarms (continued)

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
</table>
| cgprsCgInServiceModeNotif | **Cause:** Indicates that the GGSN charging function has been placed in in-service/operational mode from maintenance mode.
Recommended Action: This is an informational event. No action is required. |
| cgprsCgMaintenanceModeNotif | **Cause:** Indicates that the GGSN charging function has been placed in maintenance mode from in-service/operational mode.
Recommended Action: This is an informational event. No action is required. |

cgprsAccPtCfgNotif

Table A-14 lists alarms supported by the cgprsAccPtCfgNotif notification (CISCO-GPRS-ACC-PT-MIB).

Table A-14 cgprsAccPtCfgNotif

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
</table>
| cgprsAccPtCfgNotif | **Cause:**
The access point configuration has been created, modified, or deleted.
Severity Level and Trap Type: Not applicable
Recommended Action: This is an informational event. No action is required. |
Diameter Base System Messages

This appendix lists and describes Cisco IOS Diameter base system messages. The system software sends these messages to the console (and, optionally, to a logging server on another system) during operation. Not all system messages indicate problems with your system. Some are purely informational, and others might help diagnose problems with communications lines, internal hardware, or the system software.

This document includes Diameter base system messages only. For a complete list of all IOS system messages, please refer to the Cisco IOS Software System Messages document at: http://www.cisco.com/univercd/cc/td/doc/product/software/ios123/123sup/123sems/index.htm

How to Read System Messages

System messages begin with a percent sign (%) and are structured as follows:

%FACILITY-SUBFACILITY-SEVERITY-MNEMONIC: Message-text

FACILITY is a code consisting of two or more uppercase letters that indicate the facility to which the message refers. A facility can be a hardware device, a protocol, or a module of the system software.

SEVERITY is a single-digit code from 0 to 7 that reflects the severity of the condition. The lower the number, the more serious the situation.

MNEMONIC is a code that uniquely identifies the error message.

Message-text is a text string describing the condition. This portion of the message sometimes contains detailed information about the event, including terminal port numbers, network addresses, or addresses that correspond to locations in the system memory address space. Because the information in these variable fields changes from message to message, it is represented here by short strings enclosed in square brackets ([]). A decimal number, for example, is represented as [dec].

Diameter Base Messages

Error Message DIA_PEER_UP, DIABASE, LOG_WARNING, 0, \ "Diameter peer %i port %d %sUP"

Explanation Connection to a configured diameter peer is established.

Recommended Action This message is informational.
Error Message DIA_PEER_DOWN, DIABASE, LOG_WARNING, 0, \ "Diameter peer %i port %d %sDOWN"

Explanation Connection to a configured diameter peer is down.

Recommended Action This message indicates a diameter peer has gone down. Check the connection parameters and if the server is UP. Is yes, check the parameters negotiated in Capability-Exchange messages.

Error Message DIA_INVALID_HEADER, DIABASE, LOG_WARNING, 0, \ "Invalid header received from diameter peer %i"

Explanation A invalid header was received from the diameter peer.

Recommended Action This message indicates a diameter peer has sent an invalid header. turn on diameter error debug for more information on the content. Check the diameter peer indicated on the configured options or Contact Cisco technical representative with the exact log as it appears with the debug.