MPLS QoS—DiffServ Tunnel Mode Support

MPLS QoS—DiffServ Tunnel Mode Support allows service providers to manage the quality of service (QoS) that a router will provide to a Multiprotocol Label Switching (MPLS) packet in an MPLS network. MPLS QoS—DiffServ Tunnel Mode Support conforms to the IETF draft standard for Uniform, Short Pipe, and Pipe modes. It also conforms to Cisco-defined extensions for scalable command line interface (CLI) management of those modes at customer edge, provider edge, and core routers.

The following features are supported on MPLS QoS—DiffServ Tunnel Mode Support:

- MPLS per-hop behavior (PHB) layer management.
- There is improved scalability of the MPLS layer management by control on managed customer edge (CE) routers.
- MPLS can “tunnel” a packet’s QoS (that is, the QoS is transparent from edge to edge).
- The MPLS experimental (MPLS EXP) field can be marked differently and independently of the PHB marked in the IP Precedence or differentiated services code point (DSCP) field.
- There are three MPLS QoS tunneling modes for the operation and interaction between the DiffServ marking in the IP header and the DiffServ marking in the MPLS header: Pipe mode with an explicit NULL LSP, Short Pipe mode, and Uniform mode. Pipe mode with an explicit NULL LSP and Short Pipe mode allow an MPLS network to transparently tunnel the DiffServ marking of packets.

Feature History for MPLS QoS—DiffServ Tunnel Mode Support

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)T</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.2(27)SBA</td>
<td>This feature was integrated into Cisco ISO Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

Finding Support Information for Platforms and Cisco IOS Software Images

Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click Cancel at the login dialog box and follow the instructions that appear.
Contents

- Prerequisites for MPLS QoS—DiffServ Tunnel Mode Support, page 2
- Restrictions for MPLS QoS—DiffServ Tunnel Mode Support, page 2
- Information About MPLS QoS—DiffServ Tunnel Mode Support, page 2
- How to Configure MPLS QoS—DiffServ Tunnel Mode Support, page 16
- Configuration Examples for MPLS QoS—DiffServ Tunnel Mode Support, page 41
- Additional References, page 46
- Command Reference, page 47
- Glossary, page 62

Prerequisites for MPLS QoS—DiffServ Tunnel Mode Support

- Set up the network to run MPLS.
- Enable IP Cisco Express Forwarding (CEF).
- Define the Service Level Agreement (SLA).
- Know each customer’s per-hop behavior.
 - What do customers expect you to provide?
 - Are customers going to mark the traffic?
- Identify whether the customer’s traffic will be voice or data.
- Determine the topology and interfaces that need to be configured.
- Understand how IP and MPLS packets are forwarded.

Restrictions for MPLS QoS—DiffServ Tunnel Mode Support

- A single label-switched path (LSP) can support up to eight classes of traffic (that is, eight PHBs) because the MPLS EXP field is a 3-bit field.
- MPLS QoS—DiffServ Tunnel Mode Support does not support L-LSPs. Only E-LSPs are supported.

Information About MPLS QoS—DiffServ Tunnel Mode Support

Benefits of MPLS QoS—DiffServ Tunnel Mode Support

MPLS QoS—DiffServ Tunnel Mode Support has the following benefits:

- Tunneling modes provide added QoS functionality by the creative manipulation of the MPLS EXP field during label imposition, forwarding, and label disposition.
- Tunneling modes provide a common set of PHBs to different service provider customers.
- Pipe mode provides transparency and customized edge service.
Pipe mode with an explicit NULL LSP improves the scalability of management by performing per-customer packet metering and marking closer to the service provider’s customer networks.

Pipe mode with an explicit NULL LSP provides QoS transparency by ensuring that customer’s packets will not be re-marked in the service provider’s network.

In Pipe mode with an explicit NULL LSP, the explicit NULL LSP applies the service provider’s PHBs on the ingress CE-to-PE link.

In Pipe mode with an explicit NULL LSP, the service provider’s PHBs are applied on the egress PE-to-CE link.

Short Pipe mode provides transparency, standard edge service, and scalability.

Short Pipe mode provides PHB management on the PE router. The customer’s set of PHBs is applied on both the egress PE-to-CE link and on the ingress CE-to-PE link.

Customers are likely to use Uniform mode if they have no markings or few markings. The customer lets the Internet service provider (ISP) mark the packets and retain their markings.

In Uniform mode, all changes to QoS markings are reflected at each level (that is, IGP, BGP, and IP).

In Uniform mode, if a QoS marking is changed in the MPLS network, it is changed in the IP packet too.

To configure MPLS QoS—DiffServ Tunnel Mode Support, you should understand the following concepts:

- **QoS and Its Use in MPLS Tunneling, page 3**
- **Tunneling Modes for MPLS DiffServ, page 6**
- **MPLS PHB Layer Management, page 7**
- **Tunneling Modes Operation, page 7**

QoS and Its Use in MPLS Tunneling

This section includes the following subsections:

- What is QoS?, page 3
- Services Supported by MPLS QoS, page 4
- Providing QoS to an IP Packet, page 5
- Providing QoS to an MPLS Packet, page 5
- DiffServ as a Standardization of QoS, page 5

What is QoS?

Critical applications must be guaranteed the network resources they need, despite a varying network traffic load. QoS is a set of techniques that manage the following:

- Network bandwidth—Noncritical traffic is prevented from using bandwidth that critical applications need. The main cause of congestion is lack of bandwidth.
- Network delay (also called latency)—The time required to move a packet from the source to the destination over a path.
Information About MPLS QoS—DiffServ Tunnel Mode Support

Cisco IOS Release 12.2(27)SBA

Jitter—The interpacket delay variance; that is, the difference between interpacket arrival and departure. Jitter can cause data loss.

Packet loss—The dropping of packets.

Service providers offering MPLS VPN and traffic engineering (TE) services can provide varying levels of QoS for different types of network traffic. For example, Voice-over-IP (VoIP) traffic receives service with an assured minimum of delay, whereas e-commerce traffic might receive a minimum bandwidth guarantee (but not a delay guarantee).

For more information about QoS, see the Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2 and the Cisco IOS Quality of Service Solutions Command Reference, Release 12.2.

Services Supported by MPLS QoS

MPLS QoS supports the following services:

- **Class-based weighted fair queuing (CBWFQ)**—Provides queuing based on defined classes, with no strict priority queue available for real-time traffic. Weighted fair queuing allows you to define traffic classes based on match criteria. Once a class has been defined, you can assign characteristics to the class. For example, you can designate the minimum bandwidth delivered to the class during congestion.

- **Low latency queuing (LLQ)**—Provides strict priority queuing, which allows delay-sensitive data such as voice to be processed and sent first, before packets in other queues are processed. This provides preferential treatment to delay-sensitive data over other traffic.

- **Weighted fair queuing (WFQ)**—An automated scheduling system that uses a queuing algorithm to ensure fair bandwidth allocation to all network traffic. Weighted fair queuing is based on a relative bandwidth applied to each of the queues.

- **Weighted random early detection (WRED)**—RED is a congestion avoidance mechanism that controls the average queue size by indicating to the end hosts when they should temporarily stop sending packets. A small percentage of packets is dropped when congestion is detected and before the queue in question overflows completely.

 The weighted aspect of WRED ensures that high-precedence traffic has lower loss rates than other traffic during congestion. WRED can be configured to discard packets that have certain markings. When a packet comes into a router, it is assigned an internal variable that is called a discard class. If desired, you can set the discard class at the input interface. At the output interface, the router can be configured to use the discard class for WRED instead of the MPLS EXP field.

Service Level Agreements Used in MPLS Tunneling

The service provider has an SLA with each customer. Each customer can have a different SLA. For example, the SLA for customer C1 may allow 256 kilobits of bandwidth for TCP packets (such as FTP packets or Telnet packets) and 1 megabyte of voice traffic per second. If the customer transmits 1 megabyte of voice traffic per second, the service provider delivers it to the other side of the customer’s network. If the customer transmits more, the excess traffic is considered out-of-rate traffic and may or may not be discarded.

If the service provider experiences congestion, the service provider decides how to handle those packets. For example, the service provider may drop packets or give them less bandwidth. The PHB may be to drop a packet or to give it 20 percent of the link bandwidth.
The PHB that the service provider provides for a packet may be different from the PHB that the customer wants traffic to have in their network. The customer may be providing QoS at the output interface of each router in their network. However, the customer may be providing a different amount of bandwidth on those links than the service provider will provide. For example, a customer may give 50 percent of the link bandwidth to voice. The service provider may want to give only 10 percent of the link bandwidth to voice.

Providing QoS to an IP Packet

In an IP packet, the QoS that a router must provide has traditionally been designated in the IP Precedence field, which is the first three bits of the type of service (ToS) byte in the header of an IP packet. The IP Precedence and the differentiated services code point (DSCP) in an IP packet define the class. They may also designate the discard profile within a class. The DSCP is specified in the IETF standard for DiffServ. It is a new IETF standard for QoS.

Although some people still use the IP Precedence field, others use the DSCP to indicate the PHB that will be provided to an IP packet.

After label imposition, a configurable mapping function marks an equivalent PHB into the 3-bit MPLS EXP field value based on the IP Precedence or the IP DSCP marking.

Providing QoS to an MPLS Packet

In an MPLS packet, the PHB is marked in the MPLS EXP field within the MPLS label entry. The EXP bits are similar in function to the IP Precedence and the DSCP in the IP network. The EXP bits generally carry all the information encoded in the IP Precedence or the DSCP.

The edge LSR that imposes the MPLS header sets the MPLS EXP field to a value.

DiffServ as a Standardization of QoS

DiffServ is a QoS architecture for IP networks. Packets within a DiffServ-enabled network may be classified into classes such as premium, gold, silver, or bronze based on QoS requirements. For example, VoIP packets may be grouped into the premium class, and e-commerce HTTP packets may be grouped into the gold class.

Each class has a marking associated with it. This makes packet classification extremely scalable and assures appropriate bandwidth and delay guarantees in the network. When packets enter the network, they are marked based on classification policies at the network boundary routers. The boundary routers also apply traffic conditioning functions to control the amount of traffic entering the network. Traffic conditioning includes the following:

- Shaping—Smoothing the rate at which packets are sent into the network
- Policing—Dropping packets that exceed a subscribed-to-rate, or re-marking packets exceeding the rate so that the probability of dropping them increases when there is congestion

Each router within the network then applies different queuing and dropping policies on each packet based on the marking that the packet carries.

For more information about DiffServ, see the Cisco IOS Switching Services Configuration Guide, Release 2.2.
Tunneling Modes for MPLS DiffServ

Tunneling is the ability of QoS to be transparent from one edge of a network to the other edge of the network. A tunnel starts where there is label imposition. A tunnel ends where there is label disposition; that is, where the label is popped off of the stack and the packet goes out as an MPLS packet with a different PHB layer underneath or as an IP packet with the IP PHB layer.

There are three ways to forward packets through a network:

- Pipe mode with an explicit NULL LSP
- Short Pipe mode
- Uniform mode

Pipe mode and Short Pipe mode provide QoS transparency. With QoS transparency, the customer’s IP marking in the IP packet is preserved.

The only difference between Pipe mode and Short Pipe mode is which PHB is used on the service provider’s egress edge router. In Pipe mode with an explicit NULL LSP, QoS is done on the PE-to-CE link based on the service provider’s PHB markings. The egress LSR still uses the marking that was used by intermediate LSRs.

All three tunneling modes affect the behavior of edge and penultimate label switching routers (LSRs) where labels are pushed (put onto packets) and popped (removed from packets). They do not affect label swapping at intermediate routers. A service provider can choose different types of tunneling modes for each customer.

Following is a brief description of each tunneling mode:

- Pipe mode with an explicit NULL LSP—QoS is done on the output interface of the PE router based on the received MPLS EXP field, even though one or more label entries have been popped. The IP Precedence field, EXP bits, and the DSCP field are not altered when they travel from the ingress to the egress of the MPLS network.

Any changes to the packet marking within the MPLS network are not permanent and do not get propagated when the packet leaves the MPLS network. The egress LSR still uses the marking that was used by intermediate provider core (P) routers. However, the egress provider edge (PE) router has to remove labels imposed on the original packet. To preserve the marking carried in the labels, the edge PE router keeps an internal copy of the marking before removing the labels. This internal copy is used to classify the packet on the outbound interface (facing the CE) after the labels are removed.

For a detailed description, see the “Pipe Mode with an Explicit NULL LSP” section on page 8.
For the configuration procedure, see the “Configuring Pipe Mode with an Explicit NULL LSP” section on page 17.
For an example, see the “Pipe Mode with an Explicit NULL LSP: Example” section on page 41.

- Short Pipe mode—In Short Pipe mode, the egress PE router uses the original packet marking instead of the marking used by the intermediate P routers.

For a detailed description, see the “Short Pipe Mode” section on page 11.
For the configuration procedure, see the “Configuring Short Pipe Mode” section on page 26.
For an example, see the “Short Pipe Mode: Example” section on page 43.

- Uniform mode—In Uniform mode, the marking in the IP packet may be manipulated to reflect the service provider’s QoS marking in the core.
For a detailed description, see the “Uniform Mode” section on page 14.
For the configuration procedure, see the “Configuring Uniform Mode” section on page 32.
For an example, see the “Uniform Mode: Example” section on page 44.

MPLS PHB Layer Management

Through the network of routers, the MPLS EXP field can be marked differently and independently of the PHB marked in the IP Precedence or the DSCP field. A service provider can choose from existing classification criteria, including or excluding the IP PHB marking, to classify packets into a different PHB which is then marked only in the MPLS EXP field during label imposition.

Layer management is the ability to apply an additional layer of PHB marking to a packet. The PHB is the behavior of a packet at a router (that is, the unique discard and scheduling behavior that is applied to a packet). Layer management can occur at a service provider-managed CE router or at the service provider edge (PE) router.

If a packet arrives in a network as an IP packet, it may already have a PHB layer that is represented by a marking in the ToS byte. The marking can be IP Precedence bits or the DSCP.

If a packet arrives as an MPLS packet, it already has the following two PHB layers:

- IP layer
- MPLS layer, where the marking is in the MPLS EXP field of the topmost label entry

At a given hop, one PHB layer can be added to a packet. If only one label is being pushed onto the packet, the marking for the PHB layer being added is contained in only one label.

If two or more labels are being pushed onto a packet, the PHB layer being added is marked with the same MPLS EXP field in all of the label entries being pushed on at that time.

Tunneling Modes Operation

Cisco IOS allows a flexible configuration. You can configure the PHB definition of the MPLS EXP field differently from the PHB definition of the IP Precedence and DSCP.

A service provider may or may not care about the PHB marking of their customer’s packet. For example, in customer C1’s network, an IP Precedence value of 5 may mean voice. In customer C2’s network, an IP Precedence value of 3 may mean voice. The service provider does not want to have two different IP Precedence values for voice. If the service provider has a large number of customers, there could be “many” values for voice. There are only eight possible EXP values.

To deal with different IP Precedence values representing the same PHB (in our example, for voice), the service provider does the following:

1. Arbitrarily chooses a common MPLS EXP field value to represent a PHB. For example, 2 can represent voice.
2. Looks at the packets of each customer. The service provider may look at the IP Precedence field value or at the UDP port number for voice, which is constant in every network.
3. For all customers, sets each voice packet to the MPLS EXP field value 2 on all the service provider’s customer ports. Consequently, each router in the service provider’s network only has to look for the MPLS EXP field value 2 for voice.
Another solution would be to set the DSCP value to 2, but that would alter the customer’s PHB. MPLS QoS—DiffServ Tunnel Mode Support achieves the same results without altering the DSCP value.

This section illustrates and describes the following:

- Pipe Mode with an Explicit NULL LSP, page 8
- Short Pipe Mode, page 11
- Uniform Mode, page 14

Pipe Mode with an Explicit NULL LSP

This section describes the following:

- Pipe Mode with an Explicit NULL LSP Overview, page 8
- Pipe Mode with an Explicit NULL LSP Operating Procedure, page 10

Pipe Mode with an Explicit NULL LSP Overview

Pipe mode with an explicit NULL LSP has the following characteristics:

- The QoS tunnel goes from the ingress CE router through the PE router to the egress CE router.
- There is an explicit NULL LSP from the CE router to the PE router. The label entry contains an MPLS EXP field, but does not carry a label value for forwarding purposes. It contains a zero (a null label value) for all packets going to the ingress PE router.
- The egress PE router removes the label entry and forwards packets as IP, but QoS is done on the output interface based on the MPLS EXP field received by the egress PE router.
- The service provider does not overwrite the IP Precedence value in the service provider’s network.

Figure 1 shows an overview of Pipe mode with an explicit NULL LSP.
Figure 1 Pipe Mode with an Explicit NULL LSP Overview

Symbol Meaning
C1 Customer 1's DiffServ domain
C2 Customer 2's DiffServ domain
CE1 Customer edge router 1
PE1 Service provider edge router (ingress LSR)
P1 Service provider router within the core of the provider's network
P2 Service provider router within the core of the provider's network
PE2 Service provider's edge router (egress LSR)
CE2 Customer edge router 2
SP Service provider DiffServ domain

Note PE1 and PE2 are at the boundaries between the MPLS network and the IP network.
Figure 1 illustrates the following:

1. An IP packet arrives at C1, CE1 with a DSCP value of 1.
2. C2, CE1 sets the MPLS EXP field value to 5 during label imposition of the null label.
3. The packet goes through the service provider’s network with the MPLS EXP field value set to 5.
4. Each router in the service provider’s network looks at the MPLS EXP field and does QoS based on that value.
5. When the packet gets to the egress PE router going back into C1’s network, it does QoS based on the packet’s MPLS EXP field even though the packet is transmitted as an IP packet.

Pipe Mode with an Explicit NULL LSP Operating Procedure

Figure 2 illustrates the operation of Pipe mode with an explicit NULL LSP for Customer 1, when MPLS VPN is enabled. Since VPN is enabled, there are two MPLS label entries. Otherwise, there would be only one entry. The functionality would be similar for Customer 2, but the DSCP value would be 3.

Pipe mode with an explicit NULL LSP functions as follows. The circled numbers at the bottom of the illustration correspond to the step numbers.

1. IP packets arrive at the router CE1, the managed CE router, with a DSCP value of 1.
2. An explicit NULL label entry is imposed onto the packet that contains an EXP value of 5.
3. The packet is transmitted to PE1 on the explicit NULL LSP.
4. The PE1 router saves the value of the MPLS EXP field and removes the explicit NULL entry. The PE1 router then imposes new labels onto the IP packet. Each label entry is set to the saved MPLS EXP field 5.
5. The packet is transmitted to P1.
6. At P1, the received EXP value is copied into the swapped label entry.
7. The packet is transmitted to P2.
8. At P2, the topmost label is popped, exposing a label entry that also has an EXP value of 5.
9. The packet is transmitted to PE2.
10. PE2 stores the value of the MPLS EXP field in the qos-group and discard-class variables, and removes the label entry from the packet.
11. While transmitting the packet to CE2, PE2 does QoS on its egress interface based on the saved value of the MPLS EXP field (qos-group and discard-class).
12. The IP packet arrives at the CE2 router.

Short Pipe Mode

This section describes the following:
- Short Pipe Mode Overview, page 11
- Short Pipe Mode Operating Procedure, page 13

Short Pipe Mode Overview

Short Pipe mode has the following characteristics:
- The QoS tunnel goes from the ingress PE router to the egress PE router.
- The egress PE router transmits packets as IP and QoS is done on the output interface based on the IP DSCP or IP Precedence value.
- The service provider does not overwrite the DSCP or IP Precedence value in the service provider’s network.

Figure 3 shows an overview of Short Pipe mode.
Figure 3 **Short Pipe Mode Overview**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Customer 1’s DiffServ domain</td>
</tr>
<tr>
<td>C2</td>
<td>Customer 2’s DiffServ domain</td>
</tr>
<tr>
<td>CE1</td>
<td>Customer edge router 1</td>
</tr>
<tr>
<td>PE1</td>
<td>Service provider edge router (ingress LSR)</td>
</tr>
<tr>
<td>P1</td>
<td>Service provider router within the core of the provider’s network</td>
</tr>
<tr>
<td>P2</td>
<td>Service provider router within the core of the provider’s network</td>
</tr>
<tr>
<td>PE2</td>
<td>Service provider’s edge router (egress LSR)</td>
</tr>
<tr>
<td>CE2</td>
<td>Customer edge router 2</td>
</tr>
<tr>
<td>SP</td>
<td>Service provider DiffServ domain</td>
</tr>
</tbody>
</table>

Note PE1 and PE2 are at the boundaries between the MPLS network and the IP network.
Figure 3 shows the following:
1. An IP packet arrives at C1, CE1 with a DSCP value of 1.
2. C1, CE1 transmits the IP packet to C1, PE1.
3. C1, PE1 sets the MPLS EXP field value to 5 during label imposition of the VPN label entries.
4. The packet goes through the service provider’s network with the MPLS EXP field value set to 5.
5. Each router in the service provider’s network looks at the MPLS EXP field and does QoS based on that value.
6. When the packet gets to the egress PE router going back into C1’s network, it does QoS based on the IP DSCP field.

Short Pipe Mode Operating Procedure

Figure 4 illustrates Short Pipe mode.

Figure 4 Short Pipe Mode Operation

Short Pipe mode functions as follows. The circled numbers at the bottom of the illustration correspond to the step numbers.
1. C1, CE1 transmits an IP packet to PE1 with an IP DSCP value of 1.
2. PE1 sets the MPLS EXP field to 5 in the imposed label entries.
3. PE1 transmits the packet to P1.
4. P1 sets the MPLS EXP field value to 5 in the swapped label entry.
5. P1 transmits the packet to P2.
6. P2 pops the IGP label entry.
7. P2 transmits the packet to PE2.
8. PE2 pops the BGP label.
9. PE2 transmits the packet to C1, CE2, but does QoS based on the IP DSCP value.
Uniform Mode

This section describes the following:

- Uniform Mode Overview, page 14
- Uniform Mode Operating Procedure, page 14

Uniform Mode Overview

In a label, the MPLS EXP field is not the same as the label value.

The topmost label entry contains the following:

- Label value, which contains labels and other information, to forward the packet.
- MPLS EXP field, which only pertains to the QoS of the packet, not the route. The EXP field value is not advertised. Its value comes from the way that the packet is received.

In Uniform mode, packets are treated uniformly in the IP and MPLS networks; that is, the IP Precedence value and the MPLS EXP bits always are identical. Whenever a router changes or recolors the PHB of a packet, that change must be propagated to all encapsulation markings. The propagation is performed by a router only when a PHB is added or exposed due to label imposition or disposition on any router in the packet’s path. The color must be reflected everywhere, at all levels. For example, if a packet’s QoS marking is changed in the MPLS network, the IP QoS marking reflects that change.

Uniform mode functions as follows:

- In both the MPLS-to-MPLS path and the MPLS-to-IP path, the PHBs of the topmost popped label are copied into the new top label or into the IP DSCP if no label remains.
- There can be a maximum of eight PHBs.
- If the PHBs are enclosed using more than the three Precedence bits, you must map DSCP to MPLS at the entry to the MPLS cloud.
- When packets leave the MPLS cloud, you must remap from the MPLS EXP value to the DSCP field in the IP header.

Uniform Mode Operating Procedure

Figure 5 illustrates the operation of Uniform mode.
MPLS QoS—DiffServ Tunnel Mode Support

Information About MPLS QoS—DiffServ Tunnel Mode Support

Figure 5 Uniform Mode Operation

The procedure varies according to whether there are IP Precedence bit markings or DSCP markings.

The following actions occur if there are IP Precedence bit markings:

1. IP packets arrive in the MPLS network at PE1, the service provider edge router.
2. A label is copied onto the packet.
3. If the MPLS EXP field value is recolored (for example, if the packet becomes out-of-rate because too many packets are being transmitted), that value is copied to the IGP label. The value of the BGP label is not changed.
4. At the penultimate hop, the IGP label is removed. That value is copied into the next lower level label.
5. When all MPLS labels have been removed from the packet which is sent out as an IP packet, the IP Precedence or DSCP value is set to the last changed EXP value in the core.

Following is an example when there are IP precedence bit markings:

1. At CE1 (customer equipment 1), the IP packet has an IP Precedence value of 5.
2. When the packet arrives in the MPLS network at PE1 (the service provider edge router), the IP Precedence value of 5 is copied to the imposed label entries of the packet.
3. The MPLS EXP field in the IGP label header might be changed within the MPLS core (for example, at P1).

*In both the MPLS-to-MPLS and the MPLS-to-IP cases, the PHBs of the topmost popped label is copied into the new top label or the IP DSCP if no label remains

Note Since the IP Precedence bits are 5, the BGP label and the IGP label also contain 5 because in Uniform mode the labels always are identical. The packet is treated uniformly in the IP and MPLS networks.
4. At P2, when the IGP label is removed, the MPLS EXP field in this label entry is copied into the underlaying BGP label.

5. At PE2, when the BGP label is popped, the EXP field in this label header is copied into the IP Precedence field of the underlying IP header.

How to Configure MPLS QoS—DiffServ Tunnel Mode Support

This section contains the following procedures:

- Determining Which Tunneling Mode is Appropriate, page 16 (required)
- Setting the MPLS EXP field, page 16 (optional)
- Configuring Pipe Mode with an Explicit NULL LSP, page 17 (optional)
- Configuring Short Pipe Mode, page 26 (optional)
- Configuring Uniform Mode, page 32 (optional)

Note

You can configure only one of the tunneling modes.

Determining Which Tunneling Mode is Appropriate

- If there are managed customer edge (CE) routers, we recommend that you use Pipe mode with an explicit NULL LSP so that there is service provider PHB on the PE-to-CE link.
- If there is no managed CE router, we recommend that you use Short Pipe mode.
- If there are no markings or few markings, customers are likely to use Uniform mode.

Setting the MPLS EXP field

There are two ways to set the MPLS EXP field:

- Use the `set mpls experimental topmost` command to set the topmost label entry’s value directly in the packet on the input and/or output interfaces.
- Use the `set mpls experimental imposition` command on the input interface to set the pushed label entry’s value during label imposition.

By default, the label edge router copies the IP Precedence of the IP packet to the MPLS EXP field in all pushed label entries.

You can optionally map the IP Precedence or DSCP field to the MPLS EXP field in the MPLS header by using the `set mpls experimental imposition` command.
Configuring Pipe Mode with an Explicit NULL LSP

This section describes how to configure the following:

- Ingress CE Router—Customer Facing Interface, page 17
- Ingress CE Router—PE Facing Interface, page 19
- Ingress PE Router—P Facing Interface, page 20
- P Router—P Facing Interface, page 22
- Egress PE Router—P Facing Interface, page 23
- Egress PE Router—Customer Facing Interface, page 25

For examples, see the “Pipe Mode with an Explicit NULL LSP: Example” section on page 41.

Note

The steps that follow show one way, but not the only way, to configure Pipe Mode with an Explicit NULL LSP.

Ingress CE Router—Customer Facing Interface

This procedure configures a policy map to set the MPLS EXP field in imposed label entries.

SUMMARY STEPS

1. class-map class-name
2. match ip dscp dscp-values
3. policy-map name
4. class class-name
5. police bps [burst-normal] [burst-max] conform-action action exceed-action action [violate-action action]
6. interface type slot/port
7. service-policy input name
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 class-map class-name</td>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Example:</td>
<td>.Router(config)# class-map IP-AF11</td>
</tr>
<tr>
<td>Step 2 match ip dscp dscp-values</td>
<td>Uses the DSCP values as the match criteria for control plane traffic and other traffic that will be transmitted as IP.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-c-map)# match ip dscp 4</td>
</tr>
<tr>
<td>Step 3 policy-map name</td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# policy-map set-MPLS-PHB</td>
</tr>
<tr>
<td>Step 4 class class-name</td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-p-map)# class IP-AF11</td>
</tr>
<tr>
<td>Step 5 police bps [burst-normal] [burst-max] conform-action action exceed-action action [violate-action action]</td>
<td>Configures the Traffic Policing feature, including the following:</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-p-map-c)# police 8000 conform-action set-mpls-experimental-imposition-transmit 4 exceed-action set-mpls-experimental-imposition-transmit 2</td>
</tr>
<tr>
<td>Step 6 interface type slot/port</td>
<td>Configures an interface type for Cisco series 7200 and Cisco series 7500 routers. Specifies the type of interface to be configured, the port, connector, or interface card number, and the backplane slot number.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface ethernet 3/0</td>
</tr>
<tr>
<td>Step 7 service-policy input name</td>
<td>Attaches a QoS policy to an interface and specifies that policies should be applied on packets coming into the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# service-policy input set-MPLS-PHB</td>
</tr>
</tbody>
</table>
Ingress CE Router—PE Facing Interface

This procedure classifies packets based on their MPLS EXP field and provides appropriate discard and scheduling treatments.

SUMMARY STEPS

1. class-map match-any class-name
2. match mpls experimental topmost mpls-values
3. match ip dscp dscp-values
4. policy-map name
5. class class-name
6. bandwidth \{bandwidth-kbps | percent percent\}
7. random-detect
8. interface type slot/port
9. service-policy output name
10. mpls ip encapsulate explicit-null

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 class-map match-any class-name</td>
<td>Specifies that packets must meet one of the match criteria to be considered a member of the traffic class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# class-map match-any MPLS-AF1</td>
<td></td>
</tr>
<tr>
<td>Step 2 match mpls experimental topmost mpls-values</td>
<td>Matches up to eight MPLS EXP field values. Puts matching packets into the same class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-c-map)# match mpls experimental topmost 2 4</td>
<td></td>
</tr>
<tr>
<td>Step 3 match ip dscp dscp-values</td>
<td>Uses the DSCP values as the match criteria for control plane traffic and other traffic that will be transmitted as IP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-c-map)# match ip dscp 4</td>
<td></td>
</tr>
<tr>
<td>Step 4 policy-map name</td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# policy-map output-gos</td>
<td></td>
</tr>
<tr>
<td>Step 5 class class-name</td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-p-map)# class MPLS-AF1</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure MPLS QoS—DiffServ Tunnel Mode Support

Ingress PE Router—P Facing Interface

In this procedure, the default label swap behavior copies the received MPLS EXP field value to the output MPLS EXP field.

SUMMARY STEPS

1. class-map class-name
2. match mpls experimental topmost mpls-values
3. policy-map name
4. class class-name
5. bandwidth (bandwidth-kbps | percent percent)
6. random-detect
7. interface type slot/port
8. service-policy output name

COMMAND OR ACTION	PURPOSE
Step 6 bandwidth (bandwidth-kbps | percent percent) | Specifies the minimum bandwidth guarantee to a traffic class. You can specify the minimum bandwidth guarantee in kilobits per second or by percent of the overall bandwidth.
Example: Router(config-p-map-c)# bandwidth percent 40
Step 7 random-detect | Applies WRED to the policy based on the IP Precedence or the MPLS EXP field value.
Example: Router(config-p-map-c)# random-detect
Step 8 interface type slot/port | Configures an interface type for Cisco series 7200 and Cisco series 7500 routers. Specifies the type of interface to be configured, the port, connector, or interface card number, and the backplane slot number.
Example: Router(config)# interface ethernet 3/0
Step 9 service-policy output name | Attaches a QoS policy to an interface and specifies that policies should be applied on packets leaving the interface.
Example: Router(config-if)# service-policy output output-qos
Step 10 mpls ip encapsulate explicit-null | Encapsulates with an explicit NULL label header all packets forwarded from the interface or subinterface.
Example: Router(config-if)# mpls ip encapsulate explicit-null

Cisco IOS Release 12.2(27)SBA
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>class-map class-name</td>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# class-map MPLS-AF1</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>match mpls experimental topmost mpls-values</td>
<td>Specifies the MPLS values to use as match criteria against which packets are checked to determine if they belong to the class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-c-map)# match mpls experimental topmost 2 4</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>policy-map name</td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# policy-map output-qos</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>class class-name</td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-p-map)# class MPLS-AF1</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>bandwidth (bandwidth-kbps</td>
<td>percent)</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-p-map-c)# bandwidth percent 40</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>random-detect</td>
<td>Applies WRED to the policy based on the IP Precedence or the MPLS EXP field value.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-p-map-c)# random-detect</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>interface type slot/port</td>
<td>Configures an interface type for Cisco series 7200 and Cisco series 7500 routers. Specifies the type of interface to be configured, the port, connector, or interface card number, and the backplane slot number.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface ethernet 3/0</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>service-policy output name</td>
<td>Attaches a QoS policy to an interface and specifies that policies should be applied on packets leaving the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# service-policy output output-qos</td>
<td></td>
</tr>
</tbody>
</table>
P Router—P Facing Interface

This procedure classifies packets based on their MPLS EXP field and provides appropriate discard and scheduling treatments.

SUMMARY STEPS

1. class-map class-name
2. match mpls experimental topmost mpls-values
3. policy-map name
4. class class-name
5. set mpls experimental topmost value
6. bandwidth {bandwidth-kbps | percent percent}
7. random-detect
8. interface type slot/port
9. service-policy output name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>class-map class-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# class-map MPLS-AF1</td>
</tr>
<tr>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>match mpls experimental topmost mpls-values</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-c-map)# match mpls experimental topmost 2 4</td>
</tr>
<tr>
<td>Specifies the MPLS EXP field values used as a match criteria against which packets are checked to determine if they belong to the class.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>policy-map name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# policy-map output-qos</td>
</tr>
<tr>
<td>Configures the QoS policy for packets that match the class or classes.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>class class-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-p-map)# class MPLS-AF1</td>
</tr>
<tr>
<td>Associates the traffic class with the service policy.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>set mpls experimental topmost value</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-p-map-c)# set mpls experimental topmost 3</td>
</tr>
<tr>
<td>Sets the MPLS EXP field value in the topmost MPLS label header at the input and/or output interfaces. This command is optional.</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | **Purpose** |
--- | --- |
Step 6
bandwidth *(bandwidth-kbps | percent percent)*
Example:
Router(config-p-map-c)# bandwidth percent 40
Specifies the minimum bandwidth guarantee to a traffic class. You can specify the minimum bandwidth guarantee in kilobits per second or by percent of the overall bandwidth. |

Step 7
random-detect
Example:
Router(config-p-map-c)# random-detect
Applies WRED to the policy based on the IP Precedence or the MPLS EXP field value. |

Step 8
interface *type slot/port*
Example:
Router(config)# interface ethernet 3/0
Configures an interface type for Cisco series 7200 and Cisco series 7500 routers. Specifies the type of interface to be configured, the port, connector, or interface card number, and the backplane slot number. |

Step 9
service-policy *output name*
Example:
Router(config-if)# service-policy output output-qos
Attaches a QoS policy to an interface and specifies that policies should be applied on packets leaving the interface. |

Egress PE Router—P Facing Interface

In this procedure, the qos-group and discard-class convey a packet’s PHB to the output interface. The qos-group and discard-class will be used for QoS classification and then will be discarded. The output IP packet’s ToS field will not be overwritten.

SUMMARY STEPS

1. class-map *class-name*
2. match mpls experimental topmost *mpls-values*
3. policy-map *name*
4. class *class-name*
5. set qos-group *qos-group-value*
6. set discard-class *value*
7. interface *type slot/port*
8. service-policy *input name*
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>class-map class-name
Example:
Router(config)# class-map MPLS-AF11</td>
</tr>
<tr>
<td>Step 2</td>
<td>match mpls experimental topmost mpls-values
Example:
Router(config-c-map)# match mpls experimental topmost 4</td>
</tr>
<tr>
<td>Step 3</td>
<td>policy-map name
Example:
Router(config)# policy-map set-PHB</td>
</tr>
<tr>
<td>Step 4</td>
<td>class class-name
Example:
Router(config-p-map)# class MPLS-AF11</td>
</tr>
<tr>
<td>Step 5</td>
<td>set qos-group qos-group-value
Example:
Router(config-p-map-c)# set qos-group 1</td>
</tr>
<tr>
<td>Step 6</td>
<td>set discard-class value
Example:
Router(config-p-map-c)# set discard-class 1</td>
</tr>
<tr>
<td>Step 7</td>
<td>interface type slot/port
Example:
Router(config)# interface ethernet 3/0</td>
</tr>
<tr>
<td>Step 8</td>
<td>service-policy input name
Example:
Router(config-if)# service-policy input set-PHB</td>
</tr>
</tbody>
</table>
Egress PE Router—Customer Facing Interface

This procedure classifies a packet according to the QoS group ID and determines a packet’s discard treatment according to the discard-class attribute.

SUMMARY STEPS

1. `class-map class-name`
2. `match qos-group qos-group-value`
3. `policy-map name`
4. `class class-name`
5. `bandwidth {bandwidth-kbps | percent percent}`
6. `random-detect discard-class-based`
7. `interface type slot/port`
8. `mpls ip`
9. `service-policy output name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>class-map class-name</code></td>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# class-map Local-AF1</td>
</tr>
<tr>
<td>Step 2 <code>match qos-group qos-group-value</code></td>
<td>Identifies a specified QoS group value as a match criteria.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-c-map)# match qos-group 1</td>
</tr>
<tr>
<td>Step 3 <code>policy-map name</code></td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# policy-map output-qos</td>
</tr>
<tr>
<td>Step 4 <code>class class-name</code></td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-p-map)# class Local-AF1</td>
</tr>
<tr>
<td>Step 5 `bandwidth {bandwidth-kbps</td>
<td>percent percent}`</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-p-map-c)# bandwidth percent 40</td>
</tr>
</tbody>
</table>
How to Configure MPLS QoS—DiffServ Tunnel Mode Support

The steps that follow show one way, but not the only way, to configure Short Pipe mode.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 random-detect discard-class-based</td>
<td>Bases WRED on the discard class value of a packet.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-p-map-c)# random-detect discard-class-based</td>
<td></td>
</tr>
<tr>
<td>Step 7 interface type slot/port</td>
<td>Configures an interface type for Cisco series 7200 and Cisco series 7500 routers. Specifies the type of interface to be configured, the port, connector, or interface card number, and the backplane slot number.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface ethernet 3/0</td>
<td></td>
</tr>
<tr>
<td>Step 8 mpls ip</td>
<td>Enables MPLS forwarding of IP version 4 (IPv4) packets along normally routed paths for a particular interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# mpls ip</td>
<td></td>
</tr>
<tr>
<td>Step 9 service-policy output name</td>
<td>Attaches a QoS policy to an interface and specifies that policies should be applied on packets leaving the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# service-policy output output-qos</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Short Pipe Mode

This section describes how to configure the following:

- **Ingress PE Router—Customer Facing Interface, page 27**
- **Ingress PE Router—P Facing Interface, page 28**
- **P Router—P Facing Interface, page 29**
- **Egress PE Router—Customer Facing Interface, page 31**

For examples, see the “Short Pipe Mode: Example” section on page 43.

Note

The steps that follow show one way, but not the only way, to configure Short Pipe mode.
Ingress PE Router—Customer Facing Interface

This procedure configures a policy map to set the MPLS EXP field in imposed label entries.

SUMMARY STEPS

1. **class-map** class-name
2. **match ip dscp** dscp-values
3. **policy-map** name
4. **class** class-name
5. **police** bps [burst-normal] [burst-max] **conform-action** action **exceed-action** action [violate-action action]
6. **interface** type slot/port
7. **service-policy** input name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** class-map class-name | Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.
Example:
Router(config)# class-map IP-AF11 |
| **Step 2** match ip dscp dscp-values | Uses the DSCP values as the match criteria.
Example:
Router(config-c-map)# match ip dscp 4 |
| **Step 3** policy-map name | Configures the QoS policy for packets that match the class or classes.
Example:
Router(config)# policy-map set-MPLS-PHB |
| **Step 4** class class-name | Associates the traffic class with the service policy.
Example:
Router(config-p-map)# class IP-AF11 |
| **Step 5** police bps [burst-normal] [burst-max] conform-action action exceed-action action [violate-action action] | Configures the Traffic Policing feature, including the following:
- Action to take on packets that conform to the rate limit specified in the SLA.
- Action to take on packets that exceed the rate limit specified in the SLA.
Example:
Router(config-p-map-c)# police 8000 conform-action set-mpls-experimental-imposition-transmit 4 exceed-action set-mpls-experimental-imposition-transmit 2
At the **action** field, enter
set-mpls-experimental-imposition value, where value is the value to which the MPLS EXP field will be set.
How to Configure MPLS QoS—DiffServ Tunnel Mode Support

Ingress PE Router—P Facing Interface

This procedure classifies packets based on their MPLS EXP field and provides appropriate discard and scheduling treatments.

SUMMARY STEPS

1. class-map class-name
2. match mpls experimental topmost mpls-values
3. policy-map name
4. class class-name
5. bandwidth \(\text{bandwidth-kbps | percent percent} \)
6. random-detect
7. interface type slot/port
8. service-policy output name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 class-map class-name</td>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Example: Router(config)# class-map MPLS-AF1</td>
<td></td>
</tr>
<tr>
<td>Step 2 match mpls experimental topmost mpls-values</td>
<td>Specifies the MPLS EXP field values used as a match criteria against which packets are checked to determine if they belong to the class.</td>
</tr>
<tr>
<td>Example: Router(config-c-map)# match mpls experimental topmost 2 4</td>
<td></td>
</tr>
<tr>
<td>Step 3 policy-map name</td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example: Router(config)# policy-map output-qos</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th>class class-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-p-map)# class MPLS-AF1</td>
</tr>
</tbody>
</table>

Purpose: Associates the traffic class with the service policy.

| Step 5 | bandwidth (bandwidth-kbps | percent percent) |
|--------|--------------------------|
| Example: | Router(config-p-map-c)# bandwidth percent 40 |

Purpose: Specifies the minimum bandwidth guarantee to a traffic class. You can specify the minimum bandwidth guarantee in kilobits per second or by percent of the overall bandwidth.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>random-detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-p-map-c)# random-detect</td>
</tr>
</tbody>
</table>

Purpose: Enables a WRED drop policy for a traffic class that has a bandwidth guarantee.

<table>
<thead>
<tr>
<th>Step 7</th>
<th>interface type slot/port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# interface ethernet 3/0</td>
</tr>
</tbody>
</table>

Purpose: Configures an interface type for Cisco series 7200 and Cisco series 7500 routers. Specifies the type of interface to be configured, the port, connector, or interface card number, and the backplane slot number.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>service-policy output name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# service-policy output-qos</td>
</tr>
</tbody>
</table>

Purpose: Attaches a QoS policy to an interface and specifies that policies should be applied on packets leaving the interface.

P Router—P Facing Interface

This procedure classifies packets based on their MPLS EXP field and provides appropriate discard and scheduling treatments.

SUMMARY STEPS

1. class-map class-name
2. match mpls experimental topmost mpls-values
3. policy-map name
4. class class-name
5. bandwidth {bandwidth-kbps | percent percent}
6. random-detect
7. interface type slot/port
8. service-policy output name
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>class-map</code> <code>class-name</code></td>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# class-map MPLS-AF1</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>match mpls experimental topmost mpls-values</code></td>
<td>Specifies the MPLS EXP field values used as a match criteria against which packets are checked to determine if they belong to the class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-c-map)# match mpls experimental topmost 2 4</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>policy-map</code> <code>name</code></td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# policy-map output-qos</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>class</code> <code>class-name</code></td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-p-map)# class MPLS-AF1</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>bandwidth</code> `(bandwidth-kbps</td>
<td>percent percent)`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-p-map-c)# bandwidth percent 40</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>random-detect</code></td>
<td>Applies WRED to the policy based on the IP Precedence or the MPLS EXP field value.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-p-map-c)# random-detect</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>interface</code> <code>type</code> <code>slot/port</code></td>
<td>Configures an interface type for Cisco series 7200 and Cisco series 7500 routers. Specifies the type of interface to be configured, the port, connector, or interface card number, and the backplane slot number.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface ethernet 3/0</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td><code>service-policy</code> <code>output</code> <code>name</code></td>
<td>Attaches a QoS policy to an interface and specifies that policies should be applied on packets leaving the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# service-policy output output-qos</td>
<td></td>
</tr>
</tbody>
</table>
Egress PE Router—Customer Facing Interface

This procedure classifies a packet based on its IP DSCP value and provides appropriate discard and scheduling treatments.

SUMMARY STEPS

1. `class-map class-name`
2. `match ip dscp dscp-values`
3. `policy-map name`
4. `class class-name`
5. `bandwidth {bandwidth-kbps | percent percent}`
6. `random-detect dscp-based`
7. `interface type slot/port`
8. `service-policy output name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>class-map class-name</code></td>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Example: Router(config)# class-map IP-AF1</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>match ip dscp dscp-values</code></td>
<td>Uses the DSCP values as the match criteria.</td>
</tr>
<tr>
<td>Example: Router(config-c-map)# match ip dscp 4 0</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>policy-map name</code></td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example: Router(config)# policy-map output-qos</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>class class-name</code></td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Example: Router(config-p-map)# class AF1</td>
<td></td>
</tr>
<tr>
<td>Step 5 `bandwidth {bandwidth-kbps</td>
<td>percent percent}`</td>
</tr>
<tr>
<td>Example: Router(config-p-map-c)# bandwidth percent 40</td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>random-detect dscp-based</code></td>
<td>Enables a WRED drop policy for a traffic class that has a bandwidth guarantee.</td>
</tr>
<tr>
<td>Example: Router(config-p-map-c)# random-detect dscp-based</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Uniform Mode

This section describes how to configure the following:

- Ingress PE Router—Customer Facing Interface, page 32
- Ingress PE Router—P Facing Interface, page 34
- P Router—Upstream P Facing Interface, page 35
- P Router—Downstream P Facing Interface, page 36
- Egress PE Router—P Facing Interface, page 37
- Egress PE Router—Customer Facing Interface, page 39

For examples, see the “Uniform Mode: Example” section on page 44.

Note: The steps that follow show one way, but not the only way, to configure Uniform mode.

Ingress PE Router—Customer Facing Interface

This procedure configures a policy map to set the MPLS EXP field in imposed label entries.

SUMMARY STEPS

1. `class-map class-name`
2. `match ip dscp dscp-values`
3. `policy-map name`
4. `class class-name`
5. `police bps [burst-normal] [burst-max] conform-action action exceed-action action [violate-action action]`
6. `interface type slot/port`
7. `service-policy input name`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 class-map class-name</td>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Example: Router(config)# class-map IP-AF11</td>
<td></td>
</tr>
<tr>
<td>Step 2 match ip dscp dscp-values</td>
<td>Uses the DSCP values as the match criteria.</td>
</tr>
<tr>
<td>Example: Router(config-c-map)# match ip dscp 4</td>
<td></td>
</tr>
<tr>
<td>Step 3 policy-map name</td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example: Router(config)# policy-map set-MPLS-PHB</td>
<td></td>
</tr>
<tr>
<td>Step 4 class class-name</td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Example: Router(config-p-map)# class IP-AF11</td>
<td></td>
</tr>
<tr>
<td>Step 5 police bps [burst-normal] [burst-max] conform-action action exceed-action action [violate-action action]</td>
<td>Configures the Traffic Policing feature, including the following:</td>
</tr>
<tr>
<td>Example: Router(config-p-map-c)# police 8000 conform-action set-mpls-experimental-imposition-transmit 3 exceed-action set-mpls-experimental-imposition-transmit 2</td>
<td></td>
</tr>
<tr>
<td>Step 6 interface type slot/port</td>
<td>Configures an interface type for Cisco series 7200 and Cisco series 7500 routers. Specifies the type of interface to be configured, the port, connector, or interface card number, and the backplane slot number.</td>
</tr>
<tr>
<td>Example: Router(config)# interface ethernet 3/0</td>
<td></td>
</tr>
<tr>
<td>Step 7 service-policy input name</td>
<td>Attaches a QoS policy to an interface and specifies that policies should be applied on packets coming into the interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# service-policy input set-MPLS-PHB</td>
<td></td>
</tr>
</tbody>
</table>
Ingress PE Router—P Facing Interface

This procedure classifies packets based on their MPLS EXP field and provides appropriate discard and scheduling treatments.

SUMMARY STEPS

1. **class-map class-name**
2. **match mpls experimental topmost mpls-values**
3. **policy-map name**
4. **class class-name**
5. **bandwidth {bandwidth-kbps | percent percent}**
6. **random-detect**
7. **interface type slot/port**
8. **service-policy output name**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 class-map class-name</td>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Example: Router(config)# class-map MPLS-AF1</td>
<td></td>
</tr>
<tr>
<td>Step 2 match mpls experimental topmost mpls-values</td>
<td>Specifies the MPLS EXP field values used as a match criteria against which packets are checked to determine if they belong to the class.</td>
</tr>
<tr>
<td>Example: Router(config-c-map)# match mpls experimental topmost 2 3</td>
<td></td>
</tr>
<tr>
<td>Step 3 policy-map name</td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example: Router(config)# policy-map output-qos</td>
<td></td>
</tr>
<tr>
<td>Step 4 class class-name</td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Example: Router(config-p-map)# class MPLS-AF1</td>
<td></td>
</tr>
<tr>
<td>Step 5 bandwidth {bandwidth-kbps</td>
<td>percent percent}</td>
</tr>
<tr>
<td>Example: Router(config-p-map-c)# bandwidth percent 40</td>
<td></td>
</tr>
<tr>
<td>Step 6 random-detect</td>
<td>Enables a WRED drop policy for a traffic class that has a bandwidth guarantee.</td>
</tr>
<tr>
<td>Example: Router(config-p-map-c)# random-detect</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure MPLS QoS—DiffServ Tunnel Mode Support

SUMMARY STEPS

1. **class-map** class-name
2. **match mpls experimental topmost** mpls-values
3. **policy-map** name
4. **class** class-name
5. **set qos-group mpls experimental topmost**
6. **interface** type slot/port
7. **service-policy** input name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 class-map class-name</td>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Example: Router(config)# class-map mpls-in</td>
<td></td>
</tr>
<tr>
<td>Step 2 match mpls experimental topmost mpls-values</td>
<td>Specifies the MPLS EXP field values used as a match criteria against which packets are checked to determine if they belong to the class.</td>
</tr>
<tr>
<td>Example: Router(config-c-map)# match mpls experimental topmost 4 5</td>
<td></td>
</tr>
<tr>
<td>Step 3 policy-map name</td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example: Router(config)# policy-map policy2</td>
<td></td>
</tr>
<tr>
<td>Step 4 class class-name</td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Example: Router(config-p-map)# class mpls-in</td>
<td></td>
</tr>
</tbody>
</table>
Step 5

set qos-group mpls experimental topmost

Example:

Router(config-p-map-c)# set qos-group mpls experimental topmost

Purpose:
Copies the MPLS EXP topmost field value into the QoS group ID. For more information, refer to *Enhanced Packet Marking*, Release 12.2(13)T.

Step 6

interface type slot/port

Example:

Router(config)# interface ethernet 3/0

Purpose:
Configures an interface type for Cisco series 7200 and Cisco series 7500 routers. Specifies the type of interface to be configured, the port, connector, or interface card number, and the backplane slot number.

Step 7

service-policy input name

Example:

Router(config-if)# service-policy input policy2

Purpose:
Attaches a QoS policy to an interface and specifies that policies should be applied on packets coming into the interface.

P Router—Downstream P Facing Interface

This procedure matches packets based on their QoS ID and sets the MPLS EXP field in the topmost label header to the QoS group ID.

SUMMARY STEPS

1. **class-map class-name**
2. **match qos-group qos-group-value**
3. **policy-map name**
4. **class class-name**
5. **set mpls experimental topmost qos-group**
6. **bandwidth {bandwidth-kbps | percent percent}**
7. **random-detect**
8. **interface type slot/port**
9. **service-policy output name**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 class-map class-name | Specifies the class-map to which packets will be mapped (matched). Creates a traffic class. |
| **Step 2**
 match qos-group qos-group-value | Identifies a specified QoS group value as a match criterion. |
| **Example:**
Router(config-c-map)# class-map qos-group out | |
| **Example:**
Router(config-c-map)# match qos-group 4 | |
How to Configure MPLS QoS—DiffServ Tunnel Mode Support

SUMMARY STEPS

1. class-map class-name
2. match mpls experimental topmost mpls-values
3. policy-map name
4. class class-name
5. set qos-group mpls experimental topmost
6. interface type slot/port
7. service-policy input name

Egress PE Router—P Facing Interface

This procedure classifies a packet based on the MPLS EXP field and sets the QoS group ID.
How to Configure MPLS QoS—DiffServ Tunnel Mode Support

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>class-map class-name</code></td>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Example: Router(config)# class-map mpls-in</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>match mpls experimental topmost mpls-values</code></td>
<td>Specifies the MPLS EXP field values used as a match criteria against which packets are checked to determine if they belong to the class.</td>
</tr>
<tr>
<td>Example: Router(config-c-map)# match mpls experimental topmost 4 5</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>policy-map name</code></td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example: Router(config)# policy-map foo</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>class class-name</code></td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Example: Router(config-p-map)# class mpls-in</td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>set qos-group mpls experimental topmost</code></td>
<td>Copies the MPLS EXP topmost field value into the QoS group ID. For more information, refer to Enhanced Packet Marking, Release 12.2(13)T.</td>
</tr>
<tr>
<td>Example: Router(config-p-map)# set qos-group mpls experimental topmost</td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>interface type slot/port</code></td>
<td>Configures an interface type for Cisco series 7200 and Cisco series 7500 routers. Specifies the type of interface to be configured, the port, connector, or interface card numbers, and the backplane slot number.</td>
</tr>
<tr>
<td>Example: Router(config)# interface ethernet 3/0</td>
<td></td>
</tr>
<tr>
<td>Step 7 <code>service-policy input name</code></td>
<td>Attaches a QoS policy to an interface and specifies that policies should be applied on packets coming into the interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# service-policy input foo</td>
<td></td>
</tr>
</tbody>
</table>
Egress PE Router—Customer Facing Interface

This procedure matches packets based on their QoS ID and sets the IP Precedence field to the QoS group ID.

SUMMARY STEPS

1. `class-map class-name`
2. `match qos-group qos-group-value`
3. `policy-map name`
4. `class class-name`
5. `set precedence qos-group`
6. `bandwidth {bandwidth-kbps | percent percent}`
7. `random-detect`
8. `interface type slot/port`
9. `service-policy output name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 class-map class-name</td>
<td>Specifies the class-map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Example: Router(config)# class-map qos-out</td>
<td></td>
</tr>
<tr>
<td>Step 2 match qos-group qos-group-value</td>
<td>Identifies a specified QoS group value as a match criterion.</td>
</tr>
<tr>
<td>Example: Router(config-c-map)# match qos-group 4</td>
<td></td>
</tr>
<tr>
<td>Step 3 policy-map name</td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Example: Router(config)# policy-map foo-out</td>
<td></td>
</tr>
<tr>
<td>Step 4 class class-name</td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Example: Router(config-p-map)# class qos-out</td>
<td></td>
</tr>
<tr>
<td>Step 5 set precedence qos-group</td>
<td>Sets the Precedence value in the packet header. For more information, refer to Enhanced Packet Marking, Release 12.2(13)T.</td>
</tr>
<tr>
<td>Example: Router(config-p-map-c)# set precedence qos-group</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure MPLS QoS—DiffServ Tunnel Mode Support

Command or Action

Step 6
bandwidth (*bandwidth-kbps | percent percent*)
Example:
Router(config-p-map-c)# bandwidth percent 40
Specifies the minimum bandwidth guarantee to a traffic class. You can specify the minimum bandwidth guarantee in kilobits per second or by percent of the overall bandwidth.

Step 7
random-detect
Example:
Router(config-p-map-c)# random-detect
Applies WRED to the policy based on the IP Precedence or the MPLS EXP field value.

Step 8
interface *type slot/port*
Example:
Router(config)# interface ethernet 3/1
Configures an interface type for Cisco series 7200 and Cisco series 7500 routers. Specifies the type of interface to be configured, the port, connector, or interface card numbers, and the backplane slot number.

Step 9
service-policy *output name*
Example:
Router(config-if)# service-policy output foo-out
Attaches a QoS policy to an interface and specifies that policies should be applied on packets coming into the interface.

Verifying MPLS QoS—DiffServ Tunnel Mode Support

- On PE routers, the **show policy-map interface** command displays the discard-class-based WRED in the output.
- In Short Pipe mode, the **show policy-map interface** command looks for the **set mpls experimental imposition** command.

Troubleshooting Tips

- The IP QoS marking should not change in the service provider’s network.
- QoS statistics should indicate that packets were scheduled in the correct classes.
Configuration Examples for MPLS QoS—DiffServ Tunnel Mode Support

This section provides the following configuration examples:

- Pipe Mode with an Explicit NULL LSP: Example, page 41
- Short Pipe Mode: Example, page 43
- Uniform Mode: Example, page 44

Note

- You can configure only one tunneling mode.
- The examples that follow show one way, but not the only way, to configure the tunneling modes.

Pipe Mode with an Explicit NULL LSP: Example

Ingress CE Router—Customer Facing Interface

In this example, packets are matched to class-map IP-AF11. The DSCP value 4 is used as the match criterion to determine whether a packet belongs to that class. Packets that are conforming have their MPLS EXP field set to 4. Packets that are out-of-rate have their MPLS EXP field set to 2.

class-map IP-AF11
match ip dscp 4

policy-map set-MPLS-PHB
class IP-AF11

interface ethernet 3/0
service-policy input set-MPLS-PHB

Ingress CE Router—PE Facing Interface

In this example, MPLS EXP 2 and 4 are matched to class-map MPLS-AF1. Packets that match that class have WRED and WFQ enabled.

class-map match-any MPLS-AF1
match mpls experimental topmost 2 4
match ip dscp 4

policy-map output-qos
class MPLS-AF1
bandwidth percent 40
random-detect

interface ethernet 3/0
service-policy output output-qos
mpls ip encapsulate explicit-null
Ingress PE Router—P Facing Interface
In this example, the default label swap behavior copies the received MPLS EXP field value to the output MPLS EXP field. Packets that have an MPLS EXP value of 2 and 4 are matched to class-map MPLS-AF1. Packets that match that class have WRED and WFQ enabled.

```shell
class-map MPLS-AF1
  match mpls experimental topmost 2 4

policy-map output-qos
class MPLS-AF1
  bandwidth percent 40
  random-detect

interface ethernet 3/0
  service-policy output output-qos
```

P Router—P Facing Interface
In this example, packets that have an MPLS EXP value of 2 or 4 are matched to class-map MPLS-AF1. Packets that match that class have WRED and WFQ enabled.

```shell
class-map MPLS-AF1
  match mpls experimental topmost 2 4

policy-map output-qos
class MPLS-AF1
  bandwidth percent 40
  random-detect

interface ethernet 3/0
  service-policy output output-qos
```

Egress PE Router—P Facing Interface
In this example, qos-group 1 and discard-class 1 must be set to indicate the packet’s PHB. The qos-group and discard-class are used for QoS classification at the output interface.

```shell
class-map MPLS-AF11
  match mpls experimental topmost 4

class-map MPLS-AF12
  match mpls experimental topmost 2

policy-map set-PHB
class MPLS-AF11
  set qos-group 1
  set discard-class 1

class MPLS-AF12
  set qos-group 1
  set discard-class 2

interface ethernet 3/0
  service-policy input set-PHB
```
Egress PE Router—Customer Facing Interface

In this example, packets that have a qos-group value of 1 are matched to class-map Local-AF1. Packets that match that class have WRED based on their discard class value applied.

Note

You must issue the `mpls ip` command on this interface to receive packets with an explicit-NULL label from the CE router. The `mpls ip` command is not configured on the CE router’s interface connected to this interface and therefore no LDP nor other label distribution protocol sessions will be established on this link.

```plaintext
class-map Local-AF1
  match qos-group 1

policy-map output-qos
  class Local-AF1
    bandwidth percent 40
    random-detect discard-class-based

interface ethernet 3/0
  mpls ip
  service-policy output output-qos
```

Short Pipe Mode: Example

Note

Short Pipe mode is not configured on CE routers.

Ingress PE Router—Customer Facing Interface

In this example, IP packets are matched to class-map IP-AF11. Packets that are conforming have their MPLS EXP field set to 4. Packets that are out-of-rate have their MPLS EXP field set to 2.

```plaintext
class-map IP-AF11
  match ip dscp 4

policy-map set-MPLS-PHB
  class IP-AF11

interface ethernet 3/0
  service-policy input set-MPLS-PHB
```

Ingress PE Router—P Facing Interface

In this example, MPLS EXP 2 and 4 are matched to class-map MPLS-AF1. Packets that match that class have WRED and WFQ enabled.

```plaintext
class-map MPLS-AF1
  match mpls experimental topmost 2 4

policy-map output-qos
  class MPLS-AF1
    bandwidth percent 40
    random-detect

interface ethernet 3/0
  service-policy output output-qos
```
P Router—P Facing Interface
In this example, MPLS EXP 2 and 4 are matched to class-map MPLS-AF1. Packets that match that class have WRED and WFQ enabled.

```
class-map MPLS-AF1
    match mpls experimental topmost 2 4

policy-map output-qos
    class MPLS-AF1
        bandwidth percent 40
        random-detect

interface ethernet 3/0
    service-policy output output-qos
```

Egress PE Router—Customer Facing Interface
In this example, the egress PE router transmits IP packets. Packets are matched to class-map IP-AF1. Packets that match that class have WRED and WFQ enabled.

```
class-map IP-AF1
    match ip dscp 4 0

policy-map output-qos
    class AF1
        bandwidth percent 40
        random-detect dscp-based

interface ethernet 3/0
    service-policy output output-qos
```

Uniform Mode: Example

Ingress PE Router—Customer Facing Interface
In this example, IP packets are matched to class-map IP-AF11. Packets that are conforming have their MPLS EXP field set to 3. Packets that are out-of-rate have their MPLS EXP field set to 2.

```
class-map IP-AF11
    match ip dscp 4

policy-map set-MPLS-PHB
    class IP-AF11

interface ethernet 3/0
    service-policy input set-MPLS-PHB
```

Ingress PE Router—P Facing Interface
In this example, MPLS EXP 2 and 3 are matched to class-map MPLS-AF1. Packets that match that class have WRED and WFQ enabled.

```
class-map MPLS-AF1
    match mpls experimental topmost 2 3

policy-map output-qos
    class MPLS-AF1
        bandwidth percent 40
        random-detect
```
interface ethernet 3/0
 service-policy output output-qos

P Router—Upstream P Facing Interface
At the penultimate P router’s input interface where the IGP label is popped, the EXP field value in the IGP label is copied to the QoS group ID. Suppose the MPLS EXP field value in the IGP label was recolored in the core to 4 or 5. In this example, MPLS EXP values 4 and 5 are matched to class-map mpls-in. For packets that match that class, the MPLS EXP value in the IGP label is copied to the QoS group ID.

```plaintext
class-map mpls-in
  match mpls experimental topmost 4 5

class-map qos-group-out
  match qos-group 4
  match qos-group 5

class-map mpls-in
  set qos-group mpls experimental topmost

interface ethernet 3/0
  service-policy input policy2
```

P Router—Downstream P Facing Interface
In this example, QoS group IDs 4 and 5 are matched to class-map qos-group-out. For packets that match that class, the MPLS EXP field in the topmost outgoing label is set to the QoS group ID.

```plaintext
class-map qos-group-out
  match qos-group 4
  match qos-group 5

class-map mpls-in
  set mpls experimental topmost qos-group
  bandwidth percent 40
  random-detect

interface ethernet 3/1
  service-policy output policy3
```

Egress PE Router—P Facing Interface
In this example, packets with MPLS EXP values 4 or 5 are matched to class-map mpls-in. The EXP field value from the label header is copied to the QoS group ID.

```plaintext
class-map mpls-in
  match mpls experimental topmost 4 5

class-map mpls-in
  set qos-group mpls experimental topmost

interface ethernet 3/0
  service-policy input foo
```
Egress PE Router—Customer Facing Interface

In this example, the egress PE router transmits IP packets. QoS group IDs 4 and 5 are matched into class-map qos-out and the IP Precedence field of those packets is set to the QoS group ID.

```
class-map qos-out
  match qos-group 4
  match qos-group 5

policy-map foo-out
  class qos-out
    set precedence qos-group
    bandwidth percent 40
    random-detect

interface ethernet 3/1
  service-policy output foo-out
```

Additional References

The following sections provide references related to the MPLS QoS—DiffServ Tunnel Mode Support feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiffServ</td>
<td>• Cisco IOS Switching Services Command Reference, Release 12.2</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Terminal Services Configuration Guide, Release 12.2</td>
</tr>
<tr>
<td></td>
<td>• MPLS Class of Service Enhancements, Release 12.1(5)T</td>
</tr>
<tr>
<td>MPLS Traffic Engineering</td>
<td>• Cisco IOS Switching Services Command Reference, Release 12.2</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Terminal Services Configuration Guide, Release 12.2</td>
</tr>
<tr>
<td></td>
<td>• Diff-Serv-aware MPLS Traffic Engineering, Release 12.2(4)T</td>
</tr>
<tr>
<td>QoS</td>
<td>• Cisco IOS Quality of Service Solutions Command Reference, Release 12.2</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2</td>
</tr>
<tr>
<td></td>
<td>• Enhanced Packet Marking, Release 12.2(13)T</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
</tr>
</tbody>
</table>

Command Reference

This section documents new and modified commands only.

- match discard-class
- match mpls experimental topmost
- match qos-group
- mpls ip encapsulate explicit-null
- police
- random-detect discard-class
- random-detect discard-class-based
- set discard-class
- set mpls experimental imposition
- set mpls experimental topmost
- set qos-group
match discard-class

To match packets of a certain discard class, use the `match discard-class` command in class-map sub-mode.

```
match discard-class class-number
```

Syntax Description

| class-number | Number of the discard class being matched. Valid values are 0 to 7. |

Defaults

Packets will not be classified as expected.

Command Modes

Class-map sub-mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(27)SBA</td>
<td>This command was integrated into Cisco IOS Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

Examples

The following example shows that packets in discard class 2 are matched:

```
match discard-class 2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set discard class</td>
<td>Marks a packet with a discard-class value. Specifies the type of traffic that will be dropped when there is congestion.</td>
</tr>
</tbody>
</table>
match mpls experimental topmost

To match the EXP value in the topmost label, use the **match mpls experimental topmost** command in class-map sub-mode.

match mpls experimental topmost values

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>Value of the MPLS EXP field in the topmost label header. Valid values are 0 to 7.</th>
</tr>
</thead>
</table>

Defaults

Packets will not be classified as expected.

Command Modes

Class-map sub-mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(27)SBA</td>
<td>This command was integrated into Cisco IOS Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can enter this command on the input and the output interfaces. It will match only on MPLS packets.

Examples

The following example shows that the EXP value 3 in the topmost label is matched:

```
match mpls experimental topmost 3
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set mpls experimental topmost</td>
<td>Sets the MPLS EXP field value in the topmost MPLS label header at the input and/or output interfaces.</td>
</tr>
</tbody>
</table>
match qos-group

To identify a specified quality of service (QoS) group value as a match criterion, use the `match qos-group` command in class-map sub-mode.

```
match qos-group qos-group-value
```

Syntax Description

| qos-group-value | Specifies the number of the QoS group index used as a match criterion against which packets are checked to determine if they belong to the class. Valid values are 0 to 99. |

Defaults

No default behavior or values.

Command Modes

Class-map sub-mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1CC</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.05(XE)</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE.</td>
</tr>
<tr>
<td>12.2(13)T</td>
<td>This command can be used with the <code>random-detect discard-class-based</code> command.</td>
</tr>
<tr>
<td>12.2(27)SBA</td>
<td>This command was integrated into Cisco IOS Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to convey the received MPLS EXP field value to the output interface.

Examples

The following example shows that the packet qos-group 1 belongs to a particular class:

```
match qos-group 1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>set qos-group</td>
<td>Sets a group ID that can be used later to classify packets.</td>
</tr>
</tbody>
</table>
mpls ip encapsulate explicit-null

To encapsulate with an explicit NULL label header all packets forwarded from the interface or subinterface, use the `mpls ip encapsulate explicit-null` command in interface and subinterface mode. To disable this feature, use the `no` form of this command.

```
mpls ip encapsulate explicit-null
no mpls ip encapsulate explicit-null
```

Syntax Description
This command has no arguments or keywords.

Defaults
Packets are sent out without an explicit NULL label header.

Command Modes
Interface and subinterface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(27)SBA</td>
<td>This command was integrated into Cisco IOS Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This is a per-interface command. The command establishes an explicit NULL LSP at the customer edge (CE) router. If MPLS is configured on a router and you enter this command, an error message occurs. This command is also supported on the Cisco 2600 series and Cisco 3600 series platforms.

Examples
The following example shows that all packets forwarded onto the interface or subinterface are encapsulated with an explicit NULL label header:

```
mpls ip encapsulate explicit-null
```
To configure the Traffic Policing feature, use the `police` command in policy-map sub-mode. To remove the Traffic Policing feature from the configuration, use the `no` form of this command.

```
police bps [burst-normal] [burst-max] conform-action action exceed-action action [violate-action action]
```

```
no police bps [burst-normal] [burst-max] conform-action action exceed-action action [violate-action action]
```

Syntax Description

- **bps**
 - Average rate in bits per second. Valid values are 8,000 to 200,000,000

- **burst-normal**
 - (Optional) Normal burst size in bytes. Valid values are 1,000 to 51,200,000. The default normal burst size is 1500 bytes.

- **burst-max**
 - (Optional) Excess burst size in bytes. Valid values are 1,000 to 51,200,000.

- **conform-action action**
 - Action to take on packets that conform to the rate limit.

- **exceed-action action**
 - Action to take on packets that exceed the rate limit.

- **violate-action action**
 - (Optional) Action to take on packets that violate the normal and maximum burst sizes.

- **action**
 - Action to take on packets. Specify one of the following keywords:
 - `drop`—Drops the packet.
 - `set-clp-transmit value`—Sets the ATM Cell Loss Priority (CLP) bit from 0 to 1 on the ATM cell and transmits the packet with the ATM CLP bit set to 1.
 - `set-discard-class-transmit`—Sets the discard class attribute of a packet and transmits the packet with the new discard class setting.
 - `set-dscp-transmit value`—Sets the IP DSCP value and transmits the packet with the new IP DSCP value setting.
 - `set-frde-transmit value`—Sets the Frame Relay Discard Eligibility (DE) bit from 0 to 1 on the frame relay frame and transmits the packet with the DE bit set to 1.
 - `set-mpls-experimental-imposition-transmit value`—Sets the MPLS EXP bits (0 to 7) in the imposed label headers and transmits the packet with the new MPLS EXP bit value setting.
 - `set-mpls-experimental-topmost-transmit value`—Sets the MPLS EXP field value in the topmost MPLS label header at the input and/or output interfaces.
 - `set-prec-transmit value`—Sets the IP precedence and transmits the packet with the new IP precedence value setting.
 - `set-qos-transmit value`—Sets the qos-group value and transmits the packet with the new qos-group value setting.
 - `transmit`—Transmits the packet. The packet is not altered.
The Police feature will not be executed for traffic that passes through an interface.

Command Modes

Policy-map sub-mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>The rate-limit command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This police command, which was closely related to the rate-limit command, was introduced.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was introduced in Cisco IOS Release 12.1 E.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was introduced in Cisco IOS Release 12.1 T. The violate-action option became available.</td>
</tr>
<tr>
<td>12.2(2)T</td>
<td>The set-clp-transmit option for the action argument was added to the police command. The set-frde-transmit option for the action argument was added to the police command. The set-mpls-exp-transmit option for the action argument was added to the police command.</td>
</tr>
<tr>
<td>12.2(13)T</td>
<td>In the action field, the set-mpls-experimental-transmit option was renamed to set-mpls-experimental-imposition-transmit.</td>
</tr>
<tr>
<td>12.2(27)SBA</td>
<td>This command was integrated into Cisco IOS Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to mark a packet with different quality of service (QoS) values based on conformance to the service-level agreement.

Examples

The following example shows that if packets conform to the rate limit, the MPLS EXP field is set to 5. If packets exceed the rate limit, the MPLS EXP field is set to 3.

```
policy-map input-IP-dscp
  class dscp24
    police 8000 1500 1000
    conform-action set-mpls-experimental-imposition-transmit 5
    exceed-action set-mpls-experimental-imposition-transmit 3
    violate-action drop
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Specifies the name of the service policy to be attached to the interface.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
random-detect discard-class

To configure the weighted random early detection (WRED) parameters for a discard class value for a class policy in a policy map, use the `random-detect discard-class` command in policy-map sub-mode. To disable this feature, use the `no` form of this command.

```plaintext
random-detect discard-class value min-threshold max-threshold mark-prob-denominator
no random-detect discard-class value min-threshold max-threshold mark-prob-denominator
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Discard class. Valid values are 0 to 7.</td>
</tr>
<tr>
<td>min-threshold</td>
<td>Minimum threshold in number of packets. Valid values are 1 to 4096.</td>
</tr>
<tr>
<td>max-threshold</td>
<td>Maximum threshold in number of packets. Valid values are 1 to 4096.</td>
</tr>
<tr>
<td>mark-prob-denominator</td>
<td>Denominator for the fraction of packets dropped when the average queue depth is at the maximum threshold. For example, if the denominator is 512, 1 out of every 512 packets is dropped when the average queue is at the maximum threshold. Valid values are 1 to 65535. The default is 10; 1 out of every 10 packets is dropped at the maximum threshold.</td>
</tr>
</tbody>
</table>

Defaults

To return the values to the default for the discard class, use the `no` form of this command.

Command Modes

Policy-map sub-mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(27)SBA</td>
<td>This command was integrated into Cisco IOS Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you configure the `random-detect discard-class-based` command on an interface, packets are given preferential treatment based on the discard class of the packet. Use the `random-detect discard-class` command to adjust the discard class for different discard class values.
Examples

The following example shows that if the discard class is 2, there is a 10 percent chance that packets will be dropped if there are more packets than the minimum threshold of 100 packets or there are fewer packets than the maximum threshold of 200 packets:

```plaintext
policy-map set-MPLS-PHB
class IP-AF11
  bandwidth percent 40
  random-detect discard-class-based
  random-detect discard-class 2 100 200 10
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bandwidth (policy-map-class)</code></td>
<td>Specifies or modifies the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td><code>fair-queue (class-default)</code></td>
<td>Specifies the number of dynamic queues to be reserved for use by the class-default class as part of the default class policy.</td>
</tr>
<tr>
<td><code>random-detect discard-class based</code></td>
<td>Bases WRED on the discard class value of a packet.</td>
</tr>
<tr>
<td><code>show policy-map interface</code></td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
random-detect discard-class-based

To base weighted random early detection (WRED) on the discard class value of a packet, use the random-detect discard-class-based command in policy-map sub-mode. To disable this feature, use the no form of this command.

```
random-detect discard-class-based

no random-detect discard-class-based
```

Syntax Description
This command has no arguments or keywords.

Defaults
The defaults are router-dependent.

Command Modes
Policy-map sub-mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(27)SBA</td>
<td>This command was integrated into Cisco IOS Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Enter this command so that WRED is based on the discard class instead of on the IP Precedence field.

Examples
The following example shows that random detect is based on the discard class value of a packet:

```
policy-map name
  class-name
    bandwidth percent 40
    random-detect discard-class-based
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>match discard-class</td>
<td>Matches packets of a certain discard class.</td>
</tr>
</tbody>
</table>
set discard-class

To mark a packet with a discard-class value, use the `set discard-class` command in policy-map sub-mode. You can also use this command to specify the type of traffic that will be dropped when there is congestion.

```
set discard-class value
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>value</code></td>
<td>Per-hop behavior (PHB) in how traffic is dropped. The priority of a type of traffic. Valid values are 0 to 7.</td>
</tr>
</tbody>
</table>

Defaults

If you do not enter this command, the packet has a discard-class of zero.

Command Modes

Policy-map sub-mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(27)SBA</td>
<td>This command was integrated into Cisco IOS Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Discard-class indicates the discard portion of the PHB. Use this command only in Pipe mode. Discard-class is required when the input PHB marking will be used to classify packets on the output interface.

Examples

The following example shows that traffic will be set to the discard-class value of 2:

```
set discard-class 2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>match discard-class</code></td>
<td>Matches packets of a certain discard class.</td>
</tr>
<tr>
<td><code>random-detect discard-class-based</code></td>
<td>Bases WRED on the discard class value of a packet.</td>
</tr>
</tbody>
</table>
set mpls experimental imposition

To set the value of the Multiprotocol Label Switching (MPLS) EXP field in all imposed label entries, use the `set mpls experimental imposition` command in policy-map configuration mode. To disable the setting, use the `no` form of this command.

```
set mpls experimental imposition value

no set mpls experimental imposition value
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Value to which the MPLS EXP field in the imposed label entry will be set. Valid values are 0 to 7.</th>
</tr>
</thead>
</table>

| Defaults | No default behavior or values. |

| Command Modes | Policy-map configuration |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.2(13)T</td>
<td>This command was introduced. This command replaces (renames) the <code>set mpls experimental</code> command, which was introduced in Release 12.1(5)T.</td>
</tr>
<tr>
<td></td>
<td>12.2(27)SBA</td>
<td>This command was integrated into Cisco IOS Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

| Usage Guidelines | The `set mpls experimental imposition` command is supported only on input interfaces. Use this command during label imposition. This command sets the MPLS EXP field in all imposed label entries. |

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows that the MPLS EXP field is set to 3 on all imposed label entries:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>set mpls experimental imposition 3</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>set mpls experimental topmost</code></td>
<td>Sets the MPS EXP field value in the topmost MPLS label header at the input and/or output interfaces.</td>
</tr>
</tbody>
</table>
set mpls experimental topmost

To set the Multiprotocol Label Switching (MPLS) EXP field value in the topmost MPLS label header at the input and/or output interfaces, use the `set mpls experimental topmost` command in class-map sub-mode. To disable the setting, use the `no` form of this command.

```
set mpls experimental topmost value

no set mpls experimental topmost value
```

Syntax Description

- `value` Value to which the MPLS EXP field is set in the topmost label header. Valid values are 0 to 7.

Defaults

The MPLS field in the topmost label header is not changed.

Command Modes

Policy-map sub-mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(27)SBA</td>
<td>This command was integrated into Cisco IOS Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command sets the MPLS EXP field only in the topmost label. This command does not affect an IP packet.

Examples

The following example shows that the MPLS EXP field is set to 3 in the topmost label of an input or output interface:

```
set mpls experimental topmost 3
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>match mpls experimental topmost</td>
<td>Matches the EXP value in the topmost label.</td>
</tr>
<tr>
<td>set mpls experimental imposition</td>
<td>Sets the value of the MPLS EXP field in all imposed label entries.</td>
</tr>
<tr>
<td>set qos-group</td>
<td>Sets a group ID that can be used later to classify packets.</td>
</tr>
</tbody>
</table>
set qos-group

To set a group ID that can be used later to classify packets, use the `set qos-group` command in policy-map sub-mode. To remove the group ID (or value), use the `no` form of this command.

```
set qos-group qos-group-value

no set qos-group qos-group-value
```

Syntax Description

| Syntax Description | qos-group-value | Group ID. Valid values are 0 to 99. |

Defaults

This command is disabled by default. No group ID (or value) is specified.

Command Modes

Policy-map sub-mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE. This command</td>
</tr>
<tr>
<td></td>
<td>was included in the Modular Quality of Service Command-Line Interface (MQC)</td>
</tr>
<tr>
<td></td>
<td>feature.</td>
</tr>
<tr>
<td>12.2(13)T</td>
<td>This command can be used with the <code>random-detect discard-class-based</code> command.</td>
</tr>
<tr>
<td>12.2(27)SBA</td>
<td>This command was integrated into Cisco IOS Release 12.2(27)SBA.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command allows you to associate a group ID with a packet. The group ID can be used later to classify packets.

A QoS group and discard class are required when the input PHB marking will be used for classifying packets on the output interface.

Examples

The following example shows that the QoS group is set to 1:

```
set qos-group 1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>match qos-group</td>
<td>Identifies a specified QoS group value as a match criterion.</td>
</tr>
</tbody>
</table>
Glossary

CE router—customer edge router. A router that is part of a customer network and that interfaces to a provider edge (PE) router.

class—Classifies traffic, such as voice. You define a traffic class with the **class-map** command.

class-map—Defines what you want to match in a packet. For example, a class-map may specify voice packets.

core—The MPLS network. At the edges, there are edge routers.

customer network—A network that is under the control of an end customer. A customer network can use private addresses as defined in RFC 1918. Customer networks are logically isolated from each other and from the service provider’s network.

DiffServ—Application-level QoS and traffic management in an architecture that incorporates mechanisms to control bandwidth, delay, jitter, and packet loss. Application traffic can be categorized into multiple classes (aggregates), with QoS parameters defined for each class. A typical arrangement would be to categorize traffic into premium, gold, silver, bronze, and best-effort classes.

DSCP—differentiated services code point, or DiffServ code point. A marker in the header of each IP packet that prompts network routers to apply differentiated grades of service to various packet streams. The value in the IP header indicates which PHB is to be applied to the packet.

discard-class—Local variable used to indicate the discard profile.

E-LSP—An LSP in which the QoS of a packet is determined solely by the MPLS EXP field in the MPLS header. E-LSPs are not supported by ATM-LSRs.

edge router—A router that is at the edge of the network. It defines the boundary of the MPLS network. It receives and transmits packets. Also referred to as edge label switch router and label edge router.

egress router—Router at the edge of the network where packets are leaving.

encapsulation—The wrapping of data in a particular protocol header. For example, Ethernet data is wrapped in a specific Ethernet header before network transit.

explicit null label—A label that just has an EXP value. A value of zero (0) represents the explicit NULL label. This label can only be at the bottom of the label stack. It indicates that the label stack must be popped, and the forwarding of the packet must then be based on the IPv4 header. Sometimes there may be requirements to have a label in the stack when no label is required. If you want to retain the MPLS EXP field to the next hop, you use an explicit null.

ingress router—Router at the edge of the network where packets are being received by the network.

IP Precedence field—The first three bits in the header of IP packets. These bits allow you to specify the QoS for an IP packet.

L-LSP—An LSP where a particular mechanism of implementing QoS using DiffServ is used. An LSP in which routers infer the QoS treatment for MPLS packets from the packet label and the EXP bits (or the CLP bit for cell-mode MPLS). The label is used to encode the class to which a packet belongs and the MPLS EXP field (or the CLP bit for cell-mode MPLS) is used to encode the drop precedence of the packet.

LSR—A router that is part of the MPLS network. An LSR forwards a packet based on the value of a label encapsulated in the packet.
label—A short, fixed-length label that tells switching nodes how to forward data (packets). MPLS associates a label with each route. A label associates a network address with the output interface onto which the packet should be transmitted. In the MPLS network, the next-hop IGP (Interior Gateway Protocol) router always advertises to the preceding IGP router (the upstream router) what label should be placed on the packets. The next-hop BGP (Border Gateway Protocol) router always advertises to the preceding BGP router what label should be placed on the packets.

label disposition—The act of removing the last MPLS label from a packet.

label entry—A label entry contains a label value (which includes labels and other information for forwarding the packet) and an MPLS EXP field (which pertains to the QoS of the packet). When there are two label entries, the top label entry is the IGP (Interior Gateway Protocol) label. The bottom label entry is the BGP (Border Gateway Protocol) label.

label imposition—The act of putting MPLS labels onto a packet for transmission on a label switched path (LSP).

layer management—Ability to apply an additional layer of PHB marking to a packet.

MPLS—Multiprotocol Label Switching. Emerging industry standard upon which label switching is based.

MPLS EXP field—In an MPLS entry, the per-hop behavior (PHB) is marked in the MPLS EXP field within the MPLS label entry.

P router—provider core router.

PE router—provider edge router. A router, at the edge of a service provider’s network, that interfaces to CE routers.

penultimate hop popping—Removing a label at the penultimate router. A label is removed and copied to the label that is one lower.

penultimate router—The second-to-last router; that is, the router that is immediately before the egress router.

PHB—per-hop behavior. A unique discard and scheduling behavior that is applied to a packet. The DiffServ treatment (scheduling/dropping) applied by a router to all the packets that are to experience the same DiffServ service.

policing—Limiting the input or output transmission rate of a class of traffic based on user-defined criteria. Policing marks packets by setting the IP precedence value, the qos-group, or the DSCP value.

policy map—Action that is taken if a packet matches what was specified in the class-map. For example, if voice packets were identified and the class-map and voice packets are received, the specified policy map action is taken.

pop—The act of removing a label entry from a packet.

provider network—A backbone network that is under the control of a service provider, and provides transport between customer sites.

push—To put a label entry onto a packet.

QoS—quality of service. Measure of performance for a transmission system that reflects its transmission quality and service availability.

QoS transparency—Method of forwarding packets through a network where the customer’s IP marking in the IP packet is preserved.

qos-group—Local variable that indicates the PHB scheduling class (PSC).

rate limiting—See policing.

recolor—To change the PHB marking on a packet.
swap—To replace a label entry on a packet.

ToS—type of service. Byte in the IPv4 header.

traffic policy—A traffic policy consists of a traffic class and one or more QoS features. You create a traffic policy by associating the traffic class with one or more QoS features (using the **policy-map** command).

transparency—Preservation of the customer’s IP marking in the IP packed.

tunneling—The ability of QoS to be transparent from one edge of a network to the other edge of the network.

VPN—Virtual Private Network. A network that enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

WRED—weighted random early detection. A queuing method that ensures that high-precedence traffic has lower loss rates than other traffic during times of congestion.

Note

Refer to the *Internetworking Terms and Acronyms* for terms not included in this glossary.

© 2005 Cisco Systems, Inc. All rights reserved.