Cisco IOS
Quality of Service Solutions
Command Reference
Release 12.2
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AccessPath, AtmDirector, Browse with Me, CCDA, CCDE, CCDP, CCIE, CCNA, CCNP, CCSI, CD-PAC, CiscoLink, the Cisco NetWorks logo, the Cisco Powered Network logo, Cisco Systems Networking Academy, the Cisco Systems Networking Academy logo, Fast Step, Follow Me Browsing, FormShare, FrameShare, GigaStack, IGX, Internet Quotient, IP/VC, iQ Breakthrough, iQ Expertise, iQ FastTrack, the iQ Logo, iQ Net Readiness Scorecard, MGX, the Networkers logo, Packet, PIX, RateMUX, ScriptBuilder, ScriptShare, SlideCast, SMARTnet, TransPath, Unity, Voice LAN, Wavelength Router, and WebViewer are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn, Discover All That’s Possible, and Empowering the Internet Generation, are service marks of Cisco Systems, Inc.; and Aironet, ASIST, BPX, Catalyst, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, the Cisco IOS logo, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Enterprise/Solver, EtherChannel, EtherSwitch, FastHub, FastSwitch, IOS, IP/TV, LightStream, MICA, Network Registrar, Post-Routing, Pre-Routing, Registrar, StrataView Plus, Stratm, SwitchProbe, TeleRouter, and VCO are registered trademarks of Cisco Systems, Inc. or its affiliates in the U.S. and certain other countries.

All other brands, names, or trademarks mentioned in this document or Web site are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0102R)

Cisco IOS Quality of Service Solutions Command Reference
All rights reserved.
About Cisco IOS Software Documentation

Using Cisco IOS Software

Quality of Service Commands

Index
About Cisco IOS Software Documentation

This chapter discusses the objectives, audience, organization, and conventions of Cisco IOS software documentation. It also provides sources for obtaining documentation from Cisco Systems.

Documentation Objectives

Cisco IOS software documentation describes the tasks and commands necessary to configure and maintain Cisco networking devices.

Audience

The Cisco IOS software documentation set is intended primarily for users who configure and maintain Cisco networking devices (such as routers and switches) but who may not be familiar with the tasks, the relationship between tasks, or the Cisco IOS software commands necessary to perform particular tasks. The Cisco IOS software documentation set is also intended for those users experienced with Cisco IOS software who need to know about new features, new configuration options, and new software characteristics in the current Cisco IOS software release.

Documentation Organization

The Cisco IOS software documentation set consists of documentation modules and master indexes. In addition to the main documentation set, there are supporting documents and resources.

Documentation Modules

The Cisco IOS documentation modules consist of configuration guides and corresponding command reference publications. Chapters in a configuration guide describe protocols, configuration tasks, and Cisco IOS software functionality and contain comprehensive configuration examples. Chapters in a command reference publication provide complete Cisco IOS command syntax information. Use each configuration guide in conjunction with its corresponding command reference publication.
Figure 1 shows the Cisco IOS software documentation modules.

The abbreviations (for example, FC and FR) next to the book icons are page designators, which are defined in a key in the index of each document to help you with navigation. The bullets under each module list the major technology areas discussed in the corresponding books.
Module DC/DR:
- Preparing for Dial Access
- Modem and Dial Shelf Configuration and Management
- ISDN Configuration
- Signalling Configuration
- Dial-on-Demand Routing Configuration
- Dial-Backup Configuration
- Dial-Related Addressing Services
- Virtual Templates, Profiles, and Networks
- PPP Configuration
- Callback and Bandwidth Allocation Configuration
- Dial Access Specialized Features
- Dial Access Scenarios

Module TC/TR:
- ARA
- LAT
- NASI
- Telnet
- TN3270
- X.28 PAD
- Protocol Translation

Module BC/B1R:
- DSPU and SNA Bridging
- SNA Switching Services
- Cisco Transaction Connection
- Cisco Mainframe Channel Connection
- CLAW and TCP/IP Offload
- CSNA, CMPC, and CMPC+
- TN3270 Server

Module BC/B2R:
- ARA
- LAT
- NASI
- Telnet
- TN3270
- X.28 PAD
- Protocol Translation

Module QC/QR:
- Packet Classification
- Congestion Management
- Congestion Avoidance
- Policing and Shaping
- Signalling
- Link Efficiency Mechanisms

Module XC/XR:
- Cisco IOS Switching Paths
- NetFlow Switching
- Multiprotocol Label Switching
- Multilayer Switching
- Multicast Distributed Switching
- Virtual LANs
- LAN Emulation
Master Indexes

Two master indexes provide indexing information for the Cisco IOS software documentation set: an index for the configuration guides and an index for the command references. Individual books also contain a book-specific index.

The master indexes provide a quick way for you to find a command when you know the command name but not which module contains the command. When you use the online master indexes, you can click the page number for an index entry and go to that page in the online document.

Supporting Documents and Resources

The following documents and resources support the Cisco IOS software documentation set:

- **Cisco IOS Command Summary** (two volumes)—This publication explains the function and syntax of the Cisco IOS software commands. For more information about defaults and usage guidelines, refer to the Cisco IOS command reference publications.

- **Cisco IOS System Error Messages**—This publication lists and describes Cisco IOS system error messages. Not all system error messages indicate problems with your system. Some are purely informational, and others may help diagnose problems with communications lines, internal hardware, or the system software.

- **Cisco IOS Debug Command Reference**—This publication contains an alphabetical listing of the debug commands and their descriptions. Documentation for each command includes a brief description of its use, command syntax, usage guidelines, and sample output.

- **Dictionary of Internetworking Terms and Acronyms**—This Cisco publication compiles and defines the terms and acronyms used in the internetworking industry.

- New feature documentation—The Cisco IOS software documentation set documents the mainline release of Cisco IOS software (for example, Cisco IOS Release 12.2). New software features are introduced in early deployment releases (for example, the Cisco IOS “T” release train for 12.2, 12.2(x)T). Documentation for these new features can be found in standalone documents called “feature modules.” Feature module documentation describes new Cisco IOS software and hardware networking functionality and is available on Cisco.com and the Documentation CD-ROM.

- Release notes—This documentation describes system requirements, provides information about new and changed features, and includes other useful information about specific software releases. See the section “Using Software Release Notes” in the chapter “Using Cisco IOS Software” for more information.

- Caveats documentation—This documentation provides information about Cisco IOS software defects in specific software releases.

- RFCs—RFCs are standards documents maintained by the Internet Engineering Task Force (IETF). Cisco IOS software documentation references supported RFCs when applicable. The full text of referenced RFCs may be obtained on the World Wide Web at http://www.rfc-editor.org/.

- MIBs—MIBs are used for network monitoring. For lists of supported MIBs by platform and release, and to download MIB files, see the Cisco MIB website on Cisco.com at http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml.
Document Conventions

Within Cisco IOS software documentation, the term *router* is generally used to refer to a variety of Cisco products (for example, routers, access servers, and switches). Routers, access servers, and other networking devices that support Cisco IOS software are shown interchangeably within examples. These products are used only for illustrative purposes; that is, an example that shows one product does not necessarily indicate that other products are not supported.

The Cisco IOS documentation set uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>^ or Ctrl</td>
<td>The ^ and Ctrl symbols represent the Control key. For example, the key combination ^D or Ctrl-D means hold down the Control key while you press the D key. Keys are indicated in capital letters but are not case sensitive.</td>
</tr>
<tr>
<td>string</td>
<td>A string is a nonquoted set of characters shown in italics. For example, when setting an SNMP community string to public, do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
</tbody>
</table>

Command syntax descriptions use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface text indicates commands and keywords that you enter literally as shown.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic text indicates arguments for which you supply values.</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional element (keyword or argument).</td>
</tr>
<tr>
<td></td>
<td>A vertical line indicates a choice within an optional or required set of keywords or arguments.</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
</tbody>
</table>

Nested sets of square brackets or braces indicate optional or required choices within optional or required elements. For example:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x {y</td>
<td>z}]</td>
</tr>
</tbody>
</table>

Examples use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>screen</td>
<td>Examples of information displayed on the screen are set in Courier font.</td>
</tr>
<tr>
<td>boldface screen</td>
<td>Examples of text that you must enter are set in Courier bold font.</td>
</tr>
<tr>
<td><></td>
<td>Angle brackets enclose text that is not printed to the screen, such as passwords.</td>
</tr>
</tbody>
</table>
Obtaining Documentation

The following sections provide sources for obtaining documentation from Cisco Systems.

World Wide Web

The most current Cisco documentation is available on the World Wide Web at the following website:
http://www.cisco.com

Translated documentation is available at the following website:

Documentation CD-ROM

Cisco documentation and additional literature are available in a CD-ROM package, which ships with your product. The Documentation CD-ROM is updated monthly and may be more current than printed documentation. The CD-ROM package is available as a single unit or through an annual subscription.

Caution

Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.

Note

Means reader take note. Notes contain helpful suggestions or references to materials not contained in this manual.

Timesaver

Means the described action saves time. You can save time by performing the action described in the paragraph.

The following conventions are used to attract the attention of the reader:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>An exclamation point at the beginning of a line indicates a comment line. (Exclamation points are also displayed by the Cisco IOS software for certain processes.)</td>
</tr>
<tr>
<td>[]</td>
<td>Square brackets enclose default responses to system prompts.</td>
</tr>
</tbody>
</table>
Ordering Documentation

Cisco documentation can be ordered in the following ways:

- Registered Cisco Direct Customers can order Cisco product documentation from the Networking Products MarketPlace:
 http://www.cisco.com/cgi-bin/order/order_root.pl
- Registered Cisco.com users can order the Documentation CD-ROM through the online Subscription Store:
 http://www.cisco.com/go/subscription
- Nonregistered Cisco.com users can order documentation through a local account representative by calling Cisco corporate headquarters (California, USA) at 408 526-7208 or, in North America, by calling 800 553-NETS(6387).

Documentation Feedback

If you are reading Cisco product documentation on the World Wide Web, you can submit technical comments electronically. Click Feedback in the toolbar and select Documentation. After you complete the form, click Submit to send it to Cisco.

You can e-mail your comments to bug-doc@cisco.com.

To submit your comments by mail, use the response card behind the front cover of your document, or write to the following address:

Cisco Systems, Inc.
Document Resource Connection
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance

Cisco provides Cisco.com as a starting point for all technical assistance. Customers and partners can obtain documentation, troubleshooting tips, and sample configurations from online tools. For Cisco.com registered users, additional troubleshooting tools are available from the TAC website.

Cisco.com

Cisco.com is the foundation of a suite of interactive, networked services that provides immediate, open access to Cisco information and resources at anytime, from anywhere in the world. This highly integrated Internet application is a powerful, easy-to-use tool for doing business with Cisco. Cisco.com provides a broad range of features and services to help customers and partners streamline business processes and improve productivity. Through Cisco.com, you can find information about Cisco and our networking solutions, services, and programs. In addition, you can resolve technical issues with online technical support, download and test software packages, and order Cisco learning materials and merchandise. Valuable online skill assessment, training, and certification programs are also available.
Customers and partners can self-register on Cisco.com to obtain additional personalized information and services. Registered users can order products, check on the status of an order, access technical support, and view benefits specific to their relationships with Cisco.

To access Cisco.com, go to the following website:
http://www.cisco.com

Technical Assistance Center

The Cisco TAC website is available to all customers who need technical assistance with a Cisco product or technology that is under warranty or covered by a maintenance contract.

Contacting TAC by Using the Cisco TAC Website

If you have a priority level 3 (P3) or priority level 4 (P4) problem, contact TAC by going to the TAC website:
http://www.cisco.com/tac

P3 and P4 level problems are defined as follows:

- P3—Your network performance is degraded. Network functionality is noticeably impaired, but most business operations continue.
- P4—You need information or assistance on Cisco product capabilities, product installation, or basic product configuration.

In each of the above cases, use the Cisco TAC website to quickly find answers to your questions.

To register for Cisco.com, go to the following website:
http://www.cisco.com/register/

If you cannot resolve your technical issue by using the TAC online resources, Cisco.com registered users can open a case online by using the TAC Case Open tool at the following website:
http://www.cisco.com/tac/caseopen

Contacting TAC by Telephone

If you have a priority level 1 (P1) or priority level 2 (P2) problem, contact TAC by telephone and immediately open a case. To obtain a directory of toll-free numbers for your country, go to the following website:

P1 and P2 level problems are defined as follows:

- P1—Your production network is down, causing a critical impact to business operations if service is not restored quickly. No workaround is available.
- P2—Your production network is severely degraded, affecting significant aspects of your business operations. No workaround is available.
Using Cisco IOS Software

This chapter provides helpful tips for understanding and configuring Cisco IOS software using the command-line interface (CLI). It contains the following sections:

- Understanding Command Modes
- Getting Help
- Using the no and default Forms of Commands
- Saving Configuration Changes
- Filtering Output from the show and more Commands
- Identifying Supported Platforms

For an overview of Cisco IOS software configuration, refer to the Cisco IOS Configuration Fundamentals Configuration Guide.

For information on the conventions used in the Cisco IOS software documentation set, see the chapter “About Cisco IOS Software Documentation” located at the beginning of this book.

Understanding Command Modes

You use the CLI to access Cisco IOS software. Because the CLI is divided into many different modes, the commands available to you at any given time depend on the mode you are currently in. Entering a question mark (?) at the CLI prompt allows you to obtain a list of commands available for each command mode.

When you log in to the CLI, you are in user EXEC mode. User EXEC mode contains only a limited subset of commands. To have access to all commands, you must enter privileged EXEC mode, normally by using a password. From privileged EXEC mode you can issue any EXEC command—user or privileged mode—or you can enter global configuration mode. Most EXEC commands are one-time commands. For example, show commands show important status information, and clear commands clear counters or interfaces. The EXEC commands are not saved when the software reboots.

Configuration modes allow you to make changes to the running configuration. If you later save the running configuration to the startup configuration, these changed commands are stored when the software is rebooted. To enter specific configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and a variety of other modes, such as protocol-specific modes.

ROM monitor mode is a separate mode used when the Cisco IOS software cannot load properly. If a valid software image is not found when the software boots or if the configuration file is corrupted at startup, the software might enter ROM monitor mode.

Cisco IOS Quality of Service Solutions Command Reference
Table 1 describes how to access and exit various common command modes of the Cisco IOS software. It also shows examples of the prompts displayed for each mode.

Table 1 Accessing and Exiting Command Modes

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Log in.</td>
<td>Router></td>
<td>Use the <code>logout</code> command.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>From user EXEC mode, use the <code>enable</code></td>
<td>Router#</td>
<td>To return to user EXEC mode, use the <code>disable</code> command.</td>
</tr>
<tr>
<td></td>
<td>EXEC command.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global configuration</td>
<td>From privileged EXEC mode, use the</td>
<td>Router(config)#</td>
<td>To return to privileged EXEC mode from global configuration mode, use the</td>
</tr>
<tr>
<td></td>
<td><code>configure terminal</code> privileged</td>
<td></td>
<td><code>exit</code> or <code>end</code> command, or press Ctrl-Z.</td>
</tr>
<tr>
<td></td>
<td>EXEC command.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface configuration</td>
<td>From global configuration mode,</td>
<td>Router(config-if)#</td>
<td>To return to global configuration mode, use the <code>exit</code> command.</td>
</tr>
<tr>
<td></td>
<td>specify an interface using an</td>
<td></td>
<td>To return to privileged EXEC mode, use the <code>end</code> command, or press Ctrl-Z.</td>
</tr>
<tr>
<td></td>
<td><code>interface</code> command.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM monitor</td>
<td>From privileged EXEC mode, use the</td>
<td><code>></code></td>
<td>To exit ROM monitor mode, use the <code>continue</code> command.</td>
</tr>
<tr>
<td></td>
<td><code>reload</code> EXEC command. Press the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Break key during the first 60 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>while the system is booting.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information on command modes, refer to the “Using the Command-Line Interface” chapter in the *Cisco IOS Configuration Fundamentals Configuration Guide*.

Getting Help

Entering a question mark (?) at the CLI prompt displays a list of commands available for each command mode. You can also get a list of keywords and arguments associated with any command by using the context-sensitive help feature.

To get help specific to a command mode, a command, a keyword, or an argument, use one of the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>help</code></td>
<td>Provides a brief description of the help system in any command mode.</td>
</tr>
<tr>
<td><code>abbreviated-command-entry</code> ?</td>
<td>Provides a list of commands that begin with a particular character string. (No space between command and question mark.)</td>
</tr>
<tr>
<td><code>abbreviated-command-entry</code> <Tab></td>
<td>Completes a partial command name.</td>
</tr>
<tr>
<td><code>?</code></td>
<td>Lists all commands available for a particular command mode.</td>
</tr>
<tr>
<td><code>command</code> ?</td>
<td>Lists the keywords or arguments that you must enter next on the command line. (Space between command and question mark.)</td>
</tr>
</tbody>
</table>
Example: How to Find Command Options

This section provides an example of how to display syntax for a command. The syntax can consist of optional or required keywords and arguments. To display keywords and arguments for a command, enter a question mark (?) at the configuration prompt or after entering part of a command followed by a space. The Cisco IOS software displays a list and brief description of available keywords and arguments. For example, if you were in global configuration mode and wanted to see all the keywords or arguments for the `arap` command, you would type `arap ?`.

The `<cr>` symbol in command help output stands for “carriage return.” On older keyboards, the carriage return key is the Return key. On most modern keyboards, the carriage return key is the Enter key. The `<cr>` symbol at the end of command help output indicates that you have the option to press Enter to complete the command and that the arguments and keywords in the list preceding the `<cr>` symbol are optional. The `<cr>` symbol by itself indicates that no more arguments or keywords are available and that you must press Enter to complete the command.

Table 2 shows examples of how you can use the question mark (?) to assist you in entering commands. The table steps you through configuring an IP address on a serial interface on a Cisco 7206 router that is running Cisco IOS Release 12.0(3).

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Router> `enable`
Password: `<password>`
Router# | Enter the `enable` command and password to access privileged EXEC commands. You are in privileged EXEC mode when the prompt changes to `Router#`. |
| Router# `configure terminal`
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# | Enter the `configure terminal` privileged EXEC command to enter global configuration mode. You are in global configuration mode when the prompt changes to `Router(config)#`. |
| Router(config)# `interface serial` ?
<0-6> Serial interface number
Router(config)# `interface serial 4` ?
/
Router(config)# `interface serial 4/` ?
<0-3> Serial interface number
Router(config)# `interface serial 4/0`
Router(config-if)# | Enter interface configuration mode by specifying the serial interface that you want to configure using the `interface serial` global configuration command. Enter ? to display what you must enter next on the command line. In this example, you must enter the serial interface slot number and port number, separated by a forward slash. You are in interface configuration mode when the prompt changes to `Router(config-if)#`. |
Table 2 How to Find Command Options (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ?</td>
<td>Enter <code>?</code> to display a list of all the interface configuration commands available for the serial interface. This example shows only some of the available interface configuration commands.</td>
</tr>
<tr>
<td>Interface configuration commands:</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>Interface Internet Protocol config commands</td>
</tr>
<tr>
<td>keepalive</td>
<td>Enable keepalive</td>
</tr>
<tr>
<td>lan-name</td>
<td>LAN Name command</td>
</tr>
<tr>
<td>llc2</td>
<td>LLC2 Interface Subcommands</td>
</tr>
<tr>
<td>load-interval</td>
<td>Specify interval for load calculation for an interface</td>
</tr>
<tr>
<td>locaddr-priority</td>
<td>Assign a priority group</td>
</tr>
<tr>
<td>logging</td>
<td>Configure logging for interface</td>
</tr>
<tr>
<td>loopback</td>
<td>Configure internal loopback on an interface</td>
</tr>
<tr>
<td>mac-address</td>
<td>Manually set interface MAC address</td>
</tr>
<tr>
<td>mls</td>
<td>mls router sub/interface commands</td>
</tr>
<tr>
<td>mpoa</td>
<td>MPOA interface configuration commands</td>
</tr>
<tr>
<td>mtu</td>
<td>Set the interface Maximum Transmission Unit (MTU)</td>
</tr>
<tr>
<td>netbios</td>
<td>Use a defined NETBIOS access list or enable name-caching</td>
</tr>
<tr>
<td>no</td>
<td>Negate a command or set its defaults</td>
</tr>
<tr>
<td>nrzi-encoding</td>
<td>Enable use of NRZI encoding</td>
</tr>
<tr>
<td>ntp</td>
<td>Configure NTP</td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td>Enter the command that you want to configure for the interface. This example uses the <code>ip</code> command.</td>
</tr>
<tr>
<td>ip ?</td>
<td>Enter <code>?</code> to display what you must enter next on the command line. This example shows only some of the available interface IP configuration commands.</td>
</tr>
<tr>
<td>Interface IP configuration subcommands:</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>access-group</td>
<td>Specify access control for packets</td>
</tr>
<tr>
<td>accounting</td>
<td>Enable IP accounting on this interface</td>
</tr>
<tr>
<td>address</td>
<td>Set the IP address of an interface</td>
</tr>
<tr>
<td>authentication</td>
<td>authentication subcommands</td>
</tr>
<tr>
<td>bandwidth-percent</td>
<td>Set EIGRP bandwidth limit</td>
</tr>
<tr>
<td>broadcast-address</td>
<td>Set the broadcast address of an interface</td>
</tr>
<tr>
<td>cgmp</td>
<td>Enable/disable CGMP</td>
</tr>
<tr>
<td>directed-broadcast</td>
<td>Enable forwarding of directed broadcasts</td>
</tr>
<tr>
<td>dvmrp</td>
<td>DVMRP interface commands</td>
</tr>
<tr>
<td>hello-interval</td>
<td>Configures IP-EIGRP hello interval</td>
</tr>
<tr>
<td>helper-address</td>
<td>Specify a destination address for UDP broadcasts</td>
</tr>
<tr>
<td>hold-time</td>
<td>Configures IP-EIGRP hold time</td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip</td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>
Using the no and default Forms of Commands

Almost every configuration command has a no form. In general, use the no form to disable a function. Use the command without the no keyword to reenable a disabled function or to enable a function that is disabled by default. For example, IP routing is enabled by default. To disable IP routing, use the no ip routing command; to reenable IP routing, use the ip routing command. The Cisco IOS software command reference publications provide the complete syntax for the configuration commands and describe what the no form of a command does.

Configuration commands also can have a default form, which returns the command settings to the default values. Most commands are disabled by default, so in such cases using the default form has the same result as using the no form of the command. However, some commands are enabled by default and

Table 2 How to Find Command Options (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ip address ? A.B.C.D</td>
<td>Enter the command that you want to configure for the interface. This example uses the ip address command. Enter ? to display what you must enter next on the command line. In this example, you must enter an IP address or the negotiated keyword. A carriage return (<cr>) is not displayed; therefore, you must enter additional keywords or arguments to complete the command.</td>
</tr>
<tr>
<td>Router(config-if)# ip address negotiated</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 172.16.0.1 ? A.B.C.D</td>
<td>Enter the keyword or argument you want to use. This example uses the 172.16.0.1 IP address. Enter ? to display what you must enter next on the command line. In this example, you must enter an IP subnet mask. A <cr> is not displayed; therefore, you must enter additional keywords or arguments to complete the command.</td>
</tr>
<tr>
<td>Router(config-if)# ip address 172.16.0.1</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 172.16.0.1 255.255.255.0 ? secondary <cr></td>
<td>Enter the IP subnet mask. This example uses the 255.255.255.0 IP subnet mask. Enter ? to display what you must enter next on the command line. In this example, you can enter the secondary keyword, or you can press Enter. A <cr> is displayed; you can press Enter to complete the command, or you can enter another keyword.</td>
</tr>
<tr>
<td>Router(config-if)# ip address 172.16.0.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td>In this example, Enter is pressed to complete the command.</td>
</tr>
</tbody>
</table>
have variables set to certain default values. In these cases, the default form of the command enables the command and sets the variables to their default values. The Cisco IOS software command reference publications describe the effect of the default form of a command if the command functions differently than the no form.

Saving Configuration Changes

Use the `copy system:running-config nvram:startup-config` command to save your configuration changes to the startup configuration so that the changes will not be lost if the software reloads or a power outage occurs. For example:

```
Router# copy system:running-config nvram:startup-config
Building configuration...
```

It might take a minute or two to save the configuration. After the configuration has been saved, the following output appears:

```
[OK]
Router#
```

On most platforms, this task saves the configuration to NVRAM. On the Class A Flash file system platforms, this task saves the configuration to the location specified by the CONFIG_FILE environment variable. The CONFIG_FILE variable defaults to NVRAM.

Filtering Output from the show and more Commands

In Cisco IOS Release 12.0(1)T and later releases, you can search and filter the output of `show` and `more` commands. This functionality is useful if you need to sort through large amounts of output or if you want to exclude output that you need not see.

To use this functionality, enter a `show` or `more` command followed by the “pipe” character (\|); one of the keywords `begin`, `include`, or `exclude`; and a regular expression on which you want to search or filter (the expression is case-sensitive):

```
command | { begin | include | exclude } regular-expression
```

The output matches certain lines of information in the configuration file. The following example illustrates how to use output modifiers with the `show interface` command when you want the output to include only lines in which the expression “protocol” appears:

```
Router# show interface | include protocol
```

```
FastEthernet0/0 is up, line protocol is up
Serial1/0 is up, line protocol is up
Serial1/1 is up, line protocol is up
Serial1/2 is administratively down, line protocol is down
Serial1/3 is administratively down, line protocol is down
```

For more information on the search and filter functionality, refer to the “Using the Command-Line Interface” chapter in the *Cisco IOS Configuration Fundamentals Configuration Guide*.
Identifying Supported Platforms

Cisco IOS software is packaged in feature sets consisting of software images that support specific platforms. The feature sets available for a specific platform depend on which Cisco IOS software images are included in a release. To identify the set of software images available in a specific release or to find out if a feature is available in a given Cisco IOS software image, see the following sections:

- Using Feature Navigator
- Using Software Release Notes

Using Feature Navigator

Feature Navigator is a web-based tool that enables you to quickly determine which Cisco IOS software images support a particular set of features and which features are supported in a particular Cisco IOS image.

Feature Navigator is available 24 hours a day, 7 days a week. To access Feature Navigator, you must have an account on Cisco.com. If you have forgotten or lost your account information, e-mail the Contact Database Administration group at cdbadmin@cisco.com. If you do not have an account on Cisco.com, go to http://www.cisco.com/register and follow the directions to establish an account.

To use Feature Navigator, you must have a JavaScript-enabled web browser such as Netscape 3.0 or later, or Internet Explorer 4.0 or later. Internet Explorer 4.0 always has JavaScript enabled. To enable JavaScript for Netscape 3.x or Netscape 4.x, follow the instructions provided with the web browser. For JavaScript support and enabling instructions for other browsers, check with the browser vendor.

Feature Navigator is updated when major Cisco IOS software releases and technology releases occur. You can access Feature Navigator at the following URL:

http://www.cisco.com/go/fn

Using Software Release Notes

Cisco IOS software releases include release notes that provide the following information:

- Platform support information
- Memory recommendations
- Microcode support information
- Feature set tables
- Feature descriptions
- Open and resolved severity 1 and 2 caveats for all platforms

Release notes are intended to be release-specific for the most current release, and the information provided in these documents may not be cumulative in providing information about features that first appeared in previous releases.
Quality of Service Commands

Use the commands in this chapter to configure quality of service (QoS), a measure of performance for a transmission system that reflects its transmission quality and service availability. The commands are arranged alphabetically.

For QoS configuration information and examples, refer to the *Cisco IOS Quality of Service Solutions Configuration Guide*.
access-list rate-limit

To configure an access list for use with committed access rate (CAR) policies, use the access-list rate-limit global configuration command. To remove the access list from the configuration, use the no form of this command.

```
access-list rate-limit acl-index {precedence | mac-address | exp mask mask}
```

```
no access-list rate-limit acl-index {precedence | mac-address | exp mask mask}
```

Syntax Description

- `acl-index`: Specifies the access list number. Classification options are as follows:
 - For IP precedence, use any number from 1 to 99.
 - For MAC address, use any number from 100 to 199.
 - For MPLS experimental field, use any number from 200 to 299.
- `precedence`: Specifies the IP precedence. Valid values are from 0 to 7.
- `mac-address`: Specifies the MAC address.
- `exp`: Specifies the MPLS experimental field. Value values are from 0 to 7.
- `mask mask`: Specifies the mask. Use this option if you want to assign multiple IP precedences or MPLS experimental field values to the same rate-limit access list.

Defaults

No CAR access lists are configured.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command now includes an access list based on the MPLS experimental field.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to classify packets by the specified IP precedence, MAC address, or MPLS experimental field values for a particular CAR access list. You can then apply CAR policies, using the rate-limit command, to individual rate-limit access list causing packets with different IP precedences, MAC addresses, or MPLS experimental field values to be treated differently by the CAR process.

You can specify only one command for each rate-limit access list. If you enter this command multiple times with the same access list number, the new command overwrites the previous command.
Use the **mask** keyword to assign multiple IP precedences or MPLS experimental field values to the same rate-limit access list. To determine the mask value, perform the following steps:

Step 1 Decide which precedences you want to assign to this rate-limit access list.

Step 2 Convert the precedences or MPLS experimental field values into an 8-bit numbers with each bit corresponding to one value. For example, an MPLS experimental field value of 0 corresponds to 00000001, 1 corresponds to 00000010, 6 corresponds to 01000000, and 7 corresponds to 10000000.

Step 3 Add the 8-bit numbers for the selected MPLS experimental field values. For example, the mask for MPLS experimental field values 1 and 6 is 01000010.

Step 4 The command expects hexadecimal format. Convert the binary mask into the corresponding hexadecimal number. For example, 01000010 becomes 42. This value is used in the `access-list rate-limit` command. Any packets that have an MPLS experimental field value of 1 or 6 will match this access list.

A mask of FF matches any precedence, and 00 does not match any precedence.

Examples

The following example assigns any packets with a MAC address of 00e0.34b0.7777 to rate-limit access list 100:

```plaintext
access-list rate-limit 100 00e0.34b0.7777
```

The following example assigns packets with an IP Precedence of 0, 1, or 2 to the rate-limit access list 25:

```plaintext
access-list rate-limit 25 mask 07
```

In the following example, MPLS experimental fields with the value of 7 are assigned to the rate-limit access list 200:

```plaintext
access-list rate-limit 200 7
```

You can then use the rate-limit access list in a **rate-limit** command so that the rate limit is applied only to packets matching the rate-limit access list:

```plaintext
interface atm4/0.1 mpls
rate-limit input access-group rate-limit 200 8000 8000 8000
conform-action set-mpls-exp-transmit 4 exceed-action set-mpls-exp-transmit 0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate limit</td>
<td>Configures CAR and DCAR policies.</td>
</tr>
<tr>
<td>show access-lists rate-limit</td>
<td>Displays information about rate-limit access lists.</td>
</tr>
</tbody>
</table>
bandwidth (policy-map-class)

To specify or modify the bandwidth allocated for a class belonging to a policy map, use the `bandwidth` policy-map class configuration command. To remove the bandwidth specified for a class, use the `no` form of this command.

```
bandwidth {bandwidth-kbps | percent percent}

no bandwidth {bandwidth-kbps | percent percent}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth-kbps</td>
<td>Amount of bandwidth, in kbps, to be assigned to the class.</td>
</tr>
<tr>
<td>percent percent</td>
<td>Percentage of available bandwidth to be assigned to the class.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

Policy-map class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE. Support for the Versatile Interface Processor (VIP)-enabled Cisco 7500 series routers was added.</td>
</tr>
<tr>
<td>12.1(1)</td>
<td>The <code>percent</code> keyword was added.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T. Support for VIP-enabled Cisco 7500 series routers was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You use the `bandwidth` command when you configure a policy map for a class defined by the `class-map` command. The `bandwidth` command specifies the bandwidth for traffic in that class. Class-based weighted fair queueing (CBWFQ) derives the weight for packets belonging to the class from the bandwidth allocated to the class. CBWFQ then uses the weight to ensure that the queue for the class is serviced fairly.

Specifying Bandwidth as a Percentage

Besides specifying the amount of bandwidth in kbps, you can assign bandwidth as a percentage of the available bandwidth. During periods of congestion, the classes are serviced in proportion to their configured bandwidth percentages. Available bandwidth is equal to the interface bandwidth minus the sum of all bandwidths reserved by Resource Reservation Protocol (RSVP), IP RTP Priority, and low latency queueing (LLQ).
It is important to remember that hard bandwidth guarantees may not be provided and only relative bandwidths are assured. That is, class bandwidths are always proportional to the specified percentages of the interface bandwidth. When the link bandwidth is fixed, class bandwidth guarantees are in proportion to the configured percentages. If the link bandwidth is unknown or variable, class bandwidth guarantees in kbps cannot be computed.

Configuring bandwidth in percentages is most useful when the underlying link bandwidth is unknown or the relative class bandwidth distributions are known. For interfaces that have adaptive shaping rates (such as available bit rate [ABR] virtual circuits), CBWFQ can be configured by configuring class bandwidths in percentages.

Bandwidth Command Restrictions
The following restrictions apply to the `bandwidth` command:

- If the `percent` keyword is used, the sum of the class bandwidth percentages cannot exceed 100 percent.
- The amount of bandwidth configured should be large enough to also accommodate Layer 2 overhead.
- A policy map can have all the class bandwidths specified in kbps or all the class bandwidths specified in percentages, but not a mix of both. However, the unit for the `priority` command in the priority class can be different from the bandwidth unit of the low priority class.
- The IP RTP Priority and RSVP features can be configured in kbps only.

For more information on bandwidth allocation, refer to the chapter “Congestion Management Overview” in the *Cisco IOS Quality of Service Solutions Configuration Guide*.

Note that when the policy map containing class policy configurations is attached to the interface to stipulate the service policy for that interface, available bandwidth is assessed. If a policy map cannot be attached to a particular interface because of insufficient interface bandwidth, then the policy is removed from all interfaces to which it was successfully attached.

Queue Limits
The `bandwidth` command can be used with the Modular Command-Line Interface (MQC) to specify the bandwidth for a particular class. When used with the MQC, the `bandwidth` command uses a default queue limit for the class. This queue limit can be modified using the `queue-limit` command, thereby overriding the default set by the `bandwidth` command.

Using the `queue-limit` command to modify the default queue-limit is especially important for higher-speed interfaces, in order to meet the minimum bandwidth guarantees required by the interface.

Examples
The following example modifies the bandwidth for a class called acl22. The default class belongs to a service policy map called polmap6.

```
policy-map polmap6
   class acl22
      bandwidth 2000
      queue-limit 30
```
CBWFQ Bandwidth Guarantee

The following example illustrates how bandwidth is guaranteed when only CBWFQ is configured:

```
! The following commands create a policy map with two classes:
policy-map policy1
  class class1
    bandwidth percent 50
  exit
  class class2
    bandwidth percent 25
  exit
end

! The following commands attach the policy to interface s3/2:
interface s3/2
  service output policy1
end
```

The following output from the `show policy-map interface` command shows that 50 percent of the interface bandwidth is guaranteed for class1 and 25 percent is guaranteed for class2:

```
Router# show policy-map interface s3/2
Serial3/2 output :policy1
  Class class1
    Weighted Fair Queueing
      Output Queue:Conversation 265
        Bandwidth 50 (%) Packets Matched 0 Max Threshold 64 (packets)
        (discards/tail drops) 0/0
    Class class2
    Weighted Fair Queueing
      Output Queue:Conversation 266
        Bandwidth 25 (%) Packets Matched 0 Max Threshold 64 (packets)
        (discards/tail drops) 0/0
```

In this example, the entire interface bandwidth is available for CBWFQ because RSVP, IP RTP Priority, and LLQ are not enabled. If this policy map is attached to a physical interface, the available bandwidth is equal to the link bandwidth. During periods of congestion, 50 percent of the link bandwidth is guaranteed to class1 and 25 percent of the link bandwidth is guaranteed to class2. For example, if this policy map was attached to a 1 Mbps link, class1 would be guaranteed 500 kbps and class2 would be guaranteed 250 kbps during periods of congestion.

CBWFQ and LLQ Bandwidth Allocation

The following example illustrates how bandwidth is guaranteed if LLQ is configured with CBWFQ. Remember, the available bandwidth for CBWFQ is the link bandwidth minus the sum of the bandwidths reserved by RSVP, LLQ, and IP RTP Priority.

In this example, LLQ is enabled in a third class called voice1:

```
! The following commands create a policy map with three classes:
policy-map policy1
  class class1
    bandwidth percent 10
  exit
  class class2
    bandwidth percent 20
  exit
  class voice1
end
```
priority 500
exit
end

!The following commands attach the policy to interface s3/2:
interface s3/2
service output policy1
end

The following output from the `show policy-map` command shows that 50 percent of the interface bandwidth is guaranteed for the class called class1, 25 percent is guaranteed for the class called class2, and 500 kbps is guaranteed for the class called voice1:

```
Router# show policy-map policy1

Policy Map policy1
Class class1
  Weighted Fair Queueing
    Bandwidth 50 (%)  Max Threshold 64 (packets)
Class class2
  Weighted Fair Queueing
    Bandwidth 25 (%)  Max Threshold 64 (packets)
Class voice1
  Weighted Fair Queueing
    Strict Priority
    Bandwidth 500 (kbps)  Max Threshold 64 (packets)
```

Because LLQ reserved 500 kbps of the interface bandwidth, if you attach this policy map to an interface with 2 Mbps, only 1.5 Mbps is available for CBWFQ classes. In this example, 50 percent of 1.5 Mbps (750 kbps) is guaranteed for class1 and 25 percent (375 kbps) is guaranteed for class2. The remaining 25 percent of the available bandwidth (375 kbps) is shared by class1, class2, and any best-effort traffic.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class (policy-map)</td>
<td>Specifies the name of the class whose policy you want to create or change, and the default class (commonly known as the class-default class) before you configure its policy.</td>
</tr>
<tr>
<td>class class-default</td>
<td>Specifies the default class whose bandwidth is to be configured or modified.</td>
</tr>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td>max-reserved-bandwidth</td>
<td>Changes the percent of interface bandwidth allocated for CBWFQ, LLQ, and IP RTP Priority.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>queue-limit</td>
<td>Specifies or modifies the maximum number of packets the queue can hold for a class policy configured in a policy map.</td>
</tr>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td>random-detect exponential-weighting-constant</td>
<td>Configures the WRED and DWRED exponential weight factor for the average queue size calculation.</td>
</tr>
<tr>
<td>random-detect precedence</td>
<td>Configures WRED and DWRED parameters for a particular IP Precedence.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>

bump

To configure the bumping rules for a virtual circuit (VC) class that can be assigned to a VC bundle, use the `bump vc-class` configuration command. To remove the explicit bumping rules for the VCs assigned this class and default them to implicit bumping, use the `no bump explicit` command. To specify that the VC bundle members do not accept any bumped traffic, use the `no bump traffic` command.

To configure the bumping rules for a specific VC member of a bundle, use the `bump bundle-vc` configuration command. To remove the explicit bumping rules for the VC and default it to implicit bumping, use the `no bump explicit` command. To specify that the VC does not accept any bumped traffic, use the `no bump traffic` command.

```
bump {implicit | explicit precedent-level | traffic}
```

```
no bump {explicit precedent-level | traffic}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>implicit</code></td>
<td>Depending on the mode, applies implicit bumping rules, which is also the default, to a single VC bundle member (bundle-vc mode) or all VCs in the bundle (bundle mode). The (default) implicit bumping rule stipulates that bumped traffic is to be carried by a VC with a lower precedence.</td>
</tr>
<tr>
<td><code>explicit precedent-level</code></td>
<td>Specifies the precedence level to which traffic on a VC (bundle-vc mode) will be bumped when the VC goes down. Specifies a single number as the value of the <code>precedence-level</code> argument.</td>
</tr>
<tr>
<td><code>traffic</code></td>
<td>In its positive form, specifies that the VC accepts bumped traffic. The <code>no</code> form stipulates that the VC does not accept any bumped traffic.</td>
</tr>
</tbody>
</table>

Defaults

Implicit bumping

Bump traffic (VCs accept bumped traffic)

Command Modes

VC-class configuration (for a VC class)

Bundle-vc configuration (for a VC bundle member)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `bump` command in bundle-vc configuration mode to configure bumping rules for a discrete VC bundle member or in vc-class configuration mode to configure a VC class that can be assigned to a bundle member.
The effects of different bumping configuration approaches are as follows:

- **Implicit bumping**: If you configure implicit bumping, bumped traffic is sent to the VC configured to handle the next lower precedence level. When the original VC that bumped the traffic comes back up, traffic it is configured to carry is restored to it. When no other positive forms of the bump command are configured, the `bump implicit` command takes effect.

- **Explicit bumping**: If you configure a VC with the `bump explicit` command, you can specify the precedence level to which traffic on a VC will be bumped when that VC goes down, and the traffic will be directed to a VC mapped with that precedence level. If the VC that picks up and carries the traffic goes down, the traffic is subject to the bumping rules for that VC. You can specify only one precedence level for bumping.

- **Bumped traffic**: The VC accepts bumped traffic. You can configure bumped traffic explicitly using either the `bump traffic` or the `no bump traffic` command, or let the default take effect by specifying neither.

- **No bumped traffic**: To configure a discrete VC to reject bumped traffic when the traffic is directed to the VC, use the `no bump traffic` command.

Note

When no alternative VC can be found to handle bumped traffic, the bundle is declared down. To avoid this occurrence, configure explicitly the bundle member VC that has the lowest precedence level.

To use this command in vc-class configuration mode, you must enter the `vc-class atm` global configuration command before you enter this command.

To use this command to configure an individual bundle member in bundle-vc configuration mode, first enter the `bundle` command to enact bundle configuration mode for the bundle to which you want to add or modify the VC member to be configured. Then, use the `pvc-bundle` command to specify the VC to be created or modified and enter bundle-vc configuration mode.

This command has no effect if the VC class that contains the command is attached to a standalone VC, that is, if the VC is not a bundle member. In this case, the attributes are ignored by the VC.

VCs in a VC bundle are subject to the following configuration inheritance guidelines (listed in order of next highest precedence):

- VC configuration in bundle-vc mode
- Bundle configuration in bundle mode (with effect of assigned vc-class configuration)
- Subinterface configuration in subinterface mode

Examples

The following example configures the class called premium-class to define parameters applicable to a VC in a bundle. Unless overridden with a bundle-vc `bump` configuration, the VC that uses this class will not allow other traffic to be bumped onto it.

```plaintext
vc-class atm premium-class
no bump traffic
bump explicitly 7
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-vc</td>
<td>Assigns a VC class to an ATM PVC, SVC, or VC bundle member.</td>
</tr>
<tr>
<td>precedence (VC bundle)</td>
<td>Configures precedence levels for a VC class that can be assigned to a VC bundle and thus applied to all VC members of that bundle.</td>
</tr>
<tr>
<td>protect</td>
<td>Configures a VC class with protected group or protected VC status for application to a VC bundle member.</td>
</tr>
<tr>
<td>pvc-bundle</td>
<td>Adds a PVC to a bundle as a member of the bundle and enters bundle-vc configuration mode in order to configure that PVC bundle member.</td>
</tr>
<tr>
<td>ubr</td>
<td>Configures UBR QoS and specifies the output peak cell rate for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
<tr>
<td>ubr+</td>
<td>Configures UBR QoS and specifies the output peak cell rate and output minimum guaranteed cell rate for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
<tr>
<td>vbr-nrt</td>
<td>Configures the VBR-NRT QoS and specifies output peak cell rate, output sustainable cell rate, and output maximum burst cell size for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
<tr>
<td>vc-class atm</td>
<td>Configures a VC class or an ATM VC or interface.</td>
</tr>
</tbody>
</table>
bundle

To create a bundle or modify an existing bundle to enter bundle configuration mode, use the `bundle` subinterface configuration command. To remove the specified bundle, use the `no` form of this command.

```
bundle bundle-name
no bundle bundle-name
```

Syntax Description

- **bundle-name**

 Specifies the name of the bundle to be created. Limit is 16 alphanumeric characters.

Defaults

This command has no default behavior or values.

Command Modes

- Subinterface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

From within bundle configuration mode you can configure the characteristics and attributes of the bundle and its members, such as the encapsulation type for all virtual circuits (VCs) in the bundle, the bundle management parameters, the service type, and so on. Attributes and parameters you configure in bundle configuration mode are applied to all virtual circuit (VC) members of the bundle.

VCs in a VC bundle are subject to the following configuration inheritance guidelines (listed in order of next highest precedence):

- VC configuration in bundle-vc mode
- Bundle configuration in bundle mode
- Subinterface configuration in subinterface mode

To display status on bundles, use the `show atm bundle` and `show atm bundle statistics` commands.

Examples

The following example configures a bundle called new-york. The example specifies the IP address of the subinterface and the router protocol—the router uses Intermediate System-to-Intermediate System (IS-IS) as an IP routing protocol—then configures the bundle.

```
interface a1/0.1 multipoint
   ip address 10.0.0.1 255.255.255.0
   ip router isis
   bundle new-york
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-bundle</td>
<td>Configures a VC bundle with the bundle-level commands contained in the specified VC class.</td>
</tr>
<tr>
<td>oam-bundle</td>
<td>Enables end-to-end F5 OAM loopback cell generation and OAM management for all VC members of a bundle, or for a VC class that can be applied to a VC bundle.</td>
</tr>
<tr>
<td>pvc-bundle</td>
<td>Adds a PVC to a bundle as a member of the bundle and enters bundle-vc configuration mode in order to configure that PVC bundle member.</td>
</tr>
<tr>
<td>show atm bundle</td>
<td>Displays the bundle attributes assigned to each bundle VC member and the current working status of the VC members.</td>
</tr>
<tr>
<td>show atm bundle statistics</td>
<td>Displays statistics on the specified bundle.</td>
</tr>
</tbody>
</table>
class (policy-map)

To specify the name of the class whose policy you want to create or change or to specify the default class (commonly known as the class-default class) before you configure its policy, use the `class` QoS policy-map configuration command. To remove a class from the policy map, use the `no` form of this command.

```
    class {class-name | class-default}
    no class {class-name | class-default}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>class-name</code></td>
<td>The name of the class for which you want to configure or modify policy.</td>
</tr>
<tr>
<td><code>class-default</code></td>
<td>Specifies the default class so that you can configure or modify its policy.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

QoS policy-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE.</td>
</tr>
<tr>
<td>12.0(7)S</td>
<td>This command was integrated into Cisco IOS Release 12.0(7)S.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Policy Map Configuration Mode

Within a policy map, the `class` (policy-map) command can be used to specify the name of the class whose policy you want to create or change. First, the policy map must be identified.

To identify the policy map (and enter the required QoS policy-map configuration mode), use the `policy-map` command before you use the `class` (policy-map) command. After you specify a policy map, you can configure policy for new classes or modify the policy for any existing classes in that policy map.

Class Characteristics

The class name that you specify in the policy map ties the characteristics for that class—that is, its policy—to the class map and its match criteria, as configured using the `class-map` command.

When you configure policy for a class and specify its bandwidth and attach the policy map to an interface, class-based weighted fair queueing (CBWFQ) determines if the bandwidth requirement of the class can be satisfied. If so, CBWFQ allocates a queue for the bandwidth requirement.

When a class is removed, available bandwidth for the interface is incremented by the amount previously allocated to the class.

The maximum number of classes you can configure for a router—and, therefore, within a policy map—is 64.
Predefined Default Class

The predefined default class called class-default is available for you to use. The class class-default is the class to which traffic is directed if that traffic does not match any of the match criteria in the configured class maps.

Tail Drop or WRED

You can define a class policy to use either tail drop by using the queue-limit command or Weighted Random Early Detection (WRED) by using the random-detect command. When using either tail drop or WRED, note the following points:

- The queue-limit and random-detect commands cannot be used in the same class policy, but they can be used in two class policies in the same policy map.
- You can configure the bandwidth command when either the queue-limit or the random-detect command is configured in a class policy. The bandwidth command specifies the amount of bandwidth allocated for the class.
- For the predefined default class, you can configure the fair-queue (class-default) command. The fair-queue command specifies the number of dynamic queues for the default class. The fair-queue command can be used in the same class policy as either the queue-limit or random-detect command. It cannot be used with the bandwidth command.

Examples

The following example configures three class policies included in the policy map called policy1. Class1 specifies policy for traffic that matches access control list 136. Class2 specifies policy for traffic on interface ethernet101. The third class is the default class to which packets that do not satisfy configured match criteria are directed.

! The following commands create class-maps class1 and class2
! and define their match criteria:
class-map class1
 match access-group 136
class-map class2
 match input-interface ethernet101

! The following commands create the policy map, which is defined to contain policy
! specification for class1, class2, and the default class:
policy-map policy1

class class1
 bandwidth 2000
 queue-limit 40

class class2
 bandwidth 3000
 random-detect
 random-detect exponential-weighting-constant 10

class class-default
 fair-queue 16
 queue-limit 20

Class1 has these characteristics: A minimum of 2000 kbps of bandwidth are expected to be delivered to this class in the event of congestion, and the queue reserved for this class can enqueue 40 packets before tail drop is enacted to handle additional packets.

Class2 has these characteristics: A minimum of 3000 kbps of bandwidth are expected to be delivered to this class in the event of congestion, and a weight factor of 10 is used to calculate the average queue size. For congestion avoidance, WRED packet drop is used, not tail drop.
The default class has these characteristics: 16 dynamic queues are reserved for traffic that does not meet the match criteria of other classes whose policy is defined by the policy map called policy1, and a maximum of 20 packets per queue are enqueued before tail drop is enacted to handle additional packets.

Note

Note that when the policy map containing these classes is attached to the interface to stipulate the service policy for that interface, available bandwidth is assessed, taking into account all class policies and Resource Reservation Protocol (RSVP), if configured.

The following example configures policy for the default class included in the policy map called policy2. The default class has these characteristics: 20 dynamic queues are available for traffic that does not meet the match criteria of other classes whose policy is defined by the policy map called policy2, and a weight factor of 14 is used to calculate the average queue size. For congestion avoidance, WRED packet drop is used, not tail drop.

```
policy-map policy2
class class-default
fair-queue 20
random-detect
random-detect exponential-weighting-constant 14
```

The following example configures policy for a class called acl136 included in the policy map called policy1. Class acl136 has these characteristics: a minimum of 2000 kbps of bandwidth are expected to be delivered to this class in the event of congestion, and the queue reserved for this class can enqueue 40 packets before tail drop is enacted to handle additional packets. Note that when the policy map containing this class is attached to the interface to stipulate the service policy for that interface, available bandwidth is assessed, taking into account all class policies and RSVP, if configured.

```
policy-map policy1
class acl136
bandwidth 2000
queue-limit 40
```

The following example configures policy for a class called int101 included in the policy map called policy8. Class int101 has these characteristics: a minimum of 3000 kbps of bandwidth are expected to be delivered to this class in the event of congestion, and a weight factor of 10 is used to calculate the average queue size. For congestion avoidance, WRED packet drop is used, not tail drop. Note that when the policy map containing this class is attached to the interface to stipulate the service policy for that interface, available bandwidth is assessed.

```
policy-map policy8
class int101
bandwidth 3000
random-detect exponential-weighting-constant 10
```

The following example configures policy for the class-default default class included in the policy map called policy1. The class-default default class has these characteristics: 10 hashed queues for traffic that does not meet the match criteria of other classes whose policy is defined by the policy map called policy1, and a maximum of 20 packets per queue before tail drop is enacted to handle additional enqueued packets.

```
policy-map policy1
class class-default
fair-queue 10
queue-limit 20
```
The following example configures policy for the **class-default** default class included in the policy map called policy8. The **class-default** default class has these characteristics: 20 hashed queues for traffic that does not meet the match criteria of other classes whose policy is defined by the policy map called policy8, and a weight factor of 14 is used to calculate the average queue size. For congestion avoidance, WRED packet drop is used, not tail drop.

```plaintext
class class-default
fair-queue 20
random-detect exponential-weighting-constant 14
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bandwidth (policy-map-class)</td>
<td>Specifies or modifies the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td></td>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td></td>
<td>fair queue (class-default)</td>
<td>Specifies the number of dynamic queues to be reserved for use by the class-default class as part of the default class policy.</td>
</tr>
<tr>
<td></td>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td></td>
<td>queue-limit</td>
<td>Specifies or modifies the maximum number of packets the queue can hold for a class policy configured in a policy map.</td>
</tr>
<tr>
<td></td>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td></td>
<td>random-detect exponential-weighting-constant</td>
<td>Configures the WRED and DWRED exponential weight factor for the average queue size calculation.</td>
</tr>
<tr>
<td></td>
<td>random-detect precedence</td>
<td>Configures WRED and DWRED parameters for a particular IP Precedence.</td>
</tr>
</tbody>
</table>
class-bundle

To configure a virtual circuit (VC) bundle with the bundle-level commands contained in the specified VC class, use the **class-bundle** bundle configuration command. To remove the VC class parameters from a VC bundle, use the **no** form of this command.

```
class-bundle vc-class-name

no class-bundle vc-class-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vc-class-name</td>
<td>Name of the VC class you are assigning to your VC bundle.</td>
</tr>
</tbody>
</table>

Defaults

No VC class is assigned to the VC bundle.

Command Modes

Bundle configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0 T</td>
<td>This command was introduced, replacing the class command for configuring ATM VC bundles.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To use this command, you must first enter the **bundle** command to create the bundle and enter bundle configuration mode.

Use this command to assign a previously defined set of parameters (defined in a VC class) to an ATM VC bundle. Parameters set through bundle-level commands contained in a VC class are applied to the bundle and its VC members.

You can add the following commands to a VC class to be used to configure a VC bundle: **oam-bundle**, **broadcast**, **encapsulation**, **protocol**, **oam retry**, and **inarp**.

Bundle-level parameters applied through commands configured directly on a bundle supersede bundle-level parameters applied through a VC class by the **class-bundle** command. Some bundle-level parameters applied through a VC class or directly to the bundle can be superseded by commands that you directly apply to individual VCs in bundle-vc configuration mode.

Examples

In the following example, a class called class1 is first created and then applied to the bundle called bundle1:

```
! The following commands create the class class1:
vc-class atm class1
  encapsulation aal5snap
  broadcast
  protocol ip inarp
  oam-bundle manage 3
  oam 4 3 10
```
The following commands apply class1 to the bundle called bundle1:

```plaintext
bundle bundle1
class-bundle class1
```

Taking into account hierarchy precedence rules, VCs belonging to the bundle1 bundle will be characterized by these parameters: aal5snap, encapsulation, broadcast on, use of Inverse Address Resolution Protocol (Inverse ARP) to resolve IP addresses, and Operation, Administration, and Maintenance (OAM) enabled.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>broadcast</td>
<td>Configures broadcast packet duplication and transmission for an ATM VC class, PVC, SVC, or VC bundle.</td>
</tr>
<tr>
<td>bundle</td>
<td>Creates a bundle or modifies an existing bundle to enter bundle configuration mode.</td>
</tr>
<tr>
<td>class-int</td>
<td>Assigns a VC class to an ATM main interface or subinterface.</td>
</tr>
<tr>
<td>class-vc</td>
<td>Assigns a VC class to an ATM PVC, SVC, or VC bundle member.</td>
</tr>
<tr>
<td>encapsulation</td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
<tr>
<td>inarp</td>
<td>Configures the Inverse ARP time period for an ATM PVC, VC class, or VC bundle.</td>
</tr>
<tr>
<td>oam-bundle</td>
<td>Enables end-to-end F5 OAM loopback cell generation and OAM management for all VC members of a bundle, or for a VC class that can be applied to a VC bundle.</td>
</tr>
<tr>
<td>oam retry</td>
<td>Configures parameters related to OAM management for an ATM PVC, SVC, VC class, or VC bundle.</td>
</tr>
<tr>
<td>protocol (ATM)</td>
<td>Configures a static map for an ATM PVC, SVC, VC class, or VC bundle. Enables Inverse ARP or Inverse ARP broadcasts on an ATM PVC by either configuring Inverse ARP directly on the PVC, on the VC bundle, or in a VC class (applies to IP and IPX protocols only).</td>
</tr>
<tr>
<td>pvc-bundle</td>
<td>Adds a PVC to a bundle as a member of the bundle and enters bundle-vc configuration mode in order to configure that PVC bundle member.</td>
</tr>
<tr>
<td>show atm bundle</td>
<td>Displays the bundle attributes assigned to each bundle VC member and the current working status of the VC members.</td>
</tr>
<tr>
<td>show atm bundle statistics</td>
<td>Displays statistics on the specified bundle.</td>
</tr>
<tr>
<td>show atm map</td>
<td>Displays the list of all configured ATM static maps to remote hosts on an ATM network.</td>
</tr>
<tr>
<td>vc-class atm</td>
<td>Configures a VC class for an ATM VC or interface.</td>
</tr>
</tbody>
</table>
class-map

To create a class map to be used for matching packets to a specified class, use the class-map command in global configuration mode. To remove an existing class map from the router, use the no form of this command.

```
class-map [match-all | match-any] class-map-name

no class-map [match-all | match-any] class-map-name
```

Syntax Description

- **match-all | match-any** (Optional) Determines how packets are evaluated when multiple match criteria exist. Packets must either meet all of the match criteria (match-all) or one of the match criteria (match-any) in order to be considered a member of the class.

- **class-map-name** Name of the class for the class map. The name can be a maximum of 40 alphanumeric characters. The class name is used for both the class map and to configure policy for the class in the policy map.

Defaults

This command has no default behavior or values.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE.</td>
</tr>
<tr>
<td>12.0(7)S</td>
<td>This command was integrated into Cisco IOS Release 12.0(7)S.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to specify the name of the class for which you want to create or modify class map match criteria. Use of the class-map command enables class-map configuration mode in which you can enter one of the match commands to configure the match criteria for this class. Packets arriving at either the input or output interface (determined by how the service-policy command is configured) are checked against the match criteria configured for a class map to determine if the packet belongs to that class.

When configuring a class map, you can use one or more match commands to specify match criteria. For example, you can use the match access-group command, the match protocol command, or the match input-interface command. The match commands vary according to the Cisco IOS release. For more information about match criteria and match commands, refer to the “Modular Quality of Service Command-Line Interface (CLI)” chapter of the Cisco IOS Quality of Service Solutions Configuration Guide.
Examples

The following example specifies class101 as the name of a class, and it defines a class map for this class. The class called class101 specifies policy for traffic that matches access control list 101.

```plaintext
class-map class101
  match access-group 101
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class (policy-map)</td>
<td>Specifies the name of the class whose policy you want to create or change, and the default class (commonly known as the class-default class) before you configure its policy.</td>
</tr>
<tr>
<td>class class-default</td>
<td>Specifies the default class for a service policy map.</td>
</tr>
<tr>
<td>match access-group</td>
<td>Configures the match criteria for a class map on the basis of the specified ACL.</td>
</tr>
<tr>
<td>match input-interface</td>
<td>Configures a class map to use the specified input interface as a match criterion.</td>
</tr>
<tr>
<td>match mpls experimental</td>
<td>Configures a class map to use the specified EXP field value as a match criterion.</td>
</tr>
<tr>
<td>match protocol</td>
<td>Configures the match criteria for a class map on the basis of the specified protocol.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or virtual circuit (VC), or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
</tbody>
</table>
clear ip rsvp reservation

To remove Resource Reservation Protocol (RSVP) RESV-related receiver information currently in the database, use the `clear ip rsvp reservation` command in EXEC mode.

```
  clear ip rsvp reservation {session-ip-address sender-ip-address {tcp | udp | ip-protocol} session-dport sender-sport | *}
```

Syntax Description

- **session-ip-address**: For unicast sessions, this is the address of the intended receiver; for multicast sessions, it is the IP multicast address of the session.
- **sender-ip-address**: The IP address of the sender.
- **tcp | udp | ip-protocol**: TCP, User Datagram Protocol (UDP), or IP protocol in the range from 0 to 65535.
- **session-dport**: The destination port.
 - **Note**: Port numbers are specified in all cases, because the use of 16-bit ports following the IP header is not limited to UDP or TCP. If destination is zero, source must be zero, and the implication is that ports are not checked. If destination is nonzero, source must be nonzero (except for wildcard filter (wf) reservations, for which the source port is always ignored and can therefore be zero).
- **sender-sport**: The source port.
 - **Note**: Port numbers are specified in all cases, because the use of 16-bit ports following the IP header is not limited to UDP or TCP. If destination is zero, source must be zero, and the implication is that ports are not checked. If destination is nonzero, source must be nonzero (except for wildcard filter (wf) reservations, for which the source port is always ignored and can therefore be zero).
- *****: Wildcard used to clear all senders.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `clear ip rsvp reservation` command to remove the RESV-related sender information currently in the database so that when reservation requests arrive, based on the RSVP admission policy, the relevant ones can be reestablished.

Whenever you change the clockrate or bandwidth of an interface, RSVP does not update its database to reflect the change. This is because such a change requires that RSVP reestablish reservations based on the new clockrate or bandwidth value and arbitrarily dropping some reservations while retaining others is not desired. The solution is to clear the RESV state by issuing the `clear ip rsvp reservation` command.
The `clear ip rsvp reservation` command clears the RESV state from the router on which you issued the command and causes the router to send a PATH TEAR message to the upstream routers thereby clearing the RESV state for that reservation on all the upstream routers.

Examples

The following example clears all the RESV-related receiver information currently in the database:

```
Router# clear ip rsvp reservation *
```

The following example clears all the RESV-related receiver information for a specified reservation currently in the database:

```
Router# clear ip rsvp reservation 10.2.1.1 10.1.1.2 udp 10 20
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear ip rsvp sender</code></td>
<td>Removes RSVP PATH-related sender information currently in the database.</td>
</tr>
</tbody>
</table>
clear ip rsvp sender

To remove Resource Reservation Protocol (RSVP) PATH-related sender information currently in the database, use the clear ip rsvp sender command in EXEC mode.

```
clear ip rsvp sender {session-ip-address sender-ip-address {tcp | udp | ip-protocol} session-dport sender-sport | *}
```

Syntax Description
- **session-ip-address**: For unicast sessions, this is the address of the intended receiver; for multicast sessions, it is the IP multicast address of the session.
- **sender-ip-address**: The IP address of the sender.
- **tcp | udp | ip-protocol**: TCP, User Datagram Protocol (UDP), or IP protocol in the range from 0 to 65535.
- **session-dport**: The destination port.

Note: Port numbers are specified in all cases, because the use of 16-bit ports following the IP header is not limited to UDP or TCP. If destination is zero, source must be zero, and the implication is that ports are not checked. If destination is nonzero, source must be nonzero (except for wildcard filter (wf) reservations, for which the source port is always ignored and can therefore be zero).

- **sender-sport**: The source port.

Note: Port numbers are specified in all cases, because the use of 16-bit ports following the IP header is not limited to UDP or TCP. If destination is zero, source must be zero, and the implication is that ports are not checked. If destination is nonzero, source must be nonzero (except for wildcard filter (wf) reservations, for which the source port is always ignored and can therefore be zero).

- *****: Wildcard used to clear all senders.

Command Modes
- EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the clear ip rsvp sender command to remove the PATH-related sender information currently in the database so that when reservation requests arrive, based on the RSVP admission policy, the relevant ones can be reestablished.

Whenever you change the clockrate or bandwidth of an interface, RSVP does not update its database to reflect the change. This is because such a change requires that RSVP reestablish reservations based on the new clockrate or bandwidth value and arbitrarily dropping some reservations while retaining others is not desired. The solution is to clear the PATH state by issuing the clear ip rsvp sender command.
The `clear ip rsvp sender` command clears the PATH state from the router on which you issued the command and causes the router to send a PATH TEAR message to the downstream routers thereby clearing the PATH state for that reservation on all the downstream routers.

Examples

The following example clears all the PATH-related sender information currently in the database:

```
Router# clear ip rsvp sender *
```

The following example clears all the PATH-related sender information for a specified reservation currently in the database:

```
Router# clear ip rsvp sender 10.2.1.1 10.1.1.2 udp 10 20
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip rsvp reservation</td>
<td>Removes RSVP RESV-related receiver information currently in the database.</td>
</tr>
</tbody>
</table>
custom-queue-list

To assign a custom queue list to an interface, use the `custom-queue-list` interface configuration command. To remove a specific list or all list assignments, use the `no` form of this command.

```
custom-queue-list [list-number]

no custom-queue-list [list-number]
```

Syntax Description

| list-number | Any number from 1 to 16 for the custom queue list. |

Defaults

No custom queue list is assigned.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Only one queue list can be assigned per interface. Use this command in place of the `priority-list interface` command (not in addition to it). Custom queueing allows a fairness not provided with priority queueing. With custom queueing, you can control the bandwidth available on the interface when the interface is unable to accommodate the aggregate traffic enqueued. Associated with each output queue is a configurable byte count, which specifies how many bytes of data should be delivered from the current queue by the system before the system moves on to the next queue. When a particular queue is being processed, packets are sent until the number of bytes sent exceeds the queue byte count or until the queue is empty.

Use the `show queueing custom` and `show interfaces` commands to display the current status of the custom output queues.

Examples

In the following example, custom queue list number 3 is assigned to serial interface 0:

```
interface serial 0
custom-queue-list 3
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>priority-list interface</code></td>
<td>Establishes queueing priorities on packets entering from a given interface.</td>
</tr>
<tr>
<td><code>queue-list default</code></td>
<td>Assigns a priority queue for those packets that do not match any other rule in the queue list.</td>
</tr>
<tr>
<td><code>queue-list interface</code></td>
<td>Establishes queueing priorities on packets entering on an interface.</td>
</tr>
<tr>
<td><code>queue-list queue byte-count</code></td>
<td>Specifies how many bytes the system allows to be delivered from a given queue during a particular cycle.</td>
</tr>
<tr>
<td><code>queue-list queue limit</code></td>
<td>Designates the queue length limit for a queue.</td>
</tr>
<tr>
<td><code>show interfaces</code></td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
disconnect qdm

To disconnect a Quality of Service Device Manager (QDM) client, use the `disconnect qdm` EXEC command.

```
disconnect qdm [client client-id]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>client</code></td>
<td>(Optional) Specifies that a specific QDM client will be disconnected.</td>
</tr>
<tr>
<td><code>client-id</code></td>
<td>(Optional) Specifies the specific QDM identification number to disconnect.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 12.1(1)E</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `disconnect qdm` command to disconnect all QDM clients that are connected to the router.

Use the `disconnect qdm [client client-id]` command to disconnect a specific QDM client connected to a router. For instance, using the `disconnect qdm client 42` command will disconnect the QDM client with the ID 42.

Examples

The following example shows how to disconnect all connected QDM clients:

```
Router# disconnect qdm
```

The following example shows how to disconnect a specific QDM client with client ID 9:

```
Router# disconnect qdm client 9
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show qdm status</td>
<td>Displays the status of connected QDM clients.</td>
</tr>
</tbody>
</table>
dscp

To change the minimum and maximum packet thresholds for the differentiated services code point (DSCP) value, use the `dscp` command in `cfg-red-grp` configuration mode. To return the minimum and maximum packet thresholds to the default for the DSCP value, use the `no` form of this command.

```
dscp dscpvalue min-threshold max-threshold [mark-probability-denominator]
no dscp dscpvalue min-threshold max-threshold [mark-probability-denominator]
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dscpvalue</code></td>
<td>Specifies the DSCP value. The DSCP value can be a number from 0 to 63, or it can be one of the following keywords: <code>ef</code>, <code>af11</code>, <code>af12</code>, <code>af13</code>, <code>af21</code>, <code>af22</code>, <code>af23</code>, <code>af31</code>, <code>af32</code>, <code>af33</code>, <code>af41</code>, <code>af42</code>, <code>af43</code>, <code>cs1</code>, <code>cs2</code>, <code>cs3</code>, <code>cs4</code>, <code>cs5</code>, or <code>cs7</code>.</td>
</tr>
<tr>
<td><code>min-threshold</code></td>
<td>Minimum threshold in number of packets. The value range of this argument is from 1 to 4096. When the average queue length reaches the minimum threshold, Weighted Random Early Detection (WRED) randomly drops some packets with the specified DSCP value.</td>
</tr>
<tr>
<td><code>max-threshold</code></td>
<td>Maximum threshold in number of packets. The value range of this argument is the value of the <code>min-threshold</code> argument to 4096. When the average queue length exceeds the maximum threshold, WRED drops all packets with the specified DSCP value.</td>
</tr>
<tr>
<td><code>mark-probability-denominator</code></td>
<td>(Optional) Denominator for the fraction of packets dropped when the average queue depth is at the maximum threshold. For example, if the denominator is 512, one out of every 512 packets is dropped when the average queue is at the maximum threshold. The value range is from 1 to 65536. The default is 10; one out of every ten packets is dropped at the maximum threshold.</td>
</tr>
</tbody>
</table>

Defaults

If WRED is using the DSCP value to calculate the drop probability of a packet, all entries of the DSCP table are initialized with the default settings shown in Table 3 in the “Usage Guidelines” section of this command.

Command Modes

cfg-red-grp configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(5)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command must be used in conjunction with the `random-detect-group` command.

Additionally, the `dscp` command is available only if you specified the `dscp-based` argument when using the `random-detect-group` command.
Table 3 lists the dscp default settings used by the dscp command. Table 3 lists the DSCP value, and its corresponding minimum threshold, maximum threshold, and mark probability. The last row of the table (the row labeled “default”) shows the default settings used for any DSCP value not specifically shown in the table.

Table 3 dscp Default Settings

<table>
<thead>
<tr>
<th>DSCP (Precedence)</th>
<th>Minimum Threshold</th>
<th>Maximum Threshold</th>
<th>Mark Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>af11</td>
<td>32</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af12</td>
<td>28</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af13</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af21</td>
<td>32</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af22</td>
<td>28</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af23</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af31</td>
<td>32</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af32</td>
<td>28</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af33</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af41</td>
<td>32</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af42</td>
<td>28</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af43</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs1</td>
<td>22</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs2</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs3</td>
<td>26</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs4</td>
<td>28</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs5</td>
<td>30</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs6</td>
<td>32</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs7</td>
<td>34</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>ef</td>
<td>36</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>rsvp</td>
<td>36</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>default</td>
<td>20</td>
<td>40</td>
<td>1/10</td>
</tr>
</tbody>
</table>

The following example enables WRED to use the DSCP value af22. The minimum threshold for the DSCP value af22 is 28, the maximum threshold is 40, and the mark probability is 10.

dscp af22 28 40 10
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>random-detect-group</td>
<td>Enables per-VC WRED or per-VC DWRED.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
<tr>
<td>show queueing interface</td>
<td>Displays the queueing statistics of an interface or VC.</td>
</tr>
</tbody>
</table>
To configure the exponential weight factor for the average queue size calculation for a Weighted Random Early Detection (WRED) parameter group, use the `exponential-weighting-constant` random-detect-group configuration command. To return the exponential weight factor for the group to the default, use the `no` form of this command.

```
exponential-weighting-constant exponent
no exponential-weighting-constant
```

Syntax Description

`exponent` Exponent from 1 to 16 used in the average queue size calculation.

Defaults

The default weight factor is 9.

Command Modes

Random-detect-group configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1(22)CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When used, this command is issued after the `random-detect-group` command is entered.

Use this command to change the exponent used in the average queue size calculation for a WRED parameter group. The average queue size is based on the previous average and the current size of the queue. The formula is:

```
average = (old_average * (1-1/2^x)) + (current_queue_size * 1/2^x)
```

where `x` is the exponential weight factor specified in this command. Thus, the higher the factor, the more dependent the average is on the previous average.

Note

The default WRED parameter values are based on the best available data. We recommend that you do not change the parameters from their default values unless you have determined that your applications would benefit from the changed values.

For high values of `x`, the previous average becomes more important. A large factor smooths out the peaks and lows in queue length. The average queue size is unlikely to change very quickly. The WRED process will be slow to start dropping packets, but it may continue dropping packets for a time after the actual queue size has fallen below the minimum threshold. The resulting slow-moving average will accommodate temporary bursts in traffic.

If the value of `x` gets too high, WRED will not react to congestion. Packets will be sent or dropped as if WRED were not in effect.
For low values of x, the average queue size closely tracks the current queue size. The resulting average may fluctuate with changes in the traffic levels. In this case, the WRED process will respond quickly to long queues. Once the queue falls below the minimum threshold, the process will stop dropping packets.

If the value of x gets too low, WRED will overreact to temporary traffic bursts and drop traffic unnecessarily.

Examples

The following example configures the WRED group called sanjose with a weight factor of 10:

```plaintext
random-detect-group sanjose
  exponential-weighting-constant 10
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protect</td>
<td>Configures a VC class with a protected group or protected VC status for application to a VC bundle member.</td>
</tr>
<tr>
<td>random-detect</td>
<td>Configures the WRED and DWRED exponential weight factor for the average queue size calculation.</td>
</tr>
<tr>
<td>exponential-weighting-constant</td>
<td></td>
</tr>
<tr>
<td>random-detect-group</td>
<td>Defines the WRED or DWRED parameter group.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
<tr>
<td>show queueing interface</td>
<td>Displays the queueing statistics of an interface or VC.</td>
</tr>
</tbody>
</table>
fair-queue (class-default)

To specify the number of dynamic queues to be reserved for use by the class-default class as part of the default class policy, use the `fair-queue` policy-map class configuration command. To delete the configured number of dynamic queues from the class-default policy, use the `no` form of this command.

```
fair-queue [number-of-dynamic-queues]
```

```
no fair-queue [number-of-dynamic-queues]
```

Syntax Description

| number-of-dynamic-queues | (Optional) A power of 2 number in the range from 16 to 4096 specifying the number of dynamic queues. |

Defaults

The number of dynamic queues is derived from the interface or ATM permanent virtual circuit (PVC) bandwidth. See Table 4 in the “Usage Guidelines” section of this command for the default number of dynamic queues that weighted fair queueing (WFQ) and class-based WFQ (CBWFQ) use when they are enabled on an interface. See Table 5 in the “Usage Guidelines” section of this command for the default number of dynamic queues used when WFQ or CBWFQ is enabled on an ATM PVC.

Command Modes

Policy-map class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command can be used for the default class (commonly known as the class-default class) only. You can use it in conjunction with either the `queue-limit` command or the `random-detect` command.

The class-default class is the default class to which traffic is directed if that traffic does not satisfy the match criteria of other classes whose policy is defined in the policy map.

Table 4 lists the default number of dynamic queues that weighted fair queueing (WFQ) and class-based WFQ (CBWFQ) use when they are enabled on an interface.

<table>
<thead>
<tr>
<th>Bandwidth Range</th>
<th>Number of Dynamic Queues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equal to 64 kbps</td>
<td>16</td>
</tr>
<tr>
<td>More than 64 kbps and less than or equal to 128 kbps</td>
<td>32</td>
</tr>
<tr>
<td>More than 128 kbps and less than or equal to 256 kbps</td>
<td>64</td>
</tr>
<tr>
<td>More than 256 kbps and less than or equal to 512 kbps</td>
<td>128</td>
</tr>
<tr>
<td>More than 512 kbps</td>
<td>256</td>
</tr>
</tbody>
</table>
Table 5 lists the default number of dynamic queues used when WFQ or CBWFQ is enabled on an ATM PVC.

Table 5 Default Number of Dynamic Queues As a Function of ATM PVC Bandwidth

<table>
<thead>
<tr>
<th>Bandwidth Range</th>
<th>Number of Dynamic Queues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equal to 128 kbps</td>
<td>16</td>
</tr>
<tr>
<td>More than 128 kbps and less than or equal to 512 kbps</td>
<td>32</td>
</tr>
<tr>
<td>More than 512 kbps and less than or equal to 2000 kbps</td>
<td>64</td>
</tr>
<tr>
<td>More than 2000 kbps and less than or equal to 8000 kbps</td>
<td>128</td>
</tr>
<tr>
<td>More than 8000 kbps</td>
<td>256</td>
</tr>
</tbody>
</table>

Examples

The following example configures policy for the default class included in the policy map called policy9. Packets that do not satisfy match criteria specified for other classes whose policies are configured in the same service policy are directed to the default class, for which 16 dynamic queues have been reserved. Because the `queue-limit` command is configured, tail drop is used for each dynamic queue when the maximum number of packets are enqueued and additional packets arrive.

```
policy-map policy9
  class class-default
  fair-queue 16
  queue-limit 20
```

The following example configures policy for the default class included in the policy map called policy8. The `fair-queue` command reserves 20 dynamic queues to be used for the default class. For congestion avoidance, Weighted Random Early Detection (WRED) packet drop is used, not tail drop.

```
policy-map policy8
  class class-default
  fair-queue 20
  random-detect
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue-limit</td>
<td>Specifies or modifies the maximum number of packets the queue can hold for a class policy configured in a policy map.</td>
</tr>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
</tbody>
</table>
fair-queue (DW FQ)

To enable VIP-distributed weighted fair queueing (DWFQ), use the `fair-queue` interface configuration command. The command enables DWFQ on an interface using a VIP2-40 or greater interface processor. To disable DWFQ, use the `no` form of this command.

```
fair-queue

no fair-queue
```

Syntax Description

This command has no arguments or keywords.

Defaults

DWFQ is enabled by default for physical interfaces whose bandwidth is less than or equal to 2.048 Mbps.

DWFQ can be configured on interfaces but not subinterfaces. It is not supported on Fast EtherChannel, tunnel, or other logical or virtual interfaces such as Multilink PPP (MLP).

See Table 6 in the “Usage Guidelines” section of this command for a list of the default queue lengths and thresholds.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

With DWFQ, packets are classified by flow. Packets with the same source IP address, destination IP address, source TCP or User Datagram Protocol (UDP) port, destination TCP or UDP port, and protocol belong to the same flow.

DWFQ allocates an equal share of the bandwidth to each flow.

Table 6 lists the default queue lengths and thresholds.

Table 6 Default Fair Queue Lengths and Thresholds

<table>
<thead>
<tr>
<th>Queue or Threshold</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive discard threshold</td>
<td>64 messages</td>
</tr>
<tr>
<td>Dynamic queues</td>
<td>256 queues</td>
</tr>
<tr>
<td>Reservable queues</td>
<td>0 queues</td>
</tr>
</tbody>
</table>
Examples

The following example enables DWFQ on the High-Speed Serial Interface (HSSI) interface 0/0/0:

```
interface Hssi0/0/0
  description 45Mbps to R2
  ip address 10.200.14.250 255.255.255.252
  fair-queue
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue (WFQ)</td>
<td>Enables WFQ for an interface.</td>
</tr>
<tr>
<td>fair-queue aggregate-limit</td>
<td>Sets the maximum number of packets in all queues combined for DWFQ.</td>
</tr>
<tr>
<td>fair-queue individual-limit</td>
<td>Sets the maximum individual queue depth for DWFQ.</td>
</tr>
<tr>
<td>fair-queue limit</td>
<td>Sets the maximum queue depth for a specific DWFQ class.</td>
</tr>
<tr>
<td>fair-queue qos-group</td>
<td>Enables DWFQ and classifies packets based on the internal QoS-group number.</td>
</tr>
<tr>
<td>fair-queue tos</td>
<td>Enables DWFQ and classifies packets using the ToS field of packets.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>show interfaces fair-queue</td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
</tbody>
</table>
fair-queue (policy-map)

To specify the number of queues to be reserved for use by a traffic class, use the fair-queue QoS policy-map configuration command. To delete the configured number of queues from the traffic class, use the no form of this command.

```
fair-queue [queue-limit queue-value]
```

```
no fair-queue [queue-limit queue-value]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue-limit</td>
<td>(Optional) A keyword used to specify or modify the maximum number of packets that a per-flow queue can hold.</td>
</tr>
<tr>
<td>queue-value</td>
<td>(Optional) A number specifying the maximum number of packets that each per-flow queue can accumulate.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

QoS policy-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE. Support for Versatile Interface Processor (VIP)-enabled Cisco 7500 series routers was added.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T. Support for VIP-enabled Cisco 7500 series routers was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

On a VIP, the fair-queue command can be used for any traffic class (as opposed to non-VIP platforms, which can only use the fair-queue command in the default traffic class). The fair-queue command can be used in conjunction with either the queue-limit command or the random-detect exponential-weighting-constant command.

Examples

The following example configures the default traffic class for the policy map called policy9 to reserve ten queues for packets that do not satisfy match criteria specified for other traffic classes whose policy is configured in the same service policy. Because the queue-limit command is configured, tail drop is used for each queue when the maximum number of packets is enqueued and additional packets arrive.

```
policy-map policy9
  class class-default
  fair-queue 10
  queue-limit 20
```
The following example configures a service policy called policy8 that is associated with a user-defined traffic class called class1. The **fair-queue** command reserves 20 queues to be used for the service policy. For congestion avoidance, Weighted Random Early Detection (WRED) or distributed WRED (DWRED) packet drop is used, not tail drop.

```
policy-map policy8
  class class1
  fair-queue 20
      random-detect exponential-weighting-constant 14
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class class-default</td>
<td>Specifies the default traffic class for a service policy map.</td>
</tr>
<tr>
<td>queue-limit</td>
<td>Specifies or modifies the maximum number of packets the queue can hold for a class policy configured in a policy map.</td>
</tr>
<tr>
<td>random-detect</td>
<td>Configures the WRED and DWRED exponential weight factor for the average queue size calculation.</td>
</tr>
<tr>
<td>exponential-weighting-constant</td>
<td></td>
</tr>
</tbody>
</table>
fair-queue (WFQ)

To enable weighted fair queueing (WFQ) for an interface, use the `fair-queue` interface configuration command. To disable WFQ for an interface, use the `no` form of this command.

```
fair-queue [congestive-discard-threshold [dynamic-queues [reservable-queues]]]
```

```
no fair-queue
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>congestive-discard-threshold</td>
<td>(Optional) Number of messages allowed in each queue. The default is 64 messages, and a new threshold must be a power of 2 in the range from 16 to 4096. When a conversation reaches this threshold, new message packets are discarded.</td>
</tr>
<tr>
<td>dynamic-queues</td>
<td>(Optional) Number of dynamic queues used for best-effort conversations (that is, a normal conversation not requiring any special network services). Values are 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096. See Table 4 and Table 5 in the <code>fair-queue</code> (class-default) command for the default number of dynamic queues.</td>
</tr>
<tr>
<td>reservable-queues</td>
<td>(Optional) Number of reservable queues used for reserved conversations in the range 0 to 1000. The default is 0. Reservable queues are used for interfaces configured for features such as Resource Reservation Protocol (RSVP).</td>
</tr>
</tbody>
</table>

Defaults

Fair queueing is enabled by default for physical interfaces whose bandwidth is less than or equal to 2.048 Mbps and that do not use the following:

- X.25 and Synchronous Data Link Control (SDLC) encapsulations
- Link Access Procedure, Balanced (LAPB)
- Tunnels
- Loopbacks
- Dialer
- Bridges
- Virtual interfaces

Fair queueing is not an option for the protocols listed above. However, if custom queueing or priority queueing is enabled for a qualifying link, it overrides fair queueing, effectively disabling it. Additionally, fair queueing is automatically disabled if you enable the autonomous or silicon switching engine mechanisms.

Note

A variety of queueing mechanisms can be configured using multilink, for example, Multichassis Multilink PPP (MMP). However, if only PPP is used on a tunneled interface—for example, virtual private dialup network (VPND), PPP over Ethernet (PPPoE), or PPP over Frame Relay (PPPoFR)—no queueing can be configured on the virtual interface.
The number of dynamic queues is derived from the interface or ATM permanent virtual circuit (PVC) bandwidth. See Table 4 in the fair-queue (class-default) command for the default number of dynamic queues that WFQ and class-based WFQ (CBWFQ) use when they are enabled on an interface. See Table 5 in the fair-queue (class-default) command for the default number of dynamic queues used when WFQ and CBWFQ are enabled on an ATM PVC.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command enables WFQ. With WFQ, packets are classified by flow. For example, packets with the same source IP address, destination IP address, source TCP or User Datagram Protocol (UDP) port, destination TCP or UDP port, and protocol belong to the same flow; see Table 7 for a full list of protocols and traffic stream discrimination fields.

When enabled for an interface, WFQ provides traffic priority management that automatically sorts among individual traffic streams without requiring that you first define access lists. Enabling WFQ requires use of this command only.

When WFQ is enabled for an interface, new messages for high-bandwidth traffic streams are discarded after the configured or default congestive discard threshold has been met. However, low-bandwidth conversations, which include control message conversations, continue to enqueue data. As a result, the fair queue may occasionally contain more messages than its configured threshold number specifies.

WFQ uses a traffic data stream discrimination registry service to determine which traffic stream a message belongs to. For each forwarding protocol, Table 7 shows the attributes of a message that are used to classify traffic into data streams.
It is important to note that IP Precedence, congestion in Frame Relay switching, and discard eligible (DE) flags affect the weights used for queueing.

IP Precedence, which is set by the host or by policy maps, is a number in the range from 0 to 7. Data streams of precedence number are weighted so that they are given an effective bit rate of number+1 times as fast as a data stream of precedence 0, which is normal.
In Frame Relay switching, message flags for forward explicit congestion notification (FECN), backward explicit congestion notification (BECN), and DE message flags cause the algorithm to select weights that effectively impose reduced queue priority. The reduced queue priority provides the application with “slow down” feedback and sorts traffic, giving the best service to applications within their committed information rate (CIR).

Fair queueing is supported for all LAN and line (WAN) protocols except X.25, including LAPB and SDLC; see the notes in the section “Defaults.” Because tunnels are software interfaces that are themselves routed over physical interfaces, fair queueing is not supported for tunnels. Fair queueing is on by default for interfaces with bandwidth less than or equal to 2 Mbps.

For Release 10.3 and earlier releases for the Cisco 7000 and 7500 routers with a Route Switch Processor (RSP) card, if you used the `tx-queue-limit` command to set the transmit limit available to an interface on a Multiport Communications Interface (MCI) or serial port communications interface (SCI) card and you configured custom queueing or priority queueing for that interface, the configured transmit limit was automatically overridden and set to 1. With Cisco IOS Release 12.0 and later releases, for WFQ, custom queueing, and priority queueing, the configured transmit limit is derived from the bandwidth value set for the interface using the `bandwidth` (interface) command. Bandwidth value divided by 512 rounded up yields the effective transmit limit. However, the derived value only applies in the absence of a `tx-queue-limit` command; that is, a configured transmit limit overrides this derivation.

When Resource Reservation Protocol (RSVP) is configured on an interface that supports fair queueing or on an interface that is configured for fair queueing with the reservable queues set to 0 (the default), the reservable queue size is automatically configured using the following method: interface bandwidth divided by 32 kbps. You can override this default by specifying a reservable queue other than 0. For more information on RSVP, refer to the chapter “Configuring RSVP” in the Cisco IOS Quality of Service Solutions Configuration Guide.

The following example enables use of WFQ on serial interface 0, with a congestive threshold of 300. This threshold means that messages will be discarded from the queueing system only when 300 or more messages have been queued and the message is in a data stream that has more than one message in the queue. The transmit queue limit is set to 2, based on the 384-kilobit (Kb) line set by the `bandwidth` command:

```
interface serial 0
bandwidth 384
fair-queue 300
```

Unspecified parameters take the default values.

The following example requests a fair queue with a congestive discard threshold of 64 messages, 512 dynamic queues, and 18 RSVP queues:

```
interface Serial 3/0
ip unnumbered Ethernet 0/0
fair-queue 64 512 18
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth (interface)</td>
<td>Sets a bandwidth value for an interface.</td>
</tr>
<tr>
<td>custom-queue-list</td>
<td>Assigns a custom queue list to an interface.</td>
</tr>
<tr>
<td>fair-queue (class-default)</td>
<td>Specifies the number of dynamic queues to be reserved for use by the class-default class as part of the default class policy.</td>
</tr>
<tr>
<td>fair-queue (DWFQ)</td>
<td>Enables DWFQ.</td>
</tr>
<tr>
<td>priority-group</td>
<td>Assigns the specified priority list to an interface.</td>
</tr>
<tr>
<td>priority-list default</td>
<td>Assigns a priority queue for those packets that do not match any other rule in the priority list.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>show queue</td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
<tr>
<td>tx-queue-limit</td>
<td>Controls the number of transmit buffers available to a specified interface on the MCI and SCI cards.</td>
</tr>
</tbody>
</table>
fair-queue aggregate-limit

To set the maximum number of packets in all queues combined for VIP-distributed weighted fair queueing (DWFQ), use the `fair-queue aggregate-limit` interface configuration command. To return the value to the default, use the `no` form of this command.

```
fair-queue aggregate-limit aggregate-packets

no fair-queue aggregate-limit
```

Syntax Description

<table>
<thead>
<tr>
<th><code>aggregate-packets</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of buffered packets allowed before some packets may be dropped. Below this limit, packets will not be dropped.</td>
</tr>
</tbody>
</table>

Defaults

The total number of packets allowed is based on the transmission rate of the interface and the available buffer space on the Versatile Interface Processor (VIP).

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

In general, you should not change the maximum number of packets allows in all queues from the default. Use this command only if you have determined that you would benefit from using a different value, based on your particular situation.

DWFQ keeps track of the number of packets in each queue and the total number of packets in all queues. When the total number of packets is below the aggregate limit, queues can buffer more packets than the individual queue limit.

When the total number of packets reaches the aggregate limit, the interface starts enforcing the individual queue limits. Any new packets that arrive for a queue that is over its individual queue limit are dropped. Packets that are already in the queue will not be dropped, even if the queue is over the individual limit.

In some cases, the total number of packets in all queues put together may exceed the aggregate limit.

Examples

The following example sets the aggregate limit to 54 packets:

```
interface Fdd19/0/0
fair-queue tos
fair-queue aggregate-limit 54
```
Quality of Service Commands

fair-queue aggregate-limit

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue limit</td>
<td>Sets the maximum queue depth for a specific DWFQ class.</td>
</tr>
<tr>
<td>fair-queue qos-group</td>
<td>Enables DWFQ and classifies packets based on the internal QoS-group number.</td>
</tr>
<tr>
<td>fair-queue tos</td>
<td>Enables DWFQ and classifies packets using the ToS field of packets.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>show interfaces fair-queue</td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
</tbody>
</table>
fair-queue individual-limit

To set the maximum individual queue depth for VIP-distributed weighted fair queueing (DWFQ), use the `fair-queue individual-limit` interface configuration command. To return the value to the default, use the `no` form of this command.

```
fair-queue individual-limit individual-packet

no fair-queue individual-limit
```

Syntax Description

individual-packet Maximum number of packets allowed in each per-flow or per-class queue during periods of congestion.

Defaults

Half of the aggregate queue limit

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

In general, you should not change the maximum individual queue depth from the default. Use this command only if you have determined that you would benefit from using a different value, based on your particular situation.

DWFQ keeps track of the number of packets in each queue and the total number of packets in all queues.

When the total number of packets is below the aggregate limit, queues can buffer more packets than the individual queue limit.

When the total number of packets reaches the aggregate limit, the interface starts enforcing the individual queue limits. Any new packets that arrive for a queue that is over its individual queue limit are dropped. Packets that are already in the queue will not be dropped, even if the queue is over the individual limit.

In some cases, the total number of packets in all queues put together may exceed the aggregate limit.

Examples

The following example sets the individual queue limit to 27:

```
interface Fddi9/0/0
  mac-address 0000.0c0c.2222
  ip address 10.1.1.1 255.0.0.0
  fair-queue tos
  fair-queue individual-limit 27
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue</td>
<td></td>
</tr>
<tr>
<td>aggregate-limit</td>
<td>Sets the maximum number of packets in all queues combined for DWFQ.</td>
</tr>
<tr>
<td>limit</td>
<td>Sets the maximum queue depth for a specific DWFQ class.</td>
</tr>
<tr>
<td>qos-group</td>
<td>Enables DWFQ and classifies packets based on the internal QoS-group number.</td>
</tr>
<tr>
<td>tos</td>
<td>Enables DWFQ and classifies packets using the ToS field of packets.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>fair-queue</td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
</tbody>
</table>
fair-queue limit

To set the maximum queue depth for a specific VIP-distributed weighted fair queueing (DWFQ) class, use the `fair-queue limit` interface configuration command. To return the value to the default, use the `no` form of this command.

```
    fair-queue { qos-group number | tos number } limit class-packet
    no fair-queue { qos-group number | tos number } limit class-packet
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos-group number</td>
<td>Number of the QoS group, as assigned by a committed access rate (CAR) policy or the Policy Propagation via Border Gateway Protocol (BGP) feature. The value can range from 1 to 99.</td>
</tr>
<tr>
<td>tos number</td>
<td>Two low-order IP Precedence bits of the type of service (ToS) field.</td>
</tr>
<tr>
<td>class-packet</td>
<td>Maximum number of packets allowed in the queue for the class during periods of congestion.</td>
</tr>
</tbody>
</table>

Defaults

The individual queue depth, as specified by the `fair-queue individual-limit` command. If the `fair-queue individual-limit` command is not configured, the default is half of the aggregate queue limit.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to specify the number queue depth for a particular class for class-based DWFQ. This command overrides the global individual limit specified by the `fair-queue individual-limit` command. In general, you should not change this value from the default. Use this command only if you have determined that you would benefit from using a different value, based on your particular situation.

Examples

The following example sets the individual queue limit for ToS group 3 to 20:

```
    interface Fddi9/0/0
    mac-address 0000.0c0c.2222
    ip address 10.1.1.1 255.0.0.0
    fair-queue tos
    fair-queue tos 3 limit 20
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue</td>
<td>Sets the maximum number of packets in all queues combined for DWFQ.</td>
</tr>
<tr>
<td>aggregate-limit</td>
<td></td>
</tr>
<tr>
<td>fair-queue qos-group</td>
<td>Enables DWFQ and classifies packets based on the internal QoS-group number.</td>
</tr>
<tr>
<td>fair-queue tos</td>
<td>Enables DWFQ and classifies packets using the ToS field of packets.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>fair-queue</td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
</tbody>
</table>
fair-queue qos-group

To enable VIP-distributed weighted fair queueing (DWFQ) and classify packets based on the internal QoS-group number, use the fair-queue qos-group interface configuration command. To disable QoS-group-based DWFQ, use the no form of this command.

fair-queue qos-group

no fair-queue qos-group

Syntax Description
This command has no arguments or keywords.

Defaults
Disabled

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1.1 CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use this command to enable QoS-group-based DWFQ, a type of class-based DWFQ. Class-based DWFQ overrides flow-based DWFQ. Therefore, this command overrides the fair-queue (DWFQ) command.

When this command is enabled, packets are assigned to different queues based on their QoS group. A QoS group is an internal classification of packets used by the router to determine how packets are treated by certain QoS features, such as DWFQ and committed access rate (CAR). Use a CAR policy or the QoS Policy Propagation via Border Gateway Protocol (BGP) feature to assign packets to QoS groups.

Specify a weight for each class. In periods of congestion, each group is allocated a percentage of the output bandwidth equal to the weight of the class. For example, if a class is assigned a weight of 50, packets from this class are allocated at least 50 percent of the outgoing bandwidth during periods of congestion.

Examples
The following example enables QoS-based DWFQ and allocates bandwidth for nine QoS groups (QoS groups 0 through 8):

```
interface Hesi0/0/0
description 45Mbps to R2
ip address 10.200.14.250 255.255.255.252
fair-queue qos-group
fair-queue qos-group 1 weight 5
fair-queue qos-group 2 weight 5
fair-queue qos-group 3 weight 10
fair-queue qos-group 4 weight 10
fair-queue qos-group 5 weight 10
fair-queue qos-group 6 weight 15
fair-queue qos-group 7 weight 20
fair-queue qos-group 8 weight 29
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue aggregate-limit</td>
<td>Sets the maximum number of packets in all queues combined for DWFQ.</td>
</tr>
<tr>
<td>fair-queue limit</td>
<td>Sets the maximum queue depth for a specific DWFQ class.</td>
</tr>
<tr>
<td>fair-queue tos</td>
<td>Enables DWFQ and classifies packets using the ToS field of packets.</td>
</tr>
<tr>
<td>fair-queue weight</td>
<td>Assigns a weight to a class for DWFQ.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>show interfaces fair-queue</td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
</tbody>
</table>
fair-queue tos

To enable VIP-distributed weighted fair queueing (DWFQ) and classify packets using the type of service (ToS) field of packets, use the `fair-queue tos` interface configuration command. To disable ToS-based DWFQ, use the `no` form of this command.

```
fair-queue tos
no fair-queue tos
```

Syntax Description
This command has no arguments or keywords.

Defaults
Disabled

By default, class 0 is assigned a weight of 10; class 1 is assigned a weight of 20; class 2 is assigned a weight of 30; and class 3 is assigned a weight of 40.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use this command to enable ToS-based DWFQ, a type of class-based DWFQ. Class-based DWFQ overrides flow-based DWFQ. Therefore, this command overrides the `fair-queue` (DWFQ) command.

When this command is enabled, packets are assigned to different queues based on the two low-order IP Precedence bits in the ToS field of the packet header.

In periods of congestion, each group is allocated a percentage of the output bandwidth equal to the weight of the class. For example, if a class is assigned a weight of 50, packets from this class are allocated at least 50 percent of the outgoing bandwidth during periods of congestion.

If you wish to change the weights, use the `fair-queue weight` command.

Examples
The following example enables ToS-based DWFQ on the High-Speed Serial Interface (HSSI) interface 0/0/0:

```
interface Hssi0/0/0
  description 45Mbps to R2
  ip address 10.200.14.250 255.255.255.252
  fair-queue
  fair-queue tos
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fair-queue aggregate-limit</code></td>
<td>Sets the maximum number of packets in all queues combined for DWFQ.</td>
</tr>
<tr>
<td><code>fair-queue limit</code></td>
<td>Sets the maximum queue depth for a specific DWFQ class.</td>
</tr>
<tr>
<td><code>fair-queue qos-group</code></td>
<td>Enables DWFQ and classifies packets based on the internal QoS-group number.</td>
</tr>
<tr>
<td><code>fair-queue weight</code></td>
<td>Assigns a weight to a class for DWFQ.</td>
</tr>
<tr>
<td><code>show interfaces</code></td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td><code>show interfaces fair-queue</code></td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
</tbody>
</table>
fair-queue weight

To assign a weight to a class for VIP-distributed weighted fair queueing (DWFQ), use the `fair-queue weight` interface configuration command. To remove the bandwidth allocated for the class, use the `no` form of this command.

```
fair-queue { qos-group number | tos number } weight weight
```

```
no fair-queue { qos-group number | tos number } weight weight
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>qos-group number</code></td>
<td>Number of the QoS group, as assigned by a committed access rate (CAR) policy or the Policy Propagation via Border Gateway Protocol (BGP) feature. The value range is from 1 to 99.</td>
</tr>
<tr>
<td><code>tos number</code></td>
<td>Two low-order IP Precedence bits of the type of service (ToS) field. The value range is from 1 to 3.</td>
</tr>
<tr>
<td><code>weight</code></td>
<td>Percentage of the output link bandwidth allocated to this class. The sum of weights for all classes cannot exceed 99.</td>
</tr>
</tbody>
</table>

Defaults

For QoS DWFQ, unallocated bandwidth is assigned to QoS group 0.

For ToS-based DWFQ, class 0 is assigned a weight of 10; class 1 is assigned a weight of 20; class 2 is assigned a weight of 30; and class 3 is assigned a weight of 40.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to allocate percentages of bandwidth for specific DWFQ classes. You must also enable class-based DWFQ on the interface with either the `fair-queue qos-group` or `fair-queue tos` command.

Enter this command once for every class to allocate bandwidth to the class.

For QoS-group-based DWFQ, packets that are not assigned to any QoS groups are assigned to QoS group 0. When assigning weights to QoS group class, remember the following guidelines:

- 1 percent of the available bandwidth is automatically allocated to QoS group 0.
- The total weight for all the other QoS groups combined cannot exceed 99.
- Any unallocated bandwidth is assigned to QoS group 0.

For ToS-based DWFQ, remember the following guidelines:

- 1 percent of the available bandwidth is automatically allocated to ToS class 0.
- The total weight for all the other ToS classes combined cannot exceed 99.
- Any unallocated bandwidth is assigned to ToS class 0.
The following example allocates bandwidth to different QoS groups. The remaining bandwidth (5 percent) is allocated to QoS group 0.

```plaintext
interface Fddi9/0/0
fair-queue qos-group
fair-queue qos-group 1 weight 10
fair-queue qos-group 2 weight 15
fair-queue qos-group 3 weight 20
fair-queue qos-group 4 weight 20
fair-queue qos-group 5 weight 30
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fair-queue qos-group</code></td>
<td>Enables DWFQ and classifies packets based on the internal QoS-group number.</td>
</tr>
<tr>
<td><code>fair-queue tos</code></td>
<td>Enables DWFQ and classifies packets using the ToS field of packets.</td>
</tr>
<tr>
<td><code>show interfaces</code></td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td><code>show interfaces</code></td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
<tr>
<td><code>fair-queue</code></td>
<td></td>
</tr>
</tbody>
</table>
frame-relay interface-queue priority

To enable the Frame Relay PVC Interface Priority Queueing (FR PIPQ) feature, use the `frame-relay interface-queue priority` interface configuration command. To disable FR PIPQ, use the `no` form of this command.

```
frame-relay interface-queue priority [high-limit medium-limit normal-limit low-limit]
```

```
no frame-relay interface-queue priority
```

To assign priority to a permanent virtual circuit (PVC) within a Frame Relay map class, use the `frame-relay interface-queue priority` map-class configuration command. To remove priority from a PVC within a Frame Relay map class, use the `no` form of this command.

```
frame-relay interface-queue priority {high | medium | normal | low}
```

```
no frame-relay interface-queue priority
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>high-limit</code></td>
<td>(Optional) Size of the high priority queue specified in maximum number of packets.</td>
</tr>
<tr>
<td><code>medium-limit</code></td>
<td>(Optional) Size of the medium priority queue specified in maximum number of packets.</td>
</tr>
<tr>
<td><code>normal-limit</code></td>
<td>(Optional) Size of the normal priority queue specified in maximum number of packets.</td>
</tr>
<tr>
<td><code>low-limit</code></td>
<td>(Optional) Size of the low priority queue specified in maximum number of packets.</td>
</tr>
<tr>
<td><code>high</code></td>
<td>Assigns high priority to a PVC.</td>
</tr>
<tr>
<td><code>medium</code></td>
<td>Assigns medium priority to a PVC.</td>
</tr>
<tr>
<td><code>normal</code></td>
<td>Assigns normal priority to a PVC.</td>
</tr>
<tr>
<td><code>low</code></td>
<td>Assigns low priority to a PVC.</td>
</tr>
</tbody>
</table>

Defaults

The default sizes of the high, medium, normal, and low priority queues are 20, 40, 60, and 80 packets, respectively.

When FR PIPQ is enabled on the interface, the default PVC priority is normal priority.

Command Modes

- Interface configuration
- Map-class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(2)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
FR PIPQ must be enabled on the interface in order for the map-class configuration of PVC priority to be effective.

Before you configure FR PIPQ using the `frame-relay interface-queue priority` command, the following conditions must be met:

- PVCs should be configured to carry a single type of traffic.
- The network should be configured with adequate call admission control to prevent starvation of any of the priority queues.

You will not be able to configure FR PIPQ if any queueing other than first-in first out (FIFO) queueing is already configured at the interface level. You will be able to configure FR PIPQ when weighted fair queueing (WFQ) is in use, as long as WFQ is the default interface queueing method. Disabling FR PIPQ will restore the interface to dual FIFO queueing if FRF.12 is enabled, FIFO queueing if Frame Relay Traffic Shaping (FRTS) is enabled, or the default queueing method for the interface.

In the following example, FR PIPQ is enabled on serial interface 0, and the limits of the high, medium, normal, and low priority queues are set to 10, 20, 30, and 40 packets, respectively. PVC 100 is assigned high priority, so all traffic destined for PVC 100 will be sent to the high priority interface queue.

```
interface serial0
  encapsulation frame-relay
  frame-relay interface-queue priority 10 20 30 40
  frame-relay interface-dlci 100
  class high_priority_class
    !
  map-class frame-relay high_priority_class
  frame-relay interface-queue priority high
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug priority</code></td>
<td>Displays priority queueing events.</td>
</tr>
<tr>
<td><code>show frame-relay pvc</code></td>
<td>Displays statistics about PVCs for Frame Relay interfaces.</td>
</tr>
<tr>
<td><code>show interfaces</code></td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
frame-relay ip rtp priority

To reserve a strict priority queue on a Frame Relay permanent virtual circuit (PVC) for a set of Real-Time Transport Protocol (RTP) packet flows belonging to a range of User Datagram Protocol (UDP) destination ports, use the `frame-relay ip rtp priority` map-class configuration command. To disable the strict priority queue, use the `no` form of this command.

```
frame-relay ip rtp priority starting-rtp-port-number port-number-range bandwidth

no frame-relay ip rtp priority
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>starting-rtp-port-number</code></td>
<td>The starting UDP port number. The lowest port number to which the packets are sent.</td>
</tr>
<tr>
<td><code>port-number-range</code></td>
<td>The range of UDP destination ports. Number, which added to the <code>starting-rtp-port-number</code> argument, yields the highest UDP port number.</td>
</tr>
<tr>
<td><code>bandwidth</code></td>
<td>Maximum allowed bandwidth, in kbps.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

Map-class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(7)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is most useful for voice applications, or other applications that are delay-sensitive. To use this command, you must first enter the `map-class frame-relay` command. After the Frame Relay map class has been configured, it must then be applied to a PVC.

This command extends the functionality offered by the `ip rtp priority` command by supporting Frame Relay PVCs. The command allows you to specify a range of UDP ports whose voice traffic is guaranteed strict priority service over any other queues or classes using the same output interface. Strict priority means that if packets exist in the priority queue, they are dequeued and sent first—that is, before packets in other queues are dequeued.

Frame Relay Traffic Shaping (FRTS) and Frame Relay Fragmentation (FRF.12) must be configured before the `frame-relay ip rtp priority` command is used.

Compressed RTP (CRTP) can be used to reduce the bandwidth required per voice call. When using CRTP with Frame Relay, you must use the `encapsulation frame-relay cisco` command instead of the `encapsulation frame-relay ietf` command.
Remember the following guidelines when configuring the bandwidth parameter:

- It is always safest to allocate to the priority queue slightly more than the known required amount of bandwidth, to allow room for network bursts.
- The IP RTP Priority admission control policy takes RTP header compression into account. Therefore, while configuring the bandwidth parameter of the ip rtp priority command you need to configure only for the bandwidth of the compressed call. Because the bandwidth parameter is the maximum total bandwidth, you need to allocate enough bandwidth for all calls if there will be more than one call.
- Configure a bandwidth that allows room for Layer 2 headers. The bandwidth allocation takes into account the payload plus the IP, UDP, and RTP headers but does not account for Layer 2 headers. Allowing 25 percent bandwidth for other overhead is conservative and safe.
- The sum of all bandwidth allocation for voice and data flows on an interface cannot exceed 75 percent of the total available bandwidth, unless you change the default maximum reservable bandwidth. To change the maximum reservable bandwidth, use the max-reserved-bandwidth command on the interface.

For more information on IP RTP Priority bandwidth allocation, refer to the section “IP RTP Priority” in the chapter “Congestion Management Overview” in the Cisco IOS Quality of Service Solutions Configuration Guide.

Examples

The following example first configures the Frame Relay map class called voip and then applies the map class to PVC 100 to provide strict priority service to matching RTP packets:

```plaintext
map-class frame-relay voip
frame-relay cir 256000
frame-relay bc 2560
frame-relay be 600
frame-relay mincir 256000
no frame-relay adaptive-shaping
frame-relay fair-queue
frame-relay fragment 250
frame-relay ip rtp priority 16384 16380 210

interface Serial5/0
ip address 10.10.10.10 255.0.0.0
no ip directed-broadcast
encapsulation frame-relay
no ip mroute-cache
load-interval 30
clockrate 1007616
frame-relay traffic-shaping
frame-relay interface-dlci 100
class voip
frame-relay ip rtp header-compression
frame-relay intf-type dce
```

In this example, RTP packets on PVC 100 with UDP ports in the range from 16384 to 32764 (32764 = 16384 + 16380) will be matched and given strict priority service.

```plaintext
interface Serial5/0
ip address 10.10.10.10 255.0.0.0
no ip directed-broadcast
encapsulation frame-relay
no ip mroute-cache
load-interval 30
clockrate 1007616
frame-relay traffic-shaping
frame-relay interface-dlci 100
class voip
frame-relay ip rtp header-compression
frame-relay intf-type dce
```

In this example, RTP packets on PVC 100 with UDP ports in the range from 16384 to 32764 (32764 = 16384 + 16380) will be matched and given strict priority service.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>encapsulation frame-relay</td>
<td>Enables Frame Relay encapsulation.</td>
</tr>
<tr>
<td>ip rtp priority</td>
<td>Reserves a strict priority queue for a set of RTP packet flows belonging to a range of UDP destination ports.</td>
</tr>
<tr>
<td>map-class frame-relay</td>
<td>Specifies a map class to define QoS values for an SVC.</td>
</tr>
<tr>
<td>max-reserved-bandwidth</td>
<td>Changes the percent of interface bandwidth allocated for CBWFQ, LLQ, and IP RTP Priority.</td>
</tr>
<tr>
<td>priority</td>
<td>Gives priority to a class of traffic belonging to a policy map.</td>
</tr>
<tr>
<td>show frame-relay pvc</td>
<td>Displays statistics about PVCs for Frame Relay interfaces.</td>
</tr>
<tr>
<td>show queue</td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td>show traffic-shape queue</td>
<td>Displays information about the elements queued by traffic shaping at the interface level or the DLCI level.</td>
</tr>
</tbody>
</table>
To extend or enhance the list of protocols recognized by Network-Based Application Recognition (NBAR) through a Cisco-provided Packet Description Language Module (PDLM), use the `ip nbar pdlm` global configuration command. To unload a PDLM if it was previously loaded, use the `no` form of this command.

```
ip nbar pdlm pdlm-name
no ip nbar pdlm pdlm-name
```

Syntax Description

- `pdlm-name`: The URL where the PDLM can be found on the Flash card.

Defaults

This command has no default behavior or values.

Command Modes

- Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is used in global configuration mode to extend the list of protocols recognized by a given version of NBAR or to enhance an existing protocol recognition capability. NBAR can be given an external PDLM at run time. In most cases, the PDLM enables NBAR to recognize new protocols without requiring a new Cisco IOS image or a router reload. Only Cisco can provide you with a new PDLM. A list of the available PDLMs can be viewed online at Cisco.com.

Examples

The following example configures NBAR to load the citrix.pdlm PDLM from Flash memory on the router:

```
ip nbar pdlm flash://citrix.pdlm
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip nbar pdlm</code></td>
<td>Displays the current PDLM in use by NBAR.</td>
</tr>
</tbody>
</table>
ip nbar port-map

To configure Network-Based Application Recognition (NBAR) to search for a protocol or protocol name using a port number other than the well-known port, use the `ip nbar port-map` global configuration command. To look for the protocol name using only the well-known port number, use the `no` form of this command.

```
ip nbar port-map protocol-name [tcp | udp] port-number
no ip nbar port-map protocol-name [tcp | udp] port-number
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol-name</td>
<td>Name of protocol known to NBAR.</td>
</tr>
<tr>
<td>tcp</td>
<td>(Optional) Specifies that a TCP port will be searched for the specified</td>
</tr>
<tr>
<td></td>
<td>protocol-name argument.</td>
</tr>
<tr>
<td>udp</td>
<td>(Optional) Specifies that a UDP port will be searched for the specified</td>
</tr>
<tr>
<td></td>
<td>protocol-name argument.</td>
</tr>
<tr>
<td>port-number</td>
<td>Assigned port for named protocol. The <code>port-number</code> argument is either a</td>
</tr>
<tr>
<td></td>
<td>UDP or a TCP port number, depending on which protocol is specified</td>
</tr>
<tr>
<td></td>
<td>in this command line. Up to 16 <code>port-number</code> arguments can be specified</td>
</tr>
<tr>
<td></td>
<td>in one command line. Port number values can range from 0 to 65535.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is used in global configuration mode to tell NBAR to look for the protocol or protocol name, using a port number or numbers other than the well-known Internet Assigned Numbers Authority (IANA)-assigned) port number. For example, use this command to configure NBAR to look for Telnet on a port other than 23. Up to 16 ports can be specified with this command. Port number values can range from 0 to 65535.
The following example configures NBAR to look for the protocol SQL*NET on port numbers 63000 and 63001 instead of on the well-known port number:

```
ip nbar port-map sqlnet tcp 63000 63001
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip nbar port-map</td>
<td>Displays the current protocol-to-port mappings in use by NBAR.</td>
</tr>
</tbody>
</table>
ip nbar protocol-discovery

To configure Networked-Based Application Recognition (NBAR) to discover traffic for all protocols known to NBAR on a particular interface, use the `ip nbar protocol-discovery` interface configuration command. To disable traffic discovery, use the `no` form of this command.

 ip nbar protocol-discovery
 no ip nbar protocol-discovery

Syntax Description

This command has no arguments or keywords.

Defaults

This command has no default behavior or values.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `ip nbar protocol-discovery` command to configure NBAR to keep traffic statistics for all protocols known to NBAR. Protocol discovery provides an easy way to discover application protocols transiting an interface so that QoS policies can be developed and applied. The Protocol Discovery feature discovers any protocol traffic supported by NBAR. Protocol discovery can be used to monitor both input and output traffic and may be applied with or without a service policy enabled.

Examples

The following example configures protocol discovery on an Ethernet interface:

 interface ethernet 1/3
 ip nbar protocol-discovery

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip nbar protocol-discovery</td>
<td>Displays the statistics gathered by the NBAR Protocol Discovery feature.</td>
</tr>
</tbody>
</table>
ip rsvp atm-peak-rate-limit

To set a limit on the peak cell rate (PCR) of reservations for all newly created Resource Reservation Protocol (RSVP) switched virtual circuits (SVCs) established on the current interface or any of its subinterfaces, use the `ip rsvp atm-peak-rate-limit` interface configuration command. To remove the current peak rate limit, in which case the reservation peak rate is limited by the line rate, use the `no` form of this command.

```
ip rsvp atm-peak-rate-limit limit

no ip rsvp atm-peak-rate-limit
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>limit</code></td>
<td>The peak rate limit of the reservation specified, in KB. The minimum value allowed is 1 KB; the maximum value allowed is 2 GB.</td>
</tr>
</tbody>
</table>

Defaults
The peak rate of a reservation defaults to the line rate.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Each RSVP reservation corresponds to an ATM SVC with a certain PCR, sustainable cell rate (SCR), and maximum burst size. The PCR, also referred to as the peak rate, can be configured by the user or allowed to default to the line rate.

RSVP controlled-load reservations do not define any peak rate for the data. By convention, the allowable peak rate in such reservations is taken to be infinity, which is usually represented by a very large number. Under these circumstances, when a controlled-load reservation is converted to an ATM SVC, the PCR for the SVC becomes correspondingly large and may be out of range for the switch. You can use the `ip rsvp atm-peak-rate-limit` command to limit the peak rate.

The following conditions determine the peak rate limit on the RSVP SVC:

- The peak rate defaults to the line rate.
- If the peak rate is greater than the configured peak rate limiter, the peak rate is lowered to the peak rate limiter.
- The peak rate cannot be less than the reservation bandwidth. If this is the case, the peak rate is raised to the reservation bandwidth.

Note

Bandwidth conversions applied to the ATM space from the RSVP space are also applied to the peak rate.
The peak rate limit is local to the router; it does not affect the normal messaging of RSVP. Only the SVC setup is affected. Large peak rates are sent to the next host without modification.

For RSVP SVCs established on subinterfaces, the peak rate limit applied to the subinterface takes effect on all SVCs created on that subinterface. If a peak rate limit is applied to the main interface, the rate limit has no effect on SVCs created on a subinterface of the main interface even if the limit value on the main interface is lower than the limit applied to the subinterface.

For a given interface or subinterface, a peak rate limit applied to that interface affects only new SVCs created on the interface, not existing SVCs.

Note
This command is available only on interfaces that support the `ip rsvp svc-required` command.

Use the `show ip rsvp atm-peak-rate-limit` command to determine the peak rate limit set for an interface or subinterface, if one is configured.

Examples
The following example sets the peak rate limit for interface atm2/0/0.1 to 100 KB:
```
interface atm2/0/0.1
  ip rsvp atm-peak-rate-limit 100
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip rsvp svc-required</code></td>
<td>Enables creation of an SVC to service any new RSVP reservation made on the interface or subinterface.</td>
</tr>
<tr>
<td><code>show ip rsvp atm-peak-rate-limit</code></td>
<td>Displays the current peak rate limit set for an interface.</td>
</tr>
<tr>
<td><code>show ip rsvp interface</code></td>
<td>Displays RSVP-related interface information.</td>
</tr>
</tbody>
</table>
ip rsvp bandwidth

To enable Resource Reservation Protocol (RSVP) for IP on an interface, use the `ip rsvp bandwidth` interface configuration command. To disable RSVP, use the `no` form of this command.

```
ip rsvp bandwidth [interface-kbps [single-flow-kbps]]
no ip rsvp bandwidth [interface-kbps [single-flow-kbps]]
```

Syntax Description

- **interface-kbps** (Optional) Maximum amount of bandwidth, in kbps, that may be allocated by RSVP flows. The range is from 1 to 10,000,000.

- **single-flow-kbps** (Optional) Maximum amount of bandwidth, in kbps, that may be allocated to a single flow. The range is from 1 to 10,000,000.

Defaults

RSVP is disabled by default. If the `ip rsvp bandwidth` command is entered but no bandwidth values are supplied (for example, `ip rsvp bandwidth` is entered followed by a carriage return, or pressing the Return or Enter key), a default bandwidth value is assumed for both the `interface-kbps` and `single-flow-kbps` arguments.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).

RSVP is disabled by default to allow backward compatibility with systems that do not implement RSVP. Weighted Random Early Detection (WRED) or fair queueing must be enabled first.

Examples

The following example shows a T1 (1536 kbps) link configured to permit RSVP reservation of up to 1158 kbps, but no more than 100 kbps for any given flow on serial interface 0. Fair queueing is configured with 15 reservable queues to support those reserved flows, should they be required.

```
interface serial 0
fair-queue 64 256 15
ip rsvp bandwidth 1158 100
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue (WFQ)</td>
<td>Enables WFQ for an interface.</td>
</tr>
<tr>
<td>ip rsvp neighbor</td>
<td>Enables neighbors to request a reservation.</td>
</tr>
<tr>
<td>ip rsvp reservation</td>
<td>Enables a router to simulate receiving and forwarding RSVP RESV messages.</td>
</tr>
<tr>
<td>ip rsvp sender</td>
<td>Enables a router to simulate receiving and forwarding RSVP PATH messages.</td>
</tr>
<tr>
<td>ip rsvp udp-multicasts</td>
<td>Instructs the router to generate UDP-encapsulated RSVP multicasts whenever</td>
</tr>
<tr>
<td></td>
<td>it generates an IP-encapsulated multicast packet.</td>
</tr>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td>show ip rsvp installed</td>
<td>Displays RSVP-related installed filters and corresponding bandwidth</td>
</tr>
<tr>
<td></td>
<td>information.</td>
</tr>
<tr>
<td>show ip rsvp interface</td>
<td>Displays RSVP-related interface information.</td>
</tr>
<tr>
<td>show ip rsvp neighbor</td>
<td>Displays current RSVP neighbors.</td>
</tr>
<tr>
<td>show ip rsvp reservation</td>
<td>Displays RSVP-related receiver information currently in the database.</td>
</tr>
<tr>
<td>show ip rsvp sender</td>
<td>Displays RSVP PATH-related sender information currently in the database.</td>
</tr>
</tbody>
</table>
ip rsvp burst policing

To configure a burst factor within the Resource Reservation Protocol (RSVP) token bucket policer on a per-interface basis, use the `ip rsvp burst policing` interface configuration command. To return to the default value, enter the `no` form of this command.

```
ip rsvp burst policing [factor]
no ip rsvp burst policing
```

Syntax Description

```
factor
```
(Optional) Indicates a burst factor value as a percentage of the requested burst of the receiver.

Defaults

The default value is 200; the minimum value is 100, and the maximum value is 700.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You configure the burst police factor per interface, not per flow. The burst factor controls how strictly or loosely the traffic of the sender is policed with respect to burst.

The burst factor applies to all RSVP flows installed on a specific interface. You can configure each interface independently for burst policing.

Examples

Here is an example of the `ip rsvp burst policing` command with a burst factor of 200:

```
ip rsvp burst policing 200
```
ip rsvp dsbm candidate

To configure an interface as a Designated Subnetwork Bandwidth Manager (DSBM) candidate, use the ip rsvp dsbm candidate interface configuration command. To disable DSBM on an interface, which exempts the interface as a DSBM candidate, use the no form of this command.

ip rsvp dsbm candidate [priority]

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>(Optional) A value in the range from 64 to 128. Among contenders for the DSBM, the interface with the highest priority number wins the DSBM election process.</td>
</tr>
</tbody>
</table>

Defaults

An interface is not configured as a DSBM contender by default. If you use this command to enable the interface as a DSBM candidate and you do not specify a priority, the default priority of 64 is assumed.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

SBM protocol entities, any one of which can manage resources on a segment, can reside in Layer 2 or Layer 3 devices. Many SBM-capable devices may be attached to a shared Layer 2 segment. When more than one SBM exists on a given segment, one of the SBMs is elected to be the DSBM. The elected DSBM is responsible for exercising admission control over requests for resource reservations on a segment, which, in the process, becomes a managed segment. A managed segment includes those interconnected parts of a shared LAN that are not separated by DSBMs. In all circumstances, only one, if any, DSBM exists for each Layer 2 segment.

You can configure an interface to have a DSBM priority in the range from 64 to 128. You can exempt an interface from participation in the DSBM election on a segment but still allow the system to interact with the DSBM if a DSBM is present on the segment. In other words, you can allow a Resource Reservation Protocol (RSVP)-enabled interface on a router connected to a managed segment to be managed by the DSBM even if you do not configure that interface to participate as a candidate in the DSBM election process. To exempt an interface from DSBM candidacy, do not issue the ip rsvp dsbm candidate command on that interface.

RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).

Examples

The following example configures Ethernet interface 2 as a DSBM candidate with a priority of 100:

```
interface Ethernet2
ip rsvp dsbm candidate 100
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug ip rsvp</code></td>
<td>Displays information about SBM message processing, the DSBM election process, and standard RSVP enabled message processing information</td>
</tr>
<tr>
<td><code>debug ip rsvp detail</code></td>
<td>Displays detailed information about RSVP and SBM.</td>
</tr>
<tr>
<td><code>debug ip rsvp detail sbm</code></td>
<td>Display detailed information about SBM messages only, and SBM and DSBM state transitions</td>
</tr>
<tr>
<td><code>ip rsvp dsbm non-resv-send-limit</code></td>
<td>Configures the NonResvSendLimit object parameters.</td>
</tr>
<tr>
<td><code>show ip rsvp sbm</code></td>
<td>Displays information about an SBM configured for a specific RSVP-enabled interface or for all RSVP-enabled interfaces on the router.</td>
</tr>
</tbody>
</table>
ip rsvp dsbm non-resv-send-limit

To configure the NonResvSendLimit object parameters, use the `ip rsvp dsbm non-resv-send-limit` interface configuration command. To use the default NonResvSendLimit object parameters, use the `no` form of this command.

```
ip rsvp dsbm non-resv-send-limit { rate kbps | burst kilobytes | peak kbps | min-unit bytes | max-unit bytes }
```

```
no ip rsvp dsbm non-resv-send-limit { rate kbps | burst kilobytes | peak kbps | min-unit bytes | max-unit bytes }
```

Syntax Description

- **rate kbps**: The average rate, in kBps, for the Designated Subnetwork Bandwidth Manager (DSBM) candidate.
- **burst kilobytes**: The maximum burst size, in KB, for the DSBM candidate.
- **peak kbps**: The peak rate, in kBps, for the DSBM candidate.
- **min-unit bytes**: The minimum policed unit, in bytes, for the DSBM candidate.
- **max-unit bytes**: The maximum packet size, in bytes, for the DSBM candidate.

Defaults

The default for the `rate`, `burst`, `peak`, `min-unit`, and `max-unit` keywords is unlimited; all traffic can be sent without a valid Resource Reservation Protocol (RSVP) reservation.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(1)</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To configure the per-flow limit on the amount of traffic that can be sent without a valid RSVP reservation, configure the `rate`, `burst`, `peak`, `min-unit`, and `max-unit` values for finite values greater than 0.

To allow all traffic to be sent without a valid RSVP reservation, configure the `rate`, `burst`, `peak`, `min-unit`, and `max-unit` values for unlimited traffic. To configure the parameters for unlimited traffic, you can either omit the command, or enter the `no` form of the command (for example, `no ip rsvp dsbm non-resv-send-limit rate`). Unlimited is the default value.

The absence of the NonResvSendLimit object allows any amount of traffic to be sent without a valid RSVP reservation.

RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).
Examples

The following example configures Ethernet interface 2 as a DSBM candidate with a priority of 100, an average rate of 500 kbps, a maximum burst size of 1000 KB, a peak rate of 500 kbps, and unlimited minimum and maximum packet sizes:

```
interface Ethernet2
ip rsvp dsbm candidate 100
ip rsvp dsbm non-resv-send-limit rate 500
ip rsvp dsbm non-resv-send-limit burst 1000
ip rsvp dsbm non-resv-send-limit peak 500
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip rsvp dsbm candidate</code></td>
<td>Configures an interface as a DSBM candidate.</td>
</tr>
<tr>
<td><code>show ip rsvp sbm</code></td>
<td>Displays information about an SBM configured for a specific RSVP-enabled interface or for all RSVP-enabled interfaces on the router.</td>
</tr>
</tbody>
</table>
ip rsvp flow-assist

To enable Resource Reservation Protocol (RSVP) to attach itself to NetFlow so that it can leverage NetFlow services to obtain flow classification information about packets in order to update its token bucket and set IP Precedence as required, use the `ip rsvp flow-assist` interface configuration command. To detach RSVP from NetFlow, use the `no` form of this command.

```
ip rsvp flow-assist

no ip rsvp flow-assist
```

Syntax Description

This command has no arguments or keywords.

Defaults

This command has no default behavior or values. (RSVP does not use NetFlow as a packet filtering mechanism.)

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For RSVP to maintain token buckets and set IP Precedence on packets traversing the flow, it must interact with the underlying packet forwarding mechanism in order to obtain the information it needs. RSVP uses NetFlow for this purpose.

If RSVP is used on non-ATM links and RSVP must set IP Precedence without relying on traffic policing, weighted fair queueing (WFQ) cannot be used. In this case, a method of attaching RSVP to the underlying forwarding mechanism is required. The `ip rsvp flow-assist` command satisfies this requirement. It allows RSVP to attach itself to NetFlow so that it can use NetFlow to obtain information about packets, which it can then use to update its token bucket and set IP Precedence. NetFlow does not police packets or flows. For this reason, when RSVP is configured in this mode, it can only set IP Precedence and not otherwise police traffic.

In summary, you should use this command only when all of the following conditions exist:

- You want to set IP Precedence and type of service (ToS) bits using the `ip rsvp precedence` command or the `ip rsvp tos` command.
- You are not running WFQ on the interface.
- You are not running ATM or you have not specified the `ip rsvp svc-required` command.

When all of these conditions prevail, RSVP is completely detached from the data flow path and, thus, has no way to detect packets. Use of this command enables RSVP to detect packets so that it can mark them.
RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).
Use the `show ip rsvp interface` command to determine whether this command is in effect for an interface or subinterface.

Examples

The following example enables RSVP on the ATM interface 2/0/0 to attach itself to NetFlow:

```plaintext
interface atm2/0/0
 ip rsvp flow-assist
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip rsvp precedence</code></td>
<td>Allows you to set the IP Precedence values to be applied to packets that either conform to or exceed the RSVP flowspec.</td>
</tr>
<tr>
<td><code>ip rsvp tos</code></td>
<td>Allows you to set the ToS values to be applied to packets that either conform to or exceed the RSVP flowspec.</td>
</tr>
<tr>
<td><code>ip rsvp svc-required</code></td>
<td>Enables creation of an SVC to service any new RSVP reservation made on the interface or subinterface.</td>
</tr>
<tr>
<td><code>show ip rsvp interface</code></td>
<td>Displays RSVP-related interface information.</td>
</tr>
</tbody>
</table>
ip rsvp neighbor

To enable neighbors to request a reservation, use the `ip rsvp neighbor` interface configuration command. To disable this feature, use the `no` form of this command.

```
ip rsvp neighbor access-list-number
no ip rsvp neighbor access-list-number
```

Syntax Description

- `access-list-number` Number of a standard or extended access list. It can be any number in the range from 1 to 199.

Defaults

The router accepts messages from any neighbor.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to allow only specific Resource Reservation Protocol (RSVP) neighbors to make a reservation. If no limits are specified, any neighbor can request a reservation. If an access list is specified, only neighbors meeting the specified access list requirements can make a reservation.

RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).

Examples

The following example allows neighbors meeting access list 1 requirements to request a reservation:

```
interface ethernet 0
ip rsvp neighbor 1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue (WFQ)</td>
<td>Enables WFQ for an interface.</td>
</tr>
<tr>
<td>ip rsvp bandwidth</td>
<td>Enables RSVP for IP on an interface.</td>
</tr>
<tr>
<td>ip rsvp reservation</td>
<td>Enables a router to simulate receiving and forwarding RSVP RESV messages.</td>
</tr>
<tr>
<td>ip rsvp sender</td>
<td>Enables a router to simulate receiving and forwarding RSVP PATH messages.</td>
</tr>
<tr>
<td>ip rsvp udp-multicasts</td>
<td>Instructs the router to generate UDP-encapsulated RSVP multicasts whenever it generates an IP-encapsulated multicast packet.</td>
</tr>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
</tbody>
</table>
Command Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip rsvp installed</td>
<td>Displays RSVP-related installed filters and corresponding bandwidth information.</td>
</tr>
<tr>
<td>show ip rsvp interface</td>
<td>Displays RSVP-related interface information.</td>
</tr>
<tr>
<td>show ip rsvp neighbor</td>
<td>Displays current RSVP neighbors.</td>
</tr>
<tr>
<td>show ip rsvp reservation</td>
<td>Displays RSVP-related receiver information currently in the database.</td>
</tr>
<tr>
<td>show ip rsvp sender</td>
<td>Displays RSVP PATH-related sender information currently in the database.</td>
</tr>
</tbody>
</table>
ip rsvp policy cops minimal

To lower the load of the COPS server and to improve latency times for messages on the governed router, use the `ip rsvp policy cops minimal` global configuration command to restrict the COPS RSVP policy to adjudicate only PATH and RESV messages. To turn off the restriction, use the `no` form of this command.

```
ip rsvp policy cops minimal
no ip rsvp policy cops minimal
```

Syntax Description
This command has no arguments or keywords.

** Defaults **
The default state is OFF, causing all adjudicable RSVP messages to be processed by the configured COPS policy.

** Command Modes **
Global configuration

** Command History **

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(1)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

** Usage Guidelines **
When this command is used, COPS does not attempt to adjudicate PATHERROR and RESVERROR messages. Instead, those messages are all accepted and forwarded.

** Examples **
In the following example, COPS authentication is restricted to PATH and RESV messages:

```
ip rsvp policy cops minimal
```

In the following example, that restriction is removed:

```
no ip rsvp policy cops minimal
```
ip rsvp policy cops report-all

To enable a router to report on its success and failure with outsourcing decisions, use the `ip rsvp policy cops report-all` global configuration command. To return the router to its default, use the `no` form of this command.

```
ip rsvp policy cops report-all
no ip rsvp policy cops report-all
```

Syntax Description

This command has no arguments or keywords.

Defaults

The default state of this command is to send reports to the PDP about configuration decisions only.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(1)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

In the default state, the router reports to the Policy Decision Point (PDP) when the router has succeeded or failed to implement Resource Reservation Protocol (RSVP) configuration decisions.

A *configuration decision* contains at least one of the following:

- A RESV ALLOC context (with or without additional contexts)
- A stateless or named decision object

A decision that does not contain at least one of those elements is an *outsourcing decision*.

Some brands of policy server might expect reports about RSVP messaging, which the default state of the Cisco Common Open Policy Service (COPS) for RSVP does not issue. In such cases, use the `ip rsvp policy cops report-all` command to ensure interoperability between the router and the policy server. Doing so does not adversely affect policy processing on the router.

Unicast FF reservation requests always stimulate a report from the router to the PDP, because those requests contain a RESV ALLOC context (combined with an IN CONTEXT and an OUT CONTEXT).
In order to show the Policy Enforcement Point (PEP)-to-PDP reporting process, the `debug cops` command in the following example already is enabled when a new PATH message arrives at the router:

```
router-1(config)# ip rsvp policy cops report-all
```

Contents of router’s request to PDP:
- COPS HEADER: Version 1, Flags 0, Opcode 1 (REQ), Client-type:1, Length:216
- HANDLE (1/1) object. Length:8. 00 00 02 01
- CONTEXT (2/1) object. Length:8. R-type:5. M-type:1
- IN_IF (3/1) object. Length:12. Address:10.1.2.1. If_index:4
- OUT_IF (4/1) object. Length:12. Address:10.33.0.1. If_index:3
- CLIENT_SI (9/1) object. Length:168. CSI data:
 - [A 27-line Path message omitted here] 00:02:48:COPS:Sent 216 bytes on socket,
 - 00:02:48:COPS:Message event!
 - 00:02:48:COPS:State of TCP is 4
 - 00:02:48:In read function
 - 00:02:48:COPS:Read block of 96 bytes, num=104 (len=104)

Contents of PDP’s decision received by router:
- COPS HEADER: Version 1, Flags 1, Opcode 2 (DEC), Client-type:1, Length:104
- HANDLE (1/1) object. Length:8. 00 00 02 01
- CONTEXT (2/1) object. Length:8. R-type:1. M-type:1
- DECISION (6/1) object. Length:8. COMMAND cmd:1, flags:0
- DECISION (6/3) object. Length:56. REPLACEMENT
 - [A 52-byte replacement object omitted here]
- DECISION (6/1) object. Length:8. COMMAND cmd:1, flags:0

00:02:48:COPS:Notifying client (callback code 2)

Contents of router’s report to PDP:
- COPS HEADER: Version 1, Flags 1, Opcode 3 (RPT), Client-type:1, Length:24
- HANDLE (1/1) object. Length:8. 00 00 02 01
- REPORT (12/1) object. Length:8. REPORT type COMMIT (1)

00:02:48:COPS:Sent 24 bytes on socket,
ip rsvp policy cops servers

To specify that Resource Reservation Protocol (RSVP) should use Common Open Policy Service (COPS) policy for remote adjudication, use the `ip rsvp policy cops servers` global configuration command. To turn off the use of COPS for RSVP, use the `no` form of this command.

```
ip rsvp policy cops [acl] servers server-ip [server-ip]

no ip rsvp policy cops [acl] servers
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl</td>
<td>(Optional) Specifies the access control list (ACL) whose sessions will be governed by the COPS policy.</td>
</tr>
<tr>
<td>server-ip</td>
<td>Specifies the IP addresses of the servers governing the COPS policy. As many as eight servers can be specified, with the first being treated as the primary server.</td>
</tr>
</tbody>
</table>

Defaults

If no ACL is specified, the default behavior is for all reservations to be governed by the specified policy servers.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(1)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If more than one server is specified, the first server is treated by RSVP as the primary server, and functions as such for all ACLs specified.

All servers in the list must have the same policy configuration.

If the connection of the router to the server breaks, the router tries to reconnect to that same server. If the reconnection attempt fails, the router then obeys the following algorithm:

If the connection to the Policy Decision Point (PDP) is closed (either because the PDP closed the connection, a TCP/IP error occurred, or the keepalives failed), the Policy Enforcement Point (PEP) issues a CLIENT-CLOSE message and then attempts to reconnect to the same PDP. If the PEP receives a CLIENT-CLOSE message containing a PDP redirect address, the PEP attempts to connect to the redirected PDP. Note the following points:

- If either attempt fails, the PEP attempts to connect to the PDPs previously specified in the `ip rsvp policy cops servers` configuration command, obeying the sequence of servers given in that command, always starting with the first server in that list.
- If the PEP reaches the end of the list of servers without connecting, it waits a certain time (called the `reconnect delay`) before trying again to connect to the first server in the list. This reconnect delay is initially 30 seconds, and doubles each time the PEP reaches the end of the list without having connected, until the reconnect delay becomes its maximum of 30 minutes. As soon as a connection is made, the delay is reset to 30 seconds.
The **no** form of this command need not contain any server IP addresses, but it must contain *all* the previously specified access lists (see the last example in the following section).

Examples

This first example applies the COPS policy residing on server 172.27.224.117 to all reservations passing through router-9. It also identifies the backup COPS server for this router as the one at address 172.27.229.130:

```
router-9(config)# ip rsvp policy cops servers 172.27.224.117 172.27.229.130
```

The next example applies the COPS policy residing on server 172.27.224.117 to reservations passing through router-9 only if they match access lists 40 and 160. Other reservations passing through that router will not be governed by this server. The command statement also identifies the backup COPS server for that router to be the one at address 172.27.229.130:

```
router-9(config)# ip rsvp policy cops 40 160 servers 172.27.224.117 172.27.229.130
```

The following example turns off COPS for the previously specified access lists 40 and 160 (you cannot turn off just one of the previously specified lists):

```
router-9(config)# no ip rsvp policy cops 40 160 servers
```
ip rsvp policy cops timeout

To configure the amount of time the Policy Enforcement Point (PEP) router will retain policy information after losing connection with the Common Open Policy Service (COPS) server, use the `ip rsvp policy cops timeout` global configuration command. To restore the router to the default value (5 minutes), use the `no` form of this command.

```
ip rsvp policy cops timeout policy-timeout

no ip rsvp policy cops timeout
```

Syntax Description

| `policy-timeout` | Duration of timeout, from 1 to 10,000 seconds. |

Defaults

Timeout default is 300 seconds (5 minutes).

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(1)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example configures the router to time out all policy information relating to a lost server in 10 minutes:

```
ip rsvp policy cops timeout 600
```

The following example resets the timeout to the default value:

```
no ip rsvp policy cops timeout
```
ip rsvp policy default-reject

To reject all messages that do not match the policy access control lists (ACLs), use the `ip rsvp policy default-reject` global configuration command. To restore the default behavior, which passes along all messages that do not match the ACLs, use the `no` form of this command.

```
ip rsvp policy default-reject
no ip rsvp policy default-reject
```

Syntax Description

This command has no arguments or keywords.

Defaults

Without this command, the default behavior of Resource Reservation Protocol (RSVP) is to accept, install, or forward all unmatched RSVP messages. Once this command is invoked, all unmatched RSVP messages are rejected.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(1)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If COPS is configured without an ACL, or if any policy ACL is configured to use the `permit ip any any` command, the behavior of that ACL will take precedence, and no session will go unmatched.

Note

This command makes one exception to its blocking of unmatched messages. It forwards RESVERROR and PATHERROR messages that were generated by its own rejection of RESV and PATH messages. That is done to ensure that the default-reject operation does not remain totally hidden from network managers.

Caution

Be extremely careful with this command. It will shut down all RSVP processing on the router if access lists are too narrow or if no Common Open Policy Service (COPS) server has been specified. (Use the `ip rsvp policy cops servers` command to specify a COPS server.)

Examples

The following example configures RSVP to reject all unmatched reservations:

```
ip rsvp policy default-reject
```

The following example configures RSVP to accept all unmatched reservations:

```
no ip rsvp policy default-reject
```
ip rsvp pq-profile

To specify the criteria for Resource Reservation Protocol (RSVP) to use to determine which flows to direct into the priority queue (PQ) within weighted fair queueing (WFQ), use the `ip rsvp pq-profile` global configuration command. To disable the specified criteria, use the `no` form of this command.

```
ip rsvp pq-profile [voice-like | r' [b'[p-to-r'] | ignore-peak-value]]
no ip rsvp pq-profile
```

Syntax Description

- **voice-like** (Optional) Indicates `pq-profile` parameters sufficient for most voice flows. The default values for `r'`, `b'`, and `p-to-r'` are used. These values should cause all voice flows generated from Cisco IOS applications and most voice flows from other RSVP applications, such as Microsoft NetMeeting, to be directed into the PQ.

- **r'** (Optional) Indicates maximum rate of a flow in bytes per second. Valid range is from 1 to 1048576 bytes per second.

- **b'** (Optional) Indicates maximum burst of a flow in bytes. Valid range is from 1 to 8192 bytes.

- **p-to-r'** (Optional) Indicates maximum ratio of peak rate to average rate as a percentage. Valid range is from 100 to 4000 percent.

- **ignore-peak-value** (Optional) Indicates that the peak rate to average rate ratio of the flow is not evaluated when RSVP identifies flows.

Defaults

- The default value for `r'` is 12288 bytes per second.
- The default value for `b'` is 592 bytes.
- The default value for `p-to-r'` is 110 percent.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to define the profile of RSVP flows to be placed in the PQ within the WFQ system. You can have only one profile in effect at a time. Changes to this configuration affect only new flows, not existing flows.

This command applies only on interfaces that are running RSVP and WFQ.

RSVP recognizes voice flows based upon the `r`, `b`, and `p` values within the flowspec of a receiver. A reserved flow is granted the PQ as long as the flowspec parameters of a receiver meet the following default criteria:

\[(r \leq r') \land (b \leq b') \land (p/r \leq p\text{-}to\text{-}r')]\]
Examples

In the following example, voice-like flows (with the default criteria for voice) are put into the PQ:

```
Router(config)# ip rsvp pq-profile
Router(config)# ip rsvp pq-profile voice-like
Router(config)# ip rsvp pq-profile 12288 592 110
Router(config)# default ip rsvp pq-profile
Router# show run | include pq-profile
```

In the following example, all flows matching the voice criteria are put into the PQ:

```
Router(config)# ip rsvp pq-profile 10240 512 100
Router# show run | include pq-profile
ip rsvp pq-profile 10240 512 100
```

In the following example, no flows are put into the PQ:

```
Router(config)# no ip rsvp pq-profile
Router# show run | include pq-profile
no ip rsvp pq-profile
```

In the following example, flows with the criteria given for r' and b' and the default value for p-to-r' are put into the PQ:

```
Router(config)# ip rsvp pq-profile 9000 300
Router# show run | include pq-profile
ip rsvp pq-profile 9000 300 110
```

In the following example, flows with the criteria given for r' and b' and ignoring the peak value of the flow are put into the PQ:

```
Router(config)# ip rsvp pq-profile 9000 300 ignore-peak-value
Router# show run | include pq-profile
ip rsvp pq-profile 9000 300 ignore-peak-value
```

In the following example, Microsoft NetMeeting voice flows with G.711 or adaptive differential pulse code modulation (ADPCM) codecs are put into the PQ:

```
Router(config)# ip rsvp pq-profile 10200 1200
```
ip rsvp precedence

To enable the router to mark the IP Precedence value of the type of service (ToS) byte for packets in a Resource Reservation Protocol (RSVP) reserved path using the specified values for packets that either conform to or exceed the RSVP flowspec, use the `ip rsvp precedence` interface configuration command. To remove existing IP Precedence settings, use the `no` form of this command; if neither the `conform` nor `exceed` keyword is specified, all IP Precedence settings are removed.

```
ip rsvp precedence { [conform precedence-value] [exceed precedence-value] }

no ip rsvp precedence [conform] [exceed]
```

Syntax Description

- **conform precedence-value** (Optional) Specifies an IP Precedence value in the range from 0 to 7 for traffic that conforms to the RSVP flowspec. The IP Precedence value is written to the three high-order bits (bits 5 to 7) of the ToS byte in the IP header of a packet. Either the `conform` or `exceed` keyword is required; both keywords may be specified.

 When used with the `no` form of the command, the `conform` keyword is optional.

- **exceed precedence-value** (Optional) Specifies an IP Precedence value in the range from 0 to 7 for traffic that exceeds the RSVP flowspec. The IP Precedence value is written to the three high-order bits (bits 5 to 7) of the ToS byte in the IP header of a packet. Either the `conform` or `exceed` keyword is required; both keywords may be specified.

 When used with the `no` form of the command, the `exceed` keyword is optional.

Defaults

The IP Precedence bits of the ToS byte are left unmodified when this command is not used. The default state is equivalent to execution of the `no ip rsvp precedence` command.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Packets in an RSVP reserved path are divided into two classes: those that conform to the reservation flowspec and those that correspond to a reservation but that exceed, or are outside, the reservation flowspec.

The `ip rsvp precedence` command allows you to set the IP Precedence values to be applied to packets belonging to these two classes. You must specify the IP Precedence value for at least one class of traffic when you use this command. You can use a single instance of the command to specify values for both classes, in which case you can specify the `conform` and `exceed` keywords in either order.
As part of its input processing, RSVP uses the `ip rsvp precedence` command to set the IP Precedence bits on conforming and nonconforming packets. If per-VC DWRED is configured, the system uses the IP Precedence and ToS bit settings on the output interface in its packet drop process. The IP Precedence setting of a packet can also be used by interfaces on downstream routers.

Execution of the `ip rsvp precedence` command causes IP Precedence values for all preexisting reservations on the interface to be modified.

Note
RSVP must be enabled on an interface before you can use this command; that is, use of the `ip rsvp bandwidth` command must precede use of the `ip rsvp precedence` command. RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).

RSVP receives packets from the underlying forwarding mechanism. Therefore, before you use the `ip rsvp precedence` command to set IP Precedence, one of the following features is required:

- Weighted fair queueing (WFQ) must be enabled on the interface.
- RSVP switched virtual circuits (SVCs) must be used.
- NetFlow must be configured to assist RSVP.

Note
Use of the `no` form of this command is not equivalent to giving the `ip rsvp precedence 0` command, which sets all precedence on the packets to 0, regardless of previous precedence setting.

Examples

The following example sets the IP Precedence value to 3 for all traffic on the ATM interface 0 that conforms to the RSVP flowspec and to 2 for all traffic that exceeds the flowspec:

```plaintext
interface atm0
  ip rsvp precedence conform 3 exceed 2
```

The following example sets the IP Precedence value to 2 for all traffic on ATM interface 1 that conforms to the RSVP flowspec. The IP Precedence values of those packets that exceed the flowspec are not altered in any way.

```plaintext
interface ATM1
  ip rsvp precedence conform 2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip rsvp bandwidth</code></td>
<td>Enables RSVP for IP on an interface.</td>
</tr>
<tr>
<td><code>ip rsvp policy cops minimal</code></td>
<td>Lowers the COPS server’s load and improves latency times for messages on the governed router.</td>
</tr>
<tr>
<td><code>ip rsvp tos</code></td>
<td>Allows you to set the ToS values to be applied to packets that either conform to or exceed the RSVP flowspec.</td>
</tr>
<tr>
<td><code>show ip rsvp</code></td>
<td>Displays the IP Precedence and ToS bit values to be applied to packets that either conform to or exceed the RSVP flowspec for a given interface.</td>
</tr>
</tbody>
</table>
ip rsvp reservation

To enable a router to simulate receiving and forwarding Resource Reservation Protocol (RSVP) RESV messages, use the ip rsvp reservation global configuration command. To disable this feature, use the no form of this command.

```
ip rsvp reservation session-ip-address sender-ip-address {tcp | udp | ip-protocol} session-dport sender-sport next-hop-ip-address next-hop-interface {ff | se | wf} {rate | load} bandwidth burst-size
```

```
oip rsvp reservation session-ip-address sender-ip-address {tcp | udp | ip-protocol}
session-dport sender-sport next-hop-ip-address next-hop-interface {ff | se | wf} {rate | load} bandwidth burst-size
```

Syntax Description

- **session-ip-address**: For unicast sessions, this is the address of the intended receiver; for multicast sessions, this is the IP multicast address of the session.
- **sender-ip-address**: The IP address of the sender.
- **tcp | udp | ip-protocol**: TCP, User Datagram Protocol (UDP), or IP protocol in the range from 0 to 255.
- **session-dport**: **sender-sport**: `session-dport` is the destination port. **sender-sport** is the source port. Port numbers are specified in all cases, because the use of 16-bit ports following the IP header is not limited to UDP or TCP. If destination is zero, source must be zero, and the implication is that ports are not checked. If destination is nonzero, source must be nonzero (except for **wf** reservations, for which the source port is always ignored and can therefore be zero).
- **next-hop-ip-address**: Host name or address of the receiver or the router closest to the receiver.
- **next-hop-interface**: Next hop interface or subinterface type and number. Interface type can be `ethernet`, `loopback`, `null`, or `serial`.
- **ff | se | wf**: Reservation style:
 - Fixed Filter (ff) is single reservation.
 - Shared Explicit (se) is shared reservation, limited scope.
 - Wild Card Filter (wf) is shared reservation, unlimited scope.
- **rate | load**: QoS guaranteed bit rate service or controlled load service.
- **bandwidth**: Average bit rate, in kbps, to reserve up to 75 percent of the total on the interface. The range is from 1 to 1000000.
- **burst-size**: Maximum burst size (KB of data in queue). The range is from 1 to 65535.

Defaults

The router does not simulate receiving and processing RSVP RESV messages by default.

Command Modes

Global configuration
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to make the router simulate receiving RSVP RESV messages from a downstream host. This command can be used to proxy RSVP RESV messages for non-RSVP-capable receivers. By giving a local (loopback) next hop address and next hop interface, you can also use this command to proxy RSVP for the router you are configuring.

Note

RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).

Examples

The following example specifies the use of a Shared Explicit style of reservation and the controlled load service, with token buckets of 100 or 150 kbps and 60 or 65 kbps maximum queue depth:

```plaintext
ip rsvp reservation 224.250.0.2 172.16.1.1 UDP 20 30 172.16.4.1 Et1 se load 100 60
ip rsvp reservation 224.250.0.2 172.16.2.1 TCP 20 30 172.16.4.1 Et1 se load 150 65
```

The following example specifies the use of a Wild Card Filter style of reservation and the guaranteed bit rate service, with token buckets of 300 or 350 kbps and 60 or 65 kbps maximum queue depth:

```plaintext
ip rsvp reservation 224.250.0.3 0.0.0.0 UDP 20 0 172.16.4.1 Et1 wf rate 300 60
ip rsvp reservation 226.0.0.1 0.0.0.0 UDP 20 0 172.16.4.1 Et1 wf rate 350 65
```

Note that the Wild Card Filter does not admit the specification of the sender; it accepts all senders. This action is denoted by setting the source address and port to zero. If, in any filter style, the destination port is specified to be zero, RSVP does not permit the source port to be anything else; it understands that such protocols do not use ports or that the specification applies to all ports.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue (WFQ)</td>
<td>Enables WFQ for an interface.</td>
</tr>
<tr>
<td>ip rsvp bandwidth</td>
<td>Enables RSVP for IP on an interface.</td>
</tr>
<tr>
<td>ip rsvp neighbor</td>
<td>Enables neighbors to request a reservation.</td>
</tr>
<tr>
<td>ip rsvp reservation-host</td>
<td>Enables a router to simulate a host generating RSVP RESV messages.</td>
</tr>
<tr>
<td>ip rsvp sender</td>
<td>Enables a router to simulate receiving and forwarding RSVP PATH messages.</td>
</tr>
<tr>
<td>ip rsvp sender-host</td>
<td>Enables a router to simulate a host generating RSVP PATH messages.</td>
</tr>
<tr>
<td>ip rsvp udp-multicasts</td>
<td>Instructs the router to generate UDP-encapsulated RSVP multicasts whenever it generates an IP-encapsulated multicast packet.</td>
</tr>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td>show ip rsvp installed</td>
<td>Displays RSVP-related installed filters and corresponding bandwidth information.</td>
</tr>
<tr>
<td>show ip rsvp interface</td>
<td>Displays RSVP-related interface information.</td>
</tr>
<tr>
<td>show ip rsvp neighbor</td>
<td>Displays current RSVP neighbors.</td>
</tr>
</tbody>
</table>
Quality of Service Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip rsvp reservation</code></td>
<td>Displays RSVP-related receiver information currently in the database.</td>
</tr>
<tr>
<td><code>show ip rsvp sender</code></td>
<td>Displays RSVP PATH-related sender information currently in the database.</td>
</tr>
</tbody>
</table>
ip rsvp reservation-host

To enable a router to simulate a host generating Resource Reservation Protocol (RSVP) RESV messages, use the `ip rsvp reservation-host` global configuration command. To disable this feature, use the `no` form of this command.

```
   ip rsvp reservation-host session-ip-address sender-ip-address \ 
   (tcp | udp | ip-protocol) \ 
   session-dport sender-sport \ 
   (ff | se | wf) \ 
   (rate | load) \ 
   bandwidth burst-size

   no ip rsvp reservation-host session-ip-address sender-ip-address \ 
   (tcp | udp | ip-protocol) \ 
   session-dport sender-sport \ 
   (ff | se | wf) \ 
   (rate | load) \ 
   bandwidth burst-size
```

Syntax Description

- `session-ip-address`: For unicast sessions, this is the address of the intended receiver. IP multicast addresses cannot be used with this argument. It must be a logical address configured on an interface on the router you are configuring.
- `sender-ip-address`: The IP address of the sender.
- `tcp | udp | ip-protocol`: TCP, User Datagram Protocol UDP, or IP protocol in the range from 0 to 255.
- `session-dport | sender-sport`: `session-dport` is the destination port. `sender-sport` is the source port. Port numbers are specified in all cases, because the use of 16-bit ports following the IP header is not limited to UDP or TCP. If destination is zero, source must be zero, and the implication is that ports are not checked. If destination is nonzero, source must be nonzero (except for `wf` reservations, for which the source port is always ignored and can therefore be zero).
- `ff | se | wf`: Reservation style:
 - Fixed Filter (ff) is single reservation.
 - Shared Explicit (se) is shared reservation, limited scope.
 - Wild Card Filter (wf) is shared reservation, unlimited scope.
- `rate | load`: QoS guaranteed bit rate service or controlled load service.
- `bandwidth`: Average bit rate, in kbps, to reserve up to 75 percent of the total on the interface. The range is from 1 to 1000000.
- `burst-size`: Maximum burst size (KB of data in queue). The range is from 1 to 65535.

Defaults

The router does not simulate a host generating RSVP RESV messages by default.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Use this command to make the router simulate a host generating its own RSVP RESV messages. This command is similar to the `ip rsvp reservation` command, which can cause the router to generate RESV messages on behalf of another host.

The main differences between the `ip rsvp reservation-host` and `ip rsvp reservation` commands follow:

- When you enter the `ip rsvp reservation-host` command, the `session-ip-address` argument must be a local address configured on an interface on the router. Therefore, you cannot proxy a reservation on behalf of a flow destined for another host. Also, you cannot use this command to generate reservation messages for multicast sessions.
- Because the message is assumed to originate from the router you are configuring, you do not specify a next hop or incoming interface for the RSVP RESV message when entering the `ip rsvp reservation-host` command.

Because you cannot use the command to proxy RSVP for non-RSVP-capable hosts or for multicast sessions, the `ip rsvp reservation-host` command is used mostly for debugging and testing purposes.

RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).

The following example specifies the use of a Shared Explicit style of reservation and the controlled load service, with token buckets of 100 or 150 kbps and 60 or 65 kbps maximum queue depth:

```
ip rsvp reservation-host 10.1.1.1 10.30.1.4 UDP 20 30 se load 100 60
ip rsvp reservation-host 10.40.2.2 10.22.1.1 TCP 20 30 se load 150 65
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue (WFQ)</td>
<td>Enables WFQ for an interface.</td>
</tr>
<tr>
<td>ip rsvp bandwidth</td>
<td>Enables RSVP for IP on an interface.</td>
</tr>
<tr>
<td>ip rsvp neighbor</td>
<td>Enables neighbors to request a reservation.</td>
</tr>
<tr>
<td>ip rsvp reservation</td>
<td>Enables a router to simulate receiving and forwarding RSVP RESV messages.</td>
</tr>
<tr>
<td>ip rsvp sender</td>
<td>Enables a router to simulate receiving and forwarding RSVP PATH messages.</td>
</tr>
<tr>
<td>ip rsvp sender-host</td>
<td>Enables a router to simulate a host generating RSVP PATH messages.</td>
</tr>
<tr>
<td>ip rsvp udp-multicasts</td>
<td>Instructs the router to generate UDP-encapsulated RSVP multicasts whenever it generates an IP-encapsulated multicast packet.</td>
</tr>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td>show ip rsvp installed</td>
<td>Displays RSVP-related installed filters and corresponding bandwidth information.</td>
</tr>
<tr>
<td>show ip rsvp interface</td>
<td>Displays RSVP-related interface information.</td>
</tr>
<tr>
<td>show ip rsvp neighbor</td>
<td>Displays current RSVP neighbors.</td>
</tr>
<tr>
<td>show ip rsvp reservation</td>
<td>Displays RSVP-related receiver information currently in the database.</td>
</tr>
<tr>
<td>show ip rsvp sender</td>
<td>Displays RSVP PATH-related sender information currently in the database.</td>
</tr>
</tbody>
</table>
ip rsvp sender

To enable a router to simulate receiving and forwarding Resource Reservation Protocol (RSVP) PATH messages, use the `ip rsvp sender` global configuration command. To disable this feature, use the `no` form of this command.

```
ip rsvp sender session-ip-address sender-ip-address { tcp | udp | ip-protocol } session-dport
  sender-sport previous-hop-ip-address previous-hop-interface bandwidth burst-size

no ip rsvp sender session-ip-address sender-ip-address { tcp | udp | ip-protocol } session-dport
  sender-sport previous-hop-ip-address previous-hop-interface bandwidth burst-size
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>session-ip-address</code></td>
<td>For unicast sessions, this is the address of the intended receiver; for multicast sessions, it is the IP multicast address of the session.</td>
</tr>
<tr>
<td><code>sender-ip-address</code></td>
<td>The IP address of the sender.</td>
</tr>
<tr>
<td>`tcp</td>
<td>udp</td>
</tr>
<tr>
<td><code>session-dport</code></td>
<td><code>session-dport</code> is the destination port. <code>sender-sport</code> is the source port. Port numbers are specified in all cases, because the use of 16-bit ports following the IP header is not limited to UDP or TCP. If destination is zero, source must be zero, and the implication is that ports are not checked. If destination is nonzero, source must be nonzero (except for <code>wf</code> reservations, for which the source port is always ignored and can therefore be zero).</td>
</tr>
<tr>
<td><code>sender-sport</code></td>
<td><code>sender-sport</code> is always ignored and can therefore be zero.</td>
</tr>
<tr>
<td><code>previous-hop-ip-address</code></td>
<td>Address of the sender or the router closest to the sender.</td>
</tr>
<tr>
<td><code>previous-hop-interface</code></td>
<td>Address of the previous hop interface or subinterface. Interface type can be <code>ethernet</code>, <code>loopback</code>, <code>null</code>, or <code>serial</code>.</td>
</tr>
<tr>
<td><code>bandwidth</code></td>
<td>Average bit rate, in kbps, to reserve up to 75 percent of the total on the interface. The range is from 1 to 10000000.</td>
</tr>
<tr>
<td><code>burst-size</code></td>
<td>Maximum burst size (KB of data in queue). The range is from 1 to 65535.</td>
</tr>
</tbody>
</table>

Defaults

The router does not simulate receiving and processing RSVP PATH messages by default.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

Use this command to make the router simulate that it is receiving RSVP PATH messages from an upstream host. The command can be used to proxy RSVP PATH messages for non-RSVP-capable senders. By including a local (loopback) previous hop address and previous hop interface, you can also use this command to proxy RSVP for the router you are configuring.

RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).

Examples

The following example sets up the router to act like it is receiving RSVP PATH messages using UDP over loopback interface 1:

```
ip rsvp sender 224.250.0.1 172.16.2.1 udp 20 30 172.16.2.1 loopback 1 50 5
ip rsvp sender 224.250.0.2 172.16.2.1 udp 20 30 172.16.2.1 loopback 1 50 5
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue (WFQ)</td>
<td>Enables WFQ for an interface.</td>
</tr>
<tr>
<td>ip rsvp bandwidth</td>
<td>Enables RSVP for IP on an interface.</td>
</tr>
<tr>
<td>ip rsvp neighbor</td>
<td>Enables neighbors to request a reservation.</td>
</tr>
<tr>
<td>ip rsvp reservation</td>
<td>Enables a router to simulate receiving and forwarding RSVP RESV messages.</td>
</tr>
<tr>
<td>ip rsvp reservation-host</td>
<td>Enables a router to simulate a host generating RSVP RESV messages.</td>
</tr>
<tr>
<td>ip rsvp sender-host</td>
<td>Enables a router to simulate a host generating RSVP PATH messages.</td>
</tr>
<tr>
<td>ip rsvp udp-multicasts</td>
<td>Instructs the router to generate UDP-encapsulated RSVP multicasts whenever it generates an IP-encapsulated multicast packet.</td>
</tr>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td>show ip rsvp installed</td>
<td>Displays RSVP-related installed filters and corresponding bandwidth information.</td>
</tr>
<tr>
<td>show ip rsvp interface</td>
<td>Displays RSVP-related interface information.</td>
</tr>
<tr>
<td>show ip rsvp neighbor</td>
<td>Displays current RSVP neighbors.</td>
</tr>
<tr>
<td>show ip rsvp reservation</td>
<td>Displays RSVP-related receiver information currently in the database.</td>
</tr>
<tr>
<td>show ip rsvp sender</td>
<td>Displays RSVP PATH-related sender information currently in the database.</td>
</tr>
</tbody>
</table>
ip rsvp sender-host

To enable a router to simulate a host generating a Resource Reservation Protocol (RSVP) PATH message, use the `ip rsvp sender-host` global configuration command. To disable this feature, use the `no` form of this command.

```
ip rsvp sender-host session-ip-address sender-ip-address {tcp | udp | ip-protocol} session-dport sender-sport bandwidth burst-size
no ip rsvp sender-host session-ip-address sender-ip-address {tcp | udp | ip-protocol} session-dport sender-sport bandwidth burst-size
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>session-ip-address</code></td>
<td>For unicast sessions, this is the address of the intended receiver; for multicast sessions, it is the IP multicast address of the session.</td>
</tr>
<tr>
<td><code>sender-ip-address</code></td>
<td>The IP address of the sender. It must be a logical address configured on an interface on the router you are configuring.</td>
</tr>
<tr>
<td>`tcp</td>
<td>udp</td>
</tr>
<tr>
<td><code>session-dport</code></td>
<td><code>session-dport</code> is the destination port. <code>sender-sport</code> is the source port. Port numbers are specified in all cases, because the use of 16-bit ports following the IP header is not limited to UDP or TCP. If destination is zero, source must be zero, and the implication is that ports are not checked. If destination is nonzero, source must be nonzero (except for <code>wf</code> reservations, for which the source port is always ignored and can therefore be zero).</td>
</tr>
<tr>
<td><code>sender-sport</code></td>
<td><code>session-dport</code> is the destination port. <code>sender-sport</code> is the source port. Port numbers are specified in all cases, because the use of 16-bit ports following the IP header is not limited to UDP or TCP. If destination is zero, source must be zero, and the implication is that ports are not checked. If destination is nonzero, source must be nonzero (except for <code>wf</code> reservations, for which the source port is always ignored and can therefore be zero).</td>
</tr>
<tr>
<td><code>bandwidth</code></td>
<td>Average bit rate, in kbps, to reserve up to 75 percent of the total on the interface. The range is from 1 to 10000000.</td>
</tr>
<tr>
<td><code>burst-size</code></td>
<td>Maximum burst size (KB of data in queue). The range is from 1 to 65535.</td>
</tr>
</tbody>
</table>

Defaults

The router does not simulate RSVP PATH message generation by default.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to make the router simulate a host generating its own RSVP PATH messages. This command is similar to the `ip rsvp sender` command, which can cause the router to generate RSVP PATH messages on behalf of another host.
The main differences between the `ip rsvp sender-host` and `ip rsvp sender` commands follow:

- When you enter the `ip rsvp sender-host` command, the `sender-ip-address` argument must be a local address configured on an interface on the router.
- Because the message is assumed to originate from the router you are configuring, you do not specify a previous hop or incoming interface for the RSVP PATH message when entering the `ip rsvp sender-host` command.

Because you cannot use the command to proxy RSVP for non-RSVP-capable hosts, the `ip rsvp sender-host` command is used mostly for debugging and testing purposes.

RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).

Examples

The following example sets up the router to act like a host that will send traffic to the given multicast address:

```
ip rsvp sender-host 224.250.0.1 10.24.2.1 udp 20 30 50 5
ip rsvp sender-host 227.0.0.1 10.24.2.1 udp 20 30 50 5
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue (WFQ)</td>
<td>Enables WFQ for an interface.</td>
</tr>
<tr>
<td><code>ip rsvp bandwidth</code></td>
<td>Enables RSVP for IP on an interface.</td>
</tr>
<tr>
<td><code>ip rsvp neighbor</code></td>
<td>Enables neighbors to request a reservation.</td>
</tr>
<tr>
<td><code>ip rsvp reservation</code></td>
<td>Enables a router to simulate receiving and forwarding RSVP RESV messages.</td>
</tr>
<tr>
<td><code>ip rsvp reservation-host</code></td>
<td>Enables a router to simulate a host generating RSVP RESV messages.</td>
</tr>
<tr>
<td><code>ip rsvp sender</code></td>
<td>Enables a router to simulate receiving and forwarding RSVP PATH messages.</td>
</tr>
<tr>
<td><code>ip rsvp udp-multicasts</code></td>
<td>Instructs the router to generate UDP-encapsulated RSVP multicasts whenever it generates an IP-encapsulated multicast packet.</td>
</tr>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td><code>show ip rsvp installed</code></td>
<td>Displays RSVP-related installed filters and corresponding bandwidth information.</td>
</tr>
<tr>
<td><code>show ip rsvp interface</code></td>
<td>Displays RSVP-related interface information.</td>
</tr>
<tr>
<td><code>show ip rsvp neighbor</code></td>
<td>Displays current RSVP neighbors.</td>
</tr>
<tr>
<td><code>show ip rsvp reservation</code></td>
<td>Displays RSVP-related receiver information currently in the database.</td>
</tr>
<tr>
<td><code>show ip rsvp sender</code></td>
<td>Displays RSVP PATH-related sender information currently in the database.</td>
</tr>
</tbody>
</table>
ip rsvp signalling dscp

To specify the DSCP to be used on all RSVP messages transmitted on an interface, use the `ip rsvp signalling dscp` interface configuration command. To disable the `ip rsvp signalling dscp` interface configuration command, use the `no` form of this command.

```
ip rsvp signalling dscp [value]
no ip rsvp signalling dscp
```

Syntax Description

| `value` | Indicates a number from 0-63. |

Defaults

The default value is 0, and the maximum value is 63.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>This command was introduced</td>
</tr>
<tr>
<td>12.1(2)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You configure the DSCP per interface, not per flow. The DSCP determines the priority that a packet receives from various hops as it travels to its destination.

The DSCP applies to all RSVP flows installed on a specific interface. You can configure each interface independently for DSCP.

Examples

Here is an example of the `ip rsvp signalling dscp` command with a DSCP value of 6:

```
Router(config-if)# ip rsvp signalling dscp 6
Router# show ip rsvp interface detail s2/0

Se2/0:
  Bandwidth:
    Curr allocated:10K bits/sec
    Max. allowed (total):1536K bits/sec
    Max. allowed (per flow):1536K bits/sec
  Neighbors:
    Using IP enacp:1. Using UDP encaps:0
    DSCP value used in Path/Resv msgs:0x6
    Burst Police Factor:300%
    RSVP Data Packet Classification provided by: none
Router#
```
ip rsvp svc-required

To enable creation of a switched virtual circuit (SVC) to service any new Resource Reservation Protocol (RSVP) reservation made on the interface or subinterface of an Enhanced ATM port adapter (PA-A3), use the **ip rsvp svc-required** interface configuration command. To disable SVC creation for RSVP reservations, use the **no** form of this command.

```
ip rsvp svc-required

no ip rsvp svc-required
```

Syntax Description
This command has no arguments or keywords.

Defaults
Disabled. This command applies exclusively to the RSVP-ATM QoS Interworking feature.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Usually reservations are serviced when RSVP classifies packets and a queueing mechanism schedules them for transmission to manage congestion. Traditionally, RSVP is used with weighted fair queueing (WFQ). When RSVP is coupled with WFQ, all of the packets visible to WFQ are also visible to RSVP, which allows RSVP to identify and take action on packets important to it. In this case, WFQ provides bandwidth guarantees.

However, when the **ip rsvp svc-required** command is used to configure an interface or subinterface, a new SVC is established and used to service each new reservation on the interface. ATM SVCs are used to provide bandwidth guarantees and NetFlow is used on input interfaces to make data packets visible to RSVP.

- **Note**
When RSVP is enabled, all packets are processed by the Route Switch Processor (RSP).

This command must be executed on both ends of an SVC driven by RSVP. This command is supported only for the Enhanced ATM port adapter (PA-A3) and its subinterfaces.

- **Note**
For this command to take effect, NetFlow must be enabled. Therefore, the **ip route-cache flow** command must precede this command in the configuration.

Use the **show ip rsvp interface** command to determine whether this command is in effect for any interface or subinterface.
Examples

The following example signals RSVP that reservations made on ATM interface 2/0/0 will be serviced by creation of an SVC:

```
interface atm2/0/0
  ip rsvp svc-required
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip rsvp atm-peak-rate-limit</td>
<td>Sets a limit on the peak cell rate of reservations for all newly created RSVP SVCs established on the current interface or any of its subinterfaces.</td>
</tr>
<tr>
<td>ip rsvp precedence</td>
<td>Allows you to set the IP Precedence values to be applied to packets that either conform to or exceed the RSVP flowspec.</td>
</tr>
<tr>
<td>show ip rsvp interface</td>
<td>Displays RSVP-related interface information.</td>
</tr>
</tbody>
</table>
ip rsvp tos

To enable the router to mark the five low-order type of service (ToS) bits of the IP header ToS byte for packets in a Resource Reservation Protocol (RSVP) reserved path using the specified values for traffic that either conforms to or exceeds the RSVP flowspec, use the `ip rsvp tos` interface configuration command. To remove existing settings for the ToS bits, use the `no` form of this command; if neither the `conform` nor `exceed` keyword is specified, all settings for the ToS bits are removed.

```
  ip rsvp tos { [conform tos-value] [exceed tos-value] }
  no ip rsvp tos [conform] [exceed]
```

Syntax Description

- `conform tos-value` (Optional) Specifies a ToS value in the range from 0 to 31 for traffic that conforms to the RSVP flowspec. The ToS value is written to the five low-order bits (bits 0 to 4) of the ToS byte in the IP header of a packet. Either the `conform` or `exceed` keyword is required; both keywords may be specified.

 When used with the `no` form of the command, the `conform` keyword is optional.

- `exceed tos-value` (Optional) Specifies a ToS value in the range from 0 to 31 for traffic that exceeds the RSVP flowspec. The ToS byte value is written to the five low-order bits (bits 0 to 4) of the ToS byte in the IP header of a packet. Either the `conform` or `exceed` keyword is required; both keywords may be specified.

 When used with the `no` form of the command, the `exceed` keyword is optional.

Defaults

The ToS bits of the ToS byte are left unmodified when this command is not used. (The default behavior is equivalent to use of the `no ip rsvp tos` command.)

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Packets in an RSVP reserved path are divided into two classes: those that conform to the reservation flowspec and those that correspond to a reservation but that exceed, or are outside, the reservation flowspec.

The `ip rsvp tos` command allows you to set the ToS values to be applied to packets belonging to these two classes. You must specify the ToS value for at least one class of traffic when you use this command. You can use a single instance of the command to specify values for both classes, in which case you can specify the `conform` and `exceed` keywords in either order.
As part of its input processing, RSVP uses the `ip rsvp tos` command configuration to set the ToS bits of the ToS byte on conforming and nonconforming packets. If per-virtual circuit (VC) VIP-distributed Weighted Random Early Detection (DWRED) is configured, the system uses the ToS bit and IP Precedence bit settings on the output interface in its packet drop process. The ToS bit and IP Precedence bit settings of a packet can also be used by interfaces on downstream routers.

Execution of the `ip rsvp tos` command causes ToS bit values for all preexisting reservations on the interface to be modified.

Note
RSVP must be enabled on an interface before you can use this command; that is, use of the `ip rsvp bandwidth` command must precede use of the `ip rsvp tos` command. RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).

Note
The `ip rsvp tos` command sets bits 0 to 4 so that in combination with the IP Precedence bit settings every bit in the ToS byte is set. Use of these bits is made with full knowledge of the fact that certain canonical texts that address the ToS byte specify that only bits 1 to 4 are used as the ToS bits.

RSVP receives packets from the underlying forwarding mechanism. Therefore, to use the `ip rsvp tos` command to set the ToS bits, one of the following features is required:
- Weighted fair queueing (WFQ) must be enabled on the interface.
- RSVP switched virtual circuits (SVCs) must be used.
- NetFlow must be configured to assist RSVP.

Note
Use of the `no` form of this command is not equivalent to giving the `ip rsvp tos 0` command, which sets all precedence on the packets to 0, regardless of previous precedence setting.

Examples
The following example sets the ToS bits value to 4 for all traffic on ATM interface 1 that conforms to the RSVP flowspec. ToS bits on packets exceeding the flowspec are not altered.

```
interface atm1
ip rsvp tos conform 4
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip rsvp bandwidth</code></td>
<td>Enables RSVP for IP on an interface.</td>
</tr>
<tr>
<td><code>ip rsvp flow-assist</code></td>
<td>Enables RSVP to attach itself to NetFlow so that it can leverage NetFlow services.</td>
</tr>
<tr>
<td><code>ip rsvp policy cops</code></td>
<td>Lowers the COPS server’s load and improves latency times for messages on the governed router.</td>
</tr>
<tr>
<td><code>minimal</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip rsvp</code></td>
<td>Displays the IP Precedence and ToS bit values to be applied to packets that either conform to or exceed the RSVP flowspec for a given interface.</td>
</tr>
</tbody>
</table>
ip rsvp udp-multicasts

To instruct the router to generate User Datagram Protocol (UDP)-encapsulated Resource Reservation Protocol (RSVP) multicasts whenever it generates an IP-encapsulated multicast packet, use the `ip rsvp udp-multicasts` interface configuration command. To disable this feature, use the `no` form of this command.

```
ip rsvp udp-multicasts [multicast-address]
no ip rsvp udp-multicasts [multicast-address]
```

Syntax Description

- `multicast-address` (Optional) Host name or UDP multicast address of router.

Defaults

The generation of UDP multicasts is disabled. If a system sends a UDP-encapsulated RSVP message to the router, the router begins using UDP for contact with the neighboring system. The router uses multicast address 224.0.0.14 and starts sending to UDP port 1699. If the command is entered with no specifying multicast address, the router uses the same multicast address.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to instruct a router to generate UDP-encapsulated RSVP multicasts whenever it generates an IP-encapsulated multicast packet. Some hosts require this trigger from the router.

RSVP cannot be configured with VIP-distributed Cisco Express Forwarding (dCEF).

Examples

The following example reserves up to 7500 kbps on Ethernet interface 2, with up to 1 Mbps per flow. The router is configured to use UDP encapsulation with the multicast address 224.0.0.14.

```
interface ethernet 2
ip rsvp bandwidth 7500 1000
ip rsvp udp-multicasts 224.0.0.14
```
Quality of Service Commands

ip rsvp udp-multicasts

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip rsvp bandwidth</td>
<td>Enables RSVP for IP on an interface.</td>
</tr>
<tr>
<td>ip rsvp neighbor</td>
<td>Enables neighbors to request a reservation.</td>
</tr>
<tr>
<td>ip rsvp reservation</td>
<td>Enables a router to simulate receiving and forwarding RSVP RESV messages.</td>
</tr>
<tr>
<td>ip rsvp sender</td>
<td>Enables a router to simulate receiving and forwarding RSVP PATH messages.</td>
</tr>
</tbody>
</table>
ip rtp priority

To reserve a strict priority queue for a set of Real-Time Transport Protocol (RTP) packet flows belonging to a range of User Datagram Protocol (UDP) destination ports, use the **ip rtp priority** interface configuration command. To disable the strict priority queue, use the **no** form of this command.

```
ip rtp priority starting-rtp-port-number port-number-range bandwidth
no ip rtp priority
```

Syntax Description

- **starting-rtp-port-number** The starting RTP port number. The lowest port number to which the packets are sent.
- **port-number-range** The range of UDP destination ports. Number, when added to the **starting-rtp-port-number** argument, that yields the highest UDP port number.
- **bandwidth** Maximum allowed bandwidth, in kbps.

Defaults

This command has no default behavior or values.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is most useful for voice applications, or other applications that are delay-sensitive. This command extends and improves on the functionality offered by the **ip rtp reserve** command by allowing you to specify a range of UDP/RTP ports whose voice traffic is guaranteed strict priority service over any other queues or classes using the same output interface. Strict priority means that if packets exist in the priority queue, they are dequeued and sent first—that is, before packets in other queues are dequeued. We recommend that you use the **ip rtp priority** command instead of the **ip rtp reserve** command for voice configurations.

This command can be used in conjunction with either weighted fair queueing (WFQ) or class-based WFQ (CBWFQ) on the same outgoing interface. In either case, traffic matching the range of ports specified for the priority queue is guaranteed strict priority over other CBWFQ classes or WFQ flows; voice packets in the priority queue are always serviced first.
Remember the following guidelines when using the **ip rtp priority** command:

- When used in conjunction with WFQ, the **ip rtp priority** command provides strict priority to voice, and WFQ scheduling is applied to the remaining queues.

- When used in conjunction with CBWFQ, the **ip rtp priority** command provides strict priority to voice. CBWFQ can be used to set up classes for other types of traffic (such as Systems Network Architecture [SNA]) that need dedicated bandwidth and need to be treated better than best effort and not as strict priority; the nonvoice traffic is serviced fairly based on the weights assigned to the enqueued packets. CBWFQ can also support flow-based WFQ within the default CBWFQ class if so configured.

Remember the following guidelines when configuring the **bandwidth** argument:

- It is always safest to allocate to the priority queue slightly more than the known required amount of bandwidth, to allow room for network bursts.

- The IP RTP Priority admission control policy takes RTP header compression into account. Therefore, while configuring the **bandwidth** argument of the **ip rtp priority** command you need to configure only for the bandwidth of the compressed call. Because the **bandwidth** argument is the maximum total bandwidth, you need to allocate enough bandwidth for all calls if there will be more than one call.

- Configure a bandwidth that allows room for Layer 2 headers. The bandwidth allocation takes into account the payload plus the IP, UDP, and RTP headers but does not account for Layer 2 headers. Allowing 25 percent bandwidth for other overhead is conservative and safe.

- The sum of all bandwidth allocation for voice and data flows on an interface cannot exceed 75 percent of the total available bandwidth, unless you change the default maximum reservable bandwidth. To change the maximum reservable bandwidth, use the **max-reserved-bandwidth** command on the interface.

For more information on IP RTP Priority bandwidth allocation, refer to the section “IP RTP Priority” in the chapter “Congestion Management Overview” in the Cisco IOS Quality of Service Solutions Configuration Guide.

Examples

The following example first defines a CBWFQ configuration and then reserves a strict priority queue with the following values: a starting RTP port number of 16384, a range of 16383 UDP ports, and a maximum bandwidth of 40 kbps:

```plaintext
! The following commands define a class map:
class-map class1
  match access-group 101
  exit

! The following commands create and attach a policy map:
policy-map policy1
  class class1
  bandwidth 3000
  queue-limit 30
  random-detect
  random-detect precedence 0 32 256 100
  exit
  interface Serial1
  service-policy output policy1

! The following command reserves a strict priority queue:
ip rtp priority 16384 16383 40
```
Quality of Service Commands

ip rtp priority

- **bandwidth (policy-map-class)**: Specifies or modifies the bandwidth allocated for a class belonging to a policy map.
- **fair queue (WFQ)**: Enables WFQ for an interface.
- **frame-relay ip rtp priority**: Reserves a strict priority queue on a Frame Relay PVC for a set of RTP packet flows belonging to a range of UDP destination ports.
- **ip rtp reserve**: Reserves a special queue for a set of RTP packet flows belonging to a range of UDP destination ports.
- **max-reserved-bandwidth**: Changes the percent of interface bandwidth allocated for CBWFQ, LLQ, and IP RTP Priority.
- **policy-map**: Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.
- **ppp multilink**: Enables MLP on an interface and, optionally, enables dynamic bandwidth allocation.
- **ppp multilink fragment-delay**: Configures a maximum delay allowed for transmission of a packet fragment on an MLP bundle.
- **ppp multilink interleave**: Enables interleaving of RTP packets among the fragments of larger packets on an MLP bundle.
- **priority**: Gives priority to a class of traffic belonging to a policy map.
- **service-policy**: Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.
- **show policy-map**: Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.
- **show queue**: Displays the contents of packets inside a queue for a particular interface or VC.
match access-group

To configure the match criteria for a class map on the basis of the specified access control list (ACL), use the `match access-group` class-map configuration command. To remove ACL match criteria from a class map, use the `no` form of this command.

```
match access-group {access-group | name access-group-name}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-group</td>
<td>A numbered ACL whose contents are used as the match criteria against which packets are checked to determine if they belong to this class.</td>
</tr>
<tr>
<td>name access-group-name</td>
<td>A named ACL whose contents are used as the match criteria against which packets are checked to determine if they belong to this class.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE.</td>
</tr>
<tr>
<td>12.0(7)S</td>
<td>This command was integrated into Cisco IOS Release 12.0(7)S.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For class-based weighted fair queueing (CBWFQ), you define traffic classes based on match criteria including ACLs, protocols, input interfaces, QoS labels, and EXP field values. Packets satisfying the match criteria for a class constitute the traffic for that class.

The `match access-group` command specifies a numbered or named ACL whose contents are used as the match criteria against which packets are checked to determine if they belong to the class specified by the class map.

To use the `match access-group` command, you must first enter the `class-map` command to specify the name of the class whose match criteria you want to establish. After you identify the class, you can use one of the following commands to configure its match criteria:

- `match access-group`
- `match input-interface`
- `match mpls experimental`
- `match protocol`

If you specify more than one command in a class map, only the last command entered applies. The last command overrides the previously entered commands.
Examples

The following example specifies a class map called acl144 and configures the ACL numbered 144 to be used as the match criteria for this class:

```plaintext
class-map acl144
match access-group 144
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td>match input-interface</td>
<td>Configures a class map to use the specified input interface as a match criterion.</td>
</tr>
<tr>
<td>match mpls experimental</td>
<td>Configures a class map to use the specified EXP field value as a match criterion.</td>
</tr>
<tr>
<td>match protocol</td>
<td>Configures the match criteria for a class map on the basis of the specified protocol.</td>
</tr>
</tbody>
</table>
match any

To configure the match criteria for a class map to be successful match criteria for all packets, use the **match any** class-map configuration command. To remove all criteria as successful match criteria, use the **no** form of this command.

```
match any

no match any
```

Syntax Description

This command has no arguments or keywords.

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)T.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
</tbody>
</table>

Examples

In the following configuration, all packets leaving Ethernet interface 1/1 will be policed based on the parameters specified in policy-map class configuration mode.

```
Router(config)# class-map matchany
Router(config-cmap)# match any
Router(config-cmap)# exit

Router(config)# policy-map policy1
Router(config-pmap)# class class4
Router(config-pmap-c)# police 8100 1500 2504 conform-action transmit exceed-action set-qos-transmit 4
Router(config-pmap-c)# exit

Router(config)# interface e1/1
Router(config-if)# service-policy output policy1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td>match input-interface</td>
<td>Configures a class map to use the specified input interface as a match criterion.</td>
</tr>
<tr>
<td>match protocol</td>
<td>Configures the match criteria for a class map on the basis of the specified protocol.</td>
</tr>
</tbody>
</table>
match class-map

To use a traffic class as a classification policy, use the `match class-map` class-map configuration command. To remove a specific traffic class as a match criterion, use the `no` form of this command.

```
match class-map class-map-name

no match class-map class-map-name
```

Syntax Description

| class-map-name | Specifies the name of the traffic class to use as a match criterion. |

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The only method of including both match-any and match-all characteristics in a single traffic class is to use the `match class-map` command. To combine match-any and match-all characteristics into a single class, a traffic class created with the match-any instruction must use a class configured with the match-all instruction as a match criterion (through the `match class-map` command), or vice versa.

You can also use the `match class-map` command to nest traffic classes within one another, saving users the overhead of re-creating a new traffic class when most of the information exists in a previously configured traffic class.

Examples

In the following example, the traffic class called class1 has the same characteristics as traffic class called class2, with the exception that traffic class class1 has added a destination address as a match criterion. Rather than configuring traffic class class1 line by line, a user can enter the `match class-map class2` command. This command allows all of the characteristics in the traffic class called class2 to be included in the traffic class called class1, and the user can simply add the new destination address match criterion without reconfiguring the entire traffic class.

```
Router(config)# class-map match-any class2
Router(config-cmap)# match protocol ip
Router(config-cmap)# match qos-group 3
Router(config-cmap)# match access-group 2
Router(config-cmap)# exit
```
The following example shows how to combine the characteristics of two traffic classes, one with match-any and one with match-all characteristics, into one traffic class with the `match class-map` command. The result of traffic class called class4 requires a packet to match one of the following three match criteria to be considered a member of traffic class called class 4: IP protocol and QoS group 4, destination MAC address 1.1.1, or access group 2.

In this example, only the traffic class called class4 is used with the service policy called policy1.

```
Router(config)# class-map match-all class1
Router(config-cmap)# match class-map class2
Router(config-cmap)# match destination-address mac 1.1.1
Router(config-cmap)# exit

Router(config)# class-map match-all class3
Router(config-cmap)# match protocol ip
Router(config-cmap)# match qos-group 4
Router(config-cmap)# exit

Router(config)# class-map match-any class4
Router(config-cmap)# match class-map class3
Router(config-cmap)# match destination-address mac 1.1.1
Router(config-cmap)# match access-group 2
Router(config-cmap)# exit

Router(config)# policy-map policy1
Router(config-pmap)# class class4
Router(config-pmap-c)# police 8100 1500 2504 conform-action transmit exceed-action
Router(config-pmap-c)# set-qos-transmit 4
Router(config-pmap-c)# exit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
</tbody>
</table>
match cos

To match a packet based on a Layer 2 class of service (CoS) marking, use the `match cos` command in class-map configuration mode. To remove a specific Layer 2 CoS/Inter-Switch Link (ISL) marking, use the `no` form of this command:

```
match cos cos-value [cos-value cos-value cos-value]
no match cos cos-value [cos-value cos-value cos-value]
```

Syntax Description

- `cos-value` (Optional) Specific IEEE 802.1Q/ISL CoS value. The `cos-value` is from 0 to 7; up to four CoS values can be specified in one `match cos` statement.

Defaults

This command is disabled by default.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(5)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

In the following example, the CoS-values of 1, 2, and 3 are successful match criteria for the interface containing the classification policy called cos:

```
Router(config)# class-map cos
Router(config-cmap)# match cos 1 2 3
```

In the following example, classes called voice and video-n-data are created to classify traffic based on the CoS values. QoS treatment is then given to the appropriate packets (in this case, the QoS treatment is priority 64 and bandwidth 512) in the CoS-based-treatment policy map.

```
Router(config)# class-map voice
Router(config-cmap)# match cos 7

Router(config)# class-map video-n-data
Router(config-cmap)# match cos 5

Router(config)# policy-map cos-based-treatment
Router(config-pmap)# class voice
Router(config-pmap-c)# priority 64
Router(config-pmap-c)# exit
Router(config-pmap-c)# class video-n-data
Router(config-pmap-c)# bandwidth 512
Router(config-pmap-c)# exit
Router(config-pmap-c)# exit
```
Router(config)# interface fa0/0.1
Router(config-if)# service-policy output cos-based-treatment

The service policy configured in this section is attached to all packets leaving Fast Ethernet interface 0/0.1. The service policy can be attached to any interface that supports service policies.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td></td>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td></td>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td></td>
<td>set cos</td>
<td>Sets the Layer 2 CoS value of an outgoing packet.</td>
</tr>
<tr>
<td></td>
<td>show class-map</td>
<td>Displays all class maps and their matching criteria.</td>
</tr>
</tbody>
</table>
match destination-address mac

To use the destination MAC address as a match criterion, use the **match destination-address mac** class-map configuration command. To remove a previously specified destination MAC address as a match criterion, use the **no** form of this command.

```
match destination-address mac address
no match destination-address mac address
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>Specifies the specific destination MAC address to be used as a match criterion.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Examples

The following example specifies a class map called macaddress and specifies the destination MAC address to be used as the match criterion for this class.

```
class-map macaddress
match destination-address mac 00:00:00:00:00:00
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
</tbody>
</table>
match input-interface

To configure a class map to use the specified input interface as a match criterion, use the **match input-interface** class-map configuration command. To remove the input interface match criterion from a class map, use the **no** form of this command.

```
match input-interface interface-name

no match input-interface interface-name
```

Syntax Description

`interface-name` Name of the input interface to be used as match criteria.

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE.</td>
</tr>
<tr>
<td>12.0(7)S</td>
<td>This command was integrated into Cisco IOS Release 12.0(7)S.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For class-based weighted fair queueing (CBWFQ), you define traffic classes based on match criteria including input interfaces, access control lists (ACLs), protocols, QoS labels, and EXP field values. Packets satisfying the match criteria for a class constitute the traffic for that class.

The **match input-interface** command specifies the name of an input interface to be used as the match criterion against which packets are checked to determine if they belong to the class specified by the class map.

To use the **match input-interface** command, you must first enter the **class-map** command to specify the name of the class whose match criteria you want to establish. After you identify the class, you can use one of the following commands to configure its match criteria:

- **match access-group**
- **match input-interface**
- **match mpls experimental**
- **match protocol**

If you specify more than one command in a class map, only the last command entered applies. The last command overrides the previously entered commands.
The following example specifies a class map called eth1 and configures the input interface named ethernet1 to be used as the match criterion for this class:

```
class-map eth1
  match input-interface ethernet1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td>match access-group</td>
<td>Configures the match criteria for a class map based on the specified ACL.</td>
</tr>
<tr>
<td>match mpls</td>
<td>Configures a class map to use the specified EXP field value as a match criterion.</td>
</tr>
<tr>
<td>experimental</td>
<td></td>
</tr>
<tr>
<td>match protocol</td>
<td>Configures the match criteria for a class map on the basis of the specified protocol.</td>
</tr>
</tbody>
</table>
Quality of Service Commands

match ip dscp

To identify a specific IP differentiated service code point (DSCP) value as a match criterion, use the `match ip dscp` class-map configuration command. To remove a specific IP DSCP value from a class map, use the `no` form of this command.

```
mixed ip dscp [ip-dscp-value ip-dscp-value ip-dscp-value ip-dscp-value]
```

```
no mixed ip dscp [ip-dscp-value ip-dscp-value ip-dscp-value ip-dscp-value]
```

Syntax Description

| `ip-dscp-value` | Specifies the exact value from 0 to 63 used to identify an IP DSCP value. |

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(9)S</td>
<td>This command was integrated in Cisco IOS Release 12.0(9)S.</td>
</tr>
<tr>
<td>12.1(2)T</td>
<td>This command was integrated in Cisco IOS Release 12.1(2)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Up to eight IP DSCP values can be matched in one match statement. For example, if you wanted the IP DCSP values of 0, 1, 2, 3, 4, 5, 6, or 7 (note that only one of the IP DSCP values must be a successful match criterion, not all of the specified IP DSCP values), enter the `mixed ip dscp 0 1 2 3 4 5 6 7` command.

This command is used by the class map to identify a specific IP DSCP value marking on a packet. The `ip-dscp-value` arguments are used as markings only. The IP DSCP values have no mathematical significance. For instance, the `ip-dscp-value` of 2 is not greater than 1. The value simply indicates that a packet marked with the `ip-dscp-value` of 2 is different than a packet marked with the `ip-dscp-value` of 1. The treatment of these marked packets is defined by the user through the setting of QoS policies in policy-map class configuration mode.

Examples

The following example shows how to configure the service policy called priority50 and attach service policy priority50 to an interface. In this example, the class map called ipdscp15 will evaluate all packets entering interface Fast Ethernet 1/0/0 for an IP DSCP value of 15. If the incoming packet has been marked with the IP DSCP value of 15, the packet will be treated with a priority level of 55.

```
Router(config)# class-map ipdscp15
Router(config-cmap)# match ip dscp 15
Router(config)# exit
Router(config)# policy-map priority55
```
Router(config-pmap)# class ipdscp15
Router(config-pmap-c)# priority 55
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface fa1/0/0
Router(config-if)# service-policy input priority55

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td>set ip dscp</td>
<td>Marks the IP DSCP value for packets within a traffic class.</td>
</tr>
<tr>
<td>show class-map</td>
<td>Displays all class maps and their matching criteria.</td>
</tr>
</tbody>
</table>
match ip precedence

To identify IP precedence values as match criteria, use the `match ip precedence` command in class-map configuration mode. To remove IP precedence values from a class map, use the `no` form of this command.

```
match ip precedence ip-precedence-value [ip-precedence-value ip-precedence-value]
```

```
no match ip precedence ip-precedence-value [ip-precedence-value]
```

Syntax Description

| `ip-precedence-value` | Specifies the exact value from 0 to 7 used to identify an IP precedence value. |

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Up to four precedence values can be matched in one match statement. For example, if you wanted the IP precedence values of 0, 1, 2, or 3 (note that only one of the IP precedence values must be a successful match criterion, not all of the specified IP precedence values), enter the `match ip precedence 0 1 2 3` command.

The `ip-precedence-value` arguments are used as markings only. The IP precedence values have no mathematical significance. For instance, the `ip-precedence-value` of 2 is not greater than 1. The value simply indicates that a packet marked with the `ip-precedence-value` of 2 is different than a packet marked with the `ip-precedence-value` of 1. The treatment of these different packets is defined by the user through the setting of QoS policies in policy-map class configuration mode.

Examples

The following example shows how to configure the service policy called priority50 and attach service policy priority50 to an interface. In this example, the class map called ipprec5 will evaluate all packets entering Fast Ethernet interface 1/0/0 for an IP precedence value of 5. If the incoming packet has been marked with the IP precedence value of 5, the packet will be treated with a priority level of 50.

```
Router(config)# class-map ipprec5
Router(config-cmap)# match ip precedence 5
Router(config)# exit
Router(config)# policy-map priority50
Router(config-pmap)# class ipprec5
Router(config-pmap-c)# priority 50
Router(config-pmap-c)# exit
```
Router(config-pmap)# exit
Router(config)# interface fa1/0/0
Router(config-if)# service-policy input priority50

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td></td>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td></td>
<td>set ip precedence</td>
<td>Sets the precedence value in the IP header.</td>
</tr>
<tr>
<td></td>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td></td>
<td>show class-map</td>
<td>Displays all class maps and their matching criteria, or a specified class map and its matching criteria.</td>
</tr>
</tbody>
</table>
match ip rtp

To configure a class map to use the Real-Time Protocol (RTP) protocol port as the match criterion, use the `match ip rtp` class-map configuration command. To remove the RTP protocol port match criterion, use the `no` form of this command.

```plaintext
match ip rtp starting-port-number port-range

no match ip rtp
```

Syntax Description

- `starting-port-number` The starting RTP port number. Values range from 2000 to 65535.
- `port-range` The RTP port number range. Values range from 0 to 16383.

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(2)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is used to match IP RTP packets that fall within the specified port range. It matches packets destined to all even User Datagram Port (UDP) port numbers in the range `<starting port range> <starting port range + port range>`.

Use of an RTP port range as the match criterion is particularly effective for applications that use RTP, such as voice or video.

Examples

The following example specifies a class map called `eth1` and configures the RTP port number 2024 and range 1000 to be used as the match criteria for this class:

```plaintext
class-map eth1
match ip rtp 2024 1000
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip rtp priority</code></td>
<td>Reserves a strict priority queue for a set of RTP packet flows belonging to a range of UDP destination ports.</td>
</tr>
<tr>
<td><code>match access-group</code></td>
<td>Configures the match criteria for a class map based on the specified ACL number.</td>
</tr>
</tbody>
</table>
match mpls experimental

To configure a class map to use the specified value of the EXP field as a match criterion, use the **match mpls experimental** class-map configuration command. To remove the EXP field match criterion from a class map, use the **no** form of this command.

```
match mpls experimental number

no match mpls experimental number
```

Syntax Description

- **number**: The EXP field value to be used as match criteria. Any number from 0 to 7.

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(7)XE1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(7)T</td>
<td>This command was integrated into Cisco IOS Release 12.0(7)T.</td>
</tr>
<tr>
<td>12.1(1)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)T.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For class-based weighted fair queueing (CBWFQ), you define traffic classes based on match criteria including input interfaces, access control lists (ACLs), protocols, QoS labels, and EXP field values. Packets satisfying the match criteria for a class constitute the traffic for that class.

The **match mpls experimental** command specifies the name of an EXP field value to be used as the match criterion against which packets are checked to determine if they belong to the class specified by the class map.

To use the **match mpls experimental** command, you must first enter the **class-map** command to specify the name of the class whose match criteria you want to establish. After you identify the class, you can use one of the following commands to configure its match criteria:

- **match access-group**
- **match input-interface**
- **match mpls experimental**
- **match protocol**

If you specify more than one command in a class map, only the last command entered applies. The last command overrides the previously entered commands.
Examples
The following example specifies a class map called eth1 and configures the EXP field value 0 to be used as the match criterion for this class:

class-map eth1
 match mpls experimental 1

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td>match access-group</td>
<td>Configures the match criteria for a class map based on the specified ACL.</td>
</tr>
<tr>
<td>match input-interface</td>
<td>Configures a class map to use the specified input interface as a match criterion.</td>
</tr>
<tr>
<td>match qos-group</td>
<td>Configures the match criteria for a class map based on the specified protocol.</td>
</tr>
</tbody>
</table>
match not

To specify the single match criterion value to use as an unsuccessful match criterion, use the **match not** class-map configuration command. To remove a previously specified source value to not use as a match criterion, use the **no** form of this command.

match not match-criteria

no match not match-criteria

Syntax Description

match-criteria (Required) Specifies the match criterion value that is an unsuccessful match criterion. All other values of the specified match criterion will be considered successful match criteria.

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)T.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **match not** command is used to specify a QoS policy value that is not used as a match criterion. When the **match not** command is used, all other values of that QoS policy become successful match criteria.

For instance, if the **match not qos-group 4** command is issued in class-map configuration mode, the specified class will accept all QoS group values except 4 as successful match criteria.

Examples

In the following traffic class, all protocols except IP are considered successful match criteria:

```
Router(config)# class-map noip
Router(config-cmap)# match not protocol ip
Router(config-cmap)# exit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
</tbody>
</table>
match protocol

To configure the match criteria for a class map on the basis of the specified protocol, use the **match protocol** class-map configuration command. To remove protocol-based match criteria from a class map, use the **no** form of this command.

```
match protocol protocol-name

no match protocol protocol-name
```

Syntax Description

```
protocol-name
```

Name of the protocol used as a matching criterion. Supported protocols include the following:

- **aarp**—AppleTalk Address Resolution Protocol
- **apollo**—Apollo Domain
- **arp**—IP Address Resolution Protocol (ARP)
- **bridge**—bridging
- **bstun**—Block Serial Tunneling
- **cdp**—Cisco Discovery Protocol
- **clns**—ISO Connectionless Network Service
- **clns_es**—ISO CLNS End System
- **clns_is**—ISO CLNS Intermediate System
- **cmns**—ISO Connection-Mode Network Service
- **compressedtcp**—compressed TCP
- **decnet**—DECnet
- **decnet_node**—DECnet Node
- **decnet_router-I1**—DECnet Router L1
- **decnet_router-I2**—DECnet Router L2
- **dlsw**—data-link switching
- **ip**—IP
- **ipx**—Novell IPX
- **llc2**—llc2
- **pad**—packet assembler/disassembler links
- **qllc**—Qualified Logical Link Control protocol
- **rsrb**—remote source-route bridging
- **snapshot**—snapshot routing support
- **stun**—serial tunnel
- **vines**—Banyan VINES
- **xns**—Xerox Network Services
Quality of Service Commands

match protocol

Defaults
This command has no default behavior or values.

Command Modes
Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE.</td>
</tr>
<tr>
<td>12.0(7)S</td>
<td>This command was integrated into Cisco IOS Release 12.0(7)S.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines
For class-based weighted fair queueing (CBWFQ), you define traffic classes based on match criteria including protocols, access control lists (ACLs), input interfaces, QoS labels, and EXP field values. Packets satisfying the match criteria for a class constitute the traffic for that class.

The `match protocol` command specifies the name of a protocol to be used as the match criteria against which packets are checked to determine if they belong to the class specified by the class map.

To use the `match protocol` command, you must first enter the `class-map` command to specify the name of the class whose match criteria you want to establish. After you identify the class, you can use one of the following commands to configure its match criteria:

- `match access-group`
- `match input-interface`
- `match mpls experimental`
- `match protocol`

If you specify more than one command in a class map, only the last command entered applies. The last command overrides the previously entered commands.

This command can be used to match protocols that are known to the Network-Based Application Recognition (NBAR) feature. For a list of protocols currently supported by NBAR, see the “Classification” section of the Cisco IOS Quality of Service Solutions Configuration Guide.

Examples
The following example specifies a class map called ipx and configures the Internetwork Packet Exchange (IPX) protocol as a match criterion for it:

```
class-map ipx
  match protocol ipx
```

The following example configures NBAR to match File Transfer Protocol (FTP) traffic:

```
maint protocol ftp
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td>match access-group</td>
<td>Configures the match criteria for a class map based on the specified ACL.</td>
</tr>
<tr>
<td>match input-interface</td>
<td>Configures a class map to use the specified input interface as a match criterion.</td>
</tr>
<tr>
<td>match qos-group</td>
<td>Configures a class map to use the specified EXP field value as a match criterion.</td>
</tr>
</tbody>
</table>
match protocol citrix

To configure Network-Based Application Recognition (NBAR) to match Citrix traffic, use the `match protocol citrix` class-map configuration command. To disable NBAR from matching Citrix traffic, use the `no` form of this command.

```
match protocol citrix [app application-name-string]

no match protocol citrix [app application-name-string]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>app</td>
<td>(Optional) Specifies matching of an application name string.</td>
</tr>
<tr>
<td>application-name-string</td>
<td>(Optional) Specifies string to be used as the subprotocol parameter.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(2)E</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Entering the `match protocol citrix` command without the `app` keyword establishes all Citrix traffic as successful match criteria.

Examples

The following example configures NBAR to match all Citrix traffic:

```
match protocol citrix
```

The following example configures NBAR to match Citrix traffic with the application name of packet1:

```
match protocol citrix app packet1
```
match protocol http

To configure Network-Based Application Recognition (NBAR) to match Hypertext Transfer Protocol (HTTP) traffic by URL, HOST, or Multipurpose Internet Mail Extension (MIME)-type, use the `match protocol http` class-map configuration command. To disable NBAR from matching HTTP traffic by URL, HOST, or MIME-type, use the `no` form of this command.

```
match protocol http [url url-string | host hostname-string | mime MIME-type]
no match protocol http [url url-string | host hostname-string | mime MIME-type]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>url</td>
<td>(Optional) Specifies matching by a URL.</td>
</tr>
<tr>
<td>url-string</td>
<td>(Optional) User-specified URL of HTTP traffic to be matched.</td>
</tr>
<tr>
<td>host</td>
<td>(Optional) Specifies matching by a host name.</td>
</tr>
<tr>
<td>hostname-string</td>
<td>(Optional) User-specified host name to be matched.</td>
</tr>
<tr>
<td>mime</td>
<td>(Optional) Specifies matching by MIME text string.</td>
</tr>
<tr>
<td>MIME-type</td>
<td>(Optional) User-specified MIME text string to be matched.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(2)E</td>
<td>The <code>hostname-string</code> argument was added.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When matching by MIME-type, the MIME-type can contain any user-specified text string. Refer to the Internet Assigned Numbers Authority (IANA) web page (www.iana.com) for a list of the IANA-registered MIME types.

When matching by MIME-type is performed, NBAR matches a packet containing the MIME-type and all subsequent packets until the next HTTP transaction.

When matching by HOST is performed, NBAR performs a regular expression match on the host field contents inside an HTTP GET packet and classifies all packets from that host.

When matching by URL is performed, NBAR recognizes the HTTP GET packets containing the URL, and then matches all packets that are part of the HTTP GET request. When specifying a URL for classification, include only the portion of the URL following www.hostname.domain in the match statement. For example, in the URL www.anydomain.com/latest/whatsnew.html, include only /latest/whatsnew.html.
To match the www.anydomain.com portion, use the host name matching feature. The URL or host specification strings can take the form of a regular expression with options shown in Table 8.

Table 8 **URL or HOST Specification String Options**

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Match any zero or more characters in this position.</td>
</tr>
<tr>
<td>?</td>
<td>Match any one character in this position.</td>
</tr>
<tr>
<td></td>
<td>Match one of a choice of characters.</td>
</tr>
<tr>
<td>()</td>
<td>Match one of a choice of characters in a range. For example, xyz.(gif</td>
</tr>
<tr>
<td>[]</td>
<td>Match any character in the range specified, or one of the special characters. For example, [0-9] is all of the digits; [] is the “” character, and [[]] is the “[” character.</td>
</tr>
</tbody>
</table>

Examples

The following example classifies, within the class map called class1, HTTP packets based on any URL containing the string whatsnew/latest followed by zero or more characters:

```plaintext
class-map class1
match protocol http url whatsnew/latest*
```

The following example classifies, within the class map called class2, packets based on any host name containing the string cisco followed by zero or more characters:

```plaintext
class-map class2
match protocol http host cisco*
```

The following example classifies, within the class map called class3, packets based on the Joint Photographics Expert Group (JPEG) MIME type:

```plaintext
class-map class3
match protocol http mime **jpeg*
```
match qos-group

To identify a specific QoS group value as a match criterion, use the `match qos-group` command in class-map configuration mode. To remove a specific QoS group value from a class map, use the `no` form of this command.

```
match qos-group qos-group-value
no match qos-group qos-group-value
```

Syntax Description

-qos-group-value- Specifies the exact value from 0 to 99 used to identify a QoS group value.

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(9)S</td>
<td>This command was integrated into Cisco IOS Release 12.0(9)S.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is used by the class map to identify a specific QoS group value marking on a packet.

The `qos-group-value` arguments are used as markings only. The QoS group values have no mathematical significance. For instance, the `qos-group-value` of 2 is not greater than 1. The value simply indicates that a packet marked with the `qos-group-value` of 2 is different than a packet marked with the `qos-group-value` of 1. The treatment of these packets is defined by the user through the setting of QoS policies in policy-map class configuration mode.

The QoS group value is local to the router, meaning that the QoS group value that is marked on a packet does not leave the router when the packet leaves the router. If you need a marking that resides in the packet, use IP precedence setting, IP Differentiated Services Code Point (DSCP) setting, or another method of packet marking.

Examples

The following example shows how to configure the service policy called `priority50` and attach service policy `priority50` to an interface. In this example, the class map called `qosgroup5` will evaluate all packets entering Fast Ethernet interface 1/0/0 for a QoS group value of 5. If the incoming packet has been marked with the QoS group value of 5, the packet will be treated with a priority level of 50.

```
Router(config)# class-map qosgroup5
Router(config-cmap)# match qos-group 5
Router(config)# exit
Router(config)# policy-map priority50
Router(config-pmap)# class qosgroup5
Router(config-pmap-c)# priority 50
Router(config-pmap-c)# exit
Router(config-pmap)# exit
```
Router(config)# interface fa1/0/0
Router(config-if)# service-policy output priority50

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more</td>
</tr>
<tr>
<td></td>
<td>interfaces to specify a service policy.</td>
</tr>
<tr>
<td>set ip precedence</td>
<td>Specifies an IP precedence value for packets within a traffic class.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or VC, or an output interface or</td>
</tr>
<tr>
<td></td>
<td>VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td>show class-map</td>
<td>Displays all class maps and their matching criteria, or a specified class</td>
</tr>
<tr>
<td></td>
<td>map and its matching criteria.</td>
</tr>
</tbody>
</table>
match source-address mac

To use the source MAC address as a match criterion, use the `match source-address mac` class-map configuration command. To remove a previously specified source MAC address as a match criterion in class map configuration mode, use the `no` form of this command.

```
match source-address mac address-destination

no match source-address mac address-destination
```

Syntax Description

<table>
<thead>
<tr>
<th>Address-destination</th>
<th>Specifies the source destination MAC address to be used as a match criterion.</th>
</tr>
</thead>
</table>

Defaults

This command has no default behavior or values.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command can be used only on an input interface with a MAC address. These interfaces include Fast Ethernet and Ethernet interfaces.

This command cannot be used on output interfaces with no MAC address, such as serial and ATM interfaces.

Examples

The following example uses the mac address mac 0.0.0 as a match criterion:

```
class-map matchsrcmac
match source-address mac 0.0.0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
</tbody>
</table>
max-reserved-bandwidth

To change the percent of interface bandwidth allocated for Resource Reservation Protocol (RSVP), class-based weighted fair queueing (CBWFQ), low latency queueing (LLQ), IP RTP Priority, Frame Relay IP RTP Priority, and Frame Relay PVC Interface Priority Queueing (PIPQ), use the **max-reserved bandwidth** interface configuration command. To restore the default value, use the **no** form of this command.

```
max-reserved-bandwidth percent
```

```
no max-reserved-bandwidth
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>percent</td>
<td>Percent of interface bandwidth allocated for RSVP, CBWFQ, LLQ, IP RTP Priority, Frame Relay IP RTP Priority, and Frame Relay PIPQ.</td>
</tr>
</tbody>
</table>

Defaults

75 percent

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The sum of all bandwidth allocation on an interface should not exceed 75 percent of the available bandwidth on an interface. The remaining 25 percent of bandwidth is used for overhead, including Layer 2 overhead, control traffic, and best-effort traffic.

If you need to allocate more than 75 percent for RSVP, CBWFQ, LLQ, IP RTP Priority, Frame Relay IP RTP Priority, and Frame Relay PIPQ, you can use the **max-reserved-bandwidth** command. The `percent` argument specifies the maximum percentage of the total interface bandwidth that can be used.

If you do use the **max-reserved-bandwidth** command, make sure that not too much bandwidth is taken away from best-effort and control traffic.

The **max-reserved-bandwidth** command is intended for use on main interfaces only; it has no effect on virtual circuits (VCs) or ATM permanent virtual circuits (PVCs).

Examples

In the following example, the policy map called `policy1` is configured for three classes with a total of 8 Mbps configured bandwidth, as shown in the output from the **show policy-map** command:

```
Router# show policy-map policy1

Policy Map policy1
  Weighted Fair Queueing
    Class class1
      Bandwidth 2500 (kbps) Max Threshold 64 (packets)
    Class class2
      Bandwidth 2500 (kbps) Max Threshold 64 (packets)
```
Class class3
 Bandwidth 3000 (kbps) Max Threshold 64 (packets)

When you enter the `service-policy` command in an attempt to attach the policy map on a 10-Mbps Ethernet interface, an error message such as the following is produced:

I/f Ethernet1/1 class class3 requested bandwidth 3000 (kbps) Available only 2500 (kbps)

The error message is produced because the default maximum configurable bandwidth is 75 percent of the available interface bandwidth, which in this example is 7.5 Mbps. To change the maximum configurable bandwidth to 80 percent, use the `max-reserved-bandwidth` command in interface configuration mode, as follows:

```
max-reserved-bandwidth 80
service output policy1
end
```

To verify that the policy map was attached, enter the `show policy-map interface` command:

```
Router# show policy-map interface e1/1
Ethernet1/1  output :policy1
  Weighted Fair Queueing
  Class class1
    Output Queue:Conversation 265
      Bandwidth 2500 (kbps) Packets Matched 0 Max Threshold 64 (packets)
      (discards/tail drops) 0/0
  Class class2
    Output Queue:Conversation 266
      Bandwidth 2500 (kbps) Packets Matched 0 Max Threshold 64 (packets)
      (discards/tail drops) 0/0
  Class class3
    Output Queue:Conversation 267
      Bandwidth 3000 (kbps) Packets Matched 0 Max Threshold 64 (packets)
      (discards/tail drops) 0/0
```

Virtual Template Configuration Example

The following example configures a strict priority queue in a virtual template configuration with CBWFQ. The `max-reserved-bandwidth` command changes the maximum bandwidth allocated between CBWFQ and IP RTP Priority from the default (75 percent) to 80 percent.

```
multilink virtual-template 1
interface virtual-template 1
  ip address 172.16.1.1 255.255.255.0
  no ip directed-broadcast
  ip rtp priority 16384 16383 25
  service-policy output policy1
  ppp multilink
  ppp multilink fragment-delay 20
  ppp multilink interleave
  max-reserved-bandwidth 80
end

interface Serial0/1
  bandwidth 64
  ip address 10.1.1.2 255.255.255.0
  no ip directed-broadcast
  encapsulation ppp
  ppp multilink
end
```
To make the virtual access interface function properly, do not configure the `bandwidth` command on the virtual template. Configure it on the actual interface, as shown in the example.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bandwidth (policy-map class)</code></td>
<td>Specifies or modifies the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td><code>ip rtp priority</code></td>
<td>Reserves a strict priority queue for a set of RTP packet flows belonging to a range of UDP destination ports.</td>
</tr>
<tr>
<td><code>service-policy</code></td>
<td>Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td><code>show policy-map</code></td>
<td>Displays the configuration of all classes comprising the specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td><code>show policy-map interface</code></td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
oam-bundle

To enable end-to-end F5 Operation, Administration, and Maintenance (OAM) loopback cell generation and OAM management for a virtual circuit (VC) class that can be applied to a VC bundle, use the oam-bundle vc-class configuration command. To remove OAM management from the class configuration, use the no form of this command.

To enable end-to-end F5 OAM loopback cell generation and OAM management for all VC members of a bundle, use the oam-bundle bundle configuration command. To remove OAM management from the bundle, use the no form of this command.

```
oam-bundle [manage] [frequency]
```

```
no oam-bundle [manage] [frequency]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>manage</td>
<td>(Optional) Enables OAM management. If this keyword is omitted, loopback cells are sent but the bundle is not managed.</td>
</tr>
<tr>
<td>frequency</td>
<td>(Optional) Number of seconds between sending OAM loopback cells. Values range from 0 to 600 seconds.</td>
</tr>
</tbody>
</table>

Defaults

End-to-end F5 OAM loopback cell generation and OAM management are disabled, but if OAM cells are received, they are looped back. The default value for the `frequency` argument is 10 seconds.

Command Modes

VC-class configuration (for a VC class)

Bundle configuration (for an ATM VC bundle)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command defines whether a VC bundle is OAM-managed. If this command is configured for a bundle, every VC member of the bundle is OAM-managed. If OAM management is enabled, further control of OAM management is configured using the `oam retry` command.

This command has no effect if the VC class that contains the command is attached to a standalone VC, that is, if the VC is not a bundle member. In this case, the attributes are ignored by the VC.

To use this command in bundle configuration mode, enter the `bundle` subinterface configuration command to create the bundle or to specify an existing bundle before you enter this command.

To use this command in vc-class configuration mode, first enter the `vc-class atm` global configuration command.

VCs in a VC bundle are subject to the following configuration inheritance rules (listed in order of next highest precedence):

- VC configuration in bundle-vc mode
- Bundle configuration in bundle mode (with effect of assigned vc-class configuration)
The following example enables OAM management for a bundle called chicago:

```
bundle chicago
oam-bundle manage
```
police

To configure the Traffic Policing feature, use the `police` QoS policy-map class configuration command. To remove the Traffic Policing feature from the configuration, use the `no` form of this command.

```
police bps burst-normal burst-max conform-action action exceed-action action [violate-action action]
```

```
no police bps burst-normal burst-max conform-action action exceed-action action [violate-action action]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bps</code></td>
<td>Average rate, in bits per second.</td>
</tr>
<tr>
<td><code>burst-normal</code></td>
<td>Normal burst size, in bytes.</td>
</tr>
<tr>
<td><code>burst-max</code></td>
<td>Excess burst size, in bytes. In Cisco IOS Release 12.1(5)T onward, the excess burst-size need not be specified unless the <code>violate-action</code> option is also specified. In Cisco IOS Releases 12.0(5)XE through 12.1(1)E, the excess burst size must be specified.</td>
</tr>
<tr>
<td><code>conform-action</code></td>
<td>Action to take on packets that conform to the rate limit.</td>
</tr>
<tr>
<td><code>exceed-action</code></td>
<td>Action to take on packets that exceed the rate limit.</td>
</tr>
<tr>
<td><code>violate-action</code></td>
<td>(Optional) Action to take on packets that violate the normal and maximum burst sizes. If the <code>violate-action</code> option is specified, the token bucket algorithm works with two token buckets.</td>
</tr>
</tbody>
</table>

This option is not available in Cisco IOS Release 12.0XE or Release 12.1 E.

<table>
<thead>
<tr>
<th><code>action</code></th>
<th>Action to take on packets. Specify one of the following keywords:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>drop</code></td>
<td>Drops the packet.</td>
</tr>
<tr>
<td><code>set-prec-transmit new-prec</code></td>
<td>Sets the IP precedence and sends the packet.</td>
</tr>
<tr>
<td><code>set-qos-transmit new-qos</code></td>
<td>Sets the QoS group and sends the packet.</td>
</tr>
<tr>
<td><code>set-dscp-transmit new-dscp</code></td>
<td>Sets the differentiated services code point (DSCP) value and transmits the packet.</td>
</tr>
<tr>
<td><code>transmit</code></td>
<td>Sends the packet.</td>
</tr>
</tbody>
</table>

Defaults

This command is disabled by default.

Command Modes

QoS policy-map class configuration
The **violate-action** option is not available in Cisco IOS Release 12.0 XE or Release 12.1 E. The **violate-action** option is not available with the **rate-limit** command.

The Traffic Policing feature works with a token bucket algorithm. Two types of token bucket algorithms are in Cisco IOS Release 12.1(5)T: a single-token bucket algorithm and a two-token bucket algorithm. A single-token bucket system is used when the **violate-action** option is not specified, and a two-token bucket system is used when the **violate-action** option is specified.

The token bucket algorithm for the **police** command that was introduced in Cisco IOS Release 12.0(5)XE is different from the token bucket algorithm for the **police** command introduced in Cisco IOS Release 12.1(5)T. For information on the token bucket algorithm introduced in Release 12.0(5)XE, see the *Traffic Policing* document for Release 12.0(5)XE. This document is available on the *New Features for 12.0(5)XE* feature documentation index (under Modular QoS CLI-related feature modules) at www.cisco.com.

The following are explanations of how the token bucket algorithms introduced in Cisco IOS Release 12.1(5)T work.

Token Bucket Algorithm with One Token Bucket

The one token bucket algorithm is used when the **violate-action** option is not specified in the **police** command command-line interface (CLI).

The conform bucket is initially set to the full size (the full size is the number of bytes specified as the normal burst size).

When a packet of a given size (for example, “B” bytes) arrives at specific time (time “T”) the following actions occur:

- Tokens are updated in the conform bucket. If the previous arrival of the packet was at T1 and the current time is T, the bucket is updated with (T - T1) worth of bits based on the token arrival rate. The token arrival rate is calculated as follows:

 \[(\text{time between packets} \times \text{which is equal to } T - T1) \times \text{policer rate})/8 \text{ bytes}\]

- If the number of bytes in the conform bucket B is greater than or equal to 0, the packet conforms and the conform action is taken on the packet. If the packet conforms, B bytes are removed from the conform bucket and the conform action is completed for the packet.

- If the number of bytes in the conform bucket B (minus the packet size to be limited) is fewer than 0, the exceed action is taken.
Token Bucket Algorithm with Two Token Buckets

The two-token bucket algorithm is used when the violate-action is specified in the police command CLI. The conform bucket is initially full (the full size is the number of bytes specified as the normal burst size).

The exceed bucket is initially full (the full exceed bucket size is the number of bytes specified in the maximum burst size).

When a packet of given size (for example, “B” bytes) arrives at specific time (time “T”) the following actions occur:

- Tokens are updated in the conform bucket. If the previous arrival of the packet was at T1 and the current arrival of the packet is at t, the bucket is updated with T - T1 worth of bits based on the token arrival rate. The refill tokens are placed in the conform bucket. If the tokens overflow the conform bucket, the overflow tokens are placed in the exceed bucket.

The token arrival rate is calculated as follows:

\[\text{Time between packets} \times \text{Policer rate} / 8 \text{ bytes} \]

- If the number of bytes in the conform bucket - B is greater than or equal to 0, the packet conforms and the conform action is taken on the packet. If the packet conforms, B bytes are removed from the conform bucket and the conform action is taken. The exceed bucket is unaffected in this scenario.

- If the number of bytes in the conform bucket B is less than 0, the excess token bucket is checked for bytes by the packet. If the number of bytes in the exceed bucket B is greater than or equal to 0, the exceed action is taken and B bytes are removed from the exceed token bucket. No bytes are removed from the conform bucket.

- If the number bytes in the exceed bucket B is fewer than 0, the packet violates the rate and the violate action is taken. The action is complete for the packet.

Examples

Token Bucket Algorithm with One Token Bucket

The following example shows how to define a traffic class (using the class-map command) and associate the match criteria from the traffic class with the Traffic Policing configuration, which is configured in the service policy (using the policy-map command). The service-policy command is then used to attach this service policy to the interface.

In this particular example, Traffic Policing is configured with the average rate at 8000 bits per second and the normal burst size at 1000 bytes for all packets leaving Fast Ethernet interface 0/0:

```bash
Router(config)# class-map access-match
Router(config-cmap)# match access-group 1
Router(config-cmap)# exit
Router(config)# policy-map police-setting
Router(config-pmap)# class access-match
Router(config-pmap-c)# police 8000 1000 conform-action transmit exceed-action drop
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface fastethernet 0/0
Router(config-if)# service-policy output police-setting
```

In this example, the initial token buckets start full at 1000 bytes. If a 450-byte packet arrives, the packet conforms because enough bytes are available in the conform token bucket. The conform action (send) is taken by the packet and 450 bytes are removed from the conform token bucket (leaving 550 bytes).
If the next packet arrives 0.25 seconds later, 250 bytes are added to the token bucket ((0.25 * 8000)/8), leaving 800 bytes in the token bucket. If the next packet is 900 bytes, the packet exceeds and the exceed action (drop) is taken. No bytes are taken from the token bucket.

Token Bucket Algorithm with Two Token Buckets Example

In this particular example, Traffic Policing is configured with the average rate at 8000 bits per second, the normal burst size at 1000 bytes, and the excess burst size at 1000 bytes for all packets leaving Fast Ethernet interface 0/0.

```
Router(config)# class-map access-match
Router(config-cmap)# match access-group 1
Router(config-cmap)# exit
Router(config)# policy-map police-setting
Router(config-pmap)# class access-match
Router(config-pmap-c)# police 8000 1000 1000 conform-action transmit exceed-action set-qos-transmit 1 violate-action drop
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface fastethernet 0/0
Router(config-if)# service-policy output police-setting
```

In this example, the initial token buckets starts full at 1000 bytes. If a 450-byte packet arrives, the packet conforms because enough bytes are available in the conform token bucket. The conform action (send) is taken by the packet and 450 bytes are removed from the conform token bucket (leaving 550 bytes).

If the next packet arrives 0.25 seconds later, 250 bytes are added to the conform token bucket ((0.25 * 8000)/8), leaving 800 bytes in the conform token bucket. If the next packet is 900 bytes, the packet does not conform because only 800 bytes are available in the conform token bucket.

The exceed token bucket, which starts full at 1000 bytes (as specified by the excess burst size) is then checked for available bytes. Because enough bytes are available in the exceed token bucket, the exceed action (set the QoS transmit value of 1) is taken and 900 bytes are taken from the exceed bucket (leaving 100 bytes in the exceed token bucket).

If the next packet arrives 0.40 seconds later, 400 bytes are added to the token buckets ((.40 * 8000)/8). Therefore, the conform token bucket now has 1000 bytes (the maximum number of tokens available in the conform bucket) and 200 bytes overflow the conform token bucket (because it only 200 bytes were needed to fill the conform token bucket to capacity). These overflow bytes are placed in the exceed token bucket, giving the exceed token bucket 300 bytes.

If the arriving packet is 1000 bytes, the packet conforms because enough bytes are available in the conform token bucket. The conform action (transmit) is taken by the packet and 1000 bytes are removed from the conform token bucket (leaving 0 bytes).

If the next packet arrives 0.20 seconds later, 200 bytes are added to the token bucket ((.20 * 8000)/8). Therefore, the conform bucket now has 200 bytes. If the arriving packet is 400 bytes, the packet does not conform because only 200 bytes are available in the conform bucket. Similarly, the packet does not exceed because only 300 bytes are available in the exceed bucket. Therefore, the packet violates and the violate action (drop) is taken.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more</td>
</tr>
<tr>
<td></td>
<td>interfaces to specify a service policy.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or VC, or an output interface or</td>
</tr>
<tr>
<td></td>
<td>VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the contents of a policy map, including the priority setting of a</td>
</tr>
<tr>
<td></td>
<td>various policy maps.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the contents of a policy map, including the priority setting of a</td>
</tr>
<tr>
<td>interface</td>
<td>specific interface or PVC.</td>
</tr>
</tbody>
</table>
policy-map

To create or modify a policy map that can be attached to one or more interfaces to specify a service policy, use the policy-map global configuration command. To delete a policy map, use the no form of this command.

```plaintext
policy-map policy-map-name

no policy-map policy-map-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Policy-Map Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>policy-map-name</code></td>
<td>Name of the policy map. The name can be a maximum of 40 alphanumeric characters.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `policy-map` command to specify the name of the policy map to be created, added to, or modified before you can configure policies for classes whose match criteria are defined in a class map. Entering the `policy-map` command enables QoS policy-map configuration mode in which you can configure or modify the class policies for that policy map.

You can configure class policies in a policy map only if the classes have match criteria defined for them. You use the `class-map` and `match` commands to configure the match criteria for a class. Because you can configure a maximum of 64 class maps, no policy map can contain more than 64 class policies.

A single policy map can be attached to multiple interfaces concurrently. When you attempt to attach a policy map to an interface, the attempt is denied if the available bandwidth on the interface cannot accommodate the total bandwidth requested by class policies comprising the policy map. In this case, if the policy map is already attached to other interfaces, it is removed from them.

Whenever you modify class policy in an attached policy map, CBWFQ is notified and the new classes are installed as part of the policy map in the CBWFQ system.

Examples

The following example creates a policy map called policy1 and configures two class policies included in that policy map. The class policy called class1 specifies policy for traffic that matches access control list (ACL) 136. The second class is the default class to which packets that do not satisfy configured match criteria are directed.

```plaintext
! The following commands create class-map class1 and defines its match criteria:
class-map class1
  match access-group 136
```
The following commands create the policy map, which is defined to contain policy specification for class1 and the default class:

```
policy-map policy1

class class1
  bandwidth 2000
  queue-limit 40

class class-default
  fair-queue 16
  queue-limit 20
```

The following example creates a policy map called policy9 and configures three class policies to belong to that map. Of these classes, two specify policy for classes with class maps that specify match criteria based on either a numbered ACL or an interface name, and one specifies policy for the default class called class-default to which packets that do not satisfy configured match criteria are directed.

```
policy-map policy9

class acl136
  bandwidth 2000
  queue-limit 40

class ethernet101
  bandwidth 3000
  random-detect exponential-weighting-constant 10

class class-default
  fair-queue 10
  queue-limit 20
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bandwidth (policy-map-class)</code></td>
<td>Specifies or modifies the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td><code>class (policy-map)</code></td>
<td>Specifies the name of the class whose policy you want to create or change, and the default class (commonly known as the class-default class) before you configure its policy.</td>
</tr>
<tr>
<td><code>class class-default</code></td>
<td>Specifies the default class whose bandwidth is to be configured or modified.</td>
</tr>
<tr>
<td><code>class-map</code></td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td><code>fair-queue (class-default)</code></td>
<td>Specifies the number of dynamic queues to be reserved for use by the class-default class as part of the default class policy.</td>
</tr>
<tr>
<td><code>queue-limit</code></td>
<td>Specifies or modifies the maximum number of packets the queue can hold for a class policy configured in a policy map.</td>
</tr>
<tr>
<td><code>random-detect (interface)</code></td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td><code>random-detect exponential-weighting-constant</code></td>
<td>Configures the WRED and DWRED exponential weight factor for the average queue size calculation.</td>
</tr>
<tr>
<td><code>random-detect precedence</code></td>
<td>Configures WRED and DWRED parameters for a particular IP Precedence.</td>
</tr>
<tr>
<td><code>service-policy</code></td>
<td>Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
</tbody>
</table>
precedence (VC bundle)

To configure precedence levels for a virtual circuit (VC) class that can be assigned to a VC bundle and thus applied to all VC members of that bundle, use the precedence vc-class configuration command. To remove the precedence levels from the VC class, use the no form of this command.

To configure the precedence levels for a VC member of a bundle, use the precedence bundle-vc configuration command. To remove the precedence levels from the VC, use the no form of this command.

```
precedence [other | range]

no precedence
```

Syntax Description

- **other** (Optional) Any precedence levels in the range from 0 to 7 that are not explicitly configured.
- **range** (Optional) A single precedence level specified as a number, or a range of precedence levels, specified as a hyphenated range.

Defaults

Defaults to other, that is, any precedence levels in the range from 0 to 7 that are not explicitly configured.

Command Modes

- VC-class configuration (for a VC class)
- Bundle-vc configuration (for ATM VC bundle members)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1(22)CC</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(3)T</td>
<td>This command was integrated into Cisco IOS Release 12.0(3)T. This command was extended to configure precedence levels for a VC member of a bundle.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Assignment of precedence levels to VC bundle members allows you to create differentiated service because you can distribute the IP Precedence levels over the different VC bundle members. You can map a single precedence level or a range of levels to each discrete VC in the bundle, thereby enabling VCs in the bundle to carry packets marked with different precedence levels. Alternatively, you can configure a VC with the precedence other command to indicate that it can carry traffic marked with precedence levels not specifically configured for it. Only one VC in the bundle can be configured with the precedence other command to carry all precedence levels not specified. This VC is considered the default one.

To use this command in vc-class configuration mode, enter the vc-class atm global configuration command before you enter this command. This command has no effect if the VC class that contains the command is attached to a standalone VC, that is, if the VC is not a bundle member.
To use this command to configure an individual bundle member in bundle-vc configuration mode, first enter the **bundle** command to enact bundle configuration mode for the bundle to which you want to add or modify the VC member to be configured. Then, use the **pvc-bundle** command to specify the VC to be created or modified and enter bundle-vc configuration mode.

VCs in a VC bundle are subject to the following configuration inheritance guidelines (listed in order of next highest precedence):

- VC configuration in bundle-vc mode
- Bundle configuration in bundle mode (with effect of assigned vc-class configuration)
- Subinterface configuration in subinterface mode

Examples

The following example configures a class called control-class that includes a **precedence** command that, when applied to a bundle, configures all VC members of that bundle to carry IP Precedence level 7 traffic. Note, however, that VC members of that bundle can be individually configured with the **precedence** command at the bundle-vc level, which would supervene.

```
vc-class atm control-class
precedence 7
```

The following example configures permanent virtual circuit (PVC) 401 (with the name of control-class) to carry traffic with IP Precedence levels in the range of 4-2, overriding the precedence level mapping set for the VC through vc-class configuration:

```
pvc-bundle control-class 401
precedence 4-2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bump</td>
<td>Configures the bumping rules for a VC class that can be assigned to a VC bundle.</td>
</tr>
<tr>
<td>class-vc</td>
<td>Assigns a VC class to an ATM PVC, SVC, or VC bundle member.</td>
</tr>
<tr>
<td>protect</td>
<td>Configures a VC class with protected group or protected VC status for application to a VC bundle member.</td>
</tr>
<tr>
<td>ubr</td>
<td>Configures UBR QoS and specifies the output peak cell rate for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
<tr>
<td>ubr+</td>
<td>Configures UBR QoS and specifies the output peak cell rate and output minimum guaranteed cell rate for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
<tr>
<td>vbr-nrt</td>
<td>Configures the VBR-NRT QoS and specifies output peak cell rate, output sustainable cell rate, and output maximum burst cell size for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
</tbody>
</table>
precedence (WRED group)

To configure a Weighted Random Early Detection (WRED) or VIP-distributed WRED (DWRED) group for a particular IP Precedence, use the precedence random-detect-group configuration command. To return the values for each IP Precedence for the group to the default values, use the no form of this command.

```
precedence precedence min-threshold max-threshold mark-probability-denominator
no precedence precedence min-threshold max-threshold mark-probability-denominator
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>precedence</td>
<td>IP Precedence number. Values range from 0 to 7.</td>
</tr>
<tr>
<td>min-threshold</td>
<td>Minimum threshold in number of packets. Value range from 1 to 4096. When the average queue length reaches this number, WRED or DWRED begins to drop packets with the specified IP Precedence.</td>
</tr>
<tr>
<td>max-threshold</td>
<td>Maximum threshold in number of packets. The value range is min-threshold to 4096. When the average queue length exceeds this number, WRED or DWRED drops all packets with the specified IP Precedence.</td>
</tr>
<tr>
<td>mark-probability-denominator</td>
<td>Denominator for the fraction of packets dropped when the average queue depth is max-threshold. For example, if the denominator is 512, 1 out of every 512 packets is dropped when the average queue is at the max-threshold. The value is 1 to 65536. The default is 10; 1 out of every 10 packets is dropped at the max-threshold.</td>
</tr>
</tbody>
</table>

Defaults

For all IP Precedences, the mark-probability-denominator argument is 10, and the max-threshold argument is based on the output buffering capacity and the transmission speed for the interface.

The default min-threshold argument depends on the IP Precedence. The min-threshold argument for IP Precedence 0 corresponds to half of the max-threshold argument. The values for the remaining IP Precedences fall between half the max-threshold argument and the max-threshold argument at evenly spaced intervals. See Table 9 in the “Usage Guidelines” section of this command for a list of the default minimum value for each IP Precedence.

Command Modes

Random-detect-group configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1(22)CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

WRED is a congestion avoidance mechanism that slows traffic by randomly dropping packets when congestion exists. DWRED is similar to WRED but uses the Versatile Interface Processor (VIP) instead of the Route Switch Processor (RSP).

If used, this command is issued after the `random-detect-group` command.

When you configure the `random-detect group` command on an interface, packets are given preferential treatment based on the IP Precedence of the packet. Use the `precedence` command to adjust the treatment for different IP Precedences.

If you want WRED or DWRED to ignore the IP Precedence when determining which packets to drop, enter this command with the same parameters for each IP Precedence. Remember to use reasonable values for the minimum and maximum thresholds.

Note

The default WRED or DWRED parameter values are based on the best available data. We recommend that you do not change the parameters from their default values unless you have determined that your applications would benefit from the changed values.

Table 9 lists the default minimum value for each IP Precedence.

Table 9 Default WRED Minimum Threshold Values

<table>
<thead>
<tr>
<th>IP Precedence</th>
<th>Minimum Threshold Value (Fraction of Maximum Threshold Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8/16</td>
</tr>
<tr>
<td>1</td>
<td>9/16</td>
</tr>
<tr>
<td>2</td>
<td>10/16</td>
</tr>
<tr>
<td>3</td>
<td>11/16</td>
</tr>
<tr>
<td>4</td>
<td>12/16</td>
</tr>
<tr>
<td>5</td>
<td>13/16</td>
</tr>
<tr>
<td>6</td>
<td>14/16</td>
</tr>
<tr>
<td>7</td>
<td>15/16</td>
</tr>
</tbody>
</table>

Examples

The following example specifies parameters for the WRED parameter group called `sanjose` for the different IP Precedences:

```
random-detect-group sanjose
  precedence 0 32 256 100
  precedence 1 64 256 100
  precedence 2 96 256 100
  precedence 3 128 256 100
  precedence 4 160 256 100
  precedence 5 192 256 100
  precedence 6 224 256 100
  precedence 7 256 256 100
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponential-weighting-constant</td>
<td>Configures the exponential weight factor for the average queue size calculation for a WRED parameter group.</td>
</tr>
<tr>
<td>random-detect (per VC)</td>
<td>Enables per-VC WRED or per-VC DWRED.</td>
</tr>
<tr>
<td>random-detect-group</td>
<td>Defines the WRED or DWRED parameter group.</td>
</tr>
<tr>
<td>random-detect precedence</td>
<td>Configures WRED and DWRED parameters for a particular IP Precedence.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
<tr>
<td>show queueing interface</td>
<td>Displays the queueing statistics of an interface or VC.</td>
</tr>
</tbody>
</table>
priority

To give priority to a class of traffic belonging to a policy map, use the `priority` policy-map class configuration command. To remove a previously specified priority specified for a class, use the `no` form of this command.

```
priority bandwidth-kbps [burst]
no priority bandwidth-kbps [burst]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bandwidth-kbps</code></td>
<td>Guaranteed allowed bandwidth, in kbps, for the priority traffic. The amount of guaranteed bandwidth varies according to the interface and platform in use. Beyond the guaranteed bandwidth, the priority traffic will be dropped in the event of congestion to ensure that the nonpriority traffic is not starved.</td>
</tr>
<tr>
<td><code>burst</code></td>
<td>(Optional) Specifies the burst size, in bytes. The range of the burst is 32 to 2,000,000 bytes.</td>
</tr>
</tbody>
</table>

| Defaults | This command has no default behavior or values. |

| Command Modes | Policy-map class configuration |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.0(7)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td></td>
<td>12.0(5)XE5</td>
<td>This command was introduced for the Versatile Interface Processor (VIP) as part of the Distributed Low Latency Queueing (Low Latency Queueing for the VIP) feature.</td>
</tr>
<tr>
<td></td>
<td>12.0(9)S</td>
<td>This command was introduced for the VIP as part of the Distributed Low Latency Queueing (Low Latency Queueing for the VIP) feature.</td>
</tr>
<tr>
<td></td>
<td>12.1(2)E</td>
<td>The <code>burst</code> argument was added.</td>
</tr>
<tr>
<td></td>
<td>12.1(3)T</td>
<td>The <code>burst</code> argument was added.</td>
</tr>
<tr>
<td></td>
<td>12.1(5)T</td>
<td>This command was introduced for the VIP as part of the Distributed Low Latency Queueing (Low Latency Queueing for the VIP) feature.</td>
</tr>
</tbody>
</table>

| Usage Guidelines | This command configures low latency queueing (LLQ), providing strict priority queueing (PQ) for class-based weighted fair queueing (CBWFQ). Strict PQ allows delay-sensitive data such as voice to be dequeued and sent before packets in other queues are dequeued. |
|-----------------------------| The `priority` command allows you to set up classes based on a variety of criteria (not just User Datagram Ports (UDP) ports) and assign priority to them, and is available for use on serial interfaces and ATM permanent virtual circuits (PVCs). A similar command, `ip rtp priority`, allows you to stipulate priority flows based only on UDP port numbers and is not available for ATM PVCs. |
When the device is not congested, the priority class traffic is allowed to exceed its allocated bandwidth. When the device is congested, the priority class traffic above the allocated bandwidth is discarded.

The burst argument is used to specify the burst size and, therefore, configure the network to accommodate temporary bursts of traffic. The default burst value, which is computed as 200 milliseconds of traffic at the configured bandwidth rate, is used when the burst argument is not specified.

The bandwidth and priority commands cannot be used in the same class, within the same policy map. These commands can be used together in the same policy map, however.

Within a policy map, you can give one or more classes priority status. When multiple classes within a single policy map are configured as priority classes, all traffic from these classes is queued to the same, single, priority queue.

Remember the following guidelines when using the priority command:

- Layer 2 encapsulations are accounted for in the amount of bandwidth specified with the priority command. However, care must be taken to configure a bandwidth that has room for cell tax overhead and possible jitter introduced by the routers in the voice path.
- The priority command can be used for Voice over IP (VoIP) on serial links, Frame Relay links, and ATM PVCs.
- The priority command cannot be used in conjunction with other policy-map class configuration command, such as the random-detect, queue-limit, and bandwidth commands.
- The priority command can be configured in multiple classes, but it should only be used for voice-like, constant bit rate (CBR) traffic.
- Configuring the priority command in multiple classes provides the ability to police the priority classes individually. For an example, see the following configuration:

```plaintext
policy-map policy1
  class voice1
    priority 24
  class voice2
    priority 48
  class data
    bandwidth 20
```

In this example, voice1 and voice2 classes of traffic go into the high priority queue and get priority queueing over data traffic. However, voice1 traffic will be rate-limited to 24 kbps and voice2 traffic will be rate-limited to 48 kbps.

Examples

The following example configures PQ with a guaranteed bandwidth of 50 kbps and a one-time allowable burst size of 60 bytes for the policy map called policy1:

```plaintext
Router(config)# policy-map policy1
Router(config-pmap)# class voice
Router(config-pmap-c)# priority 50 60
```

In the following example, 10 percent of the available bandwidth is reserved for the class called voice on interfaces that have attached the policy map called policy1:

```plaintext
Router(config)# policy-map policy1
Router(config-pmap)# class voice
Router(config-pmap-c)# priority percent 10
```
Quality of Service Commands

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip rtp priority</code></td>
<td>Reserves a strict priority queue for a set of RTP packet flows belonging to a range of UDP destination ports.</td>
</tr>
<tr>
<td><code>ip rtp reserve</code></td>
<td>Reserves a special queue for a set of RTP packet flows belonging to a range of UDP destination ports.</td>
</tr>
<tr>
<td><code>max-reserved-bandwidth</code></td>
<td>Changes the percent of interface bandwidth allocated for CBWFQ, LLQ, and IP RTP Priority.</td>
</tr>
<tr>
<td><code>show interfaces fair-queue</code></td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
<tr>
<td><code>show policy-map</code></td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td><code>show policy-map interface</code></td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
</tbody>
</table>
priority-group

To assign the specified priority list to an interface, use the `priority-group` interface configuration command. To remove the specified priority group assignment, use the `no` form of this command.

```
priority-group list-number
no priority-group list-number
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-number</td>
<td>Priority list number assigned to the interface. Any number from 1 to 16.</td>
</tr>
</tbody>
</table>

Defaults

This command is disabled by default.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Only one list can be assigned per interface. Priority output queueing provides a mechanism to prioritize packets sent on an interface.

Use the `show queueing` and `show interfaces` commands to display the current status of the output queues.

Examples

The following example causes packets for transmission on serial interface 0 to be classified by priority list 1:

```
interface serial 0
  priority-group 1
```

The following example shows how to establish queueing priorities based on the address of the serial link on a serial tunnel (STUN) connection. Note that you must use the `priority-group` interface configuration command to assign a priority group to an output interface.

```
stun peer-name 131.108.254.6
stun protocol-group 1 sdlc
!
interface serial 0
  ! Disable the ip address for interface serial 0:
  no ip address
  ! Enable the interface for STUN:
  encapsulation stun
  !
stun group 2
stun route address 10 tcp 131.108.254.8 local-ack priority
```
Assign priority group 1 to the input side of interface serial 0:

```
priority-group 1
```

Assign a low priority to priority list 1 on serial link identified by group 2 and address A7:

```
priority-list 1 stun low address 2 A7
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>locaddr-priority-list</td>
<td>Maps LUs to queueing priorities as one of the steps to establishing queueing priorities based on LU addresses.</td>
</tr>
<tr>
<td>priority-list default</td>
<td>Assigns a priority queue for those packets that do not match any other rule in the priority list.</td>
</tr>
<tr>
<td>priority-list interface</td>
<td>Establishes queueing priorities on packets entering from a given interface.</td>
</tr>
<tr>
<td>priority-list protocol</td>
<td>Establishes queueing priorities based on the protocol type.</td>
</tr>
<tr>
<td>priority-list protocol ip tcp</td>
<td>Establishes BSTUN or STUN queueing priorities based on the TCP port.</td>
</tr>
<tr>
<td>priority-list protocol stun address</td>
<td>Establishes STUN queueing priorities based on the address of the serial link.</td>
</tr>
<tr>
<td>priority-list queue-limit</td>
<td>Specifies the maximum number of packets that can be waiting in each of the priority queues.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>show queue</td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
priority-list default

To assign a priority queue for those packets that do not match any other rule in the priority list, use the `priority-list default` global configuration command. To return to the default or assign `normal` as the default, use the `no` form of this command.

```
priority-list list-number default { high | medium | normal | low }
no priority-list list-number default
```

Syntax Description
- `list-number`: Any number from 1 to 16 that identifies the priority list.
- `high | medium | normal | low`: Priority queue level. The `normal` queue is used if you use the `no` form of this command.

Defaults
This command is not enabled by default.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
When you use multiple rules, remember that the system reads the priority settings in order of appearance. When classifying a packet, the system searches the list of rules specified by `priority-list` commands for a matching protocol or interface type. When a match is found, the system assigns the packet to the appropriate queue. The system searches the list in the order specified, and the first matching rule terminates the search.

Examples
The following example sets the priority queue for those packets that do not match any other rule in the priority list to a low priority:

```
priority-list 1 default low
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>priority-group</code></td>
<td>Assigns the specified priority list to an interface.</td>
</tr>
<tr>
<td><code>priority-list interface</code></td>
<td>Establishes queueing priorities on packets entering from a given interface.</td>
</tr>
<tr>
<td><code>priority-list protocol</code></td>
<td>Establishes queueing priorities based on the protocol type.</td>
</tr>
<tr>
<td><code>priority-list queue-limit</code></td>
<td>Specifies the maximum number of packets that can be waiting in each of the priority queues.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
priority-list interface

To establish queueing priorities on packets entering from a given interface, use the `priority-list interface` global configuration command. To remove an entry from the list, use the `no` form of this command with the appropriate arguments.

```
priority-list list-number interface interface-type interface-number { high | medium | normal | low }
no priority-list list-number interface interface-type interface-number { high | medium | normal | low }
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-number</td>
<td>Any number from 1 to 16 that identifies the priority list.</td>
</tr>
<tr>
<td>interface-type</td>
<td>The type of the interface.</td>
</tr>
<tr>
<td>interface-number</td>
<td>The number of the interface.</td>
</tr>
<tr>
<td>high, medium, normal, low</td>
<td>Priority queue level.</td>
</tr>
</tbody>
</table>

Defaults

No queueing priorities are established by default.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you use multiple rules, remember that the system reads the priority settings in order of appearance. When classifying a packet, the system searches the list of rules specified by `priority-list` commands for a matching protocol or interface type. When a match is found, the system assigns the packet to the appropriate queue. The system searches the list in the order specified, and the first matching rule terminates the search.

Examples

The following example assigns a list entering on serial interface 0 to a medium priority queue level:

```
priority-list 3 interface serial 0 medium
```

Note

This command defines a rule that determines how packets are attached to an interface. Once the rule is defined, the packet is actually attached to the interface using the `priority-group` command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>priority-group</code></td>
<td>Assigns the specified priority list to an interface.</td>
</tr>
<tr>
<td><code>priority-list default</code></td>
<td>Assigns a priority queue for those packets that do not match any other rule in the priority list.</td>
</tr>
<tr>
<td><code>priority-list protocol</code></td>
<td>Establishes queueing priorities based on the protocol type.</td>
</tr>
<tr>
<td><code>priority-list queue-limit</code></td>
<td>Specifies the maximum number of packets that can be waiting in each of the priority queues.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
priority-list protocol

To establish queueing priorities based upon the protocol type, use the `priority-list protocol` global configuration command. To remove a priority list entry assigned by protocol type, use the `no` form of this command with the appropriate arguments.

```
priority-list list-number protocol protocol-name {high | medium | normal | low} queue-keyword keyword-value

no priority-list list-number protocol [protocol-name {high | medium | normal | low} queue-keyword keyword-value]
```

Syntax Description

<table>
<thead>
<tr>
<th>list-number</th>
<th>Any number from 1 to 16 that identifies the priority list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol-name</td>
<td>Protocol type: aarp, apollo, appletalk, arp, bridge (transparent), clns, clns_es, clns_is, compressedtcp, cmns, decnet, decnet_node, decnet_router-l1, decnet_router-l2, dlsw, ip, ipx, pad, rsrb, stun, vines, xns, and x25.</td>
</tr>
<tr>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>queue-keyword keyword-value</td>
<td>Possible keywords are fragments, gt, list, lt, tcp, and udp. For more information about keywords and values, see Table 10 in the “Usage Guidelines” section of this command.</td>
</tr>
</tbody>
</table>

Defaults

No queueing priorities are established.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you use multiple rules for a single protocol, remember that the system reads the priority settings in order of appearance. When classifying a packet, the system searches the list of rules specified by `priority-list` commands for a matching protocol type. When a match is found, the system assigns the packet to the appropriate queue. The system searches the list in the order specified, and the first matching rule terminates the search.

The `decnet_router-l1` keyword refers to the multicast address for all level 1 routers, which are intra-area routers, and the `decnet_router-l2` keyword refers to all level 2 routers, which are interarea routers. The `dlsw`, `rsrb`, and `stun` keywords refer only to direct encapsulation.

Use Table 10, Table 11, and Table 12 to configure the queueing priorities for your system.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fragments</td>
<td>Assigns the priority level defined to fragmented IP packets (for use with IP only). More specifically, this command matches IP packets whose fragment offset field is nonzero. The initial fragment of a fragmented IP packet has a fragment offset of zero, so such packets are not matched by this command. Note: Packets with a nonzero fragment offset do not contain TCP or User Datagram Protocol (UDP) headers, so other instances of this command that use the tcp or udp keyword will always fail to match such packets.</td>
</tr>
<tr>
<td>gt byte-count</td>
<td>Specifies a greater-than count. The priority level assigned goes into effect when a packet size exceeds the value entered for the byte-count argument. Note: The size of the packet must also include additional bytes because of MAC encapsulation on the outgoing interface.</td>
</tr>
<tr>
<td>list list-number</td>
<td>Assigns traffic priorities according to a specified list when used with AppleTalk, bridging, IP, IPX, VINES, or XNS. The list-number argument is the access list number as specified by the access-list global configuration command for the specified protocol-name. For example, if the protocol is AppleTalk, list-number should be a valid AppleTalk access list number.</td>
</tr>
<tr>
<td>lt byte-count</td>
<td>Specifies a less-than count. The priority level assigned goes into effect when a packet size is less than the value entered for the byte-count argument. Note: The size of the packet must also include additional bytes because of MAC encapsulation on the outgoing interface.</td>
</tr>
<tr>
<td>tcp port</td>
<td>Assigns the priority level defined to TCP segments originating from or destined to a specified port (for use with IP only). Table 11 lists common TCP services and their port numbers.</td>
</tr>
<tr>
<td>udp port</td>
<td>Assigns the priority level defined to UDP packets originating from or destined to a specified port (for use with IP only). Table 12 lists common UDP services and their port numbers.</td>
</tr>
</tbody>
</table>

Table 10 Protocol Priority Queue Keywords and Values

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fragments</td>
<td>Assigns the priority level defined to fragmented IP packets (for use with IP only). More specifically, this command matches IP packets whose fragment offset field is nonzero. The initial fragment of a fragmented IP packet has a fragment offset of zero, so such packets are not matched by this command. Note: Packets with a nonzero fragment offset do not contain TCP or User Datagram Protocol (UDP) headers, so other instances of this command that use the tcp or udp keyword will always fail to match such packets.</td>
</tr>
<tr>
<td>gt byte-count</td>
<td>Specifies a greater-than count. The priority level assigned goes into effect when a packet size exceeds the value entered for the byte-count argument. Note: The size of the packet must also include additional bytes because of MAC encapsulation on the outgoing interface.</td>
</tr>
<tr>
<td>list list-number</td>
<td>Assigns traffic priorities according to a specified list when used with AppleTalk, bridging, IP, IPX, VINES, or XNS. The list-number argument is the access list number as specified by the access-list global configuration command for the specified protocol-name. For example, if the protocol is AppleTalk, list-number should be a valid AppleTalk access list number.</td>
</tr>
<tr>
<td>lt byte-count</td>
<td>Specifies a less-than count. The priority level assigned goes into effect when a packet size is less than the value entered for the byte-count argument. Note: The size of the packet must also include additional bytes because of MAC encapsulation on the outgoing interface.</td>
</tr>
<tr>
<td>tcp port</td>
<td>Assigns the priority level defined to TCP segments originating from or destined to a specified port (for use with IP only). Table 11 lists common TCP services and their port numbers.</td>
</tr>
<tr>
<td>udp port</td>
<td>Assigns the priority level defined to UDP packets originating from or destined to a specified port (for use with IP only). Table 12 lists common UDP services and their port numbers.</td>
</tr>
</tbody>
</table>

Table 11 Common TCP Services and Their Port Numbers

<table>
<thead>
<tr>
<th>Service</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP data</td>
<td>20</td>
</tr>
<tr>
<td>FTP</td>
<td>21</td>
</tr>
</tbody>
</table>
Quality of Service Commands

Table 11 Common TCP Services and Their Port Numbers (continued)

<table>
<thead>
<tr>
<th>Service</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Mail Transfer Protocol (SMTP)</td>
<td>25</td>
</tr>
<tr>
<td>Telnet</td>
<td>23</td>
</tr>
</tbody>
</table>

Table 12 Common UDP Services and Their Port Numbers

<table>
<thead>
<tr>
<th>Service</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Name System (DNS)</td>
<td>53</td>
</tr>
<tr>
<td>Network File System (NFS)</td>
<td>2049</td>
</tr>
<tr>
<td>remote-procedure call (RPC)</td>
<td>111</td>
</tr>
<tr>
<td>SNMP</td>
<td>161</td>
</tr>
<tr>
<td>TFTP</td>
<td>69</td>
</tr>
</tbody>
</table>

Note

Table 11 and Table 12 include some of the more common TCP and UDP port numbers. However, you can specify any port number to be prioritized; you are not limited to those listed.

For some protocols, such as TFTP and FTP, only the initial request uses port 69. Subsequent packets use a randomly chosen port number. For these types of protocols, the use of port numbers fails to be an effective method to manage queued traffic.

Examples

The following example assigns 1 as the arbitrary priority list number, specifies DECnet as the protocol type, and assigns a high-priority level to the DECnet packets sent on this interface:

```
priority-list 1 protocol decnet high
```

The following example assigns a medium-priority level to every DECnet packet with a size greater than 200 bytes:

```
priority-list 2 protocol decnet medium gt 200
```

The following example assigns a medium-priority level to every DECnet packet with a size less than 200 bytes:

```
priority-list 4 protocol decnet medium lt 200
```

The following example assigns a high-priority level to traffic that matches IP access list 10:

```
priority-list 1 protocol ip high list 10
```

The following example assigns a medium-priority level to Telnet packets:

```
priority-list 4 protocol ip medium tcp 23
```

The following example assigns a medium-priority level to UDP DNS packets:

```
priority-list 4 protocol ip medium udp 53
```
The following example assigns a high-priority level to traffic that matches Ethernet type code access list 201:

```
priority-list 1 protocol bridge high list 201
```

The following example assigns a high-priority level to data-link switching plus (DLSw+) traffic with TCP encapsulation:

```
priority-list 1 protocol ip high tcp 2065
```

The following example assigns a high-priority level to DLSw+ traffic with direct encapsulation:

```
priority-list 1 protocol dlsw high
```

Note

This command defines a rule that determines how packets are attached to an interface. Once the rule is defined, the packet is actually attached to the interface using the `priority-group` command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>priority-group</code></td>
<td>Assigns the specified priority list to an interface.</td>
</tr>
<tr>
<td><code>priority-list default</code></td>
<td>Assigns a priority queue for those packets that do not match any other rule in the priority list.</td>
</tr>
<tr>
<td><code>priority-list interface</code></td>
<td>Establishes queueing priorities on packets entering from a given interface.</td>
</tr>
<tr>
<td><code>priority-list queue-limit</code></td>
<td>Specifies the maximum number of packets that can be waiting in each of the priority queues.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
priority-list queue-limit

To specify the maximum number of packets that can be waiting in each of the priority queues, use the priority-list queue-limit global configuration command. To select the normal queue, use the no form of this command.

```
priority-list list-number queue-limit [high-limit [medium-limit [normal-limit [low-limit]]]]
no priority-list list-number queue-limit
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-number</td>
<td>Any number from 1 to 16 that identifies the priority list.</td>
</tr>
<tr>
<td>high-limit</td>
<td>(Optional) Priority queue maximum length. A value of 0 for any of the four arguments means that the queue can be of unlimited size for that particular queue. For default values for these arguments, see Table 13.</td>
</tr>
<tr>
<td>medium-limit</td>
<td></td>
</tr>
<tr>
<td>normal-limit</td>
<td></td>
</tr>
<tr>
<td>low-limit</td>
<td></td>
</tr>
</tbody>
</table>

Defaults

This command is not enabled by default.

See Table 13 in the “Usage Guidelines” section of this command for a list of the default queue limit arguments.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If a priority queue overflows, excess packets are discarded and messages can be sent, if appropriate, for the protocol.

The default queue limit arguments are listed in Table 13.

Table 13 Default Priority Queue Packet Limits

<table>
<thead>
<tr>
<th>Priority Queue Argument</th>
<th>Packet Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>high-limit</td>
<td>20</td>
</tr>
<tr>
<td>medium-limit</td>
<td>40</td>
</tr>
<tr>
<td>normal-limit</td>
<td>60</td>
</tr>
<tr>
<td>low-limit</td>
<td>80</td>
</tr>
</tbody>
</table>
Note

If priority queueing is enabled and there is an active ISDN (Integrated Services Digital Network) call in the queue, changing the configuration of the `priority-list queue-limit` command drops the call from the queue. For more information about priority queueing, refer to the *Quality of Service Configuration Guide*, Release 12.2.

Examples

The following example sets the maximum packets in the priority queue to 10:

```
priority-list 2 queue-limit 10 40 60 80
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>priority-group</code></td>
<td>Assigns the specified priority list to an interface.</td>
</tr>
<tr>
<td><code>priority-list default</code></td>
<td>Assigns a priority queue for those packets that do not match any other rule in the priority list.</td>
</tr>
<tr>
<td><code>priority-list interface</code></td>
<td>Establishes queueing priorities on packets entering from a given interface.</td>
</tr>
<tr>
<td><code>priority-list protocol</code></td>
<td>Establishes queueing priorities based on the protocol type.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
protect

To configure a virtual circuit (VC) class with protected group or protected VC status for application to a VC bundle member, use the `protect` command in vc-class configuration mode. To remove the protected status from the VC class, use the `no` form of this command.

To configure a specific VC as part of a protected group of the bundle or to configure it as an individually protected VC bundle member, use the `protect` command in bundle-vc configuration mode. To remove the protected status from the VC, use the `no` form of this command.

```
protect {group | vc}
```

```
no protect {group | vc}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group</code></td>
<td>Configures the VC bundle member as part of the protected group of the bundle.</td>
</tr>
<tr>
<td><code>vc</code></td>
<td>Configures the VC member as individually protected.</td>
</tr>
</tbody>
</table>

Defaults
The VC neither belongs to the protected group nor is it an individually protected VC.

Command Modes
VC-class configuration (for a VC class)
Bundle-vc configuration (for ATM VC bundle members)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use this command in vc-class configuration mode to configure a VC class to contain protected group or individual protected VC status. When the class is applied to the VC bundle member, that VC is characterized by the protected status. You can also apply this command directly to a VC in bundle-vc configuration mode.

When a protected VC goes down, it takes the bundle down. When all members of a protected group go down, the bundle goes down.

To use this command in vc-class configuration mode, first enter the `vc-class atm` global configuration command.

This command has no effect if the VC class that contains the command is attached to a standalone VC, that is, if the VC is not a bundle member.

To use this command in bundle-vc configuration mode, first enter the `bundle` command to enact bundle configuration mode for the bundle containing the VC member to be configured. Then enter the `pvc-bundle` configuration command to add the VC to the bundle as a member of it.
VCs in a VC bundle are subject to the following configuration inheritance guidelines (listed in order of next highest precedence):

- VC configuration in bundle-vc mode
- Bundle configuration in bundle mode (with effect of assigned vc-class configuration)
- Subinterface configuration in subinterface mode

Examples

The following example configures a class called control-class to include a `protect` command, which, when applied to a VC bundle member, configures the VC as an individually protected VC bundle member. When this protected VC goes down, it takes the bundle down.

```plaintext
vc-class atm control-class
protect vc
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bump</td>
<td>Configures the bumping rules for a VC class that can be assigned to a VC bundle.</td>
</tr>
<tr>
<td>bundle</td>
<td>Creates a bundle or modifies an existing bundle to enter bundle configuration mode.</td>
</tr>
<tr>
<td>class-vc</td>
<td>Assigns a VC to an ATM PVC, SVC, or VC bundle member.</td>
</tr>
<tr>
<td>precedence (VC bundle)</td>
<td>Configures precedence levels for a VC class that can be assigned to a VC bundle and thus applied to all VC members of that bundle.</td>
</tr>
<tr>
<td>pvc-bundle</td>
<td>Adds a PVC to a bundle as a member of the bundle and enters bundle-vc configuration mode in order to configure that PVC bundle member.</td>
</tr>
<tr>
<td>ubr</td>
<td>Configures UBR QoS and specifies the output peak cell rate for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
<tr>
<td>ubr+</td>
<td>Configures UBR QoS and specifies the output peak cell rate and output minimum guaranteed cell rate for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
<tr>
<td>vbr-nrt</td>
<td>Configures the VBR-NRT QoS and specifies output peak cell rate, output sustainable cell rate, and output maximum burst cell size for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
<tr>
<td>vc-class atm</td>
<td>Configures a VC class for an ATM VC or interface.</td>
</tr>
</tbody>
</table>
pvc-bundle

To add a virtual circuit (VC) to a bundle as a member of the bundle and enter bundle-vc configuration mode in order to configure that VC bundle member, use the `pvc-bundle` bundle configuration command. To remove the VC from the bundle, use the `no` form of this command.

```
pvc-bundle pvc-name [vpi] [vci]
no pvc-bundle pvc-name [vpi] [vci]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pvc-name</code></td>
<td>The name of the permanent virtual circuit (PVC) bundle.</td>
</tr>
<tr>
<td><code>vpi</code></td>
<td>(Optional) ATM network virtual path identifier (VPI) for this PVC. The absence of the “/” and a vpi value defaults the vpi value to 0. On the Cisco 7200 and 7500 series routers, the value range is from 0 to 255; on the Cisco 4500 and 4700 routers, the value range is from 0 to 1 less than the quotient of 8192 divided by the value set by the <code>atm vc-per-vp</code> command. The vpi and vci arguments cannot both be set to 0; if one is 0, the other cannot be 0.</td>
</tr>
<tr>
<td><code>vci</code></td>
<td>(Optional) ATM network virtual channel identifier (VCI) for this PVC. The value range is from 0 to 1 less than the maximum value set for this interface by the <code>atm vc-per-vp</code> command. Typically, lower values 0 to 31 are reserved for specific traffic (F4 Operation, Administration, and Maintenance (OAM), switched virtual circuit (SVC) signalling, Integrated Local Management Interface (ILMI), and so on) and should not be used. The VCI is a 16-bit field in the header of the ATM cell. The VCI value is unique only on a single link, not throughout the ATM network, because it has local significance only. The vpi and vci arguments cannot both be set to 0; if one is 0, the other cannot be 0.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

Bundle configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines
Each bundle can contain multiple VCs having different QoS attributes. This command associates a VC with a bundle, making it a member of that bundle. Before you can add a VC to a bundle, the bundle must exist. Use the `bundle` command to create a bundle. You can also use this command to configure a VC that already belongs to a bundle. You enter the command in the same way, giving the name of the VC bundle member.

The `pvc-bundle` command enters bundle-vc configuration mode, in which you can specify VC-specific and VC class attributes for the VC.

Examples
The following example specifies an existing bundle called `chicago` and enters bundle configuration mode. Then it adds two VCs to the bundle. For each added VC, bundle-vc mode is entered and a VC class is attached to the VC to configure it.

```
bundle chicago
  pvc-bundle chicago-control 207
  class control-class
  pvc-bundle chicago-premium 206
  class premium-class
```

The following example configures the PVC called `chicago-control`, an existing member of the bundle called `chicago`, to use class-based weighted fair queueing (CBWFQ). The example configuration attaches the policy map called `policy1` to the PVC. Once the policy map is attached, the classes comprising `policy1` determine the service policy for the PVC `chicago-control`.

```
bundle chicago
  pvc-bundle chicago-control 207
  class control-class
  service-policy output policy1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>atm vc-per-vp</code></td>
<td>Sets the maximum number of VCIs to support per VPI.</td>
</tr>
<tr>
<td><code>bump</code></td>
<td>Configures the bumping rules for a VC class that can be assigned to a VC bundle.</td>
</tr>
<tr>
<td><code>class-bundle</code></td>
<td>Configures a VC bundle with the bundle-level commands contained in the specified VC class.</td>
</tr>
<tr>
<td><code>class-vc</code></td>
<td>Assigns a VC class to an ATM PVC, SVC, or VC bundle member.</td>
</tr>
<tr>
<td><code>precedence (VC bundle)</code></td>
<td>Configures precedence levels for a VC member of a bundle, or for a VC class that can be assigned to a VC bundle.</td>
</tr>
<tr>
<td><code>protect</code></td>
<td>Configures a VC class with protected group or protected VC status for application to a VC bundle member.</td>
</tr>
<tr>
<td><code>ubr</code></td>
<td>Configures UBR QoS and specifies the output peak cell rate for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
<tr>
<td><code>ubr+</code></td>
<td>Configures UBR QoS and specifies the output peak cell rate and output minimum guaranteed cell rate for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
<tr>
<td><code>vbr-nrt</code></td>
<td>Configures the VBR-NRT QoS and specifies output peak cell rate, output sustainable cell rate, and output maximum burst cell size for an ATM PVC, SVC, VC class, or VC bundle member.</td>
</tr>
</tbody>
</table>
qos pre-classify

To enable QoS preclassification, use the qos pre-classify interface configuration command. To disable the QoS preclassification feature, use the no form of this command.

qos pre-classify

no qos pre-classify

Syntax Description
This command has no arguments or keywords.

Defaults
This command is disabled by default.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE3</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command is restricted to tunnel interfaces, virtual templates, and crypto maps. The qos pre-classify command is unavailable on all other interface types.

The qos pre-classify command can be enabled for IP packets only.

Examples
The following example enables the QoS for Virtual Private Networks (VPNs) feature on tunnel interfaces and virtual templates:

Router(config-if)# qos pre-classify

The following example enables the QoS for VPNs feature on crypto maps:

Router(config-crypto-map)# qos pre-classify
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces</td>
<td>Displays the statistical information specific to a serial interface.</td>
</tr>
<tr>
<td>show queue</td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
</tbody>
</table>
rate-limit

To configure committed access rate (CAR) and distributed CAR (DCAR) policies, use the `rate-limit` interface configuration command. To remove the rate limit from the configuration, use the `no` form of this command.

```
rate-limit {input | output} [dscp dscp-value] [access-group [rate-limit] acl-index] bps
  burst-normal burst-max conform-action conform-action exceed-action exceed-action
```

```
no rate-limit {input | output} [dscp dscp-value] [access-group [rate-limit] acl-index] bps
  burst-normal burst-max conform-action conform-action exceed-action exceed-action
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>Applies this CAR traffic policy to packets received on this input interface.</td>
</tr>
<tr>
<td>output</td>
<td>Applies this CAR traffic policy to packets sent on this output interface.</td>
</tr>
<tr>
<td>dscp</td>
<td>(Optional) Allows the rate limit to be applied to any packet matching a specified differentiated services code point (DSCP).</td>
</tr>
<tr>
<td>dscp-value</td>
<td>(Optional) The DSCP number; values are 0 to 63.</td>
</tr>
<tr>
<td>access-group</td>
<td>(Optional) Applies this CAR traffic policy to the specified access list.</td>
</tr>
<tr>
<td>rate-limit</td>
<td>(Optional) The access list is a rate-limit access list.</td>
</tr>
<tr>
<td>acl-index</td>
<td>(Optional) Access list number.</td>
</tr>
<tr>
<td>bps</td>
<td>Average rate, in bits per second (bps). The value must be in increments of 8 kbps.</td>
</tr>
<tr>
<td>burst-normal</td>
<td>Normal burst size, in bytes. The minimum value is bps divided by 2000.</td>
</tr>
<tr>
<td>burst-max</td>
<td>Excess burst size, in bytes.</td>
</tr>
<tr>
<td>conform-action</td>
<td>Action to take on packets that conform to the specified rate limit. Specify one of the following keywords:</td>
</tr>
<tr>
<td>conform-action</td>
<td>• <code>continue</code>—Evaluates the next <code>rate-limit</code> command.</td>
</tr>
<tr>
<td></td>
<td>• <code>drop</code>—Drops the packet.</td>
</tr>
<tr>
<td></td>
<td>• <code>set-dscp-continue</code>—Sets the differentiated services code point (DSCP) (0 to 63) and evaluates the next <code>rate-limit</code> command.</td>
</tr>
<tr>
<td></td>
<td>• <code>set-dscp-transmit</code>—Sends the DSCP and transmits the packet.</td>
</tr>
<tr>
<td></td>
<td>• <code>set-mpls-exp-continue</code>—Sets the MPLS experimental bits (0 to 7) and evaluates the next <code>rate-limit</code> command.</td>
</tr>
<tr>
<td></td>
<td>• <code>set-mpls-exp-transmit</code>—Sets the MPLS experimental bits (0 to 7) and sends the packet.</td>
</tr>
<tr>
<td></td>
<td>• <code>set-prec-continue</code>—Sets the IP precedence (0 to 7) and evaluates the next <code>rate-limit</code> command.</td>
</tr>
<tr>
<td></td>
<td>• <code>set-prec-transmit</code>—Sets the IP precedence (0 to 7) and sends the packet.</td>
</tr>
<tr>
<td></td>
<td>• <code>set-qos-continue</code>—Sets the QoS group ID (1 to 99) and evaluates the next <code>rate-limit</code> command.</td>
</tr>
<tr>
<td></td>
<td>• <code>set-qos-transmit</code>—Sets the QoS group ID (1 to 99) and sends the packet.</td>
</tr>
<tr>
<td></td>
<td>• <code>transmit</code>—Sends the packet.</td>
</tr>
</tbody>
</table>
Quality of Service Commands

rate-limit

exceed-action

exceed-action

Action to take on packets that exceed the specified rate limit. Specify one of the following keywords:

- **continue**—Evaluates the next rate-limit command.
- **drop**—Drops the packet.
- **set-dscp-continue**—Sets the DSCP (0 to 63) and evaluates the next rate-limit command.
- **set-dscp-transmit**—Sends the DSCP and sends the packet.
- **set-mpls-exp-continue**—Sets the MPLS experimental bits (0 to 7) and evaluates the next rate-limit command.
- **set-mpls-exp-transmit**—Sets the MPLS experimental bits (0 to 7) and sends the packet.
- **set-prec-continue**—Sets the IP precedence (0 to 7) and evaluates the next rate-limit command.
- **set-prec-transmit**—Sets the IP precedence (0 to 7) and sends the packet.
- **set-qos-continue**—Sets the QoS group ID (1 to 99) and evaluates the next rate-limit command.
- **set-qos-transmit**—Sets the QoS group ID (1 to 99) and sends the packet.
- **transmit**—Sends the packet.

Defaults

CAR and DCAR are disabled on the interface.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>The conform and exceed actions were added for the MPLS experimental field.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to configure your CAR policy on an interface. To specify multiple policies, enter this command once for each policy.

Distributed CAR is supported only on Cisco 7000 series routers with an RSP7000 or Cisco 7500 series routers with VIP2-40 or greater interface processor. A VIP2-50 interface processor is strongly recommended when the aggregate line rate of the port adapters on the VIP is greater than DS3. A VIP2-50 interface processor is required for OC-3 rates.

CAR and DCAR can only be used with IP traffic. Non-IP traffic is not rate limited.
CAR and DCAR can be configured on an interface or subinterface. However, CAR and DCAR are not supported on the Fast EtherChannel, tunnel, or PRI interfaces, nor on any interface that does not support Cisco Express Forwarding (CEF).

CEF must be enabled on the interface before you configure CAR or DCAR.

Policing Traffic with CAR

CAR embodies a rate-limiting feature for policing traffic. When policing traffic with CAR, Cisco recommends the following values for the normal and extended burst parameters:

\[
\text{normal burst} = \text{configured rate} \times \left(\frac{1\ \text{byte}}{8\ \text{bits}}\right) \times 1.5\ \text{seconds} \\
\text{extended burst} = 2 \times \text{normal burst}
\]

With the listed choices for parameters, extensive test results have shown CAR to achieve the configured rate. If the burst values are too low, then the achieved rate is often much lower than the configured rate.

For more information about using CAR to police traffic, see the “Policing with CAR” section of the “Policing and Shaping Overview” in the *Cisco IOS Quality of Service Configuration Guide*, Release 12.2.

Examples

In the following example, the rate is limited by application:

- All World Wide Web traffic is sent. However, the MPLS experimental field for web traffic that conforms to the first rate policy is set to 5. For nonconforming traffic, the IP precedence is set to 0 (best effort). See the following commands in the example:

  ```
  rate-limit input rate-limit access-group 101 20000000 3750000 7500000 conform-action set-mpls-exp-transmit 5 exceed-action set-mpls-exp-transmit 0 
  access-list 101 permit tcp any any eq www
  ```

- FTP traffic is sent with an MPLS experimental field of 5 if it conforms to the second rate policy. If the FTP traffic exceeds the rate policy, it is dropped. See the following commands in the example:

  ```
  rate-limit input access-group 102 10000000 1875000 3750000 
  conform-action set-mpls-exp-transmit 5 exceed-action drop 
  access-list 102 permit tcp any any eq ftp
  ```

- Any remaining traffic is limited to 8 Mbps, with a normal burst size of 1,500,000 bytes and an excess burst size of 3,000,000 bytes. Traffic that conforms is sent with an MPLS experimental field of 5. Traffic that does not conform is dropped. See the following command in the example:

  ```
  rate-limit input 8000000 1500000 3000000 conform-action set-mpls-exp-transmit 5 exceed-action drop
  ```

Notice that two access lists are created to classify the web and FTP traffic so that they can be handled separately by the CAR feature:

```
interface Hssi0/0/0 
description 45Mbps to R2 
rate-limit input rate-limit access-group 101 20000000 3750000 7500000 conform-action set-mpls-exp-transmit 5 exceed-action set-mpls-exp-transmit 0 
rate-limit input access-group 102 10000000 1875000 3750000 
conform-action set-mpls-exp-transmit 5 exceed-action drop 
rate-limit input 8000000 1500000 3000000 conform-action set-mpls-exp-transmit 5 
exceed-action drop
ip address 200.200.14.250 255.255.255.252!
access-list 101 permit tcp any any eq www
access-list 102 permit tcp any any eq ftp
```
In the following example, the MPLS experimental field is set and the packet is sent:

```
interface FastEtheret1/1/0
rate-limit input 8000 1500 3000 access-group conform-action
set mpls-exp-transmit 5 exceed-action set-mpls-exp-transmit 5
```

In the following example, any packet with a DSCP of 1 can apply the rate limit:

```
interface pos6/1/0
rate-limit output dscp 1 8000 1500 3000 conform-action transmit exceed-action drop
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>access-list rate-limit</code></td>
<td>Configures an access list for use with CAR policies.</td>
</tr>
<tr>
<td><code>show access-lists rate-limit</code></td>
<td>Displays information about rate-limit access lists.</td>
</tr>
<tr>
<td><code>show interfaces rate-limit</code></td>
<td>Displays information about CAR for an interface.</td>
</tr>
<tr>
<td><code>show ip rsvp installed</code></td>
<td>Displays RSVP-related installed filters and corresponding bandwidth information.</td>
</tr>
</tbody>
</table>
To send a text message to all Quality Device Manager (QDM) clients, use the `send qdm message` EXEC command.

```
send qdm [client client-id] message message-text
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>client</td>
<td>(Optional) Specifies a QDM client to receive the message.</td>
</tr>
<tr>
<td>client-id</td>
<td>(Optional) Specifies the QDM identification of the client that will receive</td>
</tr>
<tr>
<td></td>
<td>the text message.</td>
</tr>
<tr>
<td>message</td>
<td>Specifies that a message will be sent.</td>
</tr>
<tr>
<td>message-text</td>
<td>The actual text of the message.</td>
</tr>
</tbody>
</table>

Defaults
This command has no default behavior or values.

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 12.1(1)E</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the `send qdm [client client-id] message message-text` command to send a message to a specific QDM client. For example, entering the `send qdm client 9 message hello` command will send the message “hello” to client ID 9.

Use the `send qdm message message-text` command to send a message to all QDM clients. For example, entering the `send qdm message hello` command sends the message “hello” to all open QDM clients.

Examples
The following example sends the text message “how are you?” to client ID 12:
```
send qdm client 12 message how are you?
```

The following example sends the text message “how is everybody?” to all QDM clients connected to the router:
```
send qdm message how is everybody?
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show qdm status</td>
<td>Displays the status of connected QDM clients.</td>
</tr>
</tbody>
</table>
service-policy

To attach a policy map to an input interface or virtual circuit (VC), or an output interface or VC, to be used as the service policy for that interface or VC, use the `service-policy` interface configuration command. To remove a service policy from an input or output interface or input or output VC, use the `no` form of this command.

```
    service-policy { input | output } policy-map-name
    no service-policy { input | output } policy-map-name
```

Syntax Description

- **input**
 - Attaches the specified policy map to the input interface or input VC.

- **output**
 - Attaches the specified policy map to the output interface or output VC.

- **policy-map-name**
 - The name of a service policy map (created using the `policy-map` command) to be attached.

Defaults

No service policy is specified.

Command Modes

- Interface configuration
- VC submode (for a standalone VC)
- Bundle-vc configuration (for ATM VC bundle members)
- Map-class configuration (for Frame Relay VCs)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE.</td>
</tr>
<tr>
<td>12.0(7)S</td>
<td>This command was integrated into Cisco IOS Release 12.0(7)S.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(2)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(2)T. This command was modified to enable low latency queueing (LLQ) on Frame Relay VCs.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can attach a single policy map to one or more interfaces or one or more VCs to specify the service policy for those interfaces or VCs.

Currently a service policy specifies class-based weighted fair queueing (CBWFQ). The class policies comprising the policy map are then applied to packets that satisfy the class map match criteria for the class.

To successfully attach a policy map to an interface or a VC, the aggregate of the configured minimum bandwidths of the classes comprising the policy map must be less than or equal to 75 percent of the interface bandwidth or the bandwidth allocated to the VC.
To enable LLQ for Frame Relay (priority queueing (PQ)/CBWFQ), you must first enable Frame Relay Traffic Shaping (FRTS) on the interface using the `frame-relay traffic-shaping` command in interface configuration mode. You will then attach an output service policy to the Frame Relay VC using the `service-policy` command in map-class configuration mode.

For a policy map to be successfully attached to an interface or ATM VC, the aggregate of the configured minimum bandwidths of the classes that make up the policy map must be less than or equal to 75 percent of the interface bandwidth or the bandwidth allocated to the VC. For a Frame Relay VC, the total amount of bandwidth allocated must not exceed the minimum committed information rate (CIR) configured for the VC less any bandwidth reserved by the `frame-relay voice bandwidth` or `frame-relay ip rtp priority` map-class commands. If not configured, the minimum CIR defaults to half of the CIR.

Configuring CBWFQ on a physical interface is only possible if the interface is in the default queueing mode. Serial interfaces at E1 (2.048 Mbps) and below use WFQ by default. Other interfaces use FIFO by default. Enabling CBWFQ on a physical interface overrides the default interface queueing method. Enabling CBWFQ on an ATM permanent virtual circuit (PVC) does not override the default queueing method.

Attaching a service policy and enabling CBWFQ on an interface renders ineffective any commands related to fancy queueing such as commands pertaining to fair queueing, custom queueing, priority queueing, and Weighted Random Early Detection (WRED). You can configure these features only after you remove the policy map from the interface.

You can modify a policy map attached to an interface or a VC, changing the bandwidth of any of the classes comprising the map. Bandwidth changes that you make to an attached policy map are effective only if the aggregate of the bandwidth amounts for all classes comprising the policy map, including the modified class bandwidth, less than or equal to 75 percent of the interface bandwidth or VC bandwidth. If the new aggregate bandwidth amount exceeds 75 percent of the interface bandwidth or VC bandwidth, the policy map is not modified.

Examples

The following example shows how to attach the service policy map called policy9 to data-link connection identifier (DLCI) 100 on output serial interface 1 and enables LLQ for Frame Relay:

```plaintext
interface Serial1/0.1 point-to-point
   frame-relay interface-dlci 100
   class fragment
!
map-class frame-relay fragment
   service-policy output policy9
```

The following example attaches the service policy map called policy9 to input serial interface 1:

```plaintext
interface Serial1
   service-policy input policy9
```

The following example attaches the service policy map called policy9 to the input PVC called cisco:

```plaintext
pvc cisco 0/34
   service-policy input policy9
vbr-nt 5000 3000 500
precedence 4-7
```

The following example attaches the policy called policy9 to output serial interface 1 to specify the service policy for the interface and enable CBWFQ on it:

```plaintext
interface serial1
   service-policy output policy9
```
The following example attaches the service policy map called policy9 to the output PVC called cisco:

```plaintext
pvc cisco 0/5
  service-policy output policy9
vbr-nt 4000 2000 500
precedence 2-3
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>show frame-relay pvc</td>
<td>Displays statistics about PVCs for Frame Relay interfaces.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
service-policy (class-map)

To attach a policy map to a class, use the `service-policy` class-map configuration command. To remove a service policy from a class, use the `no` form of this command.

```
    service-policy policy-map
    no service-policy
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>policy-map</code></td>
<td>The name of a service policy map (created using the <code>policy-map</code> command) to be attached.</td>
</tr>
</tbody>
</table>

Defaults

No service policy is specified.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(2)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can attach a single policy map to one or more classes to specify the service policy for those classes. This command is only available for the output interface, which is assumed.

Examples

In the following example, three policy maps are defined—cust1-classes, cust2-classes, and cust-policy. The policy maps cust1-classes and cust2-classes have three classes defined—gold, silver, and bronze.

For cust1-classes, gold is configured to use 50 percent of the bandwidth. Silver is configured to use 20 percent of the bandwidth, and bronze is configured to use 15 percent of the bandwidth.

For cust2-classes, gold is configured to use 30 percent of the bandwidth. Silver is configured to use 15 percent of the bandwidth, and bronze is configured to use 10 percent of the bandwidth.

The policy map cust-policy specifies average rate shaping of 384 kbps and assigns the service policy called cust1-classes to the policy map called cust1-classes. The policy map called cust-policy specifies peak rate shaping of 512 kbps and assigns the service policy called cust2-classes to the policy map called cust2-classes.

To configure classes for cust1-classes, use the following commands:

```
Router(config)# policy-map cust1-classes
Router(config-pmap)# class gold
Router(config-pmap-c)# bandwidth percent 50
Router(config-pmap)# class silver
Router(config-pmap-c)# bandwidth percent 20
Router(config-pmap)# class bronze
Router(config-pmap-c)# bandwidth percent 15
```
To configure classes for cust2, use the following commands:

```bash
Router(config)# policy-map cust2-classes
Router(config-pmap)# class gold
Router(config-pmap-c)# bandwidth percent 30
Router(config-pmap)# class silver
Router(config-pmap-c)# bandwidth percent 15
Router(config-pmap)# class bronze
Router(config-pmap-c)# bandwidth percent 10
```

To define the customer policy with cust1-classes and cust2-classes and QoS features, use the following commands:

```bash
Router(config)# policy-map cust-policy
Router(config-pmap)# class cust1
Router(config-pmap-c)# shape average 38400
Router(config-pmap-c)# service-policy cust1-classes
Router(config-pmap)# class cust2
Router(config-pmap-c)# shape peak 51200
Router(config-pmap-c)# service-policy cust2-classes
Router(config-pmap-c)# interface Serial 3/2
Router(config-if)# service out cust-policy
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
</tbody>
</table>
service-policy (policy-map class)

To use a service policy as a QoS policy within a policy map (called a hierarchical service policy), use the `service-policy` policy-map class configuration command. To disable a particular service policy as a QoS policy within a policy map, use the `no` form of this command.

```
    service-policy policy-map-name
    no service-policy policy-map-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>policy-map-name</code></td>
<td>Specifies the name of the predefined policy map to be used as a QoS policy.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default behavior or values.

Command Modes

Policy-map class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(2)E</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is used to create hierarchical service policies in policy-map class configuration mode. This command is different from the `service-policy [input | output] policy-map-name` command used in interface configuration mode. The purpose of the `service-policy [input | output] policy-map-name` is to attach service policies to interfaces.

The child policy is the previously defined service policy that is being associated with the new service policy through the use of the `service-policy` command. The new service policy using the preexisting service policy is the parent policy.

This command has the following restrictions:

- The `set` command is not supported on the child policy.
- The `priority` command can be used in either the parent or the child policy, but not both policies simultaneously.
- The `shape` command cannot be used in child policies (for instance, in hierarchical shaping) on a subinterface.
- The `fair-queue` command cannot be defined in the parent policy.
- If the `bandwidth` command is used in the child policy, the `bandwidth` command must also be used in the parent policy. The one exception is for policies using the default class.
The following example creates a hierarchical service policy in the service policy called parent:

Router(config)# policy-map child
Router(config-pmap)# class voice
Router(config-pmap-c)# priority 50

Router(config)# policy-map parent
Router(config-pmap)# class class-default
Router(config-pmap-c)# shape average 10000000
Router(config-pmap-c)# service-policy child

FRF.11 and FRF.12 configurations on a Versatile Interface Processor (VIP)-enabled Cisco 7500 series router often require a hierarchical service policy for configuration. A hierarchical service policy for FRF.11 and FRF.12 requires the following elements:

1. A traffic class that uses the Voice over Frame Relay (VoFR) protocol as the only match criterion.
2. A traffic policy that insures low latency queueing (LLQ), which is achieved using the **priority** command, for all VoFR protocol traffic.
3. A traffic policy that defines the shaping parameters and includes the elements listed in element 2. Element 3 can only be fulfilled through the use of a hierarchical service policy, which is configured using the **service-policy** command.

In the following example, element 1 is configured in the traffic class called frf, element 2 is configured in the traffic policy called llq, and element 3 is configured in the traffic policy called llq-shape.

Router(config)# class-map frf
Router(config-cmap)# match protocol vofr
Router(config-cmap)# exit
Router(config)# policy-map llq
Router(config-pmap)# class frf
Router(config-pmap-c)# priority 2000
Router(config-pmap-c)# exit
Router(config)# policy-map llq-shape
Router(config-pmap)# class class-default
Router(config-pmap-c)# shape average 1000 128000
Router(config-pmap-c)# service-policy llq

The final step in using a hierarchical service policy for FRF.11 and FRF.12 is using the service policy in map-class configuration mode. In the following example, the traffic policy called llq-shape is attached to the map class called frag:

Router(config)# map-class frame-relay frag
Router(config-map-class)# frame-relay fragment 40
Router(config-map-class)# service-policy llq-shape
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth (policy-map class)</td>
<td>Specifies or modifies the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td>fair-queue</td>
<td>Specifies the number of queues to be reserved for use by a traffic class.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Specifies the name of the service policy to configure.</td>
</tr>
<tr>
<td>priority</td>
<td>Gives priority to a class of traffic belonging to a policy map.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Specifies the name of the service policy to be attached to the interface.</td>
</tr>
<tr>
<td>shape</td>
<td>Specifies average or peak rate traffic shaping.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
set atm-clp

To set the cell loss priority (CLP) bit setting when configuring a policy map, use the `set atm-clp` policy-map class configuration command.

```
set atm-clp
```

Syntax Description
This command has no arguments or keywords.

Defaults
The CLP bit is automatically set to 0 when Cisco routers convert IP packets into ATM cells for transmission through Multiprotocol Label Switching (MPLS)-aware ATM networks.

Command Modes
Policy-map class

Command History
```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(7)S</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>
```

Usage Guidelines
To disable this command, remove the service policy from the interface.

To use the `set atm-clp` command, you must have one of the following adapters: the Enhanced ATM Port Adapter (PA-A3), the ATM Inverse Multiplexer over ATM Port Adapter with 8 T1 Ports (PA-A3-8T1IMA), or the ATM Inverse Multiplexer over ATM Port Adapter with 8 E1 Ports (PA-A3-8E1IMA). Therefore, the `set atm-clp` command is not supported on any platform that does not support these adapters. For more information, refer to the documentation for your specific router.

A policy map containing the `set atm-clp` command can be attached as an output policy only. The `set atm-clp` command does not support packets that originate from the router.

Examples
The following example illustrates a CLP bit set using the `set atm-clp` command in the policy map:

```
Router(config)# class-map ip-prec
Router(config-cmap)# match ip precedence 0 1
Router(config-cmap)# exit
Router(config)# policy-map atm-clp-set
Router(config-pmap)# class ip-prec
Router(config-pmap-c)# set atm-clp
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface atm 1/0/0
Router(config)# service-policy output bear
```
Quality of Service Commands

set atm-clp

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>show atm pvc</td>
<td>Displays information about the PVCs on an interface.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
</tbody>
</table>
set cos

To set the Layer 2 class of service (CoS) value of an outgoing packet, use the `set cos` policy-map class configuration command. To remove a specific CoS value setting, use the `no` form of this command:

```
set cos cos-value
no set cos cos-value
```

Syntax Description
- `cos-value`: Specific IEEE 802.1Q CoS value from 0 to 7.

Defaults
Disabled

Command Modes
Policy-map class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(5)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
CoS packet marking is only supported in the Cisco Express Forwarding (CEF)-switching path.

The `set cos` command should be used by a router if a user wants to mark a packet that is being sent to a switch. Switches can leverage Layer 2 header information, including a CoS value marking.

The `set cos` command can be used only in service policies that are attached in the output direction of an interface. Packets entering an interface cannot be set with a CoS value.

The `match cos` and `set cos` commands can be used together to allow routers and switches to interoperate and provide QoS based on the CoS markings.

Layer 2 to Layer 3 mapping can be configured by matching on the CoS value because switches already can match and set CoS values. If a packet that needs to be marked to differentiate user-defined QoS services is leaving a router and entering a switch, the router should set the CoS value of the packet because the switch can process the Layer 2 header.
Examples

In the following example, the policy map called cos-set is created to assign different CoSs for different types of traffic. This example assumes that the class maps called voice and video-data have already been created.

```
Router(config)# policy-map cos-set
Router(config-pmap)# class voice
Router(config-pmap-c)# set cos 1
Router(config-pmap-c)# exit
Router(config-pmap)# class video-data
Router(config-pmap-c)# set cos 2
Router(config-pmap-c)# exit
Router(config-pmap)# exit
```

This command is applied when you create a service policy in QoS policy-map configuration mode. This service policy is not yet attached to an interface. For information on attaching a service policy to an interface, refer to the “Modular Quality of Service Command-Line Interface” chapter of the Cisco IOS Quality of Service Solutions Configuration Guide.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td>show policy-map class</td>
<td>Displays the configuration for the specified class of the specified policy map.</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
set ip dscp

To mark a packet by setting the IP differentiated services code point (DSCP) in the type of service (ToS) byte, use the `set ip dscp` QoS policy-map configuration command. To remove a previously set IP DSCP, use the `no` form of this command.

```
set ip dscp ip-dscp-value

no set ip dscp ip-dscp-value
```

Syntax Description

- `ip-dscp-value` A number from 0 to 63 that sets the IP DSCP value. Reserved keywords `EF` (expedited forwarding), `AF11` (assured forwarding class AF11), and `AF12` (assured forwarding class AF12) can be specified instead of numeric values.

Defaults

This command has no default behavior or values.

Command Modes

QoS policy-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(2)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(2)T. This command was enhanced to include reserved keywords <code>EF</code>, <code>AF11</code>, and <code>AF12</code> instead of numeric values.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Once the IP DSCP bit is set, other QoS services can then operate on the bit settings.

You cannot mark a packet by the IP precedence with the `set ip precedence` command and mark the same packet with an IP DSCP value by entering the `set ip dscp` command.

The network gives priority (or some type of expedited handling) to marked traffic. Typically, you set IP precedence at the edge of the network (or administrative domain); data then is queued based on the precedence. Weighted fair queueing (WFQ) can speed up handling for high-precedence traffic at congestion points. Weighted Random Early Detection (WRED) ensures that high-precedence traffic has lower loss rates than other traffic during times of congestion.

Reserved keywords `EF`, `AF11`, and `AF12` can be specified instead of numeric values.
Examples

In the following example, the IP DSCP ToS byte is set to 8 in the policy map called policy1:

```
Router(config)# policy-map policy1
Router(config-pmap)# class class1
Router(config-pmap-c)# set ip dscp 8
```

All packets that satisfy the match criteria of class1 are marked with the IP DSCP value of 8. How packets marked with the IP DSCP value of 8 are treated is determined by the network configuration.

After you configure the settings shown for voice packets at the edge, all intermediate routers are then configured to provide low latency treatment to the voice packets, as follows:

```
Router(config)# class-map voice
Router(config-cmap)# match ip dscp ef
Router(config)# policy qos-policy
Router(config-pmap)# class voice
Router(config-pmap-c)# priority 24
```

The `set ip dscp` command is applied when you create a service policy in QoS policy-map configuration mode. This service policy is not yet attached to an interface. For information on attaching a service policy to an interface, refer to the “Modular Quality of Service Command-Line Interface” chapter of the *Cisco IOS Quality of Service Solutions Configuration Guide*.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td>show policy-map class</td>
<td>Displays the configuration for the specified class of the specified policy map.</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
set ip precedence (policy-map)

To set the precedence value in the IP header, use the `set ip precedence` QoS policy-map configuration command. To leave the precedence value at the current setting, use the `no` form of this command.

```
set ip precedence ip-precedence-value

no set ip precedence
```

Syntax Description

- `ip-precedence-value` A number from 0 to 7 that sets the precedence bit in the IP header.

Defaults

This command is disabled by default.

Command Modes

QoS policy-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE. This command was introduced in the Modular Quality of Service Command-Line Interface (MQC) feature.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Once the IP precedence bits are set, other QoS services such as weighted fair queueing (WFQ) and Weighted Random Early Detection (WRED) then operate on the bit settings.

The network gives priority (or some type of expedited handling) to marked traffic through the application of WFQ or WRED at points downstream in the network. Typically, you set IP Precedence at the edge of the network (or administrative domain); data then is queued based on the precedence. WFQ can speed up handling for certain precedence traffic at congestion points. WRED can ensure that certain precedence traffic has lower loss rates than other traffic during times of congestion.

Examples

The following example sets the IP Precedence to 5 for packets that satisfy the match criteria of the class map called class1:

```
Router(config)# policy-map policy1
Router(config-pmap)# class class1
Router(config-pmap-c)# set ip precedence 5
```

All packets that satisfy the match criteria of class1 are marked with the IP Precedence value of 5. How packets marked with the IP Precedence value of 5 are treated is determined by the network configuration.

The `set ip precedence` command is applied when you create a service policy in QoS policy-map configuration mode. This service policy is not yet attached to an interface or to an ATM virtual circuit. For information on attaching a service policy to an interface, refer to the “Modular Quality of Service Command-Line Interface” chapter of the *Cisco IOS Quality of Service Solutions Configuration Guide*.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the configuration for all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
set ip precedence (route-map)

To set the precedence value (and an optional IP number or IP name) in the IP header, use the `set ip precedence` route-map configuration command. To leave the precedence value unchanged, use the `no` form of this command.

```
set ip precedence [number | name]
no set ip precedence
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>(Optional) A number or name that sets the precedence bits in the IP header. The values for the <code>number</code> argument and the corresponding <code>name</code> argument are listed in Table 16, from least to most important.</td>
</tr>
</tbody>
</table>

Defaults

This command is disabled by default.

Command Modes

Route-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Table 14 lists the values for the `number` argument and the corresponding `name` argument for precedence values in the IP header. They are listed from least to most important.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>routine</td>
</tr>
<tr>
<td>1</td>
<td>priority</td>
</tr>
<tr>
<td>2</td>
<td>immediate</td>
</tr>
<tr>
<td>3</td>
<td>flash</td>
</tr>
<tr>
<td>4</td>
<td>flash-override</td>
</tr>
<tr>
<td>5</td>
<td>critical</td>
</tr>
<tr>
<td>6</td>
<td>internet</td>
</tr>
<tr>
<td>7</td>
<td>network</td>
</tr>
</tbody>
</table>

You can set the precedence using either a number or the corresponding name. Once the IP Precedence bits are set, other QoS services such as weighted fair queueing (WFQ) and Weighted Random Early Detection (WRED) then operate on the bit settings.
The network gives priority (or some type of expedited handling) to marked traffic through the application of WFQ or WRED at points downstream in the network. Typically, you set IP Precedence at the edge of the network (or administrative domain); data then is queued based on the precedence. WFQ can speed up handling for certain precedence traffic at congestion points. WRED can ensure that certain precedence traffic has lower loss rates than other traffic during times of congestion.

The mapping from arguments such as routine and priority to a precedence value is useful only in some instances. That is, the use of the precedence bit is evolving. You can define the meaning of a precedence value by enabling other features that use the value. In the case of the high-end Internet QoS available from Cisco, IP Precedences can be used to establish classes of service that do not necessarily correspond numerically to better or worse handling in the network.

Use the route-map (IP) global configuration command with the match and set route-map configuration commands to define the conditions for redistributing routes from one routing protocol into another, or for policy routing. Each route-map command has an associated list of match and set commands. The match commands specify the match criteria—the conditions under which redistribution or policy routing is allowed for the current route-map command. The set commands specify the set actions—the particular redistribution or policy routing actions to perform if the criteria enforced by the match commands are met. The no route-map command deletes the route map.

The set route-map configuration commands specify the redistribution set actions to be performed when all of the match criteria of a route map are met.

Examples

The following example sets the IP Precedence to 5 (critical) for packets that pass the route map match:

```
interface serial 0
  ip policy route-map texas

route-map texas
  match length 68 128
  set ip precedence 5
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fair-queue (WFQ)</td>
<td>Enables WFQ for an interface.</td>
</tr>
<tr>
<td>ip policy route-map</td>
<td>Identifies a route map to use for policy routing on an interface.</td>
</tr>
<tr>
<td>random-detect dscp</td>
<td>Changes the minimum and maximum packet thresholds for the DSCP value.</td>
</tr>
<tr>
<td>rate-limit</td>
<td>Configures CAR and DCAR policies.</td>
</tr>
<tr>
<td>route-map (IP)</td>
<td>Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.</td>
</tr>
<tr>
<td>traffic-shape adaptive</td>
<td>Configures a Frame Relay subinterface to estimate the available bandwidth when BECN signals are received.</td>
</tr>
<tr>
<td>traffic-shape fecn-adapt</td>
<td>Replies to messages with the FECN bit (which are set with TEST RESPONSE messages with the BECN bit set).</td>
</tr>
<tr>
<td>traffic-shape group</td>
<td>Enables traffic shaping based on a specific access list for outbound traffic on an interface.</td>
</tr>
<tr>
<td>traffic-shape rate</td>
<td>Enables traffic shaping for outbound traffic on an interface.</td>
</tr>
</tbody>
</table>
set ip qos-group

To set a group ID that can be used later to classify packets, use the set ip qos-group route-map configuration command. To remove the group ID, use the no form of this command.

```
set ip qos-group group-id
no set ip qos-group group-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group-id</td>
<td>Group ID number in the range from 0 to 99.</td>
</tr>
</tbody>
</table>

Defaults

This command is disabled by default. No group ID is specified.

Command Modes

Route-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command allows you to set a group ID in the routing table that can be used later to classify packets into QoS groups based on prefix, autonomous system, and community string. These packets can then be rate limited or weighted fairly in the queue based on the QoS group ID.

To display QoS group information, use the `show ip cef` command.

Examples

The following example sets the QoS group to 1 for all packets that match community 1. These packets are then rate limited based on the QoS group ID.

```
configure terminal
route-map precedence-map permit 10
match community 1
set ip qos-group 1
interface hssi0/0/0
  bgp-policy source qos-group
end
```
set ip tos (route-map)

To set the type of service (TOS) bits in the header of an IP packet, use the `set ip tos` command in route-map configuration mode. To leave the TOS bits unchanged, use the `no` form of this command.

```
set ip tos [number]
no set ip tos
```

Syntax Description

- `number` (Optional) A number from 0 to 15 that sets the TOS bits in the IP header.

 See Table 15 for more information.

Defaults

Disabled

Command Modes

Route-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command allows you to set four bits in the TOS byte header. Table 15 shows the format of the four bits in binary form.

Table 15 TOS Bits and Description

<table>
<thead>
<tr>
<th>T3</th>
<th>T2</th>
<th>T1</th>
<th>T0</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 normal forwarding</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 minimum monetary cost</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2 maximum reliability</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4 maximum throughput</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8 minimum delay</td>
</tr>
</tbody>
</table>

The T3 bit sets the delay. Setting T3 to 0 equals normal delay, and setting it to 1 equals low delay.

The T2 bit sets the throughput. Setting this bit to 0 equals normal throughput, and setting it to 1 equals maximum throughput. Similarly, the T1 and T0 bits set reliability and cost, respectively. Therefore, as an example, if you want to set a packet with the following requirements:

- minimum delay T3 = 1
- normal throughput T2= 0
- normal reliability T1=0
- minimum monetary cost T0=1
You would set the TOS to 9, which is 1001 in binary format.

Use the `route-map` (IP) global configuration command with the `match` and `set` route-map configuration commands to define the conditions for redistributing routes from one routing protocol into another, or for policy routing. Each `route-map` command has an associated list of `match` and `set` commands. The `match` commands specify the match criteria—the conditions under which redistribution or policy routing is allowed for the current route-map command. The `set` commands specify the set actions—the particular redistribution or policy routing actions to perform if the criteria enforced by the match commands are met. The `no route-map` command deletes the route map.

The `set` route-map configuration commands specify the redistribution set actions to be performed when all of the match criteria of a route map are met.

Examples

The following example sets the IP TOS bits to 8 (minimum delay as shown in Table 15) for packets that pass the route-map match:

```
interface serial 0
  ip policy route-map texas

route-map texas
  match length 68 128
  set ip tos 8
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip policy route-map</code></td>
<td>Identifies a route map to use for policy routing on an interface.</td>
</tr>
<tr>
<td><code>route-map (IP)</code></td>
<td>Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.</td>
</tr>
</tbody>
</table>
set qos-group

To set a group ID that can be used later to classify packets, use the `set qos-group` QoS policy-map configuration command. To remove the group ID, use the `no` form of this command.

```
set qos-group group-id
no set qos-group group-id
```

Syntax Description

- `group-id` Group ID number in the range from 0 to 99.

Defaults

This command is disabled by default. No group ID is specified.

Command Modes

QoS policy-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE. This command was included in the Modular Quality of Service Command-Line Interface (MQC) feature.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command allows you to associate a group ID with a packet. The group ID can be used later to classify packets into QoS groups based on prefix, autonomous system, and community string.

To display QoS group information, use the `show ip cef` command.

Examples

The following example sets the QoS group to 1 for all packets that match the class map called `class1`. These packets are then rate limited based on the QoS group ID.

```
Router(config)# policy-map policy1
Router(config-pmap)# class class1
Router(config-pmap-c)# set qos-group 1
```

The `set qos-group` command is applied when you create a service policy in QoS policy-map configuration mode. This service policy is not yet attached to an interface or an ATM virtual circuit. For information on attaching a service policy to an interface, refer to the “Modular Quality of Service Command-Line Interface” chapter of the *Cisco IOS Quality of Service Solutions Configuration Guide*.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
queue-limit

To specify or modify the maximum number of packets the queue can hold for a class policy configured in a policy map, use the `queue-limit` policy-map class configuration command. To remove the queue packet limit from a class, use the `no` form of this command.

```
queue-limit number-of-packets
no queue-limit number-of-packets
```

Syntax Description

| number-of-packets | A number in the range from 1 to 64 specifying the maximum number of packets that the queue for this class can accumulate. |

Defaults

On the Versatile Interface Processor (VIP)-based platforms, the default value is chosen as a function of the bandwidth assigned to the traffic class. The default value is also based on available buffer memory. If sufficient buffer memory is available, the default `queue-limit` value is equal to the number of 250-byte packets that would lead to a latency of 500 milliseconds (ms) when the packets are delivered at the configured rate. For example, if two 250-byte packets are required to lead to a latency of 500 ms, the default `number-of-packets` value would be 2.

On all other platforms, the default is 64.

Command Modes

Policy-map class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE. Support for VIP-enabled Cisco 7500 series routers was added.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T. Support for VIP-enabled Cisco 7500 series routers was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Queues Created by Weighted Fair Queueing (WFQ)

WFQ creates a queue for every class for which a class map is defined. Packets satisfying the match criteria for a class accumulate in the queue reserved for the class until they are sent, which occurs when the queue is serviced by the fair queuing process. When the maximum packet threshold you defined for the class is reached, enqueueing of any further packets to the class queue causes tail drop or, if Weighted Random Early Detection (WRED) is configured for the class policy, packet drop to take effect.

Overriding Queue Limits Set by the Bandwidth Command

The `bandwidth` command can be used with the Modular Command-Line Interface (MCC) to specify the bandwidth for a particular class. When used with the MCC, the `bandwidth` command uses a default queue limit for the class. This queue limit can be modified using the `queue-limit` command, thereby overriding the default set by the `bandwidth` command.
Note
Using the `queue-limit` command to modify the default queue-limit is especially important for higher-speed interfaces, in order to meet the minimum bandwidth guarantees required by the interface.

Examples
The following example configures a policy map called `policy11` to contain policy for a class called `acl203`. Policy for this class is set so that the queue reserved for it has a maximum packet limit of 40.

```plaintext
policy-map policy11
  class acl203
    bandwidth 2000
    queue-limit 40
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth</td>
<td>Specifies or modifies the bandwidth allocated for a class belonging to a policy map</td>
</tr>
<tr>
<td>class (policy-map)</td>
<td>Specifies the name of the class whose policy you want to create or change, and the default class (commonly known as the class-default class) before you configure its policy.</td>
</tr>
<tr>
<td>class class-default</td>
<td>Specifies the default traffic class whose bandwidth is to be configured or modified.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
</tbody>
</table>
queue-list default

To assign a priority queue for those packets that do not match any other rule in the queue list, use the `queue-list default` global configuration command. To restore the default value, use the `no` form of this command.

```
queue-list list-number default queue-number

no queue-list list-number default queue-number
```

Syntax Description

- `list-number` Number of the queue list. Any number from 1 to 16 that identifies the queue list.
- `queue-number` Number of the queue. Any number from 1 to 16.

Defaults

This command is disabled by default.

The default number of the queue list is queue number 1.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you use multiple rules, remember that the system reads the `queue-list` commands in order of appearance. When classifying a packet, the system searches the list of rules specified by `queue-list` commands for a matching protocol or interface type. When a match is found, the system assigns the packet to the appropriate queue. The system searches the list in the order specified, and the first matching rule terminates the search.

Queue number 0 is a system queue. It is emptied before any of the other queues are processed. The system enqueues high-priority packets, such as keepalives, to this queue.

Use the `show interfaces` command to display the current status of the output queues.

Examples

In the following example, the default queue for list 10 is set to queue number 2:

```
queue-list 10 default 2
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>custom-queue-list</code></td>
<td>Assigns a custom queue list to an interface.</td>
</tr>
<tr>
<td><code>queue-list interface</code></td>
<td>Establishes queueing priorities on packets entering on an interface.</td>
</tr>
<tr>
<td><code>queue-list protocol</code></td>
<td>Establishes queueing priority based on the protocol type.</td>
</tr>
<tr>
<td><code>queue-list queue byte-count</code></td>
<td>Specifies how many bytes the system allows to be delivered from a given queue during a particular cycle.</td>
</tr>
<tr>
<td><code>queue-list queue limit</code></td>
<td>Designates the queue length limit for a queue.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
queue-list interface

To establish queueing priorities on packets entering on an interface, use the **queue-list interface** global configuration command. To remove an entry from the list, use the **no** form of this command.

```
queue-list list-number interface interface-type interface-number queue-number
no queue-list list-number interface interface-type interface-number queue-number
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-number</td>
<td>Number of the queue list. Any number from 1 to 16 that identifies the queue list.</td>
</tr>
<tr>
<td>interface-type</td>
<td>Type of the interface.</td>
</tr>
<tr>
<td>interface-number</td>
<td>Number of the interface.</td>
</tr>
<tr>
<td>queue-number</td>
<td>Number of the queue. Any number from 1 to 16.</td>
</tr>
</tbody>
</table>

Defaults

No queueing priorities are established.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you use multiple rules, remember that the system reads the **queue-list** commands in order of appearance. When classifying a packet, the system searches the list of rules specified by **queue-list** commands for a matching protocol or interface type. When a match is found, the system assigns the packet to the appropriate queue. The list is searched in the order specified, and the first matching rule terminates the search.

Examples

In the following example, queue list 4 establishes queueing priorities for packets entering on interface tunnel 3. The queue number assigned is 10.

```
queue-list 4 interface tunnel 3 10
```
Quality of Service Commands

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>custom-queue-list</td>
<td>Assigns a custom queue list to an interface.</td>
</tr>
<tr>
<td>queue-list default</td>
<td>Assigns a priority queue for those packets that do not match any other rule in the queue list.</td>
</tr>
<tr>
<td>queue-list protocol</td>
<td>Establishes queueing priority based on the protocol type.</td>
</tr>
<tr>
<td>queue-list queue byte-count</td>
<td>Specifies how many bytes the system allows to be delivered from a given queue during a particular cycle.</td>
</tr>
<tr>
<td>queue-list queue limit</td>
<td>Designates the queue length limit for a queue.</td>
</tr>
<tr>
<td>show queue</td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
queue-list lowest-custom

To set the lowest number for a queue to be treated as a custom queue, use the **queue-list lowest-custom** command in global configuration mode. To restore the default value, use the **no** form of this command.

```
queue-list list-number lowest-custom queue-number
```

```
no queue-list list-number lowest-custom queue-number
```

Syntax Description

| list-number | Number of the queue list. Any number from 1 to 16 that identifies the queue list. |
| queue-number | Number of the queue. Any number from 1 to 16. |

Defaults

The default number of the lowest custom queue is 1.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

All queues from queue 0 to the queue prior to the one specified in the **queue-list lowest-custom** command use the priority queue. (Queue 0 has the highest priority.)

All queues from the one specified in the **queue-list lowest-custom** command to queue 16 use a round-robin scheduler.

Use the **show queueing custom** command to display the current custom queue configuration.

Examples

In the following example, the lowest custom value is set to 2 for queue list 4:

```
queue-list 4 lowest-custom 2
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>custom-queue-list</td>
<td>Assigns a custom queue list to an interface.</td>
</tr>
<tr>
<td>queue-list interface</td>
<td>Establishes queueing priorities on packets entering on an interface.</td>
</tr>
<tr>
<td>queue-list protocol</td>
<td>Establishes queueing priority based on the protocol type.</td>
</tr>
<tr>
<td>queue-list queue byte-count</td>
<td>Specifies how many bytes the system allows to be delivered from a given queue during a particular cycle.</td>
</tr>
<tr>
<td>queue-list queue limit</td>
<td>Designates the queue length limit for a queue.</td>
</tr>
<tr>
<td>show queue</td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
queue-list protocol

To establish queueing priority based upon the protocol type, use the queue-list protocol global configuration command. To remove an entry from the list, use the no form of this command.

```
queue-list list-number protocol protocol-name queue-number queue-keyword keyword-value
no queue-list list-number protocol protocol-name queue-number queue-keyword keyword-value
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-number</td>
<td>Number of the queue list. Any number from 1 to 16.</td>
</tr>
<tr>
<td>protocol-name</td>
<td>Protocol type: aarp, apollo, appletalk, arp, bridge (transparent), clns, clns es, clns_is, cmns, compressedtcp, decnet, decnet_node, decnet_routerl1, decnet_routerl2, dlsw, ip, ipx, pad, rsrb, stun, vines, xns, and x25.</td>
</tr>
<tr>
<td>queue-number</td>
<td>Number of the queue. Any number from 1 to 16.</td>
</tr>
<tr>
<td>queue-keyword</td>
<td>Possible keywords are fragments, gt, list, lt, tcp, and udp. See Table 10 from the priority-list protocol command.</td>
</tr>
</tbody>
</table>

Defaults

No queueing priorities are established.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you use multiple rules for a single protocol, remember that the system reads the queue-list commands in order of appearance. When classifying a packet, the system searches the list of rules specified by queue-list commands for a matching protocol. When a match is found, the system assigns the packet to the appropriate queue. The system searches the list in the order specified, and the first matching rule terminates the search.

The decnet_router-l1 keyword refers to the multicast address for all level 1 routers, which are intra-area routers, and the decnet_router-l2 keyword refers to all level 2 routers, which are inter-area routers.

The dlsw, rsrb, and stun keywords refer only to direct encapsulation.

Use Table 10, Table 11, and Table 12 in the priority-list protocol command section to configure the queueing priorities for your system.
Examples

The following example assigns 1 as the custom queue list, specifies DECnet as the protocol type, and assigns 3 as a queue number to the packets sent on this interface:

```
queue-list 1 protocol decnet 3
```

The following example assigns DECnet packets with a size greater than 200 bytes to queue number 2:

```
queue-list 2 protocol decnet 2 gt 200
```

The following example assigns DECnet packets with a size less than 200 bytes to queue number 2:

```
queue-list 4 protocol decnet 2 lt 200
```

The following example assigns traffic that matches IP access list 10 to queue number 1:

```
queue-list 1 protocol ip 1 list 10
```

The following example assigns Telnet packets to queue number 2:

```
queue-list 4 protocol ip 2 tcp 23
```

The following example assigns User Datagram Protocol (UDP) Domain Name Service packets to queue number 2:

```
queue-list 4 protocol ip 2 udp 53
```

The following example assigns traffic that matches Ethernet type code access list 201 to queue number 1:

```
queue-list 1 protocol bridge 1 list 201
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>custom-queue-list</td>
<td>Assigns a custom queue list to an interface.</td>
</tr>
<tr>
<td>queue-list default</td>
<td>Assigns a priority queue for those packets that do not match any other rule in the queue list.</td>
</tr>
<tr>
<td>queue-list queue byte-count</td>
<td>Specifies how many bytes the system allows to be delivered from a given queue during a particular cycle.</td>
</tr>
<tr>
<td>queue-list queue limit</td>
<td>Designates the queue length limit for a queue.</td>
</tr>
<tr>
<td>show queue</td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
queue-list queue byte-count

To specify how many bytes the system allows to be delivered from a given queue during a particular cycle, use the `queue-list queue byte-count` global configuration command. To return the byte count to the default value, use the `no` form of this command.

```
queue-list list-number queue queue-number byte-count byte-count-number
```

```
no queue-list list-number queue queue-number byte-count byte-count-number
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>list-number</code></td>
<td>Number of the queue list. Any number from 1 to 16.</td>
</tr>
<tr>
<td><code>queue-number</code></td>
<td>Number of the queue. Any number from 1 to 16.</td>
</tr>
<tr>
<td><code>byte-count-number</code></td>
<td>The average number of bytes the system allows to be delivered from a given queue during a particular cycle.</td>
</tr>
</tbody>
</table>

Defaults

This command is not enabled by default.

The default byte count is 1500 bytes.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

In the following example, queue list 9 establishes the byte count as 1400 for queue number 10:

```
queue-list 9 queue 10 byte-count 1400
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>custom-queue-list</code></td>
<td>Assigns a custom queue list to an interface.</td>
</tr>
<tr>
<td><code>queue-list default</code></td>
<td>Assigns a priority queue for those packets that do not match any other rule in the queue list.</td>
</tr>
<tr>
<td><code>queue-list interface</code></td>
<td>Establishes queueing priorities on packets entering on an interface.</td>
</tr>
<tr>
<td><code>queue-list protocol</code></td>
<td>Establishes queueing priority based on the protocol type.</td>
</tr>
<tr>
<td><code>queue-list queue byte-count</code></td>
<td>Specifies how many bytes the system allows to be delivered from a given queue during a particular cycle.</td>
</tr>
<tr>
<td><code>queue-list queue limit</code></td>
<td>Designates the queue length limit for a queue.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
queue-list queue limit

To designate the queue length limit for a queue, use the `queue-list queue limit` global configuration command. To return the queue length to the default value, use the `no` form of this command.

```
queue-list list-number queue queue-number limit limit-number
no queue-list list-number queue queue-number limit limit-number
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-number</td>
<td>Number of the queue list. Any number from 1 to 16.</td>
</tr>
<tr>
<td>queue-number</td>
<td>Number of the queue. Any number from 1 to 16.</td>
</tr>
<tr>
<td>limit-number</td>
<td>Maximum number of packets that can be enqueued at any time. The range is from 0 to 32767 queue entries. A value of 0 means that the queue can be of unlimited size.</td>
</tr>
</tbody>
</table>

Defaults

The default queue length limit is 20 entries.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

In the following example, the queue length of queue 10 is increased to 40:

```
queue-list 5 queue 10 limit 40
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>custom-queue-list</td>
<td>Assigns a custom queue list to an interface.</td>
</tr>
<tr>
<td>queue-list default</td>
<td>Assigns a priority queue for those packets that do not match any other rule in the queue list.</td>
</tr>
<tr>
<td>queue-list interface</td>
<td>Establishes queueing priorities on packets entering on an interface.</td>
</tr>
<tr>
<td>queue-list protocol</td>
<td>Establishes queueing priority based on the protocol type.</td>
</tr>
<tr>
<td>queue-list queue byte-count</td>
<td>Specifies how many bytes the system allows to be delivered from a given queue during a particular cycle.</td>
</tr>
<tr>
<td>show queue</td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
random-detect dscp

To change the minimum and maximum packet thresholds for the differentiated services code point (DSCP) value, use the random-detect dscp interface configuration command. To return the minimum and maximum packet thresholds to the default for the DSCP value, use the no form of this command.

```
random-detect dscp dscpvalue min-threshold max-threshold [mark-probability-denominator]

no random-detect dscp dscpvalue min-threshold max-threshold [mark-probability-denominator]
```

Syntax Description

- **dscpvalue**: Specifies the DSCP value. The DSCP value can be a number from 0 to 63, or it can be one of the following keywords: ef, af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, cs1, cs2, cs3, cs4, cs5, or cs7.

- **min-threshold**: Minimum threshold in number of packets. The value range of this argument is from 1 to 4096. When the average queue length reaches the minimum threshold, Weighted Random Early Detection (WRED) randomly drops some packets with the specified DSCP value.

- **max-threshold**: Maximum threshold in number of packets. The value range of this argument is from the value of the min-threshold argument to 4096. When the average queue length exceeds the maximum threshold, WRED drops all packets with the specified DSCP value.

- **mark-probability-denominator** (Optional): Denominator for the fraction of packets dropped when the average queue depth is at the maximum threshold. For example, if the denominator is 512, 1 out of every 512 packets is dropped when the average queue is at the maximum threshold. The value range is from 1 to 65536. The default is 10; 1 out of every 10 packets is dropped at the maximum threshold.

Defaults

If WRED is using the DSCP value to calculate the drop probability of a packet, all entries of the DSCP table are initialized with the default settings shown in Table 16 in the “Usage Guidelines” section of this command.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(5)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The random-detect dscp command allows you to specify the DSCP value. The DSCP value can be a number from 0 to 63, or it can be one of the following keywords: ef, af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, cs1, cs2, cs3, cs4, cs5, or cs7.

This command must be used in conjunction with the random-detect (interface) command.
Additionally, the `random-detect dscp` command is available only if you specified the `dscp-based` argument when using the `random-detect` (interface) command.

Table 16 lists the default settings used by the `random-detect dscp` command for the DSCP value specified. Table 16 lists the DSCP value, and its corresponding minimum threshold, maximum threshold, and mark probability. The last row of the table (the row labeled "default") shows the default settings used for any DSCP value not specifically shown in the table.

Table 16random-detect dscp Default Settings

<table>
<thead>
<tr>
<th>DSCP (Precedence)</th>
<th>Minimum Threshold</th>
<th>Maximum Threshold</th>
<th>Mark Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>af11</td>
<td>32</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af12</td>
<td>28</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af13</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af21</td>
<td>32</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af22</td>
<td>20</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af23</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af31</td>
<td>32</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af32</td>
<td>28</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af33</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af41</td>
<td>32</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af42</td>
<td>28</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>af43</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs1</td>
<td>22</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs2</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs3</td>
<td>26</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs4</td>
<td>28</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs5</td>
<td>30</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs6</td>
<td>32</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>cs7</td>
<td>34</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>ef</td>
<td>36</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>rsvp</td>
<td>36</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>default</td>
<td>20</td>
<td>40</td>
<td>1/10</td>
</tr>
</tbody>
</table>

Examples

The following example enables WRED to use the DSCP value af22. The minimum threshold for DSCP value af22 is 20, the maximum threshold is 40, and the mark probability is 10.

```
random-detect dscp af22 20 40 10
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
<tr>
<td>show queueing interface</td>
<td>Displays the queueing statistics of an interface or VC.</td>
</tr>
</tbody>
</table>
random-detect (interface)

To enable Weighted Random Early Detection (WRED) or distributed WRED (DWRED), use the `random-detect` interface configuration command. To configure WRED as class policy in a policy map, use the `random-detect` interface and policy-map class configuration command. To disable WRED or DWRED, use the `no` form of this command.

```
random-detect [dscp-based | prec-based]

no random-detect [dscp-based | prec-based]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp-based</td>
<td>(Optional) Specifies that WRED is to use the differentiated services code point (DSCP) value when it calculates the drop probability for a packet.</td>
</tr>
<tr>
<td>prec-based</td>
<td>(Optional) Specifies that WRED is to use the IP Precedence value when it calculates the drop probability for a packet.</td>
</tr>
</tbody>
</table>

Defaults

WRED and DWRED are disabled by default.

If you choose not to use either the `dscp-based` or the `prec-based` argument, WRED uses the IP Precedence value (the default method) to calculate drop probability for the packet.

Command Modes

- Interface configuration when used on an interface
- Policy-map class configuration when used to specify class policy in a policy map

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T. Arguments were added to support Differentiated Services (DiffServ) and Assured Forwarding (AF) Per Hop Behavior (PHB).</td>
</tr>
</tbody>
</table>

Usage Guidelines

WRED is a congestion avoidance mechanism that slows traffic by randomly dropping packets when congestion exists. DWRED is similar to WRED but uses the Versatile Interface Processor (VIP) instead of the Route Switch Processor (RSP). WRED and DWRED are most useful with protocols like TCP that respond to dropped packets by decreasing the transmission rate.

The router automatically determines parameters to use in the WRED calculations. To change these parameters, use the `random-detect precedence` command.

The DWRED feature is supported only on Cisco 7000 series routers with an RSP7000 card and Cisco 7500 series routers with a VIP2-40 or greater interface processor. A VIP2-50 interface processor is strongly recommended when the aggregate line rate of the port adapters on the VIP is greater than DS3. A VIP2-50 interface processor is required for OC-3 rates.

To use DWRED, distributed Cisco Express Forwarding (dCEF) switching must first be enabled on the interface. For more information on dCEF, refer to the *Cisco IOS Switching Services Configuration Guide* and the *Cisco IOS Switching Services Command Reference*.
WRED in a Policy Map

You can configure WRED as part of the policy for a standard class or the default class. The WRED `random-detect` command and the weighted fair queuing (WFQ) `queue-limit` command are mutually exclusive for class policy. If you configure WRED, its packet drop capability is used to manage the queue when packets exceeding the configured maximum count are enqueued. If you configure the WFQ `queue-limit` command for class policy, tail drop is used.

To configure a policy map and create class policies, use the `policy-map` and `class (policy-map)` commands. When specifying class policy within a policy map, you can use the `random-detect` command with either of the following commands:

- `bandwidth (policy-map class)`
- `fair-queue (class-default)`—for the default class only

Note that if you use WRED packet drop instead of tail drop for one or more classes composing a policy map, you must ensure that WRED is not configured for the interface to which you attach that service policy.

The DWRED feature is not supported for class policy.

Two Methods for Calculating the Drop Probability of a Packet

This command includes two optional arguments, `dscp-based` and `prec-based`, that determine the method WRED uses to calculate the drop probability of a packet.

Note the following points when deciding which method to instruct WRED to use:

- With the `dscp-based` argument, WRED uses the DSCP value (that is, the first six bits of the IP type of service (ToS) byte) to calculate the drop probability.
- With the `prec-based` argument, WRED will use the IP Precedence value to calculate the drop probability.
- The `dscp-based` and `prec-based` arguments are mutually exclusive.
- If neither argument is specified, WRED uses the IP Precedence value to calculate the drop probability (the default method).

Examples

The following example configures WRED on the High-Speed Serial Interface (HSSI) 0/0/0 interface:

```plaintext
interface Hssi0/0/0
random-detect
```

The following example configures the policy map called policy1 to contain policy specification for the class called class1. During times of congestion, WRED packet drop is used instead of tail drop.

```plaintext
! The following commands create the class map called class1:
class-map class1
   match input-interface FE0/1

! The following commands define policy1 to contain policy specification for class1:
policy-map policy1
class class1
   bandwidth 1000
random-detect
```

The following example enables WRED to use the DSCP value 8. The minimum threshold for the DSCP value 8 is 24 and the maximum threshold is 40. This configuration was performed at the interface level.

```plaintext
Router(config-if)# interface seo/0
Router(config-if)# random-detect dscp-based
Router(config-if)# random-detect dscp 8 24 40
```
The following example enables WRED to use the DSCP value 8 for class c1. The minimum threshold for DSCP value 8 is 24 and the maximum threshold is 40. The last line attaches the service policy to the output interface or virtual circuit (VC) p1.

Router(config-if)# class-map c1
Router(config-cmap)# match access-group 101
Router(config-if)# policy-map p1
Router(config-pmap)# class c1
Router(config-pmap-c)# bandwidth 48
Router(config-pmap-c)# random-detect dscp-based
Router(config-pmap-c)# random-detect dscp 8 24 40
Router(config-if)# service-policy output p1

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>random-detect dscp</td>
<td>Changes the minimum and maximum packet thresholds for the DSCP value.</td>
</tr>
<tr>
<td>random-detect exponential-weighting-constant</td>
<td>Configures the WRED and DWRED exponential weight factor for the average queue size calculation.</td>
</tr>
<tr>
<td>random-detect flow</td>
<td>Enables flow-based WRED.</td>
</tr>
<tr>
<td>random-detect precedence</td>
<td>Configures WRED and DWRED parameters for a particular IP Precedence.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
<tr>
<td>show tech-support rsvp</td>
<td>Generates a report of all RSVP-related information.</td>
</tr>
</tbody>
</table>
random-detect (per VC)

To enable per-virtual circuit (VC) Weighted Random Early Detection (WRED) or per-VC VIP-distributed WRED (DWRED), use the `random-detect` VC submode command. To disable per-VC WRED and per-VC DWRED, use the `no` form of this command.

```
random-detect [attach group-name]
```

```
no random-detect [attach group-name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>attach group-name</code></td>
<td>(Optional) The name of the WRED or DWRED group.</td>
</tr>
</tbody>
</table>

Defaults

WRED and DWRED are disabled by default.

Command Modes

VC submode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

WRED is a congestion avoidance mechanism that slows traffic by randomly dropping packets when congestion exists. DWRED is similar to WRED but uses the Versatile Interface Processor (VIP) instead of the Route Switch Processor (RSP). WRED and DWRED are most useful with protocols like TCP that respond to dropped packets by decreasing the transmission rate.

WRED and DWRED are configurable at the interface and per-VC levels. The VC-level WRED or DWRED configuration will override the interface-level configuration if WRED or DWRED is also configured at the interface level.

Use this command to configure a single ATM VC or a VC that is a member of a bundle.

Note the following points when using the `random-detect` (per VC) command:

- If you use this command without the optional `attach` keyword, default WRED or DWRED parameters (such as minimum and maximum thresholds) are used.
- If you use this command with the optional `attach` keyword, the parameters defined by the specified WRED or DWRED parameter group are used. (WRED or DWRED parameter groups are defined through the `random-detect-group` command.) If the specified WRED or DWRED group does not exist, the VC is configured with default WRED or DWRED parameters.
When this command is used to configure an interface-level WRED or DWRED group to include per-VC WRED or DWRED as a drop policy, the configured WRED or DWRED group parameters are inherited under the following conditions:

- All existing VCs—including Resource Reservation Protocol (RSVP) switched virtual circuits (SVCs) that are not specifically configured with a VC-level WRED or DWRED group—will inherit the interface-level WRED or DWRED group parameters.
- Except for the VC used for signalling and the Interim Local Management Interface (ILMI) VC, any VCs created after the configuration of an interface-level DWRED group will inherit the parameters.

When an interface-level WRED or DWRED group configuration is removed, per-VC WRED or DWRED parameters are removed from any VC that inherited them from the configured interface-level WRED or DWRED group.

When an interface-level WRED or DWRED group configuration is modified, per-VC WRED or DWRED parameters are modified accordingly if the WRED or DWRED parameters were inherited from the configured interface-level WRED or DWRED group configuration.

This command is only supported on interfaces that are capable of VC-level queueing. The only currently supported interface is the Enhanced ATM port adapter (PA-A3).

The DWRED feature is only supported on Cisco 7000 series routers with an RSP7000 card and Cisco 7500 series routers with a VIP2-40 or greater interface processor. A VIP2-50 interface processor is strongly recommended when the aggregate line rate of the port adapters on the VIP is greater than DS3. A VIP2-50 interface processor is required for OC-3 rates.

To use DWRED, distributed Cisco Express Forwarding (dCEF) switching must first be enabled on the interface. For more information on dCEF, refer to the *Cisco IOS Switching Services Configuration Guide* and the *Cisco IOS Switching Services Command Reference*.

Examples

The following example configures per-VC WRED for the permanent virtual circuit (PVC) called cisco. Because the *attach* keyword was not used, WRED uses default parameters.

```
pvc cisco 46
random-detect
```

The following example creates a DWRED group called Rome and then applies the parameter group to an ATM PVC:

```
! The following commands create the DWRED parameter group Rome:
random-detect-group Rome
precedence rsvp 46 50 10
precedence 1 32 50 10
precedence 2 34 50 10
precedence 3 36 50 10
precedence 4 38 50 10
precedence 5 40 50 10
precedence 6 42 50 10
precedence 7 44 50 10
exit
exit
```
The following commands create a PVC on an ATM interface and then apply the DWRED group Rome to that PVC:

```
interface ATM2/0.23 point-to-point
ip address 10.9.23.10 255.255.255.0
no ip mroute-cache
pvc vc1 201/201
  random-detect attach Rome
  vbr-nrt 2000 1000 200
  encapsulation aal5snap
```

The following `show queueing` command displays the current settings for each of the IP Precedences following configuration of per-VC DWRED:

```
Router# show queueing random-detect interface atm2/0.23 vc 201/201
random-detect group Rome:

exponential weight 9
    class    min-threshold    max-threshold    mark-probability
    ----------------------------------------------
    0        30               50               1/10
    1        32               50               1/10
    2        34               50               1/10
    3        36               50               1/10
    4        38               50               1/10
    5        40               50               1/10
    6        42               50               1/10
    7        44               50               1/10
    rsvp     46               50               1/10
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>class (policy-map)</code></td>
<td>Specifies the name of the class whose policy you want to create or change,</td>
</tr>
<tr>
<td></td>
<td>and the default class (commonly known as the class-default class) before</td>
</tr>
<tr>
<td></td>
<td>you configure its policy.</td>
</tr>
<tr>
<td><code>random-detect</code></td>
<td>Configures the WRED and DWRED exponential weight factor for the average</td>
</tr>
<tr>
<td><code>exponential-weighting-constant</code></td>
<td>queue size calculation.</td>
</tr>
<tr>
<td><code>random-detect-group</code></td>
<td>Defines the WRED or DWRED parameter group.</td>
</tr>
<tr>
<td><code>random-detect precedence</code></td>
<td>Configures WRED and DWRED parameters for a particular IP Precedence.</td>
</tr>
<tr>
<td><code>show interfaces</code></td>
<td>Displays the statistical information specific to a serial interface.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface</td>
</tr>
<tr>
<td></td>
<td>or VC.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
random-detect exponential-weighting-constant

To configure the Weighted Random Early Detection (WRED) and distributed WRED (DWRED) exponential weight factor for the average queue size calculation for the queue, use the `random-detect exponential-weighting-constant` interface configuration command. To configure the exponential weight factor for the average queue size calculation for the queue reserved for a class, use the `random-detect exponential-weighting-constant` policy-map class configuration command. To return the value to the default, use the `no` form of this command.

```
random-detect exponential-weighting-constant exponent

no random-detect exponential-weighting-constant
```

Syntax Description

```
exponent
```

Exponent from 1 to 16 used in the average queue size calculation.

Defaults

The default exponential weight factor is 9.

Command Modes

Interface configuration when used on an interface

Policy-map class configuration when used to specify class policy in a policy map, or when used in the Modular Quality of Service Command-Line Interface (MQC)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)T</td>
<td>This command was made available as a policy-map class configuration command.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE. Support for VIP-enabled Cisco 7500 series routers was added.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T. Support for VIP-enabled Cisco 7500 series routers was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

WRED is a congestion avoidance mechanism that slows traffic by randomly dropping packets when congestion exists. DWRED is similar to WRED but uses the Versatile Interface Processor (VIP) instead of the Route Switch Processor (RSP). WRED and DWRED are most useful with protocols like TCP that respond to dropped packets by decreasing the transmission rate.

Use this command to change the exponent used in the average queue size calculation for the WRED and DWRED services. You can also use this command to configure the exponential weight factor for the average queue size calculation for the queue reserved for a class.

Note

The default WRED or DWRED parameter values are based on the best available data. We recommend that you do not change the parameters from their default values unless you have determined that your applications would benefit from the changed values.
The DWRED feature is not supported for class policy.

The DWRED feature is only supported on Cisco 7000 series routers with an RSP7000 card and Cisco 7500 series routers with a VIP2-40 or greater interface processor. A VIP2-50 interface processor is strongly recommended when the aggregate line rate of the port adapters on the VIP is greater than DS3. A VIP2-50 interface processor is required for OC-3 rates.

To use DWRED, distributed Cisco Express Forwarding (dCEF) switching must first be enabled on the interface. For more information on dCEF, refer to the Cisco IOS Switching Services Configuration Guide and the Cisco IOS Switching Services Command Reference.

Examples

The following example configures WRED on an interface with a weight factor of 10:

```plaintext
interface Hssi0/0/0
description 45Mbps to R1
ip address 10.200.14.250 255.255.255.252
random-detect
random-detect exponential-weighting-constant 10
```

The following example configures the policy map called policy1 to contain policy specification for the class called class1. During times of congestion, WRED packet drop is used instead of tail drop. The weight factor used for the average queue size calculation for the queue for class1 is 12.

```plaintext
! The following commands create the class map called class1:
class-map class1
    match input-interface FE0/1

! The following commands define policy1 to contain policy specification for class1:
policy-map policy1
    class class1
      bandwidth 1000
      random-detect
      random-detect exponential-weighting-constant 12

The following example configures policy for a traffic class named int10 to configure the exponential weight factor as 12. This is the weight factor used for the average queue size calculation for the queue for traffic class int10. WRED packet drop is used for congestion avoidance for traffic class int10, not tail drop.

```plaintext
policy-map policy12
 class int10
 bandwidth 2000
 random-detect exponential-weighting-constant 12
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>random-detect</strong></td>
<td>Enables per-VC WRED or per-VC DWRED.</td>
</tr>
<tr>
<td><strong>exponential-weighting-constant</strong></td>
<td>Configures the exponential weight factor for the average queue size calculation for a WRED parameter group.</td>
</tr>
<tr>
<td><strong>fair-queue (class-default)</strong></td>
<td>Specifies the number of dynamic queues to be reserved for use by the class-default class as part of the default class policy.</td>
</tr>
<tr>
<td><strong>precedence (VC bundle)</strong></td>
<td>Configures precedence levels for a VC class that can be assigned to a VC bundle and thus applied to all VC members of that bundle.</td>
</tr>
<tr>
<td><strong>precedence (WRED group)</strong></td>
<td>Configures a WRED group for a particular IP Precedence.</td>
</tr>
<tr>
<td><strong>random-detect dscp</strong></td>
<td>Changes the minimum and maximum packet thresholds for the DSCP value.</td>
</tr>
<tr>
<td><strong>random-detect (per VC)</strong></td>
<td>Enables per-VC WRED or per-VC DWRED.</td>
</tr>
<tr>
<td><strong>random-detect precedence</strong></td>
<td>Configures WRED and DWRED parameters for a particular IP Precedence.</td>
</tr>
<tr>
<td><strong>show policy-map</strong></td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td><strong>show policy-map interface</strong></td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
<tr>
<td><strong>show queue</strong></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><strong>show queueing</strong></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
random-detect flow

To enable flow-based Weighted Random Early Detection (WRED), use the random-detect flow interface configuration command. To disable flow-based WRED, use the no form of this command.

    random-detect flow
    no random-detect flow

Syntax Description
This command has no arguments or keywords.

Defaults
Flow-based WRED is disabled by default.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You must use this command to enable flow-based WRED before you can use the random-detect flow average-depth-factor and random-detect flow count commands to further configure the parameters of flow-based WRED.

Before you can enable flow-based WRED, you must enable and configure WRED. For complete information, refer to the Cisco IOS Quality of Service Solutions Configuration Guide.

Examples
The following example enables flow-based WRED on serial interface 1:

    interface Serial1
    random-detect
    random-detect flow
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>random-detect dscp</strong></td>
<td>Changes the minimum and maximum packet thresholds for the DSCP value.</td>
</tr>
<tr>
<td><strong>random-detect exponential-weighting-constant</strong></td>
<td>Configures the WRED and DWRED exponential weight factor for the average queue size calculation.</td>
</tr>
<tr>
<td><strong>random-detect flow average-depth-factor</strong></td>
<td>Sets the multiplier to be used in determining the average depth factor for a flow when flow-based WRED is enabled.</td>
</tr>
<tr>
<td><strong>random-detect flow count</strong></td>
<td>Sets the flow count for flow-based WRED.</td>
</tr>
<tr>
<td><strong>random-detect precedence</strong></td>
<td>Configures WRED and DWRED parameters for a particular IP Precedence.</td>
</tr>
<tr>
<td><strong>show interfaces</strong></td>
<td>Displays the statistical information specific to a serial interface.</td>
</tr>
<tr>
<td><strong>show queue</strong></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><strong>show queueing</strong></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
random-detect flow average-depth-factor

To set the multiplier to be used in determining the average depth factor for a flow when flow-based Weighted Random Early Detection (WRED) is enabled, use the `random-detect flow average-depth-factor` interface configuration command. To remove the current flow average depth factor value, use the `no` form of this command.

```
random-detect flow average-depth-factor scaling-factor
no random-detect flow average-depth-factor scaling-factor
```

### Syntax Description

- **scaling-factor**
  - The numbers 2, 4, 8, or 16.

### Defaults

The default average depth factor is 4.

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use this command to specify the scaling factor that flow-based WRED should use in scaling the number of buffers available per flow and in determining the number of packets allowed in the output queue for each active flow. This scaling factor is common to all flows. The outcome of the scaled number of buffers becomes the per-flow limit.

If this command is not used and flow-based WRED is enabled, the average depth scaling factor defaults to 4.

A flow is considered nonadaptive—that is, it takes up too much of the resources—when the average flow depth times the specified multiplier (scaling factor) is less than the depth for the flow, for example:

```
average-flow-depth * (scaling factor) < flow-depth
```

Before you use this command, you must use the `random-detect flow` command to enable flow-based WRED for the interface. To configure flow-based WRED, you may also use the `random-detect flow count` command.

### Examples

The following example enables flow-based WRED on serial interface 1 and sets the scaling factor for the average flow depth to 8:

```
interface Serial1
random-detect
random-detect flow
random-detect flow average-depth-factor 8
```
## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>random-detect dscp</code></td>
<td>Changes the minimum and maximum packet thresholds for the DSCP value.</td>
</tr>
<tr>
<td><code>random-detect exponential-weighting-constant</code></td>
<td>Configures the WRED and DWRED exponential weight factor for the average queue size calculation.</td>
</tr>
<tr>
<td><code>random-detect flow</code></td>
<td>Enables flow-based WRED.</td>
</tr>
<tr>
<td><code>random-detect flow count</code></td>
<td>Sets the flow count for flow-based WRED.</td>
</tr>
<tr>
<td><code>random-detect precedence</code></td>
<td>Configures WRED and DWRED parameters for a particular IP Precedence.</td>
</tr>
<tr>
<td><code>show interfaces</code></td>
<td>Displays the statistical information specific to a serial interface.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
random-detect flow count

To set the flow count for flow-based Weighted Random Early Detection (WRED), use the random-detect flow count interface configuration command. To remove the current flow count value, use the no form of this command.

```
random-detect flow count number

no random-detect flow count number
```

**Syntax Description**

<table>
<thead>
<tr>
<th>number</th>
<th>Specifies a value from 16 to $2^{15}$ (32768).</th>
</tr>
</thead>
</table>

**Defaults**

256

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Before you use this command, you must use the random-detect flow command to enable flow-based WRED for the interface.

**Examples**

The following example enables flow-based WRED on serial interface 1 and sets the flow threshold constant to 16:

```
interface Serial1
random-detect
random-detect flow
random-detect flow count 16
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>random-detect dscp</td>
<td>Changes the minimum and maximum packet thresholds for the DSCP value.</td>
</tr>
<tr>
<td>random-detect exponential-weighting-constant</td>
<td>Configures the WRED and DWRED exponential weight factor for the average queue size calculation.</td>
</tr>
<tr>
<td>random-detect flow</td>
<td>Enables flow-based WRED.</td>
</tr>
<tr>
<td>random-detect precedence</td>
<td>Configures WRED and DWRED parameters for a particular IP Precedence.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays the statistical information specific to a serial interface.</td>
</tr>
<tr>
<td>show queue</td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
random-detect-group

To define the Weighted Random Early Detection (WRED) or distributed WRED (DWRED) parameter group, use the `random-detect group` global configuration command. To delete the WRED or DWRED parameter group, use the `no` form of this command.

`random-detect-group group-name [dscp-based | prec-based]`

`no random-detect-group group-name [dscp-based | prec-based]`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group-name</code></td>
<td>Name for the WRED or DWRED parameter group.</td>
</tr>
<tr>
<td><code>dscp-based</code></td>
<td>(Optional) Specifies that WRED is to use the differentiated services code point (DSCP) value when it calculates the drop probability for a packet.</td>
</tr>
<tr>
<td><code>prec-based</code></td>
<td>(Optional) Specifies that WRED is to use the IP Precedence value when it calculates the drop probability for a packet.</td>
</tr>
</tbody>
</table>

**Defaults**

No WRED or DWRED parameter group exists.

If you choose not to use either the `dscp-based` or the `prec-based` argument, WRED uses the IP Precedence value (the default method) to calculate drop probability for the packet.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1(22)CC</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T. Arguments were added to support Differentiated Services (DiffServ) and Assured Forwarding (AF) Per Hop Behavior (PHB).</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

WRED is a congestion avoidance mechanism that slows traffic by randomly dropping packets when there is congestion. DWRED is similar to WRED but uses the Versatile Interface Processor (VIP) instead of the Route Switch Processor (RSP). WRED and DWRED are most useful when the traffic uses protocols such as TCP that respond to dropped packets by decreasing the transmission rate.

The router automatically determines parameters to use in the WRED calculations. If you want to change these parameters for a group, use the `exponential-weighting-constant` or `precedence` command.

**Two Methods for Calculating the Drop Probability of a Packet**

This command includes two optional arguments, `dscp-based` and `prec-based`, that determine the method WRED uses to calculate the drop probability of a packet.
Note the following points when deciding which method to instruct WRED to use:

- With the `dscp-based` argument, WRED uses the DSCP value (that is, the first six bits of the IP type of service (ToS) byte) to calculate the drop probability.
- With the `prec-based` argument, WRED will use the IP Precedence value to calculate the drop probability.
- The `dscp-based` and `prec-based` arguments are mutually exclusive.
- If neither argument is specified, WRED uses the IP Precedence value to calculate the drop probability (the default method).

### Examples

The following example defines the WRED parameter group called sanjose:

```plaintext
random-detect-group sanjose
precedence 0 32 256 100
precedence 1 64 256 100
precedence 2 96 256 100
precedence 3 128 256 100
precedence 4 160 256 100
precedence 5 192 256 100
precedence 6 224 256 100
precedence 7 256 256 100
```

The following example enables WRED to use the DSCP value 9. The minimum threshold for the DSCP value 9 is 20 and the maximum threshold is 50. This configuration can be attached to other virtual circuits (VCs) as required.

```plaintext
Router(config)# random-detect-group sanjose dscp-based
Router(config-red-grp)# dscp 9 20 50
Router(config-subif-vc)# random-detect attach sanjose
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp</td>
<td>Changes the minimum and maximum packet thresholds for the DSCP value.</td>
</tr>
<tr>
<td>exponential-weighting-constant</td>
<td>Configures the exponential weight factor for the average queue size calculation for a WRED parameter group.</td>
</tr>
<tr>
<td>precedence (WRED group)</td>
<td>Configures a WRED group for a particular IP Precedence.</td>
</tr>
<tr>
<td>random-detect-group</td>
<td>Defines the WRED or DWRED parameter group.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
<tr>
<td>show queueing interface</td>
<td>Displays the queueing statistics of an interface or VC.</td>
</tr>
</tbody>
</table>
random-detect precedence

To configure Weighted Random Early Detection (WRED) and distributed WRED (DWRED) parameters for a particular IP Precedence, use the `random-detect precedence` interface configuration command. To configure WRED parameters for a particular IP Precedence for a class policy in a policy map, use the `random-detect precedence` policy-map class configuration command. To return the values to the default for the precedence, use the `no` form of this command.

```
random-detect precedence {precedence | rsvp} min-threshold max-threshold
mark-prob-denominator

no random-detect precedence {precedence | rsvp} min-threshold max-threshold
mark-prob-denominator
```

**Syntax Description**

- **precedence**: IP Precedence number. The value range is from 0 to 7. For Cisco 7000 series routers with an RSP7000 interface processor and Cisco 7500 series routers with a VIP2-40 interface processor (VIP2-50 interface processor strongly recommended), the precedence value range is from 0 to 7 only; see Table 17 in the “Usage Guidelines” section of this command.
- **rsvp**: Indicates Resource Reservation Protocol (RSVP) traffic.
- **min-threshold**: Minimum threshold in number of packets. The value range of this argument is from 1 to 4096. When the average queue length reaches the minimum threshold, WRED randomly drops some packets with the specified IP Precedence.
- **max-threshold**: Maximum threshold in number of packets. The value range of this argument is from the value of the `min-threshold` argument to 4096. When the average queue length exceeds the maximum threshold, WRED drops all packets with the specified IP Precedence.
- **mark-prob-denominator**: Denominator for the fraction of packets dropped when the average queue depth is at the minimum threshold. For example, if the denominator is 512, 1 out of every 512 packets is dropped when the average queue is at the minimum threshold. The value range is from 1 to 65536. The default is 10; 1 out of every 10 packets is dropped at the minimum threshold.

**Defaults**

For all precedences, the `mark-prob-denominator` default is 10, and the `max-threshold` is based on the output buffering capacity and the transmission speed for the interface.

The default `min-threshold` depends on the precedence. The `min-threshold` for IP Precedence 0 corresponds to half of the `max-threshold`. The values for the remaining precedences fall between half the `max-threshold` and the `max-threshold` at evenly spaced intervals. See Table 17 in the “Usage Guidelines” section of this command for a list of the default minimum threshold values for each IP Precedence.

**Command Modes**

- Interface configuration when used on an interface
- Policy-map class configuration when used to specify class policy in a policy map
Quality of Service Commands

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

WRED is a congestion avoidance mechanism that slows traffic by randomly dropping packets when congestion exists. DWRED is similar to WRED but uses the Versatile Interface Processor (VIP) instead of the Route Switch Processor (RSP).

When you configure the `random-detect` command on an interface, packets are given preferential treatment based on the IP Precedence of the packet. Use the `random-detect precedence` command to adjust the treatment for different precedences.

If you want WRED or DWRED to ignore the precedence when determining which packets to drop, enter this command with the same parameters for each precedence. Remember to use reasonable values for the minimum and maximum thresholds.

Note that if you use the `random-detect precedence` command to adjust the treatment for different precedences within class policy, you must ensure that WRED is not configured for the interface to which you attach that service policy.

Table 17 lists the default minimum threshold value for each IP Precedence.

**Table 17 Default WRED and DWRED Minimum Threshold Values**

<table>
<thead>
<tr>
<th>IP Precedence</th>
<th>Minimum Threshold Value (Fraction of Maximum Threshold Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9/18</td>
</tr>
<tr>
<td></td>
<td>8/16</td>
</tr>
<tr>
<td>1</td>
<td>10/18</td>
</tr>
<tr>
<td></td>
<td>9/16</td>
</tr>
<tr>
<td>2</td>
<td>11/18</td>
</tr>
<tr>
<td></td>
<td>10/16</td>
</tr>
<tr>
<td>3</td>
<td>12/18</td>
</tr>
<tr>
<td></td>
<td>11/16</td>
</tr>
<tr>
<td>4</td>
<td>13/18</td>
</tr>
<tr>
<td></td>
<td>12/16</td>
</tr>
<tr>
<td>5</td>
<td>14/18</td>
</tr>
<tr>
<td></td>
<td>13/16</td>
</tr>
<tr>
<td>6</td>
<td>15/18</td>
</tr>
<tr>
<td></td>
<td>14/16</td>
</tr>
<tr>
<td>7</td>
<td>16/18</td>
</tr>
<tr>
<td>RSVP</td>
<td>17/18</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
</tbody>
</table>

**Note**

The default WRED or DWRED parameter values are based on the best available data. We recommend that you do not change the parameters from their default values unless you have determined that your applications would benefit from the changed values.

The DWRED feature is supported only on Cisco 7000 series routers with an RSP7000 card and Cisco 7500 series routers with a VIP2-40 or greater interface processor. A VIP2-50 interface processor is strongly recommended when the aggregate line rate of the port adapters on the VIP is greater than DS3. A VIP2-50 interface processor is required for OC-3 rates.

To use DWRED, distributed Cisco Express Forwarding (dCEF) switching must first be enabled on the interface. For more information on dCEF, refer to the Cisco IOS Switching Services Configuration Guide and the Cisco IOS Switching Services Command Reference.
Note
The DWRED feature is not supported in a class policy.

Examples
The following example enables WRED on the interface and specifies parameters for the different IP Precedences:

```plaintext
interface Hssi0/0/0
description 45Mbps to R1
ip address 10.200.14.250 255.255.255.252
random-detect
random-detect precedence 0 32 256 100
random-detect precedence 1 64 256 100
random-detect precedence 2 96 256 100
random-detect precedence 3 120 256 100
random-detect precedence 4 140 256 100
random-detect precedence 5 170 256 100
random-detect precedence 6 290 256 100
random-detect precedence 7 210 256 100
random-detect precedence rsvp 230 256 100
```

The following example configures policy for a class called acl10 included in a policy map called policy10. Class acl101 has these characteristics: a minimum of 2000 kbps of bandwidth are expected to be delivered to this class in the event of congestion and a weight factor of 10 is used to calculate the average queue size. For congestion avoidance, WRED packet drop is used, not tail drop. IP Precedence is reset for levels 0 through 4.

```plaintext
policy-map policy10
class acl10
bandwidth 2000
random-detect
random-detect exponential-weighting-constant 10
random-detect precedence 0 32 256 100
random-detect precedence 1 64 256 100
random-detect precedence 2 96 256 100
random-detect precedence 3 120 256 100
random-detect precedence 4 140 256 100
```
## Quality of Service Commands

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bandwidth (policy-map-class)</code></td>
<td>Specifies or modifies the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td><code>fair-queue (class-default)</code></td>
<td>Specifies the number of dynamic queues to be reserved for use by the class-default class as part of the default class policy.</td>
</tr>
<tr>
<td><code>random-detect dscp</code></td>
<td>Changes the minimum and maximum packet thresholds for the DSCP value.</td>
</tr>
<tr>
<td><code>random-detect (per VC)</code></td>
<td>Enables per-VC WRED or per-VC DWRED.</td>
</tr>
<tr>
<td><code>random-detect exponential-weighting-constant</code></td>
<td>Configures the WRED and DWRED exponential weight factor for the average queue size calculation.</td>
</tr>
<tr>
<td><code>random-detect flow count</code></td>
<td>Sets the flow count for flow-based WRED.</td>
</tr>
<tr>
<td><code>show policy-map interface</code></td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
<tr>
<td><code>show queue</code></td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
To specify average or peak rate traffic shaping, use the `shape` class-map configuration command. To remove traffic shaping, use the `no` form of this command.

```
shape {average | peak} cir [bc] [be]
no shape {average | peak} cir [bc] [be]
```

**Syntax Description**

- `average` Specifies average rate shaping.
- `peak` Specifies peak rate shaping.
- `cir` Specifies the committed information rate (CIR), in bits per second (bps).
- `bc` (Optional) Specifies the Committed Burst size, in bits.
- `be` (Optional) Specifies the Excess Burst size, in bits.

**Defaults**

This command has no default behavior or values.

**Command Modes**

Class-map configuration

**Command History**

- **Release** 12.1(2)T
  - **Modification** This command was introduced.

**Usage Guidelines**

Traffic shaping limits the rate of transmission of data. In addition to using a specifically configured transmission rate, you can use Generic Traffic Shaping (GTS) to specify a derived transmission rate based on the level of congestion.

You can specify two types of traffic shaping; average rate shaping and peak rate shaping. Average rate shaping limits the transmission rate to the CIR. Using the CIR ensures that the average amount of traffic being sent conforms to the rate expected by the network.

Peak rate shaping configures the router to send more traffic than the CIR. To determine the peak rate, the router uses the following formula:

```
peak rate = CIR(1 + Be / Bc)
```

where:

- `Be` is the Excess Burst size.
- `Bc` is the Committed Burst size.

Peak rate shaping allows the router to burst higher than average rate shaping. However, using peak rate shaping, the traffic sent above the CIR (the delta) could be dropped if the network becomes congested.
If your network has additional bandwidth available (over the provisioned CIR) and the application or class can tolerate occasional packet loss, that extra bandwidth can be exploited through the use of peak rate shaping. However, there may be occasional packet drops when network congestion occurs. If the traffic being sent to the network must strictly conform to the configured network provisioned CIR, then you should use average traffic shaping.

**Examples**

The following example sets the uses average rate shaping to ensure a bandwidth of 256 kbps:

```sh
shape average 256000
```

The following example uses peak rate shaping to ensure a bandwidth of 300 kbps but allow throughput up to 512 kbps if enough bandwidth is available on the interface:

```sh
bandwidth 300
shape peak 512000
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth</td>
<td>Specifies or modifies the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td>class (policy-map)</td>
<td>Specifies the name of the class whose policy you want to create or change, and the default class (commonly known as the class-default class) before you configure its policy.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td>shape max-buffers</td>
<td>Specifies the maximum number of buffers allowed on shaping queues.</td>
</tr>
</tbody>
</table>
shape (policy-map class)

To shape traffic to the indicated bit rate according to the algorithm specified, use the `shape` policy-map class configuration command. To remove shaping and leaving the traffic unshapped, use the `no` form of this command.

```
shape [average | peak] mean-rate [[burst-size] [excess-burst-size]]
```

```
no shape [average | peak]
```

**Syntax Description**

- **average** (Optional) Committed Burst (Bc) is the maximum number of bits sent out in each interval.
- **peak** (Optional) Bc + Excess Burst (Be) is the maximum number of bits sent out in each interval.
- **mean-rate** (Optional) Also called committed information rate (CIR). Indicates the bit rate used to shape the traffic, in bits per second. When this command is used with backward explicit congestion notification (BECN) approximation, the bit rate is the upper bound of the range of bit rates that will be permitted.
- **burst-size** (Optional) The number of bits in a measurement interval (Bc).
- **excess-burst-size** (Optional) The acceptable number of bits permitted to go over the Be.

**Defaults**

When Be is not configured, the default value is equal to Bc. For more information about burst size defaults, see the “Usage Guidelines” section of this command.

**Command Modes**

Policy-map class configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The measurement interval is Bc divided by CIR. Bc cannot be set to 0. If the measurement interval is too large (greater than 128 milliseconds), the system subdivides it into smaller intervals.

If you do not specify Bc and Be, the algorithm decides the default values for the shape entity. The algorithm uses a 4 milliseconds measurement interval, so Bc will be CIR * (4 / 1000).

Burst sizes larger than the default Bc need to be explicitly specified. The larger the Bc, the longer the measurement interval. A long measurement interval may affect voice traffic latency, if applicable.

When Be is not configured, the default value is equal to Bc.
Examples

The following example configures a shape entity with a CIR of 1 Mbps and attaches the policy map called dts-interface-all-action to interface pos1/0/0:

```
policy-map dts-interface-all-action
class class-interface-all
 shape average 1000000

 interface pos1/0/0
 service-policy output dts-interface-all-action
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shape adaptive</td>
<td>Configures a Frame Relay interface or a point-to-point subinterface to estimate the available bandwidth by BECN integration while traffic shaping is enabled.</td>
</tr>
<tr>
<td>shape fecn-adapt</td>
<td>Configures a Frame Relay PVC to reflect received FECN bits as BECN bits in Q.922 TEST RESPONSE messages.</td>
</tr>
</tbody>
</table>
shape adaptive

To configure a Frame Relay interface or a point-to-point subinterface to estimate the available bandwidth by backward explicit congestion notification (BECN) integration while traffic shaping is enabled, use the shape adaptive policy-map class configuration command. If traffic shaping is not enabled, this command has no effect. To leave the available bandwidth unestimated, use the no form of this command.

   shape adaptive mean-rate-lower-bound

   no shape adaptive

**Syntax Description**

| mean-rate-lower-bound | Specifies the lower bound of the range of permitted bit rates. |

**Defaults**

This command has no default behavior or values.

**Command Modes**

Policy-map class configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When continuous BECN messages are received, the shape entity immediately decreases its maximum shape rate by one-fourth for each BECN message received until it reaches the lower bound committed information rate (CIR). If, after several intervals, the interface has not received another BECN and traffic is waiting in the shape queue, the shape entity increases the shape rate back to the maximum rate by 1/16 for each interval. A shape entity configured with the shape adaptive lower CIR command will always be shaped between the mean rate upper bound and the mean rate lower bound.

**Examples**

The following example configures a shape entity with CIR 128 kbps and sets the lower bound CIR to 64 kbps when BECN is received:

```
policy-map dts-p2p-all-action
class class-p2p-all
 shape average 128000
 shape adaptive 64000
```
shape fecn-adapt

To configure a Frame Relay interface to reflect received forward explicit congestion notification (FECN) bits as backward explicit congestion notification (BECN) bits in Q.922 TEST RESPONSE messages, use the shape fecn-adapt policy-map class configuration command. To configure the Frame Relay interface to not reflect FECN as BECN, use the no form of this command.

    shape fecn-adapt
    no shape fecn-adapt

Syntax Description

This command has no arguments or keywords.

Defaults

This command has no default behavior or values.

Command Modes

Policy-map class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When the downstream Frame Relay switch is congested, a Frame Relay interface or point-to-point interface receives a Frame Relay message with the FECN bit on. This message may be an indication that no traffic is waiting to carry a BECN to the far end (voice/multimedia traffic is one-way). When the shape fecn-adapt command is configured, a small buffer is allocated and a Frame Relay TEST RESPONSE is built on behalf of the Frame Relay switch. The Frame Relay TEST RESPONSE is equipped with the triggering data-link connection identifier (DLCI) of the triggering mechanism. It also sets the BECN bit and sends it out to the wire.

Examples

The following example configures a shape entity with a CIR of 1 Mbps and adapts the Frame Relay message with FECN to BECN:

    policy-map dts-p2p-all-action
    class class-p2p-all
    shape average 1000000
    shape fecn-adapt
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>shape (policy-map class)</strong></td>
<td>Configures an interface to shape traffic to an indicated bit rate.</td>
</tr>
<tr>
<td><strong>shape adaptive</strong></td>
<td>Configures a Frame Relay interface or a point-to-point subinterface to estimate the available bandwidth by BECN integration while traffic shaping is enabled.</td>
</tr>
</tbody>
</table>
shape max-buffers

To specify the maximum number of buffers allowed on shaping queues, use the `shape max-buffers` class-map configuration command. To remove the maximum number of buffers, use the `no` form of this command.

```
shape max-buffers number-of-buffers

no shape max-buffers number-of-buffers
```

**Syntax Description**

`number-of-buffers` Specifies the maximum number of buffers. The minimum number of buffers is 1; the maximum number of buffers is 4096.

**Defaults**

The default setting is 1000 buffers.

**Command Modes**

Class-map configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(2)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can specify the maximum number of buffers allowed on shaping queues for each class configured to use Generic Traffic Shaping (GTS).

**Examples**

The following example configures shaping and sets the maximum buffer limit to 100:

```
shape average 350000
shape max-buffers 100
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth</td>
<td>Specifies or modifies the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td>class (policy-map)</td>
<td>Specifies the name of the class whose policy you want to create or change, and the default class (commonly known as the class-default class) before you configure its policy.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Attaches a policy map to an input interface or VC, or an output interface or VC, to be used as the service policy for that interface or VC.</td>
</tr>
<tr>
<td>shape</td>
<td>Specifies average or peak rate traffic shaping.</td>
</tr>
</tbody>
</table>
show access-lists rate-limit

To display information about rate-limit access lists, use the show access-lists rate-limit EXEC command.

    show access-lists rate-limit [acl-index]

Syntax Description

| acl-index | (Optional) Rate-limit access list number from 1 to 299. |

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the show access-lists rate-limit command:

Router# show access-lists rate-limit

Rate-limit access list 1
  0
Rate-limit access list 2
  1
Rate-limit access list 3
  2
Rate-limit access list 4
  3
Rate-limit access list 5
  4
Rate-limit access list 6
  5
Rate-limit access list 9
  mask FF
Rate-limit access list 10
  mask 0F
Rate-limit access list 11
  mask F0
Rate-limit access list 100
  1001.0110.1111
Rate-limit access list 101
  00E0.34B8.D840
Rate-limit access list 199
  1111.1111.1111

The following is sample output from the show access-lists rate-limit command when specific rate-limit access lists are specified:

Router# show access-lists rate-limit 1

Rate-limit access list 1
  0
show access-lists rate-limit

Router# show access-lists rate-limit 9
   Rate-limit access list 9
       mask FF

Router# show access-lists rate-limit 101
   Rate-limit access list 101
       00E0.34B8.D840

Table 18 describes the significant fields shown in the displays.

Table 18 show access-lists rate-limit Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate-limit access list</td>
<td>Rate-limit access list number. A number from 1 to 99 represents a precedence-based access list. A number from 100 to 199 indicates a MAC address-based access list.</td>
</tr>
<tr>
<td>0</td>
<td>IP Precedence for packets in this rate-limit access list.</td>
</tr>
<tr>
<td>mask FF</td>
<td>IP Precedence mask for packets in this rate-limit access list.</td>
</tr>
<tr>
<td>1001.0110.1111</td>
<td>MAC address for packets in this rate-limit access list.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list rate-limit</td>
<td>Configures an access list for use with CAR policies.</td>
</tr>
<tr>
<td>show access-lists</td>
<td>Displays the contents of current IP and rate-limit access lists.</td>
</tr>
</tbody>
</table>
show atm bundle

To display the bundle attributes assigned to each bundle virtual circuit (VC) member and the current working status of the VC members, use the `show atm bundle` privileged EXEC command.

```
show atm bundle bundle-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bundle-name</code></td>
<td>The name of the bundle whose member information is displayed. This is the bundle name specified by the <code>bundle</code> command when the bundle was created.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show atm bundle` command (* indicates that this VC is the VC for all precedence levels not explicitly configured):

```
Router# show atm bundle

new-york on atm1/0.1 Status: UP

Name VPI/VCI Preced. Preced. Predec./ Accept Config. Active Bumping PV Peak Avg/Min Burst Cells Status
ny-control 0/207 7 7 4 /Yes pv 10000 5000 32 UP
ny-premium 0/206 6-5 6-5 7 /No pg 20000 10000 32 UP
ny-priority 0/204 4-2 4-2 7 /Yes pg 10000 3000 UP
ny-basic* 0/201 1-0 1-0 - /Yes pg 10000 UP

los-angeles on atm1/0.1 - Status: UP

Name VPI/VCI Preced. Preced. Predec./ Accept Config. Active Bumping PV Peak Avg/Min Burst Cells Status
la-high 0/407 7-5 7-5 4 /Yes pv 20000 5000 32 UP
la-med 0/404 4-2 4-2 1 /Yes pg 10000 3000 UP
la-low* 0/401 1-0 1-0 - /Yes pg 10000 UP
```
san-francisco on atm1/0.1 Status: UP

<table>
<thead>
<tr>
<th>Name</th>
<th>VPI/VCI</th>
<th>Config. Active</th>
<th>Preced.</th>
<th>Preced.</th>
<th>Bumping</th>
<th>PG/ PV</th>
<th>Peak</th>
<th>Avg/Min</th>
<th>Burst</th>
<th>Cells</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf-control</td>
<td>0/307</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>/Yes</td>
<td>pv</td>
<td>10000</td>
<td>5000</td>
<td>32</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>sf-premium</td>
<td>0/306</td>
<td>6-5</td>
<td>6-5</td>
<td>7</td>
<td>/No</td>
<td>pg</td>
<td>20000</td>
<td>10000</td>
<td>32</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>sf-priority</td>
<td>0/304</td>
<td>4-2</td>
<td>4-2</td>
<td>1</td>
<td>/Yes</td>
<td>pg</td>
<td>10000</td>
<td>3000</td>
<td></td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>sf-basic*</td>
<td>0/301</td>
<td>1-0</td>
<td>1-0</td>
<td>-</td>
<td>/Yes</td>
<td>pg</td>
<td>10000</td>
<td></td>
<td></td>
<td>UP</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show atm bundle statistics</td>
<td>Displays statistics on the specified bundle.</td>
</tr>
<tr>
<td>show atm map</td>
<td>Displays the list of all configured ATM static maps to remote hosts on an ATM network.</td>
</tr>
</tbody>
</table>
show atm bundle statistics

To display statistics or detailed statistics on the specified bundle, use the `show atm bundle statistics` privileged EXEC command.

```
show atm bundle bundle-name statistics [detail]
```

**Syntax Description**

- `bundle-name` Specifies the name of the bundle whose member information is displayed. This is the bundle name specified by the `bundle` command when the bundle was created.
- `detail` (Optional) Displays detailed statistics.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show atm bundle statistics` command:

```
Router# show atm bundle san-jose statistics
Bundle Name: Bundle State: UP
AAL5-NLPID
OAM frequency: 0 second(s), OAM retry frequency: 1 second(s)
OAM up retry count: 3, OAM down retry count: 5
BUNDLE is not managed.
InARP frequency: 15 minute(s)
InPkts: 3, OutPkts: 3, Inbytes: 1836, Outbytes: 1836
InProc: 3, OutProc: 0, Broadcasts: 3
InFast: 0, OutFast: 0, InAS: 0, OutAS: 0

Router# show atm bundle san-jose statistics detail
Bundle Name: Bundle State: UP
AAL5-NLPID
OAM frequency: 0 second(s), OAM retry frequency: 1 second(s)
OAM up retry count: 3, OAM down retry count: 5
BUNDLE is not managed.
InARP frequency: 15 minute(s)
InPkts: 3, OutPkts: 3, InBytes: 1836, OutBytes: 1836
InProc: 3, OutProc: 0, Broadcasts: 3
InFast: 0, OutFast: 0, InAS: 0, OutAS: 0

ATMI/0.52: VCD: 6, VPI: 0 VCI: 218, Connection Name: sj-basic
UBR, PeakRate: 155000
AAL5-LLC/SNAP, etype:0x0, Flags: 0xC20, VCmode: 0xE00
OAM frequency: 0 second(s), OAM retry frequency: 1 second(s)
OAM up retry count: 3, OAM down retry count: 5
OAM Loopback status: OAM Disabled
OMA VC state: Not Managed
ILMI VC state: Not Managed
InARP frequency: 15 minute(s)
```
InPkts: 3, OutPkts: 3, InBytes: 1836, OutBytes: 1836
InPRoc: 3, OutPRoc: 0, Broadcasts: 3
InFast: 0, OutFast: 0, InAS: 0, OututAS: 0
OAM cells received: 0
F5 InEndloop: 0, F5 InSegloop: 0, F5 InAIS: 0, F5 InRDI: 0
F4 InEndloop: 0, F4 OutSegloop: 0, F4 InAIS: 0, F4 InRDI: 0
OAM cells sent: 0
F5 OutEndloop: 0, F5 OutSegloop: 0, F5 Out RDI: 0
F4 OutEndloop: 0, F4 OutSegloop: 0, F4 OutRDI: 0
OAM cell drops: 0
Status: UP

ATM1/0.52: VCD: 4, VPI: 0, VCI: 216, Connection Name: sj-premium
UBR, PeakRate: 155000
AAL5-LLC/SNAP, etype: 0x0, Flags: 0xC20, VCmode: 0xE000
OAM frequency: 0 second(s), OAM retry frequency: 1 second(s)
OAM up retry count: 3, OAM down retry count: 5
OAM Loopback status: OAM Disabled
OAM VC state: Not Managed
ILMI VC state: Not Managed
InARP frequency: 15 minute(s)
InPkts: 0, OutPkts: 0, InBytes: 0, OutBytes: 0
InPRoc: 0, OutPRoc: 0, Broadcasts: 0
InFast: 0, OutFast: 0, InAS: 0
OAM cells received: 0
F5 InEndloop: 0, F4 InSegloop: 0, F4 InAIS: 0, F4 InRDI: 0
F4 OutEndloop: 0, F4 OutSegloop: 0, F4 OutRDI: 0
OAM cell drops: 0
Status: UP

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show atm bundle</td>
<td>Displays the bundle attributes assigned to each bundle VC member and the current working status of the VC members.</td>
</tr>
<tr>
<td>show atm map</td>
<td>Displays the list of all configured ATM static maps to remote hosts on an ATM network.</td>
</tr>
</tbody>
</table>
show class-map

To display all class maps and their matching criteria, use the show class-map EXEC or privileged EXEC command.

        show class-map [class-map-name]

Syntax Description

        class-map-name   (Optional) Name of the class map.

Defaults

This command has no default behavior or values.

Command Modes

EXEC or Privileged EXEC

Command History

Release       Modification
12.0(5)T       This command was introduced.

Usage Guidelines

You can use the show class-map command to display all class maps and their matching criteria. If you enter the optional class-map-name argument, the specified class map and its matching criteria will be displayed.

Examples

In the following example, three class maps are defined. Packets that match access list 103 belong to class c3, IP packets belong to class c2, and packets that come through input Ethernet interface 1/0 belong to class c1. The output from the show class-map command shows the three defined class maps.

        Router# show class-map

        Class Map c3
        Match access-group 103

        Class Map c2
        Match protocol ip

        Class Map c1
        Match input-interface Ethernet1/0

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
</tbody>
</table>
**show cops servers**

To display the IP address and connection status of the policy servers for which the router is configured, use the `show cops servers` EXEC command. The display also tells you about the Common Open Policy Service (COPS) client on the router.

```
show cops servers
```

**Syntax Description**

This command has no keywords or arguments.

**Defaults**

This command has no default behavior or values.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(1)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

In the following example, information is displayed about the current policy server and client. When Client Type appears followed by an integer, 1 stands for Resource Reservation Protocol (RSVP) and 2 stands for Differentiated Services Provisioning. (0 indicates keepalive.)

```
Router# show cops servers
COPS SERVER: Address: 161.44.135.172. Port: 3288. State: 0. Keepalive: 120 sec
 Number of clients: 1. Number of sessions: 1.
COPS CLIENT: Client type: 1. State: 0.
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip rsvp policy</code></td>
<td>Displays policy server address(es), ACL IDs, and current state of the router-server connection.</td>
</tr>
</tbody>
</table>
show interfaces fair-queue

To display information and statistics about weighted fair queuing (WFQ) for a Versatile Interface Processor (VIP)-based interface, use the `show interfaces fair-queue` EXEC command.

`show interfaces [interface-type interface-number] fair-queue`

**Syntax Description**

- `interface-type` *(Optional)* The type of the interface.
- `interface-number` *(Optional)* The number of the interface.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show interfaces fair-queue` command for VIP-distributed WFQ (DWFQ):

```
Router# show interfaces fair-queue
Hssi0/0/0 queue size 0
 packets output 1417079, drops 2
WFQ: aggregate queue limit 54, individual queue limit 27
 max available buffers 54
 Class 0: weight 10 limit 27 qsize 0 packets output 1150 drops 0
 Class 1: weight 20 limit 27 qsize 0 packets output 0 drops 0
 Class 2: weight 30 limit 27 qsize 0 packets output 775482 drops 1
 Class 3: weight 40 limit 27 qsize 0 packets output 0 drops 0
```

Table 19 describes the significant fields shown in the display.

**Table 19 show interfaces fair-queue Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue size</td>
<td>Current output queue size for this interface.</td>
</tr>
<tr>
<td>packets output</td>
<td>Number of packets sent out this interface or number of packets in this class sent out the interface.</td>
</tr>
<tr>
<td>drops</td>
<td>Number of packets dropped or number of packets in this class dropped.</td>
</tr>
<tr>
<td>aggregate queue limit</td>
<td>Aggregate limit, in number of packets.</td>
</tr>
<tr>
<td>individual queue limit</td>
<td>Individual limit, in number of packets.</td>
</tr>
<tr>
<td>max available buffers</td>
<td>Available buffer space allocated to aggregate queue limit, in number of packets.</td>
</tr>
<tr>
<td>Class</td>
<td>QoS group or type of service (ToS) class.</td>
</tr>
</tbody>
</table>
show interfaces fair-queue

Table 19  show interfaces fair-queue Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>Percent of bandwidth allocated to this class during periods of congestion.</td>
</tr>
<tr>
<td>limit</td>
<td>Queue limit for this class in number of packets.</td>
</tr>
<tr>
<td>qsize</td>
<td>Current size of the queue for this class.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
</tbody>
</table>
show interfaces random-detect

To display information about Weighted Random Early Detection (WRED) for a Versatile Interface Processor (VIP)-based interface, use the `show interfaces random-detect` EXEC command.

```
show interfaces [interface-type interface-number] random-detect
```

### Syntax Description

- **interface-type** (Optional) The type of the interface.
- **interface-number** (Optional) The number of the interface.

### Command Modes

EXEC

### Command History

**Release**	**Modification**
11.1 CC | This command was introduced.

### Examples

The following is sample output from the `show interfaces random-detect` command for VIP-distributed WRED (DWRED):

```
Router# show interfaces random-detect

FastEthernet1/0/0 queue size 0
 packets output 29692, drops 0
WRED: queue average 0
 weight 1/512
 Precedence 0: 109 min threshold, 218 max threshold, 1/10 mark weight
 1 packets output, drops: 0 random, 0 threshold
 Precedence 1: 122 min threshold, 218 max threshold, 1/10 mark weight
 (no traffic)
 Precedence 2: 135 min threshold, 218 max threshold, 1/10 mark weight
 14845 packets output, drops: 0 random, 0 threshold
 Precedence 3: 148 min threshold, 218 max threshold, 1/10 mark weight
 (no traffic)
 Precedence 4: 161 min threshold, 218 max threshold, 1/10 mark weight
 (no traffic)
 Precedence 5: 174 min threshold, 218 max threshold, 1/10 mark weight
 (no traffic)
 Precedence 6: 187 min threshold, 218 max threshold, 1/10 mark weight
 14846 packets output, drops: 0 random, 0 threshold
 Precedence 7: 200 min threshold, 218 max threshold, 1/10 mark weight
 (no traffic)
```

Table 20 describes the significant fields shown in the display.

### Table 20  show interfaces random-detect Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue size</td>
<td>Current output queue size for this interface.</td>
</tr>
<tr>
<td>packets output</td>
<td>Number of packets sent out this interface.</td>
</tr>
<tr>
<td>drops</td>
<td>Number of packets dropped.</td>
</tr>
</tbody>
</table>
Table 20  show interfaces random-detect Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue average</td>
<td>Average queue length.</td>
</tr>
<tr>
<td>weight</td>
<td>Weighting factor used to determine the average queue size.</td>
</tr>
<tr>
<td>Precedence</td>
<td>WRED parameters for this precedence.</td>
</tr>
<tr>
<td>min threshold</td>
<td>Minimum threshold for this precedence.</td>
</tr>
<tr>
<td>max threshold</td>
<td>Maximum length of the queue. When the average queue is this long, any additional packets will be dropped.</td>
</tr>
<tr>
<td>mark weight</td>
<td>Probability of a packet being dropped if the average queue is at the maximum threshold.</td>
</tr>
<tr>
<td>packets output</td>
<td>Number of packets with this precedence that have been sent.</td>
</tr>
<tr>
<td>random</td>
<td>Number of packets dropped randomly through the WRED process.</td>
</tr>
<tr>
<td>threshold</td>
<td>Number of packets dropped automatically because the average queue was at the maximum threshold length.</td>
</tr>
<tr>
<td>(no traffic)</td>
<td>No packets with this precedence.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td>random-detect flow</td>
<td>Enables flow-based WRED.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
show interfaces rate-limit

To display information about committed access rate (CAR) for an interface, use the show interfaces rate-limit EXEC command.

show interfaces [interface-type interface-number] rate-limit

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-type</td>
<td>(Optional) The type of the interface.</td>
</tr>
<tr>
<td>interface-number</td>
<td>(Optional) The number of the interface.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the show interfaces rate-limit command:

Router# show interfaces fddi2/1/0 rate-limit

Fddi2/1/0
Input
matches: access-group rate-limit 100
params: 800000000 bps, 64000 limit, 80000 extended limit
conformed 0 packets, 0 bytes; action: set-prec-continue 1
exceeded 0 packets, 0 bytes; action: set-prec-continue 0
last packet: 4737508ms ago, current burst: 0 bytes
last cleared 01:05:47 ago, conformed 0 bps, exceeded 0 bps
matches: access-group 101
params: 800000000 bps, 56000 limit, 72000 extended limit
conformed 0 packets, 0 bytes; action: set-prec-transmit 5
exceeded 0 packets, 0 bytes; action: set-prec-transmit 0
last packet: 4738036ms ago, current burst: 0 bytes
last cleared 01:02:05 ago, conformed 0 bps, exceeded 0 bps
matches: all traffic
params: 500000000 bps, 48000 limit, 64000 extended limit
conformed 0 packets, 0 bytes; action: set-prec-transmit 5
exceeded 0 packets, 0 bytes; action: set-prec-transmit 0
last packet: 4738036ms ago, current burst: 0 bytes
last cleared 01:00:22 ago, conformed 0 bps, exceeded 0 bps
Output
matches: all traffic
params: 800000000 bps, 64000 limit, 80000 extended limit
conformed 0 packets, 0 bytes; action: transmit
exceeded 0 packets, 0 bytes; action: drop
last packet: 4809528ms ago, current burst: 0 bytes
last cleared 00:59:42 ago, conformed 0 bps, exceeded 0 bps
Table 21 describes the significant fields shown in the display.

### Table 21  show interfaces rate-limit Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>These rate limits apply to packets received by the interface.</td>
</tr>
<tr>
<td>matches</td>
<td>Packets that match this rate limit.</td>
</tr>
<tr>
<td>params</td>
<td>Parameters for this rate limit, as configured by the rate-limit command.</td>
</tr>
<tr>
<td>bps</td>
<td>Average rate, in bits per second.</td>
</tr>
<tr>
<td>limit</td>
<td>Normal burst size, in bytes.</td>
</tr>
<tr>
<td>extended limit</td>
<td>Excess burst size, in bytes.</td>
</tr>
<tr>
<td>conformed</td>
<td>Number of packets that have conformed to the rate limit.</td>
</tr>
<tr>
<td>action</td>
<td>Conform action.</td>
</tr>
<tr>
<td>exceeded</td>
<td>Number of packets that have exceeded the rate limit.</td>
</tr>
<tr>
<td>action</td>
<td>Exceed action.</td>
</tr>
<tr>
<td>last packet</td>
<td>Time since the last packet, in milliseconds.</td>
</tr>
<tr>
<td>current burst</td>
<td>Instantaneous burst size at the current time.</td>
</tr>
<tr>
<td>last cleared</td>
<td>Time since the burst counter was set back to zero by the clear counters command.</td>
</tr>
<tr>
<td>conformed</td>
<td>Rate of conforming traffic.</td>
</tr>
<tr>
<td>exceeded</td>
<td>Rate of exceeding traffic.</td>
</tr>
<tr>
<td>Output</td>
<td>These rate limits apply to packets sent by the interface.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list rate-limit</td>
<td>Configures an access list for use with CAR policies.</td>
</tr>
<tr>
<td>clear counters</td>
<td>Clears the interface counters.</td>
</tr>
<tr>
<td>shape</td>
<td>Specifies average or peak rate traffic shaping.</td>
</tr>
<tr>
<td>show access-lists</td>
<td>Displays the contents of current IP and rate-limit access lists.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
</tbody>
</table>
show ip nbar pdlm

To display the Packet Description Language Module (PDLM) in use by Network-Based Application Recognition (NBAR), use the `show ip nbar pdlm` privileged EXEC command.

```
show ip nbar pdlm
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
This command has no default behavior or values.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
This command is used to display a list of all the PDLMs that have been loaded into NBAR using the `ip nbar pdlm` command.

**Examples**
In this example of the `show ip nbar pdlm` command, the citrix.pdlm PDLM has been loaded from Flash memory:

```
Router# show ip nbar pdlm

The following PDLMs have been loaded:
flash://citrix.pdlm
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip nbar pdlm</td>
<td>Extends or enhances the list of protocols recognized by NBAR through a Cisco-provided PDLM.</td>
</tr>
</tbody>
</table>
show ip nbar pdim
show ip nbar port-map

To display the current protocol-to-port mappings in use by Network-Based Application Recognition (NBAR), use the show ip nbar port-map privileged EXEC command.

```
show ip nbar port-map [protocol-name]
```

**Syntax Description**
```
protocol-name (Optional) Limits the command display to the specified protocol.
```

**Defaults**
This command displays port assignments for NBAR protocols.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
This command is used to display the current protocol-to-port mappings in use by NBAR. When the ip nbar port-map command has been used, the show ip nbar port-map command displays the ports assigned by the user to the protocol. If no ip nbar port-map command has been used, the show ip nbar port-map command displays the default ports. The protocol-name argument can also be used to limit the display to a specific protocol.

**Examples**
The following example displays output from the show ip nbar port-map command:

```
Router# show ip nbar-port-map

port-map bgp udp 179
port-map bgp tcp 179
port-map cuseeme udp 7648 7649
port-map cuseeme tcp 7648 7649
port-map dhcp udp 67 68
port-map dhcp tcp 67 68
port-map dns udp 53
port-map dns tcp 53
```

**Related Commands**
```
Command Description
------------------ ---
ip nbar-port-map Configures NBAR to search for a protocol or protocol name using a port number other than the well-known port.
```
show ip nbar protocol-discovery

To display the statistics gathered by the Network-Based Application Recognition (NBAR) Protocol Discovery feature, use the `show ip nbar protocol-discovery` privileged EXEC command.

```
show ip nbar protocol-discovery [interface interface-spec] [stats {byte-count | bit-rate
| packet-count}] [[protocol protocol-name | top-n number]]
```

Syntax Description

- **interface** (Optional) Specifies that Protocol Discovery statistics for the interface are to be displayed.
- **interface-spec** (Optional) Specifies an interface to display.
- **stats** (Optional) Specifies that the byte count, byte rate, or packet count is to be displayed.
- **byte-count** (Optional) Specifies that the byte count is to be displayed.
- **bit-rate** (Optional) Specifies that the bit rate is to be displayed.
- **packet-count** (Optional) Specifies that the packet count is to be displayed.
- **protocol** (Optional) Specifies that statistics for a specific protocol are to be displayed.
- **protocol-name** (Optional) User-specified protocol name for which the statistics are to be displayed.
- **top-n** (Optional) Specifies that a top-n is to be displayed. A top-n is the number of most active NBAR-supported protocols, where n is the number of protocols to be displayed. For instance, if top-n 3 is entered, the three most active NBAR-supported protocols will be displayed.
- **number** (Optional) Specifies the number of most active NBAR-supported protocols to be displayed.

Defaults

Statistics for all interfaces on which the Protocol Discovery feature is enabled are displayed.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)XE2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show ip nbar protocol-discovery` command to display statistics gathered by the NBAR Protocol Discovery feature. This command, by default, displays statistics for all interfaces on which protocol discovery is currently enabled. The default output of this command includes, in the following order, input bit rate (in bits per second), input byte count, input packet count, and protocol name.
Protocol discovery can be used to monitor both input and output traffic and may be applied with or without a service policy enabled. NBAR protocol discovery gathers statistics for packets switched to output interfaces. These statistics are not necessarily for packets that exited the router on the output interfaces, because packets may have been dropped after switching for various reasons, including policing at the output interface, access lists, or queue drops.

**Examples**

The following example displays partial output of the `show ip nbar protocol-discovery` command for an Ethernet interface:

Router# `show ip nbar protocol-discovery interface FastEthernet 6/0`

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Input Packet Count</th>
<th>Input Byte Count</th>
<th>5 minute bit rate (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>igrp</td>
<td>316773</td>
<td>26340105</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>streamwork</td>
<td>4437</td>
<td>2301891</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>7367</td>
<td>339213</td>
<td>0</td>
</tr>
<tr>
<td>rsvp</td>
<td>279538</td>
<td>319106191</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>14644</td>
<td>673624</td>
<td>0</td>
</tr>
<tr>
<td>ntp</td>
<td>8979</td>
<td>906550</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7714</td>
<td>694260</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>17203819</td>
<td>151684936</td>
<td>4179000</td>
</tr>
<tr>
<td></td>
<td>19161397327</td>
<td>50967034611</td>
<td>6620000</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ip nbar protocol-discovery</strong></td>
<td>Configures NBAR to discover traffic for all protocols known to NBAR on a particular interface.</td>
</tr>
</tbody>
</table>
To display the IP Precedence bit values and type of service (ToS) bit values to be used to mark the ToS byte of the IP headers of all packets in a Resource Reservation Protocol (RSVP) reserved path that conform to or exceed the RSVP flowspec for a given interface, use the `show ip rsvp` EXEC command.

```
show ip rsvp {precedence | tos} [interface-name]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>precedence</td>
<td>Displays IP Precedence bit and ToS bit conform and exceed values for all interfaces on the router. Either argument—<code>precedence</code> or <code>tos</code>—yields the same results. IP Precedence and ToS bit values for all interfaces with RSVP enabled are displayed in both cases. Either <code>tos</code> or <code>precedence</code> may be specified; one is required.</td>
</tr>
<tr>
<td>tos</td>
<td>Displays IP Precedence bit and ToS bit conform and exceed values for all interfaces on the router. Either argument—<code>precedence</code> or <code>tos</code>—yields the same results. IP Precedence and ToS bit values for all interfaces with RSVP enabled are displayed in both cases. Either <code>tos</code> or <code>precedence</code> may be specified; one is required.</td>
</tr>
<tr>
<td>interface-name</td>
<td>(Optional) The name of the interface. If this argument is omitted, IP Precedence and ToS bit values are displayed for all interfaces with RSVP enabled.</td>
</tr>
</tbody>
</table>

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(3)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to show the current IP Precedence (or ToS) bit values set for traffic conforming to or exceeding the RSVP flowspec for an interface if the `ip rsvp precedence` or `ip rsvp tos` command was used to configure values for any Enhanced ATM port adapter (PA-A3) interface on the router.

Use this command to show the current ToS bit values set for traffic conforming to or exceeding the Resource Reservation Protocol (RSVP) flowspec for an interface if the `ip rsvp tos` command was used to configure values for any Enhanced ATM port adapter (PA-A3) interface on the router.

The `show ip rsvp tos` and `show ip rsvp precedence` commands are functionally equivalent. They both show the IP Precedence and ToS bit values for all interfaces with RSVP enabled.

To display these values for a given interface exclusively, specify the interface name. If the `interface` argument is omitted, IP Precedence and ToS bit values are displayed for all interfaces with RSVP enabled.
The following sample output shows that for the ATM interface 0, the IP Precedence bits are set to 3 for traffic that conforms to the RSVP flowspec and to 2 for traffic that exceeds the flowspec. It also shows that for the ATM interface 2, the ToS bits are set to 6 for traffic that conforms to the RSVP flowspec and to 5 for traffic that exceeds the flowspec:

```
Router# show ip rsvp precedence

Interface name Precedence Precedence TOS TOS
 conform exceed conform exceed
ATM0 3 2 - -
Ethernet1 - - - -
ATM2 - - 6 5
Hssi0 - - - -
Loopback0 - - - -
```

The following sample output shows that for the ATM interface 0, the IP Precedence bits are set to 3 for traffic that conforms to the RSVP flowspec and to 2 for traffic that exceeds the flowspec:

```
Router# show ip rsvp tos ATM0

Interface name Precedence Precedence TOS TOS
 conform exceed conform exceed
ATM0 3 2 - -
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip rsvp precedence</td>
<td>Allows you to set the IP Precedence values to be applied to packets that either conform to or exceed the RSVP flowspec.</td>
</tr>
<tr>
<td>ip rsvp tos</td>
<td>Allows you to set the ToS values to be applied to packets that either conform to or exceed the RSVP flowspec.</td>
</tr>
</tbody>
</table>
show ip rsvp atm-peak-rate-limit

To display the current peak rate limit set for an interface, if any, use the show ip rsvp atm-peak-rate-limit EXEC command.

    show ip rsvp atm-peak-rate-limit [interface-name]

Syntax Description

interface-name (Optional) The name of the interface.

Command Modes

EXEC

Command History

Release Modification
12.0(3)T This command was introduced.

Usage Guidelines

The show ip rsvp atm-peak-rate-limit command displays the configured peak rate using the following notations for brevity:

- Kilobytes is shown as K bytes, for example, 1200 kilobytes is displayed as 1200K bytes.
- 1000 kilobytes is displayed as 1M bytes.

If no interface name is specified, configured peak rates for all Resource Reservation Protocol (RSVP)-enabled interfaces are displayed.

Examples

The following example depicts results of the show ip rsvp atm-peak-rate-limit command, presuming that the ATM subinterface 2/0/0.1 was configured with a reservation peak rate limit of 100 KB using the ip rsvp atm-peak-rate-limit command.

The following is sample output from the show ip rsvp atm-peak-rate-limit command using the interface argument:

Router# show ip rsvp atm-peak-rate-limit atm2/0/0.1
RSVP: Peak rate limit for ATM2/0/0.1 is 100K bytes

The following samples show output from the show ip rsvp atm-peak-rate-limit command when no interface name is given:

Router# show ip rsvp atm-peak-rate-limit

<table>
<thead>
<tr>
<th>Interface name</th>
<th>Peak rate limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0/1/1</td>
<td>not set</td>
</tr>
<tr>
<td>ATM2/0/0</td>
<td>not set</td>
</tr>
<tr>
<td>ATM2/0/0.1</td>
<td>100K</td>
</tr>
</tbody>
</table>
Router# show ip rsvp atm-peak-rate-limit

<table>
<thead>
<tr>
<th>Interface name</th>
<th>Peak rate limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0/1</td>
<td>not set</td>
</tr>
<tr>
<td>ATM2/1/0</td>
<td>1M</td>
</tr>
<tr>
<td>ATM2/1/0.10</td>
<td>not set</td>
</tr>
<tr>
<td>ATM2/1/0.11</td>
<td>not set</td>
</tr>
<tr>
<td>ATM2/1/0.12</td>
<td>not set</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ip rsvp atm-peak-rate-limit</strong></td>
<td>Sets a limit on the peak cell rate of reservations for all newly created RSVP SVCs established on the current interface or any of its subinterfaces.</td>
</tr>
</tbody>
</table>
show ip rsvp installed

To display Resource Reservation Protocol (RSVP)-related installed filters and corresponding bandwidth information, use the **show ip rsvp installed** EXEC command.

**show ip rsvp installed [detail][interface-type interface-number]**

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>(Optional) Specifies additional information about interfaces and their reservations.</td>
</tr>
<tr>
<td>interface-type</td>
<td>(Optional) Specifies the type of the interface.</td>
</tr>
<tr>
<td>interface-number</td>
<td>(Optional) Specifies the number of the interface.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no default behavior or values.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **show ip rsvp installed** command displays the current installed RSVP filters and the corresponding bandwidth information for a specified interface or all interfaces.

**Examples**

The following is sample output from the **show ip rsvp installed** command:

```
Router# show ip rsvp installed

RSVP:
RSVP: Ethernet1: has no installed reservations
RSVP: Serial0:

<table>
<thead>
<tr>
<th>kbps</th>
<th>To</th>
<th>From</th>
<th>Protocol</th>
<th>DPort</th>
<th>Sport</th>
<th>Weight</th>
<th>Conversation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>224.250.250.1</td>
<td>132.240.2.28</td>
<td>UDP</td>
<td>20</td>
<td>30</td>
<td>128</td>
<td>270</td>
</tr>
<tr>
<td>150</td>
<td>224.250.250.1</td>
<td>132.240.2.1</td>
<td>UDP</td>
<td>20</td>
<td>30</td>
<td>128</td>
<td>268</td>
</tr>
<tr>
<td>100</td>
<td>224.250.250.1</td>
<td>132.240.1.1</td>
<td>UDP</td>
<td>20</td>
<td>30</td>
<td>128</td>
<td>267</td>
</tr>
<tr>
<td>200</td>
<td>224.250.250.1</td>
<td>132.240.1.25</td>
<td>UDP</td>
<td>20</td>
<td>30</td>
<td>256</td>
<td>265</td>
</tr>
<tr>
<td>200</td>
<td>224.250.250.2</td>
<td>132.240.1.25</td>
<td>UDP</td>
<td>20</td>
<td>30</td>
<td>128</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>224.250.250.2</td>
<td>132.240.2.28</td>
<td>UDP</td>
<td>20</td>
<td>30</td>
<td>128</td>
<td>269</td>
</tr>
<tr>
<td>150</td>
<td>224.250.250.2</td>
<td>132.240.2.28</td>
<td>UDP</td>
<td>20</td>
<td>30</td>
<td>128</td>
<td>266</td>
</tr>
<tr>
<td>350</td>
<td>224.250.250.3</td>
<td>0.0.0.0</td>
<td>UDP</td>
<td>20</td>
<td>0</td>
<td>128</td>
<td>26</td>
</tr>
</tbody>
</table>
```
Table 22 describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kbps</td>
<td>Reserved rate.</td>
</tr>
<tr>
<td>To</td>
<td>IP address of the source device.</td>
</tr>
<tr>
<td>From</td>
<td>IP address of the destination device.</td>
</tr>
<tr>
<td>DPort</td>
<td>Destination UDP/TCP port.</td>
</tr>
<tr>
<td>Sport</td>
<td>Source UDP/TCP port.</td>
</tr>
<tr>
<td>Weight</td>
<td>Weight used in weighted fair queueing (WFQ).</td>
</tr>
<tr>
<td>Conversation</td>
<td>WFQ conversation number. If the WFQ is not configured on the interface, weight and conversation will be zero.</td>
</tr>
</tbody>
</table>
show ip rsvp interface

To display Resource Reservation Protocol (RSVP)-related interface information, use the `show ip rsvp interface` EXEC command.

show ip rsvp interface [interface-type interface-number]

Syntax Description

- `interface-type` (Optional) Specifies the type of the interface.
- `interface-number` (Optional) Specifies the number of the interface.

Defaults

This command has no default behavior or values.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The primary purpose of this command is to determine the status of RSVP on an interface.

Use this command to determine if the `ip rsvp svc-required` command was used to configure an interface or subinterface to tell RSVP that reservations made on that interface are to be serviced by creation of a switched virtual circuit (SVC).

Use this command to determine if the `ip rsvp flow-assist` command was used to configure an interface to enable RSVP to attach itself to NetFlow.

Use this command to show the current allocation budget and maximum allocatable bandwidth.

Examples

The following sample output from the `show ip rsvp interface` command shows that for the AT2/0/0 interface RSVP has been informed that reservations made on that interface are to be serviced by creation of an SVC. It also shows that for the AT2/0/1 interface, RSVP is enabled to attach itself to NetFlow.

```
Router# show ip rsvp interface

interface allocate i/f max flow max per/255 UDP IP UDP_IP UDP M/C
AT2/0/0 OM 116640K 116640K 0 /255 0 0 0 SVC
AT2/0/1 OM 116640K 116640K 0 /255 0 0 0 FLOW
Et1/0 OM 7500K 7500K 0 /255 0 0 0
```

The following sample output from the `show ip rsvp interface` command shows that for the AT3/0/0 interface RSVP has been configured to establish an SVC to service any reservations made on the interface. RSVP-ATM QoS Interworking has not been enabled for Et0/2.

```
Router# show ip rsvp interface

interface allocate i/f max flow max per/255 UDP IP UDP_IP UDP M/C
```
Table 23 describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>Interface name.</td>
</tr>
<tr>
<td>allocate</td>
<td>Current allocation budget.</td>
</tr>
<tr>
<td>i/f max</td>
<td>Maximum allocatable bandwidth.</td>
</tr>
<tr>
<td>flow max</td>
<td>Largest single flow allocatable on this interface.</td>
</tr>
<tr>
<td>per/255</td>
<td>Percent of bandwidth utilized.</td>
</tr>
<tr>
<td>UDP</td>
<td>Number of neighbors sending User Datagram Protocol (UDP)-encapsulated RSVP messages.</td>
</tr>
<tr>
<td>IP</td>
<td>Number of neighbors sending IP-encapsulated RSVP messages.</td>
</tr>
<tr>
<td>UDP_IP</td>
<td>Number of neighbors sending both UDP- and IP-encapsulated RSVP messages.</td>
</tr>
<tr>
<td>UDP M/C</td>
<td>Indicates whether router is configured for UDP on this interface?</td>
</tr>
<tr>
<td>SVC</td>
<td>Use of an SVC to service each reservation.</td>
</tr>
<tr>
<td>FLOW</td>
<td>RSVP is enabled to attach itself to NetFlow.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip rsvp flow-assist</td>
<td>Enables RSVP to attach itself to NetFlow so that it can leverage NetFlow services.</td>
</tr>
<tr>
<td>ip rsvp svc-required</td>
<td>Enables creation of an SVC to service any new RSVP reservation made on the interface or subinterface.</td>
</tr>
</tbody>
</table>
show ip rsvp neighbor

To display current Resource Reservation Protocol (RSVP) neighbors, use the **show ip rsvp neighbor** EXEC command.

```
show ip rsvp neighbor [interface-type interface-number]
```

**Syntax Description**

- `interface-type` (Optional) Specifies the type of the interface.
- `interface-number` (Optional) Specifies the number of the interface.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to show the current RSVP neighbors and identify if the neighbor is using IP, User Datagram Protocol (UDP), or RSVP encapsulation for a specified interface or all interfaces.

**Examples**

The following is sample output from the `show ip rsvp neighbor` command:

```
Router# show ip rsvp neighbor

Interface Neighbor Encapsulation
Se1 132.240.1.49 RSVP
```

*Table 24* describes significant fields shown in the display.

**Table 24  show ip rsvp neighbor Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface name.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>IP address of the RSVP neighbor.</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>The type of encapsulation the neighbor is using: IP, UDP, or RSVP.</td>
</tr>
</tbody>
</table>
show ip rsvp policy cops

To display the policy server addresses, access control list (ACL) IDs, and current state of the router-server connection, use the **show ip rsvp policy cops** command.

```
show ip rsvp policy cops [acl]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>[acl]</th>
<th>(Optional) The ACLs whose sessions are governed by Common Open Policy Service (COPS). An ACL can be a number from 1 to 199.</th>
</tr>
</thead>
</table>

**Defaults**

This command has no default behavior or values.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(1)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you omit the final keyword of this command (**cops**), the display reports only on the ACLs and their connection status. This kind of display is shown in the second example in the “Examples” section.

If the server connection has recently broken, this command also displays the reconnection attempt interval.

**Examples**

The following example shows the full display, using the full command:

```
Router# show ip rsvp policy cops
```

COPS/RSVP entry. ACLs: 40 60
PDPs: 161.44.135.172
Current state: Connected
Currently connected to PDP 161.44.135.172, port 0

The following example shows the ID for the configured ACLs and their connection status, using the shortened command:

```
Router# show ip rsvp policy
```

Local policy: Currently unsupported
COPS:
  ACLs: 40 60 . State: CONNECTED.
  ACLs: 40 160 . State: CONNECTING.
### show ip rsvp policy cops

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cops servers</td>
<td>Displays the IP address and connection status of the policy servers for which the router is configured.</td>
</tr>
</tbody>
</table>
show ip rsvp request

To display Resource Reservation Protocol (RSVP)-related request information being requested upstream, use the show ip rsvp request EXEC command.

```sql
show ip rsvp request [ip-address][detail]
```

**Syntax Description**

- `ip-address` (Optional) IP or group address of the requestor.
- `detail` (Optional) Specifies additional request information.

**Command Modes**

- EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to show the RSVP reservations currently being requested upstream for a specified interface or all interfaces. The received reservations may differ from requests because of aggregated or refused reservations.

**Examples**

The following is sample output from the `show ip rsvp request` command:

```sql
Router# show ip rsvp request
To From Pro DPort Sport Next Hop I/F Fi Serv
132.240.1.49 132.240.4.53 1 0 0 132.240.3.53 Et1 FF LOAD
```

*Table 25 describes the significant fields shown in the display.*

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To</td>
<td>IP address of the receiver.</td>
</tr>
<tr>
<td>From</td>
<td>IP address of the sender.</td>
</tr>
<tr>
<td>DPort</td>
<td>Destination port number.</td>
</tr>
<tr>
<td>Sport</td>
<td>Source port number.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>IP address of the next hop.</td>
</tr>
<tr>
<td>I/F</td>
<td>Interface of the next hop.</td>
</tr>
<tr>
<td>Fi</td>
<td>Filter (Wild Card Filter, Shared Explicit, or Fixed Filter).</td>
</tr>
<tr>
<td>Serv</td>
<td>Service (value can be <code>rate</code> or <code>load</code>).</td>
</tr>
</tbody>
</table>
show ip rsvp reservation

To display Resource Reservation Protocol (RSVP)-related receiver information currently in the database, use the `show ip rsvp reservation` EXEC command.

`show ip rsvp reservation [ip-address][detail]`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>(Optional) IP or group address of the receiver.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Specifies additional reservation information.</td>
</tr>
</tbody>
</table>

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to show the current receiver (RESV) information in the database for a specified interface or all interfaces. This information includes reservations aggregated and forwarded from other RSVP routers.

**Examples**

The following is sample output from the `show ip rsvp reservation` command:

```
Router# show ip rsvp reservation
To From Pro DPort Sport Next Hop I/F Fi Serv
132.240.1.49 132.240.4.53 1 0 0 132.240.1.49 Se1 FF LOAD
```

Table 26 describes the significant fields shown in the display.

**Table 26  show ip rsvp reservation Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>To</td>
<td>IP address of the receiver.</td>
</tr>
<tr>
<td>From</td>
<td>IP address of the sender.</td>
</tr>
<tr>
<td>DPort</td>
<td>Destination port number.</td>
</tr>
<tr>
<td>Sport</td>
<td>Source port number.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>IP address of the next hop.</td>
</tr>
<tr>
<td>I/F</td>
<td>Interface of the next hop.</td>
</tr>
<tr>
<td>Fi</td>
<td>Filter (Wild Card Filter, Shared Explicit, or Fixed Filter).</td>
</tr>
<tr>
<td>Serv</td>
<td>Service (value can be rate or load).</td>
</tr>
</tbody>
</table>
**show ip rsvp sbm**

To display information about a Subnetwork Bandwidth Manager (SBM) configured for a specific Resource Reservation Protocol (RSVP)-enabled interface or for all RSVP-enabled interfaces on the router, use the `show ip rsvp sbm` EXEC command.

```
show ip rsvp sbm [detail] [interface-name]
```

**Syntax Description**

- **detail** (Optional) Detailed SBM configuration information, including values for the NonResvSendLimit object.
- **interface-name** (Optional) Name of the interface for which you want to display SBM configuration information.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(1)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)T. The <strong>detail</strong> keyword was added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To obtain SBM configuration information about a specific interface configured to use RSVP, specify the interface name with the `show ip rsvp sbm` command. To obtain information about all interfaces enabled for RSVP on the router, use the `show ip rsvp sbm` command without specifying an interface name.

To view the values for the NonResvSendLimit object, use the **detail** keyword.

**Examples**

The following example displays information for the RSVP-enabled Ethernet interfaces 1 and 2 on router1:

```
router1# show ip rsvp sbm
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>DSBM Addr</th>
<th>DSBM Priority</th>
<th>DSBM Candidate</th>
<th>My Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et1</td>
<td>1.1.1.1</td>
<td>70</td>
<td>yes</td>
<td>70</td>
</tr>
<tr>
<td>Et2</td>
<td>10.2.2.150</td>
<td>100</td>
<td>yes</td>
<td>100</td>
</tr>
</tbody>
</table>

The following example displays information about the RSVP-enabled Ethernet interface e2 on router1:

```
router1# show ip rsvp sbm e2
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>DSBM Addr</th>
<th>DSBM Priority</th>
<th>DSBM candidate</th>
<th>My Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>e2</td>
<td>10.2.2.150</td>
<td>100</td>
<td>yes</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 27 describes the significant fields shown in the display.

**Table 27  show ip rsvp sbm Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the Designated Subnetwork Bandwidth Manager (DSBM) candidate interface on the router.</td>
</tr>
<tr>
<td>DSBM Addr</td>
<td>IP address of the DSBM.</td>
</tr>
<tr>
<td>DSBM Priority</td>
<td>Priority of the DSBM.</td>
</tr>
<tr>
<td>DSBM Candidate</td>
<td>Yes if the <code>ip rsvp dsbm candidate</code> command was issued for this SBM to configure it as a DSBM candidate. No if it was not so configured.</td>
</tr>
<tr>
<td>My Priority</td>
<td>Priority configured for this interface.</td>
</tr>
</tbody>
</table>

The following example displays information about the RSVP-enabled Ethernet interface 2 on router1. In the left column, the local SBM configuration is shown; in the right column, the corresponding information for the current DSBM is shown. In this example, the information is the same because the DSBM won election.

```
router1# show ip rsvp sbm detail
Interface: Ethernet2
Local Configuration Current DSBM
 IP Address: 10.2.2.150 IP Address: 10.2.2.150
 DSBM candidate: yes I Am DSBM: yes
 Priority: 100 Priority: 100
 Non Resv Send Limit Non Resv Send Limit
 Rate: 500 Kbytes/sec Rate: 500 Kbytes/sec
 Burst: 1000 Kbytes Burst: 1000 Kbytes
 Peak: 500 Kbytes/sec Peak: 500 Kbytes/sec
 Min Unit: unlimited Min Unit: unlimited
 Max Unit: unlimited Max Unit: unlimited
```

Table 28 describes the significant fields shown in the display.

**Table 28  show ip rsvp sbm detail Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Configuration</td>
<td>The local DSBM candidate configuration.</td>
</tr>
<tr>
<td>Current DSBM</td>
<td>The current DSBM configuration.</td>
</tr>
<tr>
<td>Interface</td>
<td>Name of the DSBM candidate interface on the router.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the local DSBM candidate or the current DSBM.</td>
</tr>
<tr>
<td>DSBM candidate</td>
<td>Yes if the <code>ip rsvp dsbm candidate</code> command was issued for this SBM to configure it as a DSBM candidate. No if it was not so configured.</td>
</tr>
<tr>
<td>I am DSBM</td>
<td>Yes if the local candidate is the DSBM. No if the local candidate is not the DSBM.</td>
</tr>
<tr>
<td>Priority</td>
<td>Priority configured for the local DSBM candidate or the current SBM.</td>
</tr>
<tr>
<td>Rate</td>
<td>The average rate, in kbps, for the DSBM candidate.</td>
</tr>
<tr>
<td>Burst</td>
<td>The maximum burst size, in KB, for the DSBM candidate.</td>
</tr>
</tbody>
</table>
Table 28  show ip rsdp sbm detail Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>The peak rate, in kbps, for the DSBM candidate.</td>
</tr>
<tr>
<td>Min Unit</td>
<td>The minimum policed unit, in bytes, for the DSBM candidate.</td>
</tr>
<tr>
<td>Max Unit</td>
<td>The maximum packet size, in bytes, for the DSBM candidate.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug ip rsvp</td>
<td>Displays information about SBM message processing, the DSBM election process, and standard RSVP enabled message processing information</td>
</tr>
<tr>
<td>debug ip rsvp detail</td>
<td>Displays detailed information about RSVP and SBM.</td>
</tr>
<tr>
<td>debug ip rsvp detail sbm</td>
<td>Display detailed information about SBM messages only, and SBM and DSBM state transitions</td>
</tr>
<tr>
<td>ip rsvp dsbm candidate</td>
<td>Configures an interface as a DSBM candidate.</td>
</tr>
<tr>
<td>ip rsvp dsbm non-resv-send-limit</td>
<td>Configures the NonResvSendLimit object parameters.</td>
</tr>
</tbody>
</table>
show ip rsvp sender

To display Resource Reservation Protocol (RSVP) PATH-related sender information currently in the database, use the **show ip rsvp sender** EXEC command.

```
show ip rsvp sender [ip-address] [detail]
```

**Syntax Description**

- **ip-address** (Optional) IP or group address of the sender.
- **detail** (Optional) Specifies additional sender information.

**Command Modes**

EXEC

**Command History**

Release	Modification
11.2 | This command was introduced.

**Usage Guidelines**

Use this command to show the RSVP sender (PATH) information currently in the database for a specified interface or all interfaces.

**Examples**

The following is sample output from the **show ip rsvp sender** command:

```
Router# show ip rsvp sender

To From Pro DPort Sport Prev Hop I/F
132.240.1.49 132.240.4.53 1 0 0 132.240.3.53 Et1
132.240.2.51 132.240.5.54 1 0 0 132.240.3.54 Et1
```

**Table 29** describes the significant fields shown in this display.

**Table 29  show ip rsvp sender Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To</td>
<td>IP address of the receiver.</td>
</tr>
<tr>
<td>From</td>
<td>IP address of the sender.</td>
</tr>
<tr>
<td>DPort</td>
<td>Destination port number.</td>
</tr>
<tr>
<td>Sport</td>
<td>Source port number.</td>
</tr>
<tr>
<td>Prev Hop</td>
<td>IP address of the previous hop.</td>
</tr>
<tr>
<td>I/F</td>
<td>Interface of the previous hop.</td>
</tr>
</tbody>
</table>
show policy-map

To display the configuration of all classes for a specified service policy map or all classes for all existing policy maps, use the show policy-map EXEC or privileged EXEC command.

```
show policy-map [policy-map]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>policy-map</code></td>
<td>(Optional) The name of the service policy map whose complete configuration is to be displayed. The name can be a maximum of 40 characters.</td>
</tr>
</tbody>
</table>

**Defaults**

All existing policy map configurations are displayed.

**Command Modes**

EXEC or privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE.</td>
</tr>
<tr>
<td>12.0(7)S</td>
<td>This command was integrated into Cisco IOS Release 12.0(7)S.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show policy-map` command displays the configuration of a service policy map created using the `policy-map` command. You can use the `show policy-map` command to display all class configurations comprising any existing service policy map, whether or not that service policy map has been attached to an interface.

**Examples**

The following example displays the contents of the service policy map called po1:

```
Router# show policy-map po1
Policy Map po1
Weighted Fair Queueing
 Class class1
 Bandwidth 937 (kbps) Max thresh 64 (packets)
 Class class2
 Bandwidth 937 (kbps) Max thresh 64 (packets)
 Class class3
 Bandwidth 937 (kbps) Max thresh 64 (packets)
 Class class4
 Bandwidth 937 (kbps) Max thresh 64 (packets)
 Class class5
 Bandwidth 937 (kbps) Max thresh 64 (packets)
 Class class6
 Bandwidth 937 (kbps) Max thresh 64 (packets)
```
The following example displays the contents of all policy maps on the router:

Router# show policy-map

Policy Map poH1
Weighted Fair Queueing
Class class1
  Bandwidth 937 (kbps) Max thresh 64 (packets)
Class class2
  Bandwidth 937 (kbps) Max thresh 64 (packets)
Class class3
  Bandwidth 937 (kbps) Max thresh 64 (packets)
Class class4
  Bandwidth 937 (kbps) Max thresh 64 (packets)
Class class5
  Bandwidth 937 (kbps) Max thresh 64 (packets)
Class class6
  Bandwidth 937 (kbps) Max thresh 64 (packets)
Class class7
  Bandwidth 937 (kbps) Max thresh 64 (packets)
Class class8
  Bandwidth 937 (kbps) Max thresh 64 (packets)

Policy Map policy2
Weighted Fair Queueing
Class class1
  Bandwidth 300 (kbps) Max thresh 64 (packets)
Class class2
  Bandwidth 300 (kbps) Max thresh 64 (packets)
Class class3
  Bandwidth 300 (kbps) Max thresh 64 (packets)
Class class4
  Bandwidth 300 (kbps) Max thresh 64 (packets)
Class class5
  Bandwidth 300 (kbps) Max thresh 64 (packets)
Class class6
  Bandwidth 300 (kbps) Max thresh 64 (packets)
Class class7
  Bandwidth 300 (kbps) Max thresh 64 (packets)
Class class8
  Bandwidth 300 (kbps) Max thresh 64 (packets)

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.</td>
</tr>
<tr>
<td>show policy-map class</td>
<td>Displays the configuration for the specified class of the specified policy map.</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
show policy-map class

To display the configuration for the specified class of the specified policy map, use the show policy-map class EXEC or privileged EXEC command.

    show policy-map policy-map class class-name

Syntax Description

- **policy-map**: The name of a policy map that contains the class configuration to be displayed.
- **class-name**: The name of the class whose configuration is to be displayed.

Defaults

This command has no default behavior or values.

Command Modes

EXEC or privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE.</td>
</tr>
<tr>
<td>12.0(7)S</td>
<td>This command was integrated into Cisco IOS Release 12.0(7)S.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can use the show policy-map class command to display any single class configuration for any service policy map, whether or not the specified service policy map has been attached to an interface.

Examples

The following example displays configurations for the class called class7 that belongs to the policy map called pol:

    Router# show policy-map pol class class7

    Class class7
    Bandwidth 937 (kbps) Max Thresh 64 (packets)

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps.</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
</tbody>
</table>
**show policy-map interface**

To display the configuration of all classes configured for all service policies on the specified interface or to display the classes for the service policy for a specific permanent virtual circuit (PVC) on the interface, use the `show policy-map interface` EXEC or privileged EXEC command.

```
show policy-map interface interface-name [vc [vpi] vci] [dlci dlci] [input | output]
```

**Syntax Description**

- `interface-name` Name of the interface or subinterface whose policy configuration is to be displayed.
- `vc` (Optional) For ATM interfaces only, shows the policy configuration for a specified PVC. The name can be up to 16 characters long.
- `vpi` (Optional) ATM network virtual path identifier (VPI) for this PVC. The absence of the “/” and a `vpi` value defaults the `vpi` value to 0.
  - On the Cisco 7200 and 7500 series routers, this value ranges from 0 to 255.
  - The `vpi` and `vci` arguments cannot both be set to 0; if one is 0, the other cannot be 0.
  - If this value is omitted, information for all virtual circuits (VCs) on the specified ATM interface or subinterface is displayed.
- `vci` (Optional) ATM network virtual channel identifier (VCI) for this PVC. This value ranges from 0 to 1 less than the maximum value set for this interface by the `atm vc-per-vp` command. Typically, lower values 0 to 31 are reserved for specific traffic (F4 Operation, Administration, and Maintenance (OAM), switched virtual circuit (SVC) signalling, Integrated Local Management Interface (ILMI), and so on) and should not be used.
  - The VCI is a 16-bit field in the header of the ATM cell. The VCI value is unique only on a single link, not throughout the ATM network, because it has local significance only.
  - The `vpi` and `vci` arguments cannot both be set to 0; if one is 0, the other cannot be 0.
- `dlci` (Optional) Indicates that a specific PVC for which policy configuration will be displayed.
- `dlci` (Optional) A specific data-link connection identifier (DLCI) number used on the interface. Policy configuration for the corresponding PVC will be displayed when a DLCI is specified.
- `input` (Optional) Indicates that the statistics for the attached input policy will be displayed.
- `output` (Optional) Indicates that the statistics for the attached output policy will be displayed.

**Defaults**

This command has no default behavior or values.

**Command Modes**

EXEC or privileged EXEC
show policy-map interface

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(5)XE</td>
<td>This command was integrated into Cisco IOS Release 12.0(5)XE.</td>
</tr>
<tr>
<td>12.0(7)S</td>
<td>This command was integrated into Cisco IOS Release 12.0(7)S.</td>
</tr>
<tr>
<td>12.1(1)E</td>
<td>This command was integrated into Cisco IOS Release 12.1(1)E.</td>
</tr>
<tr>
<td>12.1(2)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(2)T. This command</td>
</tr>
<tr>
<td></td>
<td>was modified to display information about the policy for all Frame Relay</td>
</tr>
<tr>
<td></td>
<td>PVCs on the interface, or, if a DLCI is specified, the policy for that</td>
</tr>
<tr>
<td></td>
<td>specific PVC. This command was also modified to display the total number</td>
</tr>
<tr>
<td></td>
<td>of packets marked by the QoS set action.</td>
</tr>
<tr>
<td>12.1(3)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(3)T. This command</td>
</tr>
<tr>
<td></td>
<td>was modified to display per-class accounting statistics.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show policy-map interface` command displays the configuration for classes on the specified interface or the specified PVC only if a service policy has been attached to the interface or the PVC.

You can use the `interface-name` argument to display output for a PVC only for Enhanced ATM port adapters (PA-A3) that support per-VC queueing.

Examples

This section provides sample output of a typical `show policy-map interface` command. Depending upon the interface in use and the options enabled, the output you see may vary slightly from the ones shown below. See Table 30 for an explanation of the significant fields that commonly appear in the command output.

The following sample output of the `show policy-map interface` command displays the statistics for the serial 3/1 interface, to which a service policy called mypolicy (configured as shown below) is attached.

```
policy-map mypolicy
 class voice
 priority 128
 class gold
 bandwidth 100
 class silver
 bandwidth 80
 random-detect

Router# show policy-map output interface s3/1

Serial3/1

Service-policy output: mypolicy

Class-map: voice (match-all)
 0 packets, 0 bytes
 5 minute offered rate 0 bps, drop rate 0 bps
Match: ip precedence 5
Weighted Fair Queueing
 Strict Priority
Output Queue: Conversation 264
Bandwidth 128 (kbps) Burst 3200 (Bytes)
 (pkts matched/bytes matched) 0/0
 (total drops/bytes drops) 0/0
```
Class-map: gold (match-all)
0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
Match: ip precedence 2
Weighted Fair Queueing
Output Queue: Conversation 265
Bandwidth 100 (kbps) Max Threshold 64 (packets)
(pkts matched/bytes matched) 0/0
(depth/total drops/no-buffer drops) 0/0/0

Class-map: silver (match-all)
0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
Match: ip precedence 1
Weighted Fair Queueing
Output Queue: Conversation 266
Bandwidth 80 (kbps)
(pkts matched/bytes matched) 0/0
(depth/total drops/no-buffer drops) 0/0/0
exponential weight: 9
mean queue depth: 0

<table>
<thead>
<tr>
<th>class</th>
<th>Transmitted pkts/bytes</th>
<th>Random drop pkts/bytes</th>
<th>Tail drop pkts/bytes</th>
<th>Minimum thresh</th>
<th>Maximum thresh</th>
<th>Mark prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>20</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>22</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>2</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>3</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>26</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>4</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>28</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>5</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>30</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>6</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>32</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>34</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>rsvp</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>36</td>
<td>40</td>
<td>1/10</td>
</tr>
</tbody>
</table>

Class-map: class-default (match-any)
0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
Match: any

The following sample output of the show policy-map interface command displays the statistics for the serial 3/2 interface, to which a service policy called p1 (configured as shown below) is attached. Traffic shaping has been enabled on this interface.

policy-map p1
  class c1
    shape average 320000

Router# show policy-map output interface s3/2

Serial3/2

Service-policy output: p1

Class-map: c1 (match-all)
0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
Match: ip precedence 0
Traffic Shaping

<table>
<thead>
<tr>
<th>Target Rate</th>
<th>Byte Limit</th>
<th>Sustain bits/int</th>
<th>Excess bits/int</th>
<th>Interval (ms)</th>
<th>Increment (bytes)</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>320000</td>
<td>2000</td>
<td>8000</td>
<td>8000</td>
<td>25</td>
<td>1000</td>
<td>-</td>
</tr>
</tbody>
</table>
Queue | Packets | Bytes | Packets | Bytes | Shaping
---|---|---|---|---|---
Depth | 0 | 0 | 0 | 0 | no

**Class-map:** class-default (match-any)
- 0 packets, 0 bytes
- 5 minute offered rate 0 bps, drop rate 0 bps
- Match: any

Table 30 describes the significant fields shown in the displays. The fields in the table are grouped according to the relevant QoS feature.

### Table 30  show policy-map interface Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fields Associated with Classes or Service Policies</strong></td>
<td></td>
</tr>
<tr>
<td>Service-policy output</td>
<td>Name of the output service policy applied to the specified interface or VC.</td>
</tr>
<tr>
<td>Class-map</td>
<td>Class of traffic being displayed. Output is displayed for each configured class in the policy. The choice for implementing class matches (for example, match-all or match-any) can also appear next to the traffic class.</td>
</tr>
<tr>
<td>packets and bytes</td>
<td>Number of packets (also shown in bytes) identified as belonging to the class of traffic being displayed.</td>
</tr>
<tr>
<td>offered rate</td>
<td>Rate, in kbps, of packets coming in to the class. <strong>Note</strong> If the packets are compressed over an outgoing interface, the improved packet rate achieved by packet compression is not reflected in the offered rate. Also, if the packets are classified before they enter a combination of tunnels (for example, a generic routing encapsulation (GRE) tunnel and an IP Security (IPSec) tunnel), the offered rate does not include all the extra overhead associated with tunnel encapsulation in general. Depending on the configuration, the offered rate may include no overhead, may include the overhead for only one tunnel encapsulation, or may include the overhead for all tunnel encapsulations. In most of the GRE and IPSec tunnel configurations, the offered rate includes the overhead for GRE tunnel encapsulation only.</td>
</tr>
<tr>
<td>drop rate</td>
<td>Rate, in kbps, at which packets are dropped from the class. The drop rate is calculated by subtracting the number of successfully transmitted packets from the offered rate. <strong>Note</strong> In distributed architecture platforms (such as the C7500), the value of the transfer rate, calculated as the difference between the offered rate and the drop rate counters, can sporadically deviate from the average by up to 20 percent or more. This can occur while no corresponding burst is registered by independent traffic analyser equipment.</td>
</tr>
<tr>
<td>Match</td>
<td>Match criteria specified for the class of traffic. Choices include criteria such as IP precedence, IP DSCP value, MPLS experimental value, access groups, and QoS groups. For more information about the variety of match criteria options available, refer to the chapter “Configuring the Modular Quality of Service Command-Line Interface” in the <em>Cisco IOS Quality of Service Solutions Configuration Guide</em>, Release 12.2.</td>
</tr>
<tr>
<td><strong>Fields Associated with Queueing (if Enabled)</strong></td>
<td></td>
</tr>
</tbody>
</table>
Table 30  *show policy-map interface Field Descriptions* (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Queue</td>
<td>The weighted fair queuing (WFQ) conversation to which this class of traffic is allocated.</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Bandwidth, in either kbps or percentage, configured for this class and the burst size.</td>
</tr>
<tr>
<td>pkts matched/bytes matched</td>
<td>Number of packets (also shown in bytes) matching this class that were placed in the queue. This number reflects the total number of matching packets queued at any time. Packets matching this class are queued only when congestion exists. If packets match the class but are never queued because the network was not congested, those packets are not included in this total. However, if process switching is in use, the number of packets is always incremented even if the network is not congested.</td>
</tr>
<tr>
<td>depth/total drops/no-buffer drops</td>
<td>Number of packets discarded for this class. No-buffer indicates that no memory buffer exists to service the packet.</td>
</tr>
</tbody>
</table>

Fields Associated with Weighted Random Early Detection (WRED) (if Enabled)

exponential weight	Exponent used in the average queue size calculation for a Weighted Random Early Detection (WRED) parameter group.
mean queue depth	Average queue depth based on the actual queue depth on the interface and the exponential weighting constant. It is a fluctuating average. The minimum and maximum thresholds are compared against this value to determine drop decisions.
class	IP precedence level.
Transmitted pkts/bytes	Number of packets (also shown in bytes) passed through WRED and not dropped by WRED.
Random drop pkts/bytes	Number of packets (also shown in bytes) randomly dropped when the mean queue depth is between the minimum threshold value and the maximum threshold value for the specified IP precedence level.
Tail drop pkts/bytes	Number of packets dropped when the mean queue depth is greater than the maximum threshold value for the specified IP precedence level.
Maximum thresh	Maximum threshold. Maximum WRED threshold in number of packets.
Mark prob	Mark probability. Fraction of packets dropped when the average queue depth is at the maximum threshold.

Fields Associated with Traffic Shaping (if Enabled)

| Target Rate                        | Rate used for shaping traffic. |
| Byte Limit                         | Maximum number of bytes that can be transmitted per interval. Calculated as follows: 
  \[ ((Bc+Be)/8) \times 1 \] |
Table 30  show policy-map interface Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustain bits/int</td>
<td>Committed burst (Be) rate.</td>
</tr>
<tr>
<td>Excess bits/int</td>
<td>Excess burst (Be) rate.</td>
</tr>
<tr>
<td>Interval (ms)</td>
<td>Time interval value in milliseconds (ms).</td>
</tr>
<tr>
<td>Increment (bytes)</td>
<td>Number of credits (in bytes) received in the token bucket of the traffic</td>
</tr>
<tr>
<td></td>
<td>shaper during each time interval.</td>
</tr>
<tr>
<td>Queue Depth</td>
<td>Current queue depth of the traffic shaper.</td>
</tr>
<tr>
<td>Packets</td>
<td>Total number of packets that have entered the traffic shaper system.</td>
</tr>
<tr>
<td>Bytes</td>
<td>Total number of bytes that have entered the traffic shaper system.</td>
</tr>
<tr>
<td>Packets Delayed</td>
<td>Total number of packets delayed in the queue of the traffic shaper before</td>
</tr>
<tr>
<td></td>
<td>being transmitted.</td>
</tr>
<tr>
<td>Bytes Delayed</td>
<td>Total number of bytes delayed in the queue of the traffic shaper before</td>
</tr>
<tr>
<td></td>
<td>being transmitted.</td>
</tr>
<tr>
<td>Shaping Active</td>
<td>Indicates whether the traffic shaper is active. For example, if a traffic</td>
</tr>
<tr>
<td></td>
<td>shaper is active, and the traffic being sent exceeds the traffic shaping rate,</td>
</tr>
<tr>
<td></td>
<td>a “yes” appears in this field.</td>
</tr>
</tbody>
</table>

1. A number in parentheses may appear next to the service-policy output name, class-map name, and match criteria information. The number is for Cisco internal use only and can be disregarded.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show frame-relay pvc</td>
<td>Displays statistics about PVCs for Frame Relay interfaces.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays the configuration of all classes for a specified service policy map</td>
</tr>
<tr>
<td></td>
<td>or all classes for all existing policy maps.</td>
</tr>
<tr>
<td>show policy-map class</td>
<td>Displays the configuration for the specified class of the specified policy</td>
</tr>
<tr>
<td></td>
<td>map.</td>
</tr>
</tbody>
</table>
**show qdm status**

To view the status of the Quality of Service Device Manager (QDM) clients connected to the router, use the `show qdm status` EXEC command.

```
show qdm status
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This command has no default behavior or values.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 12.1(1)E</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show qdm status` command to obtain the following information:

- Number of connected QDM clients
- Client IDs of the connected QDM clients
- Version of the QDM client software
- IP addresses of the connected QDM clients

**Examples**

The following example illustrates the `show qdm status` output when two QDM clients are connected to the router:

```
Router# show qdm status

Number of QDM Clients :2
QDM Client v1.0(0.13)-System_1 @ 172.16.0.0 (id:30)
 connected since 09:22:36 UTC Wed Mar 15 2000
QDM Client v1.0(0.12)-System_2 @ 172.31.255.255 (id:29)
 connected since 17:10:23 UTC Tue Mar 14 2000
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disconnect qdm</td>
<td>Disconnects a QDM client.</td>
</tr>
</tbody>
</table>
show queue

To display the contents of packets inside a queue for a particular interface or virtual circuit (VC), use the `show queue` privileged EXEC command.

```
show queue interface-name interface-number [vc [vpi] vci]]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-name</td>
<td>The name of the interface.</td>
</tr>
<tr>
<td>interface-number</td>
<td>The number of the interface.</td>
</tr>
<tr>
<td>vc</td>
<td>(Optional) For ATM interfaces only, shows the fair queueing configuration for a specified permanent virtual circuit (PVC). The name can be up to 16 characters long.</td>
</tr>
<tr>
<td>vpi</td>
<td>(Optional) ATM network virtual path identifier (VPI) for this PVC. The absence of the “/” and a vpi value defaults the vpi value to 0.</td>
</tr>
</tbody>
</table>

On the Cisco 7200 and 7500 series routers, this value ranges from 0 to 255. The vpi and vci arguments cannot both be set to 0; if one is 0, the other cannot be 0.

If this value is omitted, information for all VCs on the specified ATM interface or subinterface is displayed.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vci</td>
<td>(Optional) ATM network virtual channel identifier (VCI) for this PVC. This value ranges from 0 to 1 less than the maximum value set for this interface by the <code>atm vc-per-vp</code> command. Typically, lower values 0 to 31 are reserved for specific traffic (F4 Operation, Administration, and Maintenance (OAM), switched virtual circuit (SVC) signalling, Integrated Local Management Interface (ILMI), and so on) and should not be used.</td>
</tr>
</tbody>
</table>

The VCI is a 16-bit field in the header of the ATM cell. The VCI value is unique only on a single link, not throughout the ATM network, because it has local significance only. The vpi and vci arguments cannot both be set to 0; if one is 0, the other cannot be 0.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

This command displays the contents of packets inside a queue for a particular interface or VC. The `show queue` command is primarily for internal debugging purposes and custom queueing.

This command does not support VIP-distributed Weighted Random Early Detection WRED (DWRED). You can use the `vc` keyword and the `show queue` command arguments to display output for a PVC only on Enhanced ATM port adapters (PA-A3) that support per-VC queueing.
This command is not recommended for use with the modular QoS CLI (MQC) features. Use the `show policy interface` command.

### Examples

The following examples show sample output when the `show queue` command is entered and either weighted fair queueing (WFQ), WRED, or flow-based WRED are configured.

#### WFQ Example

The following is sample output from the `show queue` command for PVC 33 on the atm2/0.33 ATM subinterface. Two conversations are active on this interface. WFQ ensures that both data streams receive equal bandwidth on the interface while they have messages in the pipeline.

```
Router# show queue atm2/0.33 vc 33
Interface ATM2/0.33 VC 0/33
Queueing strategy: weighted fair
Total output drops per VC: 18149
Output queue: 57/512/64/18149 (size/max total/threshold/drops)
 Conversations 2/2/256 (active/max active/max total)
 Reserved Conversations 3/3 (allocated/max allocated)
 (depth/weight/discards/tail drops/interleaves) 29/4096/10369/0/0
Conversation 264, linktype: ip, length: 254
 source: 10.1.1.1, destination: 10.0.2.20, id: 0x0000, ttl: 59,
 TOS: 0 prot: 17, source port 1, destination port 1

 (depth/weight/discards/tail drops/interleaves) 28/4096/10369/0/0
Conversation 265, linktype: ip, length: 254
 source: 10.1.1.1, destination: 10.0.2.20, id: 0x0000, ttl: 59,
 TOS: 32 prot: 17, source port 1, destination port 2
```

Table 31 describes the significant fields shown in the display.

### Table 31 show queue Field Descriptions for WFQ

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queueing strategy</td>
<td>Type of queueing active on this interface.</td>
</tr>
<tr>
<td>Total output drops per VC</td>
<td>Total output packet drops.</td>
</tr>
<tr>
<td>Output queue</td>
<td>Output queue size, in packets. Max total defines the aggregate queue size of all the WFQ flows. Threshold is the individual queue size of each conversation. Drops are the dropped packets from all the conversations in WFQ.</td>
</tr>
<tr>
<td>Conversations</td>
<td>WFQ conversation number. A conversation becomes inactive or times out when its queue is empty. Each traffic flow in WFQ is based on a queue and represented by a conversation. Max active is the number of active conversations that have occurred since the queueing feature was configured. Max total is the number of conversations allowed simultaneously.</td>
</tr>
</tbody>
</table>
Flow-Based WRED Example

The following is sample output from the `show queue` command issued for serial interface 1 on which flow-based WRED is configured. The output shows information for each packet in the queue; the data identifies the packet by number, the flow-based queue to which the packet belongs, the protocol used, and so forth.

```
Router# show queue Serial1

Output queue for Serial1 is 2/0

Packet 1, flow id:160, linktype:ip, length:118, flags:0x88
 source:10.1.3.4, destination:10.1.2.2, id:0x0000, ttl:59,
 TOS:32 prot:17, source port 1, destination port 515
 data:0x0001 0x0203 0x0405 0x0607 0x0809 0x0A0B 0x0C0D
 0x0E0F 0x1011 0x1213 0x1415 0x1617 0x1819 0x1A1B

Packet 2, flow id:161, linktype:ip, length:118, flags:0x88
 source:10.1.3.5, destination:10.1.2.2, id:0x0000, ttl:59,
 TOS:64 prot:17, source port 1, destination port 515
 data:0x0001 0x0203 0x0405 0x0607 0x0809 0x0A0B 0x0C0D
 0x0E0F 0x1011 0x1213 0x1415 0x1617 0x1819 0x1A1B
```

Table 32 describes the significant fields shown in the display.

---

**Table 31  show queue Field Descriptions for WFQ (continued)**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved Conversations</td>
<td>Traffic flows not captured by WFQ, such as class-based weighted fair queuing (CBWFQ) configured by the bandwidth command or a Resource Reservation Protocol (RSVP) flow, have a separate queue that is represented by a reserved conversation. Allocated is the current number of reserved conversations. Max allocated is the maximum number of allocated reserved conversations that have occurred.</td>
</tr>
<tr>
<td>depth</td>
<td>Queue depth for the conversation, in packets.</td>
</tr>
<tr>
<td>weight</td>
<td>Weight used in WFQ.</td>
</tr>
<tr>
<td>discards</td>
<td>Number of packets dropped from the conversation’s queue.</td>
</tr>
<tr>
<td>tail drops</td>
<td>Number of packets dropped from the conversation when the queue is at capacity.</td>
</tr>
<tr>
<td>interleaves</td>
<td>Number of packets interleaved.</td>
</tr>
<tr>
<td>linktype</td>
<td>Protocol name.</td>
</tr>
<tr>
<td>length</td>
<td>Packet length.</td>
</tr>
<tr>
<td>source</td>
<td>Source IP address.</td>
</tr>
<tr>
<td>destination</td>
<td>Destination IP address.</td>
</tr>
<tr>
<td>id</td>
<td>Packet ID.</td>
</tr>
<tr>
<td>ttl</td>
<td>Time to live count.</td>
</tr>
<tr>
<td>TOS</td>
<td>IP type of service.</td>
</tr>
<tr>
<td>prot</td>
<td>Layer 4 protocol number.</td>
</tr>
</tbody>
</table>
WRED Example

The following is sample output from the `show queue` command issued for serial interface 3 on which WRED is configured. The output has been truncated to show only 2 of the 24 packets.

Router# show queue Serial3

Output queue for Serial3 is 24/0

Packet 1, linktype:ip, length:118, flags:0x88
source:10.1.3.25, destination:10.1.2.2, id:0x0000, ttl:59,
TOS:192 prot:17, source port 1, destination port 515
data:0x0001 0x0203 0x0405 0x0607 0x0809 0x0A0B 0x0C0D
0x0E0F 0x1011 0x1213 0x1415 0x1617 0x1819 0x1A1B

Packet 2, linktype:ip, length:118, flags:0x88
source:10.1.3.26, destination:10.1.2.2, id:0x0000, ttl:59,
TOS:224 prot:17, source port 1, destination port 515
data:0x0001 0x0203 0x0405 0x0607 0x0809 0x0A0B 0x0C0D
0x0E0F 0x1011 0x1213 0x1415 0x1617 0x1819 0x1A1B

Table 32  show queue Field Descriptions for Flow-Based WRED

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet</td>
<td>Packet number.</td>
</tr>
<tr>
<td>flow id</td>
<td>Flow-based WRED number.</td>
</tr>
<tr>
<td>linktype</td>
<td>Protocol name.</td>
</tr>
<tr>
<td>length</td>
<td>Packet length.</td>
</tr>
<tr>
<td>flags</td>
<td>Internal version-specific flags.</td>
</tr>
<tr>
<td>source</td>
<td>Source IP address.</td>
</tr>
<tr>
<td>destination</td>
<td>Destination IP address.</td>
</tr>
<tr>
<td>id</td>
<td>Packet ID.</td>
</tr>
<tr>
<td>ttl</td>
<td>Time to live count.</td>
</tr>
<tr>
<td>prot</td>
<td>Layer 4 protocol number.</td>
</tr>
<tr>
<td>data</td>
<td>Packet data.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm vc-per-vp</td>
<td>Sets the maximum number of VCIIs to support per VPI.</td>
</tr>
<tr>
<td>custom-queue-list</td>
<td>Assigns a custom queue list to an interface.</td>
</tr>
<tr>
<td>fair-queue (class-default)</td>
<td>Specifies the number of dynamic queues to be reserved for use by the class-default class as part of the default class policy.</td>
</tr>
<tr>
<td>fair-queue (WFQ)</td>
<td>Enables WFQ for an interface.</td>
</tr>
<tr>
<td>priority-group</td>
<td>Assigns the specified priority list to an interface.</td>
</tr>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td>random-detect flow</td>
<td>Enables flow-based WRED.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>show frame-relay pvc</code></td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
<tr>
<td><code>show queueing</code></td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
show queueing

To list all or selected configured queueing strategies, use the show queueing privileged EXEC command.

```
show queueing [custom | fair | priority | random-detect [interface atm-subinterface

[vc [[vpi] vci]]]
```

**Syntax Description**

- **custom**  
  (Optional) Status of the custom queueing list configuration.
- **fair**  
  (Optional) Status of the fair queueing configuration.
- **priority**  
  (Optional) Status of the priority queueing list configuration.
- **random-detect**  
  (Optional) Status of the Weighted Random Early Detection (WRED) and distributed WRED (DWRED) configuration, including configuration of flow-based WRED.
- **interface atm-subinterface**  
  (Optional) Displays the WRED parameters of every virtual circuit (VC) with WRED enabled on the specified ATM subinterface.
- **vc**  
  (Optional) Displays the WRED parameters associated with a specific VC. If desired, both the virtual path identifier (VPI) and virtual circuit identifier (VCI) values, or just the VCI value, can be specified.
- **vpi**  
  (Optional) Specifies the VPI. If the vpi argument is omitted, 0 is used as the VPI value for locating the permanent virtual circuit (PVC). If the vpi argument is specified, the / separator is required.
- **vci**  
  (Optional) Specifies the VCI.

**Defaults**

If no keyword is entered, this command shows the configuration of all interfaces.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(4)T</td>
<td>This command was integrated into Cisco IOS Release 12.0(4)T. The red keyword was changed to random-detect.</td>
</tr>
<tr>
<td>12.1(2)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(2)T. This command was modified to include information about the Frame Relay PVC Interface Priority Queueing (FR PIPQ) feature.</td>
</tr>
</tbody>
</table>

**Examples**

**FR PIPQ Example**

The following sample output shows that FR PIPQ (referred to as “DLCI priority queue”) is configured on serial interface 0. The output also shows the size of the four data-link connection identifier (DLCI) priority queues.

```
Router# show queueing
```
Current fair queue configuration:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Discard threshold</th>
<th>Dynamic queue count</th>
<th>Reserved queue count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial3/1</td>
<td>64</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>Serial3/3</td>
<td>64</td>
<td>256</td>
<td>0</td>
</tr>
</tbody>
</table>

Current DLCI priority queue configuration:

<table>
<thead>
<tr>
<th>Interface</th>
<th>High limit</th>
<th>Medium limit</th>
<th>Normal limit</th>
<th>Low limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
</tr>
</tbody>
</table>

Current priority queue configuration:

<table>
<thead>
<tr>
<th>List</th>
<th>Queue</th>
<th>Args</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>low</td>
<td>protocol ipx</td>
</tr>
<tr>
<td>1</td>
<td>normal</td>
<td>protocol vines</td>
</tr>
<tr>
<td>1</td>
<td>normal</td>
<td>protocol appletalk</td>
</tr>
<tr>
<td>1</td>
<td>normal</td>
<td>protocol ip</td>
</tr>
<tr>
<td>1</td>
<td>normal</td>
<td>protocol decnet</td>
</tr>
<tr>
<td>1</td>
<td>normal</td>
<td>protocol decnet_node</td>
</tr>
<tr>
<td>1</td>
<td>normal</td>
<td>protocol decnet_rout</td>
</tr>
<tr>
<td>1</td>
<td>medium</td>
<td>protocol xns</td>
</tr>
<tr>
<td>1</td>
<td>high</td>
<td>protocol clns</td>
</tr>
<tr>
<td>1</td>
<td>normal</td>
<td>protocol bridge</td>
</tr>
<tr>
<td>1</td>
<td>normal</td>
<td>protocol arp</td>
</tr>
</tbody>
</table>

Current custom queue configuration:

Current random-detect configuration:

Serial5

Queueing strategy: random early detection (WRED)
Exp-weight-constant: 9 (1/512)
Mean queue depth: 40

Class Random Tail Minimum Maximum Mark
drop drop threshold threshold threshold probability

Weighted Fair Queueing Example

The following is sample output from the `show queueing` command. There are two active conversations in serial interface 0. Weighted fair queueing (WFQ) ensures that both of these IP data streams—both using TCP—receive equal bandwidth on the interface while they have messages in the pipeline, even though more FTP data is in the queue than remote-procedure call (RCP) data.

Router# show queueing

Current fair queue configuration:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Discard threshold</th>
<th>Dynamic queue count</th>
<th>Reserved queue count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial0</td>
<td>64</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>Serial1</td>
<td>64</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>Serial2</td>
<td>64</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>Serial3</td>
<td>64</td>
<td>256</td>
<td>0</td>
</tr>
</tbody>
</table>

Current priority queue configuration:

<table>
<thead>
<tr>
<th>List</th>
<th>Queue</th>
<th>Args</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>high</td>
<td>protocol cdp</td>
</tr>
<tr>
<td>2</td>
<td>medium</td>
<td>interface Ethernet1</td>
</tr>
</tbody>
</table>

Current custom queue configuration:

Current random-detect configuration:

Serial15

Queueing strategy: random early detection (WRED)
Exp-weight-constant: 9 (1/512)
Mean queue depth: 40

Class Random Tail Minimum Maximum Mark
drop drop threshold threshold threshold probability
Custom Queueing Example

The following is sample output from the `show queueing custom` command:

```
Router# show queueing custom

Current custom queue configuration:
List Queue Args
3 10 default
3 3 interface Tunnel3
3 3 protocol ip
3 3 byte-count 444 limit 3
```

Flow-Based WRED Example

The following is sample output from the `show queueing random-detect` command. The output shows that the interface is configured for flow-based WRED to ensure fair packet drop among flows. The `random-detect flow average-depth-factor` command was used to configure a scaling factor of 8 for this interface. The scaling factor is used to scale the number of buffers available per flow and to determine the number of packets allowed in the output queue of each active flow before the queue is susceptible to packet drop. The maximum flow count for this interface was set to 16 by the `random-detect flow count` command.

```
Router# show queueing random-detect

Current random-detect configuration:
Serial1
Queueing strategy:random early detection (WRED)
Exp-weight-constant:9 (1/512)
Mean queue depth:29
Max flow count:16 Average depth factor:8
Flows (active/max active/max):39/40/16

Class Random Tail Minimum Maximum Mark
drop drop threshold threshold probability
0 31 0 20 40 1/10
1 33 0 22 40 1/10
2 18 0 24 40 1/10
3 14 0 26 40 1/10
4 10 0 28 40 1/10
5 0 0 31 40 1/10
6 0 0 33 40 1/10
7 0 0 35 40 1/10
rsvp 0 0 37 40 1/10
```

DWRED Example

The following is sample output from the `show queueing random-detect` command for DWRED:

```
Current random-detect configuration:
FastEthernet2/0/0
Queueing strategy:fifo
Packet drop strategy:VIP-based random early detection (DWRED)
Exp-weight-constant:9 (1/512)
```
Mean queue depth: 0
Queue size: 0       Maximum available buffers: 6308
Output packets: 5   WRED drops: 0   No buffer: 0

<table>
<thead>
<tr>
<th>Class</th>
<th>Random drop</th>
<th>Tail drop</th>
<th>Minimum threshold</th>
<th>Maximum threshold</th>
<th>Mark probability</th>
<th>Output Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>218</td>
<td>1/10</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>122</td>
<td>218</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>135</td>
<td>218</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
<td>218</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>161</td>
<td>218</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>174</td>
<td>218</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>187</td>
<td>218</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>218</td>
<td>1/10</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 33 describes the significant fields shown in the display.

### Table 33  show queueing Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discard threshold</td>
<td>Number of messages allowed in each queue.</td>
</tr>
<tr>
<td>Dynamic queue count</td>
<td>Number of dynamic queues used for best-effort conversations.</td>
</tr>
<tr>
<td>Reserved queue count</td>
<td>Number of reservable queues used for reserved conversations.</td>
</tr>
<tr>
<td>High limit</td>
<td>High DLCI priority queue size in maximum number of packets.</td>
</tr>
<tr>
<td>Medium limit</td>
<td>Medium DLCI priority queue size, in maximum number of packets.</td>
</tr>
<tr>
<td>Normal limit</td>
<td>Normal DLCI priority queue size, in maximum number of packets.</td>
</tr>
<tr>
<td>Low limit</td>
<td>Low DLCI priority queue size, in maximum number of packets.</td>
</tr>
<tr>
<td>List</td>
<td>Custom queueing—Number of the queue list.</td>
</tr>
<tr>
<td></td>
<td>Priority queueing—Number of the priority list.</td>
</tr>
<tr>
<td>Queue</td>
<td>Custom queueing—Number of the queue.</td>
</tr>
<tr>
<td></td>
<td>Priority queueing—Priority queue level (high, medium, normal, or low keyword).</td>
</tr>
<tr>
<td>Args</td>
<td>Packet matching criteria for that queue.</td>
</tr>
<tr>
<td>Exp-weight-constant</td>
<td>Exponential weight factor.</td>
</tr>
<tr>
<td>Mean queue depth</td>
<td>Average queue depth. It is calculated based on the actual queue depth on the interface and the exponential weighting constant. It is a moving average. The minimum and maximum thresholds are compared against this value to determine drop decisions.</td>
</tr>
<tr>
<td>Class</td>
<td>IP Precedence value.</td>
</tr>
<tr>
<td>Random drop</td>
<td>Number of packets randomly dropped when the mean queue depth is between the minimum threshold value and the maximum threshold value for the specified IP Precedence value.</td>
</tr>
<tr>
<td>Tail drop</td>
<td>Number of packets dropped when the mean queue depth is greater than the maximum threshold value for the specified IP Precedence value.</td>
</tr>
<tr>
<td>Minimum threshold</td>
<td>Minimum WRED threshold, in number of packets.</td>
</tr>
</tbody>
</table>
show queueing

Table 33  show queueing Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum threshold</td>
<td>Maximum WRED threshold, in number of packets.</td>
</tr>
<tr>
<td>Mark probability</td>
<td>Fraction of packets dropped when the average queue depth is at the maximum threshold.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>custom-queue-list</td>
<td>Assigns a custom queue list to an interface.</td>
</tr>
<tr>
<td>exponential-weighting-constant</td>
<td>Configures the exponential weight factor for the average queue size calculation for a WRED parameter group.</td>
</tr>
<tr>
<td>fair-queue (WFQ)</td>
<td>Enables WFQ for an interface.</td>
</tr>
<tr>
<td>frame-relay interface-queue priority</td>
<td>Enables the FR PIPQ feature.</td>
</tr>
<tr>
<td>precedence (WRED group)</td>
<td>Configures a WRED group for a particular IP Precedence.</td>
</tr>
<tr>
<td>priority-group</td>
<td>Assigns the specified priority list to an interface.</td>
</tr>
<tr>
<td>priority-list interface</td>
<td>Establishes queueing priorities on packets entering from a given interface.</td>
</tr>
<tr>
<td>priority-list queue-limit</td>
<td>Specifies the maximum number of packets that can be waiting in each of the priority queues.</td>
</tr>
<tr>
<td>queue-list interface</td>
<td>Establishes queueing priorities on packets entering on an interface.</td>
</tr>
<tr>
<td>queue-list queue byte-count</td>
<td>Specifies how many bytes the system allows to be delivered from a given queue during a particular cycle.</td>
</tr>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td>random-detect flow average-depth-factor</td>
<td>Sets the multiplier to be used in determining the average depth factor for a flow when flow-based WRED is enabled.</td>
</tr>
<tr>
<td>random-detect flow count</td>
<td>Sets the flow count for flow-based WRED.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays the statistical information specific to a serial interface.</td>
</tr>
<tr>
<td>show queue</td>
<td>Displays the contents of packets inside a queue for a particular interface or VC.</td>
</tr>
<tr>
<td>show queueing interface</td>
<td>Displays the queueing statistics of an interface or VC.</td>
</tr>
</tbody>
</table>
show queueing interface

To display the queueing statistics of an interface or a virtual circuit (VC), use the `show queueing interface` privileged EXEC command.

`show queueing interface interface-number [vc [vpi] vci]]`

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-number</td>
<td>Specifies the number of the interface.</td>
</tr>
<tr>
<td>vc</td>
<td>(Optional) Shows the weighted fair queueing (WFQ) and Weighted Random Early Detection (WRED) parameters associated with a specific VC. If desired, both the virtual path identifier (VPI) and virtual channel identifier (VCI) values, or just the VCI value, can be specified.</td>
</tr>
<tr>
<td>vpi</td>
<td>(Optional) Specifies the VPI. If the vpi argument is omitted, 0 is used as the VPI value for locating the permanent virtual circuit (PVC). If the vpi argument is specified, the / separator is required.</td>
</tr>
<tr>
<td>vci</td>
<td>(Optional) Specifies the VCI.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1(22)CC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show queueing interface` command:

```
Router# show queueing interface atm2/0

Interface ATM2/0 VC 201/201
Queueing strategy:random early detection (WRED)
 Exp-weight-constant:9 (1/512)
 Mean queue depth:49
 Total output drops per VC:759
 Class Random drop Tail drop Minimum threshold Maximum threshold Mark probability
 0 165 26 30 50 50 1/10
 1 167 12 32 50 50 1/10
 2 173 14 34 50 50 1/10
 3 177 25 36 50 50 1/10
 4 0 0 38 50 50 1/10
 5 0 0 40 50 50 1/10
 6 0 0 42 50 50 1/10
 7 0 0 44 50 50 1/10
 rsvp 0 0 46 50 50 1/10
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>custom-queue-list</td>
<td>Assigns a custom queue list to an interface.</td>
</tr>
<tr>
<td>fair-queue (class-default)</td>
<td>Specifies the number of dynamic queues to be reserved for use by the class-default class as part of the default class policy.</td>
</tr>
<tr>
<td>fair-queue (WFQ)</td>
<td>Enables WFQ for an interface.</td>
</tr>
<tr>
<td>priority-group</td>
<td>Assigns the specified priority list to an interface.</td>
</tr>
<tr>
<td>random-detect (interface)</td>
<td>Enables WRED or DWRED.</td>
</tr>
<tr>
<td>random-detect (per VC)</td>
<td>Enables per-VC WRED or per-VC DWRED.</td>
</tr>
<tr>
<td>random-detect flow</td>
<td>Enables flow-based WRED.</td>
</tr>
<tr>
<td>show frame-relay pvc</td>
<td>Displays information and statistics about WFQ for a VIP-based interface.</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the configuration of all classes configured for all service policies on the specified interface or displays the classes for the service policy for a specific PVC on the interface.</td>
</tr>
<tr>
<td>show queueing</td>
<td>Lists all or selected configured queueing strategies.</td>
</tr>
</tbody>
</table>
**show tech-support rsvp**

To generate a report of all Resource Reservation Protocol (RSVP)-related information, use the `show tech-support rsvp` privileged EXEC command.

```
show tech-support rsvp
```

**Syntax Description**

This command has no arguments or keywords.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command is not required for normal use of the operating system. This command is useful when you contact technical support personnel with questions regarding RSVP. The `show tech-support rsvp` command generates a series of reports that can be useful to technical support personnel attempting to solve problems.

Any issues or caveats that apply to the `show tech-support` command also apply to this command. For example, the enable password, if configured, is not displayed in the output of the `show running-config` command.

The `show tech-support rsvp` command is equivalent to issuing the following commands:

- `show ip rsvp installed`
- `show ip rsvp interface`
- `show ip rsvp neighbor`
- `show ip rsvp policy cops`
- `show ip rsvp reservation`
- `show ip rsvp sender`
- `show running-config`
- `show version`

These commands are documented in various chapters of this book. Refer to the displays and descriptions for the individual commands for information about the `show tech-support rsvp` command display.
show traffic-shape

To display the current traffic-shaping configuration, use the show traffic-shape EXEC command.

```
show traffic-shape [interface-type interface-number]
```

**Syntax Description**
- **interface-type** (Optional) The type of the interface. If no interface is specified, traffic-shaping details for all configured interfaces are shown.
- **interface-number** (Optional) The number of the interface.

**Command Modes**
- EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must have first enabled traffic shaping using the traffic-shape rate, traffic-shape group, or frame-relay traffic-shaping command to display traffic-shaping information.

**Examples**

The following is sample output from the show traffic-shape command:

```
Router# show traffic-shape

Interface Fa0/0
VC List Access Target Byte Sustain Excess Interval Increment Adapt
- 1000000 6250 25000 25000 25 3125 -
```

Table 34 describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface type and number.</td>
</tr>
<tr>
<td>VC</td>
<td>Virtual circuit.</td>
</tr>
<tr>
<td>Access List</td>
<td>Number of the access list, if one is configured.</td>
</tr>
<tr>
<td>Target Rate</td>
<td>Rate that traffic is shaped to, in bits per second.</td>
</tr>
<tr>
<td>Byte Limit</td>
<td>Maximum number of bytes sent per internal interval.</td>
</tr>
<tr>
<td>Sustain bits/int</td>
<td>Configured sustained bits per interval.</td>
</tr>
<tr>
<td>Excess bits/int</td>
<td>Configured excess bits in the first interval.</td>
</tr>
</tbody>
</table>
Table 34 show traffic-shape Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval (ms)</td>
<td>Interval (in milliseconds) being used internally, which may be smaller than the committed burst divided by the committed information rate, if the router determines that traffic flow will be more stable with a smaller configured interval.</td>
</tr>
<tr>
<td>Increment (bytes)</td>
<td>Number of bytes that will be sustained per internal interval.</td>
</tr>
<tr>
<td>Adapt Active</td>
<td>Contains “BECN” if Frame Relay has backward explicit congestion notification (BECN) adaptation configured.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frame-relay cir</td>
<td>Specifies the incoming or outgoing committed information rate (CIR) for a Frame Relay virtual circuit.</td>
</tr>
<tr>
<td>frame-relay traffic-rate</td>
<td>Configures all the traffic-shaping characteristics of a virtual circuit (VC) in a single command.</td>
</tr>
<tr>
<td>frame-relay traffic-shaping</td>
<td>Enables both traffic shaping and per-VC queueing for all PVCs and SVCs on a Frame Relay interface.</td>
</tr>
<tr>
<td>show traffic-shape queue</td>
<td>Displays information about the elements queued by traffic shaping at the interface level or the DLCI level.</td>
</tr>
<tr>
<td>show traffic-shape statistics</td>
<td>Displays the current traffic-shaping statistics.</td>
</tr>
<tr>
<td>traffic-shape adaptive</td>
<td>Configures a Frame Relay subinterface to estimate the available bandwidth when BECN signals are received.</td>
</tr>
<tr>
<td>traffic-shape fecn-adapt</td>
<td>Replies to messages with the FECN bit (which are set with TEST RESPONSE messages with the BECN bit set).</td>
</tr>
<tr>
<td>traffic-shape group</td>
<td>Enables traffic shaping based on a specific access list for outbound traffic on an interface.</td>
</tr>
<tr>
<td>traffic-shape rate</td>
<td>Enables traffic shaping for outbound traffic on an interface.</td>
</tr>
</tbody>
</table>
**show traffic-shape queue**

To display information about the elements queued by traffic shaping at the interface level or the data-link connection identifier (DLCI) level, use the `show traffic-shape queue` EXEC command.

```
show traffic-shape queue [interface-number [dlci dlci-number]]
```

**Syntax Description**

- `interface-number` (Optional) The number of the interface.
- `dlci` (Optional) The specific DLCI for which you wish to display information about queued elements.
- `dlci-number` (Optional) The number of the DLCI.

**Command Modes**

EXEC

**Command History**

- **Release** 11.2: This command was introduced.
- **Modification**
  - 12.0(3)XG: This command was integrated into Cisco IOS Release 12.0(3)XG. The `dlci` argument was added.
  - 12.0(4)T: This command was integrated into Cisco IOS Release 12.0(4)T. The `dlci` argument was added.
  - 12.0(5)T: This command was modified to include information on the special voice queue that is created using the `queue` keyword of the frame-relay voice `bandwidth` command.

**Usage Guidelines**

When no parameters are specified with this command, the output displays information for all interfaces and DLCIs containing queued elements. When a specific interface and DLCI are specified, information is displayed about the queued elements for that DLCI only.

**Examples**

The following is sample output for the `show traffic-shape queue` command when weighted fair queuing is configured on the map class associated with DLCI 16:

```
Router# show traffic-shape queue Serial1/1 dlci 16

Traffic queued in shaping queue on Serial1.1 dlci 16
Queueing strategy: weighted fair
Queueing Stats: 1/600/64/0 (size/max total/threshold/drops)
 Conversations 0/16 (active/max total)
 Reserved Conversations 0/2 (active/allocated)
 (depth/weight/discards) 1/4096/0
 Conversation 5, linktype: ip, length: 608

source: 172.21.59.21, destination: 255.255.255.255, id: 0x0006, ttl: 255,
 TOS: 0 prot: 17, source port 68, destination port 67
```
The following is sample output for the `show traffic-shape queue` command when priority queueing is configured on the map class associated with DLCI 16:

```
Router# show traffic-shape queue Serial1/1 dlci 16
Traffic queued in shaping queue on Serial1.1 dlci 16
 Queueing strategy: priority-group 4
 Queueing Stats: low/1/80/0 (queue/size/max total/drops)
Packet 1, linktype: cdp, length: 334, flags: 0x10000008
```

The following is sample output for the `show traffic-shape queue` command when first-come, first-serve queueing is configured on the map class associated with DLCI 16:

```
Router# show traffic-shape queue Serial1/1 dlci 16
Traffic queued in shaping queue on Serial1.1 dlci 16
 Queueing strategy: fcfs
 Queueing Stats: 1/60/0 (size/max total/drops)
Packet 1, linktype: cdp, length: 334, flags: 0x10000008
```

The following is sample output for the `show traffic-shape queue` command displaying statistics for the special queue for voice traffic that is created automatically when the frame-relay voice bandwidth command is entered:

```
Router# show traffic-shape queue serial 1 dlci 45
Voice queue attached to traffic shaping queue on Serial1 dlci 45
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 Voice Queueing Stats: 0/100/0 (size/max/dropped)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Traffic queued in shaping queue on Serial1 dlci 45
 Queueing strategy: weighted fair
 Queueing Stats: 0/600/64/0 (size/max total/threshold/drops)
 Conversations 0/16 (active/max total)
 Reserved Conversations 0/2 (active/allocated)
```

**Table 35** describes the significant fields shown in the display.

### Table 35  `show traffic-shape queue` Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queueing strategy</td>
<td>When Frame Relay Traffic Shaping (FRTS) is configured, the queueing type can be weighted fair, custom-queue, priority-group, or fcfs (first-come, first-serve), depending on what is configured on the Frame Relay map class for this DLCI. The default is fcfs for FRTS. When generic traffic shaping is configured, the only queueing type available is weighted fair queueing (WFQ).</td>
</tr>
<tr>
<td>Queueing Stats</td>
<td>Statistics for the configured queueing strategy, as follows:</td>
</tr>
<tr>
<td></td>
<td>• size—Current size of the queue.</td>
</tr>
<tr>
<td></td>
<td>• max total—Maximum number of packets of all types that can be queued in all queues.</td>
</tr>
<tr>
<td></td>
<td>• threshold—For WFQ, the number of packets in the queue after which new packets for high-bandwidth conversations will be dropped.</td>
</tr>
<tr>
<td></td>
<td>• drops—Number of packets discarded during this interval.</td>
</tr>
</tbody>
</table>
Table 35  show traffic-shape queue Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversations active</td>
<td>Number of currently active conversations.</td>
</tr>
<tr>
<td>Conversations max total</td>
<td>Maximum allowed number of concurrent conversations.</td>
</tr>
<tr>
<td>Reserved Conversations active</td>
<td>Number of currently active conversations reserved for voice.</td>
</tr>
<tr>
<td>Reserved Conversations allocated</td>
<td>Maximum configured number of conversations reserved.</td>
</tr>
<tr>
<td>depth</td>
<td>Number of packets currently queued.</td>
</tr>
<tr>
<td>weight</td>
<td>Number used to classify and prioritize the packet.</td>
</tr>
<tr>
<td>discards</td>
<td>Number of packets discarded from queues.</td>
</tr>
<tr>
<td>Packet</td>
<td>Number of queued packet.</td>
</tr>
<tr>
<td>linktype</td>
<td>Protocol type of the queued packet. (cdp = Cisco Discovery Protocol)</td>
</tr>
<tr>
<td>length</td>
<td>Number of bytes in the queued packet.</td>
</tr>
<tr>
<td>flags</td>
<td>Number of flag characters in the queued packet.</td>
</tr>
<tr>
<td>source</td>
<td>Source IP address.</td>
</tr>
<tr>
<td>destination</td>
<td>Destination IP address.</td>
</tr>
<tr>
<td>id</td>
<td>Packet ID.</td>
</tr>
<tr>
<td>ttl</td>
<td>Time to live count.</td>
</tr>
<tr>
<td>TOS</td>
<td>IP type of service.</td>
</tr>
<tr>
<td>prot</td>
<td>Layer 4 protocol number. Refer to RFC 943 for a list of protocol numbers. (17 = User Datagram Protocol (UDP))</td>
</tr>
<tr>
<td>source port</td>
<td>Port number of source port.</td>
</tr>
<tr>
<td>destination port</td>
<td>Port number of destination port.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show frame-relay</td>
<td>Displays Frame Relay fragmentation details.</td>
</tr>
<tr>
<td>fragment</td>
<td></td>
</tr>
<tr>
<td>show frame-relay pvc</td>
<td>Displays statistics about PVCs for Frame Relay interfaces.</td>
</tr>
<tr>
<td>show frame-relay vofr</td>
<td>Displays details about FRF.11 subchannels being used on VoFR DLCIs.</td>
</tr>
<tr>
<td>show traffic-shape</td>
<td>Displays the current traffic-shaping configuration.</td>
</tr>
<tr>
<td>statistics</td>
<td>Displays the current traffic-shaping statistics.</td>
</tr>
</tbody>
</table>
**show traffic-shape statistics**

To display the current traffic-shaping statistics, use the `show traffic-shape statistics` EXEC command.

```
show traffic-shape statistics [interface-type interface-number]
```

**Syntax Description**

- `interface-type` (Optional) The type of the interface. If no interface is specified, traffic-shaping statistics for all configured interfaces are shown.
- `interface-number` (Optional) The number of the interface.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must have first enabled traffic shaping using the `traffic-shape rate`, `traffic-shape group`, or `frame-relay traffic-shaping` command to display traffic-shaping information.

**Examples**

The following is sample output from the `show traffic-shape statistics` command:

```
Router# show traffic-shape statistics

I/F Access Queue Packets Bytes Packets Delayed Bytes Delayed Shaping Active
 List Depth 延迟 延迟
Et0 101 0 2 180 0 0 no
Et1 0 0 0 0 0 0 no
```

Table 36 describes the significant fields shown in the display.

**Table 36  show traffic-shape statistics Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/F</td>
<td>Interface.</td>
</tr>
<tr>
<td>Access List</td>
<td>Number of the access list.</td>
</tr>
<tr>
<td>Queue Depth</td>
<td>Number of messages in the queue.</td>
</tr>
<tr>
<td>Packets</td>
<td>Number of packets sent through the interface.</td>
</tr>
<tr>
<td>Bytes</td>
<td>Number of bytes sent through the interface.</td>
</tr>
<tr>
<td>Packets Delayed</td>
<td>Number of packets sent through the interface that were delayed in the traffic-shaping queue.</td>
</tr>
<tr>
<td>Bytes Delayed</td>
<td>Number of bytes sent through the interface that were delayed in the traffic-shaping queue.</td>
</tr>
<tr>
<td>Shaping Active</td>
<td>Contains “yes” when timers indicate that traffic shaping is occurring and “no” if traffic shaping is not occurring.</td>
</tr>
</tbody>
</table>
## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frame-relay traffic-shaping</td>
<td>Enables both traffic shaping and per-VC queueing for all PVCs and SVCs on a Frame Relay interface.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>show ip rsvp neighbor</td>
<td>Displays RSVP-related interface information.</td>
</tr>
<tr>
<td>traffic-shape adaptive</td>
<td>Configures a Frame Relay subinterface to estimate the available bandwidth when BECN signals are received.</td>
</tr>
<tr>
<td>traffic-shape group</td>
<td>Enables traffic shaping based on a specific access list for outbound traffic on an interface.</td>
</tr>
<tr>
<td>traffic-shape rate</td>
<td>Enables traffic shaping for outbound traffic on an interface.</td>
</tr>
</tbody>
</table>
traffic-shape adaptive

To configure a Frame Relay subinterface to estimate the available bandwidth when backward explicit congestion notification (BECN) signals are received, use the traffic-shape adaptive interface configuration command. To disregard the BECN signals and not estimate the available bandwidth, use the no form of this command.

```
traffic-shape adaptive bit-rate

no traffic-shape adaptive
```

**Syntax Description**

<table>
<thead>
<tr>
<th><strong>bit-rate</strong></th>
<th>Lowest bit rate that traffic is shaped to, in bits per second. The default bit rate value is 0.</th>
</tr>
</thead>
</table>

**Defaults**

This command is not enabled by default.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command specifies the boundaries in which traffic will be shaped when BECN signals are received. You must enable traffic shaping on the interface with the traffic-shape rate or traffic-shape group command before you can use the traffic-shape adaptive command.

The bit rate specified for the traffic-shape rate command is the upper limit, and the bit rate specified for the traffic-shape adaptive command is the lower limit to which traffic is shaped when BECN signals are received on the interface. The rate actually shaped to will be between these two bit rates.

You should configure this command and the traffic-shape fecn-adapt command on both ends of the connection to ensure adaptive traffic shaping over the connection, even when traffic is flowing primarily in one direction. The traffic-shape fecn-adapt command configures the router to reflect forward explicit congestion notification (FECN) signals as BECN signals.

**Examples**

The following example configures traffic shaping on serial interface 0.1 with an upper limit of 128 kbps and a lower limit of 64 kbps. This configuration allows the link to run from 64 to 128 kbps, depending on the congestion level.

```
interface serial 0
encapsulation-frame-relay
interface serial 0.1
traffic-shape rate 128000
traffic-shape adaptive 64000
traffic-shape fecn-adapt
```
## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show traffic-shape</strong></td>
<td>Displays the current traffic-shaping configuration.</td>
</tr>
<tr>
<td><strong>show traffic-shape statistics</strong></td>
<td>Displays the current traffic-shaping statistics.</td>
</tr>
<tr>
<td><strong>traffic-shape fecn-adapt</strong></td>
<td>Replies to messages with the FECN bit (which are set with TEST RESPONSE messages with the BECN bit set).</td>
</tr>
<tr>
<td><strong>traffic-shape group</strong></td>
<td>Enables traffic shaping based on a specific access list for outbound traffic on an interface.</td>
</tr>
<tr>
<td><strong>traffic-shape rate</strong></td>
<td>Enables traffic shaping for outbound traffic on an interface.</td>
</tr>
</tbody>
</table>
traffic-shape fecn-adapt

To reply to messages with the forward explicit congestion notification (FECN) bit (which are sent with TEST RESPONSE messages with the BECN bit set), use the traffic-shape fecn-adapt interface configuration command. To stop backward explicit congestion notification (BECN) signal generation, use the no form of this command.

traffic-shape fecn-adapt

no traffic-shape fecn-adapt

Syntax Description

This command has no arguments or keywords.

Defaults

Traffic shaping is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enable traffic shaping on the interface with the traffic-shape rate or traffic-shape group command. FECN is available only when traffic shaping is configured.

Use this command to reflect FECN bits as BECN bits. Reflecting FECN bits as BECN bits notifies the sending DTE that it is transmitting at a rate too fast for the DTE to handle. Use the traffic-shape adaptive command to configure the router to adapt its transmission rate when it receives BECN signals.

You should configure this command and the traffic-shape adaptive command on both ends of the connection to ensure adaptive traffic shaping over the connection, even when traffic is flowing primarily in one direction.

Examples

The following example configures traffic shaping on serial interface 0.1 with an upper limit of 128 kbps and a lower limit of 64 kbps. This configuration allows the link to run from 64 to 128 kbps, depending on the congestion level. The router reflects FECN signals as BECN signals.

interface serial 0
  encapsulation-frame-relay
interface serial 0.1
  traffic-shape rate 128000
  traffic-shape adaptive 64000
  traffic-shape fecn-adapt
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show traffic-shape</code></td>
<td>Displays the current traffic-shaping configuration.</td>
</tr>
<tr>
<td><code>show traffic-shape statistics</code></td>
<td>Displays the current traffic-shaping statistics.</td>
</tr>
<tr>
<td><code>traffic-shape adaptive</code></td>
<td>Configures a Frame Relay subinterface to estimate the available bandwidth when BECN signals are received.</td>
</tr>
<tr>
<td><code>traffic-shape group</code></td>
<td>Enables traffic shaping based on a specific access list for outbound traffic on an interface.</td>
</tr>
<tr>
<td><code>traffic-shape rate</code></td>
<td>Enables traffic shaping for outbound traffic on an interface.</td>
</tr>
</tbody>
</table>
**traffic-shape group**

To enable traffic shaping based on a specific access list for outbound traffic on an interface, use the `traffic-shape group` interface configuration command. To disable traffic shaping on the interface for the access list, use the `no` form of this command.

```
traffic-shape group access-list bit-rate [burst-size [excess-burst-size]]
```

```
no traffic-shape group access-list
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>access-list</code></td>
<td>Number of the access list that controls the packets that traffic shaping is applied to on the interface.</td>
</tr>
<tr>
<td><code>bit-rate</code></td>
<td>Bit rate that traffic is shaped to, in bits per second. This is the access bit rate that you contract with your service provider, or the service levels you intend to maintain.</td>
</tr>
<tr>
<td><code>burst-size</code></td>
<td>(Optional) Sustained number of bits that can be sent per interval. On Frame Relay interfaces, this is the Committed Burst size contracted with your service provider.</td>
</tr>
<tr>
<td><code>excess-burst-size</code></td>
<td>(Optional) Maximum number of bits that can exceed the burst size in the first interval in a congestion event. On Frame Relay interfaces, this is the Excess Burst size contracted with your service provider. The default is equal to the <code>burst-size</code> argument.</td>
</tr>
</tbody>
</table>

**Defaults**

Traffic shaping is not on by default.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Generic traffic shaping is not supported on ISDN and dialup interfaces. It is also not supported on nongeneric routing encapsulation tunnel interfaces. Traffic shaping is not supported with flow switching.

Traffic shaping uses queues to limit surges that can congest a network. Data is buffered and then sent into the network in regulated amounts to ensure that traffic will fit within the promised traffic envelope for the particular connection.

The `traffic-shape group` command allows you to specify one or more previously defined access list to shape traffic on the interface. You must specify one `traffic-shape group` command for each access list on the interface.

The `traffic-shape group` command supports both standard and extended access lists.

Use traffic shaping if you have a network with differing access rates or if you are offering a subrate service. You can configure the values according to your contract with your service provider or the service levels you intend to maintain.
An interval is calculated as follows:

- If the burst-size is not equal to zero, the interval is the burst-size divided by the bit-rate.
- If the burst-size is zero, the interval is the excess-burst-size divided by the bit-rate.

Traffic shaping is supported on all media and encapsulation types on the router. To perform traffic shaping on Frame Relay virtual circuits, you can also use the `frame-relay traffic-shaping` command. For more information on Frame Relay Traffic Shaping, refer to the “Configuring Frame Relay” chapter in the *Cisco IOS Wide-Area Networking Configuration Guide*.

If traffic shaping is performed on a Frame Relay network with the `traffic-shape rate` command, you can also use the `traffic-shape adaptive` command to specify the minimum bit rate to which the traffic is shaped.

### Examples

The following example enables traffic that matches access list 101 to be shaped to a certain rate and traffic matching access list 102 to be shaped to another rate on the interface:

```
interface serial 1
 traffic-shape group 101 128000 16000 8000
 traffic-shape group 102 130000 10000 1000
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list (IP Standard)</td>
<td>Defines a standard IP access list.</td>
</tr>
<tr>
<td>show traffic-shape</td>
<td>Displays the current traffic-shaping configuration.</td>
</tr>
<tr>
<td>show traffic-shape statistics</td>
<td>Displays the current traffic-shaping statistics.</td>
</tr>
<tr>
<td>traffic-shape adaptive</td>
<td>Configures a Frame Relay subinterface to estimate the available bandwidth when BECN signals are received.</td>
</tr>
<tr>
<td>traffic-shape feen-adapt</td>
<td>Replies to messages with the FECN bit (which are set with TEST RESPONSE messages with the BECN bit set).</td>
</tr>
<tr>
<td>traffic-shape rate</td>
<td>Enables traffic shaping for outbound traffic on an interface.</td>
</tr>
</tbody>
</table>
traffic-shape rate

To enable traffic shaping for outbound traffic on an interface, use the `traffic-shape rate` interface configuration command. To disable traffic shaping on the interface, use the `no` form of this command.

```plaintext
traffic-shape rate bit-rate [burst-size [excess-burst-size]] [buffer-limit]

no traffic-shape rate
```

**Syntax Description**

- **bit-rate**: Bit rate that traffic is shaped to, in bits per second. This is the access bit rate that you contract with your service provider, or the service levels you intend to maintain.

- **burst-size**: (Optional) Sustained number of bits that can be sent per interval. On Frame Relay interfaces, this is the Committed Burst size contracted with your service provider.

- **excess-burst-size**: (Optional) Maximum number of bits that can exceed the burst size in the first interval in a congestion event. On Frame Relay interfaces, this is the Excess Burst size contracted with your service provider. The default is equal to the `burst-size` argument.

- **buffer-limit**: (Optional) Maximum buffer limit in bps. Valid entries are numbers in the range of 0 to 4096.

**Defaults**

Traffic shaping is disabled.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Generic traffic shaping is not supported on ISDN and dialup interfaces. Is is also not supported on nongeneric routing encapsulation tunnel interfaces. Traffic shaping is not supported with flow switching.

Traffic shaping uses queues to limit surges that can congest a network. Data is buffered and then sent into the network in regulated amounts to ensure that traffic will fit within the promised traffic envelope for the particular connection.

Use traffic shaping if you have a network with differing access rates or if you are offering a subrate service. You can configure the values according to your contract with your service provider or the service levels you intend to maintain.

An interval is calculated as follows:

- If the `burst-size` is not equal to zero, the interval is the `burst-size` divided by the `bit-rate`.
- If the `burst-size` is zero, the interval is the `excess-burst-size` divided by the `bit-rate`. 
Traffic shaping is supported on all media and encapsulation types on the router. To perform traffic shaping on Frame Relay virtual circuits, you can also use the `frame-relay traffic-shaping` command. For more information on Frame Relay Traffic Shaping, refer to the “Configuring Frame Relay” chapter in the *Cisco IOS Wide-Area Networking Configuration Guide*.

If traffic shaping is performed on a Frame Relay network with the `traffic-shape rate` command, you can also use the `traffic-shape adaptive` command to specify the minimum bit rate to which the traffic is shaped.

**Examples**

The following example enables traffic shaping on serial interface 0 using the bandwidth required by the service provider:

```
interface serial 0
traffic-shape rate 128000 16000 8000
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show traffic-shape</code></td>
<td>Displays the current traffic-shaping configuration.</td>
</tr>
<tr>
<td><code>show traffic-shape statistics</code></td>
<td>Displays the current traffic-shaping statistics.</td>
</tr>
<tr>
<td><code>traffic-shape adaptive</code></td>
<td>Configures a Frame Relay subinterface to estimate the available bandwidth when BECN signals are received.</td>
</tr>
<tr>
<td><code>traffic-shape fecn-adapt</code></td>
<td>Replies to messages with the FECN bit (which are set with TEST RESPONSE messages with the BECN bit set).</td>
</tr>
<tr>
<td><code>traffic-shape group</code></td>
<td>Enables traffic shaping based on a specific access list for outbound traffic on an interface.</td>
</tr>
</tbody>
</table>
tx-ring-limit

To limit the number of particles or packets that can be used on a transmission ring on an interface, use the `tx-ring-limit` ATM VC configuration command. To not limit the number of particles or packets that can be used on an interface, use the `no` form of this command.

```
 tx-ring-limit ring-limit

 no tx-ring-limit ring-limit
```

**Syntax Description**

- `ring-limit` Specifies the maximum number of allowable particles or packets that can be placed on the transmission ring.

**Defaults**

This command has no default behavior or values.

**Command Modes**

ATM VC Configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(7)XE1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.0(9)S</td>
<td>This command was integrated into Cisco IOS Release 12.0 S.</td>
</tr>
<tr>
<td>12.1(5)T</td>
<td>This command was integrated into Cisco IOS Release 12.1(5)T.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The transmission ring limit value is limited to values from 3 to 6000.

For Cisco 2600 series routers and Cisco 3600 series routers, you can specify the number of packets. For Cisco 7200 series routers and Cisco 7500 series routers, you can specify the number of particles.

This command allows you to reduce the size of the FIFO (first-in, first-out) queue. Reducing the size of the transmit ring in the queue has two benefits:

- It reduces the amount of time packets wait in the FIFO queue before being segmented.
- It accelerates the use of QoS in the Cisco IOS software.

**Examples**

The following example configures the transmission ring limit to seven particles on an ATM interface:

```
 Router(config)# interface atm 1/0/0

 Router(config-if)# atm pvc 32 0 32 aal5snap 10000 8000 2000 tx-ring-limit 7
```
The following example configures the transmission ring limit to ten particles on an ATM permanent virtual circuit (PVC) subinterface:

Router(config)# interface ATM1/0/0.1 point-to-point
Router(config-subif)# pvc 2/200
Router(config-if-atm-vc)# tx-ring-limit 10

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show atm vc</td>
<td>Displays information about ATM PVCs and SVCs.</td>
</tr>
<tr>
<td>tx-queue-limit</td>
<td>Controls the number of transmit buffers available to a specified interface on the MCI and SCI cards.</td>
</tr>
</tbody>
</table>
vc-hold-queue

To configure the per-virtual circuit (VC) hold queue on an ATM adapter, use the `vc-hold-queue` interface configuration command. To return to the default value of the per-VC hold queue, use the `no` form of this command.

```
vc-hold-queue number-of-packets
no vc-hold-queue number-of-packets
```

### Syntax Description

| number-of-packets | Specifies number of packets that can be configured for the per-VC hold queue. Number of packets can be a minimum of 5 to a maximum of 1024. |

### Defaults

The default value of the hold queue is set by the queueing mechanism in use.

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(5)T</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

This command can only be used on Cisco 7200 series routers and on Cisco 2600 and 3600 adapters that support per-VC queueing.

This command is configurable at the VC level only.

### Examples

The following example sets the per-VC hold queue to 55:

```
interface atm2/0.1
pvc 1/101
 vc-hold-queue 55
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hold-queue</td>
<td>Specifies the hold-queue limit of an interface.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>show queueing interface</td>
<td>Displays the queueing statistics of an interface or VC.</td>
</tr>
</tbody>
</table>
## Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>( )</td>
<td>QR-132</td>
</tr>
<tr>
<td>*</td>
<td>QR-132</td>
</tr>
<tr>
<td>&lt;cr&gt;</td>
<td>xv</td>
</tr>
<tr>
<td>?</td>
<td>QR-132</td>
</tr>
<tr>
<td>? command</td>
<td>xiv</td>
</tr>
</tbody>
</table>

## A

access-list rate-limit command  QR-2
access lists
   class maps criteria
      configuring  QR-109, QR-111
      specifying  QR-126, QR-135
rate-limited  QR-247
rate limit statistics (table)  QR-248
traffic shaping based on  QR-317
ATM VC bundles
   creating  QR-12
   members, parameters
      bump  QR-9
      oam-bundle  QR-139
      precedence  QR-149
      protect  QR-169
      modifying  QR-12
parameters
   class  QR-18
   displaying  QR-249
pvc-bundle, parameters  QR-171
statistics, displaying  QR-251

## B

bandwidth (policy-map class) command  QR-4
bandwidths, allocation  QR-136
BECN (backward explicit congestion notification)
   message generation  QR-315
bump command  QR-9
bundle command  QR-12

## C

CAR (committed access rate)
   access lists  QR-2
   displaying  QR-259
   interface statistics (table)  QR-260
   policies, configuring  QR-211
   policing traffic with  QR-213
   rate limits
      recommended burst sizes  QR-213
carriage return (<cr>)  xv
cautions, usage in text  x
CBWFQ (class-based WFQ)
   class queue packet limit, configuring  QR-175
   policy maps  QR-147
Cisco IOS configuration changes, saving  xviii
class (policy-map) command  QR-14
class-based shaping, configuring  QR-240
class-bundle command  QR-18
class-default class  QR-34
class-map command  QR-20
class maps
   configuring  QR-20
   match criteria
access lists
  configuring QR-109, QR-111
  specifying QR-126, QR-135
interface, configuring QR-117, QR-124
protocols, configuring QR-127
See also class policies; policy maps

class policies
  bandwidth configuration QR-4
  configuring
  default class, configuring QR-14
  dynamic queues, configuring QR-34
  hashed queues, configuring QR-38
  information, displaying QR-253, QR-283, QR-285
  queue packet limit, configuring QR-175
See also class maps; policy maps

clear ip rsvp sender command QR-22, QR-24
command modes, understanding xiii to xiv
commands
  context-sensitive help for abbreviating xiv
  default form, using xvii
  no form, using xvii
command syntax
  conventions ix
  displaying (example) xv
configurations, saving xviii
custom queueing
  configuration information, displaying QR-298
  establishing QR-26
  custom-queue-list command QR-26

Documentation CD-ROM x
documents and resources, supporting viii
dscp command QR-29

DWFQ (distributed WFQ)
  aggregate limit, setting QR-45
  default queue lengths and thresholds (table) QR-36
  displaying QR-255
  enabling QR-36
  individual limit, setting QR-47
  interfaces supported QR-36
  QoS-group-based QR-51
  queue depth, setting QR-49
  ToS-based QR-53
  weight, assigning QR-55
See also WFQ

DWRED (distributed WRED)
  enabling QR-190, QR-193, QR-194
  groups, configuration (example) QR-194
dynamic queues, reserving QR-34

E
  exponential-weighting-constant command QR-32

F
  fair-queue (class-default) command QR-34
  fair-queue (DWFQ) command QR-36
  fair-queue (policy-map) command QR-38
  fair-queue (WFQ) command QR-40
  fair-queue aggregate-limit command QR-45
  fair-queue individual-limit command QR-47
  fair-queue limit command QR-49
  fair-queue qos-group command QR-51
  fair-queue tos command QR-53
  fair-queue weight command QR-55

Feature Navigator
  See platforms, supported
filtering output, show and more commands  xviii
flow-based WRED
  average depth factor, determining  QR-201
  buffers per flow, determining  QR-201
  enabling  QR-199
  flow count value, setting  QR-203
  flow threshold scaling factor, configuring  QR-201
  information, displaying  QR-298
See also WRED
Frame Relay
  bandwidth, estimating  QR-313
  LLQ (low latency queueing), enabling  QR-217
  PIPQ (PVC Interface Priority Queueing)
    enabling  QR-57
    FIFO queueing, effect on  QR-58
    Frame Relay Traffic Shaping, effect on  QR-58
    FRF.12 fragmentation, effect on  QR-58
    prerequisites  QR-58
    PVC priority, configuring  QR-57
    queue size, configuring  QR-57
    traffic shaping  QR-313, QR-318, QR-320
  frame-relay interface-queue priority command  QR-57
  frame-relay ip rtp priority command  QR-59
interface configuration mode, summary of  xiv
interfaces, RSVP configuration statistics (table)  QR-273
ip nbar pdlm command  QR-62
ip nbar port-map command  QR-263
ip nbar protocol-discovery command  QR-65, QR-265
IP precedence
  bit values, displaying  QR-266
  VC bundle members  QR-149
ip rsdp atm-peak-rate-limit command  QR-66
ip rsdp bandwidth command  QR-68
ip rsdp burst policing command  QR-70
ip rsdp dsbm candidate command  QR-71
ip rsdp dsbm non-resv-send-limit command  QR-73
ip rsdp flow-assist command  QR-75
ip rsdp neighbor command  QR-77
ip rsdp policy cops minimal command  QR-79
ip rsdp policy cops report-all command  QR-80
ip rsdp policy cops servers command  QR-82
ip rsdp policy cops timeout command  QR-84
ip rsdp policy default-reject command  QR-85
ip rsdp pq-profile command  QR-86
ip rsdp precedence command  QR-88
ip rsdp reservation command  QR-90
ip rsdp reservation-host command  QR-93
ip rsdp sender command  QR-95
ip rsdp sender-host command  QR-97
ip rsdp signalling dscp command  QR-99
ip rsdp svc-required command  QR-100
ip rsdp tos command  QR-102
ip rsdp udp-multicasts command  QR-104
IP RTP Priority
  configuring  QR-106
  Frame Relay, configuring  QR-59
ip rtp priority command  QR-106

match access-group command  QR-109
match any command  QR-111

G

global configuration mode, summary of  xiv

H

hardware platforms
  See platforms, supported
hashed queues, reserving  QR-38
help command  xiv

I

indexes, master  viii

M

match access-group command  QR-109
match any command  QR-111
match class-map command QR-112
match cos command QR-114
match destination-address mac command QR-116
match input-interface command QR-117
match ip dscp command QR-119
match ip precedence command QR-121
match ip rtp command QR-123
match mpls experimental command QR-124
match not command QR-126
match protocol citrix command QR-130
match protocol command QR-127
match protocol http command QR-131
match qos-group command QR-133
match source-address mac command QR-135
max-reserved-bandwidth command QR-136
MIB, descriptions online viii
MIME QR-131
modes
See command modes

N

NBAR (Network-Based Application Recognition)
configuring QR-65
protocols
matching QR-128
recognizing QR-62
Netflow services
RSVP attachment to
conditions for use QR-75
enabling QR-75
notes, usage in text x

O

oam-bundle command QR-139

P

PDLM (Packet Description Language Module)
protocols recognized by NBAR QR-62
used by NBAR, displaying QR-261
peak rate limit
limiting conditions QR-66
monitoring QR-268
setting QR-66
platforms, supported
Feature Navigator, identify using xix
release notes, identify using xix
police command QR-141
policy-map command QR-147
policy maps
configuring QR-147
information, displaying QR-253, QR-283, QR-285
VCs, attaching to QR-216
See also class maps; class policies
port numbers
TCP services (table) QR-164
UDP services (table) QR-165
precedence (VC bundle) command QR-149
precedence (WRED group) command QR-151
priority command QR-154
priority-group command QR-157
priority-list default command QR-159
priority-list interface command QR-161
priority-list protocol command QR-163
priority-list queue-limit command QR-167
priority lists, assigning QR-157
priority queueing
establishing QR-163
information, displaying QR-298
packet limits (table) QR-167
priority levels (table) QR-164
privileged EXEC mode, summary of xiv
prompts, system xiv
protect command QR-169
protocol discovery \(QR-65, QR-264\)
protocol matching \(QR-128\)
pvc-bundle command \(QR-171\)

Q

QoS (quality of service) group ID \(QR-234, QR-237\)
qos pre-classify command \(QR-173\)
question mark (?) command xiv
queueing
statistics, displaying \(QR-303\)
strategies, displaying \(QR-298\)
queue-limit command \(QR-175\)
queue-list default command \(QR-177, QR-179\)
queue-list interface command \(QR-179\)
queue-list lowest-custom \(QR-181\)
queue-list protocol command \(QR-183\)
queue-list queue byte-count command \(QR-185\)
queue-list queue limit command \(QR-186\)
queues
byte count \(QR-185\)
custom \(QR-26\)
length limit \(QR-186\)
maximum packets \(QR-167\)
packet priorities \(QR-161, QR-179\)
priorities, assigning \(QR-177\)
priority \(QR-159\)
protocol priorities \(QR-163, QR-183\)
size, exponential weight factor \(QR-196, QR-197\)
WFQ \(QR-40\)

R

random-detect (interface) command \(QR-190\)
random-detect (per VC) command \(QR-193\)
random-detect dscp command \(QR-187\)
random-detect exponential-weighting-constant command \(QR-196\)
random-detect flow average-depth-factor command \(QR-201\)
random-detect flow command \(QR-199\)
random-detect flow count command \(QR-203\)
random-detect-group command \(QR-205\)
random-detect precedence command \(QR-207\)
rate-limit command \(QR-211\)
release notes
See platforms, supported
RFC
full text, obtaining viii
ROM monitor mode, summary of xiv
RSVP (Resource Reservation Protocol)
configuration statistics (table) \(QR-271\)
  enabling for IP \(QR-68\)
  fair queueing \(QR-43\)
  filters information, displaying \(QR-270\)
  interface information, displaying \(QR-266, QR-272\)
  neighbor reservation, allowing \(QR-77\)
  neighbors, displaying \(QR-274\)
receiver information
  (table) \(QR-278\)
  displaying \(QR-278\)
request information, displaying \(QR-277\)
reservation statistics (table) \(QR-274, QR-277\)
SBM, configuring \(QR-71\)
sender information
  (table) \(QR-282\)
  displaying \(QR-282\)
troubleshooting \(QR-305\)
UDP-encapsulated multicasts, generating \(QR-104\)
RSVP-ATM QoS Interworking
configuration, monitoring \(QR-266, QR-268, QR-272\)
IP Precedence value, configuring \(QR-88\)
Netflow attachment, enabling \(QR-75\)
peak rate limit, setting \(QR-66\)
ToS value, configuring \(QR-102\)
RSVP PATH messages \(QR-95, QR-97\)
RSVP RESV messages \(QR-90, QR-93\)
SBM (Subnetwork Bandwidth Manager)
  configuration, verifying QR-279
  configuring QR-71
DSBM candidate, configuring QR-71, QR-73
interface information, displaying QR-279
send qdm message command QR-215
service policies
  attaching QR-216, QR-219
  information, displaying QR-286
service-policy command QR-216, QR-219
set atm-clp command QR-224
set cos command QR-226
set ip dscp command QR-228
set ip precedence (policy-map) command QR-230
set ip precedence (route-map) command QR-232
set ip qos-group command QR-234, QR-237
set ip tos (route-map) command QR-235
set qos-group command QR-237
shape (policy-map class) command QR-241
shape adaptive command QR-243
shape fecn-adapt command QR-244
shape max-buffers command QR-246
show access-lists rate-limit command QR-247
show atm bundle command QR-249
show atm bundle statistics command QR-251
show class-map command QR-253
show cops servers command QR-254
show interfaces fair-queue command QR-255
show interfaces random-detect command QR-257
show interfaces rate-limit command QR-259
show ip nbar pdlm command QR-62
show ip nbar port-map command QR-263
show ip nbar protocol-discovery command QR-264
show ip rsvp atm-peak-rate-limit command QR-268
show ip rsvp command QR-266
show ip rsvp installed command QR-270
show ip rsvp interface command QR-272
show ip rsvp neighbor command QR-274
show ip rsvp policy cops command QR-275
show ip rsvp request command QR-277
show ip rsvp reservation command QR-278
show ip rsvp sbm command QR-279
show ip rsvp sender command QR-282
show policy-map class command QR-285
show policy-map command QR-283
show policy-map interface command QR-286
show qdm status command QR-292
show queue command QR-293
show queueing command QR-298
show queueing interface command QR-303
show tech-support rsvp command QR-305
show traffic-shape command QR-306
show traffic-shape queue command QR-308
show traffic-shape statistics command QR-311
subport classification QR-130, QR-131
SVCs (switched virtual circuits)
  peak rate limit, setting QR-66
  RSVP reservations, creating QR-100

Tab key, command completion xiv
TCP
  common services (table) QR-164
  port numbers (table) QR-164
ToS (type of service), bit values, displaying QR-266
  traffic discovery QR-65
  traffic priority management, WFQ QR-41
  traffic-shape adaptive command QR-313
  traffic-shape fecn-adapt command QR-315
  traffic-shape group command QR-317
  traffic-shape rate command QR-319
  traffic shaping
    access lists, using QR-317
    configuration information (table) QR-306
displaying  QR-306
DLCI queueing  QR-308
FECN/BECN messages  QR-315
interfaces  QR-318, QR-320
outbound  QR-319
statistics
(table)  QR-311
displaying  QR-311
tx-ring-limit command  QR-321

U

UDP (User Datagram Protocol)
common services (table)  QR-165
port numbers (table)  QR-165
port prioritizing  QR-165
user EXEC mode, summary of  xiv

V

VC classes
assignment to a VC bundle  QR-18
configuration
OAM management  QR-139
protect  QR-169
vc-hold-queue command  QR-323

W

WFQ (weighted fair queueing)
class-default class  QR-34
configuration information, displaying  QR-293, QR-298
configuration statistics
(table)  QR-255, QR-294, QR-301
displaying  QR-303
custom queueing, effect on  QR-40
enabling  QR-40
Frame Relay switching  QR-43
IP precedence weighting  QR-42
priority queueing, effect on  QR-40
queueing strategies, displaying  QR-298
traffic priority management  QR-41
traffic stream discrimination (table)  QR-42
See also DWFQ
WRED (Weighted Random Early Detection)
configuration information, displaying  QR-298
configuration statistics (table)  QR-257
enabling  QR-193
exponential weight factor, configuring  QR-196
interface information  QR-257
IP precedence, configuring  QR-207
minimum threshold values (table)  QR-208
parameter group
  defining  QR-205
  exponential weight factor  QR-32
  precedence  QR-151
See also flow-based WRED