About Cisco IOS Software Documentation xxxvii
 Documentation Objectives xxxvii
 Audience xxxvii
 Documentation Organization xxxvii
 Documentation Modules xxxvii
 Master Indexes xl
 Supporting Documents and Resources xl
 New and Changed Information xli
 Document Conventions xli
 Obtaining Documentation xliii
 World Wide Web xliii
 Documentation CD-ROM xliii
 Ordering Documentation xliii
 Documentation Feedback xliii
 Obtaining Technical Assistance xliii
 Cisco.com xlv
 Technical Assistance Center xlv
 Contacting TAC by Using the Cisco TAC Website xlv
 Contacting TAC by Telephone xlv

Using Cisco IOS Software xlvii
 Understanding Command Modes xlvii
 Getting Help xlviii
 Example: How to Find Command Options xlix
 Using the no and default Forms of Commands li
 Saving Configuration Changes lii
 Filtering Output from the show and more Commands lii
 Identifying Supported Platforms liii
 Using Feature Navigator liii
 Using Software Release Notes liii
DIAL INTERFACES, CONTROLLERS, AND LINES

Overview of Dial Interfaces, Controllers, and Lines
- Cisco IOS Dial Components
- Logical Constructs
 - Asynchronous Interfaces
 - Group Asynchronous Interfaces
 - Virtual Template Interfaces
 - Templates for Virtual Access Interfaces
 - Templates for Protocol Translation
- Logical Interfaces
- Dialer Interfaces
- Virtual Access Interfaces
- Virtual Asynchronous Interfaces
- Circuit-Switched Digital Calls
- T1 and E1 Controllers
- Non-ISDN Channelized T1 and Channelized E1 Lines
- ISDN Service
 - ISDN BRI
 - ISDN PRI
- Line Types
 - Relationship Between Lines and Interfaces
 - Asynchronous Interfaces and Physical Terminal Lines
 - Synchronous Interfaces and Virtual Terminal Lines
- Encapsulation Types

Configuring Asynchronous Lines and Interfaces
- How to Configure Asynchronous Interfaces and Lines
- Configuring a Typical Asynchronous Interface
- Monitoring and Maintaining Asynchronous Connections
- Creating a Group Asynchronous Interface
- Verifying the Group Interface Configuration
- Configuring Asynchronous Rotary Line Queueing
- Verifying Asynchronous Rotary Line Queueing
- Troubleshooting Asynchronous Rotary Lines
- Monitoring and Maintaining Asynchronous Rotary Line Queues
- Configuring Autoselect
- Verifying Autoselect PPP
- Verifying Autoselect ARA
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to Configure Other Asynchronous Line and Interface Features</td>
<td></td>
</tr>
<tr>
<td>Configuring the Auxiliary (AUX) Port</td>
<td>29</td>
</tr>
<tr>
<td>Establishing and Controlling the EXEC Process</td>
<td>30</td>
</tr>
<tr>
<td>Enabling Routing on Asynchronous Interfaces</td>
<td>31</td>
</tr>
<tr>
<td>Configuring Dedicated or Interactive PPP and SLIP Sessions</td>
<td>31</td>
</tr>
<tr>
<td>Conserving Network Addresses</td>
<td>32</td>
</tr>
<tr>
<td>Using Advanced Addressing Methods for Remote Devices</td>
<td>33</td>
</tr>
<tr>
<td>Assigning a Default Asynchronous Address</td>
<td>33</td>
</tr>
<tr>
<td>Allowing an Asynchronous Address to Be Assigned Dynamically</td>
<td>33</td>
</tr>
<tr>
<td>Optimizing Available Bandwidth</td>
<td>34</td>
</tr>
<tr>
<td>Configuring Header Compression</td>
<td>34</td>
</tr>
<tr>
<td>Forcing Header Compression at the EXEC Level</td>
<td>35</td>
</tr>
<tr>
<td>Configuration Examples for Asynchronous Interfaces and Lines</td>
<td>35</td>
</tr>
<tr>
<td>Interface and Line Configuration Examples</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Interface Backup DDR Configuration Example</td>
<td>36</td>
</tr>
<tr>
<td>Passive Header Compression and Default Address Example</td>
<td>36</td>
</tr>
<tr>
<td>High-Density Dial-In Solution Using Autoselect and EXEC Control Example</td>
<td>36</td>
</tr>
<tr>
<td>Asynchronous Line Backup DDR Configuration Example</td>
<td>37</td>
</tr>
<tr>
<td>Line AUX Configuration Example</td>
<td>37</td>
</tr>
<tr>
<td>Rotary Group Examples</td>
<td>37</td>
</tr>
<tr>
<td>Dedicated Asynchronous Interface Configuration Example</td>
<td>38</td>
</tr>
<tr>
<td>Access Restriction on the Asynchronous Interface Example</td>
<td>38</td>
</tr>
<tr>
<td>Group and Member Asynchronous Interface Examples</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Group Interface Examples</td>
<td>38</td>
</tr>
<tr>
<td>Modem Asynchronous Group Example</td>
<td>39</td>
</tr>
<tr>
<td>High-Density Dial-In Solution Using an Asynchronous Group</td>
<td>40</td>
</tr>
<tr>
<td>Asynchronous Interface Address Pool Examples</td>
<td></td>
</tr>
<tr>
<td>DHCP Pooling Example</td>
<td>40</td>
</tr>
<tr>
<td>Local Pooling Example</td>
<td>40</td>
</tr>
<tr>
<td>Configuring Specific IP Addresses for an Interface</td>
<td>41</td>
</tr>
<tr>
<td>IP and SLIP Using an Asynchronous Interface Example</td>
<td>41</td>
</tr>
<tr>
<td>IP and PPP Asynchronous Interface Configuration Example</td>
<td>41</td>
</tr>
<tr>
<td>Asynchronous Routing and Dynamic Addressing Configuration Example</td>
<td>42</td>
</tr>
<tr>
<td>TCP Header Compression Configuration Example</td>
<td>42</td>
</tr>
<tr>
<td>Network Address Conservation Using the ip unnumbered Command Example</td>
<td>42</td>
</tr>
<tr>
<td>Asynchronous Interface As the Only Network Interface Example</td>
<td>43</td>
</tr>
<tr>
<td>Routing on a Dedicated Dial-In Router Example</td>
<td>43</td>
</tr>
<tr>
<td>IGRP Configuration Example</td>
<td>44</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Modem Performance Summary Example</td>
<td>DC-111</td>
</tr>
<tr>
<td>Modem AT-Mode Example</td>
<td>DC-111</td>
</tr>
<tr>
<td>Connection Speed Performance Verification Example</td>
<td>DC-111</td>
</tr>
<tr>
<td>Configuring and Managing Cisco Access Servers and Dial Shelves</td>
<td>DC-115</td>
</tr>
<tr>
<td>Cisco AS5800 Dial Shelf Architecture and DSIP Overview</td>
<td>DC-115</td>
</tr>
<tr>
<td>Split Dial Shelves Feature</td>
<td>DC-116</td>
</tr>
<tr>
<td>How to Configure Dial Shelves</td>
<td>DC-116</td>
</tr>
<tr>
<td>Configuring the Shelf ID</td>
<td>DC-117</td>
</tr>
<tr>
<td>Configuring Redundant DSC Cards</td>
<td>DC-118</td>
</tr>
<tr>
<td>Synchronizing to the System Clocks</td>
<td>DC-119</td>
</tr>
<tr>
<td>Verifying External Clock Configuration</td>
<td>DC-120</td>
</tr>
<tr>
<td>Configuring Dial Shelf Split Mode</td>
<td>DC-120</td>
</tr>
<tr>
<td>Changing Slot Sets</td>
<td>DC-122</td>
</tr>
<tr>
<td>Leaving Split Mode</td>
<td>DC-123</td>
</tr>
<tr>
<td>Troubleshooting Split Dial Shelves</td>
<td>DC-123</td>
</tr>
<tr>
<td>Managing a Split Dial Shelf</td>
<td>DC-123</td>
</tr>
<tr>
<td>Executing Commands Remotely</td>
<td>DC-124</td>
</tr>
<tr>
<td>Verifying DSC Configuration</td>
<td>DC-125</td>
</tr>
<tr>
<td>Monitoring and Maintaining the DSCs</td>
<td>DC-125</td>
</tr>
<tr>
<td>Troubleshooting DSIP</td>
<td>DC-125</td>
</tr>
<tr>
<td>Port Management Services on Cisco Access Servers</td>
<td>DC-126</td>
</tr>
<tr>
<td>Upgrading and Configuring SPE Firmware</td>
<td>DC-128</td>
</tr>
<tr>
<td>Downloading SPE Firmware from the Cisco.com FTP Server to a Local TFTP Server</td>
<td>DC-129</td>
</tr>
<tr>
<td>Copying the SPE Firmware File from the Local TFTP Server to the SPEs</td>
<td>DC-131</td>
</tr>
<tr>
<td>Specifying a Country Name</td>
<td>DC-132</td>
</tr>
<tr>
<td>Configuring Dial Split Shelves (AS5800 Only)</td>
<td>DC-132</td>
</tr>
<tr>
<td>Configuring SPEs to Use an Upgraded Firmware File</td>
<td>DC-133</td>
</tr>
<tr>
<td>Disabling SPEs</td>
<td>DC-134</td>
</tr>
<tr>
<td>Rebooting SPEs</td>
<td>DC-135</td>
</tr>
<tr>
<td>Configuring Lines</td>
<td>DC-136</td>
</tr>
<tr>
<td>Configuring Ports</td>
<td>DC-137</td>
</tr>
<tr>
<td>Verifying SPE Line and Port Configuration</td>
<td>DC-138</td>
</tr>
<tr>
<td>Configuring SPE Performance Statistics</td>
<td>DC-138</td>
</tr>
<tr>
<td>Clearing Log Events</td>
<td>DC-139</td>
</tr>
<tr>
<td>Troubleshooting SPEs</td>
<td>DC-139</td>
</tr>
<tr>
<td>Monitoring SPE Performance Statistics</td>
<td>DC-141</td>
</tr>
<tr>
<td>SPE Events and Firmware Statistics</td>
<td>DC-141</td>
</tr>
<tr>
<td>Port Statistics</td>
<td>DC-141</td>
</tr>
<tr>
<td>Digital SPE Statistics</td>
<td>DC-142</td>
</tr>
</tbody>
</table>
Contents

SPE Modem Statistics DC-143

Configuring and Managing External Modems DC-145
 External Modems on Low-End Access Servers DC-145
 Automatically Configuring an External Modem DC-146
 Manually Configuring an External Modem DC-148
 Supporting Dial-In Modems DC-149
 Testing the Modem Connection DC-151
 Managing Telnet Sessions DC-152
 Modem Troubleshooting Tips DC-154
 Checking Other Modem Settings DC-155

Modem Signal and Line States DC-157
 Signal and Line State Diagrams DC-157
 Configuring Automatic Dialing DC-159
 Automatically Answering a Modem DC-159
 Supporting Dial-In and Dial-Out Connections DC-160
 Configuring a Line Timeout Interval DC-161
 Closing Modem Connections DC-162
 Configuring a Line to Disconnect Automatically DC-163
 Supporting Reverse Modem Connections and Preventing Incoming Calls DC-163

Creating and Using Modem Chat Scripts DC-165
 Chat Script Overview DC-165
 How To Configure Chat Scripts DC-166
 Understanding Chat Script Naming Conventions DC-166
 Creating a Chat Script DC-166
 Chat String Escape Key Sequences DC-167
 Adding a Return Key Sequence DC-167
 Chat String Special-Case Script Modifiers DC-168
 Configuring the Line to Activate Chat Scripts DC-168
 Manually Testing a Chat Script on an Asynchronous Line DC-169
 Using Chat Scripts DC-169
 Generic Chat Script Example DC-169
 Traffic-Handling Chat Script Example DC-169
 Modem-Specific Chat Script Examples DC-170
 Dialer Mapping Example DC-170
 System Login Scripts and Modem Script Examples DC-171
ISDN CONFIGURATION

Configuring ISDN BRI DC-175

ISDN Overview DC-175
Requesting BRI Line and Switch Configuration from a Telco Service Provider DC-176
Interface Configuration DC-178
Dynamic Multiple Encapsulations DC-178
Interface Configuration Options DC-178
ISDN Cause Codes DC-179

How to Configure ISDN BRI DC-180
Configuring the ISDN BRI Switch DC-180
Configuring the Switch Type DC-180
Checking and Setting the Buffers DC-181
Multiple ISDN Switch Types Feature DC-182
Specifying Interface Characteristics for an ISDN BRI DC-182
Specifying the Interface and Its IP Address DC-183
Specifying ISDN SPIDs DC-183
Configuring Encapsulation on ISDN BRI DC-183
Configuring Network Addressing DC-185
Configuring TEI Negotiation Timing DC-186
Configuring CLI Screening DC-186
Configuring Called Party Number Verification DC-186
Configuring ISDN Calling Number Identification DC-187
Configuring the Line Speed for Calls Not ISDN End to End DC-187
Configuring a Fast Rollover Delay DC-188
Overriding ISDN Application Default Cause Codes DC-188
Configuring Inclusion of the Sending Complete Information Element DC-189
Configuring DNIS-plus-ISDN-Subaddress Binding DC-189
Screening Incoming V.110 Modem Calls DC-189
Disabling V.110 Padding DC-190
Configuring ISDN Semipermanent Connections DC-190
Configuring ISDN BRI for Leased-Line Service DC-190
Configuring Leased-Line Service at Normal Speeds DC-191
Configuring Leased-Line Service at 128 Kbps DC-191

Monitoring and Maintaining ISDN Interfaces DC-192
Troubleshooting ISDN Interfaces DC-192
Configuration Examples for ISDN BRI DC-193
Global ISDN and BRI Interface Switch Type Example DC-193
BRI Connected to a PBX Example DC-193
Multilink PPP on a BRI Interface Example DC-193
Dialer rotary Groups Example DC-194
Compression Examples DC-194
Multilink PPP and Compression Example DC-195
Voice over ISDN Examples DC-195
DNIS-plus-ISDN-Subaddress Binding Example DC-196
Screening incoming V.110 modem calls Example DC-196
ISDN BRI leased-line configuration Example DC-196

Configuring Virtual Asynchronous Traffic over ISDN DC-197
 Recommendation V.120 overview DC-198
 How to configure V.120 access DC-198
 Configuring answering of all incoming calls as V.120 DC-198
 Configuring automatic detection of encapsulation type DC-199
 Enabling V.120 support for asynchronous access over ISDN DC-199
 Configuration example for V.120 DC-200
 ISDN LAPB-TA overview DC-200
 How to configure ISDN LAPB-TA DC-201
 Verifying ISDN LAPB-TA DC-202
 Configuration example for ISDN LAPB-TA DC-203

Configuring Modem Use over ISDN BRI DC-205
 Modem over ISDN BRI overview DC-206
 How to configure modem over ISDN BRI DC-207
 Verifying ISDN BRI interface configuration DC-210
 Configuration examples for modem over ISDN BRI DC-212
 BRI interface configuration example DC-212
 Complete configuration examples DC-215

Configuring X.25 on ISDN DC-227
 X.25 on ISDN overview DC-227
 X.25-over-D-Channel logical interface DC-227
 Outbound circuit-switched X.25 support over a dialer interface DC-228
 How to configure X.25 on ISDN DC-228
 Configuring X.25 on the ISDN D channel DC-229
 Configuration examples for X.25 on ISDN DC-229
 X.25 on ISDN D-channel configuration example DC-229
 Outbound circuit-switched X.25 example DC-230
Configuring X.25 on ISDN Using AO/DI DC-235

AO/DI Overview DC-235
PPP over X.25 Encapsulation DC-237
Multilink PPP Bundle DC-238
MLP Encapsulation Enhancements DC-238
BACP/BAP DC-239

How to Configure an AO/DI Interface DC-239
Configuring PPP and BAP on the Client DC-239
Configuring X.25 Parameters on the Client DC-240
Configuring PPP and BAP on the Server DC-240
Configuring X.25 Parameters on the Server DC-241

How to Configure an AO/DI Client/Server DC-241
Configuring the AO/DI Client DC-242
 Enabling AO/DI on the Interface DC-242
 Enabling the AO/DI Interface to Initiate Client Calls DC-242
 Enabling the MLP Bundle to Add Multiple Links DC-242
 Modifying BACP Default Settings DC-243
Configuring the AO/DI Server DC-243
 Enabling the Interface to Receive AO/DI Client Calls DC-243
 Enabling the MLP Bundle to Add Multiple Links DC-244
 Modifying BACP Default Settings DC-244

Configuration Examples for AO/DI DC-245
AO/DI Client Configuration Example DC-245
AO/DI Server Configuration Example DC-246

Configuring ISDN on Cisco 800 Series Routers DC-247

CAPI and RCAPI Overview DC-248
Framing Protocols DC-248
Data Link and Network Layer Protocols DC-248
CAPI Features DC-248
Supported B-Channel Protocols DC-249
Supported Switch Types DC-250
 CAPI and RVS-COM DC-250
 Supported Applications DC-251
 Helpful Website DC-251

How to Configure RCAPI DC-251
Configuring RCAPI on the Cisco 800 Series Router DC-251
Monitoring and Maintaining RCAPI DC-252
Troubleshooting RCAPI DC-252
Configuration Examples for RC-API \(\text{DC-252} \)

SIGNALING CONFIGURATION

Configuring ISDN PRI \(\text{DC-257} \)

Signaling Overview \(\text{DC-258} \)
- In-Band and Out-of-Band Signaling \(\text{DC-258} \)
- Channelized E1 and T1 on Cisco Devices \(\text{DC-258} \)

How to Configure ISDN PRI \(\text{DC-259} \)
- Requesting PRI Line and Switch Configuration from a Telco Service Provider \(\text{DC-259} \)
- Configuring Channelized E1 ISDN PRI \(\text{DC-260} \)
- Configuring Channelized T1 ISDN PRI \(\text{DC-261} \)
- Configuring the Serial Interface \(\text{DC-262} \)
 - Specifying an IP Address for the Interface \(\text{DC-263} \)
 - Configuring Encapsulation on ISDN PRI \(\text{DC-263} \)
 - Configuring Network Addressing \(\text{DC-265} \)
 - Configuring ISDN Calling Number Identification \(\text{DC-266} \)
 - Overriding the Default TEI Value \(\text{DC-266} \)
 - Configuring a Static TEI \(\text{DC-266} \)
 - Configuring Incoming ISDN Modem Calls \(\text{DC-266} \)
 - Filtering Incoming ISDN Calls \(\text{DC-267} \)
 - Configuring the ISDN Guard Timer \(\text{DC-268} \)
 - Configuring Inclusion of the Sending Complete Information Element \(\text{DC-268} \)
 - Configuring ISDN PRI B-Channel Busyout \(\text{DC-269} \)
 - Configuring NSF Call-by-Call Support \(\text{DC-269} \)
 - Configuring Multiple ISDN Switch Types \(\text{DC-270} \)
 - Configuring B Channel Outgoing Call Order \(\text{DC-272} \)
 - Performing Configuration Self-Tests \(\text{DC-272} \)
- Monitoring and Maintaining ISDN PRI Interfaces \(\text{DC-273} \)

How to Configure Robbed-Bit Signaling for Analog Calls over T1 Lines \(\text{DC-273} \)

How to Configure CAS \(\text{DC-275} \)
- CAS on Channelized E1 \(\text{DC-275} \)
 - Configuring CAS for Analog Calls over E1 Lines \(\text{DC-276} \)
 - Configuring CAS on a Cisco Router Connected to a PBX or PSTN \(\text{DC-276} \)
- CAS on T1 Voice Channels \(\text{DC-277} \)
 - Configuring ANI/DNIS Delimiters for CAS Calls on CT1 \(\text{DC-277} \)

How to Configure Switched 56K Digital Dial-In over Channelized T1 and Robbed-Bit Signaling \(\text{DC-278} \)

Switched 56K Scenarios \(\text{DC-279} \)
- Switched 56K and Analog Modem Calls into T1 CAS \(\text{DC-279} \)
ISDN CAS Examples DC-307
 Allocating All Channels for CAS Example DC-307
 Mixing and Matching Channels—CAS and Channel Grouping Example DC-308
E1 R2 Signaling Procedure DC-308
R1 Modified Signaling Using an E1 Interface Example DC-311
R1 Modified Signaling for Taiwan Configuration Example DC-312

Configuring ISDN Special Signaling DC-313
 How to Configure ISDN Special Signaling DC-313
 Configuring ISDN AOC DC-314
 Configuring Short-Hold Mode DC-314
 Monitoring ISDN AOC Call Information DC-315
 Configuring NFAS on PRI Groups DC-315
 ISDN NFAS Prerequisites DC-316
 ISDN NFAS Configuration Task List DC-316
 Configuring NFAS on PRI Groups DC-316
 Configuring NTT PRI NFAS DC-317
 Disabling a Channel or Interface DC-318
 When the T1 Controller Is Shut Down DC-319
 Monitoring NFAS Groups DC-319
 Monitoring ISDN Service DC-319
 Enabling an ISDN PRI to Take PIAFS Calls on MICA Modems DC-319
 Verifying PIAFS DC-320
 Configuring Automatic Detection of Encapsulation Type DC-320
 Configuring Encapsulation for Combinet Compatibility DC-321

Troubleshooting ISDN Special Signaling DC-322

Configuration Examples for ISDN Special Signaling DC-322
 ISDN AOC Configuration Examples DC-322
 Using Legacy DDR for ISDN PRI AOC Configuration DC-322
 Using Dialer Profiles for ISDN BRI AOC Configuration DC-323
 ISDN NFAS Configuration Examples DC-324
 NFAS Primary and Backup D Channels DC-324
 PRI Interface Service State DC-325
 NTT PRI NFAS Primary D Channel Example DC-325

Configuring Network Side ISDN PRI Signaling, Trunking, and Switching DC-327
 Network Side ISDN PRI Signaling Overview DC-327
 Call Switching Using Dial Peers DC-328
 Trunk Group Resource Manager DC-328
 Class of Restrictions DC-329
ISDN Disconnect Timers DC-329
How to Configure Network Side ISDN PRI DC-329
Configuring ISDN Network Side DC-330
 Configuring ISDN Network Side for the National ISDN Switch Type DC-331
 Configuring ISDN Network Side for ETSI Net5 PRI DC-331
Configuring Global or Interface Trunk Groups DC-332
Configuring Classes of Restrictions DC-333
Configuring ISDN T306 and T310 Timers DC-334
Verifying Network Side ISDN PRI Signaling, Trunking, and Switching DC-334
Monitoring Network Side ISDN PRI DC-337
Monitoring TGRM DC-338
Configuration Examples for Network Side ISDN PRI Signaling, Trunking, and Switching DC-338
 Call Switching and Dial Peers Configuration on T1/T3 Example DC-338
 Trunk Group Configuration Example DC-339
 COR for Dial Peer Configuration Example DC-339
 COR Based on Outgoing Dial Peers Example DC-340
 Dial Peers and Trunk Groups for Special Numbers Examples DC-341
 ISDN Network Side for ETSI Net5 PRI Configuration on E1 Example DC-342
 T306/T310 Timer Configuration Example DC-342

DIAL-ON-DEMAND ROUTING CONFIGURATION

Preparing to Configure DDR DC-345
 DDR Decision Flowchart DC-345
 DDR Topology Decisions DC-347
 DDR-Independent Implementation Decisions DC-347
 DDR-Dependent Implementation Decisions DC-348
 Dialer Profiles DC-348
 Legacy DDR DC-349
 Simple or Complex DDR Configuration DC-349
 Global and Interface Preparations for DDR DC-349
 Preparations Depending on the Selected Interface Type DC-350
 Preparations for Routing or Bridging over DDR DC-350
 Preparing for Transparent Bridging over DDR DC-350
 Defining the Protocols to Bridge DC-350
 Specifying the Bridging Protocol DC-351
 Controlling Bridging Access DC-351
 Preparing for Routing over DDR DC-351
 Configuring the Protocol for Routing and Access Control DC-352
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associating the Protocol Access List with a Dialer Group</td>
<td>DC-356</td>
</tr>
<tr>
<td>Configuration Examples for Legacy DDR</td>
<td>DC-356</td>
</tr>
<tr>
<td>Point-to-Point DDR Without Authentication Examples</td>
<td>DC-356</td>
</tr>
<tr>
<td>Point-to-Point DDR with Authentication Examples</td>
<td>DC-358</td>
</tr>
<tr>
<td>Configuring Legacy DDR Spokes</td>
<td>DC-361</td>
</tr>
<tr>
<td>DDR Spokes Configuration Task Flow</td>
<td>DC-361</td>
</tr>
<tr>
<td>How to Configure DDR</td>
<td>DC-362</td>
</tr>
<tr>
<td>Specifying the Interface</td>
<td>DC-363</td>
</tr>
<tr>
<td>Enabling DDR on the Interface</td>
<td>DC-364</td>
</tr>
<tr>
<td>Configuring the Interface to Place Calls</td>
<td>DC-365</td>
</tr>
<tr>
<td>Specifying the Dial String for Synchronous Serial Interfaces</td>
<td>DC-365</td>
</tr>
<tr>
<td>Specifying Chat Scripts and Dial Strings for Asynchronous Serial Interfaces</td>
<td>DC-365</td>
</tr>
<tr>
<td>Configuring the Interface to Receive Calls</td>
<td>DC-365</td>
</tr>
<tr>
<td>Configuring the Interface to Place and Receive Calls</td>
<td>DC-366</td>
</tr>
<tr>
<td>Defining the Traffic to Be Authenticated</td>
<td>DC-366</td>
</tr>
<tr>
<td>Configuring Access Control for Outgoing Calls</td>
<td>DC-367</td>
</tr>
<tr>
<td>Configuring Access Control for Bridging</td>
<td>DC-367</td>
</tr>
<tr>
<td>Controlling Bridging Access by Ethernet Type Codes</td>
<td>DC-368</td>
</tr>
<tr>
<td>Permitting All Bridge Packets to Trigger Calls</td>
<td>DC-368</td>
</tr>
<tr>
<td>Assigning the Interface to a Bridge Group</td>
<td>DC-368</td>
</tr>
<tr>
<td>Configuring Access Control for Routing</td>
<td>DC-368</td>
</tr>
<tr>
<td>Customizing the Interface Settings</td>
<td>DC-369</td>
</tr>
<tr>
<td>Configuring Timers on the DDR Interface</td>
<td>DC-369</td>
</tr>
<tr>
<td>Setting Dialer Interface Priority</td>
<td>DC-370</td>
</tr>
<tr>
<td>Configuring a Dialer Hold Queue</td>
<td>DC-371</td>
</tr>
<tr>
<td>Configuring Bandwidth on Demand</td>
<td>DC-371</td>
</tr>
<tr>
<td>Disabling and Reenabling DDR Fast Switching</td>
<td>DC-372</td>
</tr>
<tr>
<td>Configuring Dialer Redial Options</td>
<td>DC-372</td>
</tr>
<tr>
<td>Sending Traffic over Frame Relay, X.25, or LAPB Networks</td>
<td>DC-372</td>
</tr>
<tr>
<td>Configuring the Interface for Sending Traffic over a Frame Relay Network</td>
<td>DC-373</td>
</tr>
<tr>
<td>Configuring the Interface for Sending Traffic over an X.25 Network</td>
<td>DC-374</td>
</tr>
<tr>
<td>Configuring the Interface for Sending Traffic over a LAPB Network</td>
<td>DC-375</td>
</tr>
<tr>
<td>Monitoring DDR Connections</td>
<td>DC-375</td>
</tr>
<tr>
<td>Configuration Examples for Legacy DDR Spoke</td>
<td>DC-376</td>
</tr>
<tr>
<td>Legacy Dial-on-Demand Routing Example</td>
<td>DC-376</td>
</tr>
<tr>
<td>Transparent Bridging over DDR Examples</td>
<td>DC-377</td>
</tr>
<tr>
<td>DDR Configuration in an IP Environment Example</td>
<td>DC-378</td>
</tr>
<tr>
<td>Two-Way DDR for Novell IPX Example</td>
<td>DC-378</td>
</tr>
<tr>
<td>Remote Configuration Example</td>
<td>DC-378</td>
</tr>
</tbody>
</table>
Cisco IOS Dial Technologies Configuration Guide

Local Configuration Example DC-379
AppleTalk Configuration Example DC-380
DECnet Configuration Example DC-380
ISO CLNS Configuration Example DC-381
XNS Configuration Example DC-381
Single Site Dialing Example DC-381
DTR Dialing Example DC-382
Hub-and-Spoke DDR for Asynchronous Interfaces and Authentication Example DC-383
Spoke Topology Configuration DC-383
Hub Router Configuration DC-384
Two-Way Reciprocal Client/Server DDR Without Authentication Example DC-385
Remote Configuration DC-385
Local Configuration DC-385
Frame Relay Support Example DC-386
Frame Relay Access with In-Band Dialing (V.25bis) and Static Mapping Example DC-386
Frame Relay Access with ISDN Dialing and DDR Dynamic Maps Example DC-387
X.25 Support Example DC-387
LAPB Support Example DC-388

Configuring Legacy DDR Hubs DC-389

DDR Issues DC-389
DDR Hubs Configuration Task Flow DC-390
How to Configure DDR DC-391
Specifying the Interface DC-391
Enabling DDR on the Interface DC-392
Configuring the Interface to Place Calls Only DC-392
Defining the Dialing Destination DC-393
Specifying a Physical Interface to Use and Assigning It to a Dialer Rotary Group DC-393
Configuring the Interface to Receive Calls Only DC-394
Configuring the Interface for TACACS+ DC-395
Configuring the Interface for PPP Authentication DC-395
Specifying Physical Interfaces and Assigning Them to the Dialer Rotary Group DC-396
Configuring the Interface to Place and Receive Calls DC-396
Defining One or More Dialing Destinations DC-397
Defining the Traffic to Be Authenticated DC-398
Configuring Access Control for Outgoing Calls DC-398
Configuring Access Control for Bridging DC-398
Configuring Access Control for Routing DC-399
Customizing the Interface Settings DC-399
Configuring Timers on the DDR Interface DC-399
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting Dialer Interface Priority</td>
<td>DC-401</td>
</tr>
<tr>
<td>Configuring a Dialer Hold Queue</td>
<td>DC-401</td>
</tr>
<tr>
<td>Configuring Bandwidth on Demand</td>
<td>DC-401</td>
</tr>
<tr>
<td>Disabling and Reenabling DDR Fast Switching</td>
<td>DC-402</td>
</tr>
<tr>
<td>Configuring Dialer Redial Options</td>
<td>DC-402</td>
</tr>
<tr>
<td>Sending Traffic over Frame Relay, X.25, or LAPB Networks</td>
<td>DC-403</td>
</tr>
<tr>
<td>Configuring the Interface for Sending Traffic over a Frame Relay Network</td>
<td>DC-403</td>
</tr>
<tr>
<td>Configuring the Interface for Sending Traffic over an X.25 Network</td>
<td>DC-405</td>
</tr>
<tr>
<td>Configuring the Interface for Sending Traffic over a LAPB Network</td>
<td>DC-405</td>
</tr>
<tr>
<td>Monitoring DDR Connections</td>
<td>DC-406</td>
</tr>
<tr>
<td>Configuration Examples for Legacy DDR Hub</td>
<td>DC-406</td>
</tr>
<tr>
<td>Transparent Bridging over DDR Examples</td>
<td>DC-407</td>
</tr>
<tr>
<td>DDR Configuration in an IP Environment Example</td>
<td>DC-408</td>
</tr>
<tr>
<td>AppleTalk Configuration Example</td>
<td>DC-408</td>
</tr>
<tr>
<td>Banyan VINES Configuration Example</td>
<td>DC-409</td>
</tr>
<tr>
<td>DECnet Configuration Example</td>
<td>DC-409</td>
</tr>
<tr>
<td>ISO CLNS Configuration Example</td>
<td>DC-410</td>
</tr>
<tr>
<td>XNS Configuration Example</td>
<td>DC-410</td>
</tr>
<tr>
<td>Hub-and-Spoke DDR for Asynchronous Interfaces and Authentication Example</td>
<td>DC-410</td>
</tr>
<tr>
<td>Spoke Topology Configuration</td>
<td>DC-411</td>
</tr>
<tr>
<td>Hub Router Configuration</td>
<td>DC-411</td>
</tr>
<tr>
<td>Single Site or Multiple Sites Dialing Configuration Example</td>
<td>DC-413</td>
</tr>
<tr>
<td>Multiple Destinations Configuration Example</td>
<td>DC-413</td>
</tr>
<tr>
<td>Dialer Interfaces and Dialer Rotary Groups Example</td>
<td>DC-414</td>
</tr>
<tr>
<td>DDR Configuration Using Dialer Interface and PPP Encapsulation Example</td>
<td>DC-414</td>
</tr>
<tr>
<td>Two-Way DDR with Authentication Example</td>
<td>DC-415</td>
</tr>
<tr>
<td>Remote Configuration</td>
<td>DC-416</td>
</tr>
<tr>
<td>Local Configuration</td>
<td>DC-416</td>
</tr>
<tr>
<td>Frame Relay Support Examples</td>
<td>DC-417</td>
</tr>
<tr>
<td>Frame Relay Access with In-Band Dialing and Static Mapping</td>
<td>DC-417</td>
</tr>
<tr>
<td>Frame Relay Access with ISDN Dialing and DDR Dynamic Maps</td>
<td>DC-417</td>
</tr>
<tr>
<td>Frame Relay Access with ISDN Dialing and Subinterfaces</td>
<td>DC-418</td>
</tr>
<tr>
<td>X.25 Support Configuration Example</td>
<td>DC-419</td>
</tr>
<tr>
<td>LAPB Support Configuration Example</td>
<td>DC-419</td>
</tr>
<tr>
<td>Configuring Peer-to-Peer DDR with Dialer Profiles</td>
<td>DC-421</td>
</tr>
<tr>
<td>Dialer Profiles Overview</td>
<td>DC-421</td>
</tr>
<tr>
<td>New Dialer Profile Model</td>
<td>DC-422</td>
</tr>
<tr>
<td>Dialer Interface</td>
<td>DC-423</td>
</tr>
<tr>
<td>Dialer Map Class</td>
<td>DC-423</td>
</tr>
</tbody>
</table>
Dialer Pool DC-423

How to Configure Dialer Profiles DC-425
 Configuring a Dialer Profile DC-425
 Configuring a Dialer Interface DC-425
 Fancy Queueing and Traffic Shaping on Dialer Profile Interfaces DC-426
 Configuring a Map Class DC-426
 Configuring the Physical Interfaces DC-427
 Configuring Dialer Profiles for Routed Protocols DC-427
 Configuring Dialer Profiles for AppleTalk DC-428
 Configuring Dialer Profiles for Banyan VINES DC-428
 Configuring Dialer Profiles for DECnet DC-428
 Configuring Dialer Profiles for IP DC-429
 Configuring Dialer Profiles for Novell IPX DC-429
 Configuring XNS over DDR DC-430
 Configuring Dialer Profiles for Transparent Bridging DC-430
 Defining the Protocols to Bridge DC-431
 Specifying the Bridging Protocol DC-431
 Controlling Access for Bridging DC-431
 Configuring an Interface for Bridging DC-432

 Monitoring and Maintaining Dialer Profile Connections DC-433

Configuration Examples Dialer Profiles DC-433
 Dialer Profile with Inbound Traffic Filter Example DC-434
 Dialer Profile for Central Site with Multiple Remote Sites Example DC-434
 Dialer Profile for ISDN BRI Backing Up Two Leased Lines Example DC-435
 Dynamic Multiple Encapsulations over ISDN Example DC-436
 Verifying the Dynamic Multiple Encapsulations Feature DC-438

Configuring Snapshot Routing DC-441
 Snapshot Routing Overview DC-441
 How to Configure Snapshot Routing DC-442
 Configuring the Client Router DC-443
 Configuring the Server Router DC-444
 Monitoring and Maintaining DDR Connections and Snapshot Routing DC-444
 Configuration Examples for Snapshot Routing DC-444

DIAL-BACKUP CONFIGURATION

Configuring Dial Backup for Serial Lines DC-449
 Backup Serial Interface Overview DC-449
How to Configure Dial Backup DC-450
 Specifying the Backup Interface DC-451
 Defining the Traffic Load Threshold DC-451
 Defining Backup Line Delays DC-452

Configuration Examples for Dial Backup for Serial Interfaces DC-452
 Dial Backup Using an Asynchronous Interface Example DC-452
 Dial Backup Using DDR and ISDN Example DC-453
 Dial Backup Service When the Primary Line Reaches Threshold Example DC-453
 Dial Backup Service When the Primary Line Exceeds Threshold Example DC-453
 Dial Backup Service When the Primary Line Goes Down Example DC-454

Configuring Dial Backup with Dialer Profiles DC-455
 Dial Backup with Dialer Profiles Overview DC-455
 How to Configure Dial Backup with Dialer Profiles DC-455
 Configuring a Dialer Interface DC-456
 Configuring a Physical Interface to Function As Backup DC-456
 Configuring Interfaces to Use a Backup Interface DC-456
 Configuration Example of Dialer Profile for ISDN BRI Backing Up Two Leased Lines DC-457

Configuring Dial Backup Using Dialer Watch DC-459
 Dialer Watch Overview DC-459
 How to Configure Dial Backup Using Dialer Watch DC-460
 Determining the Primary and Secondary Interfaces DC-461
 Determining the Interface Addresses and Networks to Watch DC-461
 Configuring the Interface to Perform DDR Backup DC-461
 Creating a Dialer List DC-461
 Setting the Disable Timer on the Backup Interface DC-461
 Configuration Examples for Dialer Watch DC-462
 Dialer Watch Configuration Example Prior to Cisco IOS Release 12.3(11)T DC-463
 Dialer Watch Configuration Example After Cisco IOS Release 12.3(11)T DC-467

DIAL-RELATED ADDRESSING SERVICES

Configuring Cisco Easy IP DC-473
 Cisco Easy IP Overview DC-473
 How to Configure Cisco Easy IP DC-476
 Defining the NAT Pool DC-477
 Configuring the LAN Interface DC-477
 Defining NAT for the LAN Interface DC-477
 Configuring the WAN Interface DC-477
Enabling PPP/IPCP Negotiation DC-478
Defining NAT for the Dialer Interface DC-478
Configuring the Dialer Interface DC-478
Timeout Considerations DC-479
Configuration Examples for Cisco Easy IP DC-479

VIRTUAL TEMPLATES, PROFILES, AND NETWORKS

Configuring Virtual Template Interfaces DC-483
Virtual Template Interface Service Overview DC-484
Features that Apply Virtual Template Interfaces DC-485
Selective Virtual Access Interface Creation DC-485
How to Configure a Virtual Template Interface DC-486
Monitoring and Maintaining a Virtual Access Interface DC-486
Configuration Examples for Virtual Template Interface DC-486
Basic PPP Virtual Template Interface DC-487
Virtual Template Interface DC-487
Selective Virtual Access Interface DC-487
RADIUS Per-User and Virtual Profiles DC-488
TACACS+ Per-User and Virtual Profiles DC-488

Configuring Virtual Profiles DC-489
Virtual Profiles Overview DC-489
DDR Configuration of Physical Interfaces DC-490
Multilink PPP Effect on Virtual Access Interface Configuration DC-491
Interoperability with Other Features That Use Virtual Templates DC-491
How Virtual Profiles Work—Four Configuration Cases DC-492
Case 1: Virtual Profiles Configured by Virtual Template DC-493
Case 2: Virtual Profiles Configured by AAA DC-493
Case 3: Virtual Profiles Configured by Virtual Template and AAA Configuration DC-494
Case 4: Virtual Profiles Configured by AAA, and a Virtual Template Defined by Another Application DC-495
How to Configure Virtual Profiles DC-496
Configuring Virtual Profiles by Virtual Template DC-496
Creating and Configuring a Virtual Template Interface DC-496
Specifying a Virtual Template Interface for Virtual Profiles DC-497
Configuring Virtual Profiles by AAA Configuration DC-497
Configuring Virtual Profiles by Both Virtual Template and AAA Configuration DC-497
Creating and Configuring a Virtual Template Interface DC-498
Specifying Virtual Profiles by Both Virtual Templates and AAA DC-498
Troubleshooting Virtual Profile Configurations DC-499
Configuration Examples for Virtual Profiles DC-499
 Virtual Profiles Configured by Virtual Templates DC-499
 Virtual Profiles Configured by AAA Configuration DC-501
 Virtual Profiles Configured by Virtual Templates and AAA Configuration DC-502
 Virtual Profiles Configured by AAA Plus a VPDN Virtual Template on a VPDN Home Gateway DC-504

Configuring Virtual Private Networks DC-507
 VPN Technology Overview DC-507
 VPDN MIB DC-508
 VPN Hardware Terminology DC-508
 VPN Architectures DC-509
 Client-Initiated VPNs DC-509
 NAS-Initiated VPNs DC-509
 PPTP Dial-In with MPPE Encryption DC-509
 PPTP Tunnel Negotiation DC-510
 Flow Control Alarm DC-510
 MPPE Overview DC-510
 MPPE Encryption Types DC-511
 L2F Dial-In DC-511
 Protocol Negotiation Sequence DC-512
 L2F Tunnel Authentication Process DC-514
 L2TP Dial-In DC-515
 Incoming Call Sequence DC-517
 VPN Tunnel Authentication Search Order DC-518
 VPN Tunnel Lookup Based on Domain Name DC-519
 VPN Tunnel Lookup Based on DNIS Information DC-519
 VPN Tunnel Lookup Based on Both Domain Name and DNIS Information DC-519
 NAS AAA Tunnel Definition Lookup DC-519
 L2TP Dial-Out DC-520
 VPN Configuration Modes Overview DC-521
 Prerequisites for VPNs DC-523
 Configuring the LAN Interface DC-524
 Configuring AAA DC-524
 Specifying the IP Address Pool and BOOTP Servers on the Tunnel Server DC-526
 Commissioning the T1 Controllers on the NAS DC-526
 Configuring the Serial Channels for Modem Calls on the NAS DC-527
 Configuring the Modems and Asynchronous Lines on the NAS DC-528
 Configuring the Group-Asynchronous Interface on the NAS DC-528
 Configuring the Dialer on a NAS DC-529
Configuring the Dialer on a Tunnel Server DC-529

How to Configure a VPN DC-530
Enabling a VPN DC-530
Configuring VPN Tunnel Authentication Configuration DC-530
Disabling VPN Tunnel Authentication for L2TP Tunnels DC-531
Configuring VPN Tunnel Authentication Using the Host Name or Local Name DC-532
Configuring VPN Tunnel Authentication Using the L2TP Tunnel Password DC-532
Configuring Client-Initiated Dial-In VPN DC-533
Configuring a Tunnel Server to Accept PPTP Tunnels DC-533
Configuring MPPE on the ISA Card DC-534
Tuning PPTP DC-534
Configuring NAS-Initiated Dial-In VPN DC-534
Configuring a NAS to Request Dial-In DC-534
Configuring a Tunnel Server to Accept Dial-In DC-535
Creating the Virtual Template on the Network Server DC-535
Configuring Dial-Out VPN DC-536
Configuring a Tunnel Server to Request Dial-Out DC-536
Configuring a NAS to Accept Dial-Out DC-537
Configuring Advanced VPN Features DC-537
Configuring Advanced Remote AAA Features DC-537
Configuring Per-User VPN DC-538
Configuring Preservation of IP ToS Field DC-539
Shutting Down a VPN Tunnel DC-540
Limiting the Number of Allowed Simultaneous VPN Sessions DC-540
Enabling Soft Shutdown of VPN Tunnels DC-541
Configuring Event Logging DC-542
Setting the History Table Size DC-542
Verifying VPN Sessions DC-542
Verifying a Client-Initiated VPN DC-542
Verifying a NAS-Initiated VPN DC-544
Monitoring and Maintaining VPNs DC-547
Troubleshooting VPNs DC-548
Successful Debug Examples DC-549
L2TP Dial-In Debug Output on NAS Example DC-549
L2TP Dial-In Debug Output on a Tunnel Server Example DC-550
L2TP Dial-Out Debug Output on a NAS Example DC-550
L2TP Dial-Out Debug Output on a Tunnel Server Example DC-551
VPN Troubleshooting Methodology DC-553
Comparing Your Debug Output to the Successful Debug Output DC-555
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troubleshooting VPN Negotiation</td>
<td>DC-555</td>
</tr>
<tr>
<td>Troubleshooting PPP Negotiation</td>
<td>DC-559</td>
</tr>
<tr>
<td>Troubleshooting AAA Negotiation</td>
<td>DC-560</td>
</tr>
<tr>
<td>Configuration Examples for VPN</td>
<td>DC-563</td>
</tr>
<tr>
<td>Client-Initiated Dial-In Configuration Example</td>
<td>DC-563</td>
</tr>
<tr>
<td>VPN Tunnel Authentication Examples</td>
<td>DC-565</td>
</tr>
<tr>
<td>Tunnel Secret Configured Using the Local Name Command</td>
<td>DC-565</td>
</tr>
<tr>
<td>Tunnel Secret Configured Using the L2TP Tunnel Password Command</td>
<td>DC-565</td>
</tr>
<tr>
<td>Tunnel Secret Configuration Using Different Tunnel Authentication Methods</td>
<td>DC-566</td>
</tr>
<tr>
<td>NAS Comprehensive Dial-In Configuration Example</td>
<td>DC-566</td>
</tr>
<tr>
<td>Tunnel Server Comprehensive Dial-in Configuration Example</td>
<td>DC-567</td>
</tr>
<tr>
<td>NAS Configured for Both Dial-In and Dial-Out Example</td>
<td>DC-568</td>
</tr>
<tr>
<td>Tunnel Server Configured for Both Dial-In and Dial-Out Example</td>
<td>DC-569</td>
</tr>
<tr>
<td>RADIUS Profile Examples</td>
<td>DC-569</td>
</tr>
<tr>
<td>RADIUS Domain Profile</td>
<td>DC-569</td>
</tr>
<tr>
<td>RADIUS User Profile</td>
<td>DC-570</td>
</tr>
<tr>
<td>TACACS+ Profile Examples</td>
<td>DC-570</td>
</tr>
<tr>
<td>TACACS+ Domain Profile</td>
<td>DC-570</td>
</tr>
<tr>
<td>TACACS+ User Profile</td>
<td>DC-571</td>
</tr>
<tr>
<td>TACACS+ Tunnel Profiles</td>
<td>DC-571</td>
</tr>
<tr>
<td>PPP CONFIGURATION</td>
<td></td>
</tr>
<tr>
<td>Configuring Asynchronous SLIP and PPP</td>
<td>DC-575</td>
</tr>
<tr>
<td>Asynchronous SLIP and PPP Overview</td>
<td>DC-575</td>
</tr>
<tr>
<td>Responding to BOOTP Requests</td>
<td>DC-576</td>
</tr>
<tr>
<td>Asynchronous Network Connections and Routing</td>
<td>DC-576</td>
</tr>
<tr>
<td>Asynchronous Interfaces and Broadcasts</td>
<td>DC-577</td>
</tr>
<tr>
<td>How to Configure Asynchronous SLIP and PPP</td>
<td>DC-577</td>
</tr>
<tr>
<td>Configuring Network-Layer Protocols over PPP and SLIP</td>
<td>DC-578</td>
</tr>
<tr>
<td>Configuring IP and PPP</td>
<td>DC-578</td>
</tr>
<tr>
<td>Configuring IPX and PPP</td>
<td>DC-578</td>
</tr>
<tr>
<td>Configuring AppleTalk and PPP</td>
<td>DC-580</td>
</tr>
<tr>
<td>Configuring IP and SLIP</td>
<td>DC-581</td>
</tr>
<tr>
<td>Configuring Asynchronous Host Mobility</td>
<td>DC-581</td>
</tr>
<tr>
<td>Making Additional Remote Node Connections</td>
<td>DC-582</td>
</tr>
<tr>
<td>Creating PPP Connections</td>
<td>DC-582</td>
</tr>
<tr>
<td>Making SLIP Connections</td>
<td>DC-583</td>
</tr>
<tr>
<td>Configuring Remote Access to NetBEUI Services</td>
<td>DC-583</td>
</tr>
<tr>
<td>Configuring Performance Parameters</td>
<td>DC-584</td>
</tr>
<tr>
<td>Configuration Examples for Asynchronous SLIP and PPP</td>
<td>DC-588</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Basic PPP Configurations Examples</td>
<td>DC-588</td>
</tr>
<tr>
<td>Remote Node NetBEUI Examples</td>
<td>DC-589</td>
</tr>
<tr>
<td>Remote Network Access Using PPP Basic Configuration Example</td>
<td>DC-590</td>
</tr>
<tr>
<td>Remote Network Access Using PPP and Routing IP Example</td>
<td>DC-591</td>
</tr>
<tr>
<td>Remote Network Access Using a Leased Line with Dial-Backup and PPP Example</td>
<td>DC-592</td>
</tr>
<tr>
<td>Multilink PPP Using Multiple Asynchronous Interfaces Example</td>
<td>DC-593</td>
</tr>
</tbody>
</table>

Configuring Media-Independent PPP and Multilink PPP | DC-595 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP Encapsulation Overview</td>
<td>DC-595</td>
</tr>
<tr>
<td>Configuring PPP and MLP</td>
<td>DC-596</td>
</tr>
<tr>
<td>Enabling PPP Encapsulation</td>
<td>DC-597</td>
</tr>
<tr>
<td>Enabling CHAP or PAP Authentication</td>
<td>DC-597</td>
</tr>
<tr>
<td>Enabling Link Quality Monitoring</td>
<td>DC-599</td>
</tr>
<tr>
<td>Configuring Compression of PPP Data</td>
<td>DC-600</td>
</tr>
<tr>
<td>Software Compression</td>
<td>DC-600</td>
</tr>
<tr>
<td>Hardware-Dependent Compression</td>
<td>DC-600</td>
</tr>
<tr>
<td>Configuring Microsoft Point-to-Point Compression</td>
<td>DC-601</td>
</tr>
<tr>
<td>MPPC Restrictions</td>
<td>DC-602</td>
</tr>
<tr>
<td>Configuring MPPC</td>
<td>DC-602</td>
</tr>
<tr>
<td>Configuring IP Address Pooling</td>
<td>DC-603</td>
</tr>
<tr>
<td>Peer Address Allocation</td>
<td>DC-603</td>
</tr>
<tr>
<td>Precedence Rules</td>
<td>DC-604</td>
</tr>
<tr>
<td>Interfaces Affected</td>
<td>DC-604</td>
</tr>
<tr>
<td>Choosing the IP Address Assignment Method</td>
<td>DC-604</td>
</tr>
<tr>
<td>Defining the Global Default Address Pooling Mechanism</td>
<td>DC-605</td>
</tr>
<tr>
<td>Controlling DHCP Network Discovery</td>
<td>DC-606</td>
</tr>
<tr>
<td>Configuring IP Address Assignment</td>
<td>DC-606</td>
</tr>
<tr>
<td>Configuring PPP Reliable Link</td>
<td>DC-607</td>
</tr>
<tr>
<td>Troubleshooting PPP</td>
<td>DC-608</td>
</tr>
<tr>
<td>Disabling or Reenabling Peer Neighbor Routes</td>
<td>DC-608</td>
</tr>
<tr>
<td>Configuring PPP Half-Bridging</td>
<td>DC-608</td>
</tr>
<tr>
<td>Configuring Multilink PPP</td>
<td>DC-610</td>
</tr>
<tr>
<td>Configuring MLP on Synchronous Interfaces</td>
<td>DC-610</td>
</tr>
</tbody>
</table>
Contents

Cisco IOS Dial Technologies Configuration Guide

Configuring MLP on Asynchronous Interfaces DC-611
Configuring MLP on a Single ISDN BRI Interface DC-611
Configuring MLP on Multiple ISDN BRI Interfaces DC-612
Configuring MLP Using Multilink Group Interfaces DC-614
Changing the Default Endpoint Discriminator DC-615

Configuring MLP Interleaving and Queueing DC-615
Configuring MLP Interleaving DC-616
Configuring MLP Inverse Multiplexer and Distributed MLP DC-617
Enabling Distributed CEF Switching DC-619
Creating a Multilink Bundle DC-619
Assigning an Interface to a Multilink Bundle DC-619
Disabling PPP Multilink Fragmentation DC-620
Verifying the MLP Inverse Multiplexer Configuration DC-620

Monitoring and Maintaining PPP and MLP Interfaces DC-620

Configuration Examples for PPP and MLP DC-620
CHAP with an Encrypted Password Examples DC-621
User Maximum Links Configuration Example DC-621
MPPC Interface Configuration Examples DC-622
IP Address Pooling Example DC-623
DHCP Network Control Example DC-625
PPP Reliable Link Examples DC-625

MLP Examples DC-626
MLP on Synchronous Serial Interfaces Example DC-626
MLP on One ISDN BRI Interface Example DC-628
MLP on Multiple ISDN BRI Interfaces Example DC-629
MLP Using Multilink Group Interfaces over ATM Example DC-629
Changing the Default Endpoint Discriminator Example DC-630

MLP Interleaving and Queueing for Real-Time Traffic Example DC-630

T3 Controller Configuration for an MLP Multilink Inverse Multiplexer Example DC-631
Multilink Interface Configuration for Distributed MLP Example DC-631

Configuring Multichassis Multilink PPP DC-633
Multichassis Multilink PPP Overview DC-633
Stack Groups DC-634
Call Handling and Bidding DC-634

How to Configure MMP DC-636
Configuring the Stack Group and Identifying Members DC-636
Configuring a Virtual Template and Creating a Virtual Template Interface DC-636

Monitoring and Maintaining MMP Virtual Interfaces DC-637
CALLBACK AND BANDWIDTH ALLOCATION CONFIGURATION

Configuring Asynchronous Callback DC-643
- Asynchronous Callback Overview DC-643
- How to Configure Asynchronous Callback DC-644
- Configuring Callback PPP Clients DC-644
 - Accepting Callback Requests from RFC-Compliant PPP Clients DC-644
 - Accepting Callback Requests from Non-RFC-Compliant PPP Clients Placing Themselves in Answer Mode DC-645
- Enabling PPP Callback on Outgoing Lines DC-645
- Enabling Callback Clients That Dial In and Connect to the EXEC Prompt DC-646
- Configuring Callback ARA Clients DC-647
- Configuration Examples for Asynchronous Callback DC-647
 - Callback to a PPP Client Example DC-648
 - Callback Clients That Connect to the EXEC Prompt Example DC-649
 - Callback to an ARA Client Example DC-649

Configuring PPP Callback DC-651
- PPP Callback for DDR Overview DC-651
- How to Configure PPP Callback for DDR DC-652
 - Configuring a Router as a Callback Client DC-652
 - Configuring a Router as a Callback Server DC-653
- MS Callback Overview DC-653
- How to Configure MS Callback DC-654
- Configuration Examples for PPP Callback DC-654

Configuring ISDN Caller ID Callback DC-657
- ISDN Caller ID Callback Overview DC-658
 - Callback After the Best Match Is Determined DC-658
 - Legacy DDR DC-658
 - Dialer Profiles DC-659
 - Timing and Coordinating Callback on Both Sides DC-659
- How to Configure ISDN Caller ID Callback DC-659
Configuring ISDN Caller ID Callback for Legacy DDR DC-659
Configuring ISDN Caller ID Callback for Dialer Profiles DC-660
Monitoring and Troubleshooting ISDN Caller ID Callback DC-661
Configuration Examples for ISDN Caller ID Callback DC-661
 Best Match System Examples DC-661
 Best Match Based on the Number of “Don’t Care” Characters Example DC-662
 Best Match with No Callback Configured Example DC-662
 No Match Configured Example DC-662
 Simple Callback Configuration Examples DC-662
 ISDN Caller ID Callback with Dialer Profiles Examples DC-663
 ISDN Caller ID Callback with Legacy DDR Example DC-664
 Individual Interface Example DC-664
 Dialer Rotary Group Example DC-665

Configuring BACP DC-667
 BACP Overview DC-668
 BACP Configuration Options DC-668
 How to Configure BACP DC-669
 Enabling BACP DC-670
 Modifying BACP Passive Mode Default Settings DC-671
 Configuring Active Mode BACP DC-671
 Troubleshooting BACP DC-672
 Configuration Examples for BACP DC-673
 Basic BACP Configurations DC-673
 Dialer Rotary Group with Different Dial-In Numbers DC-674
 Passive Mode Dialer Rotary Group Members with One Dial-In Number DC-675
 PRI Interface with No Defined PPP BACP Number DC-676
 BRI Interface with No Defined BACP Number DC-676

DIAL ACCESS SPECIALIZED FEATURES

Configuring Large-Scale Dial-Out DC-679
 Large-Scale Dial-Out Overview DC-679
 Next Hop Definition DC-681
 Static Routes DC-681
 Stack Groups DC-681
 How to Configure Large-Scale Dial-Out DC-682
 Complying with Large-Scale Dial-Out Prerequisites DC-682
Cisco IOS Dial Technologies Configuration Guide

Establishing the Route to the Remote Network DC-683
Enabling AAA and Static Route Download DC-683
Enabling Access to the AAA Server DC-684
Enabling Reverse DNS DC-684
Enabling SGBP Dial-Out Connection Bidding DC-684
Defining a User Profile DC-685

Monitoring and Maintaining the Large-Scale Dial-Out Network DC-690
Configuration Examples for Large-Scale Dial-Out DC-690
Stack Group and Static Route Download Configuration Example DC-690
User Profile on an Ascend RADIUS Server for NAS1 Example DC-695
Asynchronous Dialing Configuration Examples DC-696
Asynchronous Dialing Example DC-696
Asynchronous and Synchronous Dialing Example DC-696

Configuring per-User Configuration DC-699
Per-User Configuration Overview DC-699
General Operational Processes DC-700
Operational Processes with IP Address Pooling DC-701
Deleting Downloaded Pools DC-702
Supported Attributes for AV Pairs DC-703
How to Configure a AAA Server for Per-User Configuration DC-705
Configuring a Freeware TACACS Server for Per-User Configuration DC-706
Configuring a CiscoSecure TACACS Server for Per-User Configuration DC-706
Configuring a RADIUS Server for Per-User Configuration DC-707
Monitoring and Debugging Per-User Configuration Settings DC-708
Configuration Examples for Per-User Configuration DC-708
TACACS+ Freeware Examples DC-708
 IP Access Lists and Static Routes Using Virtual Profiles over ISDN BRI DC-709
 IPX Per-User SAP Filters Using IPXWAN and Virtual Profiles by a Synchronous Interface DC-711
RADIUS Examples DC-712
 IP Access Lists and Static Routes Using Virtual Profiles over ISDN BRI DC-712
 IPX Per-User SAP Filters Using IPXWAN and Virtual Profiles by a Synchronous Interface DC-718

Configuring Resource Pool Management DC-721
RPM Overview DC-721
Components of Incoming and Outgoing Call Management DC-722
 Customer Profile Types DC-723
 DNIS Groups DC-725
 CLID Groups DC-725
 Call Types DC-725
Resource Groups DC-726
Resource Services DC-726
VPDN Groups DC-727
VPDN Profiles DC-727
Call Treatments DC-727
Details on RPM Call Processes DC-728
Accounting Data DC-730
Data over Voice Bearer Services DC-730
Call Discriminator Profiles DC-731
Incoming Call Preauthentication DC-732
RPM Standalone Network Access Server DC-733
 Call Processing DC-734
 Base Session and Overflow Session Limits DC-734
 VPDN Session and Overflow Session Limits DC-735
 VPDN MLP Bundle and Links-per-Bundle Limits DC-736
VPDN Tunnel Limits DC-736
RPM Using the Cisco RPMS DC-739
Resource Manager Protocol DC-739
Direct Remote Services DC-740
RPM Process with RPMS and SS7 DC-740
Additional Information About Cisco RPM DC-741

How to Configure RPM DC-741
 Enabling RPM DC-742
 Configuring DNIS Groups DC-743
 Creating CLID Groups DC-744
 Configuring Discriminator Profiles DC-744
 Configuring Resource Groups DC-746
 Configuring Service Profiles DC-746
 Configuring Customer Profiles DC-747
 Configuring Default Customer Profiles DC-747
 Configuring Customer Profiles Using Backup Customer Profiles DC-747
 Configuring Customer Profiles for Using DoVBS DC-748
 Configuring a Customer Profile Template DC-748
 Typical Template Configuration DC-749
 Verifying Template Configuration DC-749
 Placing the Template in the Customer Profile DC-750
 Configuring AAA Server Groups DC-751
 Configuring VPDN Profiles DC-751
 Configuring VPDN Groups DC-752
 Counting VPDN Sessions by Using VPDN Profiles DC-753
<table>
<thead>
<tr>
<th>Limiting the Number of MLP Bundles in VPDN Groups</th>
<th>DC-755</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Switched 56 over CT1 and RBS</td>
<td>DC-756</td>
</tr>
<tr>
<td>Verifying RPM Components</td>
<td>DC-757</td>
</tr>
<tr>
<td>Verifying Current Calls</td>
<td>DC-757</td>
</tr>
<tr>
<td>Verifying Call Counters for a Customer Profile</td>
<td>DC-757</td>
</tr>
<tr>
<td>Clearing Call Counters</td>
<td>DC-758</td>
</tr>
<tr>
<td>Verifying Call Counters for a Discriminator Profile</td>
<td>DC-758</td>
</tr>
<tr>
<td>Verifying Call Counters for a Resource Group</td>
<td>DC-758</td>
</tr>
<tr>
<td>Verifying Call Counters for a DNIS Group</td>
<td>DC-759</td>
</tr>
<tr>
<td>Verifying Call Counters for a VPDN Profile</td>
<td>DC-759</td>
</tr>
<tr>
<td>Verifying Load Sharing and Backup</td>
<td>DC-759</td>
</tr>
<tr>
<td>Troubleshooting RPM</td>
<td>DC-760</td>
</tr>
<tr>
<td>Resource-Pool Component</td>
<td>DC-761</td>
</tr>
<tr>
<td>Successful Resource Pool Connection</td>
<td>DC-762</td>
</tr>
<tr>
<td>Dialer Component</td>
<td>DC-762</td>
</tr>
<tr>
<td>Resource Group Manager</td>
<td>DC-762</td>
</tr>
<tr>
<td>Signaling Stack</td>
<td>DC-762</td>
</tr>
<tr>
<td>AAA Component</td>
<td>DC-763</td>
</tr>
<tr>
<td>VPDN Component</td>
<td>DC-763</td>
</tr>
<tr>
<td>Troubleshooting DNIS Group Problems</td>
<td>DC-763</td>
</tr>
<tr>
<td>Troubleshooting Call Discriminator Problems</td>
<td>DC-764</td>
</tr>
<tr>
<td>Troubleshooting Customer Profile Counts</td>
<td>DC-764</td>
</tr>
<tr>
<td>Troubleshooting Resource Group Counts</td>
<td>DC-764</td>
</tr>
<tr>
<td>Troubleshooting VPDN</td>
<td>DC-764</td>
</tr>
<tr>
<td>Troubleshooting RPM/VPDN Connection</td>
<td>DC-765</td>
</tr>
<tr>
<td>Troubleshooting Customer/VPDN Profile</td>
<td>DC-765</td>
</tr>
<tr>
<td>Troubleshooting VPDN Profile Limits</td>
<td>DC-766</td>
</tr>
<tr>
<td>Troubleshooting VPDN Group Limits</td>
<td>DC-766</td>
</tr>
<tr>
<td>Troubleshooting VPDN Endpoint Problems</td>
<td>DC-767</td>
</tr>
<tr>
<td>Troubleshooting RPMS</td>
<td>DC-767</td>
</tr>
<tr>
<td>Configuration Examples for RPM</td>
<td>DC-768</td>
</tr>
<tr>
<td>Standard Configuration for RPM Example</td>
<td>DC-769</td>
</tr>
<tr>
<td>Customer Profile Configuration for DoVBS Example</td>
<td>DC-770</td>
</tr>
<tr>
<td>DNIS Discriminator Profile Example</td>
<td>DC-770</td>
</tr>
<tr>
<td>CLID Discriminator Profile Example</td>
<td>DC-771</td>
</tr>
<tr>
<td>Direct Remote Services Configuration Example</td>
<td>DC-774</td>
</tr>
<tr>
<td>VPDN Configuration Example</td>
<td>DC-775</td>
</tr>
<tr>
<td>VPDN Load Sharing and Backing Up Between Multiple HGW/LNSs Example</td>
<td>DC-776</td>
</tr>
</tbody>
</table>
Configuring Wholesale Dial Performance Optimization

<table>
<thead>
<tr>
<th>DC-779</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wholesale Dial Performance Optimization Feature Overview</td>
</tr>
<tr>
<td>DC-779</td>
</tr>
<tr>
<td>How to Configure Automatic Command Execution</td>
</tr>
<tr>
<td>DC-780</td>
</tr>
<tr>
<td>How to Configure TCP Clear Performance Optimization</td>
</tr>
<tr>
<td>DC-780</td>
</tr>
<tr>
<td>Verifying Configuration of TCP Clear Performance Optimization</td>
</tr>
<tr>
<td>DC-781</td>
</tr>
</tbody>
</table>

DIAL ACCESS SCENARIOS

Dial Networking Business Applications

<table>
<thead>
<tr>
<th>DC-785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dial Networking for Service Providers and Enterprises</td>
</tr>
<tr>
<td>DC-785</td>
</tr>
<tr>
<td>Common Dial Applications</td>
</tr>
<tr>
<td>DC-788</td>
</tr>
<tr>
<td>IP Address Strategies</td>
</tr>
<tr>
<td>DC-789</td>
</tr>
<tr>
<td>Choosing an Addressing Scheme</td>
</tr>
<tr>
<td>DC-789</td>
</tr>
<tr>
<td>Classic IP Addressing</td>
</tr>
<tr>
<td>DC-789</td>
</tr>
<tr>
<td>Cisco Easy IP</td>
</tr>
<tr>
<td>DC-790</td>
</tr>
</tbody>
</table>

Enterprise Dial Scenarios and Configurations

<table>
<thead>
<tr>
<th>DC-793</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote User Demographics</td>
</tr>
<tr>
<td>DC-793</td>
</tr>
<tr>
<td>Demand and Scalability</td>
</tr>
<tr>
<td>DC-794</td>
</tr>
<tr>
<td>Remote Offices and Telecommuters Dialing In to a Central Site</td>
</tr>
<tr>
<td>DC-794</td>
</tr>
<tr>
<td>Network Topologies</td>
</tr>
<tr>
<td>DC-794</td>
</tr>
<tr>
<td>Dial-In Scenarios</td>
</tr>
<tr>
<td>DC-795</td>
</tr>
<tr>
<td>Cisco 1604 Remote Office Router Dialing In to a Cisco 3620 Access Router</td>
</tr>
<tr>
<td>DC-796</td>
</tr>
<tr>
<td>Remote Office Router Dialing In to a Cisco 3620 Router</td>
</tr>
<tr>
<td>DC-799</td>
</tr>
<tr>
<td>Cisco 700 Series Router Using Port Address Translation to Dial In to a Cisco AS5300 Access Server</td>
</tr>
<tr>
<td>DC-802</td>
</tr>
<tr>
<td>Cisco 3640 Central Site Router Configuration to Support ISDN and Modem Calls</td>
</tr>
<tr>
<td>DC-806</td>
</tr>
<tr>
<td>Cisco AS5300 Central Site Configuration Using Remote Security</td>
</tr>
<tr>
<td>DC-808</td>
</tr>
<tr>
<td>Bidirectional Dial Between Central Sites and Remote Offices</td>
</tr>
<tr>
<td>DC-811</td>
</tr>
<tr>
<td>Dial-In and Dial-Out Network Topology</td>
</tr>
<tr>
<td>DC-811</td>
</tr>
<tr>
<td>Dialer Profiles and Virtual Profiles</td>
</tr>
<tr>
<td>DC-812</td>
</tr>
<tr>
<td>Running Access Server Configurations</td>
</tr>
<tr>
<td>DC-814</td>
</tr>
<tr>
<td>Cisco AS5300 Access Server Configuration with Dialer Profiles</td>
</tr>
<tr>
<td>DC-815</td>
</tr>
<tr>
<td>Cisco 1604 ISDN Router Configuration with Dialer Profiles</td>
</tr>
<tr>
<td>DC-820</td>
</tr>
<tr>
<td>Cisco 1604 Router Asynchronous Configuration with Dialer Profiles</td>
</tr>
<tr>
<td>DC-821</td>
</tr>
<tr>
<td>Cisco AS5300 Access Server Configuration Without Dialer Profiles</td>
</tr>
<tr>
<td>DC-822</td>
</tr>
<tr>
<td>Cisco 1604 ISDN Router Configuration Without Dialer Profiles</td>
</tr>
<tr>
<td>DC-824</td>
</tr>
<tr>
<td>Cisco 1604 Router Asynchronous Configuration Without Dialer Profiles</td>
</tr>
<tr>
<td>DC-825</td>
</tr>
<tr>
<td>Large-Scale Dial-In Configuration Using Virtual Profiles</td>
</tr>
<tr>
<td>DC-826</td>
</tr>
</tbody>
</table>
Telecommuters Dialing In to a Mixed Protocol Environment DC-826
 Description DC-827
Enterprise Network Topology DC-829
Mixed Protocol Dial-In Scenarios DC-830
 Cisco 7200 #1 Backbone Router DC-831
 Cisco 7200 #2 Backbone Router DC-832
 Cisco AS5500 Universal Access Server DC-833

Telco and ISP Dial Scenarios and Configurations DC-837
Small- to Medium-Scale POPs DC-837
 Individual Remote PCs Using Analog Modems DC-838
 Network Topology DC-838
 Running Configuration for ISDN PRI DC-838
 Running Configuration for Robbed-Bit Signaling DC-840
 Individual PCs Using ISDN Terminal Adapters DC-842
 Network Topology DC-842
 Terminal Adapter Configuration Example DC-843
 Mixture of ISDN and Analog Modem Calls DC-845
 Combination of Modem and ISDN Dial-In Configuration Example DC-845
Large-Scale POPs DC-847
 Scaling Considerations DC-847
 How Stacking Works DC-848
 A Typical Multilink PPP Session DC-848
 Using Multichassis Multilink PPP DC-849
 Setting Up an Offload Server DC-850
 Using the Stack Group Bidding Protocol DC-851
 Using L2F DC-852
 Stack Group of Access Servers Using MMP with an Offload Processor Examples DC-852
 Cisco Access Server #1 DC-852
 Cisco Access Server #2 DC-854
 Cisco Access Server #3 DC-856
 Cisco 7206 as Offload Server DC-859
RADIUS Remote Security Examples DC-860
 User Setup for PPP DC-861
 User Setup for PPP and Static IP Address DC-861
 Enabling Router Dial-In DC-861
 User Setup for SLIP DC-861
 User Setup for SLIP and Static IP Address DC-862
 Using Telnet to connect to a UNIX Host DC-862
 Automatic rlogin to UNIX Host DC-862
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP Calls over X.25 Networks</td>
<td>DC-862</td>
</tr>
<tr>
<td>Overview</td>
<td>DC-863</td>
</tr>
<tr>
<td>Remote PC Browsing Network Topology</td>
<td>DC-863</td>
</tr>
<tr>
<td>Protocol Translation Configuration Example</td>
<td>DC-864</td>
</tr>
</tbody>
</table>

APPENDIXES

| Modem Initialization Strings | DC-869 |
| Sample Modem Scripts | DC-872 |

INDEX
About Cisco IOS Software Documentation

This chapter discusses the objectives, audience, organization, and conventions of Cisco IOS software documentation. It also provides sources for obtaining documentation from Cisco Systems.

Documentation Objectives

Cisco IOS software documentation describes the tasks and commands necessary to configure and maintain Cisco networking devices.

Audience

The Cisco IOS software documentation set is intended primarily for users who configure and maintain Cisco networking devices (such as routers and switches) but who may not be familiar with the tasks, the relationship between tasks, or the Cisco IOS software commands necessary to perform particular tasks. The Cisco IOS software documentation set is also intended for those users experienced with Cisco IOS software who need to know about new features, new configuration options, and new software characteristics in the current Cisco IOS software release.

Documentation Organization

The Cisco IOS software documentation set consists of documentation modules and master indexes. In addition to the main documentation set, there are supporting documents and resources.

Documentation Modules

The Cisco IOS documentation modules consist of configuration guides and corresponding command reference publications. Chapters in a configuration guide describe protocols, configuration tasks, and Cisco IOS software functionality and contain comprehensive configuration examples. Chapters in a command reference publication provide complete Cisco IOS command syntax information. Use each configuration guide in conjunction with its corresponding command reference publication.
Figure 1 shows the Cisco IOS software documentation modules.

Note

The abbreviations (for example, FC and FR) next to the book icons are page designators, which are defined in a key in the index of each document to help you with navigation. The bullets under each module list the major technology areas discussed in the corresponding books.
Module DC/DR:
- Preparing for Dial Access
- Modem and Dial Shelf Configuration and Management
- ISDN Configuration
- Signalling Configuration
- Dial-on-Demand Routing Configuration
- Dial-Backup Configuration
- Dial-Related Addressing Services
- Virtual Templates, Profiles, and Networks
- PPP Configuration
- Callback and Bandwidth Allocation Configuration
- Dial Access Specialized Features
- Dial Access Scenarios

Module TC/TR:
- ARA
- LAT
- NASI
- Telnet
- TN3270
- X.28 PAD
- Protocol Translation

Module BC/B1R:
- Transparent Bridging
- SRB
- Token Ring Inter-Switch Link
- Token Ring Route Switch Module
- RSRB
- DLSw+
- Serial Tunnel and Block Serial Tunnel
- LLC2 and SDLC
- IBM Network Media Translation
- SNA Frame Relay Access
- NCIA Client/Server
- Airline Product Set

Module BC/B2R:
- DSPU and SNA Service Point
- SNA Switching Services
- Cisco Transaction Connection
- Cisco Mainframe Channel Connection
- CLAW and TCP/IP Offload
- CSNA, CMPC, and CMPC+ TN3270 Server

Module VC/VR:
- Voice over IP
- Call Control Signalling
- Voice over Frame Relay
- Voice over ATM
- Telephony Applications
- Trunk Management
- Fax, Video, and Modem Support

Module QC/QR:
- Packet Classification
- Congestion Management
- Congestion Avoidance
- Policing and Shaping
- Signalling
- Link Efficiency Mechanisms

Module XC/XR:
- Cisco IOS Switching Paths
- NetFlow Switching
- Multiprotocol Label Switching
- Multilayer Switching
- Multicast Distributed Switching
- Virtual LANs
- LAN Emulation
Master Indexes

Two master indexes provide indexing information for the Cisco IOS software documentation set: an index for the configuration guides and an index for the command references. Individual books also contain a book-specific index.

The master indexes provide a quick way for you to find a command when you know the command name but not which module contains the command. When you use the online master indexes, you can click the page number for an index entry and go to that page in the online document.

Supporting Documents and Resources

The following documents and resources support the Cisco IOS software documentation set:

- *Cisco IOS Command Summary* (two volumes)—This publication explains the function and syntax of the Cisco IOS software commands. For more information about defaults and usage guidelines, refer to the Cisco IOS command reference publications.

- *Cisco IOS System Error Messages*—This publication lists and describes Cisco IOS system error messages. Not all system error messages indicate problems with your system. Some are purely informational, and others may help diagnose problems with communications lines, internal hardware, or the system software.

- *Cisco IOS Debug Command Reference*—This publication contains an alphabetical listing of the debug commands and their descriptions. Documentation for each command includes a brief description of its use, command syntax, usage guidelines, and sample output.

- *Dictionary of Internetworking Terms and Acronyms*—This Cisco publication compiles and defines the terms and acronyms used in the internetworking industry.

- New feature documentation—The Cisco IOS software documentation set documents the mainline release of Cisco IOS software (for example, Cisco IOS Release 12.2). New software features are introduced in early deployment releases (for example, the Cisco IOS “T” release train for 12.2, 12.2(x)T). Documentation for these new features can be found in standalone documents called “feature modules.” Feature module documentation describes new Cisco IOS software and hardware networking functionality and is available on Cisco.com and the Documentation CD-ROM.

- Release notes—This documentation describes system requirements, provides information about new and changed features, and includes other useful information about specific software releases. See the section “Using Software Release Notes” in the chapter “Using Cisco IOS Software” for more information.

- Caveats documentation—This documentation provides information about Cisco IOS software defects in specific software releases.

- RFCs—RFCs are standards documents maintained by the Internet Engineering Task Force (IETF). Cisco IOS software documentation references supported RFCs when applicable. The full text of referenced RFCs may be obtained on the World Wide Web at http://www.rfc-editor.org/.

- MIBs—MIBs are used for network monitoring. For lists of supported MIBs by platform and release, and to download MIB files, see the Cisco MIB website on Cisco.com at http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml.
New and Changed Information

For Cisco IOS Release 12.2, two previous Release 12.1 guides, Cisco IOS Dial Services Configuration Guide: Terminal Services and Cisco IOS Dial Services Configuration Guide: Network Services, have been renamed and reorganized into a single book: Cisco IOS Dial Technologies Configuration Guide. See Figure 1 for a list of the contents.

For Cisco IOS Release 12.2, the Release 12.1 Cisco IOS Dial Services Command Reference has been renamed Cisco IOS Dial Technologies Command Reference.

The Cisco IOS Terminal Services Configuration Guide and Cisco IOS Terminal Services Command Reference were extracted from the 12.1 release of the Cisco IOS Dial Services Configuration Guide: Terminal Services and Cisco IOS Dial Services Command Reference, and placed in separate books not included in this set.

Document Conventions

Within Cisco IOS software documentation, the term router is generally used to refer to a variety of Cisco products (for example, routers, access servers, and switches). Routers, access servers, and other networking devices that support Cisco IOS software are shown interchangeably within examples. These products are used only for illustrative purposes; that is, an example that shows one product does not necessarily indicate that other products are not supported.

The Cisco IOS documentation set uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>^ or Ctrl</td>
<td>The ^ and Ctrl symbols represent the Control key. For example, the key combination ^D or Ctrl-D means hold down the Control key while you press the D key. Keys are indicated in capital letters but are not case sensitive.</td>
</tr>
<tr>
<td>string</td>
<td>A string is a nonquoted set of characters shown in italics. For example, when setting an SNMP community string to public, do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
</tbody>
</table>

Command syntax descriptions use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface text indicates commands and keywords that you enter literally as shown.</td>
</tr>
<tr>
<td>italics</td>
<td>Italic text indicates arguments for which you supply values.</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional element (keyword or argument).</td>
</tr>
<tr>
<td></td>
<td>A vertical line indicates a choice within an optional or required set of keywords or arguments.</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
</tbody>
</table>
Nested sets of square brackets or braces indicate optional or required choices within optional or required elements. For example:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[y \mid z]</td>
<td>Braces and a vertical line within square brackets indicate a required choice within an optional element.</td>
</tr>
</tbody>
</table>

Examples use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>screen</code></td>
<td>Examples of information displayed on the screen are set in Courier font.</td>
</tr>
<tr>
<td><code>boldface screen</code></td>
<td>Examples of text that you must enter are set in Courier bold font.</td>
</tr>
<tr>
<td><code>< ></code></td>
<td>Angle brackets enclose text that is not printed to the screen, such as passwords.</td>
</tr>
<tr>
<td><code>!</code></td>
<td>An exclamation point at the beginning of a line indicates a comment line. (Exclamation points are also displayed by the Cisco IOS software for certain processes.)</td>
</tr>
<tr>
<td><code>[]</code></td>
<td>Square brackets enclose default responses to system prompts.</td>
</tr>
</tbody>
</table>

The following conventions are used to attract the attention of the reader:

- **Caution**

 Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

- **Note**

 Means *reader take note*. Notes contain helpful suggestions or references to materials not contained in this manual.

- **Timesaver**

 Means the *described action saves time*. You can save time by performing the action described in the paragraph.

Obtaining Documentation

The following sections provide sources for obtaining documentation from Cisco Systems.

World Wide Web

The most current Cisco documentation is available on the World Wide Web at the following website:

http://www.cisco.com

Translated documentation is available at the following website:

Documentation CD-ROM

Cisco documentation and additional literature are available in a CD-ROM package, which ships with your product. The Documentation CD-ROM is updated monthly and may be more current than printed documentation. The CD-ROM package is available as a single unit or through an annual subscription.

Ordering Documentation

Cisco documentation can be ordered in the following ways:

- Registered Cisco Direct Customers can order Cisco product documentation from the Networking Products MarketPlace:
 http://www.cisco.com/cgi-bin/order/order_root.pl
- Registered Cisco.com users can order the Documentation CD-ROM through the online Subscription Store:
 http://www.cisco.com/go/subscription
- Nonregistered Cisco.com users can order documentation through a local account representative by calling Cisco corporate headquarters (California, USA) at 408 526-7208 or, in North America, by calling 800 553-NETS(6387).

Documentation Feedback

If you are reading Cisco product documentation on the World Wide Web, you can submit technical comments electronically. Click Feedback in the toolbar and select Documentation. After you complete the form, click Submit to send it to Cisco.

You can e-mail your comments to bug-doc@cisco.com.

To submit your comments by mail, use the response card behind the front cover of your document, or write to the following address:

Cisco Systems, Inc.
Document Resource Connection
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance

Cisco provides Cisco.com as a starting point for all technical assistance. Customers and partners can obtain documentation, troubleshooting tips, and sample configurations from online tools. For Cisco.com registered users, additional troubleshooting tools are available from the TAC website.
Cisco.com

Cisco.com is the foundation of a suite of interactive, networked services that provides immediate, open access to Cisco information and resources at anytime, from anywhere in the world. This highly integrated Internet application is a powerful, easy-to-use tool for doing business with Cisco.

Cisco.com provides a broad range of features and services to help customers and partners streamline business processes and improve productivity. Through Cisco.com, you can find information about Cisco and our networking solutions, services, and programs. In addition, you can resolve technical issues with online technical support, download and test software packages, and order Cisco learning materials and merchandise. Valuable online skill assessment, training, and certification programs are also available.

Customers and partners can self-register on Cisco.com to obtain additional personalized information and services. Registered users can order products, check on the status of an order, access technical support, and view benefits specific to their relationships with Cisco.

To access Cisco.com, go to the following website:

http://www.cisco.com

Technical Assistance Center

The Cisco TAC website is available to all customers who need technical assistance with a Cisco product or technology that is under warranty or covered by a maintenance contract.

Contacting TAC by Using the Cisco TAC Website

If you have a priority level 3 (P3) or priority level 4 (P4) problem, contact TAC by going to the TAC website:

http://www.cisco.com/tac

P3 and P4 level problems are defined as follows:

- P3—Your network performance is degraded. Network functionality is noticeably impaired, but most business operations continue.
- P4—You need information or assistance on Cisco product capabilities, product installation, or basic product configuration.

In each of the above cases, use the Cisco TAC website to quickly find answers to your questions.

To register for Cisco.com, go to the following website:

http://www.cisco.com/register/

If you cannot resolve your technical issue by using the TAC online resources, Cisco.com registered users can open a case online by using the TAC Case Open tool at the following website:

http://www.cisco.com/tac/caseopen

Contacting TAC by Telephone

If you have a priority level 1 (P1) or priority level 2 (P2) problem, contact TAC by telephone and immediately open a case. To obtain a directory of toll-free numbers for your country, go to the following website:

P1 and P2 level problems are defined as follows:

- **P1**—Your production network is down, causing a critical impact to business operations if service is not restored quickly. No workaround is available.
- **P2**—Your production network is severely degraded, affecting significant aspects of your business operations. No workaround is available.
Using Cisco IOS Software

This chapter provides helpful tips for understanding and configuring Cisco IOS software using the command-line interface (CLI). It contains the following sections:

- Understanding Command Modes
- Getting Help
- Using the no and default Forms of Commands
- Saving Configuration Changes
- Filtering Output from the show and more Commands
- Identifying Supported Platforms

For an overview of Cisco IOS software configuration, refer to the Cisco IOS Configuration Fundamentals Configuration Guide.

For information on the conventions used in the Cisco IOS software documentation set, see the chapter “About Cisco IOS Software Documentation” located at the beginning of this book.

Understanding Command Modes

You use the CLI to access Cisco IOS software. Because the CLI is divided into many different modes, the commands available to you at any given time depend on the mode you are currently in. Entering a question mark (?) at the CLI prompt allows you to obtain a list of commands available for each command mode.

When you log in to the CLI, you are in user EXEC mode. User EXEC mode contains only a limited subset of commands. To have access to all commands, you must enter privileged EXEC mode, normally by using a password. From privileged EXEC mode you can issue any EXEC command—user or privileged mode—or you can enter global configuration mode. Most EXEC commands are one-time commands. For example, show commands show important status information, and clear commands clear counters or interfaces. The EXEC commands are not saved when the software reboots.

Configuration modes allow you to make changes to the running configuration. If you later save the running configuration to the startup configuration, these changed commands are stored when the software is rebooted. To enter specific configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and a variety of other modes, such as protocol-specific modes.

ROM monitor mode is a separate mode used when the Cisco IOS software cannot load properly. If a valid software image is not found when the software boots or if the configuration file is corrupted at startup, the software might enter ROM monitor mode.
Table 1 describes how to access and exit various common command modes of the Cisco IOS software. It also shows examples of the prompts displayed for each mode.

Table 1 Accessing and Exiting Command Modes

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Log in.</td>
<td>Router></td>
<td>Use the <code>logout</code> command.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>From user EXEC mode, use the <code>enable</code> EXEC command.</td>
<td>Router#</td>
<td>To return to user EXEC mode, use the <code>disable</code> command.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>From privileged EXEC mode, use the <code>configure terminal</code> privileged EXEC command.</td>
<td>Router(config)#</td>
<td>To return to privileged EXEC mode from global configuration mode, use the <code>exit</code> or <code>end</code> command, or press Ctrl-Z.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>From global configuration mode, specify an interface using an <code>interface</code> command.</td>
<td>Router(config-if)#</td>
<td>To return to global configuration mode, use the <code>exit</code> command. To return to privileged EXEC mode, use the <code>end</code> command, or press Ctrl-Z.</td>
</tr>
<tr>
<td>ROM monitor</td>
<td>From privileged EXEC mode, use the <code>reload</code> EXEC command. Press the Break key during the first 60 seconds while the system is booting.</td>
<td>></td>
<td>To exit ROM monitor mode, use the <code>continue</code> command.</td>
</tr>
</tbody>
</table>

For more information on command modes, refer to the “Using the Command-Line Interface” chapter in the *Cisco IOS Configuration Fundamentals Configuration Guide*.

Getting Help

Entering a question mark (`) at the CLI prompt displays a list of commands available for each command mode. You can also get a list of keywords and arguments associated with any command by using the context-sensitive help feature.

To get help specific to a command mode, a command, a keyword, or an argument, use one of the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>help</code></td>
<td>Provides a brief description of the help system in any command mode.</td>
</tr>
<tr>
<td><code>abbreviated-command-entry?</code></td>
<td>Provides a list of commands that begin with a particular character string. (No space between command and question mark.)</td>
</tr>
<tr>
<td><code>abbreviated-command-entry<Tab></code></td>
<td>Completes a partial command name.</td>
</tr>
<tr>
<td><code>?</code></td>
<td>Lists all commands available for a particular command mode.</td>
</tr>
<tr>
<td><code>command ?</code></td>
<td>Lists the keywords or arguments that you must enter next on the command line. (Space between command and question mark.)</td>
</tr>
</tbody>
</table>
Example: How to Find Command Options

This section provides an example of how to display syntax for a command. The syntax can consist of optional or required keywords and arguments. To display keywords and arguments for a command, enter a question mark (?) at the configuration prompt or after entering part of a command followed by a space. The Cisco IOS software displays a list and brief description of available keywords and arguments. For example, if you were in global configuration mode and wanted to see all the keywords or arguments for the `arap` command, you would type `arap ?`.

The `<cr>` symbol in command help output stands for “carriage return.” On older keyboards, the carriage return key is the Return key. On most modern keyboards, the carriage return key is the Enter key. The `<cr>` symbol at the end of command help output indicates that you have the option to press Enter to complete the command and that the arguments and keywords in the list preceding the `<cr>` symbol are optional. The `<cr>` symbol by itself indicates that no more arguments or keywords are available and that you must press Enter to complete the command.

Table 2 shows examples of how you can use the question mark (?) to assist you in entering commands. The table steps you through configuring an IP address on a serial interface on a Cisco 7206 router that is running Cisco IOS Release 12.0(3).

Table 2 How to Find Command Options

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
</table>
| `Router> enable
Password: <password>
Router#` | Enter the `enable` command and password to access privileged EXEC commands. You are in privileged EXEC mode when the prompt changes to `Router#`. |
| `Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#` | Enter the `configure terminal` privileged EXEC command to enter global configuration mode. You are in global configuration mode when the prompt changes to `Router(config)#`. |
| `Router(config)# interface serial ?
<0-6> Serial interface number
Router(config)# interface serial 4 ?
/` | Enter interface configuration mode by specifying the serial interface that you want to configure using the `interface serial` global configuration command. Enter `?` to display what you must enter next on the command line. In this example, you must enter the serial interface slot number and port number, separated by a forward slash. You are in interface configuration mode when the prompt changes to `Router(config-if)#`. |
| `Router(config)# interface serial 4/ ?
<0-3> Serial interface number
Router(config)# interface serial 4/0
Router(config-if)#` | |
Table 2 How to Find Command Options (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ?</td>
<td>Enter ? to display a list of all the interface configuration commands available for the serial interface. This example shows only some of the available interface configuration commands.</td>
</tr>
<tr>
<td>Interface configuration commands:</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>Interface Internet Protocol config commands</td>
</tr>
<tr>
<td>keepalive</td>
<td>Enable keepalive</td>
</tr>
<tr>
<td>lan-name</td>
<td>LAN Name command</td>
</tr>
<tr>
<td>llc2</td>
<td>LLC2 Interface Subcommands</td>
</tr>
<tr>
<td>load-interval</td>
<td>Specify interval for load calculation for an interface</td>
</tr>
<tr>
<td>locaddr-priority</td>
<td>Assign a priority group</td>
</tr>
<tr>
<td>logging</td>
<td>Configure logging for interface</td>
</tr>
<tr>
<td>loopback</td>
<td>Configure internal loopback on an interface</td>
</tr>
<tr>
<td>mac-address</td>
<td>Manually set interface MAC address</td>
</tr>
<tr>
<td>mls</td>
<td>mls router sub/interface commands</td>
</tr>
<tr>
<td>mpoa</td>
<td>MPOA interface configuration commands</td>
</tr>
<tr>
<td>mtu</td>
<td>Set the interface Maximum Transmission Unit (MTU)</td>
</tr>
<tr>
<td>netbios</td>
<td>Use a defined NETBIOS access list or enable name-caching</td>
</tr>
<tr>
<td>no</td>
<td>Negate a command or set its defaults</td>
</tr>
<tr>
<td>nrzi-encoding</td>
<td>Enable use of NRZI encoding</td>
</tr>
<tr>
<td>ntp</td>
<td>Configure NTP</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip ?</td>
<td>Enter the command that you want to configure for the interface. This example uses the ip command.</td>
</tr>
<tr>
<td>Interface IP configuration subcommands:</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>access-group</td>
<td>Specify access control for packets</td>
</tr>
<tr>
<td>accounting</td>
<td>Enable IP accounting on this interface</td>
</tr>
<tr>
<td>address</td>
<td>Set the IP address of an interface</td>
</tr>
<tr>
<td>authentication</td>
<td>authentication subcommands</td>
</tr>
<tr>
<td>bandwidth-percent</td>
<td>Set EIGRP bandwidth limit</td>
</tr>
<tr>
<td>broadcast-address</td>
<td>Set the broadcast address of an interface</td>
</tr>
<tr>
<td>cgmp</td>
<td>Enable/disable CGMP</td>
</tr>
<tr>
<td>directed-broadcast</td>
<td>Enable forwarding of directed broadcasts</td>
</tr>
<tr>
<td>dvmrp</td>
<td>DVMRP interface commands</td>
</tr>
<tr>
<td>hello-interval</td>
<td>Configures IP-EIGRP hello interval</td>
</tr>
<tr>
<td>helper-address</td>
<td>Specify a destination address for UDP broadcasts</td>
</tr>
<tr>
<td>hold-time</td>
<td>Configures IP-EIGRP hold time</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip</td>
<td>Enter ? to display what you must enter next on the command line. This example shows only some of the available interface IP configuration commands.</td>
</tr>
</tbody>
</table>
Almost every configuration command has a no form. In general, use the no form to disable a function. Use the command without the no keyword to reenable a disabled function or to enable a function that is disabled by default. For example, IP routing is enabled by default. To disable IP routing, use the no ip routing command; to reenable IP routing, use the ip routing command. The Cisco IOS software command reference publications provide the complete syntax for the configuration commands and describe what the no form of a command does.

Configuration commands also can have a default form, which returns the command settings to the default values. Most commands are disabled by default, so in such cases using the default form has the same result as using the no form of the command. However, some commands are enabled by default and

Table 2 How to Find Command Options (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# ip address ?</code></td>
<td>Enter the command that you want to configure for the interface. This example uses the ip address command. Enter ? to display what you must enter next on the command line. In this example, you must enter an IP address or the negotiated keyword. A carriage return (<cr>) is not displayed; therefore, you must enter additional keywords or arguments to complete the command.</td>
</tr>
<tr>
<td><code>Router(config-if)# ip address 172.16.0.1 ?</code></td>
<td>Enter the keyword or argument you want to use. This example uses the 172.16.0.1 IP address. Enter ? to display what you must enter next on the command line. In this example, you must enter an IP subnet mask. A <cr> is not displayed; therefore, you must enter additional keywords or arguments to complete the command.</td>
</tr>
<tr>
<td><code>Router(config-if)# ip address 172.16.0.1 255.255.255.0 ?</code></td>
<td>Enter the IP subnet mask. This example uses the 255.255.255.0 IP subnet mask. Enter ? to display what you must enter next on the command line. In this example, you can enter the secondary keyword, or you can press Enter. A <cr> is displayed; you can press Enter to complete the command, or you can enter another keyword.</td>
</tr>
<tr>
<td><code>Router(config-if)# ip address 172.16.0.1 255.255.255.0</code></td>
<td>In this example, Enter is pressed to complete the command.</td>
</tr>
</tbody>
</table>
have variables set to certain default values. In these cases, the **default** form of the command enables the command and sets the variables to their default values. The Cisco IOS software command reference publications describe the effect of the **default** form of a command if the command functions differently than the **no** form.

Saving Configuration Changes

Use the `copy system:running-config nvram:startup-config` command to save your configuration changes to the startup configuration so that the changes will not be lost if the software reloads or a power outage occurs. For example:

```
Router# copy system:running-config nvram:startup-config
Building configuration...
```

It might take a minute or two to save the configuration. After the configuration has been saved, the following output appears:

```
[OK]
Router#
```

On most platforms, this task saves the configuration to NVRAM. On the Class A Flash file system platforms, this task saves the configuration to the location specified by the CONFIG_FILE environment variable. The CONFIG_FILE variable defaults to NVRAM.

Filtering Output from the `show` and `more` Commands

In Cisco IOS Release 12.0(1)T and later releases, you can search and filter the output of `show` and `more` commands. This functionality is useful if you need to sort through large amounts of output or if you want to exclude output that you need not see.

To use this functionality, enter a `show` or `more` command followed by the “pipe” character (|); one of the keywords **begin**, **include**, or **exclude**; and a regular expression on which you want to search or filter (the expression is case-sensitive):

```
command | {begin | include | exclude} regular-expression
```

The output matches certain lines of information in the configuration file. The following example illustrates how to use output modifiers with the `show interface` command when you want the output to include only lines in which the expression “protocol” appears:

```
Router# show interface | include protocol
FastEthernet0/0 is up, line protocol is up
Serial14/0 is up, line protocol is up
Serial14/1 is up, line protocol is up
Serial14/2 is administratively down, line protocol is down
Serial14/3 is administratively down, line protocol is down
```

For more information on the search and filter functionality, refer to the “Using the Command-Line Interface” chapter in the *Cisco IOS Configuration Fundamentals Configuration Guide*, Release 12.2.
Identifying Supported Platforms

Cisco IOS software is packaged in feature sets consisting of software images that support specific platforms. The feature sets available for a specific platform depend on which Cisco IOS software images are included in a release. To identify the set of software images available in a specific release or to find out if a feature is available in a given Cisco IOS software image, see the following sections:

- Using Feature Navigator
- Using Software Release Notes

Using Feature Navigator

Feature Navigator is a web-based tool that enables you to quickly determine which Cisco IOS software images support a particular set of features and which features are supported in a particular Cisco IOS image.

Feature Navigator is available 24 hours a day, 7 days a week. To access Feature Navigator, you must have an account on Cisco.com. If you have forgotten or lost your account information, e-mail the Contact Database Administration group at cdbadmin@cisco.com. If you do not have an account on Cisco.com, go to http://www.cisco.com/register and follow the directions to establish an account.

To use Feature Navigator, you must have a JavaScript-enabled web browser such as Netscape 3.0 or later, or Internet Explorer 4.0 or later. Internet Explorer 4.0 always has JavaScript enabled. To enable JavaScript for Netscape 3.x or Netscape 4.x, follow the instructions provided with the web browser. For JavaScript support and enabling instructions for other browsers, check with the browser vendor.

Feature Navigator is updated when major Cisco IOS software releases and technology releases occur. You can access Feature Navigator at the following URL:

http://www.cisco.com/go/fn

Using Software Release Notes

Cisco IOS software releases include release notes that provide the following information:

- Platform support information
- Memory recommendations
- Microcode support information
- Feature set tables
- Feature descriptions
- Open and resolved severity 1 and 2 caveats for all platforms

Release notes are intended to be release-specific for the most current release, and the information provided in these documents may not be cumulative in providing information about features that first appeared in previous releases.
Dial Interfaces, Controllers, and Lines
Overview of Dial Interfaces, Controllers, and Lines

This chapter describes the different types of software constructs, interfaces, controllers, channels, and lines that are used for dial-up remote access. It includes the following main sections:

- Cisco IOS Dial Components
- Logical Constructs
- Logical Interfaces
- Circuit-Switched Digital Calls
- T1 and E1 Controllers
- Non-ISDN Channelized T1 and Channelized E1 Lines
- ISDN Service
- Line Types
- Encapsulation Types

For a complete description of the commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Cisco IOS Dial Components

Different components inside Cisco IOS software work together to enable remote clients to dial in and send packets. Figure 2 shows one Cisco AS5300 access server that is receiving calls from a remote office, branch office (ROBO); small office, home office (SOHO); and modem client.

Depending on your network scenario, you may encounter all of the components in Figure 2. For example, you might decide to create a virtual IP subnet by using a loopback interface. This step saves address space. Virtual subnets can exist inside devices that you advertise to your backbone. In turn, IP packets get relayed to remote PCs, which route back to the central site.
Figure 2 Cisco IOS Dial Universe

- **Cisco IOS Dial Components**
 - **DC-4**
 - **Cisco IOS Dial Technologies Configuration Guide**

Overview of Dial Interfaces, Controllers, and Lines

- **Virtual access interface**
- **Interface virtual template**
- **Interface group-async**
- **Cloning**
- **Asynchronous interfaces**
- **Lines**
- **Modems**
- **Headquarters intranet/Internet**
- **Fast Ethernet interface**
- **Loopback interface**
- **Routing and switching engine**
- **Cloning**
- **Interface dialer controlling the D channels**
- **TDM bus**
- **Controllers**
- **E1/T1 PRI ports**
- **PRI lines**
- **Cisco IOS software inside a Cisco AS5300**
- **= ISDN B channel**
- **= Modem/POTS**

- **PSTN/ISDN**
- **POTS**
- **BRI line**
- **BRI line**
- **POTS line**

- **Cisco 766 (SOHO)**
- **Cisco 1604 (ROBO)**

- **Remote PC**
- **Modem**
Logical Constructs

A logical construct stores core protocol characteristics to assign to physical interfaces. No data packets are forwarded to a logical construct. Cisco uses three types of logical constructs in its access servers and routers. These constructs are described in the following sections:

- Asynchronous Interfaces
- Group Asynchronous Interfaces
- Virtual Template Interfaces

Asynchronous Interfaces

An asynchronous interface assigns network protocol characteristics to remote asynchronous clients that are dialing in through physical terminal lines and modems. (See Figure 3.)

Use the `interface async` command to create and configure an asynchronous interface.

Figure 3 Logical Construct for an Asynchronous Interface

To enable clients to dial in, you must configure two asynchronous components: asynchronous lines and asynchronous interfaces. Asynchronous interfaces correspond to physical terminal lines. For example, asynchronous interface 1 corresponds to tty line 1.

Commands entered in asynchronous interface mode configure protocol-specific parameters for asynchronous interfaces, whereas commands entered in line configuration configure the physical aspects for the same port.
Specifically, you configure asynchronous interfaces to support PPP connections. An asynchronous interface on an access server or router can be configured to support the following functions:

- Network protocol support such as IP, Internet Protocol Exchange (IPX), or AppleTalk
- Encapsulation support (such as PPP)
- IP client addressing options (default or dynamic)
- IPX network addressing options
- PPP authentication
- ISDN BRI and PRI configuration

For additional information about configuring asynchronous interfaces, see the chapter “Configuring Asynchronous Lines and Interfaces.”

Group Asynchronous Interfaces

A group asynchronous interface is a parent interface that stores core protocol characteristics and projects them to a specified range of asynchronous interfaces. Asynchronous interfaces clone protocol information from group asynchronous interfaces. No data packets arrive in a group asynchronous interface. By setting up a group asynchronous interface, you also eliminate the need to repeatedly configure identical configuration information across several asynchronous interfaces.

See the “Overview of Modem Interfaces” chapter for more information about group asynchronous interfaces.

Virtual Template Interfaces

A virtual template interface stores protocol configuration information for virtual access interfaces and protocol translation sessions. (See Figure 4.)

Figure 4 Logical Construct for a Virtual Template Interface
Templates for Virtual Access Interfaces

Virtual templates project configuration information to temporary virtual access interfaces triggered by multilink or virtual private dial-up network (VPDN) session events. When a virtual access interface is triggered, the configuration attributes in the virtual template are cloned and the negotiated parameters are applied to the connection.

The following example shows a virtual template interface on a Cisco 7206 router, which is used as a home gateway in a VPDN scenario:

Router# configure terminal
Router(config)# interface virtual-template 1
Router(config-if)# ip unnumbered ethernet 2/1
Router(config-if)# peer default ip address pool cisco-pool
Router(config-if)# ppp authentication chap pap
Router(config-if)# exit
Router(config)# vpdn enable
Router(config)# vpdn incoming isp cisco.com virtual-template 1

Templates for Protocol Translation

Virtual templates are used to simplify the process of configuring protocol translation to tunnel PPP or Serial Line Internet Protocol (SLIP) across X.25, TCP, and LAT networks. You can create a virtual interface template using the `interface virtual-template` command, and you can use it for one-step and two-step protocol translation. When a user dials in through a vty line and a tunnel connection is established, the router clones the attributes of the virtual interface template onto a virtual access interface. This virtual access interface is a temporary interface that supports the protocol configuration specified in the virtual interface template. This virtual access interface is created dynamically and lasts only as long as the tunnel session is active.

The virtual template in the following example explicitly specifies PPP encapsulation. The translation is from X.25 to PPP, which enables tunneling of PPP across an X.25 network.

Router# configure terminal
Router(config)# interface virtual-template 1
Router(config-if)# ip unnumbered ethernet 0
Router(config-if)# peer default ip address 172.18.2.131
Router(config-if)# encapsulation ppp
Router(config-if)# exit
Router(config)# translate x25 5555678 virtual-template 1

For more information, refer to the chapter “Configuring Protocol Translation and Virtual Asynchronous Devices” in the Cisco IOS Terminal Services Configuration Guide.

Logical Interfaces

A logical interface receives and sends data packets and controls physical interfaces. Cisco IOS software provides three logical interfaces used for dial access. These interfaces are described in the following sections:

- **Dialer Interfaces**
- **Virtual Access Interfaces**
- **Virtual Asynchronous Interfaces**
Dialer Interfaces

A dialer interface is a parent interface that stores and projects protocol configuration information that is common to all data (D) channels that are members of a dialer rotary group. Data packets pass through dialer interfaces, which in turn initiate dialing for inbound calls. In most cases, D channels get their core protocol intelligence from dialer interfaces.

Figure 5 shows packets coming into a dialer interface, which contains the configuration parameters common to four D channels (shown as S0:0, S0:1, S0:2, and S0:3). All the D channels are members of the same rotary group. Without the dialer interface configuration, each D channel must be manually configured with identical properties. Dialer interfaces condense and streamline the configuration process.

Figure 5 Dialer Interface and Its Neighboring Components

A dialer interface is user configurable and linked to individual B channels, where it delivers data packets to their physical destinations. Dialer interfaces seize physical interfaces to cause packet delivery. If a dialer interface engages in a multilink session, a dialer interface is in control of a virtual access interface, which in turn controls S0:3 or chassis 2 S0:3, for example. A dialer interface is created with the interface dialer global configuration command.

The following example shows a fully configured dialer interface:

```
Router# configure terminal
Router(config)# interface dialer 0
Router(config-if)# ip unnumbered loopback 0
Router(config-if)# no ip mroutecache
Router(config-if)# encapsulation ppp
Router(config-if)# peer default ip address pool dialin_pool
Router(config-if)# dialer in-band
Router(config-if)# dialer-group 1
Router(config-if)# no fair-queue
Router(config-if)# no cdp enable
Router(config-if)# ppp authentication chap ppp callin
Router(config-if)# ppp multilink
```

All the D channels are members of rotary group 1.
Virtual Access Interfaces

A virtual access interface is a temporary interface that is spawned to terminate incoming PPP streams that have no physical connections. PPP streams, Layer 2 Forwarding Protocol (L2F), and Layer 2 Tunnel Protocol (L2TP) frames that come in on multiple B channels are reassembled on virtual access interfaces. These access interfaces are constructs used to terminate packets.

Virtual access interfaces obtain their set of instructions from virtual interface templates. The attributes configured in virtual templates are projected or cloned to a virtual access interface. Virtual access interfaces are not directly user configurable. These interfaces are created dynamically and last only as long as the tunnels or multilink sessions are active. After the sessions end, the virtual access interfaces disappear.

Figure 6 shows how a virtual access interface functions to accommodate a multilink session event. Two physical interfaces on two different access servers are participating in one multilink call from a remote PC. However, each Cisco AS5300 access server has only one B channel available to receive a call. All other channels are busy. Therefore all four packets are equally dispersed across two separate B channels and two access servers. Each Cisco AS5300 access server receives only half the total packets. A virtual access interface is dynamically spawned upstream on a Cisco 7206 backhaul router to receive the multilink protocol, track the multilink frames, and reassemble the packets. The Cisco 7206 router is configured to be the bundle master, which performs all packet assembly and reassembly for both Cisco AS5300 access servers.

Figure 6 Virtual Access Interfaces Used for Multichassis Multilink Session Events

Cisco IOS Dial Technologies Configuration Guide

DC-9
Virtual Asynchronous Interfaces

A virtual asynchronous interface is created on demand to support calls that enter the router through a nonphysical interface. For example, asynchronous character stream calls terminate or land on nonphysical interfaces. These types of calls include inbound Telnet, LAT, PPP over character-oriented protocols (such as V.120 or X.25), and LAPB-TA and PAD calls. A virtual asynchronous interface is also used to terminate L2F/L2TP tunnels, which are often traveling companions with Multilink protocol sessions. Virtual asynchronous interfaces are not user configurable; rather, they are dynamically created and torn down on demand. A virtual asynchronous line is used to access a virtual asynchronous interface. Figure 7 shows a variety of calls that are terminating on a virtual asynchronous interface. After the calls end, the interface is torn down.

Figure 7 Asynchronous Character Stream Calls Terminating on a Virtual Asynchronous Interface

Circuit-Switched Digital Calls

Circuit-switched digital calls are usually ISDN 56-kbps or 64-kbps data calls that use PPP. These calls are initiated by an ISDN router, access server, or terminal adapter that is connected to a client workstation. Individual synchronous serial digital signal level 0 (DS0) bearer (B) channels are used to transport circuit-switched digital calls across WANs. These calls do not transmit across “old world” lines.

Figure 8 shows a Cisco 1600 series remote office router dialing in to a Cisco 3640 router positioned at a headquarters gateway.
T1 and E1 Controllers

Cisco controllers negotiate the following parameters between an access server and a central office: line coding, framing, clocking, DS0/time-slot provisioning, and signaling.

Time slots are provisioned to meet the needs of particular network scenarios. T1 controllers have 24 time slots, and E1 controllers have 30 time slots. To support traffic flow for one ISDN PRI line in a T1 configuration, use the `pri-group` command. To support traffic flow for analog calls over a channelized E1 line with receive and transmit (E&M—also ear and mouth) signaling, use the `cas-group` command. Most telephone companies do not support provisioning one trunk for different combinations of time-slot services, though this provisioning is supported on Cisco controllers. On a T1 controller, for example, time slots 1 to 10 could run PRI, time slots 11 to 20 could run channel-associated signaling (CAS), and time slots 21 to 24 could support leased-line grouping.

The following example configures one of four T1 controllers on a Cisco AS5300 access server:

```
Router# configure terminal
Router(config)# controller t1 ?
  <0-3>  Controller unit number
Router(config)# controller t1 0
Router(config-controller)# framing esf
Router(config-controller)# linecode b8zs
Router(config-controller)# clock source line primary
Router(config-controller)# pri-group timeslots 1-24
```

This example supports modem calls and circuit-switched digital calls over ISDN PRI.

Non-ISDN Channelized T1 and Channelized E1 Lines

A channelized T1 or channelized E1 line is an analog line that was originally intended to support analog voice calls, but has evolved to support analog data calls. ISDN is not sent across channelized T1 or E1 lines. Channelized T1 and channelized E1 lines are often referred to as CT1 and CE1. These channelized lines are found in “old world,” non-ISDN telephone networks.
The difference between traditional channelized lines (analog) and nonchannelized lines (ISDN) is that channelized lines have no built-in D channel. That is, all 24 channels on a T1 line carry only data. The signaling is in-band or associated to the data channels. Traditional channelized lines do not support digitized data calls (for example, BRI with 2B + D). Channelized lines support a variety of in-band signal types, such as ground start, loop start, wink start, immediate start, E&M, and R2.

Signaling for channelized lines is configured with the `cas-group` controller configuration command. The following example configures E&M group B signaling on a T1 controller:

```bash
Router# configure terminal
Router(config)# controller t1 0
Router(config-controller)# cas-group 1 timeslots 1-24 type ?
   e&m-fgb       E & M Type II FGB
   e&m-fgd       E & M Type II FGD
   e&m-immediate-start E & M Immediate Start
   fxs-ground-start FXS Ground Start
   fxs-loop-start FXS Loop Start
   r1-modified   R1 Modified
   sas-ground-start SAS Ground Start
   sas-loop-start SAS Loop Start
Router(config-controller)# cas-group 1 timeslots 1-24 type e&m-fgb
Router(config-controller)# framing esf
Router(config-controller)# clock source line primary
```

ISDN Service

Cisco routing devices support ISDN BRI and ISDN PRI. Both media types use B channels and D channels. **Figure 9** shows how many B channels and D channels are assigned to each media type.
ISDN BRI

ISDN BRI operates over most of the copper twisted-pair telephone wiring in place. ISDN BRI delivers a total bandwidth of a 144 kbps via three separate channels. Two of the B channels operate at 64 kbps and are used to carry voice, video, or data traffic. The third channel, the D channel, is a 16-kbps signaling channel used to tell the Public Switched Telephone Network (PSTN) how to handle each of the B channels. ISDN BRI is often referred to as “2 B + D.”

Enter the `interface bri` command to bring up and configure a single BRI interface, which is the overseer of the 2 B + D channels. The D channel is not user configurable.

The following example configures an ISDN BRI interface on a Cisco 1600 series router. The `isdn spid` command defines the service profile identifier (SPID) number for both B channels. The SPID number is assigned by the ISDN service provider. Not all ISDN lines have SPIDs.

```
Router# configure terminal
Router(config)# interface bri 0
Router(config-if)# isdn spid1 55598760101
Router(config-if)# isdn spid2 55598770101
Router(config-if)# isdn switch-type basic-ni
Router(config-if)# ip unnumbered ethernet 0
Router(config-if)# dialer map ip 172.168.37.40 name hq 5552053
Router(config-if)# dialer load-threshold 70
Router(config-if)# dialer-group 1
Router(config-if)# encapsulation ppp
Router(config-if)# ppp authentication chap pap callin
Router(config-if)# ppp multilink
Router(config-if)# no shutdown
```

ISDN PRI

ISDN PRI is designed to carry large numbers of incoming ISDN calls at point of presences (POPs) and other large central site locations. All the reliability and performance of ISDN BRI applies to ISDN PRI, but ISDN PRI has 23 B channels running at 64 kbps each and a shared 64 kbps D channel that carries signaling traffic. ISDN PRI is often referred to as “23 B + D” (North America and Japan) or “30 B + D” (rest of the world).

The D channel notifies the central office switch to send the incoming call to particular timeslots on the Cisco access server or router. Each one of the B channels carries data or voice. The D channel carries signaling for the B channels. The D channel identifies if the call is a circuit-switched digital call or an analog modem call. Analog modem calls are decoded and then sent to the onboard modems. Circuit-switched digital calls are directly relayed to the ISDN processor in the router. Enter the `interface serial` command to bring up and configure the D channel, which is user configurable.

Figure 10 shows the logical contents of an ISDN PRI interface used in a T1 network configuration. The logical contents include 23 B channels, 1 D channel, 24 time slots, and 24 virtual serial interfaces (total number of B + D channels).
The following example is for a Cisco AS5300 access server. It configures one T1 controller for ISDN PRI, then configures the neighboring D channel (interface serial 0:23). Controller T1 0 and interface serial 0:23 are both assigned to the first PRI port. The second PRI port is assigned to controller T1 1 and interface serial 1:23, and so on. The second PRI port configuration is not shown in this example. This Cisco AS5300 access server is used as part of a stack group dial-in solution for an Internet service provider.

Router# configure terminal
Router(config)# controller t1 0
Router(config-controller)# framing esf
Router(config-controller)# linecode b8zs
Router(config-controller)# clock source line primary
Router(config-controller)# pri-group timeslots 1-24
Router(config-controller)# exit
Router(config)# interface serial 0:23
Router(config-if)# ip unnumbered Loopback 0
Router(config-if)# ip accounting output-packets
Router(config-if)# no ip mroute-cache
Router(config-if)# encapsulation ppp
Router(config-if)# isdn incoming-voice modem
Router(config-if)# dialer-group 1
Router(config-if)# no fair-queue
Router(config-if)# compress stac
Router(config-if)# no cdp enable
Router(config-if)# ppp authentication chap
Router(config-if)# ppp multilink
Router(config-if)# netbios nbf
Line Types

This section describes the different line types used for dial access. It also describes the relationship between lines and interfaces.

Note

Cisco devices have four types of lines: console, auxiliary, asynchronous, and virtual terminal. Different routers have different numbers of these line types. Refer to the hardware and software configuration guides that shipped with your device for exact configurations.

Table 3 shows the types of lines that can be configured.

Table 3 **Available Line Types**

<table>
<thead>
<tr>
<th>Line Type</th>
<th>Interface</th>
<th>Description</th>
<th>Numbering Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON or CTY</td>
<td>Console</td>
<td>Typically used to log in to the router for configuration purposes.</td>
<td>Line 0.</td>
</tr>
<tr>
<td>AUX</td>
<td>Auxiliary</td>
<td>EIA/TIA-232 data terminal equipment (DTE) port used as a backup (tty) asynchronous port. Cannot be used as a second console port.</td>
<td>Last tty line number plus 1.</td>
</tr>
<tr>
<td>tty</td>
<td>Asynchronous</td>
<td>Same as asynchronous interface. Used typically for remote-node dial-in sessions that use such protocols as SLIP, PPP, AppleTalk Remote Access (ARA), and XRemote.</td>
<td>The numbering widely varies between platforms. This number is equivalent to the maximum number of modems or asynchronous interfaces supported by your access server or router.</td>
</tr>
<tr>
<td>vty</td>
<td>Virtual asynchronous</td>
<td>Used for incoming Telnet, LAT, X.25 PAD, and protocol translation connections into synchronous ports (such as Ethernet and serial interfaces) on the router.</td>
<td>Last tty line number plus 2 through the maximum number of vty lines specified.</td>
</tr>
</tbody>
</table>

1. Enter the `interface line tty ?` command to view the maximum number of tty lines supported.
2. Increase the number of vty lines on a router using the `line vty` global configuration command. Delete vty lines with the `no line vty line-number` command. The `line vty` command accepts any line number larger than 5 up to the maximum number of lines supported by your router with its current configuration. Enter the `interface line vty ?` command to view the maximum number of vty lines supported.

Use the `show line` command to see the status of each of the lines available on a router. (See Figure 11.)
Relationship Between Lines and Interfaces

The following sections describe the relationship between lines and interfaces:

- **Asynchronous Interfaces and Physical Terminal Lines**
- **Synchronous Interfaces and Virtual Terminal Lines**

Asynchronous Interfaces and Physical Terminal Lines

Asynchronous interfaces correspond to physical terminal lines. Commands entered in asynchronous interface mode let you configure protocol-specific parameters for asynchronous interfaces; commands entered in line configuration mode let you configure the physical aspects of the line port.
For example, to enable IP resources to dial in to a network through a Cisco 2500 series access server, configure the lines and asynchronous interfaces as follows.

- Configure the physical aspect of a line that leads to a port. You might enter the following commands to configure lines 1 through 16 (asynchronous physical terminal lines on a Cisco 2511 access server):

 line 1 16
 login local
 modem inout
 speed 115200
 flowcontrol hardware
 ! Configures the line to autosense PPP; physical line attribute.
 autoselect ppp

- On asynchronous interface 1, you configure your protocol-specific commands. You might enter the following commands:

 interface async 1
 encapsulation ppp
 async mode interactive
 async dynamic address
 async dynamic routing
 async default ip address 192.168.16.132
 ppp authentication chap

The remote node services SLIP, PPP, and XRemote are configured in asynchronous interface mode. ARA is configured in line configuration mode on virtual terminal lines or physical terminal lines.

Synchronous Interfaces and Virtual Terminal Lines

Virtual terminal lines provide access to the router through a synchronous interface. Virtual terminal lines do not correspond to synchronous interfaces in the same way that physical terminal lines correspond to asynchronous interfaces because vty lines are created dynamically on the router, whereas physical terminal lines are static physical ports. When a user connects to the router on a vty line, that user is connecting into a virtual port on an interface. You can have multiple virtual ports for each synchronous interface.

For example, several Telnet connections can be made to an interface (such as an Ethernet or serial interface).

The number of virtual terminal lines available on a router is defined using the `line vty number-of-lines` global configuration command.
Encapsulation Types

Synchronous serial interfaces default to High-Level Data Link Control (HDLC) encapsulation, and asynchronous serial interfaces default to SLIP encapsulation. Cisco IOS software provides a long list of encapsulation methods that can be set on the interface to change the default encapsulation method. See the Cisco IOS Interface Command Reference for a complete list and description of these encapsulation methods.

The following list summarizes the encapsulation commands available for serial interfaces used in dial configurations:

- `encapsulation frame-relay`—Frame Relay
- `encapsulation hdlc`—HDLC protocol
- `encapsulation lapb`—X.25 LAPB DTE operation
- `encapsulation ppp`—PPP
- `encapsulation slip`—SLIP

To use SLIP or PPP encapsulation, the router or access server must be configured with an IP routing protocol or with the `ip host-routing` command.
Configuring Asynchronous Lines and Interfaces

This chapter describes how to configure asynchronous line features in the following main sections:

- How to Configure Asynchronous Interfaces and Lines
- How to Configure Other Asynchronous Line and Interface Features
- Configuration Examples for Asynchronous Interfaces and Lines

Perform these tasks, as required, for your particular network.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

How to Configure Asynchronous Interfaces and Lines

To configure an asynchronous interface, perform the tasks described in the following sections as required:

- Configuring a Typical Asynchronous Interface (As required)
- Creating a Group Asynchronous Interface (As required)
- Configuring Asynchronous Rotary Line Queueing (As required)
- Configuring Autoselect (As required)
Configuring a Typical Asynchronous Interface

To configure an asynchronous interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# interface async number</td>
<td>Brings up a single asynchronous interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2: Router(config-if)# description description</td>
<td>Provides a description for the interface.</td>
</tr>
<tr>
<td>Step 3: Router(config-if)# ip address address mask</td>
<td>Specifies an IP address.</td>
</tr>
<tr>
<td>Step 4: Router(config-if)# encapsulation ppp</td>
<td>Enables PPP to run on the asynchronous interfaces in the group.</td>
</tr>
<tr>
<td>Step 5: Router(config-if)# async default routing</td>
<td>Enables the router to pass routing updates to other routers over the AUX port configured as an asynchronous interface.</td>
</tr>
<tr>
<td>Step 6: Router(config-if)# async mode dedicated</td>
<td>Places a line into dedicated asynchronous mode using Serial Line Internet Protocol (SLIP) or PPP encapsulation.</td>
</tr>
<tr>
<td>Step 7: Router(config-if)# dialer in-band</td>
<td>Specifies that dial-on-demand routing (DDR) is to be supported.</td>
</tr>
<tr>
<td>Step 8: Router(config-if)# dialer map protocol next-hop-address</td>
<td>Configures a serial interface to call one or multiple sites or to receive calls from multiple sites.</td>
</tr>
<tr>
<td>Step 9: Router(config-if)# dialer-group</td>
<td>Controls access by configuring an interface to belong to a specific dialing group.</td>
</tr>
<tr>
<td>Step 10: Router(config-if)# ppp authentication chap pap list-name</td>
<td>Enables Challenge Handshake Authentication Protocol (CHAP) and Password Authentication Protocol (PAP) authentication on the interface. Replace the list-name variable with a specified authentication list name.</td>
</tr>
<tr>
<td>Step 11: Router(config-if)# exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>

1. To create a string used to name the following list of authentication methods tried when a user logs in, refer to the `aaa authentication ppp` command. Authentication methods include RADIUS, TACACS+, and Kerberos.

The “Interface and Line Configuration Examples” and “Asynchronous Interface As the Only Network Interface Example” sections later in this chapter contain examples of how to configure an asynchronous interface.

Monitoring and Maintaining Asynchronous Connections

This section describes the following monitoring and maintenance tasks that you can perform on asynchronous interfaces:

- Monitoring and maintaining asynchronous activity
- Debugging asynchronous interfaces
- Debugging PPP
To monitor and maintain asynchronous activity, use the following commands in privileged EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# clear line line-number</td>
<td>Returns a line to its idle state.</td>
</tr>
<tr>
<td>Router# show async bootp</td>
<td>Displays parameters that have been set for extended BOOTP requests.</td>
</tr>
<tr>
<td>Router# show async status</td>
<td>Displays statistics for asynchronous interface activity.</td>
</tr>
<tr>
<td>Router# show line [line-number]</td>
<td>Displays the status of asynchronous line connections.</td>
</tr>
</tbody>
</table>

To debug asynchronous interfaces, use the following debug command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# debug async {framing</td>
<td>state</td>
</tr>
</tbody>
</table>

To debug PPP links, use the following debug commands in privileged EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# debug ppp negotiation</td>
<td>Enables debugging of PPP protocol negotiation process.</td>
</tr>
<tr>
<td>Router# debug ppp error</td>
<td>Displays PPP protocol errors.</td>
</tr>
<tr>
<td>Router# debug ppp packet</td>
<td>Displays PPP packets sent and received.</td>
</tr>
<tr>
<td>Router# debug ppp chap</td>
<td>Displays errors encountered during remote or local system authentication.</td>
</tr>
</tbody>
</table>

Creating a Group Asynchronous Interface

Create a group asynchronous interface to project a set of core protocol characteristics to a range of asynchronous interfaces. Configuring the asynchronous interfaces as a group saves you time. Analog modem calls cannot enter the access server without this configuration.

To configure a group asynchronous interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface async number</td>
<td>Brings up a single asynchronous interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# ip unnumbered loopback number</td>
<td>Configures the asynchronous interfaces as unnumbered and assigns the IP address of the loopback interface to them to conserve IP addresses.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# encapsulation ppp</td>
<td>Enables PPP to run on the asynchronous interfaces in the group.</td>
</tr>
</tbody>
</table>
Verifying the Group Interface Configuration

To verify the group interface configuration and check if one of the asynchronous interfaces is up, use the `show interface async` command:

```
Router# show interface async 1
```

Async1 is up, line protocol is up
modem(slot/port)=1/0, csm_state(0x00000204)=CSM_IC4_CONNECTED, bchan_num=18
modem_status(0x0002): VDEV_STATUS_ACTIVE_CALL.

Hardware is Async Serial
Interface is unnumbered. Using address of FastEthernet0 (10.1.1.10)
MTU 1500 bytes, BW 115 Kbit, DLY 100000 usec, rely 255/255, load 1/255
Encapsulation PPP, loopback not set, keepalive not set
DTR is pulsed for 5 seconds on reset
LCP Open
Open: IPCP
Last input 00:00:00, output 00:00:00, output hang never
Last clearing of "show interface" counters never
Queueing strategy: fifo
Output queue 0/5, 0 drops; input queue 1/5, 0 drops
5 minute input rate 37000 bits/sec, 87 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
31063 packets input, 1459806 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
33 packets output, 1998 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 output buffer failures, 0 output buffers swapped out
0 carrier transitions
If you are having trouble, enter one of the following `debug` commands and then send a call into the access server. Interpret the output and make configuration changes accordingly.

- `undebug all`
- `debug ppp negotiation`
- `debug ppp authentication`
- `debug modem`
- `debug ip peer`

Router# `undebug all`
All possible debugging has been turned off
Router# `debug ppp negotiation`
PPP protocol negotiation debugging is on
Router# `debug ppp authentication`
PPP authentication debugging is on
Router# `debug modem`
Modem control/process activation debugging is on
Router# `debug ip peer`
IP peer address activity debugging is on
Router# `show debug`

General OS:
Modem control/process activation debugging is on
Generic IP:
IP peer address activity debugging is on
PPP:
PPP authentication debugging is on
PPP protocol negotiation debugging is on

Router# *Mar 1 21:34:56.958: tty4: DSR came up
*Mar 1 21:34:56.962: tty4: Modem: IDLE->READY
*Mar 1 21:34:56.970: tty4: EXEC creation
*Mar 1 21:34:56.978: tty4: set timer type 10, 30 seconds
*Mar 1 21:34:59.722: tty4: Autoselect(2) sample 7E
*Mar 1 21:34:59.726: tty4: Autoselect(2) sample 7EFF
*Mar 1 21:34:59.730: tty4: Autoselect(2) sample 7EFF7D
*Mar 1 21:34:59.730: tty4: Autoselect(2) sample 7EFF7D23
*Mar 1 21:34:59.734: tty4 Autoselect cmd: ppp negotiate
*Mar 1 21:34:59.746: tty4: EXEC creation
*Mar 1 21:34:59.746: tty4: create timer type 1, 600 seconds
*Mar 1 21:34:59.790: ip_get_pool: As4: returning address = 172.20.1.101
*Mar 1 21:34:59.794: tty4: destroy timer type 1 (OK)
*Mar 1 21:34:59.794: tty4: destroy timer type 0
*Mar 1 21:35:01.798: %LINK-3-UPDOWN: Interface Async4, changed state to up
*Mar 1 21:35:01.834: As4 PPP: Treating connection as a dedicated line
*Mar 1 21:35:01.838: As4 PPP: Phase is ESTABLISHING, Active Open
*Mar 1 21:35:01.842: As4 LCP: 0 CONFREQ [Closed] id 1 len 25
*Mar 1 21:35:01.846: As4 LCP: ACCM 0x000A0000 (0x0206000A0000)
*Mar 1 21:35:01.850: As4 LCP: AuthProto CHAP (0x0305C22305)
*Mar 1 21:35:01.854: As4 LCP: MagicNumber 0x64E923A8 (0x050664E923A8)
*Mar 1 21:35:01.854: As4 LCP: PFC (0x0702)
*Mar 1 21:35:01.858: As4 LCP: ACFC (0x0802)
*Mar 1 21:35:02.718: As4 LCP: I CONFREQ [REQsent] id 3 len 23
*Mar 1 21:35:02.722: As4 LCP: ACCM 0x000A0000 (0x0206000A0000)
*Mar 1 21:35:02.726: As4 LCP: MagicNumber 0x00472467 (0x050600472467)
*Mar 1 21:35:02.726: As4 LCP: PFC (0x0702)
*Mar 1 21:35:02.730: As4 LCP: ACFC (0x0802)
*Mar 1 21:35:02.730: As4 LCP: Callback 6 (0x00D0306)
*Mar 1 21:35:02.738: As4 LCP: 0 CONFREQ [REQsent] id 3 len 7
*Mar 1 21:35:02.738: As4 LCP: Callback 6 (0x00D0306)
*Mar 1 21:35:02.850: As4 LCP: I CONFREQ [REQsent] id 4 len 20
Configuring Asynchronous Lines and Interfaces

How to Configure Asynchronous Interfaces and Lines

*Mar 1 21:35:02.854: As4 LCP: ACCM 0x000A0000 (0x0206000A0000)
*Mar 1 21:35:02.854: As4 LCP: MagicNumber 0x00472467 (0x050600472467)
*Mar 1 21:35:02.858: As4 LCP: PFC (0x0702)
*Mar 1 21:35:02.858: As4 LCP: ACFC (0x0802)
*Mar 1 21:35:02.862: As4 LCP: O CONFACK [REQsent] id 4 len 20
*Mar 1 21:35:02.866: As4 LCP: ACCM 0x000A0000 (0x0206000A0000)
*Mar 1 21:35:02.870: As4 LCP: MagicNumber 0x00472467 (0x050600472467)
*Mar 1 21:35:02.870: As4 LCP: PFC (0x0702)
*Mar 1 21:35:02.874: As4 LCP: ACFC (0x0802)
*Mar 1 21:35:03.842: As4 LCP: TIMEout: State ACKsent
*Mar 1 21:35:03.842: As4 LCP: O CONFREQ [ACKsent] id 2 len 25
*Mar 1 21:35:03.846: As4 LCP: ACCM 0x000A0000 (0x0206000A0000)
*Mar 1 21:35:03.850: As4 LCP: AuthProto CHAP (0x0305C22305)
*Mar 1 21:35:03.854: As4 LCP: MagicNumber 0x64E923A8 (0x050664E923A8)
*Mar 1 21:35:03.858: As4 LCP: PFC (0x0702)
*Mar 1 21:35:03.858: As4 LCP: ACFC (0x0802)
*Mar 1 21:35:03.962: As4 LCP: I CONFACK [ACKsent] id 2 len 25
*Mar 1 21:35:03.966: As4 LCP: ACCM 0x000A0000 (0x0206000A0000)
*Mar 1 21:35:03.970: As4 LCP: AuthProto CHAP (0x0305C22305)
*Mar 1 21:35:03.974: As4 LCP: MagicNumber 0x64E923A8 (0x050664E923A8)
*Mar 1 21:35:03.974: As4 LCP: PFC (0x0702)
*Mar 1 21:35:03.978: As4 LCP: ACFC (0x0802)
*Mar 1 21:35:03.978: As4 LCP: State is Open
*Mar 1 21:35:03.978: As4 PPP: Phase is AUTHENTICATING, by this end
*Mar 1 21:35:03.982: As4 CHAP: O CHALLENGE id 1 len 26 from "nas-1"
*Mar 1 21:35:04.162: As4 CHAP: I RESPONSE id 1 len 26 from "krist"
*Mar 1 21:35:04.182: As4 CHAP: O SUCCESS id 1 len 4
*Mar 1 21:35:04.186: As4 PPP: Phase is UP
*Mar 1 21:35:04.190: As4 IPCP: O CONFREQ [Not negotiated] id 1 len 10
*Mar 1 21:35:04.194: As4 IPCP: Address 172.20.1.2 (0x0306AC140102)
*Mar 1 21:35:04.202: As4 CDPCP: O CONFREQ [Closed] id 1 len 4
*Mar 1 21:35:04.202: As4 IPCP: I CONFREQ [REQsent] id 1 len 40
*Mar 1 21:35:04.208: As4 IPCP: CompressType VJ 15 slots CompressSlotID (0x0206002D0F01)
*Mar 1 21:35:04.208: As4 IPCP: Address 0.0.0.0 (0x810600000000)
*Mar 1 21:35:04.208: As4 IPCP: PrimaryDNS 0.0.0.0 (0x810600000000)
*Mar 1 21:35:04.208: As4 IPCP: PrimaryWINS 0.0.0.0 (0x820600000000)
*Mar 1 21:35:04.208: As4 IPCP: SecondaryDNS 0.0.0.0 (0x830600000000)
*Mar 1 21:35:04.208: As4 IPCP: SecondaryWINS 0.0.0.0 (0x840600000000)
*Mar 1 21:35:04.212: As4 IPCP: O CONFREQ [Not negotiated] id 1 len 10
*Mar 1 21:35:04.216: As4 IPCP: Address 172.20.1.2 (0x0306AC140102)
*Mar 1 21:35:04.222: As4 CCP: MS-PPC supported bits 0x00000001 (0x120600000001)
*Mar 1 21:35:04.222: As4 CCP: Stacker history 1 check mode EXTENDED (0x110500104)
*Mar 1 21:35:04.310: As4 CCP: I CONFREQ [REQsent] id 1 len 15
*Mar 1 21:35:04.310: As4 CCP: MS-PPC supported bits 0x00000001 (0x120600000001)
*Mar 1 21:35:04.310: As4 CCP: Stacker history 1 check mode EXTENDED (0x110500104)
*Mar 1 21:35:04.314: As4 CCP: I CONFREQ [Not negotiated] id 1 len 15
*Mar 1 21:35:04.314: As4 CCP: MS-PPC supported bits 0x00000001 (0x120600000001)
*Mar 1 21:35:04.314: As4 CCP: Stacker history 1 check mode EXTENDED (0x110500104)
*Mar 1 21:35:04.322: As4 LCP: O PROTREJ [Open] id 3 len 21 protocol CCP
*Mar 1 21:35:04.326: As4 LCP: (0x80FD010100F1206000000011050001)
*Mar 1 21:35:04.330: As4 LCP: (0x04)
*Mar 1 21:35:04.334: As4 IPCP: I CONFACK [REQsent] id 1 len 10
*Mar 1 21:35:04.338: As4 IPCP: Address 172.20.1.2 (0x0306AC140102)
*Mar 1 21:35:04.342: As4 LCP: I PROTREJ [Open] id 5 len 10 protocol CDPCP (0x820701010004)
*Mar 1 21:35:04.342: As4 CDPCP: State is Closed
*Mar 1 21:35:05.186: %LINEPROTO-5-UPDOWN: Line protocol on Interface Async4, changed state to up
*Mar 1 21:35:05.190: As4 PPP: Unsupported or un-negotiated protocol. Link cdp
*Mar 1 21:35:05.190: As4 PPP: Trying to negotiate NCP for Link cdp
*Mar 1 21:35:05.194: As4 CDPCP: State is Closed
*Mar 1 21:35:05.198: As4 CDPCP: TIMEout: State Closed
*Mar 1 21:35:05.202: As4 CDPCP: State is Listen
*Mar 1 21:35:06.202: As4 IPCP: TIMEout: State ACKrcvd

Cisco IOS Dial Technologies Configuration Guide
Configuring Asynchronous Rotary Line Queueing

The Cisco IOS Asynchronous Rotary Line Queueing feature allows Telnet connection requests to busy asynchronous rotary groups to be queued so that users automatically obtain the next available line, rather than needing to try repeatedly to open a Telnet connection. The Cisco IOS software sends a periodic message to the user to update progress in the connection queue.

This feature allows users to make effective use of the asynchronous rotary groups on a Cisco router to access legacy mainframes or other serial devices with a limited number of asynchronous ports that might be used by a large number of users. Users that are unable to make a Telnet connection on the first attempt are assured of eventual success in an orderly process. They are no longer required to guess when a line might be available and to retry manually again and again.
Connections are authenticated using the method specified for the line configurations for the asynchronous rotary group. If a connection is queued, authentication is done prior to queueing and no authentication is done when the connection is later established.

Make sure you comply with the following requirements when configuring asynchronous rotary line queueing:

- Configure more virtual terminal lines than will ever be used by waiting asynchronous rotary connection attempts. Even when the queue is at its maximum, there must be at least one virtual terminal line available so that system operators or network administrators can use Telnet to access the router to show, debug, or configure system performance.
- When adding lines to a rotary group, all lines must be either queued or not queued. A mixture of queued and unenqueued lines in the same rotary group is not supported and can result in unexpected behavior.
- All lines within a queued rotary group need to use the same authentication method. Using different authentication methods within the same rotary group can result in unexpected behavior.

To configure asynchronous rotary line queueing, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router (config)# line [aux</td>
<td>console</td>
</tr>
<tr>
<td>Step 2 Router(config-line)# rotary group [queued</td>
<td>round-robin]</td>
</tr>
</tbody>
</table>

See the “Rotary Group Examples” section for configuration examples.

Verifying Asynchronous Rotary Line Queueing

To verify operation of asynchronous rotary line queueing, perform the following tasks:

- Use the `show line` command in EXEC mode to check the status of the vty lines.
- Use the `show line async-queue` command in EXEC mode to check the status of queued connection requests.

Troubleshooting Asynchronous Rotary Lines

If asynchronous rotary line queueing is not operating correctly, use the following `debug` commands in privileged EXEC mode to determine where the problem may lie:

- debug async async-queue
- debug ip tcp transactions
- debug modem

Refer to the *Cisco IOS Debug Command Reference* for information about these commands.
Monitoring and Maintaining Asynchronous Rotary Line Queues

To display queued lines and to remove lines from the queue, use the following commands in EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show line async-queue rotary-group</td>
<td>Displays which lines are queued.</td>
</tr>
<tr>
<td>Router# clear line async-queue rotary-group</td>
<td>Clears all rotary queues or the specified rotary queue. If the rotary-group argument is not specified, all rotary queues are removed.</td>
</tr>
</tbody>
</table>

Configuring Autoselect

Autoselect is used by the access server to sense the protocol being received on an incoming line and to launch the appropriate protocol. Autoselect can be used for AppleTalk Remote Access (ARA), PPP, or SLIP.

When using Autoselect, “login” authentication is bypassed, so if security is required, it must be performed at the protocol level, that is, the AppleTalk Remote Access Protocol (ARAP) or PPP authentication. SLIP does not offer protocol layer authentication.

To configure the Cisco IOS software to allow an ARA, PPP, or SLIP session to start automatically, use the following command in line configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-line)# autoselect {arap</td>
<td>ppp</td>
</tr>
</tbody>
</table>

The autoselect command enables the Cisco IOS software to start a process automatically when a start character is received.

The autoselect command bypasses the login prompt and enables the specified session to begin automatically. However, when the autoselect command is entered with the during login keyword, the username or password prompt appears without the need to press the Return key; thus “login” users will get a prompt right away without needing to press the Return key. While the username or password prompt is displayed, you can choose either to answer these prompts or to send packets from an autoselected protocol.

Normally a router avoids line and modem noise by clearing the initial data received within the first one or two seconds. However, when the autoselect PPP feature is configured, the router flushes characters initially received and then waits for more traffic. This flush causes timeout problems with applications that send only one carriage return. To ensure that the input data sent by a modem or other asynchronous device is not lost after line activation, enter the flush-at-activation line configuration command.

Note

When the autoselect command is used, the activation character should be set to the default Return, and exec-character-bits should be set to 7. If you change these defaults, the application cannot recognize the activation request.

See the “High-Density Dial-In Solution Using Autoselect and EXEC Control Example” section for an example that makes use of the autoselect feature.
Verifying Autoselect PPP

The following trace appears when the `debug modem` and `debug ppp negotiation` commands are enabled. As PPP calls pass through the access server, you should see this output.

When autoselect is used, “login” authentication is bypassed. If security is required, it must be performed at the protocol level (that is, ARAP or PPP authentication). SLIP does not offer protocol layer authentication.

```
22:21:02: TTY1: DSR came up
22:21:02: tty1: Modem: IDLE->READY
22:21:02: TTY1: Autoselect started
22:21:05: TTY1: Autoselect sample 7E
22:21:05: TTY1: Autoselect sample 7EFF
22:21:05: TTY1: Autoselect sample 7EFF7D
22:21:05: TTY1: Autoselect cmd: ppp default
22:21:05: TTY1: EXEC creation
%LINK-3-UPDOWN: Interface Async1, changed state to up
22:21:07: ppp: sending CONFREQ, type = 2 (CI_ASYNCMAP), value = A0000
22:21:07: ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 23BE13AA
22:21:08: PPP Async1: state = REQSENT fsm_rconfack(0xC021): rcvd id 0x11
22:21:08: ppp: config ACK received, type = 2 (CI_ASYNCMAP), value = A0000
22:21:08: ppp: config ACK received, type = 5 (CI_MAGICNUMBER), value = 23BE13AA
22:21:08: ppp: config ACK received, type = 7 (CI_PCOMPRESSION)
22:21:08: ppp: config ACK received, type = 8 (CI_ACCOMPRESSION)
22:21:08: PPP Async1: received config for type = 0x2 (ASYNCMAP) value = 0x0 acknowledged
22:21:08: PPP Async1: received config for type = 0x5 (MAGICNUMBER) value = 0x2A acknowledged
22:21:08: PPP Async1: received config for type = 0x7 (PCOMPRESSION) acknowledged
22:21:08: PPP Async1: received config for type = 0x8 (ACCOMPRESSION) acknowledged
22:21:08: ipcp: sending CONFREQ, type = 3 (CI_ADDRESS), Address = 172.16.1.1
22:21:08: ipcp: Negotiate IP address: her address 0.0.0.0 (NAK with address 172.16.1.100) (NAK)
22:21:08: ppp Async1: Negotiate IP address: her address 0.0.0.0 (NAK with address 172.16.1.100) (NAK)
22:21:08: ppp Async1: Negotiate IP address: her address 0.0.0.0 (NAK with address 172.16.1.100) (NAK)
22:21:08: ppp Async1: Negotiate IP address: her address 0.0.0.0 (NAK with address 172.16.1.100) (NAK)
```

Verifying Autoselect ARAP

The following trace appears when the `debug modem` and `debug arap internal` commands are enabled. As ARAP version 2.0 calls pass through the access server, this output is displayed.

```
20:45:11: TTY3: DSR came up
20:45:11: tty3: Modem: IDLE->READY
20:45:11: TTY3: EXEC creation
20:45:11: TTY3: Autoselect(2) sample 1
20:45:11: TTY3: Autoselect(2) sample 11B
20:45:12: TTY3: Autoselect(2) sample 11B02
20:45:18: ARAP: --------- SRVRSVERSION ---------
20:45:19: ARAP: --------- ACKING 0 ---------
20:45:19: ARAP: --------- AUTH_CHALLENGE ---------
20:45:21: ARAP: --------- ACKING 1 ---------
20:45:21: ARAP: --------- AUTH_RESPONSE ---------
20:45:21: ARAP: --------- STARTINFOMREAD ---------
20:45:22: ARAP: --------- ACKING 2 ---------
22:45:22: ARAP: --------- ZONELISTINFO ---------
```
How to Configure Other Asynchronous Line and Interface Features

This section describes the following asynchronous line and interface configurations:

- Configuring the Auxiliary (AUX) Port
- Establishing and Controlling the EXEC Process
- Enabling Routing on Asynchronous Interfaces
- Configuring Dedicated or Interactive PPP and SLIP Sessions
- Conserving Network Addresses
- Using Advanced Addressing Methods for Remote Devices
- Optimizing Available Bandwidth

Configuring the Auxiliary (AUX) Port

The AUX (auxiliary) port is typically configured as an asynchronous serial interface on routers without built-in asynchronous interfaces. To configure the AUX port as an asynchronous interface, configure it first as an auxiliary line with the `line aux 1` global configuration command.

The AUX port sends a data terminal ready (DTR) signal only when a Telnet connection is established. The auxiliary port does not use request to send/clear to send (RTS/CTS) handshaking for flow control. To understand the differences between standard asynchronous interfaces and AUX ports configured as an asynchronous interface, refer to Table 4. To enable the auxiliary port, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# line aux line-number</td>
<td>Enables the auxiliary serial DTE port.</td>
</tr>
</tbody>
</table>
You cannot use the auxiliary (AUX) port as a second console port. To use the AUX port as a console port, you must order a special cable from your technical support personnel.

On an access server, you can configure any of the available asynchronous interfaces (1 through 8, 16, or 48). The auxiliary port (labeled AUX on the back of the product) can also be configured as an asynchronous serial interface, although performance on the AUX port is much slower than on standard asynchronous interfaces and the port does not support some features.

Table 4 illustrates why asynchronous interfaces permit substantially better performance than AUX ports configured as asynchronous interfaces.

Table 4 Differences Between the Asynchronous Port and the Auxiliary (AUX) Port

<table>
<thead>
<tr>
<th>Feature</th>
<th>Asynchronous Interface</th>
<th>Auxiliary Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum speed</td>
<td>115200 bps</td>
<td>38400 bps</td>
</tr>
<tr>
<td>DMA buffering support¹</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PPP framing on chip²</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IP fast switching³</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

1. Direct Memory Access (DMA) buffering moves data packets directly to and from system memory without interrupting the main CPU. This process removes overhead from the CPU and increases overall system performance.

2. PPP framing on a hardware chip removes overhead from the CPU on the router, which enables the router to sustain 115200 bps throughput on all asynchronous ports simultaneously.

3. After the destination of the first IP packet is added to the fast switching cache, it is fast switched to and from other interfaces with minimal involvement from the main processor.

On routers without built-in asynchronous interfaces, only the AUX port can be configured as an asynchronous serial interface. To configure the AUX port as an asynchronous interface, you must also configure it as an auxiliary line with the `line aux 1` command. Access servers do not have this restriction. Use the line command with the appropriate line configuration commands for modem control, such as speed.

Only IP packets can be sent across lines configured for SLIP. PPP supports transmission of IP, Internet Packet Exchange (IPX), and AppleTalk packets on an asynchronous serial interface.

See the “Line AUX Configuration Example” section for an example that shows how to configure the AUX port.

Establishing and Controlling the EXEC Process

By default, the Cisco IOS software starts an EXEC process on all lines. However, you can control EXEC processes, as follows:

- Turn the EXEC process on or off. (A serial printer, for example, should not have an EXEC session started.)
- Set the idle terminal timeout interval.

The EXEC command interpreter waits for a specified amount of time to receive user input. If no input is detected, the EXEC facility resumes the current connection. If no connections exist, it returns the terminal to the idle state and disconnects the incoming connection.
To control the EXEC process, use the following commands in line configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>Router(config-line)# exec</code></td>
<td>Turns on EXEC processes.</td>
</tr>
<tr>
<td>Step 2: <code>Router(config-line)# exec-timeout minutes [seconds]</code></td>
<td>Sets the idle terminal timeout interval.</td>
</tr>
</tbody>
</table>

See the “High-Density Dial-In Solution Using Autoselect and EXEC Control Example” section for an example of configuring control over the EXEC process.

Enabling Routing on Asynchronous Interfaces

To route IP packets on an asynchronous interface, use one of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# async dynamic routing</code></td>
<td>Configures an asynchronous interface for dynamic routing. Use this command to manually bring up PPP from an EXEC session.</td>
</tr>
<tr>
<td><code>Router(config-if)# async default routing</code></td>
<td>Automatically configures an asynchronous interface for routing. Use this command to enable two routers to communicate over an asynchronous dial backup link.</td>
</tr>
</tbody>
</table>

The `async dynamic routing` command routes IP packets on an asynchronous interface, which permits you to enable the Interior Gateway Routing Protocol (IGRP), Routing Information Protocol (RIP), and Open Shortest Path First (OSPF) routing protocols for use when the user makes a connection using the `ppp` or `slip` EXEC commands. The user must, however, specify the `/routing` keyword at the SLIP or PPP command line.

For asynchronous interfaces in interactive mode, the `async default routing` command causes the `ppp` and `slip` EXEC commands to be interpreted as though the `/route` switch had been included in the command. For asynchronous interfaces in dedicated mode, the `async dynamic routing` command enables routing protocols to be used on the line. Without the `async default routing` command, there is no way to enable the use of routing protocols automatically on a dedicated asynchronous interface.

See the following sections for examples of enabling routing on asynchronous interfaces:
- Asynchronous Interface As the Only Network Interface Example
- IGRP Configuration Example

Configuring Dedicated or Interactive PPP and SLIP Sessions

You can configure one or more asynchronous interfaces on your access server (and one on a router) to be in dedicated network interface mode. In dedicated mode, an interface is automatically configured for SLIP or PPP connections. There is no user prompt or EXEC level, and no end-user commands are required to initiate remote-node connections. If you want a line to be used only for SLIP or PPP connections, configure the line for dedicated mode.
In interactive mode, a line can be used to make any type of connection, depending on the EXEC command entered by the user. For example, depending on its configuration, the line could be used for Telnet or XRemote connections, or SLIP or PPP encapsulation. The user is prompted for an EXEC command before a connection is initiated.

You can configure an asynchronous interface to be in dedicated network mode. When the interface is configured for dedicated mode, the end user cannot change the encapsulation method, address, or other parameters.

To configure an interface for dedicated network mode or to return it to interactive mode, use one of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# async mode dedicated</td>
<td>Places the line into dedicated asynchronous network mode.</td>
</tr>
<tr>
<td>Router(config-if)# async mode interactive</td>
<td>Returns the line to interactive mode.</td>
</tr>
</tbody>
</table>

By default, no asynchronous mode is configured. In this state, the line is not available for inbound networking because the SLIP and PPP connections are disabled.

See the “Dedicated Asynchronous Interface Configuration Example” section for an example of how to configure a dedicated asynchronous interface.

Conserving Network Addresses

When asynchronous routing is enabled, you might need to conserve network addresses by configuring the asynchronous interfaces as unnumbered. An unnumbered interface does not have an address. Network resources are therefore conserved because fewer network numbers are used and routing tables are smaller.

To configure an unnumbered interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ip unnumbered type number</td>
<td>Conserves IP addresses by configuring the asynchronous interfaces as unnumbered, and assigns the IP address of the interface type that you want to leverage.</td>
</tr>
</tbody>
</table>

Whenever the unnumbered interface generates a packet (for example, a routing update), it uses the address of the specified interface as the source address of the IP packet. It also uses the address of the specified interface to determine which routing processes are sending updates over the unnumbered interface.

You can use the IP unnumbered feature even if the system on the other end of the asynchronous link does not support it. The IP unnumbered feature is transparent to the other end of the link because each system bases its routing activities on information in the routing updates it receives and on its own interface address.

See the “Network Address Conservation Using the ip unnumbered Command Example” section for an example of how to conserve network addresses.
Using Advanced Addressing Methods for Remote Devices

You can control whether addressing is dynamic (the user specifies the address at the EXEC level when making the connection) or whether default addressing is used (the address is forced by the system). If you specify dynamic addressing, the router must be in interactive mode and the user will enter the address at the EXEC level.

It is common to configure an asynchronous interface to have a default address and to allow dynamic addressing. With this configuration, the choice between the default address or dynamic addressing is made by the users when they enter the `slip` or `ppp` EXEC command. If the user enters an address, it is used, and if the user enters the `default` keyword, the default address is used.

This section describes the following optional tasks:

- Assigning a Default Asynchronous Address
- Allowing an Asynchronous Address to Be Assigned Dynamically

Assigning a Default Asynchronous Address

To assign a permanent default asynchronous address, use the following command in interface configuration mode:

```
Router(config-if)# peer default ip address ip-address
```

Use the `no` form of this command to disable the default address. If the server has been configured to authenticate asynchronous connections, you are prompted for a password after you enter the `slip default` or `ppp default` EXEC command before the line is placed into asynchronous mode.

The assigned default address is implemented when the user enters the `slip default` or `ppp default` EXEC command. The transaction is validated by the TACACS server, when enabled, and the line is put into network mode using the address that is in the configuration file.

Configuring a default address is useful when the user is not required to know the IP address to gain access to a system (for example, users of a server that is available to many students on a campus). Instead of each user being required to know an IP address, they only need to enter the `slip default` or `ppp default` EXEC command and let the server select the address to use.

See the section “Making Additional Remote Node Connections” in the chapter “Configuring Asynchronous SLIP and PPP” in this publication for more information about the `slip` and `ppp` EXEC commands.

See the following sections for examples:

- Modem Asynchronous Group Example
- Configuring Specific IP Addresses for an Interface
- IP and PPP Asynchronous Interface Configuration Example

Allowing an Asynchronous Address to Be Assigned Dynamically

When a line is configured for dynamic assignment of asynchronous addresses, the user enters the `slip` or `ppp` EXEC command and is prompted for an address or logical host name. The address is validated by TACACS, when enabled, and the line is assigned the given address and put into asynchronous mode.
Assigning asynchronous addresses dynamically is useful when you want to assign set addresses to users. For example, an application on a personal computer that automatically dials in using Serial Line Internet Protocol (SLIP) and polls for electronic mail messages can be set up to dial in periodically and enter the required IP address and password.

To assign asynchronous addresses dynamically, use the following command in interface configuration mode:

```
Router(config-if)# async dynamic address
```

The dynamic addressing features of the internetwork allow packets to get to their destination and back regardless of the access server, router, or network they are sent from. For example, if a host such as a laptop computer moves from place to place, it can keep the same address no matter where it is dialing in from.

Logical host names are first converted to uppercase and then sent to the TACACS server for authentication.

See the following sections for examples of configurations that allow asynchronous addresses to be assigned dynamically:

- Access Restriction on the Asynchronous Interface Example
- Asynchronous Routing and Dynamic Addressing Configuration Example
- Network Address Conservation Using the ip unnumbered Command Example

Optimizing Available Bandwidth

Asynchronous lines have relatively low bandwidth and can easily be overloaded, resulting in slow traffic across these lines.

To optimize available bandwidth, perform either of the following optional tasks:

- Configuring Header Compression
- Forcing Header Compression at the EXEC Level

Configuring Header Compression

One way to optimize available bandwidth is by using TCP header compression. Van Jacobson TCP header compression (defined by RFC 1144) can increase bandwidth availability two- to five-fold when compared to lines not using header compression. Theoretically, it can improve bandwidth availability by a ratio of seven to one.

To configure header compression, use the following command in interface configuration mode:

```
Command | Purpose
--- | ---
Router(config-if)# ip tcp header-compression [on | off | passive] | Configures Van Jacobson TCP header compression on the asynchronous link.
```
Forcing Header Compression at the EXEC Level

On SLIP interfaces, you can force header compression at the EXEC prompt on a line on which header compression has been set to passive. This option allows more efficient use of the available bandwidth and does not require entering privileged configuration mode.

To implement header compression, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# ip tcp header-compression passive</code></td>
<td>Allows status of header compression to be assigned at the user level.</td>
</tr>
</tbody>
</table>

For PPP interfaces, the `passive` option functions the same as the `on` option.

See the following sections for examples of header compression:

- TCP Header Compression Configuration Example
- Network Address Conservation Using the `ip unnumbered` Command Example
- IGRP Configuration Example

Configuration Examples for Asynchronous Interfaces and Lines

This section provides the following asynchronous interface configuration examples:

- Interface and Line Configuration Examples
- Line AUX Configuration Example
- Rotary Group Examples
- Dedicated Asynchronous Interface Configuration Example
- Access Restriction on the Asynchronous Interface Example
- Group and Member Asynchronous Interface Examples
- Asynchronous Interface Address Pool Examples
- IP and SLIP Using an Asynchronous Interface Example
- IP and PPP Asynchronous Interface Configuration Example
- Asynchronous Routing and Dynamic Addressing Configuration Example
- TCP Header Compression Configuration Example
- Network Address Conservation Using the `ip unnumbered` Command Example
- Asynchronous Interface As the Only Network Interface Example
- Routing on a Dedicated Dial-In Router Example
- IGRP Configuration Example
Interface and Line Configuration Examples

This section contains the following examples:

- Asynchronous Interface Backup DDR Configuration Example
- Passive Header Compression and Default Address Example
- High-Density Dial-In Solution Using Autoselect and EXEC Control Example
- Asynchronous Line Backup DDR Configuration Example

Asynchronous Interface Backup DDR Configuration Example

The following is an example of one asynchronous interface configuration on a Cisco AS2511-RJ access server that is used in an asynchronous backup DDR scenario:

```
interface async 1
  description ASYNC LINE 5293731 TO HIGHWAY
  encapsulation ppp
  async default routing
  async mode dedicated
dialer in-band
dialer map ip 192.168.10.2 name Router2 broadcast
dialer-group 1
  ppp authentication chap
```

Passive Header Compression and Default Address Example

The following configuration shows interface and line configuration. The interface is configured with access lists, passive header compression, and a default address. The line is configured for TACACS authentication.

```
interface async 1
  ip access-group 1 in
  ip access-group 1 out
  ip tcp header-compression passive
  async default ip address 172.31.176.201

line 1
  login tacacs
  location 457-5xxx
  exec-timeout 20 0
  password XXXXXXXX
  session-timeout 20
  stopbits 1
```

High-Density Dial-In Solution Using Autoselect and EXEC Control Example

The following example configures a Cisco AS5800 access server, which is used as a high-density dial-in solution:

```
line 1/2/00 1/9/71
  session-timeout 30
  exec-timeout 30 0
  absolute-timeout 240
  autoselect during-login
t  autoselect ppp
```
Asynchronous Line Backup DDR Configuration Example

The following example configures one asynchronous line on a Cisco AS2511-RJ access server that is used in an asynchronous backup DDR scenario:

```conf
line 1
modem InOut
speed 115200
transport input all
flowcontrol hardware
```

Line AUX Configuration Example

In the following example, the asynchronous interface corresponds to the AUX port. Use the `show line` command to determine which asynchronous interface corresponds to the AUX port. The IP address on the AUX ports of both routers are in the same subnet

```conf
interface Async1
  ip address 192.168.10.1 255.255.255.0
  encapsulation ppp
  async dynamic routing
  async mode dedicated

  no ip classless
  ip route 0.0.0.0 0.0.0.0 Async1 /Default route points to the Async1 (AUX port) interface.

  !
  logging buffered
  
  line con 0
  exec-timeout 0 0
  line aux 0
  modem InOut
  transport input all
  rxspeed 38400
txspeed 38400
```

Rotary Group Examples

The following example establishes a rotary group consisting of virtual terminal lines 2 through 4 and defines a password on those lines. By using Telnet to connect to TCP port 3001, the user gets the next free line in the rotary group. The user need not remember the range of line numbers associated with the password.

```conf
line vty 2 4
  rotary 1
  password letmein
  login
```
The following example enables asynchronous rotary line queueing:

```
line 1 2
rotary 1 queued
```

The following example enables asynchronous rotary line queueing using the round-robin algorithm:

```
line 1 2
rotary 1 queued round-robin
```

Dedicated Asynchronous Interface Configuration Example

The following example shows how to assign an IP address to an asynchronous interface and place the line in dedicated network mode. Setting the stop bit to 1 is a performance enhancement.

```
line 20
location Department PC Lab
stopbits 1
speed 19200
!
interface async 20
async default ip address 172.18.7.51
async mode dedicated
```

Access Restriction on the Asynchronous Interface Example

The following example shows how to allow most terminal users access to anything on the local network, but restrict access to certain servers designated as asynchronous servers:

```
! access list for normal connections
access-list 1 permit 192.168.0.0 0.0.255.255
!
access-list 2 permit 192.168.42.55
access-list 2 permit 192.168.111.1
access-list 2 permit 192.168.55.99
!
line 1
speed 19200
flow hardware
modem inout
interface async 1
async mode interactive
async dynamic address
ip access-group 1 out
ip access-group 2 in
```

Group and Member Asynchronous Interface Examples

The following examples are included in this section:

- Asynchronous Group Interface Examples
- Modem Asynchronous Group Example
- High-Density Dial-In Solution Using an Asynchronous Group
Asynchronous Group Interface Examples

The following example shows how to create an asynchronous group interface 0 with group interface members 2 through 7, beginning in global configuration mode:

```
interface group-async 0
  group-range 2 7
```

The following example shows how you need to configure asynchronous interfaces 1, 2, and 3 separately if you do not have a group interface configured:

```
interface Async1
  ip unnumbered Ethernet0
  encapsulation ppp
  async default ip address 172.30.1.1
  async mode interactive
  async dynamic routing
!
interface Async2
  ip unnumbered Ethernet0
  encapsulation ppp
  async default ip address 172.30.1.2
  async mode interactive
  async dynamic routing
!
interface Async3
  ip unnumbered Ethernet0
  encapsulation ppp
  async default ip address 172.30.1.3
  async mode interactive
  async dynamic routing
```

The following example configures the same interfaces, but from a single group asynchronous interface:

```
interface Group-Async 0
  ip unnumbered Ethernet0
  encapsulation ppp
  async mode interactive
  async dynamic routing
  group-range 1 3
  member 1 async default ip address 172.30.1.1
  member 2 async default ip address 172.30.1.2
  member 3 async default ip address 172.30.1.3
```

Modem Asynchronous Group Example

To configure a group asynchronous interface, specify the group async number (an arbitrary number) and the group range (beginning and ending asynchronous interface number).

The following example shows the process of creating and configuring a group asynchronous interface for asynchronous interfaces 1 through 96 on a Cisco AS5300 access server, which is loaded with ninety-six 56K MICA technologies modems:

```
interface group-async 1
  ip unnumbered ethernet 0
  encapsulation ppp
  async mode interactive
  ppp authentication chap pap
  peer default ip address pool default
  group-range 1 96
```
High-Density Dial-In Solution Using an Asynchronous Group

The following example configures a Cisco AS5800 access server that is used as a high-density dial-in solution:

```
interface group-async 0
  ip unnumbered FastEthernet0/2/0
  encapsulation ppp
  async mode interactive
  peer default ip address pool default
  no cdp enable
  ppp authentication chap
  hold-queue 10 in
  group-range 1/2/00 1/9/71
```

Asynchronous Interface Address Pool Examples

The following sections provide examples of the use of Dynamic Host Configuration Protocol (DHCP) and local pooling mechanisms:

- **DHCP Pooling Example**
- **Local Pooling Example**
- **Configuring Specific IP Addresses for an Interface**

DHCP Pooling Example

The following global configuration example enables DHCP proxy-client status on all asynchronous interfaces on the access server:

```
ip address-pool dhcp-proxy-client
```

The following global configuration example shows how to specify which DHCP servers are used on your network. You can specify up to four servers using IP addresses or names. If you do not specify servers, the default is to use the IP limited broadcast address of 255.255.255.255 for transactions with any and all discovered DHCP servers.

```
ip dhcp-server jones smith wesson
```

The following interface configuration example illustrates how to disable DHCP proxy-client functionality on asynchronous interface 1:

```
async interface
interface 1
  no peer default ip address
```

Local Pooling Example

The following example shows how to select the IP pooling mechanism and how to create a pool of local IP addresses that are used when a client dials in on an asynchronous line. The default address pool comprises IP addresses 172.30.0.1 through 172.30.0.28.

```
! This command tells the access server to use a local pool.
```
Configuring Asynchronous Lines and Interfaces

Configuration Examples for Asynchronous Interfaces and Lines

ip address-pool local
! This command defines the ip address pool.
! The address pool is named group1 and comprised of addresses.
! 172.30.0.1 through 172.30.0.28 inclusive
ip local-pool group1 172.30.0.1 172.30.0.28

Configuring Specific IP Addresses for an Interface

The following example shows how to configure the access server so that it will use the default address pool on all interfaces except interface 7, on which it will use an address pool called lass:

ip address-pool local
ip local-pool lass 172.30.0.1
async interface
interface 7
peer default ip address lass

IP and SLIP Using an Asynchronous Interface Example

The following example configures IP and SLIP on asynchronous interface 6. The IP address for the interface is assigned to Ethernet 0, interactive mode has been enabled, and the IP address of the client PC running SLIP has been specified.

IP and the appropriate IP routing protocols have already been enabled on the access server or router.

interface async 6
ip unnumbered ethernet 0
encapsulation slip
async mode interactive
async default ip address 172.18.1.128

IP and PPP Asynchronous Interface Configuration Example

The following example configures IP and PPP on asynchronous interface 6. The IP address for the interface is assigned to Ethernet 0, interactive mode has been enabled, and the IP address of the client PC running PPP has been specified. IP and the appropriate IP routing protocols have already been enabled on the access server or router.

interface async 6
ip unnumbered ethernet 0
encapsulation ppp
async mode interactive
peer default ip address 172.18.1.128
Configuring Asynchronous Lines and Interfaces

Configuration Examples for Asynchronous Interfaces and Lines

Asynchronous Routing and Dynamic Addressing Configuration Example

The following example shows a simple configuration that allows routing and dynamic addressing. With this configuration, if the user specifies /routing in the EXEC slip or ppp command, routing protocols will be sent and received.

```
interface async 6
async dynamic routing
async dynamic address
```

TCP Header Compression Configuration Example

The following example configures asynchronous interface 7 with a default IP address, allowing header compression if it is specified in the slip or ppp connection command entered by the user or if the connecting system sends compressed packets.

```
interface async 7
ip address 172.31.79.1
async default ip address 172.31.79.2
ip tcp header-compression passive
```

Network Address Conservation Using the ip unnumbered Command Example

The following example shows how to configure your router for routing using unnumbered interfaces. The source (local) address is shared between the Ethernet 0 and asynchronous 6 interfaces (172.18.1.1). The default remote address is 172.18.1.2.

```
interface ethernet 0
ip address 172.18.1.1 255.255.255.0
!
interface async 6
ip unnumbered ethernet 0
async dynamic routing
! Default address is on the local subnet.
async dynamic address
async default ip address 172.18.1.2
ip tcp header-compression passive
```

The following example shows how the IP unnumbered configuration works. Although the user is assigned an address, the system response shows the interface as unnumbered, and the address entered by the user will be used only in response to BOOTP requests.

```
Router> slip /compressed 10.11.11.254
Password:
Entering async mode.
Interface IP address is unnumbered, MTU is 1500 bytes.
Header compression is On.
```
Asynchronous Interface As the Only Network Interface Example

The following example shows how one of the asynchronous lines can be used as the only network interface. The router is used primarily as a terminal server, but is at a remote location and dials in to the central site for its only network connection.

```
ip default-gateway 10.11.12.2
interface ethernet 0	sendown
interface async 1
async dynamic routing
    ip tcp header-compression on
async default ip address 10.11.16.12
async mode dedicated
    ip address 10.11.12.32 255.255.255.0
```

Routing on a Dedicated Dial-In Router Example

The following example shows how a router is set up as a dedicated dial-in router. Interfaces are configured as IP unnumbered to conserve network resources, primarily IP addresses.

```
ip routing
interface ethernet 0
    ip address 10.129.128.2 255.255.255.0
!
interface async 1
async dynamic routing
    ! The addresses assigned with SLIP or PPP EXEC commands are not used except
    ! to reply to BOOTP requests.
    ! Normally, the routers dialing in will have their own address and not use BOOTP at all.
async default ip address 10.11.11.254
!
interface async 2
async unnumbered ethernet 0
async default ip address 10.11.12.16
    ip tcp header-compression passive
async mode dedicated
!
    ! Run RIP on the asynchronous lines because few implementations of SLIP
    ! understand IGRP. Run IGRP on the Ethernet (and in the local network).
    !
    router igrp 110
    network 10.11.12.0
    ! Send routes from the asynchronous lines on the production network.
    redistribute RIP
    ! Do not send IGRP updates on the asynchronous interfaces.
    passive-interface async 1
    !
    router RIP
    network 10.11.12.0
    redistribute igrp
    passive-interface ethernet 0
    ! Consider filtering everything except a default route from the routing
    ! updates sent on the (slow) asynchronous lines.
    distribute-list 1 out
    ip unnumbered async 2
async dynamic routing
```
IGRP Configuration Example

In the following example, only the Interior Gateway Routing Protocol (IGRP) TCP/IP routing protocol is running; it is assumed that the systems that are dialing in to use routing will either support IGRP or have some other method (for example, a static default route) of determining that the router is the best place to send most of its packets.

```
router igrp 111
  network 10.11.12.0
interface ethernet 0
  ip address 10.11.12.92 255.255.255.0
!
interface async 1
  async default ip address 10.11.12.96
  async dynamic routing
  ip tcp header-compression passive
  ip unnumbered ethernet 0

line 1
modem ri-is-cd
```
Configuring Asynchronous Serial Traffic over UDP

This chapter describes how to communicate with a modem using the Asynchronous Serial Traffic over UDP feature in the following main sections:

- **UDPTN Overview**
- **How to Configure Asynchronous Serial Traffic over UDP**

See the “Configuration Examples for UDPTN” section for configuration examples.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the UDP commands mentioned in this chapter, refer to the *Cisco IOS Dial Technologies Command Reference*, Release 12.2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

UDPTN Overview

The Asynchronous Serial Traffic over UDP feature provides the ability to encapsulate asynchronous data into User Datagram Protocol (UDP) packets and then unreliably send this data without needing to establish a connection with a receiving device. This process is referred to as UDPT Telnet (UDPTN), although it does not—and cannot—use the Telnet protocol. UDPTN is similar to Telnet in that both are used to send data, but UDPTN is unique in that it does not require that a connection be established with a receiving device. You load the data that you want to send through an asynchronous port, and then send it, optionally, as a multicast or a broadcast. The receiving device(s) can then receive the data whenever it wants. If the receiver ends reception, the transmission is unaffected.

The Asynchronous Serial Traffic over UDP feature provides a low-bandwidth, low-maintenance method to unreliably deliver data. This delivery is similar to a radio broadcast: It does not require that you establish a connection to a destination; rather, it sends the data to whatever device wants to receive it. The receivers are free to begin or end their reception without interrupting the transmission.

It is a low-bandwidth solution for delivering streaming information for which lost packets are not critical. Such applications include stock quotes, news wires, console monitoring, and multiuser chat features.
Configuring Asynchronous Serial Traffic over UDP

This feature is particularly useful for broadcast, multicast, and unstable point-to-point connections. This feature may not work as expected when there are multiple users on the same port number in a nonmulticast environment. The same port must be used for both receiving and sending.

How to Configure Asynchronous Serial Traffic over UDP

To configure the Asynchronous Serial Traffic over UDP feature, perform the tasks described in the following sections:

- Preparing to Configure Asynchronous Serial Traffic over UDP (Required)
- Configuring a Line for UDPTN (Required)
- Enabling UDPTN (Required)
- Verifying UDPTN Traffic (Optional but Recommended)

See the “Configuration Examples for UDPTN” section at the end of this chapter for multicast, broadcast, and point-to-point UDPTN configuration examples.

Preparing to Configure Asynchronous Serial Traffic over UDP

When configuring the Asynchronous Serial Traffic over UDP feature for multicast transmission, you must configure IP multicast routing for the entire network that will receive or propagate the multiscasts. When configuring the feature for broadcast transmission, you must configure broadcast flooding on the routers between network segments. Refer to the “Configuring IP Multicast Routing” chapter of this guide for information on how to configure IP multicast routing. See the section “Configuring Broadcast Packet Handling” in the Cisco IOS IP Configuration Guide for information on how to configure broadcast flooding.

Configuring a Line for UDPTN

To configure the line that will be used to send or receive UDP packets, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# line line-number</td>
</tr>
<tr>
<td></td>
<td>Enters line configuration mode for the line number specified.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-line)# transport output udptn</td>
</tr>
<tr>
<td></td>
<td>Enables the line to transport UDP packets.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-line)# dispatch-timeout 1000</td>
</tr>
<tr>
<td></td>
<td>Sends packets every 1000 milliseconds.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-line)# dispatch-character 13</td>
</tr>
<tr>
<td></td>
<td>Sends packets after every new line.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-line)# no session-timeout</td>
</tr>
<tr>
<td></td>
<td>Disables timeout connection closing.</td>
</tr>
</tbody>
</table>
Enabling UDPTN

There are two methods of enabling UDPTN. You can manually enable UDPTN when you want to begin transmission or reception, or you can configure the router to automatically enable UDPTN when a connection is made to the line.

To manually enable UDPTN and begin UDPTN transmission or reception, use the following command in EXEC mode:

```
Router# udptn ip-address [port] [/transmit] [/receive]
```

Enables UDPTN to the specified IP address (optionally, using the specified port). Use the /transmit or /receive keyword if the router will only be sending or receiving UDPTN.

To automatically enable UDPTN when a connection is made to the line, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# line line-number</td>
</tr>
<tr>
<td></td>
<td>Enters line configuration mode for the line number specified.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-line)# autocommand udptn ip-address [port] [/transmit] [/receive]</td>
</tr>
<tr>
<td></td>
<td>Enables UDPTN automatically when a connection is made to the line (optionally, using the specified port). Use the /transmit or /receive keyword if the router will only be sending or receiving UDPTN.</td>
</tr>
</tbody>
</table>

Verifying UDPTN Traffic

To verify that UDPTN is enabled correctly, perform the following steps:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Enable UDPTN debugging by using the debug udptn EXEC command.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Enable UDPTN by using the udptn ip-address EXEC command, and then observe the debug output.</td>
</tr>
</tbody>
</table>

The following debug output shows a UDPTN session being successfully established and then disconnected.

```
Router# debug udptn
Router# udptn 172.16.1.1
Trying 172.16.1.1 ... Open

*Mar 1 00:10:15:191:udptn0:adding multicast group.
*Mar 1 00:10:15:195:udptn0:open to 172.16.1.1:57 Loopback0jjaassdd
*Mar 1 00:10:18:083:udptn0:output packet w 1 bytes
*Mar 1 00:10:18:087:udptn0:Input packet w 1 bytes
Router# disconnect
Closing connection to 172.16.1.1 [confirm] y
Router#
```
Configuration Examples for UDPTN

This section provides the following UDPTN configuration examples:

- Multicast UDPTN Example
- Broadcast UDPTN Example
- Point-to-Point UDPTN Example

Multicast UDPTN Example

These configurations are for multicast UDPTN. The router that is multicasting does not require a multicast configuration—it simply sends to the multicast IP address.

Router That Is Multicasting

```
ip multicast-routing
interface ethernet 0
  ip address 10.1.1.1 255.255.255.0
  ip pim dense-mode
line 5
  no session-timeout
  transport output udptn
  dispatch-timeout 10000
  dispatch-character 13
  modem in
  autocommand udptn 172.1.1.1 /transmit
```

Receiving Routers

```
ip multicast-routing
interface ethernet 0
  ip address 10.99.98.97 255.255.255.192
  ip pim dense-mode
line 0 16
  transport output udptn telnet lat rlogin
  autocommand udptn 172.1.1.1 /receive
```
Broadcast UDPTN Example

These configurations are for broadcast UDPTN. This is the simplest method to send to multiple receivers. The broadcasting router sends to the broadcast IP address, and any router that wants to receive the transmission simply connects to the broadcast IP address by using the udptn command.

Router That Is Broadcasting

```plaintext
interface ethernet 0
  ip address 10.1.1.1 255.255.255.0
!
line 5
  no session-timeout
transport output udptn
  dispatch-timeout 10000
  dispatch-character 13
  modem in
  autocmd udptn 255.255.255.255 /transmit
```

Receiving Routers

```plaintext
interface ethernet 0
  ip address 10.99.98.97 255.255.255.192
!
line 0 16
  transport output udptn telnet lat rlogin
  autocmd udptn 255.255.255.255 /receive
```

Point-to-Point UDPTN Example

These configurations are for two routers in mobile, unstable environments that wish to establish a bidirectional asynchronous tunnel. Because there is no way to ensure that both routers will be up and running when one of the routers wants to establish a tunnel, they cannot use connection-dependent protocols like Telnet or local area transport (LAT). They instead use the following UDPTN configurations. Each router is configured to send to and receive from the IP address of the other. Because both routers will be sending and receiving, they do not use the /transmit or /receive keywords with the udptn command.

Router A

```plaintext
interface ethernet 0
  ip address 10.54.46.1 255.255.255.192
!
line 5
  no session-timeout
transport output udptn
  dispatch-timeout 10000
  dispatch-character 13
  modem in
  autocmd udptn 10.54.46.2
```
Router B

interface ethernet 0
 ip address 10.54.46.2 255.255.255.192
!
line 10
 no session-timeout
 transport output udptn
 dispatch-timeout 10000
 dispatch-character 13
 modem in
 autocommand udptn 10.54.46.1
Modem Configuration and Management
Overview of Modem Interfaces

This chapter describes modem interfaces in the following sections:

- Cisco Modems and Cisco IOS Modem Features
- Cisco IOS Modem Components
- Logical Constructs in Modem Configurations

See the chapter “Overview of Dial Interfaces, Controllers, and Lines” for more information about Cisco asynchronous serial interfaces.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the modem support commands in this chapter, refer to the *Cisco IOS Modem Command Reference*. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Cisco Modems and Cisco IOS Modem Features

Deciding which asynchronous features to use, to some degree, depends on your hardware configuration. All Cisco access servers must have their asynchronous interfaces and lines configured for network protocol support. Commands entered in asynchronous interface mode configure protocol-specific parameters for asynchronous interfaces, whereas commands entered in line configuration mode configure the physical and logical aspects for the same port.

Modems inside high-end access servers need a localized modem country code. This code is projected from the Cisco IOS software to the onboard modems using the `modem country {mica | microcom_hdms} country` command. The following are high-end access servers: Cisco AS5800, Cisco AccessPath, Cisco AS5300, and the Cisco AS5200.

Modems externally attached to low-end access servers need to receive initialization strings from the `modem autoconfigure discovery` command. For troubleshooting tips, see the section “External Modems on Low-End Access Servers” in the chapter “Configuring and Managing External Modems.” The following are low-end access servers: Cisco AS2511-RJ, Cisco AS2509-RJ, Cisco 2509, Cisco 2511, and the Cisco 2512.

Figure 12 shows a Cisco AS2511-RJ access server. *Figure 13* shows a Cisco AS5300 access server. Notice that modems are either inside or outside the chassis, depending on the product model.
Cisco IOS Modem Components

Different components inside Cisco IOS software work together to enable remote clients to dial in and send packets. Figure 14 shows one Cisco AS5300 access server that is receiving calls from a remote office, branch office (ROBO); small office, home office (SOHO); and modem client.

Depending on your network scenario, you may encounter all of the components in Figure 14. For example, you might decide to create a virtual IP subnet by using a loopback interface. This step saves address space. Virtual subnets can exist inside devices that you advertise to your backbone. In turn, IP packets get relayed to remote PCs, which route back to the central site.
Figure 14 Cisco IOS Modem Concepts

- Interface virtual template
- Interface group-async
- Cloning
- Virtual access interface
- Fast Ethernet interface
- Loopback interface
- Routing and switching engine
- Cloning
- Interface serial channels S0:0, S0:1… (B channels)
- PSTN/ISDN
- POTS
- BRI line
- POTS line
- Modem
- Remote PC
- Cisco 1604 (ROBO)
- Cisco 766 (SOHO)

= ISDN B channel
= Modem/POTS

Cisco IOS software inside a Cisco AS5300

Figure 14 Cisco IOS Modem Concepts

- Interface virtual template
- Interface group-async
- Cloning
- Virtual access interface
- Fast Ethernet interface
- Loopback interface
- Routing and switching engine
- Cloning
- Interface serial channels S0:0, S0:1… (B channels)
- PSTN/ISDN
- POTS
- BRI line
- POTS line
- Modem
- Remote PC
- Cisco 1604 (ROBO)
- Cisco 766 (SOHO)

= ISDN B channel
= Modem/POTS

Cisco IOS software inside a Cisco AS5300
Logical Constructs in Modem Configurations

A logical construct stores core protocol characteristics to assign to physical interfaces. No data packets are forwarded to a logical construct. Cisco uses three types of logical constructs in its access servers and routers. These constructs are described in the following sections:

- Asynchronous Interfaces
- Group Asynchronous Interfaces
- Modem Lines and Asynchronous Interfaces

Asynchronous Interfaces

An asynchronous interface assigns network protocol characteristics to remote asynchronous clients that are dialing in through physical terminal lines and modems. (See Figure 15.)

Use the `interface async` command to create and configure an asynchronous interface.

Figure 15 Logical Construct for an Asynchronous Interface

To enable clients to dial in, you must configure two asynchronous components: asynchronous lines and asynchronous interfaces. Asynchronous interfaces correspond to physical terminal lines. For example, asynchronous interface 1 corresponds to tty line 1.

Commands entered in asynchronous interface mode configure protocol-specific parameters for asynchronous interfaces, whereas commands entered in line configuration mode configure the physical aspects for the same port.
Specifically, you configure asynchronous interfaces to support PPP connections. An asynchronous interface on an access server or router can be configured to support the following functions:

- Network protocol support such as IP, Internet Protocol Exchange (IPX), or AppleTalk
- Encapsulation support such as PPP
- IP client addressing options (default or dynamic)
- IPX network addressing options
- PPP authentication
- ISDN BRI and PRI configuration

For additional information about configuring asynchronous interfaces, see the “Overview of Dial Interfaces, Controllers, and Lines” chapter.

Group Asynchronous Interfaces

A group asynchronous interface is a parent interface that stores core protocol characteristics and projects them to a specified range of asynchronous interfaces. Asynchronous interfaces clone protocol information from group asynchronous interfaces. No data packets arrive in a group asynchronous interface.

By setting up a group asynchronous interface, you also eliminate the need to repeatedly configure identical configuration information across several asynchronous interfaces. For example, on a Cisco AS5300 one group asynchronous interface is used instead of 96 individual asynchronous interfaces. (See Figure 16.)

The following example shows a group asynchronous configuration for a Cisco AS5300 access server loaded with one 4-port ISDN PRI card and 96 MICA modems:

```
Router(config)# interface group-async 1
Router(config-if)# ip unnumbered loopback 0
Router(config-if)# encapsulation ppp
Router(config-if)# async mode interactive
Router(config-if)# peer default ip address pool dialin_pool
Router(config-if)# no cdp enable
Router(config-if)# ppp authentication chap pap dialin
Router(config-if)# group-range 1 96
```

To configure multiple asynchronous interfaces at the same time (with the same parameters), you can assign each asynchronous interface to a group and then configure the group. Configurations throughout this guide configure group asynchronous interfaces, rather than each interface separately.

If you want to configure different attributes on different asynchronous interfaces, do not assign them to the group or assign different interfaces to different groups. After assigning asynchronous interfaces to a group, you cannot configure these interfaces separately. For example, on a Cisco AS5300 access server in a T1 configuration, you could assign asynchronous interfaces 1 to 48 as part of one group (such as group-async1) and asynchronous interfaces 49 to 96 as part of another group (group-async2). You can also use the `member` command to perform a similar grouping function.
Modem Lines and Asynchronous Interfaces

Modems attach to asynchronous lines, which in turn attach to asynchronous interfaces. Depending on the type of access server you have, these components appear outside or inside the physical chassis. **Figure 16** shows the logical relationships among modems, asynchronous lines, asynchronous interfaces, and group asynchronous interfaces. All these components work together to deliver packets as follows:

- Asynchronous calls come into the modems from the “plain old telephone service” (POTS) or Public Switched Telephone Network (PSTN).
- Modems pass packets up through asynchronous lines.
- Asynchronous interfaces clone their configuration information from group asynchronous interfaces.

Note

The number of interfaces and modems varies among access server product models.

Figure 16 Modems, Lines, and Asynchronous Interfaces

Use the **interface group-async** command to create and configure a group asynchronous interface. The following example shows a group asynchronous configuration for a Cisco AS5300 access server loaded with one 4-port ISDN PRI card and 96 MICA modems:

```plaintext
Router(config)# interface group-async 1
Router(config-if)# ip unnumbered loopback 0
Router(config-if)# encapsulation ppp
Router(config-if)# async mode interactive
Router(config-if)# peer default ip address pool dialin_pool
Router(config-if)# no cdp enable
Router(config-if)# ppp authentication chap pap dialin
Router(config-if)# group-range 1 96
```
Modem Calls

Modem calls travel through traditional telephone and ISDN lines. Regardless of the media used, these calls are initiated by a modem and terminate on another modem at the remote end.

Figure 17 shows a remote laptop using a V.90 internal modem to dial in to a Cisco AS5300 access server, which is loaded with 96 internal V.90 MICA technologies modems.

Figure 17 Remote Node Dialing In to a Cisco AS5300 Access Server

Asynchronous Line Configuration

Asynchronous line configuration commands configure ports for the following options:

- Physical layer options such as modem configuration
- Security for login in EXEC mode
- AppleTalk Remote Access (ARA) protocol configuration (PPP is configured in interface configuration mode)
- Autoselect to detect incoming protocols (ARA and PPP)

To enter line configuration mode, first connect to the console port of the access server and enter privileged EXEC mode. Then enter global configuration mode and finally enter line configuration mode for the asynchronous lines that you want to configure. The following example shows how you enter line configuration mode for lines 1 through 16:

```
Router> enable
Router# configure terminal
Router(config)# line 1 16
Router(config-line)#
```

Absolute Versus Relative Line Numbers

When you enter line configuration mode, you can specify an absolute line number or a relative line number. For example, absolute line number 20 is vty 2 (line 18 is vty 0). Referring to lines in a relative format is often easier than attempting to recall the absolute number of a line on a large system. Internally, the router uses absolute line numbers.

On all routers except the Cisco AS5350, AS5400, AS5800, AS5850 access servers, you can view all of the absolute and relative line numbers using the `show users all` EXEC command.
In the following sample display, absolute line numbers are listed at the far left. Relative line numbers are in the third column, after the line type. The second virtual terminal line, vty 1, is absolute line number 3. Compare the line numbers in this sample display to the output from the `show line` command.

<table>
<thead>
<tr>
<th>Line</th>
<th>User</th>
<th>Host(s)</th>
<th>Idle Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>con 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>aux 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>vty 0</td>
<td>incoming</td>
<td>0 SERVER.COMPANY.COM</td>
</tr>
<tr>
<td>3</td>
<td>vty 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>vty 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>vty 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>vty 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On the Cisco AS5350, AS5400, AS5800, AS5850 access servers, you can view the absolute and relative line numbers with the following commands:

- `show users all | exclude tty | interface` to show the non-internal modem lines
- `show controller async | include tty` to show the internal modem lines

The following example shows the information displayed with the `show users all | exclude tty | interface` command:

```
Router# show users all | exclude tty | interface
Line       User       Host(s)       Idle       Location
* 0 con 0    idle       00:00:00     
 1 aux 0     00:00:00     
 2 vty 0     00:00:00     
 3 vty 1     00:00:00     
 4 vty 2     00:00:00     
 5 vty 3     00:00:00     
 6 vty 4     00:00:00     
```

The following example shows the information displayed with the `show controller async | include tty` command:

```
Router# show controller async | include tty
Controller information for Async2/00 (tty324)
Controller information for Async2/01 (tty325)
Controller information for Async2/02 (tty326)

```

Compare the line numbers in this sample display to the output from the `show line` command.

Line and Modem Numbering Issues

The tty line numbering scheme used by your access server or router is specific to your product and its hardware configuration. Refer to the product-specific documentation that came with your product for line numbering scheme information.

For example, the Cisco AS5200 access server has tty lines that map directly to integrated modems, as shown in Table 5. Depending on the shelf, slot, and port physical architecture of the access server, the modem and tty line number schemes will change.

As shown in Table 5, physical terminal lines 1 through 24 directly connect to modems 1/0 through 1/23, which are installed in the first chassis slot in this example. Physical terminal lines 25 through 48 directly connect to modems 2/0 through 2/23, which are installed in the second slot.
Connections to an individual line are most useful when a dial-out modem, parallel printer, or serial printer is attached to that line. To connect to an individual line, the remote host or terminal must specify a particular TCP port on the router.

If reverse XRemote is required, the port is 9000 (decimal) plus the decimal value of the line number.

If a raw TCP stream is required, the port is 4000 (decimal) plus the decimal line number. The raw TCP stream is usually the required mode for sending data to a printer.

If Telnet protocols are required, the port is 2000 (decimal) plus the decimal value of the line number. The Telnet protocol might require that Return characters be translated into Return and line-feed character pairs. You can turn off this translation by specifying the Telnet binary mode option. To specify this option, connect to port 6000 (decimal) plus the decimal line number.

Decimal TCP Port Numbers for Line Connections

<table>
<thead>
<tr>
<th>tty Line</th>
<th>Slot/Modem Number</th>
<th>tty Line</th>
<th>Slot/Modem Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/0</td>
<td>25</td>
<td>2/0</td>
</tr>
<tr>
<td>2</td>
<td>1/1</td>
<td>26</td>
<td>2/1</td>
</tr>
<tr>
<td>3</td>
<td>1/2</td>
<td>27</td>
<td>2/2</td>
</tr>
<tr>
<td>4</td>
<td>1/3</td>
<td>28</td>
<td>2/3</td>
</tr>
<tr>
<td>5</td>
<td>1/4</td>
<td>29</td>
<td>2/4</td>
</tr>
<tr>
<td>6</td>
<td>1/5</td>
<td>30</td>
<td>2/5</td>
</tr>
<tr>
<td>7</td>
<td>1/6</td>
<td>31</td>
<td>2/6</td>
</tr>
<tr>
<td>8</td>
<td>1/7</td>
<td>32</td>
<td>2/7</td>
</tr>
<tr>
<td>9</td>
<td>1/8</td>
<td>33</td>
<td>2/8</td>
</tr>
<tr>
<td>10</td>
<td>1/9</td>
<td>34</td>
<td>2/9</td>
</tr>
<tr>
<td>11</td>
<td>1/10</td>
<td>35</td>
<td>2/10</td>
</tr>
<tr>
<td>12</td>
<td>1/11</td>
<td>36</td>
<td>2/11</td>
</tr>
<tr>
<td>13</td>
<td>1/12</td>
<td>37</td>
<td>2/12</td>
</tr>
<tr>
<td>14</td>
<td>1/13</td>
<td>38</td>
<td>2/13</td>
</tr>
<tr>
<td>15</td>
<td>1/14</td>
<td>39</td>
<td>2/14</td>
</tr>
<tr>
<td>16</td>
<td>1/15</td>
<td>40</td>
<td>2/15</td>
</tr>
<tr>
<td>17</td>
<td>1/16</td>
<td>41</td>
<td>2/16</td>
</tr>
<tr>
<td>18</td>
<td>1/17</td>
<td>42</td>
<td>2/17</td>
</tr>
<tr>
<td>19</td>
<td>1/18</td>
<td>43</td>
<td>2/18</td>
</tr>
<tr>
<td>20</td>
<td>1/19</td>
<td>44</td>
<td>2/19</td>
</tr>
<tr>
<td>21</td>
<td>1/20</td>
<td>45</td>
<td>2/20</td>
</tr>
<tr>
<td>22</td>
<td>1/21</td>
<td>46</td>
<td>2/21</td>
</tr>
<tr>
<td>23</td>
<td>1/22</td>
<td>47</td>
<td>2/22</td>
</tr>
<tr>
<td>24</td>
<td>1/23</td>
<td>48</td>
<td>2/23</td>
</tr>
</tbody>
</table>
For example, a laser printer is attached to line 10 of a Cisco 2511 router. Such a printer usually uses XON/XOFF software flow control. Because the Cisco IOS software cannot receive an incoming connection if the line already has a process, you must ensure that an EXEC session is not accidentally started. You must, therefore, configure it as follows:

```plaintext
line 10
flowcontrol software
no exec
```

A host that wants to send data to the printer would connect to the router on TCP port 4008, send the data, and then close the connection. (Remember that line number 10 octal equals 8 decimal.)

Signal and Flow Control Overview

The EIA/TIA-232 output signals are Transmit Data (TXDATA), Data Terminal Ready (DTR), and Ready To Send (RTS—Cisco 2500 routers only). The input signals are Receive Data (RXDATA), Clear to Send (CTS), and RING. The sixth signal is ground. Depending on the type of modem control your modem uses, these names may or may not correspond to the standard EIA/TIA-232 signals.

Dialup modems that operate over normal telephone lines at speeds of 28800 bps use hardware flow control to stop the data from reaching the host by toggling an EIA/TIA-232 signal when their limit is reached.

In addition to hardware flow control, modems require special software configuring. For example, they must be configured to create an EXEC session when a user dials in and to hang up when the user exits the EXEC. These modems also must be configured to close any existing network connections if the telephone line hangs up in the middle of a session.

The Cisco IOS software supports hardware flow control on its CTS input signal, which is also used by the normal modem handshake.
Configuring and Managing Integrated Modems

The Cisco IOS software provides commands that manage modems that reside inside access servers or routers in the form of modem cards. This chapter describes the modem management tasks. It includes the following main sections:

- Modems and Modem Feature Support
- Managing Modems
- Configuration Examples for Modem Management

For additional instructions for configuring Cisco access servers, see the chapter “Configuring and Managing Cisco Access Servers and Dial Shelves” in this publication.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

Modem initialization strings are listed in the “Modem Initialization Strings” appendix. For a complete description of the commands mentioned in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Modems and Modem Feature Support

The Cisco IOS software supports three types of integrated modems for Cisco access servers and access routers:

- Modem ISDN channel aggregation (MICA) digital modem
- NextPort digital modem
- NM-AM network module analog modem

Table 6 lists device support for each of the Cisco access server hardware platforms.
Configuring and Managing Integrated Modems

Modems and Modem Feature Support

Note

If the platform is using MICA technologies modems, the V.120 rate adaptation is done by CPU on vty lines like protocol translation sessions.

The following sections summarize the standards supported by modems in the Cisco access servers. See Table 7 through Table 10 for a summary and comparison of the Cisco IOS commands used for the MICA and NextPort modems.

V.90 Modem Standard

Study Group 16 of the International Telecommunication Union Telecommunication Standardization Sector (ITU-T) developed the V.90 modem standard for multimedia systems. The V.90 standard describes a digital modem and analog modem pair for use on the public switched telephone network (PSTN). V.90 modems are designed for connections that are digital at one end and have only one digital-to-analog conversion. The V.90 standard is expected to be widely used for applications such as Internet and online service access. Download speeds of up to 56,000 bits per second (bps) are possible, depending on telephone line conditions, with upload speeds of up to 33,600 bps.

V.110 Bit Rate Adaption Standard

V.110 is a bit rate adaptation standard defined by the ITU that provides a standard method of encapsulating data over global system for mobile telecommunication (GSM) and ISDN networks. V.110 allows for reliable transport of asynchronous or synchronous data. V.110 adapts a low-speed connection

Table 6 Cisco IOS Modems and Modem Feature Support

<table>
<thead>
<tr>
<th>Device Support</th>
<th>Cisco AS5300</th>
<th>Cisco AS5350</th>
<th>Cisco AS5400</th>
<th>Cisco AS5800</th>
<th>Cisco 2600/3600 Series Routers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated modems</td>
<td>6- and 12-port MICA</td>
<td>60-port NextPort CSM v6DFC</td>
<td>108-port NextPort CSM v6DFC</td>
<td>72- and 144-port MICA 324-port NextPort CSM v6DFC</td>
<td>6-port, 12-port, 18-port, 24-port, or 30-port MICA NM-DM 8- and 16-port analog NM-AM</td>
</tr>
<tr>
<td>V.90</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes with NM-DM</td>
</tr>
<tr>
<td>V.110</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes with NM-DM</td>
</tr>
<tr>
<td>V.120</td>
<td>No, CPU only</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes with 324-port NextPort' CSM v6DFC</td>
<td>No, CPU only</td>
</tr>
</tbody>
</table>

1. For more detailed information regarding the V.120 functionalities that are supported both by NextPort and Cisco IOS software, see the section “V.120 Bit Rate Adaptation Standard.”
to an ISDN B channel allowing the remote station or terminal adapter to use the fast call setup times offered by ISDN. This feature allows V.110 calls to be originated and terminated over ISDN. It also enables GSM wireless connectivity.

V.110, as an alternative to V.120, provides DTE with V-series type interfaces with access to ISDN network by bit stuffing. Many V.110 devices are used in Europe and Japan. In Japan, MICA supports the Personal-Handyphone-System Internet Access Forum Standard (PIAFS) protocol, which is similar to V.110.

The V.110 implementation for calls on MICA modems is managed by special boardware and modem code, along with the appropriate Cisco IOS image, in a manner similar to other modulation standards. This MICA V.110 implementation provides V.110 user rates ranging from 600 bps to 38,400 bps.

V.110 is supported on the following Cisco devices and network modules:

- Cisco AS5300-series access servers
- Cisco 3620, 3640, and 3660 access routers

The digital signal processors (DSPs) on the board can function as either modems or V.110 terminal adapters (or V.120 terminal adapters for NextPort DSPs). Based on the ISDN Q.931 bearer capability information element, the Cisco IOS software configures the DSP to treat the incoming call as a modem call, a V.110 call, or a V.120 call.

Figure 18 shows a dial-in scenario for how V.110 technology can be used with a stack of Cisco AS5300-series access servers.

Figure 18 V.110 Dial-In Scenario Using a Stack of Cisco AS5300-Series Access Servers
Managing Modems

To manage modems, perform the tasks in the following sections; the tasks you need to perform depend upon the type and needs of your system:

- Managing SPE Firmware
- Configuring Modems in Cisco Access Servers
- Configuring Cisco Integrated Modems Using Modem Attention Commands
- Configuring Modem Pooling
- Configuring Physical Partitioning
- Configuring Virtual Partitioning
- Configuring Call Tracker
- Configuring Polling of Link Statistics on MICA Modems
- Configuring MICA In-Band Framing Mode Control Messages
- Enabling Modem Polling
- Setting Modem Poll Intervals
- Setting Modem Poll Retry
- Collecting Modem Statistics
- Troubleshooting Using a Back-to-Back Modem Test Procedure
- Clearing a Direct Connect Session on a Microcom Modem
Managing SPE Firmware

You can upgrade your modem firmware to the latest NextPort Service Processing Element (SPE) firmware image available from Cisco. The SPE firmware image is usually retrieved from Cisco.com. You must first copy the SPE image from a TFTP server to flash memory using the `copy tftp flash` command. You then configure the firmware upgrade using the `firmware location` and `firmware upgrade` SPE configuration commands. The `firmware location` command specifies the location of the firmware file and downloads the firmware to an SPE or a range of SPEs, according to the schedule you selected for the firmware upgrade method using the `firmware upgrade` command.

The modem firmware upgrade commands must be saved into the system configuration using the `write memory` command; otherwise, at the next reboot downloading of the specified firmware will not occur.

To upgrade SPE firmware, use the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# <code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>AS5400:
Router(config)# <code>spe slot/spe</code>
or
Router(config)# <code>spe slot/spe slot/spe</code></td>
</tr>
<tr>
<td></td>
<td>AS5800:
Router(config)# <code>spe shelf/slot/spe</code>
or
Router(config)# <code>spe shelf/slot/spe shelf/slot/spe</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-spe)# `firmware upgrade {busyout</td>
</tr>
</tbody>
</table>
Managing Modems

Configuring and Managing Integrated Modems

Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config-spe)# **firmware location** [IFS:][/]]filename | Specifies the SPE firmware file in flash memory to use for the selected SPEs. Allows you to upgrade firmware for SPEs after the new SPE firmware image is copied to your flash memory. The Cisco IOS file specification (IFS) can be any valid IFS on any local file system. Use the **dir all-filesystems** EXEC command to display legal IFSs. Examples of legal IFS specifications include:
 - **bootflash:** Loads the firmware from a separate flash memory device.
 - **flash:** Loads the firmware from the flash NVRAM located within the router.
 - **system:/** Loads the firmware from a built-in file within the Cisco IOS image. The optional forward slash (/) and system path must be entered with this specification.
 - **filename**—The name of the desired firmware file (for example, mica-modem-pw.2.7.3.0.bin). If the **system** keyword is specified, enter the path to the filename you want to download. |

Step 5

| Router(config-spe)# **exit** | Exits SPE configuration mode. |

Step 6

| Router(config)# **exit** | Exits global configuration mode. |

Step 7

| Router# **copy running-config startup-config** | Saves your changes. |

As soon as a firmware file is specified, the downloading begins. Do not specify all modems and then go into an upgrade process on a busy router. The modems that are not busy will all be marked busy and the server will wait until all the modems on each of the given cards are free before upgrading the multiple-port cards. The only way to clear this situation is to start disconnecting users with a **clear** command. Normally, groups of modems are specified in scripts with the **spe slot/spe_begin** and **slot/spe_end** statements, and upgrades are done in a rolling fashion.

Use the **show modem version** and **show spe version** commands to verify that the modems are running the portware version you specified.

The following example shows how to enter the SPE configuration mode, set the range of SPEs, specify the firmware file location in flash memory, download the file to the SPEs, and display a status report using the **show spe** EXEC command:

```
Router# **configure terminal**
Router(config)# **spe 7/0 7/17**
Router(config-spe)# **firmware upgrade busyout**
Router(config-spe)# **firmware location flash:np_6_75**
```

```
Started downloading firmware flash:np_6_75.spe
Router(config-spe)# **exit**
Router(config)# **exit**
Router# **show spe 7**

```
Configuring and Managing Integrated Modems

Managing Modems

SPE SPE SPE SPE Port Call
Port # State Busyout Shut Crash State Type

<table>
<thead>
<tr>
<th>SPE#</th>
<th>Port #</th>
<th>State</th>
<th>Busyout</th>
<th>Shut</th>
<th>Crash</th>
<th>State</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/00</td>
<td>0000-0005</td>
<td>ACTIVE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>BBBBBB</td>
<td>______</td>
</tr>
<tr>
<td>7/01</td>
<td>0006-0011</td>
<td>DOWNLOAD</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>bbbbbb</td>
<td>______</td>
</tr>
<tr>
<td>7/02</td>
<td>0012-0017</td>
<td>DOWNLOAD</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>bbbbbb</td>
<td>______</td>
</tr>
<tr>
<td>7/03</td>
<td>0018-0023</td>
<td>DOWNLOAD</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>bbbbbb</td>
<td>______</td>
</tr>
</tbody>
</table>

For information about upgrading Cisco 3600 Series and Cisco 3700 modems, see the Cisco 3600 Series and Cisco 3700 Series Modem Portware Upgrade Configuration Note at the following URL: http://www.cisco.com/univercd/cc/td/doc/product/access/acs_mod/cis3600/sw_conf/portware/5257d56k.htm.

Configuring Modems in Cisco Access Servers

To configure modem support for access servers such as the Cisco AS5300 and AS5800, perform the following tasks. The list describes which tasks are required and which are optional but recommended.

- Configuring Modem Lines (Required)
- Verifying the Dial-In Connection (Optional but Recommended)
- Troubleshooting the Dial-In Connection (Optional but Recommended)
- Configuring the Modem Using a Modemcap (Required)
- Configuring the Modem Circuit Interface (Required for Digital Modems)

Note: See the chapter “Configuring and Managing Cisco Access Servers and Dial Shelves” for additional information about configuring Cisco AS5x00 series access servers.

Configuring Modem Lines

You must configure the modem lines and set the country code to enable asynchronous connections into your access server. To configure the modems and line, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>MICA modems</td>
<td>Depending on the type of modems loaded in your access server, specifies the modem vendor and country code.¹ This step is only for the MICA, NextPort SPE, and Microcom modems in the Cisco AS5000 series access servers. Table 7 through Table 10 provide a summary and comparison of the Cisco IOS commands used for the MICA and NextPort modems.</td>
</tr>
<tr>
<td>Router(config)# modem country mica country</td>
<td></td>
</tr>
<tr>
<td>NextPort SPE modems</td>
<td></td>
</tr>
<tr>
<td>Router(config)# spe country country</td>
<td></td>
</tr>
<tr>
<td>Microcom modems</td>
<td></td>
</tr>
<tr>
<td>Router(config)# modem country microcom_hdms country</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config)# line beginning-line-number ending-line-number</td>
<td>Enters the number of modem lines to configure. Usually this range is equal to the number of modems in the access server. Use the show line EXEC command to see which lines are available.</td>
</tr>
</tbody>
</table>
Verifying the Dial-In Connection

Before configuring any additional protocols for the line such as SLIP, PPP, or ARA, test whether the dial-in connection for the access server and modem are configured correctly for dial-in access.

Note

The same configuration issues exist between the client DTE and client modem. Make sure that you have the correct EIA/TIA-232 cabling and modem initialization string for your client modem.

The following is an example of a successful connection from a PC using a known good modem to dial in to a Cisco access server:

```
at
OK
atdt9,5550101
CONNECT 14400/ARQ/V32/LAPM/V42BIS
User Access Verification
Username: user1
Password:
Router>
```
Troubleshooting the Dial-In Connection

Depending upon the problems you experience, take the appropriate action:

- If you are having problems making or receiving calls, make sure that you turned on the protocols for connecting to the lines and configured for incoming and outgoing calls.

- If the calls are not coming up at all, turn on modem debugging. Use the the modem debugging commands as follows:
 - The `debug modem` command enables debugging on the modem line.
 - The `debug modem csm` (or `debug csm modem`) command enables debugging for lines configured for digital modems.
 - The `debug isdn q931` command enables debugging for lines configured for the ISDN and Signaling System 7 (SS7) Q.931 protocols.
 - The `debug cas` command enables debugging for lines configured for channel-associated signaling (CAS).

Following is a sample of how to enable and then disable Cisco IOS modem debugging commands on a network access server:

```
Router# debug modem
Router# debug modem csm
Router# debug isdn q931
Router# no debug modem
Router# no debug modem csm
Router# no debug isdn q931
```

- Enter the `debug modem ?` command for a list of additional modem debugging commands:

```
Router# debug modem ?
b2b          Modem Special B2B
csm          CSM activity
maintenance   Modem maintenance activity
mica         MICA Async driver debugging
oob          Modem out of band activity
tdm          B2B Modem/PRI TDM
trace        Call Trace Upload
```

- Turn off the messages by entering the `no debug modem` command.

Configuring the Modem Using a Modemcap

Modems are controlled by a series of parameter settings (up to a limit of 128 characters) that are sent to the modem to configure it to interact with a Cisco device in a specified way. The parameter settings are stored in a database called a *modem capability* (modemcap). The Cisco IOS software contains defined modemcaps that have been found to properly initialize internal modems. Following are the names of some modemcaps available in the Cisco IOS software:

- `cisco_v110`—Cisco (NEC) internal V.110 TA (AS5200)
- `mica`—Cisco MICA HMM/DMM internal digital modem
- `nextport`—Cisco NextPort CSMV/6 internal digital modem
- `microcom_hdms`—Microcom HDMS chassis
Managing Modems

- microcom_mimic—Cisco (Microcom) internal analog modem (NM-AM–2600/3600)
- microcom_server—Cisco (Microcom) V.34/56K internal digital modem (AS5200)

Enter these modemcap names with the `modem autoconfigure type` command.

If your modem is not on this list and if you know what modem initialization string you need to use with it, you can create your own modemcap; see the following procedure, “Using the Modem Autoconfigure Type Modemcap Feature.” To have the Cisco IOS determine what type of modem you have, use the `modem autoconfigure discovery` command to configure it, as described in the procedure “Using the Modem Autoconfigure Discovery Feature.”

Note

When configuring an internal modem, avoid using the Modem Autoconfigure Discovery feature because the feature can misdetect the internal modem type and cause the modem to start working in an unpredictable and unreproducible manner.

Using the Modem Autoconfigure Type Modemcap Feature

If you know what modem initialization string you need to use with your modem, you can create your own modemcap by performing the following steps.

Step 1

Use the `modemcap edit` command to define your own modemcap entry.

The following example defines modemcap MODEMCAPNAME:

```
Router(config)# modemcap edit MODEMCAPNAME miscellaneous &FS0=1&D3
```

Step 2

Apply the modemcap to the modem lines as shown in the following example:

```
Router# terminal monitor
Router# debug confmodem
Modem Configuration Database debugging is on
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# line 33 34
Router(config-line)# modem autoconfigure type MODEMCAPNAME
```

Note

The report that is generated by the `debug confmodem` command can be misleading for the MICA and NexPort internal modems because these modems do not have Universal Asynchronous Receiver/Transmitter (UART) and exchange data with the CPU at speeds of hundreds of kbps.
Using the Modem Autoconfigure Discovery Feature

If you prefer that the modem software use its autoconfigure mechanism to configure the modem, use the `modem autoconfigure discovery` command.

The following example shows how to configure modem autoconfigure discovery mode:

```
Router# terminal monitor
Router# debug confmodem
Modem Configuration Database debugging is on
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# line 33 34
Router(config-line)# modem autoconfigure discovery
```

```
Jan 16 18:16:17.724: TTY33: detection speed (115200) response ---OK---
Jan 16 18:16:17.724: TTY33: Modem type is default
Jan 16 18:16:17.724: TTY33: Modem command: --AT&F&C1&D2S0=1H0--
Jan 16 18:16:17.728: TTY34: detection speed (115200) response ---OK---
Jan 16 18:16:17.728: TTY34: Modem type is default
Jan 16 18:16:17.728: TTY34: Modem command: --AT&F&C1&D2S0=1H0--
```

Configuring the Modem Circuit Interface

The next task to complete before using the integrated modem is to configure the modem circuit interface. The basic steps are outlined next:

- If the integrated modem is an analog modem, no further configuration is required; modem characteristics are set on the line.
- If the integrated modem is a digital modem, you can configure either the ISDN or CAS, as appropriate.
 - For ISDN BRI and PRI, you need to select the switch type and whether ISDN accepts incoming voice or data calls. If you configure a PRI, you will need to configure the T1 or E1 controller. See the chapter “Configuring ISDN BRI” in the “ISDN Configuration” part of this guide, and the chapter “Configuring ISDN PRI” in the “Signaling Configuration” part of this guide.
 - Configuring CAS is described in the chapter “Configuring ISDN PRI” in the Signaling Configuration part of this guide.

If you want to configure SS7, refer to Appendix G, “Configuring the Cisco SS7/C7 Dial Access Solution System,” in the *Cisco IOS Voice, Video, and Fax Configuration Guide*.

Comparison of NextPort SPE and MICA Modem Commands

Table 7 through Table 10 compare the MICA and SPE commands.

Table 7 EXEC Commands: NextPort to MICA Command Comparison

<table>
<thead>
<tr>
<th>NextPort SPE Commands</th>
<th>Purpose</th>
<th>MICA Modem Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear port</td>
<td>Clears specified ports.</td>
<td>clear modem</td>
</tr>
<tr>
<td>clear port log</td>
<td>Clears all log entries for specified ports.</td>
<td>clear modem log</td>
</tr>
</tbody>
</table>
Table 7 EXEC Commands: NextPort to MICA Command Comparison (continued)

<table>
<thead>
<tr>
<th>NextPort SPE Commands</th>
<th>Purpose</th>
<th>MICA Modem Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear spe</td>
<td>Reboots all specified SPEs. All calls will be torn down.</td>
<td>none</td>
</tr>
<tr>
<td>clear spe counters</td>
<td>Clears all statistics.</td>
<td>clear modem counters</td>
</tr>
<tr>
<td>clear spe log</td>
<td>Clears all log entries for specified SPEs.</td>
<td>clear modem log</td>
</tr>
<tr>
<td>show port config</td>
<td>Displays configuration parameters for the current active session.</td>
<td>show modem config</td>
</tr>
<tr>
<td>show port modem calltracker</td>
<td>Displays port-level information for an active modem.</td>
<td>show modem calltracker</td>
</tr>
<tr>
<td>show port modem log</td>
<td>Displays the events generated by the modem sessions.</td>
<td>show modem log</td>
</tr>
<tr>
<td>show port modem test</td>
<td>Displays port modem test results.</td>
<td>show modem test</td>
</tr>
<tr>
<td>show port operational-status</td>
<td>Displays statistics for the current active session.</td>
<td>show modem operational-status</td>
</tr>
<tr>
<td>show spe</td>
<td>Displays the SPE status.</td>
<td>show modem</td>
</tr>
<tr>
<td>show spe log</td>
<td>Displays the SPE system log.</td>
<td>show modem</td>
</tr>
<tr>
<td>show spe modem active</td>
<td>Displays the statistics of all active calls on specified SPEs.</td>
<td>show modem</td>
</tr>
<tr>
<td>show spe modem csr</td>
<td>Displays the call success rate (CSR) for the specified SPE.</td>
<td>show modem</td>
</tr>
<tr>
<td>show spe modem disconnect-reason</td>
<td>Displays all modem disconnect reasons for the specified SPEs.</td>
<td>show modem call-stats</td>
</tr>
<tr>
<td>show spe modem high speed</td>
<td>Displays the total number of connections negotiated within each modulation or coder-decoder (codec) for a specific range of SPEs.</td>
<td>show modem speed</td>
</tr>
<tr>
<td>show spe modem high standard</td>
<td>Displays the total number of connections negotiated within each high modulation or codec for a specific range of SPEs or for all the SPEs.</td>
<td>—</td>
</tr>
<tr>
<td>show spe modem low speed</td>
<td>Displays the connect-speeds negotiated within each low-speed modulation or codec for a specific range of SPEs or for all the SPEs.</td>
<td>show modem speed</td>
</tr>
<tr>
<td>show spe modem low standard</td>
<td>Displays the total number of connections negotiated within each low modulation or codec for a specific range of SPEs or for all the SPEs.</td>
<td>—</td>
</tr>
<tr>
<td>show spe modem summary</td>
<td>Displays the modem service history statistics for specific SPEs.</td>
<td>show modem</td>
</tr>
<tr>
<td>show spe version</td>
<td>Displays all MICA and NextPort firmware versions stored in flash memory and the firmware assigned to each SPE.</td>
<td>show modem mapping</td>
</tr>
</tbody>
</table>
Table 8 SPE Configuration Commands: NextPort to MICA Command Comparison

<table>
<thead>
<tr>
<th>NextPort SPE Commands</th>
<th>Purpose</th>
<th>MICA Modem Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>busyout</td>
<td>Busies out active calls.</td>
<td>modem busyout</td>
</tr>
<tr>
<td>firmware location <code>filename</code></td>
<td>Specifies the firmware file to be upgraded.</td>
<td>Already implemented on the Cisco AS5300 and Cisco AS5800 platforms.</td>
</tr>
<tr>
<td>firmware upgrade</td>
<td>Specifies the upgrade method.</td>
<td>Already implemented on the Cisco AS5300 platform.</td>
</tr>
<tr>
<td><code>port modem autotest</code>¹</td>
<td>Enables modem autotest.</td>
<td>modem autotest</td>
</tr>
<tr>
<td>shutdown</td>
<td>Tears down all active calls on the specified SPEs.</td>
<td>modem shutdown</td>
</tr>
<tr>
<td>spe</td>
<td>Configures the SPE.</td>
<td>Already implemented on the Cisco AS5300 and Cisco AS5800 platforms.</td>
</tr>
<tr>
<td>spe call-record</td>
<td>Generates a modem call record at the end of each call.</td>
<td>modem call-record</td>
</tr>
<tr>
<td>spe country</td>
<td>Sets the system country code.</td>
<td>modem country</td>
</tr>
<tr>
<td>spe log-size</td>
<td>Sets the maximum log entries for each port.</td>
<td>modem buffer-size</td>
</tr>
<tr>
<td>spe poll</td>
<td>Sets the statistic polling interval.</td>
<td>modem poll</td>
</tr>
</tbody>
</table>

¹ Cisco does not recommend the use of the `modem autotest` or `port modem autotest` command. These commands may produce unexpected results including modems being marked out of service and unscheduled reloads. These commands have been removed in Cisco IOS Release 12.3.

Table 9 Port Configuration Commands: NextPort to MICA Command Comparison

<table>
<thead>
<tr>
<th>NextPort SPE Commands</th>
<th>Purpose</th>
<th>MICA Modem Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>busyout</td>
<td>Busies out a port.</td>
<td>modem busyout</td>
</tr>
<tr>
<td>default</td>
<td>Compares the value of the command to its default value.</td>
<td>default modem</td>
</tr>
<tr>
<td>port</td>
<td>Configures the port range.</td>
<td>modem range</td>
</tr>
<tr>
<td>shutdown</td>
<td>Shuts down a port.</td>
<td>modem shutdown</td>
</tr>
</tbody>
</table>

Table 10 Global Configuration Commands: NextPort to MICA Command Comparison

NextPort SPE CLI Commands	Purpose	MICA Modem CLI Commands
---------------------------		-------------------------
ds0 busyout-threshold	Defines a threshold to maintain a balance between the number of digital signal level 0s (DS0s) and modems.	modem busyout-threshold
Configuring Cisco Integrated Modems Using Modem Attention Commands

This section provides information about using modem attention (AT) command sets to modify modem configuration. It contains the following sections:

- Using Modem Dial Modifiers on Cisco MICA Modems (As required)
- Changing Configurations Manually in Integrated Microcom Modems (As required)
- Configuring Leased-Line Support for Analog Modems (As required)

Using Modem Dial Modifiers on Cisco MICA Modems

Dial modifiers permit multistage dialing for outbound modem calling through public and private switched telephone networks (PSTNs).

Note: For additional information about dial modifiers for the MICA modems, search Cisco.com for the publication *AT Command Set and Register Summary for MICA Six-Port Modules*.

The Cisco NAS Modem Health feature is enabled by arguments to the ATD AT command. The AT prefix informs the network access server modem that commands are being sent to it, and the D (dial string or dial) suffix dials a telephone number, establishing a connection. With NAS Modem Health feature, you can enter the dial modifiers listed in Table 11 after the D in your dial string: X, W, and the comma (,) character. These modifiers had been previously accepted without error but ignored in Cisco MICA modems on Cisco AS5300 and Cisco AS5800 universal access servers.

Table 11 Dial Modifiers for Cisco MICA Modems

<table>
<thead>
<tr>
<th>Dial Modifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Switches to in-band dual tone multifrequency (DTMF) mode for any subsequent digits remaining in the ATD string. The X dial modifier has been added to serve as a delimiter for the host when the dial string is processed. It allows Cisco MICA portware to be used in many environments that do not support DTMF dialing (for example, PRI).</td>
</tr>
<tr>
<td>W</td>
<td>Waits for dial tone and then switches to in-band DTMF mode for any subsequent digits remaining in the ATD string. The W dial modifier also acts as a delimiter between the primary and secondary sections of the dial string, so that no additional X modifier is needed. Once either an X or a W has been parsed in the dial string, any additional X modifiers are ignored. Additional W modifiers cause Cisco MICA modems to wait for a dial tone.</td>
</tr>
<tr>
<td>,</td>
<td>Delay: Number of seconds in S8. Default is 2 seconds. The comma (,) dial modifier is treated as a silent DTMF tone for the duration of seconds specified in S8. The comma is acted on only after the call switching module (CSM) has made the transition to DTMF mode, which requires that it either follow an X or a W in the dial string, or that the T1/E1 be configured for DTMF signaling.</td>
</tr>
</tbody>
</table>

In the following example dial string, the portion of the string before the X is dialed for the given line type used in your configuration. All digits after the X generate the appropriate DTMF tones.

```
atdT5550101x,,,567
```
Changing Configurations Manually in Integrated Microcom Modems

You can change the running configuration of an integrated modem by sending individual modem AT commands. Manageable Microcom modems have an out-of-band feature, which is used to poll modem statistics and send AT commands. The Cisco IOS software uses a direct connect session to transfer information through this out-of-band feature. To send AT commands to a Microcom modem, you must permit a direct connect session for a specified modem, open a direct connect session, send AT commands to a modem, and clear the directly connected session from the modem when you are finished.

Open a direct connect session by entering the `modem at-mode slot/port` command in privileged EXEC mode. From here, you can send AT commands directly from your terminal session window to the internal Microcom modems. Most incoming or outgoing calls on the modems are not interrupted when you open a direct connect session and send AT commands. However, some AT commands interrupt a call—for example, the `ATH` command, which hangs up a call. Open and close one direct connect session at a time. Note that multiple open sessions slow down modem performance.

Refer to the AT command set that came with your router for a complete list of AT commands that you can send to the modems.

For Microcom modems, you can clear or terminate an active directly connected session in two ways:

- Press Ctrl-C after sending all AT commands as instructed by the system when you enter AT command mode.
- Enter a second Telnet session and execute the `clear modem at-mode slot/port` EXEC command. This method is used for closing a directly connected session that may have been mistakenly left open by the first Telnet session.

The following example illustrates use of the modem commands.

AT Mode Example for Integrated Modems

To establish a direct connect session to an internal or integrated modem (existing inside the router), such as the connection required for Microcom modems in the Cisco AS5200 access server, open a directly connected session with the `modem at-mode` command and then send AT commands to the specified modem. For example, the following example sends the AT command `at%v` to modem 1/1:

```
AS5200# modem at-mode 1/1
You are now entering AT command mode on modem (slot 1 / port 1).
Please type CTRL-C to exit AT command mode.
at%v

MNP Class 10 V.34/V.FC Modem Rev 1.0/85
OK
at\n
IDLE 000:00:00
LAST DIAL

NET ADDR: FFFFFFFF
MODEM HW: SA 2W United States
4 RTS 5 CTS 6 DSR - CD 20 DTR - RI
MODULATION IDLE
MODEM BPS 28800 AT%G0
MODEM FLOW OFF AT\G0
MODEM MODE AUT AT\N3
V.23 OPR. OFF AT%F0
AUTO ANS. ON ATSO=1
SERIAL BPS 115200 AT%U0
BPS ADJUST OFF AT\J0
```
The modem responds with “OK” when the AT command you send is received.

Configuring Leased-Line Support for Analog Modems

Analog modems on the NM-8AM and NM-16AM network modules in the Cisco 2600 and 3600 series routers provide two-wire leased-line support for enterprise customers who require point-to-point connections between locations and for enterprise customers with medium to high data transfer requirements without access to other technologies or with access to only low-grade phone lines.

This feature works only with leased lines that provide loop current. Each modem used must have an RJ-11 connection to the PSTN.

Several features enhance the analog modem software:

- 2-wire leased-line support.
- Modem speeds up to 33.6 kbps with support for all current analog modem protocols, compression, and error correction techniques.
- Power-on autoconnect and loopback testing.
- Support for the maximum number of leased-line users without data transmission loss at distances up to 2 to 5 km.
- In-band and out-of-band monitoring.
- Support on all Cisco 2600 and Cisco 3600 series platforms and upgradability using Cisco IOS software.
- Compatibility with other major leased-line modem vendors.

To configure this support, configure one modem AT command (AT&L) and two AT registers with the modemcap entry command for the appropriate leased lines.

For leased line configuration using the AT&L{0 | 1 | 2} command:

- **0**—Disables the leased line (enables switched line; default).
- **1**—Enables the leased line. The modem initiates a leased line when dial and answer commands (ATD and ATA) are issued.
- **2**—Enables the leased line. The modem goes off hook automatically after T57 number of seconds in:
 - Originate mode if ATS0 is 0.
 - Answer mode if ATS0 is not equal to 0.

The following AT registers can also be set:

- **AT:T57**—Number of seconds before going off hook in leased-line mode when the command AT&L2 is used (defaults to 6).
- **AT:T79**—Number of autoretrains before the modem is disconnected (defaults to 3).

For more information about using the AT command set with the modems on the NM-8AM and NM-16AM network modules in the Cisco 2600 and 3600 series routers, search Cisco.com for the publication *AT Command Set and Register Summary for Analog Modem Network Modules*.
To configure a modem for leased-line operation, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# modemcap entry modem-type-name:AA=S0=0&L2</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# modemcap entry modem-type-name:AA=S0=1&L2</td>
</tr>
</tbody>
</table>

The `show modemcap` command lists all the predefined modem types and any user-defined modems that are currently configured on the router:

- If the leased line has been configured, the modemcap information will be available.
- If the leased line has not been configured, only the predefined modem types will be displayed.

The important setting for leased-line support is what is defined in the modemcap as the key configuration item and its application to the leased line. Consider the following command strings:

```plaintext
modemcap entry micro_LL_orig:AA=S0=0&L2
modemcap entry micro_LL_ans:AA=S0=1&L2
```

AA stands for autoanswer:

- The answering modem AA register is set to 1 (AA=S0=1) so that autoanswer is “on”.
- The originating modem AA register is set to 0 (AA=S0=0) so that autoanswer is “off”.

If the AA feature is used, both the originating and answering modem must be put into leased-line mode with the `&L2` AT command.

In the examples, the `micro_LL_orig` and `micro_LL_ans` strings are arbitrary text descriptions.

Note

For the `modemcap entry` command, one of the predefined modem types may be used or a completely user-defined modemcap may be created. For leased line, no new modem type was added. Users may create their own modemcaps for leased-line functionality.

To configure the modem for leased-line operation, use the `modemcap entry` command. For each connection, each modem must be configured as an originator or answerer.

The following example shows modemcaps for a leased-line originator and answerer and their application to specific ports:

```plaintext
modemcap entry micro_LL_orig:AA=S0=0&L2
modemcap entry micro_LL_ans:AA=S0=1&L2
line 73
  no exec
  modem InOut
  modem autoconfigure type micro_LL_ans
  transport input all
line 74
  no exec
  modem InOut
  modem autoconfigure type micro_LL_orig
  transport input all
```
When Multilink PPP (MLP) is configured on a dialer interface, the dialer configuration has a default value of 2 minutes for dialer idle timeout. For leased-line connections, set the dialer idle timeout to infinity by adding `dialer idle-timeout 0` to the configuration.

Verifying the Analog Leased-Line Configuration

The following information is important for verifying or troubleshooting your configuration. The `show modem log` command displays the progress of leased-line connections. Here is an example log for a leased-line answerer. Note the “LL Answering” state and “LL Answer” in the “Direction” field of the connection report:

- 00:44:03.884 DTR set high
- 00:44:02.888 Modem enabled
- 00:43:57.732 Modem disabled
- 00:43:52.476 Modem State:LL Answering
- 00:43:52.476 CSM:event-MODEM_STARTING_CONNECT New State-CSM_CONNECT_INITIATED_STATE
- 00:43:51.112 Modem State:Waiting for Carrier
- 00:43:43.308 Modem State:Connected
- 00:43:42.304 Connection:TX/RX Speed = 33600/33600, Modulation = V34
- Direction = LL Answer, Protocol = MNP, Compression = V42bis
- 00:43:42.304 CSM:event-MODEM_CONNECTED New State-CONNECTED_STATE
- 00:43:42.304 PPP mode active
- 00:43:41.892 RS232:noCTS* DSR* DCD* noRI noRxBREAK TxBREAK*
- 00:43:41.892 PPP escape maps set:TX map=00000000 RX map=FFFFFFFF
- 00:43:41.724 PPP escape maps set:TX map=00000000 RX map=00A00000
- 00:43:44.444 RS232:CTS* DSR DCD noRI noRxBREAK TxBREAK
- 00:43:42.716 Modem Analog Report:TX = -20, RX = -34, Signal to noise = 61

Cisco 2600 and 3600 Series Analog Modem Leased-Line Support Examples

In the following examples, one Cisco 3620 router and one Cisco 3640 router are connected back-to-back using leased lines. The Cisco 3620 router has the originating configuration, and the Cisco 3640 router has the answering configuration.

In the dialer interface configuration, the `dialer idle-timeout 0` command is added to set the dialer idle timeout to infinity. Otherwise the leased line will go down and up every 2 minutes because the default dialer interface idle timeout is 2 minutes.

Leased-Line Originating Configuration

```
version 12.1
service timestamps debug uptime
service timestamps log uptime
```
modemcap entry micro_LL_orig:AA=S0=0&L2
modemcap entry micro_LL_ans:AA=S0=1&L2
!
interface Async33
 no ip address
 encapsulation ppp
 no ip route-cache
 no ip mroute-cache
 dialer in-band
 dialer pool-member 1
 async default routing
 async dynamic routing
 async mode dedicated
 no peer default ip address
 no fair-queue
 no cdp enable
 ppp direction callout
 ppp multilink
!
interface Dialer1
 ip address 10.1.24.1 255.255.255.0
 encapsulation ppp
 no ip route-cache
 no ip mroute-cache
 dialer remote-name sara40
 dialer pool 1
 dialer idle-timeout 0
 dialer max-call 4096
 no cdp enable
 ppp direction callout
 ppp multilink
!
dialer-list 1 protocol ip permit
!
line con 0
 exec-timeout 0 0
 transport input none
line 33
 no exec
 modem InOut
 modem autoconfigure type micro_LL_orig
 transport input all
line aux 0
 exec-timeout 0 0
line vty 0 4
 exec-timeout 0 0
!
end

Leased-Line Answering Configuration

version 12.1
service timestamps debug uptime
service timestamps log uptime
!
modemcap entry micro_LL_orig:AA=S0=0&L2
modemcap entry micro_LL_ans:AA=S0=1&L2
!
interface Async73
 no ip address
 encapsulation ppp
 no ip route-cache
 no ip mroute-cache
 dialer in-band
Configuring and Managing Integrated Modems

Configuring Modem Pooling

Modem pooling allows you to control which modem a call connects to, on the basis of dialed number identification service (DNIS). When modem pooling is not used, incoming and outgoing calls are arbitrarily assigned to modems. For example, consider a Cisco AS5300 access server loaded with a 4-port ISDN PRI card. After an analog modem call comes into the first PRI trunk, the call is greeted by a general pool of B channels and a general pool of modems. Any B channel can be connected to any modem in the access server. A random assignment takes place. Modem resources cannot be controlled.

Modem pooling assigns physical modems to a single DNIS. It enables you to create pools of physical modems in one access server, assign a unique DNIS to each modem pool, and set maximum simultaneous connect limits.

This feature is used for physically partitioning or virtually partitioning modems inside one network access server.
Modem pooling offers these benefits:
- A certain number of modem ports can be guaranteed per DNIS.
- Maximum simultaneous connection limits can be set for each DNIS.

The following restrictions apply:
- Modem pooling is not a solution for large-scale dial access. It cannot be used to create virtual modem pools across multiple access servers that are connected. Modem pooling is physically restricted to one access server.
- MICA and Microcom technology modems support modem pooling. However, only MICA modems support modem pooling for CT1 and CE1 configurations using CAS. To use modem pooling with CT1 or CE1 connections, you must reserve at least two modems in the default modem pool. These reserved modems decode DNIS before handing off calls to the modems assigned to modem pools.

If you see many call failures appearing on the access server, try assigning more modems to the default pool. Use the `show modem` and `show modem summary` EXEC commands to display the modem call failure and success ratio.
- No MIBs support modem pooling.
- The same DNIS cannot exist in more than one modem pool.

Modem pooling is supported on the Cisco AS5300 access servers. To configure and manage modems, perform the tasks in the following sections; all tasks are optional and depend upon the needs of your system.
- Creating a Modem Pool (Required)
- Verifying Modem Pool Configuration (As required)

Creating a Modem Pool

You must first decide to physically partition or virtually partition your modems. For more information, see the previous section, “Configuring Modem Pooling.” After you have made this decision, create a modem pool for a dial-in service or specific customer by using the following commands beginning in global configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(config)# modem-pool name</code> Creates a modem pool and assigns it a name, and starts modem pool configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>Router(config-modem-pool)# pool-range number-number</code> Assigns a range of modems to the pool. A hyphen (-) is required between the two numbers. The range of modems you can choose from is equivalent to the number of modems in your access server that are not currently associated with another modem pool.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router(config-modem-pool)# called-number number [max-conn number]</code> Assigns the DNIS to be used for this modem pool. The <code>max-conn</code> option specifies the maximum number of simultaneous connections allowed for this DNIS. If you do not specify a <code>max-conn</code> value, the default (total number of modems in the pool) is used.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>Router(config-modem-pool)# Ctrl-Z</code> Returns to EXEC mode.</td>
</tr>
</tbody>
</table>
Verifying Modem Pool Configuration

To verify the modem configuration, enter the `show modem-pool` command to display the configuration. This command displays the structure and activity status for all the modem pools in the access server. See Table 12 for a description of each display field.

Router# show modem-pool

modem-pool: System-def-Mpool
mods in pool: 0 active conn: 0
 0 no free modems in pool

modem-pool: v90service
mods in pool: 48 active conn: 46
 8 no free modems in pool
called_party_number: 1234
 max conn allowed: 48, active conn: 46
 8 max-conn exceeded, 8 no free modems in pool

modem-pool: v34service
mods in pool: 48 active conn: 35
 0 no free modems in pool
called_party_number: 5678
 max conn allowed: 48, active conn: 35
 0 max-conn exceeded, 0 no free modems in pool

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>modem-pool</td>
<td>Name of the modem pool. In the previous example, there are three modem pools configured: System-def-Mpool, v90service, and v34service. To set the modem pool name, refer to the <code>modem-pool</code> command. All the modems not assigned to a modem pool are automatically assigned to the system default pool (displayed as System-def-Mpool).</td>
</tr>
<tr>
<td>mods in pool</td>
<td>Number of modems assigned to the modem pool. To assign modems to a pool, refer to the display and descriptions for the <code>pool-range</code> command.</td>
</tr>
</tbody>
</table>
For modem pool configuration examples, see the section “Physical Partitioning with Dial-In and Dial-Out Scenario” later in this chapter.

Check the following if you are having trouble operating your modem:

- Make sure you have not configured the same DNIS for multiple pools.
- Make sure you have not placed the same modem in multiple pools.

Note

Modem pools that use MICA or Microcom modems support incoming analog calls over ISDN PRI. However, only MICA modems support modem pooling for T1 and E1 configurations with CAS.

Configuring Physical Partitioning

You can either physically partition or virtually partition your modems to enable different dial-in and dial-out services. This section provides information about the following optional tasks:

- **Creating a Physical Partition, page 86**
- **Physical Partitioning with Dial-In and Dial-Out Scenario, page 88**

Physical partitioning uses one access server to function as multiple access servers loaded with different types of modem services (for example, V.34 modems, fax-capable modems, and point-of-sale (POS) modems). Each modem service is part of one physical modem pool and is assigned a unique DNIS number. (See Figure 19.)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active conn</td>
<td>Number of simultaneous active connections for the specified modem pool or called party DNIS number.</td>
</tr>
<tr>
<td>no free modems in pool</td>
<td>Number of times incoming calls were rejected because there were no more free modems in the pool to accept the call.</td>
</tr>
<tr>
<td>called_party_number</td>
<td>Specified called party DNIS number. This is the number that the remote clients use to dial in to the access server. You can have more than one DNIS number per modem pool. To set the DNIS number, refer to the description for the <code>called-number</code> command.</td>
</tr>
<tr>
<td>max conn allowed</td>
<td>Maximum number of modems that a called party DNIS number can use, which is an overflow protection measure. To set this feature, refer to the description for the <code>called-number</code> command.</td>
</tr>
<tr>
<td>max-conn exceeded</td>
<td>Number of times an incoming call using this called party DNIS number was rejected because the <code>max-conn number</code> parameter specified by the <code>called-number</code> command was exceeded.</td>
</tr>
</tbody>
</table>
Physical partitioning can also be used to set up an access server for bidirectional dial access. (See Figure 20.)

Figure 20 shows one Cisco AS5300 access server loaded with 96 MICA modems and configured with 2 modem pools. One modem pool has 84 modems and collects DNIS. This pool is shared by 400 salespeople who remotely download e-mail from headquarters. The other modem pool contains 12 fax-capable modems and does not collect DNIS. This pool is shared by 40 employees using PCs on a LAN. Each time an outbound call is initiated by a PC, a modem on the Cisco AS5300 access server is seized and used to fax out or dial out. Not configuring DNIS support in the fax-out modem pool protects the pool from being used by the calls coming in from the field. Regardless of how many salespeople are dialing in or which telephone number they use, the fax-out and dial-out modem pool will always be reserved for the PCs connected to the LAN.

Creating a Physical Partition

The following task creates one V.34 modem pool and one 56K modem pool on a Cisco AS5200. Each modem pool is configured with its own DNIS. Depending on which DNIS the remote clients dial, they connect to a 56K MICA modem or a V.34 Microcom modem.
The following hardware configuration is used on the Cisco AS5200 access server:

- One 2-port T1 PRI card
- One 48-port card containing four 6-port MICA 56K modem modules and two 12-port Microcom V.34 modem modules

To configure basic physical partitioning, perform the following steps:

Step 1 Enter global configuration mode:
```
Router# configure terminal
Router(config)#
```

Step 2 Create the modem pool for the 56K MICA modem services using the `modem-pool name` command. The modem pool is called 56kservices, which spans four 6-port MICA 56K modem modules.
```
Router(config)# modem-pool 56kservices
Router(config-modem-pool)#
```

Note The router is in modem pool configuration mode after the prompt changes from `Router(config)#` to `Router(config-modem-pool)#`.

Step 3 Assign a range of modems to the modem pool using the `pool-range number-number` command. Because all the 56K MICA technologies modems are seated in slot 1, they are assigned TTY line numbers 1 to 24. Use the `show line` EXEC command to determine the TTY line numbering scheme for your access server.
```
Router(config-modem-pool)# pool-range 1-24
```

Step 4 Assign a DNIS to the modem pool using the `called-number number [max-conn number]` command. This example uses the DNIS 5550101 to connect to the 56K modems. The maximum simultaneous connection limit is set to 24. The 25th user who dials 5550101 gets a busy signal.
```
Router(config-modem-pool)# called-number 5550101 max-conn 24
```

Step 5 Return to EXEC mode by entering Ctrl-Z. Next, display the modem pool configuration using the `show modem-pool` command. In the following example, 56K modems are in the modem pool called 56kservices. The remaining 24 V.34 Microcom modems are still in the default system pool.
```
Router(config-modem-pool)# ^Z
Router# show modem-pool

modem-pool: System-def-Mpool
modems in pool: 24  active conn: 0
0 no free modems in pool
modem-pool: 56kservices
modems in pool: 24  active conn: 0
0 no free modems in pool
called_party_number: 5550101
  max conn allowed: 24, active conn: 0
  0 max-conn exceeded, 0 no free modems in pool
```

Step 6 Create the modem pool for the Microcom physical partition. After the configuration is complete, the `show modem-pool` command shows that there are no remaining modems in the system default modem pool.
```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# modem-pool v34services
```
Managing Modems

Cisco IOS Dial Technologies Configuration Guide

```
Router(config-modem-pool)# pool-range 25-48
Router(config-modem-pool)# called-number 5550202 max-conn 24
Router(config-modem-pool)# ^Z
Router# show modem-pool

modem-pool: System-def-Mpool
modems in pool: 0  active conn: 0
0 no free modems in pool

modem-pool: 56kservices
modems in pool: 48  active conn: 0
0 no free modems in pool
called_party_number: 5550101
max conn allowed: 48, active conn: 0
0 max-conn exceeded, 0 no free modems in pool

modem-pool: v34services
modems in pool: 48  active conn: 0
0 no free modems in pool
called_party_number: 5550202
max conn allowed: 48, active conn: 0
0 max-conn exceeded, 0 no free modems in pool
```

Router# copy running-config startup-config

Physical Partitioning with Dial-In and Dial-Out Scenario

The following is a bidirectional dial scenario using a Cisco AS5300 access server. Two modem pools are configured. One modem pool contains 84 56K MICA modems, which is shared by 400 remote salespeople who dial in to headquarters. The other modem pool contains 12 fax-capable modems, which are shared by 40 employees who dial out of the headquarters LAN using the Cisco DialOut Utility software. See Figure 20 for the network topology.

The following hardware configuration is used on the Cisco AS5300:

- One 4-port T1 PRI card
- Two 48-port cards containing fourteen 6-port MICA 56K modem modules and two 6-port MICA fax-capable modem modules

To configure physical partitioning with dial-in and dial-out capability, perform the following steps:

Step 1

Create the 56K modem pool for the 400 remote salespeople. This modem pool contains 84 modems, which are reserved for the dial-in calls. To get access, the salespeople dial the DNIS 5550303. The total number of simultaneous calls is limited to 84. The 85th call and those above it are rejected. The `modem dialin` line configuration command is used to prevent modems 1 to 84 from dialing out.

```
Router(config-line)# modem dialin
Router(config-line)# transport input all
Router(config-line)# autoselect ppp
```

```
Router(config-line)# exit
```

```
Router(config)# exit
```

```
Router# configure terminal
Router(config)# modem-pool 56ksalesfolks
Router(config-modem-pool)# pool-range 1-84
Router(config-modem-pool)# called-number 5550303 max-conn 84
Router(config-modem-pool)# exit
```

```
Router(config)# line 1 84
```

```
Router(config-line)# modem dialin
```

```
Router(config-line)# transport input all
```

```
Router(config-line)# autoselect ppp
```

```
Router(config-line)# exit
```

```
Router(config)#
```
Step 2 Create the dial-out/fax-out modem pool for the 40 local employees connected to the headquarters LAN. This modem pool contains 12 fax-capable MICA modems. No DNIS is assigned to the pool. Because lines 85 to 96 are used for the dial-out and fax-out modem services, the asynchronous lines are configured for reverse Telnet. This configuration is needed for the Telnet extensions to work with the dial-out application, which is installed on the LAN PCs.

Router(config)# modem-pool dialoutfolks
Router(config-modem-pool)# pool-range 85-96
Router(config-modem-pool)# exit
Router(config)# line 85-96
Router(config-line)# refuse-message z [!NMM!] No Modems Available z
Router(config-line)# exec-timeout 0 0
Router(config-line)# autoselect during-login
Router(config-line)# autoselect ppp
Router(config-line)# modem inout
Router(config-line)# rotary 1
Router(config-line)# transport preferred telnet
Router(config-line)# transport input all
Router(config-line)# exit
Router(config)#

Step 3 Configure the group asynchronous interface, which assigns core protocol characteristics to all the asynchronous interfaces in the system. Regardless of the direction that the modems are dialing, all modems in the access server leverage this group asynchronous configuration.

Router(config)# interface group-async 1
Router(config-if)# ip unnumbered ethernet 0
Router(config-if)# encapsulation ppp
Router(config-if)# async mode interactive
Router(config-if)# ppp authentication chap pap paplocal
Router(config-if)# peer default ip address pool bidir_dial_pool
Router(config-if)# no cdp enable
Router(config-if)# no ip mroute cache
Router(config-if)# no ip route cache
Router(config-if)# async dynamic routing
Router(config-if)# async dynamic address
Router(config-if)# group range 1-96
Building configuration...

Step 4 Create an IP address pool for all the dial-in clients and dial-out clients. Both types of clients borrow addresses from this shared pool.

Router(config)# ip local pool bidir_dial_pool 10.4.1.1 10.4.1.96
Router(config)# ^z
Router# copy running-config startup-config

Step 5 (Optional) If you are using CiscoSecure AAA and a remote TACACS server, include the following security statements on the access server:

Router(config)# aaa new-model
Router(config)# aaa authentication login default tacacs+
Router(config)# aaa authentication login noaaa local
Router(config)# aaa authentication login logintac tacacs+
Router(config)# aaa authentication ppp ppptac tacacs+
Router(config)# aaa authorization exec tacacs+
Router(config)# aaa authorization network tacacs+
Router(config)# aaa authorization reverse-access tacacs+
Router(config)# aaa accounting exec start-stop tacacs+
Router(config)# aaa accounting network start-stop tacacs+
Router(config)# aaa accounting update newinfo
Router(config)# enable password cisco
You should also include the host name, timeout interval, and authentication key:

```plaintext
Router(config)# tacacs-server host 10.4.1.10
Router(config)# tacacs-server timeout 20
Router(config)# tacacs-server key nas1
```

Configuring Virtual Partitioning

Virtual partitioning creates one large modem pool on one access server, but assigns different DNIS numbers to different customers. Each incoming DNIS consumes resources from the same modem pool, but a maximum connect option is set for each DNIS.

Figure 21 shows two Internet service provider (ISP) customers who are leasing modems from another service provider. Each ISP is assigned its own DNIS number and range of modems. Each ISP is guaranteed a certain number of physical modem ports for simultaneous connections. After an ISP uses up all the modems assigned to its DNIS, a busy signal is issued.

![Figure 21: Modem Pooling Using Virtual Partitioning](image)

Virtual partitioning essentially resells modem banks to customers, such as a small-sized ISP. However, remember that modem pooling is a single-chassis solution, not a multichassis solution. Modem pooling is not a solution for reselling ports on a large-scale basis.

The following procedure creates one modem pool on a Cisco AS5300 access server for two ISP customers. The shared modem pool is called isp56kpool. However, both ISP customers are assigned different DNIS numbers and are limited to a maximum number of simultaneous connections.

See Figure 21 for the network topology.

The following hardware configuration is used on the Cisco AS5300 access server:

- One 4-port T1 PRI card
- Two 48-port cards containing sixteen 6-port MICA 56K modem modules
To configure virtual partitioning, perform the following steps:

Step 1 Enter global configuration mode:
```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#
```

Step 2 Create the shared modem pool for the 56K MICA modem services. This modem pool is called isp56kpool, which spans sixteen 6-port MICA 56K modem modules.
```
Router(config)# modem-pool isp56kpool
Router(config-modem-pool)#
```

Step 3 Assign all the modems to the modem pool using the `pool-range number-number` command. Use the `show line EXEC` command to determine your TTY line numbering scheme.
```
Router(config-modem-pool)# pool-range 1-96
```

Step 4 Assign a unique DNIS to each ISP customer using the `called-number number [max-conn number]` command. In this example, the `max-conn number` option limits each ISP to 48 simultaneous connections. The 49th user to dial either DNIS will get a busy signal.
```
Router(config-modem-pool)# called-number 5550101 max-conn 48
Router(config-modem-pool)# called-number 5550202 max-conn 48
```

Step 5 Return to EXEC mode by entering a `Ctrl-Z` sequence. Next, display the modem pool configuration using the `show modem-pool` command. In the following example, all the 56K modems are in the isp56kpool modem pool. The output also shows two DNIS numbers configured: 5550101 and 5550202.
```
Router(config-modem-pool)# ^Z
Router# show modem-pool
modem-pool: System-def-Mpool
  modems in pool: 0 active conn: 0
  0 no free modems in pool
modem-pool: isp56kpool
  modems in pool: 96 active conn: 0
  0 no free modems in pool
  called_party_number: 5550101
    max conn allowed: 48, active conn: 0
    0 max-conn exceeded, 0 no free modems in pool
  called_party_number: 5550202
    max conn allowed: 48, active conn: 0
    0 max-conn exceeded, 0 no free modems in pool
Router# copy running-config startup-config
```

Configuring Call Tracker

The Call Tracker feature captures detailed statistics on the status and progress of active calls and retains historical data for disconnected call sessions. Call Tracker collects session information such as call states and resources, traffic statistics, total bytes transmitted and received, user IP address, and disconnect reason. This data is maintained within the Call Tracker database tables, which are accessible through the Simple Network Management Protocol (SNMP), the CLI, or syslog.
The calltracker command, providing Call Tracker services, is supported for dial calls but not voice. Calltracker is supported for dial calls on 5x platforms (5300, 5350, 5400, 5800, and 5850).

Call Tracker is notified of applicable call events by related subsystems such as ISDN, PPP, CSM, Modem, EXEC, or TCP-Clear. SNMP traps are generated at the start of each call, when an entry is created in the active table, and at the end of each call, when an entry is created in the history table. Call Record syslogs are available through configuration that will generate detailed information records for all call terminations. This information can be sent to syslog servers for permanent storage and future analysis.

Additionally, the status and diagnostic data that is routinely collected from MICA modems is expanded to include new link statistics for active calls, such as the attempted transmit and receive rates, the maximum and minimum transmit and receive rates, and locally and remotely issued retrans and speedshift counters. For more detailed information on Call Tracker logs, refer to the TAC Tech Notes document, *Understanding Call Tracker Outputs*, at the following URL: http://www.cisco.com/warp/public/471/calltracker_view.html

To configure Call Tracker, perform the following steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# calltracker enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# calltracker call-record [terse</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# calltracker history max-size number</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# calltracker history retain-mins minutes</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# snmp-server packetsize byte-count</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config)# snmp-server queue-length length</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config)# snmp-server enable traps calltracker</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config)# snmp-server host host community-string calltracker</td>
</tr>
</tbody>
</table>

Verifying Call Tracker

To verify the operation of Call Tracker, use the the following command in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show call calltracker summary</td>
<td>Verifies the Call Tracker configuration and current status.</td>
</tr>
</tbody>
</table>

Enabling Call Tracker

The following example shows how to enable the Call Tracker feature:

calltracker enable
Configuring and Managing Integrated Modems

Managing Modems

calltracker call-record terse
calltracker history max-size 50
calltracker history retain-mins 5000
!
snmp-server engineID local 0012345
snmp-server community public RW
snmp-server community private RW
snmp-server community wxyz123 view v1default RO
snmp-server trap-source FastEthernet0
snmp-server packetsize 17940
snmp-server queue-length 200
snmp-server location SanJose
snmp-server contact Bob
snmp-server enable traps snmp
snmp-server enable traps calltracker
snmp-server enable traps isdn call-information
snmp-server enable traps hsrp
snmp-server enable traps config
snmp-server enable traps entity
snmp-server enable traps envmon
snmp-server enable traps bgp
snmp-server enable traps ipmulticast-heartbeat
snmp-server enable traps rsvp
snmp-server enable traps frame-relay
snmp-server enable traps rtr
snmp-server enable traps syslog
snmp-server enable traps dlsw
snmp-server enable traps dial
snmp-server enable traps dmp card-status
snmp-server enable traps voice poor-gov
snmp-server host 10.255.255.255 wxyz123
snmp-server host 10.0.0.0 xxxyyy calltracker
!
radius-server host 172.16.0.0 auth-port 1645 acct-port 1646 non-standard
radius-server key xyz
!

Configuring Polling of Link Statistics on MICA Modems

The status and diagnostic data that is routinely collected from MICA modems is expanded to include new link statistics for active calls, such as the attempted transmit and receive rates, the maximum and minimum transmit and receive rates, and locally and remotely issued retransmits and speedshift counters. This connection data is polled from the modem at user-defined intervals and passed to Call Tracker.

To poll modem link statistics, use the following command in global configuration mode:

```
Router(config)# modem link-info poll time seconds
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# modem link-info poll time seconds</td>
<td>Sets the polling interval at which link statistics for active calls are retrieved from the modem.</td>
</tr>
</tbody>
</table>

Note
The `modem link-info poll time` command consumes a substantial amount of memory, approximately 500 bytes for each MICA modem call. Use this command only if you require the specific data that it collects; for instance, if you have enabled Call Tracker on your access server.
Configuring MICA In-Band Framing Mode Control Messages

Dial-in Internet connections typically start in character mode to allow the user to log in and select a preferred service. When Cisco IOS software determines that the user wants a framed interface protocol during the call, such as PPP or SLIP, commands are sent to the MICA modem so that it will provide hardware assistance with the framing. This hardware assistance reduces the Cisco IOS processing load. To avoid loss or misinterpretation of framed data during the transition, issue these commands at precise times with respect to the data being sent and received.

MICA modem framing commands can be sent in the data stream itself, which greatly simplifies Cisco IOS tasks in achieving precision timing. For PPP connections, the common way for modems to connect to the Internet, total connect time might typically be improved by 2 to 3 seconds. This functionality reduces timeouts during PPP startup and reduces startup time. If an ASCII banner is sent just before PPP startup, this feature eliminates problems with banner corruption such as truncation and extraneous characters, thus improving the performance of terminal equipment.

In earlier software, the modem interface timing rules were not well understood and were difficult or impossible to implement using the separate command interface of the modem. The practical result is that the MICA in-band framing mode reduces the number of timeouts during PPP startup, and thus reduces startup time. MICA in-band framing is supported on MICA modems in Cisco AS5300 and Cisco AS5800 access servers.

To configure the MICA in-band framing mode control messages, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# line line-number [ending-line-number]</td>
<td>Specifies the number of modem lines to configure and enters line configuration mode. If a range is entered, it must be equal to the number of modems in the router.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-line)# no flush-at-activation</td>
<td>Improves PPP and SLIP startup. Normally a router avoids line and modem noise by clearing the initial data received within the first one or two seconds. However, when the autoselect PPP feature is configured, the router flushes characters initially received and then waits for more traffic. This flush causes timeout problems with applications that send only one carriage return.</td>
</tr>
</tbody>
</table>

The Cisco IOS software offers additional interface commands that can be set to control modem interface timing. Refer to the Cisco IOS command references for more information about the interface commands described in the following paragraphs.

When a link goes down and comes back up before the timer set by the carrier-delay command expires, the down state is effectively filtered, and the rest of the software on the switch is not aware that a link-down event occurred. Therefore, a large carrier delay timer results in fewer link-up and link-down events being detected. On the other hand, setting the carrier delay time to 0 means that every link-up and link-down event is detected.

When the link protocol goes down (because of loss of synchronization, for example), the interface hardware is reset and the data terminal ready (DTR) signal is held inactive for at least the specified interval. Setting the pulse-time command enable pulsing DTR signal intervals on serial interfaces, and is useful for handling encrypting or other similar devices that toggle the DTR signal to resynchronize.
Use the `modem dtr-delay` command to reduce the time that a DTR signal is held down after an asynchronous line clears and before the DTR signal is raised again to accept new calls. Incoming calls may be rejected in heavily loaded systems, even when modems are unused because the default DTR hold-down interval may be too long. The `modem dtr-delay` command is designed for lines used for an unframed asynchronous session such as Telnet. Lines used for a framed asynchronous session such as PPP should use the `pulse-time` interface command.

Enabling Modem Polling

The following example enables modem status polling through the out-of-band feature, which is associated to line 1:

```
Router# configure terminal
Router(config)# line 1
Router(config-line)# modem status-poll
```

Setting Modem Poll Intervals

The following example sets the time interval between polls to 10 seconds using the `modem poll time` `global` configuration command:

```
Router# configure terminal
Router(config)# modem poll time 10
```

Setting Modem Poll Retry

The following example configures the server to attempt to retrieve statistics from a local modem up to five times before discontinuing the polling effort:

```
Router# configure terminal
Router(config)# modem poll retry 5
```

Collecting Modem Statistics

Depending upon your modem type, the Cisco IOS software provides several `show` EXEC commands that allow you to display or poll various modem statistics. See Table 7 and Table 8 to find the `show` EXEC command appropriate for your modem type and the task you want to perform.

Logging EIA/TIA Events

To facilitate meaningful analysis of the modem log, turn the storage of specific types of EIA/TIA events on or off. To activate or inactivate the storage of a specific type of EIA/TIA modem event for a specific line or set of lines, use either of the following commands in line configuration mode, as needed:
Configuring and Managing Integrated Modems

Managing Modems

Managing Modems

Configuring a Microcom Modem to Poll for Statistics

Manageable Microcom modems have an out-of-band feature, which is used for polling modem statistics. To configure the system to poll for modem statistics, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-line)# modem log {cts</td>
<td>dcd</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config-line)# no modem log {cts</td>
<td>dcd</td>
</tr>
</tbody>
</table>

Troubleshooting Using a Back-to-Back Modem Test Procedure

You can manually isolate an internal back-to-back connection and data transfer between two modems for focused troubleshooting purposes. For example, if mobile users cannot dial in to modem 2/5 (which is the sixth modem port on the modem board in the second chassis slot), attempt a back-to-back test with modem 2/5 and a modem known to be functioning, such as modem 2/6. You might need to enable this command on several different combinations of modems to determine which one is not functioning properly. A pair of operable modems connect and complete sending data in both directions. An operable modem and an inoperable modem do not connect with each other.

To perform the modem test procedure, enter the test modem back-to-back first-slotport second-slot/port command, as follows:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Perform a back-to-back modem test between two normal functioning modems. This example shows a successful connection between modem 1/1 and modem 1/0, which verifies normal operating conditions between these two modems:</td>
<td></td>
</tr>
</tbody>
</table>

1. If the number of attempts to retrieve modem status or statistics exceeds the number you define, the out-of-band feature is removed from operation. In this case, you must reset the modem hardware using the clear modem command.
Router# test modem back-to-back 1/1 1/0
Repetitions (of 10-byte packets) [1]: 10
Router#
%MODEM-5-B2BCONNECT: Modems (1/1) and (1/0) connected in back-to-back test: CONN
ECT9600/REL-MNP
%MODEM-5-B2BMODEMS: Modems (1/0) and (1/1) completed back-to-back test: success/
packets = 20/20

After you enter the test modem back-to-back command, you must define the number of packets sent between modems at the Repetitions prompt. The ideal range of packets to send and receive is from 1 to 100. The default is 1 packet that is 10 bytes large. The response message (for example, “success/packets = 20/20”) tells you how many packets were sent in both directions compared to the total number of packets attempted to be sent in both directions. Because the software reports the packet total in both directions, the reported numbers are two times the number you originally specify.

When a known good modem is tested against a known bad modem, the back-to-back modem test fails. In the following example, modem 1/3 is suspected or proven to be inoperable or bad:

Router# test modem back-to-back 1/1 1/3
Repetitions (of 10-byte packets) [1]: 10
Router#
%MODEM-5-BADMODEMS: Modems (1/3) and (1/1) failed back-to-back test: NOCARRIER

Step 2 You would need to manually mark modem 1/3 as an inoperable or bad modem. You mark the bad modem by determining which line number corresponds with the modem. Use the show modem 1/3 EXEC command to verify that TTY line number 4 (shown as TTY4) is used for modem 1/3:

Router# show modem 1/3
Mdm Typ Status Tx/Rx G Duration TX RX RTS CTS DSR DCD DTR
1/3 V34 Idle 28800/28800 0 00:00:00 x x x x x

Modem 1/3, Microcom MNP10 V34 Modem (Managed), TTY4
Firmware (Boot) Rev: 1.0(23) (1.0(5))
Modem config: Incoming and Outgoing
Protocol: reliable/MNP, Compression: V42bis
Management port config: Status polling and AT session
Management port status: Status polling and AT session
TX signals: -15 dBm, RX signals: -17 dBm

Last clearing of "show modem" counters never
0 incoming completes, 0 incoming failures
0 outgoing completes, 0 outgoing failures
0 failed dial attempts, 0 ring no answers, 1 busied outs
0 no dial tones, 0 dial timeouts, 0 watchdog timeouts
0 no carriers, 0 link failures, 0 resets, 0 recover oob
0 protocol timeouts, 0 protocol errors, 0 lost events

Transmit Speed Counters:

<table>
<thead>
<tr>
<th>Connection Speeds</th>
<th>75</th>
<th>300</th>
<th>600</th>
<th>1200</th>
<th>2400</th>
<th>4800</th>
</tr>
</thead>
<tbody>
<tr>
<td># of connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Connection Speeds</td>
<td>7200</td>
<td>9600</td>
<td>12000</td>
<td>14400</td>
<td>16800</td>
<td>19200</td>
</tr>
<tr>
<td># of connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Connection Speeds</td>
<td>21600</td>
<td>24000</td>
<td>26400</td>
<td>28800</td>
<td>31200</td>
<td>32000</td>
</tr>
<tr>
<td># of connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Connection Speeds</td>
<td>33600</td>
<td>34000</td>
<td>36000</td>
<td>38000</td>
<td>40000</td>
<td>42000</td>
</tr>
<tr>
<td># of connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Connection Speeds</td>
<td>44000</td>
<td>46000</td>
<td>48000</td>
<td>50000</td>
<td>52000</td>
<td>54000</td>
</tr>
<tr>
<td># of connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Connection Speeds</td>
<td>56000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of connections</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 3 Enter line configuration mode and manually remove modem 1/3 from dial services by entering the **modem bad** command on line 4:

```
Router# configure terminal
Router(config)# line 4
Router(config-line)# modem bad
Router(config-line)# exit
Router(config)# exit
```

Step 4 Enter the **show modem** EXEC command or the **show modem slot/port** command to display the bad modem status.

Bad modems are marked with the letter B in the Mdm column of the **show modem** command display output.

```
Router# show modem

%SYS-5-CONFIG_I: Configured from console by consolem
Inc calls Out calls Busied Failed No Succ
Mdm Usage Succ Fail Succ Fail Out Dial Answer Pct.
1/0 0% 0 0 0 0 1 0 0 0
1/1 0% 0 0 0 0 3 0 0 0
1/2 0% 0 0 0 0 1 0 0 0
B 1/3 0% 0 0 0 0 1 0 0 0
1/4 0% 0 0 0 0 1 0 0 0
1/5 0% 0 0 0 0 1 0 0 0
1/6 0% 0 0 0 0 1 0 0 0
1/7 0% 0 0 0 0 1 0 0 0
1/8 0% 0 0 0 0 1 0 0 0
1/9 0% 0 0 0 0 1 0 0 0
1/10 0% 0 0 0 0 1 0 0 0
1/11 0% 0 0 0 0 1 0 0 0
1/12 0% 0 0 0 0 1 0 0 0
1/13 0% 0 0 0 0 1 0 0 0
1/14 0% 0 0 0 0 1 0 0 0
1/15 0% 0 0 0 0 1 0 0 0
1/16 0% 0 0 0 0 1 0 0 0
1/17 0% 0 0 0 0 1 0 0 0
1/18 0% 0 0 0 0 1 0 0 0
1/19 0% 0 0 0 0 1 0 0 0
1/20 0% 0 0 0 0 1 0 0 0
1/21 0% 0 0 0 0 1 0 0 0
1/22 0% 0 0 0 0 1 0 0 0
1/23 0% 0 0 0 0 1 0 0 0
```

Malfunctioning modems are also marked as Bad in the Status column of the **show modem slot/port** command display output, as the following example shows:

```
Router# show modem 1/3

Mdm Typ Status Tx/Rx G Duration TX RX RTS CTS DSR DCD DTR
1/3 V34 Bad 28800/28800 00:00:00 x  x  x  x  x  x

Modem 1/3, Microcom MNP10 V34 Modem (Managed), TTY4
Firmware (Boot) Rev: 1.0(23) (1.0(5))
Modem config: Incoming and Outgoing
Protocol: reliable/MNP, Compression: V42bis
Management port config: Status polling and AT session
Management port status: Status polling and AT session
TX signals: -15 dBm, RX signals: -17 dBm

Last clearing of "show modem" counters never
0 incoming completes, 0 incoming failures
0 outgoing completes, 0 outgoing failures
```
0 failed dial attempts, 0 ring no answers, 1 busied outs
0 no dial tones, 0 dial timeouts, 0 watchdog timeouts
0 no carriers, 0 link failures, 0 resets, 0 recover oob
0 protocol timeouts, 0 protocol errors, 0 lost events

Transmit Speed Counters:

<table>
<thead>
<tr>
<th>Connection Speeds</th>
<th>75</th>
<th>300</th>
<th>600</th>
<th>1200</th>
<th>2400</th>
<th>4800</th>
</tr>
</thead>
<tbody>
<tr>
<td># of connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Connection Speeds</td>
<td>7200</td>
<td>9600</td>
<td>12000</td>
<td>14400</td>
<td>16800</td>
<td>19200</td>
</tr>
<tr>
<td># of connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Connection Speeds</td>
<td>21600</td>
<td>24000</td>
<td>26400</td>
<td>28800</td>
<td>31200</td>
<td>32000</td>
</tr>
<tr>
<td># of connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Connection Speeds</td>
<td>33600</td>
<td>34000</td>
<td>36000</td>
<td>38000</td>
<td>40000</td>
<td>42000</td>
</tr>
<tr>
<td># of connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Connection Speeds</td>
<td>44000</td>
<td>46000</td>
<td>48000</td>
<td>50000</td>
<td>52000</td>
<td>54000</td>
</tr>
<tr>
<td># of connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Connection Speeds</td>
<td>56000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of connections</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clearing a Direct Connect Session on a Microcom Modem

The examples in this section are for Microcom modems.

The following example shows how to execute the `modem at-mode` command from a Telnet session:

Router# modem at-mode 1/1

The following example shows how to execute the `clear modem at-mode` command from a second Telnet session while the first Telnet session is connected to the modem:

Router# clear modem at-mode 1/1
clear "modem at-mode" for modem 1/1 [confirm] <press Return>
Router#

The following output is displayed in the first Telnet session after the modem is cleared by the second Telnet session:

Direct connect session cleared by vty0 (172.19.1.164)

Displaying Local Disconnect Reasons

To find out why a modem ended its connection or why a modem is not operating at peak performance, use the `show modem call-stats [slot]` EXEC command.

Disconnect reasons are described using four hexadecimal digits. The three lower-order digits can be used to identify the disconnect reason. The high-order digit generally indicates the type of disconnect reason or the time at which the disconnect occurred. For detailed information on the meaning of hexadecimal values for MICA modem disconnects, refer to the TAC Tech Notes document, *MICA Modem States and Disconnect Reasons*, at the following URL: http://www.cisco.com/warp/public/76/mica-states-drs.html

Local disconnect reasons are listed across the top of the screen display (for example, wdogTimr, compress, retrain, inacTout, linkFail, moduFail, mnpProto, and lapmProt). In the body of the screen display, the number of times each modem disconnected is displayed (see the # column). For a particular disconnect reason, the % column indicates the percent that a modem was logged for the specified disconnect reason with respect to the entire modem pool for that given reason. For example, out of all the times the rmtLink error occurred on all the modems in the system, the rmtLink error occurred 10 percent of the time on modem 0/22.

Malfunctioning modems are detected by an unusually high number of disconnect counters for a particular disconnect reason. For example, if modem 1/0 had a high number of compression errors compared to the remaining modems in system, modem 1/0 would likely be the inoperable modem.

To reset the counters displayed by the `show modem call-stats` command, enter the `clear modem counters` command.

Note

For a complete description of each error field displayed by the commands on this page, refer to the *Cisco IOS Dial Technologies Command Reference*. Remote disconnect reasons are not described by the `show modem call-stats` command output.

The following example displays output for the `show modem call-stats` command. Because of the screen size limitation of most terminal screen displays, not all possible disconnect reasons are displayed at one time. Only the top eight most frequently experienced disconnect reasons are displayed at one time.

```
Router# show modem call-stats

dial-in/dial-out call statistics

<table>
<thead>
<tr>
<th>Mdm</th>
<th>lostCarr</th>
<th>dtrDrop</th>
<th>rmtLink</th>
<th>wdogTimr</th>
<th>compress</th>
<th>retrain</th>
<th>inacTout</th>
<th>linkFail</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/0</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/1</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/6</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/7</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/8</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/9</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/10</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/11</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/12</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/13</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/14</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/15</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/16</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/17</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/18</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/19</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/20</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/21</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/22</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/23</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0/24</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0/25</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0/26</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Configuring and Managing Integrated Modems

Managing Modems

<table>
<thead>
<tr>
<th>Mdm</th>
<th>noCarr</th>
<th>noDitone</th>
<th>busy</th>
<th>abort</th>
<th>dialStrg</th>
<th>autoLgon</th>
<th>dialTout</th>
<th>rmtHgup</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/7</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/9</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/11</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/14</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/15</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/16</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/17</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/18</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/19</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/22</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/23</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/24</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/26</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/27</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/28</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/29</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/30</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/31</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/32</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/33</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/34</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/35</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/7</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/8</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/9</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/13</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/14</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/15</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/16</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total dial-out call statistics:

- **Mdm:**
- **noCarr:** 233
- **noDitone:** 59
- **busy:** 110
- **abort:** 0
- **dialStrg:** 0
- **autoLgon:** 0
- **dialTout:** 0
- **rmtHgup:** 0
Removing Inoperable Modems

To manually remove inoperable modems from dialup services, use the following commands in line configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-line)# modem bad</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-line)# modem hold-reset</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-line)# modem shutdown</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-line)# modem recovery-time minutes</td>
</tr>
</tbody>
</table>

If you use the **modem bad** command to remove an idle modem from dial services and mark it as inoperable, the letter B is used to identify the modem as bad. The letter B appears in the Status column in the output of the `show modem slot/port` command and in the far left column in the output of the `show modem` command. Use the `no modem bad` command to unmark a modem as B and restore it for dialup connection services. If the letter B appears next to a modem number, it means the modem was removed from service with the `modem shutdown` command.

Note

Only idle modems can be marked “bad” by the **modem bad** command. If you want to mark a modem bad that is actively supporting a call, first enter the `modem shutdown` command, then enter the **modem bad** command.

Use the **modem hold-reset** command if a router is experiencing extreme modem behavior (for example, if the modem is uncontrollably dialing in to the network). This command prevents the modem from establishing software relationships such as those created by the `test modem back-to-back` command. The modem is unusable while the **modem hold-reset** command is configured. The **modem hold-reset** command also resets a modem that is frozen in a suspended state. Disable the suspended modem with the **modem hold-reset** command, and then restart hardware initialization with the `no modem hold-reset` command.

The following example disables a suspended modem and resets its hardware initialization:

```
Router# configure terminal
Router(config)# line 4
Router(config-line)# modem hold-reset
Router(config-line)# no modem hold-reset
```
The following example gracefully disables the modem associated with line 1 from dialing and answering calls. The modem is disabled only after all active calls on the modem are dropped.

```plaintext
Router# configure terminal
Router(config)# line 1
Router(config)# modem busyout
```

The following example abruptly shuts down the modem associated with line 2. All active calls on the modem are dropped immediately.

```plaintext
Router# configure terminal
Router(config)# line 2
Router(config)# modem shutdown
```

In the following example, the modem using TTY line 3 is actively supporting a call (as indicated by the asterisk). However, we want to mark the modem bad because it has poor connection performance. First, abruptly shut down the modem and drop the call with the `modem shutdown` command, and then enter the `modem bad` command to take the modem out of service.

```plaintext
Router# show modem

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/0</td>
<td>37%</td>
<td>98</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>96%</td>
</tr>
<tr>
<td>1/1</td>
<td>38%</td>
<td>98</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98%</td>
</tr>
<tr>
<td>* 1/2</td>
<td>2%</td>
<td>3</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1%</td>
</tr>
</tbody>
</table>
```

```plaintext
Router# configure terminal
Router(config)# line 3
Router(config)# modem shutdown
Router(config)# modem bad
Router(config)# exit

Router# show modem

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/0</td>
<td>37%</td>
<td>98</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>96%</td>
</tr>
<tr>
<td>1/1</td>
<td>38%</td>
<td>98</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98%</td>
</tr>
<tr>
<td>B   1/2</td>
<td>2%</td>
<td>3</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1%</td>
</tr>
</tbody>
</table>
```

Busying Out a Modem Card

To busy out a modem card in a Cisco access server, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# line shelf/slot/port</td>
</tr>
<tr>
<td></td>
<td>Specifies the line number, by specifying the shelf, slot, and port numbers; you must type in the slashes. This command also begins line configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-line)# modem busyout</td>
</tr>
<tr>
<td></td>
<td>Having specified the modem to be busied out with the line command, enter the modem busyout command to busy out the modem. The command disables the modem associated with line shelf/slot/port from dialing and answering calls. You need not specify a shelf/slot/port number again in this command.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-line)# modem shutdown</td>
</tr>
<tr>
<td></td>
<td>Having specified the modem to be shut down with the line command, enter the modem shutdown command to shut down the modem, whether or not it has already been busied out. You need not specify a shelf/slot/port number again in this command because you have already done so with the line command.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-line)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits line configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# modem busyout-threshold number</td>
</tr>
<tr>
<td></td>
<td>Specifies a threshold number using the modem busyout-threshold number command to balance the number of DS0s with the number of modem lines. For more information, refer to the Cisco IOS Dial Technologies Command Reference.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router# show busyout</td>
</tr>
<tr>
<td></td>
<td>From privileged EXEC mode, verifies that the line is busied out. If there are active calls, the software waits until the call terminates before the line is busied out.</td>
</tr>
</tbody>
</table>

The modem busyout command disables the modem associated with a specified line from dialing and answering calls. The modem busyout command can busy out and eventually terminate all 72 ports on the Cisco AS5800 modem card.

Monitoring Resources on Cisco High-End Access Servers

The following tasks enable you to monitor the network access server (NAS) health conditions at the DS0 level, PRI bearer channel level, and modem level. Performing these tasks will benefit network operation with improved visibility into the line status for the NAS for comprehensive health monitoring and notification capability, and improved troubleshooting and diagnostics for large-scale dial networks.

Perform the following tasks to monitor resource availability on the Cisco high-end access servers:

- **Enabling DS0 Busyout Traps**—DS0 busyout traps are generated when there is a request to busy out a DS0, when there is a request to take a DS0 out of busyout mode, or when busyout completes and the DS0 is out-of-service. DS0 busyout traps are generated at the DS0 level for both CAS and ISDN.
configured lines. This feature is enabled and disabled through use of the CLI and MIBs. DS0 busyout traps are disabled by default and are supported on Cisco AS5300, Cisco AS5400, and Cisco AS5800 universal access servers.

- **Enabling ISDN PRI Requested Channel Not Available Traps**—ISDN PRI channel not available traps are generated when a requested DS0 channel is not available, or when there is no modem available to take the incoming call. This feature is available only for ISDN PRI interfaces. This feature is enabled and disabled through use of CLI for ISDN traps and the CISCO-ISDN-MIB. ISDN PRI channel not available traps are disabled by default and are supported on the Cisco AS5300, Cisco AS5400, and Cisco AS5800.

- **Enabling Modem Health Traps**—Modem health traps are generated when a modem port is bad, disabled, reflashed, or shut down, or when there is a request to busy out the modem. This feature is enabled and disabled through use of CLI and the CISCO-MODEM-MGMT-MIB. Modem health traps are disabled by default and are supported on the Cisco AS5300, Cisco AS5400, and Cisco AS5800.

- **Enabling DS1 Loopback Traps**—DS1 loopback traps are generated when a DS1 line goes into loopback mode. This feature is enabled and disabled by CLI and the CISCO-POP-MGMT-MIB. DS1 loopback traps are disabled by default and are supported on the Cisco AS5300 and Cisco AS5400 only.

The CISCO-POP-MGMT-MIB supplies the DS0 busyout traps and the DS1 loopback traps. The CISCO-MODEM-MGMT-MIB supplies additional modem health traps when the modem port becomes non-functional. The CISCO-ISDN-MIB supplies additional traps for ISDN PRI channel not available.

To obtain lists of supported MIBs by platform and Cisco IOS release, and to download MIB modules, go to the Cisco MIB website on Cisco.com at http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml.

See the sections “Verifying Enabled Traps” and “Troubleshooting the Traps” to verify and troubleshoot configuration. The section “NAS Health Monitoring Example” provides output of a configuration with the NAS health monitoring features enabled.

Enabling DS0 Busyout Traps

Before you enable DS0 busyout traps, the SNMP manager must already have been installed on your workstation, and the SNMP agent must be configured on the NAS by entering the `snmp-server community` and `snmp-server host` commands. Refer to the *Cisco IOS Configuration Fundamentals Configuration Guide* for more information on these commands.

To generate DS0 busyout traps, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# snmp-server enable traps ds0-busyout</td>
<td>Generates a trap when there is a request to busy out a DS0 or to indicate when busyout finishes.</td>
</tr>
</tbody>
</table>
Enabling ISDN PRI Requested Channel Not Available Traps

To generate ISDN PRI requested channel not available traps, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# snmp-server enable traps isdn chan-not-avail</code></td>
<td>Generates a trap when the NAS rejects an incoming call on an ISDN PRI interface because the channel is not available.</td>
</tr>
</tbody>
</table>

Enabling Modem Health Traps

To generate modem health traps, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# snmp-server enable traps modem-health</code></td>
<td>Generates a trap when a modem port is bad, disabled, or prepared for firmware download; when download fails; when placed in loopback mode for maintenance; or when there is a request to busy out the modem.</td>
</tr>
</tbody>
</table>

Enabling DS1 Loopback Traps

To generate DS1 loopback traps, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# snmp-server enable traps ds1-loopback</code></td>
<td>Generates a trap when the DS1 line goes into loopback mode.</td>
</tr>
</tbody>
</table>

Verifying Enabled Traps

To verify that the traps are enabled, use the `show run` command. The following output indicates that all the traps are enabled:

```
Router(config)# show run
snmp-server enable traps ds0-busyout
snmp-server enable traps isdn chan-not-avail
snmp-server enable traps modem-health
snmp-server enable traps ds1-loopback
```

Additionally, you can use the `show controllers` command with the `timeslots` keyword to display details about the channel state. This feature shows whether the DS0 channels of a particular controller are in idle, in-service, maintenance, or busyout state. This enhancement applies to both CAS and ISDN PRI interfaces and is supported on the Cisco AS5300 and Cisco AS5400 only.
Troubleshooting the Traps

To troubleshoot the traps, turn on the debug switch for SNMP packets by entering the following command in privileged EXEC mode:

Router# debug snmp packets

Check the resulting output to see that the SNMP trap information packet is being sent. The output will vary based on the kind of packet sent or received:

SNMP: Packet received via UDP from 10.5.4.1 on Ethernet0
SNMP: Get-next request, reqid 23584, errstat 0, erridx 0
sysUpTime = NULL TYPE/VALUE
 system.1 = NULL TYPE/VALUE
 system.6 = NULL TYPE/VALUE
SNMP: Response, reqid 23584, errstat 0, erridx 0
 sysUpTime.0 = 2217027
 system.1.0 = Cisco Internetwork Operating System Software
 system.6.0 =
SNMP: Packet sent via UDP to 10.5.4.1

You can also use trap monitoring and logging tools like snmptrapd, with debugging flags turned on, to monitor output.

NAS Health Monitoring Example

The following is sample configuration output showing all NAS health monitoring traps turned on:

Building configuration...

Current configuration:
 ! Last configuration change at 12:27:30 pacific Thu May 25 2000
 version xx.x
 service timestamps debug uptime
 service timestamps log uptime
 no service password-encryption
 !
 hostname router
 !
 aaa new-model
 aaa authentication ppp default group radius
 enable password <password>
 !
 spe 1/0 1/7
 firmware location system:/ucode/mica_port_firmware
 spe 2/0 2/7
 firmware location system:/ucode/mica_port_firmware
 !
 resource-pool disable
 !
 clock timezone PDT -8
 clock calendar-valid
 no modem fast-answer
 modem country mica usa
 modem link-info poll time 60
 modem buffer-size 300
 ip subnet-zero
 !
 isdn switch-type primary-5ess
 isdn voice-call-failure 0
 !
controller T1 0
 framing esf
 clock source line primary
 linecode b8zs
 pri-group timeslots 1-24
 !
controller T1 1
 framing esf
 linecode b8zs
 ds0-group 0 timeslots 1-24 type e&m-fgb
cas-custom 0
 !
controller T1 2
 shutdown
 clock source line secondary 2
 !
controller T1 3
 shutdown
 clock source line secondary 3
 !
controller T1 4
 shutdown
 clock source line secondary 4
 !
controller T1 5
 shutdown
 clock source line secondary 5
 !
controller T1 6
 shutdown
 clock source line secondary 6
 !
controller T1 7
 shutdown
 clock source line secondary 7
 !
interface Loopback0
 ip address 10.5.4.1
 !
interface Ethernet0
 no ip address
 shutdown
 !
interface Serial0
 no ip address
 shutdown
 !
interface Serial1
 no ip address
 shutdown
 !
interface Serial2
 no ip address
 shutdown
 !
interface Serial3
 no ip address
 shutdown
 !
interface Serial0:23
 no ip address
 ip mroute-cache
 isdn switch-type primary-5ess
 isdn incoming-voice modem
no cdp enable
!
interface FastEthernet0
 ip address 10.5.4.1
duplex full
 speed auto
 no cdp enable
!
interface Group-Async1
 ip unnumbered FastEthernet0
 encapsulation ppp
 ip tcp header-compression passive
 no ip mroutecache
 async mode interactive
 peer default ip address pool swattest
 no fair-queue
 ppp authentication chap
 ppp multilink
group-range 1 192
!
interface Dialer1
 ip unnumbered FastEthernet0
 encapsulation ppp
 ip tcp header-compression passive
dialer-group 1
 peer default ip address pool swattest
 pulse-time 0
 no cdp enable
!
ip local pool swattest 10.5.4.1
ip default-gateway 10.5.4.1
ip classless
!
dialer-list 1 protocol ip permit
snmp-server engineID local 00000009020000D058890CF0
snmp-server community public RO
snmp-server packetssize 2048
snmp-server enable traps ds0-busyout
snmp-server enable traps isdn chan-not-avail
snmp-server enable traps modem-health
snmp-server enable traps ds1-loopback
snmp-server host 10.5.4.1 public
!
radius-server host 10.5.4.1 auth-port 1645 acct-port 1646
radius-server retransmit 3
radius-server key <password>
!
line con 0
 transport input none
line 1 192
 autoselect ppp
 modem InOut
 transport preferred none
 transport input all
 transport output none
line aux 0
line vty 0 4
end
Configuration Examples for Modem Management

This section provides the following examples:

- **NextPort Modem Log Example**
- **Modem Performance Summary Example**
- **Modem AT-Mode Example**
- **Connection Speed Performance Verification Example**

For additional information and examples about the commands in this chapter, refer to the *Cisco IOS Dial Technologies Command Reference*.

NextPort Modem Log Example

The following is partial sample output for the Cisco AS5400 with the NextPort Distributed forwarding Card (DFC). This example shows the port history event log for slot 5, port 47:

```
Router# show port modem log 5/47

Port 5/47 Events Log
  Service type: DATA_FAX_MODEM
  Service mode: DATA_FAX_MODEM
  Session State: IDLE
  00:02:23: incoming called number: 35160
    Service type: DATA_FAX_MODEM
    Service mode: DATA_FAX_MODEM
    Session State: IDLE
    Service type: DATA_FAX_MODEM
    Service mode: DATA_FAX_MODEM
    Session State: IDLE
    Service type: DATA_FAX_MODEM
    Service mode: DATA_FAX_MODEM
    Session State: ACTIVE
  00:02:23: Modem State event:
    State: Connect
  00:02:16: Modem State event:
    State: Link
  00:02:13: Modem State event:
    State: Train Up
  00:02:05: Modem State event:
    State: EC Negotiating
  00:02:05: Modem State event:
    State: Steady
  00:02:05: Modem Static event:
    Connect Protocol                        :   LAP-M
    Compression                             :   V.42bis
    Connected Standard                      :   V.34+
    TX,RX Symbol Rate                       :   3429, 3429
    TX,RX Carrier Frequency                 :   1959, 1959
    TX,RX Trellis Coding                    :   16/16
    Frequency Offset                        :   0  Hz
    Round Trip Delay                        :   0  msecs
    TX,RX Bit Rate                          :   33600, 33600
    Robbed Bit Signalling (RBS) pattern     :   0
    Digital Pad                             :   None
    Digital Pad Compensation                :   None
    4 bytes of link info not formatted      :   0x00 0x00 0x00 0x00 0x00
  00:02:06:Modem Dynamic event:
    Sq Value                                :   5
    Signal Noise Ratio                      :   40  dB
    Receive Level                           :   -12  dBm
    Phase Jitter Frequency                  :   0  Hz
```
Modem Performance Summary Example

You can display a high level summary of the performance of a modem with the `show modem summary` command:

```
Router# show modem summary
```

```
Incoming calls Outgoing calls Busied Failed No Succ
Usage Succ Fail Avail Succ Fail Avail Out Dial Ans Pct.
14% 2489 123 15 0 0 15 0 3 3 95%
```

Modem AT-Mode Example

The following example shows that modem 1/1 has one open AT directly connected session:

```
Router# show modem at-mode
```

```
Active AT-MODE management sessions:
Modem User's Terminal
1/1 0 cty 0
```

Connection Speed Performance Verification Example

Making sure that your modems are connecting at the correct connection speeds is an important aspect of managing modems. The `show modem connect-speeds` and `show modem` commands provide performance information that allow you to investigate possible inoperable or corrupt modems or T1/E1 lines. For example, suppose you have an access server that is fully populated with V.34 modems. If you notice that modem 1/0 is getting V.34 connections only 50 percent of the time, whereas all the other modems are getting V.34 connections 80 percent of the time, then modem 1/0 is probably malfunctioning. If you are reading low connection speeds across all the modems, you may have a faulty channelized T1 or ISDN PRI line connection.

To display connection speed information for all modems that are running in your system, use the `show modem connect-speeds max-speed` EXEC command. Because most terminal screens are not wide enough to display the entire range of connection speeds at one time (for example, 75 to 56,000 bps), the `max-speed` argument is used. This argument specifies the contents of a shifting baud-rate window, which provides you with a snapshot of the modem connection speeds for your system. Replace the `max-speed` argument with the maximum connect speed that you want to display. You can specify from 12,000 to 56,000 bps. If you are interested in viewing a snapshot of lower baud rates, specify a lower connection speed. If you are interested in displaying a snapshot of higher rates, specify a higher connection speed.
The following example displays connection speed information for modems running up to 33,600 bps:

Router# show modem connect-speeds 33600

transmit connect speeds

<table>
<thead>
<tr>
<th>Mdm</th>
<th>14400</th>
<th>16800</th>
<th>19200</th>
<th>21600</th>
<th>24000</th>
<th>26400</th>
<th>28800</th>
<th>31200</th>
<th>33600</th>
<th>TotCnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 0/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>* 0/1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>* 0/2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 0/3</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 0/4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 0/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>* 0/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 0/7</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>* 0/8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>* 0/9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 0/10</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 0/11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0/12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 0/13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 0/14</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 0/15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 0/16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 0/17</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 0/18</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 0/19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>* 0/20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 0/21</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 0/22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>* 0/23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 2/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 2/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 2/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 2/3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 2/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 2/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 2/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>* 2/7</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 2/8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 2/9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 2/10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 2/11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>* 2/12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 2/13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 2/14</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 2/15</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 2/16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>* 2/17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>* 2/18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>* 2/19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>* 2/20</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>* 2/21</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 2/22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>* 2/23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Tot</td>
<td>23</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>18</td>
<td>165</td>
<td>141</td>
<td>44</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Tot %</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>41</td>
<td>35</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

receive connect speeds

<table>
<thead>
<tr>
<th>Mdm</th>
<th>14400</th>
<th>16800</th>
<th>19200</th>
<th>21600</th>
<th>24000</th>
<th>26400</th>
<th>28800</th>
<th>31200</th>
<th>33600</th>
<th>TotCnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 0/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>* 0/1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>0/2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>* 0/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>* 0/4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 0/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>* 0/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 0/7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>* 0/8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>* 0/9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 0/10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 0/11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>0/12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 0/13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 0/14</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 0/15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 0/16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 0/17</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 0/18</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 0/19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>* 0/20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>* 0/21</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 0/22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>* 0/23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 2/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 2/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 2/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 2/3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 2/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 2/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 2/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>* 2/7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 2/8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 2/9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 2/10</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>* 2/11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>* 2/12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 2/13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 2/14</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 2/15</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>* 2/16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>* 2/17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>* 2/18</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>* 2/19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>* 2/20</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>* 2/21</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 2/22</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>* 2/23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Tot</td>
<td>23</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>167</td>
<td>64</td>
<td>92</td>
<td>44</td>
<td>400</td>
</tr>
<tr>
<td>Tot %</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>41</td>
<td>16</td>
<td>23</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Configuring and Managing Cisco Access Servers and Dial Shelves

This chapter describes configuration and monitoring tasks for the Cisco AS5800 and AS5400 access servers, including dial shelves and dial shelf controllers on the Cisco AS5800 access servers in the following main sections:

- Cisco AS5800 Dial Shelf Architecture and DSIP Overview
- How to Configure Dial Shelves
- Port Management Services on Cisco Access Servers
- Upgrading and Configuring SPE Firmware

For further information and configuration examples for the Cisco AS5400, refer to the Cisco AS5400 Universal Access Server Software Configuration Guide.

For further information and configuration examples for the Cisco AS5800, refer to the Cisco AS5800 Universal Access Server Operations, Administration, Maintenance, and Provisioning Guide.

For more information on the Cisco access servers, go to the Cisco Connection Documentation site on Cisco.com, or use the Cisco Documentation CD-ROM.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Cisco AS5800 Dial Shelf Architecture and DSIP Overview

The Cisco AS5800 is a rack-mounted system consisting of a router shelf and a dial shelf. The dial shelf contains feature and controller cards (trunk cards), modem cards, and dial shelf controller (DSC) cards.

Note

For more information about split dial shelf configuration, refer to the hardware installation guides that accompanied your Cisco AS5800 Universal Access Server and the Cisco AS5800 Universal Access Server Software Installation and Configuration Guide.
The Dial Shelf Interconnect Protocol (DSIP) is used for communication between router shelf and dial shelf on an AS5800. Figure 22 diagrams the components of the architecture. The router shelf is the host for DSIP commands, which can be run remotely on the feature boards of the dial shelf using the command, `execute-on`. DSIP communicates over the packet backplane via the dial shelf interconnect (DSI) cable.

Figure 22 DSIP Architecture in the Cisco AS5800

Split Dial Shelves Feature

The split dial shelves feature provides for doubling the throughput of the Cisco AS5800 access server by splitting the dial shelf slots between two router shelves, each router connected to one Dial Shelf Controller (DSC), two of which must be installed in the system. Each router shelf is configured to control a certain set from the range of the dial shelf slots. Each router shelf will operate as though any other slots in the dial shelf contained no cards, even if there is a card in them, because they are controlled by the other router shelf. Thus the configuration on each router shelf would affect only the “owned” slots.

Each router shelf should own modem cards and trunk cards. Calls received on a trunk card belonging to one router shelf cannot be serviced by a modem card belonging to the other router shelf. Each router shelf operates like a single Cisco AS5800 access server system, as if some slots are unavailable.

Refer to the section “Configuring Dial Shelf Split Mode” for more information about configuring split dial shelves.

How to Configure Dial Shelves

To configure and maintain dial shelves, perform the tasks in the following sections:

- Configuring the Shelf ID
- Configuring Redundant DSC Cards
- Synchronizing to the System Clocks
- Configuring Dial Shelf Split Mode
- Executing Commands Remotely
- Verifying DSC Configuration
• Monitoring and Maintaining the DSCs
• Troubleshooting DSIP

Configuring the Shelf ID

The Cisco AS5800 consists of a router shelf and a dial shelf. To distinguish the slot/port number on the Cisco AS5800, you must specify the shelf number. The default shelf number is 0 for the router shelf and 1 for the dial shelf.

Caution
You must reload the Cisco AS5800 for the new shelf number to take effect. Because the shelf number is part of the interface names when you reload, all NVRAM interface configuration information is lost.

Normally you do not need to change the shelf IDs; however, if you do, we recommend that you change the shelf number when you initially access the setup facility. For information on the setup facility, refer to the Cisco AS5800 Universal Access Server Software Installation and Configuration Guide.

If you are booting the router shelf from the network (netbooting), you can change the shelf numbers using the shelf-id command.

To configure the dial shelf, you save and verify the configuration in EXEC mode, and enter shelf-id commands in global configuration mode, as indicated in the following steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# copy startup-configure tftp</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# shelf-id number router-shelf</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# shelf-id number dial-shelf</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router# copy running-config startup-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router# show version</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router# reload components all</td>
</tr>
<tr>
<td>Step 9</td>
<td>Router# copy tftp startup-config</td>
</tr>
</tbody>
</table>
Configuring and Managing Cisco Access Servers and Dial Shelves

How to Configure Dial Shelves

If you are booting the router shelf from Flash memory, use the following commands beginning in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# <code>copy running-config tftp</code> or Router# <code>copy startup-config tftp</code></td>
</tr>
<tr>
<td></td>
<td>Saves your current (latest) configuration to a server.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# <code>configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>Begins global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# <code>shelf-id number router-shelf</code></td>
</tr>
<tr>
<td></td>
<td>Configures the router shelf ID.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# <code>shelf-id number dial-shelf</code></td>
</tr>
<tr>
<td></td>
<td>Configures the dial shelf ID.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# <code>exit</code></td>
</tr>
<tr>
<td></td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router> <code>copy running-config startup-config</code></td>
</tr>
<tr>
<td></td>
<td>Saves your configuration. This step is optional. If this step is skipped, type “No” at the “save configuration” prompt.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router> <code>show version</code></td>
</tr>
<tr>
<td></td>
<td>Allows verification that the correct shelf number will be changed after the next reload. Edit the configuration file saved in Step 1.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router> <code>copy tftp startup-config</code></td>
</tr>
<tr>
<td></td>
<td>Copies the edited configuration to NVRAM on the Cisco AS5800.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Router# <code>reload components all</code></td>
</tr>
<tr>
<td></td>
<td>Instructs the DSC (or DSCs in a redundant configuration) to be reloaded at the same time as a reload on the router shelf.</td>
</tr>
</tbody>
</table>

Configuring Redundant DSC Cards

The Redundant Dial Shelf Controller feature consists of two DSC cards on a Cisco AS5800 dial shelf. The DSC cards provide clock and power control to the dial shelf cards. Each DSC card provides the following:

- Master clock for the dial shelf
- Fast Ethernet link to the router shelf
- Environmental monitoring of the feature boards
- Bootstrap images on start-up for the feature boards

The Redundant Dial Shelf Controller feature is automatically enabled when two DSC cards are installed. DSC redundancy is supported with Cisco AS5800 software at the Dial Shelf Interconnect Protocol (DSIP) level.

This feature enables a Cisco AS5800 dial shelf to use dual DSCs for full redundancy. A redundant configuration allows for one DSC to act as backup to the active card, should the active card fail. This increases system availability by preventing loss of service. The redundant DSC functionality is robust under high loads and through DSC or software crashes and reloads. The redundant DSC functionality is driven by the following events:

- User actions
- Control messages
- Timeouts
DSC redundancy provides maximum system availability by preventing loss of service if one of the DSCs fails. There is no load sharing between the Broadband Inter-Carrier Interfaces (BICI). One BIC is used as a backup, carrying only control traffic, such as keepalives, until there is a switchover.

Before starting this configuration task:

- Your Cisco AS5800 router shelf and dial shelf must be fully installed, with two DSC cards installed on the dial shelf.
- Your Cisco AS5800 access server must be running Cisco IOS Release 12.1(2)T.
- The external DSC clocking port must be configured identically on both router shelves and must be physically connected to both DSCs. This assures that if a DSC card needs replacing or if the backup DSC card becomes primary, clocking remains stable.

Synchronizing to the System Clocks

The time-division multiplexing (TDM) bus in the backplane on the dial shelf must be synchronized to the T1/E1 clocks on the trunk cards. The Dial Shelf Controller (DSC) card on the daily shelf provides hardware logic to accept multiple clock sources as input and use one of them as the primary source to generate a stable, PPL synchronized output clock. The input clock can be any of the following sources:

- Trunk port in slots 0 through 5—up to 12 can be selected (2 per slot)
- An external T1 or E1 clock source fed directly through a connector on the DSC card
- A free-running clock from an oscillator in the clocking hardware on the DSC card

For dual (redundant) DSC cards, the external DSC clocking port should be configured so that the clock signal fed into both DSCs is identical.

To configure the external clocks, use the following commands from the router shelf login beginning in global configuration mode. One external clock is configured as the primary clock source, and the other is configured as the backup clock source.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# dial-tdm-clock priority value Configures the trunk card clock priority. Priority range is a value between 1 and 50.</td>
</tr>
<tr>
<td>Step 2</td>
<td>**Router(config)# dial-tdm-clock priority X (trunk-slot Y port Z) external (t1</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# dial-tdm-clock priority value external t1 or Router(config)# dial-tdm-clock priority value external e1 Configures the T1/E1 external clock on the dial shelf controller front panel. T1/E1 selection is based on the signal coming in. Priority range is a value between 1 and 50.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# Ctrl-Z Router# Verifies your command registers when you press the return key. Enter Ctrl-Z to return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router# copy running-config startup-config Saves your changes.</td>
</tr>
</tbody>
</table>
Verifying External Clock Configuration

To verify that the primary clock is running, enter the `show dial-shelf clocks` privileged EXEC command:

```
Router# show dial-shelf 12 clocks
```

```
Slot 12:
System primary is 1/2/0 of priority 202
TDM Bus Master Clock Generator State = NORMAL
Backup clocks:
<table>
<thead>
<tr>
<th>Source</th>
<th>Slot</th>
<th>Port</th>
<th>Priority</th>
<th>Status</th>
<th>State</th>
</tr>
</thead>
</table>
| Trunk  | 2    | 1    | 208      | Good   | Default
```

For more information on configuring external clocks, refer to the Cisco document Managing Dial Shelves.

Configuring Dial Shelf Split Mode

This section describes the procedure required to transition a router from normal mode to split mode and to change the set of slots a router owns while it is in split mode. Since the process of switching the ownership of a slot from one router to the other is potentially disruptive (when a feature board is restarted, all calls through that card are lost), a router shelf cannot take over a slot until ownership is relinquished by the router that currently claims ownership, either by reconfiguring the router or disconnecting that router or its associated DSC.

The dial shelf is split by dividing the ownership of the feature boards between the two router shelves. You must configure the division of the dial shelf slots between the two router shelves so that each router controls an appropriate mix of trunk and modem cards. Each router shelf controls its set of feature boards as if those were the only boards present. There is no interaction between feature boards owned by one router and feature boards owned by the other router.

Split mode is entered when the `dial-shelf split slots` command is parsed on the router shelf. This can occur when the router is starting up and parsing the stored configuration, or when the command is entered when the router is already up. Upon parsing the `dial-shelf split slots` command, the router frees any resources associated with cards in the slots that it no longer owns, as specified by exclusion of slot numbers from the `slot-numbers` argument. The router should be in the same state as if the card had been removed from the slot; all calls through that card will be terminated. The configured router then informs its connected DSC that it is in split mode, and which slots it claims to own.

In split mode, a router shelf by default takes half of the 2048 available TDM timeslots. The TDM split mode is configured using the `dial-shelf split backplane-ds0` command. (The `dial-shelf split slot` command must be defined for the `dial-shelf split backplane-ds0` command to be active.) If the `dial-shelf split slots` command is entered when the total number of calls using timeslots exceeds the number that would normally be available to the router in split mode, the command is rejected. This should occur only when a change to split mode is attempted, in which the dial shelf has more than 896 calls in progress (more than half of the 1,792 available timeslots). Otherwise, a transition from normal mode to split mode can be made without disturbing the cards in the slots that remain owned, and calls going through those cards will stay up.
To configure a router for split dial shelf operation, perform the following steps:

Step 1 Ensure that both DSCs and both router shelves are running the same Cisco IOS image.

Note Having the same version of Cisco IOS running on both DSCs and both router shelves is not mandatory; however, it is a good idea. There is no automatic checking that the versions are the same.

Step 2 Schedule a time when the Cisco AS5800 can be taken out of service without unnecessarily terminating calls in progress. The entire procedure for transitioning from normal mode to split mode should require approximately one hour if all the hardware is already installed.

Step 3 Busy out all feature boards and wait for your customers to log off.

Step 4 Reconfigure the existing router shelf to operate in split mode.

Step 5 Enter the `dial-shelf split slots` command, specifying the slot numbers that are to be owned by the existing router shelf.

Step 6 Configure the new router shelf to operate in split mode on other feature boards.

Step 7 Enter the `dial-shelf split slots` command, specifying the slot numbers that are to be owned by the new router shelf. Do not specify any of the slot numbers that you specified in Step 6. The range of valid slot numbers is 0 through 11.

To perform this step, enter the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dial-shelf split slots slot-numbers</td>
<td>Enter list of slot numbers, for example: <code>dial-shelf split slots 0 1 2 6 7 8</code></td>
</tr>
<tr>
<td></td>
<td>In this example, the other router shelf could be configured to own the other slots: 3 4 5 9 10 11.</td>
</tr>
<tr>
<td></td>
<td>Normal mode: This command changes the router shelf to split mode with ownership of the slots listed.</td>
</tr>
<tr>
<td></td>
<td>In case of conflicting slot assignments, the command is rejected and a warning message is issued. Issue a <code>show dial-shelf split slots</code> command to the other router shelf to display its list of owned dial shelf slots.</td>
</tr>
<tr>
<td></td>
<td>Online insertion and removal (OIR) events on all slots are detected by both DSCs and added to the list of feature boards physically present in the dial shelf; however, OIR event processing is done only for assigned slots.</td>
</tr>
<tr>
<td></td>
<td>Split mode: This command adds the dial shelf slots listed to the router shelf’s list of owned dial shelf slots.</td>
</tr>
</tbody>
</table>

Step 8 Install the second DSC, if it has not already been installed.

Step 9 Connect the DSIP cable from the second DSC to the new router shelf.
Step 10 Ensure that split mode is operating properly.

Enter the `show dial-shelf` command for each router. This command has been extended so that the response indicates that the router shelf is running in split mode and which slots the router shelf owns. The status of any cards in any owned slots is shown, just as they are in the present `show dial-shelf` command. When in split mode, the output will be extended as in the following example:

```
System is in split dial shelf mode.
Slots owned: 0 2 3 4 5 6 (connected to DSC in slot 13)
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Board</th>
<th>Type</th>
<th>Util</th>
<th>CPU</th>
<th>Total (free)</th>
<th>Total (free)</th>
<th>I/O Memory</th>
<th>State</th>
<th>Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CE1</td>
<td>0%/0%</td>
<td>21341728(87%)</td>
<td>8388608 (45%)</td>
<td>Up</td>
<td>00:11:37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CE1</td>
<td>0%/0%</td>
<td>21341728(87%)</td>
<td>8388608 (45%)</td>
<td>Up</td>
<td>00:11:37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modem(HMM)</td>
<td>20%/20%</td>
<td>6661664 (47%)</td>
<td>6291456 (33%)</td>
<td>Up</td>
<td>00:11:37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Modem(DMM)</td>
<td>0%/0%</td>
<td>6661664 (31%)</td>
<td>6291456 (32%)</td>
<td>Up</td>
<td>00:11:37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Modem(DMM)</td>
<td>0%/0%</td>
<td>6661664 (31%)</td>
<td>6291456 (32%)</td>
<td>Up</td>
<td>00:11:37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>DSC</td>
<td>0%/0%</td>
<td>20451808(91%)</td>
<td>8388608 (66%)</td>
<td>Up</td>
<td>00:16:31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dial shelf set for auto boot

Step 11 Enable all feature boards to accept calls once again.

Changing Slot Sets

You can change the sets of slots owned by the two router shelves while they are in split mode by first removing slots from the set owned by one router, and then adding them to the slot set of the other router. The changed slot set information is sent to the respective DSCs, and the DSCs determine which slots have been removed and which added from the new slot set information. It should be clear that moving a slot in this manner will disconnect all calls that were going through the card in that slot.

To perform this task, enter the following commands as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router (config)# dial-shelf split slots remove slot-numbers</td>
<td>Removes the dial shelf slots listed from the router shelf’s list of owned dial shelf slots. The effect of multiple commands is cumulative.</td>
</tr>
<tr>
<td>Router(config)# dial-shelf split slots slot-numbers</td>
<td>Adds the dial shelf slots listed to the router shelf’s list of owned dial shelf slots.</td>
</tr>
</tbody>
</table>

When a Slot Is Removed

The router shelf that is losing the slot frees any resources and clears any state associated with the card in the slot it is relinquishing. The DSC reconfigures its hub to ignore traffic from that slot, and if there is a card in the slot, it will be reset. This ensures that the card frees up any TDM resource it might be using and allows it to restart under control of the router shelf that is subsequently configured to own the slot.

When a Slot Is Added

If there are no configuration conflicts, and there is a card present in the added slot, a dial-shelf OIR insertion event is sent to the router shelf, which processes the event the same as it always does. The card in the added slot is reset by the DSC to ensure a clean state, and the card downloads its image from the router shelf that now owns it.
If the other router shelf and the other DSC claim ownership of the same slot, the command adding the slot should be rejected. However, should a configuration conflict exist, error messages are sent to both routers and the card is not reset until one of the other router shelves and its DSC stop claiming ownership of the slot. Normally, this will not happen until you issue a `dial-shelf split slots remove` command surrendering the ownership claim on the slot by one of the routers.

Leaving Split Mode

Split mode is exited when the dial shelf configuration is changed by a `no dial-shelf split slots` command. When the split dial shelf line is removed, the router shelf will start using all of the TDM timeslots. Feature boards that were not owned in split mode and that are not owned by the other router will be reset. Cards in slots that are owned by the other router will be reset, but only after the other DSC has been removed or is no longer claiming the slots. The split dial shelf configuration should not be removed while the second router shelf is still connected to the dial shelf.

When a router configured in split mode fails, all calls associated with the failed router are lost. Users cannot connect back in until the failed router recovers and is available to accept new incoming calls; however, the other split mode router shelf will continue to operate normally.

Troubleshooting Split Dial Shelves

The system will behave as configured as soon as the configuration is changed. The exception is when there is a misconfiguration, such as when one router is configured in split mode and the other router is configured in normal mode, or when both routers are configured in split mode and both claim ownership of the same slots.

Problems can arise if one of the two routers connected to a dial shelf is not configured in split mode, or if both are configured in split mode and both claim ownership of the same slots. If the state of the second router is known when the `dial-shelf split slots` command is entered and the command would result in a conflict, the command is rejected.

If a conflict in slot ownership does arise, both routers will receive warning messages until the conflict is resolved. Any card in a slot which is claimed by both routers remains under the control of the router that claimed it first, until you can resolve the conflict by correcting the configuration of one or both routers.

It should be noted that there can also be slots that are not owned by either router (orphan slots). Cards in orphan slots cannot boot up until one of the two routers claims ownership of the slot because neither DSC will download bootstrap images to cards in unowned orphan slots.

Managing a Split Dial Shelf

If you are installing split dial shelf systems, a system controller is available that provides a single system view of multiple point of presences (POPs). The system controller for the Cisco AS5800 Universal Access Server includes the Cisco 3640 router running Cisco IOS software. The system controller can be installed at a remote facility so that you can access multiple systems through a console port or Web interface.

There are no new MIBs or MIB variables required for the split dial shelf configuration. A split dial shelf appears to Simple Network Management Protocol (SNMP) management applications as two separate Cisco AS5800 systems. One console to manage the whole system is not supported—you must have a console session per router shelf (two console sessions) to configure each split of the Cisco AS5800. The system controller must manage a split dial shelf configuration as two separate Cisco AS5800 systems.
The normal mode configuration of the Cisco AS5800 requires the dial shelf and router shelf IDs to be different. In a split system, four unique shelf IDs are desirable, one for each router shelf and one for each of the slot sets; however, a split system will function satisfactorily if the router shelf IDs are the same. If a system controller is used to manage a split dial shelf configuration, the two routers must have distinct shelf IDs, just as they must when each router has its own dial shelf.

You can download software configurations to any Cisco AS5800 using SNMP or a Telnet connection. The system controller also provides performance monitoring and accounting data collection and logging. In addition to the system controller, a network management system with a graphical user interface (GUI) runs on a UNIX SPARC station and includes a database management system, polling engine, trap management, and map integration.

To manage a split dial shelf, enter the following commands in EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show dial-shelf split</td>
<td>Displays the slots assigned to each of the router shelves and the corresponding feature boards in 'orphan' slots (slots not currently assigned to either router).</td>
</tr>
<tr>
<td>Router# show dial-shelf</td>
<td>Displays information about the dial shelf, including clocking information.</td>
</tr>
<tr>
<td>Router# show context</td>
<td>Displays information about the dial shelf, including clocking information, but works only for owned slots. Use show context all to display all the information available about any slot. This is intended to cover the case where ownership of a feature board is moved from one router shelf to the other after a crash.</td>
</tr>
</tbody>
</table>

Executing Commands Remotely

Although not recommended, it is possible to connect directly to the system console interface in the DSC to execute dial shelf configuration commands. All commands necessary for dial shelf configuration, and show, and debug command tasks can be executed remotely from the router console. A special command, execute-on, is provided for this purpose. This command enables a special set of EXEC mode commands to be executed on the router or the dial shelf. This command is a convenience that avoids connecting the console to the DSC. For a list of commands you can execute using execute-on, refer to the command description in the *Cisco IOS Dial Technologies Command Reference*.

To enter a command that you wish to execute on a specific card installed in the dial shelf while logged onto the router shelf console, use the following commands in privileged EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# execute-on slot slot command</td>
<td>Executes a command from the router shelf on a specific slot in the dial shelf.</td>
</tr>
<tr>
<td>Router# execute-on all command</td>
<td>Executes a command from the router shelf on all cards in the dial shelf.</td>
</tr>
</tbody>
</table>
Verifying DSC Configuration

To verify that you have started the redundant DSC feature, enter the `show redundancy` privileged EXEC command:

Router# show redundancy

DSC in slot 12:
Hub is in 'active' state.
Clock is in 'active' state.

DSC in slot 13:
Hub is in 'backup' state.
Clock is in 'backup' state.

Router#

Monitoring and Maintaining the DSCs

To monitor and maintain the DSC cards, use the following commands in privileged EXEC mode, as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# hw-module shelf/slot {start</td>
<td>stop}</td>
</tr>
<tr>
<td>Router# show redundancy [history]</td>
<td>Displays the current or history status for redundant DSC.</td>
</tr>
<tr>
<td>Router# debug redundancy {all</td>
<td>ui</td>
</tr>
<tr>
<td>Router# show debugging</td>
<td>Lists the debug commands that are turned on, including those for redundant DSC.</td>
</tr>
</tbody>
</table>

Troubleshooting DSIP

There are a number of show commands available to aid in troubleshooting dial shelves. Use the following EXEC mode commands to monitor DSI and DSIP activity as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# clear dsip tracing</td>
<td>Clears tracing statistics for the DSIP.</td>
</tr>
<tr>
<td>Router# show dsip</td>
<td>Displays all information about the DSIP.</td>
</tr>
<tr>
<td>Router# show dsip clients</td>
<td>Displays information about DSIP clients.</td>
</tr>
<tr>
<td>Router# show dsip nodes</td>
<td>Displays information about the processors running the DSIP.</td>
</tr>
<tr>
<td>Router# show dsip ports</td>
<td>Displays information about local and remote ports.</td>
</tr>
<tr>
<td>Router# show dsip queue</td>
<td>Displays the number of messages in the retransmit queue waiting for acknowledgment.</td>
</tr>
<tr>
<td>Router# show dsip tracing</td>
<td>Displays DSIP tracing buffer information.</td>
</tr>
</tbody>
</table>
The privileged EXEC mode `show dsi` command can also be used to troubleshoot, as it displays the status of the DSI adapter, which is used to physically connect the router shelf and the dial shelf to enable DSIP communications.

The following is an example troubleshooting scenario:

Problem: The router shelf boots, but there is no communication between the router and dial shelves.

Step 1 Run the `show dsip transport` command.

Step 2 Check the “DSIP registered addresses” column. If there are zero entries there, there is some problem with the Dial Shelf Interconnect (DSI). Check if the DSI is installed in the router shelf.

Step 3 If there is only one entry and it is our own local address, then first sanity check the physical layer. Make sure that there is a physical connection between the RS and DS. If everything is fine from cabling point of view, go to step 3.

Step 4 Check the DSI health by issuing the `show dsi` command. This gives a consolidated output of DSI controller and interface. Check for any errors like runts, giants, throttles and other usual FE interface errors.

Diagnosis: If an entry for a particular dial shelf slot is not found among the registered addresses, but most of other card entries are present, the problem is most likely with that dial shelf slot. The DSI hardware on that feature board is probably bad.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show dsip transport</code></td>
<td>Displays information about the DSIP transport statistics for the control/data and IPC packets and registered addresses.</td>
</tr>
<tr>
<td>Router# <code>show dsip version</code></td>
<td>Displays DSIP version information.</td>
</tr>
</tbody>
</table>

Port Management Services on Cisco Access Servers

Port Management Services on the Cisco AS5400 Access Server

Port service management on the Cisco AS5400 access server implements service using the NextPort dial feature card (DFC). The NextPort DFC is a hardware card that processes digital service port technology for the Cisco AS5400 access server. A port is defined as an endpoint on a DFC card through which multiservice tones and data flow. The ports on the NextPort DFC support both modem and digital services. Ports can be addressed-aggregated at the slot level of the NextPort module, the Service Processing Element (SPE) level within the NextPort module, and the individual port level.

Cisco IOS Release 12.1(3)T or higher is required for the NextPort DFC.

Instead of the traditional line-modem one-to-one correspondence, lines are mapped to an SPE that resides on the Cisco AS5400 NextPort DFC. Each SPE provides modem services for six ports. Busout and shutdown can be configured at the SPE or port level. The NextPort DFC introduces the slot and SPE software hierarchy. On the Cisco AS5400, the hierarchy designation is `slot/SPE`.

The NextPort DFC slot is defined as a value between 1 and 7. Slot 0 is reserved for the motherboard. Each NextPort DFC provides 18 SPEs. The SPE value ranges from 0 to 17. Since each SPE has six ports, the NextPort DFC has a total of 108 ports. The port value ranges from 0 to 107.
The NextPort DFC performs the following functions:

- Converts pulse code modulation (PCM) bitstreams to digital packet data.
- Forwards converted and packetized data to the main processor, which examines the data and forwards it to the backhaul egress interface.
- Supports all modem standards (such as V.34 and V.42bis) and features, including dial-in and dial-out.

Port Management Services on the Cisco AS5800 Access Server

Port service management on the Cisco AS5800 access server implements service on the Universal Port Card (UPC). A universal port carries a single channel at the speed of digital signal level 0 (DS0), or the equivalent of 64-kbps on a T1 facility.

Network traffic can be a modem, voice, or fax connection. The 324 port UPC uses NextPort hardware and firmware to provide universal ports for the Cisco AS5800 access server. These ports are grouped into 54 service processing elements (SPEs). Each SPE supports six universal ports. To find the total number of ports supported by a UPC, multiply the 54 SPEs by the six ports supported on each SPE. The total number of universal ports supported by a single UPC is 324. Configuration, management, and troubleshooting of universal ports can be done at the UPC, SPE, and port level. Each UPC also has a SDRAM card with a minimum of a 128 MB of memory.

The Cisco AS5800 access server can be equipped with a maximum of seven UPCs with upgradable firmware. The UPC supports data traffic, and depending on the software and platform is universal port capable. Each UPC plugs directly into the dial shelf backplane and does not need any external connections. Each UPC has three LEDs, which indicate card status.

The Cisco AS5800 access server is capable of terminating up to 2,048 incoming modem connections (slightly more than an OC3) when equipped with seven UPCs and three CT3 trunk cards. A split shelf configuration with a second router shelf and second dial shelf controller are required to achieve full capacity. A single router with a standard configuration supports up to 1,344 port connections. Cisco IOS Release 12.1(3)T or higher is required for the UPC. Unless your system shipped with UPCs installed, you must upgrade the Cisco IOS image on the dial shelf and router shelf or shelves.

Instead of the traditional line-modem one-to-one correspondence, lines are mapped to an SPE that resides on the Cisco AS5800 access server UPC. Each SPE provides modem services for six ports. Busyout and shutdown can be configured at the SPE or port level. The UPC introduces the shelf, slot, and SPE software hierarchy. On the Cisco AS5800 access server, the hierarchy designation is shelf/slot/SPE.

A UPC can be installed in slots numbered 2 to 11 on the dial shelf backplane. If installed in slots 0 or 1, the UPC automatically powers down. Slots 0 and 1 only accept trunk cards; they do not accept mixes of cards. We recommend that you install mixes of T3 and T1 cards, or E1 trunk cards in slots 2 to 5. You can use double-density modem cards, UPCs, and VoIP cards simultaneously. Trunk cards can operate in slots 0 to 5 and are required for call termination.

The UPC performs the following functions:

- Converts pulse code modulation (PCM) bitstreams to digital packet data.
- Forwards converted and packetized data to the dial shelf main processor, which examines the data and forwards it to the router shelf. From the router shelf, the data is routed to the external network.
- Supports all modem standards (such as V.34 and V.42bis) and features, including dial-in and dial-out.
- Supports online insertion and removal (OIR), a feature that allows you to remove and replace UPCs while the system is operating. A UPC can be removed without disrupting the operation of other cards and their associated calls. If a UPC is removed while the system is operating, connections or current calls on that card are dropped. Calls being handled by other cards are not affected.

Note

All six ports on an SPE run the same firmware.

Upgrading and Configuring SPE Firmware

SPE firmware is automatically downloaded in both the Cisco AS5400 and AS5800 access servers.

AS5400 Access Server

SPE firmware is automatically downloaded to a NextPort DFC from the Cisco AS5400 when you boot the system for the first time, or when you insert a NextPort DFC while the system is operating. When you insert DFCs while the system is operating, the Cisco IOS image recognizes the cards and downloads the required firmware to the cards.

The SPE firmware image is bundled with the access server Cisco IOS image. The SPE firmware image uses an `autodetect` mechanism, which enables the NextPort DFC to service multiple call types. An SPE detects the call type and automatically configures itself for that operation. For further information on upgrading SPE firmware from the Cisco IOS image, refer to the section “Configuring SPEs to Use an Upgraded Firmware File.”

The firmware is upgradable independent of Cisco IOS upgrades, and different firmware versions can be configured to run on SPEs in the same NextPort DFC. You can download firmware from the Cisco System Cisco.com File Transfer Protocol (FTP) server.

AS5800 Access Server

SPE firmware is automatically downloaded to an AS5800 UPC from the router shelf Cisco IOS image when you boot the system for the first time or when you insert a UPC while the system is operating. The Cisco IOS image recognizes the card and the dial shelf downloads the required portware to the cards. Cisco IOS Release 12.1(3)T or higher is required for the UPC.

The SPE firmware image (also known as `portware`) is bundled with the Cisco IOS UPC image. The SPE firmware image uses an `autodetect` mechanism, which enables the UPC to service multiple call types. An SPE detects the call type and automatically configures itself for that operation. For further information on upgrading SPE firmware from the Cisco IOS image, refer to the section “Configuring SPEs to Use an Upgraded Firmware File.”

The firmware is upgradable independent of Cisco IOS upgrades, and different firmware versions can be configured to run on SPEs in the same UPC. You can download firmware from the Cisco.com File Transfer Protocol (FTP) server.

Firmware Upgrade Task List

Upgrading SPE firmware from the Cisco.com FTP server is done in two steps:

- **Downloading SPE Firmware from the Cisco.com FTP Server to a Local TFTP Server**
- **Copying the SPE Firmware File from the Local TFTP Server to the SPEs**
Firmware Configuration Task List

To complete firmware configuration once you have downloaded the SPE firmware, perform the tasks in the following sections:

- Specifying a Country Name
- Configuring Dial Split Shelves (AS5800 Only)
- Configuring SPEs to Use an Upgraded Firmware File
- Disabling SPEs
- Rebooting SPEs
- Configuring Lines
- Configuring Ports
- Verifying SPE Line and Port Configuration
- Configuring SPE Performance Statistics
- Clearing Log Events
- Troubleshooting SPEs
- Monitoring SPE Performance Statistics

Note
The following procedure can be used for either a Cisco AS5400 or AS5800 access server.

Downloading SPE Firmware from the Cisco.com FTP Server to a Local TFTP Server

Note
You must be a registered Cisco user to log in to the Cisco Software Center.

You can download software from the Cisco Systems Cisco.com FTP server using an Internet browser or using an FTP application. Both procedures are described.

Using an Internet Browser

Step 1
Launch an Internet browser.

Step 2
Bring up the Cisco Software Center home page at the following URL (this is subject to change without notice):

http://www.cisco.com/kobayashi/sw-center/

Step 3
Click Access Software (under Cisco Software Products) to open the Access Software window.

Step 4
Click Cisco AS5400 Series or Cisco AS5800 Series software.

Step 5
Click the SPE firmware you want and download it to your workstation or PC. For example, to download SPE firmware for the universal access server, click Download Universal Images.

Step 6
Click the SPE firmware file you want to download, and then follow the remaining download instructions. If you are downloading the SPE firmware file to a PC, make sure that you download the file to the c:/tftpboot directory; otherwise, the download process does not work.
Step 7 When the SPE firmware is downloaded to your workstation, transfer the file to a Trivial File Transfer Protocol (TFTP) server in your LAN using a terminal emulation software application.

Step 8 When the SPE firmware is downloaded to your workstation, transfer the file to a TFTP server somewhere in your LAN using a terminal emulation software application.

Using an FTP Application

Note The directory path leading to the SPE firmware files on cco.cisco.com is subject to change without notice. If you cannot access the files using an FTP application, try the Cisco Systems URL http://www.cisco.com/cgi-bin/ibld/all.pl?i=support&c=3.

Step 1 Log in to the Cisco.com FTP server called cco.cisco.com:

```
terminal> ftp cco.cisco.com
Connected to cco.cisco.com.
```

Step 2 Enter your registered username and password (for example, harry and letmein):

```
Name (cco.cisco.com:harry): harry
331 Password required for harry.
Password: letmein
```

Step 3 Specify the directory path that holds the SPE firmware you want to download. For example, the directory path for the Cisco AS5400 SPE firmware is /cisco/access/5400:

```
ftp> cd /cisco/access/5400
250-Please read the file README
250-  it was last modified on Tue May 27 10:07:38 1997 - 48 days ago
250-Please read the file README.txt
250-  it was last modified on Tue May 27 10:07:38 1997 - 48 days ago
250 CWD command successful.
```

Step 4 Enter the `ls` command to view the contents of the directory:

```
ftp> ls
227 Entering Passive Mode (192,31,7,130,218,128)
150 Opening ASCII mode data connection for /bin/ls.
total 2688
drwxr-s--T 2 ftpadmin ftpcio 512 Jun 30 18:11 .
drwxr-sr-t 19 ftpadmin ftpcio 512 Jun 23 10:26 ..
lrwxrwxrwx 1 root 3pcio 10 Aug 6 1996 README ->README.txt
-rw-rw-r-- 1 root ftpcio 377112 May 27 10:07 README.txt
-r--r--r-- 1 ftpadmin ftpint 377112 Jul 10 18:08 np-spe-upw-10.0.1.2.bin
-r--r--r-- 1 ftpadmin ftpint 635 Jul 10 18:08 SPE-firmware.10.1.30.readme
```

Step 5 Specify a binary image transfer:

```
ftp> binary
200 Type set to I.
```

Step 6 Copy the SPE firmware files from the access server to your local environment with the `get` command.
Step 7 Quit your terminal session:

 ftp> quit
 Goodbye.

Step 8 Enter the `ls -al` command to verify that you successfully transferred the files to your local directory:

 server% ls -al
 total 596
 -r--r--r-- 1 280208 Jul 10 18:08 np-spe-upw-10.0.1.2.bin

Step 9 Transfer these files to a local TFTP or remote copy protocol (RCP) server that your access server or router can access.

Copying the SPE Firmware File from the Local TFTP Server to the SPEs

The procedure for copying the SPE firmware file from your local TFTP server to the Cisco AS5400 NextPort DFCs or Cisco AS5800 UPCs is a two-step process. First, transfer the SPE firmware to the access server’s Flash memory. Then, configure the SPEs to use the upgrade firmware. The upgrade occurs automatically, either as you leave configuration mode, or as specified in the configuration.

These two steps are performed only once. After you copy the SPE firmware file into Flash memory for the first time, you should not have to perform these steps again.

Note Because the SPE firmware is configurable for individual SPEs or ranges of SPEs, the Cisco IOS software automatically copies the SPE firmware to each SPE each time the access server restarts.

To transfer SPE Firmware to Flash memory, perform the following task to download the Universal SPE firmware to Flash memory:

Step 1 Check the image in the access server Flash memory:

```
Router# show flash
System flash directory:
File          Length  Name/status
  1          4530624  c5400-js-mx
  [498776 bytes used, 16278440 available, 16777216 total]
16384K bytes of processor board System flash (Read/Write)
```

Step 2 Enter the `copy tftp flash` command to download the code file from the TFTP server into the access server Flash memory. You are prompted for the download destination and the remote host name.

```
Router# copy tftp flash
```

Step 3 Enter the `show flash` command to verify that the file has been copied into the access server Flash memory:

```
Router# show flash
```
Specifying a Country Name

To set the Cisco AS5400 NextPort DFCs or Cisco AS5800 UPCs to be operational for call set up, you must specify the country name. To specify the country name, use the following command in global configuration mode:

```
Router(config)# spe country country name
```

Specifies the country to set the UPC or DFC parameters (including country code and encoding). If you do not specify a country, the interface uses the default. If the access server is configured with T1 interfaces, the default is `usa`. If the access server is configured with E1 interfaces, the default is `el1-default`. Use the `no` form of this command to set the country code to the default of the domestic country.

Note All sessions in all UPCs or DFCs in all slots must be in the idle state for this command to execute.

Configuring Dial Split Shelves (AS5800 Only)

The Cisco AS5800 access server requires a split dial shelf configuration using two router shelves to achieve the maximum capacity of 2048 port connections using the seven UPCs and three T3 + 1 T1 trunks. A new configuration command is available to define the split point:

```
dial-shelf split backplane-ds0 option
```

The options for this command come in pairs, and vary according to the desired configuration. You will need to log in to each router shelf and separately configure the routers for the intended load. In most circumstances it is recommended that the predefined options are selected. These options are designed to be matched pairs as seen below.

<table>
<thead>
<tr>
<th>Option Pair</th>
<th>Router Shelf 1</th>
<th>Router Shelf 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum Calls</td>
<td>Unused T1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2ct3cas</td>
<td>1344</td>
<td>672</td>
</tr>
<tr>
<td>2</td>
<td>part2ct1ct3cas</td>
<td>1152</td>
<td>888</td>
</tr>
<tr>
<td>3</td>
<td>2ct3isdn</td>
<td>1288</td>
<td>644</td>
</tr>
<tr>
<td>4</td>
<td>part2ct1ct3isdn</td>
<td>1150</td>
<td>897</td>
</tr>
<tr>
<td>5</td>
<td>3ce1</td>
<td>960</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>Default (no option entered)</td>
<td>1/2 of current input</td>
<td>1/2 of current input</td>
</tr>
<tr>
<td>6</td>
<td>Default (no option entered)</td>
<td>1/2 of current input</td>
<td>1/2 of current input</td>
</tr>
<tr>
<td>7</td>
<td>no dial-shelf backplane-ds0</td>
<td>1024</td>
<td>1024</td>
</tr>
</tbody>
</table>

1. This option is used to revert to the default for an environment using 6 E1 lines.
The **dial-shelf split slot 0 3 4 5** command must be defined for the **dial-shelf split backplane-ds0 option** command to be active. You may also select the **user defined** option to define your own split.

Even if your system is already using a split dial shelf configuration, configuring one router shelf to handle two T3 trunks and the other router to handle the third trunk requires you to take the entire access server out of service. Busyout all connections before attempting to reconfigure. The configuration must be changed to setup one pool of TDM resources that can be used by either DMM cards or UPCs, and a second pool of two streams that contains TDM resources that can only be used by UPCs.

You may have more trunk capacity than 2048 calls. It is your decision how to provision the trunks so the backplane capacity is not exceeded. If more calls come in than backplane DS0 capacity for that half of the split, the call will be rejected and an error message printed for each call. This cannot be detected while a new configuration is being built because the router cannot tell which T1 trunks are provisioned and which are not. The user may want some trunks in hot standby.

The DMM, HMM, and VoIP cards can only use 1792 DS0 of the available 2048 backplane DS0. The UPC and trunk cards can use the full 2048 backplane DS0. The **show tdm splitbackplane** command will show the resources in two groups, the first 1792 accessible to all cards, and the remaining 256 accessible only to UPC and trunk cards.

For more information about split dial shelf configuration, refer to the *Cisco AS5800 Universal Access Server Split Dial Shelf Installation and Configuration Guide* and the hardware installation guides that accompanied your Cisco AS5800 Universal Access Server.

Configuring SPEs to Use an Upgraded Firmware File

To configure the SPEs to use the upgraded firmware file, use the following commands beginning in privileged EXEC mode to display the firmware version number:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# show spe version</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>
| Step 3 | AS5400:
 Router(config)# spe slot/spe
 or
 Router(config)# spe slot/spe slot/spe
 AS5800:
 Router(config)# spe shelf/slot/spe
 or
 Router(config)# spe shelf/slot/spe shelf/slot/spe | Enters the SPE configuration mode. You can choose to configure a range of SPEs by specifying the first and last SPE in the range. |
| Step 4 | Router(config-spe)# firmware upgrade {busyout | download-maintenance | reboot} | Specifies the upgrade method. Three methods of upgrade are available. The **busyout** keyword waits until all calls are terminated on an SPE before upgrading the SPE to the designated firmware. The **download-maintenance** keyword upgrades the firmware during the download maintenance time. The **reboot** keyword requests the access server to upgrade firmware at the next reboot. |
Upgrading and Configuring SPE Firmware

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>router(config-spe)# firmware location filename
Specifies the SPE firmware file in Flash memory to use for the selected SPEs. Allows you to upgrade firmware for SPEs after the new SPE firmware image is copied to your Flash memory.
Enter the no firmware location command to revert back to the default Cisco IOS bundled SPE firmware.</td>
</tr>
<tr>
<td>Step 6</td>
<td>router(config-spe)# exit
Exits SPE configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>router# exit
Exits global configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>router# copy running-config startup-config
Saves your changes.</td>
</tr>
</tbody>
</table>

Note
The **copy ios-bundled** command is not necessary with UPCs or NextPort DFCs. By default, the version of SPE firmware bundled with the Cisco IOS software release transfers to all SPEs not specifically configured for a different SPE firmware file.

Disabling SPEs

To disable specific SPEs in the Cisco AS5400 NextPort DFCs or Cisco AS5800 UPCs, use the following commands starting in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Cisco AS5400 Series Routers</td>
<td>router(config)# spe slot/spe
Enters SPE configuration mode. You can also configure SPEs specifying the first and last SPE in a range.</td>
</tr>
<tr>
<td>or</td>
<td>router(config)# spe slot/spe slot/spe</td>
</tr>
<tr>
<td>Cisco AS5800 Series Routers</td>
<td>router(config)# spe shelf/slot/spe
Enters SPE configuration mode. You can also configure SPEs specifying the first and last SPE in a range.</td>
</tr>
<tr>
<td>or</td>
<td>router(config)# spe shelf/slot/spe shelf/slot/spe</td>
</tr>
</tbody>
</table>
To reboot specified SPEs, use the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco AS5400 Series Routers</td>
<td>Allows manual recovery of a port that is frozen in a suspended state. Reboots SPEs that are in suspended or Bad state. Downloads configured firmware to the specified SPE or range of SPEs and power-on self test (POST) is executed.</td>
</tr>
<tr>
<td>Router# clear spe slot/spe</td>
<td>Note: Depending on the problem, sometimes downloading the SPE firmware may not help recover a bad port or an SPE.</td>
</tr>
<tr>
<td>Cisco AS5800 Series Routers</td>
<td>This command can be executed regardless of the state of SPEs. All active ports running on the SPE are prematurely terminated, and messages are logged into the appropriate log.</td>
</tr>
<tr>
<td>Router# clear spe shelf/slot/spe</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Lines

To configure the lines to dial in to your network, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Cisco AS5400 Series Routers</td>
<td>Enters the line configuration mode. You can specify a range of slot and port numbers to configure.</td>
</tr>
<tr>
<td>Router(config)# line slot/port slot/port</td>
<td>On the Cisco AS5400 access server, the NextPort DFC slot is defined as a value between 1 and 7. Slot 0 is reserved for the motherboard. Each NextPort DFC provides 18 SPEs. The SPE value ranges from 0 to 17. Since each SPE has six ports, the NextPort DFC has a total of 108 ports. The port value ranges from 0 to 107. To configure 108 ports on slot 3, you would enter line 3/00 3/107. If you wish to configure 324 ports on slots 3-5, you would enter line 3/00 5/107.</td>
</tr>
<tr>
<td>Cisco AS5800 Series Routers</td>
<td></td>
</tr>
<tr>
<td>Router(config)# line shelf/slot/port shelf/slot/port</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-line)# transport input all</td>
<td>Allows all protocols when connecting to the line.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>Router(config-line)# autoselect ppp</td>
<td>Enables remote IP users running a PPP application to dial in, bypass the EXEC facility, and connect directly to the network.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>Router(config-line)# modem inout</td>
<td>Enables incoming and outgoing calls.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>Router(config-line)# modem autoconfigure type name</td>
<td>Configures the attached modem using the entry for name.</td>
</tr>
</tbody>
</table>
Configuring Ports

This section describes how to configure Cisco AS5800 UPC or Cisco AS5400 NextPort DFC ports. You need to be in port configuration mode to configure these ports. The port configuration mode allows you to shut down or put individual ports or ranges of ports in busyout mode. To configure Cisco AS5800 UPC or Cisco AS5400 NextPort DFC ports, perform the following tasks beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Cisco AS5400 Series Routers
Router(config)# port slot/spe or Router(config)# port slot/spe slot/spe</td>
<td>Enters port configuration mode. You can choose to configure a single port or range of ports.</td>
</tr>
<tr>
<td>Cisco AS5800 Series Routers
Router(config)# port shelf/slot/spe or Router(config)# port shelf/slot/spe shelf/slot/spe</td>
<td></td>
</tr>
<tr>
<td>Step 2
Router(config-port)# busyout</td>
<td>(Optional) Gracefully disables a port by waiting for the active services on the specified port to terminate. Use the no form of this command to re-enable the ports. Maintenance activities, such as testing, can still be performed while the port is in busyout mode. Note When a port is in busyout mode, the state of the SPE is changed to the consolidated states of all the underlying ports on that SPE.</td>
</tr>
<tr>
<td>Step 3
Router(config-port)# shutdown</td>
<td>(Optional) Clears active calls on the port. No more calls can be placed on the port in the shutdown mode. Use the no form of this command to re-enable the ports. Note When a port is in shutdown mode, the state of the SPE is changed to the consolidated states of all the underlying ports on that SPE.</td>
</tr>
<tr>
<td>Step 4
Router(config-port)# exit</td>
<td>Exits port configuration mode.</td>
</tr>
</tbody>
</table>
Verifying SPE Line and Port Configuration

To verify your SPE line configuration, enter the `show spe` command to display a summary for all the lines and ports:

Step 1 Enter the `show spe` command to display a summary for all the lines and ports:

```
Router# show spe
```

Step 2 Enter the `show line` command to display a summary for a single line.

```
AS5400
Router# show line 1/1

AS5800
Router# show line 1/2/10
```

Note If you are having trouble, make sure that you have turned on the protocols for connecting to the lines (`transport input all`) and that your access server is configured for incoming and outgoing calls (`modem inout`).

Configuring SPE Performance Statistics

Depending on the configuration, call record is displayed on the console, or the syslog, or on both. The log contains raw data in binary form, which must be viewed using the `show` commands listed in the section “Monitoring SPE Performance Statistics.” You can configure some aspects of history events by using one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# spe call-record modem max-userid</code></td>
<td>Requests the access server to generate a modem call record after a call is terminated. To disable this function, use the <code>no</code> form of this command.</td>
</tr>
<tr>
<td><code>Router(config)# spe log-size number</code></td>
<td>Sets the maximum size of the history event queue log entry for each port. The default is 50 events per port.</td>
</tr>
</tbody>
</table>
Clearing Log Events

To clear some or all of the log events relating to the SPEs as needed, use the following privileged EXEC mode commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# clear spe log</td>
<td>Clears all event entries in the slot history event log.</td>
</tr>
<tr>
<td>Router# clear spe counters</td>
<td>Clears statistical counters for all types of services for the specified SPE, a specified range of SPEs, or all SPEs. If you do not specify the range of SPEs or an SPE, the statistics for all SPEs are cleared.</td>
</tr>
<tr>
<td>Router# clear port log</td>
<td>Clears all event entries in the port level history event log. You cannot remove individual service events from the port log.</td>
</tr>
</tbody>
</table>

Troubleshooting SPEs

This section provides troubleshooting information for your SPEs regardless of service type mode.

Note SPE ports that pass the diagnostic test are marked as Pass, Fail, and Unkn. Ports that fail the diagnostic test are marked as Bad. These ports cannot be used for call connections. Depending on how many ports are installed, the diagnostic tests may take from 5 to 10 minutes to complete.

- Enter the `port modem startup-test` command to perform diagnostic testing for all modems during the system’s initial startup or rebooting process. To disable the test, enter the `no port modem startup-test` command.
- Enter the `port modem autotest` command to perform diagnostic testing for all ports during the system’s initial startup or rebooting process. To disable the test, enter the `no port modem autotest` command.

You may additionally configure the following options:

- Enter the `port modem autotest minimum ports` command to define the minimum number of free ports available for autotest to begin.
- Enter the `port modem autotest time hh:mm interval` command to enable autotesting time and interval.
- Enter the `port modem autotest error threshold` command to define the maximum number of errors detected for autotest to begin.

- Enter the `show port modem test` command to display results of the SPE port startup test and SPE port auto-test.

When an SPE port is tested as Bad, you may perform additional testing by conducting a series of internal back-to-back connections and data transfers between two SPE ports. All port test connections occur inside the access server. For example, if mobile users cannot dial into port 2/5 (which is the sixth port on the NextPort DFC in the second chassis slot), attempt a back-to-back test with port 2/5 and a known-functioning port such as port 2/6.

- Enter the `test port modem back-to-back slot/port slot/port` command to perform internal back-to-back port tests between two ports sending test packets of the specified size.
Note
You might need to enable this command on several different combinations of ports to
determine which one is not functioning properly. A pair of operable ports successfully
connects and completes transmitting data in both directions. An operable port and an
inoperable port do not successfully connect with each other.

A sample back-to-back test might look like the following:

Router# test port modem back-to-back 2/10 3/20
Repetitions (of 10-byte packets) [1]:
*Mar 02 12:13:51.743:%PM MODEM MAINT-5-B2BCONNECT:Modems (2/10) and (3/20) connected
in back-to-back test:CONNECT33600/V34/LAP
*Mar 02 12:13:52.783:%PM MODEM MAINT-5-B2BMODEMS:Modems (3/20) and (2/10) completed
back-to-back test:success/packets = 2/2

Tips
You may reboot the port that has problems using the clear spe EXEC command.

- Enter the spe recovery {port-action {disable | recover | none} | port-threshold num-failures} command to perform automatic recovery (removal from service and reloading of SPE firmware) of ports on an SPE at any available time.

An SPE port failing to connect for a certain number of consecutive times indicates that a problem
exists in a specific part or the whole of SPE firmware. Such SPEs have to be recovered by
downloading firmware. Any port failing to connect num-failures times is moved to a state based on
the port-action value, where you can choose to disable (mark the port as Bad) or recover the port
when the SPE is in the idle state and has no active calls. The default for num-failures is 30
consecutive call failures.

Tips
You may also schedule recovery using the spe download maintenance command.

- Enter the spe download maintenance time hh:nn | stop-time hh:nn | max-spes number | window
time-period | expired-window {drop-call | reschedule} command to perform a scheduled recovery
of SPEs.

The download maintenance activity starts at the set start time and steps through all the SPEs that
need recovery and the SPEs that need a firmware upgrade and starts maintenance on the maximum
number of set SPEs for maintenance. The system waits for the window delay time for all the ports
on the SPE to become inactive before moving the SPE to the Idle state. Immediately after the SPE
moves to Idle state, the system starts to download firmware. If the ports are still in use by the end of
window delay time, depending upon the expired-window setting, connections on the SPE ports are
shutdown and the firmware is downloaded by choosing the drop-call option, or the firmware
download is rescheduled to the next download maintenance time by choosing the reschedule option.
This process continues until the number of SPEs under maintenance is below max-spes, or until
stop-time (if set), or until all SPEs marked for recovery or upgrade have had their firmware
reloaded.
Monitoring SPE Performance Statistics

This section documents various SPE performance statistics for the Cisco AS5400 NextPort DFCs or Cisco AS5800 UPCs:

- SPE Events and Firmware Statistics
- Port Statistics
- Digital SPE Statistics
- SPE Modem Statistics

SPE Events and Firmware Statistics

To view SPE events and firmware statistics for the Cisco AS5400 NextPort DFCs or Cisco AS5800 UPCs, use one or more of the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco AS5400 series routers</td>
<td>Displays the SPE status for the specified range of SPEs.</td>
</tr>
<tr>
<td>Router# show spe slot/spe</td>
<td></td>
</tr>
<tr>
<td>Cisco AS5800 series routers</td>
<td>Displays the SPE system log.</td>
</tr>
<tr>
<td>Router# show spe shelf/slot/spe</td>
<td>Displays the SPE system log.</td>
</tr>
<tr>
<td>Router# show spe log [reverse</td>
<td>slot]</td>
</tr>
<tr>
<td>Router# show spe version</td>
<td>Note This list helps you decide if you need to update your SPE firmware files.</td>
</tr>
</tbody>
</table>

Port Statistics

To view port statistics for the Cisco AS5400 NextPort DFCs or Cisco AS5800 UPCs, use the following commands in privileged EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco AS5400 series routers</td>
<td>Displays the configuration information for specified ports or the specified port range. The port should have an active session associated at the time the command is executed.</td>
</tr>
<tr>
<td>Router# show port config (slot</td>
<td>slot/port)</td>
</tr>
<tr>
<td>Cisco AS5800 series routers</td>
<td>Displays the digital data event log.</td>
</tr>
<tr>
<td>Router# show port config (slot</td>
<td>shelf/slot/port)</td>
</tr>
<tr>
<td>Cisco AS5400 series routers</td>
<td></td>
</tr>
<tr>
<td>Router# show port digital log [reverse</td>
<td>slot/port] [slot</td>
</tr>
</tbody>
</table>
Digital SPE Statistics

To view digital SPE statistics for the Cisco AS5400 NextPort DFCs, use one or more of the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show spe digital [slot</td>
<td>slot/spe]</td>
</tr>
<tr>
<td>Router# show spe digital active [slot</td>
<td>slot/spe]</td>
</tr>
<tr>
<td>Router# show spe digital csr [summary</td>
<td>slot</td>
</tr>
<tr>
<td>Router# show spe digital disconnect-reason [summary</td>
<td>slot</td>
</tr>
<tr>
<td>Router# show spe digital summary [slot</td>
<td>slot/spe]</td>
</tr>
</tbody>
</table>
SPE Modem Statistics

To view SPE modem statistics for the Cisco AS5400 NextPort DFCs or Cisco AS5800 UPCs, use one or more of the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco AS5400 series routers</td>
<td>Displays the active statistics of a specified SPE, a specified range of SPEs, or all the SPEs serving modem traffic.</td>
</tr>
<tr>
<td>Router# `show spe modem active (slot</td>
<td>slot/spe)`</td>
</tr>
<tr>
<td>Cisco AS5800 series routers</td>
<td>Displays the call success rate statistics for a specific SPE, range of SPEs, or all the SPEs.</td>
</tr>
<tr>
<td>Router# `show spe modem active (shelf/slot</td>
<td>shelf/slot/spe)`</td>
</tr>
<tr>
<td>Cisco AS5400 series routers</td>
<td>Displays the disconnect reasons for the specified SPE or range of SPEs. The disconnect reasons are displayed with Class boundaries.</td>
</tr>
<tr>
<td>Router# `show spe modem disconnect-reason (summary</td>
<td>slot</td>
</tr>
<tr>
<td>Cisco AS5800 series routers</td>
<td>Displays the total number of connections within each low speed modulation or codec for a specific range of SPEs or all the SPEs.</td>
</tr>
<tr>
<td>Router# `show spe modem disconnect-reason (summary</td>
<td>shelf/slot</td>
</tr>
<tr>
<td>Cisco AS5400 series routers</td>
<td>Shows the connect-speeds negotiated within each high speed modulation or codecs for a specific range of SPEs or all the SPEs.</td>
</tr>
<tr>
<td>Router# `show spe modem high speed (summary</td>
<td>slot</td>
</tr>
<tr>
<td>Cisco AS5800 series routers</td>
<td>Shows the connect-speeds negotiated within each low speed modulation or codec for a specific range of SPEs or all the SPEs.</td>
</tr>
<tr>
<td>Router# `show spe modem low speed (summary</td>
<td>slot</td>
</tr>
<tr>
<td>Cisco AS5400 series routers</td>
<td>Displays the total number of connections within each low modulation or codec for a specific range of SPEs.</td>
</tr>
<tr>
<td>Router# `show spe modem low standard (summary</td>
<td>slot</td>
</tr>
<tr>
<td>Cisco AS5800 series routers</td>
<td></td>
</tr>
</tbody>
</table>
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Cisco AS5400 series routers**
Router# show spe modem low standard {summary | slot | slot/spe} | Displays the total number of connections within each high modulation or codec for a specific range of SPEs. |
| **Cisco AS5800 series routers**
Router# show spe modem low standard {summary | shelf/slot | shelf/slot/spe} | Displays the history statistics of all SPEs, specified SPE or the specified range of SPEs. |
| **Cisco AS5400 series routers**
Router# show spe modem summary {slot | slot/spe} | |
| **Cisco AS5800 series routers**
Router# show spe modem summary {shelf/slot | shelf/slot/spe} | |
Configuring and Managing External Modems

This chapter describes how to configure externally connected modems. These tasks are presented in the following main sections:

- External Modems on Low-End Access Servers
- Automatically Configuring an External Modem
- Manually Configuring an External Modem
- Supporting Dial-In Modems
- Testing the Modem Connection
- Managing Telnet Sessions
- Modem Troubleshooting Tips
- Checking Other Modem Settings

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the modem support commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

External Modems on Low-End Access Servers

Some of the Cisco lower-end access servers, such as the Cisco AS2511-RJ shown in Figure 23, have cable connections to external modems. The asynchronous interfaces and lines are inside the access server.
When you configure modems to function with your access server, you must provide initialization strings and other settings on the modem to tell it how to function with the access server.

This section assumes that you have already physically attached the modem to the access server. If not, refer to the user guide or installation and configuration guide for your access server for information about attaching modems.

Automatically Configuring an External Modem

The Cisco IOS software can issue initialization strings automatically, in a file called a modemcap, for most types of modems externally attached to the access server. A modemcap is a series of parameter settings that are sent to your modem to configure it to interact with the Cisco device in a specified way. The Cisco IOS software defines modemcaps that have been found to properly initialize most modems so that they function properly with Cisco routers and access servers. For Cisco IOS Release 12.2, these modemcaps have the following names:

- default—Generic Hayes interface external modem
- codex_3260—Motorola Codex 3260 external
- usr_courier—U.S. Robotics Courier external
- usr_sportster—U.S. Robotics Sportster external
- hayes_optima—Hayes Optima external
- global_village—Global Village Teleport external
- viva—Viva (Rockwell ACF with MNP) external
- telebit_t3000—Telebit T3000 external
- nec_v34—NEC V.34 external
- nec_v110—NEC V.110 TA external
- nec_piafs—NEC PIAFS TA external

*The hayes_optima modemcap is not recommended for use; instead, use the default modemcap.
Enter these modemcap names with the `modemcap entry` command.

If your modem is not on this list and if you know what modem initialization string you need to use with it, you can create your own modemcap; see the following procedure “Using the Modem Autoconfigure Type Modemcap Feature.” To have the Cisco IOS software determine what type of modem you have, use the `modem autoconfigure discovery` command to configure it, as described in the procedure “Using the Modem Autoconfigure Discovery Feature.”

Using the Modem Autoconfigure Type Modemcap Feature

Step 1 Use the `modemcap edit` command to define your own modemcap entry.

The following example defines modemcap MODEMCAPNAME:

```
Router(config)# modemcap edit MODEMCAPNAME miscellaneous &FS0=1&D3
```

Step 2 Apply the modemcap to the modem lines as shown in the following example:

```
Router# terminal monitor
Router# debug confmodem
Modem Configuration Database debugging is on
Router# configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
Router(config)# line 33 34
Router(config-line)# modem autoconfigure type MODEMCAPNAME
```

```
Jan 16 18:12:59.643: TTY34: detection speed (115200) response ---OK---
Jan 16 18:12:59.643: TTY34: Modem command:  --AT&FS0=1&D3--
Jan 16 18:12:59.659: TTY33: detection speed (115200) response ---OK---
Jan 16 18:12:59.659: TTY33: Modem command:  --AT&FS0=1&D3--
Jan 16 18:13:00.227: TTY34: Modem configuration succeeded
Jan 16 18:13:00.227: TTY34: Detected modem speed 115200
Jan 16 18:13:00.227: TTY34: Done with modem configuration
Jan 16 18:13:00.259: TTY33: Modem configuration succeeded
Jan 16 18:13:00.259: TTY33: Detected modem speed 115200
Jan 16 18:13:00.259: TTY33: Done with modem configuration
```

Using the Modem Autoconfigure Discovery Feature

If you prefer the modem software to use its autoconfigure mechanism to configure the modem, use the `modem autoconfigure discovery` command.

The following example shows how to configure modem autoconfigure discovery mode:

```
Router# terminal monitor
Router# debug confmodem
Modem Configuration Database debugging is on
Router# configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
Router(config)# line 33 34
Router(config-line)# modem autoconfigure discovery
```

```
Jan 16 18:16:17.724: TTY33: detection speed (115200) response ---OK---
Jan 16 18:16:17.724: TTY33: Modem command:  --AT&F&C1&D2S0=1H0--
Jan 16 18:16:17.728: TTY34: detection speed (115200) response ---OK---
Jan 16 18:16:17.728: TTY34: Modem command:  --AT&F&C1&D2S0=1H0--
Jan 16 18:16:18.324: TTY33: Modem configuration succeeded
Jan 16 18:16:18.324: TTY33: Detected modem speed 115200
Jan 16 18:16:18.324: TTY33: Done with modem configuration
```
Manually Configuring an External Modem

If you cannot configure your modem automatically, you must configure it manually. This section describes how to determine and issue the correct initialization string for your modem and how to configure your modem with it.

Modem command sets vary widely. Although most modems use the Hayes command set (prefixing commands with `at`), Hayes-compatible modems do not use identical `at` command sets.

Refer to the documentation that came with your modem to learn how to examine the current and stored configuration of the modem that you are using. Generally, you enter `at` commands such as `&v`, `i4`, or `*o` to view, inspect, or observe the settings.

Timesaver

You must first create a direct Telnet or connection session to the modem before you can send an initialization string. You can use `AT&F` as a basic modem initialization string in most cases. To establish a direct Telnet session to an external modem, determine the IP address of your LAN (Ethernet) interface, and then enter a Telnet command to port 2000 + n on the access server, where n is the line number to which the modem is connected. See the sections “Testing the Modem Connection” and “Managing Telnet Sessions” for more information about making Telnet connections.

A sample modem initialization string for a US Robotics Courier modem is as follows:

```
&bl&h1&r2&c1&d3&m4&k1s0=1
```

Modem initialization strings enable the following functions:

- Locks the speed of the modem to the speed of the serial port on the access server
- Sets hardware flow control (RTS/CTS or request to send/clear to send)
- Ensures correct data carrier detect (DCD) operation
- Ensures proper data terminal ready (DTR) interpretation
- Answers calls on the first ring

Note

Make sure to turn off automatic baud rate detection because the modem speeds must be set to a fixed value.

The port speed must not change when a session is negotiated with a remote modem. If the speed of the port on the access server is changed, you must establish a direct Telnet session to the modem and send an `at` command so that the modem can learn the new speed.
Modems differ in the method that they use to lock the EIA/TIA-232 (serial) port speed. In the modem documentation, vendors use terms such as port-rate adjust, speed conversion, or buffered mode. Enabling error correction often puts the modem in the buffered mode. Refer to your modem documentation to learn how your modem locks speed (check the settings \&b, \&j, \&q, \&n, or s-register settings).

RTS and CTS signals must be used between the modem and the access server to control the flow of data. Incorrectly configuring flow control for software or setting no flow control can result in hung sessions and loss of data. Modems differ in the method that they use to enable hardware flow control. Refer to your modem documentation to learn how to enable hardware flow control (check the settings \&e, \&k, \&h, \&r, or s-register).

The modem must use the DCD wire to indicate to the access server when a session has been negotiated and is established with a remote modem. Most modems use the setting \&c1. Refer to your modem documentation for the DCD settings used with your modem.

The modem must interpret a toggle of the DTR signal as a command to drop any active call and return to the stored settings. Most modems use the settings \&d2 or \&d3. Refer to your modem documentation for the DTR settings used with your modem.

If a modem is used to service incoming calls, it must be configured to answer a call after a specific number of rings. Most modems use the setting so=1 to answer the call after one ring. Refer to your modem documentation for the settings used with your modem.

Supporting Dial-In Modems

The Cisco IOS software supports dial-in modems that use DTR to control the off-hook status of the telephone line. This feature is supported primarily on old-style modems, especially those in Europe. To configure the line to support this feature, use the following command in line configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-line)# modem callin</td>
<td>Configures a line for a dial-in modem.</td>
</tr>
</tbody>
</table>

Figure 24 illustrates the **modem callin** command. When a modem dialing line is idle, it has its DTR signal at a low state and waits for a transition to occur on the data set ready (DSR) input. This transition causes the line to raise the DTR signal and start watching the CTS signal from the modem. After the modem raises CTS, the Cisco IOS software creates an EXEC session on the line. If the timeout interval (set with the **modem answer-timeout** command) passes before the modem raises the CTS signal, the line lowers the DTR signal and returns to the idle state.
The `modem callin` and `modem cts-required` line configuration commands are useful for SLIP operation. These commands ensure that when the line is hung up or the CTS signal drops, the line reverts from Serial Line Internet Protocol (SLIP) mode to normal interactive mode. These commands do not work if you put the line in network mode permanently.

Although you can use the `modem callin` line configuration command with newer modems, the `modem dialin` line configuration command described in this section is more appropriate. The `modem dialin` command frees up CTS input for hardware flow control. Modern modems do not require the assertion of DTR to answer a phone line (that is, to take the line off-hook).
Testing the Modem Connection

To test the connection, send the modem the AT command to request its attention. The modem should respond with “OK.” For example:

 at
 OK

If the modem does not reply to the `at` command, perform the following steps:

Step 1
Enter the `show users` EXEC command and scan the display output. The output should not indicate that the line is in use. Also verify that the line is configured for `modem inout`.

Step 2
Enter the `show line` EXEC command. The output should contain the following two lines:

```
Modem state: Idle
Modem hardware state: CTS noDSR  DTR RTS
```

If the output displays “no CTS” for the modem hardware state, the modem is not connected, is not powered up, is waiting for data, or might not be configured for hardware flow control.

Step 3
Verify the line speed and modem transmission rate. Make sure that the line speed on the access server matches the transmission rate, as shown in Table 13.

Table 13 Matching Line Speed with Transmission Rate

<table>
<thead>
<tr>
<th>Modem Transmission Rate (in bits per second)</th>
<th>Line Speed on the Access Server (in bits per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9600</td>
<td>38400</td>
</tr>
<tr>
<td>14400</td>
<td>57600</td>
</tr>
<tr>
<td>28800</td>
<td>115200</td>
</tr>
</tbody>
</table>

To verify the line speed, use the `show run` EXEC command. The line configuration fragment appears at the tail end of the output.

The following example shows that lines 7 through 9 are transmitting at 115200 bits per second (bps). Sixteen 28800-kbps modems are connected to a Cisco AS2511-RJ access server via a modem cable.

```
Router# show run

Building configuration...

Current configuration:

  .
  .
  !
  line 1 16
  login local
  modem InOut
  speed 115200
  transport input all
  flowcontrol hardware
  script callback callback
  autoselect ppp
  autoselect during-login

```
Managing Telnet Sessions

You communicate with an external modem by establishing a direct Telnet session from the asynchronous line on the access server, which is connected to the modem. This process is also referred to as reverse Telnet. Performing a reverse Telnet means that you are initiating a Telnet session out the asynchronous line, instead of accepting a connection into the line (called a forward connection).

Before attempting to allow inbound connections, make sure that you close all open connections to the modems attached to the access server. If you have a modem port in use, the modem will not accept a call properly.

To establish a direct Telnet session to an external modem, determine the IP address of your LAN (Ethernet) interface, and then enter a Telnet command to port 2000 + n on the access server, where n is the line number to which the modem is connected. For example, to connect to the modem attached to line 1, enter the following command from an EXEC session on the access server:

```
Router# telnet 172.16.1.10 2001
Trying 172.16.1.10, 2001 ... Open
```

This example enables you to communicate with the modem on line 1 using the AT (attention) command set defined by the modem vendor.

Timesaver

Use the `ip host` configuration command to simplify direct Telnet sessions with modems. The `ip host` command maps an IP address of a port to a device name. For example, the `modem1 2001 172.16.1.10` command enables you to enter `modem1` to initiate a connection with the modem, instead of repeatedly entering `telnet 172.16.1.10 2001` each time you want to communicate with the modem.

You can also configure asynchronous rotary line queueing, which places Telnet login requests in a queue when lines are busy. See the section “Configuring Asynchronous Rotary Line Queueing” in the “Configuring Asynchronous Lines and Interfaces” chapter for more information.
Suspending Telnet Sessions:
When you are connected to an external modem, the direct Telnet session must be terminated before the line can accept incoming calls. If you do not terminate the session, it will be indicated in the output of the `show users` command and will return a modem state of ready if the line is still in use. If the line is no longer in use, the output of the `show line value` command will return a state of idle. Terminating the Telnet session requires first suspending it, then disconnecting it.

To suspend a Telnet session, perform the following steps:

Step 1 Enter Ctrl-Shift-6 x to suspend the Telnet session:

- suspend keystroke -

```
Router#
```

Note Ensure that you can reliably issue the escape sequence to suspend a Telnet session. Some terminal emulation packages have difficulty sending the Ctrl-Shift-6 x sequence. Refer to your terminal emulation documentation for more information about escape sequences.

Step 2 Enter the `where` EXEC command to check the connection numbers of open sessions:

```
Router# where
Conn Host                Address             Byte  Idle Conn Name
  * 1 172.16.1.10         172.16.1.10            0     0  172.16.1.10
  2 172.16.1.11         172.16.1.11            0    12  modem2
```

Step 3 When you have suspended a session with one modem, you can connect to another modem and suspend it:

```
Router# telnet modem2
Trying modem2 (172.16.1.11, 2002) ... Open
- suspend keystroke -
Router#
```

Step 4 To disconnect (completely close) a Telnet session, enter the `disconnect` EXEC command:

```
Router# disconnect line 1
Closing connection to 172.16.1.10 [confirm] y
Router# disconnect line 2
Closing connection to 172.16.1.11 [confirm] y
Router#
```
Modem Troubleshooting Tips

Table 14 contains troubleshooting tips on modem access and control.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Likely Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection refused.</td>
<td>Someone already has a connection to that port. or an EXEC is running on that port. or The modem failed to lower the carrier detect (CD) signal after a call disconnected, resulting in an EXEC that remained active after disconnect. To force the line back into an idle state, clear the line from the console and try again. If it still fails, ensure that you have set <code>modem inout</code> command for that line. If you don’t have modem control, either turn off EXEC on the line (by using the <code>exec-timeout</code> line configuration command) before making a reverse connection or configure the modem using an external terminal. As a last resort, disconnect the modem, clear the line, make the Telnet connection, and then attach the modem. The prevents a misconfigured modem from denying you line access.</td>
</tr>
<tr>
<td>Connection appears to hang.</td>
<td>Try entering “^U” (clear line), “^Q” (XON), and press Return a few times to try to establish terminal control.</td>
</tr>
<tr>
<td>EXEC does not come up; autoselect is on.</td>
<td>Press Return to enter EXEC.</td>
</tr>
<tr>
<td>Modem does not hang up after entering <code>quit</code>.</td>
<td>The modem is not receiving DTR information, or you have not set up modem control on the router.</td>
</tr>
<tr>
<td>Interrupts another user session when you dial in.</td>
<td>The modem is not dropping CD on disconnect, or you have not set up modem control on the router.</td>
</tr>
<tr>
<td>Connection hangs after entering “+++” on the dialing modem, followed by an ATO.</td>
<td>The answering modem saw and interpreted the “+++” when it was echoed to you. This is a bug in the answering modem, common to many modems. There may be a switch to work around this problem; check the modem’s documentation.</td>
</tr>
<tr>
<td>Losing data.</td>
<td>You may have Hardware Flow Control only on for either the router’s line (DTE) or the modem (DCE). Hardware Flow Control should be on for both or off for both, but not for only one.</td>
</tr>
<tr>
<td>Using MDCE.</td>
<td>Turn MDCE into an MMOD by moving pin 6 to pin 8 because most modems use CD and not DSR to indicate the presence of carrier. You can also program some modems to provide carrier info via DSR.</td>
</tr>
</tbody>
</table>
Checking Other Modem Settings

This section defines other settings that might be needed or desirable, depending on your modem.

Error correction can be negotiated between two modems to ensure a reliable data link. Error correction standards include Link Access Procedure for Modems (LAPM) and MNP4. V.42 error correction allows either LAPM or MNP4 error correction to be negotiated. Modems differ in the way they enable error correction. Refer to your modem documentation for the error correction methods used with your modem.

Data compression can be negotiated between two modems to allow for greater data throughput. Data compression standards include V.42bis and MNP5. Modems differ in the way they enable data compression. Refer to your modem documentation for the data compression settings used with your modem.
Modem Signal and Line States

This chapter describes modem states in the following section:

- **Signal and Line State Diagrams**

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the modem support commands in this chapter, refer to the *Cisco IOS Modem Command Reference*. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Signal and Line State Diagrams

The following signal and line state diagrams accompany some of the tasks in the following sections to illustrate how the modem control works:

- Configuring Automatic Dialing
- Automatically Answering a Modem
- Supporting Dial-In and Dial-Out Connections
- Configuring a Line Timeout Interval
- Closing Modem Connections
- Configuring a Line to Disconnect Automatically
- Supporting Reverse Modem Connections and Preventing Incoming Calls
The diagrams show two processes:

- The “create daemon” process creates a tty daemon that handles the incoming network connection.
- The “create EXEC” process creates the process that interprets user commands. (See Figure 25 through Figure 29.)

In the diagrams, the current signal state and the signal the line is watching are listed inside each box. The state of the line (as displayed by the show line EXEC command) is listed next to the box. Events that change that state appear in italics along the event path, and actions that the software performs are described within ovals.

Figure 25 illustrates line states when no modem control is set. The DTR output is always high, and CTS and RING are completely ignored. The Cisco IOS software starts an EXEC session when the user types the activation character. Incoming TCP connections occur instantly if the line is not in use and can be closed only by the remote host.

Figure 25 EXEC and Daemon Creation on a Line with No Modem Control
Configuring Automatic Dialing

With the dialup capability, you can set a modem to dial the phone number of a remote router automatically. This feature offers cost savings because phone line connections are made only when they are needed—you pay for using the phone line only when there is data to be received or sent.

To configure a line for automatic dialing, use the following command in line configuration mode:

```
Router(config-line)# modem dtr-active
```

Using the `modem dtr-active` command causes a line to raise DTR signal only when there is an outgoing connection (such as reverse Telnet, NetWare Asynchronous Support Interface (NASI), or DDR), rather than leave DTR raised all the time. When raised, DTR potentially tells the modem that the router is ready to accept a call.

Automatically Answering a Modem

You can configure a line to answer a modem automatically. You also can configure the modem to answer the telephone on its own (as long as DTR is high), drop connections when DTR is low, and use its Carrier Detect (CD) signal to accurately reflect the presence of carrier. (Configuring the modem is a modem-dependent process.) First, wire the modem CD signal (generally pin-8) to the router RING input (pin-22), then use the following command in line configuration mode:

```
Router(config-line)# modem dialin
```

You can turn on modem hardware flow control independently to respond to the status of router CTS input. Wire CTS to whatever signal the modem uses for hardware flow control. If the modem expects to control hardware flow in both directions, you might also need to wire modem flow control input to some other signal that the router always has high, such as the DTR signal.

Figure 26 illustrates the `modem dialin` process with a high-speed dialup modem. When the Cisco IOS software detects a signal on the RING input of an idle line, it starts an EXEC or autobaud process on that line. If the RING signal disappears on an active line, the Cisco IOS software closes any open network connections and terminates the EXEC facility. If the user exits the EXEC or the software terminates because of no user input, the line makes the modem hang up by lowering the DTR signal for 5 seconds. After 5 seconds, the modem is ready to accept another call.
Supporting Dial-In and Dial-Out Connections

To configure a line for both incoming and outgoing calls, use the following command in line configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-line)# modem inout</code></td>
<td>Configures a line for both incoming and outgoing calls.</td>
</tr>
</tbody>
</table>

Figure 27 illustrates the `modem inout` command. If the line is activated by raising the data set ready (DSR) signal, it functions exactly as a line configured with the `modem dialin` line configuration command described in the section “Automatically Answering a Modem” earlier in this chapter. If the line is activated by an incoming TCP connection, the line functions similarly to lines not used with modems.
Figure 27 EXEC and Daemon Creation for Incoming and Outgoing Calls

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-line)# modem answer-timeout seconds</code></td>
<td>Configures modem line timing.</td>
</tr>
</tbody>
</table>

Note
The DSR signal is called RING on older ASM-style chassis.
Closing Modem Connections

Note

The `modem cts-required` command was replaced by the `modem printer` command in Cisco IOS Release 12.2.

To configure a line to close connections from a user’s terminal when the terminal is turned off and to prevent inbound connections to devices that are out of service, use the following command in line configuration mode:

```plaintext
Router(config-line)# modem cts-required
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>modem cts-required</code></td>
<td>Configures a line to close connections.</td>
</tr>
</tbody>
</table>

Figure 28 illustrates the `modem cts-required` command operating in the context of a continuous CTS signal. This form of modem control requires that the CTS signal be high for the entire session. If CTS is not high, the user input is ignored and incoming connections are refused (or sent to the next line in a rotary group).

Figure 28 EXEC and Daemon Creation on a Line Configured for Continuous CTS
Configuring a Line to Disconnect Automatically

To configure automatic line disconnect, use the following command in line configuration mode:

```
Router(config-line)# autohangup
```

The `autohangup` command causes the EXEC facility to issue the `exit` command when the last connection closes. This feature is useful for UNIX-to-UNIX copy program (UUCP) applications because UUCP scripts cannot issue a command to hang up the telephone. This feature is not used often.

Supporting Reverse Modem Connections and Preventing Incoming Calls

In addition to initiating connections, the Cisco IOS software can receive incoming connections. This capability allows you to attach serial and parallel printers, modems, and other shared peripherals to the router or access server and drive them remotely from other modem-connected systems. The Cisco IOS software supports reverse TCP, XRemote, and local-area transport (LAT) connections.

The specific TCP port or socket to which you attach the device determines the type of service that the Cisco IOS software provides on a line. When you attach the serial lines of a computer system or a data terminal switch to the serial lines of the access server, the access server can act as a network front-end device for a host that does not support the TCP/IP protocols. This arrangement is sometimes called **front-ending** or **reverse connection mode**.

The Cisco IOS software supports ports connected to computers that are connected to modems. To configure the Cisco IOS software to function somewhat like a modem, use the following command in line configuration mode. This command also prevents incoming calls.

```
Router(config-line)# modem callout
```

Figure 29 illustrates the `modem callout` process. When the Cisco IOS software receives an incoming connection, it raises the DTR signal and waits to see if the CTS signal is raised to indicate that the host has noticed the router DTR signal. If the host does not respond within the interval set by the `modem answer-timeout` line configuration command, the software lowers the DTR signal and drops the connection.
Figure 29 Daemon Creation on a Line Configured for Modem Dial-Out
Creating and Using Modem Chat Scripts

This chapter describes how to create and use modem chat scripts. These tasks are presented in the following main sections:

- Chat Script Overview
- How To Configure Chat Scripts
- Using Chat Scripts

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the modem support commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference publication. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Chat Script Overview

Chat scripts are strings of text used to send commands for modem dialing, logging in to remote systems, and initializing asynchronous devices connected to an asynchronous line.

Note

On a router, chat scripts can be configured only on the auxiliary port.

A chat script must be configured to dial out on asynchronous lines. You also can configure chat scripts so that they can be executed automatically for other specific events on a line, or so that they are executed manually.

Each chat script is defined for a different event. These events can include the following:

- Line activation
- Incoming connection initiation
- Asynchronous dial-on-demand routing (DDR)
- Line resets
- Startup
Creating and Using Modem Chat Scripts

How To Configure Chat Scripts

The following tasks must be performed before a chat script can be used:

- Define the chat script in global configuration mode using the `chat-script` command.
- Configure the line so that a chat script is activated when a specific event occurs (using the `script` line configuration command), or start a chat script manually (using the `start-chat` privileged EXEC command).

To configure a chat script, perform the tasks in the following sections:

- **Understanding Chat Script Naming Conventions** (Required)
- **Creating a Chat Script** (Required)
- **Configuring the Line to Activate Chat Scripts** (Required)
- **Manually Testing a Chat Script on an Asynchronous Line** (Optional)

See the section “Using Chat Scripts” later in this chapter for examples of how to use chat scripts.

Understanding Chat Script Naming Conventions

When you create a script name, include the modem vendor, type, and modulation, separated by hyphens, as follows:

`vendor-type-modulation`

For example, if you have a Telebit t3000 modem that uses V.32bis modulation, your script name would be:

`telebit-t3000-v32bis`

Note: Adhering to the recommended naming convention allows you to specify a range of chat scripts by using partial names in UNIX-style regular expressions. The regular expressions are used to match patterns and select chat scripts to use. This method is particularly useful for dialer rotary groups on an interface that dials multiple destinations. Regular expressions are described in the “Regular Expressions” appendix in the *Cisco IOS Terminal Services Configuration Guide*.

Creating a Chat Script

We recommend that one chat script (a “modem” chat script) be written for placing a call and that another chat script (a “system” or “login” chat script) be written to log in to remote systems, where required.
To define a chat script, use the following command in global configuration mode:

```bash
Router(config)# chat-script script-name expect send...
```

The Cisco IOS software waits for the string from the modem (defined by the `expect` portion of the script) and uses it to determine what to send back to the modem (defined by the `send` portion of the script).

Chat String Escape Key Sequences

Chat script send strings can include the special escape sequences listed in Table 15.

Table 15 Chat Script Send String Escape Sequences

<table>
<thead>
<tr>
<th>Escape Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\</td>
<td>Sends the ASCII character with its octal value.</td>
</tr>
<tr>
<td>"</td>
<td>Sends a double-quote (") character (does not work within double quotes).</td>
</tr>
<tr>
<td>\c</td>
<td>Suppresses a newline at the end of the send string.</td>
</tr>
<tr>
<td>\d</td>
<td>Delays for 2 seconds.</td>
</tr>
<tr>
<td>\K</td>
<td>Inserts a BREAK.</td>
</tr>
<tr>
<td>\n</td>
<td>Sends a newline or linefeed character.</td>
</tr>
<tr>
<td>\N</td>
<td>Sends a null character.</td>
</tr>
<tr>
<td>\p</td>
<td>Pauses for 0.25 second.</td>
</tr>
<tr>
<td>\q</td>
<td>Reserved, not yet used.</td>
</tr>
<tr>
<td>\r</td>
<td>Sends a return.</td>
</tr>
<tr>
<td>\s</td>
<td>Sends a space character.</td>
</tr>
<tr>
<td>\t</td>
<td>Sends a tab character.</td>
</tr>
<tr>
<td>\T</td>
<td>Replaced by phone number.</td>
</tr>
<tr>
<td>" "</td>
<td>Expects a null string.</td>
</tr>
<tr>
<td>BREAK</td>
<td>Causes a BREAK. This sequence is sometimes simulated with line speed changes and null characters. May not work on all systems.</td>
</tr>
<tr>
<td>EOT</td>
<td>Sends an end-of-transmission character.</td>
</tr>
</tbody>
</table>

Adding a Return Key Sequence

After the connection is established and you press the Return key, you must often press Return a second time before the prompt appears. To create a chat script that enters this additional Return key for you, include the following string with the Return key escape sequence (see Table 15) as part of your chat script:

```
ssword:-/r-ssword
```
This part of the script specifies that, after the connection is established, you want `password` to be displayed. If it is not displayed, you must press Return again after the timeout passes. (For more information about expressing characters in chat scripts, see the “Regular Expressions” appendix in the [Cisco IOS Terminal Services Configuration Guide](http:).)

Chat String Special-Case Script Modifiers

Special-case script modifiers are also supported; refer to Table 16 for examples.

<table>
<thead>
<tr>
<th>Special Case</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT <code>string</code></td>
<td>Designates a string whose presence in the input indicates that the chat script has failed. (You can have as many active abort entries as you like.)</td>
</tr>
<tr>
<td>TIMEOUT <code>time</code></td>
<td>Sets the time to wait for input, in seconds. The default is 5 seconds, and a timeout of 60 seconds is recommended for V.90 modems.</td>
</tr>
</tbody>
</table>

For example, if a modem reports BUSY when the number dialed is busy, you can indicate that you want the attempt stopped at this point by including ABORT BUSY in your chat script.

Note If you use the `expect-send` pair ABORT SINK instead of ABORT ERROR, the system terminates abnormally when it encounters SINK instead of ERROR.

Configuring the Line to Activate Chat Scripts

Chat scripts can be activated by any of five events, each corresponding to a different version of the `script` line configuration command. To start a chat script manually at any point, see the following section, “Manually Testing a Chat Script on an Asynchronous Line.”

To define a chat script to start automatically when a specific event occurs, use one of the following commands in line configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>script activation regexp</code></td>
<td>Starts a chat script on a line when the line is activated (every time a command EXEC is started on the line).</td>
</tr>
<tr>
<td><code>script connection regexp</code></td>
<td>Starts a chat script on a line when a network connection is made to the line.</td>
</tr>
<tr>
<td><code>script dialer regexp</code></td>
<td>Specifies a modem script for DDR on a line.</td>
</tr>
<tr>
<td><code>script reset regexp</code></td>
<td>Starts a chat script on a line whenever the line is reset.</td>
</tr>
<tr>
<td><code>script startup regexp</code></td>
<td>Starts a chat script on a line whenever the system is started up.</td>
</tr>
</tbody>
</table>

1. The `regexp` argument is a regular expression that is matched to a script name that has already been defined using the `chat-script` command.
2. Do not use the `script reset` or `script startup` commands to configure a modem; instead use the `modem autoconfigure` command.
Creating and Using Modem Chat Scripts

Outbound chat scripts are not supported on lines where modem control is set for inbound activity only (using the `modem dialin` command).

Manually Testing a Chat Script on an Asynchronous Line

To test a chat script on any line that is currently not active, use the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# <code>debug chat line number</code>
Starts detailed debugging on the specified line.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# <code>start-chat regexp [line-number [dialer-string]]</code>
Starts a chat script on any asynchronous line.</td>
</tr>
</tbody>
</table>

If you do not specify the line number, the script runs on the current line. If the line specified is already in use, you cannot start the chat script. A message appears indicating that the line is already in use.

Using Chat Scripts

The following sections provide examples of how to use chat scripts:

- **Generic Chat Script Example**
- **Traffic-Handling Chat Script Example**
- **Modem-Specific Chat Script Examples**
- **Dialer Mapping Example**
- **System Login Scripts and Modem Script Examples**

Generic Chat Script Example

The following example chat script includes a pair of empty quotation marks (""), which means “expect anything,” and \r, which means “send a return”:

```
" " \r "name:" "myname" "ord": "mypassword" ">" "slip default"
```

Traffic-Handling Chat Script Example

The following example shows a configuration in which, when there is traffic, a random line will be used. The dialer code will try to find a script that matches either the modem script .*-v32 or the system script cisco. If there is no match for either the modem script or the system script, you will see a “no matching chat script found” message.

```
interface dialer 1
  ! v.32 rotaries are in rotary 1.
dialer rotary-group 1
  ! Use v.32 generic script.
dialer map ip 10.0.0.1 modem-script .*-v32 system-script cisco 1234
```
Modem-Specific Chat Script Examples

The following example shows line chat scripts being specified for lines connected to Telebit and US Robotics modems:

```plaintext
! Some lines have Telebit modems.
line 1 6
  script dialer telebit.*
! Some lines have US Robotics modems.
line 7 12
  script dialer usr.*
```

Dialer Mapping Example

The following example shows a modem chat script called dial and a system login chat script called login:

```plaintext
chat-script dial ABORT ERROR "" "AT Z" OK "ATDT \T" TIMEOUT 60 CONNECT \c
chat-script login ABORT invalid TIMEOUT 60 name: myname word: mypassword "">" "slip default
interface async 10
dialer in-band
dialer map ip 10.55.0.1 modem-script dial system-script login 96837890
```

Figure 30 illustrates the configuration.

Figure 30 Chat Script Configuration and Function

- The configuration is on Router A.
- The modem chat script dial is used to dial out to the modem at Router B.
- The system login chat script login is used to log in to Router B.
- The phone number is the number of the modem attached to Router B.
- The IP address in the `dialer map` command is the address of Router B.

In the sample script shown, the `dialer in-band` command enables DDR on asynchronous interface 10, and the `dialer map` command dials 96837890 after finding the specified dialing and the system login scripts. When a packet is received for 10.55.0.1, the first thing to happen is that the modem script is implemented. Table 17 lists the functions that are implemented with each expect-send pair in the modem script called dial.
After the modem script is successfully executed, the system login script is executed. Table 18 lists the functions that are executed with each expect-send pair in the system script called login.

Table 18 Example System Script Execution

<table>
<thead>
<tr>
<th>Expect and Send Pair</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT invalid</td>
<td>Ends the script execution if the message “invalid username or password” is displayed.</td>
</tr>
<tr>
<td>TIMEOUT 60</td>
<td>Waits up to 60 seconds.</td>
</tr>
<tr>
<td>name: username</td>
<td>Waits for “name:” and sends username. (Using just “name:” will help avoid any capitalization issues.)</td>
</tr>
<tr>
<td>word: password</td>
<td>Waits for “word:” and sends the password.</td>
</tr>
<tr>
<td>“>” “slip default”</td>
<td>Waits for the > prompt and places the line into Serial Line Internet Protocol (SLIP) mode with its default address.</td>
</tr>
</tbody>
</table>

System Login Scripts and Modem Script Examples

The following example shows the use of chat scripts implemented with the `system-script` and `modem-script` options of the `dialer map` command.

If there is traffic for IP address 10.2.3.4, the router will dial the 91800 number using the usrobotics-v32 script, matching the regular expression in the modem chat script. Then the router will run the unix-slip chat script as the system script to log in.

If there is traffic for 10.3.2.1, the router will dial 8899 using usrobotics-v32, matching both the modem script and modem chat script regular expressions. The router will then log in using the cisco-compressed script.

```
! Script for dialing a usr v.32 modem:
chat-script usrobotics-v32 ABORT ERROR "" ""AT Z" OK "ATDT \T" TIMEOUT 60 CONNECT \c
!
! Script for logging into a UNIX system and starting up SLIP:
chat-script unix-slip ABORT invalid TIMEOUT 60 name: billw word: wewpass ">" "slip default"
!```
! Script for logging into a Cisco access server and starting up TCP header compression:
chat-script cisco-compressed...
!
line 15
script dialer usrobotics-*
!
interface async 15
dialer map ip 10.2.3.4 system-script *-v32 system-script cisco-compressed 91800
dialer map ip 10.3.2.1 modem-script *-v32 modem-script cisco-compressed 91800
ISDN Configuration
Configuring ISDN BRI

This chapter describes tasks that are required to use an ISDN BRI line. It provides an overview of the ISDN technologies currently available and describes features that you can configure in an ISDN BRI circuit-switched internetworking environment. This information is included in the following main sections:

- ISDN Overview
- How to Configure ISDN BRI
- Monitoring and Maintaining ISDN Interfaces
- Troubleshooting ISDN Interfaces
- Configuration Examples for ISDN BRI

This chapter describes configuration of the ISDN BRI. See the chapter “Configuring ISDN PRI” for information about configuring the ISDN PRI.

This chapter does not address routing issues, dialer configuration, and dial backup. For information about those topics, see the chapters in the “Dial-on-Demand Routing Configuration” part of this publication.

For hardware technical descriptions and for information about installing the router interfaces, refer to the appropriate hardware installation and maintenance publication for your particular product.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the BRI commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

ISDN Overview

Basic ISDN service is described in the section “ISDN Service” in the chapter “Overview of Dial Interfaces, Controllers, and Lines.” To summarize, Cisco IOS software supports both the ISDN BRI and the ISDN PRI.

ISDN BRI provides two bearer (B) channels, each capable of transferring voice or data at 64 kbps, and one 16 kbps data (D) signaling channel, which is used by the telephone network to carry instructions about how to handle each of the B channels. ISDN BRI (also referred to as 2 B + D) provides a maximum transmission speed of 128 kbps, but many users use only half the available bandwidth.
Figure 9 in the chapter “Overview of Dial Interfaces, Controllers, and Lines” illustrates the channel assignment for each ISDN type.

**Requesting BRI Line and Switch Configuration from a Telco Service Provider**

Before configuring ISDN BRI on your Cisco router, you must order a correctly configured ISDN line from your telecommunications service provider. This process varies from provider to provider on a national and international basis. However, some general guidelines follow:

- Ask for two channels to be called by one number.
- Ask for delivery of calling line identification. Providers sometimes call this CLI or automatic number identification (ANI).
- If the router will be the only device attached to the BRI, ask for point-to-point service and a data-only line.
- If the router will be attached to an ISDN bus (to which other ISDN devices might be attached), ask for point-to-multipoint service (subaddressing is required) and a voice-and-data line.

When you order ISDN service for switches used in North America, request the BRI switch configuration attributes specified in Table 19.

**Table 19**  
**North American ISDN BRI Switch Type Configuration Information**

<table>
<thead>
<tr>
<th>Switch Type</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMS-100 BRI Custom</td>
<td>2 B channels for voice and data.</td>
</tr>
<tr>
<td></td>
<td>2 directory numbers assigned by service provider.</td>
</tr>
<tr>
<td></td>
<td>2 service profile identifiers (SPIDs) required; assigned by service provider.</td>
</tr>
<tr>
<td></td>
<td>Functional signaling.</td>
</tr>
<tr>
<td></td>
<td>Dynamic terminal endpoint identifier (TEI) assignment.</td>
</tr>
<tr>
<td></td>
<td>Maximum number of keys = 64.</td>
</tr>
<tr>
<td></td>
<td>Release key = no, or key number = no.</td>
</tr>
<tr>
<td></td>
<td>Ringing indicator = no.</td>
</tr>
<tr>
<td></td>
<td>EKTS = no.</td>
</tr>
<tr>
<td></td>
<td>PVC = 2.</td>
</tr>
<tr>
<td></td>
<td>Request delivery of calling line ID on Centrex lines.</td>
</tr>
<tr>
<td></td>
<td>Set speed for ISDN calls to 56 kbps outside local exchange.</td>
</tr>
<tr>
<td></td>
<td>Directory number 1 can hunt to directory number 2.</td>
</tr>
</tbody>
</table>
Table 19  North American ISDN BRI Switch Type Configuration Information (continued)

<table>
<thead>
<tr>
<th>Switch Type</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5ESS Custom BRI</td>
<td>For Data Only</td>
</tr>
<tr>
<td></td>
<td>2 B channels for data.</td>
</tr>
<tr>
<td></td>
<td>Point to point.</td>
</tr>
<tr>
<td></td>
<td>Terminal type = E.</td>
</tr>
<tr>
<td></td>
<td>1 directory number (DN) assigned by service provider.</td>
</tr>
<tr>
<td></td>
<td>MTERM = 1.</td>
</tr>
<tr>
<td></td>
<td>Request delivery of calling line ID on Centrex lines.</td>
</tr>
<tr>
<td></td>
<td>Set speed for ISDN calls to 56 kbps outside local exchange.</td>
</tr>
<tr>
<td></td>
<td>For Voice and Data</td>
</tr>
<tr>
<td></td>
<td>(Use these values only if you have an ISDN telephone connected.)</td>
</tr>
<tr>
<td></td>
<td>2 B channels for voice or data.</td>
</tr>
<tr>
<td></td>
<td>Multipoint.</td>
</tr>
<tr>
<td></td>
<td>Terminal type = D.</td>
</tr>
<tr>
<td></td>
<td>2 directory numbers assigned by service provider.</td>
</tr>
<tr>
<td></td>
<td>2 SPIs required; assigned by service provider.</td>
</tr>
<tr>
<td></td>
<td>MTERM = 2.</td>
</tr>
<tr>
<td></td>
<td>Number of call appearances = 1.</td>
</tr>
<tr>
<td></td>
<td>Display = No.</td>
</tr>
<tr>
<td></td>
<td>Ringing/idle call appearances = idle.</td>
</tr>
<tr>
<td></td>
<td>Autohold = no.</td>
</tr>
<tr>
<td></td>
<td>Onetouch = no.</td>
</tr>
<tr>
<td></td>
<td>Request delivery of calling line ID on Centrex lines.</td>
</tr>
<tr>
<td></td>
<td>Set speed for ISDN calls to 56 kbps outside local exchange.</td>
</tr>
<tr>
<td></td>
<td>Directory number 1 can hunt to directory number 2.</td>
</tr>
<tr>
<td>5ESS National ISDN (NI) BRI</td>
<td>Terminal type = A.</td>
</tr>
<tr>
<td></td>
<td>2 B channels for voice and data.</td>
</tr>
<tr>
<td></td>
<td>2 directory numbers assigned by service provider.</td>
</tr>
<tr>
<td></td>
<td>2 SPIs required; assigned by service provider.</td>
</tr>
<tr>
<td></td>
<td>Set speed for ISDN calls to 56 kbps outside local exchange.</td>
</tr>
<tr>
<td></td>
<td>Directory number 1 can hunt to directory number 2.</td>
</tr>
<tr>
<td>EZ-ISDN 1</td>
<td>For Voice and Data</td>
</tr>
<tr>
<td></td>
<td>• ISDN Ordering Code for Cisco 766/776 Series = Capability S</td>
</tr>
<tr>
<td></td>
<td>• ISDN Ordering Code for Cisco 1604 Series = Capability R</td>
</tr>
<tr>
<td></td>
<td>2 B channels featuring alternate voice and circuit-switched data. Non-EKTS</td>
</tr>
<tr>
<td></td>
<td>voice features include the following:</td>
</tr>
<tr>
<td></td>
<td>• Flexible Calling</td>
</tr>
<tr>
<td></td>
<td>• Call Forwarding Variable</td>
</tr>
<tr>
<td></td>
<td>• Additional Call Offering</td>
</tr>
<tr>
<td></td>
<td>• Calling Number Identification (includes Redirecting Number Delivery)</td>
</tr>
</tbody>
</table>
Interface Configuration

The Cisco IOS software also provides custom features for configuring the ISDN BRI interface that provide such capability as call screening, called party number verification, ISDN default cause code override, and for European and Australian customers, Dialed Number Identification Service (DNIS)-plus-ISDN-subaddress binding to allow multiple binds between a dialer profile and an ISDN B channel.

Dynamic Multiple Encapsulations

Before Cisco IOS Release 12.1, encapsulation techniques such as Frame Relay, High-Level Data Link Control (HDLC), Link Access Procedure, Balanced-Terminal Adapter (LAPB-TA), and X.25 could support only one ISDN B-channel connection over the entire link. HDLC and PPP could support multiple B channels, but the entire ISDN link needed to use the same encapsulation. The Dynamic Multiple Encapsulations feature introduced in Cisco IOS Release 12.1 allows various encapsulation types and per-user configurations on the same ISDN B channel at different times according to the type of incoming call.

With the Dynamic Multiple Encapsulations feature, once calling line identification (CLID) binding is completed, the topmost interface is always used for all configuration and data structures. The ISDN B channel becomes a forwarding device, and the configuration on the D channel is ignored, thereby allowing the different encapsulation types and per-user configurations. Dynamic multiple encapsulations provide support for packet assembler/disassembler (PAD) traffic and X.25 encapsulated and switched packets. For X.25 encapsulations, the configurations reside on the dialer profile.

Dynamic multiple encapsulation is especially important in Europe, where ISDN is relatively expensive and maximum use of all 30 B channels on the same ISDN link is desirable. Further, the feature removes the need to statically dedicate channels to a particular encapsulation and configuration type, and improves channel usage.

Figure 31 shows a typical configuration for an X.25 network in Europe. The Dynamic Multiple Encapsulations feature allows use of all 30 B channels, and supports calls that originate in diverse areas of the network and converge on the same ISDN PRI.

Figure 31 European X.25 Network

Interface Configuration Options

You can also optionally configure snapshot routing for ISDN interfaces. Snapshot routing is a method of learning remote routes dynamically and keeping the routes available for a specified period of time, even though routing updates are not exchanged during that period. See the chapter “Configuring Snapshot Routing” later in this guide for detailed information about snapshot routing.
To place calls on an ISDN interface, you must configure it with dial-on-demand routing (DDR). For configuration information about ISDN using DDR, see the “Dial-On-Demand Routing Configuration” part of this publication. For command information, refer to the Cisco IOS Dial Technologies Command Reference.

To configure bandwidth on demand, see the chapters “Configuring Legacy DDR Spokes” or “Configuring Legacy DDR Hubs” later in this publication.

### ISDN Cause Codes

A cause code is an information element (IE) that indicates why an ISDN call failed or was otherwise disconnected. When the originating gateway receives a Release Complete message, it generates a tone corresponding to the cause code in the message.

Table 20 lists the default cause codes that the VoIP (Voice over IP) gateway sends to the switch when a call fails at the gateway, and the corresponding tones that it generates.

<table>
<thead>
<tr>
<th>Cause Code</th>
<th>Description</th>
<th>Explanation</th>
<th>Tone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unallocated (unassigned) number</td>
<td>The ISDN number is not assigned to any destination equipment.</td>
<td>Reorder</td>
</tr>
<tr>
<td>3</td>
<td>No route to destination</td>
<td>The call was routed through an intermediate network that does not serve the destination address.</td>
<td>Reorder</td>
</tr>
<tr>
<td>16</td>
<td>Normal call clearing</td>
<td>Normal call clearing has occurred.</td>
<td>Dial</td>
</tr>
<tr>
<td>17</td>
<td>User busy</td>
<td>The called system acknowledged the connection request but was unable to accept the call because all B channels were in use.</td>
<td>Busy</td>
</tr>
<tr>
<td>19</td>
<td>No answer from user (user alerted)</td>
<td>The destination responded to the connection request but failed to complete the connection within the prescribed time. The problem is at the remote end of the connection.</td>
<td>Reorder</td>
</tr>
<tr>
<td>28</td>
<td>Invalid number format</td>
<td>The connection could not be established because the destination address was presented in an unrecognizable format or because the destination address was incomplete.</td>
<td>Reorder</td>
</tr>
<tr>
<td>34</td>
<td>No circuit/channel available</td>
<td>The connection could not be established because no appropriate channel was available to take the call.</td>
<td>Reorder</td>
</tr>
</tbody>
</table>

For a complete list of ISDN cause codes that are generated by the switch, refer to “Appendix B: ISDN Switch Types, Codes and Values” in the Cisco IOS Debug Command Reference.

Although the VoIP gateway generates the cause codes listed in Table 20 by default, there are commands introduced in previous Cisco IOS releases that can override these defaults, allowing the gateway to send different cause codes to the switch. The following commands override the default cause codes:

- `isdn disconnect-cause`—Sends the specified cause code to the switch when a call is disconnected.
- `isdn network-failure-cause`—Sends the specified cause code to the switch when a call fails because of internal network failures.
- `isdn voice-call-failure`—Sends the specified cause code to the switch when an inbound voice call fails with no specific cause code.
When you implement these commands, the configured cause codes are sent to the switch; otherwise, the
default cause codes of the voice application are sent. For a complete description of these commands,
refer to the *Cisco IOS Dial Technologies Command Reference*.

## How to Configure ISDN BRI

To configure ISDN lines and interfaces, perform the tasks in the following sections:

- **Configuring the ISDN BRI Switch** (Required)
- **Specifying Interface Characteristics for an ISDN BRI** (As required)
- **Configuring ISDN Semipermanent Connections** (As required)
- **Configuring ISDN BRI for Leased-Line Service** (As required)

See the sections “Monitoring and Maintaining ISDN Interfaces” and “Troubleshooting ISDN Interfaces”
later in this chapter for tips on maintaining your network. See the section “Configuration Examples for
ISDN BRI” at the end of this chapter for configuration examples.

To configure ISDN BRI for voice, video, and fax applications, refer to the *Cisco IOS Voice, Video, and
Fax Applications Configuration Guide*.

### Configuring the ISDN BRI Switch

To configure the ISDN switch type, perform the following tasks:

- **Configuring the Switch Type** (Required)
- **Checking and Setting the Buffers** (As required)

Also see to the “Multiple ISDN Switch Types Feature” section for information about configuring
multiple switch types.

#### Configuring the Switch Type

To configure the switch type, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# isdn switch-type switch-type</code></td>
<td>Selects the service provider switch type; see Table 19 for switch types.</td>
</tr>
</tbody>
</table>

The section “Global ISDN and BRI Interface Switch Type Example” later in this chapter provides an
example of configuring the ISDN BRI switch.

Table 21 lists the ISDN BRI service provider switch types.
Configuring ISDN BRI

How to Configure ISDN BRI

Table 21  ISDN Service Provider BRI Switch Types

<table>
<thead>
<tr>
<th>Switch Type Keywords</th>
<th>Description/Use</th>
<th>Central Office (CO) Switch Type?</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Voice/PBX Systems</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>basic-qsig</td>
<td>PINX (PBX) switch with QSIG signaling per Q.931</td>
<td><strong>Yes</strong></td>
</tr>
<tr>
<td>basic-1tr6</td>
<td>German 1TR6 ISDN switch</td>
<td><strong>Yes</strong></td>
</tr>
<tr>
<td>basic-net3</td>
<td>NET3 ISDN BRI for Norway NET3, Australia NET3, and New Zealand NET3 switches; covers ETSI-compliant Euro-ISDN E-DSS1 signaling system</td>
<td><strong>Yes</strong></td>
</tr>
<tr>
<td>vn3</td>
<td>French VN3 ISDN BRI switch</td>
<td><strong>Yes</strong></td>
</tr>
<tr>
<td><strong>Australia, Europe, and UK</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Japan</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ntt</td>
<td>Japanese NTT ISDN BRI switch</td>
<td><strong>Yes</strong></td>
</tr>
<tr>
<td><strong>North America</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>basic-5ess</td>
<td>Lucent (AT&amp;T) basic rate 5ESS switch</td>
<td><strong>Yes</strong></td>
</tr>
<tr>
<td>basic-dms100</td>
<td>Nortel basic rate DMS-100 switch</td>
<td><strong>Yes</strong></td>
</tr>
<tr>
<td>basic-ni</td>
<td>National ISDN switch</td>
<td><strong>Yes</strong></td>
</tr>
<tr>
<td><strong>All Users</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>No switch defined</td>
<td><strong>Yes</strong></td>
</tr>
</tbody>
</table>

Note

The command parser will still accept the following switch type keywords: **basic-nwnet3**, **vn2**, and **basic-net3**; however, when viewing the NVRAM configuration, the **basic-net3** or **vn3** switch type keywords are displayed respectively.

Checking and Setting the Buffers

When configuring a BRI, after the system comes up, make sure enough buffers are in the free list of the buffer pool that matches the maximum transmission unit (MTU) of your BRI interface. If not, you must reconfigure buffers in order for the BRI interfaces to function properly.

To check the MTU size and the buffers, use the following commands in EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show interfaces bri number</td>
<td>Displays the MTU size.</td>
</tr>
<tr>
<td>Router# show buffers</td>
<td>Displays the free buffers.</td>
</tr>
</tbody>
</table>
To configure the buffers and the MTU size, use the following commands in global configuration mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>buffers big permanent number</code></td>
<td>Configures the buffers.</td>
</tr>
<tr>
<td><code>buffers big max-free number</code></td>
<td></td>
</tr>
<tr>
<td><code>buffers big min-free number</code></td>
<td></td>
</tr>
<tr>
<td><code>buffers big initial number</code></td>
<td></td>
</tr>
</tbody>
</table>

**Multiple ISDN Switch Types Feature**

The Cisco IOS software provides an enhanced Multiple ISDN Switch Types feature that allows you to apply an ISDN switch type to a specific ISDN interface and configure more than one ISDN switch type per router. This feature allows both ISDN BRI and ISDN PRI to run simultaneously on platforms that support both interface types. See the section “Configuring Multiple ISDN Switch Types” in the chapter “Configuring ISDN PRI” for information about configuring this feature.

**Specifying Interface Characteristics for an ISDN BRI**

Perform the tasks in the following sections to set interface characteristics for an ISDN BRI, whether it is the only BRI in a router or is one of many. Each of the BRIs can be configured separately.

- **Specifying the Interface and Its IP Address** (Required)
- **Configuring CLI Screening** (As Required)
- **Configuring Encapsulation on ISDN BRI** (Required)
- **Configuring Network Addressing** (Required)
- **Configuring TEI Negotiation Timing** (Optional)
- **Configuring CLI Screening** (Optional)
- **Configuring Called Party Number Verification** (Optional)
- **Configuring ISDN Calling Number Identification** (Optional)
- **Configuring the Line Speed for Calls Not ISDN End to End** (Optional)
- **Configuring a Fast Rollover Delay** (Optional)
- **Overriding ISDN Application Default Cause Codes** (Optional)
- **Configuring Inclusion of the Sending Complete Information Element** (Optional)
- **Configuring DNIS-plus-ISDN-Subaddress Binding** (Optional)
- **Screening Incoming V.110 Modem Calls** (Optional)
- **Disabling V.110 Padding** (Optional)
Specifying the Interface and Its IP Address

To specify an ISDN BRI and enter interface configuration mode, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface bri number</td>
<td>Specifies the interface and begins interface configuration mode.</td>
</tr>
<tr>
<td>Cisco 7200 series router only</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface bri slot/port</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address address mask</td>
<td>Specifies an IP address for the interface.</td>
</tr>
</tbody>
</table>

Specifying ISDN SPIDs

Some service providers use SPIDs to define the services subscribed to by the ISDN device that is accessing the ISDN service provider. The service provider assigns the ISDN device one or more SPIDs when you first subscribe to the service. If you are using a service provider that requires SPIDs, your ISDN device cannot place or receive calls until it sends a valid, assigned SPID to the service provider when accessing the switch to initialize the connection.

Currently, only the DMS-100 and NI switch types require SPIDs. The AT&T 5ESS switch type may support a SPID, but we recommend that you set up that ISDN service without SPIDs. In addition, SPIDs have significance at the local access ISDN interface only. Remote routers never receive the SPID.

A SPID is usually a seven-digit telephone number with some optional numbers. However, service providers may use different numbering schemes. For the DMS-100 switch type, two SPIDs are assigned, one for each B channel.

To define the SPIDs and the local directory number (LDN) on the router, use the following commands in interface configuration mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# isdn spid1 spid-number [ldn]</td>
<td>Specifies a SPID and local directory number for the B1 channel.</td>
</tr>
<tr>
<td>Router(config-if)# isdn spid2 spid-number [ldn]</td>
<td>Specifies a SPID and local directory number for the B2 channel.</td>
</tr>
</tbody>
</table>

The LDN is optional but might be necessary if the router is to answer calls made to the second directory number.

Configuring Encapsulation on ISDN BRI

Each ISDN B channel is treated as a synchronous serial line, and the default serial encapsulation is HDLC. The Dynamic Multiple Encapsulations feature allows incoming calls over ISDN to be assigned an encapsulation type such as Frame Relay, PPP, and X.25 based on CLID or DNIS. PPP encapsulation is configured for most ISDN communication.
To configure encapsulation, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config-if)# encapsulation [ppp</td>
<td>lapb</td>
</tr>
</tbody>
</table>

### Verifying the Dynamic Multiple Encapsulations Feature

To verify dialer interfaces configured for binding and see statistics on each physical interface bound to the dialer interface, use the `show interfaces` EXEC command.

The following example shows that the output under the B channel keeps all hardware counts that are not displayed under any logical or virtual access interface. The line in the report that states “Interface is bound to Dialer0 (Encapsulation LAPB)” indicates that this B interface is bound to the dialer 0 interface and the encapsulation running over this connection is LAPB, not PPP, which is the encapsulation configured on the D interface and inherited by the B channel.

```
Router# show interfaces bri0:1
BRI0:1 is up, line protocol is up
Hardware is BRI
 MTU 1500 bytes, BW 64 Kbit, DLY 20000 usec, rely 255/255, load 1/255
 Encapsulation PPP, loopback not set, keepalive not set
 Interface is bound to Dialer0 (Encapsulation LAPB)
 LCP Open, multilink Open
 Last input 00:00:31, output 00:00:03, output hang never
 Last clearing of "show interface" counters never
 Queueing strategy: fifo
 Output queue 0/40, 0 drops; input queue 0/75, 0 drops
 5 minute input rate 0 bits/sec, 1 packets/sec
 5 minute output rate 0 bits/sec, 1 packets/sec
 110 packets input, 13994 bytes, 0 no buffer
 Received 91 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 135 packets output, 14175 bytes, 0 underruns
 0 output errors, 0 collisions, 12 interface resets
 0 output buffer failures, 0 output buffers swapped out
 8 carrier transitions
```

Any protocol configuration and states should be displayed from the dialer 0 interface.

### Encapsulation Configuration Notes

The router might need to communicate with devices that require a different encapsulation protocol or the router might send traffic over a Frame Relay or X.25 network. The Dynamic Multiple Encapsulations feature provides bidirectional support of all serial encapsulations except Frame Relay.

For more information, see the sections “Sending Traffic over Frame Relay, X.25, or LAPB Networks” in the chapters “Configuring Legacy DDR Spokes” and “Configuring Legacy DDR Hubs” later in this publication.

To configure the router for automatic detection of encapsulation type on incoming calls, or to configure encapsulation for Cisco 700 and 800 series (formerly Combinet) router compatibility, see the section “Configuring Automatic Detection of Encapsulation Type” in the chapter “Configuring ISDN Special Signaling” later in this publication.
### Configuring Network Addressing

The steps in this section support the primary goals of network addressing:

- Define which packets are *interesting* and will thus cause the router to make an outgoing call.
- Define the remote host where the calls are going.
- Specify whether broadcast messages will be sent.
- Specify the dialing string to use in the call.

Intermediate steps that use shared argument values tie the host identification and dial string to the interesting packets to be sent to that host.

To configure network addressing, use the following commands beginning in interface configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router(config-if)# dialer map protocol next-hop-address name hostname speed [56</td>
<td>64] dial-string [isdn-subaddress] or Router(config-if)# dialer map protocol next-hop-address name hostname spc [speed 56</td>
</tr>
<tr>
<td>2</td>
<td>Router(config-if)# dialer-group group-number</td>
<td>Assigns the interface to a dialer group to control access to the interface.</td>
</tr>
<tr>
<td>3</td>
<td>Router(config)# exit</td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td>4</td>
<td>Router(config)# dialer-list dialer-group protocol protocol-name {permit</td>
<td>deny</td>
</tr>
<tr>
<td>5</td>
<td>Router(config)# access-list access-list-number (deny</td>
<td>permit) protocol source address source-mask destination destination-mask</td>
</tr>
</tbody>
</table>

German networks allow semipermanent connections between customer routers with BRIs and the 1TR6 basic rate switches in the exchange. Semipermanent connections are less expensive than leased lines.

---

**Note**

The access list reference in Step 5 of this task is an example of the *access-list* commands allowed by different protocols. Some protocols might require a different command form or might require multiple commands. Refer to the relevant protocol chapter in the network protocol configuration guide (the *Cisco IOS Novell IPX Configuration Guide*, for example) for more information about setting up access lists for a protocol.

For more information about defining outgoing call numbers, see the chapters “Configuring Legacy DDR Hubs” and “Configuring Legacy DDR Spokes” later in this publication.
Configuring ISDN BRI

How to Configure ISDN BRI

Configuring TEI Negotiation Timing

You can configure ISDN TEI negotiation on individual ISDN interfaces. TEI negotiation is useful for switches that may deactivate Layers 1 or 2 when there are no active calls. Typically, this setting is used for ISDN service offerings in Europe and connections to DMS-100 switches that are designed to initiate TEI negotiation.

By default, TEI negotiation occurs when the router is powered up. The TEI negotiation value configured on an interface overrides the default or global TEI value. For example, if you configure `isdn tei first-call` globally and `isdn tei powerup` on BRI interface 0, then TEI negotiation `powerup` is the value applied to BRI interface 0. It is not necessary to configure TEI negotiation unless you wish to override the default value (`isdn tei powerup`).

To apply TEI negotiation to a specific BRI interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config-if)# isdn tei [first-call</td>
<td>Determines when ISDN TEI negotiation occurs.</td>
</tr>
<tr>
<td>powerup]`</td>
<td></td>
</tr>
</tbody>
</table>

Configuring CLI Screening

CLI screening adds a level of security by allowing you to screen incoming calls. You can verify that the calling line ID is from an expected origin. CLI screening requires a local switch that is capable of delivering the CLI to the router.

To configure CLI screening, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# isdn caller number</code></td>
<td>Configures caller ID screening.</td>
</tr>
</tbody>
</table>

**Note**

If caller ID screening is configured and the local switch does not deliver caller IDs, the router rejects all calls.

**Note**

In earlier releases of the Cisco IOS software, ISDN accepted all synchronous calls and performed some minimal CLI screening before accepting or rejecting a call. Beginning with Cisco IOS Release 12.1 software, DDR provides a separate process that screens for the profile of the caller. The new screening process also checks that enough resources are available to accept the call and that the call conforms to predetermined rules. When the call is found acceptable, the screening process searches for a matching profile for the caller. The call is accepted only when there is a matching profile.

Configuring Called Party Number Verification

When multiple devices are attached to an ISDN BRI, you can ensure that only a single device answers an incoming call by verifying the number or subaddress in the incoming call against the configured number or subaddress or both of the device.
You can specify that the router verify a called-party number or subaddress number in the incoming setup message for ISDN BRI calls, if the number is delivered by the switch. You can do so by configuring the number that is allowed. To configure verification, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# isdn answer1 [called-party-number][;subaddress]</td>
<td>Specifies that the router verify a called-party number or subaddress number in the incoming setup message.</td>
</tr>
</tbody>
</table>

Verifying the called-party number ensures that only the desired router responds to an incoming call. If you want to allow an additional number for the router, you can configure it, too.

To configure a second number to be allowed, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# isdn answer2 [called-party-number][;subaddress]</td>
<td>Specifies that the router verify a second called-party number or subaddress number in the incoming setup message.</td>
</tr>
</tbody>
</table>

### Configuring ISDN Calling Number Identification

A router with an ISDN BRI interface might need to supply the ISDN network with a billing number for outgoing calls. Some networks offer better pricing on calls in which the number is presented. When configured, this information is included in the outgoing call Setup message.

To configure the interface to identify the billing number, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# isdn calling-number calling-number</td>
<td>Specifies the calling party number.</td>
</tr>
</tbody>
</table>

This command can be used with all switch types except German 1TR6 ISDN BRI switches.

### Configuring the Line Speed for Calls Not ISDN End to End

When calls are made at 56 kbps but delivered by the ISDN network at 64 kbps, the incoming data can be corrupted. However, on ISDN calls, if the receiving side is informed that the call is not an ISDN call from end to end, it can set the line speed for the incoming call.

To set the speed for incoming calls recognized as not ISDN end to end, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# isdn not-end-to-end {56</td>
<td>64}</td>
</tr>
</tbody>
</table>
Configuring a Fast Rollover Delay

Sometimes a router attempts to dial a call on an ISDN B channel before a previous call is completely torn down. The fast rollover fails because the second call is made to a different number before the B channel is released from the unsuccessful call. This failure might occur in the following ISDN configurations:

- The two B channels of the BRI are not configured as a hunt group, but have separate numbers defined.
- The B channel is not released by the ISDN switch until after Release Complete signal is processed.

You need to configure this delay if a BRI on a remote peer has two phone numbers configured one for each B channel you are dialing into this BRI, you have a dialer map for each phone number, and the first call succeeds but a second call fails with no channel available.

To configure a fast rollover delay, use the following command in interface configuration mode:

```
Router(config-if)# isdn fast-rollover-delay
```

A delay of 5 seconds should cover most cases. Configure sufficient delay to make sure the ISDN RELEASE_COMPLETE message has been sent or received before making the fast rollover call. Use the `debug isdn q931` command to display this information. This pattern of failed second calls is a rare occurrence.

Overriding ISDN Application Default Cause Codes

The ISDN Cause Code Override function is useful for overriding the default cause code of ISDN applications. When this feature is implemented, the configured cause code is sent to the switch; otherwise, default cause codes of the application are sent.

To configure ISDN cause code overrides, use the following command in interface configuration mode:

```
Router(config-if)# isdn disconnect-cause {cause-code-number | busy | not-available}
```

**ISDN Cause Code Override Configuration Example**

The following example sends a BUSY cause code to the switch when an application fails to complete the call:

```
interface serial 0:23
isdn disconnect-cause busy
```

**Verifying ISDN Cause Code Override**

To verify that the ISDN Cause Code Override feature is operating correctly, enter the `debug q931` command. The `debug q931` command displays a report of any configuration irregularities.
Configuring Inclusion of the Sending Complete Information Element

In some geographic locations, such as Hong Kong and Taiwan, ISDN switches require that the Sending Complete information element be included in the outgoing Setup message to indicate that the entire number is included. This information element is generally not required in other locations.

To configure the interface to include the Sending Complete information element in the outgoing call Setup message, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# isdn sending-complete</td>
<td>Includes the Sending Complete information element in the outgoing call Setup message.</td>
</tr>
</tbody>
</table>

Configuring DNIS-plus-ISDN-Subaddress Binding

To configure DNIS-plus-ISDN-subaddress binding, use the following command in global configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dialer called DNIS:subaddress</td>
<td>Binds a DNIS to an ISDN subaddress.</td>
</tr>
</tbody>
</table>

- **Note**
  - This command allows multiple binds between a dialer profile and an ISDN B channel. The configuration requires an ISDN subaddress, which is used in Europe and Australia.
  - See the section “DNIS-plus-ISDN-Subaddress Binding Example” later in this chapter for a configuration example.

Screening Incoming V.110 Modem Calls

You can screen incoming V.110 modem calls and reject calls that do not have the communications settings configured as the network expects them to be.

To selectively accept incoming V.110 modem calls based on data bit, parity, and stop bit modem communications, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# isdn v110 only [databits 5</td>
<td>7</td>
</tr>
</tbody>
</table>
Disabling V.110 Padding

In networks with devices such as terminal adapters (TAs) and global system for mobile communication (GSM) handsets that do not fully conform to the V.110 modem standard, you will need to disable V.110 padding. To disable the padded V.110 modem speed report required by the V.110 modem standard, use the following command in interface configuration mode:

```
Router(config-if)# no isdn v110 padding
```

Disabling V.110 Padding

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# no isdn v110 padding</td>
<td>Disables the padded modem speed report required by the V.110 modem standard.</td>
</tr>
</tbody>
</table>

Configuring ISDN Semipermanent Connections

German networks allow semipermanent connections between customer routers with BRI interfaces and the 1TR6 basic rate switches in the exchange. Australian networks allow semipermanent connections between ISDN PRI interfaces and the TS-014 primary rate switches in the exchange. Semipermanent connections are offered at better pricing than leased lines.

Configuring BRI interfaces for semipermanent connection requires only that you use a keyword that indicates semipermanent connections when you are setting up network addressing as described in the previous section of this chapter.

To configure a BRI for semipermanent connections, follow this procedure:

**Step 1**
Set up the ISDN lines and ports as described in the sections “Configuring the ISDN BRI Switch” and “Specifying Interface Characteristics for an ISDN BRI” or for ISDN PRI, see the section “How to Configure ISDN PRI” in the chapter “Configuring ISDN PRI” later in this manual.

**Step 2**
Configure DDR on a selected interface, as described in the “Dial-on-Demand Routing Configuration” part of this publication.

To begin DDR network addressing, use the following command in interface configuration mode

```
Router(config-if)# dialer map protocol next-hop-address name hostname spc [speed 56 | 64] [broadcast] dial-string[isdn-subaddress]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer map protocol next-hop-address name hostname spc [speed 56</td>
<td>64] [broadcast] dial-string[isdn-subaddress]</td>
</tr>
</tbody>
</table>

Configuring ISDN BRI for Leased-Line Service

To configure ISDN BRI for leased line service, perform the tasks in one of the following sections as needed and available:

- Configuring Leased-Line Service at Normal Speeds (Available in Japan and Germany)
- Configuring Leased-Line Service at 128 Kbps (Available only in Japan)
Configuring ISDN BRI

How to Configure ISDN BRI

Note

Once an ISDN BRI interface is configured for access over leased lines, it is no longer a dialer interface, and signaling over the D channel no longer applies. Although the interface is called interface bri \( n \), it is configured as a synchronous serial interface having the default High-Level Data Link (HDLC) encapsulation. However, the Cisco IOS commands that set the physical characteristics of a serial interface (such as the pulse time) do not apply to this interface.

### Configuring Leased-Line Service at Normal Speeds

This service is offered in Japan and Germany and no call setup or teardown is involved. Data is placed on the ISDN interface similar to the way data is placed on a leased line connected to a serial port.

To configure the BRI to use the ISDN connection as a leased-line service, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# isdn switch-type switch-type</td>
</tr>
<tr>
<td></td>
<td>Configures the BRI switch type, as specified by the local service provider.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# isdn leased-line bri number 128</td>
</tr>
<tr>
<td></td>
<td>Specifies the BRI interface number.</td>
</tr>
</tbody>
</table>

To disable leased-line service if you no longer want to support it on a specified ISDN BRI, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router(config)# no isdn leased-line bri number</td>
</tr>
<tr>
<td></td>
<td>Removes leased line configuration from a specified ISDN BRI interface.</td>
</tr>
</tbody>
</table>

### Configuring Leased-Line Service at 128 Kbps

The Cisco IOS software supports leased-line service at 128 kbps via ISDN BR. This service combines two B channels into a single pipe. This feature requires one or more ISDN BRI hardware interfaces that support channel aggregation and service provider support for ISDN channel aggregation at 128 kbps. When this software first became available, service providers offered support for ISDN channel aggregation at 128 kbps only in Japan.

Note

This feature is not supported on the Cisco 2500 series router because its BRI hardware does not support channel aggregation.

To enable leased-line service at 128 kbps on a specified ISDN BRI, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# isdn switch-type switch-type</td>
</tr>
<tr>
<td></td>
<td>Selects the service provider switch type.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# isdn leased-line bri number 128</td>
</tr>
<tr>
<td></td>
<td>Configures a specified BRI for access over leased lines.</td>
</tr>
</tbody>
</table>
To complete the configuration of the interface, see the chapter “Configure a Synchronous Serial Ports” in this publication.

To remove the leased-line service configuration from a specified ISDN BRI, use the following command in global configuration mode:

```
Router(config)# no isdn leased-line bri number
```

Removes leased-line configuration from a specified ISDN BRI interface.

### Monitoring and Maintaining ISDN Interfaces

To monitor and maintain ISDN interfaces, use the following commands in EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router&gt; show interfaces bri number</td>
<td>Displays information about the physical attributes of the ISDN BRI B and D channels.</td>
</tr>
<tr>
<td>Cisco 7200 series routers only</td>
<td></td>
</tr>
<tr>
<td>Router&gt; show interfaces bri slot/port</td>
<td>Displays protocol information about the ISDN B and D channels.</td>
</tr>
<tr>
<td>Cisco 7200 series routers only</td>
<td></td>
</tr>
<tr>
<td>Router&gt; show controllers bri number</td>
<td>Displays information about calls, history, memory, status, and Layer 2 and Layer 3 timers.</td>
</tr>
<tr>
<td>Router&gt; show controllers bri slot/port</td>
<td></td>
</tr>
<tr>
<td>Router&gt; show isdn {active</td>
<td>history</td>
</tr>
<tr>
<td>Router&gt; show dialer interface bri number</td>
<td>Obtains general diagnostic information about the specified interface.</td>
</tr>
</tbody>
</table>

### Troubleshooting ISDN Interfaces

To test the ISDN configuration of the router, use the following commands in EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show controllers bri number</td>
<td>Checks Layer 1 (physical layer) of the BRI.</td>
</tr>
<tr>
<td>Router# debug q921</td>
<td>Checks Layer 2 (data link layer).</td>
</tr>
<tr>
<td>Router# debug isdn events</td>
<td>Checks Layer 3 (network layer).</td>
</tr>
<tr>
<td>Router# debug q931</td>
<td></td>
</tr>
<tr>
<td>Router# debug dialer</td>
<td></td>
</tr>
<tr>
<td>Router# show dialer</td>
<td></td>
</tr>
</tbody>
</table>

Refer to the *Cisco IOS Debug Command Reference* for more information about the `debug` commands.
Configuration Examples for ISDN BRI

This section provides the following ISDN BRI configuration examples:

- Global ISDN and BRI Interface Switch Type Example
- BRI Connected to a PBX Example
- Multilink PPP on a BRI Interface Example
- Dialer Rotary Groups Example
- Compression Examples
- Multilink PPP and Compression Example
- Voice over ISDN Examples
- DNIS-plus-ISDN-Subaddress Binding Example
- Screening Incoming V.110 Modem Calls Example
- ISDN BRI Leased-Line Configuration Example

Global ISDN and BRI Interface Switch Type Example

The following example shows a global National ISDN switch type (keyword `basic-ni`) and an interface-level NET3 ISDN switch type (keyword `basic-net3`). The `basic-net3` keyword is applied to BRI interface 0 and overrides the global switch setting.

```
isdn switch-type basic-ni
!
interface BRI0
 isdn switch-type basic-net3
```

BRI Connected to a PBX Example

The following example provides a simple partial configuration of a BRI interface that is connected to a PBX. This interface is connected to a switch that uses SPID numbers.

```
interface BRI0
 description connected to pbx line 61885
 ip address 10.1.1.3 255.255.255.0
 encapsulation ppp
 isdn spid1 123
 dialer map ip 10.1.1.1 name mutter 61886
 dialer map ip 10.1.1.2 name rudder 61884
 dialer map ip 10.1.1.4 name flutter 61888
 dialer-group 1
 no fair-queue
 ppp authentication chap
```

Multilink PPP on a BRI Interface Example

The following example enables Multilink PPP on BRI 0:

```
interface BRI0
 description Enables PPP Multilink on BRI 0
 ip address 10.1.1.1 255.255.255.0
```
encapsulation ppp
dialer map ip 10.1.1.2 name coaster 14195291357
dialer map ip 10.1.1.3 name roaster speed 56 14098759854
ppp authentication chap
ppp multilink
dialer-group 1

Dialer Rotary Groups Example

The following example configures BRI interfaces to connect into a rotary group (using the `dialer-group` command) and then configures a dialer interface for that dialer group. This configuration permits IP packets to trigger calls.

interface BRI 0
  description connected into a rotary group
  encapsulation ppp
dialer rotary-group 1

interface BRI 1
  no ip address
  encapsulation ppp
dialer rotary-group 1

interface BRI 2
  encapsulation ppp
dialer rotary-group 1

interface BRI 3
  no ip address
  encapsulation ppp
dialer rotary-group 1

interface BRI 4
  encapsulation ppp
dialer rotary-group 1

interface Dialer 0
  description Dialer group controlling the BRIs
  ip address 10.1.1.1 255.255.255.0
  encapsulation ppp
dialer map ip 10.1.1.2 name angus 14802616900
dialer-group 1
  ppp authentication chap
dialer-list 1 protocol ip permit

Compression Examples

The following example enables predictor compression on BRI 0:

interface BRI0
  description Enables predictor compression on BRI 0
  ip address 10.1.1.1 255.255.255.0
  encapsulation ppp
dialer map ip 10.1.1.2 name bon 14195291357
  compress predictor
  ppp authentication chap
dialer-group 1

The following example enables stacker compression on BRI 0:

interface BRI0
**Multilink PPP and Compression Example**

The following example enables Multilink PPP and stacker compression on BRI 0:

```plaintext
interface BRI0
 description Enables PPP Multilink and stac compression on BRI 0
 ip address 10.1.1.1 255.255.255.0
 encapsulation ppp
dialer map ip 10.1.1.2 name rudd 14195291357
 ppp authentication chap
 compress stac
 ppp multilink
dialer-group 1
```

**Voice over ISDN Examples**

The following example allows incoming voice calls to be answered on BRI 0:

```plaintext
interface bri0
 description Allows incoming voice calls to be answered on BRI 0
 ip address 10.1.1.1 255.255.255.0
 encapsulation ppp
 isdn incoming-voice data
dialer map ip 10.1.1.2 name starstruck 14038182344
 ppp authentication chap
dialer-group 1
```

The following example allows outgoing voice calls on BRI 1:

```plaintext
interface bri1
 description Places an outgoing call as a voice call on BRI 1
 ip address 10.1.1.1 255.255.255.0
 encapsulation ppp
dialer map ip 10.1.1.2 name angus class calltype 19091238877
 ppp authentication chap
dialer-group 1

 map-class dialer calltype
 dialer voice-call
```

For more configuration examples of voice calls over ISDN, refer to the *Cisco IOS Voice, Video, and Fax Configuration Guide*. 
DNIS-plus-ISDN-Subaddress Binding Example

The following example configures a dialer profile for a receiver with DNIS 12345 and ISDN subaddress 6789:

dialer called 12345:6789

For additional configuration examples, see the sections “Dynamic Multiple Encapsulations” and “Verifying the Dynamic Multiple Encapsulations Feature” in the chapter “Configuring Peer-to-Peer DDR with Dialer Profiles” in this publication.

Screening Incoming V.110 Modem Calls Example

The following example filters out all V.110 modem calls except those with communication settings of 8 data bits, no parity bit, and 1 stop bit:

interface serial 0:23
  isdn v110 only databits 8 parity none stopbits 1

ISDN BRI Leased-Line Configuration Example

The following example configures the BRI 0 interface for leased-line access at 128 kbps. Because of the leased-line—not dialed—environment, configuration of ISDN called and calling numbers are not needed and not used. The BRI 0 interface is henceforth treated as a synchronous serial interface, with the default HDLC encapsulation.

isdn leased-line bri 0 128

The following example configures the BRI 0 interface for PPP encapsulation:

interface bri 0
  ip address 10.1.1.2 255.255.255.0
  encapsulation ppp
  bandwidth 128
Configuring Virtual Asynchronous Traffic over ISDN

Cisco IOS software offers two solutions to send virtual asynchronous traffic over ISDN:

- Using International Telecommunication Union Telecommunication Standardization Sector (ITU-T) Recommendation V.120, which allows for reliable transport of synchronous, asynchronous, or bit transparent data over ISDN bearer channels.
- Using ITU-T Recommendation X.75, which allows a system with an ISDN terminal adapter supporting asynchronous traffic over Link Access Procedure, Balanced (LAPB) to call into a router and establish an asynchronous PPP session. This method of asynchronous traffic transmission is also called ISDN Link Access Procedure, Balanced-Terminal Adapter (LAPB-TA).

A virtual asynchronous interface (also known as vty-async) is created on demand to support calls that enter the router through a nonphysical interface. For example, asynchronous character stream calls terminate or land on nonphysical interfaces. These types of calls include inbound Telnet, local-area transport (LAT), PPP over character-oriented protocols (such as V.120 or X.25), and LAPB-TA and packet assembler/disassembler (PAD) calls.

Virtual asynchronous interfaces are not user configurable; rather, they are dynamically created and torn down on demand. A virtual asynchronous line is used to access a virtual asynchronous interface. Refer to the section “Virtual Asynchronous Interfaces” in the chapter “Overview of Dial Interfaces, Controllers, and Lines” in this publication for more overview information about virtual asynchronous interfaces. Refer to the section “Enabling Asynchronous Functions on Virtual Terminal Lines” in the chapter “Configuring Protocol Translation and Virtual Asynchronous Devices” in the Cisco IOS Terminal Services Configuration Guide, for additional virtual asynchronous interface configuration information.

This chapter describes how to configure virtual asynchronous traffic over ISDN lines. It includes the following main sections:

- Recommendation V.120 Overview
- How to Configure V.120 Access
- Configuration Example for V.120
- ISDN LAPB-TA Overview
- How to Configure ISDN LAPB-TA
- Configuration Example for ISDN LAPB-TA
To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

**Recommendation V.120 Overview**

The V-series recommendations are ITU-T standards dealing with data communications over telephone networks. V.120 allows for reliable transport of synchronous, asynchronous, or bit transparent data over ISDN bearer channels. Cisco provides three V.120 support features for terminal adapters that do not send the low-layer compatibility fields or bearer capability V.120 information:

- Answer all incoming calls as V.120—Static configuration used when all remote users have asynchronous terminals and need to connect with a vty on the router.
- Automatically detect V.120 encapsulation—Encapsulation dynamically detected and set.
- Enable V.120 Support for Asynchronous Access over ISDN.

For terminal adapters that send the low-layer compatibility or bearer capability V.120 information, mixed V.120 and ISDN calls are supported. No special configuration is required.

**How to Configure V.120 Access**

To configure V.120 access, perform the tasks in the following sections:

- **Configuring Answering of All Incoming Calls as V.120** (Required)
- **Configuring Automatic Detection of Encapsulation Type** (Required)
- **Enabling V.120 Support for Asynchronous Access over ISDN** (Required)

See the section “Configuration Example for V.120” at the end of this chapter for an example of how to configure V.120 access.

**Configuring Answering of All Incoming Calls as V.120**

This V.120 support feature allows users to connect using an asynchronous terminal over ISDN terminal adapters with V.120 support to a vty on the router, much like a direct asynchronous connection. Beginning with Cisco IOS Release 11.1, this feature supports incoming calls only.

When all the remote users have asynchronous terminals and call in to a router through an ISDN terminal adapter that uses V.120 encapsulation but does not send the low-layer compatibility or bearer capability V.120 information, you can configure the interface to answer all calls as V.120. Such calls are connected with an available vty on the router.
To configure an ISDN BRI or PRI interface to answer all incoming calls as V.120, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Cisco 4000 series routers only</td>
<td>Configures the ISDN BRI interface and begins interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco 7200 series routers only</td>
<td>Configures the ISDN PRI D channel and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>Configures the interface to answer all calls as V.120.</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring Automatic Detection of Encapsulation Type

If an ISDN call does not identify the call type in the lower-layer compatibility fields and is using an encapsulation that is different from the one configured on the interface, the interface can change its encapsulation type dynamically.

This feature enables interoperation with ISDN terminal adapters that use V.120 encapsulation but do not signal V.120 in the call setup message. An ISDN interface that by default answers a call as synchronous serial with PPP encapsulation can change its encapsulation and answer such calls.

Automatic detection is attempted for the first 10 seconds after the link is established or the first 5 packets exchanged over the link, whichever is first.

To enable automatic detection of V.120 encapsulation, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# autodetect encapsulation v120</td>
<td>Enables automatic detection of encapsulation type on the specified interface.</td>
</tr>
</tbody>
</table>

You can specify one or more encapsulations to detect. Cisco IOS software currently supports automatic detection of PPP and V.120 encapsulations.

### Enabling V.120 Support for Asynchronous Access over ISDN

You can optionally configure a router to support asynchronous access over ISDN by globally enabling PPP on vty lines. Asynchronous access is then supported over ISDN from the ISDN terminal to the vty session on the router.
To enable asynchronous protocol features on vty lines, use the following command in global configuration mode:

```
Router(config)# vty-async
```

This task enables PPP on vty lines on a global basis on the router. If you prefer instead to configure PPP on a per-vty basis, use the `translate` command, which is described in the Cisco IOS Dial Technologies Command Reference.

### Configuration Example for V.120

The following example configures BRI 0 to call and receive calls from two sites, to use PPP encapsulation on outgoing calls, and to use Challenge Handshake Authentication Protocol (CHAP) authentication on incoming calls. This example also enables BRI 0 to configure itself dynamically to answer calls that use V.120 but that do not signal V.120 in the call setup message.

```
interface bri 0
 encapsulation ppp
 autodetect encapsulation v120
 no keepalive
 dialer map ip 172.18.36.10 name EB1 234
 dialer map ip 172.18.36.9 name EB2 456
 dialer-group 1
 ppp authentication chap
```

### ISDN LAPB-TA Overview

To carry asynchronous traffic over ISDN, your system must be able to convert that traffic and forward it over synchronous connections. This process can be implemented by the V.120 protocol, which carries asynchronous traffic over ISDN. However, several countries in Europe (Germany, Switzerland, and some Eastern European countries) use LAPB as the protocol to forward their asynchronous traffic over synchronous connections. Your system, therefore, must be able to recognize and accept calls from these asynchronous/synchronous conversion devices. LAPB-TA performs that function. (LAPB is sometimes referred to as “X.75,” because LAPB is the link layer specified in the ITU-T X.75 recommendation for carrying asynchronous traffic over ISDN.)

LAPB-TA allows devices that use LAPB instead of the V.120 protocol to communicate with routers on the Cisco 3600 and 5300 series.

LAPB supports both local CHAP authentication and external RADIUS authorization on the authentication, authorization, and accounting (AAA) server.

Before configuring ISDN LAPB-TA in your network, observe these restrictions:

- LAPB-TA does not currently support the ability to set a maximum frame size per user.
- Outbound LAPB-TA calls are not supported.
PPP over LAPB-TA (and V.120) connections impose a greater overhead on the router than synchronous PPP over ISDN. The number of simultaneous sessions can be limited by dedicating a pool of virtual terminals to these protocols and limiting the number of virtual terminals in the pool.

Multilink PPP compression is not supported.

How to Configure ISDN LAPB-TA

ISDN LAPB-TA is supported on the Cisco 3600 and Cisco 5300 series routers that meet the following additional requirements:

- A virtual terminal must be configured for incoming LAPB-TA. If no appropriately configured virtual terminals are available, the incoming call will be cleared.
- ISDN, LAPB, and PPP must be running to configure LAPB-TA.
- The Cisco IOS software must include the `vty-async` global configuration command, which must be configured before you can run asynchronous PPP traffic over a LAPB-TA connection.

If an interface is already configured for V.120, only the following two additional configuration commands are required on the interface because V.120 and LAPB-TA sessions are configured in a similar way:

- Use the `autodetect encapsulation` command to enable autodetection of LAPB-TA connections.
- Use the `transport input` command to list LAPB-TA as an acceptable transport on a specific router.

Perform the following required task to configure LAPB-TA: To configure ISDN LAPB-TA, use the following commands beginning in global configuration command mode: (required).

Procedures for verifying the configuration are found in the section “Verifying ISDN LAPB-TA” later in this chapter. The section “Configuration Example for ISDN LAPB-TA” at the end of this chapter provides configuration examples.

To configure ISDN LAPB-TA, use the following commands beginning in global configuration command mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# vty-async</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config)# vty-async virtual-template 1</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config)# interface virtual-template 1</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config-if)# ip unnumbered Ethernet0</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Router(config-if)# encapsulation ppp</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Router(config-if)# no peer default ip address</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Router(config-if)# ppp authentication chap</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Router(config-if)# exit</td>
</tr>
</tbody>
</table>
Configuring Virtual Asynchronous Traffic over ISDN

How to Configure ISDN LAPB-TA

DC-202
Cisco IOS Dial Technologies Configuration Guide

Verifying ISDN LAPB-TA

Enter the `show running configuration` command to verify that LAPB-TA is configured. The following output shows LAPB-TA enabled for serial interface 0:23:

```
Router# show running configuration

Building configuration...

Current configuration:
!
version 12.0
service timestamps debug datetime msec localtime
service timestamps log datetime msec localtime
no service password-encryption
service udp-small-servers
service tcp-small-servers
!
hostname Router
...(output omitted)

interface Serial0:23
 description ENG PBX BRI num.:81063
 no ip address
 no ip directed-broadcast
 encapsulation ppp
 no ip route-cache
dialer pool-member 1
 autodetect encapsulation ppp lapb-ta
 isdn switch-type primary-5ess
 no peer default ip address
 no fair-queue
 no cdp enable
 ppp authentication chap
...(output omitted)
!
end
```

1. The D channel is the signaling channel.

### Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td><code>Router(config)# username user1 password home</code></td>
<td>Specifies CHAP password to be used to authenticate calls from caller “user1.”</td>
</tr>
<tr>
<td>Step 10</td>
<td><code>Router(config)# interface Serial0:236</code></td>
<td>Enters interface configuration mode for a D-channel serial interface.</td>
</tr>
<tr>
<td>Step 11</td>
<td><code>Router(config-if)# encapsulation ppp</code></td>
<td>Configures PPP encapsulation as the default.</td>
</tr>
<tr>
<td>Step 12</td>
<td><code>Router(config-if)# dialer-group 1</code></td>
<td>Specifies the dialer group belonging to the interface.</td>
</tr>
<tr>
<td>Step 13</td>
<td><code>Router(config-if)# ppp authentication chap</code></td>
<td>Enables the CHAP protocol for PPP authentication.</td>
</tr>
<tr>
<td>Step 14</td>
<td><code>Router(config-if)# autodetect encapsulation lapb-ta</code></td>
<td>Enables autodetect encapsulation for LAPB-TA protocols.</td>
</tr>
<tr>
<td>Step 15</td>
<td><code>Router(config)# line vty 0 32</code></td>
<td>Configures a range of 32 vty lines starting with vty0.</td>
</tr>
<tr>
<td>Step 16</td>
<td><code>Router(config-line)# transport input telnet lapb-ta</code></td>
<td>Defines which protocol to use to connect to a specific line of the access server.</td>
</tr>
</tbody>
</table>
The following example configures a virtual template LAPB-TA connection capable of running PPP. It assumes that you have already configured usernames and passwords for PPP authentication.

```
vty-async
vty-async virtual-template 1
interface virtual-template 1
ip unnumbered Ethernet0
encapsulation ppp
no peer default ip address
ppp authentication chap
exit
interface Serial0:23
autodetect encapsulation lapb-ta
```

The following example treats the LAPB-TA and V.120 calls identically by immediately starting a PPP session without asking for username and password and relying on PPP authentication to identify the caller:

```
vty-async
vty-async virtual-template 1
interface Loopback0
ip address 10.2.2.1 255.255.255.0
exit
interface BRI3/0
encapsulation ppp
autodetect encapsulation ppp lapb-ta v120
exit
interface Virtual-Template1
ip unnumbered Loopback0
ppp authentication chap
exit
ip local pool default 10.2.2.64 10.2.2.127
line vty 0 2
password <removed>
login
transport input telnet
exit
line vty 3 4
no login
transport input lapb-ta v120
autocommand ppp neg
exit
end
```
Configuring Modem Use over ISDN BRI

This chapter describes how to configure the Modem over ISDN BRI feature. It includes the following main sections:

- Modem over ISDN BRI Overview
- How to Configure Modem over ISDN BRI
- Verifying ISDN BRI Interface Configuration
- Configuration Examples for Modem over ISDN BRI

Before beginning the tasks in this chapter, check your system for the following hardware and software:

- At least one of the following digital modem network modules. The number in the model name indicates the number of digital modems that can be connected to the module.
  - NM-6DM
  - NM-12DM
  - NM-18DM
  - NM-24DM
  - NM-30DM

These digital modem network modules do not have their own network connections, but instead handle analog calls passing through other router interfaces. BRI modules can provide their ISDN connectivity. Other modules, such as Ethernet, can provide connectivity to the LAN. The digital modem module acts as a pool of available modems that can be used for both incoming and outgoing calls. Digital modem network modules do not support BRI voice interface cards or wide-area network (WAN) interface cards.

- At least one of the following Cisco BRI network modules:
  - NM-4B-S/T: 4-port ISDN BRI network module, minimum version 800-01236-03
  - NM-4B-U: 4-port ISDN BRI with integrated network termination 1 (NT-1) network module, minimum version 800-01238-06
  - NM-8B-S/T: 8-port ISDN BRI network module, minimum version 800-01237-03
  - NM-8B-U: 8-port ISDN BRI with integrated NT-1 network module, minimum version 800-01239-06

The version level is available from the show diag command, which displays the version number as the part number.
If your BRI network module is a version lower than those cited or you need more details, refer to the Cisco.com Field Notice titled Using Digital Modems with the Cisco 3600 Basic Rate Interface (BRI) Network Module Upgrade in the Access Products index. If your existing Cisco BRI network module is one of those listed and does not support the Modem over ISDN BRI feature, Cisco will upgrade the module at no charge.

- To support the Modem over ISDN BRI feature, V.90 modem portware—for instructions on downloading this software or obtaining it otherwise, refer to the Cisco 3600 Series Modem Portware Upgrade Configuration Note on Cisco.com.

Before you can configure a Cisco 3640 router to provide Modem over ISDN BRI connectivity, you must also perform the following tasks:

- Obtain BRI service from your telecommunications provider. The BRI line must be provisioned at the switch to support voice calls.

- Install a 4-port or 8-port BRI network module into your Cisco router. Depending on the type of network module and your BRI service, you might also need to install an external NT-1 for S/T interfaces.

- Install a supported digital modem network module into the Cisco 3640 router.

- After the system comes up, make sure enough buffers are in the free list of the buffer pool that matches the maximum transmission unit (MTU) of your BRI interface. If not, you must reconfigure buffers so the BRI interfaces function properly. To check the MTU of your interfaces, use the `show interfaces bri` command. The `show buffers` command displays the free buffer space. Use the `buffers` global configuration command to make adjustments to initial buffer pool settings and to the limits at which temporary buffers are created and destroyed.

For more information about the physical characteristics of the BRI network modules and their digital modem support, or instructions on how to install the network or modem modules, either refer to the Cisco 3600 series Network Module Hardware Installation Guide that came with your BRI network module or view the up-to-date information on CCO.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the Modem over ISDN BRI commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

---

**Modem over ISDN BRI Overview**

The Modem over ISDN BRI feature for the Cisco 3640 modular access router lowers the cost of remote access by offering high-speed modem and ISDN connectivity for mobile customers, offices, and other remote-access users. Branch offices and enterprises can support analog modem users who call over the Public Switched Telephone Network (PSTN) into BRI interfaces in Cisco 3640 routers.

The digital modem in the router accepts the modem calls at connection speeds as fast as 56 kbps, adhering to the V.90 standard. As shown in Figure 32, the Cisco 3640 router in this way provides rapid access to E-mail and other network services.
The following are benefits of using the Modem over ISDN BRI feature:

- Supports cost-effective and readily available BRI service.
- Provides remote modem users with rapid Internet and LAN/WAN access.
- Allows flexible remote access application support.

**How to Configure Modem over ISDN BRI**

The Modem over ISDN BRI feature is part of interface configuration for BRI. You configure the BRI interface after you have configured the ISDN global characteristics, which are switch type and TEI negotiation timing. These characteristics can also be defined for each BRI interface, as shown in the following task table.

To set up the BRI interface characteristics, set the global parameters and then configure each interface separately by using the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configures the global ISDN switch type to match the service provider switch type. For a list of keywords, see Table 22.</td>
</tr>
<tr>
<td>Router(config)# isdn switch-type switch-type</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Configures when the ISDN TEI negotiation occurs. If this command is not used, negotiation occurs when the router is powered up. The first-call option is primarily used in European ISDN switch types, such as NET3 networks. The powerup option should be used in most other locations.</td>
</tr>
<tr>
<td>Router(config)# isdn tei [first-call</td>
<td>powerup]</td>
</tr>
</tbody>
</table>
### Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 3    | Router(config)# interface bri slot/port | Begins interface configuration mode to configure parameters for the specified interface.  
  *slot* is the location of the BRI module. Valid values are from 0 to 3.  
  *port* is an interface number. Valid values are from 0 to 7 if the module is an 8-port BRI network module, or from 0 to 4 if the module is a 4-port BRI network module. |
| 4    | Router(config-if)# ip address ip-address mask | Specifies an IP address and subnet for the interface. You can also specify that there is no IP address. For information about IP addressing, see the Release 12.2 Cisco IOS IP Configuration Guide publication. |
| 5    | Router(config-if)# encapsulation ppp | Enables PPP encapsulation on the BRI interface. PPP encapsulation is configured for most ISDN communication.  
  If the router needs to communicate with devices that require a different encapsulation protocol, needs to detect encapsulation on incoming calls automatically, or needs to send traffic over a Frame Relay or X.25 network, see the chapter “Configuring X.25 on ISDN” later in this part, and the chapters in the Dial-on-Demand Routing Configuration part of this publication for information. |
| 6    | Router(config-if)# dialer map protocol next-hop-address name hostname speed 56|64 dial-string[:isdn-subaddress]  
  or  
  Router(config-if)# dialer map protocol next-hop-address name hostname spc [speed 56 | 64] [broadcast] dial-string[:isdn-subaddress] | (Most locations) Defines the remote protocol address of the recipient, host name, and dialing string; optionally, provide the ISDN subaddress; set the dialer speed to 56 or 64 kbps, as needed.  
  (Germany) Use the spc keyword to enable ISDN semipermanent connections. |
| 7    | Router(config-if)# dialer-group group-number | Assigns the interface to a dialer group to control access to the interface. | |
| 8    | Router(config-if)# dialer-list dialer-group list access-list-number | Associates the dialer group number with an access list number. |
| 9    | Router(config-if)# access-list access-list-number {deny | permit} protocol source address source-mask destination destination-mask | Defines an access list permitting or denying access to specified protocols, sources, or destinations. Permitted packets cause the router to place a call to the destination protocol address. |
| 10   | Router(config-if)# no ip-directed broadcast | (Optional) Disables the translation of directed broadcast to physical broadcasts. |
| 11   | Router(config-if)# isdn switch-type switch-type | (Optional) Configures the interface ISDN switch type to match the service provider switch type. The interface ISDN switch type overrides the global ISDN switch type on the interface.  
  For a list of keywords, refer to Table 22. |
### Command and Purpose Table

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Router(config-if)# isdn tei [first-call</td>
<td>(Optional) Determines when ISDN TEI negotiation occurs for an individual interface. This overrides the global configuration command.</td>
</tr>
<tr>
<td></td>
<td>powerup]</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Router(config-if)# isdn spid1 spid-number [ldn]</td>
<td>Specifies a service profile identifier (SPID) and local directory number for the B1 channel. Currently, only the DMS-100 and NI-1 switch types require SPIDs. Although the Lucent 5ESS switch type might support a SPID, we recommend that you set up that ISDN service without SPIDs.</td>
</tr>
<tr>
<td>14</td>
<td>Router(config-if)# isdn spid2 spid-number [ldn]</td>
<td>Specifies a SPID and local directory number for the B2 channel.</td>
</tr>
<tr>
<td>15</td>
<td>Router(config-if)# isdn caller number</td>
<td>(Optional) Configure caller ID screening.</td>
</tr>
<tr>
<td>16</td>
<td>Router(config-if)# isdn answer1 [called-party-number][;subaddress]</td>
<td>(Optional) Configures called-party number verification for a called-party number or subaddress number in the incoming setup message.</td>
</tr>
<tr>
<td>17</td>
<td>Router(config-if)# isdn calling-number calling-number</td>
<td>(Optional) Specifies the calling-party number.</td>
</tr>
<tr>
<td>18</td>
<td>Router(config-if)# isdn not-end-to-end [56</td>
<td>(Optional) Configures the speed for incoming calls recognized as not ISDN end-to-end.</td>
</tr>
<tr>
<td></td>
<td>64]</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Router(config-if)# isdn incoming-voice modem</td>
<td>Routes incoming voice calls to the modem and treats them as analog data. This step is required for the Modem over ISDN BRI feature.</td>
</tr>
<tr>
<td>20</td>
<td>Router(config-if)# isdn disconnect-cause {cause-code-number</td>
<td>Overrides specific cause codes such as modem availability and resource pooling that are sent to the switch by ISDN applications. When the isdn disconnect-cause command is implemented, the configured cause codes are sent to the switch; otherwise, the default cause codes of the application are sent.</td>
</tr>
<tr>
<td></td>
<td>busy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not available}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The cause-code-number argument sends a cause code number (submitted as integer 1 through 127) to the switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The busy keyword sends the USER BUSY code to the switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The not available keyword sends the CHANNEL NOT AVAILABLE code to the switch.</td>
</tr>
<tr>
<td>21</td>
<td>Router(config-if)# isdn fast-rollover-delay seconds</td>
<td>(Optional) Configures a delay between fast rollover dials.</td>
</tr>
<tr>
<td>22</td>
<td>Router(config-if)# isdn sending-complete</td>
<td>(Optional) Configures the BRI interface to include the Sending Complete information element in the outgoing call Setup message. Used in some geographic locations, such as Hong Kong and Taiwan, where the sending complete information element is required in the outgoing call setup message.</td>
</tr>
</tbody>
</table>
How to Configure Modem over ISDN BRI

Verifying ISDN BRI Interface Configuration

Use the `show running-config` command in EXEC mode to verify the current configuration that is running on the terminal.

The following example shows some of the command output that is relevant to BRI configuration tasks. The bold text in the example are the results of configuration steps such as those shown in the section “How to Configure Modem over ISDN BRI” earlier in this chapter.

Building configuration...

Current configuration:

```
! version 12.0
no service udp-small-servers
service tcp-small-servers
!
hostname Router
!
enable secret 5 1c8xi$tObplXsIS.jDeo43yZgq50
enable password xxx
!
username xxxx password x 11x5xx07
no ip domain-lookup
ip host Labhost 172.17.12.1
ip host Labhost2 172.17.12.2
ip name-server 172.19.169.21
!
interface Ethernet0
ip address 172.17.12.100 255.255.255.192
no ip mroute-cache
```

See the section “Configuration Examples for Modem over ISDN BRI” at the end of this chapter for configuration examples.

### Table 22  ISDN Switch Types

<table>
<thead>
<tr>
<th>Country</th>
<th>ISDN Switch Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>basic-ts013</td>
<td>Australian TS013 switches</td>
</tr>
<tr>
<td>Europe</td>
<td>basic-1tr6</td>
<td>German 1TR6 ISDN switches</td>
</tr>
<tr>
<td></td>
<td>basic-net3</td>
<td>NET3 ISDN switches (United Kingdom and others)</td>
</tr>
<tr>
<td></td>
<td>vn2</td>
<td>French VN2 ISDN switches</td>
</tr>
<tr>
<td></td>
<td>vn3</td>
<td>French VN3 and VN4 ISDN switches</td>
</tr>
<tr>
<td>Japan</td>
<td>ntt</td>
<td>Japanese NTT ISDN switches</td>
</tr>
<tr>
<td>North America</td>
<td>basic-5ess</td>
<td>Lucent Technologies basic rate switches</td>
</tr>
<tr>
<td></td>
<td>basic-dms100</td>
<td>NT DMS-100 basic rate switches</td>
</tr>
<tr>
<td></td>
<td>basic-ni</td>
<td>National ISDN-1 switches</td>
</tr>
</tbody>
</table>

The `show startup-config` shows the configuration stored in NVRAM or in a location specified by the CONFIG_FILE environment variable.
no ip route-cache
no mop enabled

interface BRI1/7
description (408) 555-3777
ip address 10.1.1.26 255.255.255.1
no ip directed-broadcast
encapsulation ppp
no ip route-cache
no ip mroute-cache
no keepalive
shutdown
dialer idle-timeout 180
dialer map ip 10.1.1.9 name MDial1 14085550715
dialer map ip 10.1.1.14 name MDial2 14085553775
dialer-group 1
isdn switch-type basic-5ess
isdn incoming-voice modem
isdn disconnect-cause busy
no fair-queue
no cdp enable
ppp authentication chap
ppp multilink

interface Group-Async1
ip unnumbered Loopback0
no ip directed-broadcast
ip tcp header-compression passive
async mode interactive
peer default ip address pool default
no fair-queue
group-range 65 70
hold-queue 10 in
!
routing igrp 109
   network 172.21.0.0
!
ip local pool local 172.21.50.85 172.21.50.89
ip local pool default 10.1.1.1 10.1.1.253
ip classless
ip route 0.0.0.0 0.0.0.0 172.21.48.1
!
!
map-class dialer VOICE
dialer voice-call
!
map-class dialer DATA
dialer-list 1 protocol ip list 101
tacacs-server host 172.19.2.74
tacacs-server host 192.168.15.197
snmp-server community isdn RW
snmp-server enable traps isdn call-info
snmp-server host 172.25.3.154 traps isdn

Use the show interfaces bri number command to verify information about the physical attributes of the ISDN BRI B and D channels. The number argument is the slot location of the BRI module. Valid values are from 0 to 3.
Configuring Modem Use over ISDN BRI

BRI0:1 is down, line protocol is down
Hardware is BRI
MTU 1500 bytes, BW 64 Kbit, DLY 20000 usec, rely 255/255, load 1/255
Internet address is 10.1.1.3/27
Encapsulation PPP, loopback not set, keepalive not set
LCP Closed
Closed: IPCP
Last input never, output never, output hang never
Last clearing of 'show interface' counters never
Queueing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
0 packets output, 0 bytes, 0 underruns
0 output errors, 0 collisions, 7 interface resets
0 output buffer failures, 0 output buffers swapped out
0 carrier transitions

Configuration Examples for Modem over ISDN BRI

This section provides the following examples:

- BRI Interface Configuration Example
- Complete Configuration Examples

These examples show configuration of just the Modem over ISDN BRI feature using the interface configuration commands for each interface and a complete configuration showing global configuration, BRI interfaces, and modem configuration.

BRI Interface Configuration Example

The following example shows how to configure each BRI interface on a Cisco 3640 router for the Modem over ISDN BRI feature:

interface BRI0/0
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0444000101 9194440001
  isdn spid2 0444001101 9194440011
  isdn incoming-voice modem

interface BRI0/1
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0444000201 9194440002
  isdn spid2 0444001201 9194440012
  isdn incoming-voice modem

interface BRI0/2
  no ip address
  no ip directed-broadcast
encapsulation ppp
isdn switch-type basic-ni
isdn spid1 0444000301 9194440003
isdn spid2 0444001301 9194440013
isdn incoming-voice modem
!
interface BRI0/3
no ip address
no ip directed-broadcast
encapsulation ppp
isdn switch-type basic-ni
isdn spid1 0444000401 9194440004
isdn spid2 0444001401 9194440014
isdn incoming-voice modem
!
interface BRI0/4
no ip address
no ip directed-broadcast
encapsulation ppp
isdn switch-type basic-ni
isdn spid1 0444000501 9194440005
isdn spid2 0444001501 9194440015
isdn incoming-voice modem
!
interface BRI0/5
no ip address
no ip directed-broadcast
encapsulation ppp
isdn switch-type basic-ni
isdn spid1 0444000601 9194440006
isdn spid2 0444001601 9194440016
isdn incoming-voice modem
!
interface BRI0/6
no ip address
no ip directed-broadcast
encapsulation ppp
isdn switch-type basic-ni
isdn spid1 0444000701 9194440007
isdn spid2 0444001701 9194440017
isdn incoming-voice modem
!
interface BRI0/7
no ip address
no ip directed-broadcast
encapsulation ppp
isdn switch-type basic-ni
isdn spid1 0444000801 9194440008
isdn spid2 0444001801 9194440018
isdn incoming-voice modem
!
interface BRI2/0
no ip address
no ip directed-broadcast
encapsulation ppp
isdn switch-type basic-ni
isdn spid1 0555000101 9195550001
isdn spid2 0555001101 9195550011
isdn incoming-voice modem
!
interface BRI2/1
no ip address
no ip directed-broadcast
encapsulation ppp
isdn switch-type basic-ni
isdn spid1 0555000201 9195550002
isdn spid2 0555001201 9195550012
isdn incoming-voice modem
!
interface BRI2/2
no ip address
no ip directed-broadcast
capsulation ppp
isdn switch-type basic-ni
isdn spid1 0555000301 9195550003
isdn spid2 0555001301 9195550013
isdn incoming-voice modem
!
interface BRI2/3
no ip address
no ip directed-broadcast
capsulation ppp
isdn switch-type basic-ni
isdn spid1 0555000401 9195550004
isdn spid2 0555001401 9195550014
isdn incoming-voice modem
!
interface BRI2/4
no ip address
no ip directed-broadcast
capsulation ppp
isdn switch-type basic-ni
isdn spid1 0555000501 9195550005
isdn spid2 0555001501 9195550015
isdn incoming-voice modem
!
interface BRI2/5
no ip address
no ip directed-broadcast
capsulation ppp
isdn switch-type basic-ni
isdn spid1 0555000601 9195550006
isdn spid2 0555001601 9195550016
isdn incoming-voice modem
!
interface BRI2/6
no ip address
no ip directed-broadcast
capsulation ppp
isdn switch-type basic-ni
isdn spid1 0555000701 9195550007
isdn spid2 0555001701 9195550017
isdn incoming-voice modem
!
interface BRI2/7
no ip address
no ip directed-broadcast
capsulation ppp
isdn switch-type basic-ni
isdn spid1 0555000801 9195550008
isdn spid2 0555001801 9195550018
isdn incoming-voice modem
!
Complete Configuration Examples

The following example shows a complete configuration for a dial-in router, including a global command, BRI interface configuration, and modem configuration including group-async and dialer commands.

```
version 12.0
service timestamps debug datetime localtime
service timestamps log uptime
no service password-encryption
service udp-small-servers
service tcp-small-servers
!
hostname MBRI_IN
!
no logging buffered
enable password xxx

username async1 password devtest
username async2 password devtest
username async3 password devtest
username async4 password devtest
username async5 password devtest
username async6 password devtest
username async7 password devtest
username async8 password devtest
username async9 password devtest
username async10 password devtest
username async11 password devtest
username async12 password devtest
username async13 password devtest
username async14 password devtest
username async15 password devtest
username async16 password devtest
username async17 password devtest
username async18 password devtest
username async19 password devtest
username async20 password devtest
username async21 password devtest
username async22 password devtest
username async23 password devtest
username async24 password devtest
username async25 password devtest
username async26 password devtest
username async27 password devtest
username async28 password devtest
username async29 password devtest
username async30 password devtest
username FLOYD password devtest
username MBRI_OUT password devtest
ip subnet-zero
no ip domain-lookup
!
isdn switch-type basic-5ess
```
interface BRI0/0
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0444000101 9194440001
  isdn spid2 0444001101 9194440011
  isdn incoming-voice modem

interface BRI0/1
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0444000201 9194440002
  isdn spid2 0444001201 9194440012
  isdn incoming-voice modem

interface BRI0/2
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0444000301 9194440003
  isdn spid2 0444001301 9194440013
  isdn incoming-voice modem

interface BRI0/3
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0444000401 9194440004
  isdn spid2 0444001401 9194440014
  isdn incoming-voice modem

interface BRI0/4
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0444000501 9194440005
  isdn spid2 0444001501 9194440015
  isdn incoming-voice modem
  !

interface BRI0/5
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0444000601 9194440006
  isdn spid2 0444001601 9194440016
  isdn incoming-voice modem

interface BRI0/6
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0444000701 9194440007
  isdn spid2 0444001701 9194440017
  isdn incoming-voice modem

!
interface BRI0/7
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0444000801 91944440008
  isdn spid2 0444001801 91944440018
  isdn incoming-voice modem
!
interface BRI2/0
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0555000101 9195550001
  isdn spid2 0555001101 9195550011
  isdn incoming-voice modem
!
interface BRI2/1
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0555000201 9195550002
  isdn spid2 0555001201 9195550012
  isdn incoming-voice modem
!
interface BRI2/2
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0555000301 9195550003
  isdn spid2 0555001301 9195550013
  isdn incoming-voice modem
!
interface BRI2/3
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0555000401 9195550004
  isdn spid2 0555001401 9195550014
  isdn incoming-voice modem
!
interface BRI2/4
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0555000501 9195550005
  isdn spid2 0555001501 9195550015
  isdn incoming-voice modem
!
interface BRI2/5
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  isdn switch-type basic-ni
  isdn spid1 0555000601 9195550006
  isdn spid2 0555001601 9195550016
  isdn incoming-voice modem
!
interface BRI2/6
   no ip address
   no ip directed-broadcast
   encapsulation ppp
   isdn switch-type basic-ni
   isdn spid1 0555000701 9195550007
   isdn spid2 0555001701 9195550017
   isdn incoming-voice modem
!
interface BRI2/7
   no ip address
   no ip directed-broadcast
   encapsulation ppp
   isdn switch-type basic-ni
   isdn spid1 0555000801 9195550008
   isdn spid2 0555001801 9195550018
   isdn incoming-voice modem
!
interface Ethernet1/0
   ip address 172.18.16.123 255.255.255.192
   no ip directed-broadcast
!
The following example defines a group-async interface for grouping all the digital modems and configuring them together. Group-async configuration is much easier than configuring all 30 digital modems individually.

interface Group-Async1
   ip unnumbered Ethernet3/1
   no ip directed-broadcast
   encapsulation ppp
   load-interval 30
   dialer in-band
   dialer pool-member 1
   async default routing
   async mode dedicated
   no peer default ip address
   no cdp enable
   ppp authentication chap
   group-range 96 125
   hold-queue 10 in

The following example defines dialer interfaces, associates IP addresses, and sets all the authentication parameters required during the call establishment.

interface Dialer1
   ip address 10.1.0.1 255.255.0.0
   no ip directed-broadcast
   encapsulation ppp
   dialer remote-name async1
   dialer pool 1
   dialer-group 1
   no cdp enable
   ppp authentication chap callin
   ppp chap hostname async1
   ppp chap password devtest
!
interface Dialer2
   ip address 10.2.0.1 255.255.0.0
   no ip directed-broadcast
   encapsulation ppp
   dialer remote-name async2
   dialer pool 1
   dialer-group 1
   no cdp enable
ppp authentication chap callin
ppp chap hostname async2
ppp chap password devtest
!
interface Dialer3
ip address 10.3.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async3
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async3
ppp chap password devtest
!
interface Dialer4
ip address 10.4.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async4
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async4
ppp chap password devtest
!
interface Dialer5
ip address 10.5.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async5
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async5
ppp chap password devtest
!
interface Dialer6
ip address 10.6.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async6
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async6
ppp chap password devtest
!
interface Dialer7
ip address 10.7.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async7
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async7
ppp chap password devtest
!
interface Dialer8
  ip address 10.8.0.1 255.255.0.0
  no ip directed-broadcast
  encapsulation ppp
  dialer remote-name async8
  dialer pool 1
  dialer-group 1
  no cdp enable
  ppp authentication chap callin
  ppp chap hostname async8
  ppp chap password devtest

interface Dialer9
  ip address 10.9.0.1 255.255.0.0
  no ip directed-broadcast
  encapsulation ppp
  dialer remote-name async9
  dialer pool 1
  dialer-group 1
  no cdp enable
  ppp authentication chap callin
  ppp chap hostname async9
  ppp chap password devtest

interface Dialer10
  ip address 10.10.0.1 255.255.0.0
  no ip directed-broadcast
  encapsulation ppp
  dialer remote-name async10
  dialer pool 1
  dialer-group 1
  no cdp enable
  ppp authentication chap callin
  ppp chap hostname async10
  ppp chap password devtest

interface Dialer11
  ip address 10.11.0.1 255.255.0.0
  no ip directed-broadcast
  encapsulation ppp
  dialer remote-name async11
  dialer pool 1
  dialer-group 1
  no cdp enable
  ppp authentication chap callin
  ppp chap hostname async11
  ppp chap password devtest

interface Dialer12
  ip address 10.12.0.1 255.255.0.0
  no ip directed-broadcast
  encapsulation ppp
  dialer remote-name async12
  dialer pool 1
  dialer-group 1
  no cdp enable
  ppp authentication chap callin
  ppp chap hostname async12
  ppp chap password devtest

interface Dialer13
  ip address 10.13.0.1 255.255.0.0
  no ip directed-broadcast
  encapsulation ppp
dialer remote-name async13
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async13
ppp chap password devtest
!
interface Dialer14
 ip address 10.14.0.1 255.255.0.0
 no ip directed-broadcast
 encapsulation ppp
dialer remote-name async14
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async14
ppp chap password devtest
!
interface Dialer15
 ip address 10.15.0.1 255.255.0.0
 no ip directed-broadcast
 encapsulation ppp
dialer remote-name async15
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async15
ppp chap password devtest
!
interface Dialer16
 ip address 10.16.0.1 255.255.0.0
 no ip directed-broadcast
 encapsulation ppp
dialer remote-name async16
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async16
ppp chap password devtest
!
interface Dialer17
 ip address 10.17.0.1 255.255.0.0
 no ip directed-broadcast
 encapsulation ppp
dialer remote-name async17
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async17
ppp chap password devtest
!
interface Dialer18
 ip address 10.18.0.1 255.255.0.0
 no ip directed-broadcast
 encapsulation ppp
dialer remote-name async18
dialer remote-name async18
no cdp enable
ppp authentication chap callin
ppp chap hostname async18
ppp chap password devtest

interface Dialer19
ip address 10.19.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async19
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async19
ppp chap password devtest

interface Dialer20
ip address 10.20.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async20
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async20
ppp chap password devtest

interface Dialer21
ip address 10.21.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async21
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async21
ppp chap password devtest

interface Dialer22
ip address 10.22.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async22
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async22
ppp chap password devtest

interface Dialer23
ip address 10.23.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async23
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async23
ppp chap password devtest
interface Dialer24
ip address 10.24.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async24
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async24
ppp chap password devtest
!
interface Dialer25
ip address 10.25.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async25
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async25
ppp chap password devtest
!
interface Dialer26
ip address 10.26.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async26
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async26
ppp chap password devtest
!
interface Dialer27
ip address 10.27.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async27
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async27
ppp chap password devtest
!
interface Dialer28
ip address 10.28.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async28
dialer pool 1
dialer-group 1
no cdp enable
ppp authentication chap callin
ppp chap hostname async28
ppp chap password devtest
!
interface Dialer29
ip address 10.29.0.1 255.255.0.0
no ip directed-broadcast
encapsulation ppp
dialer remote-name async29

dialer pool 1
dialer-group 1

no cdp enable

ppp authentication chap callin

ppp chap hostname async29

ppp chap password devtest

interface Dialer30

ip address 10.30.0.1 255.255.0.0

no ip directed-broadcast

encapsulation ppp

dialer remote-name async30

dialer pool 1
dialer-group 1

no cdp enable

ppp authentication chap callin

ppp chap hostname async30

ppp chap password devtest

! no ip classless

The following lines define routes that send incoming packets out via specific interfaces:

ip route 0.0.0.0 0.0.0.0 172.18.16.193

ip route 10.91.0.1 255.255.255.255 1.1.0.2

ip route 10.91.0.2 255.255.255.255 1.2.0.2

ip route 10.91.0.3 255.255.255.255 1.3.0.2

ip route 10.91.0.4 255.255.255.255 1.4.0.2

ip route 10.91.0.5 255.255.255.255 1.5.0.2

ip route 10.91.0.6 255.255.255.255 1.6.0.2

ip route 10.91.0.7 255.255.255.255 1.7.0.2

ip route 10.91.0.8 255.255.255.255 1.8.0.2

ip route 10.91.0.9 255.255.255.255 1.9.0.2

ip route 10.91.0.10 255.255.255.255 1.10.0.2

ip route 10.91.0.11 255.255.255.255 1.11.0.2

ip route 10.91.0.12 255.255.255.255 1.12.0.2

ip route 10.91.0.13 255.255.255.255 1.13.0.2

ip route 10.91.0.14 255.255.255.255 1.14.0.2

ip route 10.91.0.15 255.255.255.255 1.15.0.2

ip route 10.91.0.16 255.255.255.255 1.16.0.2

ip route 10.91.0.17 255.255.255.255 1.17.0.2

ip route 10.91.0.18 255.255.255.255 1.18.0.2

ip route 10.91.0.19 255.255.255.255 1.19.0.2

ip route 10.91.0.20 255.255.255.255 1.20.0.2

ip route 10.91.0.21 255.255.255.255 1.21.0.2

ip route 10.91.0.22 255.255.255.255 1.22.0.2

ip route 10.91.0.23 255.255.255.255 1.23.0.2

ip route 10.91.0.24 255.255.255.255 1.24.0.2

ip route 10.91.0.25 255.255.255.255 1.25.0.2

ip route 10.91.0.26 255.255.255.255 1.26.0.2

ip route 10.91.0.27 255.255.255.255 1.27.0.2

ip route 10.91.0.28 255.255.255.255 1.28.0.2

ip route 10.91.0.29 255.255.255.255 1.29.0.2

ip route 10.91.0.30 255.255.255.255 1.30.0.2

ip route 172.18.0.0 255.255.0.0 Ethernet3/1

!
dialer-list 1 protocol ip permit

!
line con 0

exec-timeout 0 0

transport input none
The following example configures the lines associated with the digital modems:

```
line 96 125
 exec-timeout 0 0
 modem InOut
 transport input all
 stopbits 1
 flowcontrol hardware
line aux 0
 exec-timeout 0 0
line vty 0 4
 exec-timeout 0 0
 password lab
 login
line vty 5 60
 exec-timeout 0 0
 password lab
 login
!
end
```
Configuring X.25 on ISDN

This chapter describes how to configure X.25 on ISDN. It includes the following main sections:

- X.25 on ISDN Overview
- How to Configure X.25 on ISDN
- Configuration Examples for X.25 on ISDN

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

X.25 on ISDN Overview

BRI is an ISDN interface, and it consists of two B channels (B1 and B2) and one D channel. The B channels are used to transfer data, voice, and video. The D channel controls the B channels.

ISDN uses the D channel to carry signal information. ISDN can also use the D channel in a BRI to carry X.25 packets. The D channel has a capacity of 16 kbps, and the X.25 over D channel can utilize up to 9.6 kbps.

X.25-over-D-Channel Logical Interface

When X.25 on ISDN is configured, a separate X.25-over-D-channel logical interface is created. You can set its parameters without disrupting the original ISDN interface configuration. The original BRI interface will continue to represent the D, B1, and B2 channels.

Because some end-user equipment uses static terminal endpoint identifiers (TEIs) to access this feature, static TEIs are supported. The dialer understands the X.25-over-D-channel calls and initiates them on a new interface.

X.25 traffic over the D channel can be used as a primary interface where low-volume, sporadic interactive traffic is the normal mode of operation. Supported traffic includes the Internet Protocol Exchange (IPX), AppleTalk, transparent bridging, Xerox Network Systems (XNS), DECnet, and IP.

This feature is not available on the ISDN PRI.
Outbound Circuit-Switched X.25 Support over a Dialer Interface

Current Cisco IOS software enables circuit-switched X.25 clients—PAD, X.25 switching, and Qualified Logical Link Control (QLLC)—to initiate calls and dynamically bring the X.25 context (which runs the X.25 protocol) up or down as needed. This capability allows packet-switched traffic over ISDN.

In earlier releases of the Cisco IOS software, X.25 circuit-switched clients were required to do an X.25 route lookup to forward a call. If the lookup resulted in a route to a dialer interface, the client would check the X.25 protocol state on the dialer interface. If the interface was not already bound to run the X.25 protocol, the software would reroute the call instead of bringing up a link and running the X.25 protocol. With this new feature, the X.25 context is dynamically created on demand and then removed when the X.25 session is cleared on the dialer interface.

For dialer profile interfaces, the X.25 context is created on the dialer interface, because X.25 protocol functions run on the dialer interface itself. Member links act like forwarding devices, because their topmost interface runs the actual encapsulated protocol. But for legacy dialer interfaces, the X.25 context is created on the member links once they come up and bind to a dialer.

There are no specific configuration tasks required to enable outbound circuit-switched X.25 support. See the “Outbound Circuit-Switched X.25 Example” example in the section “Configuration Examples for X.25 on ISDN” at the end of this chapter for an example of how to make use of this feature in your network.

How to Configure X.25 on ISDN

You can configure X.25 on ISDN in three ways:

- If the ISDN traffic will cross an X.25 network, you configure the ISDN interface as described in the “Setting Up Basic ISDN Services” and “Configuring signaling on T1 and E1” chapters earlier in this publication. Make certain to configure that ISDN interface for X.25 addressing and encapsulation as described in the “Configuring X.25” chapter of the Cisco IOS Wide-Area Networking Configuration Guide.

- Configure dynamic X.25 as illustrated in the section “Outbound Circuit-Switched X.25 Example” later in this chapter.

- If the D channel of an ISDN BRI interface is to carry X.25 traffic, perform the task described in the next section, “Configuring X.25 on the ISDN D Channel.”
Configuring X.25 on the ISDN D Channel

To configure an ISDN BRI interface (and create a special ISDN interface) to carry X.25 traffic on the D channel, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>interface bri number</code></td>
<td>Specifies an ISDN BRI interface and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>isdn x25 static-tei tei-number</code></td>
<td>Specifies a static TEI, if required by the switch.</td>
</tr>
<tr>
<td>Step 3: <code>isdn x25 dchannel</code></td>
<td>Creates a configurable interface for X.25 traffic over the ISDN D channel.</td>
</tr>
</tbody>
</table>

The last step is to configure the X.25-over-ISDN interface for X.25 traffic. See the chapter “Configuring LAPB and X.25” in the Cisco IOS Wide-Area Networking Configuration Guide, Release 12.2, for the commands and tasks.

The new X.25-over-ISDN interface is called `interface bri number:0` in configuration displays. It must be configured as an individual X.25 interface. For information about configuring an interface for X.25 traffic, refer to the Cisco IOS Wide-Area Networking Configuration Guide, Release 12.2.

Note

The encapsulation `x25` command is neither required nor used on this new interface, but other X.25 commands can be used to configure this interface.

If you want to remove the X.25-over-ISDN later, use the `no isdn x25 dchannel` command.

See the section “X.25 on ISDN D-Channel Configuration Example” at the end of this chapter for a configuration example.

Configuration Examples for X.25 on ISDN

This section illustrates X.25 on ISDN with the following examples:

- X.25 on ISDN D-Channel Configuration Example
- Outbound Circuit-Switched X.25 Example

X.25 on ISDN D-Channel Configuration Example

The following example creates a BRI 0:0 interface for X.25 traffic over the D channel and then configures the new interface to carry X.25 traffic:

```
interface bri0
 isdn x25 dchannel
 isdn x25 static-tei 8
!
interface bri0:0
 ip address 10.1.1.2 255.255.255.0
 x25 address 31107000000100
 x25 htc 1
 x25 suppress-calling-address
```
Outbound Circuit-Switched X.25 Example

The following example shows how to configure dynamic X.25 on an ISDN interface. Figure 33 illustrates the configuration.

**Figure 33  Dynamic X.25 over ISDN**

**Configuration for Yen**

```
version 12.0(5)T
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service udp-small-servers
service tcp-small-servers
!
hostname yen
!
enable secret 5 1K32j$4AZW2oMDivpUeuMa/Fdcd.
enable password
!
username peso password 0 cisco
username dinar password 0 cisco
ip subnet-zero
no ip domain-lookup
ip domain-name cisco.com
ip name-server 172.18.1.148
!
isdn switch-type basic-5ess
x25 routing
!
interface Loopback0
no ip address
no ip directed-broadcast
no ip mroute-cache
!
interface Ethernet0
ip address 172.21.75.2 255.255.255.0
no ip directed-broadcast
no ip mroute-cache
media-type 10BaseT
```
interface BRI1
no ip address
no ip directed-broadcast
no ip mrout-cache
dialer pool-member 1
isdn switch-type basic-5ess
no fair-queue
! interface Dialer0
ip address 10.1.1.1 255.0.0.0
no ip directed-broadcast
encapsulation x25
no ip mrout-cache
dialer remote-name dinar
dialer idle-timeout 180
dialer string 81060
dialer caller 81060
dialer max-call 1
dialer pool 1
dialer-group 1
x25 address 11111
x25 map ip 10.1.1.2 22222
! ip default-gateway 172.21.75.1
no ip classless
ip route 0.0.0.0 0.0.0.0 172.21.75.1
no ip http server
!
access-list 101 permit ip any any
dialer-list 1 protocol ip list 101
!
x25 route 22222 interface Dialer0
x25 route 33333 interface Dialer0
!
line con 0
exec-timeout 0 0
transport input none
line aux 0
transport input all
line vty 0 4
password cisco
login
line vty 5 100
password cisco
login
!
end

**Configuration for Peso Acting as X.25 Switch**

version 12.0(5)T
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Peso
!
enable secret 5 $1$.Q00$sh3vIhb0w01fPvA2LYx2gE.
enable password cisco
!
ip subnet-zero
!
isdn switch-type primary-5ess
x25 routing

controller T1 0
cablelength short
cablelength short 133

controller T1 1
framing esf
clock source line primary
pri-group timeslots 1-24

controller T1 2
cablelength short

cablelength short 133

controller T1 3
cablelength short

cablelength short 133

interface Ethernet0
ip address 172.21.75.3 255.255.255.0
no ip directed-broadcast

interface Serial1:23
no ip address
no ip directed-broadcast
encapsulation ppp
dialer pool-member 1
isdn switch-type primary-5ess
isdn incoming-voice modem
no fair-queue
no cdp enable
ppp authentication chap

interface Dialer0
no ip address
no ip directed-broadcast
encapsulation x25 dce
no ip mroute-cache
dialer remote-name yen
dialer idle-timeout 180
dialer string 61401
dialer caller 61401
dialer max-call 1
dialer pool 1
x25 address 33333

interface Dialer1
no ip address
no ip directed-broadcast
encapsulation x25 dce
no ip mroute-cache
dialer remote-name dinar
dialer idle-timeout 180
dialer string 61403
dialer caller 61403
dialer max-call 1
dialer pool 1
x25 address 44444

ip default-gateway 172.21.75.1
no ip classless
ip route 0.0.0.0 0.0.0.0 172.21.75.1
no ip http server

!
x25 route 11111 interface Dialer0
x25 route 22222 interface Dialer1
x25 route source 11111 interface Dialer1
x25 route input-interface Dialer0 interface Dialer1

line con 0
transport input none
line 1 48
line aux 0
line vty 0 4
password cisco
login
line vty 5 100
password cisco
login

Configuration for Dinar

version 12.0(5)T
service timestamps debug uptime
service timestamps log uptime
no service password-encryption

hostname dinar

logging buffered 16384 debugging
enable secret 5 $1$8EjF$4.S0AoMOVa5OIAYEMrFI/
enable password cisco

username yen password 0 cisco
username 7701
username drachma password 0 cisco
username AODI password 0 cisco
ip subnet-zero
ip rcmd rcp-enable
ip rcmd rsh-enable
ip rcmd remote-username atirumal

isdn switch-type basic-5ess
x25 routing

controller T1 0/0

interface BRI3/1
no ip address
no ip directed-broadcast
no ip mroute-cache
dialer pool-member 1
isdn switch-type basic-5ess
no fair-queue

interface Dialer0
ip address 10.1.1.2 255.0.0.0
no ip directed-broadcast
capsulation x25
no ip mroute-cache
dialer remote-name yen
dialer idle-timeout 180
dialer string 81060
dialer caller 81060
dialer max-call 1
dialer pool 1
dialer-group 1
x25 address 22222
x25 map ip 10.1.1.1 11111
!
interface Dialer1
ip address 10.1.1.10 255.0.0.0
no ip directed-broadcast
no ip mroute-cache
dialer in-band
dialer-group 1
no fair-queue
!
ip default-gateway 172.21.75.1
no ip classless
ip route 0.0.0.0 0.0.0.0 172.21.75.1
no ip http server
!
access-list 101 permit ip any any
dialer-list 1 protocol ip list 101
!
x25 route 11111 interface Dialer0
x25 route 44444 interface Dialer0
!
Configuring X.25 on ISDN Using AO/DI

The chapter describes how to configure the X.25 on ISDN using the Always On/Dynamic ISDN (AO/DI) feature. It includes the following main sections:

- **AO/DI Overview**
- **How to Configure an AO/DI Interface**
- **How to Configure an AO/DI Client/Server**
- **Configuration Examples for AO/DI**

AO/DI supports PPP encapsulation on switched X.25 virtual circuits (VCs) only.

The X.25 encapsulation (per RFC 1356), PPP, Bandwidth Allocation Control Protocol (BACP), and Bandwidth Allocation Protocol (BAP) modules must be present in both the AO/DI client and server. AO/DI relies on features from X.25, PPP, and BACP modules and must be configured on both the AO/DI client and server. BAP, if negotiated, is a subset of BACP, which is responsible for bandwidth allocation for the Multilink PPP (MLP) peers. It is recommended you configure MLP with the BAP option due to the differences between the ISDN (E.164) and X.25 (X.121) numbering formats.

To implement AO/DI, you must configure the AO/DI client and server for PPP, incorporating BAP and X.25 module commands. This task involves configuring the BRI or PRI interfaces with the appropriate X.25 commands and the dialer interfaces with the necessary PPP or BAP commands.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands in this chapter, refer to the *Cisco IOS Dial Technologies Command Reference*, Release 12.2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

**AO/DI Overview**

AO/DI functionality is based on the technology modules described in the following sections:

- **PPP over X.25 Encapsulation**
- **Multilink PPP Bundle**
- **BACP/BAP**
AO/DI is an on-demand service that is designed to optimize the use of an existing ISDN signaling channel (D channel) to transport X.25 traffic. The X.25 D-channel call is placed from the subscriber to the packet data service provider. The use of PPP allows protocols to be encapsulated within the X.25 logical circuit carried by the D channel. The bearer channels (B channels) use the multilink protocol without the standard Q.922 and X.25 encapsulations, and invoke additional bandwidth as needed. Optionally, BACP and BAP can be used to negotiate bandwidth allocation as required.

AO/DI takes full advantage of existing packet handlers at the central office by using an existing D channel to transport the X.25 traffic. The link associated with the X.25 D channel packet connection is used as the primary link of the multilink bundle. The D channel is a connectionless, packet-oriented link between the customer premise equipment (CPE) and the central office. Because the D channel is always available, it is possible to in turn offer “always available” services. On-demand functionality is achieved by using the B channels to temporarily boost data throughput and by disconnecting them after use. Figure 34 shows the AO/DI environment and how ISDN and X.25 resources are implemented.

![AO/DI Environment](image)

On the client side, the X.25 switched virtual circuit (SVC) can only be terminated on an ISDN D channel; however, on the server side, the SVC can be terminated on an ISDN BRI using a D channel, a PRI using specific time slots, or a high-speed serial link.

AO/DI provides the following benefits:

- ISDN telecommuting cost savings. Low-speed, D-channel services are typically more cost-efficient than the time-based tariffs applied to the B channels, which usually carry user data.
- Reductions in the amount of data traffic from service provider voice networks. The D-channel X.25 packets are handled at the central office by the X.25 packet handler, thereby routing these packets bypassing the switch, which reduces impact on the telephony network.
- Network access server cost reductions. AO/DI can reduce service provider network access server costs by increasing port efficiencies. Initial use of the “always on” D-channel connection lowers the contention ratio on standard circuit switched dial ports. (See Figure 35.)
PPP over X.25 Encapsulation

PPP over X.25 is accomplished through the following process:

1. The X.25 map statement on the client side creates a virtual access interface. A virtual access interface is dynamically created and configured by cloning the configuration from a dialer interface (dialer interface 1, for example).

2. The dialer interface goes into “spoofing” mode and stays in this mode until interesting traffic is seen.

3. When interesting traffic is seen, the dialer interface activates the virtual access interface, which creates the X.25 SVC. Once the SVC is established, PPP negotiation begins in order to bring up the line protocol. The client will initiate a call to the remote end server, per the `x25 map ppp` command.

4. When the AO/DI server receives a call intended for its X.25 map statement, the call is accepted and an event is queued to the X.25 encapsulation manager. The encapsulation manager is an X.25 process that authenticates incoming X.25 calls and AO/DI events, and creates a virtual access interface that clones the configuration from the dialer or BRI interface. Figure 36 shows the virtual interface creation process.
Multilink PPP Bundle

The multilink protocol offers load balancing, packet fragmentation, and the bandwidth allocation functionality that is key to AO/DI structure. The MLP bundle process is achieved through the following process:

1. The **ppp multilink bap** command initiates MLP and, subsequently, BAP. The virtual access interface that is created above the X.25 VC (over the D channel) becomes the first member link of the MLP bundle.

2. The **ppp multilink idle-link** command works in conjunction with the **dialer load-threshold** command in order to add B channels as needed to boost traffic throughput. When a B channel is added, the first member link enters “receive only” mode, allowing the link additions. When the higher throughput is no longer needed, the additional B channels are disconnected and the primary link is the only link in the bundle, the bundle disengages “receive only” mode. The X.25 SVC stays active. **Figure 37** shows the MLP bundle sequence.

**Figure 37 MLP Bundle Creation Sequence**

MLP Encapsulation Enhancements

In previous releases of the Cisco IOS software, when MLP was used in a dialer profile, a virtual access interface was always created as the bundle. It was bound to both the B channel and the dialer profile interfaces after creation and cloning. The dialer profile interface could act as the bundle without help from a virtual access interface. But with recent software enhancements, it is no longer the virtual access interface that is added into the connected group of the dialer profile, but the dialer profile itself. The dialer profile becomes a connected member of its own connected group.
BACP/BAP

Bandwidth resources are provided by BACP, described in RFC 2125. Once the MLP peers have successfully negotiated BACP, BAP negotiates bandwidth resources in order to support traffic throughput. BAP is a subset of BACP, and it defines the methods and governing rules for adding and removing links from the bundle for MLP. BACP/BAP negotiations are achieved through the following process:

1. Once the MLP session is initiated and BACP is negotiated over the MLP bundle, the AO/DI client issues a BAP call request for additional bandwidth.
2. The AO/DI server responds with the BAP call response, which contains the phone number of the B channel to add. B channels are added, as needed, to support the demand for increased traffic throughput.
3. B channels are disconnected as the traffic load decreases.

How to Configure an AO/DI Interface

To configure X.25 on ISDN using AO/DI, perform the following tasks:

- Configuring PPP and BAP on the Client (As required)
- Configuring X.25 Parameters on the Client (As required)
- Configuring PPP and BAP on the Server (As required)
- Configuring X.25 Parameters on the Server (As required)

For examples of how to configure X.25 on ISDN using AO/DI in your network, see the section “Configuration Examples for AO/DI” at the end of this chapter.

Configuring PPP and BAP on the Client

To configure PPP and BAP under the dialer interface on the AO/DI client, use the following commands in interface configuration mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ppp multilink bap</td>
<td>Enables PPP BACP bandwidth allocation negotiation.</td>
</tr>
<tr>
<td>Router(config-if)# encapsulation ppp</td>
<td>Enables PPP on the interface.</td>
</tr>
<tr>
<td>Router(config-if)# dialer in-band</td>
<td>Enables dial-on-demand routing (DDR) on the interface.</td>
</tr>
<tr>
<td>Router(config-if)# dialer load-threshold load</td>
<td>Sets the dialer load threshold.</td>
</tr>
<tr>
<td>Router(config-if)# dialer-group group-number</td>
<td>Controls access to this interface by adding it to a dialer access group.</td>
</tr>
<tr>
<td>Router(config-if)# ppp bap callback accept</td>
<td>(Optional) Enables the interface to initiate additional links upon peer request.</td>
</tr>
</tbody>
</table>
Configuring X.25 Parameters on the Client

The AO/DI client interface must be configured to run PPP over X.25. To configure the interface for the X.25 parameters, use the following commands in interface configuration mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 address address</td>
<td>Configures the X.25 address.</td>
</tr>
<tr>
<td>Router(config-if)# x25 htc circuit-number</td>
<td>Sets the highest two-way circuit number. For X.25 the default is 1024.</td>
</tr>
<tr>
<td>Router(config-if)# x25 win packets</td>
<td>Sets the default VC receive window size. The default is 2 packets.¹</td>
</tr>
<tr>
<td>Router(config-if)# x25 wout packets</td>
<td>Sets the default VC transmit window size. The default is 2 packets.¹</td>
</tr>
</tbody>
</table>

¹. The default input and output window sizes are typically defined by your network administrator. Cisco IOS configured window sizes must be set to match the window size of the network.

For details and usage guidelines for X.25 configuration parameters, refer to the *Cisco IOS Wide-Area Networking Configuration Guide* and *Cisco IOS Wide-Area Networking Command Reference*.

Configuring PPP and BAP on the Server

To configure PPP and BAP under the dialer interface on the AO/DI server, use the following commands in interface configuration mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ppp multilink bap</td>
<td>Enables PPP BACP bandwidth allocation negotiation.</td>
</tr>
<tr>
<td>Router(config-if)# encapsulation ppp</td>
<td>Enables PPP on the interface.</td>
</tr>
<tr>
<td>Router(config-if)# dialer in-band</td>
<td>Enables DDR on the interface.</td>
</tr>
</tbody>
</table>
BAP configuration commands are optional. For information on how to configure BACP/BAP see the chapter “Configuring BACP” later in this publication.

## Configuring X.25 Parameters on the Server

The AO/DI server BRI, PRI, or serial interface must be configured for the X.25 parameters necessary to run PPP over X.25. To configure the interface for X.25 parameters, use the following commands in interface configuration mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <strong>dialer load-threshold</strong> load</td>
<td>Sets the dialer load threshold.</td>
</tr>
<tr>
<td>Router(config-if)# <strong>dialer-group</strong> group-number</td>
<td>Controls access to this interface by adding it to a dialer access group.</td>
</tr>
<tr>
<td>Router(config-if)# <strong>ppp bap call accept</strong></td>
<td>Enables the interface to accept additional links upon peer request.</td>
</tr>
<tr>
<td>Router(config-if)# <strong>ppp bap callback request</strong></td>
<td>Enables the interface to initiate additional links (optional).</td>
</tr>
</tbody>
</table>

For details and usage guidelines for X.25 configuration parameters, see the *Cisco IOS Wide-Area Networking Configuration Guide* and *Cisco IOS Wide-Area Networking Command Reference*.

## How to Configure an AO/DI Client/Server

Once the AO/DI client and server are configured with the necessary PPP, BAP, and X.25 commands, configure the routers to perform AO/DI. Perform the tasks in the following sections:

- Configuring the AO/DI Client (Required)
- Configuring the AO/DI Server (Required)
Configuring the AO/DI Client

To configure AO/DI, you must complete the tasks in the following section. The last task, to define local number peer characteristics, is optional.

- **Enabling AO/DI on the Interface** (Required)
- **Enabling the AO/DI Interface to Initiate Client Calls** (Required)
- **Enabling the MLP Bundle to Add Multiple Links** (Required)
- **Modifying BACP Default Settings** (Optional)

See the section “AO/DI Client Configuration Example” at the end of this chapter for an example of how to configure the AO/DI client.

Enabling AO/DI on the Interface

To enable an interface to run the AO/DI client, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 aodi</td>
<td>Enables the AO/DI client on an interface.</td>
</tr>
</tbody>
</table>

Enabling the AO/DI Interface to Initiate Client Calls

You must enable the interface to establish a PPP session over the X.25 protocol. The cloning interface will hold the PPP configuration, which will be cloned by the virtual access interface that is created and attached to the X.25 VC. The cloning interface must also hold the MLP configuration that is needed to run AO/DI.

To add the X.25 map statement that will enable the PPP session over X.25, identify the cloning interface, and configure the interface to initiate AO/DI calls, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 map ppp x121-address interface cloning-interface</td>
<td>Enables the interface to initiate a PPP session over the X.25 protocol and remote end mapping.</td>
</tr>
</tbody>
</table>

Enabling the MLP Bundle to Add Multiple Links

Once MLP is enabled and the primary traffic load is reached (based on the `dialer load-threshold` value), the MLP bundle will add member links (B channels). The addition of another B channel places the first link member into “receive-only” mode and subsequent links are added, as needed.

To configure the dialer interface or BRI interface used for cloning purposes and to place the first link member into receive only mode, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ppp multilink idle-link</td>
<td>Configures the interface to enter “receive only” mode so that MLP links are added as needed.</td>
</tr>
</tbody>
</table>
Modifying BACP Default Settings

During BACP negotiation between peers, the called party indicates the number to call for BACP. This number may be in either a national or subscriber format. A national format indicates that the phone number returned from the server to the client should contain ten digits. A subscriber number format contains seven digits.

To assign a prefix to the phone number that is to be returned, use the following optional command in interface configuration mode:

```
Router(config-if)# ppp bap number prefix prefix-number
```

Note

The `ppp bap number prefix` command is not typically required on the server side, as the server usually does not initiate calls to the client. This command would only be used on the server in a scenario where both sides are configured to act as both client and server.

Configuring the AO/DI Server

The AO/DI server will receive calls from the remote end interface running AO/DI client and likewise, and must be configured to initiate a PPP session over X.25, allow interface cloning, and be capable of adding links to the MLP bundle. The interface configured for AO/DI server relies on the `no-outgoing` option for the `x25 map` command to ensure calls are not originated by the interface. Use the commands in the following sections to configure the AO/DI server:

- **Enabling the Interface to Receive AO/DI Client Calls** (Required)
- **Enabling the MLP Bundle to Add Multiple Links** (Required)
- **Modifying BACP Default Settings** (Optional)

See the section “AO/DI Server Configuration Example” at the end of this chapter for an example of how to configure the AO/DI server.

Enabling the Interface to Receive AO/DI Client Calls

Configure the `x25 map` command with the X.121 address of the calling client. This task enables the AO/DI server interface to run a PPP over X.25 session with the configured client. The `no-outgoing` option must be set in order to ensure that calls do not originate from this interface.

To configure an interface for AO/DI server, use the following command in interface configuration mode:

```
Command
Router(config-if)# x25 map ppp x121-address
interface cloning-interface no-outgoing
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 map ppp x121-address interface cloning-interface no-outgoing</td>
<td>Enables the interface to initiate a PPP session over the X.25 protocol and remote end mapping.</td>
</tr>
</tbody>
</table>
Enabling the MLP Bundle to Add Multiple Links

Once MLP is enabled and the primary traffic load is reached (based on the dialer load-threshold value), the MLP bundle will add member links (B channels). The addition of another B channel places the first link member into “receive-only” mode and subsequent links are added, as needed.

To configure the dialer interface or BRI interface used for cloning purposes and to place the first link member into receive only mode, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ppp multilink idle-link</td>
<td>Configures the interface to enter “receive only” mode so that MLP links are added as needed.</td>
</tr>
</tbody>
</table>

Modifying BACP Default Settings

During BACP negotiation between peers, the called party indicates the number to call for BACP. This number may be in either a national or subscriber format. A national format indicates that the phone number returned from the server to the client should contain 10 digits. A subscriber number format contains 7 digits.

To assign a prefix to the phone number that is to be returned, use the following, optional command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ppp bap number (format national</td>
<td>(Optional) Specifies that the primary telephone number for a peer to call is in either a national or subscriber number format.</td>
</tr>
</tbody>
</table>

Note: The ppp bap number prefix command is not typically required on the server side, because the server usually does not initiate calls to the client. This command would only be used on the server in a scenario where both sides are configured to act as both client and server.
Configuration Examples for AO/DI

This section provides the following configuration examples:

- AO/DI Client Configuration Example
- AO/DI Server Configuration Example

AO/DI Client Configuration Example

The following example shows BRI interface 0 configured with the PPP, multilink, and X.25 commands necessary for the AO/DI client:

```
hostname Router_client
!
ip address-pool local
isdn switch-type basic-5ess
x25 routing
!
interface Ethernet0
 ip address 172.21.71.99 255.255.255.0
!
interface BRI0
 isdn switch-type basic-5ess
 ip address 10.1.1.9 255.0.0.0
 encap ppp
dialer in-band
dialer load-threshold 1 either
dialer-group 1
 no fair-queue
 ppp authentication chap
 ppp multilink bap
 ppp bap callback accept
 ppp bap call request
 ppp bap number prefix 91
 ppp multilink idle-link
 isdn x25 static-tei 23
 isdn x25 dchannel
 dialer rotary-group 1
!
interface BRI0:0
no ip address
 x25 address 12135551234
 x25 aodi
 x25 htc 4
 x25 win 3
 x25 wout 3
 x25 map ppp 12135556789 interface bri0
!
dialer-list 1 protocol ip permit
```
AO/DI Server Configuration Example

The following example shows the configuration for the AO/DI server, which is configured to only receive calls from the AO/DI client. The configuration uses the `x25 map ppp` command with the `no-outgoing` option, and the `ppp bap number format` command, which implements the national format.

```
hostname Router_server

ip address-pool local
isdn switch-type basic-5ess
x25 routing

interface Ethernet0
 ip address 172.21.71.100 255.255.255.0

interface BRI0
 isdn switch-type basic-5ess
 ip address 10.1.1.10 255.0.0.0
 encap ppp
dialer in-band
 no fair-queue
dialer load-threshold 1 either
dialer-group 1
 ppp authentication pap
 ppp multilink bap
 ppp multilink idle-link
 ppp bap number default 2135550904
 ppp bap number format national
 ppp bap call accept
 ppp bap timeout pending 20
 isdn x25 static-tei 23
 isdn x25 dchannel
dialer rotary-group 1

interface BRI0:0
 no ip address
 x25 address 12135556789
 x25 htc 4
 x25 win 3
 x25 wout 3
 x25 map ppp 12135551234 interface bri0 no-outgoing

 dialer-list 1 protocol ip permit
```
Configuring ISDN on Cisco 800 Series Routers

This chapter describes the Common Application Programming Interface (CAPI) and Remote Common Application Programming Interface (RCAPI) feature for the Cisco 800 series routers. This information is included in the following main sections:

- CAPI and RCAPI Overview
- How to Configure RCAPI
- Configuration Examples for RCAPI

The CAPI is an application programming interface standard used to access ISDN equipment connected to ISDN BRIs and ISDN PRIs. RCAPI is the CAPI feature configured remotely from a PC client.

Before you can enable the RCAPI feature on the Cisco 800 series router, the following requirements must be met:

- Cisco 800 series software with RCAPI support is installed on the router.
- CAPI commands are properly configured on the router.
- Both the CAPI local device console and RCAPI client devices on the LAN are correctly installed and configured with RVS-COM client driver software.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.
CAPI and RCAPI Overview

Figure 38 shows how CAPI connects applications, drivers, and controllers.

Figure 38 CAPI Connections

Framing Protocols

The framing protocols supported by CAPI include High-Level Data Link Control (HDLC), HDLC inverted, bit transparent (speech), and V.110 synchronous/asynchronous.

Data Link and Network Layer Protocols

CAPI integrates the following data link and network layer protocols:

- Link Access Procedure on the D-channel (LAPD) in accordance with Q.921 for X.25 D-channel implementation
- PPP
- ISO 8208 (X.25 DTE-DTE)
- X.25 DCE, T.90NL, and T.30 (fax group 3)

CAPI Features

CAPI supports the following features:

- Basic call features, such as call setup and tear-down
- Multiple B channels for data and voice connections
- Multiple logical data link connections within a physical connection
- Selection of different services and protocols during connection setup and on answering incoming calls
- Transparent interface for protocols above Layer 3
- One or more BRIs as well as PRI on one or more Integrated Services Digital Network (ISDN) adapters
- Multiple applications
- Operating-systems-independent messages
- Operating-system-dependent exchange mechanism for optimum operating system integration
- Asynchronous event-driven mechanism, resulting in high throughput
- Well-defined mechanism for manufacturer-specific extensions
- Multiple supplementary services

Figure 39 shows the components of the RCAPI implementation.

**Supported B-Channel Protocols**

The router provides two 64-kbps B channels to RCAPI clients. Each B channel can be configured separately to work in either HDLC mode or bit transparent mode. For CAPI support, layers B2 through B7 protocols are transparent to the applications using these B channels.
The ISDN Core Engine of RVS-COM supports the following B-channel protocols:

- **CAPI layer B1**
  - 64-kbps with HDLC framing
  - 64-kbps bit transparent operation with byte framing from the network
  - T.30 modem for fax group 3
  - Modem with full negotiation

- **CAPI layer B2**
  - V.120
  - Transparent
  - T.30 modem for fax group 3
  - Modem with full negotiation

- **CAPI layer B3**
  - Transparent
  - T.90NL with compatibility to T.70NL according to T.90 Appendix II
  - ISO 8208 (X.25 DTE-DTE) modulo 8 and windows size 2, no multiple logical connections
  - T.30 for fax group 3
  - Modem with full negotiation

- **T.30 for fax group 3** (SFF file format [default], sending and receiving up to 14400 bit/s with ECM option, modulations V.17, V.21, V.27ter, V.29)

- **Analog modem** (sending and receiving up to 14,400 bit/s, modulations V.21, V.22, V.22bis, V.23, V.32, V.32bis)

**Supported Switch Types**

CAPI and RCAPI support is available only for the ISDN switch type Net3.

**CAPI and RVS-COM**

The router supports the ISDN Device Control Protocol (ISDN-DCP) from RVS-COM. ISDN-DCP allows a workstation on the LAN or router to use legacy dial computer telephony integration (CTI) applications. These applications include placing and receiving telephone calls and transmitting and receiving faxes.

Using ISDN-DCP, the router acts as a DCP server. By default, the router listens for DCP messages on TCP port number 2578 (the Internet-assigned number for RVS-COM DCP) on its LAN port.

When the router receives a DCP message from a DCP client (connected to the LAN port of the router), the router processes the message and acts on it; it can send confirmations to the DCP clients and ISDN packets through the BRI port of the router.

When the router receives packets destined for one of the DCP clients on its BRI port, the router formats the packet as a DCP message and sends it to the corresponding client. The router supports all the DCP messages specified in the ISDN-DCP specifications defined by RVS-COM.
Supported Applications

ISDN-DCP supports CAPI and non-CAPI applications. Applications are supported that use one or two B channels for data transfer, different HDLC-based protocols, Euro File transfer, or G4 fax; also supported are applications that send bit-transparent data such as A/Mu law audio, G3 fax, analog modem, or analog telephones.

Helpful Website

The following Web link provides answers to frequently asked questions about installing and using RCAPI: http://www.cisco.com/warp/partner/synchronicd/cc/pd/rt/800/prodlit/rcapi_qa.htm

How to Configure RCAPI

To configure RCAPI, perform the tasks in the following sections:

- Configuring RCAPI on the Cisco 800 Series Router (Required)
- Monitoring and Maintaining RCAPI (Optional)
- Troubleshooting RCAPI (Optional)

Configuring RCAPI on the Cisco 800 Series Router

To configure RCAPI on the Cisco 800 series router, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# isdn switch-type basic-net3</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# rcapi number number</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# rcapi server port number</td>
</tr>
</tbody>
</table>
Configuring ISDN on Cisco 800 Series Routers

Configuration Examples for RCAPI

**Command**  
**Purpose**

**Step 4**  
Router(config)# interface bri0  
Configures the ISDN BRI interface and begins interface configuration mode.

**Step 5**  
Router(config-if)# isdn switch-type basic-net3  
Sets the switch type for the bri0 interface. In this example, the switch type is set to NET3 ISDN, which covers the Euro-ISDN E-DSS1 signaling system and is ETSI-compliant.

**Step 6**  
Router(config-if)# isdn incoming-voice modem  
Sets the modem as the default handler for incoming voice calls.

**Note**  
If required, at each remote device console change to global configuration mode, using the command `configure terminal`, and repeat Step 2 through Step 7 to configure that device.

**Monitoring and Maintaining RCAPI**

To monitor and maintain RCAPI, use the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show rcapi status</td>
<td>Displays RCAPI status.</td>
</tr>
</tbody>
</table>

**Troubleshooting RCAPI**

To test the RCAPI operation, use the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# debug rcapi events</td>
<td>Starts a background debug program.</td>
</tr>
</tbody>
</table>

**Configuration Examples for RCAPI**

The following configuration output example shows two Cisco 800 series routers configured for RCAPI:

**Router 1**

Router1# show running-config

Building configuration...

Current configuration:

```
! version xx.x
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname local
!```
ip subnet-zero
!
isdn switch-type basic-net3
isdn voice-call-failure 0
!
interface Ethernet0
ip address 192.168.2.1 255.255.255.0
no ip directed-broadcast
!
interface BRI0
no ip address
no ip directed-broadcast
isdn switch-type basic-net3
isdn incoming-voice modem
!
no ip http server
ip classless
!
line con 0
transport input none
stopbits 1
line vty 0 4
!
rcapi server port 2578
!
rcapi number 5551000
rcapi number 5553000
!
end

Router1#

Router 2

Router2# show running-config

Building configuration...

Current configuration:
!
version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname local
!
ip subnet-zero
!
isdn switch-type basic-net3
isdn voice-call-failure 0
!
interface Ethernet0
ip address 192.168.1.1 255.255.255.0
no ip directed-broadcast
!
interface BRI0
no ip address
no ip directed-broadcast
isdn switch-type basic-net3
isdn incoming-voice modem
!
no ip http server
ip classless
!
line con 0
 transport input none
 stopbits 1
line vty 0
!
rcapi server port 2578
!
rcapi number 5552000
rcapi number 5554000
!
end

Router2#
Signaling Configuration
Configuring ISDN PRI

This chapter describes how to configure channelized E1 and channelized T1 for ISDN PRI and for two types of signaling to support analog calls over digital lines. This information is included in the following sections:

- Signaling Overview
- How to Configure ISDN PRI
- Monitoring and Maintaining ISDN PRI Interfaces
- How to Configure Robbed-Bit Signaling for Analog Calls over T1 Lines
- How to Configure CAS
- How to Configure Switched 56K Digital Dial-In over Channelized T1 and Robbed-Bit Signaling
- How to Configure Switched 56K Services
- How to Configure E1 R2 Signaling
- Enabling R1 Modified Signaling
- Configuration Examples for Channelized E1 and Channelized T1

In addition, this chapter describes how to run interface loopback diagnostics on channelized E1 and channelized T1 lines. For more information, see the “How to Configure Switched 56K Digital Dial-In over Channelized T1 and Robbed-Bit Signaling” section later in this chapter, and the Cisco IOS Interface Configuration Guide, Release 12.2.

For hardware technical descriptions and for information about installing the controllers and interfaces, refer to the hardware installation and maintenance publication for your particular product.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the channelized E1/T1 commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference, Release 12.2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.
Signaling Overview

Channelized T1 and channelized E1 can be configured for ISDN PRI, synchronous serial, and asynchronous serial communications.

Channelized T1 and channelized E1 are supported by corresponding controllers. Each T1 or E1 controller has one physical network termination, but it can have many virtual interfaces, depending on the configuration.

In-Band and Out-of-Band Signaling

The terms in-band and out-of-band indicate whether various signals—which are used to set up, control, and terminate calls—travel in the same channel (or band) with voice calls or data made by the user, or whether those signals travel in a separate channel (or band).

ISDN, which uses the D channel for signaling and the B channels for user data, fits into the out-of-band signaling category.

Robbed-bit signaling, which uses bits from specified frames in the user data channel for signaling, fits into the in-band signaling category.

Channel-associated signaling (CAS), which uses E1 time slot 16 (the D channel) for signaling, fits into the out-of-band signaling category.

Channelized E1 and T1 on Cisco Devices

You can allocate the available channels for channelized E1 or T1 in the following ways:

- All channels can be configured to support ISDN PRI. Channelized T1 ISDN PRI offers 23 B channels and 1 D channel. Channelized E1 ISDN PRI offers 30 B channels and 1 D channel. Channel 24 is the D channel for T1, and channel 16 is the D channel for E1.
- If you are not running ISDN PRI, all channels can be configured to support robbed-bit signaling, which enables a Cisco modem to receive and send analog calls.
- All channels can be configured in a single channel group. For configuration information about this leased line or nondial use, see the “Configuring Serial Interfaces” chapter in the Cisco IOS Interface Configuration Guide.
- Mix and match channels supporting ISDN PRI and channel grouping.
- Mix and match channels supporting ISDN PRI, robbed-bit signaling, and channel grouping across the same T1 line. For example, on the same channelized T1 line you can configure the pri-group timeslots 1-10 command, channel-group 11 timeslots 11-16 command, and cas-group 17 timeslots 17-23 type e&m-fgb command. This is a rare configuration because it requires you to align the correct range of time slots on both ends of the connection.

See the sections “PRI Groups and Channel Groups on the Same Channelized T1 Controller Example,” “Robbed-Bit Signaling Examples,” and the “ISDN CAS Examples” at the end of this chapter.
How to Configure ISDN PRI

This section describes tasks that are required to get ISDN PRI up and running. This section does not address routing issues, dialer configuration, and dial backup. For information about those topics, see the chapters in the “Dial-on-Demand Routing” part of this manual.

To configure ISDN PRI, perform the tasks in the following sections:
- Requesting PRI Line and Switch Configuration from a Telco Service Provider (Required)
- Configuring Channelized E1 ISDN PRI (As required)
- Configuring Channelized T1 ISDN PRI (As required)
- Configuring the Serial Interface (Required)
- Configuring NSF Call-by-Call Support (Primary-4ESS Only)
- Configuring Multiple ISDN Switch Types (Optional)
- Configuring B Channel Outgoing Call Order (Optional)
- Performing Configuration Self-Tests (Optional)

See the section “Monitoring and Maintaining ISDN PRI Interfaces” later in this chapter for tips on maintaining the ISDN PRI interface. See the end of this chapter for the “ISDN PRI Examples” section.

Note

After the ISDN PRI interface and lines are operational, configure the D-channel interface for dial-on-demand routing (DDR). The DDR configuration specifies the packets that can trigger outgoing calls, specifies whether to place or receive calls, and provides the protocol, address, and phone number to use.

Requesting PRI Line and Switch Configuration from a Telco Service Provider

Before configuring ISDN PRI on your Cisco router, you need to order a correctly provisioned ISDN PRI line from your telecommunications service provider.

This process varies dramatically from provider to provider on a national and international basis. However, some general guidelines follow:
- Verify if the outgoing B channel calls are made in ascending or descending order. Cisco IOS default is descending order however, if the switch from the service providers is configured for outgoing calls made in ascending order, the router can be configured to match the switch configuration of the service provider.
- Ask for delivery of calling line identification. Providers sometimes call this CLI or automatic number identification (ANI).
- If the router will be attached to an ISDN bus (to which other ISDN devices might be attached), ask for point-to-multipoint service (subaddressing is required) and a voice-and-data line.

Table 23 provides a sample of the T1 configuration attributes you might request for a PRI switch used in North America.
Configuring Channelized E1 ISDN PRI

To configure ISDN PRI on a channelized E1 controller, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# isdn switch-type switch-type</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# controller el slot/port or Router(config)# controller el number</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-controller)# framing crc4</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-controller)# linecode hdb3</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-controller)# pri-group [timeslots range]</td>
</tr>
</tbody>
</table>

¹ Controller numbers range from 0 to 2 on the Cisco 4000 series and from 1 to 2 on the Cisco AS5000 series access server.

If you do not specify the time slots, the specified controller is configured for 30 B channels and 1 D channel. The B channel numbers range from 1 to 31; channel 16 is the D channel for E1. Corresponding serial interfaces numbers range from 0 to 30. In commands, the D channel is interface serial controller-number:15. For example, interface serial 0:15.
Table 24 lists the keywords for the supported service provider switch types to be used in Step 1 above.

Table 24 ISDN Service Provider PRI Switch Types

<table>
<thead>
<tr>
<th>Switch Type Keywords</th>
<th>Description/Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice/PBX Systems</td>
<td></td>
</tr>
<tr>
<td>primary-qsig</td>
<td>Supports QSIG signaling per Q.931. Network side functionality is assigned with the <code>isdn protocol-emulate</code> command.</td>
</tr>
<tr>
<td>Australia and Europe</td>
<td></td>
</tr>
<tr>
<td>primary-net5</td>
<td>NET5 ISDN PRI switch types for Asia, Australia, and New Zealand; ETSI-compliant switches for Euro-ISDN E-DSS1 signaling system.</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>primary-ntt</td>
<td>Japanese NTT ISDN PRI switches.</td>
</tr>
<tr>
<td>North America</td>
<td></td>
</tr>
<tr>
<td>primary-4ess</td>
<td>Lucent (AT&T) 4ESS switch type for the United States.</td>
</tr>
<tr>
<td>primary-5ess</td>
<td>Lucent (AT&T) 5ESS switch type for the United States.</td>
</tr>
<tr>
<td>primary-dms100</td>
<td>Nortel DMS-100 switch type for the United States.</td>
</tr>
<tr>
<td>primary-ni</td>
<td>National ISDN switch type.</td>
</tr>
<tr>
<td>All Users</td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>No switch defined.</td>
</tr>
</tbody>
</table>

Note For information and examples for configuring ISDN PRI for voice, video, and fax applications, refer to the Cisco IOS Voice, Video, and Fax Applications Configuration Guide.

Configuring Channelized T1 ISDN PRI

To configure ISDN PRI on a channelized T1 controller, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# isdn switch-type switch-type</td>
<td>Selects a service provider switch type that accommodates PRI. (Refer to Table 24 for a list of supported PRI switch type keywords.)</td>
<td></td>
</tr>
<tr>
<td>Step 2 Router(config)# controller t1 slot/port</td>
<td>Specifies a T1 controller on a Cisco 7500.</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3 Router(config)# controller t1 number</td>
<td>Specifies a T1 controller on a Cisco 4000.¹</td>
<td></td>
</tr>
<tr>
<td>Step 3 Router(config-controller)# framing esf</td>
<td>Defines the framing characteristics as Extended Superframe Format (ESF).</td>
<td></td>
</tr>
</tbody>
</table>
Configuring ISDN PRI

Command

Step 4

`Router(config-controller)# linecode b8zs`

Defines the line code as binary 8 zero substitution (B8ZS).

Step 5

`Router(config-controller)# pri-group [timeslots range]`²

Configures ISDN PRI.

If you do not specify the time slots, the controller is configured for 23 B channels and 1 D channel.

1. Controller numbers range from 0 to 2 on the Cisco 4000 series and from 1 to 2 on the Cisco AS5000 series.
2. On channelized T1, time slots range from 1 to 24. You can specify a range of time slots (for example, `pri-group timeslots 12-24`) if other time slots are used for non-PRI channel groups.

If you do not specify the time slots, the specified controller is configured for 24 B channels and 1 D channel. The B channel numbers range from 1 to 24; channel 24 is the D channel for T1. Corresponding serial interfaces numbers range from 0 to 23. In commands, the D channel is `interface serial controller-number:23`. For example, `interface serial 0:23`.

Configuring the Serial Interface

When you configure ISDN PRI on the channelized E1 or channelized T1 controller, in effect you create a serial interface that corresponds to the PRI group time slots. This interface is a logical entity associated with the specific controller. After you create the serial interface by configuring the controller, you must configure the D channel serial interface. The configuration applies to all the PRI B channels (time slots).

To configure the D channel serial interface, perform the tasks in the following sections:

- **Specifying an IP Address for the Interface** (Required)
- **Configuring Encapsulation on ISDN PRI** (Required)
- **Configuring Network Addressing** (Required)
- **Configuring ISDN Calling Number Identification** (As Required)
- **Overriding the Default TEI Value** (As Required)
- **Configuring a Static TEI** (As Required)
- **Configuring Incoming ISDN Modem Calls** (As Required)
- **Filtering Incoming ISDN Calls** (As Required)
- **Configuring the ISDN Guard Timer** (Optional)
- **Configuring Inclusion of the Sending Complete Information Element** (Optional)
- **Configuring ISDN PRI B-Channel Busyout** (Optional)
Specifying an IP Address for the Interface

To configure the D channel serial interface created for ISDN PRI, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface serial slot/port:23</td>
<td>Specifies D channel on the serial interface for channelized T1 and begins interface configuration mode.</td>
</tr>
<tr>
<td>Router(config)# interface serial number:23</td>
<td>Specifies D channel on the serial interface for channelized E1 and begins interface configuration mode.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface serial slot/port:15</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface serial number:15</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address ip-address</td>
<td>Specifies an IP address for the interface.</td>
</tr>
</tbody>
</table>

When you configure the D channel, its configuration is applied to all the individual B channels.

Configuring Encapsulation on ISDN PRI

PPP encapsulation is configured for most ISDN communication. However, the router might require a different encapsulation for traffic sent over a Frame Relay or X.25 network, or the router might need to communicate with devices that require a different encapsulation protocol.

Configure encapsulation as described in one of the following sections:

- Configuring PPP Encapsulation
- Configuring Encapsulation for Frame Relay or X.25 Networks
- Configuring Encapsulation for Combinet Compatibility

In addition, the router can be configured for automatic detection of encapsulation type on incoming calls. To configure this feature, complete the tasks in the “Configuring Automatic Detection of Encapsulation Type of Incoming Calls” section.

Note

See the sections “Dynamic Multiple Encapsulations” and “Configuring Encapsulation on ISDN BRI” in the chapter “Configuring ISDN BRI” for information about the Cisco Dynamic Multiple Encapsulations feature.

Configuring PPP Encapsulation

Each ISDN B channel is treated as a serial line and supports HDLC and PPP encapsulation. The default serial encapsulation is HDLC. To configure PPP encapsulation, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# encapsulation ppp</td>
<td>Configures PPP encapsulation.</td>
</tr>
</tbody>
</table>
Configuring Encapsulation for Frame Relay or X.25 Networks

If traffic from this ISDN interface crosses a Frame Relay or X.25 network, the appropriate addressing and encapsulation tasks must be completed as required for Frame Relay or X.25 networks.

See the sections “Sending Traffic over Frame Relay, X.25, or LAPB Networks” in the chapter “Configuring Legacy DDR Spokes” for more information about addressing, encapsulation, and other tasks necessary to configure Frame Relay or X.25 networks.

Configuring Encapsulation for Combinet Compatibility

Historically, Combinet devices supported only the Combinet Proprietary Protocol (CPP) for negotiating connections over ISDN B channels. To enable Cisco routers to communicate with those Combinet bridges, the Cisco IOS software supports the CPP encapsulation type.

To enable routers to communicate over ISDN interfaces with Combinet bridges that support only CPP, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config-if)# encapsulation cpp</td>
<td>Specifies CPP encapsulation.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# cpp callback accept</td>
<td>Enables CPP callback acceptance.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# cpp authentication</td>
<td>Enables CPP authentication.</td>
</tr>
</tbody>
</table>

Most Combinet devices support PPP. Cisco routers can communicate over ISDN with these devices by using PPP encapsulation, which supports both routing and fast switching.

Cisco 700 and 800 series routers and bridges (formerly Combinet devices) support only IP, IPX, and bridging. For AppleTalk, Cisco routers automatically perform half-bridging with Combinet devices. For more information about half-bridging, see the section “Configuring PPP Half-Bridging” in the “Configuring Media-Independent PPP and Multilink PPP” chapter in this publication.

Cisco routers can also half-bridge IP and IPX with Combinet devices that support only CPP. To configure this feature, you only need to set up the addressing with the ISDN interface as part of the remote subnet; no additional commands are required.

Configuring Automatic Detection of Encapsulation Type of Incoming Calls

You can enable a serial or ISDN interface to accept calls and dynamically change the encapsulation in effect on the interface when the remote device does not signal the call type. For example, if an ISDN call does not identify the call type in the Lower Layer Compatibility fields and is using an encapsulation that is different from the one configured on the interface, the interface can change its encapsulation type at that time.

This feature enables interoperation with ISDN terminal adapters that use V.120 encapsulation but do not signal V.120 in the call setup message. An ISDN interface that by default answers a call as synchronous serial with PPP encapsulation can change its encapsulation and answer such calls.

Automatic detection is attempted for the first 10 seconds after the link is established or the first 5 packets exchanged over the link, whichever is first.
To enable automatic detection of encapsulation type, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# autodetect encapsulation encapsulation-type</td>
<td>Enables automatic detection of encapsulation type on the specified interface.</td>
</tr>
</tbody>
</table>

You can specify one or more encapsulations to detect. Cisco IOS software currently supports automatic detection of PPP and V.120 encapsulations.

Configuring Network Addressing

When you configure networking, you specify how to reach the remote recipient. To configure network addressing, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Defines the protocol address of the remote recipient, hostname, and dialing string; optionally, provides the ISDN subaddress; sets the dialer speed to 56 or 64 kbps, as needed.</td>
</tr>
<tr>
<td></td>
<td>(Australia) Uses the <code>spc</code> keyword that enables ISDN semipermanent connections.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Assigns the interface to a dialer group to control access to the interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Associates the dialer group number with an access list number.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Defines an access list permitting or denying access to specified protocols, sources, or destinations.</td>
</tr>
</tbody>
</table>

Australian networks allow semipermanent connections between customer routers with PRIs and the TS-014 ISDN PRI switches in the exchange. Semipermanent connections are offered at better pricing than leased lines.

Packets that are permitted by the access list specified by the `dialer-list` command are considered interesting and cause the router to place a call to the identified destination protocol address.

The access list reference in Step 4 of this task list is an example of the access list commands allowed by different protocols. Some protocols might require a different command form or might require multiple commands. See the relevant chapter in the appropriate network protocol configuration guide (for example, the *Cisco IOS AppleTalk and Novell IPX Configuration Guide*) for more information about setting up access lists for a protocol.

For more information about defining outgoing call numbers, see the sections “Configuring Access Control for Outgoing Calls” in the chapters “Configuring Legacy DDR Spokes” or “Configuring Legacy DDR Hubs” later in this publication.
Configuring ISDN Calling Number Identification

A router might need to supply the ISDN network with a billing number for outgoing calls. Some networks offer better pricing on calls in which the number is presented. When configured, the calling number information is included in the outgoing Setup message.

To configure the interface to identify the billing number, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# isdn calling-number [calling-number]</code></td>
<td>Specifies the calling party number.</td>
</tr>
</tbody>
</table>

This command can be used with all ISDN PRI switch types.

Overriding the Default TEI Value

You can configure ISDN terminal endpoint identifier (TEI) negotiation on individual ISDN interfaces. TEI negotiation is useful for switches that may deactivate Layers 1 or 2 when there are no active calls. Typically, this setting is used for ISDN service offerings in Europe and connections to DMS 100 switches that are designed to initiate TEI negotiation.

By default, TEI negotiation occurs when the router is powered up. The TEI negotiation value configured on an interface overrides the default or global TEI value. On PRI interfaces connecting to DMS 100 switches, the router will change the default TEI setting to `isdn tei first-call`. To apply TEI negotiation to a specific PRI interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config-if)# isdn tei [first-call</td>
<td>powerup]`</td>
</tr>
</tbody>
</table>

Configuring a Static TEI

Depending on the telephone company you subscribe to, you may have a dynamically or statically assigned terminal endpoint identifier (TEI) for your ISDN service. By default, TEIs are dynamic in Cisco routers. To configure the TEI as a static configuration, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# isdn static-tei [tei-number]</code></td>
<td>Configures a static ISDN Layer 2 TEI over the D channel.</td>
</tr>
</tbody>
</table>

Configuring Incoming ISDN Modem Calls

All incoming ISDN analog modem calls that come in on an ISDN PRI receive signaling information from the ISDN D channel. The D channel is used for circuit-switched data calls and analog modem calls.
To enable all incoming ISDN voice calls to access the call switch module and integrated modems, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>```isdn incoming-voice (modem [56</td>
<td>64])```</td>
</tr>
</tbody>
</table>

The settings for the `isdn incoming-voice` interface command determine how a call is handled based on bearer capability information, as follows:

- **isdn incoming-voice voice**—Calls bypass the modem and are handled as a voice call.
- **isdn incoming-voice data**—Calls bypass the modem and are handled as digital data.
- **isdn incoming-voice modem**—Calls are passed to the modem and the call negotiates the appropriate connection with the far-end modem.

Refer to the `Cisco IOS Voice, Video, and Fax Configuration Guide` and `Cisco IOS Voice, Video, and Fax Command Reference`, Release 12.2, for more information about using the `isdn incoming-voice` interface configuration command to configure incoming ISDN voice and data calls.

Filtering Incoming ISDN Calls

You may find it necessary to configure your network to reject an incoming call with some specific ISDN bearer capability such as nonspeech or nonaudio data. To filter out unwanted call types, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>isdn reject (cause cause-code)</code></td>
<td>Rejects an incoming ISDN BRI or PRI call based on type.</td>
</tr>
</tbody>
</table>

- **isdn reject**
 - `causes`:
 - `data [56 | 64]` (data is unrestricted)
 - `piafs` (FN=7)
 - `v110` (EarlyCRC)
 - `v120` (LateCRC)
 - `vod` (voice over data)
 - `voice (3.1khz | 7khz | speech)`

Note

When the ISDN interface is configured for incoming voice with the `isdn incoming-voice voice` command (see the previous section “Configuring Incoming ISDN Modem Calls”), and bearer capability indicates the call as unrestricted digital data (i = 0x8890), the call is handled as voice over data (use `vod` keyword).

Verifying the Call Reject Configuration

To verify that calls are being rejected, perform the following steps:

Step 1

Enable the following `debug` commands at the privileged EXEC prompt:

- `debug isdn event`
- `debug isdn event detail`
- `debug isdn q931`
- `debug isdn q931 l3trace`
Configuring ISDN PRI

How to Configure ISDN PRI

Step 2 Configure the appropriate `isdn reject` command. The following example configures the network to reject all incoming data calls on ISDN interfaces 4 through 23:

```
Router(config)# interface serial 4:23
Router(config-if)# isdn reject data
Router(config-if)# ^Z
```

Step 3 Build the configuration and then monitor the `debug` command output for the following string, which indicates that the call was rejected:

```
ISDN <TYPE:NUMBER>: Rejecting call id <CALLID> isdn calltype screening failed
```

Step 4 Enter the `show isdn status` EXEC command to display a detailed report of the ISDN configuration, including status of Layers 1 through 3, the call type, and the call identifier.

Step 5 Turn off the debugging messages by entering the `no` form of the `debug` command—`no debug isdn event detail`, for example— or by entering the `undebug` form of the command—`undebug isdn q931`, for example.

Configuring the ISDN Guard Timer

Beginning in Cisco IOS Release 12.2, the ISDN guard timer feature implements a new managed timer for ISDN calls. Because response times for authentication requests can vary, for instance when using DNIS authentication, the guard timer allows you to control the handling of calls.

To configure the ISDN guard timer, use the following command in interface configuration mode:

```
Command	Purpose
Router(config-if)# isdn guard-timer msecs      | Enables the guard timer and sets the number of milliseconds for which the access server waits for RADIUS to respond before rejecting or accepting (optional) a call.
```

For more information about configuring RADIUS, and to see sample ISDN PRI guard timer configurations, refer to the Cisco IOS Security Configuration Guide.

Configuring Inclusion of the Sending Complete Information Element

In some geographic locations, such as Hong Kong and Taiwan, ISDN switches require that the Sending Complete information element be included in the outgoing Setup message to indicate that the entire number is included. This information element is generally not required in other locations.

To configure the interface to include the Sending Complete information element in the outgoing call Setup message, use the following command in interface configuration mode:

```
Command	Purpose
Router(config-if)# isdn sending-complete      | Includes the Sending Complete information element in the outgoing call Setup message.
```
Configuring ISDN PRI B-Channel Busyout

To allow the busyout of individual ISDN PRI B channels, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface serial controller:timeslot</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# isdn snmp busyout b-channel</td>
</tr>
</tbody>
</table>

Configuring NSF Call-by-Call Support

Network-Specific Facilities (NSF) are used to request a particular service from the network or to provide an indication of the service being provided. Call-by-call support means that a B channel can be used for any service; its use is not restricted to a certain preconfigured service, such as incoming 800 calls or an outgoing 800 calls. This specific NSF call-by-call service supports outgoing calls configured as voice calls.

This NSF call-by-call support feature is vendor-specific; only routers connected to AT&T Primary-4ESS switches need to configure this feature. This feature is supported on channelized T1.

To enable the router for NSF call-by-call support and, optionally, to place outgoing voice calls, complete the following steps:

Step 1 Configure the controller for ISDN PRI.

Step 2 Configure the D channel interface to place outgoing calls using the dialer map command with a dialing-plan keyword. You can enter a dialer map command for each dialing plan to be supported.

Step 3 Define the dialer map class for that dialing plan.

To define the dialer map class for the dialing plan, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# map-class dialer classname</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-map-class)# dialer voice-call</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-map-class)# dialer outgoing classname</td>
</tr>
</tbody>
</table>

Note To set the called party type to international, the dialed number must be prefaced by 011.

Table 25 lists the NSF dialing plans and supported services offered on AT&T Primary-4ESS switches.
Table 25 NSF Supported Services on AT&T Primary-4ESS Switches

<table>
<thead>
<tr>
<th>NSF Dialing Plan</th>
<th>Data</th>
<th>Voice</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Defined Network (SDN)(^1)</td>
<td>Yes</td>
<td>Yes</td>
<td>Global SDN</td>
</tr>
<tr>
<td>MEGACOMM</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ACCUNET</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\(^1\) The dialing plan terminology in this table is defined and used by AT&T.

Configuring Multiple ISDN Switch Types

You can apply an ISDN switch type on a per-interface basis, thus extending the existing global `isdn switch-type` command to the interface level. This allows PRI and BRI to run simultaneously on platforms that support both interface types.

A global ISDN switch type is required and must be configured on the router before you can configure a switch type on an interface.

To configure multiple ISDN switch types for a PRI interface using a channelized E1 or channelized T1 controller, use the following command in global configuration mode:

```
Router(config)# isdn switch-type switch-type
```

You must ensure that the ISDN switch type is valid for the ISDN interfaces on the router. Table 24 lists valid ISDN switch types for BRI and PRI interfaces.

Note

When you configure an ISDN switch type on the channelized E1 or T1 controller, this switch type is applied to all time slots on that controller. For example, if you configure channelized T1 controller 1:23, which corresponds to serial interface 1, with the ISDN switch type keyword `primary-net5`, then all time slots on serial interface 1 (and T1 controller 1) will use the Primary-Net5 switch type.

The following restrictions apply to the Multiple ISDN Switch Types feature:

- You must configure a global ISDN switch type using the existing `isdn switch-type` global configuration command before you can configure the ISDN switch type on an interface. Because global commands are processed before interface level commands, the command parser will not accept the `isdn switch-type` command on an interface unless a switch type is first added globally. Using the `isdn switch-type` global command allows for backward compatibility.

- If an ISDN switch type is configured globally, but not at the interface level, then the global switch type value is applied to all ISDN interfaces.

- If an ISDN switch type is configured globally and on an interface, the interface level switch type supersedes the global switch type at initial configuration. For example, if the global BRI switch-type keyword `basic-net3` is defined and the interface-level BRI switch-type keyword is `basic-ni`, the National ISDN switch type is the value applied to that BRI interface.
The ISDN global switch type value is only propagated to the interface level on initial configuration or router reload. If you reconfigure the global ISDN switch type, the new value is not applied to subsequent interfaces. Therefore, if you require a new switch type for a specific interface, you must configure that interface with the desired ISDN switch type.

If an ISDN global switch type is not compatible with the interface type you are using or you change the global switch type and it is not propagated to the interface level, as a safety mechanism, the router will apply a default value to the interface level, as indicated in Table 26.

<table>
<thead>
<tr>
<th>Global Switch Type</th>
<th>PRI Interface</th>
<th>BRI Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary-4ess</td>
<td>primary-4ess</td>
<td>basic-ni</td>
</tr>
<tr>
<td>primary-5ess</td>
<td>primary-5ess</td>
<td>basic-ni</td>
</tr>
<tr>
<td>primary-dms100</td>
<td>primary-dms100</td>
<td>basic-ni</td>
</tr>
<tr>
<td>primary-net5</td>
<td>primary-net5</td>
<td>basic-net3</td>
</tr>
<tr>
<td>primary-ni</td>
<td>primary-ni</td>
<td>basic-ni</td>
</tr>
<tr>
<td>primary-ntt</td>
<td>primary-ntt</td>
<td>basic-ntt</td>
</tr>
<tr>
<td>primary-qsig</td>
<td>primary-qsig</td>
<td>basic-qsig</td>
</tr>
<tr>
<td>primary-ts014</td>
<td>primary-ts014</td>
<td>basic-ts013</td>
</tr>
<tr>
<td>basic-1tr6</td>
<td>primary-net5</td>
<td>basic-1tr6</td>
</tr>
<tr>
<td>basic-5ess</td>
<td>primary-ni</td>
<td>basic-5ess</td>
</tr>
<tr>
<td>basic-dms100</td>
<td>primary-ni</td>
<td>basic-dms100</td>
</tr>
<tr>
<td>basic-net3</td>
<td>primary-net5</td>
<td>basic-net3</td>
</tr>
<tr>
<td>basic-ni</td>
<td>primary-ni</td>
<td>basic-ni</td>
</tr>
<tr>
<td>basic-ntt</td>
<td>primary-ntt</td>
<td>basic-ntt</td>
</tr>
<tr>
<td>basic-qsig</td>
<td>primary-qsig</td>
<td>basic-qsig</td>
</tr>
<tr>
<td>basic-ts013</td>
<td>primary-ts014</td>
<td>basic-ts013</td>
</tr>
<tr>
<td>basic-vn3</td>
<td>primary-net5</td>
<td>basic-vn3</td>
</tr>
</tbody>
</table>

If, for example, you reconfigure the router to use global switch type keyword `basic-net3`, the router will apply the `primary-net5` ISDN switch type to PRI interfaces and the `basic-net3` ISDN switch type to any BRI interfaces. You can override the default switch assignment by configuring a different ISDN switch type on the associated interface.
Configuring B Channel Outgoing Call Order

You can configure the router to select the first available B channel in ascending order (channel B1) or descending order (channel B23 for a T1 and channel B30 for an E1). To configure the optional task of selecting B channel order for outgoing calls for PRI interface types, use the following command in interface configuration mode:

```
Router(config-if)# isdn bchan-number-order {ascending | descending}
```

Before configuring the ISDN PRI on your router, check with your service vendor to determine if the ISDN trunk call selection is configured for ascending or descending order. If there is a mismatch between the router and switch with regard to channel availability, the switch will send back an error message stating the channel is not available. By default, the router will select outgoing calls in descending order.

Performing Configuration Self-Tests

To test the ISDN configuration, use the following EXEC commands as needed. Refer to the Cisco IOS Debug Command Reference for information about the `debug` commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> <code>show controllers t1 slot/port</code></td>
<td>Checks Layer 1 (physical layer) of the PRI over T1.</td>
</tr>
<tr>
<td>Router> <code>show controllers e1 slot/port</code></td>
<td>Checks Layer 1 (physical layer) of the PRI over E1.</td>
</tr>
<tr>
<td>Router> <code>show isdn status</code></td>
<td>Checks the status of PRI channels.</td>
</tr>
<tr>
<td>Router# <code>debug q921</code></td>
<td>Checks Layer 2 (data link layer).</td>
</tr>
<tr>
<td>Router# <code>debug isdn events</code> or Router# <code>debug q931</code> or Router# <code>debug dialer</code></td>
<td>Checks Layer 3 (network layer).</td>
</tr>
<tr>
<td>Router> <code>show dialer</code></td>
<td></td>
</tr>
</tbody>
</table>
Monitoring and Maintaining ISDN PRI Interfaces

To monitor and maintain ISDN interfaces, use the following EXEC commands as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 7500 series routers</td>
<td></td>
</tr>
<tr>
<td>Router> show interfaces serial slot/port bchannel channel-number</td>
<td>Displays information about the physical attributes of the ISDN PRI over T1 B and D channels.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Cisco 4000 series routers</td>
<td></td>
</tr>
<tr>
<td>Router> show interfaces serial number bchannel channel-number</td>
<td>Displays information about the physical attributes of the ISDN PRI over E1 B and D channels.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Cisco 7500 series routers</td>
<td></td>
</tr>
<tr>
<td>Router> show interfaces serial slot/port bchannel channel-number</td>
<td>Displays information about the T1 links supported on the ISDN PRI B and D channels.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Cisco 4000 series routers</td>
<td></td>
</tr>
<tr>
<td>Router> show controllers t1 [slot/port]</td>
<td>Displays information about the E1 links supported on the ISDN PRI B and D channels.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Cisco 7500 series routers</td>
<td></td>
</tr>
<tr>
<td>Router> show controllers e1 [slot/port]</td>
<td>Displays information about current calls, history, memory, services, status of PRI channels, or Layer 2 or Layer 3 timers. (The service keyword is available for PRI only.)</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Cisco 4000 series routers</td>
<td></td>
</tr>
<tr>
<td>Router> show dialer [interface type number]</td>
<td>Obtains general diagnostic information about the specified interface.</td>
</tr>
</tbody>
</table>

How to Configure Robbed-Bit Signaling for Analog Calls over T1 Lines

Some Cisco access servers support robbed-bit signaling for receiving and sending analog calls on T1 lines. Robbed-bit signaling emulates older analog trunk and line in-band signaling methods that are sent in many networks.
In countries that support T1 framing (such as the United States and Canada), many networks send supervisory and signaling information to each other by removing the 8th bit of each time slot of the 6th and 12th frame for superframe (SF) framing. For networks supporting extended superframe (ESF) framing, the 6th, 12th, 18th, and 24th frames are affected. This additional signaling information is added to support channel banks in the network that convert various battery and ground operations on analog lines into signaling bits.

Robbed-bit signaling configured on a Cisco access server enables integrated modems to answer and send analog calls. Robbed bits are forwarded over digital lines. To support analog signaling over T1 lines, robbed-bit signaling must be enabled.

Note
The signal type configured on the access server must match the signal type offered by your telco provider. Ask your telco provider which signal type to configure on each T1 controller.

The Cisco access server has two controllers: controller T1 1 and controller T1 0, which must be configured individually.

To configure robbed-bit signaling support for calls made and received, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# controller t1 0</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-controller)# cablelength long dbgain-value dbloss-value</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-controller)# framing esf</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-controller)# linecode b8zs</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-controller)# clock source line primary</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-controller)# cas-group channel-number timeslots range type signal</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-controller)# fdl {att</td>
</tr>
</tbody>
</table>

If you want to configure robbed-bit signaling on the other T1 controller, repeat Steps 1 through 7, making sure in Step 5 to select T1 controller line 1 as the secondary clock source.

If you want to configure ISDN on the other controller, see the section “How to Configure ISDN PRI” in this chapter. If you want to configure channel groupings on the other controller, see the chapter “Configuring Synchronous Serial Ports” in this publication; specify the channel groupings when you specify the interface.

See the section “Robbed-Bit Signaling Examples” at the end of this chapter for configuration examples.
How to Configure CAS

The following sections describe how to configure channel-associated signaling in Cisco networking devices for both channelized E1 and T1 lines:

- CAS on Channelized E1
- CAS on T1 Voice Channels

CAS on Channelized E1

Cisco access servers and access routers support CAS for channelized E1 lines, which are commonly deployed in networks in Latin America, Asia, and Europe. CAS is configured to support channel banks in the network that convert various battery and ground operations on analog lines into signaling bits, which are forwarded over digital lines.

CAS is call signaling that is configured on an E1 controller and enables the access server to send or receive analog calls. The signaling uses the 16th channel (time slot); thus, CAS fits in the out-of-band signaling category.

Once CAS is configured on a single E1 controller, remote users can simultaneously dial in to the Cisco device through networks running the R2 protocol (see specifications for your particular network device for the number of dialins supported).

The R2 protocol is an international signaling standard for analog connections. Because R2 signaling is not supported in the Cisco access servers, an E1-to-E1 converter is required.

Figure 40 illustrates that, because the Cisco access servers have more than one physical E1 port on the dual E1 PRI board, up to 60 simultaneous connections can be made through one dual E1 PRI board.

Figure 40 Remote PC Accessing Network Resources Through the Cisco AS5000 Series Access Server

Note: For information on how to configure an Anadigicom E1-to-E1 converter, see to the documentation that came with the converter.

Note: The dual E1 PRI card must be installed in the Cisco access server before you can configure CAS. To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information.
Configuring CAS for Analog Calls over E1 Lines

To configure the E1 controllers in the Cisco access servers, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# controller e1 number</td>
<td>Defines the controller location in the Cisco access server by unit number (choices for the number argument are 1 or 2) and begins controller configuration mode.</td>
</tr>
<tr>
<td>Step 2: Router(config-controller)# cas-group channel-number timeslots range type signal</td>
<td>Configures CAS and the R2 signaling protocol on a specified number of time slots.</td>
</tr>
<tr>
<td>Step 3: Router(config-controller)# framing crc4</td>
<td>Defines the framing characteristics as CRC4.</td>
</tr>
<tr>
<td>Step 4: Router(config-controller)# linecode hdb3</td>
<td>Defines the line code as HDB3.</td>
</tr>
<tr>
<td>Step 5: Router(config-controller)# clock source line primary</td>
<td>Specifies one E1 line to serve as the primary or most stable clock source line.</td>
</tr>
</tbody>
</table>

1. Specify the other E1 line as the secondary clock source using the clock source line secondary command.

If you do not specify the time slots, CAS is configured on all 30 B channels and one D channel on the specified controller.

See the section “ISDN CAS Examples” for configuration examples.

Configuring CAS on a Cisco Router Connected to a PBX or PSTN

To define E1 channels for the CAS method by which the router connects to a PBX or PSTN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# controller e1 slot/port</td>
<td>Specifies the E1 controller that you want to configure with R2 signaling and begins controller configuration.</td>
</tr>
<tr>
<td>Step 2: Router(config-controller)# ds0-group ds0-group-no timeslots timeslot-list type {e&m-immediate</td>
<td>e&m-delay</td>
</tr>
<tr>
<td>Step 3: Router(config-controller)# framing crc4</td>
<td>Defines the framing characteristics as cyclic redundancy check 4 (CRC4).</td>
</tr>
<tr>
<td>Step 4: Router(config-controller)# linecode hdb3</td>
<td>Defines the line code as high-density bipolar 3 (HDB3).</td>
</tr>
<tr>
<td>Step 5: Router(config-controller)# clock source line primary</td>
<td>Specifies one E1 line to serve as the primary or most stable clock source line.</td>
</tr>
</tbody>
</table>

1. Specify the other E1 line as the secondary clock source using the clock source line secondary command.

If you do not specify the time slots, channel-associated signaling is configured on all 30 B channels and one D channel on the specified controller.
CAS on T1 Voice Channels

Various types of CAS signaling are available in the T1 world. The most common forms of CAS signaling are loop-start, ground-start, and recEive and tranSMit (E&M). The biggest disadvantage of CAS signaling is its use of user bandwidth to perform signaling functions. CAS signaling is often referred to as robbed-bit-signaling because user bandwidth is being “robbed” by the network for other purposes. In addition to receiving and placing calls, CAS signaling also processes the receipt of DNIS and ANI information, which is used to support authentication and other functions.

This configuration allows the Cisco access servers to provide the automatic number identification/dialed number identification service (ANI/DNIS) delimiter on incoming T1/CAS trunk lines. The digit collection logic in the call switching module (CSM) for incoming T1 CAS calls in dual tone multifrequency (DTMF) is modified to process the delimiters, the ANI digits, and the DNIS digits.

As part of the configuration, a CAS signaling class with the template to process ANI/DNIS delimiters has to be defined. This creates a signaling class structure which can be referred to by its name.

This feature is only functional in a T1 CAS configured for E&M-feature group b (wink start). E&M signaling is typically used for trunks. It is normally the only way that a central office (CO) switch can provide two-way dialing with direct inward dialing. In all the E&M protocols, off-hook is indicated by \(A=B=1 \), and on-hook is indicated by \(A=B=0 \). If dial pulse dialing is used, the A and B bits are pulsed to indicate the addressing digits.

For this feature, here is an example of configuring for E&M-feature group b:

```
ds0-group 1 timeslots 1-24 type e&m-fgb dtmf dnis
```

In the original Wink Start protocol, the terminating side responds to an off-hook from the originating side with a short wink (transition from on-hook to off-hook and back again). This wink tells the originating side that the terminating side is ready to receive addressing digits. After receiving addressing digits, the terminating side then goes off-hook for the duration of the call. The originating endpoint maintains off-hook for the duration of the call.

Configuring ANI/DNIS Delimiters for CAS Calls on CT1

To configure the signaling class and ANI/DNIS delimiters, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(config)# signaling-class cas name</code> Names the signaling class and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>Router(config-if)# profile incoming template</code> Defines the template to process the ANI/DNIS delimiter.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router(config-if)# exit</code> Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>Router(config)# controller t1 slot/port/number</code> Enables this feature for a T1 controller and begins controller configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>Router(config-controller)# cas-custom channel</code> Specifies a single channel group number.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>Router(config-ctr1-cas)# class name</code> Enables the ANI/DNIS delimiter feature by specifying the template.</td>
</tr>
</tbody>
</table>

To disable the delimiter, use the command `no class` under the cas-custom configuration.
To remove the signaling class, use the configuration command `no signaling-class cas`. When removing a signaling class, make sure the signaling class is no longer used by any controllers; otherwise, the following warning will be displayed:

```
% Can't delete, signaling class test is being used
```

How to Configure Switched 56K Digital Dial-In over Channelized T1 and Robbed-Bit Signaling

Internet service providers (ISPs) can provide switched 56-kbps access to their customers using a Cisco AS5000 series access server. Switched 56K digital dial-in enables many services for ISPs. When using traditional ISDN PRI, the access server uses the bearer capability to determine the type of service. However, when providing switched 56K over a CT1 RBS connection, the digital signal level 0 (DS0s) in the access server can be configured to provide either modem or 56-kbps data service. The dial-in user can access a 56-kbps data connection using either an ISDN BRI connection or a 2- or 4-wire switched 56-kbps connection. The telco to which the access server connects must configure its switches to route 56-kbps data calls and voice (modem) calls to the appropriate DS0.

Likewise, an enterprise can provide switched 56-kbps digital dial-in services to its full time telecommuters or small remote offices using ISDN PRI or a CT1 RBS connection.

Switched 56K digital dial-in offers the following benefits:

- Enables ISDN BRI clients to connect to a Cisco access server over switched 56K and T1 CAS.
- Provides switched 56K dial-in services over T1 CAS to remote clients that do not have access to ISDN BRI, for example, a remote PC making digital calls over a 2- or 4-wire switched 56-kbps connection and a CSU.

The following prerequisites apply to the Switched 56K Digital Dial-In feature:

- The remote device could be an ISDN BRI endpoint such as a terminal adapter or BRI router. In this scenario, the CSU/DSU is irrelevant. For 2- or 4-wire switched 56K remote clients, the remote endpoint must be compatible with the service of the carrier. Different carriers may implement different versions of switched 56K end points.
- A CSU/DSU must be present at the remote client side of the connection. Otherwise, switched 56K connections are not possible. The Cisco access servers have built-in CSU/DSUs.
- The telco must configure its side of the T1 connection to deliver 56-kbps data calls to the correct range of DS0s. If you do not want to dedicate all the DS0s or time slots on a single T1 to switched 56K services, be sure to negotiate with the telco about which DS0s will support switched 56K and which DS0s will not.
- Cisco IOS Release 11.3(2)T or later must be running on the access server.

The following restrictions apply to Switched 56K digital dial-in:

- A Cisco access server only supports incoming switched 56K calls. Dialing out with switched 56K is not supported at this time.
- Switched 56K over E1 is not supported. Only switched 56K over T1 is supported.
Analog modem calls are not supported over DS0s that are provisioned for switched 56K. For a configuration example, see the section “Switched 56K and Analog Modem Calls over Separate T1 CAS Lines Example” later in this chapter.

 Certain types of T1 lines, such as loop start and ground start, might not support this service. Contact your telco vendor to determine if this feature is available.

Switched 56K Scenarios

The following scenarios are provided to show multiple applications for supporting switched 56K over T1 CAS:

- Switched 56K and Analog Modem Calls into T1 CAS
- Basic Call Processing Components
- ISDN BRI Calls into T1 CAS

Switched 56K and Analog Modem Calls into T1 CAS

Figure 41 shows a sample network scenario using switched 56K. Two remote PCs are dialing in to the same Cisco access server to get access to the Internet. The desktop PC is making switched 56K digital calls through an external CSU/DSU. The laptop PC is making analog modem calls through a 28.8-kbps modem. The Cisco access server dynamically assigns IP addresses to each node and forwards data packets off to the switched 56K channels and onboard modems respectively.

For the startup running configuration on the Cisco access server shown in Figure 41, see the section “Comprehensive Switched 56K Startup Configuration Example” later in this chapter.
Basic Call Processing Components

Figure 42 shows the basic components that process switched 56K calls and analog modem calls on board a Cisco access server. Switched 56K and modem calls are signaling using robbed-bit signaling. Digital switched 56K calls utilize logical serial interfaces just like in ISDN PRI. Modem calls utilize asynchronous interfaces, lines, and modems.

Note

The BRI terminal must originate its calls with a bearer capability of 56 kbps.

Figure 42 Processing Components for Switched 56K Calls Versus Analog Modem Calls

The Cisco IOS software does enable you to configure one T1 controller to support both switched 56K digital calls and analog modem calls. In this scenario, Figure 42 would show all calls coming into the access server through one T1 line and controller. However, you must negotiate with the telco which DS0s will support switched 56K services and which DS0s will not. On the access server, analog modem calls are not supported over DS0s that are provisioned for switched 56K. For an example software configuration, see the section “Mixture of Switched 56K and Modem Calls over CT1 CAS Example” at the end of this chapter.
ISDN BRI Calls into T1 CAS

Figure 43 shows how switched 56K functionality can be used to forward ISDN BRI network traffic to a Cisco access server that is configured for switched 56K robbed-bit signaling over CT1.

Note
The BRI terminal must originate its calls with a bearer capability of 56 kbps.

Figure 43 Remote PC Making BRI Digital Calls via Switched 56K to a Cisco AS5000 Series Access Server

For a configuration example on the Cisco access server, see the section “Comprehensive Switched 56K Startup Configuration Example” at the end of this chapter.

How to Configure Switched 56K Services

This section describes how to configure switched 56K services on a Cisco access server. After the **cas-group** command is enabled for switched 56K services, a logical serial interface is automatically created for each 56K channel, which must also be configured.

To configure an access server to support switched 56K digital calls, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# controllers t1 number
Specifies a T1 controller and begins controller configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>**Router(config-controller)# framing {sf</td>
</tr>
<tr>
<td>Step 3</td>
<td>**Router(config-controller)# linecode {ami</td>
</tr>
</tbody>
</table>
Configuring ISDN PRI

How to Configure E1 R2 Signaling

R2 signaling is an international signaling standard that is common to channelized E1 networks. However, there is no single signaling standard for R2. The International Telecommunication Union Telecommunication Standardization Sector (ITU-T) Q.400-Q.490 recommendation defines R2, but a number of countries and geographic regions implement R2 in entirely different ways. Cisco addresses this challenge by supporting many localized implementations of R2 signaling in its Cisco IOS software.

The following sections offer pertinent information about the E1 R2 signaling feature:

- E1 R2 Signaling Overview
- Configuring E1 R2 Signaling
- Configuring E1 R2 Signaling for Voice
- Monitoring E1 R2 Signaling
- Verifying E1 R2 Signaling
- Troubleshooting E1 R2 Signaling

E1 R2 Signaling Overview

R2 signaling is channelized E1 signaling used in Europe, Asia, and South America. It is equivalent to channelized T1 signaling in North America. There are two types of R2 signaling: line signaling and interregister signaling. R2 line signaling includes R2 digital, R2 analog, and R2 pulse. R2 interregister signaling includes R2 compelled, R2 noncompelled, and R2 semicompelled. These signaling types are configured using the `cas-group` command for Cisco access servers, and the `ds0-group` command for Cisco routers.

Many countries and regions have their own E1 R2 variant specifications, which supplement the ITU-T Q.400-Q.490 recommendation for R2 signaling. Unique E1 R2 signaling parameters for specific countries and regions are set by entering the `cas-custom channel` command followed by the `country name` command.

For configuration examples, see the section “Switched 56K Configuration Examples” later in this chapter.

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Router(config-controller)# clock source {line (primary</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-controller)# cas-group channel timeslots range type signal</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-controller)# exit</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config)# interface serial number:number</td>
</tr>
</tbody>
</table>
The Cisco E1 R2 signaling default is ITU, which supports the following countries: Denmark, Finland, Germany, Russia (ITU variant), Hong Kong (ITU variant), and South Africa (ITU variant). The expression “ITU variant” means that there are multiple R2 signaling types in the specified country, but Cisco supports the ITU variant.

Cisco also supports specific local variants of E1 R2 signaling in the following regions, countries, and corporations:

- Argentina
- Australia
- Bolivia
- Brazil
- Bulgaria
- China
- Colombia
- Costa Rica
- East Europe
- Ecuador ITU
- Ecuador LME
- Greece
- Guatemala
- Hong Kong (uses the China variant)
- Indonesia
- Israel
- Korea
- Laos
- Malaysia
- Malta
- New Zealand
- Paraguay
- Peru
- Philippines
- Saudi Arabia
- Singapore
- South Africa (Panaftel variant)
- Telmex corporation (Mexico)
- Telnor corporation (Mexico)
- Thailand
- Uruguay
- Venezuela
- Vietnam

1. Cisco 3620 and 3640 series routers only.
2. Includes Croatia, Russia, and Slovak Republic.

Only MICA technologies modems support R2 functionality. Microcom modems do not support R2.

The following are benefits of E1 R2 signaling:

- R2 custom localization—R2 signaling is supported for a wide range of countries and geographical regions. Cisco is continually supporting new countries.

- Broader deployment of dial access services—The flexibility of a high-density access server can be deployed in E1 networks.

Cisco’s implementation of R2 signaling has DNIS support turned on by default. If you enable the `ani` option, the collection of DNIS information is still performed. Specifying the `ani` option does not disable DNIS collection. DNIS is the number being called. ANI is the number of the caller. For example, if you are configuring router A to call router B, then the DNIS number is assigned to router B, the ANI number is assigned to router A. ANI is similar to Caller ID.

Figure 44 shows a sample network topology for using E1 R2 signaling with a Cisco AS5800. All four controllers on the access server are configured with R2 digital signaling. Additionally, localized R2 country settings are enabled on the access server.
Figure 44 Service Provider Using E1 R2 Signaling and a Cisco AS5800

Figure 45 shows a sample network topology for using E1 R2 signaling for voice transfers with a Cisco 2600, 3600, or 7200 series router. All the controllers on the router are configured with R2 digital signaling. Additionally, localized R2 country settings are enabled on the router.

Figure 45 E1 R2 Connections for the Cisco 2600/3600/7200 Series Routers

Configuration examples are supplied in the “Configuration Examples for Channelized E1 and Channelized T1” section at the end of this chapter.
Configuring E1 R2 Signaling

To configure support for E1 R2 signaling on the Cisco access servers, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# controller e1 slot/port</td>
<td>Specifies the E1 controller that you want to configure with R2 signaling and begins controller configuration mode.</td>
</tr>
<tr>
<td>Step 2: Router(config-controller)# cas-group channel timeslots range type signal</td>
<td>Configures R2 channel associated signaling on the E1 controller. For a complete description of the available R2 options, see the cas-group command. The R2 part of this command is defined by the signal argument in the cas-group command.</td>
</tr>
</tbody>
</table>

For an E1 R2 configuration example, see the section “E1 R2 Signaling Procedure.”

Configuring E1 R2 Signaling for Voice

To configure E1 R2 signaling on systems that will be configured for voice, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# controller e1 slot/port</td>
<td>Specifies the E1 controller that you want to configure with R2 signaling and begins controller configuration mode.</td>
</tr>
<tr>
<td>Step 2: Router(config-controller)# ds0-group channel timeslots range type signal</td>
<td>Configures R2 channel-associated signaling on the E1 controller. For a complete description of the available R2 options, see the ds0-group (controller e1) command reference page.</td>
</tr>
</tbody>
</table>

How to Configure E1 R2 Signaling

To configure E1 R2 signaling, use the following commands in EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-controller)# cas-custom channel</td>
<td>Enters cas-custom mode. In this mode, you can localize E1 R2 signaling parameters, such as specific R2 country settings for Hong Kong. For the customization to take effect, the channel number used in the cas-custom command must match the channel number specified by the ds0-group command.</td>
</tr>
<tr>
<td>Router(config-ctrl-cas)# country name use-defaults</td>
<td>Specifies the local country, region, or corporation specification to use with R2 signaling. Replaces the name variable with one of the supported country names. Cisco strongly recommends that you include the use-defaults option, which engages the default settings for a specific country. The default setting for all countries is ITU. See the cas-custom command reference page for the list of supported countries, regions, and corporation specifications.</td>
</tr>
<tr>
<td>• Router(config-ctrl-cas)# ani-digits
• Router(config-ctrl-cas)# answer-signal
• Router(config-ctrl-cas)# caller-digits
• Router(config-ctrl-cas)# category
• Router(config-ctrl-cas)# default
• Router(config-ctrl-cas)# dnis-digits
• Router(config-ctrl-cas)# invert-abcd
• Router(config-ctrl-cas)# ka
• Router(config-ctrl-cas)# kd
• Router(config-ctrl-cas)# metering
• Router(config-ctrl-cas)# nc-congestion
• Router(config-ctrl-cas)# unused-abcd
• Router(config-ctrl-cas)# request-category</td>
<td>(Optional) Further customizes the R2 signaling parameters. Some switch types require you to fine tune your R2 settings. Do not tamper with these commands unless you fully understand your switch’s requirements. For nearly all network scenarios, the country name use-defaults command fully configures your country’s local settings. You should not need to perform Step 5. See the cas-custom command reference page for more information about each signaling command.</td>
</tr>
</tbody>
</table>

Monitoring E1 R2 Signaling

To monitor E1 R2 signaling, use the following commands in EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> show controllers e1 or Router> show controllers e1 number</td>
<td>Displays the status for all controllers or a specific controller. Be sure the status indicates the controller is up and there are no alarms or errors (lines 2, 4, 9, and 10, as shown immediately below in the “Monitoring E1 R2 Using the show controllers e1 Command” section).</td>
</tr>
<tr>
<td>Router> show modem csm [slot/port] group number</td>
<td>Displays status for a specific modem, as shown below in the “Monitoring E1 R2 Signaling Using the show modem csm Command” section.</td>
</tr>
</tbody>
</table>
Monitoring E1 R2 Using the show controllers e1 Command

Router# show controllers e1 0

E1 0 is up.
 Applique type is Channelized E1 - balanced
 No alarms detected.
 Version info of Slot 0: HW: 2, Firmware: 4, PLD Rev: 2
 Manufacture Cookie is not programmed.

 Framing is CRC4, Line Code is HDB3, Clock Source is Line Primary.
 Data in current interval (785 seconds elapsed):
 0 Line Code Violations, 0 Path Code Violations
 0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins
 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs
 Total Data (last 13 15 minute intervals):
 0 Line Code Violations, 0 Path Code Violations,
 0 Slip Secs, 12 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins,
 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 12 Unavail Secs

Monitoring E1 R2 Signaling Using the show modem csm Command

Router# show modem csm 1/0

MODEM_INFO: slot 1, port 0, unit 0, tone r2-compelled, modem_mask=0x0000,
 modem_port_offset=0
 tty_hwid=b0x60E63E4C, modem_tty=0x60C16F04, oobp_info=0x00000000, modem_pool=0x60BC60CC
 modem_status(0x0002): VDEV_STATUS_ACTIVE_CALL.
 csm_state(0x0205)=CSM_TC9_CONNECTED, csm_event_proc=0x600CFF70, current call thru CAS line
 invalid_event_count=0, wdt_timeout_count=0
 wdt_timestamp_started is not activated
 wait_for_dialing=False, wait_for_bchan=False
 pri_chnl=TDM_PRI_STREAM(s0, u3, c7), modem_chnl=TDM_MODEM_STREAM(s1, c0)
 dchan_idb_start_index=0, dchan_idb_index=0, call_id=0x0239, bchan_num=6
 csm_event=CSM_EVENT_DSX0_CONNECTED, cause=0x0000
 ring_no_answer=0, ic_failure=0, ic_complete=3
 dial_failure=0, oc_failure=0, oc_complete=0
 oc_busy=0, oc_no_dial_tone=0, oc_dial_timeout=0
 remote_link_disc=2, stat_busyout=2, stat_modem_reset=0
 oobp_failure=0
 call_duration_started=00:04:56, call_duration_ended=00:00:00, total_call_duration=00:01:43
 The calling party phone number =
 The called party phone number = 9993003
 total_free_rbs_timeslot = 0, total_busy_rbs_timeslot = 0, total_busy_rbs_timeslot = 0,
 total_dynamic_busy_rbs_timeslot = 0, total_statistic_dynamic_busy_rbs_timeslot = 0,
 min_free_modem_threshold = 0

Verifying E1 R2 Signaling

To verify the E1 R2 signaling configuration, enter the show controller e1 command to view the status for all controllers, or enter the show controller e1 slot/port command to view the status for a particular controller. Make sure that the status indicates that the controller is up (line 2 in the following example) and that no alarms (line 6 in the following example) or errors (lines 9, 10, and 11 in the following example) have been reported.

Router# show controller E1 1/0

E1 1/0 is up.
 Applique type is Channelized E1
 Cablelength is short 133
Configuring ISDN PRI

Description: E1 WIC card Alpha
No alarms detected.
Framing is CRC4, Line Code is HDB3, Clock Source is Line Primary.
Data in current interval (1 seconds elapsed):
- 0 Line Code Violations, 0 Path Code Violations
- 0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins
- 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs

Troubleshooting E1 R2 Signaling

If a connection does not come up, check for the following:
- Loose wires, splices, connectors, shorts, bridge taps, and grounds
- Backward send and receive
- Mismatched framing types (for example, CRC-4 versus no CRC-4)
- Send and receive pair separation (crosstalk)
- Faulty line cards or repeaters
- Noisy lines (for example, power and crosstalk)

If you see errors on the line or the line is going up and down, check the following:
- Mismatched line codes (HDB3 versus AMI)
- Receive level
- Frame slips due to poor clocking plan

If problems persist, enable the modem management Call Switching Module (CSM) debug mode, using the **debug modem csm** command, as shown immediately below in the “**Debug E1 R1 Signaling Using the debug modem Command**” section.

Debug E1 R1 Signaling Using the debug modem Command

Router# **debug modem csm 1/0**

*May 15 04:05:46.675: VDEV_ALLOCATE: slot 2 and port 39 is allocated.

*May 15 04:05:46.675: CSM_RX_CASEVENT_FROM_NEAT:(04BF): EVENT_CALL_DIAL_IN at slot 2 and port 39

*May 15 04:05:46.675: Mica Modem(2/39): Configure(0x0)
*May 15 04:05:46.675: Mica Modem(2/39): Configure(0x3)
*May 15 04:05:46.675: Mica Modem(2/39): Call Setup

%CONTROLLER-3-UPDOWN: Controller E1 0, changed state to up
It also shows these messages for individual timeslots:
%DSX0-5-RBSLINEUP: RBS of controller 1 timeslot 1 is up
%DSX0-5-RBSLINEUP: RBS of controller 1 timeslot 2 is up
%DSX0-5-RBSLINEUP: RBS of controller 1 timeslot 3 is up
%DSX0-5-RBSLINEUP: RBS of controller 1 timeslot 4 is up
%DSX0-5-RBSLINEUP: RBS of controller 1 timeslot 5 is up
Enabling R1 Modified Signaling in Taiwan

Enabling R1 modified signaling allows a Cisco universal access server to communicate with central office trunks that also use R1 modified signaling. R1 modified signaling is an international signaling standard that is common to channelized T1/E1 networks. Cisco IOS Release 12.1 supports R1 modified signaling customized for Taiwan only. You can configure a channelized T1/E1 interface to support different types of R1 modified signaling, which is used in older analog telephone networks.

This feature allows enterprises and service providers to fully interoperate with the installed Taiwanese telecommunications standards, providing interoperability in addition to the vast array of Cisco IOS troubleshooting and diagnostic capability. This feature will provide customers with a seamless, single-box solution for their Taiwan signaling requirements.

Note

This type of signaling is not the same as ITU R1 signaling; it is R1 signaling modified for Taiwan specifically. In the future, R1 modified signaling will be supported by the Cisco AS5800 access server, and will also be available in Turkey.

The following restrictions are for the use of R1 modified signaling:

- Because different line signaling uses different A/B/C/D bit definitions to represent the line state, you must understand the configuration of the T1/E1 trunk before configuring the CAS group. If the wrong type of provision is configured, the access server might interpret the wrong A/B/C/D bit definitions and behave erratically.
- Cisco access servers (Cisco AS5300, and Cisco AS5800) with Microcom modems cannot support this feature.
- You must know the configuration of the T1/E1 trunk before configuring the cas-group. If there is a trunk provisioning mismatch, performance problems may occur.

R1 Modified Signaling Topology

Figure 46 illustrates a service provider using R1 signaling with E1 and a Cisco AS5200 access server. The network topology would be the same for T1 or a Cisco AS5300 access server.
Figure 46 Service Provider Using E1 R1 Signaling with a Cisco AS5200 Access Server

Figure 47 illustrates a service provider using R1 modified signaling with E1 and a Cisco AS5800 access server.

Figure 47 Service Provider Using E1 R1 Modified Signaling with a Cisco AS5800 Access Server

R1 Modified Signaling Configuration Task List

This section describes how to enable R1 modified signaling on your Cisco access server on both a T1 and E1 interface.

Before beginning the tasks in this section, check for the following hardware and software in your system:

- Cisco AS 5200, Cisco AS5300, or Cisco AS5800 access server (without a Microcom modem)
- Cisco IOS Release 12.1 or later software
- MICA feature module
- Portware Version 2.3.1.0 or later
For information on upgrading your Cisco IOS images, modem portware, or modem code, go to the following locations and then select your access server type (Cisco AS5200, Cisco AS5300, or Cisco AS5800) and port information:

- On Cisco.com:
 http://www.cisco.com/univercd/cc/td/doc/product/access/acs_serv/

 Or, follow this path:
 Cisco Product Documentation/Access Servers and Access Routers/Access Servers

- On the Documentation CD-ROM:
 Cisco Product Documentation/Access Servers and Access Routers/Access Servers

To configure R1 modified signaling, perform the tasks in the following sections, as required:

- Configuring R1 Modified Signaling on a T1 Interface
- Configuring R1 Modified Signaling on an E1 Interface

Note
The sample prompts and output are similar for the Cisco AS5200, Cisco AS5300 and Cisco AS5800 access servers.

Configuring R1 Modified Signaling on a T1 Interface

To configure R1 modified signaling on a T1 interface, use the following commands beginning global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Specifies the T1 controller that you want to configure and begins controller configuration mode. Refer to the Cisco AS5800 Universal Access Server Software Installation and Configuration Guide for port details.</td>
</tr>
<tr>
<td>Cisco AS5800 access server</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vty-async(config)# controller t1 shelf/slot/port</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Cisco AS5200 and AS5300 access servers</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vty-async(config)# controller t1 [0</td>
<td>1</td>
</tr>
<tr>
<td>Router(config)# vty-async(config-controller)#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Entering framing sf configures framing to T1 with sf. Entering framing esf configures framing to T1 only.</td>
</tr>
<tr>
<td>Router(config)# vty-async (config-controller)# framing {sf</td>
<td>esf}</td>
</tr>
<tr>
<td>Step 3</td>
<td>Entering linecode ami configures line code to AMI encoding. Entering linecode b8zs configures line code to b8zs encoding.</td>
</tr>
<tr>
<td>Router(config)# vty-async (config-controller)# linecode {ami</td>
<td>b8zs}</td>
</tr>
<tr>
<td>Step 4</td>
<td>Entering clock source internal configures the clock source to the internal clock. Entering clock source line primary configures the clock source to the primary recovered clock. Entering clock source secondary configures the clock source to the secondary recovered clock.</td>
</tr>
<tr>
<td>Router(config)# vty-async (config-controller)# clock source {internal</td>
<td>line [primary</td>
</tr>
</tbody>
</table>
Configuring R1 Modified Signaling on an E1 Interface

To configure R1 modified signaling on an E1 interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Cisco AS5800 access server
Router(config)# controller e1 shelf/slot/port or Cisco AS5200 and AS5300 access servers
Router(config)# controller e1 [0</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router (config-controller)# framing {crc4</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router (config-controller)# linecode {ami</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router (config-controller)# clock source {internal</td>
</tr>
</tbody>
</table>

1. AMI = alternate mark inversion.
2. For a more detailed description of the syntax and arguments of this command, refer to the *Cisco IOS Dial Technologies Command Reference*.
3. For more information on frame sync and line code, refer to the *Cisco IOS Dial Technologies Command Reference*.

Note:

- The *cas-group #* ranges from 0 to 23 for CT1.
- The *timeslot #* ranges from 1 to 24 for CT1.
- For the *type*, each CAS group can be configured as one of the Robbed Bit Signaling provisions.
- *ani-dnis* indicates R1 will collect ani and dnis information; *dnis* indicates R1 will collect only dnis information.
Troubleshooting Channelized E1 and T1 Channel Groups

Each channelized T1 or channelized E1 channel group is treated as a separate serial interface. To troubleshoot channel groups, first verify configurations and check everything that is normally checked for serial interfaces. You can verify that the time slots and speed are correct for the channel group by checking for CRC errors and aborts on the incoming line.

Note

None of the Cisco channelized interfaces will react to any loop codes. To loop a channelized interface requires that the configuration command be entered manually.

Two loopbacks are available for channel groups and are described in the following sections:
- Interface Local Loopback
- Interface Remote Loopback

Interface Local Loopback

Interface local loopback is a bidirectional loopback, which will loopback toward the router and toward the line. The entire set of time slots for the channel group is looped back. The service provider can use a BERT test set to test the link from the central office to your local router, or the remote router can test using pings to its local interface (which will go from the remote site, looped back at your local site, and return to the interface on the remote site).
To place the serial interface (channel group) into local loopback, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# loopback local</td>
<td>Places the serial interface (channel group) in local loopback.</td>
</tr>
</tbody>
</table>

Interface Remote Loopback

Remote loopback is the ability to put the remote DDS CSU/DSU in loopback. It will work only with channel groups that have a single DS0 (1 time slot), and with equipment that works with a latched CSU loopback as specified in AT&T specification TR-TSY-000476, “OTGR Network Maintenance Access and Testing.” To place the serial interface (channel group) in remote loopback, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# loopback remote interface</td>
<td>Places the serial interface (channel group) in remote loopback.</td>
</tr>
</tbody>
</table>

Using the `loopback remote interface` command sends a latched CSU loopback command to the remote CSU/DSU. The router must detect the response code, at which time the remote loopback is verified.

Configuration Examples for Channelized E1 and Channelized T1

- ISDN PRI Examples
- PRI Groups and Channel Groups on the Same Channelized T1 Controller Example
- Robbed-Bit Signaling Examples
- Switched 56K Configuration Examples
- ISDN CAS Examples
- E1 R2 Signaling Procedure
- R1 Modified Signaling Using an E1 Interface Example
- R1 Modified Signaling for Taiwan Configuration Example

ISDN PRI Examples

This section contains the following ISDN PRI examples:

- Global ISDN, BRI, and PRI Switch Example
- Global ISDN and Multiple BRI and PRI Switch Using TEI Negotiation Example
- NSF Call-by-Call Support Example
- PRI on a Cisco AS5000 Series Access Server Example
- ISDN B-Channel Busyout Example
- Multiple ISDN Switch Types Example
- Outgoing B-Channel Ascending Call Order Example
Global ISDN, BRI, and PRI Switch Example

The following example shows BRI interface 0 configured for a NET3 ISDN switch type (basic-net3 keyword) that will override the National ISDN switch type configured globally. The PRI interface (channelized T1 controller) is configured for ISDN switch type Primary-Net5 and is applied only to the PRI.

```
isdn switch-type basic-ni
! interface BRI0
  isdn switch-type basic-net3
interface serial0:23
! Apply the primary-net5 switch to this interface only.
  isdn switch-type primary-net5
```

Global ISDN and Multiple BRI and PRI Switch Using TEI Negotiation Example

In the following example, the global ISDN switch type setting is NET3 ISDN (basic-net3 keyword) and the PRI interface (channelized T1 controller) is configured to use isdn switch-type primary-net5. BRI interface 0 is configured for isdn switch-type basic-ni and isdn tei first-call. TEI first-call negotiation configured on BRI interface 0 overrides the default value (isdn tei powerup).

```
isdn switch-type basic-net
! interface serial0:23
  isdn switch-type primary-net5
  ip address 172.21.24.85 255.255.255.0
! interface BRI0
  isdn switch-type basic-ni
  isdn tei first-call
```

NSF Call-by-Call Support Example

The following example configures NSF, which is needed for an AT&T 4ESS switch when it is configured for call-by-call support. In call-by-call support, the PRI 4ESS switch expects some AT&T-specific information when placing outgoing ISDN PRI voice calls. The options are accunet, sdn, and megacom.

This example shows both the controller and interface commands required to make the ISDN interface operational and the DDR commands, such as the dialer map, dialer-group, and map-class dialer commands, that are needed to configure the ISDN interface to make outgoing calls.

```
! The following lines configure the channelized T1 controller; all time slots are
! configured for ISDN PRI.
! controller t1 1/1
  framing esf
  linecode b8zs
  pri-group timeslots 1-23
  isdn switch-type primary-4ess
!```
The following lines configure the D channel for DDR. This configuration applies to all B channels on the ISDN PRI interface.

```plaintext
interface serial 1/1:23
description Will mark outgoing calls from AT&T type calls.
ip address 10.1.1.1 255.255.255.0
encapsulation ppp
dialer map ip 10.1.1.2 name tommyjohn class sdnplan 14193460913
dialer map ip 10.1.1.3 name angus class megaplan 14182616900
dialer map ip 10.1.1.4 name angus class accuplan 14193453730
dialer-group 1
 ppp authentication chap
 map-class dialer sdnplan
dialer outgoing sdn
 map-class dialer megaplan
dialer voice-call
 map-class dialer accuplan
dialer outgoing accu
```

**PRI on a Cisco AS5000 Series Access Server Example**

The following example configures ISDN PRI on the appropriate interfaces for IP dial-in on channelized T1:

```plaintext
! T1 PRI controller configuration
controller T1 0
 framing esf
 linecode b8zs
 clock source line primary
 pri-group timeslots 1-24
! controller T1 1
 framing esf
 linecode b8zs
 clock source line secondary
 pri-group timeslots 1-24
! interface Serial0:23
 isdn incoming-voice modem
dialer rotary-group 1
! interface Serial1:23
 isdn incoming-voice modem
dialer rotary-group 1
! interface Loopback0
 ip address 172.16.254.254 255.255.255.0
! interface Ethernet0
 ip address 172.16.1.1 255.255.255.0
! interface Group-Async1
 ip unnumbered Loopback0
 ip tcp header-compression passive
 encapsulation ppp
 async mode interactive
 peer default ip address pool default
```
The following example configures ISDN PRI on the appropriate interfaces for IP dial-in on channelized E1:

```cisco
! E1 PRI controller configuration
controller E1 0
 framing crc4
 linecode hdb3
 clock source line primary
 pri-group timeslots 1-31
!
controller E1 1
 framing crc4
 linecode hdb3
 clock source line secondary
 pri-group timeslots 1-31
!
interface serial0:15
 isdn incoming-voice modem
 dialer rotary-group 1
!
interface serial1:15
 isdn incoming-voice modem
 dialer rotary-group 1
!
interface loopback0
 ip address 172.16.254.254 255.255.255.0
!
interface ethernet0
 ip address 172.16.1.1 255.255.255.0
!
! The following block of commands configures DDR for all the ISDN PRI interfaces configured above. The dialer-group and dialer rotary-group commands tie the interface configuration blocks to the DDR configuration.
!
interface dialer1
 ip unnumbered loopback0
 encapsulation ppp
 peer default ip address pool default
 ip local pool default 172.16.254.1 172.16.254.60
 dialer in-band
 dialer-group 1
 dialer idle-timeout 3600
 ppp multilink
 ppp authentication chap pap default
```
ISDN B-Channel Busyout Example

interface Serial0:23
  ip address 172.16.0.0 192.168.0.0
  no ip directed-broadcast
  encapsulation ppp
  no keepalive
dialer idle-timeout 400
dialer load-threshold 1 either
dialer-group 1
isdn switch-type primary-5ess
isdn incoming-voice modem
isdn snmp busyout b-channel
no fair-queue
no cdp enable

Multiple ISDN Switch Types Example

The following example configures ISDN switch type keyword primary-4ess on channelized T1 controller 0 and a switch type keyword primary-net5 for channelized T1 controller 1.

controller t1 0
  framing esf
  linecode b8zs
  isdn switchtype primary-4ess
!
controller t1 1
  framing esf
  linecode b8zs
  isdn switchtype primary-net5

The following example shows BRI interface 0 configured for switch type keyword basic-net3 (NET3 ISDN) that will override the global switch type keyword basic-ni (National ISDN). The PRI interface (channelized T1 controller), is configured for ISDN switch type keyword primary-net5 and is applied only to the PRI interface.
isdn switch-type basic-ni
!
interface BRI0
  isdn switch-type basic-net3
interface serial0:23
  ! Apply the primary-net5 switch to this interface only.
  isdn switch-type primary-net5

Outgoing B-Channel Ascending Call Order Example

The following example configures the router to use global ISDN switch-type keyword primary-ni and configures the ISDN outgoing call channel selection to be made in ascending order:
isdn switch-type primary-ni
!
interface serial0:23
  isdn bchan-number-order ascending
**Static TEI Configuration Example**

The following example shows a static TEI configuration:

```
interface bri 0
isdn static-tei 1
```

**Call Reject Configuration Examples**

The following example configures the network to accept incoming ISDN voice calls and reject data calls:

```
interface Serial4:23
 description Connected to V-Sys R2D2
 no ip address
 isdn switch-type primary-5ess
 isdn incoming-voice modem
 isdn reject data
 no cdp enable
end
```

The following example sets cause code 21 to reject all incoming data calls:

```
interface serial 2/0:23
 isdn reject data
 isdn reject cause 21
```

**ISDN Cause Code Override and Guard Timer Example**

The following example shows how to configure cause code override and the ISDN guard timer:

```
interface Serial0:23
 no ip address
 no ip directed-broadcast
 encapsulation ppp
 dialer rotary-group 0
 isdn switch-type primary-5ess
 isdn incoming-voice modem
 isdn disconnect-cause 17
 isdn guard-timer 3000 on-expiry accept
 isdn calling-number 8005551234
 no fair-queue
 no cdp enable
```

**PRI Groups and Channel Groups on the Same Channelized T1 Controller Example**

The following example shows a channelized T1 controller configured for PRI groups and for channel groups. The **pri-group** command and the **channel-group** command cannot have overlapping time slots; note the correct time slot configuration in this example.

```
controller t1 0
channel-group 0 timeslot 1-6
channel-group 1 timeslot 7
channel-group 2 timeslot 8
channel-group 3 timeslot 9-11
pri-group timeslot 12-24
```

The same type of configuration also applies to channelized E1.
Robbed-Bit Signaling Examples

This section provides sample configurations for the T1 controllers on the Cisco access server. You can configure the 24 channels of a channelized T1 to support ISDN PRI, robbed-bit signaling, channel grouping, or a combination of all three. The following samples are provided:

- Allocating All Channels for Robbed-Bit Signaling Example
- Mixing and Matching Channels—Robbed-Bit Signaling and Channel Grouping

Allocating All Channels for Robbed-Bit Signaling Example

The following example configures all 24 channels to support robbed-bit signaling feature group B on a Cisco access server:

```
controller T1 0
cas-group 1 timeslots 1-24 type e&m-fgb
```

Mixing and Matching Channels—Robbed-Bit Signaling and Channel Grouping

The following example shows you how to configure all 24 channels to support a combination of ISDN PRI, robbed-bit signaling, and channel grouping. The range of time slots that you allocate must match the time slot allocations that your central office chooses to use. This is a rare configuration due to the complexity of aligning the correct range of time slots on both ends of the connection.

The following configuration creates serial interfaces 0 to 9, which correspond to ISDN PRI time slots 1 to 10 (shown as serial 1:0 through serial 1:9). The serial line 1:23 is the D channel, which carries the analog signal bits that dial the phone number of the modem and determine if a modem is busy or available. The D channel is automatically created and assigned to time slot 24.

```
controller T1 0
! ISDN PRI is configured on time slots 1 through 10.
pri-group timeslots 1-10
! Channelized T1 data is transmitted over time slots 11 through 16.
channel-group 11 timeslots 11-16
! The channel-associated signal ear and mouth feature group B is configured on
! virtual signal group 17 for time slots 17 to 23, which are used for incoming
! and outgoing analog calls.
cas-group 17 timeslots 17-23 type e&m-fgb
```

There is no specific interface, such as the serial interface shown in the earlier examples, that corresponds to the time-slot range.

Switched 56K Configuration Examples

The following switched 56K configuration examples are provided:

- Switched 56K T1 Controller Procedure
- Mixture of Switched 56K and Modem Calls over CT1 CAS Example
- Switched 56K and Analog Modem Calls over Separate T1 CAS Lines Example
- Comprehensive Switched 56K Startup Configuration Example
Switched 56K T1 Controller Procedure

The following procedure shows how to configure one T1 controller on a Cisco access server to support switched 56K digital calls. The Cisco access server has four controllers, which are numbered 0 to 3. If you want all four T1 controllers to support switched 56K calls, then repeat this procedure on each controller.

Step 1
Enter global configuration mode using the `configure terminal` command:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
```

Step 2
Specify a T1 controller with the `controller t1 number` command. Replace the `number` variable with a controller number from 0 to 3.

```
Router(config)# controller t1 1
```

Step 3
Configure robbed-bit signaling on a range of timeslots, then specify switched 56K digital services using the `cas-group` command. In this example, all calls coming into controller T1 1 are expected to be switched 56K data calls, not analog modem calls.

```
Router(config-controller)# cas-group 1 timeslots 1-24 type e&m-fgb service data
```

**Note**
Be sure your signaling type matches the signaling type specified by the central office or telco on the other end. For a list of supported signaling types and how to collect DNIS, refer to the `cas-group` command description for the E1 controller card in the Cisco IOS Dial Technologies Command Reference, Release 12.2.

Step 4
Set the framing for your network environment. You can choose ESF (enter `framing esf`) or SF (enter `framing sf`).

```
Router(config-controller)# framing esf
```

Step 5
Set the line-code type for your network environment. You can choose AMI encoding (enter `linecode ami`) or B8ZS encoding (enter `linecode b8zs`).

```
Router(config-controller)# linecode b8zs
```

Mixture of Switched 56K and Modem Calls over CT1 CAS Example

The following example configures on e T1 controller to accept incoming switched 56K digital calls and analog modem calls over the same T1 CAS line. Time slots 1 through 10 are provisioned by the telco to support switched 56K digital calls. Time slots 11 through 24 are provisioned to support analog modem calls. Due to the DS0s provisioning, it is impossible for analog modems calls to be sent over the DS0s that map to time slots 1 through 10.

```
controller T1 0
 cas-group 1 timeslots 1-10 type e&m-fgb service data
 cas-group 1 timeslots 11-24 type e&m-fgb service voice
 framing esf
 clock source line primary
 linecode b8zs
 exit
```
Switched 56K and Analog Modem Calls over Separate T1 CAS Lines Example

The following example configures one Cisco access server to accept 50 percent switched 56K digital calls and 50 percent analog modem calls. The controllers T1 0 and T1 1 are configured to support the switched 56K digital calls using the `cas-group 1 timeslots 1-24 type e&m-fgb service digital` command. Controllers T1 2 and T1 3 are configured to support analog modem calls.

```
controller T1 0
 cas-group 1 timeslots 1-24 type e&m-fgb service data
 framing esf
 clock source line primary
 linecode b8zs
 exit
controller T1 1
 cas-group 1 timeslots 1-24 type e&m-fgb service data
 framing esf
 clock source line secondary
 linecode b8zs
 exit
controller T1 2
 cas-group 1 timeslots 1-24 type e&m-fgb service voice
 framing esf
 clock source internal
 linecode b8zs
 exit
controller T1 3
 cas-group 1 timeslots 1-24 type e&m-fgb service voice
 framing esf
 clock source internal
 linecode b8zs
 exit
copy running-config startup-config
```

Comprehensive Switched 56K Startup Configuration Example

The startup configuration in this section runs on the Cisco access server, as shown in Figure 41. This configuration is for an IP dial-in scenario with a mix of switched 56K calls and modem calls. Switched 56K digital calls come into controllers T1 0 and T1 1. Analog modem calls come into controllers T1 2 and T1 3.

In this example, the switched 56K clients are single endpoints in a remote node configuration. If each switched 56K client were instead a router with a LAN behind it without port address translation (PAT) turned on, then a static address, subnet mask, and route must be configured for each remote endpoint. This configuration would best done through RADIUS.

After a T1 time slot is configured with robbed-bit signaling using the `cas-group` command with the `service data` option, a logical serial interface is instantly created for each switched 56K channel. For example, signaling configured on all 24 time slots of controller T1 1 dynamically creates serial interfaces S0:0 through S0:23. You must then configure protocol support on each serial interface. No `interface group` command exists for serial interfaces, unlike asynchronous interfaces via the `interface group-async` command. Each serial interface must be individually configured. In most cases, the serial configurations will be identical. To streamline or shorten this configuration task, you might consider using a dialer interface, as shown in the following example.

```
Note
In the following example, only analog modem calls encounter the group asynchronous and line interfaces. Switched 56K calls encounter the logical serial interfaces and dialer interface.
```
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname 5300
!
! Switched 56K calls come into controllers T1 0 and T1 1. Take note of the keywords
! "service data" in the cas-group command.
!
controller T1 0
framing esf
clock source line primary
linecode b8zs
cas-group 0 timeslots 1-24 type e&m-fgb service data
!
controller T1 1
framing esf
clock source line secondary
linecode b8zs
cas-group 1 timeslots 1-24 type e&m-fgb service data
!
controller T1 2
framing esf
clock source line internal
linecode b8zs
cas-group 2 timeslots 1-24 type e&m-fgb
!
controller T1 3
framing esf
clock source line internal
linecode b8zs
cas-group 3 timeslots 1-24 type e&m-fgb
!
interface loopback0
  ip address 10.1.2.62 255.255.255.192
!
interface Ethernet0
  no ip address
  shutdown
!
interface FastEthernet0
  ip address 10.1.1.11 255.255.255.0
  ip summary address eigrp 10.10.1.2.0 255.255.255.192

! Interface serial0:0 maps to the first switched 56K channel. The dialer pool-member
! command connects this channel to dialer interface 1.

! interface Serial0:0
  dialer rotary-group 1
! interface Serial0:1
  dialer rotary-group 1
! interface Serial0:2
  dialer rotary-group 1
! interface Serial0:3
  dialer rotary-group 1
! interface Serial0:4
  dialer rotary-group 1
! interface Serial0:5
  dialer rotary-group 1
! interface Serial0:6
  dialer rotary-group 1
! interface Serial0:7
  dialer rotary-group 1
! interface Serial0:8
  dialer rotary-group 1
! interface Serial0:9
  dialer rotary-group 1
! interface Serial0:10
  dialer rotary-group 1
! interface Serial0:11
  dialer rotary-group 1
! interface Serial0:12
  dialer rotary-group 1
! interface Serial0:13
  dialer rotary-group 1
! interface Serial0:14
  dialer rotary-group 1
! interface Serial0:15
  dialer rotary-group 1
! interface Serial0:16
  dialer rotary-group 1
! interface Serial0:17
  dialer rotary-group 1
! interface Serial0:18
  dialer rotary-group 1
!
interface Serial0:19
dialer rotary-group 1
!
interface Serial0:20
dialer rotary-group 1
!
interface Serial0:21
dialer rotary-group 1
!
interface Serial0:22
dialer rotary-group 1
!
! Interface serial 0:23 is the last switched 56K channel for controller T1 0.
! interface Serial0:23
dialer rotary-group 1
!
! The switched 56K channels for controller T1 1 begin with interface serial 1:0 and end
! with interface serial 1:23.
! interface Serial1:0
dialer rotary-group 1
!
interface Serial1:1
dialer rotary-group 1
!
interface Serial1:2
dialer rotary-group 1
!
interface Serial1:3
dialer rotary-group 1
!
interface Serial1:4
dialer rotary-group 1
!
interface Serial1:5
dialer rotary-group 1
!
interface Serial1:6
dialer rotary-group 1
!
interface Serial1:7
dialer rotary-group 1
!
interface Serial1:8
dialer rotary-group 1
!
interface Serial1:9
dialer rotary-group 1
!
interface Serial1:10
dialer rotary-group 1
!
interface Serial1:11
dialer rotary-group 1
!
interface Serial1:12
dialer rotary-group 1
!
interface Serial1:13
dialer rotary-group 1
!
interface Serial1:14
dialer rotary-group 1
! interface Serial1:15
dialer rotary-group 1
!
interface Serial1:16
dialer rotary-group 1
!
interface Serial1:17
dialer rotary-group 1
!
interface Serial1:18
dialer rotary-group 1
!
interface Serial1:19
dialer rotary-group 1
!
interface Serial1:20
dialer rotary-group 1
!
interface Serial1:21
dialer rotary-group 1
!
interface Serial1:22
dialer rotary-group 1
!
interface Serial1:23
dialer rotary-group 1
!
interface Group-Async1
ip unnumbered Loopback0
encapsulation ppp
async mode interactive
peer default ip address pool dialin_pool
no cdp enable
ppp authentication chap pap dialin
group-range 1 96
!
interface Dialer1
ip unnumbered Loopback0
no ip mroute-cache
encapsulation ppp
peer default ip address pool dialin_pool
no fair-queue
no cdp enable
ppp authentication chap pap dialin
!
router eigrp 10
network 10.0.0.0
passive-interface Dialer0
no auto-summary
!
ip local pool dialin_pool 10.1.2.1 10.1.2.96
ip default-gateway 10.1.1.1
ip classless
!
dialer-list 1 protocol ip permit
radius-server host 10.1.1.23 auth-port 1645 acct-port 1646
radius-server host 10.1.1.24 auth-port 1645 acct-port 1646
radius-server key cisco
!
line con 0
login authentication console
line 1 96
autoselect ppp
autoselect during-login
login authentication dialin
modem DialIn
line aux 0
login authentication console
line vty 0 4
login authentication vty
transport input telnet rlogin
!
end

ISDN CAS Examples

This section provides channelized E1 sample configurations for the Cisco access server. You can configure the 30 available channels with CAS, channel grouping, or a combination of the two. The following examples are provided:

- Allocating All Channels for CAS Example
- Mixing and Matching Channels—CAS and Channel Grouping Example

Allocating All Channels for CAS Example

The following interactive example configures channels (also known as time slots) 1 to 30 with ear and mouth channel signaling and feature group B support on a Cisco access server; it also shows that the router displays informative messages about each time slot. Signaling messages are sent in the 16th time slot; therefore, that time slot is not brought up.

Router#
%SYS-5-CONFIG_I: Configured from console by console
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# controller e1 0
Router(config-controller)# cas-group 1 timeslots 1-31 type e&m-fgb
Router(config-controller)#
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 1 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 2 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 3 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 4 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 5 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 6 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 7 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 8 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 9 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 10 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 11 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 12 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 13 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 14 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 15 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 16 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 17 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 18 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 19 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 20 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 21 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 22 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 23 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 24 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 25 is up
%DXS0-5-RBSLINEUP: RBS of controller 0 timeslot 26 is up
Mixing and Matching Channels—CAS and Channel Grouping Example

The following interactive example shows you how to configure an E1 controller to support a combination of CAS and channel grouping. The range of time slots that you allocate must match the time slot allocations that your central office chooses to use. This configuration is rare because of the complexity of aligning the correct range of time slots on both ends of the connection.

Time slots 1 through 15 are assigned to channel group 1. In turn, these time slots are assigned to serial interface 0 and virtual channel group 1 (shown as serial 0:1).

Router(config)# controller e1 0
Router(config-controller)# channel-group 1 timeslots 1-15
Router(config-controller)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0:1, changed state to down
%LINK-3-UPDOWN: Interface Serial0:1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0:1, changed state to up

Time slots 17 to 31 are configured with CAS:

Router(config-controller)# cas-group 2 timeslots 17-31 type e&m-fgb
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0:1, changed state to down
Router(config-controller)#
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 17 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 18 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 19 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 20 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 21 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 22 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 23 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 24 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 25 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 26 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 27 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 28 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 29 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 30 is up
%DSX0-5-RBSLINEUP: RBS of controller 0 timeslot 31 is up

E1 R2 Signaling Procedure

The following procedure configures R2 signaling and customizes R2 parameters on controller E1 2 of a Cisco AS5300 access server. In most cases, the same R2 signaling type is configured on each E1 controller.

**Step 1** Enter global configuration mode using the `configure terminal` command:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Step 2 Specify the E1 controller that you want to configure with R2 signaling using the `controller e1 number` global configuration command. A controller informs the access server how to distribute or provision individual time slots for a connected channelized E1 line. You must configure one E1 controller for each E1 line.

Router(config)# controller e1 2

Step 3 Configure CAS with the `cas-group channel timeslots range type signal` command. The signaling type forwarded by the connecting telco switch must match the signaling configured on the Cisco AS5300 access server. The Cisco IOS configuration options are `r2-analog`, `r2-digital`, or `r2-pulse`.

Router(config-controller)# cas-group 1 timeslots 1-31 type ?
e&m-fgb              E & M Type II FGB
e&m-fgd              E & M Type II FGD
e&m-immediate-start E & M Immediate Start
fxs-ground-start     FXS Ground Start
fxs-loop-start       FXS Loop Start
p7                   P7 Switch
r2-analog            R2 ITU Q411
r2-digital           R2 ITU Q421
r2-pulse             R2 ITU Supplement 7
sas-ground-start     SAS Ground Start
sas-loop-start       SAS Loop Start

The following example specifies R2 ITU Q421 digital line signaling (`r2-digital`). This example also specifies R2 compelled register signaling and provisions the ANI ADDR option.

Router(config-controller)# cas-group 1 timeslots 1-31 type r2-digital r2-compelled ani

Router(config-controller)#
Note The actual R2 CAS is configured on the 16th time slot, which is why the time slot does not come up in the example output. For a description of the supported R2 signaling options, refer to the `cas-group` command for the E1 controller in the Cisco IOS Dial Technologies Command Reference.

Step 4 Customize some of the E1 R2 signaling parameters with the `cas-custom channel` controller configuration command. This example specifies the default R2 settings for Argentina. For custom options, refer to the `cas-custom` command in the Cisco IOS Dial Technologies Command Reference.

Router(config-controller)# cas-custom 1
Router(config-ctrl-cas)# ?
CAS custom commands:
  ani-digits Expected number of ANI digits
  answer-signal Answer signal to be used
  caller-digits Digits to be collected before requesting CallerID
  category Category signal
  country Country Name
  default Set a command to its defaults
  dnis-digits Expected number of DNIS digits
  exit Exit from cas custom mode
  invert-abcd invert the ABCD bits before tx and after rx
  ka KA Signal
  kd KD Signal
  metering R2 network is sending metering signal
  nc-congestion Non Compelled Congestion signal
  no Negate a command or set its defaults
  request-category DNIS digits to be collected before requesting category
  unused-abcd Unused ABCD bit values

Router(config-ctrl-cas)# country argentina
Router(config-ctrl-cas)# country argentina use-defaults

Note We highly recommend that you specify the default settings of your country. To display a list of supported countries, enter the `country?` command. The default setting for all countries is ITU.
R1 Modified Signaling Using an E1 Interface Example

The following example shows a configuration sample for R1 modified signaling on a Cisco access sever, using an E1 interface:

```
version xx.x
service timestamps debug datetime msec
no service password-encryption
!
hostname router
!
enable secret 5 1YAaG$SLOjTcQ.nMH.gpFYxaOU5c.
!
no modem fast-answer
ip host dirt 10.255.254.254
ip multicast rpf-check-interval 0
isdn switch-type primary-dms100
!
!
controller E1 0
 clock source line primary
 cas-group 1 timeslots 1-15,17-31 type r1-modified ani-dnis
!
controller E1 1
 clock source line secondary
 cas-group 1 timeslots 1-15,17-31 type r1-modified ani-dnis
!
controller E1 2
 clock source internal
!
controller E1 3
 clock source internal
!
interface Ethernet0
 ip address 10.19.36.7 255.255.0.0
 no ip mroute-cache
!
interface FastEthernet0
 no ip address
 no ip route-cache
 no ip mroute-cache
 shutdown
!
interface Group-Async1
 ip unnumbered Ethernet0
 encapsulation ppp
dialer in-band
dialer idle-timeout 480
dialer-group 1
async dynamic address
async mode interactive
peer default ip address pool DYNAMIC
no fair-queue
no cdp enable
group-range 1 108
!
router igrp 200
 network 10.0.0.0
 network 192.168.254.0
!
no ip classless
ip route 0.0.0.0 0.0.0.0 Ethernet0
logging source-interface Ethernet0
```
R1 Modified Signaling for Taiwan Configuration Example

The following example shows how to configure R1 modified signaling for Taiwan:

```plaintext
service timestamps debug datetime msec
no service password-encryption
!
hostname router
!
enable secret 5 1YAaGSL0jTcQ.nMH.gpFYXaOUsC.
!
no modem fast-answer
ip host dirt 192.168.254.254
ip multicast rpf-check-interval 0
isdn switch-type primary-dms100
!
!
controller T1 1/1/0
 framing esf
 linecode b8zs
 cablelength short 133
 pri-group timeslots 1-24
 fdl att
!
controller T1 1/1/1
 framing esf
 linecode b8zs
 cablelength short 133
 cas-group 1 timeslots 1-24 type r1-modified
 fdl att
!
controller T1 1/1/2
 framing esf
 linecode b8zs
 cablelength short 133
 pri-group timeslots 1-24
 fdl att
!
controller T1 1/1/3
 framing esf
 linecode b8zs
 cablelength short 133
 pri-group timeslots 1-24
 fdl att
!
```

Configuring ISDN Special Signaling

This chapter describes features that either depend on special signaling services offered by an ISDN network service provider or overcome an inability to deliver certain signals. It describes these features in the following main sections:

- How to Configure ISDN Special Signaling
- Troubleshooting ISDN Special Signaling
- Configuration Examples for ISDN Special Signaling

For an overview of ISDN PRI, see the section “ISDN Service” in the “Overview of Dial Interfaces, Controllers, and Lines” chapter, and the section “ISDN Overview” in the “Configuring ISDN BRI” chapter.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the ISDN signaling commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

How to Configure ISDN Special Signaling

To configure special signaling features of ISDN, perform the tasks in the following sections; all tasks are optional:

- Configuring ISDN AOC (Optional)
- Configuring NFAS on PRI Groups (Optional)
- Enabling an ISDN PRI to Take PIAFS Calls on MICA Modems (Optional)
- Configuring Automatic Detection of Encapsulation Type (Optional)
- Configuring Encapsulation for Combinet Compatibility (Optional)

See the section “Configuration Examples for ISDN Special Signaling” at the end of this chapter for examples of these signaling features. See the “Troubleshooting ISDN Special Signaling” section later in this chapter for help in troubleshooting ISDN signaling features.
Configuring ISDN AOC

ISDN Advice of Charge (AOC) allows users to obtain charging information for all calls during the call (AOC-D) or at the end of the call (AOC-E) or both.

Users must have subscribed through their local ISDN network to receive the AOC information from the switch. No router configuration changes are required to retrieve this call charging information.

The ISDN AOC feature also supports, for the AOC-D service, an optional configurable short-hold mode that provides a dynamic idle timeout by measuring the call charging period, based on the frequency of the AOC-D or the AOC-E message from the network. The short-hold mode allows users to track call costs and to control and possibly reduce tariff charges. The short-hold mode idle time will do the following:

- Disconnect a call just before the beginning of a new charging period if the call has been idle for at least the configured minimum idle time.
- Maintain the call to the end of the current charging period past the configured idle timeout if the time left in the charging period is longer.

Incoming calls are disconnected using the static dialer idle timeout value.

The AOC-D and AOC-E messages are part of the Facility Information Element (IE) message. Its contents can be verified with the `debug q931` command. Call accounting information from AOC-D and AOC-E messages is stored in Simple Network Management Protocol (SNMP) MIB objects.

ISDN AOC is provided for ISDN PRI NET5 and ISDN BRI NET3 switch types only. AOC information at call setup is not supported.

Configuring Short-Hold Mode

No configuration is required to enable ISDN AOC. However, you can configure the optional short-hold minimum idle timeout period for outgoing calls; the default minimum idle timeout is 120 seconds. If the short-hold option is not configured, the router default is to use the static dialer idle timeout. If the short-hold idle timeout has been configured but no charging information is available from the network, the static dialer idle timeout applies.

To configure an ISDN interface and provide the AOC short-hold mode option on an ISDN interface, perform the following steps:

**Step 1** Configure the ISDN BRI or PRI interface, as described in the chapter “Configuring ISDN BRI” or the section “How to Configure ISDN PRI” in the chapter “Configuring ISDN PRI” later in this publication, using the relevant keyword in the `isdn switch-type` command:

- BRI interface—`basic-net3`
- PRI interface—`primary-net5`

**Step 2** Configure dialer profiles or legacy dial-on-demand routing (DDR) for outgoing calls, as described in the chapters in the “Dial-on-Demand Routing” part of this publication, making sure to do the following:

- Configure the static line-idle timeout to be used for incoming calls.
- For each destination, use the `dialer map` command with the `class` keyword (legacy DDR) or a `dialer string class` command (dialer profiles) to identify the dialer map class to be used for outgoing calls to the destination.
Step 3 Configure each specified dialer map class, providing a dialer idle timeout, or ISDN short-hold timeout, or both for outgoing calls, as described in this chapter.

To configure a dialer map class with timers, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>Router(config)# map-class dialer classname</code></td>
<td>Specifies the dialer map class and begins map class configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>Router(config-map-class)# dialer idle-timeout seconds</code></td>
<td>(Optional) Specifies a static idle timeout for the map class to override the static line-idle timeout configured on the BRI interface.</td>
</tr>
<tr>
<td>3</td>
<td><code>Router(config-map-class)# dialer isdn short-hold seconds</code></td>
<td>Specifies a dialer ISDN short-hold timeout for the map class.</td>
</tr>
</tbody>
</table>

Monitoring ISDN AOC Call Information

To monitor ISDN AOC call information, use the following command in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router&gt; show isdn {active</td>
<td>dsl</td>
</tr>
</tbody>
</table>

Configuring NFAS on PRI Groups

ISDN Non-Facility Associated Signaling (NFAS) allows a single D channel to control multiple PRI interfaces. A backup D channel can also be configured for use when the primary NFAS D channel fails.

Use of a single D channel to control multiple PRI interfaces can free one B channel on each interface to carry other traffic.

Any hard failure causes a switchover to the backup D channel and currently connected calls remain connected.

Once the channelized T1 controllers are configured for ISDN PRI, only the NFAS primary D channel must be configured; its configuration is distributed to all the members of the associated NFAS group.
ISDN NFAS Prerequisites

NFAS is only supported with a channelized T1 controller. Table 27 shows the Cisco IOS keywords for the ISDN switch types and lists whether NFAS is supported.

<table>
<thead>
<tr>
<th>Switch Type</th>
<th>Keyword</th>
<th>NFAS Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucent 4ESS Custom NFAS</td>
<td>primary-4ess</td>
<td>Yes</td>
</tr>
<tr>
<td>Lucent 5ESS Custom NFAS</td>
<td>primary-5ess</td>
<td>No (use National)</td>
</tr>
<tr>
<td>Nortel DMS Custom NFAS</td>
<td>primary-dms</td>
<td>Yes</td>
</tr>
<tr>
<td>NTT Custom NFAS</td>
<td>primary-ntt</td>
<td>Yes</td>
</tr>
<tr>
<td>National</td>
<td>primary-ni</td>
<td>Yes</td>
</tr>
<tr>
<td>Other switch types</td>
<td>—</td>
<td>No (use National)</td>
</tr>
</tbody>
</table>

*Note* On the Nortel (Northern Telecom) DMS-100 switch, when a single D channel is shared, multiple PRI interfaces may be configured in a single trunk group. The additional use of alternate route indexing, which is a feature of the DMS-100 switch, provides a rotary from one trunk group to another. This feature enables the capability of building large trunk groups in a public switched network.

The ISDN switch must be provisioned for NFAS. The primary and backup D channels should be configured on separate T1 controllers. The primary, backup, and B-channel members on the respective controllers should be the same as that configured on the router and ISDN switch. The interface ID assigned to the controllers must match that of the ISDN switch.

ISDN NFAS Configuration Task List

To configure NFAS on channelized T1 controllers configured for ISDN, perform the tasks in the following section: Configuring NFAS on PRI Groups (required).

You can also disable a channel or interface, if necessary, and monitor NFAS groups and ISDN service. To do so, perform the tasks in the following sections:

- Configuring NTT PRI NFAS (Optional)
- Disabling a Channel or Interface (Optional)
- Monitoring NFAS Groups (Optional)
- Monitoring ISDN Service (Optional)

See the section “NFAS Primary and Backup D Channels” later in this chapter for ISDN, NFAS, and DDR configuration examples.

Configuring NFAS on PRI Groups

This section documents tasks used to configure NFAS with D channel backup. When configuring NFAS, you use an extended version of the ISDN `pri-group` command to specify the following values for the associated channelized T1 controllers configured for ISDN:

- The range of PRI time slots to be under the control of the D channel (time slot 24).
Configuring ISDN Special Signaling

How to Configure ISDN Special Signaling

The function to be performed by time slot 24 (primary D channel, backup, or none); the latter specifies its use as a B channel.

The group identifier number for the interface under control of the D channel.

To configure ISDN NFAS, use the following commands in controller configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config-controller)# pri-group timeslots 1-24 nfas_d primary nfas_interface number nfas_group number</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-controller)# pri-group timeslots 1-24 nfas_d backup nfas_interface number nfas_group number</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-controller)# pri-group timeslots 1-24 nfas_d none nfas_interface number nfas_group number</td>
</tr>
</tbody>
</table>

For an example of configuring three T1 controllers for the NFAS primary D channel, the backup D channel, and 24 B channels, along with the DDR configuration for the PRI interface, see the section “NFAS Primary and Backup D Channels” at the end of this chapter.

When a backup NFAS D channel is configured and the primary NFAS D channel fails, rollover to the backup D channel is automatic and all connected calls stay connected.

If the primary NFAS D channel recovers, the backup NFAS D channel remains active and does not switch over again unless the backup NFAS D channel fails.

Configuring NTT PRI NFAS

Addition of the NTT switch type to the NFAS feature allows its use in geographic areas where NTT switches are available. This feature provides use of a single D channel to control multiple PRI interfaces, and can free one B channel on each interface to carry other traffic.

To configure NTT PRI NFAS, use the procedure described in the “Configuring NFAS on PRI Groups” section. Specify a primary-ntt switch type.

Note: You cannot configure a backup D channel for the NTT PRI NFAS feature; it does not support D channel backup.

Verifying NTT PRI NFAS

**Step 1** Enter the show isdn status command to learn whether the ISDN PRI switch type was configured correctly:

Router# show isdn status serial 0:23

Global ISDN Switchtype = primary-ntt
ISDN Serial0:23 interface

**Step 2** Enter the show isdn nfas group command to display information about members of an NFAS group:

Router# show isdn nfas group 1

ISDN NFAS GROUP 1 ENTRIES:
The primary D is Serial1/0:23.
The NFAS member is Serial2/0:23.

There are 3 total nfas members.
There are 93 total available B channels.
The primary D-channel is DSL 0 in state INITIALIZED.
The current active layer 2 DSL is 0.

**Step 3** Enter the `show isdn service` command to display information about ISDN channels and the service states:

```
Router# show isdn service
```

**PRI Channel Statistics:**

```
ISDN Se1/0:23, Channel (1-24)
 Configured Isdn Interface (dsl) 0
 State (0=Idle 1=Propose 2=Busy 3=Reserved 4=Restart 5=Maint)
 0 3
 Channel (1-24) Service (0=Inservice 1=Maint 2=Outofservice)
 0

ISDN Se1/1:23, Channel (1-24)
 Configured Isdn Interface (dsl) 1
 State (0=Idle 1=Propose 2=Busy 3=Reserved 4=Restart 5=Maint)
 0
 Channel (1-24) Service (0=Inservice 1=Maint 2=Outofservice)
 0

ISDN Se2/0:23, Channel (1-24)
 Configured Isdn Interface (dsl) 2
 State (0=Idle 1=Propose 2=Busy 3=Reserved 4=Restart 5=Maint)
 0
 Channel (1-24) Service (0=Inservice 1=Maint 2=Outofservice)
 0
```

### Disabling a Channel or Interface

You can disable a specified channel or an entire PRI interface, thus taking it out of service or placing it into one of the other states that is passed in to the switch. To disable a specific channel or PRI interface, use one of the following commands in interface configuration mode as appropriate for your network:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# isdn service dsl number b_channel number state state-value</code></td>
<td>Takes an individual B channel out of service or sets it to a different state.</td>
</tr>
<tr>
<td><code>Router(config-if)# isdn service dsl number b_channel 0 state state-value</code></td>
<td>Sets the entire PRI to the specified state.</td>
</tr>
</tbody>
</table>

The supported state-values are as follows:

- 0—In service
- 1—Maintenance
- 2—Out of service
When the T1 Controller Is Shut Down

In the event that a controller belonging to an NFAS group is shut down, all active B-channel calls on the controller that is shut down will be cleared (regardless of whether the controller is set to be primary, backup, or none), and one of the following events will occur:

- If the controller that is shut down is configured as the primary and no backup is configured, all active calls on the group are cleared.
- If the controller that is shut down is configured as the primary, and the active (In service) D channel is the primary and a backup is configured, then the active D channel changes to the backup controller.
- If the controller that is shut down is configured as the primary, and the active D channel is the backup, then the active D channel remains as backup controller.
- If the controller that is shut down is configured as the backup, and the active D channel is the backup, then the active D channel changes to the primary controller.

Note

The active D channel changeover between primary and backup controllers happens only when one of the link fails and not when the link comes up. The T309 timer is triggered when the changeover takes place.

Monitoring NFAS Groups

To monitor NFAS groups, use the following command in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router&gt; show isdn nfas group number</td>
<td>Displays information about members of an NFAS group.</td>
</tr>
</tbody>
</table>

Monitoring ISDN Service

To display information about ISDN channel service states, use the following command in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router&gt; show isdn service</td>
<td>Displays information about ISDN channels and the service states.</td>
</tr>
</tbody>
</table>

Enabling an ISDN PRI to Take PIAFS Calls on MICA Modems

The Personal-Handyphone-System Internet Access Forum Standard (PIAFS) specifications describe a transmission system that uses the PHS 64000 bps/32000 bps unrestricted digital bearer on the Cisco AS5300 universal access server platform.

The PIAFS TA (terminal adapter) module is like a modem or a V.110 module in the following ways:

- Ports will be a pool of resources.
- Calls will use the same call setup Q.931 message.
- Module supports a subset of common AT commands.
- Call setup and teardown are similar.
However, the rate negotiation information will be part of the bearer cap and not the lower-layer compatibility. PIAFS calls will have the user rate as 32000 and 64000; this will be used to distinguish a PIAFS call from a V.110 call. Also, PIAFS will use only up to octets 5a in a call setup message. The data format will default to 8N1 for PIAFS calls.

To configure ISDN PRI to take PIAFS call on MICA modems, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(config)# interface serial controller:channel</code> Enters interface configuration mode for a D-channel serial interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>Router(config-if)# isdn piafs-enabled</code> Enables the PRI to take PIAFS calls on MICA modems.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router(config-if)# exit</code> Exits interface configuration mode.</td>
</tr>
</tbody>
</table>

### Verifying PIAFS

**Step 1**

Enter the `show modem operational-status slot/port` command to view PIAFS call information.

```
Router# show modem op 1/32

Mdm Typ Status Tx/Rx G Duration RTS CTS DCD DTR
1/32 ISDN Conn 64000/64000 0 1d01h x x x x

Modem 1/32, Mica Hex Modem (Managed), Async33, tty33
Firmware Rev: 8.2.0.c
Modem config: Incoming and Outgoing
Protocol: PIAFS, Compression: V.42bis both
Management config: Status polling
RX signals: 0 dBm

Last clearing of "show modem" counters never
2 incoming completes, 0 incoming failures
0 outgoing completes, 0 outgoing failures
0 failed dial attempts, 0 ring no answers, 0 busied outs
0 no dial tones, 0 dial timeouts, 0 watchdog timeouts
0 no carriers, 0 link failures, 0 resets, 0 recover oob
0 recover modem, 0 current fail count
0 protocol timeouts, 0 protocol errors, 0 lost events
0 ready poll timeouts
```

### Configuring Automatic Detection of Encapsulation Type

You can enable a serial or ISDN interface to accept calls and dynamically change the encapsulation in effect on the interface when the remote device does not signal the call type. For example, if an ISDN call does not identify the call type in the lower-layer compatibility fields and is using an encapsulation that is different from the one configured on the interface, the interface can change its encapsulation type dynamically.

This feature enables interoperability with ISDN terminal adapters that use V.120 encapsulation but do not signal V.120 in the call setup message. An ISDN interface that by default answers a call as synchronous serial with PPP encapsulation can change its encapsulation and answer such calls.
Automatic detection is attempted for the first 10 seconds after the link is established or the first 5 packets exchanged over the link, whichever is first.

To enable automatic detection of encapsulation type, use the following command in interface configuration mode:

```
Router(config-if)# autodetect encapsulation
encapsulation-type
```

You can specify one or more encapsulations to detect. Cisco IOS software currently supports automatic detection of PPP and V.120 encapsulations.

### Configuring Encapsulation for Combinet Compatibility

Historically, Combinet devices supported only the Combinet Proprietary Protocol (CPP) for negotiating connections over ISDN B channels. To enable Cisco routers to communicate with those Combinet bridges, the Cisco IOS supports a the CPP encapsulation type.

To enable routers to communicate over ISDN interfaces with Combinet bridges that support only CPP, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config-if)# encapsulation cpp</td>
</tr>
<tr>
<td></td>
<td>Specifies CPP encapsulation.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# cpp callback accept</td>
</tr>
<tr>
<td></td>
<td>Enables CPP callback acceptance.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# cpp authentication</td>
</tr>
<tr>
<td></td>
<td>Enables CPP authentication.</td>
</tr>
</tbody>
</table>

Most Combinet devices support PPP. Cisco routers can communicate over ISDN with these devices by using PPP encapsulation, which supports both routing and fast switching.

Cisco 700 and 800 series routers and bridges (formerly Combinet devices) support only IP, Internet Protocol Exchange (IPX), and bridging. For AppleTalk, Cisco routers automatically perform half-bridging with Combinet devices. For more information about half-bridging, see the section “Configuring PPP Half-Bridging” in the chapter “Configuring Media-Independent PPP and Multilink PPP” later in this publication.

Cisco routers can also half-bridge IP and IPX with Combinet devices that support only CPP. To configure this feature, you only need to set up the addressing with the ISDN interface as part of the remote subnet; no additional commands are required.
Troubleshooting ISDN Special Signaling

To troubleshoot ISDN, use the following commands in EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# debug dialer</td>
<td>Displays the values of timers.</td>
</tr>
<tr>
<td>Router# debug isdn q921 [interface bri number]</td>
<td>Displays link layer information for all interfaces or, optionally, for a single BRI interface.</td>
</tr>
<tr>
<td>or Router# debug isdn q921 interface serial slot/controller-number:23</td>
<td>Displays link layer information for a single PRI interface.</td>
</tr>
<tr>
<td>Router# debug isdn q931 [interface bri number]</td>
<td>Displays the content of call control messages and information elements, in particular the Facility IE message for all interfaces or, optionally, for a single BRI interface.</td>
</tr>
<tr>
<td>or Router# debug isdn q931 interface serial slot/controller-number:23</td>
<td>Displays the content of call control messages and information elements, in particular the Facility IE message for a single PRI interface.</td>
</tr>
</tbody>
</table>

Configuration Examples for ISDN Special Signaling

This section provides the following configuration examples:

- ISDN AOC Configuration Examples
- ISDN NFAS Configuration Examples

ISDN AOC Configuration Examples

This section provides the following ISDN AOC configuration examples:

- Using Legacy DDR for ISDN PRI AOC Configuration
- Using Dialer Profiles for ISDN BRI AOC Configuration

Using Legacy DDR for ISDN PRI AOC Configuration

This example shows ISDN PRI configured on an E1 controller. Legacy DDR is configured on the ISDN D channel (serial interface 0:15) and propagates to all ISDN B channels. A static dialer idle-timeout is configured for all incoming calls on the B channels, but the map classes are configured independently of it. Map classes Kappa and Beta use AOC charging unit duration to calculate the timeout for the call. A short-hold idle timer is set so that if the line is idle for 10 or more seconds, the call is disconnected when the current charging period ends. Map class Iota uses a static idle timeout.

```
version 11.2
service timestamps debug datetime msec
service timestamps log datetime msec
!
hostname A
!
username c2503isdn password 7 1511021F0725
```
username B password 7 110A1016141D29
username C password 7 151I021F072508
isdn switch-type primary-net5

controller E1 0
pri-group timeslots 1-31

interface Serial 0:15
ip address 10.0.0.35 255.0.0.0
encapsulation ppp
dialer idle-timeout 150
dialer map ip 10.0.0.33 name c2503isdn class Iota 06966600050
dialer map ip 10.0.0.40 name B class Beta 778578
dialer map ip 10.0.0.45 name C class Kappa 778579
dialer-group 1
  ppp authentication chap

map-class dialer Kappa
dialer idle-timeout 300
dialer isdn short-hold 120

map-class dialer Iota
dialer idle-timeout 300

map-class dialer Beta
dialer idle-timeout 300
dialer isdn short-hold 90

map-class dialer Omega

Using Dialer Profiles for ISDN BRI AOC Configuration

This example shows ISDN BRI configured as a member of two dialer pools for dialer profiles.

version 11.2
service timestamps debug datetime msec
service timestamps log datetime msec

hostname delorean

username spanky password 7 0705344245
username delorean password 7 151I021F0725
isdn switch-type basic-net3

interface BRI0
description Connected to NTT 81012345678901
no ip address
dialer pool-member 1 max-link 1
dialer pool-member 2 max-link
encapsulation ppp
no fair-queue

interface Dialer1
ip address 10.1.1.8 255.255.255.0
encapsulation ppp
dialer remote-name spanky
dialer string 81012345678902 class Omega
dialer pool 1
dialer-group 1
  ppp authentication chap
interface Dialer2
ip address 10.1.1.8 255.255.255.0
encapsulation ppp
dialer remote-name dmsisdnn
dialer string 81012345678902 class Omega
dialer string 14153909503 class Gamma
dialer pool 2
dialer-group 1
ppp authentication chap
!
map-class dialer Omega
dialer idle-timeout 60
dialer isdn short-hold 150
!
map-class dialer Gamma
dialer isdn short-hold 60
!
dialer-list 1 protocol ip permit

ISDN NFAS Configuration Examples

This section provides the following configuration examples:

- NFAS Primary and Backup D Channels
- PRI Interface Service State
- NTT PRI NFAS Primary D Channel Example

NFAS Primary and Backup D Channels

The following example configures ISDN PRI and NFAS on three T1 controllers of a Cisco 7500 series router. The NFAS primary D channel is configured on the 1/0 controller, and the NFAS backup D channel is configured on the 1/1 controller. No NFAS D channel is configured on the 2/0 controller; it is configured for 24 B channels. Once the NFAS primary D channel is configured, it is the only interface you see and need to configure; DDR configuration for the primary D channel—which is distributed to all B channels—is also included in this example.

isdn switch-type primary-4ess
!
! NFAS primary D channel on the channelized T1 controller in 1/0.
controller t1 1/0
  framing esf
  linecode b8zs
  pri-group timeslots 1-24 nfas_d primary nfas_interface 0 nfas_group 1
  !
  ! NFAS backup D channel on the channelized T1 controller in 1/1.
controller t1 1/1
  framing esf
  linecode b8zs
  pri-group timeslots 1-24 nfas_d backup nfas_interface 1 nfas_group 1
  !
  ! NFAS 24 B channels on the channelized T1 controller in 2/0.
controller t1 2/0
  framing esf
  linecode b8zs
  pri-group timeslots 1-24 nfas_d none nfas_interface 2 nfas_group 1
  !
NFAS primary D channel interface configuration for PPP and DDR. This configuration is distributed to all the B channels in NFAS group 1 on the three channelized T1 controllers.

interface Serial 1/0:23
ip address 10.1.1.2 255.255.255.0
no ip mroute-cache
encapsulation ppp
dialer map ip 10.1.1.1 name flyboy 567898
dialer map ip 10.1.1.3 name flyboy 101112345678
dialer map ip 10.1.1.4 name flyboy 01112345678
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap

PRI Interface Service State

The following example puts the entire PRI interface back in service after it previously had been taken out of service:

isdn service dsl 0 b-channel 0 state 0

NTT PRI NFAS Primary D Channel Example

The following example configures ISDN PRI and NFAS on three T1 controllers of a Cisco 7500 series router. The NFAS primary D channel is configured on the 1/0 controller. No NFAS D channel is configured on the 1/1 and 2/0 controllers; they are configured for 24 B channels. Once the NFAS primary D channel is configured, it is the only interface you see and need to configure. DDR configuration for the primary D channel—which is distributed to all B channels—is also included in this example.

isdn switch-type primary-ntt

controller t1 1/0
  framing esf
  linecode b8zs
  pri-group timeslots 1-24 nfas_d primary nfas_interface 0 nfas_group 1

controller t1 1/1
  framing esf
  linecode b8zs
  pri-group timeslots 1-24 nfas_d none nfas_interface 1 nfas_group 1

controller t1 2/0
  framing esf
  linecode b8zs
  pri-group timeslots 1-24 nfas_d none nfas_interface 2 nfas_group 1

interface Serial 1/0:23
ip address 10.1.1.2 255.255.255.0
no ip mroute-cache
encapsulation ppp
dialer map ip 10.1.1.1 name flyboy 567898
dialer map ip 10.1.1.3 name flyboy 101112345678
dialer map ip 10.1.1.4 name flyboy 01112345678
no fair-queue
no cdp enable
ppp authentication chap
Configuring Network Side ISDN PRI Signaling, Trunking, and Switching

This chapter describes the Network Side ISDN PRI Signaling, Trunking, and Switching feature. The following main sections are provided:

- Network Side ISDN PRI Signaling Overview
- How to Configure Network Side ISDN PRI
- Configuration Examples for Network Side ISDN PRI Signaling, Trunking, and Switching

For hardware technical descriptions and for information about installing the controllers and interfaces, refer to the hardware installation and maintenance publication for your particular product.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the ISDN PRI commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Network Side ISDN PRI Signaling Overview

The Network Side ISDN PRI Signaling, Trunking, and Switching feature enables Cisco IOS software to replicate the public switched network interface to a PBX that is compatible with the National ISDN (NI) switch types and European Telecommunications Standards Institute (ETSI) Net5 switch types.

Routers and PBXs are both traditionally customer premises equipment (CPE) devices with respect to the public switched network interfaces. However, for Voice over IP (VoIP) applications, it is desirable to interface access servers to PBXs with the access server representing the public switched network.

Enterprise organizations use the current VoIP features with Cisco products as a method to reduce costs for long distance phone calls within and outside their organizations. However, there are times that a call cannot go over VoIP and the call needs to be placed using the Public Switched Telephone Network (PSTN). The customer then must have two devices connected to a PBX to allow some calls to be placed using VoIP and some calls to be placed over the PSTN. In contrast, this feature allows Cisco access servers to connect directly to user-side CPE devices such as PBXs and allows voice calls and data calls to be placed without requiring two different devices to be connected to the PBXs.
The Network Side ISDN PRI Signaling, Trunking, and Switching feature provides the following benefits:

- Allows you to bypass PSTN tariffed services such as trunking and administration, thus extending the cost savings of VoIP.
- Allows your PBXs to be connected directly to a Cisco access server, so PBX station calls can be routed automatically to the IP network without the need for special IP telephones.
- Provides flexibility in network design.
- Enables you to block calls selectively based on the called number or the calling number.

## Call Switching Using Dial Peers

Call switching using dial peers enables Cisco VoIP gateways to switch both voice and data calls between different interfaces based on the dial peer matching. An incoming call is matched against configured dial peers, and based on the configured called number, the outgoing interface is selected. Any call that arrives from an ISDN PRI network side on a supported platform is either terminated on the access server, switched to an IP network, or switched to the PSTN, depending on the configuration.

An incoming call will be switched or processed as a voice call only if it matches a dial peer.

A dial peer is an addressable call endpoint identified, for example, by a phone number or a port number. In VoIP, there are two kinds of dial peers: plain old telephone service (POTS) and VoIP. Dial peers are defined from the perspective of the access server and are used for both inbound and outbound call legs. An inbound call leg originates outside the access server. An outbound call leg originates from the access server.

For inbound call legs, a dial peer might be associated with the calling number or the port designation. Outbound call legs always have a dial peer associated with them. The destination pattern (a defined initial part of a phone number) is used to identify the outbound dial peer. The call is associated with the outbound dial peer at setup time.

POTS dial peers associate a telephone number with a particular voice port so that incoming calls for that telephone number can be received and outgoing calls can be placed.

Additional information about dial peers can be found in the chapter “Configuring Dial Plans, Dial Peers, and Digit Manipulation” in the *Cisco IOS Voice, Video, and Fax Configuration Guide*, Release 12.2.

## Trunk Group Resource Manager

The Trunk Group Resource Manager (TGRM) supports the logical grouping, configuration, and joint management of one or more PRI interfaces. The TGRM is used to store configuration information and to accept or select an interface from a trunk group when requested. A trunk group is provisioned as the target of a dial peer, and the TGRM transparently selects the specific PRI interface and channels to use for incoming or outgoing calls. Trunks are selected based on usage: The trunk that is least used is selected.

Using trunk groups simplifies the task of configuring dial peers and PRI interfaces, and also enables the dynamic selection of PRI interfaces as needed in the access server.

A trunk group can include any number of PRI interfaces, but all the interfaces in a trunk group must use the same type of signaling.
Class of Restrictions

The class of restrictions (COR) functionality provides the ability to deny certain call attempts based on the incoming and outgoing class of restrictions provisioned on the dial peers. This functionality provides flexibility in network design, allows users to block calls (for example, to 900 numbers), and applies different restrictions to call attempts from different originators.

COR is used to specify which incoming dial peer can use which outgoing dial peer to make a call. Each dial peer can be provisioned with an incoming and an outgoing COR list. The incoming COR list indicates the capability of the dial peer to initiate certain classes of calls. The outgoing COR list indicates the capability required for an incoming dial peer to deliver a call via this outgoing dial peer. If the capabilities of the incoming dial peer are not the same or a superset of the capabilities required by the outgoing dial peer, the call cannot be completed using this outgoing dial peer.

ISDN Disconnect Timers

A new disconnect timer, T306, has been added as part of the Internetworking Signaling Enhancements for H.323 and SIP VoIP feature. This timer allows in-band announcements and tones to be played before a call is disconnected. It is designed for routers that are configured as an ISDN network-side switch. The T306 timer starts when the gateway receives a Disconnect message with a progress indicator of 8. The voice path is cut-through in the backward direction, and the announcement or error tone is played until the timer expires. When the timer expires, the voice application disconnects the call. You can configure this timer by using the `isdn t306` command. The T306 timer is supported only on routers that are configured for network-side ISDN. The following switches support network-side ISDN:

- National ISDN
- NET3 BRI
- NET5
- QSIG

The T310 timer sets a limit for a call in the Call Proceeding state. The timer starts when the router receives a Call Proceeding message and stops when the call moves to another phase, typically Alerting, Connect, or Progress. If the timer expires while the call is in the Call Proceeding state, the router releases the call. You can configure this timer by using the `isdn t310` command.

How to Configure Network Side ISDN PRI

See the following sections for configuration tasks for the Network Side ISDN PRI Signaling, Trunking, and Switching feature. Each task is identified as required or optional.

- **Configuring ISDN Network Side** (Required)
- **Configuring Global or Interface Trunk Groups** (Optional)
- **Configuring Classes of Restrictions** (Optional)
- **Configuring ISDN T306 and T310 Timers** (Optional)
- **Verifying Network Side ISDN PRI Signaling, Trunking, and Switching** (Optional)

The sections “Monitoring Network Side ISDN PRI” and “Monitoring TGRM” list commands that you can use to monitor network side ISDN PRI signaling.
Configuring ISDN Network Side

Before you begin to configure the Network Side ISDN PRI Signaling, Trunking, and Switching feature, ensure that the selected access server is in the following condition:

- The T1 or E1 controllers are operational and configured for ISDN PRI.
- The D-channel interfaces are operational and configured for ISDN PRI.
- Each D-channel interface is configured with the `isdn incoming-voice modem` command.

For example, the selected PRI interfaces might have a configuration similar to the following:

```
interface Serial1/0/0:23
no ip address
no ip directed-broadcast
isdn switch-type primary-ni
isdn protocol-emulate network
isdn incoming-voice modem
no cdp enable
```

Also keep the following restrictions in mind as you configure network side ISDN PRI signaling, trunking, and switching:

- You can configure Cisco access server and access routers for either Network Side ISDN PRI for NI or Net5 switches.
- The trunking and COR parts of the Network Side ISDN PRI Signaling, Trunking, and Switching feature are available only on the Cisco AS5800 access server. In addition, call hairpinning without the need of a Voice Feature Card (and its digital signal processor) is available only on the Cisco AS5800 and Cisco AS5400. The remainder of the feature is platform-independent.
- The Cisco AS5800 and Cisco AS5400 switch both voice and data calls. The Cisco As5300 switches only data calls.
- On the Cisco AS5800, direct-inward-dial (DID) switched calls can work without a Voice Feature Card, if the appropriate modem is present. Refer to the AS5800 hardware and software installation manuals for more information.
- On the Cisco AS5400, direct-inward-dial (DID) switched calls can work with only Trunk Feature Cards present. No Voice Feature Card or Modem Feature card are required.
- An interface that is a member of a Non-Facility Associated Signaling (NFAS) group cannot belong to a trunk group.
- The Cisco AS5400 supports Network Side ISDN PRI Signaling and Calling Switching Using Dial Peers. It does not support Trunk Group Resource Manager and Class of Restrictions.
- The Network Side ISDN PRI part of this feature runs on any ISDN-capable platform with PRI interfaces. The trunking and class of restrictions parts of this feature require the Cisco AS5800.

---

Note

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.
Configuring ISDN Network Side for the National ISDN Switch Type

To configure Network Side ISDN PRI, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1  | Router(config)# isdn switch-type type or Router(config-if)# interface serial0/0/n and Router(config-if)# switch-type primary-ni | Sets the global ISDN switch type. Two types are supported:
  - primary-ni for NI on a T1 line
  - primary-net5 for ETSI Net5 on an E1 line
  Specifies the D-channel interface. For n, the D-channel number, use:
  - 0:23 on a T1 PRI
  - 0:15 on an E1 PRI
| Step 2  | Router(config-if)# isdn protocol-emulate network | Sets the switch type on the interface. Enables network-side support on the PRI interface. |

If you choose to configure Network Side ISDN PRI on individual interfaces in Step 1, repeat the configuration on the additional PRI interfaces.

Configuring ISDN Network Side for ETSI Net5 PRI

To configure a Cisco access router for ISDN Network Side for ETSI Net5 PRI, you can configure the primary-net5 switch type globally or you can configure the primary-net5 switch type on selected PRI interfaces. To configure ISDN Network Side for Net5, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# isdn switch-type primary-net5 or Router(config-if)# interface serial0/0/0:15</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# switch-type primary-net5</td>
</tr>
</tbody>
</table>

Repeat the configuration steps on all the additional PRI D-channel interfaces you want to configure for ISDN Network Side for ETSI Net5 PRI.
Configuring Global or Interface Trunk Groups

You can create trunk groups globally (using the one-command version of Step 1) or on each interface (using the two-command version of Step 1). To configure trunk groups, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# trunk group group-number</td>
<td>Defines the trunk group globally.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# interface serial0/0/n and</td>
<td>Specifies the PRI D-channel. For ( n ), the D-channel number, use:</td>
</tr>
<tr>
<td>and</td>
<td>0:23 on a T1 PRI</td>
</tr>
<tr>
<td>and</td>
<td>0:15 on an E1 PRI</td>
</tr>
<tr>
<td>Router(config-if)# trunk-group group-number</td>
<td>Adds the interface to a trunk group. If the trunk group has not been defined globally, it will be created now.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Applies a maximum number of calls restriction to the trunk group.</td>
</tr>
<tr>
<td>Router(config-if)# max-calls {voice</td>
<td>data</td>
</tr>
<tr>
<td>number</td>
<td></td>
</tr>
<tr>
<td>[direction in</td>
<td></td>
</tr>
<tr>
<td>out]</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Repeat Step 1 and Step 2 to create additional trunk groups and specify their restrictions, as needed for your traffic.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enters dial-peer configuration mode and defines a remote dial peer.</td>
</tr>
<tr>
<td>Router(config)# dial-peer voice tag pots</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Specifies the trunk group to be used for outgoing calls to the destination phone number.</td>
</tr>
<tr>
<td>Router(config-dial-peer)# trunkgroup group-number</td>
<td></td>
</tr>
</tbody>
</table>
## Configuring Classes of Restrictions

To configure COR for dial peers, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# dial-peer cor custom</td>
<td>Specifies that named classes of restrictions apply to dial peers and changes the command mode to COR configuration.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-cor)# name class-name</td>
<td>Provides a name for a custom class of restrictions.</td>
<td>Repeat this step for additional class names, as needed. These class names are used in various combinations to define the lists in Step 3 and Step 4.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# dial-peer cor list list-name</td>
<td>Provides a name for a list of restrictions.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-cor)# member class-name</td>
<td>Adds a COR class to this list of restrictions.</td>
<td>Repeat Step 3 and Step 4 to define another list and its membership, as needed.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# dial-peer voice tag pots</td>
<td>Enters dial-peer configuration mode and defines a remote dial peer.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-dial-peer)# corlist incoming cor-list-name</td>
<td>Specifies the COR list to be used when this is the incoming dial peer.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-dial-peer)# corlist outgoing cor-list-name</td>
<td>Specifies the COR list to be used when this is the outgoing dial peer.</td>
<td>Repeat Step 5 through Step 7 for additional dial peers, as needed.</td>
</tr>
</tbody>
</table>
Configuring ISDN T306 and T310 Timers

To configure the T306 and T310 timers, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface serial controller:timeslot</td>
</tr>
<tr>
<td></td>
<td>Enters interface configuration mode for a D-channel serial interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# isdn t306 milliseconds</td>
</tr>
<tr>
<td></td>
<td>Sets the number of milliseconds that the gateway waits before clearing a call after it receives a Disconnect message with a progress indicator of 8.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# isdn t310 milliseconds</td>
</tr>
<tr>
<td></td>
<td>Sets the number of milliseconds that the gateway waits before clearing a call after it receives a Call Proceeding message.</td>
</tr>
</tbody>
</table>

To verify that the T306 timer is configured and operating correctly, perform the following steps:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Display the running configuration file with the show running-config privileged EXEC command. Verify that the configuration is accurate for the T306 timer. See the “T306/T310 Timer Configuration Example” section for a sample configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Enable the debug isdn q931 privileged EXEC command to trace the ISDN messages.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Place a call to the gateway. Disconnect the call and allow the far end to play its error message until the T306 timer expires. When the timer expires, the gateway should disconnect the call.</td>
</tr>
</tbody>
</table>

Verifying Network Side ISDN PRI Signaling, Trunking, and Switching

To learn whether the Network Side ISDN PRI Signaling, Trunking, and Switching feature is configured successfully, perform the following steps:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Enter the show isdn status command to learn whether an appropriate switch type is specified either globally or on the D-channel interface:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router# show isdn status serial 0:15</td>
</tr>
<tr>
<td></td>
<td>Global ISDN Switchtype = primary-net5</td>
</tr>
<tr>
<td></td>
<td>ISDN Serial0:15 interface</td>
</tr>
<tr>
<td></td>
<td>******* Network side configuration *******</td>
</tr>
<tr>
<td></td>
<td>dsl 0, interface ISDN Switchtype = primary-net5</td>
</tr>
</tbody>
</table>
Step 2  Enter the `show dial-peer voice` command to learn whether the trunk group COR list and permission fields are set as desired on a dial peer:

```
Router# show dial-peer voice
VoiceEncapPeer210
 information type = voice,
 tag = 210, destination-pattern = `221','
 answer-address = `', preference=0,
 numbering Type = `unknown'
 group = 210, Admin state is up, Operation state is up,
 incoming called-number = `221', connections/maximum = 4/unlimited,
 DTMF Relay = disabled,
 Modem = system passthrough,
 huntstop = disabled,
 application associated:
 permission :both
 incoming COR list:listA
 outgoing COR list:minimum requirement
 type = pots, prefix = `221',
 forward-digits default
 session-target = `', voice-port = `1/0/8:D',
 direct-inward-dial = enabled,
 digit_strip = enabled,
```

Note  The above output is for a dial peer configured with incoming COR list “listA” and without an outgoing COR list configured. When no outgoing COR list is configured, the `show dial-peer voice` command displays “minimum requirement” in the outgoing COR list output. When no incoming COR list is configured, the `show dial-peer voice` command displays “maximum capability” in the incoming COR list output.

Step 3  Enter the `show dial-peer cor` command to display the COR names and lists you defined. For example, if you configured COR as shown in the following sample display, the `show dial-peer cor` command output reflects that configuration.

Sample Configuration

```
dial-peer cor custom
 name 900block
 name 800_call
 name Catchall
!
 dial-peer cor list list1
 member 900block
 member 800_call
!
 dial-peer cor list list2
 member 900block
!
 dial-peer cor list list3
 member 900block
 member 800_call
 member Catchall
```
Verification

Router# show dial-peer cor

Class of Restriction
   name:900block
   name:800_call
   name:Catchall

COR list <list1>
   member:900block
   member:800_call

COR list <list2>
   member:900block

COR list <list3>
   member:900block
   member:800_call
   member:Catchall

Step 4 Enter the show tgrp command to verify the trunk group configuration. For example, if you configured trunk groups as shown in the following sample display, the show tgrp command output reflects that configuration.

Sample Configuration

interface Serial1/0/8:15
   no ip address
   ip mroute-cache
   no keepalive
   isdn switch-type primary-net5
   isdn protocol-emulate network
   isdn incoming-voice modem
   trunk-group 2
   no cdp enable

Verification

Router# show tgrp

<table>
<thead>
<tr>
<th>Trunk</th>
<th>Any in</th>
<th>Vce in</th>
<th>Data in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group #</td>
<td>Any out</td>
<td>Vce out</td>
<td>Data out</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>2</td>
<td>65535</td>
<td>65535</td>
<td>65535</td>
</tr>
<tr>
<td></td>
<td>65535</td>
<td>65535</td>
<td>65535</td>
</tr>
<tr>
<td>0 Retries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface S1/0/1:15 Data = 0, Voice = 0, Free = 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface S1/0/8:15 Data = 2, Voice = 0, Free = 28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total calls for trunk group: Data = 2, Voice = 0, Free = 58
Selected Voice Interface : S1/0/1:15
Selected Data Interface : S1/0/1:15
Step 5 Enter the `show isdn status` command to display the status of both Network Side ISDN PRI and call switching:

```
Router# show isdn status
Global ISDN Switchtype = primary-net5
ISDN Serial1/0/0:15 interface
 ******* Network side configuration *******
 dsl 0, interface ISDN Switchtype = primary-net5
Layer 1 Status:
 ACTIVE
Layer 2 Status:
 TEI = 0, Ces = 1, SAPI = 0, State = MULTIPLE_FRAME_ESTABLISHED
Layer 3 Status:
 2 Active Layer 3 Call(s)
Activated dsl 0 CCBs = 2
 CCB:callid=3C71, sapi=0, ces=0, B-chan=31, calltype=data
 CCB:callid=3C72, sapi=0, ces=0, B-chan=30, calltype=data
The Free Channel Mask: 0x9FF7FFF
ISDN Serial1/0/1:15 interface
 /1/0/8
 filtering...
ISDN Serial1/0/8:15 interface
 ******* Network side configuration *******
 dsl 8, interface ISDN Switchtype = primary-net5
Layer 1 Status:
 ACTIVE
Layer 2 Status:
 TEI = 0, Ces = 1, SAPI = 0, State = MULTIPLE_FRAME_ESTABLISHED
Layer 3 Status:
 2 Active Layer 3 Call(s)
Activated dsl 8 CCBs = 2
 CCB:callid=BB40, sapi=0, ces=0, B-chan=1, calltype=DATA
 CCB:callid=BB41, sapi=0, ces=0, B-chan=2, calltype=DATA
The Free Channel Mask: 0x0FFFFFFF
```

Monitoring Network Side ISDN PRI

To monitor Network Side ISDN PRI, use the following commands in EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show controllers e1 slot/port</code></td>
<td>Checks Layer 1 (physical layer) of the PRI over E1.</td>
</tr>
<tr>
<td>Router# <code>show controllers e1 number call-counters</code></td>
<td>Displays the number of calls and call durations on an E1 controller.</td>
</tr>
<tr>
<td>Router# <code>show interfaces serial slot/port bchannel channel-number</code></td>
<td>Displays information about the physical attributes of the ISDN PRI over channelized E1 B and D channels.</td>
</tr>
<tr>
<td>Router# `show isdn {active</td>
<td>history</td>
</tr>
</tbody>
</table>
Monitoring TGRM

To monitor and maintain the Trunk Group Resource Manager, use the following command in EXEC mode:

```
Router# show tgrm
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show tgrm</td>
<td>Displays TGRM information for debugging purposes.</td>
</tr>
</tbody>
</table>

Configuration Examples for Network Side ISDN PRI Signaling, Trunking, and Switching

This section provides the following configuration examples:

- Call Switching and Dial Peers Configuration on T1/T3 Example
- Trunk Group Configuration Example
- COR for Dial Peer Configuration Example
- COR Based on Outgoing Dial Peers Example
- Dial Peers and Trunk Groups for Special Numbers Examples
- ISDN Network Side for ETSI Net5 PRI Configuration on E1 Example
- T306/T310 Timer Configuration Example

Call Switching and Dial Peers Configuration on T1/T3 Example

The following example enables Network Side ISDN PRI, call switching, and dial peers:

```
isdn switch-type primary-ni
!
controller T1 1/0/0
framing esf
linecode b8zs
pri-group timeslots 1-24
!
interface Serial1/0/0:23
no ip address
no ip directed-broadcast
isdn switch-type primary-ni
isdn protocol-emulate network
isdn incoming-voice modem
no cdp enable
!
dial-peer voice 11 pots
incoming called-number 222
destination-pattern 222
direct-inward-dial
port 1/0/0:D
prefix 555
```
Trunk Group Configuration Example

The following trunk group allows only voice calls:

```
trunk group 1
max-calls data 0
```

The following trunk group allows a maximum of 20 outgoing voice calls:

```
trunk group 2
max-calls voice 20 direction out
```

The following trunk group allows a maximum of 50 incoming calls:

```
trunk group 3
max-calls any 50 direction in
```

The following trunk group allows a maximum of 100 calls, 30 of which can be voice (incoming or outgoing), and 60 of which can be incoming data (the remaining 10 will be unused):

```
trunk group 4
max-calls any 100
max-calls voice 30
max-calls data 60 direction in
```

COR for Dial Peer Configuration Example

The following example defines trunk group 101, establishes Network Side ISDN PRI on two PRI interfaces, and assigns both interfaces to trunk group 101. In addition, it establishes three COR lists, and specifies which incoming dial peers can make calls to 800 and which can make calls to 900 area codes. This example adopts a useful mnemonic pattern: the `dial-peer voice` tags for incoming calls correspond to the answer address (the phone number being called) and the `dial-peer voice` tags for outgoing calls correspond to the destination pattern.

```
trunk group 101
!
interface Serial1/0/0:23
 no ip address
 no ip directed-broadcast
 isdn switch-type primary-ni
 isdn protocol-emulate network
 isdn incoming-voice modem
 no cdp enable
 trunk-group 101
!
interface Serial1/0/1:23
 no ip address
 no ip directed-broadcast
 isdn switch-type primary-ni
 isdn protocol-emulate network
 isdn incoming-voice modem
 no cdp enable
 trunk-group 101
!
dial-peer cor custom
 name 900_call
 name 800_call
!
dial-peer cor list list1
 member 900_call
!```
```plaintext
dial-peer cor list list2
   member 800_call
!
dial-peer cor list list3
   member 900_csl1
   member 800_call
!
dial-peer voice 525 pots
   answer-address 408525....
   corlist incoming list3
   direct-inward-dial
!
dial-peer voice 526 pots
   answer-address 408526....
   corlist incoming list2
   direct-inward-dial
!
dial-peer voice 900 pots
   destination-pattern 1900........
   direct-inward-dial
   trunkgroup 101
   prefix 333
   corlist outgoing list1
!
dial-peer voice 12345 pots
   destination-pattern .T
   direct-inward-dial
   trunkgroup 202
!
```

COR Based on Outgoing Dial Peers Example

A typical application of COR is to define a COR name for the number that an outgoing dial peer serves, then define a list that contains only that COR name, and assign that list as **corlist outgoing** for this outgoing dial peer. For example, dial peer with destination pattern 5x can have a **corlist outgoing** that contains COR 5x.

The next step, in the typical application, is to determine how many call permission groups are needed, and define a COR list for each group. For example, group A is allowed to call 5x and 6x, and group B is allowed to call 5x, 6x, and 1900x. Then, for each incoming dial peer, we can assign a group for it, which defines what number an incoming dial peer can call. Assigning a group means assigning a **corlist incoming** to this incoming dial peer.

```plaintext
config terminal
   dial-peer cor custom
   name 5x
   name 6x
   name 1900x
!
dial-peer cor list listA
   member 5x
   member 6x
!
dial-peer cor list listB
   member 5x
   member 6x
   member 1900x
!
dial-peer cor list list5x
   member 5x
!```
dial-peer cor list list6x
  member 6x
!
dial-peer cor list list1900x
  member 1900x
!
  outgoing dialpeer 100, 200, 300
dial-peer voice 100 pots
  destination-pattern 5T
corlist outgoing list5x
dial-peer voice 200 pots
  destination-pattern 6T
corlist outgoing list6x
dial-peer voice 300 pots
  destination-pattern 1900T
corlist outgoing list1900x
!
  incoming dialpeer 400, 500
dial-peer voice 400 pots
  answer-address 525....
corlist incoming listA
dial-peer voice 500 pots
  answer-address 526
corlist incoming listB

In this example, calls from 525xxxx are not able to use dial peer 300, which means they will not be able to make 1900 calls (long distance calls to the 900 area code). But calls from 526xxxx can make 1900 calls.

### Dial Peers and Trunk Groups for Special Numbers Examples

The following partial examples show setups for handling special numbers such as the 911 emergency number, the 0 local operator number, the 00 long-distance operator number, and so forth. “T” in these examples stands for the “interdigital timeout.” Calls to emergency numbers should not wait for this timeout, so 911 is used as the destination pattern, not 911T.

This partial example sets up a trunk group to handle calls going to the operator (0):

dial-peer voice 100 pots
  destination-pattern 0T
  trunkgroup 203
!

The following partial example sets up a trunk group to handle calls to the long distance operator (00):

dial-peer voice 200 pots
  destination-pattern 00T
  trunkgroup 205
!

The following partial example sets up a trunk group to handle calls to the international direct dial (011):

dial-peer voice 300 pots
  destination-pattern 011T
  trunkgroup 207
!

The following partial example sets up a trunk group to handle street line calls (calls that get a dial tone for an outside line):

dial-peer voice 400 pots
  destination-pattern 9T
  trunkgroup 209
!
The following partial example sets up a trunk group to handle calls for directory assistance:

```
dial-peer voice 500 pots
destination-pattern 411
trunkgroup 211
```

The following partial example sets up a trunk group to handle calls to the 911 emergency number. Emergency calls will not require a wait for the interdigital timeout to expire. They will be completed immediately.

```
dial-peer voice 600 pots
destination-pattern 911
trunkgroup 333
```

### ISDN Network Side for ETSI Net5 PRI Configuration on E1 Example

The following example enables the ISDN Network Side for ETSI Net5 PRI feature on an access server on which ISDN PRI is already configured and operational. In this example, the Net5 PRI switch type is set on the D-channel interface, and the global interface type is not shown.

```
controller e1 0
pri-group timeslots 1-31
exit
!
interface serial0:15
 no ip address
 no ip directed-broadcast
 ip mroute-cache
 isdn switch-type primary-net5
 isdn protocol-emulate network
```

### T306/T310 Timer Configuration Example

The following example configures the T306 and T310 disconnect timers:

```
interface Serial0:23
 no ip address
 no ip directed-broadcast
 encapsulation ppp
 dialer rotary-group 0
 isdn switch-type primary-5ess
 isdn incoming-voice modem
 isdn t306 60000
 isdn t310 40000
```
Dial-on-Demand Routing Configuration
Preparing to Configure DDR

This chapter presents the decisions and preparations leading to a dial-on-demand routing (DDR) configuration and shows where some advanced features fit into the DDR configuration steps. It distinguishes between the topology decisions and the implementation of the decisions. In the implementation phase, it distinguishes the DDR-independent decisions from the DDR-dependent decisions.

This chapter provides the following information:

- **DDR Decision Flowchart**—A flowchart of topology and implementation decisions that you will need to make before you configure DDR.
- **DDR Topology Decisions, DDR-Independent Implementation Decisions, and DDR-Dependent Implementation Decisions**—References to sources of detailed information for the configuration steps associated with each decision.
- **Global and Interface Preparations for DDR**—Brief description indicating which preparations are global and which are interface-specific.
- **Preparations for Routing or Bridging over DDR**—A description of the steps required for bridging or routing over DDR.

The section “Configuration Examples for Legacy DDR” at the end of this chapter provides examples of configuring DDR in your network, and includes line configuration and chat script samples.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the global dialer commands in this chapter, refer to the *Cisco IOS Dial Technologies Command Reference*. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

**DDR Decision Flowchart**

This section provides a flowchart of the decisions to be made before and while you configure DDR and also includes the flowchart.

*Figure 48 presents the entire decision flowchart. The decision phases are shown in separate boxes. Numbers in parentheses refer to notes, which follow the figure.*
Figure 48  Decisions and Implementation Flow to DDR

Topology decisions

Who places and who receives calls?
Which routers?
Which media?

Topology implementation

Async  Sync  ISDN
Which encapsulation?
HDLC  PPP  LAPB  X.25  FR

DDR-independent implementation

Route or bridge?
Route
Which routed protocol?

IP  IPX  AT

DDR-dependent implementation

Legacy DDR or dialer profiles?
Simple or complex?

Simple
Spoke  Hub
Bandwidth on demand
MLP
BACP
MMP
Dial backup

Simple
Hub

Complex
Flowchart Notes

The DDR chapters do not provide complete configuration information for most of the items in the following list. However, detailed information is available in other chapters and publications. The numbers in this list correspond to the circled numbers in the flowchart.

1. Configuration of the dial port and interface. The port, line, and interface are expected to be configured and operational before you configure DDR. See the relevant chapters in the “Preparing for Dial Access” part of this manual.

2. Encapsulation; including encapsulation for other WANs. See the “Configuring Media-Independent PPP and Multilink PPP” chapter of this publication for PPP encapsulation and refer to the Cisco IOS Wide-Area Networking Configuration Guide for sections on Frame Relay and X.25.

3. Bridging configurations. Refer to the Cisco IOS Bridging and IBM Networking Configuration Guide.

4. Routed protocols to be supported. See the protocol-specific chapters and publications.

5. Dialer profiles and legacy DDR are described in different chapters of the “Dial-on-Demand Routing” part of this publication.

6. Complex DDR configurations. Refer to the chapter “Configuring Media-Independent PPP and Multilink PPP” in this publication.

The DDR chapters provide complete configuration information about the simple hub-and-spoke DDR configurations, about the dialer profiles implementation of DDR, and about preparations required for configuring asynchronous interfaces for DDR.

DDR Topology Decisions

Topology decisions determine which routers will use DDR, which media and interfaces each one will use for DDR, and how each interface will function when using DDR. For example, if you choose a hub-and-spoke topology, one router will communicate with multiple routers. You must decide whether that router will use one interface or multiple interfaces for DDR, and whether it will receive calls only (forcing the spokes to initiate and bear the cost of calls). If it will use multiple interfaces, you must decide whether they will be of different types or the same type.

DDR-Independent Implementation Decisions

DDR-independent implementation decisions include the following:

- Using a specific interface or combination of interfaces for DDR.
  For complete configuration steps for the various media and interfaces, see the chapters in the “Dial-In Port Setup” part of this publication.

- Using nondefault encapsulations.
  The default encapsulation is High-Level Data Link Control (HDLC). However, PPP is widely used for situations in which authentication is desired, especially situations in which an interface will receive calls from multiple sites. Detailed PPP encapsulation requirements are described in the “Configuring Media-Independent PPP and Multilink PPP” and “Configuring Asynchronous PPP and SLIP” chapters of this publication.
If you decide to send DDR traffic over Frame Relay, X.25, or Link Access Procedure, Balanced (LAPB) networks, the interface must be configured with the appropriate encapsulation. For configuration details, refer to the related chapters in the Cisco IOS Wide-Area Networking Configuration Guide.

- Routing or bridging the DDR traffic.

Legacy DDR supports bridging to only one destination, but the dialer profiles support bridging to multiple destinations.

If you decide to bridge traffic over a dial-on-demand connection, configure the interface for transparent bridging. For detailed information, refer to the “Configuring Transparent Bridging” chapter of the Cisco IOS Bridging and IBM Networking Configuration Guide.

- Supporting one or more specific routed protocols, if you decide to route traffic.

Depending on the protocol, you do need to control access by entering access lists and to decide how to support network addressing on an interface to be configured for DDR. You might also need to spoof keepalive or other packets. For configuration details, refer to the related network protocol chapters in the appropriate network protocols configuration guide, such as the Cisco IOS AppleTalk and Novell IPX Configuration Guide.

### DDR-Dependent Implementation Decisions

You must decide whether to implement legacy DDR or the newer dialer profiles; both are documented in the “Dial-on-Demand Routing” part of this publication. You must also decide whether a simple DDR configuration meets your business needs or whether to add other features.

### Dialer Profiles

The dialer profiles implementation of DDR is based on a separation between logical and physical interface configuration. Dialer profiles also allow the logical and physical configurations to be bound together dynamically on a per-call basis.

Dialer profiles are advantageous in the following situations:

- When you want to share an interface (ISDN, asynchronous, or synchronous serial) to place or receive calls.
- When you want to change any configuration on a per-user basis.
- When you want to maximize ISDN channel usage using the Dynamic Multiple Encapsulations feature to configure various encapsulation types and per-user configurations on the same ISDN B channel at different times according to the type of call.
- When you want to bridge to many destinations, and for avoiding split horizon problem.

Most routed protocols are supported; however, International Organization for Standardization Connectionless Network Service (ISO CLNS) is not supported.

If you decide to configure dialer profiles, you must disable validation of source addresses for the routed protocols you support.

For detailed dialer profiles information, see the “Configuring Peer-to-Peer DDR with Dialer Profiles” chapter in this publication. For more information about Dynamic Multiple Encapsulations, see the “How to Configure Dialer Profiles” section in that chapter.
Legacy DDR

Legacy DDR is powerful and comprehensive, but its limitations affect scaling and extensibility. Legacy DDR is based on a static binding between the per-destination call specification and the physical interface configuration.

However, legacy DDR also has many strengths. It supports Frame Relay, ISO CLNS, LAPB, snapshot routing, and all routed protocols that are supported on Cisco routers. By default, legacy DDR supports fast switching.

For information about simple legacy DDR spoke configurations, see the “Configuring Legacy DDR Spokes” chapter. For information about simple legacy DDR hub configurations, see the “Configuring Legacy DDR Hubs” chapter. Both chapters are in this publication.

Simple or Complex DDR Configuration

You must also decide whether to implement a simple DDR configuration—whether it is a simple point-to-point (spoke-to-spoke) layout or a simple hub-and-spoke layout—or to add on features that make the implementation more complex. Add-on features include dial backup, bandwidth on demand, application of the Bandwidth Allocation Control Protocol (BACP), Multilink PPP, and many others.

Global and Interface Preparations for DDR

Some preparations are global and some depend on the type of interface you will configure for DDR. After you have made the required global decision whether to bridge or to route a specified protocol over a dial-on-demand link, you can make the following preparations:

- If you choose to bridge the protocol, decide whether to allow bridge packet access by Ethernet type codes or to permit all bridge packets across the link. Allowing access by Ethernet type codes requires you to define a bridging access list in global configuration mode.

  Allowing all bridge packets to trigger calls across a dial-on-demand link to a single destination is a DDR-dependent task addressed in the “Configure Dialer Access Lists to Trigger Outgoing Calls” section of both the “Configuring Legacy DDR Spokes” and “Configuring Legacy DDR Hubs” chapters in this publication.

  Bridging to multiple destinations requires dialer profiles.

- If you choose to route the protocol:

  - Define one or more access lists for the selected routed protocol to determine which packets should be permitted or denied access to the dial-on-demand link.

    Allowing those packets to trigger calls across a dial-on-demand link is a DDR-dependent task addressed in the “Configure Dialer Access Lists to Trigger Outgoing Calls” section of both the “Configuring Legacy DDR Spokes” and “Configuring Legacy DDR Hubs” chapters in this publication.

    - Define an appropriate dialer list for the protocol.
    - Disable validation of source addresses, if you decide to configure dialer profiles.
Preparing to Configure DDR

Preparations Depending on the Selected Interface Type

The steps shown in this chapter assume that you have also completed the required preparatory steps for the type of interface you will configure for DDR:

- The interface is installed, the cable is connected as needed, and operational.
- Chat scripts are ready, as needed, for any asynchronous interfaces and modem scripts have been assigned to the relevant asynchronous lines.
- Asynchronous lines and modems are configured and operational, as needed.
- Any ISDN line that will be used for DDR is properly provisioned and running.
- You have decided which interfaces and how many interfaces are to be configured for DDR, and what functions each interface will perform.

Preparations for Routing or Bridging over DDR

The following tasks are DDR-independent and can be completed before you configure DDR. Minimal tasks required for each item are presented in this chapter. For detailed information about bridging, routing, and wide-area networking configurations, refer to the appropriate chapters in other manuals of the Cisco IOS documentation set.

Complete the following minimal tasks for the global decisions you have made:

- Preparing for Transparent Bridging over DDR (As required)
- Preparing for Routing over DDR (As required)

Preparing for Transparent Bridging over DDR

To prepare for transparent bridging over DDR, complete the tasks in the following sections:

- Defining the Protocols to Bridge (As required)
- Specifying the Bridging Protocol (As required)
- Controlling Bridging Access (As required)

Defining the Protocols to Bridge

IP packets are routed by default unless they are explicitly bridged; all others are bridged by default unless they are explicitly routed. To bridge IP packets, use the following command in global configuration mode:

```plaintext
Router(config)# no ip routing
```

Disables IP routing.

If you choose not to bridge another protocol supported on your network, use the relevant command to enable routing of that protocol. For more information about tasks and commands, refer to the relevant protocol chapter in the appropriate network protocols configuration guide, such as the Cisco IOS AppleTalk and Novell IPX Configuration Guide or Cisco IOS IP Configuration Guide.
Specifying the Bridging Protocol

You must specify the type of spanning-tree bridging protocol to use and also identify a bridge group. To specify the spanning-tree protocol and a bridge group number, use the following command in global configuration mode:

```
Router(config)# bridge bridge-group protocol {ieee | dec}
```

The bridge-group number is used when you configure the interface and assign it to a bridge group. Packets are bridged only among members of the same bridge group.

Controlling Bridging Access

You can control access by defining any transparent bridge packet as interesting, or you can use the finer granularity of controlling access by Ethernet type codes.

To control access by Ethernet type codes, use the following commands in global configuration mode:

```
Step 1
Router(config)# access-list access-list-number {permit | deny} type-code [mask]
```

Identifies interesting packets by Ethernet type codes (access list numbers must be in the range 200–299).

```
Step 2
Router(config)# dialer-list dialer-group protocol bridge list access-list-number
```

Defines a dialer list for the specified access list.

Packets with a specified Ethernet type code can trigger outgoing calls. Spanning tree bridge protocol data units (BPDUs) are always treated as uninteresting and cannot trigger calls.

For a table of some common Ethernet types codes, refer to the “Ethernet Types Codes” appendix in the Cisco IOS Bridging and IBM Networking Command Reference.

To identify all transparent bridge packets as interesting, use the following command in global configuration mode:

```
Command
Router(config)# dialer-list dialer-group protocol bridge permit
```

Defines a dialer list that treats all transparent bridge packets as interesting.

Preparing for Routing over DDR

DDR supports the following routed protocols: AppleTalk, Banyan VINES, DECnet, IP, Internet Protocol Exchange (IPX), ISO CLNS, and Xerox Network Systems (XNS).

To prepare for routing a protocol over DDR, perform the tasks in the relevant section:

- Configuring the Protocol for Routing and Access Control (As required)
- Associating the Protocol Access List with a Dialer Group (As required)
Configuring the Protocol for Routing and Access Control

This section specifies the minimal steps required to configure a protocol for routing over DDR. For more options and more detailed descriptions, refer to the relevant protocol chapter.

Configuring IP Routing

IP routing is enabled by default on Cisco routers; thus no preparation is required simply to enable it. You might, however, need to decide your addressing strategy and complete other global preparations for routing IP in your networks. To use dynamic routing where multiple remote sites communicate with each other through a central site, you might need to disable the IP split horizon feature. Refer to the “Configuring IP Addressing” chapter in the Cisco IOS IP Configuration Guide for more information.

At a minimum, you must complete the following tasks:

- Disable validation of source addresses.
- Configure one or more IP access lists before you refer to the access lists in DDR dialer-list commands to specify which packets can trigger outgoing calls.

To disable validation of source addresses, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# router rip</td>
<td>Specifies the routing protocol; RIP, for example.</td>
</tr>
<tr>
<td>Router(config)# no validate-update-source</td>
<td>Disables validation of source addresses.</td>
</tr>
<tr>
<td>Router(config)# network number</td>
<td>Specifies the IP address.</td>
</tr>
</tbody>
</table>

For more information about IP routing protocols, refer to the Cisco IOS IP Configuration Guide.

To configure IP access lists, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# access-list access-list-number (deny</td>
<td>permit) source [source-mask]</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config)# access-list access-list-number (deny</td>
<td>permit) protocol source source-mask destination destination-mask [operator operand]</td>
</tr>
</tbody>
</table>

You can also use simplified IP access lists that use the any keyword instead of the numeric forms of source and destination addresses and masks. Other forms of IP access lists are also available. For more information, refer to the “IP Services Commands” chapter in the Cisco IOS IP Configuration Guide.

For an example of configuring DDR for IP, see the chapters “Configuring a Legacy DDR Spoke” or “Configuring a Legacy DDR Hub” in this publication.

You can configure IP routing on DDR asynchronous, synchronous serial, and ISDN interfaces, as well as dialer rotary groups.
Preparing to Configure DDR

Preparations for Routing or Bridging over DDR

DC-353
Cisco IOS Dial Technologies Configuration Guide

Configuring Novell IPX Routing

To configure routing of IPX over DDR, you must complete both global and interface-specific tasks:

- Enable IPX routing globally.
- Enable IPX watchdog spoofing, or enable Sequenced Packet Exchange (SPX) keepalive spoofing on the interface.

To enable IPX routing, use the following command in global configuration mode:

```
Router(config)# ipx routing [node]
```

To enable IPX watchdog spoofing on the interface, use the following command in interface configuration mode:

```
Router(config-if)# ipx watchdog-spoof
```

To enable SPX keepalive spoofing, use the following commands in interface configuration mode:

```
Router(config-if)# ipx spx-spoof
delay-in-seconds
```

You can configure IPX routing on DDR asynchronous, synchronous serial, and ISDN interfaces, as well as dialer rotary groups.

For detailed DDR for IPX configuration examples, refer to the section “IPX over DDR Example” in the “Configuring Novell IPX” chapter of the Cisco IOS AppleTalk and Novell IPX Configuration Guide.

Configuring AppleTalk Routing

You must enable AppleTalk routing and then specify AppleTalk access lists. After you specify AppleTalk access lists, define dialer lists. Use the `dialer-list protocol` command to define permit or deny conditions for the entire protocol; for a finer granularity, use the `dialer-list protocol list` command with the `list` keyword.

You can configure AppleTalk routing on DDR asynchronous, synchronous serial, and ISDN interfaces, as well as dialer rotary groups.

See the chapters “Configuring a Legacy DDR Spoke” or “Configuring a Legacy DDR Hub” for more information and examples.
Configuring Banyan VINES Routing

To configure DDR for Banyan VINES, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# vines access-list access-list-number (permit</td>
<td>deny) source source-mask1`</td>
</tr>
<tr>
<td>or `Router(config)# vines access-list access-list-number (permit</td>
<td>deny) source source-mask [destination] [destination-mask]`</td>
</tr>
</tbody>
</table>

After you specify VINES standard or extended access lists, define DDR dialer lists. Use the `dialer-list protocol` command to define permit or deny conditions for the entire protocol; for a finer granularity, use the `dialer-list protocol` command with the `list` keyword. See the chapters “Configuring a Legacy DDR Spoke” or “Configuring a Legacy DDR Hub” for more information and examples.

You can configure Banyan VINES on DDR asynchronous, synchronous serial, and ISDN interfaces, as well as dialer rotary groups.

**Note**
The Banyan VINES `neighbor` command is not supported for LAPB and X.25 encapsulations.

Configuring DECnet Routing

To configure DDR for DECnet, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# access-list access-list-number (permit</td>
<td>deny) source source-mask1`</td>
</tr>
<tr>
<td>or `Router(config)# access-list access-list-number (permit</td>
<td>deny) source source-mask [destination] [destination-mask]`</td>
</tr>
</tbody>
</table>

After you specify DECnet standard or extended access lists, define DDR dialer lists. Use the `dialer-list protocol` command to define permit or deny conditions for the entire protocol; for a finer granularity, use the `dialer-list protocol` command with the `list` keyword. See the chapters “Configuring a Legacy DDR Spoke” or “Configuring a Legacy DDR Hub” in this publication for more information and examples.

You classify DECnet control packets, including hello packets and routing updates, using one or more of the following commands: `dialer-list protocol decnet_router-L1 permit`, `dialer-list protocol decnet_router-L2 permit`, and `dialer-list protocol decnet_node permit`.

You can configure DECnet on DDR asynchronous, synchronous serial, and ISDN interfaces, as well as dialer rotary groups.
Configuring ISO CLNS Routing

To configure ISO CLNS for DDR, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# clns filter-set name [permit</td>
</tr>
<tr>
<td></td>
<td>Specifies one or more CLNS filters, repeating this command as needed to build the filter list associated with the filter name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td></td>
<td>Specifies the interface to apply the filter to and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# clns access-group name out</td>
</tr>
<tr>
<td></td>
<td>Filters CLNS traffic going out of the interface, on the basis of the filter specified and named in Step 1.</td>
</tr>
</tbody>
</table>

After you complete these CLNS-specific steps, define a dialer list for CLNS. Use the **dialer-list protocol** command to define permit or deny conditions for the entire protocol; for a finer granularity, use the **dialer-list protocol** command with the **list** keyword. Use the **access-group** argument with this command, because ISO CLNS uses access groups but does not use access lists. See the chapters “Configuring a Legacy DDR Spoke” or “Configuring a Legacy DDR Hub” in this publication for more information and examples.

You classify CLNS control packets, including hello packets and routing updates, using the **dialer-list protocol clns_is permit** and/or **dialer-list protocol clns_es permit** command.

You can configure ISO CLNS on DDR asynchronous, synchronous serial, and ISDN interfaces, as well as dialer rotary groups.

Configuring XNS Routing

You must enable XNS routing and then define an access list. To define an XNS access list, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router(config)# access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td>Specifies a standard XNS access list.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Router(config)# access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td>Specifies an extended XNS access list.</td>
</tr>
</tbody>
</table>

After you specify an XNS access list, define a DDR dialer list. Use the **dialer-list protocol** command to define permit or deny conditions for the entire protocol; for a finer granularity, use the **dialer-list protocol** command with the **list** keyword. See the chapters “Configuring a Legacy DDR Spoke” or “Configuring a Legacy DDR Hub” for more information and examples.
You can configure XNS on DDR asynchronous, synchronous serial, and ISDN interfaces, as well as dialer rotary groups.

**Associating the Protocol Access List with a Dialer Group**

DDR supports the following routed protocols: AppleTalk, Banyan VINES, DECnet, IP, Novell IPX, ISO CLNS, and XNS.

You can permit or deny access by protocol, or you can specify an access list for more refined control. To associate a protocol or access list with a dialer group, use the following command in global configuration mode:

```
Router(config)# dialer-list dialer-group protocol protocol-name (permit | deny | list access-list-number | access-group)
```

**Purpose**

Associates a protocol access list number or access group name with the dialer group.

**Note**

For a given protocol and a given dialer group, only one access list can be specified in the `dialer-list` command.

For the `dialer-list protocol list` command form, acceptable access list numbers are as follows:

- Banyan VINES, DECnet, IP, and XNS standard and extended access list numbers
- Novell IPX standard, extended, and SAP access list numbers
- AppleTalk access lists numbers
- Bridge type codes

**Configuration Examples for Legacy DDR**

The following sections provide DDR configuration examples:

- Point-to-Point DDR Without Authentication Examples
- Point-to-Point DDR with Authentication Examples

**Point-to-Point DDR Without Authentication Examples**

The following example sets up two-way reciprocal DDR without authentication; the client and server have dial-in access to each other. This configuration is demonstrated in the following two subsections.

**Remote Configuration**

The following sample configuration is performed on the remote side of the connection:

```
interface ethernet 0
 ip address 172.30.44.1 255.255.255.0
!
interface async 7
 ip address 172.30.45.2 255.255.255.0
```
Preparing to Configure DDR

Configuration Examples for Legacy DDR

async mode dedicated
peer default ip address 172.30.45.1
encapsulation ppp
dialer in-band
dialer string 1234
dialer-group 1
!
ip route 172.30.43.0 255.255.255.0 async 7
ip default-network 172.30.0.0
chat-script generic ABORT BUSY ABORT NO ## AT OK ATDT\T TIMEOUT 30 CONNECT
dialer-list 1 protocol ip permit
!
line 7
no exec
modem InOut
speed 38400
flowcontrol hardware
script dialer generic

Local Configuration

The following sample configuration is performed on the local side of the connection:

interface ethernet 0
  ip address 172.30.43.1 255.255.255.0
!
interface async 7
  async mode dedicated
  peer default ip address 172.30.45.2
  encapsulation ppp
dialer in-band
dialer string 1235
dialer rotary-group 1
!
interface async 8
  async mode dedicated
  peer default ip address 172.30.45.2
  dialer rotary-group 1
!
ip route 172.30.44.0 255.255.255.0 async 7
ip address 172.30.45.2 255.255.255.0
encapsulation ppp
  ppp authentication chap
dialer in-band
dialer map ip 172.30.45.2 name remote 4321
dialer load-threshold 80
!
ip route 172.30.44.0 255.255.255.0 128.150.45.2
chat-script generic ABORT BUSY ABORT NO ## AT OK ATDT\T TIMEOUT 30 CONNECT
dialer-list 1 protocol ip permit
!
route igrp 109
network 172.30.0.0
redistribute static
  passive-interface async 7
!
line 7
  modem InOut
  speed 38400
  flowcontrol hardware
  script dialer generic
Point-to-Point DDR with Authentication Examples

The following sample sets up two-way DDR with authentication; the client and server have dial-in access to each other. This configuration is demonstrated in the following two subsections.

Remote Configuration

The following example is performed on the remote side of the connection. It provides authentication by identifying a password that must be provided on each end of the connection.

```plaintext
username local password secret1
username remote password secret2
interface ethernet 0
 ip address 172.30.44.1 255.255.255.0
!
interface async 7
 ip address 172.30.45.2 255.255.255.0
 async mode dedicated
 peer default ip address 172.30.45.1
 encapsulation ppp
 dialer in-band
 dialer string 1234
 dialer-group 1
!
 ip route 172.30.43.0 255.255.255.0 async 7
 ip default-network 172.30.0.0
 chat-script generic ABORT BUSY ABORT NO ## AT OK ATDT\T TIMEOUT 30 CONNECT
dialer-list 1 protocol ip permit
!
 line 7
 no exec
 modem InOut
 speed 38400
 flowcontrol hardware
 script dialer generic
```

Local Configuration

The following example configuration is performed on the local side of the connection. As with the remote side configuration, it provides authentication by identifying a password for each end of the connection.

```plaintext
username remote password secret1
username local password secret2
!
interface ethernet 0
 ip address 172.30.43.1 255.255.255.0
!
interface async 7
 async mode dedicated
 peer default ip address 172.30.45.2
 dialer rotary-group 1
!
interface async 8
 async mode dedicated
 peer default ip address 172.30.45.2
 dialer rotary-group 1
!
interface dialer 1
 ip address 172.30.45.2 255.255.255.0
 encapsulation ppp
```
ppp authentication chap
dialer in-band
dialer map ip 172.30.45.2 name remote 4321
dialer load-threshold 80
!
ip route 172.30.44.0 255.255.255.0 172.30.45.2
chat-script generic ABORT BUSY ABORT NO ## AT OK ATDT\T TIMEOUT 30 CONNECT
!
route igrp 109
network 172.30.0.0
redistribute static
passive-interface async 7
!
line 7
   modem InOut
   speed 38400
   flowcontrol hardware
   script dialer generic
Configuring Legacy DDR Spokes

This chapter describes how to configure legacy dial-on-demand routing (DDR) on interfaces that function as a spoke in a hub-and-spoke network topology. It includes the following main sections:

- DDR Spokes Configuration Task Flow
- How to Configure DDR
- Monitoring DDR Connections
- Configuration Examples for Legacy DDR Spoke

This chapter considers a spoke interface to be any interface that calls or receives calls from exactly one other router, and considers a hub interface to be an interface that calls or receives calls from more than one router: all the spokes in the network.

This chapter also describes the DDR-independent tasks required to bridge protocols or to route protocols over DDR. Most of these tasks are global in scope and can be completed before you begin to configure DDR.

For configuration tasks for the central hub interface in a hub-and-spoke network topology, see the chapter “Configuring a Legacy DDR Hub” in this publication.

For information about the Dialer Profiles implementation of DDR, see the chapter “Configuring Peer-to-Peer DDR with Dialer Profiles” in this publication.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the legacy DDR spoke commands mentioned in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

DDR Spokes Configuration Task Flow

Before you configure DDR, make sure you have completed the preparations for bridging or routing as described in the chapter “Preparing to Configure DDR” in this publication. That chapter provides information about the minimal requirements. For detailed information about bridging, routing, and wide-area networking configurations, refer to the appropriate chapters in other volumes of this documentation set.
When you configure DDR on a spoke interface in a hub-and-spoke topology, you perform the following general steps:

**Step 1** Specify the interface that will place calls to or receive calls from a single site. (See the chapter “Configuring Legacy DDR Hubs” in this publication for information about configuring an interface to place calls to or receive calls from multiple sites.)

**Step 2** Enable DDR on the interface. This step is not required for some interfaces; for example, ISDN interfaces and passive interfaces that receive only from DTR-dialing interfaces.

**Step 3** Configure the interface to receive calls only, if applicable. Receiving calls from multiple sites requires each inbound call to be authenticated.

**Step 4** Configure the interface to place calls only, if applicable.

**Step 5** Configure the interface to place and receive calls, if applicable.

**Step 6** If the interface will place calls, specify access control for:
- Transparent bridging—Assign the interface to a bridge group, and define dialer lists associated with the bridging access lists. The interface switches between members of the same bridge group, and dialer lists specify which packets can trigger calls.
- or
- Routed protocols—Define dialer lists associated with the protocol access lists to specify which packets can trigger calls.

**Step 7** Customize the interface settings (timers, interface priority, hold queues, bandwidth on demand, and disabling fast switching) as needed.

When you have configured the interface and it is operational, you can monitor its performance and its connections as described in the “Monitoring DDR Connections” section later in this chapter.

You can also enhance DDR by configuring Multilink PPP and configuring PPP callback. The PPP configuration tasks are described in the chapter “Configuring Media-Independent PPP and Multilink PPP” in this publication.

See the section “Configuration Examples for Legacy DDR Spoke” later in this chapter for examples of how to configure DDR on your network.

---

**How to Configure DDR**

To configure DDR on an interface, perform the tasks in the following sections. The first five bulleted items are required. The remaining tasks are not required, but might be necessary in your networking environment.

- **Specifying the Interface** (Required)
- **Enabling DDR on the Interface** (Required)
- **Configuring the Interface to Place Calls** (Required)
- or
- **Configuring the Interface to Receive Calls** (Required)
- or
- **Configuring the Interface to Place and Receive Calls** (Required)
- **Defining the Traffic to Be Authenticated** (As required)
- Configuring Access Control for Outgoing Calls (As required)
- Configuring Access Control for Bridging (As required)
- Configuring Access Control for Routing (As required)
- Customizing the Interface Settings (As required)
- Sending Traffic over Frame Relay, X.25, or LAPB Networks (As required)

You can also monitor DDR connections. See the “Monitoring DDR Connections” section later in this chapter for commands and other information.

For examples of legacy DDR on a point-to-point connection, see the “Configuration Examples for Legacy DDR Spoke” section later in this chapter.

## Specifying the Interface

This section assumes that you have completed any preparatory steps required for the relevant interface. For example, if you intend to use an asynchronous interface, it assumes that you have completed the modem support and line configuration steps and the chat script creation steps. If you intend to use an ISDN interface, it assumes that you have the ISDN line properly provisioned and running.

You can configure any asynchronous, synchronous serial, ISDN, or dialer interface for legacy DDR.

When you specify an interface, make sure to use the interface numbering scheme supported on the network interface module or other port hardware on the router. On the Cisco 7200 series, for example, you specify an interface by indicating its type, slot number, and port number.

To specify an interface to configure for DDR, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# interface async number</td>
<td>Specifies an interface to configure for DDR.</td>
</tr>
<tr>
<td>Router(config)# interface serial number</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface bri number</td>
<td>Specifies an ISDN PRI D channel (T1).</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface serial slot/port:23</td>
<td>Specifies an ISDN PRI D channel (E1).</td>
</tr>
<tr>
<td>Router(config)# interface serial slot/port:15</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface dialer number</td>
<td>Specifies a logical interface to function as a dialer rotary group leader.</td>
</tr>
</tbody>
</table>

Dialer interfaces are logical or virtual entities, but they use physical interfaces to place or receive calls.
Enabling DDR on the Interface

This task is required for asynchronous or synchronous serial interfaces but not for ISDN interfaces. The software automatically configures ISDN interfaces to be dialer type ISDN.

This step is not required for ISDN interfaces (BRI interfaces and ISDN PRI D channels) and for purely passive interfaces that will receive calls only from interfaces that use DTR dialing.

Enabling DDR on an interface usually requires you to specify the type of dialer to be used. This step is not required for ISDN interfaces because the software automatically configures ISDN interfaces to be dialer type ISDN.

To enable DDR and specify the dialer type, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dialer dtr</td>
<td>Enables DDR and configures the specified serial interface to use DTR dialing—for interfaces with non-V.25bis modems using EIA Data Terminal Ready (DTR) signaling.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dialer in-band [no-parity</td>
<td>Enables DDR and configures the specified serial interface to use in-band dialing—for asynchronous interfaces or interfaces using V.25bis modems.</td>
</tr>
</tbody>
</table>

Note: An interface configured with the **dialer in-band** command can both place and receive calls. A serial interface configured for DTR dialing can place calls only; it cannot accept them.

You can optionally specify parity if the modem on this interface uses the V.25bis command set. The 1984 version of the V.25bis specification states that characters must have odd parity. However, the default for the **dialer in-band** command is no parity.

For an example of configuring an interface to support DTR dialing, see the section “DTR Dialing Example” later in this chapter.

To receive calls from an interface that is using DTR dialing, an interface can be configured for in-band dialing or not configured for anything but encapsulation, depending on the desired behavior. If you expect the receiving interface to terminate a call when no traffic is received for some time, you must configure in-band dialing (along with access lists and a dummy dialer string). If the receiving interface is purely passive, no additional configuration is necessary.

Note: You can configure an interface or dialer rotary group to both place and receive calls. If the interface is calling and being called by a single site, simply enable DDR and specify a dial string.
Configuring the Interface to Place Calls

To configure an interface to place calls to one site only, perform the tasks in one of the following sections:

- **Specifying the Dial String for Synchronous Serial Interfaces** (As required)
- **Specifying Chat Scripts and Dial Strings for Asynchronous Serial Interfaces** (As required)

### Specifying the Dial String for Synchronous Serial Interfaces

If you want to call only one remote system per synchronous serial interface, use the `dialer string` command. Dialers pass the string you have defined to the external DCE device. ISDN devices call the number specified in the string.

To specify the telephone number call on a serial interface (asynchronous or synchronous), use the following command in interface configuration mode:

```
Router(config-if)# dialer string dial-string [isdn-subaddress]
```

Dialers pass the string (telephone number) to the external DCE device, which dials the number; ISDN devices themselves call the specified number.

### Specifying Chat Scripts and Dial Strings for Asynchronous Serial Interfaces

The modem chat script becomes the default chat script for an interface, which means it becomes the default chat script for the `dialer string` and `dialer map` commands presented in this section.

To place a call to a single site on an asynchronous line for which either a modem dialing script has not been assigned or a system script login must be specified, use the following command in interface configuration mode:

```
Router(config-if)# dialer map protocol next-hop-address [modem-script modem-regexp] [system-script system-regexp] dial-string [isdn-subaddress]
```

Refer to the sections “How To Configure Chat Scripts” and “Dialer Mapping Example” in the chapter “Creating and Using Modem Chat Scripts” for more information about configuring chat scripts.

### Configuring the Interface to Receive Calls

If you enable DDR on an interface by using the `dialer in-band` command, the interface can receive calls. No additional configuration steps are required simply to receive calls. Parity is not required for receiving calls only. An interface configured with the `dialer in-band` command can terminate calls when the line is idle for some configurable time.

You cannot set up an ISDN interface only to receive calls from a single site, but you can set it up to receive and place calls to a single site.
To receive calls from an interface that is using DTR dialing, an interface can be configured for in-band dialing or not configured for anything but encapsulation, depending on the desired behavior. If you expect the receiving interface to terminate a call when no traffic is received for some time, you must configure in-band dialing (along with access lists and a dummy dialer string). If the receiving interface is purely passive, no additional configuration is necessary.

Authentication is not required when traffic comes from only one site. However, you can configure authentication for security. See the “Defining the Traffic to Be Authenticated” section. If you want to receive calls only, do not provide a dial string in the dialer map command shown in that section.

### Configuring the Interface to Place and Receive Calls

If you enable DDR on an interface by using the dialer in-band command, the interface can receive calls. To enable it to place calls to one site, you must define the dialing destination.

To define the dialing destination, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer string dial-string [isdn-subaddress]</td>
<td>Specifies the number to dial one site.</td>
</tr>
</tbody>
</table>

*Note:* Use the dialer map command instead of the dialer string command if you want to authenticate calls received. See the section “Defining the Traffic to Be Authenticated” later in this chapter for more information.

When a dialer string is configured but PPP Challenge Handshake Authentication Protocol (CHAP) is not configured on the interface, the Cisco IOS software recognizes each incoming call as coming from the configured dialer string. That is, if your outgoing calls go to only one number and you do not authenticate incoming calls, it is assumed that all incoming calls come from that number. (If you received calls from multiple sites, you would need to authenticate the calls.)

Authentication is not required when traffic comes from only one site. However, you can configure authentication for an extra measure of security. See the following section, “Defining the Traffic to Be Authenticated,” for more information. If you want to receive and place calls, use the dialer map command.

### Defining the Traffic to Be Authenticated

Authentication can be done through CHAP or Password Authentication Protocol (PAP). In addition, the interface must be configured to map the protocol address of the host to the name to use for authenticating the remote host.
To enable CHAP or PAP on an interface and authenticate sites that are calling in, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config-if)# encapsulation ppp</td>
<td>Configures an interface for PPP encapsulation.</td>
</tr>
<tr>
<td>Step 2: Router(config-if)# ppp authentication chap</td>
<td>Enables CHAP.</td>
</tr>
<tr>
<td>or Router(config-if)# ppp authentication pap</td>
<td>Enables PAP.</td>
</tr>
<tr>
<td>Step 3: Router(config-if)# dialer map protocol</td>
<td>Maps the protocol address to a host name.</td>
</tr>
<tr>
<td>next-hop-address name hostname [modem-script modem-regexp] [system-script system-regexp]</td>
<td></td>
</tr>
<tr>
<td>[dial-string[:isdn-subaddress]]</td>
<td></td>
</tr>
</tbody>
</table>

If the dial string is not provided in the chat script, the interface will be able to receive calls from the host but will not be able to place calls to the host.

### Configuring Access Control for Outgoing Calls

Protocol access lists and dialer access lists are central to the operation of DDR. In general, access lists are used as the screening criteria for determining when to initiate DDR calls. All packets are tested against the dialer access list. Packets that match a permit entry are deemed *interesting*. Packets that do not match a permit entry or that do match a deny entry are deemed *uninteresting*. When a packet is found to be interesting, either the dialer idle timer is reset (if the line is active) or a connection is attempted (if the line is available but not active). If a tested packet is deemed *uninteresting*, it will be forwarded if it is intended for a destination known to be on a specific interface and the link is active. However, such a packet will not initiate a DDR call and will not reset the idle timer.

### Configuring Access Control for Bridging

You can control access by defining any transparent bridge packet as *interesting*, or you can use the finer granularity of controlling access by Ethernet type codes. To control access for DDR bridging, perform one of the following tasks in global configuration mode:

- Controlling Bridging Access by Ethernet Type Codes (As required)
- Permitting All Bridge Packets to Trigger Calls (As required)
- Assigning the Interface to a Bridge Group (As required)

**Note**

Spanning-tree bridge protocol data units (BPDUs) are always treated as *uninteresting*.
Controlling Bridging Access by Ethernet Type Codes

To control access by Ethernet type codes, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# access-list access-list-number {permit</td>
<td>deny} type-code [mask]`</td>
</tr>
</tbody>
</table>

To enable packets with a specified Ethernet type code to trigger outgoing calls, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer-list dialer-group protocol bridge list access-list-number</code></td>
<td>Defines a dialer list for the specified access list.</td>
</tr>
</tbody>
</table>

For a table of some common Ethernet types codes, see the “Ethernet Types Codes” appendix in the Cisco IOS Bridging and IBM Networking Command Reference.

Permitting All Bridge Packets to Trigger Calls

To identify all transparent bridge packets as interesting, use the following command in interface configuration mode when you are configuring DDR:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer-list dialer-group protocol bridge permit</code></td>
<td>Defines a dialer list that treats all transparent bridge packets as interesting.</td>
</tr>
</tbody>
</table>

Assigning the Interface to a Bridge Group

Packets are bridged only among interfaces that belong to the same bridge group. To assign an interface to a bridge group, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# bridge-group bridge-group</code></td>
<td>Assigns the specified interface to a bridge group.</td>
</tr>
</tbody>
</table>

Configuring Access Control for Routing

Before you perform the tasks outlined in this section, configure access lists for the protocols you intend to route over DDR as described briefly in the chapter “Preparing to Configure DDR” in this publication, and as described in greater detail in the appropriate network protocol configuration guide (for example, the Cisco IOS AppleTalk and Novell IPX Configuration Guide).
An interface can be associated only with a single dialer access group; multiple dialer access group assignments are not allowed. To specify the dialer access group to which you want to assign an access list, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer-group group-number</code></td>
<td>Specifies the number of the dialer access group to which the specific interface belongs.</td>
</tr>
</tbody>
</table>

### Customizing the Interface Settings

To customize DDR in your network, perform the tasks in the following sections as needed:

- Configuring Timers on the DDR Interface (As required)
- Setting Dialer Interface Priority (As required)
- Configuring a Dialer Hold Queue (As required)
- Configuring Bandwidth on Demand (As required)
- Disabling and Reenabling DDR Fast Switching (As required)
- Configuring Dialer Redial Options (As required)

### Configuring Timers on the DDR Interface

To set the timers, perform the tasks in the following sections as needed:

- Setting Line-Idle Time (As required)
- Setting Idle Time for Busy Interfaces (As required)
- Setting Line-Down Time (As required)
- Setting Carrier-Wait Time (As required)

#### Setting Line-Idle Time

To specify the amount of time for which a line will stay idle before it is disconnected, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config-if)# dialer idle-timeout seconds [inbound</td>
<td>either]`</td>
</tr>
</tbody>
</table>

**Note**

The `dialer idle-timeout` interface configuration command specifies the duration of time before an idle connection is disconnected. Previously, both inbound and outbound traffic would reset the dialer idle timer; now you can specify that only inbound traffic will reset the dialer idle timer.
Setting Idle Time for Busy Interfaces

The dialer fast idle timer is activated if there is contention for a line. Contention occurs when a line is in use, a packet for a different next hop address is received, and the busy line is required to send the competing packet.

If the line has been idle for the configured amount of time, the current call is disconnected immediately and the new call is placed. If the line has not yet been idle as long as the fast idle timeout period, the packet is dropped because there is no way to get through to the destination. (After the packet is dropped, the fast idle timer remains active and the current call is disconnected as soon as it has been idle for as long as the fast idle timeout.) If, in the meantime, another packet is sent to the currently connected destination, and it is classified as interesting, the fast-idle timer is restarted.

To specify the amount of time for which a line for which there is contention will stay idle before the line is disconnected and the competing call is placed, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer fast-idle seconds</td>
<td>Sets idle time for high traffic lines.</td>
</tr>
</tbody>
</table>

This command applies to both inbound and outbound calls.

Setting Line-Down Time

To set the length of time for which the interface stays down before it is available to dial again after a line is disconnected or fails, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer enable-timeout seconds</td>
<td>Sets the interface downtime.</td>
</tr>
</tbody>
</table>

This command applies to both inbound and outbound calls.

Setting Carrier-Wait Time

To set the length of time for which an interface waits for the telephone service (carrier), use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer wait-for-carrier-time seconds</td>
<td>Sets the length of time for which the interface waits for the carrier to come up when a call is placed.</td>
</tr>
</tbody>
</table>

For asynchronous interfaces, this command sets the total time to wait for a call to connect. This time is set to allow for running the chat script.

Setting Dialer Interface Priority

Interface priority indicates which interface in a dialer rotary group will get used first for outgoing calls. You might give one interface a higher priority if it is attached to a faster, more reliable modem. In this way, the higher-priority interface will be used as often as possible.
To assign priority to an interface in a dialer rotary group, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer priority number</td>
<td>Sets the interface priority in the dialer rotary group.</td>
</tr>
</tbody>
</table>

The range of values for `number` is 0 through 255. Zero is the default value and lowest priority; 255 is the highest priority. This command applies to outgoing calls only.

### Configuring a Dialer Hold Queue

Sometimes packets destined for a remote router are discarded because no connection exists. Establishing a connection using an analog modem can take time, during which packets are discarded. However, configuring a dialer hold queue will allow interesting outgoing packets to be queued and sent as soon as the modem connection is established.

A dialer hold queue can be configured on any type of dialer, including in-band synchronous, asynchronous, DTR, and ISDN dialers. Also, `hunt group leaders` can be configured with a dialer hold queue. If a hunt group leader (of a rotary dialing group) is configured with a hold queue, all members of the group will be configured with a dialer hold queue and no hold queue of an individual member can be altered.

To establish a dialer hold queue, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer hold-queue packets</td>
<td>Creates a dialer hold queue and specifies the number of packets to be held in it.</td>
</tr>
</tbody>
</table>

As many as 100 packets can be held in an outgoing dialer hold queue.

### Configuring Bandwidth on Demand

You can configure a dialer rotary group to use additional bandwidth by placing additional calls to a single destination if the load for the interface exceeds a specified weighted value. Parallel communication links are established based on traffic load. The number of parallel links that can be established to one location is not limited.

To set the dialer load threshold for bandwidth on demand, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer load-threshold load</td>
<td>Configures the dialer rotary group to place additional calls to a single destination, as indicated by interface load.</td>
</tr>
</tbody>
</table>

Once multiple links are established, they are still governed by the load threshold. If the total load on all the links falls below the threshold, an idle link will be torn down.
Disabling and Reenabling DDR Fast Switching

Fast switching is enabled by default on all DDR interfaces. When fast switching is enabled or disabled on an ISDN D channel, it is enabled or disabled on all B channels. When fast switching is enabled or disabled on a dialer interface, it is enabled or disabled on all rotary group members but cannot be enabled or disabled on the serial interfaces individually.

Fast switching can be disabled and re-enabled on a protocol-by-protocol basis. To disable fast switching and re-enable it, use one of the following protocol-specific commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# no ip route-cache</td>
<td>Disables IP fast switching over a DDR interface.</td>
</tr>
<tr>
<td>Router(config-if)# ip route cache</td>
<td>Reenables IP fast switching over a DDR interface.</td>
</tr>
<tr>
<td>Router(config-if)# no ip route-cache distributed</td>
<td>Disables distributed IP fast switching over a DDR interface. This feature works in Cisco 7500 routers with a Versatile Interface Processor (VIP) card.</td>
</tr>
<tr>
<td>Router(config-if)# ip route-cache distributed</td>
<td>Enables distributed IP fast switching over a DDR interface. This feature works in Cisco 7500 routers with a VIP card.</td>
</tr>
<tr>
<td>Router(config-if)# no ipx route-cache</td>
<td>Disables IPX fast switching over a DDR interface.</td>
</tr>
<tr>
<td>Router(config-if)# ipx route-cache</td>
<td>Reenables IPX fast switching over a DDR interface.</td>
</tr>
</tbody>
</table>

Configuring Dialer Redial Options

By default, the Cisco IOS software generates a single dial attempt for each interesting packet. Dialer redial allows the dialer to be configured to make a maximum number of redial attempts if the first dial-out attempt fails, wait a specific interval between redial attempts, and disable the interface for a specified duration if all redial attempts fail. New dialout attempts will not be initiated if a redial is pending to the same destination.

To configure redial options, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface dialer</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# dialer redial interval time attempts number re-enable disable-time</td>
<td>Configures redial options on the router.</td>
</tr>
</tbody>
</table>

Sending Traffic over Frame Relay, X.25, or LAPB Networks

An interface configured for DDR can send traffic over networks that require Link Access Procedure, Balanced (LAPB), X.25, or Frame Relay encapsulation.

Before Cisco IOS software Release 12.0(6)T, encapsulation techniques such as Frame Relay, HDLC, LAPB-TA, and X.25 could support only one ISDN B-channel connection over the entire link. HDLC and PPP could support multiple B channels, but the entire ISDN link needed to use the same encapsulation. The Dynamic Multiple Encapsulations feature allows incoming calls over ISDN to be assigned encapsulation type based on calling line identification (CLID) or DNIS. With the Dynamic Multiple Encapsulations feature, once CLID binding is completed, the topmost interface is always used for all
configuration and data structures. The ISDN B channel becomes a forwarding device, and the configuration on the D channel is ignored, thereby allowing the different encapsulation types and per-user configurations.

To configure an interface for those networks, perform the tasks in the following sections:

- Configuring the Interface for Sending Traffic over a Frame Relay Network (As required)
- Configuring the Interface for Sending Traffic over an X.25 Network (As required)
- Configuring the Interface for Sending Traffic over a LAPB Network (As required)

**Configuring the Interface for Sending Traffic over a Frame Relay Network**

Access to Frame Relay networks is now available through dialup connections as well as leased lines. Dialup connectivity allows Frame Relay networks to be extended to sites that do not generate enough traffic to justify leased lines, and also allows a Frame Relay network to back up another network or point-to-point line.

DDR over Frame Relay is supported for synchronous serial and ISDN interfaces and for rotary groups, and is available for in-band, DTR, and ISDN dialers.

Frame Relay supports multiple permanent virtual circuit (PVC) connections over the same serial interface or ISDN B channel, but only one physical interface can be used (dialed, connected, and active) in a rotary group or with ISDN.

The Dynamic Multiple Encapsulations feature supports the following Frame Relay features:

- Frame Relay RTP Header Compression (RFC 1889)
- Frame Relay TCP/IP Header Compression
- Legacy DDR over Frame Relay
- Frame Relay Interface/Subinterface Backup

Dynamic multiple encapsulations support at least four Frame Relay PVCs on either dialer interfaces or dialer subinterfaces.

**Note**

Frame Relay encapsulations in the Dynamic Multiple Encapsulations feature do not support IETF or Cisco Encapsulation for IBM Systems Network Architecture (SNA). Frame Relay for SNA support is not applicable.

**Configuration Restrictions**

The following restrictions apply to DDR used over Frame Relay:

- Frame Relay is not available for asynchronous dialers.
- The Frame Relay Dynamic Multiple Encapsulations feature does not provide bidirectional support.
- With the Dynamic Multiple Encapsulations feature, there is no process switching for Frame Relay packets; these packets are always fast switched.
- Like HDLC, LAPB, and X.25, Frame Relay does not provide authentication. However, ISDN dialers can offer some authentication through the caller ID feature.
- Only one ISDN B channel can be dialed at any one time. When configuring a rotary group, you can use only one serial interface.

Frame Relay subinterfaces work the same on dialup connections as they do on leased lines.
Configuration Overview

No new commands are required to support DDR over Frame Relay. In general, you configure Frame Relay and configure DDR. In general, complete the following tasks to configure an interface for DDR over Frame Relay:

- Specify the interface.
- Specify the protocol identifiers for the interface.
  For example, enter the IP address and mask, the IPX network number, and the AppleTalk cable range and zone.
- Configure Frame Relay.
  As a minimum, you must enable Frame Relay encapsulation and decide whether you need to do static or dynamic address mapping. If you decide to do dynamic mapping, you need not enter a command because Inverse Address Resolution Protocol is enabled by default. If you decide to do static mapping, you must enter Frame Relay mapping commands.
  You can then configure various options as needed for your Frame Relay network topology.
- Configure DDR.
  At a minimum, you must decide and configure the interface for outgoing calls only, incoming calls only, or both outgoing and incoming calls.
  You can also configure DDR for your routed protocols (as specified in the section “Preparations for Routing or Bridging over DDR” in the chapter “Preparing to Configure DDR” in this publication) and for snapshot routing (as specified in the chapter “Configuring Snapshot Routing” later in this publication). You can also customize DDR interfaces on your router or access server (as described in the section “Customizing the Interface Settings” in this chapter).

For examples of configuring various interfaces for DDR over Frame Relay, see the section “Frame Relay Support Example” later in this chapter.

Configuring the Interface for Sending Traffic over an X.25 Network

X.25 interfaces can now be configured to support DDR. Synchronous serial and ISDN interfaces on Cisco routers and access servers can be configured for X.25 addresses, X.25 encapsulation, and mapping of protocol addresses to the X.25 address of a remote host. In-band, DTR, and ISDN dialers can be configured to support X.25 encapsulation, but rotary groups cannot.

Remember that for ISDN interfaces, once CLID binding is completed, the topmost interface is always used for all configuration and data structures. The ISDN B channel becomes a forwarding device, and the configuration on the D channel is ignored, thereby allowing the different encapsulation types and per-user configurations. For X.25 encapsulations, the configurations reside on the dialer profile. The Dynamic Multiple Encapsulations feature provides support for packet assembler/disassembler (PAD) traffic and X.25 encapsulated and switched packets.

To configure an interface to support X.25 and DDR, use the following X.25-specific commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# encapsulation x25 dte</td>
<td>Configures the interface to use X.25 encapsulation.</td>
</tr>
</tbody>
</table>

For examples of configuring various interfaces for DDR over Frame Relay, see the section “Frame Relay Support Example” later in this chapter.
Configuring Legacy DDR Spokes

Monitoring DDR Connections

The order of DDR and X.25 configuration tasks is not critical; you can configure DDR before or after X.25, and you can even mix the DDR and X.25 commands.

For an example of configuring an interface for X.25 encapsulation and then completing the DDR configuration, see the section “X.25 Support Example” later in this chapter.

Configuring the Interface for Sending Traffic over a LAPB Network

DDR over serial lines now supports LAPB encapsulation, in addition to the previously supported PPP, HDLC, and X.25 encapsulations.

LAPB encapsulation is supported on synchronous serial, ISDN, and dialer rotary group interfaces, but not on asynchronous dialers.

Because the default encapsulation is HDLC, you must explicitly configure LAPB encapsulation. To configure an interface to support LAPB encapsulation and DDR, use the following command in interface configuration mode:

For more information about the serial connections on which LAPB encapsulation is appropriate, refer to the encapsulation lapb command in the chapter “X.25 and LAPB Commands” in the Cisco IOS Wide-Area Networking Command Reference.

For an example of configuring an interface for DDR over LAPB, see the section “LAPB Support Example” later in this chapter.

Monitoring DDR Connections

To monitor DDR connections, use any of the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show dialer [interface type number]</td>
<td>Displays general diagnostics about the DDR interface.</td>
</tr>
<tr>
<td>Router# show dialer map</td>
<td>Displays current dialer maps, next-hop protocol addresses, user names, and the interfaces on which they are configured.</td>
</tr>
<tr>
<td>Router# show interfaces bri 0</td>
<td>Displays information about the ISDN interface.</td>
</tr>
<tr>
<td>Router# show ipx interface [type number]</td>
<td>Displays status about the IPX interface.</td>
</tr>
<tr>
<td>Router# show ipx traffic</td>
<td>Displays information about the IPX packets sent by the router or access server, including watchdog counters.</td>
</tr>
</tbody>
</table>
CRC-376
Cisco IOS Dial Technologies Configuration Guide

Configuration Examples for Legacy DDR Spoke

The following section provides various DDR configurations examples:

- Legacy Dial-on-Demand Routing Example
- Transparent Bridging over DDR Examples
- DDR Configuration in an IP Environment Example
- Two-Way DDR for Novell IPX Example
- AppleTalk Configuration Example
- DECnet Configuration Example
- ISO CLNS Configuration Example
- XNS Configuration Example
- Single Site Dialing Example
- DTR Dialing Example
- Hub-and-Spoke DDR for Asynchronous Interfaces and Authentication Example
- Two-Way Reciprocal Client/Server DDR Without Authentication Example
- Frame Relay Support Example
- X.25 Support Example
- LAPB Support Example

Legacy Dial-on-Demand Routing Example

The following example shows a Cisco 2600 series router that has enabled the `dialer idle-timeout` command with the `inbound` keyword. This command allows only inbound traffic that conforms to the dialer list to establish a connection and reset the dialer idle timer.

```
interface BRI0/0
ip address 10.1.1.1 255.255.255.0
no ip directed-broadcast
encapsulation ppp
dialer idle-timeout 120 inbound
dialer map ip 10.1.1.2 name 2611-7 0201
dialer-group 1
```

Router# show appltalk traffic
Displays information about the AppleTalk packets sent by the router or access server.

Router# show vines traffic
Displays information about the Banyan VINES packets sent by the router or access server.

Router# show decnet traffic
Displays information about the DECnet packets sent by the router or access server.

Router# show xns traffic
Displays information about the XNS packets sent by the router or access server.

Router# clear dialer
Clears the values of the general diagnostic statistics.
isdn switch-type basic-5ess  
no cdp enable  
ppp authentication chap
!
ip classless  
ip route 10.2.1.1 255.255.255.255 10.1.1.2
!
access-list 101 permit icmp any any  
access-list 101 deny   ip any any  
dialer-list 1 protocol ip list 101  
tftp-server flash c2600-i-mz.jtong-CSCdm88145-120

Transparent Bridging over DDR Examples

The following two examples differ only in the packets that cause calls to be placed. The first example specifies by protocol (any bridge packet is permitted to cause a call to be made); the second example allows a finer granularity by specifying the Ethernet type codes of bridge packets.

The first example configures the serial 1 interface for DDR bridging. Any bridge packet is permitted to cause a call to be placed.

no ip routing  
!
interface Serial1  
no ip address  
encapsulation ppp  
dialer in-band  
dialer enable-timeout 3  
dialer map bridge name urk broadcast 8985  
dialer hold-queue 10  
dialer-group 1  
ppp authentication chap  
bridge-group 1  
pulse-time 1  
!
dialer-list 1 protocol bridge permit  
bridge 1 protocol ieee  
bridge 1 hello 10

The second example also configures the serial 1 interface for DDR bridging. However, this example includes an access-list command that specifies the Ethernet type codes that can cause calls to be placed and a dialer list protocol list command that refers to the specified access list.

no ip routing  
!
interface Serial1  
no ip address  
encapsulation ppp  
dialer in-band  
dialer enable-timeout 3  
dialer map bridge name urk broadcast 8985  
dialer hold-queue 10  
dialer-group 1  
ppp authentication chap  
bridge-group 1  
pulse-time 1  
!
access-list 200 permit 0x0800 0xFFF8  
!
dialer-list 1 protocol bridge list 200  
bridge 1 protocol ieee  
bridge 1 hello 10
**DDR Configuration in an IP Environment Example**

The following example illustrates how to use DDR on a synchronous interface in an IP environment. You could use the same configuration on an asynchronous serial interface by changing `interface serial 1` to specify an asynchronous interface (for example, `interface async 0`).

```plaintext
interface serial 1
ip address 172.18.126.1 255.255.255.0
dialer in-band
 ! The next command sets the dialer idle time-out to 10 minutes.
dialer idle-timeout 600
 ! The next command inserts the phone number.
dialer string 5551234
 ! The next command gives the modem enough time to recognize that
 ! DTR has dropped so the modem disconnects the call.
pulse-time 1
 ! The next command adds this interface to the dialer access group defined with
 ! the dialer-list command.
dialer-group 1

! The first access list statement, below, specifies that IGRP updates are not
! interesting packets. The second access-list statement specifies that all
! other IP traffic such as Ping, Telnet, or any other IP packet are interesting
! packets. The dialer-list command then creates dialer access group 1 and states
! that access list 101 is to be used to classify packets as interesting or
! uninteresting. The ip route commands specify that there is a route to network
! 172.18.29.0 and to network 172.18.1.0 via 131.108.126.2. This means that several
! destination networks are available through a router that is dialed from interface
! async 1.

access-list 101 deny igrp 0.0.0.0 255.255.255.255 255.255.255.255 0.0.0.0
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
dialer-list 1 list 101
ip route 172.18.29.0 172.18.126.2
ip route 172.18.1.0 172.18.126.2
ip local pool dialin 10.102.126.2 10.102.126.254
```

With many modems, the `pulse-time` command must be used so that DTR is dropped for enough time to allow the modem to disconnect.

The `redistribute static` command can be used to advertise static route information for DDR applications. Refer to the `redistribute static ip` command, described in the chapter “IP Routing Commands” of the *Cisco IOS IP Command Reference*. Without this command, static routes to the hosts or network that the router can access with DDR will not be advertised to other routers with which the router is communicating. This behavior can block communication because some routes will not be known.

**Two-Way DDR for Novell IPX Example**

You can set DDR for Novell IPX so that both the client and server have dial-in access to each other. This configuration is demonstrated in the following two subsections.

**Remote Configuration Example**

The following example is performed on the remote side of the connection:

```plaintext
username local password secret
ipx routing
```
interface ethernet 0
  ipx network 40
!
interface async
  ip unnumbered e0
  encapsulation ppp
  async mode dedicated
  async dynamic routing
  ipx network 45
  ipx watchdog-spoof
  dialer in-band
  dialer map ipx 45.0000.0cff.d016 broadcast name local 1212
  dialer-group 1
    ppp authentication chap
  !
  access-list 901 deny 0 FFFFFFFF 452
  access-list 901 deny 0 FFFFFFFF 453
  access-list 901 deny 0 FFFFFFFF 457
  access-list 901 deny 0 FFFFFFFF 0 FFFFFFFF 452
  access-list 901 deny 0 FFFFFFFF 0 FFFFFFFF 453
  access-list 901 deny 0 FFFFFFFF 0 FFFFFFFF 457
  access-list 901 permit 0
  ipx route 41 45.0000.0cff.d016
  ipx route 50 45.0000.0cff.d016
  ipx sap 4 SERVER 50.0000.0000.0001 451 2
  chat-script generic ABORT BUSY ABORT NO ## AT OK ATDT\T TIMEOUT 30 CONNECT
  !
  dialer-list 1 list 901
  !
  line 7
    modem InOut
    speed 38400
    flowcontrol hardware
    modem chat-script generic

Local Configuration Example

The following example is performed on the local side of the connection:

username remote password secret
ipx routing
!
interface ethernet 0
  ipx network 41
!
interface async
  ip unnumbered e0
  encapsulation ppp
  async mode dedicated
  async dynamic routing
  ipx network 45
  ipx watchdog-spoof
  dialer in-band
  dialer map ipx 45.0000.0cff.d016 broadcast name remote 8888
  dialer-group 1
    ppp authentication chap
  !
  access-list 901 deny 0 FFFFFFFF 452
  access-list 901 deny 0 FFFFFFFF 453
  access-list 901 deny 0 FFFFFFFF 457
  access-list 901 deny 0 FFFFFFFF 0 FFFFFFFF 452
  access-list 901 deny 0 FFFFFFFF 0 FFFFFFFF 453
  access-list 901 deny 0 FFFFFFFF 0 FFFFFFFF 457
AppleTalk Configuration Example

The following example configures DDR for AppleTalk access using an ISDN BRI. Two access lists are defined: one for IP and Interior Gateway Routing Protocol (IGRP) and one for AppleTalk. AppleTalk packets from network 2141 only (except broadcast packets) can initiate calls.

interface BRI0
ip address 172.17.20.107 255.255.255.0
encapsulation ppp
appletalk cable-range 2141-2141 2141.65
appletalk zone SCruz-Eng
no appletalk send-rtmps
dialer map ip 172.17.20.106 broadcast 1879
dialer map appletalk 2141.66 broadcast 1879
dialer-group 1
!
access-list 101 deny igrp 0.0.0.0 255.255.255.255 255.255.255.255 0.0.0.0
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
access-list 601 permit cable-range 2141-2141 broadcast-deny
access-list 601 deny other-access
!
dialer-list 1 list 101
dialer-list 1 list 601

DECnet Configuration Example

The following example configures DDR for DECnet:

decnet routing 10.19
username RouterB password 7 030752180531
interface serial 0
no ip address
decnet cost 10
encapsulation ppp
dialer in-band
dialer map decnet 10.151 name RouterB broadcast 4155551212
dialer-group 1
ppp authentication chap
pulse-time 1
access-list 301 permit 10.0 0.1023 0.0 63.1023
!dialer-list 1 protocol decnet list 301

Cisco IOS Dial Technologies Configuration Guide
ISO CLNS Configuration Example

The following example configures a router for International Organization for Standardization Connectionless Network Service (ISO CLNS) DDR with in-band dialing:

```
username RouterB password 7 111C140B0E
clns net 47.0004.0001.0000.0c00.2222.00
clns routing
clns filter-set ddrline permit 47.0004.0001....
!
interface serial 0
 no ip address
encapsulation ppp
dialer in-band
dialer map clns 47.0004.0001.0000.0c00.1111.00 name RouterB broadcast 1212
dialer-group 1
ppp authentication chap
clns enable
pulse-time 1
!
clns route default serial 0
dialer-list 1 protocol clns list ddrline
```

XNS Configuration Example

The following example configures DDR for XNS. The access lists deny broadcast traffic to any host on any network, but allow all other traffic.

```
xns routing 0000.0c01.d8dd
username RouterB password 7 111B210A0F

interface serial 0
 no ip address
encapsulation ppp
xns network 10
dialer in-band
dialer map xns 10.0000.0c01.d877 name RouterB broadcast 4155551212
dialer-group 1
ppp authentication chap
pulse-time 1
!
access-list 400 deny -1 -1.ffff.ffff.ffff 0000.0000.0000
access-list 400 permit -1 10
!
dialer-list 1 protocol xns list 400
```

Single Site Dialing Example

The following example is based on the configuration shown in Figure 49; the router receives a packet with a next hop address of 10.1.1.1.
If the single site called by the DDR spoke interface on your router has the phone number 5555555, it will send the packet to that site, assuming that the next hop address 10.1.1.1 indicates the same remote device as phone number 5555555. The **dialer string** command is used to specify the string (telephone number) to be called.

```
interface serial 1
 dialer in-band
 dialer string 5555555
```

### DTR Dialing Example

The following example shows Router A and Router B connected to a Public Switched Telephone Network (PSTN). Router A is configured for DTR dialing. Remote Router B is configured for in-band dialing so it can disconnect an idle call. (See **Figure 50**.)

```
Router A
 interface serial 0
 ip address 172.18.170.19 255.255.255.0
 dialer dtr
 dialer-group 1
 !
 access-list 101 deny igmp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
 access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
 !
 dialer-list 1 list 101
```
Hub-and-Spoke DDR for Asynchronous Interfaces and Authentication Example

The following example sets up DDR to provide service to multiple remote sites. In a hub-and-spoke configuration, you can use a generic configuration script to set up each remote connection. Figure 51 illustrates a typical hub-and-spoke configuration.

Spoke Topology Configuration

The following commands are executed on the spoke side of the connection. (A different “spoke” password must be specified for each remote client.) The configuration provides authentication by identifying a password that must be provided on each end of the connection.

```
interface ethernet 0
 ip address 172.30.44.1 255.255.255.0
!
interface async 7
 async mode dedicated
 async default ip address 172.30.45.1
 ip address 172.30.45.2 255.255.255.0
 encapsulation ppp
 ppp authentication chap
 dialer in-band
 dialer map ip 172.30.45.1 name hub system-script hub 1234
 dialer map ip 172.30.45.255 name hub system-script hub 1234
 dialer-group 1
!
ip route 172.30.43.0 255.255.255.0 172.30.45.1
ip default-network 172.30.0.0
chat-script generic ABORT BUSY ABORT NO ## AT OK ATDT\T TIMEOUT 30 CONNECT
```
Hub Router Configuration

The following commands are executed on the local side of the connection—the hub router. The commands configure the server for communication with three clients and provide authentication by identifying a unique password for each “spoke” in the hub-and-spoke configuration.

```plaintext
interface ethernet 0
 ip address 172.30.43.1 255.255.255.0
!
interface async 7
 async mode interactive
 async dynamic address
dialer rotary-group 1
!
interface async 8
 async mode interactive
 async dynamic address
dialer rotary-group 1
!
interface dialer 1
 ip address 172.30.45.2 255.255.255.0
 no ip split-horizon
capsulation ppp
 ppp authentication chap
dialer in-band
dialer map ip 172.30.45.2 name spoke1 3333
dialer map ip 172.30.45.2 name spoke2 4444
dialer map ip 172.30.45.2 name spoke3 5555
dialer map ip 172.30.45.255 name spoke1 3333
dialer map ip 172.30.45.255 name spoke2 4444
dialer map ip 172.30.45.255 name spoke3 5555
dialer-group 1
!
ip route 172.30.44.0 255.255.255.0 172.30.45.2
ip route 172.30.44.0 255.255.255.0 172.30.45.3
ip route 172.30.44.0 255.255.255.0 172.30.45.4
dialer-list 1 list 101
 access-list 101 deny igrp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
 access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
 chat-script generic ABORT BUSY ABORT NO ## AT OK ATDT\T TIMEOUT 30 CONNECT
!
username spoke1 password <spoke1-passwd>
username spoke2 password <spoke2-passwd>
username spoke3 password <spoke3-passwd>
username spoke1 autocommand ppp 172.30.45.2
username spoke2 autocommand ppp 172.30.45.3
username spoke3 autocommand ppp 172.30.45.4
```

chat-script hub "" "" name: spoke1 word: <spoke1-passwd> PPP
dialer-list 1 protocol ip permit
!
username hub password <spoke1-passwd>
!
router igrp 109
    network 172.30.0.0
    passive-interface async 7
!
line 7
    modem InOut
    speed 38400
    flowcontrol hardware
    modem chat-script generic
Two-Way Reciprocal Client/Server DDR Without Authentication Example

You can set up two-way reciprocal DDR without authentication in which both the client and server have dial-in access to each other. This configuration is demonstrated in the following two sections.

Remote Configuration

The following commands are executed on the remote side of the connection. This configuration provides authentication by identifying a password that must be provided on each end of the connection.

```
interface ethernet 0
 ip address 172.30.44.1 255.255.255.0
!
interface async 7
 ip address 172.30.45.2 255.255.255.0
 async mode dedicated
 async default ip address 172.30.45.1
 encaps ppp
 dialer in-band
 dialer string 1234
 dialer-group 1
 !
 ip route 172.30.43.0 255.255.255.0 async 7
 ip default-network 172.30.0.0
 chat-script generic ABORT BUSY ABORT NO ## AT OK ATDT\T TIMEOUT 30 CONNECT
dialer-list 1 protocol ip permit
!
line 7
 no exec
 modem InOut
 speed 38400
 flowcontrol hardware
 modem chat-script generic
```

Local Configuration

The following commands are executed on the local side of the connection. As with the remote side configuration, this configuration provides authentication by identifying a password for each end of the connection.

```
interface ethernet 0
 ip address 172.30.43.1 255.255.255.0
!
interface async 7
 async mode dedicated
 async default ip address 172.30.45.2
 encapsulation ppp
```
Frame Relay Support Example

The examples in this section present various combinations of interfaces, Frame Relay features, and DDR features.

Frame Relay Access with In-Band Dialing (V.25bis) and Static Mapping Example

The following example shows how to configure a router for IP over Frame Relay using in-band dialing. A Frame Relay static map is used to associate the next hop protocol address to the data-link connection identifier (DLCI). The dialer string allows dialing to only one destination.

interface Serial0
ip address 10.1.1.1 255.255.255.0
encapsulation frame-relay
frame-relay map ip 10.1.1.2 100 broadcast
dialer in-band
dialer string 4155551212
dialer-group 1
route igrp 109
network 172.30.0.0
redistribute static
passive-interface async 7
line 7
modem InOut
speed 38400
flowcontrol hardware
modem chat-script generic
access-list 101 deny igrp any host 255.255.255.255
access-list 101 permit ip any any
! dialer-list 1 protocol ip list 101
Frame Relay Access with ISDN Dialing and DDR Dynamic Maps Example

The following example shows a BRI interface configured for Frame Relay and for IP, IPX, and AppleTalk routing. No static maps are defined because this setup relies on Frame Relay Local Management Interface (LMI) signaling and Inverse ARP to determine the network addresses-to-DLCI mappings dynamically. (Because Frame Relay Inverse ARP is enabled by default, no command is required.)

```
interface BRI0
 ip address 10.1.1.1 255.255.255.0
 ipx network 100
 appletalk cable-range 100-100 100.1
 appletalk zone ISDN
 no appletalk send-rtmps
 encapsulation frame-relay IETF
 dialer map ip 10.1.1.2 broadcast 4155551212
 dialer map apple 100.2 broadcast 4155551212
 dialer map ipx 100.0000.0c05.33ed broadcast 4085551234
 dialer-group 1

 access-list 101 deny igrp any host 255.255.255.255
 access-list 101 permit ip any any

 access-list 901 deny -1 FFFFFFFF 452
 access-list 901 deny -1 FFFFFFFF 453
 access-list 901 deny -1 FFFFFFFF 457
 access-list 901 deny -1 FFFFFFFF 0 FFFFFFFF 452
 access-list 901 deny -1 FFFFFFFF 0 FFFFFFFF 453
 access-list 901 deny -1 FFFFFFFF 0 FFFFFFFF 457
 access-list 901 permit -1

 dialer-list 1 protocol ip list 101
 dialer-list 1 protocol novell list 901
 dialer-list 1 protocol apple list 601
```

X.25 Support Example

The following example configures a router to support X.25 and DTR dialing:

```
interface serial 0
 ip address 172.18.170.19 255.255.255.0
 encapsulation x25
 x25 address 12345
 x25 map ip 172.18.171.20 67890 broadcast
 dialer dtr
 dialer-group 1

 access-list 101 deny igrp 0.0.0.0 255.255.255.255
 access-list 101 permit ip 0.0.0.0 255.255.255.255

 dialer-list 1 list 101
```
LAPB Support Example

The following example configures a router for LAPB encapsulation and in-band dialing:

```
interface serial 0
 ip address 172.18.170.19 255.255.255.0
 encapsulation lapb
 dialer in-band
 dialer string 4155551212
 dialer-group 1
!
access-list 101 deny igrp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!
dialer-list 1 protocol ip list 101
```
Configuring Legacy DDR Hubs

This chapter describes how to configure legacy dial-on-demand routing (DDR) on interfaces functioning as the hub in a hub-and-spoke network topology. It includes the following main sections:

- DDR Issues
- DDR Hubs Configuration Task Flow
- How to Configure DDR
- Monitoring DDR Connections
- Configuration Examples for Legacy DDR Hub

This chapter considers a hub interface to be any interface that calls or receives calls from more than one other router and considers a spoke interface to be an interface that calls or receives calls from exactly one router.

For configuration tasks for the spoke interfaces in a hub-and-spoke network topology, see the chapter “Configuring Legacy DDR Spokes” in this publication.

For information about the dialer profiles implementation of DDR, see the chapter “Configuring Peer-to-Peer DDR with Dialer Profiles” in this publication.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the DDR commands in this chapter, see the Cisco IOS Dial Technologies Command Reference, Release 12.2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

**DDR Issues**

A DDR configuration applies to a specified router interface but serves to meet the communication needs of the network. The router configured for DDR has a function to serve in preserving communications and ensuring that routes are known to other routers at both ends of the dial link. Thus, these issues are important:

- Types and number of router interfaces to be configured for DDR.
- Function of each specific interface—to place calls, receive calls, or both—and the number of sites connecting to the interface.
Identity and characteristics of the router at the other end of each connection—phone number, host name, next hop network protocol addresses, type of signaling used or required, ability to place or receive calls, other requirements.

Types of packets that will be allowed to trigger outgoing calls—if the interface places calls.

End of the connection that will control the communication: initiating calls and terminating calls when the line is idle.

Method for authenticating other routers—if the interface receives calls from multiple sites.

Passing routing information across the dial link.

---

### DDR Hubs Configuration Task Flow

Before you configure DDR, make sure you have completed the preparations for bridging or routing as described in the chapter “Preparing to Configure DDR” in this publication. That chapter provides information about the minimal requirements. For detailed information about bridging, routing, and wide-area networking configurations, see the appropriate chapters in other volumes of this documentation set.

When you configure DDR on a hub interface in a hub-and-spoke topology, you perform the following general steps:

**Step 1** Specify the interface that will place calls to or receive calls from multiple sites. (See the chapter “Configuring Legacy DDR Spokes” in this publication for information about configuring an interface to place calls to or receive calls from one site only.)

**Step 2** Enable DDR on the interface. This step is not required for some interfaces; for example, ISDN interfaces and passive interfaces that receive only from data terminal ready (DTR)-dialing interfaces.

**Step 3** Configure the interface to receive calls only, if applicable. Receiving calls from multiple sites requires each inbound call to be authenticated.

**Step 4** Configure the interface to place calls only, if applicable.

**Step 5** Configure the interface to place and receive calls, if applicable.

**Step 6** If the interface will place calls, specify access control for the following:

- **Transparent bridging**—Assign the interface to a bridge group, and define dialer lists associated with the bridging access lists. The interface switches between members of the same bridge group, and dialer lists specify which packets can trigger calls.

  or

- **Routed protocols**—Define dialer lists associated with the protocol access lists to specify which packets can trigger calls.
Step 7 Customize the interface settings (timers, interface priority, hold queues, bandwidth on demand, and disabling fast switching) as needed.

When you have configured the interface and it is operational, you can monitor its performance and its connections as described in the “Monitoring DDR Connections” section later in this chapter.

You can also enhance DDR by configuring Multilink PPP and configuring PPP callback. The PPP configuration tasks are described in the chapter “Configuring Media-Independent PPP and Multilink PPP” in this publication.

See the section “Configuration Examples for Legacy DDR Hub” at the end of this chapter for examples of how to configure DDR on your network.

How to Configure DDR

To configure DDR on an interface, perform the tasks in the following sections. The first five bulleted items are required. The remaining tasks are not absolutely required, but might be necessary in your networking environment.

- Specifying the Interface (Required)
- Enabling DDR on the Interface (Required)
- Configuring the Interface to Place Calls Only (Required)  
  or Configuring the Interface to Receive Calls Only (Required)  
  or Configuring the Interface to Place and Receive Calls (Required)
- Configuring Access Control for Outgoing Calls (As required)
- Customizing the Interface Settings (As required)
- Sending Traffic over Frame Relay, X.25, or LAPB Networks (As required)

See the section “Monitoring DDR Connections” later in this chapter for commands and other information about monitoring DDR connections. See the section “Configuration Examples for Legacy DDR Hub” at the end of this chapter for ideas about how to implement DDR in your network.

Specifying the Interface

You can configure any asynchronous, synchronous serial, ISDN, or dialer interface for legacy DDR.

Note When you specify an interface, make sure to use the interface numbering scheme supported on the network interface module or other port hardware on the router. On the Cisco 7200 series router, for example, you specify an interface by indicating its type, slot number, and port number.
To specify an interface to configure for DDR, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# interface async number</td>
<td>Specifies an interface to configure for DDR.</td>
</tr>
<tr>
<td>Router(config)# interface serial number</td>
<td>Specifies an ISDN PRI D channel (T1).</td>
</tr>
<tr>
<td>Router(config)# interface bri number</td>
<td>Specifies an ISDN PRI D channel (E1).</td>
</tr>
<tr>
<td>Router(config)# interface serial slot/port:23</td>
<td>Specifies a logical interface to function as a dialer rotary group leader.</td>
</tr>
<tr>
<td>Router(config)# interface serial slot/port:15</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface dialer number</td>
<td></td>
</tr>
</tbody>
</table>

Dialer interfaces are logical or virtual entities, but they use physical interfaces to place or receive calls.

**Enabling DDR on the Interface**

This task is required for asynchronous serial, synchronous serial, and logical dialer interfaces. This task is not required for ISDN interfaces (BRI interfaces and ISDN PRI D channels) and for purely passive interfaces that will receive calls only from interfaces that use DTR dialing.

Enabling DDR on an interface usually requires you to specify the type of dialer to be used. This task is not required for ISDN interfaces because the software automatically configures ISDN interfaces to be dialer type ISDN.

To enable DDR on the interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer in-band [no-parity</td>
<td>Enables DDR on an asynchronous interface or a synchronous serial interface using V.25bis modems.</td>
</tr>
<tr>
<td>odd-parity]</td>
<td></td>
</tr>
</tbody>
</table>

You can optionally specify parity if the modem on this interface uses the V.25bis command set. The 1984 version of the V.25bis specification states that characters must have odd parity. However, the default for the **dialer in-band** command is no parity.

**Configuring the Interface to Place Calls Only**

To configure an interface to place calls to multiple destinations, perform the following tasks. The first task is required for all interface types. The second task is required only if you specified a dialer interface.

- Defining the Dialing Destination (Required)
- Specifying a Physical Interface to Use and Assigning It to a Dialer Rotary Group (As required)
Defining the Dialing Destination

For calling multiple sites, an interface or dialer rotary group must be configured to map each next hop protocol address to the dial string (some form of a telephone number) used to reach it.

To define each dialing destination, use one of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer map protocol next-hop-address dial-string[:isdn-subaddress]</td>
<td>Defines a dialing destination for a synchronous serial interface or a dialer interface.</td>
</tr>
<tr>
<td>Router(config-if)# dialer map protocol next-hop-address [spc] [speed 56</td>
<td>64] [broadcast] [dial-string[:isdn-subaddress]]</td>
</tr>
<tr>
<td>Router(config-if)# dialer map protocol next-hop-address [modem-script modem-regexp] [system-script system-regexp] dial-string[:isdn-subaddress]</td>
<td>Defines a dialing destination for an asynchronous interface. If a modem dialing chat script has not been assigned to the line or a system login chat script must be specified, defines both a dialing destination and the chat scripts to use.</td>
</tr>
</tbody>
</table>

Repeat this task as many times as needed to ensure that all dialing destinations are reachable via some next hop address and dialed number.

If you intend to send traffic over other types of networks, see one of the following sections later in this chapter: “Configuring the Interface for Sending Traffic over a Frame Relay Network,” “Configuring the Interface for Sending Traffic over an X.25 Network,” or “Configuring the Interface for Sending Traffic over a LAPB Network.”

Specifying a Physical Interface to Use and Assigning It to a Dialer Rotary Group

This section applies only if you specified a dialer interface to configure for DDR.

To assign a physical interface to a dialer rotary group, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface serial number or Router(config)# interface async number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# dialer rotary-group number</td>
</tr>
</tbody>
</table>

Repeat these two steps for each physical interface to be used by the dialer interface.

An ISDN BRI is a rotary group of B channels. An ISDN interface can be part of a rotary group comprising other interfaces (synchronous, asynchronous, ISDN BRI, or ISDN PRI). However, Cisco supports at most one level of recursion; that is, a rotary of rotaries is acceptable, but a rotary of rotaries of rotaries is not supported.

Interfaces in a dialer rotary group do not have individual addresses; when the interface is being used for dialing, it inherits the parameters configured for the dialer interface. However, if the individual interface is configured with an address and it is subsequently used to establish a connection from the user EXEC level, the individual interface address again applies.
When you look at your configuration file, commands will not appear in the order in which you entered them. You will also see interface configuration commands that you did not enter, because each interface assigned to a dialer rotary group inherits the parameters of the dialer interface in the dialer rotary group.

Figure 52 illustrates how dialer interfaces work. In this configuration, serial interfaces 1, 2, and 3 are assigned to dialer rotary group 1 and thereby take on the parameters configured for dialer interface 1. When it is used for dialing, the IP address of serial interface 2 is the same as the address of the dialer interface, 172.18.1.1.

Figure 52 Sample Dialer Interface Configuration

Configuring the Interface to Receive Calls Only

Once DDR is enabled on an asynchronous serial, synchronous serial, and ISDN interface, the interface can receive calls from multiple sites using one line or multiple lines. However, interfaces that receive calls from multiple sites require authentication of the remote sites. In addition, dialer interfaces require at least one physical interface to be specified and added to the dialer rotary group. The tasks in the following sections describe how to configuration authentication:

- Configuring the Interface for TACACS+
  or
- Configuring the Interface for PPP Authentication
- Specifying Physical Interfaces and Assigning Them to the Dialer Rotary Group
Configuring the Interface for TACACS+

To configure TACACS as an alternative to host authentication, use one of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# ppp use-tacacs [single-line]</code> or <code>Router(config-if)# aaa authentication ppp</code></td>
<td>Configures TACACS.</td>
</tr>
</tbody>
</table>

Use the `ppp use-tacacs` command with TACACS and extended TACACS. Use the `aaa authentication ppp` command with authentication, authorization, and accounting (AAA)/TACACS+.

Configuring the Interface for PPP Authentication

This section specifies the minimum required configuration for PPP Challenge Handshake Authentication Protocol (CHAP) or Password Authentication Protocol (PAP) authentication. For more detailed information, see the chapter “Configuring Media-Independent PPP and Multilink PPP” in this publication.

To use CHAP or PAP authentication, perform the following steps beginning in interface configuration mode:

**Note**

After you have enabled one of these protocols, the local router or access server requires authentication of the remote devices that are calling. If the remote device does not support the enabled authentication protocol, no traffic will be passed to that device.

1. For CHAP, configure host name authentication and the secret or password for each remote system with which authentication is required.
2. Map the protocol address to the name of the host calling in.

To enable PPP encapsulation, use the following commands beginning in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
  `Router(config-if)# encapsulation ppp` | Enables PPP on an interface. |
| **Step 2**
  `Router(config-if)# ppp authentication chap [if-needed]` or `Router(config-if)# ppp authentication pap` | Enables CHAP on an interface. Enables PAP on an interface. |
| **Step 3**
  `Router(config-if)# dialer map protocol next-hop-address name hostname` | For any host calling in to the local router or access server, maps its host name (case-sensitive) to the next hop address used to reach it.
  Repeat this step for each host calling in to this interface. |
Configuring Legacy DDR Hubs

How to Configure DDR

Specifying Physical Interfaces and Assigning Them to the Dialer Rotary Group

To assign a physical interface to a dialer rotary group, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# username name [user-maxlinks link-number] password secret</td>
</tr>
</tbody>
</table>

Configuring the Interface to Place and Receive Calls

You can configure an physical interface or dialer interface to both place and receive calls. For placing calls, the interface must be configured to map each next hop address to the telephone number to dial. For receiving calls from multiple sites, the interface must be configured to authenticate callers.

Figure 53 shows a configuration in which the central site is calling and receiving calls from multiple sites. In this configuration, multiple sites are calling in to a central site, and the central site might be calling one or more of the remote sites.
To configure a single line, multiple lines, or a dialer interface to place calls to and receive calls from multiple sites, perform the tasks in the following section:

- Defining One or More Dialing Destinations
- Defining the Traffic to Be Authenticated

If you intend to send traffic over other types of networks, see one of the following sections later in this chapter: “Configuring the Interface for Sending Traffic over a Frame Relay Network,” “Configuring the Interface for Sending Traffic over an X.25 Network,” or “Configuring the Interface for Sending Traffic over a LAPB Network.”

### Defining One or More Dialing Destinations

For calling multiple sites, an interface or dialer rotary group must be configured to map each next hop protocol address to the dial string (some form of a telephone number) used to reach it.

To define each dialing destination, use one of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer string dial-string[;isdn-subaddress]</code></td>
<td>Defines only one dialing destination (used to configure one phone number on multiple lines only).</td>
</tr>
<tr>
<td><code>Router(config-if)# dialer map protocol next-hop-address dial-string[;isdn-subaddress]</code></td>
<td>Defines one of several dialing destinations for a synchronous serial interface or a dialer interface.</td>
</tr>
<tr>
<td>`Router(config-if)# dialer map protocol next-hop-address [spc] [speed 56</td>
<td>64][broadcast] [dial-string[;isdn-subaddress]]`</td>
</tr>
<tr>
<td><code>Router(config-if)# dialer map protocol next-hop-address [modem-script modem-regexp] [system-script system-regexp] dial-string[;isdn-subaddress]</code></td>
<td>Defines one of several dialing destinations for an asynchronous interface. If a modem dialing chat script has not been assigned to the line or a system login chat script must be specified, define both a dialing destination and the chat scripts to use.</td>
</tr>
</tbody>
</table>

Repeat this task as many times as needed to ensure that all dialing destinations are reachable via some next hop address and dialed number.
Defining the Traffic to BeAuthenticated

Calls from the multiple sites must be authenticated. Authentication can be done through CHAP or PAP. In addition, the interface must be configured to map the protocol address of a host to the name to use for authenticating the remote host.

To enable CHAP or PAP on an interface and authenticate sites that are calling in, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>Router(config-if)# encapsulation ppp</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>Router(config-if)# ppp authentication chap [if-needed]</code> or <code>Router(config-if)# ppp authentication pap [if-needed]</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>Router(config-if)# dialer map protocol next-hop-address name hostname [modem-script modem-regexp] [system-script system-regexp] [dial-string[ isdn-subaddress]]</code></td>
</tr>
</tbody>
</table>

If the dial string is not used, the interface will be able to receive calls from the host, but will not be able to place calls to the host.

Repeat this task for each site from which the router will receive calls.

Configuring Access Control for Outgoing Calls

Protocol access lists and dialer access lists are central to the operation of DDR. In general, access lists are used as the screening criteria for determining when to initiate DDR calls. All packets are tested against the dialer access list. Packets that match a permit entry are deemed interesting or packets of interest. Packets that do not match a permit entry or that do match a deny entry are deemed uninteresting.

When a packet is found to be interesting, either the dialer idle timer is reset (if the line is active) or a connection is attempted (assuming the line is available but not active). If a tested packet is deemed uninteresting, it will be forwarded if it is intended for a destination known to be on a specific interface and the link is active. However, such a packet will not initiate a DDR call and will not reset the idle timer.

Configuring Access Control for Bridging

When you completed preparations for bridging over DDR, you entered global access lists to specify the protocol packets to be permitted or denied, and global dialer lists to specify which access list to use and which dialer group will place the outgoing calls.

Now you must tie those global lists to an interface configured for DDR. You do this by assigning selected interfaces to a bridge group. Because packets are bridged only among interfaces that belong to the same bridge group, you need to assign this interface and others to the same bridge group.
To assign an interface to a bridge group, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# bridge-group bridge-group</code></td>
<td>Assigns the specified interface to a bridge group.</td>
</tr>
</tbody>
</table>

For examples of bridging over DDR, see the “Transparent Bridging over DDR Examples” section later in this chapter.

## Configuring Access Control for Routing

Before you perform the tasks outlined in this section, you should have completed the preparations for routing a protocol over DDR as described briefly in the chapter “Preparing to Configure DDR” in this publication and as described in greater detail in the appropriate network protocols configuration guide (for example, the *Cisco IOS AppleTalk and Novell IPX Configuration Guide*).

An interface can be associated only with a single dialer access group; multiple dialer access group assignments are not allowed. To specify the dialer access group to which you want to assign an access list, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer-group group-number</code></td>
<td>Specifies the number of the dialer access group to which the specific interface belongs.</td>
</tr>
</tbody>
</table>

## Customizing the Interface Settings

To customize DDR in your network, perform the tasks in the following sections as needed:

- Configuring Timers on the DDR Interface (As required)
- Setting Dialer Interface Priority (As required)
- Configuring a Dialer Hold Queue (As required)
- Configuring Bandwidth on Demand (As required)
- Disabling and Reenabling DDR Fast Switching (As required)
- Configuring Dialer Redial Options (As required)

## Configuring Timers on the DDR Interface

To configure DDR interface timers, perform the tasks in the following sections as needed:

- Setting Line-Idle Time (As required)
- Setting Idle Time for Busy Interfaces (As required)
- Setting Line-Down Time (As required)
- Setting Carrier-Wait Time (As required)
Setting Line-Idle Time

To specify the amount of time for which a line will stay idle before it is disconnected, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer idle-timeout seconds</code></td>
<td>Sets line-idle time.</td>
</tr>
</tbody>
</table>

Setting Idle Time for Busy Interfaces

The dialer fast idle timer is activated if there is contention for a line. Contention occurs when a line is in use, a packet for a different next hop address is received, and the busy line is required to send the competing packet.

If the line has been idle for the configured amount of time, the current call is disconnected immediately and the new call is placed. If the line has not yet been idle as long as the fast idle timeout period, the packet is dropped because the destination is unreachable. (After the packet is dropped, the fast idle timer remains active and the current call is disconnected as soon as it has been idle for as long as the fast idle timeout). If, in the meantime, another packet is sent to the currently connected destination, and it is classified as interesting, the fast-idle timer is restarted.

To specify the amount of time for which a line for which there is contention will stay idle before the line is disconnected and the competing call is placed, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer fast-idle seconds</code></td>
<td>Sets idle time for high traffic lines.</td>
</tr>
</tbody>
</table>

This command applies to both inbound and outbound calls.

Setting Line-Down Time

To set the length of time for which the interface stays down before it is available to dial again after a line is disconnected or fails, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer enable-timeout seconds</code></td>
<td>Sets the interface downtime.</td>
</tr>
</tbody>
</table>

This command applies to both inbound and outbound calls.

Setting Carrier-Wait Time

To set the length of time for which an interface waits for the telephone service (carrier), use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer wait-for-carrier-time seconds</code></td>
<td>Sets the length of for which time the interface waits for the carrier to come up when a call is placed.</td>
</tr>
</tbody>
</table>
For asynchronous interfaces, this command sets the total time to wait for a call to connect. This time is set to allow for running the chat script.

**Setting Dialer Interface Priority**

You can assign dialer priority to an interface. Priority indicates which interface in a dialer rotary group will get used first. To assign priority to a dialer interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer priority number</code></td>
<td>Specifies which dialer interfaces will be used first.</td>
</tr>
</tbody>
</table>

For example, you might give one interface in a dialer rotary group higher priority than another if it is attached to a faster, more reliable modem. In this way, the higher-priority interface will be used as often as possible.

The range of values for `number` is 0 through 255. Zero is the default value and lowest priority; 255 is the highest priority. This command applies to outgoing calls only.

**Configuring a Dialer Hold Queue**

Sometimes packets destined for a remote router are discarded because no connection exists. Establishing a connection using an analog modem can take time, during which packets are discarded. However, configuring a dialer hold queue will allow interesting outgoing packets to be queued and sent as soon as the modem connection is established.

A dialer hold queue can be configured on any type of dialer, including in-band synchronous, asynchronous, DTR, and ISDN dialers. Also, hunt group leaders can be configured with a dialer hold queue. If a hunt group leader (of a rotary dialing group) is configured with a hold queue, all members of the group will be configured with a dialer hold queue and no hold queue for an individual member can be altered.

To establish a dialer hold queue, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer hold-queue packets</code></td>
<td>Creates a dialer hold queue and specifies the number of packets to be held in it.</td>
</tr>
</tbody>
</table>

As many as 100 packets can be held in an outgoing dialer hold queue.

**Configuring Bandwidth on Demand**

You can configure a dialer rotary group to use additional bandwidth by placing additional calls to a single destination if the load for the interface exceeds a specified weighted value. Parallel communication links are established based on traffic load. The number of parallel links that can be established to one location is not limited.
To set the dialer load threshold for bandwidth on demand, use the following command in interface configuration mode:

```
Router(config-if)# dialer load-threshold load
```

Configures the dialer rotary group to place additional calls to a destination, as indicated by interface load.

Once multiple links are established, they are still governed by the load threshold. If the total load falls below the threshold, an idle link will be torn down.

**Disabling and Reenabling DDR Fast Switching**

Fast switching is enabled by default on all DDR interfaces. When fast switching is enabled or disabled on an ISDN D channel, it is enabled or disabled on all B channels. When fast switching is enabled or disabled on a dialer interface, it is enabled or disabled on all rotary group members but cannot be enabled or disabled on the serial interfaces individually.

Fast switching can be disabled and re-enabled on a protocol-by-protocol basis. To disable fast switching and re-enable it, use one of the following protocol-specific commands in interface configuration mode:

```
Command Purpose
--
Router(config-if)# no ip route-cache Disables IP fast switching over a DDR interface.
Router(config-if)# ip route cache Reenables IP fast switching over a DDR interface.
```

```
Command Purpose
--
Router(config-if)# no ip route-cache Disables IPX fast switching over a DDR interface.
Router(config-if)# ip route-cache Reenables IPX fast switching over a DDR interface.
```

**Configuring Dialer Redial Options**

By default, the Cisco IOS software generates a single dial attempt for each interesting packet. Dialer redial allows the dialer to be configured to make a maximum number of redial attempts if the first dial-out attempt fails, wait a specific interval between redial attempts, and disable the interface for a specified duration if all redial attempts fail. New dialout attempts will not be initiated if a redial is pending to the same destination.
To configure redial options, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface dialer</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# dialer redial interval time attempts number re-enable disable-time</td>
<td>Configures redial options on the router.</td>
</tr>
</tbody>
</table>

**Sending Traffic over Frame Relay, X.25, or LAPB Networks**

An interface configured for DDR can send traffic over networks that require Link Access Procedure, Balanced (LAPB), X.25, or Frame Relay encapsulation.

Before Cisco IOS software Release 12.0(6)T, encapsulation techniques such as Frame Relay, High-Level Data Link Control (HDLC), LAPB-TA, and X.25 could support only one ISDN B-channel connection over the entire link. HDLC and PPP could support multiple B channels, but the entire ISDN link needed to use the same encapsulation. Dynamic multiple encapsulations allow incoming calls over ISDN to be assigned encapsulation type based on calling line identification (CLID) or Dialed Number Identification Service (DNIS). With dynamic multiple encapsulations, once CLID binding is completed, the topmost interface is always used for all configuration and data structures. The ISDN B channel becomes a forwarding device, and the configuration on the D channel is ignored, thereby allowing the different encapsulation types and per-user configurations.

To configure an interface for those networks, perform the tasks in the following sections:

- Configuring the Interface for Sending Traffic over a Frame Relay Network (As Required)
- Configuring the Interface for Sending Traffic over an X.25 Network (As Required)
- Configuring the Interface for Sending Traffic over a LAPB Network (As Required)

**Configuring the Interface for Sending Traffic over a Frame Relay Network**

Access to Frame Relay networks is now available through dialup connections and leased lines. Dialup connectivity allows Frame Relay networks to be extended to sites that do not generate enough traffic to justify leased lines, and also allows a Frame Relay network to back up another network or point-to-point line.

DDR over Frame Relay is supported for synchronous serial and ISDN interfaces and for rotary groups, and is available for in-band, DTR, and ISDN dialers.

Frame Relay supports multiple permanent virtual circuit (PVC) connections over the same serial interface or ISDN B channel, but only one physical interface can be used (dialed, connected, and active) in a rotary group or with ISDN.

Dynamic multiple encapsulations support the following Frame Relay features:

- Frame Relay RTP Header Compression (RFC 1889)
- Frame Relay TCP/IP Header Compression
- Legacy DDR over Frame Relay
- Frame Relay Interface/Subinterface Backup

Dynamic multiple encapsulations support at least four Frame Relay PVCs on either dialer interfaces or dialer subinterfaces.
Frame Relay encapsulations in the dynamic multiple encapsulations feature do not support IETF or Cisco Encapsulation for IBM Systems Network Architecture (SNA). Frame Relay for SNA support is not applicable.

Configuration Restrictions

The following restrictions apply to DDR used over Frame Relay:

- Frame Relay is not available for asynchronous dialers.
- The Frame Relay dynamic multiple encapsulations does not provide bidirectional support.
- With the dynamic multiple encapsulations, there is no process switching for Frame Relay packets; these packets are always fast switched.
- Like HDLC, LAPB, X.25 and Frame Relay do not provide authentication. However, ISDN dialers can offer some authentication through the caller ID feature.
- Only one ISDN B channel can be dialed at any one time. When configuring a rotary group, you can use only one serial interface.

Frame Relay subinterfaces work the same on dialup connections as they do on leased lines.

Configuration Overview

No new commands are required to support DDR over Frame Relay. In general, you configure Frame Relay and configure DDR. In general, to configure an interface for DDR over Frame Relay, perform the following tasks:

- Specify the interface.
- Specify the protocol identifiers for the interface.
  For example, enter the IP address and mask, the IPX network number, and the AppleTalk cable range and zone.
- Configure Frame Relay, as described in the chapter “Configuring Frame Relay” in the Cisco IOS Wide-Area Networking Configuration Guide.
  As a minimum, you must enable Frame Relay encapsulation and decide whether you need to do static or dynamic address mapping. If you decide to do dynamic mapping, you need not enter a command because Inverse ARP is enabled by default. If you decide to do static mapping, you must enter Frame Relay mapping commands.
  You can then configure various options as needed for your Frame Relay network topology.
- Configure DDR.
  At a minimum, you must decide and configure the interface for outgoing calls only, incoming calls only, or both outgoing and incoming calls.
  You can also configure DDR for your routed protocols (as specified in the chapter “Preparing to Configure DDR”) and for snapshot routing (as specified in the chapter “Configuring Snapshot Routing” later in this publication). You can also customize DDR on your router or access server (as described in the “Customizing the Interface Settings” section later in this chapter).

For examples of configuring various interfaces for DDR over Frame Relay, see the section “Frame Relay Support Examples” later in this chapter.
Configuring the Interface for Sending Traffic over an X.25 Network

X.25 interfaces can now be configured to support DDR. Synchronous serial and ISDN interfaces on Cisco routers and access servers can be configured for X.25 addresses, X.25 encapsulation, and mapping of protocol addresses to the X.25 address of a remote host. In-band, DTR, and ISDN dialers can be configured to support X.25 encapsulation, but rotary groups cannot.

Remember that for ISDN interfaces, once CLID binding is completed, the topmost interface is always used for all configuration and data structures. The ISDN B channel becomes a forwarding device, and the configuration on the D channel is ignored, thereby allowing the different encapsulation types and per-user configurations. For X.25 encapsulations, the configurations reside on the dialer profile. The Dynamic Multiple Encapsulations feature provides support for packet assembler/disassembler (PAD) traffic and X.25 encapsulated and switched packets.

To configure an interface to support X.25 and DDR, use the following X.25-specific commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# encapsulation x25 [dte</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# x25 address x.121-address</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# x25 map protocol address [protocol2 address2 ...[protocol19 address19]] x.121-address [option]</td>
</tr>
</tbody>
</table>

The order of DDR and X.25 configuration tasks is not critical; you can configure DDR before or after X.25, and you can even mix the DDR and X.25 commands.

For an example of configuring an interface for X.25 encapsulation and then completing the DDR configuration, see the section “X.25 Support Configuration Example” later in this chapter.

Configuring the Interface for Sending Traffic over a LAPB Network

DDR over serial lines now supports LAPB encapsulation, in addition to the previously supported PPP, HDLC, and X.25 encapsulations.

LAPB encapsulation is supported on synchronous serial, ISDN, and dialer rotary group interfaces, but not on asynchronous dialers.

Because the default encapsulation is HDLC, you must explicitly configure LAPB encapsulation. To configure an interface to support LAPB encapsulation and DDR, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# encapsulation lapb [dte</td>
<td>dce] [multi</td>
</tr>
</tbody>
</table>

For more information about the serial connections on which LAPB encapsulation is appropriate, see the encapsulation lapb command in the chapter “X.25 and LAPB Commands” in the Cisco IOS Wide-Area Networking Command Reference, Release 12.2.

For an example of configuring an interface for DDR over LAPB, see the section “X.25 Support Configuration Example” later in this chapter.
Monitoring DDR Connections

To monitor DDR connections and snapshot routing, use the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show dialer [interface type number]</td>
<td>Displays general diagnostics about the DDR interface.</td>
</tr>
<tr>
<td>Router# show dialer map</td>
<td>Displays current dialer maps, next-hop protocol addresses, user names, and the interfaces on which they are configured.</td>
</tr>
<tr>
<td>Router# show interfaces bri 0</td>
<td>Displays information about the ISDN interface.</td>
</tr>
<tr>
<td>Router# show ipx interface [type number]</td>
<td>Displays status about the IPX interface.</td>
</tr>
<tr>
<td>Router# show ipx traffic</td>
<td>Displays information about the IPX packets sent by the router or access server, including watchdog counters.</td>
</tr>
<tr>
<td>Router# show appletalk traffic</td>
<td>Displays information about the AppleTalk packets sent by the router or access server.</td>
</tr>
<tr>
<td>Router# show vines traffic</td>
<td>Displays information about the Banyan VINES packets sent by the router or access server.</td>
</tr>
<tr>
<td>Router# show decnet traffic</td>
<td>Displays information about the DECnet packets sent by the router or access server.</td>
</tr>
<tr>
<td>Router# show xns traffic</td>
<td>Displays information about the XNS packets sent by the router or access server.</td>
</tr>
<tr>
<td>Router# clear dialer</td>
<td>Clears the values of the general diagnostic statistics.</td>
</tr>
</tbody>
</table>

Configuration Examples for Legacy DDR Hub

The following sections provide various DDR configuration examples:

- Transparent Bridging over DDR Examples
- DDR Configuration in an IP Environment Example
- AppleTalk Configuration Example
- Banyan VINES Configuration Example
- DECnet Configuration Example
- ISO CLNS Configuration Example
- XNS Configuration Example
- Hub-and-Spoke DDR for Asynchronous Interfaces and Authentication Example
- Single Site or Multiple Sites Dialing Configuration Example
- Multiple Destinations Configuration Example
- Dialer Interfaces and Dialer Rotary Groups Example
- DDR Configuration Using Dialer Interface and PPP Encapsulation Example
- Two-Way DDR with Authentication Example
• Frame Relay Support Examples
• X.25 Support Configuration Example
• LAPB Support Configuration Example

Transparent Bridging over DDR Examples

The following two examples differ only in the packets that cause calls to be placed. The first example specifies by protocol (any bridge packet is permitted to cause a call to be made); the second example allows a finer granularity by specifying the Ethernet type codes of bridge packets.

The first example configures serial interface 1 for DDR bridging. Any bridge packet is permitted to cause a call to be placed.

no ip routing
!
interface Serial1
  no ip address
  encapsulation ppp
  dialer in-band
  dialer enable-timeout 3
  dialer map bridge name urk broadcast 8985
  dialer hold-queue 10
  dialer-group 1
  ppp authentication chap
  bridge-group 1
  pulse-time 1
!
dialer-list 1 protocol bridge permit
  bridge 1 protocol ieee
  bridge 1 hello 10

The second example also configures the serial interface 1 for DDR bridging. However, this example includes an access-list command that specifies the Ethernet type codes that can cause calls to be placed and a dialer list protocol list command that refers to the specified access list.

no ip routing
!
interface Serial1
  no ip address
  encapsulation ppp
  dialer in-band
  dialer enable-timeout 3
  dialer map bridge name urk broadcast 8985
  dialer hold-queue 10
  dialer-group 1
  ppp authentication chap
  bridge-group 1
  pulse-time 1
!
access-list 200 permit 0x0800 0xFFF8
!
dialer-list 1 protocol bridge list 200
  bridge 1 protocol ieee
  bridge 1 hello 10
# DDR Configuration in an IP Environment Example

The following example shows how to configure DDR to call one site from a synchronous serial interface in an IP environment. You could use the same configuration on an asynchronous serial interface by changing the `interface serial 1` command to specify an asynchronous interface (for example, `interface async 0`).

```conf
interface serial 1
 ip address 172.18.126.1 255.255.255.0
dialer in-band
dialer idle-timeout 600
dialer string 5551234
pulse-time 1
! The next command adds this interface to the dialer access group defined with
! the dialer-list command.
dialer-group 1

! The first access list statement, below, specifies that IGRP updates are not
! interesting packets. The second access-list statement specifies that all
! other IP traffic such as Ping, Telnet, or any other IP packet is interesting.
! The dialer-list command then creates dialer access group 1 and states that
! access list 101 is to be used to classify packets as interesting or
! uninteresting. The ip route commands specify that there is a route to network
! 172.18.29.0 and to network 172.18.1.0 via 172.18.126.2. This means that
! several destination networks are available through a router that is dialed
! from interface serial 1.
access-list 101 deny igrp 0.0.0.0 255.255.255.255 255.255.255.255 0.0.0.0
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
dialer-list 1 list 101
ip route 172.18.29.0 172.18.126.2
ip route 172.18.1.0 172.18.126.2
ip local pool dialin 10.102.126.2 10.102.126.254
```

With many modems, the `pulse-time` command must be used so that DTR is dropped for enough time to allow the modem to disconnect.

---

# AppleTalk Configuration Example

The following example configures DDR for AppleTalk access using an ISDN BRI. Two access lists are defined: one for IP and Interior Gateway Routing Protocol (IGRP) and one for AppleTalk. AppleTalk packets from network 2141 only (except broadcast packets) can initiate calls.

```conf
interface BRI0
 ip address 172.16.20.107 255.255.255.0
 encapsulation ppp
appletalk cable-range 2141-2141 2141.65
appletalk zone SCruz-Eng
no appletalk send-rtmps
dialer map ip 172.16.20.106 broadcast 1879
dialer map appletalk 2141.66 broadcast 1879

dialer-group 1

! access-list 101 deny igrp 0.0.0.0 255.255.255.255 255.255.255.255 0.0.0.0
! access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
dialer-list 1 list 101
ip route 172.16.20.107 172.16.20.106
ip route 172.16.2141.66 broadcast 1879
dialer-list 1 list 601
```

With many modems, the `pulse-time` command must be used so that DTR is dropped for enough time to allow the modem to disconnect.
Banyan VINES Configuration Example

The following example configures a router for VINES and IP DDR with in-band dialing. The VINES access list does not allow RTP routing updates to place a call, but any other data packet is interesting.

```
vines routing BBBBBB:0001
!
hostname RouterA
!
username RouterB password 7 030752180500
username RouterC password 7 00071A150754
!
interface serial 0
ip address 172.18.170.19 255.255.255.0
encapsulation ppp
vines metrics 10
vines neighbor AAAAAAAA:0001 0
dialer in-band
dialer map ip 172.18.170.151 name RouterB broadcast 4155551234
dialer map vines AAAAAAAA:0001 name RouterC broadcast 4155551212
dialer-group 1
ppp authentication chap
pulse-time 1
!
access-list 101 deny igrp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!
vines access-list 107 deny RTP 00000000:0000 FFFFFFFF:FFFF 00000000:0000 FFFFFFFF:FFFF
vines access-list 107 permit IP 00000000:0000 FFFFFFFF:FFFF 00000000:0000 FFFFFFFF:FFFF
!
dialer-list 1 protocol ip list 101
dialer-list 1 protocol vines list 107
```

DECnet Configuration Example

The following example configures a router for DECnet DDR with in-band dialing:

```
decnet routing 10.19
username RouterB password 7 030752180531
!
interface serial 0
no ip address
decnet cost 10
encapsulation ppp
dialer in-band
dialer map decnet 10.151 name RouterB broadcast 4155551212
dialer-group 1
ppp authentication chap
pulse-time 1
!
access-list 301 permit 10.0 0.1023 0.0 63.1023
dialer-list 1 protocol decnet list 301
```
ISO CLNS Configuration Example

The following example configures a router for International Organization for Standardization Connectionless Network Service (ISO CLNS) DDR with in-band dialing:

```console
username RouterB password 7 111C140B0E
clns net 47.0004.0001.0000.0c00.2222.00
clns routing
clns filter-set ddrline permit 47.0004.0001....
interface serial 0
 no ip address
 encapsulation ppp
dialer in-band
dialer map clns 47.0004.0001.0000.0c00.1111.00 name RouterB broadcast 1212
dialer-group 1
 ppp authentication chap
clns enable
 pulse-time 1
!
clns route default serial 0
dialer-list 1 protocol clns list ddrline
```

XNS Configuration Example

The following example configures a router for XNS DDR with in-band dialing. The access lists deny broadcast traffic to any host on any network, but allow all other traffic.

```console
xns routing 0000.0c01.d8dd
username RouterB password 7 111B210A0F
interface serial 0
 no ip address
 encapsulation ppp
 xns network 10
dialer in-band
dialer map xns 10.0000.0c01.d877 name RouterB broadcast 415551212
dialer-group 1
 ppp authentication chap
 pulse-time 1
 access-list 400 deny -1 -1.ffff.ffff.ffff 0000.0000.0000
 access-list 400 permit -1 10
 dialer-list 1 protocol xns list 400
```

Hub-and-Spoke DDR for Asynchronous Interfaces and Authentication Example

You can set up DDR to provide service to multiple remote sites. In a hub-and-spoke configuration, you can use a generic configuration script to set up each remote connection. Figure 54 illustrates a typical hub-and-spoke configuration.
Figure 54 Hub-and-Spoke DDR Configuration

The examples in the following sections show how to create this configuration.

Spoke Topology Configuration

The following commands are executed on the spoke side of the connection. (A different “spoke” password must be specified for each remote client.) The configuration provides authentication by identifying a password that must be provided on each end of the connection.

```
interface ethernet 0
 ip address 172.30.44.1 255.255.255.0
!
interface async 7
 async mode dedicated
 async default ip address 172.19.45.1
 ip address 172.30.45.2 255.255.255.0
 encapsulation ppp
 ppp authentication chap
 dialer in-band
 dialer map ip 172.30.45.1 name hub system-script hub 1234
 dialer map ip 172.30.45.255 name hub system-script hub 1234
 dialer-group 1
!
ip route 172.30.43.0 255.255.255.0 172.30.45.1
ip default-network 172.30.0.0
chat-script generic ABORT BUSY ABORT NO ## AT OK ATDT\T TIMEOUT 30 CONNECT
chat-script hub " " " name: spoke1 word" <spoke1-passwd> PPP
 dialer-list 1 protocol ip permit
!
username hub password <spoke1-passwd>
!
router igrp 109
 network 172.30.0.0
 passive-interface async 7
!
line 7
 modem InOut
 speed 38400
 flowcontrol hardware
 modem chat-script generic
```

Hub Router Configuration

The following commands are executed on the local side of the connection—the hub router. The commands configure the server for communication with three clients and provide authentication by identifying a unique password for each “spoke” in the hub-and-spoke configuration.

```
```

interface ethernet 0
  ip address 172.30.43.1 255.255.255.0
!
interface async 7
  async mode interactive
  async dynamic address
  dialer rotary-group 1
!
interface async 8
  async mode interactive
  async dynamic address
  dialer rotary-group 1
!
interface dialer 1
  ip address 172.30.45.2 255.255.255.0
  no ip split-horizon
  encapsulation ppp
  ppp authentication chap
  dialer in-band
  dialer map ip 172.30.45.2 name spoke1 3333
  dialer map ip 172.30.45.2 name spoke2 4444
  dialer map ip 172.30.45.2 name spoke3 5555
  dialer map ip 172.30.45.255 name spoke1 3333
  dialer map ip 172.30.45.255 name spoke2 4444
  dialer map ip 172.30.45.255 name spoke3 5555
  dialer-group 1
!
ip route 172.30.44.0 255.255.255.0 172.30.45.2
ip route 172.30.44.0 255.255.255.0 172.30.45.3
ip route 172.30.44.0 255.255.255.0 172.30.45.4
!
dialer-list 1 protocol ip list 101
  access-list 101 deny igrp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
  access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
  chat-script generic ABORT BUSY ABORT NO ## AT OK ATDT\T TIMEOUT 30 CONNECT
!
username spoke1 password <spoke1-passwd>
username spoke2 password <spoke2-passwd>
username spoke3 password <spoke3-passwd>
username spoke1 autocommand ppp 172.30.45.2
username spoke2 autocommand ppp 172.30.45.3
username spoke3 autocommand ppp 172.30.45.4
!
router igrp 109
  network 172.30.0.0
  redistribute static
!
line 7
  login tacacs
  modem InOut
  speed 38400
  flowcontrol hardware
  modem chat-script generic

The `redistribute static` command can be used to advertise static route information for DDR applications. Without this command, static routes to the hosts or network that the router can access with DDR will not be advertised to other routers with which the router is communicating. This behavior can block communication because some routes will not be known. See the `redistribute static ip` command, described in the chapter “IP Routing Protocol-Independent Commands” in the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.2.
Single Site or Multiple Sites Dialing Configuration Example

The following example is based on the configuration shown in Figure 55; the router receives a packet with a next hop address of 10.1.1.1.

**Figure 55 Sample Dialer String or Dialer Map Configuration**

If the interface on your router is configured to call a single site with phone number 5555555, it will send the packet to that site, assuming that the next hop address 10.1.1.1 indicates the same remote device as phone number 5555555. The **dialer string** command is used to specify the string (telephone number) to be called.

```
interface serial 1
 dialer in-band
 dialer string 5555555
```

If the interface is configured to dial multiple sites, the interface or dialer rotary group must be configured so that the correct phone number, 5555555, is mapped to the address 10.1.1.1. If this mapping is not configured, the interface or dialer rotary group does not know what phone number to call to deliver the packet to its correct destination, which is the address 10.1.1.1. In this way, a packet with a destination of 10.2.2.2 will not be sent to 5555555. The **dialer map** command is used to map next hop addresses to phone numbers.

```
interface serial 1
 dialer in-band
 dialer map ip 10.1.1.1 5555555
 dialer map ip 10.2.2.2 6666666
```

Multiple Destinations Configuration Example

The following example shows how to specify multiple destination numbers to dial for outgoing calls:

```
interface serial 1
 ip address 172.18.126.1 255.255.255.0
 dialer in-band
 dialer wait-for-carrier-time 100
 pulse-time 1
 dialer-group 1
 dialer map ip 172.18.126.10 5558899
```
As in the “DDR Configuration in an IP Environment Example” section, a pulse time is assigned and a dialer access group specified.

The first **dialer map** command specifies that the number 555-8899 is to be dialed for IP packets with a *next-hop-address* value of 172.18.126.10. The second **dialer map** command then specifies that the number 5555555 will be called when an IP packet with a *next-hop-address* value of 172.18.126.15 is detected.

### Dialer Interfaces and Dialer Rotary Groups Example

The following configuration places serial interfaces 1 and 2 into dialer rotary group 1, defined by the **interface dialer 1** command:

```plaintext
! PPP encapsulation is enabled for interface dialer 1.
interface dialer 1
 encapsulation ppp
dialer in-band
 ip address 172.18.2.1 255.255.255.0
 ip address 172.18.2.1 255.255.255.0 secondary
! The first dialer map command allows remote site YYY and the central site to!
! call each other. The second dialer map command, with no dialer string, allows
! remote site ZZZ to call the central site but the central site cannot call
! remote site ZZZ (no phone number).
! dialer map ip 172.18.2.5 name YYY 1415553434
dialer map ip 172.18.2.55 name ZZZ
! The DTR pulse signals for three seconds on the interfaces in dialer group 1.
! This holds the DTR low so the modem can recognize that DTR has been dropped.
pulse-time 3
! Serial interfaces 1 and 2 are placed in dialer rotary group 1. All the
! interface configuration commands (the encapsulation and dialer map commands
! shown earlier in this example) that applied to interface dialer 1 also apply
! to these interfaces.
interface serial 1
dialer rotary-group 1
interface serial 2
 dialer rotary-group 1
```

### DDR Configuration Using Dialer Interface and PPP Encapsulation Example

The following example shows a configuration for XXX, the local router shown in Figure 56. In this example, remote Routers YYY and ZZZ can call Router XXX. Router XXX has dialing information only for Router YYY and cannot call Router ZZZ.
**Figure 56  DDR Configuration**

Router XXX Configuration

username YYY password theirsystm
username ZZZ password thatsystem

! Create a dialer interface with PPP encapsulation and CHAP authentication.
interface dialer 1
  ip address 172.18.2.1 255.255.255.0
  ip address 172.24.4.1 255.255.255.0 secondary
  encapsulation ppp
  ppp authentication chap
  dialer in-band
  dialer group 1
! The first dialer map command indicates that calls between the remote site
! YYY and the central site will be placed at either end. The second dialer
! map command, with no dialer string, indicates that remote site ZZZ will call
! the central site but the central site will not call out.
  dialer map ip 172.18.2.5 name YYY 1415553434
  dialer map ip 172.24.4.5 name ZZZ
! The DTR pulse holds the DTR low for three seconds, so the modem can recognize
! that DTR has been dropped.
  pulse-time 3
!
! Place asynchronous serial interfaces 1 and 2 in dialer group 1. The interface commands
! applied to dialer group 1 (for example, PPP encapsulation and CHAP) apply to these
! interfaces.
!
interface async 1
  dialer rotary-group 1
interface async 2
  dialer rotary-group 1

**Two-Way DDR with Authentication Example**

You can set up two-way DDR with authentication in which both the client and server have dial-in access to each other. This configuration is demonstrated in the following two subsections.
Remote Configuration

The following commands are executed on the remote side of the connection. This configuration provides authentication by identifying a password that must be provided on each end of the connection.

```plaintext
username local password secret1
username remote password secret2
!
interface ethernet 0
 ip address 172.30.44.1 255.255.255.0
!
interface async 7
 ip address 172.30.45.2 255.255.255.0
 async mode dedicated
 async default ip address 172.30.45.1
 encapsulation ppp
 dialer in-band
 dialer string 1234
 dialer-group 1
!
 ip route 172.30.43.0 255.255.255.0 async 7
 ip default-network 172.30.0.0
 chat-script generic ABORT BUSY ABORT NO ## AT OK ATDT\T TIMEOUT 30 CONNECT
dialer-list 1 protocol ip permit
!
line 7
 no exec
 modem InOut
 speed 38400
 flowcontrol hardware
 modem chat-script generic
```

Local Configuration

The following commands are executed on the local side of the connection. As with the remote side configuration, this configuration provides authentication by identifying a password for each end of the connection.

```plaintext
username remote password secret1
username local password secret2
!
interface ethernet 0
 ip address 172.30.43.1 255.255.255.0
!
interface async 7
 async mode dedicated
 async default ip address 172.30.45.2
 dialer rotary-group 1
!
interface async 8
 async mode dedicated
 async default ip address 172.30.45.2
 dialer rotary-group 1
!
interface dialer 1
 ip address 172.30.45.2 255.255.255.0
 encapsulation ppp
 ppp authentication chap
 dialer in-band
 dialer map ip 172.30.45.2 name remote 4321
dialer load-threshold 80
!```
Frame Relay Support Examples

The examples in this section present various combinations of interfaces, Frame Relay features, and DDR features.

Frame Relay Access with In-Band Dialing and Static Mapping

The following example configures a router for IP over Frame Relay using in-band dialing. A Frame Relay static map is used to associate the next hop protocol address to the DLCI. The dialer string allows dialing to only one destination.

```cisco
interface Serial0
  ip address 10.1.1.1 255.255.255.0
  encapsulation frame-relay
  frame-relay map ip 10.1.1.2 100 broadcast
dialer in-band
dialer string 4155551212
dialer-group 1
!
access-list 101 deny igrp any host 255.255.255.255
access-list 101 permit ip any any
!
```

Frame Relay Access with ISDN Dialing and DDR Dynamic Maps

The following example shows a BRI interface configured for Frame Relay and for IP, Internet Protocol Exchange (IPX), and AppleTalk routing. No static maps are defined because this setup relies on Frame Relay Local Management Interface (LMI) signaling and Inverse ARP to determine the network addresses-to-DLCI mappings dynamically. (Because Frame Relay Inverse ARP is enabled by default, no command is required.)

```cisco
interface BRI0
  ip address 10.1.1.1 255.255.255.0
  ipx network 100
  appletalk cable-range 100-100 100.1
  appletalk zone ISDN
  no appletalk send-rtmps
  encapsulation frame-relay IETF
dialer map ip 10.1.1.2 broadcast 4155551212
dialer map apple 100.2 broadcast 4155551212
dialer map ipx 100.0000.0c05.33ed broadcast 4085551234
dialer-group 1
!```
Frame Relay Access with ISDN Dialing and Subinterfaces

The following example shows a BRI interface configured for Frame Relay and for IP, IPX, and AppleTalk routing. Two logical subnets are used; a point-to-point subinterface and a multipoint subinterface are configured. Frame Relay Annex A (LMI type Q933a) and Inverse ARP are used for dynamic routing.

```
interface BRI0
 no ip address
 encapsulation frame-relay
 dialer string 4155512112
 dialer-group 1
 frame-relay lmi-type q933a

interface BRI0.1 multipoint
 ip address 10.1.100.1 255.255.255.0
 ipx network 100
 appletalk cable-range 100-100 100.1
 appletalk zone ISDN
 no appletalk send-rtmps
 frame-relay interface-dlci 100
 frame-relay interface-dlci 110

interface BRI0.2 point-to-point
 ip address 10.1.200.1 255.255.255.0
 ipx network 200
 appletalk cable-range 200-200 200.1
 appletalk zone ISDN
 no appletalk send-rtmps
 frame-relay interface-dlci 200 broadcast IETF

access-list 101 deny igrp any host 255.255.255.255
access-list 101 permit ip any any
access-list 901 deny -1 FFFFFFFF 452
access-list 901 deny -1 FFFFFFFF 453
access-list 901 deny -1 FFFFFFFF 457
access-list 901 deny -1 FFFFFFFF 0 FFFFFFFF 452
access-list 901 deny -1 FFFFFFFF 0 FFFFFFFF 453
access-list 901 deny -1 FFFFFFFF 0 FFFFFFFF 457
access-list 901 permit -1
access-list 601 permit cable-range 100-100 broadcast-deny
access-list 601 deny other-access
```
dialer-list 1 protocol ip list 101
dialer-list 1 protocol novell list 901
"dialer-list 1 protocol apple list 601

X.25 Support Configuration Example

The following example configures a router to support X.25 and DTR dialing:

interface serial 0
ip address 172.18.170.19 255.255.255.0
encapsulation x25
x25 address 12345
x25 map ip 172.18.171.20 67890 broadcast
dialer dtr
dialer-group 1
!
access-list 101 deny igrp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!
dialer-list 1 protocol ip list 101

LAPB Support Configuration Example

The following example configures a router for LAPB encapsulation and in-band dialing:

interface serial 0
ip address 172.18.170.19 255.255.255.0
encapsulation lapb
dialer in-band
dialer string 4155551212
dialer-group 1
!
access-list 101 deny igrp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!
dialer-list 1 protocol ip list 101
Configuring Peer-to-Peer DDR with Dialer Profiles

This chapter describes how to configure the Cisco IOS software for the Dialer Profiles feature implementation of dial-on-demand routing (DDR). It includes the following main sections:

- Dialer Profiles Overview
- How to Configure Dialer Profiles
- Monitoring and Maintaining Dialer Profile Connections
- Configuration Examples Dialer Profiles

For information about preparations for configuring dialer profiles, see the chapter “Preparing to Configure DDR” in this publication.

The Dialer Profiles feature is contrasted with legacy DDR. For information about legacy DDR, see the other chapters in the “Dial-on-Demand Routing” part of this publication.

For information about dial backup using dialer profiles, see the chapter “Configuring Dial Backup with Dialer Profiles” in this publication.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Dialer Profiles Overview

Dialer profiles allow the configuration of physical interfaces to be separated from the logical configuration required for a call, and they also allow the logical and physical configurations to be bound together dynamically on a per-call basis.

A dialer profile consists of the following elements:

- A dialer interface (a logical entity) configuration including one or more dial strings (each of which is used to reach one destination subnetwork)
- A dialer map class that defines all the characteristics for any call to the specified dial string
- An ordered dialer pool of physical interfaces to be used by the dialer interface
Dialer profiles support most routed protocols; however, International Organization for Standardization Connectionless Network Service (ISO CLNS) is not supported.

New Dialer Profile Model

In earlier releases of the Cisco IOS software, dialer profiles in the same dialer pool needed encapsulation-specific configuration information entered under both the dialer profile interface and the ISDN interface. If any conflict arose between the logical and the physical interfaces, the dialer profile failed to work.

In the new dialer profile model introduced by the Dynamic Multiple Encapsulations feature in Cisco IOS Release 12.1, the configuration on the ISDN interface is ignored and only the configuration on the profile interface is used, unless PPP name binding is used. Before a successful bind by CLID occurs, no encapsulation type and configuration are assumed or taken from the physical interfaces.

When PPP is used and a caller identification (CLID) bind fails, a dialer profile still can be matched by PPP name authentication. In the new dialer profile model, multiple attempts are made to find a matching profile.

The dialer profile software binds an incoming call on a physical dialer interface according to the following events, and in the order listed:

1. There is only one dialer profile configured to use the pool of which the physical interface is a member; this condition is the default bind. The physical interface must be a member of only this one pool. A default bind is possible only to a dialer profile when there are no dialer caller or dialer called commands configured on that profile.

2. The CLID matches what is configured in a dialer caller command on a dialer profile using a pool of which the physical interface is a member.

3. The DNIS that is presented matches what is configured in a dialer called command on a dialer profile using a pool of which the physical interface is a member.

4. If a bind has not yet occurred but the physical interface is configured for PPP encapsulation and CHAP or PAP authentication, and the CHAP or PAP name presented matches a dialer remote-name command configuration on a dialer profile using a pool of which the physical interface is a member, then the dialer profile software binds to that dialer profile.

If none of the above events are successful, the call is not answered. The call is also disconnected during any of the first three events when, after the bind occurs and the physical interface is configured for PPP encapsulation and CHAP or PAP authentication, the CHAP or PAP name presented does not match what is configured in a dialer remote-name command on the dialer profile that was bound to the call.

PPP encapsulation on an ISDN link is different from other encapsulation types because it runs on the B channel rather than the dialer profile interface. There are two possible configuration sources in a profile bind: the D and the dialer profile interfaces. Hence, a configuration conflict between the sources is possible. If a successful bind is accomplished by name authentication, the configuration used to bring PPP up is the one on the D interface. This is the name used to locate a dialer profile for the bind. The configuration on an ISDN interface goes under the D rather than a B channel, although B channels inherit the configuration from their D interface.

However, the configuration on this found dialer profile could be different from the one on the D interface. For example, the ppp multilink command is configured on the D interface, but not on the dialer profile interface. The actual per-user configuration is the one on the dialer profile interface. In this case, per-user configuration is not achieved unless link control protocol (LCP) and authentication are
renegotiated. Because PPP client software often does not accept renegotiation, this workaround is not acceptable. Therefore, the D interface configuration takes precedence over the dialer profile interface configuration. This is the only case where the configuration of the dialer profile is overruled.

Dialer Interface

A dialer interface configuration includes all settings needed to reach a specific destination subnetwork (and any networks reached through it). Multiple dial strings can be specified for the same dialer interface, each dial string being associated with a different dialer map class.

Dialer Map Class

The dialer map class defines all the characteristics for any call to the specified dial string. For example, the map class for one destination might specify a 56-kbps ISDN speed; the map class for a different destination might specify a 64-kbps ISDN speed.

Dialer Pool

Each dialer interface uses a dialer pool, a pool of physical interfaces ordered on the basis of the priority assigned to each physical interface. A physical interface can belong to multiple dialer pools, contention being resolved by priority. ISDN BRI and PRI interfaces can set a limit on the minimum and maximum number of B channels reserved by any dialer pools. A channel reserved by a dialer pool remains idle until traffic is directed to the pool.

When dialer profiles are used to configure DDR, a physical interface has no configuration settings except encapsulation and the dialer pools with which the interface belongs.

The preceding paragraph has one exception: commands that apply before authentication is complete must be configured on the physical (or BRI or PRI) interface and not on the dialer profile. Dialer profiles do not copy PPP authentication commands (or LCP commands) to the physical interface.

Figure 57 shows a typical application of dialer profiles. Router A has dialer interface 1 for DDR with subnetwork 10.1.1.0, and dialer interface 2 for DDR with subnetwork 10.2.2.0. The IP address for dialer interface 1 is its address as a node in network 10.1.1.0; at the same time, that IP address serves as the IP address of the physical interfaces used by the dialer interface 1. Similarly, the IP address for dialer interface 2 is its address as a node in network 10.2.2.0.
A dialer interface uses only one dialer pool. A physical interface, however, can be a member of one or many dialer pools, and a dialer pool can have several physical interfaces as members.

Figure 58 illustrates the relations among the concepts of dialer interface, dialer pool, and physical interfaces. Dialer interface 0 uses dialer pool 2. Physical interface BRI 1 belongs to dialer pool 2 and has a specific priority in the pool. Physical interface BRI 2 also belongs to dialer pool 2. Because contention is resolved on the basis of priority levels of the physical interfaces in the pool, BRI 1 and BRI 2 must be assigned different priorities in the pool. Perhaps BRI 1 is assigned priority 50 and BRI 2 is assigned priority 100 in dialer pool 2 (a priority of 100 is higher than a priority of 50). BRI 2 has a higher priority in the pool, and its calls will be placed first.
How to Configure Dialer Profiles

To configure dialer profiles, perform the task in the following section:

- **Configuring a Dialer Profile** (Required)

The following tasks can be configured whether you use legacy DDR or dialer profiles. Perform these tasks as needed for your network:

- **Configuring Dialer Profiles for Routed Protocols** (As required)
- **Configuring Dialer Profiles for Transparent Bridging** (As required)

See the “Verifying the Dynamic Multiple Encapsulations Feature” section later in this chapter for tips on verifying that the feature is running in your network. See the “Configuration Examples Dialer Profiles” section at the end of this chapter for comprehensive configuration examples.

Configuring a Dialer Profile

To configure a dialer profile, perform the tasks in the following sections as required:

- **Configuring a Dialer Interface** (Required)
- **Fancy Queueing and Traffic Shaping on Dialer Profile Interfaces** (Optional)
- **Configuring a Map Class** (Optional)
- **Configuring the Physical Interfaces** (Required)

Configuring a Dialer Interface

Any number of dialer interfaces can be created for a router. Each dialer interface is the complete configuration for a destination subnetwork and any networks reached through it. The router on the destination subnetwork sends traffic on to the appropriate shadowed networks.

To configure a dialer interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface dialer number</td>
<td>Creates a dialer interface and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address address mask</td>
<td>Specifies the IP address and mask of the dialer interface as a node in the destination network to be called.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# encapsulation type</td>
<td>Specifies the encapsulation type.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# dialer string dial-string class class-name</td>
<td>Specifies the remote destination to call and the map class that defines characteristics for calls to this destination.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# dialer pool number</td>
<td>Specifies the dialing pool to use for calls to this destination.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-if)# dialer-group group-number</td>
<td>Assigns the dialer interface to a dialer group.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-if)# dialer-list dialer-group protocol protocol-name (permit</td>
<td>deny</td>
</tr>
</tbody>
</table>
Fancy Queueing and Traffic Shaping on Dialer Profile Interfaces

In earlier releases of the Cisco IOS software, fancy queueing and traffic shaping were configured under the physical interfaces, therefore the same queueing or traffic shaping scheme needed to be applied to all users that were sharing the same ISDN link.

Beginning in Cisco IOS Release 12.1, you need only configure the queueing and traffic shaping schemes you desire on the dialer profile interface and the interface will take precedence over those configured on the ISDN B-channel interface. All the per-user encapsulation configuration has been moved to the dialer profile interfaces, separating it from hardware interfaces to make it dynamic and also to make per-user queueing and traffic shaping configuration possible.

Note

Per-user fancy queueing and traffic shaping work with both process switching and fast switching in the new dialer profile model. However, Frame Relay Traffic Shaping (FRTS) is not supported on the new dialer profile model.

See the chapter “Policing and Shaping Overview” in the Cisco IOS Quality of Service Solutions Configuration Guide for more information about FRTS.

Configuring a Map Class

Map-class configuration is optional but allows you to specify different characteristics for different types of calls on a per-call-destination basis. For example, you can specify higher priority and a lower wait-for-carrier time for an ISDN-calls map class than for a modem-calls map class. You can also specify a different speed for some ISDN calls than for other ISDN calls.

A specific map class is tied to a specific call destination by the use of the map-class name in the dialer-string command with the class keyword.

To specify a map class and define its characteristics, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# map-class dialer classname</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-map-class)# dialer fast-idle seconds</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-map-class)# dialer idle-timeout seconds</td>
</tr>
<tr>
<td></td>
<td>[inbound</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-map-class)# dialer wait-for-carrier-time seconds</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-map-class)# dialer isdn [speed speed]</td>
</tr>
<tr>
<td></td>
<td>[spc]</td>
</tr>
</tbody>
</table>
Configuring Peer-to-Peer DDR with Dialer Profiles

How to Configure Dialer Profiles

Note

The **dialer idle-timeout** interface configuration command specifies the duration of time before an idle connection is disconnected. Previously, both inbound and outbound traffic would reset the dialer idle timer; now you can specify that only inbound traffic will reset the dialer idle timer.

Configuring the Physical Interfaces

To configure a physical interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;Router(config)# interface type number</td>
<td>Specifies the physical interface and begins interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong>&lt;br&gt;Router(config-if)# encapsulation ppp</td>
<td>Enables PPP encapsulation.</td>
</tr>
<tr>
<td><strong>Step 3</strong>&lt;br&gt;Router(config-if)# ppp authentication chap</td>
<td>Specifies PPP Challenge Handshake Authentication Protocol (CHAP) authentication, if you also want to receive calls on this interface.</td>
</tr>
<tr>
<td><strong>Step 4</strong>&lt;br&gt;dialer pool-member number [priority priority]</td>
<td>Placed the interface in a dialing pool and, optionally, assigns the interface a priority.</td>
</tr>
</tbody>
</table>

For ISDN interfaces, you may also specify the minimum number of channels reserved and maximum number of channels used on this interface.

The **minimum** value applies to outgoing calls only, and specifies the number of channels or interfaces reserved for dial out in that dialer pool; the channels remain idle when no calls are active. The **maximum** value applies to both incoming and outgoing calls and sets the total number of connections for a particular dialer pool member.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong>&lt;br&gt;Router(config-if)# dialer pool-member number [priority priority]</td>
<td>(Optional) Repeat Step 4 if you want to put the interface in additional dialing pools.</td>
</tr>
</tbody>
</table>

Repeat this procedure for additional physical interfaces that you want to use with dialer profiles.

Configuring Dialer Profiles for Routed Protocols

Both legacy DDR and dialer profiles support the following routed protocols: AppleTalk, Banyan VINES, DECnet, IP, Novell Internet Protocol Exchange (IPX), and Xerox Network System (XNS). To configure dialer profiles for a routed protocol, perform the tasks in the relevant section:

- Configuring Dialer Profiles for AppleTalk (As required)
- Configuring Dialer Profiles for Banyan VINES (As required)
- Configuring Dialer Profiles for DECnet (As required)
Configuring Dialer Profiles for AppleTalk

To configure dialer profiles for AppleTalk, you specify AppleTalk access lists and then configure the dialer interface for dialer profiles, defining the dialer list to be used. Use the `dialer-list protocol` command to define permit or deny conditions for the entire protocol; for a finer granularity, use the `dialer-list protocol` command with the `list` keyword. See the section “Configuring a Dialer Interface” earlier in this chapter for more information about defining dialer lists.

Configuring Dialer Profiles for Banyan VINES

To configure DDR for Banyan VINES, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`vines access-list access-list-number (permit</td>
<td>deny) source source-mask`</td>
</tr>
<tr>
<td>or `vines access-list access-list-number (permit</td>
<td>deny) source source-mask [destination] [destination-mask]`</td>
</tr>
</tbody>
</table>

After you specify VINES standard or extended access lists, configure the dialer interface for dialer profiles, defining the dialer list to be used. Use the `dialer-list protocol` command to define permit or deny conditions for the entire protocol; for a finer granularity, use the `dialer-list protocol` command with the `list` keyword. See the section “Configuring a Dialer Interface” earlier in this chapter for more information about defining dialer lists.

Note

The Banyan VINES `neighbor` command is not supported for Link Access Procedure, Balanced (LAPB) and X.25 encapsulations.

Configuring Dialer Profiles for DECnet

To configure dial-on-demand routing (DDR) for DECnet, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`access-list access-list-number (permit</td>
<td>deny) source source-mask`</td>
</tr>
<tr>
<td>or `access-list access-list-number (permit</td>
<td>deny) source source-mask [destination] [destination-mask]`</td>
</tr>
</tbody>
</table>
After you specify DECnet standard or extended access lists, configure the dialer interface for dialer profiles, defining the dialer list to be used. Use the `dialer-list protocol` command to define permit or deny conditions for the entire protocol; for a finer granularity, use the `dialer-list protocol` command with the `list` keyword. See the section “Configuring a Dialer Interface” earlier in this chapter for more information about defining dialer lists.

You classify DECnet control packets, including hello packets and routing updates, using one or more of the following commands: `dialer-list protocol decnet_route-L1 permit`, `dialer-list protocol decnet_route-L2 permit`, and `dialer-list protocol decnet_node permit`.

### Configuring Dialer Profiles for IP

To configure DDR for IP, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# access-list access-list-number {deny</td>
<td>permit} source [source-mask]`</td>
</tr>
<tr>
<td><code>or</code></td>
<td></td>
</tr>
<tr>
<td>`Router(config)# access-list access-list-number {deny</td>
<td>permit} protocol source source-mask destination destination-mask [operator operand]`</td>
</tr>
</tbody>
</table>

You can now also use simplified IP access lists that use the `any` keyword instead of the numeric forms of source and destination addresses and masks. Other forms of IP access lists are also available. For more information, see the chapter “IP Services Commands” in the *Cisco IOS IP Command Reference*.

To use dynamic routing where multiple remote sites communicate with each other through a central site, you might need to disable the IP split horizon feature. Split horizon applies to Routing Information Protocol (RIP), Interior Gateway Routing Protocol (IGRP), and Enhanced IGRP. Depending on which routing protocol is configured, see the chapter “Configuring RIP,” “Configuring IGRP,” or “Configuring Enhanced IGRP” in this publication. Refer to the chapter “Configuring IP Routing Protocols” in the *Cisco IOS IP Configuration Guide* for more information.

### Configuring Dialer Profiles for Novell IPX

On DDR links for Novell IPX, the link may come up often even when all client sessions are idle because the server sends watchdog or keepalive packets to all the clients approximately every 5 minutes. You can configure a local router or access server to idle out the DDR link and respond to the watchdog packets on behalf of the clients.
To modify the dialer profiles dialer interface configuration for Novell IPX, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# no ipx route-cache Disables fast switching for IPX.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ipx watchdog-spoof Enables IPX watchdog spoofing.</td>
</tr>
<tr>
<td></td>
<td>or Router(config-if)# ipx spx-spoof Enables Sequenced Packet Exchange (SPX) keepalive spoofing.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ipx spx-idle-time delay-in-seconds Sets the idle time after which SPX keepalive spoofing begins.</td>
</tr>
</tbody>
</table>

### Configuring XNS over DDR

To configure XNS for DDR, use one of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# access-list access-list-number (deny</td>
<td>permit) source-network[,source-address [source-address-mask]] [destination-network[,destination-address [destination-address-mask]]] Specifies a standard XNS access list.</td>
</tr>
<tr>
<td>or Router(config)# access-list access-list-number (deny</td>
<td>permit) protocol [source-network[,source-host [source-network-mask,source-host-mask] source-socket [destination-network [,destination-host [destination-network-mask,destination-host-mask] destination-socket[/pep]]]] Specifies an extended XNS access list.</td>
</tr>
</tbody>
</table>

After you specify an XNS access list, configure the dialer interface for dialer profiles, defining the dialer list to be used. Use the `dialer-list protocol` command to define permit or deny conditions for the entire protocol; for a finer granularity, use the `dialer-list protocol` command with the `list` keyword. See the section “Configuring a Dialer Interface” earlier in this chapter for more information about defining dialer lists.

### Configuring Dialer Profiles for Transparent Bridging

The Cisco IOS software supports transparent bridging over both legacy DDR and dialer profiles, and it provides you some flexibility in controlling access and configuring the interface.

To configure dialer profiles for bridging, perform the tasks in the following sections:

- Defining the Protocols to Bridge (Required)
- Specifying the Bridging Protocol (Required)
- Controlling Access for Bridging (Required)
- Configuring an Interface for Bridging (Required)
Defining the Protocols to Bridge

IP packets are routed by default unless they are explicitly bridged; all others are bridged by default unless they are explicitly routed. To bridge IP packets, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>no ip routing</code></td>
<td>Disables IP routing.</td>
</tr>
</tbody>
</table>

If you choose not to bridge another protocol, use the relevant command to enable routing of that protocol. For more information about tasks and commands, refer to the relevant chapter in the appropriate network protocol configuration guide, such as the *Cisco IOS AppleTalk and Novell IPX Configuration Guide*.

Specifying the Bridging Protocol

You must specify the type of spanning-tree bridging protocol to use and also identify a bridge group. To specify the spanning-tree protocol and a bridge group number, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`bridge bridge-group protocol {ieee</td>
<td>dec}`</td>
</tr>
</tbody>
</table>

The `bridge-group` number is used when you configure the interface and assign it to a bridge group. Packets are bridged only among members of the same bridge group.

Controlling Access for Bridging

You can control access by defining any transparent bridge packet as *interesting*, or you can use the finer granularity of controlling access by Ethernet type codes. To control access for DDR bridging, perform *one* of the following tasks:

- Permitting All Bridge Packets
- Controlling Bridging Access by Ethernet Type Codes

Note: Spanning-tree bridge protocol data units (BPDUs) are always treated as *uninteresting*.

Permitting All Bridge Packets

To identify all transparent bridge packets as interesting, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dialer-list dialer-group protocol bridge permit</code></td>
<td>Defines a dialer list that treats all transparent bridge packets as interesting.</td>
</tr>
</tbody>
</table>
Controlling Bridging Access by Ethernet Type Codes

To control access by Ethernet type codes, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# access-list access-list-number (permit</td>
<td>deny) type-code [mask]</td>
</tr>
<tr>
<td>Step 2 Router(config)# dialer-list dialer-group protocol bridge list access-list-number</td>
<td>Defines a dialer list for the specified access list.</td>
</tr>
</tbody>
</table>

For a table of some common Ethernet type codes, see the “Ethernet Type Codes” appendix in the *Cisco IOS Bridging and IBM Networking Command Reference.*

Configuring an Interface for Bridging

You can perform serial interfaces or ISDN interfaces for DDR bridging. To configure an interface for DDR bridging, complete all the tasks in the following sections:

- Specifying the Interface (Required)
- Configuring the Destination (Required)
- Assigning the Interface to a Bridge Group (Required)

Specifying the Interface

To specify the interface and enter interface configuration mode, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# interface type number</td>
<td>Specifies the serial or ISDN interface and enters interface configuration mode.</td>
</tr>
</tbody>
</table>

Configuring the Destination

You can configure the destination by specifying either of the following:

- A dial string—for unauthenticated calls to a single site
- A dialer bridge map—when you want to use authentication

To configure the destination for bridging over a specified interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer string dial-string</td>
<td>Configures the dial string to call.</td>
</tr>
</tbody>
</table>

**Note** You can define only one dialer bridge map for the interface. If you enter a different bridge map, the previous one is replaced immediately.
Assigning the Interface to a Bridge Group

Packets are bridged only among interfaces that belong to the same bridge group. To assign an interface to a bridge group, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# bridge-group bridge-group</td>
<td>Assigns the specified interface to a bridge group.</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining Dialer Profile Connections

To monitor DDR dialer profile connections, use any of the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show dialer interface</td>
<td>Displays information for the interfaces configured for DDR dialer profiles.</td>
</tr>
<tr>
<td>Router# show interfaces type number</td>
<td>Displays statistics for configured interfaces. The output varies, depending on the network for which an interface has been configured.</td>
</tr>
<tr>
<td>Router# show ipx interface [type number]</td>
<td>Displays status about the IPX interface.</td>
</tr>
<tr>
<td>Router# show ipx traffic</td>
<td>Displays information about the IPX packets sent by the router or access server, including watchdog counters.</td>
</tr>
<tr>
<td>Router# show appletalk traffic</td>
<td>Displays information about the AppleTalk packets sent by the router or access server.</td>
</tr>
<tr>
<td>Router# show vines traffic</td>
<td>Displays information about the Banyan VINES packets sent by the router or access server.</td>
</tr>
<tr>
<td>Router# show decnet traffic</td>
<td>Displays information about the DECnet packets sent by the router or access server.</td>
</tr>
<tr>
<td>Router# show xns traffic</td>
<td>Displays information about the XNS packets sent by the router or access server.</td>
</tr>
<tr>
<td>Router# clear dialer</td>
<td>Clears the values of the general diagnostic statistics.</td>
</tr>
</tbody>
</table>

Configuration Examples Dialer Profiles

The following sections provide three comprehensive configuration examples:

- Dialer Profile with Inbound Traffic Filter Example
- Dialer Profile for Central Site with Multiple Remote Sites Example
- Dialer Profile for ISDN BRI Backing Up Two Leased Lines Example
- Dynamic Multiple Encapsulations over ISDN Example
Dialer Profile with Inbound Traffic Filter Example

The following example shows a Cisco 5200 series router that has enabled the **dialer idle-timeout** command with the **inbound** keyword. This command allows only inbound traffic that conforms to the dialer list to establish a connection and reset the dialer idle timer.

```
interface Serial0:23
 no ip address
 no ip directed-broadcast
 encapsulation ppp
 dialer pool-member 1 max-link 2
 isdn switch-type primary-5ess
 no cdp enable
 ppp authentication chap
!
interface Dialer0
 ip address 10.1.1.2 255.255.255.0
 no ip directed-broadcast
 encapsulation ppp
 dialer remote-name 2610-2
 dialer idle-timeout 30 inbound
 dialer string 2481301
 dialer pool 1
 dialer-group 1
 no cdp enable
 ppp authentication chap
 ppp multilink
!
access-list 101 permit icmp any any
access-list 101 deny ip any any
! dialer-list 1 protocol ip list 101
```

Dialer Profile for Central Site with Multiple Remote Sites Example

The following example shows a central site that can place or receive calls from three remote sites over four ISDN BRI lines. Each remote site is on a different IP subnet and has different bandwidth requirements; therefore, three dialer interfaces and three dialer pools are defined.

```
! This is a dialer profile for reaching remote subnetwork 10.1.1.1.
interface Dialer1
 ip address 10.1.1.1 255.255.255.0
 encapsulation ppp
 dialer remote-name Smalluser
 dialer string 4540
 dialer pool 3
 dialer-group 1
!
! This is a dialer profile for reaching remote subnetwork 10.2.2.2.
interface Dialer2
 ip address 10.2.2.2 255.255.255.0
 encapsulation ppp
 dialer remote-name Mediumuser
 dialer string 5264540 class Eng
 dialer load-threshold 50 either
 dialer pool 1
 dialer-group 2
!
! This is a dialer profile for reaching remote subnetwork 10.3.3.3.
interface Dialer3
 ip address 10.3.3.3 255.255.255.0
```
Dialer Profile for ISDN BRI Backing Up Two Leased Lines Example

The following example shows the configuration of a site that backs up two leased lines using one BRI. Two dialer interfaces are defined. Each serial (leased line) interface is configured to use one of the dialer interfaces as a backup. Both of the dialer interfaces use BRI 0, and BRI 0 is a member of the two dialer pools. Thus, BRI 0 can back up two different serial interfaces and can make calls to two different sites.

```plaintext
dialer remote-name Remote0
dialer pool 1
dialer string 5551212
dialer-group 1

dialer remote-name Remote1
dialer pool 2
dialer string 5551234
dialer-group 1
```
Dynamic Multiple Encapsulations over ISDN Example

The following example shows a network access server named NAS1 with dialer profiles and LAPB, X.25, and PPP encapsulations configured. Although the BRI0 D interface uses X.25 encapsulation, the actual encapsulations running over the ISDN B channels are determined by the encapsulations configured on the profile interfaces bound to them.

When an ISDN B channel connects to remote user RU2 using CLID 60043, Dialer1 is bound to this ISDN B channel by CLID binding. The protocol used is PPP; the X.25 configuration on the D interface has no effect. Because the `ppp authentication chap` command is configured, even though the binding is done by CLID, PPP authentication is still performed over the name RU2 before the protocol is allowed to proceed.

The Dialer2 interface uses DNIS-plus-ISDN-subaddress binding and is bound to a B channel with an incoming call with DNIS 60045 and ISDN subaddress 12345. Also note that the High-Level Data Link Control (HDLC) encapsulation has no username associated. It is no longer necessary to configure the `dialer remote-name` command, as in the previous dialer profile model.

When there is an ISDN B-channel connection to remote user RU1 using CLID 60036, LAPB encapsulation will run on this connection once CLID binding to Dialer0 takes place. This connection will operate as a standalone link independent of other activities over other ISDN B channels.
ip domain-name cisco.com
ip name-server 192.168.30.32
ip name-server 172.16.2.132
isdn switch-type basic-5ess
!
interface Virtual-Template 1
encapsulation ppp
ppp authentication chap
!
interface Ethernet0
ip address 172.21.17.11 255.255.255.0
no ip mroute-cache
no cdp enable
!
interface Serial0
ip address 10.2.2.1 255.0.0.0
shutdown
clock rate 56000
ppp authentication chap
!
interface Serial1
ip address 10.0.0.1 255.0.0.0
shutdown
!
interface BRI0
description PBX 60035
no ip address
capsulation x25
no ip mroute-cache
no keepalive
dialer pool-member 1
dialer pool-member 2
!
interface Dialer0
ip address 10.1.1.1 255.0.0.0
encapsulation lapb dce multi
no ip route-cache
no ip mroute-cache
no keepalive
dialer remote-name RU1
dialer idle-timeout 300
dialer string 60036
dialer caller 60036
dialer pool 1
dialer-group 1
no fair-queue
!
interface Dialer1
ip address 10.1.1.1 255.0.0.0
encapsulation ppp
no ip route-cache
no ip mroute-cache
dialer remote-name RU2
dialer string 60043
dialer caller 60043
dialer pool 2
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap
!
interface Dialer2
ip address 10.1.1.1 255.0.0.0
encapsulation hdlc
Verifying the Dynamic Multiple Encapsulations Feature

To see statistics on each physical interface bound to the dialer interface, and to verify dialer interfaces configured for binding, use the `show interfaces` EXEC command. Look for the reports “Bound to:” and “Interface is bound to...” while remembering that this feature applies only to ISDN.

Router# `show interfaces dialer0`

Dialer0 is up, line protocol is up
Hardware is Unknown
Internet address is 10.1.1.2/8
MTU 1500 bytes, BW 64 Kbit, DLY 20000 usec, rely 255/255, load 1/255
Encapsulation PPP, loopback not set
DTR is pulsed for 1 seconds on reset
Interface is bound to BRI0:1
Last input 00:00:38, output never, output hang never
Last clearing of "show interface" counters 00:05:36
Queueing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
38 packets input, 4659 bytes
34 packets output, 9952 bytes
Bound to:
BRI0:1 is up, line protocol is up
Hardware is BRI
MTU 1500 bytes, BW 64 Kbit, DLY 20000 usec, rely 255/255, load 1/255
Encapsulation PPP, loopback not set, keepalive not set
Interface is bound to Dialer0 (Encapsulation PPP)
LCP Open, multilink Open
Last input 00:00:39, output 00:00:11, output hang never
Last clearing of "show interface" counters never
Queueing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
78 packets input, 9317 bytes, 0 no buffer
Received 65 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
93 packets output, 9864 bytes, 0 underruns
0 output errors, 0 collisions, 7 interface resets
0 output buffer failures, 0 output buffers swapped out
4 carrier transitions
At the end of the Dialer0 display, the `show interfaces` command is executed on each physical interface bound to it.

In the next example, the physical interface is the B1 channel of the BR10 link. This example also illustrates that the output under the B channel keeps all hardware counts that are not displayed under any logical or virtual access interface. The line in the report that states “Interface is bound to Dialer0 (Encapsulation LAPB)” indicates that this B interface is bound to the dialer 0 interface and that the encapsulation running over this connection is LAPB, not PPP, which is the encapsulation configured on the D interface and inherited by the B channel.

```
Router# show interfaces bri0:1
```

```
BRI0:1 is up, line protocol is up
 Hardware is BRI
 MTU 1500 bytes, BW 64 Kbit, DLY 20000 usec, rely 255/255, load 1/255
 Encapsulation PPP, loopback not set, keepalive not set
 Interface is bound to Dialer0 (Encapsulation LAPB)
 LCP Open, multilink Open
 Last input 00:00:31, output 00:00:03, output hang never
 Last clearing of "show interface" counters never
 Queueing strategy: fifo
 Output queue 0/40, 0 drops; input queue 0/75, 0 drops
 5 minute input rate 0 bits/sec, 1 packets/sec
 5 minute output rate 0 bits/sec, 1 packets/sec
 110 packets input, 13994 bytes, 0 no buffer
 Received 91 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 135 packets output, 14175 bytes, 0 underruns
 0 output errors, 0 collisions, 12 interface resets
 0 output buffer failures, 0 output buffers swapped out
 8 carrier transitions
```

Any protocol configuration and states should be displayed from the dialer 0 interface.
Configuring Snapshot Routing

This chapter describes how to configure snapshot routing. It includes the following main sections:

- Snapshot Routing Overview
- How to Configure Snapshot Routing
- Monitoring and Maintaining DDR Connections and Snapshot Routing
- Configuration Examples for Snapshot Routing

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the snapshot routing commands mentioned in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Snapshot Routing Overview

Snapshot routing enables a single router interface to call other routers during periods when the line protocol for the interface is up (these are called “active periods”). The router dials into all configured locations during such active periods to get routes from all the remote locations.

The router can be configured to exchange routing updates each time the line protocol goes from “down” to “up” or from “dialer spoofing” to “fully up.” The router can also be configured to dial the server router in the absence of regular traffic if the active period time expires.

Snapshot routing is useful in two command situations:

- Configuring static routes for dial-on-demand routing (DDR) interfaces
- Reducing the overhead of periodic updates sent by routing protocols to remote branch offices over a dedicated serial line

When configuring snapshot routing, you choose one router on the interface to be the client router and one or more other routers to be server routers. The client router determines the frequency at which routing information is exchanged between routers.

Routing information is exchanged during an active period. During the active period, a client router dials all the remote server routers for which it has a snapshot dialer map defined in order to get routes from all the remote locations. The server router provides information about routes to each client router that calls.
At the end of the active period, the router takes a snapshot of the entries in the routing table. These entries remain frozen during a quiet period. At the end of the quiet period, another active period starts during which routing information is again exchanged; see Figure 59.

**Figure 59  Active and Quiet Periods in Snapshot Routing**

When the router makes the transition from the quiet period to the active period, the line might not be available for a variety of reasons. For example, the line might be down or busy, or the permanent virtual circuit (PVC) might be down. If this happens, the router has to wait through another entire quiet period before it can update its routing table entries. This wait might be a problem if the quiet period is very long—for example, 12 hours. To avoid the need to wait through the quiet period, you can configure a retry period. If the line is not available when the quiet period ends, the router waits for the amount of time specified by the retry period and then makes the transition to an active period. See to Figure 60.

**Figure 60  Retry Period in Snapshot Routing**

The retry period is also useful in a dialup environment in which there are more remote sites than router interface lines that dial in to a PRI and want routing information from that interface. For example, a PRI has 23 DS0s available, but you might have 46 remote sites. In this situation, you would have more **dialer map** commands than available lines. The router will try the **dialer map** commands in order and will use the retry time for the lines that it cannot immediately access.

The following routed protocols support snapshot routing. Note that these are all distance-vector protocols.

- AppleTalk—Routing Table Maintenance Protocol (RTMP)
- Banyan VINES—Routing Table Protocol (RTP)
- IP—Routing Information Protocol (RIP), Interior Gateway Routing Protocol (IGRP)
- Internet Protocol Exchange (IPX)—RIP, Service Advertisement Protocol (SAP)

### How to Configure Snapshot Routing

To configure snapshot routing, perform the tasks in the following sections:

- **Configuring the Client Router** (Required)
- **Configuring the Server Router** (Required)
You can also monitor and maintain interfaces configured for snapshot routing. For tips on maintaining your network with snapshot routing, see the section “Monitoring and Maintaining DDR Connections and Snapshot Routing” later in this chapter.

For an example of configuring snapshot routing, see the section “Configuration Examples for Snapshot Routing” at the end of this chapter.

## Configuring the Client Router

To configure snapshot routing on the client router that is connected to a dedicated serial line, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface serial number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# snapshot client active-time quiet-time [suppress-statechange-updates] [dialer]</td>
</tr>
</tbody>
</table>

To configure snapshot routing on the client router that is connected to an interface configured for DDR, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface serial number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# dialer rotary-group number</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# interface dialer number</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# snapshot client active-time quiet-time [suppress-statechange-updates] [dialer]</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# dialer map snapshot sequence-number dial-string</td>
</tr>
</tbody>
</table>

Repeat these steps for each map you want to define. Maps must be provided for all the remote server routers that this client router is to call during each active period.

Because ISDN BRI and PRI automatically have rotary groups, you need not define a rotary group when configuring snapshot routing.

To configure snapshot routing on the client router over an interface configured for BRI or PRI, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface bri number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# snapshot client active-time quiet-time [suppress-statechange-updates] [dialer]</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# dialer map snapshot sequence-number dial-string</td>
</tr>
</tbody>
</table>

Defines a dialer map.
Configuring the Server Router

To configure snapshot routing on the server router that is connected to a dedicated serial line, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface serial number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# snapshot server active-time [dialer]</td>
</tr>
</tbody>
</table>

To configure snapshot routing on the associated server router that is connected to an interface configured for DDR, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface serial number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# interface dialer number</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# snapshot server active-time [dialer]</td>
</tr>
</tbody>
</table>

The active period for the client router and its associated server routers should be the same.

Monitoring and Maintaining DDR Connections and Snapshot Routing

To monitor DDR connections and snapshot routing, use any of the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show dialer [interface type number]</td>
<td>Displays general diagnostics about the DDR interface.</td>
</tr>
<tr>
<td>Router# show interfaces bri 0</td>
<td>Displays information about the ISDN interface.</td>
</tr>
<tr>
<td>Router# clear snapshot quiet-time interface</td>
<td>Terminates the snapshot routing quiet period on the client router within 2 minutes.</td>
</tr>
<tr>
<td>Router# show snapshot [type number]</td>
<td>Displays information about snapshot routing parameters.</td>
</tr>
<tr>
<td>Router# clear dialer</td>
<td>Clears the values of the general diagnostic statistics.</td>
</tr>
</tbody>
</table>

Configuration Examples for Snapshot Routing

The following example configures snapshot routing on an interface configured for DDR on the client router. In this configuration, a single client router can call multiple server routers. The client router dials to all different locations during each active period to get routes from all those remote locations.
The absence of the `suppress-statechange-updates` keyword means that routing updates will be exchanged each time the line protocol goes from “down” to “up” or from “dialer spoofing” to “fully up.” The `dialer` keyword on the `snapshot client` command allows the client router to dial the server router in the absence of regular traffic if the active period time expires.

```plaintext
interface serial 0
dialer rotary-group 3
!
interface dialer 3
dialer in-band
snapshot client 5 360 dialer
dialer map snapshot 2 4155556734
dialer map snapshot 3 7075558990

The following example configures the server router:

```plaintext
interface serial 2
snapshot server 5 dialer
```
Dial-Backup Configuration
Configuring Dial Backup for Serial Lines

This chapter describes how to configure the primary interface to use the dial backup interface. It includes the following main sections:

- Backup Serial Interface Overview
- How to Configure Dial Backup
- Configuration Examples for Dial Backup for Serial Interfaces

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the dial backup commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Backup Serial Interface Overview

For a backup serial interface, an external DCE device, such as a modem attached to a circuit-switched service, must be connected to the backup serial interface. The external device must be capable of responding to a data terminal ready (DTR) Active signal by automatically dialing the preconfigured telephone number of the remote site.

A backup interface is an interface that stays idle until certain circumstances occur; then it is activated. A backup interface for a serial interface can be an ISDN interface or a different serial interface. A backup interface can be configured to be activated when any of the following three circumstances occurs:

- The primary line goes down.
- The load on the primary line reaches a certain threshold.
- The load on the primary line exceeds a specified threshold.

To configure a dial backup to a serial interface, you must configure the interface to use the dial backup interface, specify the conditions in which the backup interface will be activated, and then configure the dial-backup interface for dial-on-demand routing (DDR). The DDR configuration specifies the conditions and destinations for dial calls. The serial interface (often called the primary interface) might be configured for DDR or for Frame Relay or X.25 over a leased line, but the backup tasks are the same in all three cases.
How to Configure Dial Backup

You must decide whether to activate the backup interface when the primary line goes down, when the traffic load on the primary line exceeds the defined threshold, or both. The tasks you perform depend on your decision. Perform the tasks in the following sections to configure dial backup:

- **Specifying the Backup Interface** (Optional)
- **Defining the Traffic Load Threshold** (Optional)
- **Defining Backup Line Delays** (Optional)

Then configure the backup interface for DDR, so that calls are placed as needed. See the chapters in the “Dial-on-Demand Routing” part of this publication for more information.

For simple configuration examples, see the section “Configuration Examples for Dial Backup for Serial Interfaces” at the end of this chapter.
Specifying the Backup Interface

To specify a backup interface for a primary serial interface or subinterface, use one the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>backup interface</code> type number</td>
<td>Selects a backup interface.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Cisco 7500 series routers:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# <code>backup interface</code> type slot/port</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Cisco 7200 series routers:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# <code>backup interface</code> type slot/port-adapter/port</td>
<td></td>
</tr>
</tbody>
</table>

Note

When you enter the `backup interface` command, the configured physical or logical interface will be forced to standby mode. When you use a BRI for a dial backup (with Legacy DDR), neither of the B channels can be used because the physical BRI interface is in standby mode. However, with dialer profiles, only the logical dialer interface is placed in standby mode and the physical interface (BRI) still can be used for other connections by making it a member of another pool.

When configured for legacy DDR, the backup interface can back up only one interface. For examples of selecting a backup line, see the sections “Dial Backup Using an Asynchronous Interface Example” and “Dial Backup Using DDR and ISDN Example” later in this chapter.

Defining the Traffic Load Threshold

You can configure dial backup to activate the secondary line based on the traffic load on the primary line. The software monitors the traffic load and computes a 5-minute moving average. If this average exceeds the value you set for the line, the secondary line is activated and, depending upon how the line is configured, some or all of the traffic will flow onto the secondary dialup line.

To define how much traffic should be handled at one time on an interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>backup load</code> (enable-threshold</td>
<td>never) (disable-load</td>
</tr>
</tbody>
</table>
Defining Backup Line Delays

You can configure a value that defines how much time should elapse before a secondary line status changes after a primary line status has changed. You can define two delays:

- A delay that applies after the primary line goes down but before the secondary line is activated
- A delay that applies after the primary line comes up but before the secondary line is deactivated

To define these delays, use the following command in interface configuration mode:

```
Router(config-if)# backup delay {enable-delay | never} {disable-delay | never}
```

For examples of how to define backup line delays, see the sections “Dial Backup Using an Asynchronous Interface Example” and “Dial Backup Using DDR and ISDN Example” at the end of this chapter.

Configuration Examples for Dial Backup for Serial Interfaces

The following sections present examples of specifying the backup interface:

- Dial Backup Using an Asynchronous Interface Example
- Dial Backup Using DDR and ISDN Example

The following sections present examples of backup interfaces configured to be activated in three different circumstances:

- The load on the primary line reaches a certain threshold.
- The load on the primary line exceeds a specified threshold.
- The primary line goes down.

Dial Backup Using an Asynchronous Interface Example

The following is an example for dial backup using asynchronous interface 1, which is configured for DDR:

```
interface serial 0
  ip address 172.30.3.4 255.255.255.0
  backup interface async1
  backup delay 10 10
!
interface async 1
  ip address 172.30.3.5 255.255.255.0
dialer in-band
dialer string 5551212
dialer-group 1
async dynamic routing
dialer-list 1 protocol ip permit
chat-script sillyman "atdt 5551212" TIMEOUT 60 "CONNECT"
line 1
  modem chat-script sillyman
  modem inout
  speed 9600
```
Dial Backup Using DDR and ISDN Example

The following example shows how to use an ISDN interface to back up a serial interface.

Note When you use a BRI interface for dial backup, neither of the B channels can be used while the interface is in standby mode.

Interface BRI 0 is configured to make outgoing calls to one number. This is a legacy DDR spoke example.

```
interface serial 1
  backup delay 0 0
  backup interface bri 0
  ip address 10.2.3.4 255.255.255.0
!
interface bri 0
  ip address 10.2.3.5 255.255.255.0
  dialer string 5551212
  dialer-group 1
!
  dialer-list 1 protocol ip permit
```

Note Dialing will occur only after a packet is received to be output on BRI 0. We recommend using the `dialer-list` command with the `protocol` and `permit` keywords specified to control access for dial backup. Using this form of access control specifies that all packets are interesting.

Dial Backup Service When the Primary Line Reaches Threshold Example

The following example configures the secondary line (serial 1) to be activated only when the load of the primary line reaches a certain threshold:

```
interface serial 0
  backup interface serial 1
  backup load 75 5

In this case, the secondary line will not be activated when the primary goes down. The secondary line will be activated when the load on the primary line is greater than 75 percent of the bandwidth of the primary line. The secondary line will then be brought down when the aggregate load between the primary and secondary lines fits within 5 percent of the primary bandwidth.
```

The same example on a Cisco 7500 series router would be as follows:

```
interface serial 1/1
  backup interface serial 2/2
  backup load 75 5
```

Dial Backup Service When the Primary Line Exceeds Threshold Example

The following example configures the secondary line (serial 1) to activate when the traffic threshold on the primary line exceeds 25 percent:

```
interface serial 0
  backup interface serial 1
  backup load 25 5
  backup delay 10 60
```
When the aggregate load of the primary and the secondary lines returns to within 5 percent of the primary bandwidth, the secondary line is deactivated. The secondary line waits 10 seconds after the primary goes down before activating and remains active for 60 seconds after the primary returns and becomes active again.

The same example on a Cisco 7500 series router would be as follows:

```
interface serial 1/0
backup interface serial 2/0
backup load 25 5
backup delay 10 60
```

Dial Backup Service When the Primary Line Goes Down Example

The following example configures the secondary line (serial 1) as a backup line that becomes active only when the primary line (serial 0) goes down. The backup line will not be activated because of load on the primary line.

```
interface serial 0
backup interface serial 1
backup delay 30 60
```

The backup line is configured to activate 30 seconds after the primary line goes down and to remain on for 60 seconds after the primary line is reactivated.

The same example on a Cisco 7500 series router would be as follows:

```
interface serial 1/1
backup interface serial 2/0
backup delay 30 60
```
Configuring Dial Backup with Dialer Profiles

This chapter describes how to configure dialer interfaces, which can be configured as the logical intermediary between one or more physical interfaces and another physical interface that is to function as backup. It includes the following main sections:

- Dial Backup with Dialer Profiles Overview
- How to Configure Dial Backup with Dialer Profiles
- Configuration Example of Dialer Profile for ISDN BRI Backing Up Two Leased Lines

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the dial backup commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Dial Backup with Dialer Profiles Overview

A backup interface is an interface that stays idle until certain circumstances occur; then it is activated. Dialer interfaces can be configured to use a specific dialing pool; in turn, physical interfaces can be configured to belong to the same dialing pool.

See the section “Configuration Example of Dialer Profile for ISDN BRI Backing Up Two Leased Lines” at the end of this chapter for a comprehensive example of a dial backup interface using dialer profiles. In the example, one BRI functions as backup to two serial lines and can make calls to two different destinations.

How to Configure Dial Backup with Dialer Profiles

To configure a dialer interface and a specific physical interface to function as backup to other physical interfaces, perform the tasks in the following sections:

- Configuring a Dialer Interface (Required)
- Configuring a Physical Interface to Function As Backup (Required)
- Configuring Interfaces to Use a Backup Interface (Required)
Configuring a Dialer Interface

To configure the dialer interface that will be used as an intermediary between a physical interface that will function as backup interface and the interfaces that will use the backup, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface dialer number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip unnumbered loopback0</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# encapsulation ppp</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# dialer remote-name username</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# dialer string dial-string</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-if)# dialer pool number</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-if)# dialer-group group-number</td>
</tr>
</tbody>
</table>

Configuring a Physical Interface to Function As Backup

To configure the physical interface that is to function as backup, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# encapsulation ppp</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# dialer pool-member number</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# ppp authentication chap</td>
</tr>
</tbody>
</table>

Configuring Interfaces to Use a Backup Interface

To configure one or more interfaces to use a backup interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip unnumbered loopback0</td>
</tr>
</tbody>
</table>
The following example shows the configuration of a site that backs up two leased lines using one BRI. Two dialer interfaces are defined. Each serial (leased line) interface is configured to use one of the dialer interfaces as a backup. Both of the dialer interfaces use dialer pool 1, which has physical interface BRI 0 as a member. Thus, physical interface BRI 0 can back up two different serial interfaces and can make calls to two different sites.

interface dialer0
 ip unnumbered loopback0
 encapsulation ppp
 dialer remote-name Remote0
 dialer pool 1
 dialer string 5551212
 dialer-group 1

interface dialer1
 ip unnumbered loopback0
 encapsulation ppp
 dialer remote-name Remote1
 dialer pool 1
 dialer string 5551234
 dialer-group 1

interface bri 0
 encapsulation PPP
 dialer pool-member 1
 ppp authentication chap

interface serial 0
 ip unnumbered loopback0
 backup interface dialer 0
 backup delay 5 10

interface serial 1
 ip unnumbered loopback0
 backup interface dialer1
 backup delay 5 10
Configuring Dial Backup Using Dialer Watch

This chapter describes how to configure dial backup using the Dialer Watch feature. It includes the following main sections:

- **Dialer Watch Overview**
- **How to Configure Dialer Backup with Dialer Watch**
- **Configuration Examples for Dialer Watch**

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the dial backup commands used to configure Dialer Watch, refer to the *Cisco IOS Dial Technologies Command Reference*. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Dialer Watch Overview

Dialer Watch is a backup feature that integrates dial backup with routing capabilities. Prior dial backup implementations used the following conditions to trigger backup:

- Interesting packets were defined at central and remote routers using dial-on-demand routing (DDR).
- Connection loss occurred on a primary interface using a back up interface with floating static routes.
- Traffic thresholds were exceeded using a dialer load threshold.

Prior backup implementations may not have supplied optimum performance on some networks, such as those using Frame Relay multipoint subinterfaces or Frame Relay connections that do not support end-to-end permanent virtual circuit (PVC) status updates.

Dialer Watch provides reliable connectivity without relying solely on defining interesting traffic to trigger outgoing calls at the central router. Dialer Watch uses the convergence times and characteristics of dynamic routing protocols. Integrating backup and routing features enables Dialer Watch to monitor every deleted route. By configuring a set of watched routes that define the primary interface, you are able to monitor and track the status of the primary interface as watched routes are added and deleted.

Monitoring the watched routes is done in the following sequence:

1. Whenever a watched route is deleted, Dialer Watch checks whether there is at least one valid route for any of the defined watched IP addresses.
2. If no valid route exists, the primary line is considered down and unusable.
3. If a valid route exists for at least one of the defined IP addresses and if the route is pointing to an interface other than the backup interface configured for Dialer Watch, the primary link is considered up.

4. If the primary link goes down, Dialer Watch is immediately notified by the routing protocol and the secondary link is brought up.

5. Once the secondary link is up, at the expiration of each idle timeout, the primary link is rechecked.

6. If the primary link remains down, the idle timer is indefinitely reset.

7. If the primary link is up, the secondary backup link is disconnected. Additionally, you can set a disable timer to create a delay for the secondary link to disconnect, after the primary link is reestablished.

Dialer Watch provides the following advantages:

- Routing—Backup initialization is linked to the dynamic routing protocol, rather than a specific interface or static route entry. Therefore, both primary and backup interfaces can be any interface type, and can be used across multiple interfaces and multiple routers. Dialer Watch also relies on convergence, which is sometimes preferred over traditional DDR links.

- Routing protocol independent—Static routes or dynamic routing protocols, such as Interior Gateway Routing Protocol (IGRP), Enhanced IGRP (EIGRP) or Open Shortest Path First (OSPF) can be used.

- Nonpacket semantics—Dialer Watch does not exclusively rely on interesting packets to trigger dialing. The link is automatically brought up when the primary line goes down without postponing dialing.

- Dial backup reliability—DDR redial functionality is extended to dial indefinitely in the event that secondary backup lines are not initiated. Typically, DDR redial attempts are affected by enable-timeouts and wait-for-carrier time values. Intermittent media difficulties or flapping interfaces can cause problems for traditional DDR links. However, Dialer Watch automatically reestablishes the secondary backup line on ISDN, synchronous, and asynchronous serial links.

The following prerequisites apply to Dialer Watch:

- The router is dial backup capable, meaning the router has a data communications equipment (DCE), terminal adapter, or network termination 1 device attached that supports V.25bis.

- The router is configured for DDR. This configuration includes traditional commands such as dialer map and dialer in-band commands, and so on.

- Dialer Watch is only supported for IP at this time.

For information on how to configure traditional DDR for dial backup, see the other chapters in the “Dial Backup” part of this publication.

How to Configure Dialer Backup with Dialer Watch

To configure Dialer Watch, perform the following tasks. All tasks are required except the last one to set a disable timer.

- Determining the Primary and Secondary Interfaces (Required)
- Determining the Interface Addresses and Networks to Watch (Required)
- Configuring the Interface to Perform DDR Backup (Required)
Configuring Dial Backup Using Dialer Watch

- Creating a Dialer List (Required)
- Setting the Disable Timer on the Backup Interface (Optional)

Determining the Primary and Secondary Interfaces

Decide which interfaces on which routers will act as primary and secondary interfaces. Unlike traditional backup methods, you can define multiple interfaces on multiple routers instead of a singly defined interface on one router.

Determining the Interface Addresses and Networks to Watch

Determine which addresses and networks are to be monitored or watched. Typically, this will be the address of an interface on a remote router or a network advertised by a central or remote router.

Configuring the Interface to Perform DDR Backup

To initiate Dialer Watch, you must configure the interface to perform DDR and backup. Use traditional DDR configuration commands, such as dialer maps, for DDR capabilities. To enable Dialer Watch on the backup interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer watch-group group-number</td>
<td>Enables Dialer Watch on the backup interface.</td>
</tr>
</tbody>
</table>

Creating a Dialer List

To define the IP addresses that you want watched, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# dialer watch-list group-number ip ip-address address-mask</td>
<td>Defines all IP addresses to be watched.</td>
</tr>
</tbody>
</table>

The `dialer watch-list` command is the means to detect if the primary interface is up or down. The primary interface is determined to be up when there is an available route with a valid metric to any of the addresses defined in this list, and it points to an interface other than the interface on which the `dialer watch-group` command is defined. The primary interface is determined to be down when there is no available route to any of the addresses defined in the `dialer watch-list` command.

Setting the Disable Timer on the Backup Interface

This task is optional. Under some conditions, you may want to implement a delay before the backup interface is dropped once the primary interface recovers. This delay can ensure stability, especially for flapping interfaces or interfaces experiencing frequent route changes.
The **dialer watch-disable** command used in Dialer Watch configurations was Replaced in Cisco IOS Release 12.3(11)T by the **dialer watch-list delay** command. When using the **dialer watch-list delay** command in software later than Cisco IOS Release 12.3(11)T, you can specify both a connect and disconnect timer for the disable timer. The disconnect time specifies that the disconnect timer is started when the secondary link is up and after the idle timeout period has expired, and only when software has determined that the primary route has come up.

In Cisco IOS Software Releases Prior to 12.3(11)T

To apply a disable time, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer watch-disable seconds</td>
<td>Applies a disable time to the interface.</td>
</tr>
</tbody>
</table>

In Cisco IOS Software Releases After 12.3(11)T

To apply a disable time, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer watch-list group-number delay (connect connect-time</td>
<td>Configures a disable time.</td>
</tr>
<tr>
<td>disconnect disconnect-time)</td>
<td>• group-number—Group number assigned to the list. Valid group numbers are from 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• delay—Specifies that the router will delay dialing the secondary link when the primary link becomes unavailable.</td>
</tr>
<tr>
<td></td>
<td>• connect connect-time—Time, in seconds, after which the router rechecks for availability of the primary link. If the primary link is still unavailable, the secondary link is then dialed. Valid times range from 1 to 2147483 seconds.</td>
</tr>
<tr>
<td></td>
<td>• disconnect disconnect-time—Time, in seconds, that specifies when to disconnect. Disconnect occurs when the secondary link is up and after the idle timeout period has expired, and only when software has determined that the primary route has come up. Valid times range from 1 to 2147483 seconds.</td>
</tr>
</tbody>
</table>

Configuration Examples for Dialer Watch

The **dialer watch-disable** command used in Dialer Watch configurations was replaced in Cisco IOS Release 12.3(11)T by the **dialer watch-list delay** command. The following sections provide examples of how to configure Dialer Watch in software before and after the **dialer watch-disable** command was replaced.

- Dialer Watch Configuration Example Prior to Cisco IOS Release 12.3(11)T, page 463
- Dialer Watch Configuration Example After Cisco IOS Release 12.3(11)T, page 467
Dialer Watch Configuration Example Prior to Cisco IOS Release 12.3(11)T

In the following example, an ISDN BRI line is used to back up a serial leased line connection by configuring the Dialer Watch feature on a router named maui-soho-01. The Dialer Watch feature enables the router to monitor the existence of a specified route. If that route is not present, the backup interface is activated. Unlike other backup methods, the Dialer Watch feature does not require interesting traffic to activate the backup interface. The configuration shown in Figure 61 uses legacy dial-on-demand routing (DDR) and the Open Shortest Path First (OSPF) routing protocol. Dialer profiles can be used in place of DDR. Once the backup connection is activated, you must ensure that the routing table is updated to use the new backup route. Additional information about the Dialer Watch feature is available at the following website:

For additional information on configuring legacy DDR, dialer profiles, PPP, and traditional dial backup features, see the relevant chapters in this publication.

Figure 61 Dialer Watch for Frame Relay Interfaces

The following example uses commands supported in Cisco IOS software prior to Release 12.3(11)T. See the updated example for configuring Dialer Watch after Cisco IOS Release 12.3(11)T that follows this example.

Configuration for maui-soho-01

maui-soho-01# show running-config

Building configuration...

Current configuration : 1546 bytes
!
version 12.1
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname maui-soho-01
!
logging rate-limit console 10 except errors
aaa new-model
aaa authentication login default local
aaa authentication login NO_AUTHEN none
aaa authentication ppp default local
!This is basic AAA configuration for PPP calls.
enable secret 5 <deleted>
!
username maui-nas-05 password 0 cisco
!Username for remote router (maui-nas-05) and shared secret.
!Shared secret (used for CHAP authentication) must be the same on both sides.
ip subnet-zero
no ip finger
!
isdn switch-type basic-ni
!
interface Loopback0
 ip address 172.17.1.1 255.255.255.0
!
interface Ethernet0
 ip address 172.16.1.1 255.255.255.0
!
interface Serial0
!Primary link.
 ip address 192.168.10.2 255.255.255.252
 encapsulation ppp
 ppp authentication chap
!
interface BRI0
 ip address 172.20.10.2 255.255.255.0
!IP address for the BRI interface (backup link).
 encapsulation ppp
 dialer idle-timeout 30
!Idle timeout (in seconds) for this backup link.
!Dialer watch checks the status of the primary link every time the
!idle-timeout expires.
 dialer watch-disable 15
!Delays disconnecting the backup interface for 15 seconds after the
!primary interface is found to be up.
 dialer map ip 172.20.10.1 name maui-nas-05 broadcast 5550111
!Dialer map for the BRI interface of the remote router.
 dialer map ip 172.22.53.0 name maui-nas-05 broadcast 5550111
!Map statement for the route/network being watched by the
!dialer watch-list command.
!This address must exactly match the network configured with the
!dialer watch-list command.
!When the watched route disappears, this dials the specified phone number.
 dialer watch-group 8
!Enable Dialer Watch on this backup interface.
!Watch the route specified with dialer watch-list 8.
 dialer-group 1
!Apply interesting traffic defined in dialer-list 1.
 isdn switch-type basic-ni
 isdn spid1 51255522220101 5550112
 isdn spid2 51255522230101 5550112
 ppp authentication chap
!Use chap authentication.
!
router ospf 5
 log-adjacency-changes
 network 172.16.1.0 0.0.0.255 area 0
 network 172.17.1.0 0.0.0.255 area 0
 network 172.20.10.0 0.0.0.255 area 0
 network 192.168.10.0 0.0.0.3 area 0
!
ip classless
no ip http server
!
dialer watch-list 8 ip 172.22.53.0 255.255.255.0
!This defines the route(s) to be watched.
!This exact route(including subnet mask) must exist in the routing table.
!Use the dialer watch-group 8 command to apply this list to the backup interface.
access-list 101 remark Define Interesting Traffic
access-list 101 deny ospf any any
!Mark OSPF as uninteresting.
!This will prevent OSPF hellos from keeping the link up.
Access-list 101 permit ip any any
dialer-list 1 protocol ip list 101
!Interesting traffic is defined by access-list 101.
!This is applied to BRI0 using dialer-group 1.
!
line con 0
 login authentication NO_AUTHEN
 transport input none
line vty 0 4
!
end

Configuration for maui-nas-05

maui-nas-05# show running-config

Building configuration...

Current configuration:
!
version 12.1
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname maui-nas-05
!
aaa new-model
aaa authentication login default local
aaa authentication login NO_AUTHEN none
aaa authentication ppp default local
! -- This is basic AAA configuration for PPP calls.
Enable secret 5 <deleted>
!
username maui-soho-01 password 0 cisco
!Username for remote router (maui-soho-01) and shared secret.
!Shared secret(used for CHAP authentication) must be the same on both sides.
!
ip subnet-zero
!
isdn switch-type basic-ni
!
interface Loopback0
 ip address 172.22.1.1 255.255.255.0
!
interface Ethernet0/0
 ip address 172.22.53.105 255.255.255.0
!
interface Ethernet0/1
 no ip address
 shutdown
!
interface BRI1/0
!Backup link.
 ip address 172.20.10.1 255.255.255.0
 encapsulation ppp
dialer map ip 172.20.10.2 name maui-soho-01 broadcast
!Dialer map with IP address and authenticated username for remote destination.
!The name should match the authentication username provided by the remote side.
!The dialer map statement is used even though this router is not dialing out.
Dialer-group 1
!Apply interesting traffic defined in dialer-list 1.
 isdn switch-type basic-ni
 isdn spid1 51255501110101 5550111
 isdn spid2 51255501120101 5550112
 ppp authentication chap
!
interface Serial2/0
 ip address 192.168.10.1 255.255.255.252
 encapsulation ppp
 clockrate 64000
 ppp authentication chap
!
router ospf 5
 network 172.20.10.0 0.0.0.255 area 0
 network 172.22.1.0 0.0.0.255 area 0
 network 172.22.53.0 0.0.0.255 area 0
 network 192.168.10.0 0.0.0.3 area 0
 default-information originate
!
 ip classless
 ip route 0.0.0.0 0.0.0.0 Ethernet0/0
 no ip http server
!
dialer-list 1 protocol ip permit
!This defines all IP traffic as interesting.
!
line con 0
 login authentication NO_AUTHEN
 transport input none
line 97 102
line aux 0
line vty 0 4
!
end
Dialer Watch Configuration Example After Cisco IOS Release 12.3(11)T

The following example shows how to configure Dialer Watch using the `dialer watch-list delay` command that replaced the `dialer watch-disable` command.

Configuration for maui-soho-01

```plaintext
maui-soho-01# show running-config
Building configuration...

Current configuration : 1546 bytes
!
version 12.4
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname maui-soho-01
!
logging rate-limit console 10 except errors
aaa new-model
aaa authentication login default local
aaa authentication login NO_AUTHEN none
aaa authentication ppp default local
!This is basic AAA configuration for PPP calls.
   enable secret 5 <deleted>
!
username maui-nas-05 password 0 cisco
!Username for remote router (maui-nas-05) and shared secret.
!Shared secret(used for CHAP authentication) must be the same on both sides.
ip subnet-zero
no ip finger
!
isdn switch-type basic-ni
!
interface Loopback0
  ip address 172.17.1.1 255.255.255.0
!
interface Ethernet0
  ip address 172.16.1.1 255.255.255.0
!
interface Serial0
!Primary link.
  ip address 192.168.10.2 255.255.255.252
  encapsulation ppp
  ppp authentication chap
!
interface BRI0
  ip address 172.20.10.2 255.255.255.0
!IP address for the BRI interface (backup link).
  encapsulation ppp
  dialer idle-timeout 30
!Idle timeout(in seconds)for this backup link.
!Dialer watch checks the status of the primary link every time the
!idle-timeout expires.
  dialer map ip 172.20.10.1 name maui-nas-05 broadcast 5550111
!Dialer map for the BRI interface of the remote router.
  dialer map ip 172.22.53.0 name maui-nas-05 broadcast 5550111
!Map statement for the route/network being watched by the
!dialer watch-list command.
!This address must exactly match the network configured with the
!dialer watch-list command.
```
!When the watched route disappears, this dials the specified phone number.
dialer watch-group 8
!Enable Dialer Watch on this backup interface.
!Watch the route specified with dialer watch-list 8.
dialer-group 1
!Apply interesting traffic defined in dialer-list 1.
isi switch-type basic-ni
isi spid1 51255522220101 5552222
isi spid2 51255522230101 5552223
ppp authentication chap
!Use chap authentication.
dialer watch-list 8 delay disconnect 15
!Delays disconnecting the backup interface for 15 seconds after the
!primary interface is found to be up.
router ospf 5
log-adjacency-changes
network 172.16.1.0 0.0.0.255 area 0
network 172.17.1.0 0.0.0.255 area 0
network 172.20.10.0 0.0.0.255 area 0
network 192.168.10.0 0.0.0.3 area 0
!ip classless
no ip http server
!
dialer watch-list 8 ip 172.22.53.0 255.255.255.0
!This defines the route(s) to be watched.
!This exact route(including subnet mask) must exist in the routing table.
!Use the dialer watch-group 8 command to apply this list to the backup interface.
access-list 101 remark Define Interesting Traffic
access-list 101 deny ospf any any
!Mark OSPF as uninteresting.
!This will prevent OSPF hellos from keeping the link up.
Access-list 101 permit ip any any
dialer-list 1 protocol ip list 101
!Interesting traffic is defined by access-list 101.
!This is applied to BRI0 using dialer-group 1.
!
line con 0
login authentication NO_AUTHEN
transport input none
line vty 0 4
!
end

Configuration for maui-nas-05
maui-nas-05# show running-config
Building configuration...

Current configuration:
!
version 12.4
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname maui-nas-05
!
aaa new-model
aaa authentication login default local
aaa authentication login NO_AUTHEN none
aaa authentication ppp default local
! -- This is basic AAA configuration for PPP calls.
Enable secret 5 <deleted>
!
username maui-soho-01 password 0 cisco
!UserName for remote router (maui-soho-01) and shared secret.
!Shared secret (used for CHAP authentication) must be the same on both sides.
!
ip subnet-zero
!
isdn switch-type basic-ni
!
interface Loopback0
 ip address 172.22.1.1 255.255.255.0
!
interface Ethernet0/0
 ip address 172.22.53.105 255.255.255.0
!
interface Ethernet0/1
 no ip address
 shutdown
!
interface BRI1/0
 Backup link.
 ip address 172.20.10.1 255.255.255.0
 encapsulation ppp
 dialer map ip 172.20.10.2 name maui-soho-01 broadcast
!Dialer map with IP address and authenticated username for remote destination.
!The name should match the authentication username provided by the remote side.
!The dialer map statement is used even though this router is not dialing out.
Dialer-group 1
!Apply interesting traffic defined in dialer-list 1.
 isdn switch-type basic-ni
 isdn spid1 51255501110101 5550111
 isdn spid2 51255501120101 5550112
 ppp authentication chap
!
! <<-- irrelevant output removed
!
interface Serial2/0
 ip address 192.168.10.1 255.255.255.252
 encapsulation ppp
 clockrate 64000
 ppp authentication chap
!
! <<-- irrelevant output removed
!
routing ospf 5
 network 172.20.10.0 0.0.0.255 area 0
 network 172.22.1.0 0.0.0.255 area 0
 network 172.22.51.0 0.0.0.255 area 0
 network 192.168.10.0 0.0.0.3 area 0
 default-information originate
!
ip classless
ip route 0.0.0.0 0.0.0.0 Ethernet0/0
no ip http server
!
dialer-list 1 protocol ip permit
!This defines all IP traffic as interesting.
!
line con 0
 login authentication NO_AUTHEN
 transport input none
line 97 102
line aux 0
line vty 0 4
!
end
Dial-Related Addressing Services
Configuring Cisco Easy IP

This chapter describes how to configure the Cisco Easy IP feature. It includes the following main sections:

- **Cisco Easy IP Overview**
- **How to Configure Cisco Easy IP**
- **Configuration Examples for Cisco Easy IP**

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the Cisco Easy IP commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Cisco Easy IP Overview

Cisco Easy IP enables transparent and dynamic IP address allocation for hosts in remote environments using the following functionality:

- Cisco Dynamic Host Configuration Protocol (DHCP) server
- Port Address Translation (PAT), a subset of Network Address Translation (NAT)
- Dynamic PPP/IP Control Protocol (PPP/IPCP) WAN interface IP address negotiation

With the Cisco IOS Easy IP, a Cisco router automatically assigns local IP addresses to remote hosts (such as small office, home office or SOHO routers) using DHCP with the Cisco IOS DHCP server, automatically negotiates its own registered IP address from a central server via PPP/IPCP, and uses PAT functionality to enable all SOHO hosts to access the Internet using a single registered IP address. Because Cisco IOS Easy IP uses existing port-level multiplexed NAT functionality within Cisco IOS software, IP addresses on the remote LAN are invisible to the Internet, making the remote LAN more secure.

Cisco Easy IP provides the following benefits:

- Minimizes Internet access costs for remote offices
- Minimizes configuration requirements on remote access routers
- Enables transparent and dynamic IP address allocation for hosts in remote environments
- Improves network security capabilities at each remote site
Configuring Cisco Easy IP

Cisco Easy IP Overview

- Conserves registered IP addresses
- Maximizes IP address manageability

Figure 62 shows a typical scenario for using the Cisco Easy IP feature.

Figure 62 Telecommuter and Branch Office LANs Using Cisco Easy IP

Steps 1 through 4 show how Cisco Easy IP works:

Step 1 When a SOHO host generates “interesting” traffic (as defined by Access Control Lists) for dialup (first time only), the Easy IP router requests a single registered IP address from the access server at the central site via PPP/IPCP. (See Figure 63.)

Figure 63 Cisco Easy IP Router Requests a Dynamic Global IP Address

Step 2 The central site router replies with a dynamic global address from a local DHCP IP address pool. (See Figure 64.)
Step 3 The Cisco Easy IP router uses port-level NAT functionality to automatically create a translation that associates the registered IP address of the WAN interface with the private IP address of the client. (See Figure 65.)

Step 4 The remote hosts contain multiple static IP addresses while the Cisco Easy IP router obtains a single registered IP address using PPP/IPCP. The Cisco Easy IP router then creates port-level multiplexed NAT translations between these addresses so that each remote host address (inside private address) is translated to a single external address assigned to the Cisco Easy IP router. This many-to-one address translation is also called port-level multiplexing or PAT. Note that the NAT port-level multiplexing function can be used to conserve global addresses by allowing the remote routers to use one global address for many local addresses. (See Figure 66.)
Before using Cisco Easy IP, perform the following tasks:

- Configure the ISDN switch type and service provider identifier (SPID), if using ISDN.
- Configure the static route from LAN to WAN interface.
- Configure the Cisco IOS DHCP server.

For information about configuring ISDN switch types, see the chapter “Setting Up ISDN Basic Rate Service” earlier in this publication. For information about configuring static routes, refer to the chapter “Configuring IP Services” in the Cisco IOS IP Configuration Guide.

The Cisco IOS DHCP server supports both DHCP and BOOTP clients and supports finite and infinite address lease periods. DHCP address binding information is stored on a remote host via remote copy protocol (RCP), FTP, or TFTP. Refer to the Cisco IOS IP Configuration Guide for DHCP configuration instructions.

In its most simple configuration, a Cisco Easy IP router or access server will have a single LAN interface and a single WAN interface. Based on this model, to use Cisco Easy IP you must perform the tasks in the following sections:

- Defining the NAT Pool (Required)
- Configuring the LAN Interface (Required)
- Defining NAT for the LAN Interface (Required)
- Configuring the WAN Interface (Required)
- Enabling PPP/IPCP Negotiation (Required)
- Defining NAT for the Dialer Interface (Required)
- Configuring the Dialer Interface (Required)

For configuration examples, see the section “Configuration Examples for Cisco Easy IP” at the end of this chapter.
Defining the NAT Pool

The first step in enabling Cisco Easy IP is to create a pool of internal IP addresses to be translated. To define the NAT pool, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# access-list access-list-number permit source [source-wildcard]</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# ip nat inside source list access-list-number interface dialer-name overload</td>
</tr>
</tbody>
</table>

For information about creating access lists, refer to the chapter “Configuring IP Services” in the Cisco IOS IP Configuration Guide.

Configuring the LAN Interface

To configure the LAN interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address address mask</td>
</tr>
</tbody>
</table>

For information about assigning IP addresses and subnet masks to network interfaces, refer to the chapter “Configuring IP Services” in the Cisco IOS IP Configuration Guide.

Defining NAT for the LAN Interface

To ensure that the LAN interface is connected to the inside network (and therefore subject to NAT), use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ip nat inside</td>
<td>Defines the interface as internal for NAT.</td>
</tr>
</tbody>
</table>

Configuring the WAN Interface

To configure the WAN interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# no ip address</td>
</tr>
</tbody>
</table>
Enabling PPP/IPCP Negotiation

To enable PPP/IPCP negotiation on the dialer interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface dialer-name</td>
<td>Selects the dialer interface and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address negotiated</td>
<td>Enables PPP/IPCP negotiation for this interface.</td>
</tr>
</tbody>
</table>

Defining NAT for the Dialer Interface

To define that the dialer interface is connected to the outside network, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface dialer-name</td>
<td>Selects the dialer interface and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip nat outside</td>
<td>Defines the interface as external for network address translation.</td>
</tr>
</tbody>
</table>

Configuring the Dialer Interface

To configure the dialer interface information, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface dialer-name</td>
<td>Selects the dialer interface and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# dialer wait-for-carrier-time seconds</td>
<td>Specifies for a dialer interface the length of time the interface waits for a carrier before timing out.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# dialer hold-queue packets</td>
<td>Creates a dialer hold queue and specifies the number of packets to be held in it.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# dialer remote-name username</td>
<td>Specifies the remote router Challenge Handshake Authentication Protocol (CHAP) authentication name.</td>
</tr>
</tbody>
</table>
Dynamic NAT translations time out automatically after a predefined default period. Although configurable, with the port-level NAT functionality in Cisco Easy IP, Domain Name System (DNS) User Datagram Protocol (UDP) translations time out after 5 minutes, while DNS translations time out after 1 minute by default. TCP translations time out after 24 hours by default, unless a TCP Reset (RST) or TCP Finish (FIN) is seen in the TCP stream, in which case the translation times out after 1 minute.

If the Cisco IOS Easy IP router exceeds the dialer idle-timeout period, it is expected that all active TCP sessions were previously closed via an RST or FIN. NAT times out all TCP translations before the Cisco Easy IP router exceeds the dialer idle-timeout period. The router then renegotiates another registered IP address the next time the WAN link is brought up, thereby creating new dynamic NAT translations that bind the IP addresses of the LAN host to the newly negotiated IP address.

Configuration Examples for Cisco Easy IP

The following example shows how to configure BRI interface 0 (shown as interface bri0) to obtain its IP address via PPP/IPCP address negotiation:

```
! The following command defines the NAT pool.
ip nat inside source list 101 interface dialer1 overload
!
! The following commands define the ISDN switch type.
isdn switch type vn3
isdn tei-negotiation first-call
!
! The following commands define the LAN address and subnet mask.
interface ethernet0
  ip address 10.0.0.4 255.0.0.0
!
! The following command defines ethernet0 as internal for NAT.
ip nat inside
!
! The following commands binds the physical interface to the dialer1 interface.
interface bri0
  no ip address
  encapsulation ppp
dialer pool-member 1
!
interface dialer1
!
! The following command enables PPP/IPCP negotiation for this interface.
ip address negotiated
  encapsulation ppp
```
The following command defines interface dialer1 as external for NAT.
ip nat outside
dialer remote-name dallas
dialer idle-timeout 180

! The following command defines the dialer string for the central access server.
dialer string 4159991234
dialer pool 1
dialer-group 1

! The following commands define the static route to the WAN interface.
ip route 0.0.0.0 0.0.0.0 dialer1
access-list 101 permit ip 10.0.0.0 0.255.255.255 any
dialer-list 1 protocol ip list 101

The following example shows how to configure an asynchronous interface (interface async1) to obtain its IP address via PPP/IPCP address negotiation:

! This command defines the NAT pool.
ip nat inside source list 101 interface dialer 1 overload

! The following commands define the LAN IP address and subnet mask.
interface ethernet0
ip address 10.0.0.4 255.0.0.0

! The following command defines ethernet0 as internal for NAT.
ip nat inside

! The following commands bind the physical dialer1 interface.
interface async1
no ip address
encapsulation ppp
async mode dedicated
dialer pool-member 1

interface dialer1

! The following command enables PPP/IPCP negotiation for this interface.
ip address negotiated
capsulation ppp

! The following command defines interface dialer1 as external for NAT.
ip nat outside
dialer wait-for-carrier-time 30
dialer hold-queue 10
dialer remote-name dallas
dialer idle-timeout 180

! The following command defines the dialer string for the central access server.
dialer string 4159991234
dialer pool 1
dialer-group 1

! The following commands define the static route to the WAN interface.
ip route 0.0.0.0 0.0.0.0 dialer1
access-list 101 permit ip 10.0.0.0 0.255.255.255 any
dialer-list 1 protocol ip list 101
Virtual Templates, Profiles, and Networks
Configuring Virtual Template Interfaces

This chapter describes how to configure virtual template interfaces. It includes the following main sections:

- **Virtual Template Interface Service Overview**
- **How to Configure a Virtual Template Interface**
- **Monitoring and Maintaining a Virtual Access Interface**
- **Configuration Examples for Virtual Template Interface**

The following template and virtual interface limitations apply:

- Although a system can generally support many virtual template interfaces, one template for each virtual access application is a more realistic limit.
- When in use, each virtual access interface cloned from a template requires the same amount of memory as a serial interface. Limits to the number of virtual access interfaces that can be configured are determined by the platform.
- Virtual access interfaces are not directly configurable by users, except by configuring a virtual template interface or including the configuration information of the user (through virtual profiles or per-user configuration) on an authentication, authorization, and accounting (AAA) server. However, information about an in-use virtual access interface can be displayed, and the virtual access interface can be cleared.
- Virtual interface templates provide no direct value to users; they must be applied to or associated with a virtual access feature using a command with the `virtual-template` keyword.

For example, the `interface virtual-template` command creates the virtual template interface and the `multilink virtual-template` command applies the virtual template to a multilink stack group. The `virtual-profile virtual-template` command specifies that a virtual template interface will be used as a source of configuration information for virtual profiles.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the virtual template interface commands mentioned in this chapter, refer to the *Cisco IOS Dial Technologies Command Reference*, Release 12.2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.
Virtual Template Interface Service Overview

The Virtual Template Interface Service feature provides a generic service that can be used to apply predefined interface configurations (virtual template interfaces) in creating and freeing virtual access interfaces dynamically, as needed.

Virtual template interfaces can be configured independently of any physical interface and applied dynamically, as needed, to create virtual access interfaces. When a user dials in, a predefined configuration template is used to configure a virtual access interface; when the user is done, the virtual access interface goes down and the resources are freed for other dial-in uses.

A virtual template interface is a logical entity—a configuration for a serial interface but not tied to a physical interface—that can be applied dynamically as needed. Virtual access interfaces are virtual interfaces that are created, configured dynamically (for example, by cloning a virtual template interface), used, and then freed when no longer needed.

Virtual template interfaces are one possible source of configuration information for a virtual access interface.

Each virtual access interface can clone from only one template. But some applications can take configuration information from multiple sources; for example, virtual profiles can take configuration information from a virtual template interface, or from interface-specific configuration information stored from a user on a AAA server, or from network protocol configuration from a user stored on a AAA server, or all three. The result of using template and AAA configuration sources is a virtual access interface uniquely configured for a specific dial-in user.

Figure 67 illustrates that a router can create a virtual access interface by first using the information from a virtual template interface (if any is defined for the application) and then using the information in a per-user configuration (if AAA is configured on the router and virtual profiles or per-user configuration or both are defined for the specific user).

![Figure 67 Possible Configuration Sources for Virtual Access Interfaces](image)

The virtual template interface service is intended primarily for customers with large numbers of dial-in users and provides the following benefits:

- For easier maintenance, allows customized configurations to be predefined and then applied dynamically when the specific need arises.
- For scalability, allows interface configuration to be separated from physical interfaces. Virtual interfaces can share characteristics, no matter what specific type of interface the user called on.
- For consistency and configuration ease, allows the same predefined template to be used for all users dialing in for a specific application.
- For efficient router operation, frees the virtual access interface memory for another dial-in use when the call from the user ends.
Features that Apply Virtual Template Interfaces

The following features apply virtual template interfaces to create virtual access interfaces dynamically:

- Virtual profiles
- Virtual Private Dialup Networks (VPDN)
- Multilink PPP (MLP)
- Multichassis Multilink PPP (MMP)
- Virtual templates for protocol translation
- PPP over ATM

Virtual templates are supported on all platforms that support these features.

To create and configure a virtual template interface, complete the tasks in this chapter. To apply a virtual template interface, refer to the specific feature that applies the virtual template interface.

All prerequisites depend on the feature that is applying a virtual template interface to create a virtual access interface. Virtual template interfaces themselves have no other prerequisites.

The order in which you create virtual template interfaces and virtual profiles and configure the features that use the templates and profiles is not important. They must exist, however, before someone calling in can use them.

Selective Virtual Access Interface Creation

Optionally, you can configure a router to automatically determine whether to create a virtual access interface for each inbound connection. In particular, a call that is received on a physical asynchronous interface that uses a AAA per-user configuration can now be processed without a virtual access interface being created by a router that is also configured for virtual profiles.

The following three criteria determine whether a virtual access interface is created:

- Is there a virtual profile AAA configuration?
- Is there a AAA per-user configuration?
- Does the link interface support direct per-user AAA?

A virtual access interface will be created in the following scenarios:

- If there is a virtual profile AAA configuration.
- If there is not a virtual profile AAA configuration, but there is a AAA per-user configuration and the link interface does not support direct per-user AAA (such as ISDN).

A virtual access interface will not be created in the following scenarios:

- If there is neither a virtual profile AAA configuration nor a AAA per-user configuration.
- If there is not a virtual profile AAA configuration, but there is a AAA per-user configuration and the link interface does support direct per-user AAA (such as asynchronous).
How to Configure a Virtual Template Interface

To create and configure a virtual template interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface virtual-template number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip unnumbered ethernet 0</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# encapsulation ppp</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# virtual-profile if-needed</td>
</tr>
</tbody>
</table>

Note Configuring the **ip address** command within a virtual template is not recommended. Configuring a specific IP address in a virtual template can result in the establishment of erroneous routes and the loss of IP packets.

Optionally, other PPP configuration commands can be added to the virtual template configuration. For example, you can add the **ppp authentication chap** command.

All configuration commands that apply to serial interfaces can also be applied to virtual template interfaces, except **shutdown** and **dialer** commands.

For virtual template interface examples, see the “Configuration Examples for Virtual Template Interface” section later in this chapter.

Monitoring and Maintaining a Virtual Access Interface

When a virtual template interface or a configuration from a user on a AAA server or both are applied dynamically, a virtual access interface is created. Although a virtual access interface cannot be created and configured directly, it can be displayed and cleared.

To display or clear a specific virtual access interface, use the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> show interfaces virtual-access number</td>
<td>Displays the configuration of the virtual access interface.</td>
</tr>
<tr>
<td>Router> clear interface virtual-access number</td>
<td>Tears down the virtual access interface and frees the memory for other dial-in uses.</td>
</tr>
</tbody>
</table>

Configuration Examples for Virtual Template Interface

The following sections provide virtual template interface configuration examples:

- **Basic PPP Virtual Template Interface**
- **Virtual Template Interface**
• Selective Virtual Access Interface
• RADIUS Per-User and Virtual Profiles
• TACACS+ Per-User and Virtual Profiles

Basic PPP Virtual Template Interface

The following example enables virtual profiles (configured only by virtual template) on straightforward PPP (no MLP), and configures a virtual template interface that can be cloned on a virtual access interface for dial-in users:

```
virtual-profile virtual-template 1
interface virtual-template 1
  ip unnumbered ethernet 0
  encapsulation ppp
  ppp authentication chap
```

Virtual Template Interface

The following two examples configure a virtual template interface and then display the configuration of a virtual access interface when the template interface has been applied.

This example uses a named Internet Protocol Exchange (IPX) access list:

```
Router(config)# interface virtual-template 1
  ip unnumbered Ethernet0
  ipx ppp-client Loopback2
  no cdp enable
  ppp authentication chap
```

This example displays the configuration of the active virtual access interface that was configured by virtual-template 1, defined in the preceding example:

```
Router# show interfaces virtual-access 1 configuration

Virtual-Access1 is a L2F link interface
interface Virtual-Access1 configuration...
  ip unnumbered Ethernet0
  ipx ppp-client Loopback2
  no cdp enable
  ppp authentication chap
```

Selective Virtual Access Interface

The following example shows how to create a virtual access interface for incoming calls that require a virtual access interface:

```
aaa new-model
aaa authentication ppp default local radius tacacs
aaa authorization network default local radius tacacs

virtual-profile if-needed
virtual-profile virtual-template 1
virtual-profile aaa
!
interface Virtual-Template1
```
ip unnumbered Ethernet 0
no ip directed-broadcast
no keepalive
ppp authentication chap
ppp multilink

RADIUS Per-User and Virtual Profiles

The following examples show RADIUS user profiles that could be used for selective virtual access interface creation.

This example shows AAA per-user configuration for a RADIUS user profile:

RADIUS user profile:
```plaintext
foo     Password = "test"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "ip:inacl#1=deny 10.10.10.10 0.0.0.0",
cisco-avpair = "ip:inacl#1=permit any"
```

This example shows a virtual profile AAA configuration for a RADIUS user profile:

RADIUS user profile:
```plaintext
foo     Password = "test"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "lcp:interface-config=keepalive 30
ppp max-bad-auth 4"
```

TACACS+ Per-User and Virtual Profiles

The following examples show TACACS+ user profiles that could be used for selective virtual access interface creation.

This example shows AAA per-user configuration for a TACACS+ user profile:

```
user = foo {
    name = "foo"
    global = cleartext test
    service = PPP protocol= ip {
        inacl#1="deny 10.10.10.10 0.0.0.0"
        inacl#1="permit any"
    }
}
```

This example shows a virtual profile AAA configuration for a TACACS+ user profile:

```
TACACS+ user profile:
user = foo {
    name = "foo"
    global = cleartext test
    service = PPP protocol= lcp {
        interface-config="keepalive 30
ppp max-bad-auth 4"
    }
    service = ppp protocol = ip {
    }
}
```
Configuring Virtual Profiles

This chapter describes how to configure virtual profiles for use with virtual access interfaces. It includes the following main sections:

- Virtual Profiles Overview
- How Virtual Profiles Work—Four Configuration Cases
- How to Configure Virtual Profiles
- Troubleshooting Virtual Profile Configurations
- Configuration Examples for Virtual Profiles

Virtual profiles run on all Cisco IOS platforms that support Multilink PPP (MLP).

We recommend that unnumbered addresses be used in virtual template interfaces to ensure that duplicate network addresses are not created on virtual access interfaces.

Virtual profiles interoperate with Cisco dial-on-demand routing (DDR), MLP, and dialers such as ISDN.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the virtual profile commands mentioned in this chapter, refer to the Cisco IOS Dial Technologies Command Reference, Release 12.2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Virtual Profiles Overview

A virtual profile is a unique application that can create and configure a virtual access interface dynamically when a dial-in call is received and that can tear down the interface dynamically when the call ends. Virtual profiles support these encapsulation methods:

- PPP
- MLP
- High-Level Data Link Control (HDLC)
- Link Access Procedure, Balanced (LAPB)
- X.25
- Frame Relay
Any commands for these encapsulations that can be configured under a serial interface can be configured under a virtual profile stored in a user file on an authentication, authorization, and accounting (AAA) server and a virtual profile virtual template configured locally. The AAA server daemon downloads them as text to the network access server and is able to handle multiple download attempts.

The configuration information for a virtual profiles virtual access interface can come from a virtual template interface or from user-specific configuration stored on a AAA server, or both.

If a B interface is bound by the calling line identification (CLID) to a created virtual access interface cloned from a virtual profile or a virtual template interface, only the configuration from the virtual profile or the virtual template takes effect. The configuration on the D interface is ignored unless successful binding occurs by PPP name. Both the link and network protocols run on the virtual access interface instead of the B channel, unless the encapsulation is PPP.

Moreover, in previous releases of Cisco IOS software, downloading a profile from an AAA server and creating and cloning a virtual access interface was always done after the PPP call answer and link control protocol (LCP) up processes. The AAA download is part of authorization. But in the current release, these operations must be performed before the call is answered and the link protocol goes up. This restriction is a new AAA nonauthenticated authorization step. The virtual profile code handles multiple download attempts and identifies whether a virtual access interface was cloned from a downloaded virtual profile.

When a successful download is done through nonauthenticated authorization and the configuration on the virtual profile has encapsulation PPP and PPP authentication, authentication is negotiated as a separate step after LCP comes up.

The per-user configuration feature also uses configuration information gained from a AAA server. However, per-user configuration uses network configurations (such as access lists and route filters) downloaded during Network Control Protocol (NCP) negotiations.

Two rules govern virtual access interface configuration by virtual profiles, virtual template interfaces, and AAA configurations:

- Each virtual access application can have at most one template to clone from but can have multiple AAA configurations to clone from (virtual profiles AAA information and AAA per-user configuration, which in turn might include configuration for multiple protocols).
- When virtual profiles are configured by virtual template, its template has higher priority than any other virtual template.

See the section “How Virtual Profiles Work—Four Configuration Cases” for a description of the possible configuration sequences for configuration by virtual template or AAA or both. See the section “Multilink PPP Effect on Virtual Access Interface Configuration” for a description of the possible configuration sequences that depend on the presence or absence by MLP or another virtual access feature that clones a virtual template interface.

DDR Configuration of Physical Interfaces

Virtual profiles fully interoperate with physical interfaces in the following DDR configuration states when no other virtual access interface application is configured:

- Dialer profiles are configured for the interface—The dialer profile is used instead of the virtual profiles configuration.
- DDR is not configured on the interface—Virtual profiles overrides the current configuration.
- Legacy DDR is configured on the interface—Virtual profiles overrides the current configuration.
Configuring Virtual Profiles

Virtual Profiles Overview

Note

If a dialer interface is used (including any ISDN dialer), its configuration is used on the physical interface instead of the virtual profiles configuration.

Multilink PPP Effect on Virtual Access Interface Configuration

As shown in Table 28, exactly how a virtual access interface will be configured depends on the following three factors:

- Whether virtual profiles are configured by a virtual template, by AAA, by both, or by neither. In the table, these states are shown as “VP VT only,” “VP AAA only,” “VP VT and VP AAA,” and “No VP at all,” respectively.
- The presence or absence of a dialer interface.
- The presence or absence of MLP. The column label “MLP” is a stand-in for any virtual access feature that supports MLP and clones from a virtual template interface.

In Table 28, “(Multilink VT)” means that a virtual template interface is cloned if one is defined for MLP or a virtual access feature that uses MLP.

Table 28 Virtual Profiles Configuration Cloning Sequence

<table>
<thead>
<tr>
<th>Virtual Profiles Configuration</th>
<th>MLP</th>
<th>No Dialer</th>
<th>MLP</th>
<th>Dialer</th>
<th>No MLP</th>
<th>No MLP</th>
<th>No MLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP VT only</td>
<td>VP VT</td>
<td>VP VT</td>
<td>VP VT</td>
<td>VP VT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP AAA only</td>
<td>(Multilink VT)</td>
<td>VP AAA</td>
<td>VP AAA</td>
<td>VP AAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP VT and VP AAA</td>
<td>VP VT</td>
<td>VP VT</td>
<td>VP VT</td>
<td>VP VT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No VP at all</td>
<td>(Multilink VT)</td>
<td>Dialer</td>
<td>No virtual access interface is created.</td>
<td>No virtual access interface is created.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The multilink bundle virtual access interface is created and uses the default settings for MLP or the relevant virtual access feature that uses MLP.
2. The multilink bundle virtual access interface is created and cloned from the dialer interface configuration.

The order of items in any cell of the table is important. Where VP VT is shown above VP AAA, it means that first the virtual profile virtual template is cloned on the interface, and then the AAA interface configuration for the user is applied to it. The user-specific AAA interface configuration adds to the configuration and overrides any conflicting physical interface or virtual template configuration commands.

Interoperability with Other Features That Use Virtual Templates

Virtual profiles also interoperate with virtual access applications that clone a virtual template interface. Each virtual access application can have at most one template to clone from but can clone from multiple AAA configurations.
The interaction between virtual profiles and other virtual template applications is as follows:

- If virtual profiles are enabled and a virtual template is defined for it, the virtual profile virtual template is used.
- If virtual profiles are configured by AAA alone (no virtual template is defined for virtual profiles), the virtual template for another virtual access application (virtual private dialup networks or VPDNs, for example) can be cloned onto the virtual access interface.
- A virtual template, if any, is cloned to a virtual access interface before the virtual profiles AAA configuration or AAA per-user configuration. AAA per-user configuration, if used, is applied last.

How Virtual Profiles Work—Four Configuration Cases

This section describes virtual profiles and the various ways that they can work with virtual template interfaces, user-specific AAA interface configuration, and MLP or another feature that requires MLP.

Virtual profiles separate configuration information into two logical parts:

- **Generic**—Common configuration for dial-in users plus other router-dependent configuration. This common and router-dependent information can define a virtual template interface stored locally on the router. The generic virtual template interface is independent of and can override the configuration of the physical interface on which a user dialed in.
- **User-specific interface information**—Interface configuration stored in a user file on an AAA server; for example, the authentication requirements and specific interface settings for a specific user. The settings are sent to the router in the response to the request from the router to authenticate the user, and the settings can override the generic configuration. This process is explained more in the section “Virtual Profiles Configured by AAA” later in this chapter.

These logical parts can be used separately or together. Four separate cases are possible:

- **Case 1: Virtual Profiles Configured by Virtual Template**—Applies the virtual template.
- **Case 2: Virtual Profiles Configured by AAA**—Applies the user-specific interface configuration received from the AAA server.
- **Case 3: Virtual Profiles Configured by Virtual Template and AAA Configuration**—Applies the virtual template and the user-specific interface configuration received from the AAA server.
- **Case 4: Virtual Profiles Configured by AAA, and a Virtual Template Defined by Another Application**—Applies the other application’s virtual template interface and then applies the user-specific interface configuration received from the AAA server.

Note

All cases assume that AAA is configured globally on the router, that the user has configuration information in the user file on the AAA server, that PPP authentication and authorization proceed as usual, and that the AAA server sends user-specific configuration information in the authorization approval response packet to the router.

The cases also assume that AAA works as designed and that the AAA server sends configuration information for the dial-in user to the router, even when virtual profiles by virtual template are configured.

See the sections “Virtual Profiles Configured by Virtual Templates,” “Virtual Profiles Configured by AAA Configuration,” “Virtual Profiles Configured by Virtual Templates and AAA Configuration,” and “Virtual Profiles Configured by AAA Plus a VPDN Virtual Template on a VPDN Home Gateway” later in this chapter for examples of how to configure these cases.
Case 1: Virtual Profiles Configured by Virtual Template

In the case of virtual profiles configured by virtual template, the software functions as follows:

- If the physical interface is configured for dialer profiles (a DDR feature), the router looks for a dialer profile for the specific user.
- If a dialer profile is found, it is used instead of virtual profiles.
- If a dialer profile is not found for the user, or legacy DDR is configured, or DDR is not configured at all, virtual profiles create a virtual access interface for the user.

The router applies the configuration commands that are in the virtual template interface to create and configure the virtual profile. The template includes generic interface information and router-specific information, but no user-specific information. No matter whether a user dialed in on a synchronous serial, an asynchronous serial, or an ISDN interface, the dynamically created virtual profile for the user is configured as specified in the virtual template.

Then the router interprets the lines in the AAA authorization approval response from the server as Cisco IOS commands to apply to the virtual profile for the user.

Data flows through the virtual profile, and the higher layers treat it as the interface for the user.

For example, if a virtual template included only the three commands `ip unnumbered ethernet 0`, `encapsulation ppp`, and `ppp authentication chap`, the virtual profile for any dial-in user would include those three commands.

In Figure 68, the dotted box represents the virtual profile configured with the commands that are in the virtual template, no matter which interface the call arrives on.

See the section “Configuring Virtual Profiles by Virtual Template” later in this chapter for configuration tasks for this case.

Case 2: Virtual Profiles Configured by AAA

In this case, no dialer profile (a DDR feature) is defined for the specific user and no virtual template for virtual profiles is defined, but virtual profiles by AAA are enabled on the router.

During the PPP authorization phase for the user, the AAA server responds as usual to the router. The authorization approval contains configuration information for the user. The router interprets each of the lines in the AAA response from the server as Cisco IOS commands to apply to the virtual profile for the user.
If MLP is negotiated, the MLP virtual template is cloned first (this is the second row), and then interface-specific commands included in the AAA response from the server for the user are applied. The MLP virtual template overrides any conflicting interface configuration, and the AAA interface configuration overrides any conflicting configuration from both the physical interface and the MLP virtual template.

The router applies all the user-specific interface commands received from the AAA server.

Suppose, for example, that the router interpreted the response by the AAA server as including only the following two commands for this user:

```
ip address 10.10.10.10 255.255.255.255
keepalive 30
```

In Figure 69, the dotted box represents the virtual profile configured only with the commands received from the AAA server, no matter which interface the incoming call arrived on. On the AAA RADIUS server, the attribute-value (AV) pair might have read as follows, where “\n” means to start a new command line:

```
cisco-avpair = “lcp:interface-config=ip address 10.10.10.10 255.255.255.0
keepalive 30”,
```

Figure 69 Virtual Profiles by AAA Configuration

See the section “Configuring Virtual Profiles by AAA Configuration” later in this chapter for configuration tasks for this case.

Case 3: Virtual Profiles Configured by Virtual Template and AAA Configuration

In this case, no DDR dialer profile is defined for the specific user, a virtual template for virtual profiles is defined, virtual profiles by AAA is enabled on the router, the router is configured for AAA, and a user-specific interface configuration for the user is stored on the AAA server.

The router performs the following tasks in order:

1. Dynamically creates a virtual access interface cloned from the virtual template defined for virtual profiles.
2. Applies the user-specific interface configuration received from the AAA server.

If any command in the user’s configuration conflicts with a command on the original interface or a command applied by cloning the virtual template, the user-specific command overrides the other command.
Suppose that the router had the virtual template as defined in Case 1 and the AAA user configuration as defined in Case 2. In Figure 70 the dotted box represents the virtual profile configured with configuration information from both sources, no matter which interface the incoming call arrived on. The \texttt{ip address} command has overridden the \texttt{ip unnumbered} command.

\textbf{Figure 70 \ Virtual Profiles by Both Virtual Template and AAA Configuration}

See the section “Configuring Virtual Profiles by Both Virtual Template and AAA Configuration” later in this chapter for configuration tasks for this case.

\section*{Case 4: Virtual Profiles Configured by AAA, and a Virtual Template Defined by Another Application}

In this case, no DDR dialer profile is defined for the specific user, virtual profiles by AAA are configured on the router but no virtual template is defined for virtual profiles, and a user-specific interface configuration is stored on the AAA server. In addition, a virtual template is configured for some other virtual access application (a VPDN, for example).

The router performs the following tasks in order:

\begin{enumerate}
 \item Dynamically creates a virtual access interface and clones the virtual template from the other virtual access application onto it.
 \item Applies the user-specific interface configuration received from the AAA server.
\end{enumerate}

If any command in the virtual template conflicts with a command on the original interface, the template overrides it.

If any command in the AAA interface configuration for the user conflicts with a command in the virtual template, the user AAA interface configuration conflicts will override the virtual template.

If per-user configuration is also configured on the AAA server, that network protocol configuration is applied to the virtual access interface last.

The result is a virtual interface unique to that user.
How to Configure Virtual Profiles

To configure virtual profiles for dial-in users, perform the tasks in one of the first three sections and then troubleshoot the configuration by performing the tasks in the last section:

- Configuring Virtual Profiles by Virtual Template (As required)
- Configuring Virtual Profiles by AAA Configuration (As required)
- Configuring Virtual Profiles by Both Virtual Template and AAA Configuration (As required)
- Troubleshooting Virtual Profile Configurations (As required)

Note

Do not define a DDR dialer profile for a user if you intend to define virtual profiles for the user.

See the section “Configuration Examples for Virtual Profiles” at the end of this chapter for examples of how to use virtual profiles in your network configuration.

Configuring Virtual Profiles by Virtual Template

To configure virtual profiles by virtual template, complete these two tasks:

- Creating and Configuring a Virtual Template Interface
- Specifying a Virtual Template Interface for Virtual Profiles

Note

The order in which these tasks is performed is not crucial. However, both tasks must be completed before virtual profiles are used.

Creating and Configuring a Virtual Template Interface

Because a virtual template interface is a serial interface, all the configuration commands that apply to serial interfaces can also be applied to virtual template interfaces, except `shutdown` and `dialer` commands.

To create and configure a virtual template interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface virtual-template number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip unnumbered ethernet 0</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# encapsulation ppp</td>
</tr>
</tbody>
</table>

Other optional PPP configuration commands can be added to the virtual template configuration. For example, you can add the `ppp authentication chap` command.
Specifying a Virtual Template Interface for Virtual Profiles

To specify a virtual template interface as the source of information for virtual profiles, use the following command in global configuration mode:

```
Command
Router(config)# virtual-profile virtual-template number
Purpose
Specifies the virtual template interface as the source of information for virtual profiles.
```

Virtual template numbers range from 1 to 25.

Configuring Virtual Profiles by AAA Configuration

To configure virtual profiles by AAA only, complete these three tasks in any order. All tasks must be completed before virtual profiles are used.

- On the AAA server, create user-specific interface configurations for each of the specific users to use this method. See your AAA server documentation for more detailed configuration information about your AAA server.
- Configure AAA on the router, as described in the *Cisco IOS Security Configuration Guide*, Release 12.2.
- Specify AAA as the source of information for virtual profiles.

To specify AAA as the source of information for virtual profiles, use the following command in global configuration mode:

```
Command
Router(config)# virtual-profile aaa
Purpose
Specifies AAA as the source of user-specific interface configuration.
```

If you also want to use per-user configuration for network protocol access lists or route filters for individual users, see the chapter “Configuring Per-User Configuration” in this publication. In this case, no virtual template interface is defined for virtual profiles.

Configuring Virtual Profiles by Both Virtual Template and AAA Configuration

Use of user-specific AAA interface configuration information with virtual profiles requires the router to be configured for AAA and requires the AAA server to have user-specific interface configuration AV-pairs. The relevant AV-pairs (on a RADIUS server) begin as follows:

```
cisco-avpair = "lcp:interface-config=...",
```

The information that follows the equal sign (=) could be any Cisco IOS interface configuration command. For example, the line might be the following:

```
cisco-avpair = "lcp:interface-config=ip address 192.168.200.200 255.255.255.0",
```

Use of a virtual template interface with virtual profiles requires a virtual template to be defined specifically for virtual profiles.
To configure virtual profiles by both virtual template interface and AAA configuration, complete the following tasks in any order. All tasks must be completed before virtual profiles are used.

- On the AAA server, create user-specific interface configurations for each of the specific users to use this method. See your AAA server documentation for more detailed configuration information about your AAA server.
- Configure AAA on the router, as described in the Cisco IOS Security Configuration Guide publication.
- Creating and Configuring a Virtual Template Interface, described later in this chapter.
- Specifying Virtual Profiles by Both Virtual Templates and AAA, described later in this chapter.

Creating and Configuring a Virtual Template Interface

To create and configure a virtual template interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface virtual-template number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip unnumbered ethernet 0</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# encapsulation ppp</td>
</tr>
</tbody>
</table>

Because the software treats a virtual template interface as a serial interface, all the configuration commands that apply to serial interfaces can also be applied to virtual template interfaces, except `shutdown` and `dialer` commands. Other optional PPP configuration commands can also be added to the virtual template configuration. For example, you can add the `ppp authentication chap` command.

Specifying Virtual Profiles by Both Virtual Templates and AAA

To specify both the virtual template interface and the AAA per-user configuration as sources of information for virtual profiles, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# virtual-profile virtual-template number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# virtual-profile aaa</td>
</tr>
</tbody>
</table>

If you also want to use per-user configuration for network protocol access lists or route filters for individual users, see the chapter “Configuring Per-User Configuration” in this publication.
Troubleshooting Virtual Profile Configurations

To troubleshoot the virtual profiles configurations, use any of the following `debug` commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# debug dialer</td>
<td>Displays information about dial calls and negotiations and virtual profile events.</td>
</tr>
<tr>
<td>Router# debug aaa per-user</td>
<td>Displays information about the per-user configuration downloaded from the AAA server.</td>
</tr>
<tr>
<td>Router# debug vtemplate</td>
<td>Displays cloning information for a virtual access interface from the time it is cloned from a virtual template to the time it comes down.</td>
</tr>
</tbody>
</table>

Configuration Examples for Virtual Profiles

The following sections provide examples for the four cases described in this chapter:

- Virtual Profiles Configured by Virtual Templates
- Virtual Profiles Configured by AAA Configuration
- Virtual Profiles Configured by Virtual Templates and AAA Configuration
- Virtual Profiles Configured by AAA Plus a VPDN Virtual Template on a VPDN Home Gateway

In these examples, BRI 0 is configured for legacy DDR, and interface BRI 1 is configured for dialer profiles. Note that interface dialer 0 is configured for legacy DDR. Interface dialer 1 is a dialer profile.

The intention of the examples is to show how to configure virtual profiles. In addition, the examples show the interoperability of DDR and dialer profiles in the respective cases with various forms of virtual profiles.

The same user names (John and Rick) occur in all these examples. Note the different configuration allowed to them in each of the four examples.

John is a normal user and can dial in to BRI 0 only. Rick is a privileged user who can dial in to BRI 0 and BRI 1. If Rick dials into BRI 1, the dialer profile will be used. If Rick dials into BRI 0, virtual profiles will be used. Because John does not have a dialer profile, only virtual profiles can be applied to John.

To see an example of a configuration using virtual profiles and the Dynamic Multiple Encapsulations feature, see the “Multiple Encapsulations over ISDN” example in the chapter “Configuring Peer-to-Peer DDR with Dialer Profiles.”

Virtual Profiles Configured by Virtual Templates

The following example shows a router configured for virtual profiles by virtual template. (Virtual profiles do not have any interface-specific AAA configuration.) Comments in the example draw attention to specific features or ignored lines.
In this example, the same virtual template interface applies to both users; they have the same interface configurations.

Router Configuration

```bash
! Enable AAA on the router.
aaa new-model
aaa authentication ppp default radius
! The following command is required.
aaa authorization network radius
enable secret 5 $1$koOn$/1QAylov6JPAE1xRCrL.o/
enable password lab
!
! Specify configuration of virtual profiles by virtual template.
! This is the key command for this example.
virtual-profile virtual-template 1
!
! Define the virtual template.
interface Virtual-Template 1
  ip unnumbered ethernet 0
  encapsulation ppp
  ppp authentication chap

! switch-type basic-dms100
interface BRI 0
  description Connected to 103
  encapsulation ppp
  no ip route-cache
  dialer rotary-group 0
  ppp authentication chap
!
interface BRI 1
  description Connected to 104
  encapsulation ppp
  ! Disable fast switching.
  no ip route-cache
  dialer pool-member 1
  ppp authentication chap
!
! Configure dialer interface 0 for DDR for John and Rick.
interface dialer 0
  ip address 10.1.1.1 255.255.255.0
  encapsulation ppp
  ! Enable legacy DDR.
  dialer in-band
  ! Disable fast switching.
  no ip route-cache
  dialer map ip 10.1.1.2 name john 1111
  dialer map ip 10.1.1.3 name rick 2222
  dialer-group 1
  ppp authentication chap
!
! Configure dialer interface 1 for DDR to dial out to Rick.
interface dialer 1
  ip address 10.2.2.2 255.255.255.0
  encapsulation ppp
  dialer remote-name rick
  dialer string 3333
  dialer pool 1
  dialer-group 1
  ! Disable fast switching.
  no ip route-cache
  ppp authentication chap
  dialer-list 1 protocol ip permit
```
Virtual Profiles Configured by AAA Configuration

The following example shows the router configuration for virtual profiles by AAA and the AAA server configuration for user-specific interface configurations. John and Rick have different IP addresses.

In the AAA configuration cisco-avpair lines, “\n” is used to indicate the start of a new Cisco IOS command line.

AAA Configuration for John and Rick

John Password = "welcome"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "lcp:interface-config=keepalive 75\nip address 172.16.100.100 255.255.255.0",
rick Password = "emoclew"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "lcp:interface-config=keepalive 100\nip address 192.168.200.200 255.255.255.0"

Router Configuration

! Enable AAA on the router.
aaa new-model
aaa authentication ppp default radius
! This is a key command for this example.
aaa authorization network radius
enable secret 5 1koOn$/1QAylov6JFAElxRCrL.o/
enable password lab
!
! Specify configuration of virtual profiles by aaa.
virtual-profiles aaa
!
! Interface BRI 0 is configured for legacy DDR.
interface BRI 0
description Connected to 103
encapsulation ppp
no ip route-cache
dialer rotary-group 0
ppp authentication chap
!
! Interface BRI 1 is configured for dialer profiles.
interface BRI 1
description Connected to 104
encapsulation ppp
! Disable fast switching.
no ip route-cache
dialer pool-member 1
ppp authentication chap
!
! Configure dialer interface 0 for DDR for John and Rick.
dialer in-band
! Disable fast switching.
no ip route-cache
dialer map ip 10.1.1.2 name john 1111
dialer map ip 10.1.1.3 name rick 2222
Virtual Profiles Configured by Virtual Templates and AAA Configuration

The following example shows how virtual profiles can be configured by both virtual templates and AAA configuration. John and Rick can dial in from anywhere and have their same keepalive settings and their own IP addresses.

The remaining AV pair settings are not used by virtual profiles. They are the network protocol access lists and route filters used by AAA-based per-user configuration.

In the AAA configuration cisco-avpair lines, “\n” is used to indicate the start of a new Cisco IOS command line.

AAA Configuration for John and Rick

```plaintext
john
Password = "welcome"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "lcp:interface-config=keepalive 75\nip address 10.16.100.100
255.255.255.0",
cisco-avpair = "ip:rt-fltr-out#0=router igrp 60",
cisco-avpair = "ip:rt-fltr-out#3=deny 172.16.0.0 0.255.255.255",
cisco-avpair = "ip:rt-fltr-out#4=deny 172.17.0.0 0.255.255.255",
cisco-avpair = "ip:rt-fltr-out#5=permit any"
```

```plaintext
rick
Password = "emoclew"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "lcp:interface-config=keepalive 100\nip address 192.168.200.200
255.255.255.0",
cisco-avpair = "ip:inacl#3=permit ip any any precedence immediate",
cisco-avpair = "ip:inacl#4=deny igrp 10.0.1.2 255.255.0.0 any",
cisco-avpair = "ip:outacl#2=permit ip any any precedence immediate",
cisco-avpair = "ip:outacl#3=deny igrp 10.0.9.10 255.255.0.0 any"
```

Router Configuration

```plaintext
! Enable AAA on the router.
aaa new-model
aaa authentication ppp default radius
! This is a key command for this example.
aaa authorization network radius
enable secret 5 $1$koOn$1QAylov6JFAElxRCrL.o/
enable password lab
! 
```
Specify use of virtual profiles and a virtual template.
The following two commands are key for this example.
```
virtual-profile virtual-template 1
virtual-profile aaa
```
Define the virtual template.
```
interface Virtual-Template 1
  ip unnumbered ethernet 0
  encapsulation ppp
  ppp authentication chap
```
Interface BRI 0 is configured for legacy DDR.
```
interface BRI 0
description Connected to 103
  encapsulation ppp
  no ip route-cache
  dialer rotary-group 0
  ppp authentication chap
```
Interface BRI 1 is configured for dialer profiles.
```
interface BRI 1
description Connected to 104
  encapsulation ppp
  ! Disable fast switching.
  no ip route-cache
  dialer pool-member 1
  ppp authentication chap
```
Configure dialer interface 0 for DDR to dial out to John and Rick.
```
interface dialer 0
  ip address 10.1.1.1 255.255.255.0
  encapsulation ppp
  dialer in-band
  ! Disable fast switching.
  no ip route-cache
  dialer map ip 10.1.1.2 name john 1111
  dialer map ip 10.1.1.3 name rick 2222
  dialer-group 1
  ppp authentication chap
```
Configure dialer interface 0 for DDR to dial out to Rick.
```
interface dialer 1
  ip address 10.2.2.2 255.255.255.0
  encapsulation ppp
  dialer remote-name rick
  dialer string 3333
  dialer pool 1
  dialer-group 1
  ! Disable fast switching.
  no ip route-cache
  ppp authentication chap
```
```
dialer-list 1 protocol ip permit
```
Virtual Profiles Configured by AAA Plus a VPDN Virtual Template on a VPDN Home Gateway

Like the virtual profiles configured by AAA example earlier in this section, the following example shows the router configuration for virtual profiles by AAA. The user file on the AAA server also includes interface configuration for John and Rick, the two users. Specifically, John and Rick each have their own IP addresses when they are in privileged mode.

In this case, however, the router is also configured as the VPDN home gateway. It clones the VPDN virtual template interface first and then clones the virtual profiles AAA interface configuration. If per-user configuration were configured on this router and the user file on the AAA server had network protocol information for the two users, that information would be applied to the virtual access interface last.

In the AAA configuration cisco-avpair lines, “\n” is used to indicate the start of a new Cisco IOS command line.

AAA Configuration for John and Rick

john Password = "welcome"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "lcp:interface-config=keepalive 75\nip address 10.100.100.100 255.255.255.0",
rick Password = "emoclew"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "lcp:interface-config=keepalive 100\nip address 192.168.200.200 255.255.255.0"

Router Configuration

! Configure the router as the VPDN home gateway.
 ! Enable VPDN and specify the VPDN virtual template to use on incoming calls from the
 ! network access server.
vpdn enable
vpdn incoming dallas_wan go_blue virtual-template 6
!
! Configure the virtual template interface for VPDN.
interface virtual template 6
ip unnumbered ethernet 0
encapsulation ppp
ppp authentication chap
!
! Enable AAA on the router.
aaa new-model
aaa authentication ppp default radius
aaa authorization network radius
enable secret 1koOn$/1QAylov6JFAElxRCrL.o/
enable password lab
!
! Specify configuration of virtual profiles by aaa.
virtual-profiles aaa
!
! Configure the physical synchronous serial 0 interface.
interface Serial 0
description Connected to 101
encapsulation ppp
!Disable fast switching.
no ip route-cache
ppp authentication chap
!
!Configure serial interface 1 for DDR. S1 uses dialer rotary group 0, which is
defined on BRI interface 0.
interface serial 1
description Connected to 102
encapsulation ppp
dialer in-band
! Disable fast switching.
no ip route-cache
dialer rotary-group 0
ppp authentication chap
!
interface BRI 0
description Connected to 103
encapsulation ppp
no ip route-cache
dialer rotary-group 0
ppp authentication chap
!
interface BRI 1
description Connected to 104
encapsulation ppp
!Disable fast switching.
no ip route-cache
dialer pool-member 1
ppp authentication chap
!
!Configure dialer interface 0 for DDR to call and receive calls from John and Rick.
interface dialer 0
ip address 10.1.1.1 255.255.255.0
encapsulation ppp
!Enable legacy DDR.
dialer in-band
!Disable fast switching.
no ip route-cache
dialer map ip 10.1.1.2 name john 1111
dialer map ip 10.1.1.3 name rick 2222
dialer-group 1
ppp authentication chap
!
!Configure dialer interface 1 for DDR to dial out to Rick.
interface dialer 1
ip address 10.2.2.2 255.255.255.0
encapsulation ppp
dialer remote-name rick
dialer string 3333
dialer pool 1
dialer-group 1
!Disable fast switching.
no ip route-cache
ppp authentication chap
dialer-list 1 protocol ip permit
Configuring Virtual Private Networks

This chapter describes how to configure, verify, maintain, and troubleshoot a Virtual Private Network (VPN). It includes the following main sections:

- VPN Technology Overview
- Prerequisites for VPNs
- How to Configure a VPN
- Verifying VPN Sessions
- Monitoring and Maintaining VPNs
- Troubleshooting VPNs
- Configuration Examples for VPN

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature, or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands mentioned in this chapter, refer to the Cisco IOS Dial Technologies Command Reference, Release 12.2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

VPN Technology Overview

A VPN carries private data over a public network and extends remote access to users over a shared infrastructure. VPNs maintain the same security and management policies as a private network. They are the most cost-effective method of establishing a point-to-point connection between remote users and a central network.

A benefit of VPNs or, more appropriately, access VPNs, is the way they delegate responsibilities for the network. The customer outsources the responsibility for the information technology (IT) infrastructure to an Internet service provider (ISP) that maintains the modems that the remote users dial in to (called modem pools), the access servers, and the internetworking expertise. The customer is then only responsible for authenticating its users and maintaining its network.

Instead of connecting directly to the network by using the expensive Public Switched Telephone Network (PSTN), access VPN users need only use the PSTN to connect to the ISP local point of presence (POP). The ISP then uses the Internet to forward users from the POP to the customer network. Forwarding a user call over the Internet provides dramatic cost savings for the customer. Access VPNs use Layer 2 tunneling technologies to create a virtual point-to-point connection between users and the
customer network. These tunneling technologies provide the same direct connectivity as the expensive PSTN by using the Internet. This means that users anywhere in the world have the same connectivity as they would at the customer headquarters.

VPNs allow separate and autonomous protocol domains to share common access infrastructure including modems, access servers, and ISDN routers. VPNs use the following tunneling protocols to tunnel link-level frames:

- Layer 2 Forwarding (L2F)
- Layer 2 Tunneling Protocol (L2TP)
- Point-to-Point Tunneling Protocol (PPTP)

Using one of these protocols, an ISP or other access service can create a virtual tunnel to link customer remote sites or remote users with corporate home networks. In particular, a network access server (NAS) at the ISP POP exchanges PPP messages with the remote users and communicates by L2F, L2TP, or PPTP requests and responses with the customer tunnel server to set up tunnels.

L2F, L2TP, and PPTP pass protocol-level packets through the virtual tunnel between endpoints of a point-to-point connection.

Frames from the remote users are accepted by the ISP POP, stripped of any linked framing or transparency bytes, encapsulated in L2F, L2TP or PPTP, and forwarded over the appropriate tunnel. The customer tunnel server accepts these frames, strips the Layer 2 encapsulation, and processes the incoming frames for the appropriate interface.

Cisco routers fast switch VPN traffic. In stack group environments in which some VPN traffic is offloaded to a powerful router, fast switching provides improved scalability.

VPDN MIB

The VPDN MIB offers a mechanism to track failures of user calls in a VPN system, allowing Simple Network Management Protocol (SNMP) retrieval of user call failure information, on a per-user basis. Refer to the Cisco VPDN Management MIB for a list of supported objects for the VPDN MIB.

VPN Hardware Terminology

As new tunneling protocols have been developed for VPNs, new terminology has been created to describe the hardware involved in VPNs. Fundamentally, two routers are needed for a VPN:

- Network access server (NAS)—It receives incoming calls for dial-in VPNs and places outgoing calls for dial-out VPNs. Typically it is maintained by an ISP that wishes to provide VPN services to its customers.
- Tunnel server—It terminates dial-in VPNs and initiates dial-out VPNs. Typically it is maintained by the ISP customer and is the contact point for the customer network.

For the sake of clarity, we will use these generic terms, and not the technology-specific terms. Table 29 lists the generic terms and the technology-specific terms that are often used for these devices.
In dial-in scenarios, users dial in to the NAS, and the NAS forwards the call to the tunnel server using a VPN tunnel.

In dial-out scenarios, the tunnel server initiates a VPN tunnel to the NAS, and the NAS dials out to the clients.

VPN Architectures

VPNs are designed on the basis of one of two architectural options:

- **Client-Initiated VPNs**
- **NAS-Initiated VPNs**

Client-Initiated VPNs

Users establish a tunnel across the ISP shared network to the customer network without an intermediate NAS participating in the tunnel negotiation and establishment. The customer manages the client software that initiates the tunnel. The main advantage of client-initiated VPNs is that they secure the connection between the client and the ISP. However, client-initiated VPNs are not as scalable and are more complex than NAS-initiated VPNs.

Client-initiated VPNs are also referred to as voluntary tunneling.

NAS-Initiated VPNs

Users dial in to the ISP NAS, which establishes a tunnel to the private network. NAS-initiated VPNs are more robust than client-initiated VPNs and do not require the client to maintain the tunnel-creating software. NAS-initiated VPNs do not encrypt the connection between the client and the ISP, but this is not a concern for most customers because the PSTN is much more secure than the Internet.

NAS-initiated VPNs are also referred to as compulsory tunneling.

Note

In Cisco’s VPN implementation, PPTP tunnels are client-initiated while L2F and L2TP tunnels are NAS-initiated.

PPTP Dial-In with MPPE Encryption

PPTP is a network protocol that enables the secure transfer of data from a remote client to a private enterprise server by creating a VPN across TCP/IP-based data networks. PPTP supports on-demand, multiprotocol, virtual private networking over public networks, such as the Internet.
Cisco supports client-initiated VPNs using PPTP. Therefore only the client and the tunnel server need to be configured. The client first establishes basic connectivity by dialing in to an ISP. Once the client has established a PPP session, it initiates a PPTP tunnel to the tunnel server. The tunnel server is configured to terminate PPTP tunnels and clone virtual-access interfaces from virtual templates.

Microsoft Point-to-Point Encryption (MPPE) is an outcropping technology that can be used to encrypt PPTP VPNs. It encrypts the entire session from the client to the tunnel server.

This section describes the following aspects of PPTP and MPPE:

- PPTP Tunnel Negotiation
- Flow Control Alarm
- MPPE Overview
- MPPE Encryption Types

PPTP Tunnel Negotiation

The following describes the protocol negotiation events that establish a PPTP tunnel:

1. The client dials in to the ISP and establishes a PPP session.
2. The client establishes a TCP connection with the tunnel server.
3. The tunnel server accepts the TCP connection.
4. The client sends a PPTP SCCRQ message to the tunnel server.
5. The tunnel server establishes a new PPTP tunnel and replies with an SCCRP message.
6. The client initiates the session by sending an OCRQ message to the tunnel server.
7. The tunnel server creates a virtual-access interface.
8. The tunnel server replies with an OCRP message.

Flow Control Alarm

The flow control alarm is a new function that indicates if PPTP detects congestion or lost packets. When a flow control alarm goes off, PPTP reduces volatility and additional control traffic by establishing an accompanying stateful MPPE session.

For more information, see the `pptp flow-control static-rtt` command and the output from the `show vpdn session` command in the “Verifying a Client-Initiated VPN” section.

MPPE Overview

MPPE is an encryption technology developed by Microsoft to encrypt point-to-point links. These PPP connections can be over a dialup line or over a VPN tunnel. MPPE works as a subfeature of Microsoft Point-to-Point Compression (MPPC).

MPPC is a scheme used to compress PPP packets between Cisco and Microsoft client devices. The MPPC algorithm is designed to optimize bandwidth utilization in order to support multiple simultaneous connections.

MPPE is negotiated using bits in the MPPC option within the Compression Control Protocol (CCP) MPPC configuration option (CCP configuration option number 18).
MPPE uses the RC4 algorithm with either 40- or 128-bit keys. All keys are derived from the cleartext authentication password of the user. RC4 is stream cipher; therefore, the sizes of the encrypted and decrypted frames are the same size as the original frame. The Cisco implementation of MPPE is fully interoperable with that of Microsoft and uses all available options, including historyless mode. Historyless mode can increase throughput in lossy environments such as VPNs, because neither side needs to send CCP Resets Requests to synchronize encryption contexts when packets are lost.

MPPE Encryption Types

Two modes of MPPE encryption are offered:

- Stateful MPPE Encryption
- Stateless MPPE Encryption

Stateful MPPE Encryption

Stateful encryption provides the best performance but may be adversely affected by networks that experience substantial packet loss. If you choose stateful encryption, you should also configure flow control to minimize the detrimental effects of this lossiness.

Because of the way that the RC4 tables are reinitialized during stateful synchronization, it is possible that two packets may be encrypted using the same key. For this reason, stateful encryption may not be appropriate for lossy network environments (such as Layer 2 tunnels on the Internet).

Stateless MPPE Encryption

Stateless encryption provides a lower level of performance, but will be more reliable in a lossy network environment.

⚠️ **Caution**

If you choose stateless encryption, you *should not* configure flow control.

L2F Dial-In

VPNs use L2F or L2TP tunnels to tunnel the link layer of high-level protocols (for example, PPP frames or asynchronous High-Level Data Link Control (HDLC)). ISPs configure their NASs to receive calls from users and to forward the calls to the customer tunnel server. Usually, the ISP maintains only information about the tunnel server—the tunnel endpoint. The customer maintains the tunnel server users’ IP addresses, routing, and other user database functions. Administration between the ISP and the tunnel server is reduced to IP connectivity.

Figure 71 shows the PPP link that runs between a client (the user hardware and software) and the tunnel server. The NAS and tunnel server establish an L2F tunnel that the NAS uses to forward the PPP link to the tunnel server. The VPN then extends from the client to the tunnel server. The L2F tunnel creates a virtual point-to-point connection between the client and the tunnel server.
The following sections give a functional description of the sequence of events that establish a VPN using L2F as the tunneling protocol:

- **Protocol Negotiation Sequence**
- **L2F Tunnel Authentication Process**

The “Protocol Negotiation Sequence” section provides an overview of the negotiation events that take place as the VPN is established. The “L2F Tunnel Authentication Process” section provides a detailed description of how the NAS and tunnel server establish the L2F tunnel.

Protocol Negotiation Sequence

A user who wants to connect to the customer tunnel server first establishes a PPP connection to the ISP NAS. The NAS then establishes an L2F tunnel with the tunnel server. Finally, the tunnel server authenticates the client username and password and establishes the PPP connection with the client.

Figure 72 shows the sequence of protocol negotiation events between the ISP NAS and the customer tunnel server.
The following explains the sequence of events shown in Figure 72:

1. The user client and the NAS conduct a standard PPP Link Control Protocol (LCP) negotiation.

2. The NAS begins PPP authentication by sending a Challenge Handshake Authentication Protocol (CHAP) challenge to the client.

3. The client replies with a CHAP response.

4. When the NAS receives the CHAP response, either the phone number that the user dialed in from (when using Dialed Number Information Service-based authentication) or the user domain name (when using authentication based on domain name) matches a configuration on either the NAS or its AAA server. This configuration instructs the NAS to create a VPN to forward the PPP session to the tunnel server by using an L2F tunnel. Because this is the first L2F session with the tunnel server, the NAS and the tunnel server exchange L2F_CONF packets, which prepare them to create the tunnel. Then they exchange L2F_OPEN packets, which open the L2F tunnel.

5. Once the L2F tunnel is open, the NAS and tunnel server exchange L2F session packets. The NAS sends an L2F_OPEN (Mid) packet to the tunnel server that includes the client information from the LCP negotiation, the CHAP challenge, and the CHAP response. The tunnel server forces this information on to a virtual access interface that it has created for the client and responds to the NAS with an L2F_OPEN (Mid) packet.

6. The tunnel server authenticates the CHAP challenge and response (using either local or remote AAA) and sends a CHAP Auth-OK packet to the client. This completes the three-way CHAP authentication.
7. When the client receives the CHAP Auth-OK packet, it can send PPP encapsulated packets to the tunnel server. The client and the tunnel server can now exchange I/O PPP encapsulated packets. The NAS acts as a transparent PPP frame forwarder. Subsequent PPP incoming sessions (designated for the same tunnel server) do not repeat the L2F tunnel negotiation because the L2F tunnel is already open.

L2F Tunnel Authentication Process

When the NAS receives a call from a client that is to be tunneled to a tunnel server, it first sends a challenge to the tunnel server. The tunnel server then sends a combined challenge and response to the NAS. Finally, the NAS responds to the tunnel server challenge, and the two devices open the L2F tunnel. Before the NAS and tunnel server can authenticate the tunnel, they must have a common “tunnel secret.” A tunnel secret is a common shared secret that is configured on both the NAS and the tunnel server. For more information on tunnel secrets, see the “Configuring VPN Tunnel Authentication Using the L2TP Tunnel Password” section later in this chapter. By combining the tunnel secret with random value algorithms, which are used to encrypt the tunnel secret, the NAS and tunnel server authenticate each other and establish the L2F tunnel.

Figure 73 shows the tunnel authentication process.

Figure 73 L2F Tunnel Authentication Process

NAS

1. L2F_CONF name = ISP_NAS challenge = A
2. L2F_CONF name = ENT_HGW challenge = B key=A'=MD5 {A+ ISP_NAS secret}
3. L2F_OPEN key = B' = MD5 {B + ENT_HGW secret}
4. L2F_OPEN key = A'
5. All subsequent messages have key = B'
6. All subsequent messages have key = A'

Home gateway
The following explains the sequence of events shown in Figure 73:

1. Before the NAS and tunnel server open an L2F tunnel, both devices must have a common tunnel secret in their configurations.
2. The NAS sends an L2F_CONF packet that contains the NAS name and a random challenge value, A.
3. After the tunnel server receives the L2F_CONF packet, it sends an L2F_CONF packet back to the NAS with the tunnel server name and a random challenge value, B. This message also includes a key containing A' (the MD5 of the NAS secret and the value A).
4. When the NAS receives the L2F_CONF packet, it compares the key A' with the MD5 of the NAS secret and the value A. If the key and value match, the NAS sends an L2F_OPEN packet to the tunnel server with a key containing B' (the Message Digest 5 (MD5) of the tunnel server secret and the value B).
5. When the tunnel server receives the L2F_OPEN packet, it compares the key B' with the MD5 of the tunnel server secret and the value B. If the key and value match, the tunnel server sends an L2F_OPEN packet to the NAS with the key A'.
6. All subsequent messages from the NAS include key = B'; all subsequent messages from the tunnel server include key = A'.

Once the tunnel server authenticates the client, the access VPN is established. The L2F tunnel creates a virtual point-to-point connection between the client and the tunnel server. The NAS acts as a transparent packet forwarder.

When subsequent clients dial in to the NAS, the NAS and tunnel server need not repeat the L2F tunnel negotiation because the L2F tunnel is already open.

L2TP Dial-In

L2TP is an emerging Internet Engineering Task Force (IETF) standard that combines the best features of two existing tunneling protocols: Cisco L2F (L2F) and Microsoft Point-to-Point Tunneling Protocol (PPTP).

L2TP offers the same full-range spectrum of features as L2F, but offers additional functionality. An L2TP-capable tunnel server will work with an existing L2F network access server and will concurrently support upgraded components running L2TP. Tunnel servers do not require reconfiguration each time an individual NAS is upgraded from L2F to L2TP. Table 30 offers a comparison of L2F and L2TP feature components.

Table 30 L2F and L2TP Feature Comparison

<table>
<thead>
<tr>
<th>Function</th>
<th>L2F</th>
<th>L2TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Control</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>AVP hiding</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tunnel server load sharing</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tunnel server stacking/multihop support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tunnel server primary and secondary backup</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DNS name support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Domain name flexibility</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Traditional dialup networking services support only registered IP addresses, which limits the types of applications that are implemented over VPNs. L2TP supports multiple protocols and unregistered and privately administered IP addresses over the Internet. This allows the existing access infrastructure, such as the Internet, modems, access servers, and ISDN terminal adapters (TAs), to be used. It also allows customers to outsource dial-out support, thus reducing overhead for hardware maintenance costs and 800 number fees, and allows them to concentrate corporate gateway resources. Figure 74 shows the L2TP architecture in a typical dialup environment.

The following sections supply additional detail about the interworkings and Cisco implementation of L2TP. Using L2TP tunneling, an Internet service provider (ISP) or other access service can create a virtual tunnel to link customer remote sites or remote users with corporate home networks. The NAS located at the POP of the ISP exchanges PPP messages with remote users and communicates by way of L2TP requests and responses with the customer tunnel server to set up tunnels. L2TP passes protocol-level packets through the virtual tunnel between endpoints of a point-to-point connection. Frames from remote users are accepted by the POP of the ISP, stripped of any linked framing or transparency bytes, encapsulated in L2TP and forwarded over the appropriate tunnel. The customer tunnel server accepts these L2TP frames, strips the L2TP encapsulation, and processes the incoming frames for the appropriate interface. Figure 75 shows the L2TP tunnel detail and how user “lsmith” connects to the tunnel server to access the designated corporate intranet.
Incoming Call Sequence

The following describes the events required to establish a VPN connection between a remote user, a NAS at the ISP POP, and the tunnel server at the home LAN using an L2TP tunnel:

1. The remote user initiates a PPP connection to the ISP, using the analog telephone system or ISDN.
2. The ISP network NAS accepts the connection at the POP, and the PPP link is established.
3. After the end user and NAS negotiate LCP, the NAS partially authenticates the end user with CHAP or PAP. The username, domain name, or Dialed Number Information Service (DNIS) is used to determine whether the user is a VPN client. If the user is not a VPN client, authentication continues, and the client will access the Internet or other contacted service. If the username is a VPN client, the mapping will name a specific endpoint (the tunnel server).
4. The tunnel endpoints, the NAS, and the tunnel server authenticate each other before any sessions are attempted within a tunnel. Alternatively, the tunnel server can accept tunnel creation without any tunnel authentication of the NAS.
5. Once the tunnel exists, an L2TP session is created for the end user.
6. The NAS will propagate the LCP negotiated options and the partially authenticated CHAP/PAP information to the tunnel server. The tunnel server will funnel the negotiated options and authentication information directly to the virtual access interface. If the options configured on the virtual template interface do not match the negotiated options with the NAS, the connection will fail, and a disconnect will be sent to the NAS.

The result is that the exchange process appears to be between the dialup client and the remote tunnel server exclusively, as if no intermediary device (the NAS) is involved. Figure 76 offers a pictorial account of the L2TP incoming call sequence with its own corresponding sequence numbers. Note that the sequence numbers in Figure 76 are not related to the sequence numbers described in the previous table.
VPN Tunnel Authentication Search Order

When a call to a NAS is to be tunneled to a tunnel server, the NAS must identify the tunnel server to which the call is to be forwarded. You can configure the router to authenticate users and also to select the outgoing tunnel on the basis of the following criteria:

- The user domain name
- The DNIS information in the incoming calls
- Both the domain name and the DNIS information
VPN Tunnel Lookup Based on Domain Name

When a NAS is configured to forward VPN calls on the basis of the user domain name, the user must use a username of the form `username@domain`. The NAS then compares the user domain name to the domain names it is configured to search for. When the NAS finds a match, it forwards the user call to the proper tunnel server.

VPN Tunnel Lookup Based on DNIS Information

When a NAS is configured to forward VPN calls on the basis of the user DNIS information, the NAS identifies the user DNIS information, which is provided on ISDN lines, and then forwards the call to the proper tunnel server.

The ability to select a tunnel on the basis of DNIS information provides additional flexibility to network service providers that offer VPN services and to the corporations that use the services. Instead of having to use only the domain name for tunnel selection, tunnel selection can be based on the dialed number.

With this feature, a corporation—which might have only one domain name—can provide multiple specific phone numbers for users to dial in to the NAS at the service provider POP. The service provider can select the tunnel to the appropriate services or portion of the corporate network on the basis of the dialed number.

VPN Tunnel Lookup Based on Both Domain Name and DNIS Information

When a service provider has multiple AAA servers configured, VPN tunnel authorization searches based on domain name can be time consuming and might cause the client session to time out.

To provide more flexibility, service providers can now configure the NAS to perform tunnel authorization searches by domain name only, by DNIS only, or by both in a specified order.

NAS AAA Tunnel Definition Lookup

Authentication, authorization, and accounting (AAA) tunnel definition lookup allows the NAS to look up tunnel definitions using keywords. Two new Cisco AV pairs are added to support NAS tunnel definition lookup: tunnel type and l2tp-tunnel-password. These AV pairs are configured on the RADIUS server. Descriptions of the values are as follows:

- **tunnel type**—Indicates that the tunnel type is either L2F or L2TP. This is an optional AV pair and if not defined, reverts to L2F, the default value. If you want to configure an L2TP tunnel, you must use the L2TP AV pair value. This command is case sensitive.

- **l2tp-tunnel-password**—This value is the secret (password) used for L2TP tunnel authentication and L2TP AV pair hiding. This is an optional AV pair value; however, if it is not defined, the secret will default to the password associated with the local name on the NAS local username-password database. This AV pair is analogous to the `l2tp local secret` command.

For example:

```
request dialin l2tp ip 172.21.9.13 domain hoser.com
l2tp local name dustie
l2tp local secret partner
```
is equivalent to the following RADIUS server configuration:

```plaintext
acme.com Password = "cisco"
cisco-avpair = "vpdn: tunnel-id=dustie",
cisco-avpair = "vpdn: tunnel-type=l2tp",
cisco-avpair = "vpdn: l2tp-tunnel-password=partner",
cisco-avpair = "vpdn: ip-addresses=172.21.9.13"
```

Note
The password for the domain must be “cisco.” This is hard-coded in Cisco IOS software.

L2TP Dial-Out

The L2TP dial-out feature enables tunnel servers to tunnel dial-out VPN calls using L2TP as the tunneling protocol. This feature enables a centralized network to efficiently and inexpensively establish a virtual point-to-point connection with any number of remote offices.

Note
Cisco routers can carry both dial-in and dial-out calls in the same L2TP tunnels.

L2TP dial-out involves two devices: a tunnel server and a NAS. When the tunnel server wants to perform L2TP dial-out, it negotiates an L2TP tunnel with the NAS. The NAS then places a PPP call to the client(s) that the tunnel server wants to dial out to.

Figure 77 shows a typical L2TP dial-out scenario.

Figure 77 L2TP Dial-Out Process

1. VPDN session created
 - **SCCRQ**
 - **SCCRD**
 - **SCCN**
 - **OCRQ**
 - **OCRP**

2. **OCCN**

3. VPDN session created
 - **LAC calls PPP client**

4. **PPP packets**

Cisco IOS Dial Technologies Configuration Guide
The following explains the sequence of events described in Figure 77:

1. The tunnel server receives Layer 3 packets, which are to be dialed out, and forwards them to its dialer interface (either a dialer profile or dial-on-demand routing [DDR]).

 The dialer issues a dial call request to the VPN group, and the tunnel server creates a virtual access interface. If the dialer is a dialer profile, this interface becomes a member of the dial pool. If the dialer is DDR, the interface becomes a member of the rotary group.

 The VPN group creates a VPN session for this connection and sets it in the pending state.

2. The tunnel server and NAS establish an L2TP tunnel (unless a tunnel is already open).

3. The tunnel server sends an Outgoing Call ReQuest (OCRQ) packet to the NAS, which checks if it has a dial resource available.

 If the resource is available, the NAS responds to the tunnel server with an Outgoing Call RePly (OCRP) packet. If the resource is not available, the NAS responds with a Call Disconnect Notification (CDN) packet, and the session is terminated.

4. If the NAS has an available resource, it creates a VPN session and sets it in the pending state.

5. The NAS then initiates a call to the PPP client. When the NAS call connects to the PPP client, the NAS binds the call interface to the appropriate VPN session.

6. The NAS sends an Outgoing Call CoNnected (OCCN) packet to the tunnel server. The tunnel server binds the call to the appropriate VPN session and then brings the virtual access interface up.

7. The dialer on the tunnel server and the PPP client can now exchange PPP packets. The NAS acts as a transparent packet forwarder.

If the dialer interface is a DDR and a virtual profile is configured, the PPP endpoint is the tunnel server virtual-access interface, not the dialer. All Layer 3 routes point to this interface instead of the dialer.

Note

Large-scale dial-out, Bandwidth Allocation Protocol (BAP), and Dialer Watch are not supported. All configuration must be local on the router.

VPN Configuration Modes Overview

Cisco VPN is configured using the VPN group configuration mode. VPN groups can now support the following:

- One or both of the following tunnel server VPN subgroup configuration modes
 - Accept-dialin
 - Request-dialout

- One or both of the following NAS VPN subgroup configuration modes
 - Request-dialin
 - Accept-dialout

- One of the four VPN subgroup configuration modes

A VPN group can act as either a tunnel server or a NAS, but not both. But individual routers can have both tunnel server VPN groups and NAS VPN groups.

Table 31 list four VPDN group configuration commands that correspond to the configuration modes listed above. These command modes are accessed from VPN group mode; therefore, they are generically referred to as VPN subgroups.
Table 31 New VPN Group Command Modes

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Mode Prompt</th>
<th>Type of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept-dialin</td>
<td>router(config-vpdn-acc-in)#</td>
<td>tunnel server</td>
</tr>
<tr>
<td>request-dialout</td>
<td>router(config-vpdn-req-ou)#</td>
<td>tunnel server</td>
</tr>
<tr>
<td>request-dialin</td>
<td>router(config-vpdn-req-in)#</td>
<td>NAS</td>
</tr>
<tr>
<td>accept-dialout</td>
<td>router(config-vpdn-acc-ou)#</td>
<td>NAS</td>
</tr>
</tbody>
</table>

The keywords and arguments for the previous accept-dialin and request-dialin VPDN group configuration commands are now independent commands. The previous syntax is still supported, but when you display the configuration, the commands will appear in the new format.

For example, to configure a NAS to request dial-in, you could use the old command, as follows:

```
request-dialin l2tp ip 10.1.2.3 domain jgb.com
```

However when you view the configuration, the keywords and arguments are displayed in the new format with individual commands:

```
request dialin
  protocol l2tp
  domain jgb.com
  initiate-to ip 10.1.2.3
```

Similarly, the accept-dialout and request-dialout commands have subgroup commands that are used to specify information such as the tunneling protocol and dialer resource.

Table 32 lists the new VPN subgroup commands and which command modes they apply to:

Table 32 VPN Subgroup Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>VPN Subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>all subgroups</td>
</tr>
<tr>
<td>dialer</td>
<td>accept-dialout</td>
</tr>
<tr>
<td>dnis</td>
<td>request-dialin</td>
</tr>
<tr>
<td>domain</td>
<td>request-dialin</td>
</tr>
<tr>
<td>pool-member</td>
<td>request-dialout</td>
</tr>
<tr>
<td>protocol</td>
<td>all subgroups</td>
</tr>
<tr>
<td>rotary-group</td>
<td>request-dialout</td>
</tr>
<tr>
<td>virtual-template</td>
<td>accept-dialin</td>
</tr>
</tbody>
</table>

The other VPN group commands are dependent on which VPN subgroups exist on the VPN group. Table 33 lists the VPN group commands and which subgroups you need to enable in order for them to be configurable.
Table 33 VPN Group Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>VPN Subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept-dialin</td>
<td>tunnel server VPN group(^1)</td>
</tr>
<tr>
<td>accept-dialout</td>
<td>NAS VPN group(^2)</td>
</tr>
<tr>
<td>authen before-forward</td>
<td>request-dialin</td>
</tr>
<tr>
<td>default</td>
<td>any subgroup</td>
</tr>
<tr>
<td>force-local-chap</td>
<td>accept-dialin</td>
</tr>
<tr>
<td>initiate-to</td>
<td>request-dialin or request-dialout</td>
</tr>
<tr>
<td>lcp renegotiation</td>
<td>accept-dialin</td>
</tr>
<tr>
<td>local name</td>
<td>any subgroup</td>
</tr>
<tr>
<td>multilink</td>
<td>request-dialin</td>
</tr>
<tr>
<td>request-dialin</td>
<td>NAS VPN Group(^2)</td>
</tr>
<tr>
<td>request-dialout</td>
<td>tunnel server VPN Group(^1)</td>
</tr>
<tr>
<td>source-ip</td>
<td>any subgroup</td>
</tr>
<tr>
<td>terminate-from</td>
<td>accept-dialin or accept-dialout</td>
</tr>
</tbody>
</table>

1. Tunnel server VPN groups can be configured for accept-dialin and/or request-dialout.
2. NAS VPN groups can be configured for accept-dialout and/or request-dialin.

Prerequisites for VPNs

Before configuring a VPN, you must complete the prerequisites described in Table 34. These prerequisites are discussed in the sections that follow.

Table 34 VPN Prerequisites

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Client-Initiated Dial-In</th>
<th>NAS-Initiated Dial-In</th>
<th>Dial-Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring the LAN Interface</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Configuring AAA</td>
<td>Optional</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Specifying the IP Address Pool and BOOTP Servers on the Tunnel Server</td>
<td>Required</td>
<td>Required</td>
<td>N/A</td>
</tr>
<tr>
<td>Commissioning the T1 Controllers on the NAS</td>
<td>N/A</td>
<td>Required</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuring the Serial Channels for Modem Calls on the NAS</td>
<td>N/A</td>
<td>Required</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuring the Modems and Asynchronous Lines on the NAS</td>
<td>N/A</td>
<td>Required</td>
<td>N/A</td>
</tr>
<tr>
<td>Configuring the Group-Asynchronous Interface on the NAS</td>
<td>N/A</td>
<td>Required</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Configuring Virtual Private Networks

Table 34 VPN Prerequisites

<table>
<thead>
<tr>
<th>Prerequisite</th>
<th>Client-Initiated Dial-In</th>
<th>NAS-Initiated Dial-In</th>
<th>Dial-Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring the Dialer on a NAS</td>
<td>N/A</td>
<td>N/A</td>
<td>Required</td>
</tr>
<tr>
<td>Configuring the Dialer on a Tunnel Server</td>
<td>N/A</td>
<td>N/A</td>
<td>Required</td>
</tr>
</tbody>
</table>

Configuring the LAN Interface

To assign an IP address to the interface that will be carrying the VPN traffic and that brings up the interface, use the following commands on both the NAS and the tunnel server beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# interface interface-type number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2: Router(config-if)# ip address ip-address subnet-mask</td>
<td>Configures the IP address and subnet mask on the interface.</td>
</tr>
<tr>
<td>Step 3: Router(config-if)# no shutdown</td>
<td>Changes the state of the interface from administratively down to up.</td>
</tr>
</tbody>
</table>

Configuring AAA

To enable AAA, use the following commands on both the NAS and the tunnel server in global configuration mode. If you use RADIUS or TACACS+ for AAA, you also need to point the router to the AAA server using either the `radius-server host` or the `tacacs-server host` command.

Refer to the *Cisco IOS Security Configuration Guide*, Release 12.2, for a complete list of commands and configurable options for security and AAA implementation.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# aaa new-model</td>
<td>Enables the AAA access control system.</td>
</tr>
<tr>
<td>Step 2: Router(config)# aaa authentication login default</td>
<td>Enables AAA authentication at login and uses the local username database for authentication.</td>
</tr>
<tr>
<td>Step 3: Router(config)# aaa authentication ppp default (local</td>
<td>radius</td>
</tr>
<tr>
<td>Step 4: Router(config)# aaa authorization network default</td>
<td>Configures the AAA authorization method that is used for network-related service requests.</td>
</tr>
<tr>
<td>Step 5: Router(config)# aaa accounting network default start-stop (radius</td>
<td>tacacs)</td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Router(config)# vpdn aaa override-server {aaa-server-ip-address</td>
<td>aaa-server-name}</td>
</tr>
<tr>
<td>7</td>
<td>Router(config)# vpdn aaa attribute ([{nas-ip-address vpdn-nas}]</td>
<td>(Optional) Enables the reporting of AAA attributes from the HGW to the configured RADIUS or TACACS+ AAA server. This command is applicable only on the tunnel server and is disabled by default.</td>
</tr>
<tr>
<td>8</td>
<td>Router(config)# vpdn aaa untagged</td>
<td>(Optional) Enables the application of untagged attribute values to all attribute sets for VPDN tunnels, unless a value for that attribute is already specified in the attribute set. This command is enabled by default, therefore configuration of this command is required only if the command has been previously disabled.</td>
</tr>
<tr>
<td>9</td>
<td>Router(config)# radius-server host ip-address [auth-port number] [acct-port number]</td>
<td>Specifies the RADIUS server IP address and optionally the ports to be used for authentication and accounting requests.</td>
</tr>
</tbody>
</table>
| | Router(config)# radius-server key cisco | Sets the authentication key and encryption key for all RADIUS communication.
Note The RADIUS key must be “cisco.” This is hard-coded in Cisco IOS software. |
| | or | Specifies the TACACS+ server IP address and optionally the port to be used, and an authentication and encryption key. |
| | Router(config)# tacacs-server host ip-address [port integer] [key string] | 1. If you specify more than one method, AAA will query the servers or databases in the order that they are entered.
Specifying the IP Address Pool and BOOTP Servers on the Tunnel Server

To specify the IP addresses and the BOOTP servers that will be assigned to VPN clients, use the following commands on the tunnel server in global configuration mode.

The IP address pool is the addresses that the tunnel server assigns to clients. You must configure an IP address pool. You can also provide BOOTP servers. Domain Name System (DNS) servers translate host names to IP addresses. WINS servers, which are specified using the `async-bootp nbns-server` command, provide dynamic NetBIOS names that Windows devices use to communicate without IP addresses.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
</tbody>
</table>
 HGW(config)# ip local pool default first-ip-address last-ip-address |
| | Configures the default local pool of IP address that will be used by clients. |
| **Step 2** |
 HGW(config)# async-bootp dns-server ip-address [additional-ip-address] |
| | (Optional) Returns the configured addresses of DNS in response to BOOTP requests. |
| **Step 3** |
 HGW(config)# async-bootp nbns-server ip-address [additional-ip-address] |
| | (Optional) Returns the configured addresses of Windows NT servers in response to BOOTP requests. |

Commissioning the T1 Controllers on the NAS

To define the ISDN switch type and commission the T1 controllers to allow modem calls to come into the NAS, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
</tbody>
</table>
 NAS(config)# isdn switch-type switch-type |
| | Enters the telco switch type. |
| | An ISDN switch type that is specified in global configuration mode is automatically propagated into the individual serial interfaces (for example, serial interface 0:23, 1:23, 2:23, and 3:23). |
| **Step 2** |
 NAS(config)# controller t1 0 |
| | Accesses controller configuration mode for the first T1 controller, which is number 0. The controller ports are numbered 0 through 3 on the quad T1/PRI card. |
| **Step 3** |
 NAS(config-controller)# framing framing-type |
| | Enters the T1 framing type. |
| **Step 4** |
 NAS(config-controller)# linecode linecode |
| | Enters the T1 line-code type. |
Configuring Virtual Private Networks

VPN Technology Overview

Configuring the Serial Channels for Modem Calls on the NAS

To configure the D channels (the signaling channels) to allow incoming voice calls to be routed to the integrated MICA technologies modems and to control the behavior of the individual B channels, use the following commands on the NAS beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS(config)# interface serial 0:23</td>
<td>Accesses configuration mode for the D-channel serial interface that corresponds to controller T1 0. The behavior of serial 0:0 through serial 0:22 is controlled by the configuration instructions provided for serial 0:23. This concept is also true for the other remaining D-channel configurations.</td>
</tr>
<tr>
<td>NAS(config-if)# isdn incoming-voice modem</td>
<td>Enables analog modem voice calls that come in through the B channels to be connected to the integrated modems.</td>
</tr>
<tr>
<td>NAS(config-if)# exit</td>
<td>Returns to global configuration mode.</td>
</tr>
</tbody>
</table>
| NAS(config)# interface serial 1:23
NAS(config-if)# isdn incoming-voice modem
NAS(config-if)# exit
NAS(config)# interface serial 2:23
NAS(config-if)# isdn incoming-voice modem
NAS(config-if)# exit
NAS(config)# interface serial 3:23
NAS(config-if)# isdn incoming-voice modem
NAS(config-if)# exit | Configures the three remaining D channels with the same ISDN incoming-voice modem setting. |
Configuring the Modems and Asynchronous Lines on the NAS

To define a range of modem lines and to enable PPP clients to dial in, bypass the EXEC facility, and automatically start PPP, use the following commands on the NAS beginning in global configuration mode.

Configure the modems and lines after the ISDN channels are operational. Each modem corresponds with a dedicated asynchronous line inside the NAS. The modem speed of 115200 bps and hardware flow control are default values for integrated modems.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 NAS(config)# line line-number [ending-line-number]</td>
<td>Enters the modem line or range of modem lines (by entering an ending-line-number) that you want to configure.</td>
</tr>
<tr>
<td>Step 2 NAS(config-line)# autoselect ppp</td>
<td>Enables PPP clients to dial in, bypass the EXEC facility, and automatically start PPP on the lines.</td>
</tr>
<tr>
<td>Step 3 NAS(config-line)# autoselect during-login</td>
<td>Displays the username:password prompt as the modems connect.</td>
</tr>
<tr>
<td>Note</td>
<td>These two autoselect commands enable EXEC (shell) and PPP services on the same lines.</td>
</tr>
<tr>
<td>Step 4 NAS(config-line)# modem inout</td>
<td>Supports incoming and outgoing modem calls.</td>
</tr>
</tbody>
</table>

Configuring the Group-Asynchronous Interface on the NAS

To create a group-asynchronous interface and project protocol characteristics to the asynchronous interfaces, use the following commands on the NAS beginning in global configuration mode.

The group-async interface is a template that controls the configuration of the specified asynchronous interfaces inside the NAS. Asynchronous interfaces are lines running in PPP mode. An asynchronous interface uses the same number as its corresponding line. Configuring all the asynchronous interfaces as an asynchronous group saves you time by reducing the number of configuration steps.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 NAS(config)# interface group-async number</td>
<td>Creates the group-asynchronous interface.</td>
</tr>
<tr>
<td>Step 2 NAS(config-if)# ip unnumbered interface-type number</td>
<td>Uses the IP address defined on the specified interface.</td>
</tr>
<tr>
<td>Step 3 NAS(config-if)# encapsulation ppp</td>
<td>Enables PPP.</td>
</tr>
<tr>
<td>Step 4 NAS(config-if)# async mode interactive</td>
<td>Configures interactive mode on the asynchronous interfaces. Interactive mode means that clients can dial in to the NAS and get a router prompt or PPP session. Dedicated mode means that only PPP sessions can be established on the NAS. Clients cannot dial in and get an EXEC (shell) session.</td>
</tr>
</tbody>
</table>
Configuring the Dialer on a NAS

To configure the dialer on a NAS for L2TP dial-out, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 NAS(config)# interface dialer number</td>
<td>Defines a dialer rotary group.</td>
</tr>
<tr>
<td>Step 2 NAS(config-if)# ip unnumbered interface-type number</td>
<td>Configures the dialer to use the interface IP address.</td>
</tr>
<tr>
<td>Step 3 NAS(config-if)# encapsulation ppp</td>
<td>Enables PPP encapsulation.</td>
</tr>
<tr>
<td>Step 4 NAS(config-if)# dialer in-band</td>
<td>Enables DDR on the dialer.</td>
</tr>
<tr>
<td>Step 5 NAS(config-if)# dialer aaa</td>
<td>Enables the dialer to use the AAA server to locate profiles for dialing information.</td>
</tr>
<tr>
<td>Step 6 NAS(config-if)# dialer-group group-number</td>
<td>Assigns the dialer to the specified dialer group.</td>
</tr>
<tr>
<td>Step 7 NAS(config-if)# ppp authentication chap</td>
<td>Specifies that CHAP authentication will be used.</td>
</tr>
</tbody>
</table>

Configuring the Dialer on a Tunnel Server

To configure the dialer on a tunnel server for L2TP dial-out, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 LNS(config)# interface dialer number</td>
<td>Defines a dialer rotary group.</td>
</tr>
<tr>
<td>Step 2 LNS(config-if)# ip address ip-address subnet-mask</td>
<td>Specifies an IP address for the group.</td>
</tr>
<tr>
<td>Step 3 LNS(config-if)# encapsulation ppp</td>
<td>Enables PPP encapsulation.</td>
</tr>
<tr>
<td>Step 4 LNS(config-if)# dialer remote-name peer-name</td>
<td>Specifies the name used to authenticate the remote router that is being dialed.</td>
</tr>
<tr>
<td>Step 5 LNS(config-if)# dialer string dialer-number</td>
<td>Specifies the number that is dialed.</td>
</tr>
<tr>
<td>Step 6 LNS(config-if)# dialer vpdn</td>
<td>Enables dial-out.</td>
</tr>
<tr>
<td>Step 7 LNS(config-if)# dialer pool pool-number</td>
<td>Specifies the dialer pool.</td>
</tr>
</tbody>
</table>
How to Configure a VPN

Configuration for both dial-in and dial-out VPNs is described in the following sections:

- Enabling a VPN
- Configuring VPN Tunnel Authentication Using the Host Name or Local Name
- Configuring VPN Tunnel Authentication Using the L2TP Tunnel Password
- Configuring Client-Initiated Dial-In VPN
- Configuring NAS-Initiated Dial-In VPN
- Configuring Dial-Out VPN
- Configuring Advanced VPN Features

See the section “Configuration Examples for VPN” later in this chapter for examples of how you can implement VPN in your network.

Enabling a VPN

To enable a VPN tunnel, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# vpdn enable</td>
<td>Enables VPN.</td>
</tr>
</tbody>
</table>

1. The Cisco IOS command syntax uses the more specific term VPDN (virtual private dialup network) instead of VPN.

To disable a VPN tunnel, use the clear vpdn tunnel command in EXEC mode. The no vpdn enable command does not automatically disable a VPN tunnel.

Configuring VPN Tunnel Authentication Configuration

VPN tunnel authentication enables routers to authenticate the other tunnel endpoint before establishing a VPN tunnel. It is required for L2F tunnels and optional for L2TP tunnels.
Disabling VPN Tunnel Authentication for L2TP Tunnels

To disable VPN tunnel authentication for L2TP tunnels, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISP_NAS(config)# vpdn-group group</td>
<td>Enables L2TP protocol for the VPN group</td>
</tr>
<tr>
<td>ISP_NAS(config-vpdn)# no l2tp tunnel authentication</td>
<td>Disables VPN tunnel authentication for the specified VPN group. The VPN group will not challenge any router that attempts to open an L2TP tunnel.</td>
</tr>
</tbody>
</table>

Before you can configure any L2tp VPN group command, you must specify L2TP as the protocol for a VPN subgroup within the VPN group. For more information, see the “Configuring NAS-Initiated Dial-In VPN” and “Configuring Dial-Out VPN” sections later in this chapter.

VPN tunnel authentication can be performed in the following ways:

- Using local AAA on both the NAS and the tunnel server
- Using RADIUS on the NAS and local AAA on the tunnel server
- Using TACACS+ on the NAS and local AAA on the tunnel server

This section discusses local tunnel authentication. For information on RADIUS and TACACS+, refer to the “NAS AAA Tunnel Definition Lookup” section earlier in this chapter and the Cisco IOS Security Configuration Guide, Release 12.2.

VPN tunnel authentication requires that a single shared secret—called the tunnel secret—be configured on both the NAS and tunnel server. There are two methods for configuring the tunnel secret:

- **Configuring VPN Tunnel Authentication Using the Host Name or Local Name**
 The tunnel secret is configured as a password by using the `username` command.

- **Configuring VPN Tunnel Authentication Using the L2TP Tunnel Password**
 The tunnel secret is configured by using the `l2tp tunnel password` command.
Configuring VPN Tunnel Authentication Using the Host Name or Local Name

To configure VPN tunnel authentication using the **hostname** or **local name** commands, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>ISP_NAS(config)# hostname host-name</td>
</tr>
</tbody>
</table>
| or ISP_NAS(config)# vpdn-group group ISP_NAS(config-vpdn)# local name tunnel-name | Configures the router host name. By default, the router uses the host name as the tunnel name in VPN tunnel authentication.
(Optional) Configures the local name for the VPN group. When negotiating VPN tunnel authentication for this VPN group, the router will use the local name as the tunnel name. |

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>ISP_NAS(config)# username tunnel-name password tunnel-secret</td>
</tr>
</tbody>
</table>
| ISP_NAS(config-vpdn)# local name tunnel-name ISP_NAS(config-vpdn)# exit | Configures the other router’s tunnel name and the tunnel secret as a user name and password combination.
Note The tunnel secret must be the same on both routers. Each router must have the other router’s tunnel name (specified by either the **hostname** or **local name** command) configured as a username with the tunnel secret as the password. |

Configuring VPN Tunnel Authentication Using the L2TP Tunnel Password

To configure VPN tunnel authentication using the **l2tp tunnel password** command, use the following commands beginning in global configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>ISP_NAS(config)# vpdn-group group ISP_NAS(config-vpdn)# l2tp tunnel password tunnel-secret</td>
</tr>
</tbody>
</table>
| ISP_NAS(config-vpdn)# local name tunnel-name ISP_NAS(config-vpdn)# exit | Configures the tunnel secret that will be used for VPN tunnel authentication for this VPN group and enters VPDN configuration mode.
(Optional) Configures the tunnel name of the router.
(Optional) Configures the other router’s tunnel name and the tunnel secret as a user name.
If the other router uses the **l2tp tunnel password** command to configure the tunnel secret, these commands are not necessary.
Note The tunnel secret must be the same on both routers. |

For sample VPN tunnel authentication configurations, see the “VPN Tunnel Authentication Examples” section later in this chapter.
Configuring Client-Initiated Dial-In VPN

For client-initiated dial-in VPNs, complete the following tasks:

- Configuring a Tunnel Server to Accept Dial-In (Required)
- Configuring MPPE on the ISA Card (Optional)
- Tuning PPTP (Optional)

When configuring PPTP and MPPE, you should consider the following restrictions:

- Only Cisco Express Forwarding (CEF) and process switching are supported. Regular fast switching is not supported.
- PPTP does not support multilink.
- VPDN multihop is not supported.
- Because all PPTP signaling is over TCP, TCP configurations will affect PPTP performance in large-scale environments.
- MPPE is not supported with TACACS.
- MPPE is supported with RADIUS in Cisco IOS Releases 12.0(7)XE1 and later releases.
- Windows clients must use MS-CHAP authentication in order for MPPE to work.
- If you are performing mutual authentication with MS-CHAP and MPPE, both sides of the tunnel must use the same password.
- To use MPPE with AAA, you must use a RADIUS server that supports the Microsoft Vendor specific attribute for MPPE-KEYS. CiscoSecure NT supports MPPE beginning with release 2.6. CiscoSecure UNIX does not support MPPE.

Configuring a Tunnel Server to Accept PPTP Tunnels

To configure a tunnel to accept tunneled PPP connections from a client, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>PNS(config)# vpdn-group 1</td>
</tr>
<tr>
<td>Step 2</td>
<td>PNS(config-vpdn)# accept-dialin</td>
</tr>
<tr>
<td>Step 3</td>
<td>PNS(config-vpdn-acc-in)# protocol pptp</td>
</tr>
<tr>
<td>Step 4</td>
<td>PNS(config-vpdn-acc-in)# virtual-template template-number</td>
</tr>
<tr>
<td>Step 5</td>
<td>PNS(config-vpdn-acc-in)# exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>PNS(config-vpdn)# local name localname</td>
</tr>
</tbody>
</table>
Configuring MPPE on the ISA Card

To offload MPPE encryption from the tunnel server processor to the ISA card, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>PNS(config)# controller isa slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>PNS(config-controller)# encryption mppe</td>
</tr>
</tbody>
</table>

Tuning PPTP

To tune PPTP, use one or more of the following commands in VPDN configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNS(config-vpdn)# ptp flow-control receive-window packets</td>
<td>Specifies how many packets the client can send before it must wait for the acknowledgment from the tunnel server.</td>
</tr>
<tr>
<td>PNS(config-vpdn)# ptp flow-control static-rtt milliseconds</td>
<td>Specifies the timeout interval of the tunnel server between sending a packet to the client and receiving a response.</td>
</tr>
<tr>
<td>PNS(config-vpdn)# ptp tunnel echo seconds</td>
<td>Specifies the period of idle time on the tunnel that will trigger an echo message from the tunnel server to the client.</td>
</tr>
</tbody>
</table>

Configuring NAS-Initiated Dial-In VPN

The following tasks must be completed for NAS-initiated dial-in VPNs:

- Configuring a NAS to Request Dial-In (Required)
- Configuring a Tunnel Server to Accept Dial-In (Required)
- Creating the Virtual Template on the Network Server (Required)

Configuring a NAS to Request Dial-In

The NAS is a device that is typically (although not always) located at a service provider POP; initial configuration and ongoing management are done by the service provider.

To configure a NAS to accept PPP calls and tunnel them to a tunnel server, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>NAS(config)# vpdn-group 1</td>
</tr>
<tr>
<td>Step 2</td>
<td>NAS(config-vpdn)# request-dialin</td>
</tr>
<tr>
<td>Step 3</td>
<td>NAS(config-vpdn-req-in)# protocol [l2f</td>
</tr>
</tbody>
</table>
Configuring a Tunnel Server to Accept Dial-In

To configure a tunnel server to accept tunneled PPP connections from a NAS, use the following commands beginning in global configuration mode.

The tunnel server is the termination point for a VPN tunnel. The tunnel server initiates outgoing calls to and receives incoming calls from the NAS.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Specifies the domain name of the users that are to be tunneled.</td>
</tr>
<tr>
<td>NAS(config-vpdn-req-in)# domain domain-name</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>Specifies the DNIS number of users that are to be tunneled.</td>
</tr>
<tr>
<td>NAS(config-vpdn-req-in)# dnis dnis-number</td>
<td>You can configure multiple domain names and/or DNIS numbers for an individual request-dial-in subgroup.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Specifies the IP address that the NAS will establish the tunnel with. This is the IP address of the tunnel server.</td>
</tr>
<tr>
<td>NAS(config-vpdn-req-in)# exit</td>
<td></td>
</tr>
<tr>
<td>NAS(config-vpdn)# initiate-to ip ip-address</td>
<td>(Optional) Specifies the method that is used to determine if a dial-in call should be tunneled.</td>
</tr>
<tr>
<td>Step 6</td>
<td>If both keywords are entered, the NAS will search the criteria in the order they are entered.</td>
</tr>
<tr>
<td>NAS(config-vpdn)# vpdn search-order (domain</td>
<td></td>
</tr>
<tr>
<td>dnis</td>
<td>domain dnis</td>
</tr>
</tbody>
</table>

See the section “Tunnel Server Comprehensive Dial-in Configuration Example” later in this chapter for a configuration example.

Creating the Virtual Template on the Network Server

At this point, you can configure the virtual template interface with configuration parameters you want applied to virtual access interfaces. A virtual template interface is a logical entity configured for a serial interface. The virtual template interface is not tied to any physical interface and is applied dynamically, as needed. Virtual access interfaces are cloned from a virtual template interface, used on demand, and then freed when no longer needed.
To create and configure a virtual template interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>HGW(config)# interface virtual-template number</code> Create the virtual template that is used to clone virtual access interfaces.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>HGW(config-if)# ip unnumbered interface-type number</code> Specifies that the virtual access interfaces use the specified interface IP address.</td>
</tr>
<tr>
<td>Step 3</td>
<td>`HGW(config-if)# ppp authentication (chap</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>HGW(config-if)# peer default ip address pool pool</code> Returns an IP address from the default pool to the client.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>HGW(config-if)# encapsulation ppp</code> Enables PPP encapsulation.</td>
</tr>
</tbody>
</table>

Optionally, you can configure other commands for the virtual template interface. For more information about configuring virtual template interfaces, refer to the “Configuring Virtual Template Interfaces” chapter in this publication.

Configuring Dial-Out VPN

The following tasks must be completed for dial-out VPNs:

- Configuring a Tunnel Server to Request Dial-Out (Required)
- Configuring a NAS to Accept Dial-Out (Required)

Configuring a Tunnel Server to Request Dial-Out

To configure a tunnel server to request dial-out tunneled PPP connections to a NAS, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>LNS(config)# vpdn-group 1</code> Creates VPN group 1.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>LNS(config-vpdn)# request-dialout</code> Enables the tunnel server to send L2TP dial-out requests.</td>
</tr>
</tbody>
</table>
| Step 3 | `LNS(config-vpdn-req-ou)# protocol l2tp` Specifies L2TP as the tunneling protocol. **Note** L2TP is the only protocol that supports dial-out.
| Step 4 | `LNS(config-vpdn-req-ou)# pool-member pool-number` or `LNS(config-vpdn-req-ou)# rotary-group group-number` Specifies the dialer profile pool that will be used to dial out. Specifies the dialer rotary group that will be used to dial out. You can configure only one dialer profile pool or dialer rotary group. Attempting to configure a second dialer resource will remove the first from the configuration.
Configuring a NAS to Accept Dial-Out

To configure a NAS to accept tunneled dial-out connections from a tunnel server, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>NAS(config)# vpdn-group 1 Creates VPN group 1.</td>
</tr>
<tr>
<td>Step 2</td>
<td>NAS(config-vpdn)# accept-dialout Enables the NAS to accept L2TP dial-out requests.</td>
</tr>
<tr>
<td>Step 3</td>
<td>NAS(config-vpdn-acc-ou)# protocol l2tp Specifies L2TP as the tunneling protocol. Note L2TP is the only protocol that supports dial-out.</td>
</tr>
<tr>
<td>Step 4</td>
<td>NAS(config-vpdn-acc-ou)# dialer dialer-interface Specifies the dialer that is used to dial out to the client.</td>
</tr>
<tr>
<td>Step 5</td>
<td>NAS(config-vpdn-acc-ou)# exit Accepts L2TP tunnels that have this host name configured as a local name.</td>
</tr>
</tbody>
</table>

Configuring Advanced VPN Features

The following optional tasks provide advanced VPN features:

- Configuring Advanced Remote AAA Features
- Configuring Per-User VPN
- Configuring Preservation of IP ToS Field
- Shutting Down a VPN Tunnel
- Limiting the Number of Allowed Simultaneous VPN Sessions
- Enabling Soft Shutdown of VPN Tunnels
- Configuring Event Logging
- Setting the History Table Size

Configuring Advanced Remote AAA Features

This section describes the following two advanced remote AAA features for VPNs:

- Tunnel Server Load Balancing on the NAS AAA Server
- DNS Name Support
Tunnel Server Load Balancing on the NAS AAA Server

NAS AAA servers can forward users of the same domain name or DNIS to more than one tunnel server. The NAS AAA server can be configured to balance the load of calls equally among the tunnel servers, or it can designate different priority levels to the tunnel servers.

To configure load balancing on a NAS RADIUS server, configure multiple IP addresses in the vpdn:ip-addresses attribute value (AV) pair. The IP addresses can be separated by either spaces or by commas. The following example shows a profile that will equally balance the load between three tunnel servers.

```
user = terrapin.com{
  profile_id = 29
  profile_cycle = 7
  radius=Cisco {
    check_items = {
      2=cisco
    }
    reply_attributes = {
      9,1="vpdn:l2tp-tunnel-password=cisco123"
      9,1="vpdn:tunnel-type=l2tp"
      9,1="vpdn:ip-addresses=172.16.171.11 172.16.171.12 172.16.171.13"
      9,1="vpdn:tunnel-id=tunnel"
    }
  }
}
```

To specify different priorities for the tunnel servers, separate the IP addresses with a slash. The following AV pair instructs the RADIUS server to equally balance calls between 172.16.171.11 and 172.16.171.12. If both of those tunnel servers are unavailable, the RADIUS server will tunnel calls to 172.16.171.13.

```
9,1="vpdn:ip-addresses=172.16.171.11 172.16.171.12/172.16.171.13"
```

DNS Name Support

NAS AAA servers can resolve DNS names and translate them into IP addresses. The server will first look up the name in its name cache. If the name is not in the name cache, the server will resolve the name by using a DNS server. The following AV pair instructs the RADIUS server to resolve the DNS name "terrapin" and tunnel calls to the appropriate IP addresses:

```
9,1="vpdn:ip-addresses=terrapin"
```


Configuring Per-User VPN

In a VPN that uses remote AAA, when a user dials in, the access server that receives the call forwards information about the user to its remote AAA server. With basic VPN, the access server sends only the user domain name (when performing authentication based on domain name) or the telephone number the user dialed in from (when performing authentication based on DNIS).

Per-user VPN configuration sends the entire structured username to the AAA server the first time the router contacts the AAA server. This enables Cisco IOS software to customize tunnel attributes for individual users who use a common domain name or DNIS.

Without VPN per-user configuration, Cisco IOS software sends only the domain name or DNIS to determine VPN tunnel attribute information. Then, if no VPN tunnel attributes are returned, Cisco IOS software sends the entire username string.
Per-user VPN configuration supports only RADIUS as the AAA protocol.

To configure per-user VPN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# vpdn-group group-number</td>
<td>Enters VPN group configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config-vpdn)# authen before-forward</td>
<td>Specifies that the entire structured username be sent to the AAA server the first time the router contacts the AAA server.</td>
</tr>
</tbody>
</table>

Configuring Preservation of IP ToS Field

When L2TP data packets are created, they have a type of service (ToS) field of zero, which indicates normal service. This ignores the ToS field of the encapsulated IP packets that are being tunneled.

To preserve quality of service (QoS) for tunneled packets by copying the ToS field of the IP packets' onto the L2TP data packets when they are created at the tunnel server virtual access interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 LNS(config)# vpdn-group 1</td>
<td>Creates VPN group 1.</td>
</tr>
<tr>
<td>Step 2 LNS(config-vpdn)# accept-dialin or</td>
<td>Enables the tunnel server to accept dial-in requests.</td>
</tr>
<tr>
<td>LNS(config-vpdn)# request-dialout</td>
<td>Enables the tunnel server to send L2TP dial-out requests.</td>
</tr>
<tr>
<td>Step 3 LNS(config-vpdn-acc-in)# protocol l2tp</td>
<td>Specifies L2TP as the tunneling protocol.</td>
</tr>
<tr>
<td>or</td>
<td>Note L2TP is the only protocol that supports dial-out and IP ToS preservation.</td>
</tr>
<tr>
<td>LNS(config-vpdn-req-ou)# protocol l2tp</td>
<td></td>
</tr>
<tr>
<td>Step 4 LNS(config-vpdn-req-ou)# exit</td>
<td>Returns to VPDN group configuration mode.</td>
</tr>
<tr>
<td>Step 5 LNS(config-vpdn)# ip tos reflect</td>
<td>Preserves the ToS field of the encapsulated IP packets.</td>
</tr>
</tbody>
</table>

- **Note:** The tunneled link must carry IP for the ToS field to be preserved. The encapsulated payload of Multilink PPP (MLP) connections is not IP, therefore this task has no effect when MLP is tunneled.

- **Note:** Proxy PPP dial-in is not supported.
Shutting Down a VPN Tunnel

To shut down a VPN tunnel, use the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`clear vpdn tunnel [l2f nas-name hgw-name</td>
<td>l2tp [remote-name] [local-name]]`</td>
</tr>
</tbody>
</table>

Limiting the Number of Allowed Simultaneous VPN Sessions

To set a limit for the maximum number of allowed simultaneous VPN sessions, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vpdn session-limit sessions</code></td>
<td>Limits the number of simultaneous VPN sessions on the router to the number specified with the <code>sessions</code> argument.</td>
</tr>
</tbody>
</table>

To verify that the `vpdn session-limit` command is working properly, perform the following steps:

1. **Step 1** Enter the `vpdn session-limit 1` global configuration command on either the NAS or tunnel server.
2. **Step 2** Establish a VPN session by dialing in to the NAS using an allowed username and password.
3. **Step 3** Attempt to establish another VPN session by dialing in to the NAS using another allowed username and password.
4. **Step 4** A Syslog message similar to the following should appear on the console of the router:

   ```
   00:11:17:%VPDN-6-MAX_SESS_EXCD:L2F HGW great_went has exceeded configured local session-limit and rejected user wilson@soam.com
   ```
5. **Step 5** Enter the `show vpdn history failure` command on the router. If you see output similar to the following, the session limit was successful:

   ```
   User:wilson@soam.com  
   NAS:clifford_ball, IP address = 172.25.52.8, CLID = 2  
   Gateway:great_went, IP address = 172.25.52.7, CLID = 13  
   Log time:00:04:21, Error repeat count:1  
   Failure type:Exceeded configured VPDN maximum session limit.  
   Failure reason:
   ```
Enabling Soft Shutdown of VPN Tunnels

To prevent new sessions from being established on a VPN tunnel without disturbing the service of existing sessions, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# vpdn softshut</td>
<td>Prevents new sessions from being established on a VPN tunnel without disturbing existing sessions.</td>
</tr>
</tbody>
</table>

1. When the `vpdn softshut` command is enabled, Multichassis Multilink PPP (MMP) L2F tunnels can still be created and established.

When the `vpdn softshut` command is enabled on a NAS, the potential session will be authorized before it is refused. This authorization ensures that accurate accounting records can be kept.

When the `vpdn softshut` command is enabled on a tunnel server, the reason for the session refusal will be returned to the NAS. This information is recorded in the VPN history failure table.

To verify that the `vpdn softshut` command is working properly, perform the following steps:

Step 1
Establish a VPN session by dialing in to the NAS using an allowed username and password.

Step 2
Enter the `vpdn softshut` global configuration command on either the NAS or the tunnel server.

Step 3
Verify that the original session is still active by entering the `show vpdn` command:

```
ENT_HGW# show vpdn

% No active L2TP tunnels
```

```
L2F Tunnel and Session

<table>
<thead>
<tr>
<th>NAS CLID</th>
<th>HGW CLID</th>
<th>NAS Name</th>
<th>HGW Name</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>1</td>
<td>cliford_ball</td>
<td>great_went</td>
<td>open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>172.25.52.8</td>
<td>172.25.52.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLID</th>
<th>MID</th>
<th>Username</th>
<th>Intf</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>1</td>
<td><a href="mailto:mockingbird@gamehendge.com">mockingbird@gamehendge.com</a></td>
<td>Vi1</td>
<td>open</td>
</tr>
</tbody>
</table>
```

Step 4
Attempt to establish another VPN session by dialing in to the NAS using another allowed username and password.

Step 5
A Syslog message similar to the following should appear on the console of the soft shutdown router:

```
00:11:17:%VPDN-6-SOFTSHUT:L2F HGW great_went has turned on softshut and rejected user wilson@soam.com
```

Step 6
Enter the `show vpdn history failure` command on the soft shutdown router. If you see output similar to the following, the soft shutdown was successful:

```
User:wilson@soam.com
NAS:cliford_ball, IP address = 172.25.52.8, CLID = 2
Gateway:great_went, IP address = 172.25.52.7, CLID = 13
Log time:00:04:21, Error repeat count:1
Failure type:VPDN softshut has been activated.
Failure reason:
```
Configuring Event Logging

The Syslog mechanism provides generic and failure event logging. Generic logging is a mixture of type error, warning, notification, and information logging for VPN. Logging can be done locally or at a remote tunnel destination. Both generic and failure event logging is enabled by default; therefore, if you wish to disable VPN failure events you must specifically configure the router or access server to do so. In order to disable the router to log VPN generic or history events, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# vpdn logging [local</td>
<td>remote]</td>
</tr>
<tr>
<td>Router(config)# vpdn history failure</td>
<td>Enables the logging of failure events to the failure history table.</td>
</tr>
</tbody>
</table>

Note: By default, VPN failure history logging is enabled.

Setting the History Table Size

You may set the failure history table to a specific number of entries based on the amount of data you wish to track. To set the failure history table, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# vpdn history failure table-size entries</td>
<td>(Optional) Sets the failure history table depth.</td>
</tr>
</tbody>
</table>

Verifying VPN Sessions

The following sections detail the procedures used for verifying VPN sessions:
- Verifying a Client-Initiated VPN
- Verifying a NAS-Initiated VPN

Verifying a Client-Initiated VPN

To verify that a PPTP network functions properly, complete the following verification steps:

Step 1 From the client, dial in to the ISP and establish a PPP session.
Step 2 From the client, dial in to the tunnel server.
Step 3 From the client, ping the tunnel server. From the client desktop:
 a. Click Start.
 b. Select Run.
 c. Enter ping tunnel-server-ip-address.
 d. Click OK.
e. Look at the terminal screen and verify that the tunnel server is sending ping reply packets to the client.

Step 4 From the tunnel server, enter the `show vpdn` command and verify that the client has established a PPTP session.

```
PNS# show vpdn

% No active L2TP tunnels
% No active L2F tunnels

PPTP Tunnel and Session Information (Total tunnels=1 sessions=1)

LocID RemID Remote Name     State    Remote Address  Port  Sessions
13    13    10.1.2.41       estabd   10.1.2.41       1136  1

LocID RemID TunID Intf    Username      State   Last Chg
13    0     13    Vi3                   estabd  000030
```

Step 5 For more detailed information, enter the `show vpdn session all` or `show vpdn session window` commands. The last line of output from the `show vpdn session all` command indicates the current status of the flow control alarm.

```
PNS# show vpdn session all

% No active L2TP tunnels
% No active L2F tunnels

PPTP Session Information (Total tunnels=1 sessions=1)

Call id 13 is up on tunnel id 13
Remote tunnel name is 10.1.2.41
Internet Address is 10.1.2.41
Session username is unknown, state is estabd
Time since change 000106, interface Vi3
Remote call id is 0
10 packets sent, 10 received, 332 bytes sent, 448 received
Ss 11, Sr 10, Remote Nr 10, peer RWS 16
0 out of order packets
Flow alarm is clear.

The last line of output from the `show vpdn session window` command indicates the current status of the flow control alarm (under the heading “Congestion”) and the number of flow control alarms that have gone off during the session (under the heading “Alarms”).

```
PNS# show vpdn session window

% No active L2TP tunnels
% No active L2F tunnels

PPTP Session Information (Total tunnels=1 sessions=1)

LocID RemID TunID ZLB-tx ZLB-rx Congestion Alarms Peer-RWS
13 0 13 0 1 clear 0 16
```

**Step 6** For information on the virtual-access interface, enter the `show ppp mppe virtual-access number` command:

```
PNS# show ppp mppe virtual-access3

Interface Virtual-Access3 (current connection)
Hardware (ISA5/1, flow_id=13) encryption, 40 bit encryption, Stateless mode
packets encrypted = 0 packets decrypted = 1
```
Verifying a NAS-Initiated VPN

This section describes how to verify that an L2F dial-in scenario functions as shown in Figure 78. To verify connectivity, complete the following verification steps:

- **Step 1:** Dialing In to the NAS
- **Step 2:** Pinging the Tunnel Server
- **Step 3:** Displaying Active Call Statistics on the Tunnel Server
- **Step 4:** Pinging the Client
- **Step 5:** Verifying That the Virtual-Access Interface Is Up and That LCP Is Open
- **Step 6:** Viewing Active L2F Tunnel Statistics
Configuring Virtual Private Networks

Step 1

From the client, dial in to the NAS by using the PRI telephone number assigned to the NAS T1 trunks. Sometimes this telephone number is called the hunt group number.

As the call comes in to the NAS, a LINK-3-UPDOWN message automatically appears on the NAS terminal screen. In the following example, the call comes in to the NAS on asynchronous interface 14. The asynchronous interface is up.

*Jan 1 21:22:18.410: %LINK-3-UPDOWN: Interface Async14, changed state to up

Note

No debug commands are turned on to display this log message. Start troubleshooting the NAS if you do not see this message 30 seconds after the client first sends the call.

Step 2

From the client, ping the tunnel server. From the client Windows 95 desktop, perform the following steps:

a. Click Start.

b. Select Run.

c. Enter the ping ip-address command, where the IP address is the tunnel server address.

d. Click OK.

e. Look at the terminal screen and verify that the tunnel server is sending ping reply packets to the client.
Step 3  From the tunnel server, enter the `show caller` command and the `show caller user name` command to verify that the client received an IP address. The following example shows that Jeremy is using interface virtual-access 1 and IP address 172.30.2.1. The network administrator jane-admin is using console 0.

```
ENT_HGW# show caller
Line User Service Active
con 0 jane-admin TTY 00:00:25
Vi1 jeremy@hgw.com PPP L2F 00:01:28
```

```
ENT_HGW# show caller user jeremy@hgw.com
User: jeremy@hgw.com, line Vi1, service PPP L2F, active 00:01:35
PPP: LCP Open, CHAP (<- AAA), IPCP
IP: Local 172.22.66.25, remote 172.30.2.1
VPDN: NAS ISP_NAS, MID 1, MID open
HGW ENT_HGW, NAS CLID 36, HGW CLID 1, tunnel open
Counts: 105 packets input, 8979 bytes, 0 no buffer
 0 input errors, 0 CRC, 0 frame, 0 overrun
18 packets output, 295 bytes, 0 underruns
 0 output errors, 0 collisions, 0 interface resets
```

Step 4  From the tunnel server, ping Jeremy’s PC at IP address 172.30.2.1:

```
ENT_HGW# ping 172.30.2.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.30.2.1, timeout is 2 seconds:
!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 128/132/152 ms
```

Step 5  From the tunnel server, enter the `show interface virtual-access 1` command to verify that the interface is up, that LCP is open, and that no errors are reported:

```
ENT_HGW# show interface virtual-access 1
Virtual-Access1 is up, line protocol is up
Hardware is Virtual Access interface
Interface is unnumbered. Using address of FastEthernet0/0 (172.22.66.25)
MTU 1500 bytes, BW 115 Kbit, DLY 100000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation PPP, loopback not set, keepalive set (10 sec)
DTR is pulsed for 5 seconds on reset
LCP Open
Open: IPCP
Last input 00:00:02, output never, output hang never
Last clearing of "show interface" counters 3d00h
Queueing strategy: fifo
Output queue 1/40, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
 114 packets input, 9563 bytes, 0 no buffer
 Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 27 packets output, 864 bytes, 0 underruns
 0 output errors, 0 collisions, 0 interface resets
 0 output buffer failures, 0 output buffers swapped out
 0 carrier transitions
```
Step 6  From the tunnel server, display active tunnel statistics by entering the `show vpdn` command and the `show vpdn tunnel all` command:

```
ENT_HGW# show vpdn
% No active L2TP tunnels

L2F Tunnel and Session

<table>
<thead>
<tr>
<th>NAS CLID</th>
<th>HGW CLID</th>
<th>NAS Name</th>
<th>HGW Name</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>1</td>
<td>ISP_NAS</td>
<td>ENT_HGW</td>
<td>open</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>172.22.66.23</td>
<td>172.22.66.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLID</th>
<th>MID</th>
<th>Username</th>
<th>Intf</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>1</td>
<td>jeremy@hgw.com</td>
<td>V1</td>
<td>open</td>
</tr>
</tbody>
</table>

ENT_HGW# show vpdn tunnel all

% No active L2TP tunnels

L2F Tunnel
NAS name: ISP_NAS
NAS CLID: 36
NAS IP address 172.22.66.23
Gateway name: ENT_HGW
Gateway CLID: 1
Gateway IP address 172.22.66.25
State: open
Packets out: 52
Bytes out: 1799
Packets in: 100
Bytes in: 7143
```

### Monitoring and Maintaining VPNs

To display useful information for monitoring and maintaining VPN sessions, use the following commands in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router# clear vpdn tunnel [pptp</td>
<td>l2f</td>
</tr>
<tr>
<td><code>Router# show interface virtual access number</code></td>
<td>Displays information about the virtual access interface, LCP, protocol states, and interface statistics. The status of the virtual access interface should be: <code>Virtual-Access3 is up, line protocol is up</code></td>
</tr>
<tr>
<td><code>Router# show vpdn</code></td>
<td>Displays a summary of all active VPN tunnels.</td>
</tr>
<tr>
<td><code>Router# show vpdn domain</code></td>
<td>Displays all VPN domains and DNIS groups configured on the NAS.</td>
</tr>
</tbody>
</table>
Troubleshooting VPNs

Troubleshooting components in VPN is not always straightforward because there are multiple technologies and OSI layers involved. To display detailed messages about VPN and VPN-related events, use the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show vpdn group [name</td>
<td>name domain</td>
</tr>
<tr>
<td>Router# show vpdn history failure</td>
<td>Displays information about VPN user failures.</td>
</tr>
<tr>
<td>Router# show vpdn multilink</td>
<td>Displays VPDN multilink information.</td>
</tr>
<tr>
<td>Router# show vpdn session [all</td>
<td>packets</td>
</tr>
<tr>
<td>Router# show vpdn tunnel [all</td>
<td>packets</td>
</tr>
</tbody>
</table>

Troubleshooting VPNs

Troubleshooting components in VPN is not always straightforward because there are multiple technologies and OSI layers involved. To display detailed messages about VPN and VPN-related events, use the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# debug aaa authentication</td>
<td>Displays information on AAA authentication.</td>
</tr>
<tr>
<td>Router# debug aaa authorization</td>
<td>Displays information on AAA authorization.</td>
</tr>
<tr>
<td>Router# debug ppp chap</td>
<td>Displays CHAP packet exchanges.</td>
</tr>
<tr>
<td>Router# debug ppp mppe</td>
<td>Displays debug messages for MPPE events.</td>
</tr>
<tr>
<td>Router# debug ppp negotiation</td>
<td>Displays information about packets sent during PPP startup and detailed PPP negotiation options.</td>
</tr>
<tr>
<td>Router# debug vpdn error</td>
<td>Displays errors that prevent a tunnel from being established or errors that cause an established tunnel to be closed.</td>
</tr>
<tr>
<td>Router# debug vpdn event</td>
<td>Displays messages about events that are part of normal tunnel establishment or shutdown.</td>
</tr>
<tr>
<td>Router# debug vpdn 12tp-sequencing</td>
<td>Displays message about L2TP tunnel sequencing.</td>
</tr>
<tr>
<td>Router# debug vpdn 12x-data</td>
<td>Display messages about L2F and L2TP data information.</td>
</tr>
<tr>
<td>Router# debug vpdn 12x-errors</td>
<td>Displays L2F and L2TP protocol errors that prevent L2F and L2TP establishment or prevent normal operation.</td>
</tr>
<tr>
<td>Router# debug vpdn 12x-events</td>
<td>Displays messages about events that are part of normal tunnel establishment or shutdown for L2F and L2TP.</td>
</tr>
<tr>
<td>Router# debug vpdn 12x-packets or Router# debug vpdn packet</td>
<td>Displays each protocol packet exchanged. This option may result in a large number of debug messages and should generally be used only on a debug chassis with a single active session.</td>
</tr>
</tbody>
</table>
Successful Debug Examples

The following sections provide examples of debug output from successful VPN sessions:

- **L2TP Dial-In Debug Output on NAS Example**
- **L2TP Dial-In Debug Output on a Tunnel Server Example**
- **L2TP Dial-Out Debug Output on a NAS Example**
- **L2TP Dial-Out Debug Output on a Tunnel Server Example**

Figure 79 shows the topology used for the L2TP dial-in debug examples.

**Figure 79  Topology Diagram for L2TP Dial-In Debug Example**

---

**L2TP Dial-In Debug Output on NAS Example**

The following is debug output from a successful L2TP dial-in session on a NAS for the topology shown in Figure 79:

DJ# debug vpdn event

VPDN events debugging is on

DJ# debug vpdn l2x-events

L2X protocol events debugging is on

DJ# show debugging

VPN:

L2X protocol events debugging is on

VPDN events debugging is on

DJ#

20:47:33: %LINK-3-UPDOWN: Interface Async7, changed state to up
20:47:35: As7 VPDN: Looking for tunnel -- hoser.com --
20:47:35: As7 VPDN: Get tunnel info for hoser.com with NAS DJ, IP 172.21.9.13
20:47:35: As7 VPDN: Forward to address 172.21.9.13
20:47:35: As7 VPDN: Bind interface direction=1
20:47:35: Tnl/Cl 8/1 L2TP: Session FS enabled
20:47:35: Tnl/Cl 8/1 L2TP: Session state change from idle to wait-for-tunnel

---
20:47:35: As7 8/1 L2TP: Create session
20:47:35: Tnl 8 L2TP: SM State idle
20:47:35: Tnl 8 L2TP: Tunnel state change from idle to wait-ctl-reply
20:47:35: Tnl 8 L2TP: SM State wait-ctl-reply
20:47:35: As7 VPDN: kath@hoser.com is forwarded
20:47:35: Tnl 8 L2TP: Got a challenge from remote peer, DJ
20:47:35: Tnl 8 L2TP: Got a response from remote peer, DJ
20:47:35: Tnl 8 L2TP: Tunnel Authentication success
20:47:35: Tnl 8 L2TP: Tunnel state change from wait-ctl-reply to established
20:47:35: Tnl 8 L2TP: SM State established
20:47:35: As7 8/1 L2TP: Session state change from wait-for-tunnel to wait-reply
20:47:35: As7 8/1 L2TP: Session state change from wait-reply to established
20:47:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface Async?, changed state to up

L2TP Dial-In Debug Output on a Tunnel Server Example

The following is debug output from a successful L2TP dial-in session on a tunnel server for the topology shown in Figure 79:

tunnel# debug vpdn l2x-events
L2X protocol events debugging is on

20:19:17: L2TP: I SCCRQ from DJ tnl 8
20:19:17: L2X: Never heard of DJ
20:19:17: Tnl 7 L2TP: New tunnel created for remote DJ, address 172.21.9.4
20:19:17: Tnl 7 L2TP: Got a challenge in SCCRQ, DJ
20:19:17: Tnl 7 L2TP: Tunnel state change from idle to wait-ctl-reply
20:19:17: Tnl 7 L2TP: Got a Challenge Response in SCCCN from DJ
20:19:17: Tnl 7 L2TP: Tunnel Authentication success
20:19:17: Tnl 7 L2TP: Tunnel state change from wait-ctl-reply to established
20:19:17: Tnl 7 L2TP: SM State established
20:19:17: Tnl/Cl 7/1 L2TP: Session FS enabled
20:19:17: Tnl/Cl 7/1 L2TP: Session state change from idle to wait-for-tunnel
20:19:17: Tnl/Cl 7/1 L2TP: New session created
20:19:17: Tnl/Cl 7/1 L2TP: O ICRP to DJ 8/1
20:19:17: Tnl/Cl 7/1 L2TP: Session state change from wait-for-tunnel to wait-connect
20:19:17: Tnl/Cl 7/1 L2TP: Session state change from wait-connect to established
20:19:17: V11 VPDN: Virtual interface created for kath@hoser.com
20:19:17: V11 VPDN: Set to Async interface
20:19:17: V11 VPDN: Clone from Vtemplate 1 filterPPP=0 blocking
20:19:18: %LINK-3-UPDOWN: Interface Virtual-Access1, changed state to up
20:19:18: V11 VPDN: Bind interface direction=2
20:19:18: V11 VPDN: PPP LCP accepting rcv CONPACK
20:19:19: %LINEPROTO-5-UPDOWN: Line protocol on Interface Virtual-Access1, changed state to up

L2TP Dial-Out Debug Output on a NAS Example

The following is sample output from the debug dialer events and show debugging EXEC commands for a successful dial-out session on a NAS:

NAS# debug dialer events
Dial on demand events debugging is on

NAS# show debugging
Dial on demand:
Dial on demand events debugging is on
VPN:
L2X protocol events debugging is on
VPDN events debugging is on
NAS#
*Mar 1 00:05:26.155:%SYS-5-CONFIG_I:Configured from console by console
*Mar 1 00:05:26.899:%SYS-5-CONFIG_I:Configured from console by console
*Mar 1 00:05:36.195:L2TP:I SCCRQ from lns_l2x0 tnl 1
*Mar 1 00:05:36.199:Tnl 1 L2TP:New tunnel created for remote lns_l2x0, address 10.40.1.150
*Mar 1 00:05:36.203:Tnl 1 L2TP:Got a challenge in SCCRQ, lns_l2x0
*Mar 1 00:05:36.207:Tnl 1 L2TP:Tunnel state change from idle to wait-ctl-reply
*Mar 1 00:05:36.231:Tnl 1 L2TP:I SCCCN from lns_l2x0 tnl 1
*Mar 1 00:05:36.235:Tnl 1 L2TP:Got a Challenge Response in SCCCN from lns_l2x0
*Mar 1 00:05:36.239:Tnl 1 L2TP:Tunnel Authentication success
*Mar 1 00:05:36.239:Tnl 1 L2TP:Tunnel state change from wait-ctl-reply to established
*Mar 1 00:05:36.243:Tnl 1 L2TP:SM State established
*Mar 1 00:05:36.251:Tnl 1 L2TP:I OCRQ from lns_l2x0 tnl 1
*Mar 1 00:05:36.255:Tnl/Cl 1/1 L2TP:Session sequencing disabled
*Mar 1 00:05:36.259:Tnl/Cl 1/1 L2TP:Session FS enabled
*Mar 1 00:05:36.259:Tnl/Cl 1/1 L2TP:New session created
*Mar 1 00:05:36.263:12C:Same state, 0
*Mar 1 00:05:36.267:DSES 12C:Session create
*Mar 1 00:05:36.271:L2TP:Send OCRP
*Mar 1 00:05:36.275:Tnl/Cl 1/1 L2TP:Session state change from idle to wait-cs-answer
*Mar 1 00:05:36.279:DSES 0x12C:Building dialer map
*Mar 1 00:05:36.283:Dialout 0x12C:Next hop name is 71014
*Mar 1 00:05:36.287:Serial0:23 DDR:rotor dialout [priority]
*Mar 1 00:05:36.291:Serial0:23 DDR:Dialing cause dialer session 0x12C
*Mar 1 00:05:36.291:Serial0:23 DDR:Attempting to dial 71014
*Mar 1 00:05:36.479:%LINK-3-UPDOWN:Interface Serial0:22, changed state to up
*Mar 1 00:05:36.519:isdn_call_connect:Calling lineaction of Serial0:22
*Mar 1 00:05:36.519:Dialer0:Session free, 12C
*Mar 1 00:05:36.523:0 packets unqueued and discarded
*Mar 1 00:05:36.527:Se0:22 VPDN:Bind interface direction=1
*Mar 1 00:05:36.531:Se0:22 1/1 L2TP:Session state change from wait-cs-answer to established
*Mar 1 00:05:36.531:L2TP:Send OCCN
*Mar 1 00:05:36.539:Se0:22 VPDN:bound to vpdn session
*Mar 1 00:05:36.555:Se0:22 1/1 L2TP:0 FS failed
*Mar 1 00:05:36.555:Se0:22 1/1 L2TP:0 FS failed
*Mar 1 00:05:42.515:%ISDN-6-CONNECT:Interface Serial0:22 is now connected to 71014

L2TP Dial-Out Debug Output on a Tunnel Server Example

The following is sample debug output from the debug vpdn event, debug vpdn error, debug ppp chap, debug ppp negotiation, and debug dialer events commands for a successful dial-out session on a tunnel server:

LNS# debug dialer events
Dial on demand events debugging is on

LNS# debug ppp negotiation
PPP protocol negotiation debugging is on

LNS# debug ppp chap
PPP authentication debugging is on

LNS# show debugging
Dial on demand:
  Dial on demand events debugging is on
PPP:
  PPP authentication debugging is on
  PPP protocol negotiation debugging is on
VPN:
  VPDN events debugging is on
  VPDN errors debugging is on

LNS#
*Apr 22 19:48:32.419:%SYS-5-CONFIG_I:Configured from console by console
*Apr 22 19:48:32.743:%SYS-5-CONFIG_I:Configured from console by console
*Apr 22 19:48:33.243:Dl0 DDR:dialer_fsm_idle()
*Apr 22 19:48:33.271:Vl1 PPP:Phase is DOWN, Setup
*Apr 22 19:48:33.279:Vl1 PPP:Phase is DOWN, Setup
*Apr 22 19:48:33.279:Virtual-Access1 DDR:Dialing cause ip (s=10.60.1.160, d=10.10.1.110)
*Apr 22 19:48:33.279:Virtual-Access1 DDR:Attempting to dial 71014
*Apr 22 19:48:33.279: Tcl/cl 1/1 L2TP:Session sequencing disabled
*Apr 22 19:48:33.279: Tcl/cl 1/1 L2TP:Session FS enabled
*Apr 22 19:48:33.283: Tcl/cl 1/1 L2TP:Session state change from idle to wait-for-tunnel
*Apr 22 19:48:33.283: Tcl/cl 1/1 L2TP:Create dialout session
*Apr 22 19:48:33.283: Tcl 1 L2TP:SM State idle
*Apr 22 19:48:33.283: Tcl 1 L2TP:O SCCRQ
*Apr 22 19:48:33.283: Tcl 1 L2TP:Tunnel state change from idle to wait-ctl-reply
*Apr 22 19:48:33.283: Tcl 1 L2TP:Tunnel state change from wait-ctl-reply to established
*Apr 22 19:48:33.311: Tcl 1 L2TP:O SCCCN to lac_l2x0 tnlid 1
*Apr 22 19:48:33.311: Tcl 1 L2TP:SM State established
*Apr 22 19:48:33.311: Tcl 1 L2TP:O OCRQ
*Apr 22 19:48:33.311: Tcl 1 L2TP:Session state change from wait-for-tunnel to wait-reply
*Apr 22 19:48:33.367: Tcl 1/1 L2TP:O CCRP from lac_l2x0 tnl 1, cl 0
*Apr 22 19:48:33.367: Tcl 1/1 L2TP:Session state change from wait-reply to wait-connect
*Apr 22 19:48:33.611: Tcl 1/1 L2TP:O GCCN from lac_l2x0 tnl 1, cl 1
*Apr 22 19:48:33.611: Tcl 1/1 L2TP:Session state change from wait-connect to established
*Apr 22 19:48:33.611: Tcl 1/1 L2TP:VPDN:Connection is up, start LCP negotiation now
*Apr 22 19:48:33.611: %LINK-3-UPDOWN:Interface Virtual-Access1, changed state to up
*Apr 22 19:48:33.611: Tcl 1/1 L2TP:DDR:dialer_statechange(), state=4Dialer statechange to up
Virtual-Access1
*Apr 22 19:48:33.611: Tcl 1/1 L2TP:DDR:dialer_out_call_connected()
*Apr 22 19:48:33.611: Tcl 1/1 L2TP:DDR:dialer_bind_profile() to Dl0
Dialer out call has been placed Virtual-Access1
*Apr 22 19:48:33.635: Tcl 1/1 LCP:0 CONFRQ [Closed] id 1 len 15
*Apr 22 19:48:33.635: Tcl 1/1 LCP: AuthProto CHAP (0x0305C22305)
*Apr 22 19:48:33.635: Tcl 1/1 LCP: MagicNumber 0x50E7EC2A (0x050650E7EC2A)
*Apr 22 19:48:33.663: Tcl 1/1 LCP:I CONFRQ [REQsent] id 1 len 15
*Apr 22 19:48:33.663: Tcl 1/1 LCP: AuthProto CHAP (0x0305C22305)
*Apr 22 19:48:33.663: Tcl 1/1 LCP: MagicNumber 0x10820474 (0x050610820474)
*Apr 22 19:48:33.663: Tcl 1/1 LCP:0 CONPACK [REQsent] id 1 len 15
*Apr 22 19:48:33.663: Tcl 1/1 LCP: AuthProto CHAP (0x0305C22305)
*Apr 22 19:48:33.663: Tcl 1/1 LCP: MagicNumber 0x50E7EC2A (0x050650E7EC2A)
*Apr 22 19:48:33.663: Tcl 1/1 LCP: State is Open
*Apr 22 19:48:33.663: Tcl 1/1 LCP: PPP:Phase is AUTHENTICATING, by both
*Apr 22 19:48:33.663: Tcl 1/1 LCP: CHAP:Using alternate hostname lns0
*Apr 22 19:48:33.663: Tcl 1/1 LCP: CHAP:O CHALLENGE id 1 len 25 from "lns0"
VPN Troubleshooting Methodology

This section describes a methodology for troubleshooting the VPN shown in Figure 80. First, view the debug output from a successful call. If your debug output does not match the successful output, follow the remaining steps to begin troubleshooting the network. The bolded lines of debug output indicate important information.

The following sections detail the steps involved in VPN troubleshooting:

- Comparing Your Debug Output to the Successful Debug Output
- Troubleshooting VPN Negotiation
- Troubleshooting PPP Negotiation
- Troubleshooting AAA Negotiation
If you are accessing the NAS and tunnel server through a Telnet connection, you need to enable the `terminal monitor` command. This command ensures that your EXEC session is receiving the logging and debug output from the devices.

When you finish troubleshooting, use the `undebug all` command to turn off all debug commands. Isolating debug output helps you efficiently build a network.
Comparing Your Debug Output to the Successful Debug Output

Enable the `debug vpdn-event` command on both the NAS and the tunnel server and dial in to the NAS. The following debug output shows successful VPN negotiation on the NAS and tunnel server:

NAS#
Jan 7 00:19:39.900: %LINK-3-UPDOWN: Interface Async9, changed state to up
Jan 7 00:19:39.512: sVPDN: Got DNIS string As9
Jan 7 00:19:39.512: As9 VPDN: Looking for tunnel -- hgw.com --
Jan 7 00:19:39.540: As9 VPDN: Get tunnel info for hgw.com with NAS ISP_NAS, IP172.22.66.25
Jan 7 00:19:39.540: As9 VPDN: Forward to address 172.22.66.25
Jan 7 00:19:39.540: As9 VPDN: Forwarding...
Jan 7 00:19:39.540: As9 VPDN: Bind interface direction=1
Jan 7 00:19:39.540: As9 VPDN: jeremy@hgw.com is forwarded
Jan 7 00:19:40.540: %LINEPROTO-5-UPDOWN: Line protocol on Interface Async9, changed state to up

ENT_HGW#
Jan 7 00:19:39.967: VPDN: Chap authentication succeeded for ISP_NAS
Jan 7 00:19:39.967: Vi1 VPDN: Virtual interface created for jeremy@hgw.com
Jan 7 00:19:39.967: Vi1 VPDN: Set to Async interface
Jan 7 00:19:39.971: Vi1 VPDN: Clone from Vtemplate 1 filterPPP=0 blocking
6w5d: %LINK-3-UPDOWN: Interface Virtual-Access1, changed state to up
Jan 7 00:19:40.051: Vi1 VPDN: Bind interface direction=2
Jan 7 00:19:40.051: Vi1 VPDN: PPP LCP accepted rcv CONACK
Jan 7 00:19:40.051: Vi1 VPDN: PPP LCP accepted sent CONACK
6w5d: %LINEPROTO-5-UPDOWN: Line protocol on Interface Virtual-Access1, changed state to up

If you see the debug output shown but cannot ping the tunnel server, go to the next section, “Troubleshooting VPN Negotiation.”

If you do not see the above debug output, go to the section “Troubleshooting VPN Negotiation” later in this chapter.

Troubleshooting VPN Negotiation

The following sections describe several common misconfigurations that prevent successful VPN (either L2F or L2TP) negotiation:

- **Misconfigured NAS Tunnel Secret**
- **Misconfigured Tunnel Server Tunnel Secret**
- **Misconfigured Tunnel Name**
- **Control Packet Problem on the NAS**

Misconfigured NAS Tunnel Secret

The NAS and the tunnel server must both have the same usernames with the same password to authenticate the L2F tunnel. These usernames are called the tunnel secret. In this scenario, these usernames are ISP_NAS and ENT_HGW. The password is cisco for both usernames on both systems.

If one of the tunnel secrets on the NAS is incorrect, you will see the following debug output when you dial in to the NAS and the `debug vpdn l2x-errors` command is enabled on the NAS and tunnel server:

NAS#
Jan 1 00:26:49.899: %LINK-3-UPDOWN: Interface Async3, changed state to up
Jan 1 00:26:54.643: %LINEPROTO-5-UPDOWN: Line protocol on Interface Async3, changed state to up
Jan 1 00:27:00.559: L2F: Resending L2F_OPEN, time #1
Misconfigured Tunnel Server Tunnel Secret

If one of the tunnel secret usernames on the tunnel server is incorrect, the following debug output appears when you dial in to the NAS and the `debug vpdn l2x-errors` command is enabled on the NAS and tunnel server:

```
Jan 1 00:45:27.123: %LINK-3-UPDOWN: Interface Async7, changed state to up
Jan 1 00:45:30.939: L2F: Packet has bogus1 key B6C656EE 5FAC6B3
Jan 1 00:45:30.939: %VPDN-6-AUTHENFAIL: L2F ISP_NAS, authentication failure for tunnel ISP_NAS; Invalid key
Jan 1 00:45:31.935: %LINEPROTO-5-UPDOWN: Line protocol on Interface Async7, changed state to up
Jan 1 00:45:35.559: L2F: Resending L2F_OPEN, time #1
Jan 1 00:45:35.559: L2F: Packet has bogus1 key B6C656EE 5FAC6B3

ENT_HGW#
```

Notice how this output is similar to the debug output you see when the NAS has a misconfigured tunnel secret username. This time you see the phrase “Packet has bogus1 key” on the NAS instead of the tunnel server. This phrase tells you that the tunnel server has an incorrect tunnel secret username.

To avoid this problem, make sure that you configure both the NAS and tunnel server for the same two tunnel secret usernames with the same password.
Misconfigured Tunnel Name

If the NAS and tunnel server do not have matching tunnel names, they cannot establish an L2F tunnel. On the tunnel server, these tunnel names are configured under the `vpdn-group 1` command by using the `local name` command. On the NAS, these names are configured on the RADIUS server.

The tunnel server must be configured to accept tunnels from the name that the NAS sends it. This is done using the `accept-dialin l2f virtual-template 1 remote ISP_NAS` command, where `ISP_NAS` is the name. The name it returns to the NAS is configured using the `local name ENT_HGW` command, where `ENT_HGW` is the name. These commands appear in the following running configuration:

```
vpdn-group 1
accept-dialin l2f virtual-template 1 remote ISP_NAS
local name ENT_HGW
```

On the RADIUS server, the tunnel names are configured by adding profiles to the `NAS_Group` group with the names `ISP_NAS` and `ENT_HGW`.

In the following debug output, the NAS attempted to open a tunnel using the name `isp`. Because the tunnel server did not know this name, it did not open the tunnel. To see the following debug output, enable the `debug vpdn l2x-events` and `debug vpdn l2x-errors` commands on the tunnel server:

```
ENT_HGW#
Jan 1 01:28:54.207: L2F: L2F_CONF received
Jan 1 01:28:54.207: L2X: Never heard of isp
Jan 1 01:28:54.207: L2F: Couldn't find tunnel named isp
```

To avoid the problem described, make sure that the tunnel names match on the tunnel server and on the RADIUS server.

Control Packet Problem on the NAS

The following example assumes that you suspect an error in parsing control packets. You can use the `debug vpdn packet` command with the `control` keyword to verify control packet information.

```
ISP_NAS# debug vpdn packet control
20:50:27: %LINK-3-UPDN: Interface Async7, changed state to up
20:50:29: Tnl 9 L2TP: O SCCRQ
20:50:29: Tnl 9 L2TP: O SCCRQ, flg TLF, ver 2, len 131, tnl 0, cl 0, ns 0, nr 0
20:50:29: contiguous buffer, size 131
 C8 02 00 83 00 00 00 00 00 00 00 00 80 08 00 00
 00 00 00 01 80 08 00 00 00 02 01 00 80 0A 00 00
 00 03 00 00 03 80 0A 00 00 04 00 00 00 ...
20:50:29: Tnl 9 L2TP: Parse AVP 0, len 8, flag 0x08000 (M)
20:50:29: Tnl 9 L2TP: Parse SCCRP
20:50:29: Tnl 9 L2TP: Parse AVP 2, len 8, flag 0x08000 (M)
20:50:29: Tnl 9 L2TP: Protocol Ver 256
20:50:29: Tnl 9 L2TP: Parse AVP 3, len 10, flag 0x08000 (M)
20:50:29: Tnl 9 L2TP: Framing Cap 0x0X3
20:50:29: Tnl 9 L2TP: Parse AVP 4, len 10, flag 0x08000 (M)
20:50:29: Tnl 9 L2TP: Bearer Cap 0x0X3
20:50:29: Tnl 9 L2TP: Parse AVP 6, len 8, flag 0x0X0
20:50:29: Tnl 9 L2TP: Firmware Ver 0x0X1120
20:50:29: Tnl 9 L2TP: Parse AVP 7, len 12, flag 0x0X8000 (M)
20:50:29: Tnl 9 L2TP: Hostname DJ
20:50:29: Tnl 9 L2TP: Parse AVP 8, len 25, flag 0x0x0
20:50:29: Tnl 9 L2TP: Vendor Name Cisco Systems, Inc.
20:50:29: Tnl 9 L2TP: Parse AVP 9, len 8, flag 0x0X8000 (M)
20:50:29: Tnl 9 L2TP: Assigned Tunnel ID 8
20:50:29: Tnl 9 L2TP: Parse AVP 10, len 8, flag 0x0X8000 (M)
20:50:29: Tnl 9 L2TP: Rx Window Size 4
```
20:50:29: Tnl 9 L2TP: Parse AVP 11, len 22, flag 0x008000 (M)
20:50:29: Tnl 9 L2TP: Chng D807308D106259C5933C6162ED3A1A689
20:50:29: Tnl 9 L2TP: Parse AVP 13, len 22, flag 0x008000 (M)
20:50:29: Tnl 9 L2TP: Chng Resp 9F6A3C70512BD3E2D4DF183C3FFFD1
20:50:29: Tnl 9 L2TP: No missing AVPs in SCCRP
20:50:29: Tnl 9 L2TP: Clean Queue packet 0
20:50:29: Tnl 9 L2TP: I SCCRP, flg TLF, ver 2, len 153, tnl 9, cl 0, ns 0, nr 1
   contiguous pak, size 153
   C8 02 00 99 00 09 00 00 00 00 00 00 01 80 08 00 00
   00 00 00 02 80 08 00 00 00 02 01 00 80 0A 00 00
   00 03 00 00 00 03 80 0A 00 00 00 0D 4B 2F A2 50 30 13
   E3 46 58 D5 35 88 56 7A E9 85
20:50:29: Tnl 9 L2TP: I SCCRP from DJ
20:50:29: Tnl 9 L2TP: O SCCCN to DJ tnlid 8
20:50:29: Tnl 9 L2TP: O SCCCN, flg TLF, ver 2, len 42, tnl 8, cl 0, ns 1, nr 1
   contiguous buffer, size 42
   C8 02 00 30 00 08 00 00 00 01 00 01 80 08 00 00
   00 00 00 0A 80 08 00 00 00 0E 00 01 80 0A 00 00
   00 0F 00 00 00 04 80 0A 00 00 00 12 00 00 00 ...
20:50:29: As7 9/1 L2TP: O ICRQ to DJ 8/0
20:50:29: As7 9/1 L2TP: O ICRQ, flg TLF, ver 2, len 48, tnl 8, cl 0, ns 2, nr 1
   contiguous buffer, size 48
   C8 02 00 30 00 08 00 00 00 02 00 01 80 08 00 00
   00 00 00 0A 80 08 00 00 00 0E 00 01 80 0A 00 00
   00 0F 00 00 00 04 80 0A 00 00 00 12 00 00 00 ...
20:50:29: Tnl 9 L2TP: Clean Queue packet 1
20:50:29: Tnl 9 L2TP: Clean Queue packet 2
20:50:29: Tnl 9 L2TP: I ZLB ctrl ack, flg TLF, ver 2, len 12, tnl 9, cl 0, ns 1, nr 2
   contiguous pak, size 12
   C8 02 00 0C 00 09 00 00 00 01 00 02 00 04
20:50:30: As7 9/1 L2TP: Parse AVP 0, len 8, flag 0x008000 (M)
20:50:30: As7 9/1 L2TP: Parse ICRP
20:50:30: As7 9/1 L2TP: Parse AVP 14, len 8, flag 0x008000 (M)
20:50:30: As7 9/1 L2TP: Assigned Call ID 1
20:50:30: As7 9/1 L2TP: No missing AVPs in ICRP
20:50:30: Tnl 9 L2TP: Clean Queue packet 2
20:50:30: As7 9/1 L2TP: I ICRP, flg TLF, ver 2, len 28, tnl 9, cl 1, ns 1, nr 3
   contiguous pak, size 28
   C8 02 00 1C 00 09 00 01 00 01 00 03 80 08 00 00
   00 00 00 08 80 08 00 00 00 0E 00 01
20:50:30: As7 9/1 L2TP: O ICCN to DJ 8/1
20:50:30: As7 9/1 L2TP: O ICCN, flg TLF, ver 2, len 203, tnl 8, cl 1, ns 3, nr 2
   contiguous buffer, size 203
   C8 02 00 CB 00 08 00 01 00 03 00 02 80 08 00 00
   00 00 00 0C 80 0A 00 00 00 10 00 00 DA C0 80 0A
   00 00 00 13 00 00 02 00 28 00 00 00 01 0B 02 ...
20:50:30: Tnl 9 L2TP: Clean Queue packet 3
20:50:30: As7 9/1 L2TP: I ZLB ctrl ack, flg TLF, ver 2, len 12, tnl 9, cl 1, ns 2, nr 4
   contiguous pak, size 12
   C8 02 00 0C 00 09 00 01 00 02 00 04
20:50:30: %LINEPROTO-5-UPDOWN: Line protocol on Interface Async7, changed state to up

If you fixed the problem in your configuration, return to the section “Verifying VPN Sessions” earlier in this chapter.
If your call still cannot successfully complete L2F negotiation, contact your support personnel.
Troubleshooting PPP Negotiation

This section first shows debug output of successful PPP negotiation. The subsequent sections explain several common problems that prevent successful PPP negotiation:

- **Successful PPP Negotiation Debug Output**
- **Non-Cisco Device Connectivity Problem**
- **Mismatched Username Example**

Enable the `debug ppp negotiation` command on the tunnel server and dial in to the NAS.

**Successful PPP Negotiation Debug Output**

The following debug output shows successful PPP negotiation on the tunnel server:

```
1d02h: %LINK-3-UPDOWN: Interface Virtual-Access1, changed state to up
*Feb 4 14:14:40.505: Vi1 PPP: Treating connection as a dedicated line
*Feb 4 14:14:40.505: Vi1 PPP: Phase is ESTABLISHING, Active Open
*Feb 4 14:14:40.505: Vi1 PPP: Treating connection as a dedicated line
*Feb 4 14:14:40.505: Vi1 PPP: Phase is AUTHENTICATING, by this end
*Feb 4 14:14:40.509: Vi1 PPP: Phase is UP
```

If your call successfully completed PPP negotiation, but you still cannot ping the tunnel server, go to the section “Troubleshooting AAA Negotiation” later in this chapter.

**Non-Cisco Device Connectivity Problem**

The `debug ppp authentication` and `debug ppp negotiation` commands are enabled to decipher a CHAP negotiation problem. This is due to a connectivity problem between a Cisco and non-Cisco device. Also note that the `service-timestamps` command is enabled on the router. The `service-timestamps` command is helpful to decipher timing and keepalive issues, and we recommend that you always enable this command.

```
Router# debug ppp authentication
PPP authentication debugging is on

Router# debug ppp negotiation
PPP protocol negotiation debugging is on
```

```
3:22:53: ppp: sending CONFREQ, type = 3 (CI_AUTHTYPE), value = C223/5
3:22:53: ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = C6091F.
3:22:55:PPP BR10: B-Channel 1: received config for type = 0x0 (??)
3:22:55:PPP BR10: B-Channel 1: rcvd unknown option 0x0 rejected
3:22:55:PPP BR10: B-Channel 1: received config for type = 0x1 (MRU) value = 0xF4 rejected
3:22:55:PPP BR10: B-Channel 1: received config for type = 0x3 (AUTHTYPE) value = 0xC223 value = 0x5 acked
3:22:55:PPP BR10: B-Channel 1: received config for type = 0x11 (MULTILINK_MRRU) rejected
3:22:55:PPP BR10: B-Channel 1: received config for type = 0x13 (UNKNOWN)
3:22:55:PPP BR10: B-Channel 1: rcvd unknown option 0x13 rejected
3:22:55:PPP: config REJ received, type = 3 (CI_AUTHTYPE), value = C223/5
3:22:55:PPP: sending CONFREQ, type = 3 (CI_AUTHTYPE), value = C223/5
3:22:55:PPP: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = C6091F
3:22:55:PPP BR10: B-Channel 1: received config for type = 0x3 (AUTHTYPE) value= 0xC2.
Success rate is 0 percent (0/5)
```

moog#23 value = 0x5 acked
3:22:55: ppp: config REJ received, type = 3 (CI_AUTHTYPE), value = C223/5
3:22:55: ppp: BRIO: B-Channel 1 closing connection because remote won't authenticate
3:22:55: %ISDN-6-DISCONNECT: Interface BRIO: B-Channel 1 disconnected from 0123 5820040, call lasted 2 seconds
3:22:56: %LINK-3-UPDOWN: Interface BRIO: B-Channel 1, changed state to down

Mismatched Username Example

The following `debug ppp chap` sample output excerpt shows a CHAP authentication failure caused by a configuration mismatch between devices. Verifying and correcting any username and password mismatch should remedy this problem.

Router# debug ppp chap

ppp: received config for type = 5 (MAGICNUMBER) value = 1E24718 acked
PPP BRIO: B-Channel 1: state = ACKSENT fsm_rconfack(C021): rcvd id E6
ppp: config ACK received, type = 3 (CI_AUTHTYPE), value = C223
ppp: config ACK received, type = 5 (CI_MAGICNUMBER), value = 28CEF76C
BRIO: B-Channel 1: PPP AUTH CHAP input code = 1 id = 83 len = 16
BRIO: B-Channel 1: PPP AUTH CHAP input code = 2 id = 96 len = 28
BRIO: B-Channel 1: PPP AUTH CHAP input code = 4 id = 83 len = 21
BRIO: B-Channel 1: Failed CHAP authentication with remote.
Remote message is: MD compare failed

If your call cannot successfully complete PPP negotiation, contact your support personnel.

Troubleshooting AAA Negotiation

This section first shows debug output of successful AAA negotiation. The subsequent sections explain several common misconfigurations that prevent successful AAA negotiation:

- **Successful AAA Negotiation**
- **Incorrect User Password**
- **Error Contacting RADIUS Server**
- **Misconfigured AAA Authentication**

Successful AAA Negotiation

Enable the `debug aaa authentication` and `debug aaa authorization` commands on the tunnel server and dial in to the NAS.

The following debug output shows successful AAA negotiation on the tunnel server. This output has been edited to exclude repetitive lines.

ENT_HGW# Jan 7 19:29:44.132: AAA/AUTHEN: create_user (0x612D550C) user='ENT_HGW' ruser='' port='' rem_addr='' authen_type=CHAP service=PPP priv=1
Jan 7 19:29:44.132: AAA/AUTHEN/START (384300079): port='' list='default' action=SENDAUTH service=PPP
Jan 7 19:29:44.132: AAA/AUTHEN/START (384300079): found list default
Jan 7 19:29:44.132: AAA/AUTHEN/START (384300079): Method=LOCAL
Jan 7 19:29:44.132: AAA/AUTHEN (384300079): status = PASS
Jan 7 19:29:44.132: AAA/AUTHEN: create_user (0x612D550C) user='ISP_NAS' ruser='' port='' rem_addr='' authen_type=CHAP service=PPP priv=1
Jan  7 19:29:44.132: AAA/AUTHEN/START (2545876944): port='' list='default' action=SENDAUTH service=PPP
Jan  7 19:29:44.132: AAA/AUTHEN/START (2545876944): found list default
Jan  7 19:29:44.132: AAA/AUTHEN/START (2545876944): Method=LOCAL
Jan  7 19:29:44.132: AAA/AUTHEN (2545876944): status = PASS
Jan  7 19:29:44.132: AAA/AUTHEN/START (101773535): port='Virtual-Access1' list='' action=LOGIN service=PPP
Jan  7 19:29:44.132: AAA/AUTHEN/START (101773535): using "default" list
Jan  7 19:29:44.132: AAA/AUTHEN (101773535): status = ERROR
Jan  7 19:29:44.132: AAA/AUTHEN/START (101773535): Method=RADIUS
Jan  7 19:29:44.132: AAA/AUTHEN (101773535): status = PASS
Jan  7 19:29:44.692: AAA/AUTHOR/LCP: Authorize LCP
Jan  7 19:29:44.692: AAA/AUTHOR/LCP: Vi1 (3630870259) user='jeremy@hgw.com'
Jan  7 19:29:44.692: AAA/AUTHOR/LCP: Vi1 (3630870259) send AV service=ppp
Jan  7 19:29:44.692: AAA/AUTHOR/LCP: Vi1 (3630870259) send AV protocol=lcp
Jan  7 19:29:44.692: AAA/AUTHOR/LCP (3630870259) found list "default"
Jan  7 19:29:44.692: AAA/AUTHOR/LCP: Vi1 (3630870259) state opening
Jan  7 19:29:44.692: AAA/AUTHOR/LCP: Vi1 (3630870259) state open

If the above debug output appears, but you still cannot ping the tunnel server, contact your support personnel and troubleshoot your network backbone.

If you did not see the debug output above, you need to troubleshoot AAA negotiation.

Incorrect User Password

If the user password is incorrect (or it is incorrectly configured), the tunnel will be established, but the tunnel server will not authenticate the user. If the user password is incorrect, the following debug output appears on the NAS and tunnel server when you dial in to the NAS and the **debug vpdn l2x-errors** and **debug vpdn l2x-events** commands are enabled:

ISP_NAS#
Jan  1 01:00:01.555: %LINK-3-UPDOWN: Interface Async12, changed state to up
Jan  1 01:00:05.299: L2F: Tunnel state closed
Jan  1 01:00:05.299: L2F: MID state closed
Jan  1 01:00:05.299: L2F: Open UDP socket to 172.22.66.25
Jan  1 01:00:05.299: L2F: Tunnel state opening
Jan  1 01:00:05.299: L2F: Tunnel state open
Jan  1 01:00:05.299: L2F: MID jeremy@hgw.com state waiting_for_tunnel
Jan  1 01:00:05.303: L2F: L2F_CONF received
Jan  1 01:00:05.303: L2F: Removing resend packet (L2F_CONF)
Jan  1 01:00:05.303: ENT_HGW L2F: Tunnel state open
Jan  1 01:00:05.307: L2F: L2F_OPEN received
Jan  1 01:00:05.307: L2F: Removing resend packet (L2F_OPEN)
Jan  1 01:00:05.307: L2F: Building nas2gw_mld0
Jan  1 01:00:05.307: L2F: L2F_CLIENT_INFO: CLID/DNIS 4089548021/5550945
Jan  1 01:00:05.307: L2F: L2F_CLIENT_INFO: NAS-Port Async12
Jan  1 01:00:05.307: L2F: L2F_CLIENT_INFO: Client-Bandwidth-Kbps 115
Jan  1 01:00:05.307: L2F: L2F_CLIENT_INFO: NAS-Rate L2F/26400/28800
Jan  1 01:00:05.307: L2F: MID jeremy@hgw.com state opening
Jan  1 01:00:05.307: L2F: Tunnel authentication succeeded for ENT_HGW
Jan  1 01:00:05.391: L2F: L2F_OPEN received
Jan  1 01:00:05.391: L2F: Got a MID management packet
Jan  1 01:00:05.391: L2F: Removing resend packet (L2F_OPEN)
Jan  1 01:00:05.391: L2F: MID jeremy@hgw.com state open
Jan 1 01:00:05.391: As12 L2F: MID sync'd NAS/HG Clid=47/12 Mid=1
Jan 1 01:00:05.523: L2F: L2F_CLOSE received
Jan 1 01:00:05.523: %VPDN-6-AUTHENERR: L2F HGW ENT_HGW cannot locate a AAA server for As12 user jeremy@hgw.com; Authentication failure

ENT_HGW#
Jan 1 01:00:05.302: L2F: L2F_CONF received
Jan 1 01:00:05.302: L2F: Creating new tunnel for ISP_NAS
Jan 1 01:00:05.302: L2F: Tunnel state closed
Jan 1 01:00:05.302: L2F: Got a tunnel named ISP_NAS, responding
Jan 1 01:00:05.302: L2F: Open UDP socket to 172.22.66.23
Jan 1 01:00:05.302: ISP_NAS L2F: Tunnel state opening
Jan 1 01:00:05.306: L2F: L2F_OPEN received
Jan 1 01:00:05.306: L2F: Removing resend packet (L2F_CONF)
Jan 1 01:00:05.306: ISP_NAS L2F: Tunnel state open
Jan 1 01:00:05.310: L2F: Tunnel authentication succeeded for ISP_NAS
Jan 1 01:00:05.310: L2F: L2F_OPEN received
Jan 1 01:00:05.310: L2F: L2F_CLIENT_INFO: CLID/DNIS 4089548021/5550945
Jan 1 01:00:05.310: L2F: L2F_CLIENT_INFO: NAS-Port Async12
Jan 1 01:00:05.310: L2F: L2F_CLIENT_INFO: Client-Bandwidth-Kbps 115
Jan 1 01:00:05.310: L2F: Got a MID management packet
Jan 1 01:00:05.310: L2F: MID state closed
Jan 1 01:00:05.310: L2F: Start create mid intf process for jeremy@hgw.com
Swbd: %LINK-3-UPDOWN: Interface Virtual-Access1, changed state to up
Jan 1 01:00:05.390: Vi1 L2X: Discarding packet because of no mid/session
Jan 1 01:00:05.390: Vi1 L2F: Transfer NAS-Rate L2F/26400/28800 to LCP
Jan 1 01:00:05.390: Vi1 L2F: Finish create mid intf for jeremy@hgw.com
Jan 1 01:00:05.390: Vi1 L2F: MID jeremy@hgw.com state open
Swbd: %VPDN-6-AUTHENERR: L2F HGW ENT_HGW cannot locate a AAA server for Vi1 user jeremy@hgw.com; Authentication failure

Error Contacting RADIUS Server

If the `aaa authorization` command on the tunnel server is configured with the `default radius none` keywords, the tunnel server may allow unauthorized access to your network.

This command is an instruction to first use RADIUS for authorization. The tunnel server first contacts the RADIUS server (because of the `radius` keyword). If an error occurs when the tunnel server contacts the RADIUS server, the tunnel server does not authorize the user (because of the `none` keyword).

To see the following debug output, enable the `debug aaa authorization` command on the tunnel server and dial in to the NAS:

```
ENT_HGW#
*Feb 5 17:27:36.166: Vi1 AAA/AUTHOR/LCP: Authorize LCP
*Feb 5 17:27:36.166: AAA/AUTHOR/LCP Vi1 (3192359105): Port='Virtual-Access1' list='' service=NET
*Feb 5 17:27:36.166: AAA/AUTHOR/LCP: Vi1 (3192359105) user='jeremy@hgw.com'
*Feb 5 17:27:36.166: AAA/AUTHOR/LCP: Vi1 (3192359105) send AV service=ppp
*Feb 5 17:27:36.166: AAA/AUTHOR/LCP: Vi1 (3192359105) send AV protocol=lcp
*Feb 5 17:27:36.166: AAA/AUTHOR/LCP (3192359105) found list "default"
*Feb 5 17:27:36.166: AAA/AUTHOR/LCP: Vi1 (3192359105) Method=RADIUS
*Feb 5 17:27:36.166: AAA/AUTHOR/LCP (3192359105): Post authorization status = ERROR
*Feb 5 17:27:36.166: AAA/AUTHOR/LCP: Vi1 (3192359105) Method=NONE
*Feb 5 17:27:36.166: AAA/AUTHOR/LCP: Vi1 (3192359105): Post authorization status = PASS_ADD
*Feb 5 17:27:36.166: Vi1 CHAP: O SUCCESS id 1 len 4
```

**Caution**

Using the `none` keyword can allow unauthorized access to your network. Because of the risk of such errors occurring, we strongly recommend that you do not use the `none` keyword in your `aaa` commands.
Misconfigured AAA Authentication

If you reverse the order of the `local` and `radius` keywords in the `aaa authentication ppp` command on the tunnel server, the L2F tunnel cannot be established. The command should be configured as `aaa authentication ppp default local radius`.

If you configure the command as `aaa authentication ppp default radius local`, the tunnel server first tries to authenticate the L2F tunnel using RADIUS. The RADIUS server sends the following message to the tunnel server. To see this message, enable the `debug radius` command.

```
ENT_HGW# Jan 1 01:34:47.827: RADIUS: SENDPASS not supported (action=4)
```

The RADIUS protocol does not support inbound challenges. This means that RADIUS is designed to authenticate user information, but it is not designed to be authenticated by others. When the tunnel server requests the tunnel secret from the RADIUS server, it responds with the “SENDPASS not supported” message.

To avoid this problem, use the `aaa authentication ppp default local radius` command on the tunnel server.

If your call still cannot successfully complete AAA negotiation, contact your support personnel.

Configuration Examples for VPN

This section provides the following configuration examples:

- Client-Initiated Dial-In Configuration Example
- VPN Tunnel Authentication Examples
- NAS Comprehensive Dial-In Configuration Example
- Tunnel Server Comprehensive Dial-in Configuration Example
- NAS Configured for Both Dial-In and Dial-Out Example
- Tunnel Server Configured for Both Dial-In and Dial-Out Example
- RADIUS Profile Examples
- TACACS+ Profile Examples

Client-Initiated Dial-In Configuration Example

The following example shows the running configuration of a tunnel server configured for PPTP using an ISA card to perform 40-bit MPPE encryption. It does not have an AAA configuration.

```
Current configuration
!
version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname PNS
!
no logging console guaranteed
enable password lab
!
```
username tester41 password 0 lab41
!
ip subnet-zero
no ip domain-lookup
!
vpdn enable
!
vpdn-group 1
! Default PPTP VPDN group
  accept-dialin
  protocol pptp
  virtual-template 1
  local name cisco_pns
  memory check-interval 1
!
controller ISA 5/0
  encryption mppe
!
process-max-time 200
!
interface FastEthernet0/0
  ip address 10.1.1.12 255.255.255.0
  no ip directed-broadcast
duplex auto
speed auto
!
interface FastEthernet0/1
  ip address 10.1.2.12 255.255.255.0
  no ip directed-broadcast
duplex auto
  speed auto
!
interface Serial1/0
  no ip address
  no ip directed-broadcast
  shutdown
  framing c-bit
cablelength 10
dsu bandwidth 44210
!
interface Serial1/1
  no ip address
  no ip directed-broadcast
  shutdown
  framing c-bit
cablelength 10
dsu bandwidth 44210
!
interface FastEthernet4/0
  no ip address
  no ip directed-broadcast
  shutdown
duplex half
!
interface Virtual-Template1
  ip unnumbered FastEthernet0/0
  no ip directed-broadcast
  ip mroute-cache
  no keepalive
  ppp encrypt mppe 40
  ppp authentication ms-chap
!
VPN Tunnel Authentication Examples

The following examples shows several possibilities for performing local tunnel authentication. These examples only show the information relevant to tunnel authentication.

Tunnel Secret Configured Using the Local Name Command

The following examples are for a NAS and tunnel server that configure the tunnel names by using local name VPN group commands. The NAS tunnel name is ISP_NAS, the tunnel server tunnel name is ENT_HGW, and the tunnel secret is tunnelme.

NAS Configuration

The NAS tunnel name is specified by the local name command. The tunnel server tunnel name and tunnel secret are specified by the username command.

```
username ENT_HGW password 7 tunnelme

vdpn-group 1
local name ISP_NAS
```

Tunnel Server Configuration

The tunnel server tunnel name is specified by the local name command. The NAS tunnel name and tunnel secret are specified by the username command.

```
username ISP_NAS password 7 tunnelme

vdpn-group 1
local name ENT_HGW
```

Tunnel Secret Configured Using the L2TP Tunnel Password Command

The following example is for a NAS and tunnel server that both configure the tunnel secret using the l2tp tunnel password command. Because both routers use this command, they do not need to use either username or local name commands for tunnel authentication. The tunnel secret is tunnelme.

NAS Configuration

```
vdpn-group 1
request-dialin
protocol l2tp
l2tp tunnel password tunnelme
```
Tunnel Server Configuration

```plaintext
tunnel-group 1
 accept-dialin
 protocol l2tp
 l2tp tunnel password tunnelme
```

Tunnel Secret Configuration Using Different Tunnel Authentication Methods

The follow example is for a NAS that uses the `username` command to specify the tunnel secret and a tunnel server that uses the `l2tp tunnel password` command to specify the tunnel secret.

**NAS Configuration**

```plaintext
username adrian password garf1eld

 vpdn-group 1
 local name stella
```

**Tunnel Server Configuration**

```plaintext
vpdn-group 1
 accept-dialin
 protocol l2tp
 local name adrian
 l2tp tunnel password garf1eld
```

**NAS Comprehensive Dial-In Configuration Example**

The following example shows a NAS configured to tunnel PPP calls to a tunnel server using L2TP and local authentication and authorization:

```plaintext
! Enable AAA authentication and authorization with RADIUS as the default method
aaa new-model
aaa authentication ppp default radius
aaa authorization network default radius

! username ISP_NAS password 7 tunnelme
username ENT_HGW password 7 tunnelme
!
vpdn enable
!
! Configure VPN to first search on the client domain name and then on the DNIS
vpdn search-order domain dnis
! Allow a maximum of 10 simultaneous VPN sessions
vpdn session-limit 10
!
! Configure VPN to initiate VPN dial-in sessions
vpdn-group 1
request-dialin
! Specify L2TP as the tunneling protocol
protocol l2tp
! Tunnel clients with the domain name "hgw.com"
domain hgw.com
! Establish a tunnel with IP address 172.22.66.25
initiate-to ip 172.22.66.25
! Identify the tunnel using the name "ISP_NAS"
local name ISP_NAS
!```
! Defines the ISDN switch type as primary-5ess
isdn switch-type primary-5ess
!
! Commissions the T1 controller to allow modem calls in to the NAS
controller T1 0
framing esf
clock source line primary
linecode b8zs
pri-group timeslots 1-24
!
interface Ethernet0
ip address 172.22.66.23 255.255.255.192
!
! Configure the Serial channel to allow modem calls in to the NAS
interface Serial0:23
no ip address
isdn switch-type primary-5ess
isdn incoming-voice modem
no cdp enable
!
interface Group-Async1
ip unnumbered Ethernet0
encapsulation ppp
async mode interactive
no peer default ip address
ppp authentication chap pap
group-range 1 96
!
ip classless
ip route 0.0.0.0 0.0.0.0 172.22.66.1
!
! Specifies the RADIUS server IP address, authorization port, and accounting port
radius-server host 172.22.66.16 auth-port 1645 acct-port 1646
! Specifies the authentication key to be used with the RADIUS server
radius-server key cisco
!
line con 0
transport input none
! Configures the modems
line 1 96
autoselect during-login
autoselect ppp
modem InOut
line aux 0
line vty 0 4
!
end

Tunnel Server Comprehensive Dial-in Configuration Example

The following example show a tunnel server configured to accept L2TP tunnels from a NAS using local authentication and authorization:

aaa new-model
! Configure AAA to first use the local database and then contact the RADIUS server for
! PPP authentication
aaa authentication ppp default local radius
! Configure AAA network authorization and accounting by using the RADIUS server
aaa authorization network default radius
aaa accounting network default start-stop radius
!
username ISP_NAS password 7 tunnelme
username ENT_HGW password 7 tunnelme
!
vpdn enable
! Prevent any new VPN sessions from being established without disturbing existing
! sessions
vpdn softshut
!
! Configure VPN to accept dial-in sessions
vpdn-group 1
 accept-dialin
! Specify L2TP as the tunneling protocol
 protocol l2tp
! Specify that virtual-access interfaces be cloned from virtual template 1
 virtual-template 1
! Accept dial-in requests from a router using the tunnel name "ISP_NAS"
 terminate-from hostname ISP_NAS
! Identify the tunnel using the tunnel name "ENT_HGW"
 local name ENT_HGW
!
interface Ethernet0/0
 ip address 172.22.66.25 255.255.255.192
 no ip directed-broadcast
!
interface Virtual-Template1
! Use the IP address of interface Ethernet 0
 ip unnumbered Ethernet0
! Returns an IP address from the default pool to the VPN client
 peer default ip address pool default
! Use CHAP to authenticate PPP
 ppp authentication chap
!
 ip local pool default 172.30.2.1 172.30.2.96
 ip classless
 ip route 0.0.0.0 0.0.0.0 172.22.66.1
!
! Specifies the RADIUS server IP address, authorization port, and accounting port
 radius-server host 172.22.66.13 auth-port 1645 acct-port 1646
! Specifies the authentication key to be used with the RADIUS server
 radius-server key cisco

NAS Configured for Both Dial-In and Dial-Out Example

You can configure a NAS to simultaneously initiate L2TP or L2F dial-in tunnels to a tunnel server and also accept L2TP dial-out tunnels from a tunnel server.

In the following example, the VPN group of a NAS is configured to dial in using L2F and to dial out using L2TP as the tunneling protocol and dialer interface 2. The example only shows the VPN group and dialer configuration:

 vpdn-group 1
 request-dialin
 protocol l2f
 domain jgb.com
 accept-dialout
 protocol l2tp
 dialer 2
 local name cerise
 terminate-from hostname reuben
 initiate-to ip 172.1.2.3
!
interface Dialer2
 ip unnumbered Ethernet0
 encapsulation ppp
 dialer in-band
 dialer aaa
 dialer-group 1
 ppp authentication chap

Tunnel Server Configured for Both Dial-In and Dial-Out Example

You can configure a tunnel server to simultaneously receive L2TP or L2F dial-in tunnels from a NAS and also initiate L2TP dial-out tunnels to a NAS.

In the following example, a tunnel server VPN group is configured to dial in using virtual template 1 to clone the virtual access interface and to dial out using dialer pool 1. The example only shows the VPN group and dialer configuration:

```
vpdn-group 1
  accept-dialin
  protocol l2tp
  virtual-template 1
  request-dialout
  protocol l2tp
  pool-member 1
  local name reuben
  terminate-from hostname cerise
  initiate-to ip 10.3.2.1
! interface Dialer2
  ip address 172.19.2.3 255.255.128
  encapsulation ppp
  dialer remote-name reuben
  dialer string 5551234
  dialer vpdn
  dialer pool 1
  dialer-group 1
  ppp authentication chap
```

RADIUS Profile Examples

The following sections show VPN RADIUS profiles configured using CiscoSecure version 2.3.1:

- RADIUS Domain Profile
- RADIUS User Profile

RADIUS Domain Profile

The following example show a profile that is configured on the NAS RADIUS server to tunnel calls from users who dial-in with the domain name terrapin.com. The NAS will balance calls between the tunnel servers at 172.16.171.11 and 172.16.171.12. If both of those tunnel servers are unavailable, the NAS will tunnel calls to 172.16.171.13.

```
user = terrapin.com(
  profile_id = 29
  set server current-failed-logins = 0
  profile_cycle = 7
  radius=Cisco {
```
check_items= {
2=cisco
}
reply_attributes= {
9,1="vpdn:l2tp-tunnel-password=cisco123"
9,1="vpdn:tunnel-type=l2tp"
9,1="vpdn:ip-addresses=172.16.171.11 172.16.171.12/172.16.171.13"
9,1="vpdn:tunnel-id=tunnel"
}

Note check_items={2=cisco} is a hard-coded password. This password must be "cisco."

RADIUS User Profile

The following example shows a profile that is configured on the tunnel server RADIUS server to authorize and authenticate user sailor@terrapin.com:

user = sailor@terrapin.com{
profile_id = 28
profile_cycle = 2
radius=Cisco {
check_items= {
2=cisco
}
reply_attributes= {
6=2
7=1
}
}
}

Note check_items={2=cisco} is a hard-coded password. This password must be "cisco."

TACACS+ Profile Examples

The following sections show VPN TACACS+ profiles configured using CiscoSecure version 2.2.2:

- TACACS+ Domain Profile
- TACACS+ User Profile
- TACACS+ Tunnel Profiles

TACACS+ Domain Profile

The following example shows a profile that is configured on the NAS TACACS+ server to tunnel users who dial in with the domain name guava.com:

user = guava.com{
profile_id = 83
profile_cycle = 1
service=ppp {
protocol=vpdn {
set tunnel-id=isp
set ip-addresses="10.31.1.50"
set nas-password="little"
set gw-password="birdies"
}
protocol=lcp {
}
}

TACACS+ User Profile

The following example shows a profile that is configured on the tunnel server TACACS+ to authorize
and authenticate user geaner@guava.com:

user = geaner@guava.com{
 profile_id = 85
 profile_cycle = 1
 password = chap "daisies"
 service=ppp {
 protocol=ip {
 default attribute=permit
 }
 protocol=lcp {
 }
 }
}

TACACS+ Tunnel Profiles

The following examples show a profile that is configured on the tunnel server TACACS+ server to
authenticate the tunnel. See the “Configuring VPN Tunnel Authentication Using the Host Name or Local
Name” and “Configuring VPN Tunnel Authentication Using the L2TP Tunnel Password” sections earlier
in this chapter for more information on tunnel authentication.

Note

Only the tunnel server AAA server can perform tunnel authentication. Tunnel authentication must be
performed locally by the NAS.
PPP Configuration
Configuring Asynchronous SLIP and PPP

This chapter describes how to configure asynchronous Serial Line Internet Protocol (SLIP) and PPP. It includes the following main sections:

- Asynchronous SLIP and PPP Overview
- How to Configure Asynchronous SLIP and PPP
- Configuration Examples for Asynchronous SLIP and PPP

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Asynchronous SLIP and PPP Overview

PPP and SLIP define methods of sending IP packets over standard asynchronous serial lines with minimum line speeds of 1200 baud.

Using SLIP or PPP encapsulation over asynchronous lines is an inexpensive way to connect personal computers (PCs) to a network. PPP and SLIP over asynchronous dialup modems allow a home computer to be connected to a network without the cost of a leased line. Dialup PPP and SLIP links can also be used for remote sites that need only occasional remote node or backup connectivity. Both public-domain and vendor-supported PPP and SLIP implementations are available for a variety of computer applications.

The Cisco IOS software concentrates a large number of SLIP or PPP PC or workstation client hosts onto a network interface that allows the PCs to communicate with any host on the network. The Cisco IOS software can support any combination of SLIP or PPP lines and lines dedicated to normal asynchronous devices such as terminals and modems. Refer to RFC 1055 for more information about SLIP, and RFCs 1331 and 1332 for more information about PPP.

SLIP is an older protocol. PPP is a newer, more robust protocol than SLIP, and it contains functions that can detect or prevent misconfiguration. PPP also provides greater built-in security mechanisms.
Most asynchronous serial links have very low bandwidth. Take care to configure your system so the links will not be overloaded. Consider using default routes and filtering routing updates to prevent them from being sent on these asynchronous lines.

Figure 81 illustrates a typical asynchronous SLIP or PPP remote-node configuration.

Figure 81 Sample SLIP or PPP Remote-Node Configuration

Responding to BOOTP Requests

The BOOTP protocol allows a client machine to discover its own IP address, the address of the router, and the name of a file to be loaded into memory and executed. There are typically two phases to using BOOTP: first, the client’s address is determined and the boot file is selected; then the file is transferred, typically using the TFTP.

PPP and SLIP clients can send BOOTP requests to the Cisco IOS software, and the Cisco IOS software responds with information about the network. For example, the client can send a BOOTP request to learn its IP address and where the boot file is located, and the Cisco IOS software responds with the information.

BOOTP supports the extended BOOTP requests specified in RFC 1084 and works for both PPP and SLIP encapsulation.

BOOTP compares to Reverse Address Resolution Protocol (RARP) as follows: RARP is an older protocol that allows a client to determine its IP address if it knows its hardware address. (Refer to the Cisco IOS IP Configuration Guide for more information about RARP.) However, RARP is a hardware link protocol, so it can be implemented only on hosts that have special kernel or driver modifications that allow access to these raw packets. BOOTP does not require kernel modifications.

Asynchronous Network Connections and Routing

Line configuration commands configure a connection to a terminal or a modem. Interface configuration (async) commands, described in this chapter, configure a line as an asynchronous network interface over which networking functions are performed.

The Cisco IOS software also supports IP routing connections for communication that requires connecting one network to another.
The Cisco IOS software supports protocol translation for PPP and SLIP between other network devices running Telnet, local-area transport (LAT), or X.25. For example, you can send IP packets across a public X.25 packet assembler/disassembler (PAD) network using SLIP or PPP encapsulation when SLIP or PPP protocol translation is enabled. For more information, see the chapter “Configuring Protocol Translation and Virtual Asynchronous Devices” in this publication.

If asynchronous dynamic routing is enabled, you can enable routing at the user level by using the `routing` keyword with the `slip` or `ppp` EXEC command.

Asynchronous interfaces offer both dedicated and dynamic address assignment, configurable hold queues and IP packet sizes, extended BOOTP requests, and permit and deny conditions for controlling access to lines. Figure 82 shows a sample asynchronous routing configuration.

Figure 82 Sample Asynchronous Routing Configuration

Asynchronous Interfaces and Broadcasts

The Cisco IOS software recognizes a variety of IP broadcast addresses. When a router receives an IP packet from an asynchronous client, it rebroadcasts the packet onto the network without changing the IP header.

The Cisco IOS software receives the SLIP or PPP client broadcasts and responds to BOOTP requests with the current IP address assigned to the asynchronous interface from which the request was received. This facility allows the asynchronous client software to automatically learn its own IP address.

How to Configure Asynchronous SLIP and PPP

To configure SLIP and PPP, perform the tasks in the following sections; all tasks are optional:

- Configuring Network-Layer Protocols over PPP and SLIP (Optional)
- Configuring Asynchronous Host Mobility (Optional)
- Making Additional Remote Node Connections (Optional)
Configuring Network-Layer Protocols over PPP and SLIP

You can configure network-layer protocols, such as AppleTalk, IP, and Internet Protocol Exchange (IPX), over PPP and SLIP. SLIP supports only IP, but PPP supports each of these protocols. See the sections that follow to configure these protocols over PPP and SLIP.

Configuring IP and PPP

To enable IP-PPP (IPCP) on a synchronous or asynchronous interface, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# <code>ip address ip-address mask</code> [secondary] or Router(config-if)# <code>ip unnumbered type number</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# <code>encapsulation ppp</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# <code>async mode interactive</code></td>
</tr>
</tbody>
</table>

Configuring IPX and PPP

You can configure IPX over PPP (IPXCP) on synchronous serial and asynchronous serial interfaces using one of two methods.

The first method associates an asynchronous interface with a loopback interface configured to run IPX. It permits you to configure IPX-PPP on asynchronous interfaces only.

The second method permits you to configure IPX-PPP on asynchronous and synchronous serial interfaces. However, it requires that you specify a dedicated IPX network number for each interface, which can require a substantial number of network numbers for a large number of interfaces.

You can also configure IPX to run on virtual terminal lines configured for PPP. See the section “Enabling IPX and PPP over X.25 to an IPX Network on Virtual Terminal Lines” later in this chapter.

Note

If you are configuring IPX-PPP on asynchronous interfaces, you should filter routing updates on the interface. Most asynchronous serial links have very low bandwidth, and routing updates take up a great deal of bandwidth. The previous task table uses the `ipx update interval` command to filter SAP updates. For more information about filtering routing updates, see the section about creating filters for updating the routing table in the chapter “Configuring Novell IPX” in the Cisco IOS AppleTalk and Novell IPX Configuration Guide.
IPX and PPP and Associating Asynchronous Interfaces with Loopback Interfaces

To permit IPX client connections to an asynchronous interface, the interface must be associated with a loopback interface configured to run IPX. To permit such connections, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1. <code>Router(config)# ipx routing [node]</code></td>
<td>Enables IPX routing.</td>
</tr>
<tr>
<td>Step 2. <code>Router(config)# interface loopback number</code></td>
<td>Creates a loopback interface, which is a virtual interface existing only inside the router, and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 3. <code>Router(config-if)# ipx network network¹</code></td>
<td>Enables IPX routing on the loopback interface.</td>
</tr>
<tr>
<td>Step 4. <code>Router(config-if)# exit</code></td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td>Step 5. <code>Router(config)# interface async number</code></td>
<td>Enters interface configuration mode for the asynchronous interface.</td>
</tr>
<tr>
<td>Step 6. <code>Router(config-if)# ip unnumbered type number</code></td>
<td>Configures IP unnumbered routing on the interface.</td>
</tr>
<tr>
<td>Step 7. <code>Router(config-if)# encapsulation ppp</code></td>
<td>Enables PPP encapsulation on the interface.</td>
</tr>
<tr>
<td>Step 8. <code>Router(config-if)# async mode interactive</code></td>
<td>Enables interactive mode on an asynchronous interface.</td>
</tr>
<tr>
<td>Step 9. <code>Router(config-if)# ipx ppp-client loopback number</code></td>
<td>Assigns the asynchronous interface to the loopback interface configured for IPX.</td>
</tr>
<tr>
<td>Step 10. <code>Router(config-if)# ipx update interval</code></td>
<td>Turns off Service Advertising Protocol (SAP) updates to optimize bandwidth on asynchronous interfaces.</td>
</tr>
</tbody>
</table>

1. Every interface must have a unique IPX network number.

IPX and PPP Using Dedicated IPX Network Numbers for Each Interface

To enable IPX and PPP, use the following commands beginning in global configuration mode. The first five steps are required. The last step is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1. <code>Router(config)# ipx routing [node]</code></td>
<td>Enables IPX routing.</td>
</tr>
<tr>
<td>Step 2. <code>Router(config)# interface loopback number</code></td>
<td>Creates a loopback interface, which is a virtual interface existing only inside the router, and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 3. <code>Router(config-if)# encapsulation ppp</code></td>
<td>Enables PPP encapsulation on the interface.</td>
</tr>
<tr>
<td>Step 4. <code>Router(config-if)# async mode interactive</code></td>
<td>Enables interactive mode on an asynchronous interface.</td>
</tr>
<tr>
<td>Step 5. <code>Router(config-if)# ipx network network¹</code></td>
<td>Enables IPX routing on the interface.</td>
</tr>
<tr>
<td>Step 6. <code>Router(config-if)# ipx update interval</code></td>
<td>(Optional) Turns off SAP updates to optimize bandwidth on asynchronous interfaces.</td>
</tr>
</tbody>
</table>

1. Every interface must have a unique IPX network number.

Enabling IPX and PPP over X.25 to an IPX Network on Virtual Terminal Lines

You can enable IPX-PPP on virtual terminal lines, which permits clients to log in to a virtual terminal on a router, invoke a PPP session at the EXEC prompt to a host, and run IPX to the host.
For example, in Figure 83, the client terminal on the X.25 network logs in to the access server via a virtual terminal line, which is configured for IPX-PPP. When the user connects to the access server and the EXEC prompt appears, enter the PPP command to connect to the IPX host. The virtual terminal is configured to run IPX, so when the PPP session is established from the access server, the terminal can access the IPX host using an IPX application.

Figure 83 IPX-PPP on a Virtual Asynchronous Interface

To enable IPX to run over your PPP sessions on virtual terminal lines, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ipx routing [node]</td>
</tr>
<tr>
<td>Enables IPX routing.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface loopback number</td>
</tr>
<tr>
<td>Creates a loopback interface and begins interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ipx network network1</td>
</tr>
<tr>
<td>Enables a virtual IPX network on the loopback interface.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# vty-async ipx ppp-client loopback number</td>
</tr>
<tr>
<td>Enables IPX-PPP on virtual terminal lines by assigning it to the loopback interface configured for IPX.</td>
<td></td>
</tr>
</tbody>
</table>

1. Every loopback interface must have a unique IPX network number.

Configuring AppleTalk and PPP

You can configure an asynchronous interface so that users can access AppleTalk zones by dialing in to the router via PPP through this interface. Users accessing the network can run AppleTalk and IP natively on a remote Macintosh, access any available AppleTalk zones from Chooser, use networked peripherals, and share files with other Macintosh users. This feature is referred to as AppleTalk Control Protocol (ATCP).

You create a virtual network that exists only for accessing an AppleTalk internet through the server. To create a new AppleTalk zone, enter the `appletalk virtual-net` command and use a new zone name; this network number is then the only one associated with this zone. To add network numbers to an existing AppleTalk zone, use this existing zone name in the command; this network number is then added to the existing zone. Routing is not supported on these interfaces.

To enable ATCP for PPP, use the following commands in interface configuration (asynchronous) mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# encapsulation ppp</td>
</tr>
<tr>
<td>Defines encapsulation as PPP on this interface.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# appletalk virtual-net network-number zone-name</td>
</tr>
<tr>
<td>Creates an internal network on the server.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# appletalk client-mode</td>
</tr>
<tr>
<td>Enables client-mode on this interface.</td>
<td></td>
</tr>
</tbody>
</table>
Configuring IP and SLIP

To enable IP-SLIP on a synchronous or asynchronous interface, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# ip address ip-address mask or Router(config-if)# ip unnumbered type number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# encapsulation slip</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# async mode interactive</td>
</tr>
</tbody>
</table>

Configuring Asynchronous Host Mobility

The access server supports a packet tunneling strategy that extends the internetwork—in effect creating a virtual private link for the mobile user. When a user activates asynchronous host mobility, the access server on which the remote user dials in becomes a remote point of presence (POP) for the home network of the user. Once logged in, users experience a server environment identical to the one that they experience when they connect directly to the “home” access server.

Once the network-layer connection is made, data packets are tunneled at the physical or data link layer instead of at the protocol layer. In this way, raw data bytes from dial-in users are transported directly to the “home” access server, which processes the protocols.

Figure 84 illustrates the implementation of asynchronous host mobility on an extended internetwork. A mobile user connects to an access server on the internetwork and, by activating asynchronous host mobility, is connected to a “home” access server configured with the appropriate username. The user sees an authentication dialog or prompt from the “home” system and can proceed as if he or she were connected directly to that device.

Asynchronous host mobility is enabled with the tunnel EXEC command and the ip tcp async-mobility server global configuration command. The ip tcp async-mobility server command establishes asynchronous listening on TCP tunnel port 57. The tunnel command sets up a network-layer connection to the specified destination. Both commands must be used. The access server accepts the connection, attaches it to a virtual terminal line, and runs a command parser capable of running the normal dial-in services. After the connection is established, data is transferred between the modem and network connection with a minimum of interpretations. When communications are complete, the network connection can be closed and terminated from either end.
To enable asynchronous host mobility, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip tcp async-mobility server Enables asynchronous listening on TCP tunnel port 57.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# exit Returns to user EXEC mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# tunnel host Sets up a network-layer connection to a router by specifying its Internet name or address. Replace the host argument with the name or address of the device that you want to connect to.</td>
</tr>
</tbody>
</table>

To connect from a router other than a Cisco router, you must use Telnet. After a connection is established, you receive an authentication dialog or prompt from your home router, and can proceed as if you are connected directly to that router. When communications are complete, the network connection can be closed and terminated from either end of the connection.

Making Additional Remote Node Connections

This section describes how to connect devices across telephone lines by using PPP and SLIP. It includes the following sections:

- Creating PPP Connections
- Making SLIP Connections

Creating PPP Connections

When you connect from a remote node computer through an asynchronous port on an access server to the EXEC facility to connect from the access server to a device on the network, use the following command in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> ppp {/default</td>
<td>(remote-ip-address</td>
</tr>
</tbody>
</table>

If you specify an address for the TACACS server using /default or tacacs-server, the address must be the first parameter in the command after you type ppp. If you do not specify an address or enter /default, you are prompted for an IP address or host name. You can enter /default at this point.

For example, if you are working at home on the device named ntpc in Figure 85 and want to connect to Server 1 using PPP, you could dial in to the access server. When you connect to the EXEC prompt on the access server, enter the ppp command to connect with the device.
How to Configure Asynchronous SLIP and PPP

Making SLIP Connections

To make a serial connection to a remote host by using SLIP, use the following command in EXEC mode:

```
Router> slip [/default] (remote-ip-address | remote-name) [@tacacs-server] [/routing] [/compressed]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> slip [/default] (remote-ip-address</td>
<td>remote-name)</td>
</tr>
<tr>
<td>[@tacacs-server] [/routing] [/compressed]</td>
<td></td>
</tr>
</tbody>
</table>

Your system administrator can configure SLIP to expect a specific address or to provide one for you. It is also possible to set up SLIP in a mode that compresses packets for more efficient use of bandwidth on the line.

If you specify an address for the TACACS server using /default or tacacs-server, the address must be the first parameter in the command after you type slip. If you do not specify an address or enter /default, you are prompted for an IP address or host name. You can enter /default at this point.

If you do not use the tacacs-server argument to specify a TACACS server for SLIP address authentication, the TACACS server specified at login (if any) is used for the SLIP address query.

To optimize bandwidth on a line, SLIP enables compression of the SLIP packets using Van Jacobson TCP header compression as defined in RFC 1144.

To terminate a session, disconnect from the device on the network using the command specific to that device. Then, exit from EXEC mode by using the exit command.

Configuring Remote Access to NetBEUI Services

NetBIOS Extended User Interface (NetBEUI) is a simple networking protocol developed by IBM for use by PCs in a LAN environment. It is an extension of the original Network Basic Input/Output System (NetBIOS) from IBM. NetBEUI uses a broadcast-based name to 802.x address translation mechanism. Because NetBEUI has no network layer, it is a nonroutable protocol.

The NetBIOS Frames Control Protocol (NBFCP) enables packets from a NetBEUI application to be transferred via a PPP connection. NetBEUI/PPP is supported in the access server and Cisco enterprise images only.

Using the Cisco IOS implementation, remote NetBEUI users can have access to LAN-based NetBEUI services. The PPP link becomes the ramp for the remote node to access NetBIOS services on the LAN. (See Figure 86.) An Logical Link Control, type 2 (LLC2) connection is set up between the remote access client and router, and a second LLC2 connection is set up between the router and the remote access (NetBEUI) server.
By supporting NetBEUI remote clients over PPP, Cisco routers function as a native NetBEUI dial-in router for remote NetBEUI clients. Thus, you can offer remote access to a NetBEUI network through asynchronous or ISDN connections.

To enable a remote access client using a NetBEUI application to connect with the remote router providing NetBEUI services, configure interfaces on the remote access client side and the remote router side by using the following command in interface configuration mode:

```
Router(config-if)# netbios nbf
```

Enables NBFCP on each side of a NetBEUI connection.

To view NetBEUI connection information, use the following command in EXEC mode:

```
Router> show nbf sessions
```

Views NetBEUI connection information.

Configuring Performance Parameters

To tune IP performance, complete the tasks in the following sections:

- **Compressing TCP Packet Headers** (As required)
- **Setting the TCP Connection Attempt Time** (As required)
- **Compressing IPX Packet Headers over PPP** (As required)
- **Enabling Fast Switching** (As required)
- **Controlling Route Cache Invalidation** (As required)
- **Customizing SLIP and PPP Banner Messages** (As required)

Compressing TCP Packet Headers

You can compress the headers of your TCP/IP packets to reduce their size and thereby increase performance. Header compression is particularly useful on networks with a large percentage of small packets, such as those supporting many Telnet connections. This feature compresses only the TCP
header, so it has no effect on UDP packets or other protocol headers. The TCP header compression technique, described fully in RFC 1144, is supported on serial lines using High-Level Data Link Control (HDLC) or PPP encapsulation. You must enable compression on both ends of a serial connection.

You can optionally specify outgoing packets to be compressed only when TCP incoming packets on the same interface are compressed. If you do not specify this option, the Cisco IOS software will compress all traffic. The default is no compression.

You can also specify the total number of header compression connections that can exist on an interface. You should configure one connection for each TCP connection through the specified interface.

To enable compression, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ip tcp header-compression [passive]</td>
<td>Enables TCP header compression.</td>
</tr>
<tr>
<td>Router(config-if)# ip tcp compression-connections number</td>
<td>Specifies the total number of header compression connections that can exist on an interface.</td>
</tr>
</tbody>
</table>

Note
When compression is enabled, fast switching is disabled. Fast processors can handle several fast interfaces, such as T1 lines, that are running header compression. However, you should think carefully about traffic characteristics in your network before compressing TCP headers. You might want to use the monitoring commands to help compare network utilization before and after enabling header compression.

Setting the TCP Connection Attempt Time

You can set the amount of time that the Cisco IOS software will wait to attempt to establish a TCP connection. In previous versions of the Cisco IOS software, the system would wait a fixed 30 seconds when attempting to make the connection. This amount of time is not enough in networks that have dialup asynchronous connections, such as a network consisting of dial-on-demand links that are implemented over modems, because it will affect your ability to use Telnet over the link (from the router) if the link must be brought up.

Because the connection attempt time is a host parameter, it does not pertain to traffic going through the router, just to traffic originated at it.

To set the TCP connection attempt time, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ip tcp synwait-time seconds</td>
<td>Sets the amount of time for which the Cisco IOS software will wait to attempt to establish a TCP connection.</td>
</tr>
</tbody>
</table>

Compressing IPX Packet Headers over PPP

The Cisco IOS software permits compression of IPX packet headers over various WAN media. There are two protocols for IPX compression on point-to-point links:

- CIPX, also known as Telebit style compression
- Shiva compression, which is proprietary
Cisco routers support IPX Header Compression (CIPX) on all point-to-point Novell interfaces over various WAN media.

CIPX is described in RFC 1553, *Compressing IPX Headers Over WAN Media*. The CIPX algorithm is based on the same concepts as Van Jacobson TCP/IP header compression algorithm. CIPX operates over PPP WAN links using either the IPXCP or IPXWAN communications protocols.

CIPX compresses all IPX headers and IPX/NCP headers for Novell packets with the following Network Control Program (NCP) packet types:

- 0x2222—NCP request from workstation
- 0x3333—NCP replies from file server

In this version of software, CIPX is configurable only for PPP links.

CIPX header compression can reduce header information from 30 bytes down to as little as 1 byte. This reduction can save bandwidth and reduce costs associated with IPX routing over WAN links that are configured to use IPXCP or IPXWAN.

Consider the following issues before implementing CIPX:

- CIPX is supported on all point-to-point IPX interfaces using PPP or IPXWAN processing (or both).
- CIPX needs to be negotiated for both directions of the link, because it uses the reverse direction of the link for communicating decompression problems back to the originating peer. In other words, all peer routers must have CIPX enabled.

To configure CIPX, use the following command in global configuration mode:

```
Router(config)# ipx compression cipx number-of-slots
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ipx compression cipx number-of-slots</td>
<td>Compresses IPX packet headers in a PPP session.</td>
</tr>
</tbody>
</table>

Note We recommend that you keep a slot value of 16. Because slots are maintained in the router buffer, a larger number can impact buffer space for other operations.

Enabling Fast Switching

Fast switching involves the use of a high-speed switching cache for IP routing. With fast switching, destination IP addresses are stored in the high-speed cache so that some time-consuming table lookups can be avoided. The Cisco IOS software generally offers better packet transfer performance when fast switching is enabled.

To enable or disable fast switching, use the following commands in interface configuration mode:

```
Step 1  Router(config-if)# ip route-cache
Step 2  Router(config-if)# no ip route-cache
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config-if)# ip route-cache</td>
<td>Enables fast-switching (use of a high-speed route cache for IP routing).</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# no ip route-cache</td>
<td>Disables fast switching and enables load balancing on a per-packet basis.</td>
</tr>
</tbody>
</table>
Controlling Route Cache Invalidation

The high-speed route cache used by IP fast switching is invalidated when the IP routing table changes. By default, the invalidation of the cache is delayed slightly to avoid excessive CPU load while the routing table is changing.

To control route cache invalidation, use the following commands in global configuration mode as needed for your network:

Note
This task normally should not be necessary. It should be performed only under the guidance of technical staff. Incorrect configuration can seriously degrade the performance of your router.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# no ip cache-invalidate-delay</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# ip cache-invalidate-delay [minimum maximum quiet-threshold]</td>
</tr>
</tbody>
</table>

Customizing SLIP and PPP Banner Messages

This feature enables you to customize the banner that is displayed when making a SLIP or PPP connection to avoid connectivity problems the default banner message causes in some non-Cisco SLIP and PPP dialup software. This feature is particularly useful when legacy client applications require a specialized connection string.

To configure the SLIP-PPP banner message, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# banner slip-ppp d message d</td>
<td>Configures the SLIP-PPP banner to display a customized message.</td>
</tr>
</tbody>
</table>

You can also use tokens in the banner message to display current IOS configuration variables. Tokens are keywords of the form $(token). When you include tokens in a banner command, Cisco IOS will replace $(token) with the corresponding configuration variable.

Table 35 lists the tokens that you can use in the banner slip-ppp command.

<table>
<thead>
<tr>
<th>Tokens</th>
<th>Information Displayed in Banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>$(hostname)</td>
<td>Hostname of the router</td>
</tr>
<tr>
<td>$(domain)</td>
<td>Domain name of the router</td>
</tr>
<tr>
<td>Slip/PPP Banner-Specific</td>
<td></td>
</tr>
<tr>
<td>$(peer-ip)</td>
<td>IP address of the peer machine</td>
</tr>
<tr>
<td>$(gate-ip)</td>
<td>IP address of the gateway machine</td>
</tr>
<tr>
<td>$(encap)</td>
<td>Encapsulation type (SLIP, PPP, and so on)</td>
</tr>
</tbody>
</table>
Table 35 SLIP Banner Tokens (continued)

<table>
<thead>
<tr>
<th>$(encap-alt)</th>
<th>Encapsulation type displayed as SL/IP instead of SLIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(mtu)</td>
<td>MTU size</td>
</tr>
</tbody>
</table>

Configuration Examples for Asynchronous SLIP and PPP

This section provides the following examples:

- Basic PPP Configurations Examples
- Remote Node NetBEUI Examples
- Remote Network Access Using PPP Basic Configuration Example
- Remote Network Access Using PPP and Routing IP Example
- Remote Network Access Using a Leased Line with Dial-Backup and PPP Example
- Multilink PPP Using Multiple Asynchronous Interfaces Example

Basic PPP Configurations Examples

The following example illustrates how to make a connection when the system administrator defines a default IP address by including the `peer default ip address` command in interface configuration mode.

```plaintext
Note

The `peer default ip address` command replaces the `async default ip address` command.
```

Once a correct password is entered, you are placed in SLIP mode, and the IP address appears:

```plaintext
Router> slip
Password:  
Entering SLIP mode.
Your IP address is 192.168.7.28, MTU is 1524 bytes
```

The following example shows the prompts displayed and the response required when dynamic addressing is used to assign the SLIP address:

```plaintext
Router> slip
IP address or hostname? 192.168.6.15
Password:  
Entering SLIP mode.
Your IP address is 192.168.6.15, MTU is 1524 bytes
```

In the previous example, the address 192.168.6.15 had been assigned as the default. Password verification is still required before SLIP mode can be enabled, as follows:

```plaintext
Router> slip default
Password:  
Entering SLIP mode.
Your IP address is 192.168.6.15, MTU is 1524 bytes
```

The following example illustrates the implementation of header compression on the interface with the IP address 172.16.2.1:

```plaintext
Router> slip 172.16.2.1 /compressed
Password:  
```
Entering SLIP mode.
Interface IP address is 172.16.2.1, MTU is 1500 bytes.
Header compression will match your system.

In the preceding example, the interface is configured for `ip tcp header-compression passive`, which permitted the user to enter the `/compressed` keyword at the EXEC mode prompt. The message “Header compression will match your system” indicates that the user has specified compression. If the line was configured for `ip tcp header-compression on`, this line would read “Header compression is On.”

The following example specifies a TACACS server named parlance for address authentication:

```
Router> slip 10.0.0.1@parlance
Password:
Entering SLIP mode.
Interface IP address is 10.0.0.1, MTU is 1500 bytes
Header compression will match your system.
```

The following example sets the SLIP-PPP banner using several tokens and the percent sign (%) as the delimiting character:

```
Router(config)# banner slip-ppp %
Enter TEXT message. End with the character '%'.
Starting $(encap) connection from $(gate-ip) to $(peer-ip) using a maximum packet size of $(mtu) bytes... %
```

When you enter the `slip` command, you will see the following banner. Notice that the $(token) syntax is replaced by the corresponding configuration variables.

```
Starting SLIP connection from 192.168.69.96 to 172.16.80.8 using a maximum packet size of 1500 bytes...
```

Remote Node NetBEUI Examples

In the following example, asynchronous interface 7 and Ethernet interface 0 are configured to enable NetBEUI connectivity between the corporate telecommuter client and the remote access (NetBEUI) server. The PC client is running the Chat legacy application in Windows NT to connect with the remote server. (See Figure 87.)

![Figure 87 Connecting a Remote NetBEUI Client to a Server Through a Router](s3911.png)

The configuration for the router is as follows:

```
interface async 7
netbios nbf
encapsulation ppp
```
You would also need to configure security, such as TACACS+, RADIUS, or another form of login authentication on the router.

Remote Network Access Using PPP Basic Configuration Example

Figure 88 illustrates a simple network configuration that includes remote PCs with modems connected via modem to a router. The cloud is a Public Switched Telephone Network (PSTN). The modems are connected via asynchronous lines, and the access server is connected to a local network.

In this example, the following is configured:

- An asynchronous line on the access server configured to use PPP encapsulation.
- An interface on the access server for the modem connection; this interface also needs to be configured to accept incoming modem calls.
- A default IP address for each incoming line.

This default address indicates the address of the remote PC to the server, unless the user explicitly specifies another when starting the PPP session.

The server is configured for interactive mode with autoselect enabled, which allows the user to automatically begin a PPP session upon detection of a PPP packet from the remote PC; or, the remote PC can explicitly begin a PPP session by entering the `ppp` EXEC command at the prompt.

The configuration is as follows:

```plaintext
ip routing
!
interface ethernet 0
  ip address 192.168.32.12 255.255.255.0
!
interface async 1
  encapsulation ppp
  async mode interactive
  async default ip address 192.168.32.51
  async dynamic address
  ip unnumbered ethernet 0

line 1
  autoselect ppp
  modem callin
  speed 19200
```
Remote Network Access Using PPP and Routing IP Example

Figure 89 illustrates a network configuration that provides routing functionality, allowing routing updates to be passed across the asynchronous lines.

This network is composed of remote and local PCs connected via modem and network connections to an access server. This access server is connected to a second access server via an asynchronous line running TCP/IP. The second access server is connected to a local network via modem.

For this scenario, you will need to configure the following:

- An asynchronous line on both access servers configured to use PPP encapsulation
- An interface on both access servers for the modem connection and for this interface to be configured to accept incoming modem calls
- A default IP address for each incoming line
- IP routing on all configured interfaces

Figure 89 Routing on an Asynchronous Line Using PPP

The configuration is as follows:

```
interface async 1
  encapsulation ppp
  async mode interactive
  async default ip address 192.168.32.10
  async dynamic address
  ip unnumbered ethernet 0
  async dynamic routing
```

If you want to pass IP routing updates across the asynchronous link, enter the following commands:

```
line 1
  autoselect ppp
  modem callin
  speed 19200
```

Next, enter the following commands to configure the asynchronous lines between the access servers beginning in global configuration mode:

```
interface async 2
  async default ip address 192.168.32.55
  ip tcp header compression passive
```
Finally, configure routing as described in the *Cisco IOS IP Configuration Guide* using one of the following methods. The server can route packets three different ways.

- Use ARP, which is the default behavior.
- Use a default-gateway by entering the command `ip default-gateway x.x.x.x`, where `x.x.x.x` is the IP address of a locally attached router.
- Run an IP routing protocol such as Routing Information Protocol (RIP), Interior Gateway Routing Protocol (IGRP), Enhanced IGRP (EIGRP), or Open Shortest Path First (OSPF).

Remote Network Access Using a Leased Line with Dial-Backup and PPP Example

Figure 90 illustrates a scenario where two networks are connected via access servers on a leased line. Redundancy is provided by a dial-backup line over the PSTN so that if the primary leased line goes down, the dial-backup line will be automatically brought up to restore the connection. This configuration would be useful for using an auxiliary port as the backup port for a synchronous port.

For this scenario, you would need to configure the following:

- Two asynchronous interfaces on each access server
- Two modem interfaces
- A default IP address for each interface
- Dial-backup on one modem interface per access server
- An interface connecting to the related network of an access server

Figure 90 Asynchronous Leased Line with Backup

The configuration for this scenario follows:

```
hostname routerA
!
username routerB password cisco
chat-script backup "" "AT" TIMEOUT 30 OK atdt\T TIMEOUT 30 CONNECT \c !
!
interface Serial0
 backup interface Async1
 ip address 192.168.222.12 255.255.255.0
!
interface Async1
 ip address 172.16.199.1 255.255.255.0
 encapsulation ppp
```
async default ip address 172.16.199.2
async dynamic address
async dynamic routing
async mode dedicated
dialer in-band
dialer map IP 172.16.199.2 name routerB modem-script backup broadcast 3241129
dialer-group 1
ppp authentication chap
!
dialer-list 1 protocol ip permit
!
line aux 0
modem InOut
rxspeed 38400
txspeed 38400

Multilink PPP Using Multiple Asynchronous Interfaces Example

The following example shows how to configure MLP using multiple asynchronous interfaces:

chat-script backup "" ""AT" TIMEOUT 30 OK atdt\T TIMEOUT 30 CONNECT \
!
ip address-pool local
ip pool foo 10.0.1.5 10.0.1.15
!
int as 1 (2, 3)
no ip address
dialer in-band
capsulation ppp
ppp multilink
dialer-rotary 1
!
interface dialer 1
caps ppp
ip unnumbered ethernet 0
peer default ip addr pool foo
ppp authentication chap
ppp multilink
dialer in-band
dialer map ip 10.200.100.9 name WAN-R3 modem-script backup broadcast 2322036
dialer load-threshold 5 either
dialer-group 1
!
dialer-list 1 protocol ip permit
!
line line 1 3
modem InOut
speed 115000
This chapter describes how to configure the PPP and Multilink PPP (MLP) features that can be configured on any interface. It includes the following main sections:

- PPP Encapsulation Overview
- Configuring PPP and MLP
- Configuring MLP Interleaving and Queueing
- Configuring MLP Inverse Multiplexer and Distributed MLP
- Monitoring and Maintaining PPP and MLP Interfaces
- Configuration Examples for PPP and MLP

This chapter also describes address pooling for point-to-point links, which is available on all asynchronous serial, synchronous serial, and ISDN interfaces. See the chapter “Configuring Asynchronous SLIP and PPP” in this publication for information about PPP features and requirements that apply only to asynchronous lines and interfaces.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the PPP commands in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

PPP Encapsulation Overview

PPP, described in RFC 1661, encapsulates network layer protocol information over point-to-point links. You can configure PPP on the following types of physical interfaces:

- Asynchronous serial
- High-Speed Serial Interface (HSSI)
- ISDN
- Synchronous serial

By enabling PPP encapsulation on physical interfaces, PPP can also be in effect on calls placed by the dialer interfaces that use the physical interfaces.
The current implementation of PPP supports option 3, authentication using Challenge Handshake Authentication Protocol (CHAP) or Password Authentication Protocol (PAP), option 4, Link Quality Monitoring (LQM), and option 5, Magic Number configuration options. The software always sends option 5 and negotiates for options 3 and 4 if so configured. All other options are rejected.

Magic Number support is available on all serial interfaces. PPP always attempts to negotiate for Magic Numbers, which are used to detect looped-back lines. Depending on how the `down-when-looped` command is configured, the router might shut down a link if it detects a loop.

The software provides the CHAP and PAP on serial interfaces running PPP encapsulation. For detailed information about authentication, refer to the *Cisco IOS Security Configuration Guide*.

Beginning with Cisco IOS Release 11.2 F, Cisco supported fast switching of incoming and outgoing DECnet and CLNS packets over PPP.

Configuring PPP and MLP

To configure PPP on a serial interface (including ISDN), perform the following task in interface configuration mode. This task is required for PPP encapsulation.

- **Enabling PPP Encapsulation**

You can also complete the tasks in the following sections; these tasks are optional but offer a variety of uses and enhancements for PPP on your systems and networks:

- **Enabling CHAP or PAP Authentication**
- **Enabling Link Quality Monitoring**
- **Configuring Compression of PPP Data**
- **Configuring Microsoft Point-to-Point Compression**
- **Configuring IP Address Pooling**
- **Configuring PPP Reliable Link**
- **Disabling or Reenabling Peer Neighbor Routes**
- **Configuring PPP Half-Bridging**
- **Configuring Multilink PPP**
- **Configuring MLP Interleaving**
- **Enabling Distributed CEF Switching**
- **Creating a Multilink Bundle**
- **Assigning an Interface to a Multilink Bundle**
- **Disabling PPP Multilink Fragmentation**
- **Verifying the MLP Inverse Multiplexer Configuration**

See the section “Monitoring and Maintaining PPP and MLP Interfaces” later in this chapter for tips on maintaining PPP. See the “Configuration Examples for PPP and MLP” at the end of this chapter for ideas on how to implement PPP and MLP in your network.
Enabling PPP Encapsulation

To enable PPP on serial lines to encapsulate IP and other network protocol datagrams, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# encapsulation ppp</td>
<td>Enables PPP encapsulation.</td>
</tr>
</tbody>
</table>

PPP echo requests are used as keepalives to minimize disruptions to the end users of your network. The no keepalive command can be used to disable echo requests.

Enabling CHAP or PAP Authentication

PPP with CHAP or PAP authentication is often used to inform the central site about which remote routers are connected to it.

With this authentication information, if the router or access server receives another packet for a destination to which it is already connected, it does not place an additional call. However, if the router or access server is using rotaries, it sends the packet out the correct port.

CHAP and PAP were originally specified in RFC 1334, and CHAP is updated in RFC 1994. These protocols are supported on synchronous and asynchronous serial interfaces. When using CHAP or PAP authentication, each router or access server identifies itself by a name. This identification process prevents a router from placing another call to a router to which it is already connected, and also prevents unauthorized access.

Access control using CHAP or PAP is available on all serial interfaces that use PPP encapsulation. The authentication feature reduces the risk of security violations on your router or access server. You can configure either CHAP or PAP for the interface.

To use CHAP or PAP, you must be running PPP encapsulation.

When CHAP is enabled on an interface and a remote device attempts to connect to it, the local router or access server sends a CHAP packet to the remote device. The CHAP packet requests or “challenges” the remote device to respond. The challenge packet consists of an ID, a random number, and the host name of the local router.

The required response has two parts:

- An encrypted version of the ID, a secret password, and the random number
- Either the host name of the remote device or the name of the user on the remote device

When the local router or access server receives the response, it verifies the secret password by performing the same encryption operation as indicated in the response and looking up the required host name or username. The secret passwords must be identical on the remote device and the local router.

Because this response is sent, the password is never sent in clear text, preventing other devices from stealing it and gaining illegal access to the system. Without the proper response, the remote device cannot connect to the local router.

CHAP transactions occur only when a link is established. The local router or access server does not request a password during the rest of the call. (The local device can, however, respond to such requests from other devices during a call.)
When PAP is enabled, the remote router attempting to connect to the local router or access server is required to send an authentication request. If the username and password specified in the authentication request are accepted, the Cisco IOS software sends an authentication acknowledgment.

After you have enabled CHAP or PAP, the local router or access server requires authentication from remote devices. If the remote device does not support the enabled protocol, no traffic will be passed to that device.

To use CHAP or PAP, you must perform the following tasks:

- Enable PPP encapsulation.
- Enable CHAP or PAP on the interface.
- For CHAP, configure host name authentication and the secret or password for each remote system with which authentication is required.

To enable PPP encapsulation, use the following command in interface configuration mode:

```
Router(config-if)# encapsulation ppp
```

To enable CHAP or PAP authentication on an interface configured for PPP encapsulation, use the following command in interface configuration mode:

```
Router(config-if)# ppp authentication {chap | chap pap | pap chap | pap} [if-needed] [list-name | default] [callin]
```

The `ppp authentication chap` optional keyword `if-needed` can be used only with Terminal Access Controller Access Control System (TACACS) or extended TACACS.

With authentication, authorization, and accounting (AAA) configured on the router and list names defined for AAA, the `list-name` optional keyword can be used with AAA/TACACS+.

Caution

If you use a `list-name` that has not been configured with the `aaa authentication ppp` command, you disable PPP on the line.

Add a `username` entry for each remote system from which the local router or access server requires authentication.
To specify the password to be used in CHAP or PAP caller identification, use the following command in global configuration mode:

```
Router(config)# username name [user-maxlinks link-number] password secret
```

Make sure this password does not include spaces or underscores.

To configure TACACS on a specific interface as an alternative to global host authentication, use one of the following commands in interface configuration mode:

```
Router(config-if)# ppp use-tacacs [single-line]
or
Router(config-if)# aaa authentication ppp
```

Use the `ppp use-tacacs` command with TACACS and Extended TACACS. Use the `aaa authentication ppp` command with AAA/TACACS+. For an example of CHAP, see the section “CHAP with an Encrypted Password Examples” at the end of this chapter. CHAP is specified in RFC 1994, *PPP Challenge Handshake Authentication Protocol (CHAP)*.

Enabling Link Quality Monitoring

Link Quality Monitoring (LQM) is available on all serial interfaces running PPP. LQM will monitor the link quality, and if the quality drops below a configured percentage, the router will shut down the link. The percentages are calculated for both the incoming and outgoing directions. The outgoing quality is calculated by comparing the total number of packets and bytes sent with the total number of packets and bytes received by the destination node. The incoming quality is calculated by comparing the total number of packets and bytes received with the total number of packets and bytes sent by the destination peer.

Note

LQM is not compatible with Multilink PPP.

When LQM is enabled, Link Quality Reports (LQRs) are sent, in place of keepalives, every keepalive period. All incoming keepalives are responded to properly. If LQM is not configured, keepalives are sent every keepalive period and all incoming LQRs are responded to with an LQR. LQR is specified in RFC 1989, *PPP Link Quality Monitoring*.
To enable LQM on the interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# ppp quality percentage</code></td>
<td>Enables LQM on the interface.</td>
</tr>
</tbody>
</table>

The `percentage` argument specifies the link quality threshold. That percentage must be maintained, or the link is deemed to be of poor quality and is taken down.

Configuring Compression of PPP Data

You can configure point-to-point software compression on serial interfaces that use PPP encapsulation. Compression reduces the size of a PPP frame via lossless data compression. PPP encapsulations support both predictor and Stacker compression algorithms.

If most of your traffic is already compressed files, do not use compression.

Most routers support software compression only, but in the Cisco 7000 series routers, hardware compression and distributed compression are also available, depending on the interface processor and compression service adapter hardware installed in the router.

To configure compression, complete the tasks in one of the following sections:

- **Software Compression**
- **Hardware-Dependent Compression**

Software Compression

Software compression is available in all router platforms. Software compression is performed by the main processor in the router.

Compression is performed in software and might significantly affect system performance. We recommend that you disable compression if the router CPU load exceeds 65 percent. To display the CPU load, use the `show process cpu` EXEC command.

To configure compression over PPP, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>Router(config-if)# encapsulation ppp</code></td>
<td>Enables encapsulation of a single protocol on the serial line.</td>
</tr>
<tr>
<td>Step 2 `Router(config-if)# compress [predictor</td>
<td>stac</td>
</tr>
</tbody>
</table>

Hardware-Dependent Compression

When you configure Stacker compression on Cisco 7000 series routers with a 7000 Series Route Switch Processor (RSP7000), on Cisco 7200 series routers, and on Cisco 7500 series routers, there are three methods of compression: hardware compression, distributed compression, and software compression.
Hardware and distributed compression are available on routers that have the SA-Comp/1 and SA-Comp/4 data compression service adapters (CSAs). CSAs are available on Cisco 7200 series routers, on Cisco 7500 series routers with second-generation Versatile Interface Processors (VIP2s), and on Cisco 7000 series routers with the RSP7000 and 7000 Series Chassis Interface (RSP7000CI). (CSAs require VIP2 model VIP2-40.)

To configure hardware or distributed compression over PPP, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables encapsulation of a single protocol on the serial line.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables compression.</td>
</tr>
</tbody>
</table>

Specifying the `compress stac` command with no options causes the router to use the fastest available compression method:

- If the router contains a CSA, compression is performed in the CSA hardware (hardware compression).
- If the CSA is not available, compression is performed in the software installed on the VIP2 (distributed compression).
- If the VIP2 is not available, compression is performed in the main processor of the router (software compression).

Using hardware compression in the CSA frees the main processor of the router for other tasks. You can also configure the router to use the VIP2 to perform compression by using the `distributed` option, or to use the main processor of the router by using the `software` option. If the VIP2 is not available, compression is performed in the main processor of the router.

When compression is performed in software installed in the main processor of the router, it might substantially affect system performance. We recommend that you disable compression in the main processor of the router if the router CPU load exceeds 40 percent. To display the CPU load, use the `show process cpu` EXEC command.

Specifying the `compress stac` command with no options causes the router to use the fastest available compression method.

Configuring Microsoft Point-to-Point Compression

Microsoft Point-to-Point Compression (MPPC) is a scheme used to compress PPP packets between Cisco and Microsoft client devices. The MPPC algorithm is designed to optimize bandwidth utilization in order to support multiple simultaneous connections. The MPPC algorithm uses a Lempel-Ziv (LZ)-based algorithm with a continuous history buffer called a dictionary.

The Compression Control Protocol (CCP) configuration option for MPPC is 18.
Exactly one MPPC datagram is encapsulated in the PPP information field. The PPP protocol field indicates the hexadecimal type of 00FD for all compressed datagrams. The maximum length of the MPPC datagram sent over PPP is the same as the MTU of the PPP interface; however, this length cannot be greater than 8192 bytes because the history buffer is limited to 8192 bytes. If compressing the data results in data expansion, the original data is sent as an uncompressed MPPC packet.

The history buffers between compressor and decompressor are synchronized by maintaining a 12-bit coherency count. If the decompressor detects that the coherency count is out of sequence, the following error recovery process is performed:

1. Reset Request (RR) packet is sent from the decompressor.
2. The compressor then flushes the history buffer and sets the flushed bit in the next packet it sends.
3. Upon receiving the flushed bit set packet, the decompressor flushes the history buffer.

Synchronization is achieved without CCP using the Reset Acknowledge (RA) packet, which can consume additional time.

Compression negotiation between a router and a Windows 95 client occurs through the following process:

1. Windows 95 sends a request for both STAC (option 17) and MPPC (option 18) compression.
2. The router sends a negative acknowledgment (NAK) requesting only MPPC.
3. Windows 95 resends the request for MPPC.
4. The router sends an acknowledgment (ACK) confirming MPPC compression negotiation.

MPPC Restrictions

The following restrictions apply to the MPPC feature:

- MPPC is supported only with PPP encapsulation.
- Compression can be processor intensive because it requires a reserved block of memory to maintain the history buffer. Do not enable modem or hardware compression because it may cause performance degradation, compression failure, or data expansion.
- Both ends of the point-to-point link must be using the same compression method (STAC, Predictor, or MPPC, for example).

Configuring MPPC

PPP encapsulation must be enabled before you can configure MPPC. For information on how to configure PPP encapsulation, see the section “Enabling PPP Encapsulation” earlier in this chapter.

There is only one command required to configure MPPC. The existing `compress` command supports the `mppc` keyword, which prepares the interface to initiate CCP and negotiates MPPC with the Microsoft client. To set MPPC once PPP encapsulation is configured on the router, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# compress [mppc [ignore-pfc]]</code></td>
<td>Enables MPPC on the interface.</td>
</tr>
</tbody>
</table>
The **ignore-pfc** keyword instructs the router to ignore the protocol field compression flag negotiated by LCP. For example, the uncompressed standard protocol field value for IP is 0x0021 and 0x21 when compression is enabled. When the **ignore-pfc** option is enabled, the router will continue to use the uncompressed value (0x0021). Using the **ignore-pfc** option is helpful for some asynchronous driver devices that use an uncompressed protocol field (0x0021), even though the protocol field compression is negotiated between peers. displays protocol rejections when the **debug ppp negotiation** command is enabled. These errors can be remedied by setting the **ignore-pfc** option.

Sample debug ppp negotiation Command Output Showing Protocol Reject

```
PPP Async2: protocol reject received for protocol = 0x2145
PPP Async2: protocol reject received for protocol = 0x2145
PPP Async2: protocol reject received for protocol = 0x2145
```

Configuring IP Address Pooling

A point-to-point interface must be able to provide a remote node with its IP address through the IP Control Protocol (IPCP) address negotiation process. The IP address can be obtained from a variety of sources. The address can be configured through the command line, entered with an EXEC-level command, provided by TACACS+ or the Dynamic Host Configuration Protocol (DHCP), or from a locally administered pool.

IP address pooling uses a pool of IP addresses from which an incoming interface can provide an IP address to a remote node through IPCP address negotiation process. IP address pooling also enhances configuration flexibility by allowing multiple types of pooling to be active simultaneously.

See the chapter “Configuring Asynchronous SLIP and PPP” in this publication for additional information about address pooling on asynchronous interfaces and about the Serial Line Internet Protocol (SLIP).

Peer Address Allocation

A peer IP address can be allocated to an interface through several methods:

- **Dialer map lookup**—This method is used only if the peer requests an IP address, no other peer IP address has been assigned, and the interface is a member of a dialer group.
- **PPP or SLIP EXEC command**—An asynchronous dialup user can enter a peer IP address or host name when PPP or SLIP is invoked from the command line. The address is used for the current session and then discarded.
- **IPCP negotiation**—If the peer presents a peer IP address during IPCP address negotiation and no other peer address is assigned, the presented address is acknowledged and used in the current session.
- **Default IP address**—The **peer default ip address** command and the **member peer default ip address** command can be used to define default peer IP addresses.
- **TACACS+ assigned IP address**—During the authorization phase of IPCP address negotiation, TACACS+ can return an IP address that the user being authenticated on a dialup interface can use. This address overrides any default IP address and prevents pooling from taking place.
- **DHCP retrieved IP address**—If configured, the routers acts as a proxy client for the dialup user and retrieves an IP address from a DHCP server. That address is returned to the DHCP server when the timer expires or when the interface goes down.
• Local address pool—The local address pool contains a set of contiguous IP addresses (a maximum of 1024 addresses) stored in two queues. The free queue contains addresses available to be assigned and the used queue contains addresses that are in use. Addresses are stored to the free queue in first-in, first-out (FIFO) order to minimize the chance the address will be reused, and to allow a peer to reconnect using the same address that it used in the last connection. If the address is available, it is assigned; if not, another address from the free queue is assigned.

• Chat script (asynchronous serial interfaces only)—The IP address in the dialer map command entry that started the script is assigned to the interface and overrides any previously assigned peer IP address.

• Virtual terminal/protocol translation—The translate command can define the peer IP address for a virtual terminal (pseudo asynchronous interface).

• The pool configured for the interface is used, unless TACACS+ returns a pool name as part of AAA. If no pool is associated with a given interface, the global pool named default is used.

Precedence Rules

The following precedence rules of peer IP address support determine which address is used. Precedence is listed from most likely to least likely:

1. AAA/TACACS+ provided address or addresses from the pool named by AAA/TACACS+
2. An address from a local IP address pool or DHCP (typically not allocated unless no other address exists)
3. Dialer map lookup address (not done unless no other address exists)
4. Address from an EXEC-level PPP or SLIP command, or from a chat script
5. Configured address from the peer default ip address command or address from the protocol translate command
6. Peer provided address from IPCP negotiation (not accepted unless no other address exists)

Interfaces Affected

Address pooling is available on all asynchronous serial, synchronous serial, ISDN BRI, and ISDN PRI interfaces that are running PPP.

Choosing the IP Address Assignment Method

The IP address pooling feature now allows configuration of a global default address pooling mechanism, per-interface configuration of the address pooling mechanism, and per-interface configuration of a specific address or pool name.

You can define the type of IP address pooling mechanism used on router interfaces in one or both of the ways described in the following sections:

• **Defining the Global Default Address Pooling Mechanism**

• **Configuring IP Address Assignment**
Defining the Global Default Address Pooling Mechanism

The global default mechanism applies to all point-to-point interfaces that support PPP encapsulation and that have not otherwise been configured for IP address pooling. You can define the global default mechanism to be either DHCP or local address pooling.

To configure the global default mechanism for IP address pooling, perform the tasks in one of following sections:

- Defining DHCP as the Global Default Mechanism
- Defining Local Address Pooling as the Global Default Mechanism

After you have defined a global default mechanism, you can disable it on a specific interface by configuring the interface for some other pooling mechanism. You can define a local pool other than the default pool for the interface or you can configure the interface with a specific IP address to be used for dial-in peers.

You can also control the DHCP network discovery mechanism; see the following section for more information:

- Controlling DHCP Network Discovery

Defining DHCP as the Global Default Mechanism

DHCP specifies the following components:

- A DHCP server—A host-based DHCP server configured to accept and process requests for temporary IP addresses.

- A DHCP proxy-client—A Cisco access server configured to arbitrate DHCP calls between the DHCP server and the DHCP client. The DHCP client-proxy feature manages a pool of IP addresses available to dial-in clients without a known IP address.

To enable DHCP as the global default mechanism, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip address-pool dhcp-proxy-client</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# ip dhcp-server [ip-address</td>
</tr>
</tbody>
</table>

In Step 2, you can provide as few as one or as many as ten DHCP servers for the proxy-client (the Cisco router or access server) to use. DHCP servers provide temporary IP addresses.
Defining Local Address Pooling as the Global Default Mechanism

To specify that the global default mechanism to use is local pooling, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip address-pool local</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# ip local pool (named-address-pool</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If no other pool is defined, a local pool called “default” is used. Optionally, you can associate an address pool with a named pool group.

Controlling DHCP Network Discovery

To allow peer routers to dynamically discover Domain Name System (DNS) and NetBIOS name server information configured on a DHCP server using PPP IP Control Protocol (IPCP) extensions, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ip dhcp-client network-discovery informs number-of-messages discovrers number-of-messages period seconds</td>
<td>Provides control of the DHCP network discovery mechanism by allowing the number of DHCP Inform and Discover messages to be sent, and a time-out period for retransmission, to be configured.</td>
</tr>
</tbody>
</table>

The `ip dhcp-client network-discovery` global configuration command provides a way to control the DHCP network discovery mechanism. The number of DHCP Inform or Discovery messages can be set to 1 or 2, which determines how many times the system sends the DHCP Inform or Discover messages before stopping network discovery. You can set a time-out period from 3 to 15 seconds, or leave the default time-out period at 15 seconds. Default for the `informs` and `discovers` keywords is 0, which disables the transmission of these messages.

Configuring IP Address Assignment

After you have defined a global default mechanism for assigning IP addresses to dial-in peers, you can configure the few interfaces for which it is important to have a nondefault configuration. You can do any of the following:

- Define a nondefault address pool for use by a specific interface.
- Define DHCP on an interface even if you have defined local pooling as the global default mechanism.
- Specify one IP address to be assigned to all dial-in peers on an interface.
- Make temporary IP addresses available on a per-interface basis to asynchronous clients using SLIP or PPP.
To define a nondefault address pool for use on an interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# ip local pool</td>
<td>Creates one or more local IP address pools.</td>
</tr>
<tr>
<td>(named-address-pool</td>
<td>default)</td>
</tr>
<tr>
<td>{first-IP-address [last-IP-address]} [group</td>
<td></td>
</tr>
<tr>
<td>group-name] [cache-size size]}</td>
<td></td>
</tr>
<tr>
<td>Step 2 Router(config)# interface type number</td>
<td>Specifies the interface and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# peer default ip address pool pool-name-list</td>
<td>Specifies the pool or pools for the interface to use.</td>
</tr>
</tbody>
</table>

To define DHCP as the IP address mechanism for an interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type number</td>
<td>Specifies the interface and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# peer default ip address pool dhcp</td>
<td>Specifies DHCP as the IP address mechanism on this interface.</td>
</tr>
</tbody>
</table>

To define a specific IP address to be assigned to all dial-in peers on an interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type number</td>
<td>Specifies the interface and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# peer default ip address ip-address</td>
<td>Specifies the IP address to assign.</td>
</tr>
</tbody>
</table>

Configuring PPP Reliable Link

PPP reliable link is Cisco’s implementation of RFC 1663, *PPP Reliable Transmission*, which defines a method of negotiating and using Numbered Mode Link Access Procedure, Balanced (LAPB) to provide a reliable serial link. Numbered Mode LAPB provides retransmission of error packets across the serial link.

Although LAPB protocol overhead consumes some bandwidth, you can offset that consumption by the use of PPP compression over the reliable link. PPP compression is separately configurable and is not required for use of a reliable link.

Note

PPP reliable link is available only on synchronous serial interfaces, including ISDN BRI and ISDN PRI interfaces. PPP reliable link cannot be used over V.120, and does not work with Multilink PPP.
To configure PPP reliable link on a specified interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ppp reliable-link</td>
<td>Enables PPP reliable link.</td>
</tr>
</tbody>
</table>

Having reliable links enabled does not guarantee that all connections through the specified interface will in fact use reliable link. It only guarantees that the router will attempt to negotiate reliable link on this interface.

Troubleshooting PPP

You can troubleshoot PPP reliable link by using the `debug lapb` command and the `debug ppp negotiations`, `debug ppp errors`, and `debug ppp packets` commands. You can determine whether LAPB has been established on a connection by using the `show interface` command.

Disabling or Reenabling Peer Neighbor Routes

The Cisco IOS software automatically creates neighbor routes by default; that is, it automatically sets up a route to the peer address on a point-to-point interface when the PPP IPCP negotiation is completed.

To disable this default behavior or to re-enable it once it has been disabled, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config-if)# no peer neighbor-route</td>
<td>Disables creation of neighbor routes.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# peer neighbor-route</td>
<td>Reenables creation of neighbor routes.</td>
</tr>
</tbody>
</table>

Note If entered on a dialer or asynchronous group interface, this command affects all member interfaces.

Configuring PPP Half-Bridging

For situations in which a routed network needs connectivity to a remote bridged Ethernet network, a serial or ISDN interface can be configured to function as a PPP half-bridge. The line to the remote bridge functions as a virtual Ethernet interface, and the serial or ISDN interface on the router functions as a node on the same Ethernet subnetwork as the remote network.

The bridge sends bridge packets to the PPP half-bridge, which converts them to routed packets and forwards them to other router processes. Likewise, the PPP half-bridge converts routed packets to Ethernet bridge packets and sends them to the bridge on the same Ethernet subnetwork.

Note An interface cannot function as both a half-bridge and a bridge.
Figure 91 shows a router with a serial interface configured as a PPP half-bridge. The interface functions as a node on the Ethernet subnetwork with the bridge. Note that the serial interface has an IP address on the same Ethernet subnetwork as the bridge.

Figure 91 Router Serial Interface Configured as a Half-Bridge

![Diagram of a router with a serial interface configured as a PPP half-bridge.](image)

Note
The Cisco IOS software supports no more than one PPP half-bridge per Ethernet subnetwork.

To configure a serial interface to function as a half-bridge, use the following commands beginning in global configuration mode as appropriate for your network:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface serial number</td>
</tr>
<tr>
<td>Specifies the interface and begins interface configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 2** | Router(config-if)# ppp bridge appletalk
 Router(config-if)# ppp bridge ip
 Router(config-if)# ppp bridge ipx [novell-ether | arpa | sap | snap] |
| Enables PPP half-bridging for one or more routed protocols: AppleTalk, IP, or Internet Protocol Exchange (IPX). |
| **Step 3** | Router(config-if)# ip address n.n.n.n
 Router(config-if)# appletalk address network.node
 Router(config-if)# appletalk cable-range cable-range network.node
 Router(config-if)# ipx network network |
| Provides a protocol address on the same subnetwork as the remote network. |

Note
You must enter the `ppp bridge` command either when the interface is shut down or before you provide a protocol address for the interface.

For more information about AppleTalk addressing, refer to the “Configuring AppleTalk” chapter of the *Cisco IOS AppleTalk and Novell IPX Configuration Guide*. For more information about IPX addresses and encapsulations, refer to the “Configuring Novell IPX” chapter of the *Cisco IOS AppleTalk and Novell IPX Configuration Guide*.
Configuring Multilink PPP

The Multilink PPP feature provides load balancing functionality over multiple WAN links, while providing multivendor interoperability, packet fragmentation and proper sequencing, and load calculation on both inbound and outbound traffic. The Cisco implementation of MLP supports the fragmentation and packet sequencing specifications in RFC 1990. Additionally, you can change the default endpoint discriminator value that is supplied as part of user authentication. Refer to RFC 1990 for more information about the endpoint discriminator.

MLP allows packets to be fragmented and the fragments to be sent at the same time over multiple point-to-point links to the same remote address. The multiple links come up in response to a defined dialer load threshold. The load can be calculated on inbound traffic, outbound traffic, or on either, as needed for the traffic between the specific sites. MLP provides bandwidth on demand and reduces transmission latency across WAN links.

MLP is designed to work over synchronous and asynchronous serial and BRI and PRI types of single or multiple interfaces that have been configured to support both dial-on-demand rotary groups and PPP encapsulation.

Perform the tasks in the following sections, as required for your network, to configure MLP:

- Configuring MLP on Synchronous Interfaces
- Configuring MLP on Asynchronous Interfaces
- Configuring MLP on a Single ISDN BRI Interface
- Configuring MLP on Multiple ISDN BRI Interfaces
- Configuring MLP Using Multilink Group Interfaces
- Changing the Default Endpoint Discriminator

Configuring MLP on Synchronous Interfaces

To configure Multilink PPP on synchronous interfaces, you configure the synchronous interfaces to support PPP encapsulation and Multilink PPP.

To configure a synchronous interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface serial number</td>
<td>Specifies an asynchronous interface.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# no ip address</td>
<td>Specifies no IP address for the interface.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# encapsulation ppp</td>
<td>Enables PPP encapsulation.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# no fair-queue</td>
<td>Disables WFQ on the interface.</td>
</tr>
<tr>
<td>Step 5 Router(config-if)# ppp multilink</td>
<td>Enables Multilink PPP.</td>
</tr>
<tr>
<td>Step 6 Router(config-if)# pulse-time seconds</td>
<td>Enables pulsing DTR signal intervals on the interface.</td>
</tr>
</tbody>
</table>

Repeat these steps for additional synchronous interfaces, as needed.
Configuring MLP on Asynchronous Interfaces

To configure MLP on asynchronous interfaces, configure the asynchronous interfaces to support dial-on-demand routing (DDR) and PPP encapsulation, and then configure a dialer interface to support PPP encapsulation, bandwidth on demand, and Multilink PPP.

To configure an asynchronous interface to support DDR and PPP encapsulation, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface async number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# no ip address</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# encapsulation ppp</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# dialer in-band</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# dialer rotary-group number</td>
</tr>
</tbody>
</table>

Repeat these steps for additional asynchronous interfaces, as needed.

At some point, adding more asynchronous interfaces does not improve performance. With the default maximum transmission unit (MTU) size, MLP should support three asynchronous interfaces using V.34 modems. However, packets might be dropped occasionally if the maximum transmission unit (MTU) size is small or large bursts of short frames occur.

To configure a dialer interface to support PPP encapsulation and Multilink PPP, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface dialer number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# no ip address</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# encapsulation ppp</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# dialer in-band</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# dialer load-threshold load [inbound</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-if)# ppp multilink</td>
</tr>
</tbody>
</table>

Configuring MLP on a Single ISDN BRI Interface

To enable MLP on a single ISDN BRI interface, you are not required to define a dialer rotary group separately because ISDN interfaces are dialer rotary groups by default.
To enable PPP on an ISDN BRI interface, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface bri number Specifies an interface and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address ip-address mask Provides an appropriate protocol address for the interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# encapsulation ppp Enables PPP encapsulation.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# dialer idle-timeout seconds Specifies the duration of idle time in seconds after which a line will be disconnected. By default, outbound traffic will reset the dialer idle timer. Adding the either keyword causes both inbound and outbound traffic to reset the timer; adding the inbound keyword causes only inbound traffic to reset the timer.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# dialer load-threshold load Specifies the dialer load threshold for bringing up additional WAN links.</td>
</tr>
<tr>
<td>Step 6</td>
<td>**Router(config-if)# dialer map protocol next-hop-address [name hostname] [spc] [speed 56</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-if)# dialer-group group-number Controls access to this interface by adding it to a dialer access group.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config-if)# ppp authentication pap (Optional) Enables PPP authentication.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Router(config-if)# ppp multilink Enables MLP on the dialer rotary group.</td>
</tr>
</tbody>
</table>

If you do not use PPP authentication procedures (Step 8), your telephone service must pass caller ID information.

The load threshold number is required. For an example of configuring MLP on a single ISDN BRI interface, see the section “MLP on One ISDN BRI Interface Example” at the end of this chapter.

When MLP is configured and you want a multilink bundle to be connected indefinitely, use the **dialer idle-timeout** command to set a very high idle timer. (The **dialer-load threshold 1** command no longer keeps a multilink bundle of \(n \) links connected indefinitely, and the **dialer-load threshold 2** command no longer keeps a multilink bundle of two links connected indefinitely.)

Configuring MLP on Multiple ISDN BRI Interfaces

To enable MLP on multiple ISDN BRI interfaces, set up a dialer rotary interface and configure it for Multilink PPP, and then configure the BRI interfaces separately and add them to the same rotary group.

To set up the dialer rotary interface for the BRI interfaces, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface dialer number Specifies the dialer rotary interface and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address address mask Specifies the protocol address for the dialer rotary interface.</td>
</tr>
</tbody>
</table>
If you do not use PPP authentication procedures (Step 10), your telephone service must pass caller ID information.

To configure each of the BRI interfaces to belong to the same dialer rotary group, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 Router(config-if)# encapsulation ppp</td>
<td>Enables PPP encapsulation.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# dialer in-band</td>
<td>Specifies in-band dialing.</td>
</tr>
<tr>
<td>Step 5 Router(config-if)# dialer idle-timeout seconds [inbound</td>
<td>either]</td>
</tr>
<tr>
<td>Step 6 Router(config-if)# dialer map protocol next-hop-address [name hostname] [spc] [speed 56</td>
<td>64] [broadcast] [dial-string[;isdn-subaddress]]</td>
</tr>
<tr>
<td>Step 7 Router(config-if)# dialer load-threshold load</td>
<td>Specifies the dialer load threshold, using the same threshold as the individual BRI interfaces.</td>
</tr>
<tr>
<td>Step 8 Router(config-if)# dialer-group number</td>
<td>Controls access to this interface by adding it to a dialer access group.</td>
</tr>
<tr>
<td>Step 9 Router(config-if)# ppp authentication chap</td>
<td>(Optional) Enables PPP CHAP authentication.</td>
</tr>
<tr>
<td>Step 10 Router(config-if)# ppp multilink</td>
<td>Enables Multilink PPP.</td>
</tr>
</tbody>
</table>

Repeat Steps 1 through 6 for each BRI that you want to belong to the same dialer rotary group.

When MLP is configured and you want a multilink bundle to be connected indefinitely, use the **dialer idle-timeout** command to set a very high idle timer. (The **dialer load-threshold 1** command no longer keeps a multilink bundle of n links connected indefinitely and the **dialer load-threshold 2** command no longer keeps a multilink bundle of two links connected indefinitely.)
Previously, when MLP was used in a dialer profile, a virtual access interface was always created as the bundle. It was bound to both the B channel and the dialer profile interfaces after creation and cloning. The dialer profile interface could act as the bundle without help from a virtual access interface. But with the Dynamic Multiple Encapsulations feature available in Cisco IOS Release 12.1, it is no longer the virtual access interface that is added into the connected group of the dialer profile, but the dialer profile itself. The dialer profile becomes a connected member of its own connected group. See the “Dynamic Multiple Encapsulations over ISDN Example” in the chapter “Configuring Peer-to-Peer DDR with Dialer Profiles” in this publication, for more information about dynamic multiple encapsulations and its relation to Multilink PPP.

For an example of configuring MLP on multiple ISDN BRI interfaces, see the section “MLP on Multiple ISDN BRI Interfaces Example” at the end of this chapter.

Configuring MLP Using Multilink Group Interfaces

MLP can be configured by assigning a multilink group to a virtual template configuration. Virtual templates allow a virtual access interface to dynamically clone interface parameters from the specified virtual template. If a multilink group is assigned to a virtual template, and then the virtual template is assigned to a physical interface, all links that pass through the physical interface will belong to the same multilink bundle.

A multilink group interface configuration will override a global multilink virtual template configured with the `multilink virtual template` command.

Multilink group interfaces can be used with ATM, PPP over Frame Relay, and serial interfaces.

To configure MLP using a multilink group interface, perform the following tasks:
- Configure the multilink group.
- Assign the multilink group to a virtual template.
- Configure the physical interface to use the virtual template.

To configure the multilink group, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# interface multilink group-number</td>
<td>Creates a multilink bundle and enters multilink interface configuration mode to configure the bundle.</td>
</tr>
<tr>
<td>Router(config-if)# ip address address mask</td>
<td>Sets a primary IP address for an interface.</td>
</tr>
<tr>
<td>Router(config-if)# encapsulation ppp</td>
<td>Enables PPP encapsulation.</td>
</tr>
<tr>
<td>Router(config-if)# ppp multilink</td>
<td>Enables MLP on an interface.</td>
</tr>
</tbody>
</table>

To assign the multilink group to a virtual template, perform the following task beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# interface virtual template number</td>
<td>Creates a virtual template interface that can be configured and applied dynamically in creating virtual access interfaces.</td>
</tr>
<tr>
<td>Router(config-if)# ppp multilink group group-number</td>
<td>Restricts a physical link to joining only a designated multilink-group interface.</td>
</tr>
</tbody>
</table>
To configure the physical interface and assign the virtual template to it, perform the following task beginning in global configuration mode. This example is for an ATM interface. However, multilink group interfaces can also be used with PPP over Frame Relay interfaces and serial interfaces.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# interface atm interface-number.subinterface-number point-to-point</td>
<td>Configures an ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Router(config-if)# pvc vpi/vci</td>
<td>Creates or assigns a name to an ATM permanent virtual circuit (PVC), specifies the encapsulation type on an ATM PVC, and enters ATM virtual circuit configuration mode.</td>
</tr>
<tr>
<td>Router(config-if-atm-vc)# protocol ppp virtual-template name</td>
<td>Configures VC multiplexed encapsulation on a PVC.</td>
</tr>
</tbody>
</table>

To see an example of how to configure MLP over an ATM PVC using a multilink group, see the section “MLP Using Multilink Group Interfaces over ATM Example” at the end of this chapter.

Changing the Default Endpoint Discriminator

By default, when the system negotiates use of MLP with the peer, the value that is supplied for the endpoint discriminator is the same as the username used for authentication. That username is configured for the interface by the Cisco IOS `ppp chap hostname` or `ppp pap sent-username` command, or defaults to the globally configured host name (or stack group name, if this interface is a Stack Group Bidding Protocol, or SGBP, group member).

To override or change the default endpoint discriminator, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ppp multilink endpoint {hostname</td>
<td>ip IP-address</td>
</tr>
</tbody>
</table>

To see an example of how to change the default endpoint discriminator, see the section “Changing the Default Endpoint Discriminator Example” at the end of this chapter.

Configuring MLP Interleaving and Queueing

Interleaving on MLP allows large packets to be multilink encapsulated and fragmented into a small enough size to satisfy the delay requirements of real-time traffic; small real-time packets are not multilink encapsulated and are sent between fragments of the large packets. The interleaving feature also provides a special transmit queue for the smaller, delay-sensitive packets, enabling them to be sent earlier than other flows.

Weighted fair queueing on MLP works on the packet level, not at the level of multilink fragments. Thus, if a small real-time packet gets queued behind a larger best-effort packet and no special queue has been reserved for real-time packets, the small packet will be scheduled for transmission only after all the fragments of the larger packet are scheduled for transmission.

Weighted fair queueing is now supported on all interfaces that support Multilink PPP, including MLP virtual access interfaces and virtual interface templates. Weighted fair-queueing is enabled by default.
Fair queuing on MLP overcomes a prior restriction. Previously, fair queuing was not allowed on virtual access interfaces and virtual interface templates. Interleaving provides the delay bounds for delay-sensitive voice packets on a slow link that is used for other best-effort traffic.

Interleaving applies only to interfaces that can configure a multilink bundle interface. These restrictions include virtual templates, dialer interfaces, and ISDN BRI or PRI interfaces.

Multilink and fair queuing are not supported when a multilink bundle is off-loaded to a different system using Multichassis Multilink PPP (MMP). Thus, interleaving is not supported in MMP networking designs.

MLP support for interleaving can be configured on virtual templates, dialer interfaces, and ISDN BRI or PRI interfaces. To configure interleaving, complete the following tasks:

- Configure the dialer interface, BRI interface, PRI interface, or virtual template, as defined in the relevant chapters of this manual.
- Configure MLP and interleaving on the interface or template.

Note

Fair queuing, which is enabled by default, must remain enabled on the interface.

Configuring MLP Interleaving

To configure MLP and interleaving on a configured and operational interface or virtual interface template, use the following commands beginning in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# ppp multilink</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ppp multilink interleave</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ppp multilink fragment delay milliseconds</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# ip rtp reserve lowest-udp-port range-of-ports [maximum-bandwidth]</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config)# multilink virtual-template 1</td>
</tr>
</tbody>
</table>

¹ This step is not used for ISDN or dialer interfaces.

Interleaving statistics can be displayed by using the `show interfaces` command, specifying the particular interface on which interleaving is enabled. Interleaving data is displayed only if there are interleaves. For example, the following line shows interleaves:

```
Output queue: 315/64/164974/31191 (size/threshold/drops/interleaves)
```
Configuring MLP Inverse Multiplexer and Distributed MLP

The distributed MLP feature combines T1/E1 lines in a VIP on a Cisco 7500 series router into a bundle that has the combined bandwidth of the multiple T1/E1 lines. This is done using a VIP MLP link. You choose the number of bundles and the number of T1/E1 lines in each bundle, which allows you to increase the bandwidth of your network links beyond that of a single T1/E1 line without having to purchase a T3 line.

Nondistributed MLP can only perform limited links, with CPU usage quickly reaching 90% with only a few T1/E1 lines running MLP. With distributed MLP, you can increase the router’s total capacity.

The MLP Inverse Multiplexer feature was designed for Internet service providers (ISPs) that want to have the bandwidth of multiple T1 lines with performance comparable to that of an inverse multiplexer without the need of buying standalone inverse-multiplexing equipment. A Cisco router supporting VIPs can bundle multiple T1 lines in a CT3 or CE3 interface. Bundling is more economical than purchasing an inverse multiplexer, and eliminates the need to configure another piece of equipment.

This feature supports the CT3 CE3 data rates without taxing the RSP and CPU by moving the data path to the VIP. This feature also allows remote sites to purchase multiple T1 lines instead of a T3 line, which is especially useful when the remote site does not need the bandwidth of an entire T3 line.

This feature allows multilink fragmentation to be disabled, so multilink packets are sent using Cisco Express Forwarding (CEF) on all platforms, if fragmentation is disabled. CEF is now supported with fragmentation enabled or disabled.

Figure 92 shows a typical network using a VIP MLP link. The Cisco 7500 series router is connected to the network with a CT3 line that has been configured with VIP MLP to carry two bundles of four T1 lines each. One of these bundles goes out to a Cisco 2500 series router and the other goes out to a Cisco 3800 series router.

Before beginning the MLP Inverse Multiplexer configuration tasks, make note of the following prerequisites and restrictions.

Prerequisites
- Distributed CEF switching must be enabled for distributed MLP.
- One of the following port adapters is required:
 - CT3IP
 - PA-MC-T3
Configuring Media-Independent PPP and Multilink PPP

- PA-MC-2T3+
- PA-MC-E3
- PA-MC-8T1
- PA-MC-4T1
- PA-MC-8E1

- All 16 E1s can be bundled from a PA-MC-E3 in a VIP4-80.

Restrictions
- The Multilink Inverse Multiplexer feature is supported only on the Cisco 7500 series routers.
- For bundles using IP, all lines in the bundle must have the same IP access list.
- Only one port adapter can be installed in a VIP.
- T1 and E1 lines cannot be mixed in a bundle.
- T1 lines in a bundle must have the same bandwidth.
- All lines in a bundle must have identical configurations.
- T1 lines can be combined in one bundle or up to 16 bundles per VIP.
- E1 lines can be combined in one bundle or up to 12 bundles per VIP.
- A maximum of eight T1 lines can be bundled on the VIP2-50 with two MB of SRAM.
- A maximum of 16 T1 lines can be bundled on the VIP2-50 with four or eight MB of SRAM.
- A maximum of 12 E1 lines can be bundled on the VIP2-50 with four or eight MB of SRAM.
- A maximum of 40 T1 lines can be bundled on the VIP4-80.
- Hardware compression is not supported.
- Encryption is not supported.
- Fancy/custom queueing is supported.
- MLP fragmentation is supported.
- Software compression is not recommended because CPU usage would negate performance gains.
- The maximum differential delay supported is 50 milliseconds.
- VIP CEF is limited to IP only; all other protocols are sent to the RSP.

Enabling fragmentation reduces the delay latency among bundle links, but adds some load to the CPU. Disabling fragmentation may result in better throughput.

If your data traffic is consistently of a similar size, we recommend disabling fragmentation. In this case, the benefits of fragmentation may be outweighed by the added load on the CPU.

To configure a multilink bundle, perform the tasks in the following sections:
- **Enabling Distributed CEF Switching** (Required for Distributed MLP)
- **Creating a Multilink Bundle** (Required)
- **Assigning an Interface to a Multilink Bundle** (Required)
- **Disabling PPP Multilink Fragmentation** (Optional)
- **Verifying the MLP Inverse Multiplexer Configuration** (Optional)
Enabling Distributed CEF Switching

To enable distributed MLP, first enable distributed CEF (dCEF) switching using the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# ip cef distributed</code></td>
<td>Enables dCEF switching.</td>
</tr>
</tbody>
</table>

Creating a Multilink Bundle

To create a multilink bundle, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface multilink group-number</code></td>
<td>Assigns a multilink group number and begins interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ip address address mask</code></td>
<td>Assigns an IP address to the multilink interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation ppp</code></td>
<td>Enables PPP encapsulation.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ppp multilink</code></td>
<td>Enables Multilink PPP.</td>
</tr>
</tbody>
</table>

Assigning an Interface to a Multilink Bundle

To assign an interface to a multilink bundle, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# no ip address</code></td>
<td>Removes any specified IP address.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# keepalive</code></td>
<td>Sets the frequency of keepalive packets.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation ppp</code></td>
<td>Enables PPP encapsulation.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ppp multilink group group-number</code></td>
<td>Restricts a physical link to joining only the designated multilink-group interface.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ppp multilink</code></td>
<td>Enables Multilink PPP.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ppp authentication chap</code></td>
<td>(Optional) Enables CHAP authentication.</td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# pulse-time seconds</code></td>
<td>(Optional) Configures DTR signal pulsing.</td>
</tr>
</tbody>
</table>
Disabling PPP Multilink Fragmentation

By default, PPP multilink fragmentation is enabled. To disable PPP multilink fragmentation, use the following command in interface configuration mode:

```
Router(config-if)# ppp multilink fragment disable
```

Verifying the MLP Inverse Multiplexer Configuration

To display information about the newly created multilink bundle, use the `show ppp multilink` command in EXEC mode:

```
Router# show ppp multilink

Multilink1, bundle name is group1
Bundle is Distributed
0 lost fragments, 0 reordered, 0 unassigned, sequence 0x0/0x0 rcvd/sent
0 discarded, 0 lost received, 1/255 load
Member links: 4 active, 0 inactive (max not set, min not set)
  Serial1/0/0:1
  Serial1/0/0:2
  Serial1/0/0:3
  Serial1/0/0:4
```

Monitoring and Maintaining PPP and MLP Interfaces

To monitor and maintain virtual interfaces, use the following command in EXEC mode:

```
Router> show ppp multilink
```

Displays MLP and MMP bundle information.

Configuration Examples for PPP and MLP

The following sections provide various PPP configuration examples:

- CHAP with an Encrypted Password Examples
- User Maximum Links Configuration Example
- MPPC Interface Configuration Examples
- IP Address Pooling Example
- DHCP Network Control Example
- PPP Reliable Link Examples
- MLP Examples
- MLP Interleaving and Queueing for Real-Time Traffic Example
CHAP with an Encrypted Password Examples

The following examples show how to enable CHAP on serial interface 0 of three devices:

Configuration of Router yyy
```
hostname yyy
interface serial 0
en encapsulation ppp
ppp authentication chap
username xxx password secretxy
username zzz password secretzy
```

Configuration of Router xxx
```
hostname xxx
interface serial 0
en encapsulation ppp
ppp authentication chap
username yyy password secretxy
username zzz password secretzy
```

Configuration of Router zzz
```
hostname zzz
interface serial 0
en encapsulation ppp
ppp authentication chap
username yyy password secretxy
username zzz password secretzy
```

When you look at the configuration file, the passwords will be encrypted and the display will look similar to the following:

```
hostname xxx
interface serial 0
en encapsulation ppp
ppp authentication chap
username yyy password 7 121F0A18
username zzz password 7 1329A055
```

User Maximum Links Configuration Example

The following example shows how to configure the username sTephen and establish a maximum of five connections. sTephen can connect through serial interface 1/0, which has a dialer map configured for it, or through PRI interface 0/0:23, which has dialer profile interface 0 dedicated to it.

The `aaa authorization network default local` command must be configured. PPP encapsulation and authentication must be enabled on all the interfaces that sTephen can connect to.

```
aaa new-model
aaa authorization network default local
enable secret sainststephen
enable password witharose
!
username sTephen user-maxlinks 5 password gardenhegoes
```
MPPC Interface Configuration Examples

The following example configures asynchronous interface 1 to implement MPPC and ignore the protocol field compression flag negotiated by LCP:

```conf
interface async1
  ip unnumbered ethernet0
  encapsulation ppp
  async default routing
  async dynamic routing
  async mode interactive
  peer default ip address 172.21.71.74
  compress mppc ignore-pfc
```

The following example creates a virtual access interface (virtual-template interface 1) and serial interface 0, which is configured for X.25 encapsulation. MPPC values are configured on the virtual-template interface and will ignore the negotiated protocol field compression flag.

```conf
interface ethernet0
  ip address 172.20.30.102 255.255.255.0

interface virtual-template1
  ip unnumbered ethernet0
  peer default ip address pool vtemp1
  compress mppc ignore-pfc

interface serial0
  no ipaddress
  no ip mroute-cache
  encapsulation x25
  x25 win 7
  x25 winout 7
  x25 ips 512
  x25 ops 512
```
IP Address Pooling Example

The following example configures a modem to dial in to a Cisco access server and obtain an IP address from the DHCP server. This configuration allows the user to log in and browse an NT network. Notice that the dialer 1 and group-async 1 interfaces are configured with the `ip unnumbered loopback` command, so that the broadcast can find the dialup clients and the client can see the NT network.

```
clock rate 50000
!
ip local pool vtemp1 172.20.30.103 172.20.30.104
ip route 0.0.0.0 0.0.0.0 172.20.30.1
!
translate x25 31320000000000 virtual-template 1

hostname secret
!
aaa new-model
aaa authentication login default local
aaa authentication ppp default if-needed local
aaa authentication ppp chap local
enable secret 5 encrypted-secret
enable password EPassWd1
!
username User1 password 0 PassWd2
username User2 password 0 PassWd3
username User3 password 0 PassWd4
no ip domain-lookup
ip dhcp-server 10.47.0.131
async-bootp gateway 10.47.0.1
async-bootp nbns-server 10.47.0.131
isdn switch-type primary-4ess
!
!
controller t1 0
framing esf
clock source line primary
linecode b8zs
pri-group timeslots 1-24
!
controller t1 1
framing esf
clock source line secondary
linecode b8zs
!
interface loopback 0
  ip address 10.47.252.254 255.255.252.0
!
interface ethernet 0
  ip address 10.47.0.5 255.255.252.0
  ip helper-address 10.47.0.131
  ip helper-address 10.47.0.255
  no ip route-cache
  no ip mroute-cache
!
interface serial 0
  no ip address
  no ip mroute-cache
  shutdown

```
interface serial 1
 no ip address
 shutdown
!
interface serial 0:23
 no ip address
 encapsulation ppp
 no ip mroute-cache
 dialer rotary-group 1
 dialer-group 1
 isdn incoming-voice modem
 no fair-queue
 no cdp enable
!
interface group-async 1
 ip unnumbered loopback 0
 ip helper-address 10.47.0.131
 ip tcp header-compression passive
 encapsulation ppp
 no ip route-cache
 no ip mroute-cache
 async mode interactive
 peer default ip address dhcp
 no fair-queue
 no cdp enable
 ppp authentication chap
 group-range 1 24
!
interface dialer 1
 ip unnumbered loopback 0
 encapsulation ppp
 dialer in-band
 dialer-group 1
 no peer default ip address
 no fair-queue
 no cdp enable
 ppp authentication chap
 ppp multilink
!
routet ospf 172
 redistribute connected subnets
 redistribute static
 network 10.47.0.0 0.0.3.255 area 0
 network 10.47.156.0 0.0.3.255 area 0
 network 10.47.168.0 0.0.3.255 area 0
 network 10.47.252.0 0.0.3.255 area 0
!
ip local pool RemotePool 10.47.252.1 10.47.252.24
ip classless
ip route 10.0.140.0 255.255.255.0 10.59.254.254
ip route 10.2.140.0 255.255.255.0 10.59.254.254
ip route 10.40.0.0 255.255.255.0 10.59.254.254
ip route 10.59.254.0 255.255.255.0 10.59.254.254
ip route 172.23.0.0 255.255.0.0 10.59.254.254
ip route 192.168.0.0 255.255.0.0 10.59.254.254
ip ospf name-lookup
no logging buffered
access-list 101 deny ip any host 255.255.255.255
access-list 101 deny ospf any any
access-list 101 permit ip any any
dialer-list 1 protocol ip list 101
snmp-server community public RO
!
DHCP Network Control Example

The following partial example adds the `ip dhcp-client network-discovery` command to the previous “IP Address Pooling Example” to allow peer routers to more dynamically discover DNS and NetBIOS name servers. If the `ip dhcp-client network-discovery` command is disabled, the system falls back to the static configurations made using the `async-bootp dns-server` and `async-bootp nb-server` global configuration commands.

```plaintext
hostname secret

! aaa new-model
aaa authentication login default local
aaa authentication ppp default if-needed local
aaa authentication ppp chap local
enable secret 5 encrypted-secret
enable password EPassWd1

username User1 password 0 PassWd2
username User2 password 0 PassWd3
username User3 password 0 PassWd4
no ip domain-lookup
ip dhcp-server 10.47.0.131
ip dhcp-client network-discovery informs 2 discovers 2 period 12
async-bootp gateway 10.47.0.1
async-bootp nbns-server 10.47.0.131
isdn switch-type primary-4ess
```

PPP Reliable Link Examples

The following example enables PPP reliable link and STAC compression on BRI 0:

```plaintext
interface BRI0
description Enables stac compression on BRI 0
ip address 172.1.1.1 255.255.255.0
encapsulation ppp
dialer map ip 172.1.1.2 name baseball 14195386368
compress stac
ppp authentication chap
dialer-group 1
ppp reliable-link
```
The following example shows output of the `show interfaces` command when PPP reliable link is enabled. The LAPB output lines indicate that PPP reliable link is provided over LAPB.

```
Router# show interfaces serial 0
Serial0 is up, line protocol is up
Hardware is HD64570
Description: connects to enkidus 0
Internet address is 172.21.10.10/8
MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely 255/255, load 1/255
Encapsulation PPP, loopback not set
LCP Open
Open: IPCP, CDP
LAPB DTE, state CONNECT, modulo 8, k 7, N1 12048, N2 20
  T1 3000, T2 0, interface outage (partial T3) 0, T4 0, PPP over LAPB
  VS 1, VR 1, tx NR 1, Remote VR 1, Retransmissions 0
  Queues: U/S frames 0, I frames 0, unack. 0, reTx 0
  IFRAMES 1017/1017 RNRs 0/0 REJs 0/0 SABMs/Es 1/1 FRMRs 0/0 DISCs 0/0
Last input 00:00:18, output 00:00:08, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0 (size/max/drops); Total output drops: 0
Queueing strategy: weighted fair
Output queue: 0/64/0 (size/threshold/drops)
  Conversations 0/1 (active/max active)
  Reserved Conversations 0/0 (allocated/max allocated)
5 minute input rate 3000 bits/sec, 4 packets/sec
5 minute output rate 3000 bits/sec, 7 packets/sec
  1365 packets input, 107665 bytes, 0 no buffer
  Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
  0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
  2064 packets output, 109207 bytes, 0 underruns
  0 output errors, 0 collisions, 4 interface resets
  0 output buffer failures, 0 output buffers swapped out
  4 carrier transitions
DCD=up  DSR=up  DTR=up  RTS=up  CTS=up
```

MLP Examples

This section contains the following MLP examples:

- **MLP on Synchronous Serial Interfaces Example**
- **MLP on One ISDN BRI Interface Example**
- **MLP on Multiple ISDN BRI Interfaces Example**
- **MLP Using Multilink Group Interfaces over ATM Example**
- **Changing the Default Endpoint Discriminator Example**

MLP on Synchronous Serial Interfaces Example

MLP provides characteristics most similar to hardware inverse multiplexers, with good manageability and Layer 3 services support. Figure 93 shows a typical inverse multiplexing application using two Cisco routers and Multilink PPP over four T1 lines.
The following example shows the configuration commands used to create the inverse multiplexing application:

Router A Configuration

```conf
hostname RouterA
!
username RouterB password your_password
ip subnet-zero
multilink virtual-template 1
!
interface Virtual-Template1
 ip unnumbered Ethernet0
 ppp authentication chap
 ppp multilink
!
interface Serial0
 no ip address
 encapsulation ppp
 no fair-queue
 ppp multilink
 pulse-time 3
!
interface Serial1
 no ip address
 encapsulation ppp
 no fair-queue
 ppp multilink
 pulse-time 3
!
interface Serial2
 no ip address
 encapsulation ppp
 no fair-queue
 ppp multilink
 pulse-time 3
!
interface Serial3
 no ip address
 encapsulation ppp
 no fair-queue
 ppp multilink
 pulse-time 3
!
interface Ethernet0
 ip address 10.17.1.254 255.255.255.0
!
router rip
network 10.0.0.0
!
end
```
Router B Configuration

hostname RouterB
!
username RouterB password your_password
ip subnet-zero
multilink virtual-template 1
!
interface Virtual-Template1
ip unnumbered Ethernet0
ppp authentication chap
ppp multilink
!
interface Serial0
no ip address
encapsulation ppp
no fair-queue
ppp multilink
pulse-time 3
!
interface Serial1
no ip address
encapsulation ppp
no fair-queue
ppp multilink
pulse-time 3
!
interface Serial2
no ip address
encapsulation ppp
no fair-queue
ppp multilink
pulse-time 3
!
interface Serial3
no ip address
encapsulation ppp
no fair-queue
ppp multilink
pulse-time 3
!
interface Ethernet0
ip address 10.17.2.254 255.255.255.0
!
router rip
network 10.0.0.0
!
end

MLP on One ISDN BRI Interface Example

The following example enables MLP on BRI interface 0. Because an ISDN interface is a rotary group by default, when one BRI is configured, no dialer rotary group configuration is required.

interface bri 0
description connected to ntt 81012345678902
ip address 172.31.1.7 255.255.255.0
encapsulation ppp
dialer idle-timeout 30
dialer load-threshold 40 either
dialer map ip 172.31.1.8 name atlanta 81012345678901
dialer-group 1
ppp authentication pap
ppp multilink

MLP on Multiple ISDN BRI Interfaces Example

The following example configures multiple ISDN BRI interfaces to belong to the same dialer rotary group for Multilink PPP. The `dialer rotary-group` command is used to assign each of the ISDN BRI interfaces to that dialer rotary group.

```plaintext
interface BRI0
  no ip address
  encapsulation ppp
dialer idle-timeout 500
dialer rotary-group 0
dialer load-threshold 30 either
!
interface BRI1
  no ip address
  encapsulation ppp
dialer idle-timeout 500
dialer rotary-group 0
dialer load-threshold 30 either
!
interface BRI2
  no ip address
  encapsulation ppp
dialer idle-timeout 500
dialer rotary-group 0
dialer load-threshold 30 either
!
interface Dialer0
  ip address 10.0.0.2 255.0.0.0
  encapsulation ppp
dialer in-band
dialer idle-timeout 500
dialer map ip 10.0.0.1 name atlanta broadcast 81012345678901
dialer load-threshold 30 either
  dialer-group 1
  ppp authentication chap
  ppp multilink
```

MLP Using Multilink Group Interfaces over ATM Example

The following example configures MLP over an ATM PVC using a multilink group:

```plaintext
interface multilink 1
  ip address 10.200.83.106 255.255.255.252
  ip tcp header-compression iphc-format delay 20000
  service policy output xyz
  encapsulation ppp
  ppp multilink
  ppp multilink fragment delay 10
  ppp multilink interleave
  ppp timeout multilink link remove 10
  ip rtp header-compression iphc-format

interface virtual-template 3
  bandwidth 128
  ppp multilink group 1
```
interface atm 4/0.1 point-to-point
 pvc 0/32
 abr 100 80
 protocol ppp virtual-template 3

Changing the Default Endpoint Discriminator Example

The following partial example changes the MLP endpoint discriminator from the default CHAP host name C-host1 to the E.164-compliant telephone number 1 603 555-1212:

interface dialer 0
 ip address 10.1.1.4 255.255.255.0
 encapsulation ppp
dialer remote-name R-host1
dialer string 23456
dialer pool 1
dialer-group 1
 ppp chap hostname C-host1
 ppp multilink endpoint phone 16035551212

MLP Interleaving and Queueing for Real-Time Traffic Example

The following example defines a virtual interface template that enables MLP interleaving and a maximum real-time traffic delay of 20 milliseconds, and then applies that virtual template to the MLP bundle:

interface virtual-template 1
 ip unnumbered ethernet 0
 ppp multilink
 ppp multilink interleave
 ppp multilink fragment delay 20
 ip rtp interleave 32768 20 1000
 multilink virtual-template 1

The following example enables MLP interleaving on a dialer interface that controls a rotary group of BRI interfaces. This configuration permits IP packets to trigger calls.

interface BRI 0
description connected into a rotary group
 encapsulation ppp
dialer rotary-group 1
! interface BRI 1
 no ip address
 encapsulation ppp
dialer rotary-group 1
! interface BRI 2
 encapsulation ppp
dialer rotary-group 1
! interface BRI 3
 no ip address
 encapsulation ppp
dialer rotary-group 1
!
interface BRI 4
 encapsulation ppp
dialer rotary-group 1
!
interface Dialer 0
description Dialer group controlling the BRIs
ip address 10.1.1.1 255.255.255.0
encapsulation ppp
dialer map ip 10.1.1.2 name angus 14802616900
dialer-group 1
 ppp authentication chap
! Enables Multilink PPP interleaving on the dialer interface and reserves
! a special queue.
 ppp multilink
 ppp multilink interleave
 ip rtp reserve 32768 20 1000
! Keeps fragments of large packets small enough to ensure delay of 20 ms or less.
 ppp multilink fragment delay 20
dialer-list 1 protocol ip permit

T3 Controller Configuration for an MLP Multilink Inverse Multiplexer Example

In the following example, the T3 controller is configured and four channelized interfaces are created:

controller T3 1/0/0
framing m23
cablelength 10
t1 1 timeslots 1-24
t1 2 timeslots 1-24
t1 3 timeslots 1-24
t1 4 timeslots 1-24

Multilink Interface Configuration for Distributed MLP Example

In the following example, four multilink interfaces are created with distributed CEF switching and MLP enabled. Each of the newly created interfaces is added to a multilink bundle.

interface multilink1
 ip address 10.0.0.0 10.255.255.255
 ppp chap hostname group 1
 ppp multilink
 ppp multilink group 1

interface serial 1/0/0/1
 no ip address
 encapsulation ppp
 ip route-cache distributed
 no keepalive
 ppp multilink
 ppp multilink group 1

interface serial 1/0/0/2
 no ip address
 encapsulation ppp
 ip route-cache distributed
 no keepalive
 ppp chap hostname group 1
 ppp multilink
 ppp multilink group 1
interface serial 1/0/0::3
no ip address
encapsulation ppp
ip route-cache distributed
no keepalive
ppp chap hostname group 1
ppp multilink
ppp multilink group 1

interface serial 1/0/0::4
no ip address
encapsulation ppp
ip route-cache distributed
no keepalive
ppp chap hostname group 1
ppp multilink
ppp multilink group 1
Configuring Multichassis Multilink PPP

This chapter describes how to configure Multichassis Multilink PPP (MLP). It includes the following main sections:

- Multichassis Multilink PPP Overview
- How to Configure MMP
- Monitoring and Maintaining MMP Virtual Interfaces
- Configuration Examples for MMP

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the MMP commands mentioned in this chapter, refer to the Cisco IOS Dial Technologies Command Reference, Release 12. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Multichassis Multilink PPP Overview

Prior to Release 11.2, Cisco IOS supported Multilink PPP (MLP). Beginning with Release 11.2, Cisco IOS software also supports Multichassis Multilink PPP (MMP).

MLP provides the capability of splitting and recombining packets to a single end system across a logical pipe (also called a bundle) formed by multiple links. MMP provides bandwidth on demand and reduces transmission latency across WAN links.

MMP, however, provides the additional capability for links to terminate at multiple routers with different remote addresses. MMP can also handle both analog and digital traffic.

MLP is intended for situations with large pools of dial-in users, in which a single chassis cannot provide enough dial ports. This feature allows companies to provide a single dialup number to its users and to apply the same solution to analog and digital calls. This feature allows Internet service providers (ISPs), for example, to allocate a single ISDN rotary number to several ISDN PRIs across several routers. This capability allows for easy expansion and scalability and for assured fault tolerance and redundancy.

MMP allows network access servers to be stacked together and to appear as a single network access server chassis so that if one network access server fails, another network access server in the stack can accept calls.

With large-scale dial-out, these features are available for both outgoing and incoming calls.
Stack Groups

Routers or access servers are configured to belong to groups of peers called stack groups. All members of the stack group are peers; stack groups do not need a permanent lead router. Any stack group member can answer calls coming from a single access number, which is usually an ISDN PRI hunt group. Calls can come in from remote user devices, such as routers, modems, ISDN terminal adapters, and PC cards.

Once a connection is established with one member of a stack group, that member owns the call. If a second call comes in from the same client and a different router answers the call, the router establishes a tunnel and forwards all packets that belong to the call to the router that owns the call. Establishing a tunnel and forwarding calls through it to the router that owns the call is sometimes called projecting the PPP link to the call master.

If a more powerful router is available, it can be configured as a member of the stack group and the other stack group members can establish tunnels and forward all calls to it. In such a case, the other stack group members are just answering calls and forwarding traffic to the more powerful offload router.

Note: High-latency WAN lines between stack group members can make stack group operation inefficient.

Call Handling and Bidding

MMP call handling, bidding, and Layer 2 forwarding operations in the stack group proceed as follows:

1. When the first call comes in to the stack group, router A answers.
2. In the bidding, router A wins because it already has the call. Router A becomes the call-master for that session with the remote device. (Router A might also be called the host to the master bundle interface.)
3. When the remote device that initiated the call needs more bandwidth, it makes a second MLP call to the group.
4. When the second call comes in, router D answers it and informs the stack group. Router A wins the bidding because it already is handling the session with that remote device.
5. Router D establishes a tunnel to router A and forwards the raw PPP data to router A.
6. Router A reassembles and resequences the packets.
7. If more calls come in to router D and they too belong to router A, the tunnel between routers A and D enlarges to handle the added traffic. Router D does not establish an additional tunnel to router A.
8. If more calls come in and are answered by any other router, that router also establishes a tunnel to router A and forwards the raw PPP data.
9. The reassembled data is passed on the corporate network as if it had all come through one physical link.

Figure 94 shows the call handling and bidding process in a typical MLP scenario.
In contrast to Figure 94, Figure 95 features an offload router. Access servers that belong to a stack group answer calls, establish tunnels, and forward calls to a Cisco 4700 router that wins the bidding and is the call master for all the calls. The Cisco 4700 reassembles and resequences all the packets that come in through the stack group.

Note
You can build stack groups using different access-server, switching, and router platforms. However, universal access servers such as the Cisco AS5200 should not be combined with ISDN-only access servers such as the Cisco 4000 series platform. Because calls from the central office are allocated in an arbitrary way, this combination could result in an analog call being delivered to a digital-only access server, which would not be able to handle the call.

MMP support on a group of routers requires that each router be configured to support the following:

- Multilink PPP
- Stack Group Bidding Protocol (SGBP)
- Virtual template used for cloning interface configuration to support MMP
MMP is supported on the Cisco 2500, 4500, and 7500 series platforms and on synchronous serial, asynchronous serial, ISDN BRI, ISDN PRI, and dialer interfaces. MMP does not require reconfiguration of telephone company switches. Dialer profiles are not supported for SGBP (Stack Group Bidding Protocol).

How to Configure MMP

To configure MMP, perform the tasks in the following sections, in the order listed:

- Configuring the Stack Group and Identifying Members (Required)
- Configuring a Virtual Template and Creating a Virtual Template Interface (Required)

See the section “Monitoring and Maintaining MMP Virtual Interfaces” later in this chapter for tips on maintaining MMP. See the examples in the section “Configuration Examples for MMP” later in this chapter for ideas on how to configure MMP in your network.

Configuring the Stack Group and Identifying Members

To configure the stack group on the router, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# username name password password</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# sgbp group name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# sgbp member peer-name [peer-ip-address]</td>
</tr>
</tbody>
</table>

Repeat these steps for each additional stack group peer.

Note

Only one stack group can be configured per access server or router.

Configuring a Virtual Template and Creating a Virtual Template Interface

You need to configure a virtual template for MMP when asynchronous or synchronous serial interfaces are used, but dialers are not defined. When dialers are configured on the physical interfaces, do not specify a virtual template interface.
To configure a virtual template for any nondialer interfaces, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# multilink virtual-template number</td>
<td>Defines a virtual template for the stack group.</td>
</tr>
<tr>
<td></td>
<td>This step is not required if ISDN interfaces or other dialers are configured and used by the physical interfaces.</td>
</tr>
<tr>
<td>Step 2 Router(config)# ip local pool default ip-address</td>
<td>Specifies an IP address pool by using any pooling mechanism—for example, IP local pooling or Dynamic Host Configuration Protocol (DHCP) pooling.</td>
</tr>
<tr>
<td>Step 3 Router(config)# interface virtual-template number</td>
<td>Creates a virtual template interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>This step is not required if ISDN interfaces or other dialers are configured and used by the physical interfaces.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# ip unnumbered ethernet 0</td>
<td>Specifies unnumbered IP.</td>
</tr>
<tr>
<td>Step 5 Router(config-if)# no ip route-cache</td>
<td>Disables fast switching, which enables per-packet load sharing and enhances performance on slower serial links.</td>
</tr>
<tr>
<td>Step 6 Router(config-if)# encapsulation ppp</td>
<td>Enables PPP encapsulation on the virtual template interface.</td>
</tr>
<tr>
<td>Step 7 Router(config-if)# ppp multilink</td>
<td>Enables Multilink PPP on the virtual template interface.</td>
</tr>
<tr>
<td>Step 8 Router(config-if)# ppp authentication chap</td>
<td>Enables PPP authentication on the virtual template interface.</td>
</tr>
</tbody>
</table>

If dialers are or will be configured on the physical interfaces, the `ip unnumbered` command, mentioned in Step 4, will be used in configuring the dialer interface. For examples that show MMP configured with and without dialers, see the “Configuration Examples for MMP” at the end of this chapter.

Note
Never define a specific IP address on the virtual template because projected virtual access interfaces are always cloned from the virtual template interface. If a subsequent PPP link also gets projected to a stack member with a virtual access interface already cloned and active, we will have identical IP addresses will be on the two virtual interfaces. IP will erroneously route between them.

For more information about address pooling, see the “Configuring Media-Independent PPP and Multilink PPP” chapter.

Monitoring and Maintaining MMP Virtual Interfaces

To monitor and maintain virtual interfaces, use any of the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> show ppp multilink</td>
<td>Displays MLP and MMP bundle information.</td>
</tr>
<tr>
<td>Router> show sgbp</td>
<td>Displays the status of the stack group members.</td>
</tr>
<tr>
<td>Router> show sgbp queries</td>
<td>Displays the current seed bid value.</td>
</tr>
</tbody>
</table>
Configuration Examples for MMP

The following sections provide MMP configuration examples without and with dialers:

- **MMP Using PRI But No Dialers**
- **MMP with Dialers**
- **MMP with Offload Server**

MMP Using PRI But No Dialers

The following example shows the configuration of MMP when no dialers are involved. Comments in the configuration discuss the commands. Variations are shown for a Cisco AS5200 access server or Cisco 4000 series router and for an E1 or T1 controller.

```
sgbp group stackq
sgbp member systemb 10.1.1.2
sgbp member systemc 10.1.1.3

username stackq password therock
! First make sure the multilink virtual template number is defined globally on
! each router that is a member of the stack group.
multilink virtual-template 1

! If you have not configured any dialer interfaces for the physical interfaces in
! question (PRI, BRI, async, sync serial), you can define a virtual template.

interface virtual-template 1
ip unnumbered e0
no ip route-cache
ppp authentication chap
ppp multilink

! Never define a specific IP address on the virtual template because projected
! virtual access interfaces are always cloned from the virtual template interface.
! If a subsequent PPP link also gets projected to a stack member with a virtual
! access interface already cloned and active, identical IP addresses will be on
! on the two virtual interfaces. IP will erroneously route between them.

! On an AS5200 or 4XXX platform.
! On a T1 controller.

controller T1 0
framing esf
linecode b8zs
pri-group timeslots 1-24

interface serial 0:23
no ip address
encapsulation ppp
no ip route-cache
ppp authentication chap
ppp multilink

! On an E1 controller.

controller E1 0
framing crc4
linecode hdb3
pri-group timeslots 1-31
```
interface serial 0:15
no ip address
encapsulation ppp
no ip route-cache
ppp authentication chap
ppp multilink

MMP with Dialers

When dialers are configured on the physical interfaces and when the interface itself is a dialer, do not specify a virtual template interface. For dialers, you only need to define the stack group name, common password, and its members across all the stack members. No virtual template interface is defined at all.

Only the PPP commands in dialer interface configuration are applied to the bundle interface. Subsequent projected PPP links are also cloned with the PPP commands from the dialer interface.

Dialer profiles are not supported for SGBP (Stack Group Bidding Protocol).

This section includes the following examples:

- MMP with Explicitly Defined Dialer
- MMP with ISDN PRI but No Explicitly Defined Dialer

MMP with Explicitly Defined Dialer

The following example includes a dialer that is explicitly specified by the interface dialer command and configured by the commands that immediately follow:

sgbp group stackq
sgbp member systemb 10.1.1.2
sgbp member systemc 10.1.1.3

username stackq password therock

interface dialer 1
ip unnumbered e0
dialer map
encapsulation ppp
ppp authentication chap
dialer-group 1
ppp multilink
!
! On a T1 controller
controller T1 0
framing esf
linecode b8zs
pri-group timeslots 1-24

interface Serial0:23
no ip address
encapsulation ppp
dialer in-band
dialer rotary 1
dialer-group 1
!
! Or on an E1 Controller
controller E1 0
framing crc4
linecode hdb3
Configuring Multichassis Multilink PPP

Configuration Examples for MMP

DC-640
Cisco IOS Dial Technologies Configuration Guide

```
pri-group timeslots 1-31
interface serial 0:15
   no ip address
   encapsulation ppp
   no ip route-cache
   ppp authentication chap
   ppp multilink

MMP with ISDN PRI but No Explicitly Defined Dialer

ISDN PRIs and BRIs by default are dialer interfaces. That is, a PRI configured without an explicit `interface dialer` command is still a dialer interface. The following example configures ISDN PRI. The D-channel configuration on serial interface 0:23 is applied to all the B channels. MMP is enabled, but no virtual interface template needs to be defined.

```
sgbp group stackq
sgbp member systemb 10.1.1.2
sgbp member systemc 10.1.1.3

username stackq password therock

isdn switch-type primary-4ess
controller t1 0
framing esf
linecode b8zs
pri-group timeslots 1-23

isdn switch-type basic-net3
interface Serial0:23
ip unnumbered e0
dialer map
encap ppp
ppp authentication chap
dialer-group 1
dialer rot 1
!
ppp multilink
```

MMP with Offload Server

The following example shows a virtual template interface for a system that is being configured as an offload server (via the `sgbp seed-bid offload` command). All other stack group members must be defined with the `sgbp seed-bid default` command (or if you do not enter any `sgbp seed-bid` command, it defaults to this command).

```
multilink virtual-template 1
sgbp group stackq
sgbp member systemb 10.1.1.2
sgbp member systemc 10.1.1.3
sgbp seed-bid offload
username stackq password therock

interface virtual-template 1
ip unnumbered e0
no ip route-cache
ppp authentication chap
ppp multilink
```
Callback and Bandwidth Allocation Configuration
Configuring Asynchronous Callback

This chapter describes how to configure Cisco IOS software to call back an asynchronous device that dials in, requests a callback from the router, and then disconnects. It includes the following main sections:

- Asynchronous Callback Overview
- How to Configure Asynchronous Callback
- Configuration Examples for Asynchronous Callback

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands mentioned in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Asynchronous Callback Overview

Asynchronous callback is supported for the PPP and AppleTalk Remote Access (ARA) protocols. Callback is also supported on other interface types for PPP, including ISDN and any device that calls in and connects to the router at the EXEC level.

All callback sessions are returned on TTY lines. ARA is supported on virtual terminal lines, but also is supported on TTY lines if the `vty-arap` command is used. PPP, however, is supported on interfaces. Therefore, to enable PPP callback, you must enter the `autoselect ppp` command on the callback lines.

All current security mechanisms supported in Cisco IOS software are supported by the callback facility, including the following:

- TACACS+
- Challenge Handshake Authentication Protocol (CHAP) and Password Authentication Protocol (PAP) for PPP
- Per-user authentication for EXEC callback and ARA callback

The call originator must have the appropriate permissions set on the router before it can initiate a callback session.
Callback is useful for two purposes:

- Cost savings on toll calls
  For example, suppose it costs more to call from clients in Zone A to devices in Zone D than to call from Zone D to Zone A—costs are lower when devices in Zone D call back clients in Zone A.
- Consolidation and centralization of phone billing
  For example, if a corporation has 64 dial-in clients, enabling its routers to call back these clients consolidates billing. Instead of 64 phone bills, the corporation receives one bill.

How to Configure Asynchronous Callback

To configure asynchronous callback, perform the tasks in the following sections:

- Configuring Callback PPP Clients (Required)
- Enabling PPP Callback on Outgoing Lines (Required)
- Enabling Callback Clients That Dial In and Connect to the EXEC Prompt (Required)
- Configuring Callback ARA Clients (Required)

See the section “Configuration Examples for Asynchronous Callback” at the end of this chapter for ideas on how to implement asynchronous callback.

Configuring Callback PPP Clients

You can call back PPP clients that dial in to asynchronous interfaces. You can enable callback to the following two types of PPP clients:

- Clients that implement PPP callback per RFC 1570 (as an link control protocol, or LCP, negotiated extension).
- Clients that do not negotiate callback but can put themselves in answer-mode, whereby a callback from the router is accepted.

This section describes how to enable callback to each of these types of PPP clients.

Accepting Callback Requests from RFC-Compliant PPP Clients

To accept a callback request from an RFC 1570 PPP-compliant client, use the following command in interface (asynchronous) configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)#   ppp callback accept</td>
<td>Enables callback requests from RFC 1570 PPP-compliant clients on an asynchronous interface.</td>
</tr>
</tbody>
</table>

To configure Cisco IOS software to call back the originating PPP client, see the section “Enabling PPP Callback on Outgoing Lines” later in this chapter.
Accepting Callback Requests from Non-RFC-Compliant PPP Clients Placing Themselves in Answer Mode

A PPP client can put itself in answer-mode and can still be called back by the router, even though it cannot specifically request callback. To enable callback on the router to this type of client, use the following command in interface (asynchronous) configuration mode:

```
Router(config-if)# ppp callback initiate
```

To configure Cisco IOS software to call back the originating PPP client, see the next section, “Enabling PPP Callback on Outgoing Lines.”

Enabling PPP Callback on Outgoing Lines

After enabling PPP clients to connect to an asynchronous interface and wait for a callback, you must place one or more TTY lines in PPP mode. Although calls from PPP clients enter through an asynchronous interface, the calls exit the client on a line placed in PPP mode.

To enable PPP client callback on outgoing TTY lines, use the following commands beginning in global configuration mode:

```
Step 1
Router(config)# chat-script script-name expect-send

Step 2
Router(config)# username name [callback-dialstring telephone-number]

Step 3
Router(config)# username name [callback-rotary rotary-group-number]

Step 4
Router(config)# username name [callback-line [tty] line-number [ending-line-number]]

Step 5
Router(config)# line [tty] line-number [ending-line-number]

Step 6
Router(config-line)# autoselect ppp

Step 7
Router(config-line)# login (authentication | local)

Step 8
Router(config-line)# script callback regexp

Step 9
Router(config-line)# callback forced-wait number-of-seconds
```

A client can issue a callback dial string; that dial string is used only if the dial string on the router is specified as NULL or is not defined. The recommended PPP chat script follows:

```
chat-script name ABORT ERROR ABORT BUSY "" "ATZ" OK "ATDT \T" TIMEOUT 30 CONNECT \c
```

See the section “Callback to a PPP Client Example” at the end of this chapter for a configuration example.
How to Configure Asynchronous Callback

Normally a router avoids line and modem noise by clearing the initial data received within the first one or two seconds. However, when the autoselect PPP feature is configured, the router flushes characters initially received and then waits for more traffic. This flush causes time out problems with applications that send only one carriage return. To ensure that the input data sent by a modem or other asynchronous device is not lost after line activation, enter the `no flush-at-activation` line configuration command.

### Enabling Callback Clients That Dial In and Connect to the EXEC Prompt

You can call back clients that dial in to a TTY line and connect to the EXEC prompt. To enable callback, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
</tbody>
</table>
Router(config)# service exec-callback | Enables EXEC callback. |
| **Step 2** | 
Router(config)# chat-script script-name expect-send | Defines a chat script to be applied when clients dial in to the EXEC prompt. |
| **Step 3** | 
Router(config)# username name [callback-dialstring telephone-number] | Specifies a per-username callback dial string. |
| **Step 4** | 
Router(config)# username name [callback-rotary rotary-group-number] | Specifies a per-username rotary group for callback. |
| **Step 5** | 
Router(config)# username name [callback-line {aux | tty} line-number [ending-line-number]] | Specifies a per-username line or set of lines for callback. |
| **Step 6** | 
Router(config)# username name [nocallback-verify] | Does not require authentication on EXEC callback. |
| **Step 7** | 
Router(config)# line {tty} line-number [ending-line-number] | Enters line configuration mode. |
| **Step 8** | 
Router(config-line)# script callback regexp | Applies a chat script to the line or a set of lines. |
| **Step 9** | 
Router(config-line)# callback forced-wait number-of-seconds | Delays the callback for client modems that require a rest period before receiving a callback. |

The recommended EXEC chat script follows:

```
chat-script name ABORT ERROR ABORT BUSY "" "ATZ" OK "ATDT \T" TIMEOUT 30 CONNECT \c
```

See the section “Callback Clients That Connect to the EXEC Prompt Example” at the end of this chapter for a configuration example.
Configuring Callback ARA Clients

To configure callback of ARA clients, use the following commands beginning in global configuration mode. These steps assume that you have already enabled AppleTalk routing and ARA.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# arap callback</td>
<td>Enables callback to an ARA client.</td>
</tr>
<tr>
<td>Step 2: Router(config)# chat-script script-name</td>
<td>Defines a chat script to be applied when an ARA client connects to a TTY line and requests callback.</td>
</tr>
<tr>
<td>Step 3: Router(config)# line [tty] line-number</td>
<td>Enter line configuration mode.</td>
</tr>
<tr>
<td>Step 4: Router(config-line)# arap enable</td>
<td>Enables ARA on the line.</td>
</tr>
<tr>
<td>Step 5: Router(config-line)# autoselect arap</td>
<td>Configures automatic protocol startup on the line.</td>
</tr>
<tr>
<td>Step 6: Router(config-line)# login {authentication</td>
<td>Enables authentication on the line.</td>
</tr>
<tr>
<td>Step 7: Router(config-line)# script arap-callback</td>
<td>Applies an ARA-specific chat script to a line or set of lines.</td>
</tr>
<tr>
<td>Step 8: Router(config-line)# callback forced-wait</td>
<td>Delays the callback for client modems that require a rest period before receiving a callback.</td>
</tr>
<tr>
<td>Step 9: Router(config-line)# exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 10: Router(config)# username name [callback-</td>
<td>Specifies a per-username callback dial string.</td>
</tr>
<tr>
<td>Step 11: Router(config)# username name [callback-rotary</td>
<td>Specifies a per-username rotary group for callback.</td>
</tr>
<tr>
<td>Step 12: Router(config)# username name [callback-</td>
<td>Specifies a per-username line or set of lines for callback.</td>
</tr>
</tbody>
</table>

The recommended ARA chat script follows and includes vendor-specific extensions on the Telebit 3000 modem to disable error control. Refer to the manual for your modem for the specific commands to disable error correction for ARA.

```
chat-script name ABORT ERROR ABORT BUSY "" "ATZ" OK "ATS180=0" OK "ATS181=1" OK "ATDT \T" TIMEOUT 60 CONNECT \c
```

See the section “Callback to an ARA Client Example” at the end of this chapter for an example of calling back a PPP client.

Configuration Examples for Asynchronous Callback

The following sections provide asynchronous callback configuration examples:

- Callback to a PPP Client Example
- Callback Clients That Connect to the EXEC Prompt Example
- Callback to an ARA Client Example
Callback to a PPP Client Example

The following example shows the process of configuring callback to a PPP client on rotary 77. PAP authentication is enabled for PPP on the asynchronous interfaces. The `login local` command enables local username authentication on lines 7, 8, and 9. The remote PPP client host name is Ted, and the callback number is fixed at 1234567.

```
username Ted callback-dialstring "1234567" callback-rotary 77
 password Rhoda
interface async 7
 ip unnumbered ethernet 0
 encapsulation ppp
 no keepalive
 async default ip address 10.1.1.1
 async mode interactive
 ppp callback accept
 ppp authentication pap

interface async 8
 ip unnumbered ethernet 0
 encapsulation ppp
 no keepalive
 async default ip address 10.1.1.2
 async mode interactive
 ppp callback accept
 ppp authentication pap

interface async 9
 ip unnumbered ethernet 0
 encapsulation ppp
 no keepalive
 async default ip address 10.1.1.3
 async mode interactive
 ppp callback accept
 ppp authentication pap

line 7
 login local
 modem InOut
 rotary 77
 autoselect ppp

line 8
 login local
 modem InOut
 rotary 77
 autoselect ppp

line 9
 login local
 modem InOut
 rotary 77
 autoselect ppp
```
Callback Clients That Connect to the EXEC Prompt Example

The following example shows the process to configure an outgoing callback on the same line as the incoming request. The `login local` command enables local username authentication on lines 4 and 7. Reauthentication is required upon reconnection.

```
service exec-callback
username milarepa callback-dialstring "" password letmein
line 4
 login local
line 7
 login local
```

Callback to an ARA Client Example

The following example shows the process of configuring callback to an ARA client on line 7. The `login local` command enables local username authentication on lines 4 and 7. Line 7 will always be used for ARA callback, whether the incoming call enters line 4, 7, or 8.

```
appletalk routing
arap callback
arap network 422 router test
username excalibur callback-dialstring "123456" callback-line 7 password guenivere
line 4
 login local
 modem InOut
 autoselect arap
 arap enable
line 7
 login local
 modem InOut
 autoselect arap
 arap enable
line 8
 login local
 modem InOut
 autoselect arap
 arap enable
```
Configuring PPP Callback

This chapter describes how to configure PPP callback for dial-on-demand routing (DDR). It includes the following main sections:

- PPP Callback for DDR Overview
- How to Configure PPP Callback for DDR
- MS Callback Overview
- How to Configure MS Callback
- Configuration Examples for PPP Callback

This feature implements the following callback specifications of RFC 1570:

- For the client—Option 0, location is determined by user authentication.
- For the server—Option 0, location is determined by user authentication; Option 1, dialing string; and Option 3, E.164 number.

Return calls are made through the same dialer rotary group but not necessarily the same line as the initial call.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the PPP callback commands mentioned in this chapter, refer to the Cisco IOS Dial Technologies Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

PPP Callback for DDR Overview

PPP callback provides a client/server relationship between the endpoints of a point-to-point connection. PPP callback allows a router to request that a dialup peer router call back. The callback feature can be used to control access and toll costs between the routers.

When PPP callback is configured on the participating routers, the calling router (the callback client) passes authentication information to the remote router (the callback server), which uses the host name and dial string authentication information to determine whether to place a return call. If the authentication is successful, the callback server disconnects and then places a return call. The remote username of the return call is used to associate it with the initial call so that packets can be sent.
Both routers on a point-to-point link must be configured for PPP callback; one must function as a callback client and one must be configured as a callback server. The callback client must be configured to initiate PPP callback requests, and the callback server must be configured to accept PPP callback requests and place return calls.

See the section “MS Callback Overview” later in this chapter if you are using PPP callback between a Cisco router or access server and client devices configured for Windows 95 and Windows NT.

Note

If the return call fails (because the line is not answered or the line is busy), no retry occurs. If the callback server has no interface available when attempting the return call, it does not retry.

**How to Configure PPP Callback for DDR**

To configure PPP callback for DDR, perform the following tasks:

- Configuring a Router as a Callback Client (Required)
- Configuring a Router as a Callback Server (Required)

For an example of configuring PPP callback, see the section “Configuration Examples for PPP Callback” at the end of this chapter.

**Configuring a Router as a Callback Client**

To configure a router interface as a callback client, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> Router(config)# interface type number</td>
<td>Specifies the interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> Router(config-if)# dialer in-band [no-parity</td>
<td>odd-parity]</td>
</tr>
<tr>
<td><strong>Step 3</strong> Router(config-if)# encapsulation ppp</td>
<td>Enables PPP encapsulation.</td>
</tr>
<tr>
<td><strong>Step 4</strong> Router(config-if)# ppp authentication {chap</td>
<td>pap}</td>
</tr>
<tr>
<td><strong>Step 5</strong> Router(config-if)# dialer map protocol next-hop-address name hostname dial-string</td>
<td>Maps the next hop address to the host name and phone number.</td>
</tr>
<tr>
<td><strong>Step 6</strong> Router(config-if)# ppp callback request</td>
<td>Enables the interface to request PPP callback for this callback map class.</td>
</tr>
<tr>
<td><strong>Step 7</strong> Router(config-if)# dialer hold-queue packets timeout seconds</td>
<td>(Optional) Configures a dialer hold queue to store packets for this callback map class.</td>
</tr>
</tbody>
</table>
## Configuring a Router as a Callback Server

To configure a router as a callback server, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>Router(config)# interface type number</code> Specifies the interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>`Router(config-if)# dialer in-band [no-parity</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>Router(config-if)# encapsulation ppp</code> Enables PPP encapsulation.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>`Router(config-if)# ppp authentication {chap</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>Router(config-if)# dialer map protocol next-hop-address name hostname class classname dial-string</code> Maps the next hop address to the host name and phone number, using the name of the map class established for PPP callback on this interface.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>Router(config-if)# dialer hold-queue number timeout seconds</code> (Optional) Configures a dialer hold queue to store packets to be transferred when the callback connection is established.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><code>Router(config-if)# dialer enable-timeout seconds</code> (Optional) Configures a timeout period between calls.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><code>Router(config-if)# ppp callback accept</code> Configures the interface to accept PPP callback.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><code>Router(config-if)# isdn fast-rollover-delay seconds</code> (ISDN only) Configures the time to wait before another call is placed on a B channel to allow the prior call to be torn down completely.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><code>Router(config-if)# dialer callback-secure</code> (Optional) Enables callback security, if desired.</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><code>Router(config-if)# exit</code> Returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td><code>Router(config-map-class)# map-class dialer classname</code> Configures a dialer map class for PPP callback.</td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td><code>Router(config-map-class)# dialer callback-server [username]</code> Configures a dialer map class as a callback server.</td>
</tr>
</tbody>
</table>

**Note** On the PPP callback server, the `dialer enable-timeout` command functions as the timer for returning calls to the callback client.

## MS Callback Overview

MS Callback provides client/server callback services for Microsoft Windows 95 and Microsoft Windows NT clients. MS Callback supports the Microsoft Callback Control Protocol (MSCB). MSCB is a Microsoft proprietary protocol that is used by Windows 95 and Windows NT clients. MS Callback supports negotiated PPP Link Control Protocol (LCP) extensions initiated and agreed upon by the Microsoft client. The MS Callback feature is added to existing PPP Callback functionality. Therefore, if you configure your Cisco access server to perform PPP Callback using Cisco IOS Release 11.3(2)T or later, MS Callback is automatically available.
MS Callback supports authentication, authorization, and accounting (AAA) security models using a local database or AAA server.

MSCB uses LCP callback options with suboption type 6. The Cisco MS Callback feature supports clients with a user-specified callback number and server specified (preconfigured) callback number.

MS Callback does not affect non-Microsoft machines that implement standard PPP LCP extensions as described in RFC 1570. In this scenario, MS Callback is transparent.

The following are restrictions of the MS Callback feature:

- The Cisco access server and client must be configured for PPP and PPP callback.
- The router or access server must be configured to use CHAP or PAP authorization.
- MS Callback is only supported on the Public Switched Telephone Network (PSTN) and ISDN links.
- MS Callback is only supported for IP.

**How to Configure MS Callback**

If you configure the Cisco access server for PPP callback, MS Callback is enabled by default. You need not configure additional parameters on the Cisco access server. If an interface is configured to accept PPP callbacks, and a client attempts to cancel the callback, Cisco IOS software will refuse the request and disconnect the client. If a client is allowed to cancel callbacks, the `ppp callback permit` command must be configured on the interface.

To debug PPP connections using MS Callback, see the `debug ppp cbcp` command in the *Cisco IOS Debug Command Reference* publication.

For more information on configuring MS Callback, see the following URL.


**Configuration Examples for PPP Callback**

The following example configures a PPP callback server and client to call each other. The PPP callback server is configured on an ISDN BRI interface in a router in Atlanta. The callback server requires an enable timeout and a map class to be defined. The PPP callback client is configured on an ISDN BRI interface in a router in Dallas. The callback client does not require an enable timeout and a map class to be defined. The `dialer map` command is not required on the Cisco access server when MS Callback is enabled.

**PPP Callback Server**

```
interface bri 0
ip address 10.1.1.7 255.255.255.0
capsulation ppp
dialer callback-secure
dialer enable-timeout 2
dialer map ip 10.1.1.8 name class1 class dial1 81012345678901
dialer-group 1
ppp callback accept
ppp authentication chap
map-class dialer dial1
```

```
PPP Callback Client

interface bri 0
 ip address 10.1.1.8 255.255.255.0
 encapsulation ppp
dialer map ip 10.1.1.7 name class2 81012345678902
dialer-group 1
 ppp callback request
 ppp authentication chap
Configuring ISDN Caller ID Callback

This chapter describes how to configure the ISDN Caller ID Callback feature. It includes the following main sections:

- ISDN Caller ID Callback Overview
- How to Configure ISDN Caller ID Callback
- Monitoring and Troubleshooting ISDN Caller ID Callback
- Configuration Examples for ISDN Caller ID Callback

The ISDN Caller ID Callback feature conflicts with dialer callback security inherent in the dialer profiles feature for dial-on-demand routing (DDR). If dialer callback security is configured, it takes precedence; ISDN caller ID callback is ignored.

Caller ID screening requires a local switch that is capable of delivering the caller ID to the router or access server. If you enable caller ID screening but do not have such a switch, no calls will be allowed in.

ISDN caller ID callback requires DDR to be configured and bidirectional dialing to be working between the calling and callback routers. Detailed DDR prerequisites depend on whether you have configured legacy DDR or dialer profiles.

For a legacy DDR configuration, ISDN caller ID callback has the following prerequisite:

- A **dialer map** command is configured for the dial string that is used in the incoming call setup message. The dial string is used in the callback.

For a dialer profiles configuration, ISDN caller ID callback has the following prerequisites:

- A **dialer caller** command is configured to screen for the dial-in number.
- A **dialer string** command is configured with the number to use in the callback.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the ISDN caller ID callback commands mentioned in this chapter, refer to the *Cisco IOS Dial Technologies Command Reference*, Release 12.2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.
ISDN Caller ID Callback Overview

ISDN caller ID callback allows the initial incoming call from the client to the server to be rejected on the basis of the caller ID message contained in the ISDN setup message, and it allows a callback to be initiated to the calling destination.

Before Cisco IOS Release 11.2 F, ISDN callback functionality required PPP or Combinet Packet Protocol (CPP) client authentication and client/server callback negotiation to proceed. If authentication and callback negotiation were successful, the callback server had to disconnect the call and then place a return call. Both the initial call and the return call were subject to tolls, and when service providers charge by the minute, even brief calls could be expensive.

This feature is independent of the encapsulation in effect and can be used with various encapsulations, such as PPP, High-Level Data Link Control (HDLC), Frame Relay, and X.25.

The ISDN Caller ID Callback feature allows users to control costs because charges do not apply to the initial, rejected call.

ISDN caller ID callback allows great flexibility for you to define which calls to accept, which to deny, and which calls to reject initially but for which the router should initiate callback. The feature works by using existing ISDN caller ID screening, which matches the number in the incoming call against numbers configured on the router, determining the best match for the number in the incoming call, and then, if configured, initiating callback to the number configured on the router.

When a call is received, the entire list of configured numbers is checked and the configuration of the best match number determines the action:

- If the incoming number is best matched by a number that is configured for callback, the incoming call is rejected and callback is initiated.
- If the incoming number is best matched by another entry in the list of configured numbers, the call is accepted.
- If the incoming number does not match any entry in the configured list, the call is rejected and no callback is started.

“Don’t care” characters are allowed in the caller ID screening configuration on the router and are used to determine the best match.

For more information and examples, see the “Best Match System Examples” section later in this document.

Callback After the Best Match Is Determined

The details of router activities after the router finds a best match with callback depend on the DDR feature that is configured. The ISDN Caller ID Callback feature works with the following DDR features:

- Legacy DDR
- Dialer Profiles

Legacy DDR

If legacy DDR is configured for the host or user that is identified in the incoming call message, the router performs the following actions:

1. Checks the table of configured numbers for caller ID callback.
2. Searches the dialer map entries for a number that “best matches” the incoming call string.
3. Waits for a configured length of time to expire.
4. Initiates callback to the number provided in the `dialer map` command.

Dialer Profiles

If the dialer profiles are configured for the host or user identified in the incoming call message, the router performs the following actions:

1. Searches through all the dialer pool members to match the incoming call number to a `dialer caller` number.
2. Initiates a callback to the dialer profile.
3. Waits for a configured length of time to expire.
4. Calls the number identified in the `dialer string` command associated with the dialer profile.

Timing and Coordinating Callback on Both Sides

When an incoming call arrives and the router finds a best match configured for callback, the router uses the value configured by the `dialer enable-timeout` command to determine the length of time to wait before making the callback.

The minimum value of the timer is 1 second; the default value of the timer is 15 seconds. The interval set for this feature on the router must be much less than that set for DDR fast call rerouting for ISDN (that interval is set by the `dialer wait-for-carrier-time` command) on the calling (remote) side. We recommend setting the dialer wait-for-carrier timer on the calling side to twice the length of the dialer enable-timeout timer on the callback side.

Note

The remote site cannot be configured for multiple dial-in numbers because a busy callback number or a rejected call causes the second number to be tried. That number might be located at a different site, defeating the purpose of the callback.

How to Configure ISDN Caller ID Callback

To configure ISDN caller ID callback, perform the tasks in the following sections. The required configuration tasks depend whether you have configured legacy DDR or dialer profiles.

- **Configuring ISDN Caller ID Callback for Legacy DDR (As required)**
- **Configuring ISDN Caller ID Callback for Dialer Profiles (As required)**

For configuration examples, see the section “Configuration Examples for ISDN Caller ID Callback” at the end of this chapter.

Configuring ISDN Caller ID Callback for Legacy DDR

This section provides configuration tasks for the local (server, callback) side and the remote (client, calling) side.
On the callback (local) side, to configure ISDN caller ID callback when legacy DDR is configured, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# isdn caller remote-number callback or Router(config-if)# dialer caller number callback</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# dialer enable-timeout seconds</td>
</tr>
</tbody>
</table>

On the calling (remote) side, to set the timer for fast call rerouting, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer wait-for-carrier-time seconds</td>
<td>Changes the ISDN fast call rerouting timer to double the length of the enable timeout timer.</td>
</tr>
</tbody>
</table>

Configuring ISDN Caller ID Callback for Dialer Profiles

This section provides configuration tasks for the local side and the remote side.

On the callback (local) side, to configure ISDN caller ID callback when the dialer profiles are configured, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# dialer caller number callback</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# dialer enable-timeout seconds</td>
</tr>
</tbody>
</table>

On the calling (remote) side, to set the timer for fast call rerouting, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# dialer wait-for-carrier-time seconds</td>
<td>Changes the ISDN fast call rerouting timer to double the length of the enable timeout timer.</td>
</tr>
</tbody>
</table>
Monitoring and Troubleshooting ISDN Caller ID Callback

To monitor and troubleshoot ISDN caller ID callback, use the following commands in EXEC mode as needed:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show dialer</td>
<td>Displays information about the status and configuration of the ISDN interface on the router.</td>
</tr>
<tr>
<td>Router# debug isdn event</td>
<td>Displays ISDN events occurring on the user side (on the router) of the ISDN interface. The ISDN events that can be displayed are Q.931 events (call setup and tear down of ISDN network connections).</td>
</tr>
<tr>
<td>Router# debug isdn q931</td>
<td>Displays Layer 3 signaling messages, protocol transitions and processes, the line protocol state, and the channel IDs for each ISDN interface.</td>
</tr>
</tbody>
</table>

Configuration Examples for ISDN Caller ID Callback

The following sections provide ISDN caller ID callback configuration examples:

- **Best Match System Examples**
- **Simple Callback Configuration Examples**
- **ISDN Caller ID Callback with Dialer Profiles Examples**
- **ISDN Caller ID Callback with Legacy DDR Example**

Best Match System Examples

The best match is determined by matching the incoming number against the numbers in the configured callback commands, starting with the right-most character in the numbers and using the letter X for any “don’t care” characters in the configured commands. If multiple configured numbers match an incoming number, the best match is the one with the fewest “don’t care” characters.

The reason for using a system based on right-most matching is that a given number can be represented in many different ways. For example, all the following items might be used to represent the same number, depending on the circumstances (international call, long-distance domestic call, call through a PBX, and so forth):

- 011 1 408 555 7654
- 1 408 555 7654
- 408 555 7654
- 555 7654
- 5 7654
Best Match Based on the Number of “Don’t Care” Characters Example

The following example assumes that you have an incoming call from one of the numbers from the previous example entered (4085557654), and that you configured the following numbers for callback on the router (disregarding for the moment the commands that can be used to configure callback):

555xxxx callback
5552xxx callback
555865x
5554654 callback
xxxxx

The first number listed is the best match for the incoming number (in the configured number, the three numbers and four Xs all match the incoming number); the line indicates that callback is to be initiated. The last line has five Xs; it is not the best match for the calling number.

Note

The last number in the list shown allows calls from any other number to be accepted without callback. When you use such a line, you must make sure that the number of Xs in the line exceeds the number of Xs in any other line. In the last line, five Xs are used; the other lines use at most four Xs.

The order of configured numbers is not important; the router searches the entire list and then determines the best match.

Best Match with No Callback Configured Example

The following example assumes that a call comes from the same number (4085557654) and that only the following numbers are configured:

5552xxx callback
555865x
5554654 callback
xxxxx

In this case, the best match is in the final line listed, so the incoming call is accepted but callback is not initiated.

No Match Configured Example

The following example assumes that a call comes from the same number (4085557654) and that only the following numbers are configured:

5552xxx callback
555865x
5554654 callback

In this case, there is no match at all, and the call is just rejected.

Simple Callback Configuration Examples

The following example assumes that callback calls will be made only to numbers in the 555 and 556 exchanges but that any other number can call in:

isdn caller 408555xxxx callback
isdn caller 408556xxxx callback
isdn caller xxxxxxx
The following example configures the router to accept a call with a delivered caller ID equal to 4155551234:

```
isdn caller 4155551234
```

The following example configures the router to accept a call with a delivered caller ID equal to 41555512 with any digits in the last two positions:

```
isdn caller 41555512xx
```

The following example configures the router to make a callback to a delivered caller ID equal to 41555512 with any digits in the last two positions. (The router rejects the call initially, and then makes the callback.) The router accepts calls from any other numbers.

```
isdn caller 41555512xx callback
isdn caller xxx
```

ISDN Caller ID Callback with Dialer Profiles Examples

The following example shows the configuration of a central site that can place or receive calls from three remote sites over four ISDN BRI lines. Each remote site is on a different IP subnet and has different bandwidth requirements. Therefore, three dialer interfaces and three dialer pools are defined.

```
! This is a dialer profile for reaching remote subnetwork 10.1.1.1.
interface dialer 1
  ip address 10.1.1.1 255.255.255.0
  encapsulation ppp
dialer remote-name Smalluser
dialer string 4540
dialer pool 3
dialer-group 1
dialer caller 14802616900 callback
dialer caller 1480262xxxx callback
! This is a dialer profile for reaching remote subnetwork 10.2.2.2.
interface dialer 2
  ip address 10.2.2.2 255.255.255.0
  encapsulation ppp
dialer remote-name Mediumuser
dialer string 5264540 class Eng
dialer load-threshold 50 either
dialer pool 1
dialer-group 2
dialer caller 14802616900 callback
dialer caller 1480262xxxx callback
dialer enable-timeout 2
! This is a dialer profile for reaching remote subnetwork 10.3.3.3.
interface dialer 3
  ip address 10.3.3.3 255.255.255.0
  encapsulation ppp
dialer remote-name Poweruser
dialer string 4156884540 class Eng
dialer hold-queue 10
dialer load-threshold 80
dialer pool 2
dialer-group 2
!
! This map class ensures that these calls use an ISDN speed of 56 kbps.
map-class dialer Eng
  isdn speed 56
```
Configuring ISDN Caller ID Callback

Configuration Examples for ISDN Caller ID Callback

! interface bri 0
 encapsulation PPP
 ! BRI 0 has a higher priority than BRI 1 in dialer pool 1.
 dialer pool-member 1 priority 100
 ppp authentication chap
! interface bri 1
 encapsulation ppp
 dialer pool-member 1 priority 50
 dialer pool-member 2 priority 50
 ! BRI 1 has a reserved channel in dialer pool 3; the channel remains inactive
 ! until BRI 1 uses it to place calls.
 dialer pool-member 3 min-link 1
 ppp authentication chap
! interface bri 2
 encapsulation ppp
 ! BRI 2 has a higher priority than BRI 1 in dialer pool 2.
 dialer pool-member 2 priority 100
 ppp authentication chap
! interface bri 3
 encapsulation ppp
 ! BRI 3 has the highest priority in dialer pool 2.
 dialer pool-member 2 priority 150
 ppp authentication chap

ISDN Caller ID Callback with Legacy DDR Example

This section provides two examples of caller ID callback with legacy DDR:

- **Individual Interface Example**
- **Dialer Rotary Group Example**

Individual Interface Example

The following example configures a BRI interface for legacy DDR and ISDN caller ID callback:

```
interface bri 0
  description Connected to NTT 81012345678901
  ip address 10.1.1.7 255.255.255.0
  no ip mroute-cache
  encapsulation ppp
  isdn caller 81012345678902 callback
  dialer enable-timeout 2
  dialer map ip 10.1.1.8 name spanky 81012345678902
  dialer-group 1
  ppp authentication chap
```
Dialer Rotary Group Example

The following example configures BRI interfaces to connect into a rotary group (dialer group) and then configures a dialer interface for that dialer group. This configuration permits IP packets to trigger calls. The dialer interface is configured to initiate callback to any number in the 1-480-261 exchange and to accept calls from two other specific numbers.

```plaintext
interface bri 0
  description connected into a rotary group
  encapsulation ppp
dialer rotary-group 1
!
interface bri 1
  no ip address
  encapsulation ppp
dialer rotary-group 1
!
interface bri 2
  encapsulation ppp
dialer rotary-group 1
!
interface bri 3
  no ip address
  encapsulation ppp
dialer rotary-group 1
!
interface bri 4
  encapsulation ppp
dialer rotary-group 1
!
interface dialer 1
  description Dialer group controlling the BRIs
  ip address 10.1.1.1 255.255.255.0
  encapsulation ppp
  dialer map ip 10.1.1.2 name angus 14802616900
dialer map ip 10.1.1.3 name shamus 14802616901
dialer map ip 10.1.1.4 name larry 14807362060
dialer map ip 10.1.1.5 name wally 19165561424
dialer map ip 10.1.1.6 name shemp 12129767448
dialer-group 1
  ppp authentication chap
!
  dialer caller 1480261xxxx callback
  dialer caller 19165561424
  dialer caller 12129767448
!
dialer-list 1 protocol ip permit
```
Configuring BACP

This chapter describes how to configure the Bandwidth Allocation Control Protocol (BACP), described in RFC 2125. It includes the following main sections:

- **BACP Overview**
- **How to Configure BACP**
- **Monitoring and Maintaining Interfaces Configured for BACP**
- **Troubleshooting BACP**
- **Configuration Examples for BACP**

BACP requires a system only to have the knowledge of its own phone numbers and link types. A system must be able to provide the phone numbers and link type to its peer to satisfy the call control mechanism. (Certain situations might not be able to satisfy this requirement; numbers might not be present because of security considerations.)

BACP is designed to operate in both the virtual interface environment and the dialer interface environment. It can operate over any physical interface that is Multilink PPP-capable and has a dial capability; at initial release, BACP supports ISDN and asynchronous serial interfaces.

The addition of any link to an existing multilink bundle is controlled by a Bandwidth Allocation Protocol (BAP) call or callback request message, and the removal of a link can be controlled by a link drop message.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the PPP BACP commands in this chapter, refer to the *Cisco IOS Dial Technologies Command Reference*, Release 12.2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.
BACP Overview

The BACP provides Multilink PPP (MLP) peers with the ability to govern link utilization. Once peers have successfully negotiated BACP, they can use the BAP, which is a subset of BACP, to negotiate bandwidth allocation. BAP provides a set of rules governing dynamic bandwidth allocation through call control; a defined method for adding and removing links from a multilink bundle for Multilink PPP is used.

BACP provides the following benefits:

- Allows multilink implementations to interoperate by providing call control through the use of link types, speeds, and telephone numbers.
- Controls thrashing caused by links being brought up and removed in a short period of time.
- Ensures that both ends of the link are informed when links are added or removed from a multilink bundle.

For simplicity, the remaining text of this chapter makes no distinction between BACP and BAP; only BACP is mentioned.

BACP Configuration Options

PPP BACP can be configured to operate in the following ways:

- Passive mode (default)—The system accepts incoming calls; the calls might request callback, addition of a link, or removal of a link from a multilink bundle. The system also monitors the multilink load by default.

 Passive mode is for virtual template interfaces or for dialer interfaces.

- Active mode—The system initiates outbound calls, sets the parameters for outbound calls, and determines whether links should be added to or removed from a multilink bundle. The system also monitors the multilink load by default.

 Active mode is for dialer interfaces, but not for virtual template interfaces. (If you attempt to configure active mode on a virtual template interface, no calls will be made.)

A virtual or dialer interface must be configured either to make call requests or to make callback requests, but it cannot be configured to do both.

Support of BACP on virtual interfaces in a Multichassis Multilink PPP (MMP) environment is restricted to incoming calls on the multilink group. Support of BACP for outgoing calls is provided by dialer interface configuration only.

BACP supports only ISDN and asynchronous serial interfaces.

Dialer support is provided only for legacy dial-on-demand routing (DDR) dialer configurations; BACP cannot be used in conjunction with the DDR dialer profiles feature.

BACP is configured on virtual template interfaces and physical interfaces that are multilink capable. For both the virtual template interfaces and the dialer interfaces, BACP requires MMP and bidirectional dialing to be working between the routers that will negotiate control and allocation of bandwidth for the multilink bundle.
How to Configure BACP

Before you configure BACP on an interface, determine the following important information. The router might be unable to connect to a peer if this information is incorrect.

- Type of link (ISDN or analog) to be used. Link types must match on the local and remote ends of the link.
- Line speed needed to reach the remote peer. The speed configured for the local physical interface must be at least that of the link. The `bandwidth` command or the `dialer map` command with the `speed` keyword can be used.
- Local telephone number to be used for incoming PPP BACP calls, if it is different from a rotary group base number or if incoming PPP BACP calls should be directed to a specific number.
 During negotiations with a peer, PPP BACP might respond with a telephone number `delta`, indicating that the peer should modify certain digits of the dialed phone number and dial again to reach the PPP BACP interface or to set up another link.

BACP can be configured on a virtual template interface or on a dialer interface (including dialer rotary groups and ISDN interfaces).

To configure BACP on a selected interface or interface template, perform the following tasks in the order listed:

- **Enabling BACP** (Required)
 Passive mode is in effect and the values of several parameters are set by default when PPP BACP is enabled. If you can accept all the passive mode parameters, do not continue with the tasks.

- **Modifying BACP Passive Mode Default Settings** (As required)
 or

- **Configuring Active Mode BACP** (As required)

Note
You can configure one interface in passive mode and another in active mode so that one interface accepts incoming call requests and makes callback requests (passive mode), and the other interface makes call requests and accepts callback requests (active mode).

A dialer or virtual template interface should be configured to reflect the required dial capability of the interface. A dial-in pool (in passive mode) might have no requirement to dial out but might want remote users to add multiple links, with the remote user incurring the cost of the call. Similarly, a dial-out configuration (active mode) suggests that the router is a client, rather than a server, on that link. The active-mode user incurs the cost of additional links.

You might need to configure a base telephone number, if it is applicable to your dial-in environment. This number is one that remote users can dial to establish a connection. Otherwise, individual PPP BACP links might need numbers. Information is provided in the task lists for configuring passive mode or active mode PPP BACP. See the `ppp bap number` command options in the task lists.

You can also troubleshoot BACP configuration and operations and monitor interfaces configured for PPP BACP. For details, see the “Troubleshooting BACP” and “Monitoring and Maintaining Interfaces Configured for BACP” sections later in this chapter.

See the section “Configuration Examples for BACP” at the end of this chapter for examples of PPP BACP configuration.
Enabling BACP

To enable PPP bandwidth allocation control and dynamic allocation of bandwidth, use one of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ppp multilink bap</td>
<td>Enables PPP BACP bandwidth allocation negotiation.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ppp multilink bap required</td>
<td>Enables PPP BACP bandwidth allocation negotiation and enforces mandatory negotiation of BACP for the multilink bundle.</td>
</tr>
</tbody>
</table>

When PPP BACP is enabled, it is in passive mode by default and the following settings are in effect:

- Allows a peer to initiate link addition.
- Allows a peer to initiate link removal.
- Requests that a peer initiate link addition.
- Waits 20 seconds before timing out on pending actions.
- Waits 3 seconds before timing out on not receiving a response from a peer.
- Makes only one attempt to call a number.
- Makes up to three retries for sending a request.
- Searches for and logs up to five free dialers.
- Makes three attempts to send a call status indication.
- Adds only ISDN links to a multilink bundle.
- Monitors load.

The default settings will be in effect in the environment for which the `ppp multilink bap` command is entered:

- Virtual template interface, if that is where the command is entered.
 - When the command is entered in a virtual template interface, configuration applies to any virtual access interface that is created dynamically under Multilink PPP, the application that defines the template.
- Dialer interface, if that is where the command is entered.

See the section “Basic BACP Configurations” at the end of this chapter for an example of how to configure BACP.
Modifying BACP Passive Mode Default Settings

To modify the default parameter values or to configure additional parameters in passive mode, use the following commands, as needed, in interface configuration mode for the interface or virtual template interface that is configured for PPP BACP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# ppp bap timeout pending seconds</code></td>
<td>Modifies the timeout on pending actions.</td>
</tr>
<tr>
<td><code>Router(config-if)# ppp bap timeout response seconds</code></td>
<td>Modifies the timeout on not receiving a response from a peer.</td>
</tr>
<tr>
<td><code>Router(config-if)# ppp bap max dial-attempts number</code></td>
<td>Modifies the number of attempts to call a number.</td>
</tr>
<tr>
<td><code>Router(config-if)# ppp bap max ind-retries number</code></td>
<td>Modifies the number of times to send a call status indication.</td>
</tr>
<tr>
<td><code>Router(config-if)# ppp bap max req-retries number</code></td>
<td>Modifies the number of retries of a particular request.</td>
</tr>
<tr>
<td><code>Router(config-if)# ppp bap max dialers number</code></td>
<td>Modifies the maximum number of free dialers logged.</td>
</tr>
<tr>
<td><code>Router(config-if)# ppp bap link types analog</code></td>
<td>Specifies that only analog links can be added to a multilink bundle.</td>
</tr>
<tr>
<td>or <code>Router(config-if)# ppp bap link types isdn analog</code></td>
<td>Allows both ISDN and analog links to be added.</td>
</tr>
<tr>
<td><code>Router(config-if)# ppp bap number default phone-number</code></td>
<td>For all DDR-capable interfaces in the group, specifies a primary telephone number for the peer to call for PPP BACP negotiation, if different from any base number defined on the dialer interface or virtual template interface.</td>
</tr>
<tr>
<td><code>Router(config-if)# ppp bap number secondary phone-number</code></td>
<td>For BRI interfaces on which a different number is provided for each B channel, specifies the secondary telephone number.</td>
</tr>
<tr>
<td><code>Router(config-if)# ppp bap drop timer seconds</code></td>
<td>Specifies a time to wait between outgoing link drop requests.</td>
</tr>
<tr>
<td><code>Router(config-if)# no ppp bap monitor load</code></td>
<td>Disables the default monitoring of load and the validation of peer requests against load thresholds.</td>
</tr>
</tbody>
</table>

See the section “Passive Mode Dialer Rotary Group Members with One Dial-In Number” later in this chapter for an example of how to configure passive mode parameters.

Configuring Active Mode BACP

To configure active mode BACP, use the following commands in interface configuration mode for the dialer interface on which BACP was enabled. For your convenience, the commands that make BACP function in active mode are presented before the commands that change default parameters or add parameters.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# ppp bap call request</code></td>
<td>Enables the interface to initiate the addition of links to the multilink bundle.</td>
</tr>
<tr>
<td><code>Router(config-if)# ppp bap callback accept</code></td>
<td>Enables the interface to initiate the addition of links upon peer request.</td>
</tr>
</tbody>
</table>
When BACP is enabled, multiple dialer maps to one destination are not needed when they differ only by number. That is, once the initial call has been made to create the bundle, further dialing attempts are realized through the BACP phone number negotiation.

Outgoing calls are supported through the use of dialer maps. However, when an initial incoming call creates a dynamic dialer map, the router can dial out if the peer supplies a phone number. This capability is achieved by the dynamic creation of static dialer maps for BACP. These temporary dialer maps can be displayed by using the `show dialer map` command. These temporary dialer maps last only as long as the BACP group lasts and are removed when the BACP group or the associated map is removed.

Monitoring and Maintaining Interfaces Configured for BACP

To monitor interfaces configured for PPP BACP, use any of the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router> show ppp bap group [name]</code></td>
<td>Displays information about all PPP BACP multilink bundle groups or a specific, named multilink bundle group.</td>
</tr>
<tr>
<td><code>Router> show ppp bap queues</code></td>
<td>Displays information about the BACP queues.</td>
</tr>
<tr>
<td><code>Router> show ppp multilink</code></td>
<td>Displays information about the dialer interface, the multilink bundle, and the group members.</td>
</tr>
<tr>
<td><code>Router> show dialer</code></td>
<td>Displays BACP numbers dialed and the reasons for the calls.</td>
</tr>
<tr>
<td><code>Router> show dialer map</code></td>
<td>Displays configured dynamic and static dialer maps and dynamically created BACP temporary static dialer maps.</td>
</tr>
</tbody>
</table>
Troubleshooting BACP

To troubleshoot the BACP configuration and operation, use the following `debug` commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> `debug ppp bap [error</td>
<td>Displays BACP errors, protocol actions, and negotiation</td>
</tr>
<tr>
<td>event</td>
<td>negotiation]</td>
</tr>
<tr>
<td>Router> <code>debug ppp multilink events</code></td>
<td>Displays information about events affecting multilink bundles established for BACP.</td>
</tr>
</tbody>
</table>

Configuration Examples for BACP

The following sections provide BACP configuration examples:

- Basic BACP Configurations
- Dialer Rotary Group with Different Dial-In Numbers
- Passive Mode Dialer Rotary Group Members with One Dial-In Number
- PRI Interface with No Defined PPP BACP Number
- BRI Interface with No Defined BACP Number

Basic BACP Configurations

The following example configures an ISDN BRI interface for BACP to make outgoing calls and prevent the peer from negotiating link drops:

```
interface bri 0
  ip unnumbered ethernet 0
dialer load-threshold 10 either
dialer map ip 172.21.13.101 name bap-peer 12345668899
  encapsulation ppp
  ppp multilink bap
  ppp bap call request
  ppp bap callback accept
  no ppp bap call accept
  no ppp bap drop accept
  ppp bap pending timeout 30
  ppp bap number default 5664567
  ppp bap number secondary 5664568
```

The following example configures a dialer rotary group to accept incoming calls:

```
interface async 1
  no ip address
  encapsulation ppp
  dialer rotary-group 1
  ppp bap number default 5663456

! Set the bandwidth to suit the modem/line speed on the remote side.
interface bri 0
  no ip address
  bandwidth 38400
  encapsulation ppp
```
dialer rotary-group 1
ppp bap number default 5663457
!
interface bri 1
no ip address
encapsulation ppp
dialer rotary-group 1
ppp bap number default 5663458
!
interface dialer1
ip unnumbered ethernet 0
encapsulation ppp
ppp multilink bap
ppp bap call accept
ppp bap link types isdn analog
dialer load threshold 30
ppp bap timeout pending 60

The following example configures a virtual template interface to use BACP in passive mode:

multilink virtual-template 1
!
interface virtual-template 1
ip unnumbered ethernet 0
encapsulation ppp
ppp multilink bap
ppp authentication chap callin

The bundle is created from any MMP-capable interface.
The following example creates a bundle on a BRI interface:

interface bri 0
no ip address
encapsulation ppp
ppp multilink
ppp bap number default 4000
ppp bap number secondary 4001

Dialer Rotary Group with Different Dial-In Numbers

The following example configures a dialer rotary group that has four members, each with a different number, and that accepts incoming dial attempts. The dialer interface does not have a base phone number; the interface used to establish the first link in the multilink bundle will provide the appropriate number from its configuration.

interface bri 0
no ip address
encapsulation ppp
dialer rotary-group 1
no fair-queue
no cdp enable
ppp bap number default 6666666
!
interface bri 1
no ip address
encapsulation ppp
dialer rotary-group 1
no fair-queue
no cdp enable
ppp bap number default 6666667
!
interface bri 2
no ip address
encapsulation ppp
dialer rotary-group 1
no fair-queue
no cdp enable
ppp bap number default 6666668
!
interface bri 3
no ip address
encapsulation ppp
dialer rotary-group 1
no fair-queue
no cdp enable
ppp bap number default 6666669
!
interface dialer 1
ip unnumbered Ethernet0
encapsulation ppp
dialer in-band
dialer idle-timeout 300
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap
ppp multilink bap
ppp bap call accept
ppp bap callback request
ppp bap timeout pending 20
ppp bap timeout response 2
ppp bap max dial-attempts 2
ppp bap monitor load

Passive Mode Dialer Rotary Group Members with One Dial-In Number

The following example, a dialer rotary group with two members each with the same number, accepts incoming dial attempts. The dialer interface has a base phone number because each of its member interfaces is in a hunt group and the same number can be used to access each individual interface.

interface bri 0
no ip address
encapsulation ppp
dialer rotary-group 1
no fair-queue
no cdp enable
!
interface bri 1
no ip address
encapsulation ppp
dialer rotary-group 1
no fair-queue
no cdp enable
!
interface dialer 1
ip unnumbered Ethernet0
encapsulation ppp
dialer in-band
dialer idle-timeout 300
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap
ppp multilink bap
ppp bap call accept
ppp bap callback request
ppp bap timeout pending 20
ppp bap timeout response 2
ppp bap max dial-attempts 2
ppp bap monitor load
ppp bap number default 6666666

PRI Interface with No Defined PPP BACP Number

In the following example, a PRI interface has no BACP number defined and accepts incoming dial attempts (passive mode). The PRI interface has no base phone number defined, so each attempt to add a link would result in a delta of zero being provided to the calling peer. To establish the bundle, the peer should then dial the same number as it originally used.

interface serial 0:23
ip unnumbered Ethernet0
encapsulation ppp
dialer in-band
dialer idle-timeout 300
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap
ppp multilink bap
ppp bap call accept
ppp bap callback request
ppp bap timeout pending 20
ppp bap timeout response 2
ppp bap max dial-attempts 2
ppp bap monitor load

BRI Interface with No Defined BACP Number

In the following example, the BRI interface has no base phone number defined. The number that it uses to establish the bundle is that from the dialer map, and all phone delta operations are applied to that number.

interface bri 0
ip unnumbered Ethernet0
encapsulation ppp
dialer in-band
dialer idle-timeout 300
dialer map ip 10.1.1.1 name bap_peer speed 56 1999884444
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap
ppp multilink bap
ppp bap call request
ppp bap timeout pending 20
ppp bap timeout response 2
ppp bap max dial-attempts 2
ppp bap monitor load
Dial Access Specialized Features
Configuring Large-Scale Dial-Out

This chapter describes how to configure large-scale dial-out. It includes the following main sections:

- Large-Scale Dial-Out Overview
- How to Configure Large-Scale Dial-Out
- Monitoring and Maintaining the Large-Scale Dial-Out Network
- Configuration Examples for Large-Scale Dial-Out

Consider these restrictions when configuring large-scale dial-out:

- Large-scale dial-out supports only IP over PPP encapsulation.
- Large-scale dial-out does not support tunneling protocols such as Layer 2 Forwarding Protocol (L2F) and Layer 2 Tunneling Protocol (L2TP).
- Virtual profiles depend on PPP authentication; however, this authentication can create a problem for Ascend devices, which do not allow devices to authenticate them when answering a call (bidirectional authentication is not supported).
- The IP address of the remote device must be known before dialing out. Large-scale dial-out does not support dynamic IP address assignment.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands mentioned in this chapter, refer to *Cisco IOS Dial Technologies Command Reference*, Release 12.2. To locate documentation of other commands that appear in this chapter, use *Cisco IOS Command Reference Master Index* or search online.

Large-Scale Dial-Out Overview

In previous dial-on-demand routing (DDR) networking strategies, only incoming calls could take advantage of features such as dialer and virtual profiles, Multichassis Multilink PPP (MMP) support, and the ability to use an authentication, authorization, and accounting (AAA) server to store attributes. MMP allows network access servers to be stacked together and appear as a single network access server chassis so that if one network access server fails, another network access server in the stack can accept calls. MMP also provides stacked network access servers access to a local Internet point of presence (POP) using a single telephone number. This capability allows for easy expansion and scalability and for assured fault tolerance and redundancy. Now, with large-scale dial-out, these features are available for both outgoing and incoming calls.
Large-scale dial-out eliminates the need to configure dialer maps on every network access server for every destination. Instead, you create remote site profiles that contain outgoing call attributes (telephone number, service type, and so on) on the AAA server. The profile is downloaded by the network access server when packet traffic requires a call to be placed to a remote site.

Additionally, large-scale dial-out addresses congestion management by seeking an uncongested, alternative network access server within the same POP when the designated primary network access server experiences port congestion.

Large-scale dial-out also enables scalable dial-out service to many remote sites across one or more Cisco network access servers or Cisco routers. This capability is especially beneficial to both Internet service providers (ISPs) and large-scale enterprise customers because it can simplify network configuration and management. Large-scale dial-out streamlines activities such as service maintenance and scheduled activities like application upgrades from a centralized location. Large enterprise networks such as those used by retail stores, supermarket chains, and franchise restaurants can use large-scale dial-out to easily update daily prices and inventory information from a central server to all branch locations in one process, using the same network access servers that they currently use for dial-in functions.

Additional benefits of using large-scale dial-out include the following:

- Allows dialing the same router from any router in a stack group. Using a primary network access server, you can configure static routes for a given remote host or network. If the primary network access server is congested or has no links available, it will search for an alternate server within the stack, and force that server to dial out.

- Eliminates the need to configure dialer maps in individual network access servers. The user profiles, along with dial parameters, can be centrally stored on an AAA server such as a Cisco Secure Access Control Server (ACS).

- Supports extended TACACS (also TACACS+), RADIUS using Cisco attribute-value (AV) pairs, and the Ascend proprietary RADIUS extension for dial-out operation.

- Provides a way to associate an IP address with a user name and user profile using the static route and host name association features. If there are no names on the IP static route, the Domain Name System (DNS) support function can be used to determine the user name that is associated with the IP address. If a name is not found, the destination IP address is used for the name.

- Allows dynamic static routes to be configured on the centralized AAA server, that is, static routes stored centrally on an AAA server that can be dynamically downloaded by the router as needed.

- Provides support for MMP and the Stack Group Bidding Protocol (SGBP). SGBP unites each Cisco access server in a virtual stack, which enables the access servers to become virtually tied together. If all ports on a given network access server are already being used, the other network access servers on the stack can be used for outbound calls. Single calls and multilink calls are now supported across the multichassis stack group.

- Supports dial-out over an asynchronous line, when a chat script is configured.

- Allows ports to be reserved for dial-in and dial-out.

Large-scale dial-out enables scalable dial-out service; that is, configuration information is stored in a central server, and many network access servers can access this information using either the RADIUS or extended TACACS protocols. One or more network access servers can advertise summary routes to the remote destinations and then dynamically download the dial-out profile configurations as needed.

Large-scale dial-out also allows dialing the same remote network or host from any router in a stack group. You configure static routes for a particular remote host or network on a router in a stack group that you designate as the primary network access server for that remote network or host. When a primary network access server experiences port congestion, it searches for an alternate network access server within the stack group to dial out and, when found, forces the alternate to dial the remote network.

Figure 96 illustrates the large-scale dial-out solution.
Figure 96 Large-Scale Dial-Out Components

Large-scale dial-out relies on per-user static routes in AAA and redistributed static and redistributed connected routes to put better routes pointing to the same remote on the alternate network access server. You can use any routing protocol that supports redistributing static and connected routes and that supports Flash memory updates when a routing topology changes. The Open Shortest Path First (OSPF) and Enhanced Interior Gateway Routing Protocol (EIGRP) routing protocols are recommended.

Next Hop Definition

A next hop address or remote name that you define is used in an AAA server lookup to retrieve the user profile from the remote network or host. The name is passed to the AAA server by the router software.

Static Routes

Static routes can be dynamically downloaded from an AAA server by the network access servers or can be manually configured on the network access servers.

Dynamic static routes are installed on the network access server by an AAA server. The routes are downloaded at system startup and updated periodically, so that route changes are reflected within a configurable interval of time. Large-scale dial-out allows multiple AAA transactions with 50 static routes per AAA server transaction. There is no set limit for the number of AAA server transactions which can be configured, however configuring too many transactions may impact the performance of your network. Performance effects will depend on the configurations and platforms used in your network.

Stack Groups

The network access server stack group redistributes the routes of the remote networks. If the number is large, the routes are summarized. Packets destined for remote networks are routed to the primary network access server for the remote network.
If the static route that points to the next hop of the network access server has a name, that name with the -out suffix attached becomes the profile name. If no profile name is configured in the route statement that defines the remote location, the router can use reverse DNS lookup to map the IP route to a profile name. The next hop address on the static route is used in reverse DNS to obtain the name of the remote network. This name is then used in the AAA server lookup to retrieve the remote user profile. If no name is returned by DNS, the network access server uses the destination IP address with the -out suffix appended as the name.

If the primary network access server is congested, an alternate network access server may dial out. The primary network access server initiates stack group bidding for the outgoing call. The least congested network access server wins the bid and downloads the user profile. After a call is connected on an alternate network access server, a better per-user route from the AAA profile is installed on the alternate network access server. Subsequent packets destined for the remote network are routed to the alternate network access server while the call is connected. Packets stored in the dialer hold queue on the primary network access server are switched to the alternate network access server when the new route is distributed to the primary network access server.

How to Configure Large-Scale Dial-Out

To configure large-scale dial-out perform the tasks in the following sections:

- **Complying with Large-Scale Dial-Out Prerequisites** (Required)
- **Establishing the Route to the Remote Network** (As required)
- **Enabling AAA and Static Route Download** (Required)
- **Enabling Access to the AAA Server** (Required)
- **Enabling Reverse DNS** (Required)
- **Enabling SGBP Dial-Out Connection Bidding** (Required)
- **Defining a User Profile** (Required)

See the section “Monitoring and Maintaining the Large-Scale Dial-Out Network” later in this chapter for tips on maintaining large-scale dial-out. See the examples in the section “Configuration Examples for Large-Scale Dial-Out” at the end of this chapter for ideas on how you can implement large-scale dial-out in your network.

Complying with Large-Scale Dial-Out Prerequisites

The following prerequisites apply to large-scale dial-out:

- Virtual profiles depend on PPP authentication; therefore the network access server, the remote device, or both must authenticate the connection to use virtual profiles.

- You must configure SGBP to allow a primary network access server that is congested or otherwise unable to dial out to select an alternate network access server to dial out. Configure SGBP using the `sgbp group` and `sgbp member` global configuration commands before enabling the stack group to bid for dial-out connection. Configuring SGBP is described in the chapter “Configuring Multichassis Multilink PPP” in this publication. The *Cisco IOS Dial Technologies Command Reference* describes the commands to configure a stack group.
Additionally, all members of the stack group must be in the same routing autonomous system, and the `redistribute static` and `redistribute connected` commands must already be configured. The stack group supports all routing protocols, but routing protocols such as EIGRP and OSPF, which support redistributing static and connected routes and Flash memory updates when topology changes, are recommended.

- You must configure AAA network security services using the `aaa new-model`, `aaa authentication`, `aaa authorization`, and `aaa accounting` global configuration commands. For more information about AAA, see the chapter “AAA Overview” in the *Cisco IOS Security Configuration Guide*. The *Cisco IOS Security Command Reference* describes the commands to configure AAA.

You will also need to configure your network access server to communicate with the applicable security server, either an extended TACACS or RADIUS daemon.

If you are using RADIUS and Ascend attributes, use the `non-standard` keyword with the `radius-server host` command to enable your Cisco router, acting as a network access server, to recognize that the RADIUS security server is using a vendor-proprietary version of RADIUS. Use the `radius-server key` command to specify the shared secret text string used between your Cisco router and the RADIUS server. For more information, see the chapter “Configuring RADIUS” in the *Cisco IOS Security Configuration Guide*.

If you are using extended TACACS, use the `tacacs-server host` command to specify the IP address of one or more extended TACACS daemons. Use the `tacacs-server key` command to specify the shared secret text string used between your Cisco router and the extended TACACS daemon. For more information, see the chapter about configuring extended TACACS in the *Cisco IOS Security Configuration Guide*.

Establishing the Route to the Remote Network

The task in this section is optional; you only need to perform it when routes will not be downloaded statically from the AAA server.

To establish a route to the remote network or host (next hop) that holds the user profile, use the `ip route` command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# ip route network-number [network-mask] {address</td>
<td>interface} [distance] [name name]`</td>
</tr>
</tbody>
</table>

The name you define is used in an AAA server lookup to retrieve the AAA profile of the remote network.

Enabling AAA and Static Route Download

AAA network security must be enabled before you perform the tasks in this section. For more information about enabling AAA, see the chapter “AAA Overview” in the *Cisco IOS Security Configuration Guide*.

Enabling the static route download feature allows static routes to be configured at a centrally located AAA server. Static routes are downloaded when the system is started, and you define a period of time between route updates when you enable the feature.
Static route download is not mandatory for the large-scale dial-out feature; however, it makes configuration of static routes more manageable by allowing the configuration to be centralized on a server.

To enable the static route download feature, use the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>Router(config)# aaa new-model</code></td>
<td>Enables the AAA server.</td>
</tr>
<tr>
<td>Step 2: <code>Router(config)# aaa route download [time]</code></td>
<td>Downloads static routes from the AAA server periodically using the host name of the router.</td>
</tr>
<tr>
<td>Step 3: `Router(config)# aaa authorization configuration default [radius</td>
<td>tacacs+]`</td>
</tr>
</tbody>
</table>

Use the `show ip route` command to see the routes installed by these commands.

Enabling Access to the AAA Server

To configure the dialer interface to access the AAA server and retrieve the user profile, use the following command in interface configuration mode for a dialer rotary group leader:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer aaa</code></td>
<td>Allows the dialer to use the AAA server to locate profiles for dialing information.</td>
</tr>
</tbody>
</table>

Enabling Reverse DNS

To instruct the dialer to use reverse DNS on dial out, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer dns</code></td>
<td>Uses reverse DNS to obtain the name of the user profile of the remote network.</td>
</tr>
</tbody>
</table>

The user profile name passed to the AAA server by the system is `reverse-dns-name-out`; the `-out` suffix is automatically appended to the DNS name and is required to create unique dial-out and dial-in profiles.

Enabling SGBP Dial-Out Connection Bidding

You must configure SGBP before performing the tasks in this section. The chapter “Configuring Multichassis Multilink PPP” in this publication describes the tasks you perform to configure a stack group.

To configure stack group bidding, use the following command in global configuration mode:
Once the stack group has been configured and enabled for dial-out connection bidding, configure the dialer interface to search for an alternate network access server in the event of port congestion. Use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# dialer congestion-threshold links</code></td>
<td>Forces the dialer to search for another uncongested system in the stack group.</td>
</tr>
<tr>
<td>`Router(config-if)# dialer reserved-links {dialin-link</td>
<td>dialout-link}`</td>
</tr>
</tbody>
</table>

See the section “Stack Group and Static Route Download Configuration Example” at the end of this chapter for an example of how to configure stack groups and static routes.

Defining a User Profile

Attributes are used to define specific AAA elements in a user profile. Large-scale dial-out supports a subset of Ascend AV pairs and RADIUS attributes, as well as a map class attribute that provides outbound dialing services, as described in Table 36.

The only required attribute is the Cisco AV pair outbound:dial-number; all others are optional. If the AAA server does not support Cisco AV pairs, attribute #227, Ascend-Dial-Number, can be substituted. If there are equivalent Cisco AV pairs and Ascend-specific attributes, Cisco recommends using the Cisco AV pairs.

For additional information about defining user profiles, see the chapter “RADIUS Attribute-Pairs” in the CiscoSecure ACS for Windows NT User Guide 2.0 publication and the chapter “TACACS+ Attribute-Value Pairs” in the Cisco IOS Security Configuration Guide.

For an example of a user profile that uses the supported attributes, see the section “User Profile on an Ascend RADIUS Server for NAS1 Example” at the end of this chapter.

For the attributes listed in Table 4, the value of a string is 0 to 253 octects; the value of an integer is a 32-bit value ordered high byte first.
Table 36 Large-Scale Dial-Out Outbound Service Attributes

<table>
<thead>
<tr>
<th>Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ascend AV Pairs</td>
<td></td>
</tr>
<tr>
<td>#214</td>
<td>Ascend-Send-Secret</td>
<td>Specifies the password that the network access server uses when the remote site challenges the network access server to authenticate using either Challenge Handshake Authentication Protocol (CHAP) or Password Authentication Protocol (PAP).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco AV Pair: None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TACACS+ Support: service = outbound {</td>
</tr>
<tr>
<td></td>
<td></td>
<td>send-secret = VALUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Value: Password string</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note The password is encrypted. This attribute requires a special RADIUS daemon that supports CHAP or PAP authentication.</td>
</tr>
<tr>
<td>#227</td>
<td>Ascend-Dial-Number</td>
<td>Defines the number to dial.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco AV Pair: cisco-avpair="outbound:dial-number=VALUE"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TACACS+ Support: service = outbound {</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dial-number = VALUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Value: Dial string</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note This attribute defines the plain dial number. It can be used in different profiles, whereas the callback-dialstring attribute is only for callbacks.</td>
</tr>
</tbody>
</table>
Table 36 Large-Scale Dial-Out Outbound Service Attributes (continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| #231 | Ascend-Send-Auth | Specifies the authentication protocol that the network access server requests when initiating a connection using PPP. The answering side of the connection determines which authentication protocol, if any, that the connection uses. The network access server will refuse to negotiate PAP if CHAP is selected, but will negotiate CHAP if PAP is selected.

 Cisco AV Pair:

cisco-avpair="outbound:send-auth=VALUE"

 TACACS+ Support:

 service = outbound {
 send-auth = none/pap/chap
 }

 Value:

 0: Send-Auth-None
 1: Send-Auth-PAP
 2: Send-Auth-CHAP |
| #247 | Ascend-Data-SVC | Specifies the type of data service that the link uses for outgoing calls.

 Cisco AV Pair:

cisco-avpair="outbound:data-service=VALUE"

 TACACS+ Support:

 service = outbound {
 data-service = VALUE
 }

 Value:

 0: Switched-Voice-Bearer |
| #248 | Ascend-Force-56 | Determines whether the network access server uses only the 56K portion of a channel, even when all 64K appear to be available.

 Cisco AV Pair:

cisco-avpair="outbound:force-56=VALUE"

 TACACS+ Support:

 service = outbound {
 force-56 = VALUE
 }

 Value:

 0: Force-56-No
 1: Force-56-Yes |
Table 36 Large-Scale Dial-Out Outbound Service Attributes (continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RADIUS (IETF) Attributes</td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>Framed-Routing</td>
<td>Indicates a routing method when a router is used to access a network.</td>
</tr>
<tr>
<td></td>
<td>Cisco AV Pair:</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>TACACS+ Support:</td>
<td>service = outbound {</td>
</tr>
<tr>
<td></td>
<td></td>
<td>routing = VALUE</td>
</tr>
<tr>
<td></td>
<td>Value:</td>
<td>0: None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Broadcast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: Listen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: Broadcast-Listen</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>This attribute is currently supported only for PPP service.</td>
</tr>
<tr>
<td>#19</td>
<td>Callback-Number</td>
<td>Defines a dialing string to be used for call back. (Service is both outbound and PPP.)</td>
</tr>
<tr>
<td></td>
<td>Cisco AV Pair:</td>
<td>cisco-avpair="outbound:callback-dialstring=VALUE"</td>
</tr>
<tr>
<td></td>
<td>TACACS+ Support:</td>
<td>Equivalent to the existing callback-dialstring attribute.</td>
</tr>
<tr>
<td></td>
<td>Value:</td>
<td>Dial string</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>This is an alternate way of setting a callback number using a standard RADIUS attribute.</td>
</tr>
</tbody>
</table>
Table 36 Large-Scale Dial-Out Outbound Service Attributes (continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#61</td>
<td>NAS-Port-Type</td>
<td>Indicates the type of physical port that the network access server is using to authenticate the user.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco AV Pair:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TACACS+ Support:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Value:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: Asynchronous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Synchronous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: ISDN-Synchronous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This attribute is currently supported only for PPP service.</td>
</tr>
</tbody>
</table>

Map Class Attribute

- **(unnumbered)** `map-class`

 Allows the user profile to reference information configured in a map class of the same name on the network access server that dials out.

 Cisco AV Pair:

 `cisco-avpair="outbound:map-class=VALUE"`

 TACACS+ Support:

 `service = outbound {
 map-class = VALUE
 }`

 Value:

 Name string, which must match the name of a map class on the dial-out network access server.
Monitoring and Maintaining the Large-Scale Dial-Out Network

To monitor and maintain a large-scale dial-out network, use any of the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> clear dialer sessions</td>
<td>Removes all dialer sessions and disconnects links.</td>
</tr>
<tr>
<td>Router> clear ip route download {*</td>
<td>network-number network-mask</td>
</tr>
<tr>
<td>Router> show dialer sessions</td>
<td>Displays all dialer sessions.</td>
</tr>
<tr>
<td>Router> show ip route [static [download]]</td>
<td>Displays all static IP routes or those installed using the AAA route download function.</td>
</tr>
</tbody>
</table>

Configuration Examples for Large-Scale Dial-Out

The following sections provide examples of how you can configure large-scale dial-out in your network:

- Stack Group and Static Route Download Configuration Example
- User Profile on an Ascend RADIUS Server for NAS1 Example
- Asynchronous Dialing Configuration Examples

Stack Group and Static Route Download Configuration Example

The following example configures NAS1 as the primary network access server and NAS2 as the secondary network access server, in a stack group for dial-out. The remote router is configured to answer calls. Figure 97 illustrates the configuration.

![Figure 97 Stack Group and Static Route Download Configuration](image-url)
At the console for NAS1, ping 20.1.1.1. This action creates a multilink bundle with two links. NAS1 dials out the first link, and NAS2 dials out the second link. The router named Remote is using the CHAP host name echo-8.cisco.com.

A user profile for NAS1 on an Ascend RADIUS server is listed in the section “User Profile on an Ascend RADIUS Server for NAS1 Example” later in this chapter.

Primary Network Access Server Configuration for NAS1

```plaintext
version 12.0
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
!
hostname NAS1
!
aaa new-model
aaa authentication ppp default radius local
aaa authorization network default radius none
aaa authorization configuration default radius
aaa route download 720
enable password 7 1236173C1B0F
!
username NAS2 password 7 05080F1C2243
username NAS1 password 7 030752180500
username dialbid password 7 121A0C041104
username echo-8.cisco.com password 7 02050D480809
ip subnet-zero
ip domain-name cisco.com
ip name-server 172.31.2.132
ip name-server 172.22.30.32
!
virtual-profile virtual-template 2
!
sgbp group dialbid
sgbp seed-bid offload
sgbp member NAS2 172.21.17.17
sgbp dial-bids
isdn switch-type basic-5ess
!
interface Ethernet 0
  ip address 172.21.17.18 255.255.255.0
  no ip directed-broadcast
  no ip mroute-cache
  media-type 10BaseT
  no cdp enable
!
interface Virtual-Template 1
  ip address 10.1.1.1 255.255.255.252
  no ip directed-broadcast
!
interface Virtual-Template 2
  ip unnumbered Virtual-Template 1
  no ip directed-broadcast
  ppp multilink
  multilink load-threshold 1 outbound
!
interface BRI 0
  description PBX 60043
  no ip address
  no ip directed-broadcast
  encapsulation ppp
```
dialer rotary-group 1
isdn switch-type basic-5ess
no fair-queue
!
interface Dialer 1
ip unnumbered Ethernet 0
no ip directed-broadcast
encapsulation ppp
no ip mroute-cache
dialer in-band
dialer dns
dialer aaa
dialer hold-queue 5
dialer congestion-threshold 5
dialer reserved-links 1 0
dialer-group 1
no fair-queue
ppp authentication chap callin
ppp multilink
!
routern eigrp 200
redistribute connected
redistribute static
network 172.21.0.0
!
ip default-gateway 172.21.17.1
ip classless
ip route 0.0.0.0 0.0.0.0 172.21.17.1
!
dialer-list 1 protocol ip permit
radius-server host 172.31.61.87 auth-port 1645 acct-port 1646
radius-server key foobar
!
end

Secondary Network Access Server Configuration for NAS2

version 12.0
service timestamps debug datet ime msec
service timestamps log uptime
service password-encryption
!
hostname NAS2
!
boot system flash
aaa new-model
aaa authentication ppp default radius local
aaa authorization network default radius none
aaa authorization configuration default radius
enable password 7 022916700202
!
username NAS1 password 7 104D000A0618
username dialbid password 7 070C285F4D06
username echo-8.cisco.com password 7 0822455D0A16
ip subnet-zero
ip domain-name cisco.com
ip name-server 172.22.30.32
ip name-server 172.31.2.132
!
virtual-profile virtual-template 2
!
sgbp group dialbid
sgbp member NAS1 172.21.17.18
sgbp dial-bids
isdn switch-type basic-5ess
!
interface Ethernet 0
 ip address 172.21.17.17 255.255.255.0
 no ip directed-broadcast
 media-type 10BaseT
!
interface Virtual-Template 1
 ip address 10.1.1.1 255.255.255.252
 no ip directed-broadcast
!
interface Virtual-Template 2
 ip unnumbered Virtual-Template 1
 no ip directed-broadcast
 ppp multilink
 multilink load-threshold 1 outbound
!
interface BRI 0
 no ip address
 no ip directed-broadcast
 encapsulation ppp
dialer rotary-group 0
 isdn switch-type basic-5ess
 no fair-queue
!
interface Dialer 0
 ip unnumbered Ethernet 0
 no ip directed-broadcast
dialer in-band
dialer dns
dialer aaa
dialer hold-queue 5
dialer congestion-threshold 5
dialer reserved-links 1 0
dialer-group 1
 no fair-queue
 ppp authentication chap callin
 ppp multilink
!
router eigrp 200
 redistribute connected
 redistribute static
 network 172.21.0.0
!
ip default-gateway 172.21.17.1
ip classless
ip route 0.0.0.0 0.0.0.0 172.21.17.1
!
dialer-list 1 protocol ip permit
!
radius-server host 172.31.61.87 auth-port 1645 acct-port 1646
radius-server key foobar
!
end
Remote Router Configuration

version 12.0
service timestamps debug datetime msec
service timestamps log uptime
service password-encryption
service udp-small-servers
service tcp-small-servers
!
hostname Remote
!
boot system flash
enable password 7 002B012D0D5F
!
username dialbid password 7 14141B180F0B
ip subnet-zero
no ip domain-lookup
!
isdn switch-type basic-5ess
!
interface Loopback 0
 ip address 172.31.229.41 255.255.255.255
no ip directed-broadcast
no ip route-cache
no ip mroute-cache
!
interface Loopback 1
 ip address 10.1.1.1 255.255.255.0
no ip directed-broadcast
no ip route-cache
no ip mroute-cache
!
interface Loopback 2
 ip address 10.1.2.1 255.255.255.0
no ip directed-broadcast
no ip route-cache
no ip mroute-cache
!
interface Loopback 3
 ip address 10.3.1.1 255.255.255.0
no ip directed-broadcast
no ip route-cache
no ip mroute-cache
!
interface Ethernet 0
 ip address 172.21.12.15 255.255.255.0
no ip directed-broadcast
no ip route-cache
no ip mroute-cache
!
interface BRI 0
 no ip address
 no ip directed-broadcast
 encapsulation ppp
 no ip route-cache
 no ip mroute-cache
dialer rotary-group 3
dialer-group 1
isdn switch-type basic-5ess
no fair-queue
!
interface Dialer 3
 ip unnumbered Loopback 0
 no ip directed-broadcast
Configuring Large-Scale Dial-Out

Configuration Examples for Large-Scale Dial-Out

encapsulation ppp
no ip route-cache
no ip mroute-cache
dialer in-band
dialer idle-timeout 10000
dialer-group 1
no fair-queue
ppp authentication chap callin
ppp chap hostname echo-8.cisco.com
ppp chap password 7 045802150C2E
ppp multilink

! ip default-gateway 172.21.12.1
ip classless
ip route 0.0.0.0 0.0.0.0 1.1.1.1
!
dialer-list 1 protocol ip permit

User Profile on an Ascend RADIUS Server for NAS1 Example

The following example shows a dial-out profile and a static route download profile in AAA. The dial-out profile username must have “-out” appended to it. The static route download profile username always has “-NAS1” appended. The router downloads NAS1-1, NAS1-2, through NAS1-N. When NAS1-N fails, the router does not try NAS1-N+1. The static route download profile cannot have more than 50 static routes defined.

echo-8.cisco.com-out Password = "cisco", User-Service-Type = Outbound-User
cisco-avpair = "outbound:addr=172.31.229.41",
cisco-avpair = "outbound:dial-number=60039",

NAS1-1 Password = "cisco" User-Service-Type = Outbound-User,
cisco-avpair = "ip:route=10.1.3.0 255.255.255.0 172.31.229.41 200",
cisco-avpair = "ip:route=10.1.2.0 255.255.255.0 172.31.229.41 200",
cisco-avpair = "ip:route=10.1.1.0 255.255.255.0 172.31.229.41 200",
cisco-avpair = "ip:route=172.31.229.41 255.255.255.255 Dialer1 200 name echo-8.cisco.com"

Note

Note that all text between quotation marks must be typed on one line.

Static routes can also be defined using the Framed-Route Internet Engineering Task Force (IETF) standard. The following example shows how the previous example for NAS1 would look using the Framed-Route IETF standard:

NAS1-1 Password = "cisco" User-Service-Type = Outbound-User,
Framed-Route = "10.1.3.0/24 172.31.229.41.200",
Framed-Route = "10.1.2.0/24 172.31.229.41.200",
Framed-Route = "10.1.1.0/24 172.31.229.41.200",
Framed-Route = "172.31.229.41/32 Dialer1 200 name echo-8.cisco.com"
Asynchronous Dialing Configuration Examples

Large-scale dial-out supports dialing out using an asynchronous line. This type of dialing requires that a chat script be configured and that the `script dialer` command be configured in the line commands for any asynchronous interface that may be dialing out. The following examples are provided in this section:

- Asynchronous Dialing Example
- Asynchronous and Synchronous Dialing Example

Asynchronous Dialing Example

The following example shows an asynchronous dialing configuration:

```plaintext
chat-script dial "" "ATZ" OR "ATDT\T" TIMEOUT 60 CONNECT

interface Async 1
  no ip address
  no ip directed-broadcast
  encapsulation ppp
  dialer in-band
  dialer rotary-group 0
  async dynamic address
  async dynamic routing
  async mode dedicated
  no cdp enable

interface Dialer 0
  ip address 172.21.30.32 255.255.255.0
  no ip directed-broadcast
  encapsulation ppp
  no ip mroute-cache
  bandwidth 64
  dialer in-band
  dialer idle-timeout 60
  dialer enable-timeout 10
  dialer hold-queue 50
  dialer-group 1
  no cdp enable

line 1
  script dialer dial
  modem InOut
  transport input all
```

Asynchronous and Synchronous Dialing Example

The following example creates a dialer rotary group for the asynchronous interfaces and a dialer rotary group for the PRI interfaces. Any dial-in or dial-out reservations are applied only to the PRI dialer interface. In the following configuration example:

- Destinations that require modem calls have static routes that point to Dialer 0.
- Destinations that require digital connections have static routes that point to Dialer 1.
- The `dialer reserved-links` command applies to all connections made over the PRI interfaces in dialer rotary group 1, even if they come from an asynchronous interface.
chat-script dial "" 'ATZ' OK 'ATDT\T' TIMEOUT 60 CONNECT

interface Serial 0:23
no ip address
no ip directed-broadcast
no keepalive
dialer rotary-group 1
isdn switch-type primary-5ess
isdn incoming-voice modem
no cdp enable

interface Async 1
no ip address
no ip directed-broadcast
encapsulation ppp
dialer in-band
dialer rotary-group 0
async dynamic address
async dynamic routing
async mode dedicated
no cdp enable

interface Dialer 0
ip address 172.21.30.32 255.255.255.0
no ip directed-broadcast
encapsulation ppp
no ip mroute-cache
bandwidth 64
dialer in-band
dialer dns
dialer aaa
dialer idle-timeout 60
dialer enable-timeout 10
dialer hold-queue 50
dialer-group 1
no cdp enable

interface Dialer 1
ip address unnumbered eth0
no ip directed-broadcast
dialer in-band
dialer dns
dialer aaa
dialer reserved-links 22 0
no cdp enable

line 1
script dialer dial
modem InOut
transport input all
Configuring per-User Configuration

This chapter describes per-user configuration, a large-scale dial solution. It includes the following main sections:

- Per-User Configuration Overview
- How to Configure a AAA Server for Per-User Configuration
- Monitoring and Debugging Per-User Configuration Settings
- Configuration Examples for Per-User Configuration

This set of features is supported on all platforms that support Multilink PPP (MLP).

A virtual access interface created dynamically for any user dial-in session is deleted when the session ends. The resources used during the session are returned for other dial-in uses.

When a specific user dials in to a router, the use of a per-user configuration from an authentication, authorization, and accounting (AAA) server requires that AAA is configured on the router and that a configuration for that user exists on the AAA server.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands mentioned in this chapter, refer to the Cisco IOS Dial Technologies Command Reference, Release 12.2 and the Cisco IOS Security Command Reference, Release 12.2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

Per-User Configuration Overview

Per-user configuration provides a flexible, scalable, easily maintained solution for customers with a large number of dial-in users. This solution can tie together the following dial-in features:

- Virtual template interfaces, generic interface configuration and router-specific configuration information stored in the form of a virtual template interface that can be applied (cloned) to a virtual access interface each time any user dials in. This configuration is described in the chapter “Configuring Virtual Template Interfaces” in this publication.

- AAA per-user security and interface configuration information stored on a separate AAA server and sent by the AAA server to the access server or router in response to authorization requests during the PPP authentication phase. The per-user configuration information can add to or override the generic configuration on a virtual interface.
Virtual profiles, which can use either or both of the two sources of information listed in the previous bullets for virtual interface configuration. When a user dials in, virtual profiles can apply the generic interface configuration and then apply the per-user configuration to create a unique virtual access interface for that user. This configuration is described in the chapter “Configuring Virtual Profiles” in this publication.

The per-user configuration feature provides these benefits:

- Maintenance ease for service providers with a large number of access servers and a very large number of dial-in users. Service providers need not update all their routers and access servers when user-specific information changes; instead, they can update one AAA server.
- Scalability. By separating generic virtual interface configuration on the router from the configuration for each individual, Internet service providers and other enterprises with large numbers of dial-in users can provide a uniquely configured interface for each individual user. In addition, by separating the generic virtual interface configuration from the physical interfaces on the router, the number and types of physical interfaces on the router or access server are not intrinsic barriers to growth.

General Operational Processes

In general, the per-user configuration process on the Cisco router or network access server proceeds as follows:

1. The user dials in.
2. The authentication and authorization phases occur.
 a. If AAA is configured, the router sends an authorization request to the AAA server.
 b. If the AAA server has information (attribute-value or AV pairs, or other configuration parameters) that defines a configuration for the specific user, the server includes it in the information in the approval response packet.

 Figure 98 illustrates the request and response part of the process that happens when a user dials in, given that AAA is configured and that the AAA server has per-user configuration information for the dial-in user.
 c. The router looks for AV pairs in the AAA approval response.
 d. The router caches the configuration parameters.

Note

TACACS servers treat authentication and authorization as two phases; RADIUS servers combine authentication and authorization into a single step. For more detailed information, refer to your server documentation.
Configuring per-User Configuration

3. A virtual access interface is created for this user.
 a. The router finds the virtual template that is set up for virtual profiles, if any, and applies the commands to the virtual access interface.
 b. The router looks for the AV pairs to apply to this virtual access interface to configure it for the dial-in user.
 c. The AV pairs are sent to the Cisco IOS command-line parser, which interprets them as configuration commands and applies them to configure this virtual access interface.

The result of this process is a virtual access interface configured uniquely for the dial-in user.

When the user ends the call, the virtual access interface is deleted and its resources are returned for other dial-in uses.

Note
The use of virtual profiles can modify the process that occurs between the user dial-in and the use of AAA configuration information. For more information, see the chapter “Configuring Virtual Profiles” in this publication.

Operational Processes with IP Address Pooling

During IP Control Protocol (IPCP) address negotiation, if an IP pool name is specified for a user, the network access server checks whether the named pool is defined locally. If it is, no special action is required and the pool is consulted for an IP address.

If the required pool is not present (either in the local configuration or as a result of a previous download operation), an authorization call to obtain it is made using the special username:

```
pools-nas-name
```

where `nas-name` is the configured name of the network access server. In response, the AAA server downloads the configuration of the required pool.

This pool username can be changed using Cisco IOS configuration, for example:

```
aaa configuration config-name nas1-pools-definition.cisco.us
```

This command has the effect of changing the username that is used to download the pool definitions from the default name "pools-nas-name" to "nas1-pools-definition.cisco.com."
On a TACACS+ server, the entries for an IP address pool and a user of the pool might be as follows:

```plaintext
user = nas1-pools {
    service = ppp protocol = ip {
        pool-def#1 = "aaa 10.0.0.1 10.0.0.3"
        pool-def#2 = "bbb 10.1.0.1 10.1.0.10"
        pool-def#3 = "ccc 10.2.0.1 10.2.0.20"
        pool-timeout=60
    }
}

user = georgia {
    login = cleartext lab
    service = ppp protocol = ip {
        addr-pool=bbb
    }
}
```

On a RADIUS server, the entries for the same IP address pool and user would be as follows:

```plaintext
nas1-pools Password = "cisco" User-Service-Type=Outbound-User
cisco-avpair = "ip:pool-def#1=aaa 10.0.0.1 10.0.0.3",
cisco-avpair = "ip:pool-def#2=bbb 10.1.0.1 10.1.0.10",
cisco-avpair = "ip:pool-def#3=ccc 10.2.0.1 10.2.0.20",
cisco-avpair = "ip:pool-timeout=60"

georgia Password = "lab"
    User-Service-Type = Framed-User,
    Framed-Protocol = PPP,
    cisco-avpair = "ip:addr-pool=bbb"
```

Note

This entry specifies a User-Service-Type of Outbound-User. This attribute is supplied by the network access server to prevent ordinary logins from using the well-known username and password combination of nas1-pools/cisco.

Pools downloaded to a Cisco network access server are not retained in nonvolatile memory and automatically disappear whenever the access server or router restarts. Downloaded pools can also be made to time out automatically by adding a suitable AV pair. For more information, see the section “Supported Attributes for AV Pairs” and the pool-timeout attribute in Table 37. Downloaded pools are marked as dynamic in the output of the `show ip local pool` command.

Deleting Downloaded Pools

To delete downloaded pools, you can do either of the following:

- Manually delete the definition from the network access server. For example, if “bbb” is the name of a downloaded pool, you can enter the Cisco IOS `no ip local pool bbb` command.

 Deleting a pool definition does not interrupt service for current users. If a pool is deleted and then redefined to include a pool address that is currently allocated, the new pool understands and tracks the address as expected.

- Set an AV pair pool-timeout value; this is a more desirable solution.

 The pool-timeout AV pair starts a timer when the pool is downloaded. Once the timer expires, the pools are deleted. The next reference to the pools again causes an authorization call to be made, and the pool definition is downloaded again. This method allows definitions to be made and changed on the AAA server and propagated to network access servers.
Supported Attributes for AV Pairs

Table 37 provides a partial list of the Cisco-specific supported attributes for AV pairs that can be used for per-user virtual interface configuration. For complete lists of Cisco-specific, vendor-specific, and TACACS+ supported attributes, see the *Cisco IOS Security Configuration Guide* and *Cisco IOS Security Command Reference*.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inacl#</td>
<td>An input access list definition. For IP, standard or extended access list syntax can be used, although you cannot mix them within a single list. For Internet Protocol Exchange (IPX), only extended syntax is recognized. The value of this attribute is the text that comprises the body of a named access list definition.</td>
</tr>
<tr>
<td>outacl#1</td>
<td>An output access list definition. For IP, standard or extended access list syntax can be used. For IPX, only extended syntax is recognized. The value of this attribute is the text that comprises the body of a named access list definition.</td>
</tr>
<tr>
<td>rte-fltr-in#</td>
<td>An input route filter. For IP, standard or extended access list syntax can be used, although you cannot mix them within a single list. For IPX, only extended syntax is recognized. The first line of this filter must specify a routing process. Subsequent lines comprise the body of a named access list.</td>
</tr>
<tr>
<td>rte-fltr-out#</td>
<td>An output route filter. For IP, standard or extended access list syntax can be used, although you cannot mix them within a single list. For IPX, only extended syntax is recognized. The first line of this filter must specify a routing process. Subsequent lines comprise the body of a named access list.</td>
</tr>
<tr>
<td>route#2</td>
<td>Static routes, for IP and IPX. The value is text of the form destination-address mask [gateway].</td>
</tr>
<tr>
<td>sap#</td>
<td>IPX static Service Advertising Protocol (SAP). The value is text from the body of an ipx sap configuration command.</td>
</tr>
<tr>
<td>sap-fltr-in#</td>
<td>IPX input SAP filter. Only extended access list syntax is recognized. The value is text from the body of an extended IPX access-list configuration command. (The Novell socket number for SAP filtering is 452.)</td>
</tr>
<tr>
<td>sap-fltr-out#</td>
<td>IPX output SAP filter. Only extended access-list command syntax is recognized. The value is text from the body of an extended IPX access-list configuration command.</td>
</tr>
<tr>
<td>pool-def#</td>
<td>An IP pool definition. The value is text from the body of an ip local pool configuration command.</td>
</tr>
<tr>
<td>pool-timeout</td>
<td>An IP pool definition. The body is an integer representing a timeout, in minutes.</td>
</tr>
</tbody>
</table>

1. The “outacl” attribute still exists and retains its old meaning.
2. The “route” attribute, without a trailing #, is still recognized for backward compatibility with the TACACS+ protocol specification, but if multiple static routes are required in TACACS+, full “route#” names will need to be employed.
Table 38 provides examples for each attribute on an AAA TACACS+ server.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>TACACS+ Server Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>inacl#</td>
<td>IP:</td>
</tr>
<tr>
<td></td>
<td>inacl#3="permit ip any any precedence immediate"</td>
</tr>
<tr>
<td></td>
<td>inacl#4="deny igrp 10.0.1.2 255.255.0.0 any"</td>
</tr>
<tr>
<td></td>
<td>IPX:</td>
</tr>
<tr>
<td></td>
<td>inacl#1="deny 3C01.0000.0000.0001"</td>
</tr>
<tr>
<td></td>
<td>inacl#2="deny 4C01.0000.0000.0002"</td>
</tr>
<tr>
<td>outacl#</td>
<td>outacl#2="permit ip any any precedence immediate"</td>
</tr>
<tr>
<td></td>
<td>outacl#3="deny igrp 10.0.9.10 255.255.0.0 any"</td>
</tr>
<tr>
<td>rte-fltr-in#</td>
<td>IP:</td>
</tr>
<tr>
<td></td>
<td>rte-fltr-in#1="router igrp 60"</td>
</tr>
<tr>
<td></td>
<td>rte-fltr-in#3="permit 10.0.3.4 255.255.0.0"</td>
</tr>
<tr>
<td></td>
<td>rte-fltr-in#4="deny any"</td>
</tr>
<tr>
<td></td>
<td>IPX:</td>
</tr>
<tr>
<td></td>
<td>rte-fltr-in#1="deny 3C01.0000.0000.0001"</td>
</tr>
<tr>
<td></td>
<td>rte-fltr-in#2="deny 4C01.0000.0000.0002"</td>
</tr>
<tr>
<td>rte-fltr-out#</td>
<td>rte-fltr-out#1="router igrp 60"</td>
</tr>
<tr>
<td></td>
<td>rte-fltr-out#3="permit 10.0.5.6 255.255.0.0"</td>
</tr>
<tr>
<td></td>
<td>rte-fltr-out#4="permit any"</td>
</tr>
<tr>
<td>route#</td>
<td>IP:</td>
</tr>
<tr>
<td></td>
<td>route#1="10.0.0.0 255.0.0.0 1.2.3.4"</td>
</tr>
<tr>
<td></td>
<td>route#2="10.1.0.0 255.0.0.0"</td>
</tr>
<tr>
<td></td>
<td>IPX:</td>
</tr>
<tr>
<td></td>
<td>route#1="4C000000 ff000000 10.12.3.4"</td>
</tr>
<tr>
<td></td>
<td>route#2="5C000000 ff000000 10.12.3.5"</td>
</tr>
<tr>
<td>sap#</td>
<td>sap#1="4 CE1-LAB 1234.0000.0000.0001 451 4"</td>
</tr>
<tr>
<td></td>
<td>sap#2="5 CE3-LAB 2345.0000.0000.0001 452 5"</td>
</tr>
<tr>
<td>sap-fltr-in#</td>
<td>sap-fltr-in#1="deny 6C01.0000.0000.0001"</td>
</tr>
<tr>
<td></td>
<td>sap-fltr-in#2="permit -1"</td>
</tr>
<tr>
<td>sap-fltr-out#</td>
<td>sap-fltr-out#1="deny 6C01.0000.0000.0001"</td>
</tr>
<tr>
<td></td>
<td>sap-fltr-out#2="permit -1"</td>
</tr>
<tr>
<td>pool-def#</td>
<td>pool-def#1 = "aaa 10.0.0.1 1.0.0.3"</td>
</tr>
<tr>
<td></td>
<td>pool-def#2 = "bbb 10.1.0.1 2.0.0.10"</td>
</tr>
<tr>
<td></td>
<td>pool-def#3 = "ccc 10.2.0.1 3.0.0.20"</td>
</tr>
<tr>
<td>pool-timeout</td>
<td>pool-timeout=60</td>
</tr>
</tbody>
</table>

Table 39 provides examples for each attribute on an AAA RADIUS server.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>RADIUS Server Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>lcp:interface-config</td>
<td>cisco-avpair = "lcp:interface-config=ip address 10.0.0.0 255.255.255.0",</td>
</tr>
<tr>
<td>inacl#</td>
<td>cisco-avpair = "ip:inacl#3=permit ip any any precedence immediate",</td>
</tr>
<tr>
<td></td>
<td>cisco-avpair = "ip:inacl#4=deny igrp 10.0.1.2 255.255.0.0 any",</td>
</tr>
</tbody>
</table>
How to Configure a AAA Server for Per-User Configuration

The configuration requirements and the structure of per-user configuration information is set by the specifications of each type of AAA server. Refer to your server documentation for more detailed information. The following sections about TACACS and RADIUS servers are specific to per-user configuration:

- Configuring a Freeware TACACS Server for Per-User Configuration (As required)
- Configuring a CiscoSecure TACACS Server for Per-User Configuration (As required)
- Configuring a RADIUS Server for Per-User Configuration (As required)

See the section “Monitoring and Debugging Per-User Configuration Settings” later in this chapter for tips on troubleshooting per-user configuration settings. See the section “Configuration Examples for Per-User Configuration” at the end of this chapter for examples of configuring RADIUS and TACACS servers.
Configuring a Freeware TACACS Server for Per-User Configuration

On a TACACS server, the entry in the user file takes a standard form. In the freeware version of TACACS+, the following lines appear in order:

- “User =” followed by the username, a space, and an open brace
- Authentication parameters
- Authorization parameters
- One or more AV pairs
- End brace on a line by itself

The general form of a freeware TACACS user entry is shown in the following example:

```
user = username {
    authentication parameters go here
    authorization parameters go here
}
```

The freeware TACACS user entry form is also shown by the following examples for specific users:

```
user= Router1
    Password= cleartext welcome
    Service= PPP protocol= ip {
        ip:route=10.0.0.0 255.0.0.0
        ip:route=10.1.0.0 255.0.0.0
        ip:route=10.2.0.0 255.0.0.0
        ip:inacl#5=deny 10.5.0.1
    }

user= Router2
    Password= cleartext lab
    Service= PPP protocol= ip {
        ip:addr-pool=bbb
    }
```

For more requirements and detailed information, refer to your AAA server documentation.

Configuring a CiscoSecure TACACS Server for Per-User Configuration

The format of an entry in the user file in the AAA database is generally name = value. Some values allow additional subparameters to be specified and, in these cases, the subparameters are enclosed in braces ({}). The following simple example depicts an AAA database showing the default user, one group, two users that belong to the group, and one user that does not:

```
# Sample AA Database 1
unknown_user = {
    password = system #Use the system's password file (/etc/passwd)
}

group = staff {
    # Password for staff who do not have their own.
    password = des "sefjkA1M7zybE"
    service = shell {
        # Allow any commands with any attributes.
        default cmd = permit
        default attribute = permit
    }
```

Configuring a RADIUS Server for Per-User Configuration

On a RADIUS server, the format of an entry in the users file includes the following lines in order:

- Username and password
- User service type
- Framed protocol
- One or more AV pairs

All these AV pairs are vendor specific. To use them, RADIUS servers must support the use of vendor-specific AV pairs. Patches for some servers are available from the Cisco Consulting Engineering (CE) customer-support organization.

The structure of an AV pair for Cisco platforms starts with `cisco-avpair` followed by a space, an equal sign, and another space. The rest of the line is within double quotation marks and, for all lines but the last, ends with a comma. Inside the double quotation marks is a phrase indicating the supported attribute, another equal sign, and a Cisco IOS command. The following examples show two different partial user configurations on a RADIUS server.

Router1

Password = "welcome"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "ip:route=10.0.0.0 255.0.0.0",
cisco-avpair = "ip:route=10.1.0.0 255.0.0.0",
cisco-avpair = "ip:route=10.2.0.0 255.0.0.0",
cisco-avpair = "ip:inacl#5=deny 10.5.0.1"

Router2

Password = "lab"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "ip:addr-pool=bbb"
Monitoring and Debugging Per-User Configuration Settings

Per-user configuration information exists on AAA servers only and is configured there, as described in the “How to Configure a AAA Server for Per-User Configuration” section.

For more information about configuring an application that can tie AAA per-user configuration information to generic interface and router configuration, see the chapter “Configuring Virtual Profiles” in this publication. Virtual profiles are required for combining per-user configuration information and generic interface and router configuration information to create virtual access interfaces for individual ISDN B channels.

However, you can monitor and debug the per-user configuration settings on the router or access server that are set from an AAA server. Table 40 indicates some of the commands to use for each attribute.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>show Commands</th>
<th>debug Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>inacl#</td>
<td>show ip access-list</td>
<td>debug aaa authorization</td>
</tr>
<tr>
<td>outacl#</td>
<td>show ip access-list interface</td>
<td>debug aaa per-user</td>
</tr>
<tr>
<td></td>
<td>show ip x access-list</td>
<td></td>
</tr>
<tr>
<td></td>
<td>show ip x interface</td>
<td></td>
</tr>
<tr>
<td>rte-fltr-in#</td>
<td>show ip access-list</td>
<td>debug aaa authorization</td>
</tr>
<tr>
<td>rte-fltr-out#</td>
<td>show ip protocols</td>
<td>debug aaa per-user</td>
</tr>
<tr>
<td>route#</td>
<td>show ip route</td>
<td>debug aaa authorization</td>
</tr>
<tr>
<td></td>
<td>show ip x route</td>
<td>debug aaa per-user</td>
</tr>
<tr>
<td>sap#</td>
<td>show ip x servers</td>
<td>debug aaa authorization</td>
</tr>
<tr>
<td></td>
<td>show ip x interface</td>
<td>debug aaa per-user</td>
</tr>
<tr>
<td>sap-fltr-in#</td>
<td>show ip x access-list</td>
<td>debug aaa authorization</td>
</tr>
<tr>
<td>sap-fltr-out#</td>
<td>show ip x interface</td>
<td>debug aaa per-user</td>
</tr>
<tr>
<td>pool-def#</td>
<td>show ip local pool [name]</td>
<td></td>
</tr>
<tr>
<td>pool-timeout</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 40 Monitoring and Debugging Per-User Configuration Commands

Configuration Examples for Per-User Configuration

The following sections provide two comprehensive examples:

- **TACACS+ Freeware Examples**
- **RADIUS Examples**

These examples show router or access server configuration and AV pair configuration on an AAA server.

TACACS+ Freeware Examples

This section provides the TACACS+ freeware versions of the following examples:

- **IP Access Lists and Static Routes Using Virtual Profiles over ISDN BRI**
- **IPX Per-User SAP Filters Using IPXWAN and Virtual Profiles by a Synchronous Interface**
IP Access Lists and Static Routes Using Virtual Profiles over ISDN BRI

The following example provides configurations for the TACACS+ freeware daemon, the network access server, and the peer router named Router1. On the TACACS+ AAA server, peer router Router1 has a configuration that includes static routes and IP access lists.

TACACS+ Freeware Daemon Configuration File

```plaintext
tac123
user = Router1 {
global = cleartext welcome
service = ppp protocol = ip {
route#1="10.0.0.0 255.0.0.0"
route#2="10.1.0.0 255.0.0.0"
route#3="10.2.0.0 255.0.0.0"
inac1#1="deny 10.5.0.1"
}
}
```

Current Network Access Server Configuration

```plaintext
version 11.3
service timestamps debug datime localtime
service udp-small-servers
service tcp-small-servers
!
hostname Router2
!
aaa new-model
aaa authentication ppp default tacacs+
aaa authorization network tacacs+
enable secret 5 $1$koOn$/1QAylov6JFAElxRCrL.o/
enable password lab
!
username Router1 password 7 15050E0007252621
ip host Router2 172.21.114.132
ip domain-name cisco.com
ip name-server 172.19.2.132
ip name-server 192.168.30.32
isdn switch-type basic-5ess
interface Ethernet 0
ip address 172.21.114.132 255.255.255.224
no ip mroute-cache
media-type 10BaseT
!

interface Virtual-Template1
ip unnumbered Ethernet0
no cdp enable
!
interface BRI0
ip unnumbered Ethernet0
no ip mroute-cache
encapsulation ppp
no ip route-cache
dialer idle-timeout 300
dialer map ip 10.5.0.1 name Router1 broadcast 61482
dialer-group 1
no fair-queue
ppp authentication chap
!
```
ip default-gateway 172.21.114.129
no ip classless
ip route 0.0.0.0 0.0.0.0 172.21.114.129
!
virtual-profile virtual-template 1
dialer-list 1 protocol ip permit
tacacs-server host 172.21.114.130
tacacs-server key tac123

Current Peer Configuration for Router1
version 11.3
no service pad
!
hostname Router1
!
enable secret 5 1m1WK$RsjborN1Z.XZuFqsrtSnp/
enable password lab
!
username Router2 password 7 051C03032243430C
ip host Router1 172.21.114.134
ip domain-name cisco.com
ip name-server 172.19.2.132
ip name-server 192.168.30.32
isdn switch-type basic-5ess
!
interface Ethernet0
ip address 172.21.114.134 255.255.255.224
no ip route-cache
shutdown
!
interface BRI0
ip address 10.5.0.1 255.0.0.0
encapsulation ppp
dialer map ip 172.21.114.132 name Router2 broadcast 61483
dialer-group 1
no fair-queue
!
ip default-gateway 172.21.114.129
no ip classless
ip route 172.21.0.0 255.255.0.0 BRI0
dialer-list 1 protocol ip permit
!
line con 0
exec-timeout 0 0
line vty 0 4
password lab
login
end
IPX Per-User SAP Filters Using IPXWAN and Virtual Profiles by a Synchronous Interface

The following example provides configurations for the TACACS+ daemon and the peer router named Router1. On the TACACS+ AAA server, user ny has a configuration that includes inbound and outbound SAP filters.

TACACS+ Freeware Daemon Configuration File for User

```plaintext
key = tac123
user = Router1 {
    global = cleartext welcome
    service = ppp protocol = ipx {
        sap="101 CYBER-01 40.0000.0000.0001 400 10"
        sap="202 CYBER-02 40.0000.0000.0001 401 10"
        sap="303 CYBER-03 40.0000.0000.0001 402 10"
        sap-fltr-out#1="deny 40 101"
        sap-fltr-out#2="deny 40 202"
        sap-fltr-out#3="permit -1"
        sap-fltr-in#1="permit 30 444"
        sap-fltr-in#2="deny -1"
    }
}
```

Current Remote Peer (Router1) Configuration

```plaintext
version 11.3
!
hostname Router1
!
enable password lab
!
username Router2 password 7 140017070F0B272E
ip host Router1 172.21.114.131
ip name-server 172.19.2.132
ip name-server 192.168.30.32
ipx routing 0000.0c47.090d
ipx internal-network 30
!
interface Ethernet0
    ip address 172.21.114.131 255.255.255.224
!
interface Serial1
    no ip address
    encapsulation ppp
    ipx ipxwan 0 unnumbered peer-Router1
    clockrate 4000000
!
ipx sap 444 ZEON-4 30.0000.0000.0001 444 10
ipx sap 555 ZEON-5 30.0000.0000.0001 555 10
ipx sap 666 ZEON-6 30.0000.0000.0001 666 10
!
```

Current Network Access Server (Router2) Configuration

```plaintext
version 11.3
service timestamps debug uptime
!
hostname Router2
!
aaa new-model
aaa authentication ppp default tacacs+
aaa authorization network tacacs+
enable password lab
!
username Router1 password 7 044C0E0A0C2E414B
ip host LA 172.21.114.133
ip name-server 192.168.30.32
```
RADIUS Examples

This section provides the RADIUS versions of the following examples:

- IP Access Lists and Static Routes Using Virtual Profiles over ISDN BRI
- IPX Per-User SAP Filters Using IPXWAN and Virtual Profiles by a Synchronous Interface

IP Access Lists and Static Routes Using Virtual Profiles over ISDN BRI

The following example shows a remote peer (Router1) configured to dial in to a BRI on a Cisco network access server (Router2), which requests user configuration information from an AAA server (radiusd):

RADIUS User File (Router1)
Password = "welcome"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "ip:route=10.1.0.0 255.0.0.0",
cisco-avpair = "ip:route=10.2.0.0 255.0.0.0",
cisco-avpair = "ip:route=10.3.0.0 255.0.0.0",
cisco-avpair = "ip:inacl#5=deny 10.0.0.1"

Current Network Access Server Configuration
version 11.3
service timestamps debug datetime localtime
service udp-small-servers
service tcp-small-servers
hostname Router2
! aaa new-model
aaa authentication ppp default radius
aaa authorization network radius
enable secret 5 1koOn$1QAylo4v6JFAElxRCrL.o/
enable password lab
username Router1 password 7 15050E0007252621
ip host Router2 172.21.114.132
ip domain-name cisco.com
ip name-server 172.19.2.132
ip name-server 192.168.30.32
isdn switch-type basic-5ess
interface Ethernet0
ip address 172.21.114.132 255.255.255.224
no ip mroute-cache
media-type 10BaseT

! interface Virtual-Template1
ip unnumbered Ethernet0
no cdp enable

! interface BRI0
ip unnumbered Ethernet0
no ip mroute-cache
encapsulation ppp
no ip route-cache
dialer idle-timeout 300
dialer map ip 10.5.0.1 name Router1 broadcast 61482
dialer-group 1
no fair-queue
ppp authentication chap

! ip default-gateway 172.21.114.129
no ip classless
ip route 0.0.0.0 0.0.0.0 172.21.114.129

! virtual-profile vtemplate 1
dialer-list 1 protocol ip permit
radius-server host 172.21.114.130
radius-server key rad123

Current Peer Configuration for Router1

version 11.3
no service pad
!
hostname Router1
!
enable secret 5 1Sm1WKSbRjborN1Z.XZuFqsrSt$np/
enable password lab
!
username Router2 password 7 051C03032243430C
ip host Router1 172.21.114.134
ip domain-name cisco.com
ip name-server 172.19.2.132
ip name-server 192.168.30.32
isdn switch-type basic-5ess
!
interface Ethernet0
ip address 172.21.114.134 255.255.255.224
no ip route-cache
shutdown
!
interface BRI0
ip address 10.5.0.1 255.0.0.0
encapsulation ppp
dialer map ip 172.21.114.132 name Router2 broadcast 61483
dialer-group 1
no fair-queue
Configuring per-User Configuration

Configuration Examples for Per-User Configuration

```
! ip default-gateway 172.21.114.129
no ip classless
ip route 172.21.0.0 255.255.0.0 BRI0
dialer-list 1 protocol ip permit
!
line con 0
exec-timeout 0 0
line vty 0 4
password lab
login
!
end
```

Output of ping Command from Router1

```
Router1# ping 172.21.114.132
```

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.21.114.132, timeout is 2 seconds:
U.U.U
Success rate is 0 percent (0/5)
(fails due to access list deny)

RADIUS Debug Output

```
radrecv: Request from host ac157284 code=1, id=46, length=67
   Client-Id = 172.21.114.132
   Client-Port-Id = 1112670208
   User-Name = "Router1"
   CHAP-Password = "\037\317\213\326*\236)#+\266\243\255x\331\370v\334"
   User-Service-Type = Framed-User
   Framed-Protocol = PPP
   Sending Ack of id 46 to ac157284 (172.21.114.132)
   User-Service-Type = Framed-User
   Framed-Protocol = PPP
   [Vendor 9] cisco-avpair = "ip:route=10.0.0.0 255.0.0.0"
   [Vendor 9] cisco-avpair = "ip:route=10.1.0.0 255.0.0.0"
   [Vendor 9] cisco-avpair = "ip:route=10.2.0.0 255.0.0.0"
   [Vendor 9] cisco-avpair = "ip:inacl#5=deny 10.0.0.1"
```

Network Access Server (Router2) show and debug Command Output

```
Router2# show debug
```

General OS:
 AAA Authorization debugging is on
 PPP:
 PPP authentication debugging is on
 Multilink activity debugging is on
 ISDN:
 ISDN events debugging is on
 Dial on demand:
 Dial on demand events debugging is on
 VTEMPLATE:
 Virtual Template debugging is on
pr 4 08:30:09: ISDN BR0: received HOST_INCOMING_CALL
 Bearer Capability i = 0x080010
*Apr 4 08:30:09: --------------------
 Channel ID i = 0x0101
*Apr 4 08:30:09: IE out of order or end of 'private' IEs --
 Bearer Capability i = 0x8890
*Apr 4 08:30:09: Channel ID i = 0x89
*Apr 4 08:30:09: Called Party Number i = 0xC1, ‘61483’
*Apr 4 08:30:09: ISDN BR0: Event: Received a call from <unknown> on B1 at 64 Kb/s
*Apr 4 08:30:09: ISDN BR0: Event: Accepting the call
%LINK-3-UPDOWN: Interface BR0:1, changed state to up
*Apr 4 08:30:09: ISDN BR0: received HOST_CONNECT
Channel ID i = 0x0101
*Apr 4 08:30:09: -------------------
Channel ID i = 0x89
*Apr 4 08:30:09: ISDN BR0: Event: Connected to <unknown> on B1 at 64 Kb/s
*Apr 4 08:30:10: PPP BR0:1: Send CHAP challenge id=30 to remote
*Apr 4 08:30:10: PPP BR0:1: CHAP response received from Router1
*Apr 4 08:30:10: PPP BR0:1: CHAP response id=30 received from Router1
*Apr 4 08:30:10: AAA/AUTHOR/LCP: authorize LCP
*Apr 4 08:30:10: AAA/AUTHOR/LCP: BR0:1: (0): user='Router1'
*Apr 4 08:30:10: AAA/AUTHOR/LCP: BR0:1: (0): send AV service=ppp
*Apr 4 08:30:10: AAA/AUTHOR/LCP: BR0:1: (0): send AV protocol=lcp
*Apr 4 08:30:10: AAA/AUTHOR/LCP: BR0:1: (2084553184): Method=RADIUS
*Apr 4 08:30:10: AAA/AUTHOR (2084553184): Post authorization status = PASS_ADD
*Apr 4 08:30:10: PPP BR0:1: Send CHAP success id=30 to remote
*Apr 4 08:30:10: PPP BR0:1: remote passed CHAP authentication.
*Apr 4 08:30:10: VTEMPLATE Reuse vaccess1, New Recycle queue size:0
*Apr 4 08:30:10: VTEMPLATE set default vaccess1 with no ip address
*Apr 4 08:30:10: Virtual-Access1 VTEMPLATE hardware address 0000.0c46.154a
*Apr 4 08:30:10: VTEMPLATE vaccess1 has a new cloneblk vtemplate, now it has vtemplate
*Apr 4 08:30:10: VTEMPLATE undo default settings vaccess1
*Apr 4 08:30:10: VTEMPLATE **************** CLONE VACCESS1 ******************
08:30:10: VTEMPLATE Clone from vtemplate1 to vaccess1
interface Virtual-Access1
no ip address
encap ppp
ip unnumbered ethernet 0
end
%LINK-3-UPDOWN: Interface Virtual-Access1, changed state to up
*Apr 4 08:30:10: AAA/AUTHOR/LCP: authorize LCP
*Apr 4 08:30:10: AAA/AUTHOR/LCP: Virtual-Access1: (0): user='Router1'
*Apr 4 08:30:10: AAA/AUTHOR/LCP: Virtual-Access1: (0): send AV service=ppp
*Apr 4 08:30:10: AAA/AUTHOR/LCP: Virtual-Access1: (0): send AV protocol=lcp
*Apr 4 08:30:10: AAA/AUTHOR/LCP: Virtual-Access1: (1338953760): Method=RADIUS
*Apr 4 08:30:10: AAA/AUTHOR (1338953760): Post authorization status = PASS_ADD
*Apr 4 08:30:10: AAA/AUTHOR/FSM: Virtual-Access1: (0): can we start IPCP?
*Apr 4 08:30:10: AAA/AUTHOR/FSM: Virtual-Access1: (0): send AV service=ppp
*Apr 4 08:30:10: AAA/AUTHOR/FSM: Virtual-Access1: (0): send AV protocol=ip
*Apr 4 08:30:10: AAA/AUTHOR/FSM: Virtual-Access1: (1716082074): Method=RADIUS
*Apr 4 08:30:10: AAA/AUTHOR (1716082074): Post authorization status = PASS_ADD
*Apr 4 08:30:10: AAA/AUTHOR/FSM: Virtual-Access1: we can start IPCP (0x8021)
*Apr 4 08:30:10: MLP Bad link Virtual-Access1
*Apr 4 08:30:10: AAA/AUTHOR/FSM: Virtual-Access1: (0): can we start UNKNOWN?
*Apr 4 08:30:10: AAA/AUTHOR/FSM: Virtual-Access1: (0): user='Router1'
*Apr 4 08:30:10: AAA/AUTHOR/FSM: Virtual-Access1: (0): send AV service=ppp
*Apr 4 08:30:10: AAA/AUTHOR/FSM: Virtual-Access1: (0): send AV protocol=unknown
*Apr 4 08:30:10: AAA/AUTHOR/FSM: Virtual-Access1: (2526612868): Method=RADIUS
*Apr 4 08:30:10: AAA/AUTHOR (2526612868): Post authorization status = PASS_ADD
*Apr 4 08:30:10: AAA/AUTHOR/FSM: Virtual-Access1: we can start UNKNOWN (0x8207)
*Apr 4 08:30:10: MLP Bad link Virtual-Access1
*Apr 4 08:30:10: BR0:1: Vaccess started from dialer_remote_name
*Apr 4 08:30:10: AAA/AUTHOR/FSM: BR0:1: (0): can we start IPCP?
*Apr 4 08:30:10: AAA/AUTHOR/FSM: BR0:1: (0): user='Router1'
*Apr 4 08:30:10: AAA/AUTHOR/FSM: BR0:1: (0): send AV service=ppp
Configuring per-User Configuration

Configuration Examples for Per-User Configuration

Apr 4 08:30:10: AAA/AUTHOR/FSM: BRI0:1: (0): send AV protocol=ip
Apr 4 08:30:10: AAA/AUTHOR/FSM: BRI0:1: (3920403585): Method=RADIUS
Apr 4 08:30:10: AAA/AUTHOR (3920403585): Post authorization status = PASS_ADD
Apr 4 08:30:10: AAA/AUTHOR/FSM: BRI0:1: we can start IPCP (0x8021)
Apr 4 08:30:10: AAA/AUTHOR/FSM: BRI0:1: (0): can we start UNKNOWN?
Apr 4 08:30:10: AAA/AUTHOR/FSM: BRI0:1: (0): user='Router1'
Apr 4 08:30:10: AAA/AUTHOR/FSM: BRI0:1: (0): send AV service=ppp
Apr 4 08:30:10: AAA/AUTHOR/FSM: BRI0:1: (0): send AV protocol=unknown
Apr 4 08:30:10: AAA/AUTHOR/FSM: BRI0:1: (3439943223): Method=RADIUS
Apr 4 08:30:10: AAA/AUTHOR (3439943223): Post authorization status = PASS_ADD
Apr 4 08:30:10: AAA/AUTHOR/FSM: BRI0:1: we can start UNKNOWN (0x8207)

%LINEPROTO-5-UPDOWN: Line protocol on Interface BRI0:1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Virtual-Access1, changed state to up

Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: start: her address 10.0.0.1, we want 0.0.0.0
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: (0): send AV service=ppp
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: (0): send AV protocol=ip
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: (0): send AV addr=10.0.0.1
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: (3215797579): Method=RADIUS
Apr 4 08:30:13: AAA/AUTHOR (3215797579): Post authorization status = PASS_ADD
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: Processing AV service=ppp
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: Processing AV protocol=ip
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: Processing AV addr=10.0.0.1
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: Processing AV route=10.1.0.0 255.0.0.0
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: Processing AV route=10.2.0.0 255.0.0.0
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: Processing AV route=10.3.0.0 255.0.0.0
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: authorization succeeded
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: done: her address 10.0.0.1, we want 10.0.0.1
Apr 4 08:30:13: AAA/AUTHOR/IPCP: Virtual-Access1: authorization succeeded
Apr 4 08:30:13: AAA/AUTHOR: Virtual-Access1: parse_cmd 'ip route 10.0.0.0 255.0.0.0 10.0.0.1' ok (0)
Apr 4 08:30:13: AAA/AUTHOR: Virtual-Access1: enqueue peruser IP txt=no ip route 10.0.0.0 255.0.0.0 10.0.0.1 ok (0)
Apr 4 08:30:13: AAA/AUTHOR: Virtual-Access1: parse_cmd 'ip route 11.0.0.0 255.0.0.0 10.0.0.1' ok (0)
Apr 4 08:30:13: AAA/AUTHOR: Virtual-Access1: enqueue peruser IP txt=no ip route 11.0.0.0 255.0.0.0 10.0.0.1 ok (0)
Apr 4 08:30:13: AAA/AUTHOR: Virtual-Access1: parse_cmd 'ip route 12.0.0.0 255.0.0.0 10.0.0.1' ok (0)
Apr 4 08:30:13: AAA/AUTHOR: Virtual-Access1: enqueue peruser IP txt=no ip route 12.0.0.0 255.0.0.0 10.0.0.1 ok (0)
Apr 4 08:30:13: AAA/AUTHOR: Virtual-Access1: parse 'ip access-list standard Virtual-Access1#1' ok (0)
Apr 4 08:30:13: AAA/AUTHOR: Virtual-Access1: enqueue peruser IP txt=no ip access-list standard Virtual-Access1#1
Apr 4 08:30:13: VTEMPLATE vaccess1 has a new cloneblk AAA, now it has vtemplate/AAA
Apr 4 08:30:13: VTEMPLATE ************* CLONE VACCESS1 *****************
Apr 4 08:30:13: VTEMPLATE Clone from AAA to vaccess1
interface Virtual-Access1
ip access-group Virtual-Access1#1 in

Apr 4 08:30:13: AAA/AUTHOR: Virtual-Access1: vaccess parse 'interface Virtual-Access1
ip access-group Virtual-Access1#1 in
 * ok (0)
Apr 4 08:30:13: AAA/AUTHOR/FSM: Check for unauthorized mandatory AV's
Apr 4 08:30:13: AAA/AUTHOR/FSM: Processing AV service=ppp
Apr 4 08:30:13: AAA/AUTHOR/FSM: Processing AV protocol=unknown
Apr 4 08:30:13: AAA/AUTHOR/FSM: succeeded
%ISDN-6-CONNECT: Interface BRI0:1 is now connected to Router1
Router2# **show ip access-list**

Standard IP access list Virtual-Access1#1 (per-user)

deny 10.0.0.1

Router2# **show ip route**

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
U - per-user static route, o - ODR
Gateway of last resort is 172.21.114.129 to network 0.0.0.0

U 10.0.0.0/8 [1/0] via 10.3.0.1
U 10.1.0.0/8 [1/0] via 10.3.0.1
U 10.2.0.0/8 [1/0] via 10.3.0.1
10.3.0.0/8 is subnetted, 1 subnets
C 10.3.0.1 is directly connected, Virtual-Access1
172.21.0.0/16 is subnetted, 1 subnets
C 172.21.114.128 is directly connected, Ethernet0
S* 0.0.0.0/0 [1/0] via 172.21.114.129

Router2# **show interfaces virtual-access 1**

Virtual-Access1 is up, line protocol is up

Hardware is Virtual Access interface

Interface is unnumbered. Using address of Ethernet0 (172.21.114.132)
MTU 1500 bytes, BW 64 Kbit, DLY 100000 usec, rely 255/255, load 1/255
Encapsulation PPP, loopback not set, keepalive set (10 sec)
DTR is pulsed for 5 seconds on reset
LCP Open, multilink Closed
Open: IPCP, CDP
Last input 5d04h, output never, output hang never
Last clearing of "show interface" counters 00:06:42
Queueing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
76 packets input, 3658 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
141 packets output, 2909 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 output buffer failures, 0 output buffers swapped out
0 carrier transitions

Router2# **show ip interface virtual-access 1**

Virtual-Access1 is up, line protocol is up

Interface is unnumbered. Using address of Ethernet0 (172.21.114.132)
Broadcast address is 255.255.255.255
Peer address is 10.0.0.1
MTU is 1500 bytes
Helper address is not set
Directed broadcast forwarding is enabled
Outgoing access list is not set
Inbound access list is Virtual-Access1#1
Proxy ARP is enabled
Security level is default
Split horizon is enabled
ICMP redirects are always sent
ICMP unreachables are always sent
ICMP mask replies are never sent
IP fast switching is disabled

Router2# debug ip packet
IP packet debugging is on
Router2#
*Apr 4 08:30:42: IP: s=172.21.114.129 (Ethernet0), d=255.255.255.255, len 186, rcvd 2
*Apr 4 08:30:42: IP: s=10.0.0.1 (Virtual-Access1), d=172.21.114.132, len 104, access denied
*Apr 4 08:30:42: IP: s=10.0.0.1 (Virtual-Access1), d=172.21.114.132, len 104, access denied
*Apr 4 08:30:44: IP: s=172.21.114.132 (local), d=10.0.0.1 (Virtual-Access1), len 4, sending
*Apr 4 08:30:44: IP: s=10.0.0.1 (Virtual-Access1), d=172.21.114.132, len 104, access denied
*Apr 4 08:30:44: IP: s=10.0.0.1 (Virtual-Access1), d=172.21.114.132, len 104, access denied
*Apr 4 08:30:44: IP: s=172.21.114.132 (local), d=10.0.0.1 (Virtual-Access1), len 16, sending
*Apr 4 08:30:44: IP: s=10.0.0.1 (Virtual-Access1), d=172.21.114.132, len 104, access denied

IPX Per-User SAP Filters Using IPXWAN and Virtual Profiles by a Synchronous Interface

The following examples show a remote peer (Router1) configured to dial in to a synchronous interface on a Cisco network access server (Router2), which requests user configuration information from an AAA server (radiusd):

RADIUS User File (Router 1)

Password = "welcome"
User-Service-Type = Framed-User,
Framed-Protocol = PPP,
cisco-avpair = "ipx:sap=101 CYBER-01 40.0000.0000.0001 400 10",
cisco-avpair = "ipx:sap=202 CYBER-02 40.0000.0000.0001 401 10",
cisco-avpair = "ipx:sap=303 CYBER-03 40.0000.0000.0001 402 10",
cisco-avpair = "ipx:sap-fltr-out#20=deny 40 101",
cisco-avpair = "ipx:sap-fltr-out#21=deny 40 202",
cisco-avpair = "ipx:sap-fltr-out#22=permit -1",
cisco-avpair = "ipx:sap-fltr-in#23=permit 30 444",
cisco-avpair = "ipx:sap-fltr-in#23=deny -1"

Current Remote Peer (Router 1) Configuration

hostname Router1
enable password lab
!
username Router2 password 7 140017070F0B272E
ip host Router1 172.21.114.131
ip name-server 172.19.2.132
ip name-server 192.168.30.32
ipx routing 0000.0c47.090d
ipx internal-network 30
!
interface Ethernet0
ip address 172.21.114.131 255.255.255.224
interface Serial1
no ip address
clockrate 4000000
ip x sap 444 ZEON-4 30.0000.0000.0001 444 10
ip x sap 555 ZEON-5 30.0000.0000.0001 555 10
ip x sap 666 ZEON-6 30.0000.0000.0001 666 10
!
version 12.1
service timestamps debug uptime
hostname Router2
!
aaa new-model
aaa authentication ppp default radius
enable password lab
! username Router1 password 7 044C0E0A0C2E414B
ip host Router2 172.21.114.133
ip name-server 172.22.30.32
ip name-server 192.168.2.132
ip x routing 0000.0c47.12d3
ip x internal-network 40
!
interface Ethernet0
ip address 172.21.114.133 255.255.255.224
!
interface Virtual-Template1
no ip address
ip x sap 333 DEEP9 40.0000.0000.0001 999 10
!
virtual-profile vtemplate 1
radius-server host 172.21.114.130
radius-server key rad123

RADIUS debug Output

radrecv: Request from host ac157285 code=1, id=23, length=67
Client-Id = 172.21.114.133
User-Name = "Router1"
CHAP-Password = "%012IS\262\352\031\276\024\302\277\225\347z\274"
User-Service-Type = Framed-User
Framed-Protocol = PPP
Sending Ack of id 23 to ac157285 (172.21.114.133)
User-Service-Type = Framed-User
Framed-Protocol = PPP
[Vendor 9] cisco-avpair = "ipx:sap=101 CYBER-01 40.0000.0000.0001 400 10"
[Vendor 9] cisco-avpair = "ipx:sap=202 CYBER-02 40.0000.0000.0001 401 10"
[Vendor 9] cisco-avpair = "ipx:sap=303 CYBER-03 40.0000.0000.0001 402 10"
[Vendor 9] cisco-avpair = "ipx:sap-fltr-out#20=deny1 40 101"
Network Access Server show Command Output

Router2# show ipx servers

Codes: S - Static, P - Periodic, E - EIGRP, N - NLSP, H - Holddown, + = detail
5 Total IPX Servers

Table ordering is based on routing and server info

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Net Address</th>
<th>Port</th>
<th>Route Hops</th>
<th>Itf</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>101 CYBER-01</td>
<td>40.0000.0000.0001:0400</td>
<td>conn 10</td>
<td>Int</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>202 CYBER-02</td>
<td>40.0000.0000.0001:0401</td>
<td>conn 10</td>
<td>Int</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>303 CYBER-03</td>
<td>40.0000.0000.0001:0402</td>
<td>conn 10</td>
<td>Int</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>333 DEEP9</td>
<td>40.0000.0000.0001:0999</td>
<td>conn 10</td>
<td>Int</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>444 ZEON-4</td>
<td>30.0000.0000.0001:0444</td>
<td>7/01 11</td>
<td>Vi1</td>
<td></td>
</tr>
</tbody>
</table>

Router1# show ipx servers

Codes: S - Static, P - Periodic, E - EIGRP, N - NLSP, H - Holddown, + = detail
5 Total IPX Servers

Table ordering is based on routing and server info

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Net Address</th>
<th>Port</th>
<th>Route Hops</th>
<th>Itf</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>303 CYBER-03</td>
<td>40.0000.0000.0001:0402</td>
<td>7/01 11</td>
<td>Se1</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>333 DEEP9</td>
<td>40.0000.0000.0001:0999</td>
<td>7/01 11</td>
<td>Se1</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>444 ZEON-4</td>
<td>30.0000.0000.0001:0444</td>
<td>conn 10</td>
<td>Int</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>555 ZEON-5</td>
<td>30.0000.0000.0001:0555</td>
<td>conn 10</td>
<td>Int</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>666 ZEON-6</td>
<td>30.0000.0000.0001:0666</td>
<td>conn 10</td>
<td>Int</td>
<td></td>
</tr>
</tbody>
</table>

Router2# show ipx access-list

IPX sap access list Virtual-Access1#2
permit 30 444
deny FFFFFFFF
IPX sap access list Virtual-Access1#3
deny 40 101
deny 40 202
permit FFFFFFFF
Configuring Resource Pool Management

This chapter describes the Cisco Resource Pool Management (RPM) feature. It includes the following main sections:

- RPM Overview
- How to Configure RPM
- Verifying RPM Components
- Troubleshooting RPM
- Configuration Examples for RPM

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature, or refer to the software release notes for a specific release. For more information, see the “Identifying Supported Platforms” section in the “Using Cisco IOS Software” chapter.

For a complete description of the commands mentioned in this chapter, refer to the Cisco IOS Dial Technologies Command Reference, Release 12.2. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

RPM Overview

Cisco RPM enables telephone companies and Internet service providers (ISPs) to share dial resources for wholesale and retail dial network services. With RPM, telcos and ISPs can count, control, and manage dial resources and provide accounting for shared resources when implementing different service-level agreements.

You can configure RPM in a single, standalone Cisco network access server (NAS) by using RPM or, optionally, across multiple NAS stacks by using one or more external Cisco Resource Pool Manager Servers (RPMS).

Cisco RPM gives data network service providers the capability to do the following:

- Have the flexibility to include local retail dial services in the same NAS with the wholesale dial customers.
- Manage customer use of shared resources such as modems or High-Level Data Link Control (HDLC) controllers for data calls.
- Offer advanced wholesale dialup services using a Virtual Private Dialup Network (VPDN) to enterprise accounts and ISPs.
- Deploy Data over Voice Bearer Service (DoVBS).
Manage call sessions by differentiating dial customers through customer profiles. The customer profile determines where resources are allocated and is based on the incoming Dialed Number Information Service (DNIS) number or Calling Line Identification (CLID).

Efficiently use resource groups such as modems to offer differing over subscription rates and dial service-level agreements.

Note

Ear and Mouth Feature Group B (E&M-FGB) is the only signaling type supported for channel-associated signaling (CAS) on T1 and T3 facilities; R2 is supported for E1 facilities. FG D is not supported. Cisco IOS software collects DNIS digits for the signaling types FGB, PRI, and SS7 and only E&M-FGB and R2 CAS customer profiles are supported. For all other CAS signaling types, use the default DNIS group customer profiles.

Components of Incoming and Outgoing Call Management

Cisco RPM manages both incoming calls and outgoing sessions. Cisco RPM differentiates dial customers through configured customer profiles based on the DNIS and call type determined at the time of an incoming call.

The components of incoming call management in the Cisco RPM are described in the following sections:

- Customer Profile Types
- DNIS Groups
- Call Types
- Resource Groups
- Resource Services

You can use Cisco RPM to answer all calls and differentiate customers by using VPDN profiles and groups. The components of outgoing session management in the Cisco RPM are described in the following sections:

- VPDN Groups
- VPDN Profiles

Note

These components of Cisco RPM are enabled after the NAS and other equipment has been initially set up, configured, and verified for proper operation of the dial, PPP, VPDN, and authentication, authorization, and accounting (AAA) segments. Refer to the Cisco IOS documentation for these other segments for installation, configuration, and troubleshooting information before attempting to use RPM.

Configured DNIS groups and resource data can be associated to customer profiles. These customer profiles are selected by the incoming call DNIS number and call type and then used to identify resource allocations based on the associated resource groups and defined resource services.

After the call is answered, customer profiles can also be associated with VPDN groups so the configured VPDN sessions and other data necessary to set up or reject a VPDN session are applied to the answered calls. VPDN group data includes associated domain name or DNIS, IP addresses of endpoints, maximum sessions per endpoint, maximum Multilink PPP (MLP) bundles per VPDN group, maximum links per MLP bundle, and other tunnel information.
Customer Profile Types

There are three types of customer profiles in Cisco RPM, which are described in the following sections:

- Customer Profiles
- Default Customer Profiles
- Backup Customer Profiles

Additionally, you can create a customer profile template and associate it with a customer profile; it is then integrated into the customer profile.

Customer Profiles

A customer profile defines how and when to answer a call. Customer profiles include the following components (see Figure 99):

- Customer profile name and description—Name and description of the customer.
- Session limits—Maximum number of standard sessions.
- Overflow limits—Maximum number of overflow sessions.
- DNIS groups.
- CLID.
- Resource groups.
- Resource services.
- VPDN groups and VPDN profiles.
- Call treatment—Determines how calls that exceed the session and overflow limits are treated.

![Figure 99 Components of a Customer Profile](image)

The incoming side of the customer profile determines if the call will be answered using parameters such as DNIS and call type from the assigned DNIS group and session limits. The call is then assigned the appropriate resource within the resource group defined in the customer profile. Each configured customer profile includes a maximum allowed session value and an overflow value. As sessions are started and ended, session counters are incremented and decremented so customer status is kept current. This information is used to monitor the customer resource limit and determine the appropriate call treatment based on the configured session limits.
The outgoing side of the customer profile directs the answered call to the appropriate destination:

- To a local AAA server of retail dial applications and Internet/intranet access.
- To a tunnel that is established between the NAS or L2TP Access Concentrator (LAC) to a wholesale VPDN home gateway of a dial customer, or L2TP Network Server (LNS) using Layer 2 Forwarding Protocol (L2F) or Layer 2 Tunneling Protocol (L2TP) technology.

Default Customer Profiles

Default customer profiles are identical to standard customer profiles, except that they do not have any associated DNIS groups. Default customer profiles are created using the reserved keyword `default` for the DNIS group.

Default customer profiles are used to provide session counting and resource assignment to incoming calls that do not match any of the configured DNIS groups. Although specific resources and DNIS groups can be assigned to customer profiles, default customer profiles allow resource pooling for the calls that do not match the configured DNIS groups or where the DNIS is not provided. Retail dial services and domain-based VPDN use default customer profiles.

When multiple default customer profiles are used, the call type (speech, digital, V.110, or V.120) of the default DNIS group is used to identify which default customer profile to use for an incoming call. At most, four default profiles (one for each call type) can be configured.

Note

If default customer profiles are not defined, then calls that do not match a DNIS group in a customer profile are rejected with a “no answer” or “busy” call treatment sent to the switch.

Backup Customer Profiles

Backup customer profiles are customer profiles configured locally on the Cisco NAS and are used to answer calls based on a configured allocation scheme when the link between the Cisco NAS and Cisco RPMS is disabled. See the section “Configuring Customer Profiles Using Backup Customer Profiles” for more information about configuring backup customer profiles.

Customer Profile Template

With RPM, users can also implement wholesale dial services without using VPDN tunnels to complete dial-in calls to destinations of the end customer. This capability is accomplished with components of the AAA groups and the PPP configurations.

The AAA group provides IP addresses of AAA servers for authentication and accounting. The PPP configurations allow users to configure the Cisco IOS PPP feature set on each customer profile. In this current implementation, PPP configuration is based on the following:

- Applicable IP address pool(s) or default local list of IP addresses
- Primary and secondary Domain Name System (DNS) or Windows Internet naming service (WINS)
- Number of links allowed for each call using MLP

Note

The AAA and PPP integration applies to a single NAS environment.

To add PPP configurations to a customer profile, you must create a customer profile template. Once you create the template and associate it with a customer profile using the `source template` command, it is integrated into the customer profile.
The RPM customer profile template for the PPP command set, when used with the Cisco IOS feature,
Server Groups Selected by DNIS, presents a strong single NAS solution for providers of wholesale dial
services, as follows:

- Call acceptance is determined by the RPM before call answering, using the configured size limits
 and resource availability.
- The answered call then uses the PPP configuration defined in the template to initiate authentication,
 obtain an IP address, and select a DNS or WINS that is located at the customer site.
- The same DNIS that was used to choose the customer profile selects the servers for
 authentication/authorization and accounting that are located at the wholesale customer’s site.

The section “Configuring a Customer Profile Template” later in this chapter describes how to create a
customer profile template so that you can configure the Cisco IOS PPP features on a customer profile,
but this section does not list the existing PPP command set. For information about the PPP command set,
refer to the Cisco IOS Dial Technologies Command Reference.

DNIS Groups

A DNIS group is a configured list of DNIS called party numbers that correspond to the numbers dialed
to access particular customers, service offerings, or both. For example, if a customer from phone number
000-1234 calls a number 000-5678, the DNIS provides information on the number dialed—000-5678.

Cisco RPM checks the DNIS number of inbound calls against the configured DNIS groups, as follows:

- If Cisco RPM finds a match, it uses the configured information in the customer profile to which the
 DNIS group is assigned.
- If Cisco RPM does not find a match, it uses the configured information in the customer profile to
 which the default DNIS group is assigned.
- The DNIS/call type sequence can be associated only with one customer profile.

CLID Groups

A CLID group is a configured list of CLID calling party numbers. The CLID group specifies a list of
numbers to reject if the group is associated with a call discriminator. For example, if a customer from
phone number 000-1234 calls a number 000-5678, the CLID provides information on the calling party
number—000-1234.

A CLID can be associated with only one CLID group.

Call Types

Call types from calls originating from ISDN, SS7, and CAS (CT1, CT3, and CE1) are used to assign
calls to the appropriate resource. Call types for ISDN and SS7 are based on Q.931 bearer capability. Call
types for CAS are assigned based on static channel configuration.

Supported call types are as follows:

- Speech
- Digital
- V.110
- V.120
Resource Groups

Cisco RPM enables you to maximize the use of available shared resources within a Cisco NAS for various resource allocation schemes to support service-level agreements. Cisco RPM allows you to combine your Cisco NAS resource groups with call types (speech, digital, V.110, and V.120) and optional resource modem services. Resource groups and services are configured for customer profiles and assigned to incoming calls through DNIS groups and call types.

Resource groups have the following characteristics:

- Are configured on the Cisco NAS and applied to a customer profile.
- Represent groupings of similar hardware or firmware that are static and do not change on a per-call basis.
- Can define resources that are port-based or not port-based:
 - Port-based resources are identified by physical location, such as a range of port/slot numbers (for example, modems or terminal adapters).
 - Non-port-based resources are identified by a single size parameter (for example, HDLC framers or V.120 terminal adapters—V.120 terminal adapters are currently implemented as part of Cisco IOS software).

Resource assignments contain combinations of Cisco NAS resource groups, optional resource modem services, and call types. The NAS resources in resource groups that have not been assigned to a customer profile will not be used.

Note

To support ISDN DoVBS, use a DNIS group and a configured customer profile to direct the speech call to the appropriate digital resource. The resource group assigned to this customer profile will be “digital resources” and also have a call type of “speech,” so the call will terminate on an HDLC controller rather than a modem.

Resource Services

A resource service contains a finite series of resource command strings that can be used to help dynamically configure an incoming connection. Services supported by a resource group are determined by the combination of hardware and firmware installed. Currently, resource service options can be configured and applied to resource groups. Resource services can be defined to affect minimum and maximum speed, modulation, error correction, and compression, as shown in Table 41.

<table>
<thead>
<tr>
<th>Service</th>
<th>Options</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>min-speed</td>
<td><300–56000>, any</td>
<td>Must be a V.90 increment.</td>
</tr>
<tr>
<td>max-speed</td>
<td><300–56000>, any</td>
<td>Must be a V.90 increment.</td>
</tr>
<tr>
<td>modulation</td>
<td>k56flex, v22bis, v32bis, v34, v90, any</td>
<td>None.</td>
</tr>
</tbody>
</table>
VPDN Groups

The VPDN group contains the data required to build a VPDN tunnel from the RPM NAS LAC to the LNS. In the context of RPM, VPDN is authorized by first associating a customer profile with a VPDN group, and second by associating the VPDN group to the DNIS group used for that customer profile. VPDN group data includes the endpoint IP addresses.

Cisco RPM enables you to specify multiple IP endpoints for a VPDN group, as follows:

- If two or more IP endpoints are specified, Cisco RPM uses a load-balancing method to ensure that traffic is distributed across the IP endpoints.
- For DNIS-based VPDN dial service, VPDN groups are assigned to customer profiles based on the incoming DNIS number and the configured DNIS groups.
- For domain-based VPDN dial service, VPDN groups are assigned to the customer profile or the default customer profile with the matching call-type assignment.
- For either DNIS-based or domain-based VPDN dial services, there is a customer profile or default customer profile for the initial resource allocation and customer session limits.

The VPDN group provides call management by allowing limits to be applied to both the number of MLP bundles per tunnel and the number of links per MLP bundle. Limits can also restrict the number of sessions per IP endpoint. If you require more granular control of VPDN counters, use VPDN profiles.

VPDN Profiles

VPDN profiles allow session and overflow limits to be imposed for a particular customer profile. These limits are unrelated to the limits imposed by the customer profile. A customer profile is associated with a VPDN profile. A VPDN profile is associated with a VPDN group. VPDN profiles are required only when these additional counters are required for VPDN usage per customer profile.

Call Treatments

Call treatment determines how calls are handled when certain events require the call to be rejected. For example, if the session and overflow limits for one of your customers have been exceeded, any additional calls will receive a busy signal (see Table 42).
Table 42 Call-Treatment Table

<table>
<thead>
<tr>
<th>Event</th>
<th>Call-Treatment Option</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer profile not found</td>
<td>No answer (default)</td>
<td>The caller receives rings until the switch eventually times out. Implies that the NAS was appropriate, but resources were unavailable. The caller should try later.</td>
</tr>
<tr>
<td></td>
<td>Busy</td>
<td>The switch drops the call from the NAS and sends a busy signal back to the caller. The call is rejected based on not matching a DNIS group/call type and customer profile. Can be used to immediately reject the call and free up the circuit.</td>
</tr>
<tr>
<td>Customer profile limits exceeded</td>
<td>Busy</td>
<td>The switch drops the call from the NAS and sends a busy signal back to the caller.</td>
</tr>
<tr>
<td>NAS resource not available</td>
<td>Channel not available (default)</td>
<td>The switch sends the call to the next channel in the trunk group. The call can be answered, but the NAS does not have any available resources in the resource groups. Allows the switch to try additional channels until it gets to a different NAS in the same trunk group that has the available resources.</td>
</tr>
<tr>
<td></td>
<td>Busy</td>
<td>The switch drops the call from the NAS and sends a busy signal back to the caller. Can be used when the trunk group does not span additional NASes.</td>
</tr>
<tr>
<td>Call discrimination match</td>
<td>No answer</td>
<td>The caller receives rings until the switch eventually times out.</td>
</tr>
</tbody>
</table>

Details on RPM Call Processes

On the incoming call management of the customer profile, the following sequence occurs to determine if a call is answered:

1. The incoming DNIS is mapped to a DNIS group; if there is no incoming DNIS number, or the DNIS number provided does not match any configured DNIS group, the DNIS group *default* is used.

2. The mapped DNIS group is checked against configured call discriminator profiles to confirm if this DNIS group/call-type combination is disallowed. If there is a match, the call is immediately rejected.

3. Once a DNIS group or a default DNIS group is identified, the customer profile associated with that DNIS group and the call type (from the bearer capability for ISDN call, statically configured for CAS calls) is selected. If there is no corresponding customer profile, the call is rejected.

4. The customer profile includes a session limit value and an overflow limit value. If these thresholds are not met, the call is then assigned the appropriate resource defined in the customer profile. If the thresholds are met, the call is rejected.
5. If resources are available from the resource group defined in the customer profile, the call is answered. Otherwise, the call is rejected.

6. As sessions start and end, the session counters increase and decrease, so the customer profile call counters are kept current.

See Figure 100 for a graphical illustration of the RPM call processes.

Figure 100 Incoming Call Management: RPM Functional Description

After the call is answered and if VPDN is enabled, Cisco RPM checks the customer profile for an assigned VPDN group or profile. The outgoing session management of the customer profile directs the answered call to the appropriate destination (see Figure 101), as follows:

- To a local AAA server of retail dial applications and Internet/intranet access.
- To a tunnel that is established between the NAS or LAC and a wholesale VPDN home gateway from a dial customer or LNS using L2F or L2TP tunneling technology.

Figure 101 Outgoing Call Management: RPM Functional Description for VPDN Profiles and Groups

If a VPDN profile is found, the limits are checked, as follows:

- If the limits have not been exceeded, the VPDN group data associated with that VPDN profile is used to build a VPDN tunnel.
- If the VPDN limits have been exceeded, the call is disconnected.
If a VPDN group is found within the customer profile, the VPDN group data is used to build a VPDN tunnel, as follows:

- If the VPDN group limits (number of multilink bundles, number of links per bundle) have not been exceeded, a VPDN tunnel is built.
- If the limits have been reached, the call is disconnected.

If no VPDN profile is assigned to the customer profile and VPDN is enabled, non-RPM VPDN service is attempted. If the attempt fails, the call is processed as a retail dial service call if local AAA service is available.

Accounting Data

You can generate accounting data for network dial service usage in NAS AAA attribute format.

You can configure the Cisco NAS to generate AAA accounting records for access to external AAA server option. The accounting start and stop records in AAA attribute format are sent to the external AAA server using either RADIUS server hosts or TACACS+ protocols for accounting data storage. Table 43 lists the new fields in the AAA accounting packets.

Table 43 AAA Accounting Records

<table>
<thead>
<tr>
<th>Accounting Start Record</th>
<th>Accounting Stop Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call-Type</td>
<td>Disconnect-Cause</td>
</tr>
<tr>
<td>CAS-Group-Name</td>
<td>Modem-Speed-Receive</td>
</tr>
<tr>
<td>Customer-Profile-Name</td>
<td>Modem-Speed-Transmit</td>
</tr>
<tr>
<td>Customer-Profile-Active-Sessions</td>
<td>MLP-Session-ID</td>
</tr>
<tr>
<td>DNIS-Group-Name</td>
<td></td>
</tr>
<tr>
<td>Overflow</td>
<td></td>
</tr>
<tr>
<td>MLP-Session_ID</td>
<td></td>
</tr>
<tr>
<td>Modem-Speed-Receive</td>
<td></td>
</tr>
<tr>
<td>Modem-Speed-Transmit</td>
<td></td>
</tr>
<tr>
<td>VPDN-Domain-Name</td>
<td></td>
</tr>
<tr>
<td>VPDN-Tunnel-ID</td>
<td></td>
</tr>
<tr>
<td>VPDN-HomeGateway</td>
<td></td>
</tr>
<tr>
<td>VPDN-Group-Active-Sessions</td>
<td></td>
</tr>
</tbody>
</table>

Data over Voice Bearer Services

DoVBS is a dial service that uses a customer profile and an associated resource group of digital resources to direct data calls with a speech call type to HDLC controllers.

To support ISDN DoVBS, use a DNIS group and a configured customer profile to direct the speech call to the appropriate digital resource.

The resource group assigned to this customer profile will be “digital resources” and will also have a call type of speech, so the call will terminate on an HDLC controller rather than a modem.
Call Discriminator Profiles

The Cisco RPM CLID/DNIS Call Discriminator feature lets you specify a list of calling party numbers to be rejected for inbound calls. This Cisco IOS Release 12.2 CLID/DNIS call screening feature expands previous call screening features in Cisco RPM. CLID/DNIS call screening provides an additional way to screen calls on the basis of CLID/DNIS for both local and remote RPM.

Cisco RPM CLID/DNIS Call Discriminator profiles enable you to process calls differently on the basis of the call type and CLID combination. Resource pool management offers a call discrimination feature that rejects calls on the basis of a CLID group and a call type filter. When a call arrives at the NAS, the CLID and the call type are matched against a table of disallowed calls. If the CLID and call type match entries in this table, the call is rejected before it is assigned Cisco NAS resources or before any other Cisco RPM processing occurs. This is called precall screening.

Pcall screening decides whether the call is allowed to be processed. You can use the following types of discriminators to execute precall screening:

- **ISDN discriminator**—Accepts a call if the calling number matches a number in a group of configured numbers (ISDN group). This is also called white box screening. If you configure an ISDN group, only the calling numbers specified in the group are accepted.

- **DNIS discriminator**—Accepts a call if the called party number matches a number in a group of configured numbers (DNIS group). If you set up a DNIS group, only the called party numbers in the group are accepted. DNIS gives you information about the called party.

- **Cisco RPM CLID/DNIS discriminator**—Rejects a call if the calling number matches a number in a group of configured numbers (CLID/DNIS group). This is also called black box screening. If you configure a discriminator with a CLID group, the calling party numbers specified in the group are rejected. CLID gives you information about the caller. Similarly, if you configure a discriminator with a DNIS group, the called party numbers specified in the group are rejected.

The Cisco RPM CLID/DNIS Call Discriminator Feature is independent of ISDN or DNIS screening done by other subsystems. ISDN or DNIS screening and Cisco RPM CLID/DNIS screening can both be present in the same system. Both features are executed if configured. Similarly, if DNIS Preauthorization using AAA is configured, it is present in addition to Cisco RPM CLID/DNIS screening. Refer to the Cisco IOS Security Configuration Guide for more information about call preauthorization.

In Cisco RPM CLID/DNIS screening, the discriminator can be a CLID discriminator, a DNIS discriminator, or a discriminator that screens on both the CLID and DNIS. The resulting discrimination logic is:

- If a discriminator contains just DNIS groups, it is a DNIS discriminator that ignores CLID. The DNIS discriminator blocks the call if the called number is in a DNIS group, which the call type references.

- If a discriminator contains just CLID groups, it is a CLID discriminator that ignores DNIS. The CLID discriminator blocks the call if the calling number is in a CLID group, which the call type references.

- If a discriminator contains both CLID and DNIS groups, it is a logical AND discriminator. It blocks the call if the calling number and called number are in the CLID or DNIS group, and the call type references the corresponding discriminator.

Figure 102 shows how call discrimination can be used to restrict a specific DNIS group to only modem calls by creating call discrimination settings for the DNIS group and the other supported call types (digital, V.110, and V.120).
Incoming Call Preauthentication

With ISDN PRI or channel-associated signaling (CAS), information about an incoming call is available to the NAS before the call is connected. The available call information includes:

- The DNIS, also referred to as the *called number*
- The CLID, also referred to as the *calling number*
- The call type, also referred to as the *bearer capability*

The Preauthentication with ISDN PRI and Channel-Associated Signalling feature introduced in Cisco IOS Release 12.2 allows a Cisco NAS to decide—on the basis of the DNIS number, the CLID number, or the call type—whether to connect an incoming call.

When an incoming call arrives from the public network switch, but before it is connected, this feature enables the NAS to send the DNIS number, CLID number, and call type to a RADIUS server for authorization. If the server authorizes the call, the NAS accepts the call. If the server does not authorize the call, the NAS sends a disconnect message to the public network switch to reject the call.

The Preauthentication with ISDN PRI and Channel-Associated Signalling feature offers the following benefits:

- With ISDN PRI, it enables user authentication and authorization before a call is answered. With CAS, the call must be answered; however, the call can be dropped if preauthentication fails.
- It enables service providers to better manage ports using their existing RADIUS solutions.
- Coupled with a preauthentication RADIUS server application, it enables service providers to efficiently manage the use of shared resources to offer differing service-level agreements.

For more information about the Preauthentication with ISDN PRI and Channel-Associated Signalling feature, refer to the *Cisco IOS Security Configuration Guide*.
RPM Standalone Network Access Server

A single NAS using Cisco RPM can provide the following:

- Wholesale VPDN dial service to corporate customers
- Direct remote services
- Retail dial service to end users

Figure 103 and Figure 104 show multiple connections to a Cisco AS5300 NAS. Incoming calls to the NAS can use ISDN PRI signaling, CAS, or the SS7 signaling protocol. Figure 103 shows incoming calls that are authenticated locally for retail dial services or forwarded through VPDN tunnels for wholesale dial services.

Note
This implementation does not use Cisco RPM CLID/DNIS Call Discriminator Feature. If you are not using Cisco RPMS and you have more than one Cisco NAS, you must manually configure each NAS by using Cisco IOS commands. Resource usage information is not shared between NASes.

Figure 103 Retail Dial Service Using RPM

Figure 104 shows a method of implementing wholesale dial services without using VPDN tunnels by creating individual customer profiles that consist of AAA groups and PPP configurations. The AAA groups provide IP addresses of AAA servers for authentication and accounting. The PPP configurations enable you to set different PPP parameter values on each customer profile. A customer profile typically includes the following PPP parameters:

- Applicable IP address pools or a default local list of IP addresses
- Primary and secondary DNS or WINS
- Authentication method such as the Password Authentication Protocol (PAP), Challenge Handshake Authentication Protocol (CHAP), or Microsoft CHAP Version 1 (MS-CHAP)
- Number of links allowed for each call using Multilink PPP

Note
The AAA and PPP integration applies to a single NAS environment; the external RPMS solution is not supported.
Call Processing

For call processing, incoming calls are matched to a DNIS group and the customer profile associated with that DNIS group. If a match is found, the customer profile session and overflow limits are applied and if available, the required resources are allocated. If a DNIS group is not found, the customer profile associated with the default DNIS group is used. The call is rejected if a customer profile using the default DNIS group cannot be found.

After the call is answered and if VPDN is enabled, the Cisco RPM checks the customer profile for an assigned VPDN group or profile. If a VPDN group is found, Cisco RPM authorizes VPDN by matching the group domain name or DNIS with the incoming call. If a match is found, VPDN profile session and overflow limits are applied, and, if the limits are not exceeded, tunnel negotiation begins. If the VPDN limits are exceeded, the call is disconnected.

If no VPDN profile is assigned to the customer profile and VPDN is enabled, non-RPM VPDN service will be attempted. If it fails, the call is processed as a retail dial service call if local AAA service is available.

Base Session and Overflow Session Limits

Cisco RPM enables you to set base and overflow session limits in each customer profile. The base session limit determines the maximum number of nonoverflow sessions supported for a customer profile. When the session limit is reached, if overflow sessions are not enabled, any new calls are rejected. If overflow sessions are enabled, new sessions up to the session overflow limit are processed and marked as overflow for call handling and accounting.
The session overflow limit determines the allowable number of sessions above the session limit. If the session overflow limit is greater than zero, overflow sessions are enabled and the maximum number of allowed sessions is the session limit plus the session overflow limit. While the session overflow limit has been reached, any new calls are rejected. Table 44 summarizes the effects of session and session overflow limits.

Enabling overflow sessions is useful for allocating extra sessions for preferred customers at premium rates. Overflow sessions can also be useful for encouraging customers to adequately forecast bandwidth usage or for special events when normal session usage is exceeded. For example, if a customer is having a corporate-wide program and many people are expected to request remote access, you could enable many overflow sessions and charge a premium rate for the excess bandwidth requirements.

Note

An overflow call is a call received while the session limit is exceeded and is in an overflow state. When a call is identified as an overflow call, the call maintains the overflow status throughout its duration, even if the number of current sessions returns below the session limit.

Table 44
Effects of Session Limit and Session Overflow Limit Settings Combinations

<table>
<thead>
<tr>
<th>Base Session Limit</th>
<th>Session Overflow Limit</th>
<th>Call Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Reject all calls.</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>Accept up to 10 sessions.</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Accept up to 20 sessions and mark sessions 11 to 20 as overflow sessions.</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>Accept up to 10 sessions and mark sessions 1 to 10 as overflow.</td>
</tr>
<tr>
<td>All</td>
<td>0</td>
<td>Accept all calls.</td>
</tr>
<tr>
<td>0</td>
<td>All</td>
<td>Accept all calls and mark all calls as overflow.</td>
</tr>
</tbody>
</table>

VPDN Session and Overflow Session Limits

Cisco RPM enables you to configure base and overflow session limits per VPDN profile for managing VPDN sessions.

Note

The VPDN session and session overflow limits are independent of the limits set in the customer profiles.

The base VPDN session limit determines the maximum number of nonoverflow sessions supported for a VPDN profile. When the VPDN session limit is reached, if overflow sessions are not enabled, any new VPDN calls using the VPDN profile sessions are rejected. If overflow sessions are enabled, new sessions up to the session overflow limit are processed and marked as overflow for VPDN accounting.

The VPDN session overflow limit determines the number of sessions above the session limit allowed in the VPDN group. If the session overflow limit is greater than zero, overflow sessions are enabled and the maximum number of allowed sessions is the session limit plus the session overflow limit. While the session overflow limit has been reached, any new calls are rejected.

Enabling VPDN overflow sessions is useful for allocating extra sessions for preferred customers at premium rates. Overflow sessions are also useful for encouraging customers to adequately forecast bandwidth usage or for special events when normal session usage is exceeded. For example, if a
customer is having a corporate-wide program and many people are expected to request remote access, you could enable many overflow sessions and charge a premium rate for the extra bandwidth requirements.

VPDN MLP Bundle and Links-per-Bundle Limits

To ensure that resources are not consumed by a few users with MLP connections, Cisco RPM also enables you to specify the maximum number of MLP bundles that can open in a VPDN group. In addition, you can specify the maximum number of links for each MLP bundle.

For example, if standard ISDN users access the VPDN profile, limit this setting to two links per bundle. If video conferencing is used, increase this setting to accommodate the necessary bandwidth (usually six links). These limits have no overflow option and are configured under the VPDN group component.

VPDN Tunnel Limits

For increased VPDN tunnel management, Cisco RPM enables you to set an IP endpoint session limit for each IP endpoint. IP endpoints are configured for VPDN groups.

Figure 105 and *Figure 106* show logical flowcharts of RPM call processing for a standalone NAS with and without the RPM Direct Remote Services feature.
Figure 105 RPM Call-Processing Flowchart for a Standalone Network Access Server

1. DNIS and call type: Yes
 - Call discriminator match: Yes
 - Reject call treatment: No answer
 - No
 - Mapped DNIS customer profile exists: No
 - Default customer profile match: No
 - Reject—No CP call treatment: No answer (default) or busy
 - Yes
 - Has CP reached maximum connections: No
 - Overflow configured and maximum not exceeded: No
 - Reject—Session limit call treatment busy
 - Yes
 - Resources available: No
 - Reject—No resource call treatment: CNA (default) or busy
 - Yes
 - Answer call
 - Check VPDN
Figure 106 Flowchart for a Standalone Network Access Server with RPM Direct Remote Services

DNIS and call type

Call discriminator match

Yes

Reject call treatment: No answer

No

Mapped DNIS customer profile exists

No

Reject—No CP call treatment: No answer (default) or busy

Yes

Has CP reached maximum connections

No

Reject—Session limit call treatment: busy

Yes

Overflow configured and maximum not exceeded

No

Resources available

No

Reject—No resource call treatment: CNA (default) or busy

Yes

Answer call

Check PPP Template
RPM Using the Cisco RPMS

Figure 107 shows a typical resource pooling network scenario using RPMS.

Figure 107 RPM Scenario Using RPMS

Resource Manager Protocol

Resource Manager Protocol (RMP) is a robust, recoverable protocol used for communication between the Cisco RPMS and the NAS. Each NAS client uses RMP to communicate resource management requests to the Cisco RPMS server. RPMS also periodically polls the NAS clients to query their current call information or address error conditions when they occur. RMP also allows for protocol attributes that make it extensible and enable support for customer billing requirements.

Figure 108 shows the relationship of Cisco RPM CLID/DNIS Call Discriminator Feature and RMP.

Figure 108 Cisco RPM CLID/DNIS Call Discriminator Feature and RMP

Note
RMP must be enabled on all NASes that communicate with the Cisco RPM CLID/DNIS Call Discriminator Feature.
Direct Remote Services

Direct remote services is an enhancement to Cisco RPM implemented in Cisco IOS Release 12.0(7)T that enables service providers to implement wholesale dial services without using VPDN tunnels. A customer profile that has been preconfigured with a PPP template to define the unique PPP services for the wholesale dial customer is selected by the incoming DNIS and call type. At the same time, the DNIS is used to select AAA server groups for authentication/authorization and for accounting for the customer.

PPP Common Configuration Architecture (CCA) is the new component of the RPM customer profile that enables direct remote services. The full PPP command set available in Cisco IOS software is configurable per customer profile for wholesale dial applications. A customer profile typically includes the following PPP parameters:

- Local or named IP address pools
- Primary and secondary DNS or WINS addresses
- Authentication method (PAP, CHAP, MS-CHAP)
- Multilink PPP links per bundle limits

The AAA session information is selected by the incoming DNIS. AAA server lists provide the IP addresses of AAA servers for authentication, authorization, and accounting in the wholesale local network of the customer. The server lists for both authentication and authorization and for accounting contain the server addresses, AAA server type, timeout, retransmission, and keys per server.

When direct remote services is implemented on a Cisco NAS, the following sequence occurs:

1. The NAS sends an authorization request packet to the AAA server by using the authentication method (PAP, CHAP, MSCHAP) that has been configured through PPP.

2. The AAA server accepts the authorization request and returns one of the following items to the NAS:
 - A specific IP address
 - An IP address pool name
 - Nothing

3. Depending on the response from the AAA server, the NAS assigns one of the following items to the user through the DNS/WINS:
 - The IP address returned by the AAA server
 - An IP address randomly assigned from the named IP address pool
 - An IP address from a pool specified in the customer profile template

Note: If the AAA server sends back to the NAS a named IP address pool and that name does not exist on the NAS, the request for service is denied. If the AAA server does not send anything back to the NAS and there is an IP address pool name configured in the customer profile template, an address from that pool is used for the session.

RPM Process with RPMS and SS7

For information on SS7 implementation for RPM, refer to the document *Cisco Resource Pool Manager Server 1.0 SS7 Implementation*.
Additional Information About Cisco RPM

For more information about Cisco RPM, see the following documents:

- AAA Server Group
- Cisco Access VPN Solutions Using Tunneling Technology
- Cisco AS5200 Universal Access Server Software Configuration Guide
- Cisco AS5300 Software Configuration Guide
- Cisco AS5800 Access Server Software ICG
- Cisco Resource Pool Manager Server Configuration Guide
- Cisco Resource Pool Manager Server Installation Guide
- Cisco Resource Pool Manager Server Solutions Guide
- Dial Solutions Quick Configuration Guide
- RADIUS Multiple UDP Ports Support
- Redundant Link Manager
- Release Notes for Cisco Resource Pool Manager Server Release 1.0
- Resource Pool Management
- Resource Pool Management with Direct Remote Services
- Resource Pool Manager Customer Profile Template
- Selecting AAA Server Groups Based on DNIS
- SS7 Continuity Testing for Network Access Servers
- SS7 Dial Solution System Integration

How to Configure RPM

Read and comply with the following restrictions and prerequisites before beginning RPM configuration:

- RPM is supported on Cisco AS5300, Cisco AS5400, and Cisco AS5800 Universal Access Servers
- Modem pooling and RPM are not compatible.
- The Cisco RPM CLID/DNIS Call Discriminator Feature must have Cisco RPM configured.
- CLID screening is not available to channel-associated signaling (CAS) interrupt level calls.
- Cisco RPM requires the NPE 300 processor when implemented on the Cisco AS5800.
- For Cisco AS5200 and Cisco AS5300 access servers, Cisco IOS Release 12.0(4)XI1 or later releases must be running on the NAS.
- For Cisco AS5800, Cisco IOS Release 12.0(5)T or later releases must be running on the NAS.
- A minimum of 64 MB must be available on the DMM cards.
- The RPM application requires an NPE 300.
- For call discriminator profiles, the Cisco AS5300, Cisco AS5400, or Cisco AS5800 Universal Access Servers require a minimum of 16 MB Flash memory and 128 MB DRAM memory, and need to be configured for VoIP as an H.323-compliant gateway.

The following tasks must be performed before configuring RPM:
Accomplish initial configuration as described in the appropriate *Universal Access Server Software Configuration Guide*. Perform the following tasks as required:

- Set your local AAA
- Define your TACACS+ server for RPM
- Define AAA accounting
- Ensure PPP connectivity
- Ensure VPDN connectivity

Refer to the document *Configuring the NAS for Basic Dial Access* for more information.

To configure your NAS for RPM, perform the following tasks:

- **Enabling RPM** (Required)
- **Configuring DNIS Groups** (As required)
- **Creating CLID Groups** (As required)
- **Configuring Discriminator Profiles** (As required)
- **Configuring Resource Groups** (As required)
- **Configuring Service Profiles** (As required)
- **Configuring Customer Profiles** (As required)
- **Configuring a Customer Profile Template** (As required)
- **Placing the Template in the Customer Profile** (As required)
- **Configuring AAA Server Groups** (As required)
- **Configuring VPDN Profiles** (As required)
- **Configuring VPDN Groups** (As required)
- **Counting VPDN Sessions by Using VPDN Profiles** (As required)
- **Limiting the Number of MLP Bundles in VPDN Groups** (As required)
- **Configuring Switched 56 over CT1 and RBS** (As required)

See the section “Troubleshooting RPM” later in this chapter for troubleshooting tips. See the section “Configuration Examples for RPM” at the end of this chapter for examples of how to configure RPM in your network.

Enabling RPM

To enable RPM, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# resource-pool enable</td>
<td>Turns on RPM.</td>
</tr>
<tr>
<td>Step 2
Router(config)# resource-pool call treatment resource channel-not-available</td>
<td>Creates a resource group for resource management.</td>
</tr>
<tr>
<td>Step 3
Router(config)# resource-pool call treatment profile no-answer</td>
<td>Sets up the signal sent back to the telco switch in response to incoming calls.</td>
</tr>
<tr>
<td>Step 4
Router(config) # resource-pool aaa protocol local</td>
<td>Specifies which protocol to use for resource management.</td>
</tr>
</tbody>
</table>
Note

If you have an RPMS, you need not define VPDN groups/profiles, customer profiles, or DNIS groups on the NAS; you need only define resource groups. Configure the remaining items by using the RPMS system.

Configuring DNIS Groups

This configuration task is optional.

To configure DNIS groups, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# dialer dnis group dnis-group-name Creates a DNIS group. The name you specify in this step must match the name entered when configuring the customer profile.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-called-group)# call-type cas (digital</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-called-group)# number number Enters DNIS numbers to be used in the customer profile. (Wildcards can be used.)</td>
</tr>
</tbody>
</table>

For default DNIS service, no DNIS group configuration is required. The following characteristics and restrictions apply to DNIS group configuration:

- Each DNIS group/call-type combination can apply to only one customer profile.
- You can use up to four default DNIS groups (one for each call type).
- You must statically configure CAS call types.
- You can use x, X or . as wildcards within each DNIS number.
Creating CLID Groups

You can add multiple CLID groups to a discriminator profile. You can organize CLID numbers for a customer or service type into a CLID group. Add all CLID numbers into one CLID group, or subdivide the CLID numbers using criteria such as call type, geographical location, or division. To create CLID groups, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# dialer clid group clid-group-name</td>
<td>Creates a CLID group, assigns it a name of up to 23 characters, and enters CLID configuration mode. The CLID group must be the same as the group specified in the customer profile configuration. Refer to the Resource Pool Management with Direct Remote Services document for information on configuring customer profiles.</td>
</tr>
<tr>
<td>Step 2
Router(config-clid-group)# number clid-group-number</td>
<td>Enters CLID configuration mode, and adds a CLID number to the dialer CLID group that is used in the customer profile. The CLID number can have up to 65 characters. You can use x, X or . as wildcards within each CLID number. The CLID screening feature rejects this number if it matches the CLID of an incoming call.</td>
</tr>
</tbody>
</table>

Configuring Discriminator Profiles

Discriminator profiles enable you to process calls differently on the basis of the call type and CLID/DNIS combination. The “Call Discriminator Profiles” section earlier in this chapter describes the different types of discriminator profiles that you can create.

To configure discriminator profiles for RPM implementation, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# resource-pool profile discriminator name</td>
<td>Creates a call discriminator profile and assigns it a name of up to 23 characters.</td>
</tr>
<tr>
<td>Step 2
Router(config-call-d)# call-type {all</td>
<td>digital</td>
</tr>
</tbody>
</table>
To verify discriminator profile settings, use the following commands:

Step 1 Use the `show resource-pool discriminator name` command to verify the call discriminator profiles that you configured.

If you enter the `show resource-pool discriminator` command without including a call discriminator name, a list of all current call discriminator profiles appears.

If you enter a call discriminator profile name with the `show resource-pool discriminator` command, the number of calls rejected by the selected call discriminator appears.

Router# show resource-pool discriminator

List of Call Discriminator Profiles:
 deny_CLID

Router# show resource-pool discriminator deny_CLID

1 calls rejected

Step 2 Use the `show dialer` command to display general diagnostic information for interfaces configured for the dialer.

Router# show dialer [interface] type number
Configuring Resource Pool Management

How to Configure RPM

Configuring Resource Groups

To configure resource groups, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# resource-pool group resource name</td>
</tr>
<tr>
<td></td>
<td>Creates a resource group and assign it a name of up to 23 characters.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-resource-group)# range (port (slot/port slot/port))</td>
</tr>
<tr>
<td></td>
<td>Associates a range of modems or other physical resources with this resource group:</td>
</tr>
<tr>
<td></td>
<td>• For port-based resources, use the physical locations of the resources.</td>
</tr>
<tr>
<td></td>
<td>• For non-port-based resources, use a single integer limit. Specify the maximum number of simultaneous connections supported by the resource group. Up to 192 connections may be supported, depending on the hardware configuration of the access server.</td>
</tr>
</tbody>
</table>

For external Cisco RPMS environments, configure resource groups on the NAS before defining them on external RPMS servers.

For standalone NAS environments, first configure resource groups before using them in customer profiles.

Resource groups can apply to multiple customer profiles.

Note You can separate physical resources into groups. However, do not put heterogeneous resources in the same group. Do not put MICA technologies modems in the same group as Microcom modems. Do not put modems and HDLC controllers in the same resource group. Do not configure the `port` and `limit` command parameters in the same resource group.

Configuring Service Profiles

To configure service profiles, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# resource-pool profile service name</td>
</tr>
<tr>
<td></td>
<td>Creates a service profile and assign it a name of up to 23 characters.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-service-profile)# modem min-speed (speed</td>
</tr>
<tr>
<td></td>
<td>Specifies the desired modem parameter values. The range for <code>min-speed</code> and <code>max-speed</code> is 300 to 56000 bits per second.</td>
</tr>
</tbody>
</table>

Service profiles are used to configure modem service parameters for Nextport and MICA technologies modems, and support speech, digital, V.110, and V.120 call types. Error-correction and compression are hidden parameters that may be included in a service profile.
Configuring Customer Profiles

To configure customer profiles, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# resource-pool profile customer name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-customer-pro)# dnis group (dnis-group-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-customer-pro)# limit base-size (number</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-customer-pro)# limit overflow-size (number</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-customer-pro)# resource WORD (digital</td>
</tr>
</tbody>
</table>

Customer profiles are used so that service providers can assign different service characteristics to different customers. Note the following characteristics of customer profiles:

- Multiple resources of the same call type are used sequentially.
- The limits imposed are per customer (DNIS)—not per resource.
- A digital resource with a call type of speech allows for Data over Speech Bearer Service (DoSBS).

Configuring Default Customer Profiles

Default customer profiles are identical to standard customer profiles, except they do not have any associated DNIS groups. To define a default customer profile, use the reserved keyword default for the DNIS group:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# resource-pool profile customer name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-customer-pro)# dnis group default</td>
</tr>
</tbody>
</table>

The rest of the customer profile is configured as shown in the previous section “Configuring Customer Profiles.”

Configuring Customer Profiles Using Backup Customer Profiles

Backup customer profiles are customer profiles configured locally on the Cisco NAS and are used to answer calls on the basis of a configured allocation scheme when the link between the Cisco NAS and Cisco RPMS is disabled.

To enable the backup feature, you need to have already configured the following on the router:

- The resource-pool aaa protocol group name local command.
- All customer profiles and DNIS groups on the NAS.
The backup customer profile can contain all of the elements defined in a standard customer profile, including base size or overflow parameters. However, when the connection between the Cisco NAS and Cisco RPMS is unavailable, session counting and session limits are not applied to incoming calls. Also, after the connection is reestablished, there is no synchronization of call counters between the Cisco NAS and Cisco RPMS.

Configuring Customer Profiles for Using DoVBS

To configure customer profiles for using DoVBS, use the following commands beginning in global configuration command mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# resource-pool profile customer name</td>
<td>Assigns a name to a customer profile.</td>
</tr>
<tr>
<td>Step 2 Router(config-customer-pro)# dnis group name</td>
<td>Assigns a DNIS group to the customer profile. DNIS numbers are assigned as shown in the previous section.</td>
</tr>
<tr>
<td>Step 3 Router(config)# limit base-size (number</td>
<td>all)</td>
</tr>
<tr>
<td>Step 4 Router(config)# limit overflow-size (number</td>
<td>all)</td>
</tr>
<tr>
<td>Step 5 Router(config-customer-pro)# resource name (digital</td>
<td>speech</td>
</tr>
</tbody>
</table>

To support ISDN DoVBS, use a DNIS group and a configured customer profile to direct the speech call to the appropriate digital resource. The DNIS group assigned to the customer profile should have a call type of speech. The resource group assigned to this customer profile will be digital resources and also have a call type of speech, so the call will terminate on an HDLC controller rather than a modem.

See the section “Customer Profile Configuration for DoVBS Example” at the end of this chapter for a configuration example.

Configuring a Customer Profile Template

Customer profile templates provide a way to keep each unique situation for a customer separate for both security and accountability. This is an optional configuration task.

To configure a template and place it in a customer profile, ensure that all basic configuration tasks and the RPM configuration tasks have been completed and verified before attempting to configure the customer profile templates.

To add PPP configurations to a customer profile, create a customer profile template. Once you create the template and associate it with a customer profile by using the `source template` command, it is integrated into the customer profile.
To configure a template in RPM, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# template name</td>
</tr>
<tr>
<td></td>
<td>Creates a customer profile template and assign a unique name that relates to the customer that will be receiving it.</td>
</tr>
<tr>
<td></td>
<td>Note Steps 2, 3, and 4 are optional. Enter multilink, peer, and ppp commands appropriate to the application requirements of the customer.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-template)# peer default ip address pool pool-name</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies that the customer profile to which this template is attached will use a local IP address pool with the specified name.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-template)# ppp authentication chap</td>
</tr>
<tr>
<td></td>
<td>(Optional) Sets the PPP link authentication method.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-template)# ppp multilink</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enables Multilink PPP for this customer profile.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-template)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits from template configuration mode; returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config)# resource-pool profile customer name</td>
</tr>
<tr>
<td></td>
<td>Enters customer profile configuration mode for the customer to which you wish to assign this template.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-customer-profile)# source template name</td>
</tr>
<tr>
<td></td>
<td>Attaches the customer profile template you have just configured to the customer profile.</td>
</tr>
</tbody>
</table>

Typical Template Configuration

The following example shows a typical template configuration:

```plaintext
template Word
    multilink {max-fragments frag-num | max-links num | min-links num}
    peer match aaa-pools
    peer default ip address {pool pool-name1 {pool-name2} | dhcp}
    ppp ipcp {dns | wins} A.B.C.D [W.X.Y.Z]
    resource-pool profile customer WORD
    source template Word
    aaa group-configuration aaa-group-name

template acme_direct
    peer default ip address pool tahoe
    ppp authentication chap isdn-users
    ppp multilink
```

Verifying Template Configuration

To verify your template configuration, perform the following steps:

- **Step 1**: Enter the `show running-config` EXEC command (where the template name is “PPP1”):
  ```plaintext
  Router#
  Router# show running-config begin template
  .
  .
  ```
Placing the Template in the Customer Profile

To place your template in the customer profile, use the following commands beginning in global configuration command mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# resource-pool profile customer name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-customer-pr)# source template</td>
</tr>
</tbody>
</table>

To verify the placement of your template in the customer profile, perform the following steps:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Enter the <code>show resource-pool customer</code> EXEC command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show resource-pool customer</code></td>
<td>List of Customer Profiles: CP1 CP2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Look at the list of customer profiles and make sure that your profile appears in the list.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>To verify a particular customer profile configuration, enter the <code>show resource-pool customer name</code> EXEC command (where the customer profile name is “CP1”):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show resource-pool customer CP1</code></td>
<td>97 active connections 120 calls accepted 210 max number of simultaneous connections 50 calls rejected due to profile limits 0 calls rejected due to resource unavailable 90 minutes spent with max connections 5 overflow connections 2 overflow states entered 0 overflow connections rejected 0 minutes spent in overflow 13134 minutes since last clear command</td>
</tr>
</tbody>
</table>
Configuring AAA Server Groups

To configure AAA server groups, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
</tbody>
</table>
Router(config)# aaa new-model | Enables AAA on the NAS. |
| Step 2 |
Router(config)# radius-server key key
or
Router(config)# tacacs-server key key | Set the authentication and encryption key used for all RADIUS or TACACS+ communications between the NAS and the RADIUS or TACACS+ daemon. |
| Step 3 |
Router(config)# radius-server host {hostname | ip-address key} [auth-port port acct-port port]
or
Router(config)# tacacs-server host ip-address key | Specifies the host name or IP address of the server host before configuring the AAA server group. You can also specify the UDP destination ports for authentication and for accounting. |
| Step 4 |
Router(config)# aaa group server {radius | tacacs+} group-name | Selects the AAA server type you want to place into a server group and assign a server group name. |
| Step 5 |
Router(config-sg radius)# server ip-address | Specifies the IP address of the selected server type. This must be the same IP address that was assigned to the server host in Step 3. |
| Step 6 |
Router(config-sg radius)# exit | Returns to global configuration mode. |
| Step 7 |
Router(config)# resource-pool profile customer name | Enters customer profile configuration mode for the customer to which you wish to assign this AAA server group. |
| Step 8 |
Router(config-customer-profile)# aaa group-configuration group-name | Associates this AAA server group (named in Step 4) with the customer profile named in Step 7. |

AAA server groups are lists of AAA server hosts of a particular type. The Cisco RPM currently supports RADIUS and TACACS+ server hosts. A AAA server group lists the IP addresses of the selected server hosts.

You can use a AAA server group to define a distinct list of AAA server hosts and apply this list to the Cisco RPM application. Note that the AAA server group feature works only when the server hosts in a group are of the same type.

Configuring VPDN Profiles

A VPDN profile is required only if you want to impose limits on the VPDN tunnel that are separate from the customer limits.
Configuring VPDN Profiles

To configure VPDN profiles, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# resource-pool profile vpdn profile-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-vpdn-profile)# limit base-size (number</td>
</tr>
<tr>
<td></td>
<td>all)</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-vpdn-profile)# limit overflow-size (number</td>
</tr>
<tr>
<td></td>
<td>all)</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-vpdn-profile)# exit</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# resource-pool profile customer name</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-customer-profile)# vpdn profile profile-name or Router(config-customer-profile)# vpdn group group-name</td>
</tr>
</tbody>
</table>

Configuring VPDN Groups

To configure VPDN groups, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# vpdn enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# vpdn-group group-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-vpdn)# request dialin (l2f</td>
</tr>
<tr>
<td></td>
<td>l2tp</td>
</tr>
<tr>
<td></td>
<td>(ip ip-address)</td>
</tr>
<tr>
<td></td>
<td>(domain domain-name</td>
</tr>
<tr>
<td></td>
<td>dnis dnis-number)</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-vpdn)# multilink (bundle-number</td>
</tr>
<tr>
<td></td>
<td>link-number)</td>
</tr>
</tbody>
</table>
Configuring Resource Pool Management

How to Configure RPM

A VPDN group consists of VPDN sessions that are combined and placed into a customer profile or a VPDN profile.

- The `dnis-group-name` argument is required to authorize the VPDN group with RPM.
- A VPDN group placed in a customer profile allows VPDN connections for the customer using that profile.
- A VPDN group placed in a VPDN profile allows the session limits configured for that profile to apply to all of the VPDN sessions within that VPDN group.
- VPDN data includes an associated domain name or DNIS, an endpoint IP address, the maximum number of MLP bundles, and the maximum number of links per MLP bundle; this data can optionally be located on an AAA server.

See the sections “VPDN Configuration Example” and “VPDN Load Sharing and Backing Up Between Multiple HGW/LNSs Example” at the end of this chapter for examples of using VPDN with RPM.

Counting VPDN Sessions by Using VPDN Profiles

Session counting is provided for each VPDN profile. One session is brought up each time a remote client dials into a HGW/LNS router by using the NAS/LAC. Sessions are counted by using VPDN profiles. If you do not want to count the number of VPDN sessions, do not set up any VPDN profiles.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td><code>Router(config-vpdn)# loadsharing ip ip-address [limit number]</code></td>
<td>Configures the endpoints for loadsharing. This router will share the load of IP traffic with the first router specified in Step 2. The <code>limit</code> keyword limits the number of simultaneous sessions that are sent to the remote endpoint (HGW/LNS). This limit can be 0 to 32767 sessions.</td>
</tr>
<tr>
<td>6</td>
<td><code>Router(config-vpdn)# backup ip ip-address [limit number] [priority number]</code></td>
<td>Sets up a backup HGW/LNS router. The number of sessions per backup can be limited. The priority number can be 2 to 32767. The highest priority is 2, which is the first HGW/LNS router to receive backup traffic. The lowest priority, which is the default, is 32767.</td>
</tr>
<tr>
<td>7</td>
<td><code>Router(config-vpdn)# exit</code></td>
<td>Returns to global configuration mode.</td>
</tr>
</tbody>
</table>
| 8 | `Router(config)# resource-pool profile vpdn profile-name`
or
`Router(config)# resource-pool profile customer name` | Enters either VPDN profile configuration mode or customer profile configuration mode, depending on whether you want to allow VPDN connections for a customer profile, or allow combined session counting on all of the VPDN sessions within a VPDN profile. |
| 9 | `Router(config-vpdn-profile)# vpdn group group-name`
or
`Router(config-customer-profile)# vpdn group group-name` | Attaches the VPDN group to either the VPDN profile or the customer profile specified in Step 8. |
To configure VPDN profile session counting, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# resource-pool profile vpdn name</td>
<td>Creates a VPDN profile.</td>
</tr>
<tr>
<td>Step 2
Router(config-vpdn-profile)# vpdn-group name
Router(config-vpdn-profile)# exit</td>
<td>Associates a VPDN group to the VPDN profile. VPDN sessions done within this VPDN group will be counted by the VPDN profile.</td>
</tr>
<tr>
<td>Step 3
Router(config)# resource-pool profile customer name
Router(config-customer-profile)# vpdn profile name</td>
<td>Links the VPDN group to a customer profile.</td>
</tr>
<tr>
<td>Step 4
Router(config-customer-profile)# ^Z
Router#</td>
<td>Returns to EXEC mode to perform verification steps.</td>
</tr>
</tbody>
</table>

To verify session counting and view VPDN group information configured under resource pooling, use the `show resource-pool vpdn group` command. In this example, two different VPDN groups are configured under two different customer profiles:

```
Router# show resource-pool vpdn group
```

List of VPDN Groups under Customer Profiles
Customer Profile customer1:customer1-vpdng
Customer Profile customer2:customer2-vpdng
List of VPDN Groups under VPDN Profiles
VPDN Profile customer1-profile:customer1-vpdng

To display the contents of a specific VPDN group, use the `show resource-pool vpdn group name` command. This example contains one domain name, two DNIS called groups, and two endpoints:

```
Router# show resource-pool vpdn group customer2-vpdng
```

VPDN Group customer2-vpdng found under Customer Profiles: customer2

Tunnel (L2TP)

dnis:cg1
dnis:cg2
dnis:jan

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Session Limit</th>
<th>Priority</th>
<th>Active Sessions</th>
<th>Status</th>
<th>Reserved Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.21.9.67</td>
<td>*</td>
<td>1</td>
<td>0</td>
<td>OK</td>
<td>-</td>
</tr>
<tr>
<td>10.1.1.1</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td>OK</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>*</td>
<td></td>
<td>0</td>
<td>OK</td>
<td>0</td>
</tr>
</tbody>
</table>

To display the contents of a specific VPDN profile, use the `show resource-pool vpdn profile name` command, as follows:

```
Router# show resource-pool vpdn profile ?
```

```
WORD VPDN profile name <cr>
```

```
Router# show resource-pool vpdn profile customer1-profile
```

0 active connections
0 max number of simultaneous connections
0 calls rejected due to profile limits
Configuring Resource Pool Management

0 calls rejected due to resource unavailable
0 overflow connections
0 overflow states entered
0 overflow connections rejected
1435 minutes since last clear command

Use the `debug vpdn event` command to troubleshoot VPDN profile limits, session limits, and MLP connections. First, enable this command; then, send a call into the access server. Interpret the debug output and make configuration changes as needed.

To debug the L2F or L2TP protocols, use the `debug vpdn l2x` command:

```sh
Router# debug vpdn l2x ?
```

- `error`: VPDN Protocol errors
- `event`: VPDN event
- `l2tp-sequencing`: L2TP sequencing
- `l2x-data`: L2F/L2TP data packets
- `l2x-errors`: L2F/L2TP protocol errors
- `l2x-events`: L2F/L2TP protocol events
- `l2x-packets`: L2F/L2TP control packets
- `packet`: VPDN packet

Limiting the Number of MLP Bundles in VPDN Groups

Cisco IOS software enables you to limit the number of MLP bundles and links supported for each VPDN group. A bundle name consists of a username endpoint discriminator (for example, an IP address or phone number) sent during LCP negotiation.

To limit the number of MLP bundles in VPDN groups, use the following commands beginning in global configuration mode:

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# vpdn-group name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-vpdn)# multilink (bundle number</td>
</tr>
</tbody>
</table>

1. Limits the number of MLP bundles per VPDN group and links per bundle. These settings limit the number of users that can multilink.

The following example shows the `show vpdn multilink` command output for verifying MLP bundle limits:

```sh
Router# show vpdn multilink

Multilink Bundle Name     VPDN Group     Active links   Reserved links   Bundle/Link Limit
------------------------------------ ------------- ------------- -------------------
twv@anycompany.com         vgdnis       0             0              */*
```

Use the `debug vpdn event` and `debug resource-pooling` commands to troubleshoot VPDN profile limits, session limits, and MLP connections. First, enable this command; then, send a call into the access server. Interpret the debug output and make configuration changes as needed.
Configuring Switched 56 over CT1 and RBS

To configure switched 56 over CT1 and RBS, use the following commands beginning in global configuration mode. Perform this task on the Cisco AS5200 and Cisco AS5300 access servers only.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# controller t1 number</td>
</tr>
<tr>
<td></td>
<td>Specifies a controller and begins controller configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-controller)# cas-group 0 timeslots 1-24 type e&m-fgb {dtmf</td>
</tr>
<tr>
<td></td>
<td>Creates a CAS group and assigns time slots.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-controller)# framing {sf</td>
</tr>
<tr>
<td></td>
<td>Specifies framing.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-controller)# linecode {ami</td>
</tr>
<tr>
<td></td>
<td>Enters the line code.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-controller)# exit</td>
</tr>
<tr>
<td></td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config)# dialer dnis group name</td>
</tr>
<tr>
<td></td>
<td>Creates a dialer called group.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-called-group)# call-type cas digital</td>
</tr>
<tr>
<td></td>
<td>Assigns a call type as digital (switch 56).</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config-called-group)# exit</td>
</tr>
<tr>
<td></td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Router(config)# interface serial number:number</td>
</tr>
<tr>
<td></td>
<td>Specifies the logical serial interface, which was dynamically created when the cas-group command was issued.</td>
</tr>
<tr>
<td></td>
<td>This command also enters interface configuration mode, where you configure the core protocol characteristics for the serial interface.</td>
</tr>
</tbody>
</table>

To verify switched 56 over CT1, use the show dialer dnis command as follows:

Router# show dialer dnis group

List of DNIS Groups:
 default
 mdm_grpl

Router# show dialer dnis group mdm_grpl

Called Number:2001
 0 total connections
 0 peak connections
 0 calltype mismatches
Called Number:2002
 0 total connections
 0 peak connections
 0 calltype mismatches
Called Number:2003
 0 total connections
 0 peak connections
 0 calltype mismatches
Called Number:2004
 0 total connections
 0 peak connections
 0 calltype mismatches
 ...
Router# show dialer dnis number

List of Numbers:
 default
 2001
 2002
 2003
 2004

Verifying RPM Components

The following sections provide call-counter and call-detail output for the different RPM components:

- Verifying Current Calls
- Verifying Call Counters for a Customer Profile
- Clearing Call Counters
- Verifying Call Counters for a Discriminator Profile
- Verifying Call Counters for a Resource Group
- Verifying Call Counters for a DNIS Group
- Verifying Call Counters for a VPDN Profile
- Verifying Load Sharing and Backup

Verifying Current Calls

The following output from the `show resource-pool call` command shows the details for all current calls, including the customer profile and resource group, and the matched DNIS group:

Router# show resource-pool call

Shelf 0, slot 0, port 0, channel 15, state RM_RPM_RES_ALLOCATED
 Customer profile ACME, resource group isdn-ports
 DNIS number 301001

Shelf 0, slot 0, port 0, channel 14, state RM_RPM_RES_ALLOCATED
 Customer profile ACME, resource group isdn-ports
 DNIS number 301001

Shelf 0, slot 0, port 0, channel 11, state RM_RPM_RES_ALLOCATED
 Customer profile ACME, resource group MICA-modems
 DNIS number 301001

Verifying Call Counters for a Customer Profile

The following output from the `show resource-pool customer` command shows the call counters for a given customer profile. These counters include historical data and can be cleared.

Router# show resource-pool customer ACME

 3 active connections
 41 calls accepted
 3 max number of simultaneous connections
Verifying RPM Components

11 calls rejected due to profile limits
2 calls rejected due to resource unavailable
0 minutes spent with max connections
5 overflow connections
1 overflow states entered
11 overflow connections rejected
10 minutes spent in overflow
214 minutes since last clear command

Clearing Call Counters

The clear resource-pool command clears the call counters.

Verifying Call Counters for a Discriminator Profile

The following output from the show resource-pool discriminator command shows the call counters for a given discriminator profile. These counters include historical data and can be cleared.

Router# show resource-pool discriminator

List of Call Discriminator Profiles:
 deny_DNIS

Router# show resource-pool discriminator deny_DNIS

 1 calls rejected

Verifying Call Counters for a Resource Group

The following output from the show resource-pool resource command shows the call counters for a given resource group. These counters include historical data and can be cleared.

Router# show resource-pool resource

List of Resources:
 isdn-ports
 MICA-modems

Router# show resource-pool resource isdn-ports

 46 resources in the resource group
 2 resources currently active
 0 calls accepted in the resource group
 2 calls rejected due to resource unavailable
 0 calls rejected due to resource allocation errors
Verifying Call Counters for a DNIS Group

The following output from the `show dialer dnis` command shows the call counters for a given DNIS group. These counters include historical data and can be cleared.

Router# show dialer dnis group ACME_dnis_numbers

DNIS Number:301001
 11 total connections
 5 peak connections
 0 calltype mismatches

Verifying Call Counters for a VPDN Profile

The following output from the `show resource-pool vpdn` command shows the call counters for a given VPDN profile or the tunnel information for a given VPDN group. These counters include historical data and can be cleared.

Router# show resource-pool vpdn profile ACME_VPDN

 2 active connections
 2 max number of simultaneous connections
 0 calls rejected due to profile limits
 0 calls rejected due to resource unavailable
 0 overflow connections
 0 overflow states entered
 0 overflow connections rejected
 215 minutes since last clear command

Router# show resource-pool vpdn group outgoing-2

VPDN Group outgoing-2 found under VPDN Profiles: ACME_VPDN

Tunnel (L2F)

dnis:301001
dnis:ACME_dnis_numbers

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Session Limit</th>
<th>Priority</th>
<th>Active Sessions</th>
<th>Status</th>
<th>Reserved Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.9</td>
<td>*</td>
<td></td>
<td>1</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>*</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Verifying Load Sharing and Backup

The following example from the `show running-config` EXEC command shows two different VPDN customer groups:

Router# show running-config

Building configuration...
.
.

vpdn-group customer1-vpdng
request dialin
protocol l2f
domain cisco.com
Troubleshooting RPM

Test and verify that ISDN, CAS, SS7, PPP, AAA, and VPDN are working properly before implementing RPM. Once RPM is implemented, the only `debug` commands needed for troubleshooting RPM are as follows:

- `debug resource pool`
- `debug aaa authorization`

The `debug resource-pool` command is useful as a first step to ensure proper operation. It is usually sufficient for most cases. Use the `debug aaa authorization` command for troubleshooting VPDN and modem service problems.

Problems that might typically occur are as follows:

- No DNIS group found or no customer profile uses a default DNIS
- Call discriminator blocks the DNIS
- Customer profile limits exceeded
- Resource group limits exceeded

Note: Always enable the debug and log time stamps when troubleshooting RPM.

This section provides the following topics for troubleshooting RPM:

- Resource-Pool Component
- Resource Group Manager
- Signaling Stack
- AAA Component
- VPDN Component
- Troubleshooting DNIS Group Problems
- Troubleshooting Call Discriminator Problems
- Troubleshooting Customer Profile Counts
- Troubleshooting Resource Group Counts
- Troubleshooting VPDN
- Troubleshooting RPMS
Resource-Pool Component

The resource-pool component contains two modules—a dispatcher and a local resource-pool manager. The dispatcher interfaces with the signaling stack, resource-group manager, and AAA, and is responsible for maintaining resource-pool call state and status information. The state transitions can be displayed by enabling the resource-pool debug traces. Table 45 summarizes the resource pooling states.

| Table 45 Resource Pooling States |
|------------------|------------------|
| State | Description |
| RM_IDLE | No call activity. |
| RM_RES_AUTHOR | Call waiting for authorization; message sent to AAA. |
| RM_RES_ALLOCATING | Call authorized; resource group manager allocating. |
| RM_RES_ALLOCATED | Resource allocated; connection acknowledgment sent to signaling state. Call should get connected and become active. |
| RM_AUTH_REQ_IDLE | Signaling module disconnected call while in RM_RES_AUTHOR. Waiting for authorization response from AAA. |
| RM_RES_REQ_IDLE | Signaling module disconnected call while in RM_RES_ALLOCATING. Waiting for resource allocation response from resource group manager. |

The resource-pool state can be used to isolate problems. For example, if a call fails authorization in the RM_RES_AUTHOR state, investigate further with AAA authorization debugs to determine whether the problem lies in the resource-pool manager, AAA, or dispatcher.

The resource-pool component also contains local customer profiles and discriminators, and is responsible for matching, configuring, and maintaining the associated counters and statistics. The resource-pool component is responsible for the following:

- Configuration of customer profiles or discriminators
- Matching a customer profile or discriminator for local profile configuration
- Counters/statistics for customer profiles or discriminators
- Active call information displayed by the show resource-pool call command

The RPMS debug commands are summarized in Table 46.

| Table 46 Debug Commands for RPM |
|------------------|------------------|
| Command | Purpose |
| debug resource-pool | This debug output should be sufficient for most RPM troubleshooting situations. |
| debug aaa authorization | This debug output provides more specific information and shows the actual DNIS numbers passed and call types used. |
Successful Resource Pool Connection

The following sample output from the `debug resource-pool` command displays a successful RPM connection. The entries in bold are of particular importance.

```
*Mar 1 02:14:57.439: RM state:RM_IDLE event:DIALER_INCALL DS0:0:0:0:21
*Mar 1 02:14:57.439: RM: event incoming call
*Mar 1 02:14:57.443: RM state:RM_DNIS_AUTHOR event:RM_DNIS_RPM_REQUEST DS0:0:0:0:21
*Mar 1 02:14:57.447: RM:RPM event incoming call
*Mar 1 02:14:57.459: RPM profile ACME found
*Mar 1 02:14:57.487: RM state:RM_RPM_RES_AUTHOR event:RM_RPM_RES_AUTHOR_SUCCESS DS0:0:0:0:21
*Mar 1 02:14:57.487: Allocated resource from res_group isdn-ports
*Mar 1 02:14:57.491: RM:RPM profile "ACME", allocated resource "isdn-ports" successfully
*Mar 1 02:14:57.495: RM state:RM_RPM_RES_ALLOCATING event:RM_RPM_RES_ALLOC_SUCCESS DS0:0:0:0:21
*Mar 1 02:14:57.603: %LINK-3-UPDOWN: Interface Serial0:21, changed state to up
*Mar 1 02:15:00.879: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0:21, changed state to up
```

Dialer Component

The dialer component contains DNIS groups and is responsible for configuration, and maintenance of counters and statistics. The resource-pool component is responsible for the following:

- DNIS number statistics or counters
- Configuring DNIS groups

Resource Group Manager

Resource groups are created, maintained, allocated, freed, and tallied by the resource group manager. The resource group manager is also responsible for service profiles, which are applied to resources at call setup time. The resource group manager is responsible for:

- Allocating resources when the profile has been authorized and a valid resource group is received
- Statistics or configuration of resource groups
- Configuring or applying service profiles to resource groups
- Collecting DNIS number information for channel-associated signaling calls

Signaling Stack

The signaling stacks currently supported in resource pooling are CAS and ISDN. The signaling stack delivers the incoming call to the resource-pool dispatcher and provides call-type and DNIS number information to the resource-pool dispatcher. Depending on configuration, call connect attempts may fail if the signaling stacks do not send the DNIS number and the call type to the resource-pool dispatcher. Call attempts will also fail if signaling stacks disconnect prematurely, not giving enough time for authorization or resource allocation processes to complete.

Therefore, investigate the signaling stack when call attempts or call treatment behavior does not meet expectations. For ISDN, the `debug isdn q931` command can be used to isolate errors between resource pooling, signaling stack, and switch. For CAS, the `debug modem csm, service internal`, and
modem-mgmt csm debug-rbs commands are used on Cisco AS5200 and Cisco AS5300 access servers, while the debug csm and debug trunk cas port number timeslots number commands are used on the Cisco AS5800 access server.

AAA Component

In context with resource pooling, the AAA component is responsible for the following:

- Authorization of profiles between the resource-pool dispatcher and local or external resource-pool manager
- Accounting messages between the resource-pool dispatcher and external resource-pool manager for resource allocation
- VPDN authorization between VPDN and the local or external resource-pool manager
- VPDN accounting messages between VPDN and the external resource-pool manager
- Overflow accounting records between the AAA server and resource-pool dispatcher
- Resource connect speed accounting records between the AAA server and resource group

VPDN Component

The VPDN component is responsible for the following:

- Creating VPDN groups and profiles
- Searching or matching groups based on domain or DNIS
- Maintaining counts and statistics for the groups and profiles
- Setting up the tunnel between the NAS/LAC and HGW/LNS

The VPDN component interfaces with AAA to get VPDN tunnel authorization on the local or remote resource-pool manager. VPDN and AAA debugging traces should be used for troubleshooting.

Troubleshooting DNIS Group Problems

The following output from the debug resource-pool command displays a customer profile that is not found for a particular DNIS group:

*Mar 1 00:38:21.011: RM state:RM_IDLE event:DIALER_INCALL DS0:0:0:0:3
*Mar 1 00:38:21.011: RM: event incoming call
*Mar 1 00:38:21.015: RM state:RM_DNIS_AUTHOR event:RM_DNIS_RPM_REQUEST DS0:0:0:0:3
*Mar 1 00:38:21.019: RPM: event incoming call
*Mar 1 00:38:21.103: RPM no profile found for call-type digital in default DNIS number
*Mar 1 00:38:21.155: RPM profile rejected do not allocate resource
*Mar 1 00:38:21.155: RM state:RM_RPM_RES_AUTHOR event:RM_RPM_RES_AUTHOR_FAIL DS0:0:0:0:3
*Mar 1 00:38:21.163: RM state:RM_RPM_DISCONNECTING event:RM_RPM_DISC_ACK DS0:0:0:0:3
Troubleshooting Call Discriminator Problems

The following output from the debug resource-pool command displays an incoming call that is matched against a call discriminator profile:

```
*Mar 1 00:35:25.995: RM state:RM_IDLE event:DIALER_INCALL DS0:0:0:4
*Mar 1 00:35:25.999: RM: event incoming call
*Mar 1 00:35:25.999: RM state:RM_DNIS_AUTHOR event:RM_DNIS_RPM_REQUEST DS0:0:0:4
*Mar 1 00:35:26.003: RM:RPM event incoming call
*Mar 1 00:35:26.135: RM:RPM profile rejected do not allocate resource
*Mar 1 00:35:26.139: RM state:RM_RPM_RES_AUTHOR event:RM_RPM_RES_AUTHOR_FAIL DS0:0:0:4
*Mar 1 00:35:26.143: RM state:RM_RPM_DISCONNECTING event:RM_RPM_DISC_ACK DS0:0:0:4
```

Troubleshooting Customer Profile Counts

The following output from the debug resource-pool command displays what happens once the customer profile limits have been reached:

```
*Mar 1 00:43:33.275: RM state:RM_IDLE event:DIALER_INCALL DS0:0:0:9
*Mar 1 00:43:33.279: RM: event incoming call
*Mar 1 00:43:33.279: RM state:RM_DNIS_AUTHOR event:RM_DNIS_RPM_REQUEST DS0:0:0:9
*Mar 1 00:43:33.283: RM:RPM event incoming call
*Mar 1 00:43:33.295: RPM count exceeded in profile ACME
*Mar 1 00:43:33.315: RM:RPM profile rejected do not allocate resource
*Mar 1 00:43:33.315: RM state:RM_RPM_RES_AUTHOR event:RM_RPM_RES_AUTHOR_FAIL DS0:0:0:9
*Mar 1 00:43:33.323: RM state:RM_RPM_DISCONNECTING event:RM_RPM_DISC_ACK DS0:0:0:9
```

Troubleshooting Resource Group Counts

The following output from the debug resource-pool command displays the resources within a resource group all in use:

```
*Mar 1 00:52:34.411: RM state:RM_IDLE event:DIALER_INCALL DS0:0:0:19
*Mar 1 00:52:34.411: RM: event incoming call
*Mar 1 00:52:34.415: RM state:RM_DNIS_AUTHOR event:RM_DNIS_RPM_REQUEST DS0:0:0:19
*Mar 1 00:52:34.419: RM:RPM event incoming call
*Mar 1 00:52:34.431: RPM profile ACME found
*Mar 1 00:52:34.455: RM state:RM_RPM_RES_AUTHOR event:RM_RPM_RES_AUTHOR_SUCCESS DS0:0:0:19
*Mar 1 00:52:34.459: All resources in res_group isdn-ports are in use
*Mar 1 00:52:34.463: RM state:RM_RPM_RES_ALLOCATING event:RM_RPM_RES_ALLOC_FAIL DS0:0:0:19
*Mar 1 00:52:34.467: RM:RPM failed to allocate resources for "ACME"
```

Troubleshooting VPDN

Troubleshooting problems that might typically occur are as follows:

- Customer profile is not associated with a VPDN profile or VPDN group (the call will be locally terminated in this case. Regular VPDN can still succeed even if RPM/VPDN fails).
- VPDN profile limits have been reached (call answered but disconnected).
- VPDN group limits have been reached (call answered but disconnected).
- VPDN endpoint is not reachable (call answered but disconnected).
Troubleshooting RPM/VPDN Connection

The following sample output from the `debug resource-pool` command displays a successful RPM/VPDN connection. The entries in bold are of particular importance.

*Mar 1 00:15:53.639: Se0:10 RM/VPDN/rm-session-request: Allocated vpdn info for domain NULL MLP Bundle SOHO
*Mar 1 00:15:53.655: RM/VPDN/ACME_VPDN: VP LIMIT/ACTIVE/RESERVED/OVERFLOW are now 6/0/0/0
*Mar 1 00:15:53.659: RM/VPDN/ACME_VPDN: Session reserved for outgoing-2
*Mar 1 00:15:53.695: Se0:10 RM/VPDN: Session has been authorized using dnis:ACME_dnis_numbers
*Mar 1 00:15:53.695: Se0:10 RM/VPDN/session-reply: NAS name HQ-NAS
*Mar 1 00:15:53.703: Se0:10 RM/VPDN/session-reply: Endpoint addresses 172.16.1.9
*Mar 1 00:15:53.703: Se0:10 RM/VPDN/session-reply: VPDN tunnel protocol L2f
*Mar 1 00:15:53.707: Se0:10 RM/VPDN/session-reply: VPDN domain dnis:ACME_dnis_numbers
*Mar 1 00:15:53.767: RM/VPDN: MLP Bundle SOHO Session Connect with 1 Endpoints:
 *Mar 1 00:15:53.771: IP 172.16.1.9 OK
*Mar 1 00:15:53.771: RM/VPDN/rm-session-connect/ACME_VPDN: VP LIMIT/ACTIVE/RESERVED/OVERFLOW are now 6/1/0/0
*Mar 1 00:15:54.815: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0:10, changed state to up
*Mar 1 00:15:57.399: %ISDN-6-CONNECT: Interface Serial0:10 is now connected to SOHO

Troubleshooting Customer/VPDN Profile

The following sample output from the `debug resource-pool` command displays when there is no VPDN group associated with an incoming DNIS group. However, the output from the `debug resource-pool` command, as shown here, does not effectively reflect the problem:

*Mar 1 03:40:16.483: Se0:15 RM/VPDN/rm-session-request: Allocated vpdn info for domain NULL MLP Bundle SOHO
*Mar 1 03:40:16.527: %VPDN-6-AUTHORERR: L2F NAS HQ-NAS cannot locate a AAA server for Se0:15 user SOHO
*Mar 1 03:40:16.579: %LINK-3-UPDOWN: Interface Virtual-Access1, changed state to up
*Mar 1 03:40:17.539: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0:15, changed state to up
*Mar 1 03:40:17.615: %LINEPROTO-5-UPDOWN: Line protocol on Interface Virtual-Access1, changed state to up
*Mar 1 03:40:19.483: %ISDN-6-CONNECT: Interface Serial0:15 is now connected to SOHO

Whenever the `debug resource-pool` command offers no further assistance besides the indication that authorization has failed, enter the `debug aaa authorization` command to further troubleshoot the problem. In this case, the `debug aaa authorization` command output appears as follows:

*Mar 1 04:03:49.846: Se0:19 RM/VPDN/rm-session-request: Allocated vpdn info for domain NULL MLP Bundle SOHO
*Mar 1 04:03:49.854: Se0:19 AAA/AUTHOR/RM vpdn-session (3912941997): Port='DS0:0:0:0:19' list='default' service=RM
*Mar 1 04:03:49.858: AAA/AUTHOR/RM vpdn-session: Se0:19 (3912941997) user='301001'
*Mar 1 04:03:49.862: Se0:19 AAA/AUTHOR/RM vpdn-session (3912941997): send AV service=resource-management
*Mar 1 04:03:49.866: Se0:19 AAA/AUTHOR/RM vpdn-session (3912941997): send AV protocol=vpdn-session
*Mar 1 04:03:49.866: Se0:19 AAA/AUTHOR/RM vpdn-session (3912941997): send AV rm-protocol-version=1.0
*Mar 1 04:03:49.870: Se0:19 AAA/AUTHOR/RM vpdn-session (3912941997): send AV rm-nas-state=3278356
*Mar 1 04:03:49.874: Se0:19 AAA/AUTHOR/RM vpdn-session (3912941997): send AV rm-call-handle=27
Troubleshooting RPM

The following output from the `debug resource-pool` command displays that VPDN profile limits have been reached:

```
*Mar 1 04:57:53.762: Se0:13 RM/VPDN/rm-session-request: Allocated vpdn info for domain NULL MLP Bundle SOHO
*Mar 1 04:57:53.774: RM/VPDN/ACME_VPDN: VP LIMIT/ACTIVE/RESERVED/OVERFLOW are now 0/0/0/0
*Mar 1 04:57:53.778: RM/VPDN/ACME_VPDN: Session outgoing-2 rejected due to Session Limit
*Mar 1 04:57:53.802: %VPDN-6-AUTHORFAIL: L2F NAS HQ-NAS, AAA authorization failure for Se0:13 user SOHO; At Session Max
*Mar 1 04:57:53.866: %ISDN-6-DISCONNECT: Interface Serial0:13 disconnected from SOHO, call lasted 2 seconds
*Mar 1 04:57:54.014: %LINK-3-UPDOWN: Interface Serial0:13, changed state to down
*Mar 1 04:57:54.050: RM state:RM_RPM_RES_ALLOCATED event:DIALER.Disconnect DS0:0:0:0:13
*Mar 1 04:57:54.054: RM:RPM event call drop
*Mar 1 04:57:54.054: Deallocated resource from res_group isdn-ports
```

Troubleshooting VPDN Profile Limits

The following output from the `debug resource-pool` command displays that VPDN profile limits have been reached:

```
*Mar 1 04:57:53.762: Se0:13 RM/VPDN/rm-session-request: Allocated vpdn info for domain NULL MLP Bundle SOHO
*Mar 1 04:57:53.774: RM/VPDN/ACME_VPDN: VP LIMIT/ACTIVE/RESERVED/OVERFLOW are now 0/0/0/0
*Mar 1 04:57:53.778: RM/VPDN/ACME_VPDN: Session outgoing-2 rejected due to Session Limit
*Mar 1 04:57:53.802: %VPDN-6-AUTHORFAIL: L2F NAS HQ-NAS, AAA authorization failure for Se0:13 user SOHO; At Session Max
*Mar 1 04:57:53.866: %ISDN-6-DISCONNECT: Interface Serial0:13 disconnected from SOHO, call lasted 2 seconds
*Mar 1 04:57:54.014: %LINK-3-UPDOWN: Interface Serial0:13, changed state to down
*Mar 1 04:57:54.050: RM state:RM_RPM_RES_ALLOCATED event:DIALER.Disconnect DS0:0:0:0:13
*Mar 1 04:57:54.054: RM:RPM event call drop
*Mar 1 04:57:54.054: Deallocated resource from res_group isdn-ports
```

Troubleshooting VPDN Group Limits

The following `debug resource-pool` command display shows that VPDN group limits have been reached. From this display, the problem is not obvious. To troubleshoot further, use the `debug aaa authorization` command described in the “Troubleshooting RPMS” section later in this chapter:

```
*Mar 1 05:02:22.314: Se0:17 RM/VPDN/rm-session-request: Allocated vpdn info for domain NULL MLP Bundle SOHO
*Mar 1 05:02:22.334: RM/VPDN/ACME_VPDN: VP LIMIT/ACTIVE/RESERVED/OVERFLOW are now 5/0/0/0
*Mar 1 05:02:22.334: RM/VPDN/ACME_VPDN: Session reserved for outgoing-2
*Mar 1 05:02:22.358: Se0:17 RM/VPDN/rm-session-request: Authorization failed
*Mar 1 05:02:22.362: %VPDN-6-AUTHORFAIL: L2F NAS HQ-NAS, AAA authorization failure for Se0:17 user SOHO; At Multilink Bundle Limit
*Mar 1 05:02:22.374: %ISDN-6-DISCONNECT: Interface Serial0:17 disconnected from SOHO, call lasted 2 seconds
*Mar 1 05:02:22.534: %LINK-3-UPDOWN: Interface Serial0:17, changed state to down
*Mar 1 05:02:22.570: RM state:RM_RPM_RES_ALLOCATED event:DIALER.Disconnect DS0:0:0:0:17
*Mar 1 05:02:22.574: RM:RPM event call drop
*Mar 1 05:02:22.574: Deallocated resource from res_group isdn-ports
```
Troubleshooting VPDN Endpoint Problems

The following output from the `debug resource-pool` command displays that the IP endpoint for the VPDN group is not reachable:

```
*Mar 1 05:12:22.330: Se0:21 RM/VPDN/rm-session-request: Allocated vpdn info for domain NULL MLP Bundle SOHO
*Mar 1 05:12:22.346: RM/VPDN/ACME_VPDN: VP LIMIT/ACTIVE/RESERVED/OVERFLOW are now 5/0/0/0
*Mar 1 05:12:22.382: Se0:21 RM/VPDN: Session has been authorized using dnis:ACME_dnis_numbers
*Mar 1 05:12:22.386: Se0:21 RM/VPDN/session-reply: NAS name HQ-NAS
*Mar 1 05:12:22.386: Se0:21 RM/VPDN/session-reply: Endpoint addresses 172.16.1.99
*Mar 1 05:12:22.390: Se0:21 RM/VPDN/session-reply: VPDN tunnel protocol l2f
*Mar 1 05:12:22.394: Se0:21 RM/VPDN/session-reply: VPDN domain dnis:ACME_dnis_numbers
*Mar 1 05:12:25.762: %ISDN-6-CONNECT: Interface Serial0:21 is now connected to SOHO
*Mar 1 05:12:27.562: %VPDN-5-UNREACH: L2F HGW 172.16.1.99 is unreachable
*Mar 1 05:12:27.582: RM/VPDN: MLP Bundle SOHO Session Connect with 1 Endpoints:
  IP 172.16.1.99 Destination unreachable
```

Troubleshooting RPMS

In general, the `debug aaa authorization` command is not used for RPM troubleshooting unless the `debug resource-pool` command display is too vague. The `debug aaa authorization` command is more useful for troubleshooting with RPMS. Following is sample output:

```
Router# debug aaa authorization

AAA Authorization debugging is on

Router# show debug

General OS:
  AAA Authorization debugging is on
Resource Pool:
  resource-pool general debugging is on

The following output from the `debug resource-pool` and `debug aaa authorization` commands shows a successful RPM connection:

```
*Mar 1 06:10:35.450: AAA/MEMORY: create_user (0x723D24) user='301001'
ruser='' port='DS0:0:0:0:12' rem_addr='102' authen_type=None service=None priv=0
 Port='DS0:0:0:0:12' list='default' service=rm
*Mar 1 06:10:35.462: DS0:0:0:0:12 AAA/AUTHOR/RM call-accept (2784758907):
 service=resource-management
*Mar 1 06:10:35.470: DS0:0:0:0:12 AAA/AUTHOR/RM call-accept (2784758907): send AV
 protocol=call-accept
*Mar 1 06:10:35.474: DS0:0:0:0:12 AAA/AUTHOR/RM call-accept (2784758907): send AV
 rm-protocol-version=1.0
*Mar 1 06:10:35.478: DS0:0:0:0:12 AAA/AUTHOR/RM call-accept (2784758907): send AV
 rm-nas-state=7513368
*Mar 1 06:10:35.482: DS0:0:0:0:12 AAA/AUTHOR/RM call-accept (2784758907): send AV
 rm-call-type=speech
*Mar 1 06:10:35.486: DS0:0:0:0:12 AAA/AUTHOR/RM call-accept (2784758907): send AV
 rm-request-type=dial-in
*Mar 1 06:10:35.486: DS0:0:0:0:12 AAA/AUTHOR/RM call-accept (2784758907): send AV
 rm-link-type=isd
```
Configuration Examples for RPM

The following sections provide RPM configuration examples:

- **Standard Configuration for RPM Example**
- **Customer Profile Configuration for DoVBS Example**
- **DNIS Discriminator Profile Example**
- **CLID Discriminator Profile Example**
- **Direct Remote Services Configuration Example**
- **VPDN Configuration Example**
- **VPDN Load Sharing and Backing Up Between Multiple HGW/LNSs Example**
Standard Configuration for RPM Example

The following example demonstrates a basic RPM configuration:

```
resource-pool enable
resource-pool call treatment resource busy
resource-pool call treatment profile no-answer

! resource-pool group resource isdn-ports
 range limit 46
resource-pool group resource MICA-modems
 range port 1/0 2/23

! resource-pool profile customer ACME
 limit base-size 30
 limit overflow-size 10
resource isdn-ports digital
resource MICA-modems speech service gold
dnis group ACME_dnis_numbers

! resource-pool profile customer DEFAULT
 limit base-size 10
resource MICA-modems speech service silver
dnis group default

resource-pool profile discriminator deny_DNIS
 call-type digital
dnis group bye-bye

! resource-pool profile service gold
 modem min-speed 33200 max-speed 56000 modulation v90
resource-pool profile service silver
 modem min-speed 19200 max-speed 33200 modulation v34

! resource-pool aaa protocol local

! dialer dnis group ACME_dnis_numbers
 number 301001
dialer dnis group bye-bye
 number 301005
```

- Replace the command string `resource isdn-ports digital` in the previous example with `resource isdn-ports speech` to set up DoVBS. See the section, “Customer Profile Configuration for DoVBS Example,” for more information.

  Digital calls to 301001 are associated with the customer ACME by using the resource group “isdn-ports.”

- Speech calls to 301001 are associated with the customer ACME by using the resource group “mica-modems” and allow for V.90 connections (anything less than V.90 is also allowed).

- Digital calls to 301005 are denied.

- All other speech calls to any other DNIS number are associated with the customer profile “DEFAULT” by using the resource group “mica-modems” and allow for V.34 connections (anything more than V.34 is not allowed; anything less than V.34 is also allowed).

- All other digital calls to any other DNIS number are not associated with a customer profile and are therefore not allowed.
The customer profile named “DEFAULT” serves as the default customer profile for speech calls only. If the solution uses an external RPMS server, this same configuration can be used for backup resource pooling if communication is lost between the NAS and the RPMS.

Customer Profile Configuration for DoVBS Example

To allow ISDN calls with a speech bearer capability to be directed to digital resources, make the following change (highlighted in bold) to the configuration shown in the previous section, “Standard Configuration for RPM Example”:

resource-pool profile customer ACME
  limit base-size 30
  limit overflow-size 10
  resource isdn-ports speech
dnis group ACME_dnis_numbers

This change causes ISDN speech calls (in addition to ISDN digital calls) to be directed to the resource “isdn-ports”; thus, ISDN speech calls provide DoVBS.

DNIS Discriminator Profile Example

The following is sample configuration for a DNIS discriminator. It shows how to enable resource pool management, configure a customer profile, create DNIS groups, and add numbers to the DNIS groups.

aaa new-model
!
! Enable resource pool management
resource-pool enable
!
resource-pool group resource digital
  range limit 20
!
! Configure customer profile
resource-pool profile customer cp1
  limit base-size all
  limit overflow-size 0
  resource digital digital
dnis group ok
!
! isdn switch-type primary-5ess
!
controller T1 0
  framing esf
clock source line primary
  linecode b8zs
  pri-group timeslots 1-24
!
interface Loopback1
  ip address 192.168.0.0 255.255.255.0
!
interface Serial0:23
  ip unnumbered Loopback1
  encapsulation ppp
  ip mroute-cache
dialer-group 1
  isdn switch-type primary-5ess
no peer default ip address
ppp authentication chap
!
! Configure DNIS groups
dialer dnis group blot
  number 5552003
  number 3456789
  number 2345678
  number 1234567
!
dialer dnis group ok
  number 89898989
  number 5551003
!
dialer-list 1 protocol ip permit

CLID Discriminator Profile Example

The following is a sample configuration of a CLID discriminator. It shows how to enable resource pool management, configure resource groups, configure customer profiles, configure CLID groups and DNIS groups, and add them to discriminator profiles.

version xx.x
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname cisco-machine
!
aaa new-model
aaa authentication login djm local
!
username eagle password ***
username infiniti password ***
spe 1/0 1/7
  firmware location system:/ucode/mica_port_firmware
spe 2/0 2/7
  firmware location system:/ucode/mica_port_firmware
!
! Enable resource pool management
resource-pool enable
!
! Configure resource groups
resource-pool group resource digital
  range limit 20
!
! Configure customer profiles
resource-pool profile customer cpl
  limit base-size all
  limit overflow-size 0
  resource digital digital
dnis group ok
!
! Configure discriminator profiles
resource-pool profile discriminator baadaabing
  call-type digital
clid group stompIt
!
resource-pool profile discriminator baadaaboom
call-type digital
clid group splat
!
ip subnet-zero
!
isdn switch-type primary-5ess
chat-script dial ABORT BUSY "AT OK "ATDT \T" TIMEOUT 30 CONNECT \c
!
mta receive maximum-recipients 0
partition flash 2 8 8
!
controller T1 0
framing esf
clock source line primary
linecode b8zs
pri-group timeslots 1-24
!
controller T1 1
shutdown
clock source line secondary 1
!
controller T1 2
shutdown
clock source line secondary 2
!
controller T1 3
shutdown
clock source line secondary 3
!
controller T1 4
shutdown
clock source line secondary 4
!
controller T1 5
shutdown
clock source line secondary 5
!
controller T1 6
shutdown
clock source line secondary 6
!
controller T1 7
shutdown
clock source line secondary 7
!
interface Loopback0
ip address 192.168.12.1 255.255.255.0
!
interface Loopback1
ip address 192.168.15.1 255.255.255.0
!
interface Loopback2
ip address 192.168.17.1 255.255.255.0
!
interface Ethernet0
ip address 10.0.39.15 255.255.255.0
no ip route-cache
no ip mroute-cache
interface Serial0
  no ip address
  no ip route-cache
  no ip mroute-cache
  shutdown
  no fair-queue
  clockrate 2015232

interface Serial1
  no ip address
  no ip route-cache
  no ip mroute-cache
  shutdown
  no fair-queue
  clockrate 2015232

interface Serial2
  no ip address
  no ip route-cache
  no ip mroute-cache
  shutdown
  no fair-queue
  clockrate 2015232

interface Serial3
  no ip address
  no ip route-cache
  no ip mroute-cache
  shutdown
  no fair-queue
  clockrate 2015232

interface Serial0:23
  ip unnumbered Loopback1
  encapsulation ppp
  ip mroute-cache
dialer-group 1
isdn switch-type primary-5ess
  no peer default ip address
  ppp authentication chap pap

interface FastEthernet0
  ip address 10.0.38.15 255.255.255.0
  no ip route-cache
  no ip mroute-cache
duplex half
  speed 100

ip classless
ip route 172.25.0.0 255.0.0.0 Ethernet0
ip route 172.19.0.0 255.0.0.0 Ethernet0
no ip http server

! Configure DNIS groups
dialer dnis group blot
  number 4085551003
  number 5552003
  number 2223333
  number 3456789
  number 2345678
  number 1234567
dialer dnis group ok
number 89898989
number 4084442002
number 4085552002
number 5551003
!
dialer clid group splat
number 12321224
!
! Configure CLID groups
! dialer clid group zot
! number 2121212121
! number 4085552002
!
dialer clid group snip
number 1212121212
!
dialer clid group stompIt
number 4089871234
!
dialer clid group squash
number 5656456

dialer-list 1 protocol ip permit
!
!
line con 0
exec-timeout 0 0
logging synchronous
transport input none
line 1 96
no exec
exec-timeout 0 0
autoselect ppp
line aux 0
line vty 0 4
exec-timeout 0 0
transport input none
!
scheduler interval 1000

Direct Remote Services Configuration Example

The following example shows a direct remote services configuration:

resource-pool profile customer ACME
limit base-size 30
limit overflow-size 10
resource isdn-ports digital
resource MICA-modems speech service gold
dnis group ACME_dnis_numbers
aaa group-configuration tahoe
source template acme_direct
!
resource-pool profile customer DEFAULT
limit base-size 10
resource MICA-modems speech service silver
dnis group default
resource-pool profile discriminator deny_DNIS
call-type digital
dnis group bye-bye
!
resource-pool profile service gold
modem min-speed 33200 max-speed 56000 modulation v90
resource-pool profile service silver
modem min-speed 19200 max-speed 33200 modulation v34
!
resource-pool aaa protocol local
!
template acme_direct
peer default ip address pool tahoe
ppp authentication chap isdn-users
ppp multilink
!
dialer dnis group ACME_dnis_numbers
number 301001
dialer dnis group bye-bye
number 301005

VPDN Configuration Example

Adding the following commands to those listed in the section “Standard Configuration for RPM Example” earlier in this chapter allows you to use VPDN by setting up a VPDN profile and a VPDN group:

**Note** If the limits imposed by the VPDN profile are not required, do not configure the VPDN profile. Replace the `vpdn profile ACME_VPDN` command under the customer profile ACME with the `vpdn group outgoing-2` command.

```
resource-pool profile vpdn ACME_VPDN
 limit base-size 6
 limit overflow-size 0
 vpdn group outgoing-2
!
resource-pool profile customer ACME
 limit base-size 30
 limit overflow-size 10
 resource isdn-ports digital
 resource MICA-modems speech service gold
dnis group ACME_dnis_numbers
!
vpdn profile ACME_VPDN
!
vpdn enable
!
vpdn-group outgoing-2
request dialin
 protocol 12f
dnis ACME_dnis_numbers
local name HQ-NAS
initiate-to ip 172.16.1.9
multilink bundle 1
multilink link 2
!
dialer dnis group ACME_dnis_numbers
number 301001
```
VPDN Load Sharing and Backing Up Between Multiple HGW/LNSs Example

Cisco IOS software enables you to balance and back up VPDN sessions across multiple tunnel endpoints (HGW/LNS). When a user or session comes into the NAS/LAC, a VPDN load-balancing algorithm is triggered and applied to the call. The call is then passed to an available HGW/LNS. You can modify this function by limiting the number of sessions supported on an HGW/LNS router and limiting the number of MLP bundles and links.

Figure 109 shows an example of one NAS/LAC that directs calls to two HGW/LNS routers by using the L2TP tunneling protocol. Each router has a different number of supported sessions and works at a different speed. The NAS/LAC is counting the number of active simultaneous sessions sent to each HGW/LNS.

Figure 109 Home Gateway Load Sharing and Backup

In a standalone NAS environment (no RPMS server used), the NAS has complete knowledge of the status of tunnel endpoints. Balancing across endpoints is done by a “least-filled tunnel” or a “next-available round robin” approach. In an RPMS-controlled environment, RPMS has the complete knowledge of tunnel endpoints. However, the NAS still has the control over those tunnel endpoints selected by RPMS.

A standalone NAS uses the following default search criteria for load-balancing traffic across multiple endpoints (HGW/LNS):

- Select any idle endpoint—an HGW/LNS with no active sessions.
- Select an active endpoint that currently has a tunnel established with the NAS.
- If all specified load-sharing routers are busy, select the backup HGW. If all endpoints are busy, report that the NAS cannot find an IP address to establish the call.

Note

This default search order criteria is independent of the Cisco RPMS application scenario. A standalone NAS uses a different load-sharing algorithm than the Cisco RPMS. This search criteria will change as future enhancements become available.
The following is an example of VPDN load sharing between multiple HGW/LNSs:

```
vpdn enable
!
vpdn-group outgoing-2
 request dialin
 protocol l2tp
 dnis ACME_dnis_numbers
 local name HQ-NAS
 initiate-to ip 172.16.1.9
 loadsharing ip 172.16.1.9 limit 200
 loadsharing ip 172.16.2.17 limit 50
 backup ip 172.16.3.22
```
Configuring Wholesale Dial Performance Optimization

This chapter describes the Wholesale Dial Performance Optimization feature in the following sections:

- Wholesale Dial Performance Optimization Feature Overview
- How to Configure Automatic Command Execution
- How to Configure TCP Clear Performance Optimization
- Verifying Configuration of TCP Clear Performance Optimization

**Note**

This task provides inbound and outbound performance optimization for wholesale dial customers who provide ports to America Online (AOL). It is configured only on Cisco AS5800 access servers.

### Wholesale Dial Performance Optimization Feature Overview

Both the inbound and outbound aspects of this feature are enabled using the `autocommand-options telnet-faststream` command.

- **Outbound**—Provides stream processing, allowing the output data processing to occur at the interrupt level. Being event driven, this removes polling and process switching overhead. In addition, the flow control algorithm is enhanced to handle the higher volume of traffic and to eliminate some out-of-resource conditions that could result in abnormal termination of the session.

- **Inbound**—Provides stream processing with the same improvements as for outbound traffic. Also, it removes scanning for special escape characters in the data stream; this is very process-intensive and is not required for this application. (In other situations, the escape characters allow for a return to the privileged EXEC mode prompt (#) on the router.) In addition, Nagle’s algorithm is used to form the inbound data stream into larger packets, thus minimizing packet-processing overhead.

This configuration is designed to provide more efficiency in the data transfers for AOL port suppliers who are using a Cisco network access server to communicate with a wholesale dial carrier.

The Cisco AS5800 access server is required to support all dial-in lines supported by two complete T3 connections (that is, 1344 connections) running TCP Clear connections to an internal host. The desired average data throughput for these connections is 6 kbps outbound and 3 kbps inbound.

When using the `autocommand-options telnet-faststream` command, no special character processing, including break recognition, is performed on incoming data from the dial shelf. This requires the TCP Clear connection to run as the sole connection on the TTY line. This sole connection is terminated by TTY line termination or TCP connection termination, with no EXEC session capability for the user. This
has been implemented by specifying a new `autocommand-options telnet-faststream` command that, in conjunction with the `autocommand telnet` command with the `/stream` option, enables Telnet faststream processing. This capability is also available for TACACS/RADIUS attribute-value pair processing, because this processing uses the `autocommand` facility.

### How to Configure Automatic Command Execution

The following are three options for configuring the `autocommand telnet /stream` line configuration command:

- Automatic command execution can be configured on the lines.
- Automatic command execution can be configured using user ID and password.
- Automatic command execution can also be configured at a TACACS/RADIUS server, if the username authentication is to be performed there, rather than on the router.

To configure automatic command execution on the lines of a Cisco AS5800 universal network access server, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1
Router(config)# line 1/3/00 1/11/143                       | Selects the lines to be configured and begins line configuration mode. |
| Step 2
Router(config-line)# autocommand telnet aol-host 5190 /stream | Configures autocommand on the lines.               |

To configure automatic command execution using a user ID and password on a Cisco AS5800 universal network access server, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1
Router(config)# username aol password aol                   | Defines the user ID and password.                  |
| Step 2
Router(config)# username aol autocommand telnet aol-host 5190 /stream | Configures autocommand on the user ID.             |

You can also configure automatic command execution at a TACACS/RADIUS server if the username authentication is to be performed there rather than on the router. The AV-pair processing allows autocommand to be configured.

### How to Configure TCP Clear Performance Optimization

To enable TCP Clear performance optimization, automatic command execution must be configured to enable Telnet faststream capability. To implement TCP Clear performance optimization on a Cisco AS5800 universal network access server, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1
Router(config)# line 1/3/00 1/11/143                       | Selects the lines to be configured and begins line configuration mode. |
| Step 2
Router(config-line)# autocommand telnet aol-host 5190 /stream | Configures autocommand on the lines.               |

Configuring Wholesale Dial Performance Optimization

How to Configure Automatic Command Execution

How to Configure TCP Clear Performance Optimization
Configuring Wholesale Dial Performance Optimization

Verifying Configuration of TCP Clear Performance Optimization

To check for correct configuration, use the `show line` command. In the following example, Telnet faststream is enabled under “Capabilities”.

```
Router# show line 1/4/00

 Tty Typ Tx/Rx A Modem Roty AccO AccI Uses Noise Overruns Int
 * 1/4/00 Digital modem - inout - - - 1 0 0/0 -

Line 1/4/00, Location: "", Type: ""
Length: 24 lines, Width: 80 columns
Status: PSI Enabled, Ready, Connected, Active, No Exit Banner
 Modem Detected
Capabilities: Hardware Flowcontrol In, Hardware Flowcontrol Out
Modem Callout, Modem RI is CD, Line usable as async interface
Hangup on Last Close, Modem Autoconfigure, Telnet Faststream
Modem state: Ready
Modem hardware state: CTS DSR DTR RTS
modem=1/4/00, vdev_state(0x00000000)=CSM_OC_STATE, bchan_num=(T1 1/2/0:7:20)
vdev_status(0x00000001): VDEV_STATUS_ACTIVE_CALL.

Group codes: 0, Modem Configured
Special Chars: Escape Hold Stop Start Disconnect Activation
 ^x none - - none
Timeouts: Idle EXEC Idle Session Modem Answer Session Dispatch
 never never none not set
 Idle Session Disconnect Warning
 never
Login-sequence User Response
 00:00:30
Autoselect Initial Wait
 not set

Modem type is 9600.
Session limit is not set.
Time since activation: never
Editing is enabled.
History is enabled, history size is 10.
DNS resolution in show commands is enabled
Full user help is disabled
Allowed transports are telnet. Preferred is lat.
Automatically execute command "telnet 10.100.254.254 2145 /stream"
No output characters are padded
```

Verifying Configuration of TCP Clear Performance Optimization

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# line 1/3/00 1/11/143</td>
</tr>
<tr>
<td></td>
<td>Selects the lines to be configured and begins line configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-line)# autocommand telnet-faststream</td>
</tr>
<tr>
<td></td>
<td>Enables the TCP Clear performance optimization on the selected lines.</td>
</tr>
</tbody>
</table>
Dial Access Scenarios
Dial Networking Business Applications

This chapter provides an introduction to common dial networking scenarios used by service providers and enterprises and includes the following sections:

- **Dial Networking for Service Providers and Enterprises**
- **Common Dial Applications**
- **IP Address Strategies**

Providing dial access means to set up one or more access servers or routers to allow on-demand connectivity for individual remote nodes or remote offices. The dial network solutions described in this chapter are based on business case scenarios. Depending on your business application, dial access has different implementations.

### Dial Networking for Service Providers and Enterprises

Service providers tend to supply public and private dial-in services for businesses or individual home users. Enterprises tend to provide private dial-in access for employees dialing in from remote LANs (such as a remote office) or individual remote nodes (such as a telecommuter). Additionally, there are hybrid forms of dial access—virtual private dialup networks (VPDNs)—that are jointly owned, operated, and set up by both service providers and enterprises.

*Figure 110* displays a common dial topology used by an Internet service provider (ISP). The central dial-in site is owned and controlled by the ISP, who only accepts dial-in calls. Enterprises and individual remote clients have no administrative control over the point of presence (POP) of the ISP.

---

**Note**

Many additional dial network strategies exist for different business applications. This overview is intended to provide only a sample of the most common dial business needs as experienced by the Cisco dial escalation team.
Enterprises can provide bidirectional access services with remote LANs and one-way dial-in access for standalone remote nodes. Bidirectional access means that remote LANs can dial in to the enterprise, and the enterprise can dial out to the remote LANs. A remote LAN can be a large remote office or a small home office. A standalone remote node can be an individual PC that is dynamically assigned an IP address from the modem pool of the enterprise. In most cases, an enterprise has complete administrative control over its local and remote devices. (See Figure 111.)
Service providers and enterprises both benefit from a hybrid dial solution called VPDN. Service providers offer virtually private access to enterprises by providing the dial-in access devices for the enterprise to use (for example, access servers and modem pools). In this solution, service providers construct the networking fabric for city-to-city dial connectivity for the enterprise. Enterprises provide only a home gateway router (with no attached modems) and a WAN connection to their service provider. VPDN dial solutions enable the enterprise to continue to maintain complete administrative control over its remote locations and network resource privileges. (See Figure 112.)
Common Dial Applications

The hardware and software configuration designs for dial networks are derived from business operations needs. This section describes several of the most common business dial scenarios that Cisco Systems is supporting for basic IP and security services.

Refer to the scenario that best describes your business or networking needs:

- The following dial scenarios are commonly used by service providers. For detailed description and configuration information, see the chapter “Telco and ISP Dial Scenarios and Configurations” later in this manual.
  - Scenario 1, Small- to Medium-Scale POPs
    (one or two access servers at the central dial-in site)
  - Scenario 2, Large-Scale POPs
    (more than two access servers at the central dial-in site, Multichassis Multilink PPP or MMP)
  - Scenario 3, PPP Calls over X.25 Networks
- The following dial scenarios are commonly used by enterprises. For detailed description and configuration information, see the chapter “Enterprise Dial Scenarios and Configurations.”
  - Scenario 1, Remote Offices and Telecommuters Dialing In to a Central Site
  - Scenario 2, Bidirectional Dial Between Central Sites and Remote Offices
  - Scenario 3, Telecommuters Dialing In to a Mixed Protocol Environment
IP Address Strategies

Exponential growth in the remote access router market has created new addressing challenges for ISPs and enterprise users. Companies that use dial technologies seek addressing solutions that will:

- Minimize Internet access costs for remote offices
- Minimize configuration requirements on remote access routers
- Enable transparent and dynamic IP address allocation for hosts in remote environments
- Improve network security capabilities at each remote small office, home office site
- Conserve registered IP addresses
- Maximize IP address manageability

Remote networks have variable numbers of end systems that need access to the Internet; therefore, some ISPs are interested in allocating just one IP address to each remote LAN.

In enterprise networks where telecommuter populations are increasing in number, network administrators need solutions that ease configuration and management of remote routers and provide conservation and dynamic allocation of IP addresses within their networks. These solutions are especially important when network administrators implement large dial-up user pools where ISDN plays a major role.

Choosing an Addressing Scheme

Use an IP addressing scheme that is appropriate for your business scenario as described in the following sections:

- **Classic IP Addressing**
- **Cisco Easy IP**

Additionally, here are some addressing issues to keep in mind while you evaluate different IP address strategies:

- How many IP addresses do you need?
- Do you want remote clients to dial in to your network and connect to server-based services, which require statically assigned IP addresses?
- Is your primary goal to provide Internet services to a network (for example, surfing the web, downloading e-mail, using TCP/IP applications)?
- Can you conduct business with only a few registered IP addresses?
- Do you need a single contiguous address space, or can you function with two non-contiguous address spaces?

Classic IP Addressing

This section describes two classic IP addressing strategies that you can use to set up dial-in access. Classic IP addresses are statically or dynamically assigned from your network to each site router or dial-in client. The IP address strategy you use depends on whether you are allowing remote LANs or individual remote clients to dial in.
A remote LAN usually consists of a single router at the gateway followed by multiple nodes such as 50 PCs. The IP address on the gateway router is fixed or statically assigned (for example, 3.3.3.3). This device always uses the address 3.3.3.3 to dial in to the enterprise or service provider network. There is also a segment or subnet associated with the gateway router (for example, 2.1.1.0 255.255.255.0), which is defined by the dial-in security server.

For individual remote clients dialing in, a specific range or pool of IP addresses is defined by the gateway access server and dynamically assigned to each node. When a remote node dials in, it receives an address from the specified address pool. This pool of addresses usually resides locally on the network access server. Whereas, the remote LANs have predefined or statically assigned addresses. The accompanying subnet is usually statically assigned too. (See Figure 113.)

**Figure 113  Classic IP Address Allocation**

Here are some advantages and disadvantages of manually assigning IP addresses:

- **Advantages**
  - Web servers or Xservers can be stationed at remote locations.
  - Since addresses are members of your network, they are perfectly transparent.

- **Disadvantages**
  - IP address assignments can be difficult to administer or manage. You may also need to use complicated subnetting configurations.
  - Statically assigned IP addresses use up precious address space.
  - Strong routing configuration skills are usually required.

**Cisco Easy IP**

Two of the key problems facing the Internet are depletion of IP address space and scaling in routing. The Cisco Easy IP feature combines Network Address Translation (NAT) and PPP/Internet Protocol Control Protocol (IPCP). This feature enables a Cisco router to automatically negotiate its own registered WAN
interface IP address from a central server and allows all remote hosts to access the global Internet using this single registered IP address. Because Cisco Easy IP uses existing port-level multiplexed NAT functionality within the Cisco IOS software, IP addresses on the remote LAN are invisible to the Internet.

**Cisco Easy IP Component Technologies**

Cisco Easy IP solution is a scalable, standards-based, “plug-and-play” solution that comprises a combination of the following technologies:

- **NAT**—Described in RFC 1631. NAT operates on a router that usually connects two or more networks together. Using Cisco Easy IP, at least one of these networks (designated as “inside” or “LAN”) is addressed with private (RFC 1918) addresses that must be converted into a registered address before packets are forwarded onto the other registered network (designated as “outside” or “WAN”). Cisco IOS software provides the ability to define one-to-one translations (NAT) as well as many-to-one translations (Port Address Translation [PAT]). Within the context of Cisco Easy IP, PAT is used to translate all internal private addresses to a single outside registered IP address.

- **PPP/IPCP**—Defined in RFC 1332. This protocol enables users to dynamically configure IP addresses over PPP. A Cisco Easy IP router uses PPP/IPCP to dynamically negotiate its own WAN interface address from a central access server or DHCP server.

Figure 114 shows an example of how Cisco Easy IP works. A range of registered or unregistered IP addresses are used inside a company’s network. When a dial-up connection is initiated by an internal node, the router uses the Cisco Easy IP feature to rewrite the IP header belonging to each packet and translate the private address into the dynamically assigned and registered IP address, which could be borrowed from a service provider.

**Figure 114  Translating and Borrowing IP Addresses**

<table>
<thead>
<tr>
<th>Inside IP Address</th>
<th>Outside Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.2</td>
<td>172.29.2.1: 4011</td>
</tr>
<tr>
<td>10.0.0.3</td>
<td>172.29.2.1: 4012</td>
</tr>
</tbody>
</table>

For a more detailed description of how Cisco Easy IP works, see the chapter “Configuring Cisco Easy IP.”
Key Benefits of Using Cisco Easy IP

The Cisco Easy IP feature provides the following benefits:

- Reduces Internet access costs by using dynamically allocated IP addresses. Using dynamic IP address negotiation (PPP/IPCP) at each remote site substantially reduces Internet access costs. Static IP addresses cost more to purchase compared to dynamically allocated or rented IP addresses. Cisco Easy IP enables you to rent IP addresses. In addition, dynamically assigned IP addresses saves you time and money associated with subnet mask configuration tasks on hosts. It also eliminates the need to configure host IP addresses when moving from network to network.

- Simplifies IP address management. Cisco Easy IP enables ISPs to allocate a single registered IP address to each remote LAN. Because only a single registered IP address is required to provide global Internet access to all users on an entire remote LAN, customers and ISPs can use their registered IP addresses more efficiently.

- Conserves registered IP addresses. Suppose you want to connect to the Internet, but not all your hosts have globally unique IP addresses. NAT enables private IP internetworks that use nonregistered or overlapping IP addresses to connect to the Internet. NAT is configured on the router at the border of a stub domain (referred to as the inside network) and a public network such as the Internet (referred to as the outside network). The private addresses you set up on the inside of your network translate into a single registered IP addresses on the outside of your network.

- Provides remote LAN IP address privacy. Because Cisco Easy IP uses existing port-level multiplexed NAT functionality within Cisco IOS software, IP addresses on the remote LAN are invisible to the Internet, making the LAN inherently more secure. As seen by the external network, the source IP address of all traffic from the remote LAN is the single registered IP address of the WAN interface for the Cisco Easy IP router.
Enterprise Dial Scenarios and Configurations

This chapter provides sample configurations for specific dial scenarios used by enterprise networks (not telephone companies or Internet service providers). Each configuration is designed to support IP network traffic with basic security for the specified scenario.

The following scenarios are described:
- Scenario 1—Remote Offices and Telecommuters Dialing In to a Central Site
- Scenario 2—Bidirectional Dial Between Central Sites and Remote Offices
- Scenario 3—Telecommuters Dialing In to a Mixed Protocol Environment

Note

If you use Token card-based security in your dial network, we recommend that you enable Password Authentication Protocol (PAP) authentication and disable the Multilink protocol to maximize dial-in performance.

Remote User Demographics

Employees stationed in remote offices or disparate locations often dial in to central sites or headquarter offices to download or upload files and check e-mail. These employees often dial in to the corporate network from a remote office LAN using ISDN or from another location such as a hotel room using a modem.

The following remote enterprise users typically dial in to enterprise networks:
- Full-time telecommuters—Employees using stationary workstations to dial in from a small office, home office (SOHO), making ISDN connections with terminal adapters or PC cards through the public telephone network, and operating at higher speeds over the network, which rules out the need for a modem.
- Travelers—Employees such as salespeople that are not in a steady location for more than 30 percent of the time usually dial in to the network with a laptop and modem through the public telephone network, and primarily access the network to check E-mail or transfer a few files.
- Workday extenders—Employees that primarily work in the company office, occasionally dial in to the enterprise with a mobile or stationary workstation plus modem, and primarily access the network to check E-mail or transfer a few files.
Demand and Scalability

You need to evaluate scalability and design issues before you build a dial enterprise network. As the number of company employees increases, the number of remote users who need to dial in increases. A good dial solution scales upward as the demand for dial-in ports grows. For example, it is not uncommon for a fast-growing enterprise to grow from a demand of 100 modems to 250 modems in less than one year.

You should always maintain a surplus of dial-in ports to accommodate company growth and occasional increases in access demand. In the early stages of a fast-growing company that has 100 modems installed for 6000 registered remote users, only 50 to 60 modems might be active at the same time. As demand grows over one year, 250 modems might be installed to support 10,000 registered token card holders. During special company occasions, such as worldwide conventions, demand for remote access can also increase significantly. During such activities, dial-in lines are used heavily throughout the day and evening by remote sales people using laptops to access E-mail and share files. This behavior is indicative of sales people working away from their home territories or sales offices. Network administrators need to prepare for these remote access bursts, which cause significant increases for remote access demand.

Remote Offices and Telecommuters Dialing In to a Central Site

Remote office LANs typically dial in to other networks using ISDN. Remote offices that use Frame Relay require a more costly dedicated link.

Connections initiated by remote offices and telecommuters are brought up on an as-needed basis, which results in substantial cost savings for the company. In dial-on-demand scenarios, users are not connected for long periods of time. The number of remote nodes requiring access is relatively low, and the completion time for the dial-in task is short.

Central sites typically do not dial out to the remote LANs. Instead, central sites respond to calls. Remote sites initiate calls. For example, a field sales office might use ISDN to dial in to and browse a central site’s intranet. Additionally a warehouse comprising five employees can use ISDN to log in to a remote network server to download or upload product order information. For an example of bidirectional dialing, see the section “Bidirectional Dial Between Central Sites and Remote Offices” later in this chapter.

Note

Dial-on-demand routing (DDR) uses static routes or snapshot routing. For IP-only configurations, static routes are commonly used for remote dial-in. For Internet Protocol Exchange (IPX) networking, snapshot routing is often used to minimize configuration complexity.

Network Topologies

Figure 115 shows an example of a remote office that places digital calls in to a central site network. The remote office router can be any Cisco router with a BRI physical interface, such as a Cisco 766 or Cisco 1604 router. The central office gateway router can be any Cisco router that supports PRI connections, such as a Cisco 3600 series, Cisco 4000 series, or Cisco 7000 series router.
Figure 115  Remote Office Dialing In to a Central Site

Remote office LAN

Cisco 766 or 1604 dialing in to the central site

PC running Windows 95 and dialing in to the central site

Figure 115 shows an example of a remote office and telecommuter dialing in to a central site. The remote office places digital calls. The telecommuter places analog calls. The remote office router can be any Cisco router with a BRI interface, such as a Cisco 766, Cisco 1604, or Cisco 2503 router. The central office gateway router is a Cisco AS5300 series access server or a Cisco 3640 router, which supports both PRI and analog connections.

Figure 116  Remote Office and Telecommuter Dialing In to a Central Site

Remote office LAN

Cisco 766, 1604, or 2503 dialing in to the central office

PC running Windows 95

Telecommuter dialing in to the central site with Windows 95 and a 28.8 internal modem

Dial-In Scenarios

The configuration examples in the following sections provide different combinations of dial-in scenarios, which can be derived from Figure 115 and Figure 116:

- Cisco 1604 Remote Office Router Dialing In to a Cisco 3620 Access Router
- Remote Office Router Dialing In to a Cisco 3620 Router
Enterprise Dial Scenarios and Configurations

Remote Offices and Telecommuters Dialing In to a Central Site

- Cisco 700 Series Router Using Port Address Translation to Dial In to a Cisco AS5300 Access Server
- Cisco 3640 Central Site Router Configuration to Support ISDN and Modem Calls
- Cisco AS5300 Central Site Configuration Using Remote Security

Note

Be sure to include your own IP addresses, host names, and security passwords where appropriate if you use these examples in your own network.

Cisco 1604 Remote Office Router Dialing In to a Cisco 3620 Access Router

This section provides a common configuration for a Cisco 1604 remote office router dialing in to a Cisco 3620 access router positioned at a central enterprise site. Only ISDN digital calls are supported in this scenario. No analog modem calls are supported. All calls are initiated by the remote router on an as-needed basis. The Cisco 3620 router is not set up to dial out to the Cisco 1604 router. (Refer to Figure 115.)

The Cisco 1604 and Cisco 3620 routers use the IP unnumbered address configurations, MLP, and the dial-load threshold feature, which brings up the second B channel when the first B channel exceeds a certain limit. Because static routes are used, a routing protocol is not configured. A default static route is configured on the Cisco 1604 router, which points back to the central site. The central site also has a static route that points back to the remote LAN. Static route configurations assume that you have only one LAN segment at each remote office.

Cisco 1604 Router Configuration

The following configuration runs on the Cisco 1604 router, shown in Figure 115. This SOHO router places digital calls in to the Cisco 3620 central site access router. See the next example for the running configuration of the Cisco 3620 router.

```
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname remotelan1
!
enable secret cisco
!
username NAS password dialpass
username admin password cisco

isdn switch-type basic-5ess
!
interface Ethernet0
 ip address 10.2.1.1 255.255.255.0
!
interface BRI0
 ip unnumbered Ethernet0
 encapsulation ppp
 dialer map ip 10.1.1.10 name NAS 5551234
 dialer load-threshold 100 either
 dialer-group 1
 no fair-queue
 ppp authentication chap pap callin
 ppp multilink
```
Enterprise Dial Scenarios and Configurations

Remote Offices and Telecommuters Dialing In to a Central Site

Cisco 3620 Router Configuration

The following sample configuration runs on the Cisco 3620 router shown in Figure 115. This modular access router has one 2-port PRI network module installed in slot 1 and one 1-port Ethernet network module installed in slot 0. The router receives only digital ISDN calls from the Cisco 1604 router. The configuration for the Cisco 1604 router was provided in the previous example.

```plaintext
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname NAS
!
aaa new-model
aaa authentication login default local
aaa authentication login console enable
aaa authentication login vty local
aaa authentication login dialin local
aaa authentication ppp default local
aaa authentication ppp dialin if-needed local
enable secret cisco
!
username admin password cisco
username remotelan1 password dialpass
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess
!
controller T1 1/0
framing esf
clock source line
linecode b8zs
pri-group timeslots 1-24
!
controller T1 1/1
framing esf
clock source line
linecode b8zs
pri-group timeslots 1-24
!
interface Loopback0
ip address 10.1.2.254 255.255.255.0
!
interface Ethernet 0/0
ip address 10.1.1.10 255.255.255.0
ip summary address eigrp 10 10.1.2.0 255.255.255.0
!
```

! ip classless
ip route 0.0.0.0 0.0.0.0 10.1.1.10
ip route 10.1.1.10 255.255.255.255 BRI0
dialer-list 1 protocol ip permit
!
line con 0
line vty 0 4
login local
!
end

Cisco IOS Dial Technologies Configuration Guide
interface Serial 1/0:23
no ip address
enapsulation ppp
isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
no fair-queue
no cdp enable
!
interface Serial 1/1:23
no ip address
enapsulation ppp
isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
no fair-queue
no cdp enable
!
interface Dialer0
ip unnumbered Loopback0
no ip mroute-cache
enapsulation ppp
peer default ip address pool dialin_pool
dialer in-band
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap pap dialin
ppp multilink
!
router eigrp 10
network 10.0.0.0
passive-interface Dialer0
default-metric 64 100 250 100 1500
redistribute static
no auto-summary
!
ip local pool dialin_pool 10.1.2.1 10.1.2.50
ip default-gateway 10.1.1.1

ip route 10.2.1.1 255.255.255.255 Dialer0
ip route 10.2.1.0 255.255.255.0 10.2.1.1

ip classless
!
dialer-list 1 protocol ip permit
!
line con 0
login authentication console
line aux 0
login authentication console
line vty 0 4
login authentication vty
transport input telnet rlogin
!
end
Remote Office Router Dialing In to a Cisco 3620 Router

This section provides a common configuration for a Cisco 700 or 800 series remote office router placing digital calls in to a Cisco 3620 router positioned at a central enterprise site. All calls are initiated by the remote router on an as-needed basis. The Cisco 3620 router is not set up to dial out to the remote office router. (See Figure 115.)

Cisco 700 Series Router Configuration

The following configuration task is for a Cisco 700 series ISDN router placing digital calls in to a central site router that supports ISDN PRI, such as the Cisco 3620 router. In this scenario, ISDN unnumbered interfaces with static routes are pointing back to the Cisco 3620.

To configure the router, use the following commands in EXEC mode. However, this configuration assumes that you are starting from the router’s default configuration. To return the router to its default configuration, issue the `set default` command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>&gt;</td>
</tr>
<tr>
<td></td>
<td>&gt; set systemname remotelan1</td>
</tr>
<tr>
<td></td>
<td>remotelan1&gt;</td>
</tr>
<tr>
<td></td>
<td>At the system prompt level, specifies the host name of the router, which is also used when responding to Challenge Handshake Authentication Protocol (CHAP) authentication with the Cisco 3620. For CHAP authentication, the system’s name must match the username configured on the Cisco 3620.</td>
</tr>
<tr>
<td>Step 2</td>
<td>remotelan1&gt; set ppp secret client</td>
</tr>
<tr>
<td></td>
<td>remotelan1&gt; Enter new password: dialpass</td>
</tr>
<tr>
<td></td>
<td>remotelan1&gt; Enter new password: dialpass</td>
</tr>
<tr>
<td></td>
<td>Sets the transmit and receive password for the client. This is the password which is used in response to CHAP authentication requests, and it must match the username password configured on the Cisco 3620 router.</td>
</tr>
<tr>
<td>Step 3</td>
<td>remotelan1&gt; set encapsulation ppp</td>
</tr>
<tr>
<td></td>
<td>Sets PPP encapsulation for incoming and outgoing authentication instead of CPP.</td>
</tr>
<tr>
<td>Step 4</td>
<td>remotelan1&gt; set ppp multilink on</td>
</tr>
<tr>
<td></td>
<td>Enables Multilink PPP (MLP).</td>
</tr>
<tr>
<td>Step 5</td>
<td>remotelan1&gt; set user nas</td>
</tr>
<tr>
<td></td>
<td>remotelan1&gt; New user nas being created</td>
</tr>
<tr>
<td></td>
<td>Creates the profile named nas, which is reserved for the Cisco 3620 router.</td>
</tr>
<tr>
<td>Step 6</td>
<td>remotelan1:nas&gt; set ip 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>Sets the LAN IP address. The sequence 0.0.0.0 means that it will use the address assigned to it from the central Cisco 3620 router. See Step 14.</td>
</tr>
<tr>
<td>Step 7</td>
<td>remotelan1:nas&gt; set ip framing none</td>
</tr>
<tr>
<td></td>
<td>Configures the profiles to not use Ethernet framing.</td>
</tr>
<tr>
<td>Step 8</td>
<td>remotelan1:nas&gt; set ip route destination 0.0.0.0 gateway 10.1.1.10</td>
</tr>
<tr>
<td></td>
<td>Sets the default route to point to the Ethernet IP address of the Cisco 3620 router.</td>
</tr>
<tr>
<td>Step 9</td>
<td>remotelan1:nas&gt; set timeout 300</td>
</tr>
<tr>
<td></td>
<td>Sets the idle time at which the B channel will be dropped. In this case, the line is dropped after 300 seconds of idle time.</td>
</tr>
<tr>
<td>Step 10</td>
<td>remotelan1:nas&gt; set 1/2 number 5551234</td>
</tr>
<tr>
<td></td>
<td>Sets the number to call when dialing out of the first and second B channel.</td>
</tr>
<tr>
<td>Step 11</td>
<td>remotelan1:nas&gt; cd lan</td>
</tr>
<tr>
<td></td>
<td>Enters LAN profile mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td>remotelan1:LAN&gt; set bridging off</td>
</tr>
<tr>
<td></td>
<td>Turns bridging off.</td>
</tr>
<tr>
<td>Step 13</td>
<td>remotelan1:LAN&gt; set ip routing on</td>
</tr>
<tr>
<td></td>
<td>Turns on IP routing.</td>
</tr>
<tr>
<td>Step 14</td>
<td>remotelan1:LAN&gt; set ip address 10.2.1.1</td>
</tr>
<tr>
<td></td>
<td>Sets the LAN IP address for the interface.</td>
</tr>
</tbody>
</table>
After you configure the Cisco 760 or Cisco 770 series router, the final configuration should resemble the following:

```
set systemname remotelan1
set ppp secret client
set encapsulation ppp
set ppp multilink on
cd lan
set bridging off
set ip routing on
set ip 10.2.1.1
set subnet 255.255.255.0
set user nas
set bridging off
set ip 0.0.0.0
set ip netmask 0.0.0.0
set ip framing none
set ip route destination 0.0.0.0 gateway 10.1.1.10
set timeout 300
set 1 number 5551234
set 2 number 5551234
```

The previous software configuration does not provide for any access security. To provide access security, use the following optional commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router&gt; set ppp authentication incoming chap</td>
<td>Provides CHAP authentication to incoming calls.</td>
</tr>
<tr>
<td>Router&gt; set callerid</td>
<td>Requires the calling parties number to be matched against the configured receive numbers (such as set by the set callidreceive # command). This command also denies all incoming calls if no callidreceive number is configured.</td>
</tr>
<tr>
<td>Router&gt; set remoteaccess protected</td>
<td>Specifies a remote system password, which enables you to make changes on the router from a remote location.</td>
</tr>
<tr>
<td>Router&gt; set localaccess protected</td>
<td>Specifies a local system password, which enables you to make changes on the router from a local console connection.</td>
</tr>
<tr>
<td>Router&gt; set password system</td>
<td>Sets the system password for the previous access configurations.</td>
</tr>
</tbody>
</table>

### Cisco 3620 Router Configuration

The following example provides a sample configuration for the Cisco 3620 router. This modular access router has one 2-port PRI network module installed in slot 1 and one 1-port Ethernet network module installed in slot 0. The router receives only digital ISDN calls over T1 lines from the Cisco 700 series remote office router, which was described in the previous example.

```
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
hostname NAS
!
aaa new-model
aaa authentication login default local
```
aaa authentication login console enable
aaa authentication login vty local
aaa authentication login dialin local
aaa authentication ppp default local
aaa authentication ppp dialin if-needed local
enable secret cisco
!
username admin password cisco
username remotelan1 password dialpass
!
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess
!
controller T1 1/0
  framing esf
  clock source line
  linecode b8zs
  pri-group timeslots 1-24
!
controller T1 1/1
  framing esf
  clock source line
  linecode b8zs
  pri-group timeslots 1-24
!
interface Loopback0
  ip address 10.1.2.254 255.255.255.0
!
interface Ethernet 0/0
  ip address 10.1.1.10 255.255.255.0
  ip summary address eigrp 10 10.1.2.0 255.255.255.0
!
interface Serial 1/0:23
  no ip address
  encapsulation ppp
  isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
  no fair-queue
  no cdp enable
!
interface Serial 1/1:23
  no ip address
  encapsulation ppp
  isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
  no fair-queue
  no cdp enable
!
interface Dialer0
  ip unnumbered Loopback0
  no ip mroute-cache
  encapsulation ppp
  peer default ip address pool dialin_pool
dialer in-band
dialer-group 1
  no fair-queue
  no cdp enable
  ppp authentication chap pap dialin
  ppp multilink
!
router eigrp 10
network 10.0.0.0
passive-interface Dialer0
default-metric 64 100 250 100 1500
redistribute static
no auto-summary
!
ip local pool dialin_pool 10.1.2.1 10.1.2.50
ip default-gateway 10.1.1.1

ip route 10.2.1.1 255.255.255.255 Dialer0
ip route 10.2.1.0 255.255.255.0 10.2.1.1

ip classless
!
dialer-list 1 protocol ip permit
!
line con 0
login authentication console
line aux 0
login authentication console
line vty 0 4
login authentication vty
transport input telnet rlogin
!
end

Cisco 700 Series Router Using Port Address Translation to Dial In to a Cisco AS5300 Access Server

This section shows a Cisco 700 series router using the port address translation (PAT) feature to dial in to a Cisco AS5300 central site access server. IP addresses are assigned from the central site, which leverages the PAT feature to streamline multiple devices at the remote site through a single assigned address. In this example, the Cisco 700 series router has a private range of IP addresses used on the Ethernet side. However, the router is able to translate between the local private addresses and the dynamically registered address on the WAN interface. (See Figure 115.)

Cisco 700 Series Configuration

The sample configuration in this section allows PCs on a LAN to boot up and acquire their IP address dynamically from a Cisco 700 series router, which in turn translates the private addresses into a single IP address assigned from a Cisco AS5300 central site router. The Cisco 700 series router also passes information via DHCP regarding the Domain Name System (DNS) server (in this example, 10.2.10.1) and the Windows Internet naming service (WINS) server (in this example, 10.2.11.1) along with the domain name.

A possible sequence of events would be a remote PC running Windows 95 boots up on the Ethernet segment and gets its IP address and network information from the Cisco 700 series router. The PC then opens up Netscape and attempts to view a web page at the central site, which causes the router to dial in to the central site. The router dynamically obtains its address from the central site pool of addresses and uses it to translate between the private address on the local Ethernet segment and the registered IP address borrowed from the central site router.
To configure a remote router, use the following commands beginning in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>&gt; set systemname remotelan1</td>
<td>At the system prompt level, specifies the host name of the router, which is also used when responding to CHAP authentication with the Cisco 3620 router. For CHAP authentication, the system’s name must match the username configured on the Cisco 3620.</td>
</tr>
<tr>
<td>Router&gt;</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	
Router> set ppp secret client	Sets the transmit and receive password for the client. This is the password which is used in response to CHAP authentication requests, and it must match the username password configured on the Cisco 3620 router.
Router> Enter new password: dialpass	
Router> Enter new password: dialpass	
Step 3	
Router> set encapsulation ppp	Sets PPP encapsulation for incoming and outgoing authentication instead of CPP.
Step 4	
Router> set ppp multilink on	Enables MLP.
Step 5	
Router> set dhcp server	Enables the router to act as a DHCP server and assign addresses from the private network. By default, all DHCP client addresses are assigned from the 10.0.0.0 network.
Step 6	
Router> set dhcp dns primary 10.2.10.1	Passes the DNS server IP address to the DHCP client.
Step 7	
Router> set dhcp wins 10.2.11.1	Passes the IP address of the WINS server to the DHCP client.
Step 8	
Router> set dhcp domain nas.com	Sets the DHCP domain name for the Cisco 3620 central site router.
Step 9	
Router> set user nas	Creates the profile named nas, which is setup for the Cisco 3620 router.
Router> New user nas being created	
Step 10	
Router:nas> set ip pat on	Enables Port Address Translation (PAT) on the router.
Step 11	
Router:nas> set ip framing none	Configures the profiles to not use Ethernet framing.
Step 12	
Router:nas> set ip route destination 0.0.0.0	Sets the default route to point to the Ethernet IP address of Cisco 3620 router.
gateway 10.1.1.0	
Step 13	
Router:nas> set 1 number 5551234	Sets the number to call when dialing out of the first B channel.
Step 14	
Router:nas> set 2 number 5551234	Sets the number to call when dialing out of the second B channel.
Step 15	
Router:nas> cd lan	Enters LAN profile mode.
Step 16	
Router:LAN> set bridging off	Turns bridging off.
Step 17	
Router:LAN> set ip routing on	Turns IP routing on.

After you configure the router, the configuration should resemble the following:

```
set systemname remotelan1
set encapsulation ppp
set ppp secret client
set ppp multilink on
set dhcp server
set dhcp dns primary 10.2.10.1
set dhcp wins 10.2.11.1
set dhcp domain nas.com
set user nas
set bridging off
```
set ip routing on
set ip framing none
set ip pat on
set ip route destination 0.0.0.0 gateway 10.1.1.0
set 1 number 5551234
set 2 number 5551234

**Cisco AS5300 Router Configuration**

The following example configures a Cisco AS5300 router for receiving calls from the router in the previous example.

This configuration can also run on a Cisco 4000, Cisco 3600, or Cisco 7000 series router. However, the interface numbering scheme for these routers will be in the form of slot/port. Additionally, the clocking will be set differently. Refer to your product configuration guides and configuration notes for more details.

```
! version xx.xx
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname NAS
!
aaa new-model
aaa authentication login default local
aaa authentication login console enable
aaa authentication login vty local
aaa authentication login dialin local
aaa authentication ppp default local
aaa authentication ppp dialin if-needed local
enable secret cisco
!
username admin password cisco
username remotelan1 password dialpass
!
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess
!
controller T1 0
 framing esf
 clock source line primary
 linecode b8zs
 pri-group timeslots 1-24
!
controller T1 1
 framing esf
 clock source line secondary
 linecode b8zs
 pri-group timeslots 1-24
!
interface Loopback0
 ip address 10.1.2.254 255.255.255.0
!```
interface Ethernet0
 ip address 10.1.1.10 255.255.255.0
 ip summary address eigrp 10 10.1.2.0 255.255.255.0

interface Serial0
 no ip address
 shutdown

interface Serial1
 no ip address
 shutdown

interface Serial0:23
 no ip address
 encapsulation ppp
 isdn incoming-voice modem
 dialer rotary-group 0
 dialer-group 1
 no fair-queue
 no cdp enable

interface Serial1:23
 no ip address
 encapsulation ppp
 isdn incoming-voice modem
 dialer rotary-group 0
 dialer-group 1
 no fair-queue
 no cdp enable

interface Dialer0
 ip unnumbered Loopback0
 no ip mroute-cache
 encapsulation ppp
 peer default ip address pool dialin_pool
 dialer in-band
 dialer-group 1
 no fair-queue
 no cdp enable
 ppp authentication chap pap dialin
 ppp multilink

router eigrp 10
 network 10.0.0.0
 passive-interface Dialer0
 default-metric 64 100 250 100 1500
 redistribute static
 no auto-summary

ip local pool dialin_pool 10.1.2.1 10.1.2.50
ip default-gateway 10.1.1.1

ip route 10.2.1.1 255.255.255.255 Dialer0
ip route 10.2.1.0 255.255.255.0 10.2.1.1

ip classless

dialer-list 1 protocol ip permit

line con 0
 login authentication console
line aux 0
 login authentication console
In this configuration, the local pool is using a range of unused addresses on the same subnet on which the Ethernet interface is configured. The addresses will be used for the remote devices dialing in to the Cisco AS5300 access server.

Cisco 3640 Central Site Router Configuration to Support ISDN and Modem Calls

The following configuration allows remote LANs and standalone remote users with modems to dial in to a central site. Figure 116 shows the network topology.

The Cisco 3640 router has the following hardware configuration for this scenario:

- One 2-port ISDN-PRI network module installed in slot 1.
- One digital modem network module installed in slot 2 and slot 3.
- One 1-port Ethernet network module installed in slot 0.

Note: Each MICA technologies digital modem card has its own group async configuration. Additionally, a single range of asynchronous lines is used for each modem card. For additional interface numbering information, refer to the document *Digital Modem Network Module Configuration Note*.

```plaintext
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname NAS
!
aaa new-model
aaa authentication login default local
aaa authentication login console enable
aaa authentication login vty local
aaa authentication login dialin local
aaa authentication ppp default local
aaa authentication ppp dialin if-needed local
enable secret cisco
!
username admin password cisco
username remotelan1 password dialpass1
username remotelan2 password dialpass2
username PCuser1 password dialpass3
username PCuser2 password dialpass4
!
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess
!
controller T1 1/0
framing esf
clock source line
linecode b8zs
pri-group timeslots 1-24
!
```
controller T1 1/1
framing esf
clock source line
linecode b8zs
pri-group timeslots 1-24
!
interface Loopback0
ip address 10.1.2.254 255.255.255.0
!
interface Ethernet0/0
ip address 10.1.1.10 255.255.255.0
ip summary address eigrp 10 10.1.2.0 255.255.255.0
!
interface Serial 1/0:23
no ip address
encapsulation ppp
isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
no fair-queue
no cdp enable
!
interface Serial 1/1:23
no ip address
encapsulation ppp
isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
no fair-queue
no cdp enable
!
interface Group-Async1
ip unnumbered Loopback0
encapsulation ppp
async mode interactive
peer default ip address pool dialin_pool
no cdp enable
ppp authentication chap pap dialin
group-range 65 88
!
interface Group-Async2
ip unnumbered Loopback0
encapsulation ppp
async mode interactive
peer default ip address pool dialin_pool
no cdp enable
ppp authentication chap pap dialin
group-range 97 120
!
interface Dialer0
ip unnumbered Loopback0
no ip mroute-cache
encapsulation ppp
peer default ip address pool dialin_pool
dialer in-band
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap pap dialin
ppp multilink
!
Cisco AS5300 Central Site Configuration Using Remote Security

The previous examples in this section configured static CHAP authentication on the central router using the `username` command. A more common configuration to support modem and ISDN calls on a single chassis is to use the AAA security model and an external security server at the central site. We recommend that you have a solid understanding of basic security principles and the AAA model before you set up this configuration. For more information about security, see the Cisco IOS Security Configuration Guide.

Central Site Cisco AS5300 Configuration Using TACACS+ Authentication

The following example assumes that you are running TACACS+ on the remote security server:

```
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname NAS
!
aaa new-model
aaa authentication login console enable
aaa authentication login vty tacacs+
aaa authentication login dialin tacacs+
aaa authentication ppp default tacacs+
aaa authentication ppp dialin if-needed tacacs+
enable secret cisco
!
```
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess
!
controller T1 0
 framing esf
 clock source line primary
 linecode b8zs
 pri-group timeslots 1-24
!
controller T1 1
 framing esf
 clock source line secondary
 linecode b8zs
 pri-group timeslots 1-24
!
interface Loopback0
 ip address 10.1.2.254 255.255.255.0
!
interface Ethernet0
 ip address 10.1.1.10 255.255.255.0
 ip summary address eigrp 10 10.1.2.0 255.255.255.0
!
interface Serial0
 no ip address
 shutdown
!
interface Serial1
 no ip address
 shutdown
!
interface Serial0:23
 no ip address
 encapsulation ppp
 isdn incoming-voice modem
 dialer rotary-group 0
 dialer-group 1
 no fair-queue
 no cdp enable
!
interface Serial1:23
 no ip address
 encapsulation ppp
 isdn incoming-voice modem
 dialer rotary-group 0
 dialer-group 1
 no fair-queue
 no cdp enable
!
interface Group-Async1
 ip unnumbered Loopback0
 encapsulation ppp
 async mode interactive
 peer default ip address pool dialin_pool
 no cdp enable
 ppp authentication chap pap dialin
 group-range 1 48
!
interface Dialer0
 ip unnumbered Loopback0
 no ip mroute-cache
 encapsulation ppp
 peer default ip address pool dialin_pool
 dialer in-band
 dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap pap dialin
ppp multilink
!
router eigrp 10
network 10.0.0.0
passive-interface Dialer0
redistribute static
default-metric 64 100 250 100 1500
no auto-summary
!
ip local pool dialin_pool 10.1.2.1 10.1.2.50
ip default-gateway 10.1.1.1
ip classless
!
dialer-list 1 protocol ip permit
!
line con 0
login authentication console
line 1 48
autoselect ppp
autoselect during-login
login authentication dialin
modem DialIn
line aux 0
login authentication console
line vty 0 4
login authentication vty
transport input telnet rlogin
end

TACACS+ Security Server Entry

The following example can be configured on a remote TACACS+ security server, which complements the Cisco AS5300 access server configuration listed in the previous example:

user = remotelan1 {
 chap = cleartext "dialpass1"
 service = ppp protocol = ip {
 addr = 10.2.1.1
 route = "10.2.1.0 255.255.255.0"
 }
}

user = PCUser1 {
 login = cleartext "dialpass2"
 chap = cleartext "dialpass2"
 service = ppp protocol = ip {
 addr-pool = dialin_pool
 }
 service = exec {
 autocmd = "ppp negotiate"
 }
}

user = PCUser2 {
 login = cleartext "dialpass3"
 chap = cleartext "dialpass3"
 service = ppp protocol = ip {
 addr-pool = dialin_pool
 }
}
service = exec {
 autocmd = "ppp negotiate"
}

Bidirectional Dial Between Central Sites and Remote Offices

Sometimes a gateway access server at headquarters is required to dial out to a remote site while simultaneously receiving incoming calls. This type of network is designed around a specific business support model.

Dial-In and Dial-Out Network Topology

Figure 117 shows a typical dial-in and dial-out network scenario, which amounts to only 25 percent of all dial topologies. The Cisco AS5300 access server at headquarters initiates a connection with a Cisco 1604 router at remote office 1. After a connection is established, the file server at the remote site (shown as Inventory child host) runs a batch processing application with the mainframe at headquarters (shown as Inventory totals parent host). While files are being transferred between remote office 1 and headquarters, remote office 2 is successfully dialing in to headquarters.

Figure 117 Headquarters Configured for Dial-In and Dial-out Networking
There are some restrictions for dial-out calling. Dial-out analog and digital calls are commonly made to remote ISDN routers, such as the Cisco 1604 router. On the whole, dial out calls are not made from a central site router to a remote PC but rather from a remote PC in to the central site. However, central site post offices often call remote office routers on demand to deliver E-mail. Callback is enabled on dial-in scenarios only. The majority of a dial out software configuration is setup on the router at headquarters, not the remote office router. Dialing out to a stack group of multiple chassis is not supported by Cisco IOS software. Note that Multichassis Multilink PPP (MMP) and virtual private dialup networks (VPDNs) are dial-in only solutions.

Dialer Profiles and Virtual Profiles

Profiles are set up to discriminate access on a user-specific basis. For example, if the chief network administrator is dialing in to the enterprise, a unique user profile can be created with an idle timeout of one year, and universal access privileges to all networks in the company. For less fortunate users, access can be restricted to an idle timeout of 10 seconds and network connections setup for only a few addresses.

Depending on the size and scope of your dial solution, you can set up two different types of profiles: dialer profiles or virtual profiles. Dialer profiles are individual user profiles set up on routers or access servers in a small-scale dial solution. This type of profile is configured locally on the router and is limited by the number of interfaces that exist on the router. When an incoming call comes into the dial pool, the dialer interface binds the caller to a dialer profile via the caller ID or the caller name.

Figure 118 shows an example of how dialer profiles can be used when:

- You need to bridge over multiple ISDN channels.
- You want to use ISDN to back up a WAN link, but still have the ISDN interface available during those times that the WAN link is up.
- A security server, such as a AAA TACACS or RADIUS server, is not available for use.

For more information about dialer profiles, see the chapters “Configuring Peer-to-Peer DDR with Dialer Profiles” and “Configuring Dial Backup with Dialer Profiles.”

Figure 118 Dial-In Scenario for Dialer Profiles
Virtual profiles are user-specific profiles for large-scale dial solutions; however, these profiles are not manually configured on each router or access server. A virtual profile is a unique PPP application that can create and configure a virtual access interface dynamically when a dial-in call is received, and tear down the interface dynamically when the call ends.

The configuration information for a virtual access interface in a virtual profile can come from the virtual template interface, or from user-specific configuration information stored on an AAA server, or both. The virtual profile user-specific configuration stored on the AAA server is identified by the authentication name for the call-in user. (That is, if the AAA server authenticates the user as samson, the user-specific configuration is listed under samson in the AAA user file.) The virtual profile user-specific configuration should include only the configuration that is not shared by multiple users. Shared configuration should be placed in the virtual template interface, where it can be cloned on many virtual access interfaces as needed.

AAA configurations are much easier to manage for large numbers of dial-in users. Virtual profiles can span across a group of access servers, but a AAA server is required. Virtual profiles are set up independently of which access server, interface, or port number users connect to. For users that share duplicate configuration information, it is best to enclose the configuration in a virtual template. This requirement eliminates the duplication of commands in each of the user records on the AAA server.

The user-specific AAA configuration used by virtual profiles is interface configuration information and downloaded during link control protocol (LCP) negotiations. Another feature, called per-user configuration, also uses configuration information gained from a AAA server. However, per-user configuration uses network configuration (such as access lists and route filters) downloaded during NCP negotiations.

Figure 119 shows an example of how virtual profiles are used:

- A large-scale dial-in solution is available, which includes many access servers or routers (for example, three or more devices stacked together in an MMP scenario).
- Discrimination between large numbers of users is needed.
- Setup and maintenance of a user profile for each dial-in user on each access server or router is much too time consuming.
- A security server, such as a AAA TACACS or RADIUS server, is available for use.

For a virtual profile configuration example, see the section “Large-Scale Dial-In Configuration Using Virtual Profiles” later in this chapter. For more information about virtual profiles, see the chapters “Configuring Virtual Profiles” and “Configuring Per-User Configuration” in this publication.
Running Access Server Configurations

In most cases, dialer profiles are configured on access servers or routers that receive calls and must discriminate between users, such as many different remote routers dialing in. (See Figure 120.)

Access servers or routers that only place calls (not receive calls) do not need any awareness of configured dialer profiles. Remote routers do not need to discriminate on the basis of which device they are calling in to. For example, if multiple Cisco 1600 series routers are dialing in to one Cisco AS5300 access
server, the Cisco 1600 series routers should not be configured with dialer profiles. The Cisco AS5300 access server should be configured with dialer profiles. Do not configure dialer profiles on devices that only make calls.

The configurations examples in the following section are provided for different types of dial scenarios, which can be derived from Figure 117 through Figure 120:

- Examples with dialer profiles:
 - Cisco AS5300 Access Server Configuration with Dialer Profiles
 - Cisco 1604 ISDN Router Configuration with Dialer Profiles
 - Cisco 1604 Router Asynchronous Configuration with Dialer Profiles

- Examples without dialer profiles:
 - Cisco AS5300 Access Server Configuration Without Dialer Profiles
 - Cisco 1604 ISDN Router Configuration Without Dialer Profiles
 - Cisco 1604 Router Asynchronous Configuration Without Dialer Profiles

- Large-Scale Dial-In Configuration Using Virtual Profiles

Note

Be sure to include your own IP addresses, host names, and security passwords where appropriate if configuring these examples in your network.

Cisco AS5300 Access Server Configuration with Dialer Profiles

The following bidirectional dial configuration runs on the Cisco AS5300 access server at headquarters in Figure 117. This configuration enables calls to be sent to the SOHO router and received from remote hosts and clients. The calling is bidirectional.

```plaintext
version xx.x
service udp-small-servers
service tcp-small-servers
!
hostname 5300
!
aaa new-model
aaa authentication login default local
aaa authentication login console enable
aaa authentication login vty local
aaa authentication login dialin local
aaa authentication ppp default local
aaa authentication ppp dialin if-needed local
enable secret cisco
!
username async1 password cisco
username async2 password cisco
username async3 password cisco
username async4 password cisco
username async5 password cisco
username async6 password cisco
username async7 password cisco
username async8 password cisco
username isdn1 password cisco
username isdn2 password cisco
username isdn3 password cisco
username isdn4 password cisco
username isdn5 password cisco
```
username isdn6 password cisco
username isdn7 password cisco
username isdn8 password cisco
username DialupAdmin password cisco
!
 isdn switch-type primary-dms100
 chat-script cisco-default ABORT ERROR "" "AT" OK "ATDT\T" TIMEOUT 60 CONNECT

 controller T1 0

 framing esf
 clock source line primary
 linecode b8zs
 pri-group timeslots 1-24

 controller T1 1

 framing esf
 clock source line secondary
 linecode b8zs
 pri-group timeslots 1-24

 interface loopback 1
 ip address 172.18.38.40 255.255.255.128

 interface loopback 2
 ip address 172.18.38.130 255.255.255.128

 interface Ethernet0
 ip address 172.18.39.40 255.255.255.0
 no ip mroute-cache
 ip ospf priority 0

 interface Serial0:23
 no ip address
 no ip mroute-cache
 encapsulation ppp
 isdn incoming-voice modem
 dialer pool-member 2

 interface Serial1:23
 no ip address
 no ip mroute-cache
 encapsulation ppp
 isdn incoming-voice modem
 dialer pool-member 2

 interface Group-Async1
 no ip address
 no ip mroute-cache
 encapsulation ppp
 async mode interactive
 dialer in-band
 dialer pool-member 1
 ppp authentication chap pap
 group-range 1 48

 interface Dialer10
 ip unnumbered loopback 1
 encapsulation ppp
 peer default ip address dialin_pool
 dialer remote-name async1
 dialer string 14085260983
 dialer hold-queue 10
 dialer pool 1
 dialer-group 1
ppp authentication pap chap callin
ppp pap sent-username DialupAdmin password 7 07063D11542

interface Dialer11
 ip unnumbered loopback 1
 encapsulation ppp
 no peer default ip address pool
dialer remote-name async2
dialer string 14085262012
dialer hold-queue 10
dialer pool 1
dialer-group 1
ppp authentication pap chap callin
ppp pap sent-username DialupAdmin password 7 07063D11542

interface Dialer12
 ip unnumbered loopback 1
 encapsulation ppp
 no peer default ip address pool
dialer remote-name async3
dialer string 14085260706
dialer hold-queue 10
dialer pool 1
dialer-group 1
ppp authentication pap chap callin
ppp pap sent-username DialupAdmin password 7 07063D11542

interface Dialer13
 ip unnumbered loopback 1
 encapsulation ppp
 no peer default ip address pool
dialer remote-name async4
dialer string 14085262731
dialer hold-queue 10
dialer pool 1
dialer-group 1
ppp authentication pap chap callin
ppp pap sent-username DialupAdmin password 7 07063D11542

interface Dialer14
 ip unnumbered loopback 1
 encapsulation ppp
 no peer default ip address pool
dialer remote-name async5
dialer string 14085264431
dialer hold-queue 10
dialer pool 1
dialer-group 1
ppp authentication pap chap callin
ppp pap sent-username DialupAdmin password 7 07063D11542

interface Dialer15
 ip unnumbered loopback 1
 encapsulation ppp
 no peer default ip address pool
dialer remote-name async6
dialer string 14085261933
dialer hold-queue 10
dialer pool 1
dialer-group 1
ppp authentication pap chap callin
ppp pap sent-username DialupAdmin password 7 07063D11542
interface Dialer16
 ip unnumbered loopback 1
 encapsulation ppp
 no peer default ip address pool
dialer remote-name async7
dialer string 14085267631
dialer hold-queue 10
dialer pool 1
 dialer-group 1
 ppp authentication pap chap callin
 ppp pap sent-username DialupAdmin password 7 07063D11542
!
interface Dialer17
 ip unnumbered loopback 2
 encapsulation ppp
 no peer default ip address pool
dialer remote-name async8
dialer string 14085265153
dialer hold-queue 10
dialer pool 2
dialer-group 1
 ppp authentication chap pap
!
interface Dialer18
 ip unnumbered loopback 2
 encapsulation ppp
 no peer default ip address pool
dialer remote-name isdn1
dialer string 14085267887
dialer hold-queue 10
dialer pool 2
dialer-group 1
 ppp authentication chap pap
!
interface Dialer19
 ip unnumbered loopback 2
 encapsulation ppp
 no peer default ip address pool
dialer remote-name isdn2
dialer string 14085261591
dialer hold-queue 10
dialer pool 2
dialer-group 1
 ppp authentication chap pap
!
interface Dialer20
 ip unnumbered loopback 2
 encapsulation ppp
 no peer default ip address pool
dialer remote-name isdn3
dialer string 14085262118
dialer hold-queue 10
dialer pool 2
dialer-group 1
 ppp authentication chap pap
!
interface Dialer21
 ip unnumbered loopback 2
 encapsulation ppp
 no peer default ip address pool
dialer remote-name isdn4
dialer string 14085263757
dialer hold-queue 10
dialer pool 2
dialer-group 1
 ppp authentication chap pap

! interface Dialer22
 ip unnumbered loopback 2
 encapsulation ppp
 no peer default ip address pool
 dialer remote-name isdn5
 dialer string 14085263769
 dialer hold-queue 10
 dialer pool 2
 dialer-group 1
 ppp authentication chap pap

! interface Dialer23
 ip unnumbered loopback 2
 encapsulation ppp
 no peer default ip address pool
 dialer remote-name isdn6
 dialer string 14085267884
 dialer hold-queue 10
 dialer pool 2
 dialer-group 1
 ppp authentication chap pap

! interface Dialer24
 ip unnumbered loopback 2
 encapsulation ppp
 no peer default ip address pool
 dialer remote-name isdn7
 dialer string 14085267360
 dialer hold-queue 10
 dialer pool 2
 dialer-group 1
 ppp authentication chap pap

! interface Dialer25
 ip unnumbered loopback 2
 encapsulation ppp
 no peer default ip address pool
 dialer remote-name isdn8
 dialer string 14085260361
 dialer hold-queue 10
 dialer pool 2
 dialer-group 1
 ppp authentication chap pap

! router ospf 1
 redistribute static subnets
 passive-interface Dialer1
 passive-interface Dialer2
 network 172.18.0.0 0.0.255.255 area 0

! ip local pool dialin_pool 10.1.2.1 10.1.2.50
ip domain-name cisco.com
ip classless

! dialer-list 1 protocol ip permit

! line con 0
 exec-timeout 0 0
line 1 24
 no exec
 exec-timeout 0 0
autoselect during-login
autoselect ppp
script dialer cisco-default
login local
modem InOut
modem autoconfigure type microcom_hdms
transport input telnet
line aux 0
line vty 0 1
 exec-timeout 60 0
 password cisco
 login
line vty 2 5
 exec-timeout 5 0
 password cisco
 login
end

Cisco 1604 ISDN Router Configuration with Dialer Profiles

The following configuration runs on the remote office Cisco 1604 router, which receives calls from the Cisco AS5300 central site access server. (See Figure 117.)

version xx.x
service udp-small-servers
service tcp-small-servers
hostname isdn1
enable password cisco
username 5300 password cisco
username isdn1 password cisco
isdn switch-type basic-5ess
interface Ethernet0
 ip address 172.18.40.1 255.255.255.0
interface BRI0
 no ip address
 encapsulation ppp
dialer pool-member 1
 ppp authentication chap pap
interface Dialer1
 ip address 172.18.38.131 255.255.255.128
 encapsulation ppp
 no peer default ip address pool
dialer remote-name 5300
dialer string 14085269328
dialer hold-queue 10
dialer pool 2
dialer-group 1
 ppp authentication chap pap
 ip classless
 ip route 0.0.0.0 0.0.0.0 172.18.38.130
dialer-list 1 protocol ip permit
line con 0
line vty 0 4
Cisco 1604 Router Asynchronous Configuration with Dialer Profiles

The following asynchronous configuration runs on the remote office Cisco 1604 router, which receives calls from the Cisco AS5300 central site access server. (See Figure 117.)

```
password cisco
login
password cisco
login
!
end

version xx.x
service udp-small-servers
service tcp-small-servers
!
hostname async1
!
enable password cisco
!
username 5300 password cisco
username async1 password cisco
chat script dial_out " " "ATDT\T" timeout 60 connect \c
!
interface Ethernet0
  ip address 172.18.41.1 255.255.255.0
!
interface serial 0
  physical-layer async
  no ip address
  encapsulation ppp
  dialer pool-member 1
  ppp authentication chap pap
!
interface Dialer10
  ip address 172.18.38.41 255.255.255.128
  encapsulation ppp
  no peer default ip address pool
  dialer remote-name 5300
  dialer string 14085269328
  dialer hold-queue 10
  dialer pool 1
  dialer-group 1
  ppp authentication chap pap
!
  ip classless
  ip route 0.0.0.0 0.0.0.0 172.18.38.40
dialer-list 1 protocol ip permit
!
line con 0
line 1
password cisco
login
script modem dial_out
!
end
```
Cisco AS5300 Access Server Configuration Without Dialer Profiles

The following bidirectional dial configuration runs on the Cisco AS5300 access server at headquarters in Figure 117. This configuration enables calls to be sent to the SOHO router and received from remote hosts and clients. The calling is bidirectional.

```
version xx.x
service udp-small-servers
service tcp-small-servers
!
hostname 5300
!
aaa new-model
aaa authentication login default local
aaa authentication login console enable
aaa authentication login vty local
aaa authentication login dialin local
aaa authentication ppp default local
aaa authentication ppp dialin if-needed local
enable secret cisco
!
username async1 password cisco
username async2 password cisco
username async3 password cisco
username async4 password cisco
username async5 password cisco
username async6 password cisco
username async7 password cisco
username async8 password cisco
username isdn1 password cisco
username isdn2 password cisco
username isdn3 password cisco
username isdn4 password cisco
username isdn5 password cisco
username isdn6 password cisco
username isdn7 password cisco
username isdn8 password cisco
username DialupAdmin password cisco
!
isdn switch-type primary-dms100
chat-script cisco-default ABORT ERROR "" "AT" OK "ATDT\T" TIMEOUT 60 CONNECT
!
controller T1 0
  framing esf
  clock source line primary
  linecode b8zs
  pri-group timeslots 1-24
  description ISDN Controller 0
!
controller T1 1
  framing esf
  clock source line secondary
  linecode b8zs
  pri-group timeslots 1-24
  description ISDN Controller 1
!
interface Ethernet0
  ip address 172.18.39.40 255.255.255.0
  no ip mroute-cache
  ip ospf priority 0
!```
interface Serial0:23
  no ip address
  no ip mroute-cache
  encapsulation ppp
  isdn incoming-voice modem
  dialer rotary-group 2
!
interface Serial1:23
  no ip address
  no ip mroute-cache
  encapsulation ppp
  isdn incoming-voice modem
  dialer rotary-group 2
!
interface Group-Async1
  no ip address
  no ip mroute-cache
  encapsulation ppp
  async dynamic address
  async mode interactive
  dialer in-band
  dialer rotary-group 1
  ppp authentication pap callin
  ppp pap sent-username HQ5300 password 7 09434678520A
  group-range 1 24
!
interface Dialer1
  ip address 172.18.38.40 255.255.255.128
  encapsulation ppp
  no peer default ip address pool
  dialer in-band
  dialer map ip 172.18.38.41 name async1 14445558983
  dialer map ip 172.18.38.42 name async2 14445552012
  dialer map ip 172.18.38.43 name async3 14445550706
  dialer map ip 172.18.38.44 name async4 14445552731
  dialer map ip 172.18.38.45 name async5 14445554431
  dialer map ip 172.18.38.46 name async6 14445551933
  dialer map ip 172.18.38.47 name async7 14445557631
  dialer map ip 172.18.38.48 name async8 14445555153
  dialer hold-queue 10
  dialer-group 1
  ppp authentication pap chap callin
  ppp pap sent-username DialupAdmin password 7 07063D11542
!
interface Dialer2
  ip address 172.18.38.130 255.255.255.128
  encapsulation ppp
  no peer default ip address pool
  dialer in-band
  dialer map ip 172.18.38.131 name isdn1 14445557887
  dialer map ip 172.18.38.132 name isdn2 14445555191
  dialer map ip 172.18.38.133 name isdn3 14445552118
  dialer map ip 172.18.38.134 name isdn4 14445553757
  dialer map ip 172.18.38.135 name isdn5 14445553769
  dialer map ip 172.18.38.136 name isdn6 14445557884
  dialer map ip 172.18.38.137 name isdn7 14445557360
  dialer map ip 172.18.38.138 name isdn8 14445550361
  dialer hold-queue 10
  dialer-group 1
  ppp authentication chap pap
  ppp multilink
!
Cisco 1604 ISDN Router Configuration Without Dialer Profiles

The following configuration runs on the remote office Cisco 1604 router, which dials in to the Cisco AS5300 access server at headquarters in Figure 117. This configuration does not receive calls from the Cisco AS5300 access server.

```
! version 11.1
service udp-small-servers
service tcp-small-servers
!
hostname isdn1
!
enable password cisco
!
username 5300 password cisco
username isdn1 password cisco
isdn switch-type basic-5ess
!
interface Ethernet0
 ip address 172.18.40.1 255.255.255.0
!
interface BRI0
 ip address 172.18.38.131 255.255.255.128
 encapsulation ppp
 dialer map ip 172.18.38.130 name 5300 14085269328
```
Cisco 1604 Router Asynchronous Configuration Without Dialer Profiles

The following asynchronous configuration runs on the remote office Cisco 1604 router, which dials in to the Cisco AS5300 access server at headquarters in Figure 117. This configuration does not receive calls from the Cisco AS5300 access server.

```plaintext
dialer-group 1
 ppp authentication chap pap
!
ip classless
ip route 0.0.0.0 0.0.0.0 172.18.38.130
dialer-list 1 protocol ip permit
!
line con 0
line vty 0 4
 password cisco
 login
 password cisco
 login
!
end
```

```plaintext
dialer-group 1
 ppp authentication chap pap
!
ip classless
ip route 0.0.0.0 0.0.0.0 172.18.38.130
dialer-list 1 protocol ip permit
!
line con 0
line vty 0 4
 password cisco
 login
 password cisco
 login
!
end
```
Large-Scale Dial-In Configuration Using Virtual Profiles

The following example is used on each central site stack member shown in Figure 119. This configuration is for a large-scale dial-in scenario.

```
aaa new-model
aaa authentication login default none
aaa authentication ppp default radius
aaa authentication ppp admin local
aaa authorization network radius
isdn switch-type primary-5ess
!
interface Serial0:23
 no ip address
 no ip mroute-cache
 no cdp enable
 ppp authentication chap
!
tacacs-server host 172.18.203.45
virtual-profile aaa
```

The following example configures an entry running on a RADIUS security server, which is queried by each central site stack member when a call comes in. This entry includes the virtual profile configuration information for remote users dialing in to the central site stack solution.

In this example, virtual profiles are configured by both virtual templates and AAA configuration. John and Rick can dial in from anywhere and have their same keepalive settings and their own IP addresses.

The remaining attribute-value pair settings are not used by virtual profiles. They are the network-protocol access lists and route filters used by AAA-based per-user configuration.

In the AAA configuration cisco-avpair lines, “\n” is used to indicate the start of a new Cisco IOS command line.

```
john
 Password = “welcome”
 User-Service-Type = Framed-User,
 Framed-Protocol = PPP,
 cisco-avpair = “lcp:interface-config=keepalive 75\nip address 100.100.100.100 255.255.255.0”,
 cisco-avpair = “ip:rtel-fltr-out#0=router igrp 60”,
 cisco-avpair = “ip:rtel-fltr-out#3=deny 171.0.0.0 0.255.255.255”,
 cisco-avpair = “ip:rtel-fltr-out#4=deny 172.0.0.0 0.255.255.255”,
 cisco-avpair = “ip:rtel-fltr-out#5=permit any”

rick
 Password = “emoclew”
 User-Service-Type = Framed-User,
 Framed-Protocol = PPP,
 cisco-avpair = “lcp:interface-config=keepalive 100\nip address 200.200.200.200 255.255.255.0”,
 cisco-avpair = “ip:inacl#3=permit ip any any precedence immediate”,
 cisco-avpair = “ip:inacl#4=deny igrp 0.0.1.2 255.255.0.0 any”,
 cisco-avpair = “ip:outacl#2=permit ip any any precedence immediate”,
 cisco-avpair = “ip:outacl#3=deny igrp 0.0.9.10 255.255.0.0 any”
```

Telecommuters Dialing In to a Mixed Protocol Environment

The scenario in this section describes how to provide remote access to employees who dial in to a mixed protocol enterprise network. The sample configurations provided in this section assume that enterprise telecommuters are dialing in with modems or terminal adapters from outside the LAN at headquarters.
The following sections are provided:

- Description
- Enterprise Network Topology
- Mixed Protocol Dial-In Scenarios

**Description**

Sometimes an enterprise conducts its daily business operations across internal mixed protocol environments. (See Figure 121 and Table 47.) For example, an enterprise might deploy an IP base across the entire intranet while still allowing file sharing with other protocols such as AppleTalk and AppleTalk Remote Access (ARA).
Figure 121 Large Enterprise with a Multiprotocol Network

Mixed protocol network layout for bigcompany.com

Table 47 Typical Mixed Protocol Environment

<table>
<thead>
<tr>
<th>Applications Running on the Network Server</th>
<th>Remote or Local Client Applications</th>
<th>Protocol Used to Support the Network</th>
<th>Internal Supporting Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows NT</td>
<td>Windows 95 or Windows 3.1 running on PCs</td>
<td>IP</td>
<td>Marketing, human resources, engineering, and customer support</td>
</tr>
<tr>
<td>UNIX</td>
<td>SunOS or Solaris running on a UNIX-based workstation or NCD</td>
<td>IP</td>
<td>Engineering and customer support</td>
</tr>
</tbody>
</table>
Enterprise Network Topology

Figure 122 shows a sample enterprise network, which supports 10,000 registered token card holders. Some registered users might use their access privileges each day, while others might use their access privileges very infrequently, such as only on business trips. The dial-in access provisioned for outsiders, such as partners or vendors, is supported separately in a firewalled setup.

Five Cisco AS5300 access servers are positioned to provide 250 dial-in ports for incoming modem calls. A Catalyst 1900 is used as a standalone switch to provide Ethernet switching between the Cisco AS5300 access servers and the 100BASET interfaces on the backbone routers. Two Cisco 7200 series routers are used to reduce the processing workload on the access servers and provide access to the company’s backbone. If the Cisco 7200 series routers were not used in the network solution, the Cisco AS5300 access servers could not update routing tables, especially if 20 to 30 additional routers existed on the company’s backbone. Two additional backbone switches are used to provide access to the company network.

Note
Depending on your networking needs, the Cisco 7200 series routers could be substituted by one or more Cisco 3640 series routers. Additionally, the Cisco AS5300 access servers could be replaced by Cisco 3640 routers loaded with MICA digital modem cards.

<table>
<thead>
<tr>
<th>Applications Running on the Network Server</th>
<th>Remote or Local Client Applications</th>
<th>Protocol Used to Support the Network</th>
<th>Internal Supporting Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>AppleTalk</td>
<td>Mac OS System Software 7.5 running on Macintosh computers</td>
<td>AppleTalk</td>
<td>Documentation and creative services</td>
</tr>
<tr>
<td>NetWare</td>
<td>Novell NetWare client software</td>
<td>IPX</td>
<td>Marketing, and human resources, engineering, customer support</td>
</tr>
</tbody>
</table>

Table 47 Typical Mixed Protocol Environment (continued)
If you are setting up dial-in access for remote terminal adapters, the settings configured on the terminal adapters must match the setting on the access server or router. Depending on your business application, terminal adapters can operate in many different modes. (See Table 48.)

**Table 48 Options for Terminal Adapter Settings**

<table>
<thead>
<tr>
<th>Terminal Adapter Mode</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous PPP</td>
<td>We recommend you use this mode for most terminal adapter scenarios. By default, Cisco access servers and routers have synchronous PPP enabled. Therefore, additional configuration is not required on the router or access server.</td>
</tr>
<tr>
<td>V.120</td>
<td>Use this mode for asynchronous to synchronous communication, which can be used to tunnel character mode sessions over synchronous ISDN. We recommend you use this mode with midrange routers, such as the Cisco 4500 series router.</td>
</tr>
<tr>
<td>V.110</td>
<td>Use this modem for setting up cellular modem access.</td>
</tr>
</tbody>
</table>

**Mixed Protocol Dial-In Scenarios**

The examples in the following sections are intended to run on each network device featured in Figure 122, which allows remote users to dial in to a mixed protocol environment:

- Cisco 7200 #1 Backbone Router
- Cisco 7200 #2 Backbone Router
- Cisco AS5300 Universal Access Server

**Note**

Be sure to include your own IP addresses, host names, and security passwords where appropriate.
Cisco 7200 #1 Backbone Router

The following configuration runs on the router labeled Cisco 7200 #1 in Figure 122. Fast Ethernet interface 0/0 connects to the corporate backbone switch. Fast Ethernet interface 1/0 connects to the Catalyst 1900 switch, which in turn connects to the Cisco AS5300 access servers.

```
version xx.x
no service udp-small-servers
no service tcp-small-servers
!
hostname bbone-dial1
!
aaa new-model
aaa authentication login default local
aaa authentication login console enable
!
username admin password cisco
!
boot system flash slot0:
enable secret <password>
appletalk routing
ipx routing
!
interface FastEthernet0/0
 ip address 10.0.1.52 255.255.255.192
 appletalk cable-range 1000-1000
 appletalk zone Networking Infrastructure
 ipx network 1000
!
interface FastEthernet1/0
 ip address 10.1.1.2 255.255.255.224
 no ip redirects
 appletalk cable-range 7650-7650 7650.1
 appletalk zone Dial-Up Net
 ipx network 7650
!
 standby ip 10.1.1.1
 standby priority 101
 standby preempt
!
router eigrp 109
 redistribute static
 network 10.0.0.0
 no auto-summary
!
ip classless
ip http server
no logging console
!
ip route 10.1.2.0 255.255.255.192 10.1.1.10
!
line con 0
login authentication console
!
line vty 0 4
login authentication default
end
```
Cisco 7200 #2 Backbone Router

The following configuration runs on the router labeled Cisco 7200 #2 in Figure 122. Fast Ethernet interface 0/0 connects to the corporate backbone switch. Fast Ethernet interface 1/0 connects to the Catalyst 1900 switch, which in turn connects to the Cisco AS5300 access servers.

```
version xx.x
no service udp-small-servers
no service tcp-small-servers
!
hostname bbone-dial2
!
no service udp-small-servers
no service tcp-small-servers
!
boot system flash slot0:
!
hostname bbone-dial2
!
server enable secret <password>
!
appletalk routing
ipx routing
!
interface FastEthernet0/0
ip address 10.0.1.116 255.255.255.192
appletalk cable-range 1001-1001
appletalk zone Networking Infrastructure
ipx network 1001
!
interface FastEthernet1/0
ip address 10.1.1.3 255.255.255.224
no ip redirects
appletalk cable-range 7650-7650 7650.2
appletalk zone Dial-Up Net
ipx network 7650
!
standby ip 10.1.1.1
!
router eigrp 109
redistribute static	network 10.0.0.0
no auto-summary
!
ip classless
ip http server
no logging console
!
ip route 10.1.2.0 255.255.255.192 10.1.1.10
!
line con 0
login authentication console
!
line vty 0 4
login authentication console
!
end
```
Cisco AS5300 Universal Access Server

The following configuration runs on each Cisco AS5300 access server in the stack group shown in Figure 122:

```
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
appletalk routing
ipx routing
appletalk virtual net 7651 Dial-Up Net
arap network 7652 Dial-Up Net
!
hostname NAS
!
 aaa new-model
 aaa authentication login default local
 aaa authentication login console enable
 aaa authentication login vty local
 aaa authentication login dialin local
 aaa authentication ppp default local
 aaa authentication ppp dialin if-needed local
 aaa authentication arap default auth-guest local
 enable secret cisco
!
 username admin password cisco
 username pcuser1 password mypass
 isdn switch-type primary-5ess
!
controller T1 0
 framing esf
 clock source line primary
 linecode b8zs
 pri-group timeslots 1-24
!
controller T1 1
 framing esf
 clock source line secondary
 linecode b8zs
 pri-group timeslots 1-24
!
interface loopback 0
 ip address 10.1.2.0 255.255.255.192
 ipx network 7651
!
interface Ethernet0
 ip address 10.1.1.10 255.255.255.0
 appletalk cable-range 7650
 appletalk zone Dial-Up-Net
 ipx network 7650
!
interface Serial0
 no ip address
 shutdown
!
interface Serial1
 no ip address
 shutdown
!
```
interface Serial0:23
  no ip address
  encapsulation ppp
  isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
  no fair-queue
  no cdp enable
!
interface Serial1:23
  no ip address
  encapsulation ppp
  isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
  no fair-queue
  no cdp enable
!
interface Group-Async1
  ip unnumbered Ethernet0
  encapsulation ppp
  async mode interactive
  peer default ip address pool dialin_pool
  appletalk client-mode
  ipx ppp-client
  no cdp enable
  ppp authentication chap pap dialin
  group-range 1 48
!
interface Dialer0
  ip unnumbered Ethernet0
  no ip mroute-cache
  encapsulation ppp
  peer default ip address pool dialin_pool
  ipx ppp-client
  appletalk client-mode
dialer in-band
dialer-group 1
  no fair-queue
  no cdp enable
  ppp authentication chap pap dialin
  ppp multilink
  !
ip local pool dialin_pool 10.1.2.1 10.1.2.62
ip default-gateway 10.1.1.1
ip classless
ip route 0.0.0.0 0.0.0.0 10.1.1.1
!
dialer-list 1 protocol ip permit
!
async-bootp dns-server 10.1.0.40 10.1.0.170
async-bootp nbns-server 10.0.235.228 10.0.235.229
!
xremote buffersize 72000
xremote tftp host 10.0.2.74
!
line con 0
login authentication console
line 1 48
  autoselect ppp
  autoselect during-login
  autoselect arap
  arap enable
  arap authentication default
  arap timelimit 240
  arap warningtime 15
  login authentication dialin
  modem DialIn
  terminal-type dialup
line aux 0
login authentication console
line vty 0 4
login authentication vty
transport input telnet rlogin
!
end
Telco and ISP Dial Scenarios and Configurations

This chapter provides sample hardware and software configurations for specific dial scenarios used by telcos, Internet service providers (ISPs), regional Bell operating companies (RBOCs), inter-exchange carriers (IXCs), and other service providers. Each configuration in this chapter is designed to enable IP network traffic with basic security authentication.

The following scenarios are described:

- Scenario 1—Small- to Medium-Scale POPs
- Scenario 2—Large-Scale POPs
- Scenario 3—PPP Calls over X.25 Networks

Note
In all of these scenarios, you can replace the Cisco AS5200 access server with Cisco AS5300 or Cisco AS5800 access server. This hardware exchange provides higher call density performance and increases the number of PRI interfaces and modem ports on each chassis.

Small- to Medium-Scale POPs

Many small-to-medium-sized ISPs configure one or two access servers to provide dial-in access for their customers. Many of these dial-in customers use individual remote PCs that are not connected to LANs. Using the Windows 95 dialup software, remote clients initiate analog or digital connections using modems or home office ISDN BRI terminal adapters.

This section provides three types of single user dial-in scenarios for service providers:

- Individual Remote PCs Using Analog Modems
- Individual PCs Using ISDN Terminal Adapters
- Mixture of ISDN and Analog Modem Calls

Note
Be sure to include your own IP addresses, host names, and security passwords where appropriate. The following sample configurations assume that the dial-in clients are individual PCs running PPP, connecting to an IP network, and requiring only basic security authentication.
Individual Remote PCs Using Analog Modems

ISPs can configure a single Cisco access servers to receive analog calls from remote PCs connected to modems, as shown in Figure 123. The point of presence (POP) at the ISP central site could also be a Cisco 2511 access server connected to external modems.

Network Topology

Figure 123 shows a small-scale dial-in scenario using modems.

![Figure 123 Remote PC Using an Analog Modem to Dial In to a Cisco Access Server](image)

Running Configuration for ISDN PRI

The following sample configuration runs on the Cisco access server, as shown in Figure 123, which enables remote analog users to dial in:

```
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname NAS
!
aaa new-model
aaa authentication login console enable
aaa authentication login vty tacacs+
aaa authentication login dialin tacacs+
aaa authentication ppp default tacacs+
aaa authentication ppp dialin if-needed tacacs+
enable secret cisco
!
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess
!
controller T1 0
 framing esf
 clock source line primary
```
linecode b8zs
pri-group timeslots 1-24
!
controller T1 1
framing esf
clock source line secondary
linecode b8zs
pri-group timeslots 1-24
!
interface Loopback0
ip address 10.1.2.254 255.255.255.0
!
interface Ethernet0
ip address 10.1.1.10 255.255.255.0
ip summary address eigrp 10 10.1.2.0 255.255.255.0
!
interface Serial0
no ip address
shutdown
!
interface Serial1
no ip address
shutdown
!
interface Serial0:23
no ip address
encapsulation ppp
isdn incoming-voice modem
!
interface Serial1:23
no ip address
isdn incoming-voice modem
!
interface Group-Async1
ip unnumbered Loopback0
encapsulation ppp
async mode interactive
peer default ip address pool dialin_pool
no cdp enable
ppp authentication chap pap dialin
group-range 1 48
!
router eigrp 10
network 10.0.0.0
passive-interface Dialer0
no auto-summary
!
ip local pool dialin_pool 10.1.2.1 10.1.2.50
ip default-gateway 10.1.1.1
ip classless
!
dialer-list 1 protocol ip permit
!
line con 0
login authentication console
line 1 48
autoselect ppp
autoselect during-login
login authentication dialin
modem DialIn
!
line aux 0
login authentication console
line vty 0 4  
  login authentication vty  
  transport input telnet rlogin
!
end

Some service providers use a remote TACACS+ or RADIUS security server in this dial-in scenario. The following example shows a TACACS+ entry that appears in the configuration file of a remote security server:

```plaintext
user = PCuser1 {
 login = cleartext "dialpass1"
 chap = cleartext "dialpass1"
 service = ppp protocol = ip {
 addr-pool = dialin_pool
 }
 service = exec {
 autocmd = "ppp negotiate"
 }
}

user = PCuser2 {
 login = cleartext "dialpass2"
 chap = cleartext "dialpass2"
 service = ppp protocol = ip {
 addr-pool = dialin_pool
 }
 service = exec {
 autocmd = "ppp negotiate"
 }
}

user = PCuser3 {
 login = cleartext "dialpass3"
 chap = cleartext "dialpass3"
 service = ppp protocol = ip {
 addr-pool = dialin_pool
 }
 service = exec {
 autocmd = "ppp negotiate"
 }
}
```

### Running Configuration for Robbed-Bit Signaling

The following example shows a single Cisco access server configured to support remote client PCs dialing in with analog modems over traditional T1 lines. Digital ISDN calls do not transmit across these older types of channelized lines. The configuration assumes that the client can dial in and connect to the router in either terminal emulation mode (text only) or PPP packet mode.

**Note**
The following configuration works only for analog modem calls. It includes no serial D-channel configuration (Serial 0:23 and Serial 1:23).

```plaintext
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
```
no service udp-small-servers
no service tcp-small-servers

hostname NAS

aaa new-model
aaa authentication login console enable
aaa authentication login vty tacacs+
aaa authentication login dialin tacacs+
aaa authentication ppp default tacacs+
aaa authentication ppp dialin if-needed tacacs+
enable secret cisco

async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess

controller T1 0
framing esf
clock source line primary
linecode b8zs
cas-group 0 timeslots 1-24 type e&m-fgb

controller T1 1
framing esf
clock source line secondary
linecode b8zs
cas-group 0 timeslots 1-24 type e&m-fgb

interface Loopback0
ip address 10.1.2.254 255.255.255.0

interface Ethernet0
ip address 10.1.1.10 255.255.255.0
ip summary address eigrp 10 10.1.2.0 255.255.255.0

interface Serial0
no ip address
shutdown

interface Serial1
no ip address
shutdown

interface Group-Async1
ip unnumbered Loopback0
encapsulation ppp
async mode interactive
peer default ip address pool dialin_pool
no cdp enable
ppp authentication chap pap dialin
group-range 1 48

router eigrp 10
network 10.0.0.0
passive-interface Dialer0
no auto-summary

ip local pool dialin_pool 10.1.2.1 10.1.2.50
ip default-gateway 10.1.1.1
ip classless

dialer-list 1 protocol ip permit
line con 0
login authentication console
line 1 48
autoselect ppp
autoselect during-login
login authentication dialin
modem DialIn
line aux 0
login authentication console
line vty 0 4
login authentication vty
transport input telnet rlogin
!
end

Individual PCs Using ISDN Terminal Adapters

ISPs can configure a single Cisco access server to receive digital multilink calls from remote PCs connected to terminal adapters, as shown in Figure 124. The POP at the central site of the ISP can be any Cisco router that supports ISDN PRI, such as the Cisco 4700-M router loaded with a channelized T1 PRI network module.

Network Topology

Figure 124 shows a small-scale dial-in scenario using terminal adapters.

**Figure 124  Remote PC Using a Terminal Adapter to Dial In to a Cisco Access Server**

To configure one Cisco access server to accept both incoming ISDN and analog calls from individual terminal adapters and modems, see the section “Mixture of ISDN and Analog Modem Calls” later in this chapter.
Terminal Adapter Configuration Example

The following example configures a Cisco access server to enable PCs fitted with internal or external terminal adapters to dial in to an IP network. The terminal adapter configuration is set up for asynchronous-to-synchronous PPP conversion. In some cases, PPP authentication must be set up for the Password Authentication Protocol (PAP). Some terminal adapters support only PAP authentication.

```
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname NAS
!
aaa new-model
aaa authentication login console enable
aaa authentication login vty tacacs+
aaa authentication login dialin tacacs+
aaa authentication ppp default tacacs+
aaa authentication ppp dialin if-needed tacacs+
enable secret cisco
!
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess
!
controller T1 0
 framing esf
 clock source line primary
 linecode b8zs
 pri-group timeslots 1-24
!
controller T1 1
 framing esf
 clock source line secondary
 linecode b8zs
 pri-group timeslots 1-24
!
interface Loopback0
 ip address 10.1.2.254 255.255.255.0
!
interface Ethernet0
 ip address 10.1.1.10 255.255.255.0
 ip summary address eigrp 10 10.1.2.0 255.255.255.0
!
interface Serial0
 no ip address
 shutdown
!
interface Serial1
 no ip address
 shutdown
!
interface Serial0:23
 no ip address
 encapsulation ppp
dialer rotary-group 0
dialer-group 1
 no fair-queue
 no cdp enable
```
interface Serial1:23
no ip address
encapsulation ppp
dialer rotary-group 0
dialer-group 1
no fair-queue
no cdp enable
!
interface Dialer0
ip unnumbered Loopback0
no ip mroute-cache
encapsulation ppp
peer default ip address pool dialin_pool
dialer in-band
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap pap dialin
ppp multilink
!
routerr eigrp 10
network 10.0.0.0
passive-interface Dialer0
no auto-summary
!
ip local pool dialin_pool 10.1.2.1 10.1.2.50
ip default-gateway 10.1.1.1
ip classless
!
dialer-list 1 protocol ip permit
!
line con 0
login authentication console
line 1 48
autoselect ppp
autoselect during-login
login authentication dialin
modem DialIn
line aux 0
login authentication console
line vty 0 4
login authentication vty
transport input telnet rlogin
!
end
Mixture of ISDN and Analog Modem Calls

ISP can configure a single Cisco access server to receive calls from a mixture of remote PCs connected to terminal adapters and modems, as shown in Figure 125.

Figure 125  Remote PCs Making Digital Calls and Analog Calls to a Cisco Access Server

Combination of Modem and ISDN Dial-In Configuration Example

The following example shows a combination of the modem and ISDN dial-in configurations. Using the bearer capability information element in the call setup packet, the incoming calls are labeled as data or voice. After the calls enter the access server, they are routed either to the serial configuration or to the modems and group asynchronous configuration.

Note
This configuration assumes that only individual remote PCs are dialing in; no remote routers are dialing in. For a remote router dial-in configuration, see the chapter “Enterprise Dial Scenarios and Configurations” in this publication.

version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname NAS
!
aaa new-model
aaa authentication login console enable
aaa authentication login vty tacacs+
aaa authentication login dialin tacacs+
aaa authentication ppp default tacacs+
aaa authentication ppp dialin if-needed tacacs+
enable secret cisco
!
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess
!
controller T1 0
   framing esf
clock source line primary
linecode b8zs
   pri-group timeslots 1-24
!
controller T1 1
   framing esf
clock source line secondary
linecode b8zs
   pri-group timeslots 1-24
!
interface Loopback0
   ip address 10.1.2.254 255.255.255.0
!
interface Ethernet0
   ip address 10.1.1.10 255.255.255.0
   ip summary address eigrp 10 10.1.2.0 255.255.255.0
!
interface Serial0
   no ip address
   shutdown
!
interface Serial1
   no ip address
   shutdown
!
interface Serial0:23
   no ip address
   encapsulation ppp
   isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
   no fair-queue
   no cdp enable
!
interface Serial1:23
   no ip address
   encapsulation ppp
   isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
   no fair-queue
   no cdp enable
!
interface Group-Async1
   ip unnumbered Loopback0
   encapsulation ppp
   async mode interactive
   peer default ip address pool dialin_pool
   no cdp enable
   ppp authentication chap pap dialin
   group-range 1 48
Large-Scale POPs

This section describes how to set up a stack of access servers for a large-scale dial solution and includes the following sections:

- Scaling Considerations
- How Stacking Works
- Stack Group of Access Servers Using MMP with an Offload Processor Examples

Scaling Considerations

Because of the significant increase in demand for Internet access, large POPs are required by many Telcos and ISPs. Internet access configurations can be set up to enable users who dial in with individual computers to make mixed ISDN multilink or modem connections using a stack of Cisco access servers that run Multichassis Multilink PPP (MMP).

You must consider scalability and call density issues when designing a large-scale dial-in POP. Because access servers have physical limitations, such as how many dial-in users can be supported on one device, you should consider the conditions and recommendations described in Table 49.
Note Depending on the size of your POP requirement, you can replace the Cisco AS5200 access server with a Cisco AS5300, Cisco AS5800, or Cisco AccessPath. This hardware exchange provides higher call density performance and increases the number of ISDN PRI ports, channelized ports, and modem ports on each chassis.

How Stacking Works

Before you install and configure a stack of access servers, you should understand the basic concepts described in the following sections and how they work together in a large-scale dial-in solution:

- A Typical Multilink PPP Session
- Using Multichassis Multilink PPP
- Setting Up an Offload Server
- Using the Stack Group Bidding Protocol
- Using L2F

A Typical Multilink PPP Session

A basic multilink session is an ISDN connection between two routing devices, such as a Cisco 766 router and a Cisco AS5200 access server. Figure 126 shows a remote PC connecting to a Cisco 766 ISDN router, which in turn opens two B-channel connections at 128 kbps across an ISDN network. The Multilink PPP (MLP) session is brought up. The Cisco 766 router sends four packets across the network to the Cisco AS5200, which in turn reassembles the packets back into the correct order and sends them out the LAN port to the Internet.
Using Multichassis Multilink PPP

The dial solution becomes more complex when the scenario is scaled to include multiple multilink calls connecting across multiple chassis. Figure 127 shows a terminal adapter making a call in to the Cisco AS5200, labeled #1. However, only one of the access server’s 48 B channels is available to accept the call. The other channels are busy with calls. As a result, one of the terminal adapter’s two B channels is redirected to device #2. At this point, a multilink multichassis session is shared between two Cisco AS5200s that belong to the same stack group. Packet fragments A and C go to device #1. Packet fragments B and D go to device #2.

Because device #1 is the first access server to receive a packet and establish a link, this access server creates a virtual interface and becomes the bundle master. The bundle master takes ownership of the MLP session with the remote device. The Multichassis Multilink PPP (MMP) protocol forwards the second link from device #2 to the bundle master, which in turn bundles the two B channels together and provides 128 kbps to the end user. Layer 2 Forwarding (L2F) is the mechanism that device #2 uses to forward all packet fragments received from the terminal adapter to device #1. In this way, all packets and calls virtually appear to terminate at device #1.
Setting Up an Offload Server

Because MMP is a processor-intensive application, you might need to offload the processing or segmentation and reassembly from the Cisco access servers to a router with a more powerful CPU, such as the Cisco 4700-M or Cisco 7206. We recommend that you include an offload server for dial-in solutions that support more than 50 percent ISDN calls or more than 10 multilink sessions per Cisco access server. (See Figure 128.)
Using the Stack Group Bidding Protocol

The Stack Group Bidding Protocol (SGBP) is a critical component used in multichassis multilink sessions. SGBP unites each Cisco access server in a virtual stack, which enables the access servers to become virtually tied together. Each independent stack member communicates with the other members and determines which devices’ CPU should be in charge of running the multilink session and packet reassembly—the duty of the bundle master. The goal of SGBP is to find a common place to forward the links and ensure that this destination has enough CPU power to perform the segmentation and packet reassembly. (See Figure 128.)

When SGBP in configured on each Cisco access server, each access server sends out a query to each stack group member stating, for example, “I have a call coming in from walt@options.com. What is your bid for this user?” Each access server then consults the following default bidding criteria and answers the query accordingly:

- Do I have an existing call or link for the user walt@options.com? If I do, then bid very high to get this second link in to me.

- If I do not have an existing call for walt@options.com, then bid a value that is proportional to how much CPU power I have available.

- How busy am I supporting other users?
**Note**
An offload server will always serve as the bundle master by bidding a higher value than the other devices.

**Using L2F**

L2F is a critical component used in multichassis multilink sessions. If an access server is not in charge of a multilink session, the access server encapsulates the fragmented PPP frames and forwards them to the bundle master using L2F. The master device receives the calls, not through the dial port (such as a dual T1/PRI card), but through the LAN or Ethernet port. L2F simply tunnels packet fragments to the device that owns the multilink session for the call. If you include an offload server in your dial-in scenario, it creates all the virtual interfaces, owns all the multilink sessions, and reassembles all the fragmented packets received by L2F via the other stackgroup members. (Refer to Figure 128.)

**Stack Group of Access Servers Using MMP with an Offload Processor Examples**

The following sections provide examples for the devices shown in Figure 128:

- **Cisco Access Server #1**
- **Cisco Access Server #2**
- **Cisco Access Server #3**
- **Cisco 7206 as Offload Server**
- **RADIUS Remote Security Examples**

**Note**
Be sure to include your own IP addresses, host names, and security passwords where appropriate.

**Cisco Access Server #1**

The following configuration runs on the Cisco access server labeled #1 in Figure 128:

```plaintext
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname AS5200-1
!
! aaa new-model
 aaa authentication login default local
 aaa authentication login console enable
 aaa authentication login vty local
 aaa authentication login dialin radius
 aaa authentication ppp default local
 aaa authentication ppp dialin if-needed radius
 aaa authorization exec local radius
 aaa authorization network radius
 aaa accounting network start-stop radius
 aaa accounting exec start-stop radius
```
enable secret cisco
!
username admin password cisco
username MYSTACK password STACK-SECRET
sgbp group MYSTACK
sgbp member AS5200-2 10.1.1.12
sgbp member AS5200-3 10.1.1.13
sgbp member 7200 10.1.1.14
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess
!
controller T1 0
  framing esf
  clock source line primary
  linecode b8zs
  pri-group timeslots 1-24
!
controller T1 1
  framing esf
  clock source line secondary
  linecode b8zs
  pri-group timeslots 1-24
!
interface Loopback0
  ip address 10.1.2.62 255.255.255.192
!
interface Ethernet0
  ip address 10.1.1.11 255.255.255.0
  ip summary address eigrp 10 10.1.2.0 255.255.255.192
!
interface Serial0
  no ip address
  shutdown
!
interface Serial1
  no ip address
  shutdown
!
interface Serial0:23
  no ip address
  encapsulation ppp
  isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
  no fair-queue
  no cdp enable
!
interface Serial1:23
  no ip address
  encapsulation ppp
  isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
  no fair-queue
  no cdp enable
!
interface Group-Async1
  ip unnumbered Loopback0
  encapsulation ppp
  async mode interactive
  peer default ip address pool dialin_pool
  no cdp enable
  ppp authentication chap pap dialin
group-range 1 48
The following configuration runs on the Cisco access server labeled #2 shown in Figure 128:

```bash
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname AS5200-2
!
aaa new-model
aaa authentication login default local
aaa authentication login console enable
aaa authentication login vty local
aaa authentication login dialin radius
aaa authentication ppp default local
aaa authentication ppp dialin if-needed radius
aaa authorization exec local radius
```
aaa authorization network radius
aaa accounting network start-stop radius
aaa accounting exec start-stop radius
enable secret cisco

username admin password cisco
username MYSTACK password STACK-SECRET
gsbp group MYSTACK
gsbp member AS5200-1 10.1.1.11
gsbp member AS5200-3 10.1.1.13
gsbp member 7200 10.1.1.14
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess

controller T1 0
framing esf
clock source line primary
linecode b8zs
pri-group timeslots 1-24

controller T1 1
framing esf
clock source line secondary
linecode b8zs
pri-group timeslots 1-24

interface Loopback0
ip address 10.1.2.126 255.255.255.192

interface Ethernet0
ip address 10.1.1.12 255.255.255.0
ip summary address eigrp 10 10.1.2.64 255.255.255.192

interface Serial0
no ip address
shutdown

interface Serial1
no ip address
shutdown

interface Serial0:23
no ip address
encapsulation ppp
isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
no fair-queue
no cdp enable

interface Serial1:23
no ip address
encapsulation ppp
isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
no fair-queue
no cdp enable

interface Group-Async1
ip unnumbered Loopback0
encapsulation ppp
async mode interactive
peer default ip address pool dialin_pool
no cdp enable
ppp authentication chap pap dialin
group-range 1 48

interface Dialer0
ip unnumbered Loopback0
no ip mroute-cache
encapsulation ppp
peer default ip address pool dialin_pool
dialer in-band
dialer-group 1
no fair-queue
no cdp enable
ppp authentication chap pap dialin
ppp multilink

router eigrp 10
network 10.0.0.0
passive-interface Dialer0
no auto-summary

ip local pool dialin_pool 10.1.2.65 10.1.2.114
ip default-gateway 10.1.1.1
ip classless

dialer-list 1 protocol ip permit
radius-server host 10.1.1.23 auth-port 1645 acct-port 1646
radius-server host 10.1.1.24 auth-port 1645 acct-port 1646
radius-server key cisco

line con 0
login authentication console
line 1 48
autoselect ppp
autoselect during-login
login authentication dialin
modem DialIn
line aux 0
login authentication console
line vty 0 4
login authentication vty
transport input telnet rlogin

end

Cisco Access Server #3

The following configuration runs on the Cisco access server labeled #3 in Figure 128:

version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers

hostname AS5200-3

aaa new-model

aaa authentication login default local
aaa authentication login console enable
aaa authentication login vty local
aaa authentication login dialin radius
aaa authentication ppp default local
aaa authentication ppp dialin if-needed radius
aaa authorization exec local radius
aaa authorization network radius
aaa accounting network start-stop radius
aaa accounting exec start-stop radius
enable secret cisco
!
username admin password cisco
username MYSTACK password STACK-SECRET
sgbp group MYSTACK
sgbp member AS5200-1 10.1.1.11
sgbp member AS5200-2 10.1.1.12
sgbp member 7200 10.1.1.14
async-bootp dns-server 10.1.3.1 10.1.3.2
isdn switch-type primary-5ess
!
controller T1 0
framing esf
clock source line primary
linecode b8zs
pri-group timeslots 1-24
!
controller T1 1
framing esf
clock source line secondary
linecode b8zs
pri-group timeslots 1-24
!
interface Loopback0
ip address 10.1.2.190 255.255.255.192
!
interface Ethernet0
ip address 10.1.1.13 255.255.255.0
ip summary address eigrp 10 10.1.2.128 255.255.255.192
!
interface Serial0
no ip address
shutdown
!
interface Serial1
no ip address
shutdown
!
interface Serial0:23
no ip address
encapsulation ppp
isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
no fair-queue
no cdp enable
!
interface Serial1:23
no ip address
encapsulation ppp
isdn incoming-voice modem
dialer rotary-group 0
dialer-group 1
no fair-queue
no cdp enable
!
interface Group-Async1
  ip unnumbered Loopback0
  encapsulation ppp
  async mode interactive
  peer default ip address pool dialin_pool
  no cdp enable
  ppp authentication chap pap dialin
  group-range 1 48
!
interface Dialer0
  ip unnumbered Loopback0
  no ip mrroute-cache
  encapsulation ppp
  peer default ip address pool dialin_pool
  dialer in-band
  dialer-group 1
  no fair-queue
  no cdp enable
  ppp authentication chap pap dialin
  ppp multilink
!
routing eigrp 10
  network 10.0.0.0
  passive-interface Dialer0
  no auto-summary
!
ip local pool dialin_pool 10.1.2.129 10.1.2.178
ip default-gateway 10.1.1.1
ip classless
!
dialer-list 1 protocol ip permit
radius-server host 10.1.1.23 auth-port 1645 acct-port 1646
radius-server host 10.1.1.24 auth-port 1645 acct-port 1646
radius-server key cisco
!
line con 0
  login authentication console
line 1 48
  autoselect ppp
  autoselect during-login
  login authentication dialin
  modem DialIn
line aux 0
  login authentication console
line vty 0 4
  login authentication vty
  transport input telnet rlogin
!
end
Cisco 7206 as Offload Server

The following configuration runs on the Cisco 7206 router shown in Figure 128:

```plaintext
version xx.x
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname 7200
!
aaa new-model
aaa authentication login default local
aaa authentication login console enable
aaa authentication login vty local
aaa authentication login dialin radius
aaa authentication ppp default local
aaa authentication ppp dialin if-needed radius
aaa authorization exec local radius
aaa authorization network radius
aaa accounting network start-stop radius
aaa accounting exec start-stop radius
enable secret cisco
!
username MYSTACK password STACK-SECRET
username admin password cisco
multilink virtual-template 1
sgbp group MYSTACK
sgbp member AS5200-1 10.1.1.11
sgbp member AS5200-2 10.1.1.12
sgbp member AS5200-3 10.1.1.13
sgbp seed-bid offload
async-bootp dns-server 10.1.3.1 10.1.3.2
!
interface Loopback0
 ip address 10.1.2.254 255.255.255.192
!
interface Ethernet2/0
 ip address 10.1.1.14 255.255.255.0
 ip summary address eigrp 10 10.1.2.192 255.255.255.192
!
interface Ethernet2/1
 no ip address
 shutdown
!
interface Ethernet2/2
 no ip address
 shutdown
!
interface Ethernet2/3
 no ip address
 shutdown
!
```

Any Cisco router that has a powerful CPU can be used as an offload server, such as a Cisco 4500-M, 4700-M, or 3640. However, the router must be configured to handle the necessary processing overhead demanded by each stack member.
interface Virtual-Template1  
ip unnumbered Loopback0  
no ip mrroute-cache  
peer default ip address pool dialin_pool  
ppp authentication chap pap dialin  
ppp multilink  
!  
router eigrp 10  
network 10.0.0.0  
passive-interface Virtual-Template1  
no auto-summary  
!  
ip local pool dialin_pool 10.1.2.193 10.1.2.242  
ip default-gateway 10.1.1.1  
ip classless  
!  
radius-server host 10.1.1.23 auth-port 1645 acct-port 1646  
radius-server host 10.1.1.24 auth-port 1645 acct-port 1646  
radius-server key cisco  
!  
line con 0  
login authentication console  
line aux 0  
login authentication console  
line vty 0 4  
login authentication vty  
!  
end

RADIUS Remote Security Examples

The RADIUS examples in the following sections use the Internet Engineering Task Force (IETF) syntax for the attributes:

- User Setup for PPP
- User Setup for PPP and Static IP Address
- Enabling Router Dial-In
- User Setup for SLIP
- User Setup for SLIP and Static IP Address
- Using Telnet to connect to a UNIX Host
- Automatic rlogin to UNIX Host

Depending on how the dictionary is set up, the syntax for these configurations might differ between versions of RADIUS daemons.

**Note**

You must have the *async dynamic address* command enabled on the network access server if you use Framed-IP-Address to statically assign IP addresses.
User Setup for PPP

The following example shows a user setup for PPP. The user’s IP address comes from the configured default IP address that is set up on the interface (which could be a specific default IP address, a pointer to a local pool of addresses, or a pointer to a Dynamic Host Configuration Protocol (DHCP) server). The special address that signals the default address is 255.255.255.254.

```
pppme Password = "cisco"
 CHAP-Password = "cisco"
 Service-Type = Framed,
 Framed-Protocol = PPP,
 Framed-IP-Address = 255.255.255.254
```

User Setup for PPP and Static IP Address

The following example shows a user setup for PPP and a static IP address that stays with the user across all connections. Make sure that your router is set up to support this configuration, especially for large or multiple POPs.

```
staticallypppme Password = "cisco"
 CHAP-Password = "cisco"
 Service-Type = Framed,
 Framed-Protocol = PPP,
 Framed-IP-Address = 10.1.1.1
```

Enabling Router Dial-In

The following example supports a router dialing in, which requires that a static IP address and a remote Ethernet interface be added to the network access server’s routing table. The router’s WAN port is assigned the address 1.1.1.2. The remote Ethernet interface is 2.1.1.0 with a class C mask. Be sure your routing table can support this requirement. You might need to redistribute the static route with a dynamic routing protocol.

```
routeme Password = "cisco"
 CHAP-Password = "cisco"
 Service-Type = Framed,
 Framed-Protocol = PPP,
 Framed-IP-Address = 10.1.1.1
 Framed-Route = "10.2.1.0/24 10.1.1.2"
```

User Setup for SLIP

The following example shows a user setup for SLIP. Remote users are assigned to the default address on the interface.

```
slipme Password = "cisco"
 Service-Type = Framed,
 Framed-Protocol = SLIP,
 Framed-IP-Address = 255.255.255.254
```
User Setup for SLIP and Static IP Address

The following example shows a user setup for SLIP and a static IP address that stays with the user across all connections. Make sure that your routing is set up to support this configuration, especially for large or multiple POPs.

```
staticallyslipme Password = "cisco"
Service-Type = Framed,
Framed-Protocol = SLIP,
Framed-IP-Address = 10.1.1.13
```

Using Telnet to connect to a UNIX Host

The following example automatically uses Telnet to connect the user to a UNIX host. This configuration is useful for registering new users, providing basic UNIX shell services, or providing a guest account.

```
telnetme Password = "cisco"
Service-Type = Login,
Login-Service = Telnet,
Login-IP-Host = 10.2.1.1
```

Automatic rlogin to UNIX Host

The following example automatically uses rlogin to connect the user to a UNIX host:

```
rloginme Password = "cisco"
Service-Type = Login,
Login-Service = Rlogin,
Login-IP-Host = 10.3.1.2
```

If you want to prevent a second password prompt from being brought up, you must have the following two commands enabled on the router or access server:

- `rlogin trusted-remoteuser-source local`
- `rlogin trusted-localuser-source radius`

PPP Calls over X.25 Networks

Remote PCs stationed in X.25 packet assembler-disassembler (PAD) networks can access the Internet by dialing in to Cisco routers, which support PPP. By positioning a Cisco router at the corner of an X.25 network, ISPs and telcos can provide Internet and PPP access to PAD users. All remote PAD users that dial in to X.25 networks dial in to one Cisco router that allows PPP connections. Although connection performance is not optimal, these X.25-to-PPP calls use installed bases of X.25 equipment and cost less to operate than connecting over the standard telephone network.

---

**Note**

This dial-in scenario can also be used as an enterprise solution. In this case, an enterprise consults with a third-party service provider that allows enterprises to leverage existing X.25 enterprise equipment to provide connections back into enterprise environments.
Overview

Many cities throughout the world have large installed bases of PCs that interface with older modems, PADs, and X.25 networks. These remote PCs or terminals dial in to PADs and make X.25 PAD calls or terminal connections to mainframe computers or other devices, which run the X.25 protocol. Unfortunately, the user interface is only a regular text-based screen in character mode (as opposed to packet mode). Therefore, many ISPs and telcos that have large investments in X.25 networks are upgrading their outdated equipment and creating separate networks for PPP connections. Because this upgrade process takes substantial time and money to complete, using a Cisco router to allow PPP connections over an X.25 network is a good interim solution for a dead-end dial case.

Remote PC Browsing Network Topology

Figure 129 shows a remote PC browsing the Internet through an X.25 PAD call and a Cisco 4500 router. This X.25 network is owned by an ISP or telco that is heavily invested in X.25 equipment, that is currently upgrading its outdated equipment, and that is creating separate networks for PPP connections. In this topology, the Cisco 4500 router performs protocol translation between the protocols X.25 and PPP. The router is configured to accept an incoming X.25 PAD call, run and unpack PPP packets over the call, and enable the remote PC to function as if it were on the IP network.

Figure 129  Remote PC Browsing the Internet Through an X.25 PAD Call and a Cisco 4500 Router

For more information about configuring protocol translation, see the chapter “Configuring Protocol Translation and Virtual Asynchronous Devices” in the Cisco IOS Terminal Services Configuration Guide.
Protocol Translation Configuration Example

In the following example, PAD callers that dial 4085551234 receive a router prompt. PAD callers that dial 408555123401 start PPP and pick up an address from the IP pool called dialin_pool. These addresses are “borrowed” from the Ethernet interface on the Cisco 4500 router. Additionally, a loopback interface network can be created and the X.25 addresses can be set. However, a routing protocol must be run to advertise the loopback interface network if this method is used.

Note
Be sure to include your own IP addresses, host names, and security passwords where appropriate in the following examples.

```plaintext
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
no service udp-small-servers
no service tcp-small-servers
!
hostname NAS
!
aaa new-model
aaa authentication login console enable
aaa authentication login vty tacacs+
aaa authentication login dialin tacacs+
aaa authentication ppp default tacacs+
aaa authentication ppp dialin if-needed tacacs+
enable secret cisco
!
async-bootp dns-server 10.1.3.1 10.1.3.2
!
vty-async
vty-async ppp authentication chap pap
!
interface Loopback0
 ip address 10.1.2.254 255.255.255.0
!
interface Ethernet0
 ip address 10.1.1.10 255.255.255.0
 ip summary address eigrp 10 10.1.2.0 255.255.255.0
!
interface Serial0
 no ip address
 encapsulation x25
 x25 address 4085551234
 x25 accept-reverse
 x25 default pad
!
router eigrp 10
 network 10.0.0.0
 passive-interface Dialer0
 no auto-summary
!
ip local pool dialin_pool 10.1.2.1 10.1.2.50
ip default-gateway 10.1.1.1
!
ip classless
!
translate x25 4085555123401 ppp ip-pool scope-name dialin_pool
!
dialer-list 1 protocol ip permit
!
```
line con 0
 login authentication console
line aux 0
 login authentication console
line vty 0 150
 login authentication vty
 transport input telnet rlogin
!
end
Appendixes
Modem Initialization Strings

This appendix provides tables that contain modem initialization strings and sample modem initialization scripts. Table 50 lists required settings, and error compression (EC) and compression settings for specific modem types. Use this information to create your modem scripts. Table 51 lists information for setting AUX ports. See Table 52 for a legend of symbols used in these two tables. Sample scripts follow the tables.

For information about configuring lines to support modems, see the chapters in the part “Modem and Dial Shelf Configuration and Management” in this publication.

Table 50 Required Settings and EC/Compression Settings

<table>
<thead>
<tr>
<th>Modem</th>
<th>FD</th>
<th>AA</th>
<th>CD</th>
<th>DTR</th>
<th>RTS/CTS Flow</th>
<th>LOCK DTE Speed</th>
<th>Best Error</th>
<th>Best Comp</th>
<th>No Error</th>
<th>No Comp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codex 3260</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>*FL3</td>
<td>*SC1</td>
<td>*SM3</td>
<td>*DC1</td>
<td>*SM1</td>
<td>*DC0</td>
</tr>
<tr>
<td>USR Courier</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>&amp;H1&amp;R2</td>
<td>&amp;B1</td>
<td>&amp;M4</td>
<td>&amp;K1</td>
<td>&amp;M0</td>
<td>&amp;K0</td>
</tr>
<tr>
<td>USR Sportster</td>
<td></td>
</tr>
<tr>
<td>Global Village</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>\Q3</td>
<td>\J0</td>
<td>\N7</td>
<td>%C1</td>
<td>\N0</td>
<td>%C0</td>
</tr>
<tr>
<td>Teleport Gold</td>
<td></td>
</tr>
<tr>
<td>Teletbit T1600/T3000/WB</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>S58=2</td>
<td>S51=6</td>
<td>S180=2</td>
<td>S190=1</td>
<td>S180=0</td>
<td>S190=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S68=2</td>
<td></td>
<td>S181=1</td>
<td>S180=0</td>
<td>S181=1</td>
<td></td>
</tr>
<tr>
<td>Teletbit T2500 (ECM)</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>S58=2</td>
<td>S51=6</td>
<td>S95=2</td>
<td>S98=1</td>
<td>S95=0</td>
<td>S98=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S68=2</td>
<td></td>
<td>S96=1</td>
<td></td>
<td>S96=0</td>
<td></td>
</tr>
<tr>
<td>Teletbit Trailblazer</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT&amp;T Paradyne</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>\Q3</td>
<td>---&gt;</td>
<td>\N7</td>
<td>%C1</td>
<td>\N0</td>
<td>%C0</td>
</tr>
<tr>
<td>Dataport</td>
<td></td>
</tr>
<tr>
<td>Hayes modems</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>&amp;K3</td>
<td>&amp;Q6</td>
<td>&amp;Q5</td>
<td>&amp;Q9</td>
<td>&amp;Q6</td>
<td></td>
</tr>
<tr>
<td>Accura/ Optima</td>
<td></td>
</tr>
<tr>
<td>Microcom QX4232 series</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>\Q3</td>
<td>\J0</td>
<td>\N6</td>
<td>%C1</td>
<td>\N0</td>
<td>%C0</td>
</tr>
<tr>
<td>Modem</td>
<td>FD</td>
<td>AA</td>
<td>CD</td>
<td>DTR</td>
<td>RTS/CTS Flow</td>
<td>LOCK DTE Speed</td>
<td>Best Error</td>
<td>Best Comp</td>
<td>No Error</td>
<td>No Comp</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>--------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Motorola UDS</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>\Q3</td>
<td>\J0</td>
<td>\N6</td>
<td>%C1</td>
<td>%N0</td>
<td>%C0</td>
</tr>
<tr>
<td>FastTalk II</td>
<td></td>
</tr>
<tr>
<td>Multitech MT1432</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>&amp;E4</td>
<td>$BA0</td>
<td>&amp;E1</td>
<td>&amp;E15</td>
<td>&amp;E0</td>
<td>&amp;E14</td>
</tr>
<tr>
<td>MT932</td>
<td></td>
</tr>
<tr>
<td>Digicom Scout Plus</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>*F3</td>
<td>*S1</td>
<td>*E9</td>
<td>&lt;---</td>
<td>*E0</td>
<td>&lt;---</td>
</tr>
<tr>
<td>Digicom SoftModem</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>&amp;K3</td>
<td>---&gt;</td>
<td>\N5</td>
<td>%C1</td>
<td>%N0</td>
<td>%C0</td>
</tr>
<tr>
<td>Viva 14.4/9642c</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>&amp;K3</td>
<td>---&gt;</td>
<td>\N3</td>
<td>%M3</td>
<td>%N0</td>
<td>%M0</td>
</tr>
<tr>
<td>ZyXel U-1496E</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>&amp;H3</td>
<td>&amp;B1</td>
<td>&amp;K4</td>
<td>&lt;---</td>
<td>&amp;K0</td>
<td>&lt;---</td>
</tr>
<tr>
<td>Supra V.32bis/28.8</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>&amp;K3</td>
<td>---&gt;</td>
<td>\N3</td>
<td>%C1</td>
<td>%N0</td>
<td>%C0</td>
</tr>
<tr>
<td>ZOOM 14.4</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>&amp;K3</td>
<td>---&gt;</td>
<td>\N3</td>
<td>%C2</td>
<td>%N0</td>
<td>%C0</td>
</tr>
<tr>
<td>Intel External</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>&amp;Q3</td>
<td>\J0</td>
<td>\N3</td>
<td>%C1&quot;H3</td>
<td>%N0</td>
<td>%C0</td>
</tr>
<tr>
<td>Practical Peripherals</td>
<td>&amp;F</td>
<td>S0=1</td>
<td>&amp;C1</td>
<td>&amp;D3</td>
<td>&amp;K3</td>
<td>---&gt;</td>
<td>&amp;Q5</td>
<td>&amp;Q9</td>
<td>&amp;Q6</td>
<td>&lt;---</td>
</tr>
<tr>
<td>Modem</td>
<td>Settings for Use with AUX Port</td>
<td>Other Settings</td>
<td>Write Memory</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codex 3260</td>
<td>E0 Q1</td>
<td>&amp;S1</td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USR Courier</td>
<td>E0 Q1</td>
<td><em>NA</em></td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Village</td>
<td>E0 Q1</td>
<td><em>NA</em></td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telebit T1600</td>
<td>E0 Q1</td>
<td>&amp;S4</td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telebit T2500 (ECM)</td>
<td>E0 Q1</td>
<td>&amp;S1</td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telebit Trailblazer</td>
<td>E0 Q1</td>
<td><em>NA</em></td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT&amp;T Paradyne</td>
<td>E0 Q1</td>
<td><em>NA</em></td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hayes modems</td>
<td>E0 Q1</td>
<td><em>NA</em></td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcom QX4232</td>
<td>E0 Q1</td>
<td><em>NA</em></td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorola UDS</td>
<td>E0 Q1</td>
<td><em>NA</em></td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multitech MT1432</td>
<td>E0 Q1</td>
<td>&amp;S1</td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digicom Scout Plus</td>
<td>E0 Q2</td>
<td>&amp;B2</td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digicom SoftModem</td>
<td>E0 Q1</td>
<td>&amp;S1</td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viva 14.4/9642c</td>
<td>E0 Q1</td>
<td>&amp;S1</td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZyXel U-1496E</td>
<td>E0 Q1</td>
<td>&amp;S1</td>
<td>&amp;W</td>
<td>Additional information on ftp.zyxel.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supra V.32bis/28.8</td>
<td>E0 Q1</td>
<td>&amp;S1</td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOOM 14.4</td>
<td>E0 Q1</td>
<td>&amp;S1</td>
<td>&amp;W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 51  AUX and Platform Specific Settings (continued)

<table>
<thead>
<tr>
<th>Modem</th>
<th>Settings for Use with AUX Port</th>
<th>Other Settings</th>
<th>Write Memory</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel External</td>
<td>E0</td>
<td>Q1</td>
<td><em>NA</em></td>
<td>&amp;W</td>
</tr>
<tr>
<td>Practical Peripherals</td>
<td>E0</td>
<td>Q1</td>
<td><em>NA</em></td>
<td>&amp;W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Based on PC288LCD. May vary.</td>
</tr>
</tbody>
</table>

Table 52 contains a legend of symbols used in Table 50 and Table 51.

Table 52  Legend to Symbols Used in Modem Chart

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>NA</em></td>
<td>This option is not available on the noted modem.</td>
</tr>
<tr>
<td>--&gt;</td>
<td>The command noted on the right will handle that function.</td>
</tr>
<tr>
<td>&lt;--</td>
<td>The command noted on the left will handle that function.</td>
</tr>
<tr>
<td>AUX port</td>
<td>These parameters are only required for pre-9.21 AUX ports or any other port without modem control set.</td>
</tr>
</tbody>
</table>

Sample Modem Scripts

The following are several modem command strings that are appropriate for use with your access server or router. For use with the access server, Speed=xxxxxx is a suggested value only. Set the DTE speed of the modem to its maximum capability. By making a reverse Telnet connection in the EXEC mode to the port on the access server where the modem is connected, then sending an at command followed by a carriage return.

In the following example, the modem is attached to asynchronous interface 2 on the access server. The IP address indicated as the server-ip-address is the IP address of the Ethernet 0 interface. The administrator connects from the EXEC to asynchronous interface 2, which has its IP address assigned from Ethernet 0.

```plaintext
2511> telnet server-ip-address port-number
192.156.154.42 2002

AST Premium Exec Internal Data/Fax (MNP 5)
Init=AT&F&C1&D3\G0\J0\N3\Q2S7=60S0=1&W
Speed=9600

ATi 9600etc/e (V.42bis)
Init=AT&FW2&B1&C1&D3&K3&Q6&U1S7=60S0=1&W
Speed=38400

AT&T Paradyne KeepInTouch Card Modem (V.42bis)
Init=AT&FX6&C1&D3\N7\Q2&C1S7=60S0=1&W
Speed=57600
```
Sample Modem Scripts

**AT&T ComSphere 3800 Series (V.42bis)**
Init=AT&FX6&Cl&D2;D5\Q2%Cl*H3S7=60S0=1&W
Speed=57600

**AT&T DataPort Fax Modem (V.42bis)**
Init=AT&FX6&Cl&D2;D7\Q2%ClS7=60S0=1&W
Speed=38400

**Boca Modem 14.4K/V.32bis (V.42bis)**
Init=AT&FW2&Cl&D3&K3&Q5%Cl\N3S7=60S36=67S46=17S95=547S0=1&W
Speed=57600

**CALPAK MXE-9600**
Init=AT&F&Cl&D3S7=60S0=1&W
Speed=9600

**Cardinal 2450MNP (MNP 5)**
Init=AT&F&Cl&D3\JO\N3\Q2\V1%ClS7=60S0=1&W
Speed=9600

**Cardinal 9650V32 (MNP)**
Init=AT&F&Bl&Cl&D3&H1&I1%M6S7=60S0=1&W

**Cardinal 9600V42 (V.42bis)**
Init=AT&FN2&Cl&D3&K3&Q5%N3%Cl%M3S7=60S46=13S48=7S95=3S0=1&W
Speed=38400

**Cardinal 14400 (V.42bis)**
Init=AT&F&Cl&D3&K3&Q5%N3%Cl%M3S7=60S46=13S48=7S95=47S0=1&W
Speed=57600

**COMPAQ SpeedPAQ 144 (V.42bis)**
Init=AT&F&Cl&D3&K3&Q5\J0\N3%ClS7=60S36=67S46=2S48=7S95=47S0=1&W
Speed=57600

**Data Race RediMODEM V.32/V.32bis**
Init=AT&F&Cl&D3&K3&Q6\J0\N7\Q3\V2%ClS7=60 Speed=38400S0=1&W

**Dell NX20 Modem/Fax (MNP)**
Init=AT&F&Cl&D3\C1\J0\N3\Q3\V1W2S7=60S0=1&W
Speed=9600

**Digicom Systems (DSI) 9624LE/9624PC (MNP 5)**
Init=AT&F&Cl&D3*E1*F3*S1S7=60S0=1&W

**Digicom Systems (DSI) 9624LE+ (V.42bis)**
Init=AT&F&Cl&D3*E9*F3*N6*S1S7=60S0=1&W
Speed=38400

**Everex Evercom 24+ and 24E+ (MNP 5)**
Init=AT&F&Cl&D3\J0\N3\Q2\V1%ClS7=60S0=1&W
Everex EverFax 24/96 and 24/96E (MNP 5)
Init=AT&F&C1&D3\J0\N3\Q2\V1&C1S7=60S0=1&W
Speed=9600

Everex Evercom 96+ and 96E+ (V.42bis)
Init=AT&FW2&C1&D3\J0\N3\Q2\V2&C1S7=60S0=1&W
Speed=38400

Freedom Series V.32bis Data/FAX Modem
Init=AT&F&C1&D3&K3&Q6\J0\N7\Q3\V2&C1S7=60S0=1&W
Speed=38400

Gateway 2000 TelePath
Init=AT&FW2&C1&D3&K3&Q5\N3&C1S7=60S36=7S46=138S48=7S95=47S0=1&W
Speed=38400

Gateway 2000 Nomad 9600 BPS Internal Modem
Init=AT&F&C1&D3%C1\J0\N3\Q2S7=60S0=1&W
Speed=38400

GVC SM-96V (V.42bis)
Init=AT&F&C1&D3%C1\J0\N6\Q2\V1S7=60S0=1&W
Speed=38400

GVC SM-144V (V.42bis)
Init=AT&F&C1&D3%C1\J0\N6\Q2\V1S7=60S0=1&W
Speed=57600

Hayes Smartmodem Optima 9600 (V.42bis)
Init=AT&FW2&C1&D3&K3&Q5S7=60S46=138S48=7S95=47S0=1&W
Speed=38400

Hayes Smartmodem Optima 14400 (V.42bis)
Init=AT&FW2&C1&D3&K3&Q5S7=60S46=138S48=7S95=47S0=1&W
Speed=57600

Hayes Optima 28800 (V.34)
Init=AT&FS0=1&C1&D3&K3&Q6&Q5&Q9&W
Speed=115200

Hayes V-series Smartmodem 9600/9600B (V.42)
Init=AT&F&C1&D3&K3&Q5S7=60S0=1&W
Speed=9600

Hayes V-series ULTRA Smartmodem 9600 (V.42bis)
Init=AT&F&C1&D3&K3&Q5S7=60S46=2S48=7S95=63S0=1&W
Speed=38400

Hayes V-series ULTRA Smartmodem 14400 (V.42bis)
Init=AT&FW2&C1&D3&K3&Q5S7=60S38=10S46=2S48=7S95=63S0=1&W
Speed=38400
Hayes ACCURA 24 EC (V.42bis)
Init=AT&FN2&C1&D3&K3&Q5&S7=60S36=7S46=138S48=7S95=47S0=1&W

Hayes ACCURA 96 EC (V.42bis)
Init=AT&FN2&C1&D3&K3&Q5&S7=60S36=7S46=138S48=7S95=47S0=1&W
Speed=38400

Hayes ACCURA 144 EC (V.42bis)
Init=AT&FN2&C1&D3&K3&Q5&S7=60S36=7S46=138S48=7S95=47S0=1&W
Speed=57600

Hayes ISDN System Adapter
Init=AT&FW1&C1&D3&K3&Q0&S7=60S0=1&W
Speed=57600

IBM 7855 Modem Model 10 (MNP)
Init=AT&F&C1&D3\N3\Q2\V1\C1&S7=60S0=1&W

IBM Data/Fax Modem PCMCIA (V.42bis)
Init=AT&F&C1&D3&K3&Q5\C3\N3&S7=60S38=7S46=138S48=7S95=47S0=1&W
Speed=57600

Identity ID9632E
Init=AT&F&C1&D3&S7=60S0=1&W
Speed=9600

Infotel V.42X (V.42bis)
Init=AT&F&C1&D3&S7=30S36=7S0=1&W
Speed=9600

Infotel V.32 turbo (V.42bis)
Init=AT&FW1&C1&D3&K3&Q5&S7=60S0=1&W
Speed=38400

Infotel 144I (V.42bis)
Init=AT&F&C1&D3&K3&Q5\N3&C1&S7=60S36=7S46=138S48=7S95=47S0=1&W
Speed=38400

Intel 9600 EX (V.42bis)
Init=AT&F&C1&D3\J0\N3\Q2\V2&C1*H3&S7=60S0=1&W
Speed=38400

Intel 14400 EX (V.42bis)
Init=AT&F&C1&D3\J0\N3\Q2\V2&C1*H3&S7=60S0=1&W
Speed=38400

Macronix MaxFax 9624LT-S
Init=AT&F&C1&D3&K3&Q9\J0\N3\Q3&C1&S7=60S36=7S46=138S48=7S95=47S0=1&W
Speed=9600

Megahertz T3144 internal (V.42bis)
Init=AT&F&C1&D3\C1\J0\N3\Q2\V2&S7=60S0=1&W
Speed=57600
Megahertz T324FM internal (V.42bis)
Init=AT&T&C1&D%C1\J0\N3\Q2\V1\S7=60\S46=138\S48=7\S0=1&W
Speed=9600

Megahertz P2144 FAX/Modem (V.42bis)
Init=AT&T&C1&D%C1\J0\N7\Q2\V2\S7=60\S0=1&W
Speed=38400

Megahertz T396FM internal (V.42bis)
Init=AT&T&W2&C1&D3%C1\J0\N7\Q2\V2\S7=60\S0=1&W
Speed=38400

Megahertz CC3144 PCMCIA card modem (V.42bis)
Init=AT&T&C1&D3&K3&Q5%C3\N3\S7=60\S38=7\S46=138\S48=7\S95=47\S0=1&W
Speed=57600

Microcom AX/9624c (MNP 5)
Init=AT&T&C1&D3\G0\J0\N3\Q2\C1\S7=60\S0=1&W
Speed=9600

Microcom AX/9600 Plus (MNP 5)
Init=AT&T&C1&D3\J0\N3\Q2\S7=60\S0=1&W

Microcom QX/V.32c (MNP 5)
Init=AT&T&C1&D3\J0\C3\N3\Q2\S7=60\S0=1&W
Speed=38400

Microcom QX/4232hs (V.42bis)
Init=AT&T&C1&D3\J0\C3\N3\Q2-K0\V2\S7=60\S0=1&W
Speed=38400

Microcom QX/4232bis (V.42bis)
Init=AT&T&C1&D3\J0\C3\N3\Q2-K0\V2\S7=60\S0=1&W
Speed=38400

Microcom Deskporte 28800 (V.34)
Init=AT&T&C1&Q1\E0\S0=1&W
Speed=115200

Microcom MicroPorte 542 (V.42bis)
Init=AT&T&C1&D3&Q5\S7=60\S46=138\S48=7\S95=47\S0=1&W
Speed=9600

Microcom MicroPorte 1042 (V.42bis)
Init=AT&T&C1&D3%C3\J0-M0\N6\Q2\V2\S7=60\S0=1&W
Speed=9600

Microcom MicroPorte 4232bis (V.42bis)
Init=AT&T&C1&D3%C3\G0\J0-M0\N6\Q2\V2\S7=60\S0=1&W
Speed=38400
Microcom DeskPorte FAST
Init=ATX4S7=60-M1\V4\N2L1S0=1&W
Speed=57600

Motorola/Codex 3220 (MNP)
Init=AT&F&C1&D3*DC1*FL3*MF0*SM3*XC2S7=60S0=1&W

Motorola/Codex 3220 Plus (V.42bis)
Init=AT&F&C1&D3*DC1*EC0*MF0*SM3*XC2S7=60S0=1&W
Speed=38400

Motorola/Codex 326X Series (V.42bis)
Init=AT&F&C1&D3*FL3*MF0*SM3*TT2*XC2S7=60S0=1&W
Speed=38400

MultiTech MultiModem V32EC (V.42bis)
Init=AT&FX4&C1&D3$BA0&E1&E4&E15#L0S7=60S0=1&W
Speed=38400

MultiTech MultiModem V32 (no MNP or V.42)
Init=AT&F&C1&D3S7=60S0=1&W
Speed=9600

MultiTech MultiModem 696E (MNP)
Init=AT&F&C1&D3$BA0&E1&E4&E15S7=60S0=1&W

MultiTech MultiModem II MT932 (V.42bis)
Init=AT&FX4&C1&D3$BA0&E1&E4&E15#L0S7=60S0=1&W
Speed=38400

MultiTech MultiModem II MT1432 (V.42bis)
Init=AT&FX4&C1&D3#A0$BA0&E1&E4&E15#L0S7=60S0=1&W
Speed=57600

NEC UltraLite 14.4 Data/Fax Modem (V.42bis)
Init=AT&F&C1&D3&K3&Q4\J0\N7\Q2W2&C1S7=60S0=1&W
Speed=38400

Practical Peripherals PC28800SA (V.42bis)
Init=AT&F&C1&D3&K3&Q5S7=60S36=7S46=2S48=7S95=47S0=1&W
Speed=115200

Practical Peripherals PM9600SA (V.42bis)
Init=AT&F&C1&D3&K3&Q5S46=13S48=7S7=60S0=1&W
Speed=38400

Practical Peripherals PM14400FX (V.42bis)
Init=AT&F&C1&D3&K3&Q5S7=60S36=7S46=2S48=7S95=47S0=1&W
Speed=57600

Practical Peripherals PM14400SA (V.42bis)
Init=AT&F&C1&D3&K3&Q5S7=60S36=7S46=2S48=7S95=47S0=1&W
Speed=57600
Prometheus ProModem 9600 Plus (V.42)
Init=AT&F&C1&D3*E7+F3S7=60S0=1&W

Prometheus ProModem Ultima (V.42bis)
Init=AT&F&C3&D3*E9+F3+N6*S1S7=60S0=1&W
Speed=38400

Racal Datacomm ALM 3223 (V.42bis)
Init=AT&F&C1&D3\M0\N3\P2\Q1\V1S7=60S0=1&W
Speed=57600

Supra FAXModem V.32bis (V.42bis)
Init=AT&FN1W2&C1&D1&K3&Q5\N3%C1S7=60S36=7S46=7S95=45S0=1&W
Speed=57600

Telebit T1600 (V.42bis)
Init=AT&FX2&C1&D3&R3S7=60S51=6S58=0S59=15S68=2S180=2S190=1S0=1&W
Speed=38400

Telebit T2500 (V.42bis)
Init=AT&FX2&C1&D3&R3S7=60S51=6S58=0S59=15S68=2S180=2S190=1S0=1&W
Telebit T3000 (V.42bis)
Init=AT&FX2&C1&D3&S51=6S59=7S68=2S7=60S0=1&W
Speed=38400

Telebit QBlazer (V.42bis)
Init=AT&FX2&C1&D3&S59=7S68=2S7=60S0=1&W
Speed=38400

Texas Instruments V.32bis Internal Modem
Init=AT&F&C1&D3%C1\J0\N7\Q2\V2S7=60S0=1&W
Speed=38400

Toshiba T24/DF Internal
Init=AT&F&C1&D3\J0\N3\Q2%C1S7=60S36=7S46=138S48=7S0=1&W
Speed=9600

Universal Data Systems FasTalk V.32/42b (V.42bis)
Init=AT&F&C1&D3\J0\M0\N7\V1\Q2%C1S7=60S0=1&W
Speed=38400

Universal Data Systems V.32 (no MNP or V.42)
Init=AT&F&C1&D2S7=60S0=1&W
Speed=9600

Universal Data Systems V.3224 (MNP 4)
Init=AT&F&C1&D2\J0\N3\Q2S7=60S0=1&W

Universal Data Systems V.3225 (MNP 5)
Init=AT&F&C1&D2\J0\N3\Q2%C1S7=60S0=1&W
Universal Data Systems V.3227 (V.42bis)
Init=AT&F&C1&D2\J0\M0\N7\Q2&C1S7=60S0=1&W
Speed=38400

Universal Data Systems V.3229 (V.42bis)
Init=AT&F&C1&D3\J0\M0\N7\Q2&C1S7=60S0=1&W
Speed=38400

US Robotics Sportster 9600 (V.42bis)
Init=AT&FX4&A3&B1&D3&H1&I0&K1&M4S7=60S0=1&W
Speed=38400

US Robotics Sportster 14400 (V.42bis)
Init=AT&FX4&A3&B1&D3&H1&I0&K1&M4S7=60S0=1&W
Speed=57600

US Robotics Sportster 14400 (V.42bis) x
Init=AT&FX4&B1&C1&D2&H1&K1&M4E0X7Q0V1S0=1&W
Speed=57600

US Robotics Sportster 28800 (V.34)
Init=AT&FS0=1&C1&D2&H1&R2&N14&B1&W
Speed=115200

US Robotics Courier 28800 (V.34)
Init=AT&FS0=1&C1&D2&H1&R2&N14&B1&W
Speed=115200

US Robotics Sportster V.32bis (V.42bis)
Init=AT&FX4&A3&C1&D2&M4&H1&K1&B1S0=1&W
Speed=38400

US Robotics Courier HST Dual Standard (V.42bis)
Init=AT&FB0X4&A3&C1&D2&M4&H1&K1&R2&S1S0=1&W
Speed=115200

US Robotics Courier HST (V.42bis)
Init=AT&FB0X4&A3&C1&D2&M1&H1&K1&B1S0=1&W
Speed=115200

US Robotics WorldPort 2496 FAX/Data (V.42bis)
Init=AT&FX4&C1&D3&C1*H3\J0-J1\N3\Q2\V2S7=60S0=1&W
Speed=57600

US Robotics WorldPort 9696 FAX/Data (MNP 5)
Init=AT&FX4&C1&D3&C1\J0\N3\Q2\V2S7=60S0=1&W

US Robotics WorldPort 9600 (MNP 5)
Init=AT&FX4&C1&D3&C1\J0\N3\Q2\V2S7=60S0=1&W

US Robotics WorldPort 14400 (V.42bis)
Init=AT&FX4&A3&B1&C1&D3&H1&K1&M4S7=60S0=1&W
Speed=57600
Ven-Tel PCM 9600 Plus (MNP)
Init=AT&FB0&C1&D3\N3\Q3\B0\C1\F1S7=60S0=1&W

ViVa 9642e (V.42bis)
Init=AT&F&C1&D3&K3&Q5\N3&C3S7=60S36=138S48=7S95=47S0=1&W
Speed=38400

ViVa 14.4/FAX (V.42bis)
Init=AT&F&C1&D3&K3&Q5\N3&C3S7=60S36=138S48=7S95=47S0=1&W
Speed=38400

ZOOM V.32 turbo (V.42bis)
Init=AT&FW1&C1&D3&K3&Q5\C1\N3S7=60S36=138S48=7S95=47S0=1&W
Speed=38400

ZOOM V.32bis (V.42bis)
Init=AT&FW1&C1&D3&K3&Q9\C1\N3S7=60S36=7S95=47S0=1&W
Speed=38400

Zyxel U-1496 (V.42bis)
Init=AT&FX6&B1&C1&D2&N0&K4\H3S7=60S0=1&W
Speed=57600
Index
Symbols

<cr> xlix
? command xlvii

A

AAA (authentication, authorization, and accounting)
large-scale dial-out network security services DC-683
preauthentication overview DC-732
virtual profiles
AAA configuration (example) DC-501, DC-504
virtual template configuration (example) DC-502
VPN
configuring DC-524
local tunnel authentication DC-530
local tunnel authentication (examples) DC-565
VPN per-user configuration DC-538
AAA/TACACS+
PPP authentication, enabling DC-395, DC-599
undefined list name, (caution) DC-598
aaa accounting command DC-683
aaa authentication command DC-683
aaa authentication ppp command DC-395, DC-598, DC-599
aaa authorization command DC-683
aaa authorization configuration default command DC-684
aaa new-model command DC-683, DC-684
aaa route download command DC-684
accept-dialin command DC-535
accept-dialout command DC-537
access control
asynchronous interfaces (example) DC-38
legacy DDR, configuring DC-367, DC-398 to DC-399
outgoing calls, configuring DC-265, DC-367
access-list command DC-265, DC-351, DC-355
access lists
DDR
DECnet DC-354, DC-368
IP DC-352
packets, interesting DC-398
transparent bridging DC-351
VINES DC-354
XNS DC-355
dialer groups DC-356
dialer profiles
DECnet DC-428
Ethernet type codes DC-432
IP DC-429
VINES DC-428
XNS DC-430
legacy DDR, interface assignment DC-367, DC-398
access restrictions, asynchronous interfaces DC-38
addresses
asynchronous interfaces DC-33
default, configuring DC-33
dynamic, configuring DC-33
unnumbered interfaces DC-32
unnumbered interfaces, (example) DC-42
addressing
Cisco Easy IP configuration (examples) DC-479
dynamic, configuring DC-42
address pooling
DHCP DC-605
global default mechanism, local pooling DC-606
ANI/DNIS (automatic number identification/dialed number identification service)
delimiter, configuring \textbf{DC-277}

ANI/DNIS Delimiter for CAS Calls on CT1 feature \textbf{DC-277}

AO/DI (Always On/Dynamic ISDN)

BACP and BAP negotiation \textbf{DC-239}

BACP default settings \textbf{DC-243}

called number prefix \textbf{DC-243}

called party number formats \textbf{DC-243}

clients

calls, starting \textbf{DC-242}

call configuration (example) \textbf{DC-245}

configuring \textbf{DC-242}

interface configuration \textbf{DC-242}

PPP and BAP configuration \textbf{DC-239}

X.25 configuration \textbf{DC-240}

interfaces, configuring \textbf{DC-242}

link member receive only mode \textbf{DC-242}

MLP bundle

multiple links, configuring \textbf{DC-242}

process description \textbf{DC-238}

national and subscriber number formats \textbf{DC-243}

overview \textbf{DC-235, DC-236}

PPP over X.25 \textbf{DC-237}

servers

BACP default settings \textbf{DC-244}

client calls, configuring \textbf{DC-243}

configuring \textbf{DC-243}

configuring, (example) \textbf{DC-246}

incoming calls \textbf{DC-243}

MLP bundle, configuring \textbf{DC-244}

no outgoing option \textbf{DC-243}

PPP and BAP, configuring \textbf{DC-240}

traffic load \textbf{DC-244}

X.25

configuring \textbf{DC-241}

defaults \textbf{DC-241}

virtual access interface \textbf{DC-237}

X.25 SVC \textbf{DC-236}

AOC (Advice of Charge)

ISDN subscription service \textbf{DC-314}

See also ISDN, Advice of Charge

AOL (America Online), wholesale dial performance optimization \textbf{DC-779}

AppleTalk

DDR, configuring \textbf{DC-353}

dialer profiles, configuring \textbf{DC-428}

PPP, configuring \textbf{DC-580, DC-602}

appletalk address command \textbf{DC-609}

appletalk cable-range command \textbf{DC-609}

appletalk client-mode command \textbf{DC-580}

appletalk virtual-net command \textbf{DC-580}

ARA (AppleTalk Remote Access)

automatic sessions, starting \textbf{DC-27}

arap callback command \textbf{DC-647}

arap enable command \textbf{DC-647}

Ascend attributes, AV pairs (table) \textbf{DC-686}

async default routing command \textbf{DC-31}

async dynamic address command \textbf{DC-34, DC-860}

async dynamic routing command \textbf{DC-31}

asynchronous group interfaces

CHAP authentication \textbf{DC-20, DC-22}

IP unnumbered \textbf{DC-21}

PAP authentication \textbf{DC-20, DC-22}

PPP encapsulation \textbf{DC-20, DC-21}

verifying \textbf{DC-22}

asynchronous host mobility, configuring \textbf{DC-581}

asynchronous host roaming (example) \textbf{DC-581}

asynchronous interfaces

addressing methods

configuring \textbf{DC-31}

description \textbf{DC-33}

bandwidths

configuring optimal \textbf{DC-34}

broadcasts on \textbf{DC-577}

dedicated network mode (example) \textbf{DC-38}

default addresses, configuring \textbf{DC-33}

dynamic addresses, configuring \textbf{DC-33}

dynamic addressing (example) \textbf{DC-42}
group and member (examples) DC-39
IPX loopback interfaces DC-579
large-scale dial-out (example) DC-696
low bandwidth DC-576
modem configuration (examples) DC-77
monitoring DC-38
network interface (example) DC-43
routing configuration (example) DC-577
TCP/IP header compression
(configuring DC-34
troubleshooting DC-21
Asynchronous Rotary Line Queueing feature DC-25
async mode dedicated command DC-32
async mode interactive command DC-32, DC-581
AT&T latched CSU loopback, specification DC-294
ATCP (AppleTalk Control Protocol)
PPP, enabling DC-580
authen before-forward command DC-539
autocommand command DC-47
autocommand telnet /stream command DC-780
autocommand telnet-faststream command DC-781
autodetect encapsulation command DC-199, DC-201, DC-265
autohangup command DC-163
autoselect arap command DC-647
autoselect command DC-27, DC-70
autoselect during-login command DC-70
Autoselect incoming protocol sensor DC-27
autoselect ppp command DC-643, DC-645
auxiliary ports
asynchronous serial interfaces, configuring DC-29
AV (attribute-value) pairs
AAA server attributes DC-703
Ascend attributes DC-685
Ascend attributes (table) DC-686
map class DC-685
per-user configuration attributes DC-703
RADIUS attributes DC-685
RADIUS attributes (table) DC-704
TACACS attributes (table) DC-704

B
backup delay command DC-452
backup interface command DC-451
backup interfaces
dialer profiles DC-455, DC-459
overview DC-449
See also dial backup, serial interfaces; serial interfaces
backup load command DC-451
BACP (Bandwidth Allocation Control Protocol)
active mode DC-668
BRI interface (example) DC-673
configuring DC-671
dialer interfaces only DC-668
BRI interface (example) DC-676
configuration (examples) DC-673 to DC-676
configuration options DC-668
default parameter values, configuring DC-671
default passive mode DC-670, DC-683
default settings DC-671
dialer rotary
different dial-in numbers (example) DC-674
one dial-in number (example) DC-675
dialer support, legacy DDR DC-668, DC-681
interfaces
monitoring DC-672
physical restrictions DC-668
serial DC-668
virtual DC-668
line speeds DC-669
link types DC-669
multilink bundle creation (example) DC-674
operating environments DC-667
outgoing calls, dialer maps used for DC-672
passive mode
default DC-668
dialer rotary group (example) DC-673
virtual template interface (example) DC-674
PPP bandwidth allocation control, configuring DC-670
prerequisites DC-667
PRI (example) DC-676
temporary dialer maps DC-672
troubleshooting DC-673
bandwidth command DC-669
bandwidth on demand, load threshold DC-371, DC-401
bandwidths, configuring optimal DC-34
banners
  SLIP-PPP DC-587
  SLIP-PPP (example) DC-589
tokens DC-587
banner slip-ppp command DC-587
binding, DNIS-plus-ISDN-subaddress DC-189
black box screening
  See RPM, call discriminator profiles; Cisco RPM CLID/DNIS Discriminator feature
BOOTP (Bootstrap Protocol) requests DC-576
bridge group command DC-397, DC-398, DC-433
bridge protocol command DC-351, DC-431
broadcasts
  asynchronous interfaces DC-577
  asynchronous serial traffic over UDP DC-45
buffers command DC-182, DC-206
bundles
  MLP Inverse Multiplexer DC-619
  MMP DC-633
busyout, ISDN B channel (example) DC-298

C

callback
ARA
  chat scripts DC-647
  clients DC-647
asynchronous
  configuring DC-643
  overview DC-643
authentication DC-643
chat scripts DC-646
modem rest period, configuring DC-646
PPP
  clients DC-644 to DC-645
dial string DC-645
callback forced-wait command DC-645, DC-646, DC-647
calls
  analog modem DC-59
  analog robbed-bit signaling DC-258
  channel-associated signaling DC-258
circuit-switched digital DC-10
  incoming V.120 asynchronous DC-198
  incoming voice
    configuring modem for DC-266
  ISDN not end-to-end DC-187
  ISDN voice DC-176, DC-180, DC-195
  outgoing access control DC-265, DC-367
  preauthenticate incoming DC-732
  prevent incoming DC-163
toll DC-644
blocking
  See ISDN PRI, class of restrictions
Call Tracker plus ISDN and AAA Enhancements for the Cisco AS5300 and Cisco AS5800 feature DC-93, DC-269
call-type cas command DC-743
call-type cas digital command DC-756
CAPI (Common Application Programming Interface)
  B-channel protocols supported DC-249
    features DC-248
    overview DC-247 to DC-251
  protocols supported DC-248
  carriage return (\r) xlix
carrier wait time, dialer profiles DC-426
CAS (channel-associated signaling)
  (examples) DC-307
  analog calls DC-258
  channelized E1 DC-275
common forms of      DC-277
ruta-group command   DC-282, DC-756
ruta-group timeslots command DC-276
cause codes
   See ISDN, cause codes
cautions
   undefined AAA/TACACS+ list  DC-598
   usage in text  xli
   virtual template interface erroneous routing  DC-638
changed information in this release  xli
channelized E1
channel-associated signaling, analog calls  DC-275
channel groups
   (example)  DC-299
   interface loopbacks, troubleshooting  DC-293, DC-294
   serial interfaces  DC-293
channel uses  DC-258
description  DC-11
ISDN PRI
   configuring  DC-260
   D-channel number  DC-260
PRI groups (example)  DC-299
R2 signaling  DC-275
channelized T1
ANI/DNIS delimiters on incoming T1 trunk lines  DC-277
channel groups
   (example)  DC-299
   interface loopbacks, troubleshooting  DC-293, DC-294
   serial interfaces  DC-293
channel uses  DC-258
description  DC-11
ISDN PRI
   configuring  DC-261
   D-channel number  DC-262
PRI groups (example)  DC-299
switched 56K  DC-278
   See also switched 56K
   voice channels, configuring  DC-277
channels
   ISDN 2 B + D
   BRI  DC-12
   logical relationship  DC-13
   PRI  DC-13
CHAP (Challenge Handshake Authentication Protocol)
   challenge packet  DC-597
   encrypted password (examples)  DC-621
   PAP authentication order  DC-598
chat-script command  DC-167, DC-645
chat scripts
   (examples)  DC-169, DC-171
   ARA (example)  DC-647
   asynchronous lines  DC-365
   escape sequences (table)  DC-167
   expect-send pairs (table)  DC-168
   large-scale dial-out  DC-696
   naming conventions  DC-166
   PPP callback, configuring  DC-646
Cisco 700 and 800 series routers
   Combinet Proprietary Protocol  DC-264, DC-321
   protocols supported  DC-321
Cisco 7500 MLP Inverse Multiplexer  DC-618
Cisco AS5200 access servers
   analog calls over E1, configuring  DC-276
   CAS on channelized E1, configuring  DC-275
   channelized E1/T1, channel uses  DC-258
   R1 modified signaling, configuring  DC-290
Cisco AS5300 access servers
   analog calls over E1, configuring  DC-276
   busyout B channel  DC-269
   CAS on channelized E1, configuring  DC-275
   CAS on T1 voice channels, configuring  DC-277
   R1 modified signaling, configuring  DC-290
Cisco AS5800 access servers
   busyout B channel  DC-269
   CAS on channelized E1, configuring  DC-275
   CAS on T1 voice channels, configuring  DC-277
   R1 modified signaling configuration (examples)  DC-312
TCP Clear performance optimization DC-780
Cisco Easy IP
  address strategy DC-790
  async interface configuration (examples) DC-480
  business applications DC-790
  configuring DC-476
  dialer interfaces, configuring DC-478
  dial strategy DC-790
  dynamic NAT translation timeout period DC-479
ISDN BRI configuration (examples) DC-479
LAN interfaces, configuring DC-477
  dialer interfaces, configuring DC-478
  LAN interfaces, configuring DC-477
  pool, configuring DC-477, DC-486
overview DC-473, DC-790
PPP/IPCP negotiation DC-478
prerequisites DC-476
WAN interfaces, configuring DC-477
Cisco IOS configuration changes, saving lii
Cisco MICA Modem Dial Modifiers feature DC-76
Cisco RPM CLID/DNIS Call Discriminator feature DC-731
clear dialer command DC-376, DC-406, DC-444
clear dialer sessions command DC-690
clear dsip tracing command DC-125
clear interface virtual-access command DC-486
clear ip route download command DC-690
clear line command DC-21
clear modem at-mode command DC-77
clear port log command DC-139
clear resource-pool command DC-758
clear snapshot quiet-time command DC-444
clear spe counters command DC-139
clear spe log command DC-139
clear vpdn tunnel command DC-540
client-initiated VPNs DC-509
clns filter-set command DC-355
clock source command DC-276, DC-282
cloning
  virtual access interfaces DC-484
  virtual profiles DC-491
Combinet
  See Cisco 700 and 800 series routers
command modes
  dedicated network interfaces, configuring DC-31
  interactive sessions, configuring DC-31
understanding xlvi to xlvi
commands
  context-sensitive help for abbreviating xlvi
  no form, using li
command syntax
  conventions xli
  displaying (example) xlix
compress command DC-602
compressions
  Microsoft PPP DC-601
  MLP DC-195
  predictor (example) DC-194
  Stacker (example) DC-194
compress predictor command DC-600
compress stac command DC-601
compulsory tunneling
  See NAS-initiated VPNs
connections
  dial-in DC-70, DC-71
  LLC2 NetBEUI clients over PPP DC-583
  PPP DC-582
printers
  configuration (example) DC-62
  configuring DC-163
reverse modem DC-163
semipermanent ISDN
  BRI DC-185
  Germany, Australia DC-190
  semipermanent ISDN PRI DC-265
SLIP  DC-583
TCP
  connection attempt time, configuring  DC-585
controller e1 command  DC-260, DC-276
controllers
  E1, description  DC-11
  T1, description  DC-11
controller t1 command  DC-261, DC-281
CSU loopbacks
  AT&T specification  DC-294
  latched  DC-294
customer profiles
  See profiles, RPM

data compression, modem negotiation  DC-77, DC-155
DDR (dial-on-demand routing)
  access lists
    dialer groups  DC-356
    routed protocols, configuring  DC-352
AppleTalk, configuring  DC-353
bridged protocols  DC-349, DC-363
chat scripts
  configuring  DC-165
  enabling  DC-171
configuration (examples)  DC-356 to DC-359
decision flowchart  DC-345
DECnet
  configuring  DC-354
  control packets  DC-354, DC-369
dependent implementation decisions  DC-348
dialer profiles
  virtual profile interoperation, configuring  DC-490
fast switching  DC-402, DC-433
independent implementation decisions  DC-347
interesting packets  DC-367
interfaces  DC-349, DC-350, DC-364, DC-392
IP, configuring  DC-352, DC-366
IPX, configuring  DC-353
ISDN PRI configuration (example)  DC-296
ISO CLNS, configuring  DC-355
large-scale dial-out  DC-679
routed protocols  DC-349, DC-351, DC-363, DC-366
snapshot routing  DC-441
  See also snapshot routing
transparent bridging  DC-350
  permit all packets  DC-351
  type code access  DC-351
uninteresting packets  DC-367
VINES, configuring  DC-354
XNS, configuring  DC-355
  See also dialer profiles; legacy DDR
debug aaa authorization command  DC-708, DC-760, DC-767
debug aaa per-user command  DC-499, DC-708, DC-738
debug async async-queue command  DC-26
debug async command  DC-21
debug csm command  DC-763
debug dialer command  DC-192, DC-272, DC-322, DC-499, DC-550
debug ip tcp transactions command  DC-26
debug isdn events command  DC-192, DC-272, DC-661
debug isdn q921 command  DC-322
debug isdn q931 command  DC-71, DC-322, DC-661, DC-762
debug modem command  DC-26, DC-71
debug modem csm command  DC-71, DC-762
debug ppp bap command  DC-673
debug ppp chap command  DC-21
debug ppp command  DC-551
debug ppp error command  DC-21
debug ppp multilink events command  DC-673
debug ppp negotiation command  DC-21
debug ppp packet command  DC-21
debug q921 command  DC-192, DC-272
debug q931 command  DC-192, DC-272
debug rcapi events command  DC-252
debug redundancy command  DC-125
debug resource pool command  DC-760
debug trunk cas port timeslots command  DC-763
debug udptn command  DC-47
debug vpdn commands  DC-548
debug vpdn event command  DC-549, DC-755
debug vpdn l2x command  DC-755
debug vpdn l2x-events command  DC-549, DC-550
debug vtemplate command  DC-499

DECnet
  DDR
    access lists  DC-354
    configuring  DC-354, DC-369
caller commands
  control packets
  dialer profiles
    access lists  DC-429
    configuring  DC-429
    control packets  DC-429
dedicated mode
  asynchronous interfaces, configuring  DC-31
caller command  DC-681
configuration (example)  DC-38
DHCP (Dynamic Host Configuration Protocol)
  configuration (examples)  DC-40
dial backup
  bidirectional dial  DC-811
caller command  DC-681
central site configurations  DC-794
caller command  DC-681
dial-in configurations  DC-795
caller command  DC-681
dialer profiles
  access lists  DC-455 to DC-457
  configuring  DC-8
  control packets  DC-455
  dialer interfaces
  dialer interfaces, configuring  DC-456
  ISDN BRI (example)  DC-457
  physical interfaces  DC-456
  ISDN channels  DC-453
dedicated mode
  ISDN channels  DC-453
dial backup
  ISDN channels  DC-453
  dialer interfaces  DC-8
  dialer interfaces, configuring  DC-456
  ISDN BRI (example)  DC-457
  physical interfaces  DC-456
  ISDN channels  DC-453
load threshold exceeded (examples)  DC-453
load threshold reached (examples)  DC-453
dialer command  DC-486, DC-537
dialer cntr command  DC-657, DC-660
dialer dns command  DC-684
dialer dnss command  DC-684
dialer dns command  DC-684
dialer enable-timeout command  DC-370, DC-400, DC-653, DC-659, DC-660
dialer fast-idle command  DC-370, DC-400, DC-426
dialer-group command  DC-185, DC-208, DC-239, DC-241, DC-265, DC-369, DC-399, DC-425, DC-431, DC-456, DC-479, DC-613, DC-612
dialer hold-queue command  DC-371, DC-401, DC-478, DC-652, DC-653
dialer idle-timeout command  DC-315, DC-369, DC-400, DC-479, DC-612
dialer in-band command  DC-239, DC-240, DC-364, DC-611, DC-613, DC-652, DC-653
dialer interfaces
  See dialer profiles, dialer interfaces  DC-8
dialer isdn command  DC-426
dialer isdn short-hold command  DC-315
dialer-list command  DC-208, DC-356
dialer-list protocol (Dial) command  DC-185
dialer-list protocol bridge command  DC-351, DC-368, DC-431, DC-432
dialer-list protocol command  DC-356, DC-425
dialer-list protocol list command  DC-356
dialer load threshold
  MLP  DC-613
    idle timers  DC-612
    Multilink PPP
      async interface  DC-611
BRI, configuring single DC-612
BRIs in rotary group DC-613
idle timers DC-613
dialer load threshold command DC-239, DC-241, DC-371, DC-402, DC-611, DC-612, DC-613
dialer map class DC-423, DC-442
dialer map command DC-208, DC-240, DC-365, DC-652, DC-653, DC-657, DC-659, DC-669
dialer map modem-script system-script command DC-367, DC-393, DC-397, DC-398
dialer map name command DC-395
dialer map name spc command DC-185, DC-190, DC-265
dialer maps, large-scale dial-out and DC-680
dialer map snapshot command DC-443
dialer pool command DC-425, DC-456, DC-479
dialer pool dialer profiles
backup interfaces DC-455, DC-459
physical interfaces DC-424
priorities DC-424
dialer pool-member command DC-427, DC-478
dialer priority command DC-371, DC-401
dialer profiles
AppleTalk, configuring DC-428
central site, multiple remote networks (example) DC-434
configuring DC-425
DECnet
configuring DC-428, DC-429
control packets DC-429
dial backup DC-455 to DC-457
dialer interfaces
configuring DC-425, DC-456
description DC-423
remote destination and map class DC-425
See also interfaces
dialer map class DC-423, DC-442
dialer pool
description DC-423
dialer interfaces DC-424

physical interfaces DC-424
reserved channel DC-423
dialing pool reserved channels DC-427
inbound traffic filter (example) DC-434
IP
addresses, remote network node DC-423, DC-442
configuring DC-429
IPX, configuring DC-429
ISDN BRI, two leased lines (example) DC-435, DC-457
ISDN caller ID callback
callback actions DC-659
configuring DC-660
map class
configuring DC-426
fast idle timer DC-426
ISDN requirements DC-426
wait for carrier time DC-426
physical interfaces, configuring DC-423, DC-427, DC-444
remote sites with ISDN access only (example) DC-663
source address validation, disabling DC-348
transparent bridging
access control DC-431
bridging protocols, configuring DC-431
interesting packets DC-432
interfaces, configuring DC-432
type code access DC-432
VINES, configuring DC-428
XNS, configuring DC-430
Dialer Profiles feature DC-421
dialer redial
legacy DDR hubs, configuring DC-402
legacy DDR spokes, configuring DC-372
dialer remote-name command DC-456, DC-478
dialer reserved-links command DC-685, DC-696
dialer rotary, MLP DC-612
dialer rotary-group command DC-393, DC-396, DC-443, DC-611, DC-613
dialer rotary groups (example) DC-414
bandwidth on demand load threshold  DC-401, DC-433
interface priority  DC-370
interfaces
    assignment  DC-396
    priority  DC-401
    leader  DC-392
dialer-string class command  DC-425, DC-456
dialer string command  DC-240, DC-365, DC-394, DC-397, DC-479, DC-657, DC-659
dialer wait-for-carrier-time command  DC-370, DC-400, DC-426, DC-478, DC-659, DC-660, DC-671
Dialer Watch
addresses, configuring  DC-461
benefits  DC-460
configuration (examples)  DC-462
configuring  DC-460
dial backup  DC-450, DC-455
interfaces
    disable timer  DC-461
    primary  DC-461, DC-475
    secondary  DC-461, DC-475
interface status  DC-461
overview  DC-459, DC-473
dialer watch-disable command  DC-462
dialer watch-group command  DC-461
dialer watch-list command  DC-461
dialing
    DTR  DC-364
        configuration (example)  DC-382
        outgoing calls, configuring  DC-364
        remote interface  DC-364, DC-366
        remote passive interface  DC-364, DC-366
        X.25 encapsulation (example)  DC-387
        X.25 support (example)  DC-419
    legacy DDR
        outgoing calls, configuring  DC-365
dialing services
    inbound performance optimization  DC-779
    outbound performance optimization  DC-779
dial-peer cor custom command  DC-333
dial-peer cor list command  DC-333
dial peers, description  DC-328
    See also ISDN, dial peers
dial shelves
    remote configuration  DC-124
    shelf IDs, configuring  DC-117
dial-tdm-clock priority command  DC-117
digital modem network modules  DC-205
disconnect timers  DC-329
configuration (example)  DC-342
DNIS (Dialed Number Identification Service)
    encapsulation types based on  DC-183
    ISDN subaddress binding (example)  DC-196
dnis group command  DC-747
DNIS groups
    RPM
        configuring  DC-743
        troubleshooting  DC-763
        verifying  DC-759
documentation
    conventions  xli
    feedback, providing  xliii
    modules  xxxvii to xxxix
    online, accessing  xlii
    ordering  xliii
Documentation CD-ROM  xliii
documents and resources, supporting  xi
domain command  DC-535
DoVBS (Data over Voice Bearer Services)
    configuring  DC-748
    overview  DC-730
DSC (dial shelf controller)
    configuring  DC-118
    managing  DC-125
    redundancy  DC-118
    synchronizing clocks  DC-119
DSIP (Dial Shelf Interconnect Protocol)
architecture (figure) DC-116
overview DC-116
troubleshooting DC-125
DTR (data terminal ready), modem control and DC-159
dynamic addressing, configuring DC-42
Dynamic Multiple Encapsulations feature DC-178

E
E1 R2
CAS, configuring DC-284
configure DC-285
country settings DC-285
customizing parameters DC-285
sample topology DC-284
verifying signal DC-287
ear and mouth signaling, description DC-11
encapsulation cpp command DC-321
encapsulation lapb command DC-375, DC-405
encapsulation ppp command DC-456, DC-498
AO/DI configuration DC-239
authentication, use in DC-367, DC-395, DC-398, DC-598
enabling DC-597
interfaces
dialer configuration DC-456
dialer profile DC-425
physical DC-427
virtual template DC-486, DC-496, DC-637
WAN DC-478
modem over ISDN BRI configuration DC-208
encapsulations
automatic detection DC-320
default serial DC-18
dynamic multiple DC-178, DC-422
ISDN LAPB-TA autodetect DC-201
L2F DC-508
V.120 dynamic detection DC-199
virtual profiles DC-507
encapsulation x25 command DC-374, DC-405

endpoint discriminator, changing MLP default DC-615
enterprise networks
dial access scalability DC-794
dial access scenarios DC-793 to DC-832, DC-837
escape characters, modem chat strings DC-167
exec command DC-31
EXEC process
disabling DC-30
enabling DC-30
exec-timeout command DC-31
execute-on command DC-124
exit command DC-282

F
fast switching
IP
disabling DC-586
enabling DC-586
L2F traffic DC-508
legacy DDR
IP DC-372, DC-402
IPX DC-372, DC-402
Feature Navigator
See platforms, supported
filtering output, show and more commands lii
firmware
filename location command DC-134
upgrade command DC-67, DC-133
Frame Relay
DDR
configuration overview DC-404
restrictions DC-404
dialup connections DC-373, DC-403
legacy DDR
configuration overview DC-374
interfaces supported DC-373
restrictions DC-373
framing command DC-281, DC-756
Index

framing crc4 command  DC-260, DC-276
framing esf command  DC-261

G
Germany, ISDN semipermanent connection support  DC-185
global configuration mode, summary of xlviii
group-range command  DC-39, DC-57, DC-58

H
hairpinning
See ISDN, dial peers
hardware platforms
See platforms, supported
help command  xlviii
Hong Kong, ISDN Sending Complete information element  DC-189, DC-268
hw-module command  DC-125

I
idle timers, MLP
dialer load thresholds  DC-612
dialer timeout  DC-612, DC-613
IGRP (Interior Gateway Routing Protocol), dial-in router  DC-44
in-band framing mode control messages, configuring  DC-94
indexes, master  xl
initiate-to command  DC-535, DC-537
interface bri command  DC-183, DC-199, DC-229, DC-443
interface command  DC-652
interface configuration mode, summary of xlviii
interface dialer command  DC-425, DC-443, DC-444, DC-456, DC-612, DC-640
interface multilink command  DC-619
interfaces
asynchronous
configuration options  DC-6, DC-57
configuring  DC-5, DC-56
logical constructs  DC-6, DC-57
MLP  DC-611
downstream, enabling  DC-400
logical entity  DC-363, DC-392
serial address  DC-394
dialer rotary group assignment  DC-396
ISDN BRI, MLP  DC-611 to DC-612
lines, relationship to  DC-16
peer address allocation methods  DC-603
physical  DC-424
dialer pool, configuring  DC-423
point-to-point, IP address pooling  DC-603
serial encapsulation types  DC-18
serial interfaces  DC-18
synchronous
MLP  DC-610
unnumbered  DC-32
virtual asynchronous  DC-197
virtual templates, configuring  DC-637
virtual templates, description of  DC-6
interface serial command  DC-199, DC-263, DC-282, DC-443, DC-444, DC-756
interface virtual-template command  DC-483, DC-486, DC-496, DC-498, DC-637
inverse multiplexing
MLP (example)  DC-627
IP
address pooling
assignment method  DC-604
concept  DC-603
DHCP  DC-605
global default mechanism DC-605 to DC-606
interfaces supported DC-604
local address pooling DC-606
peer address allocation methods DC-603
per-interface options DC-606
precedence rules DC-604, DC-640
broadcasts, asynchronous serial traffic over UDP DC-45
Cisco Easy IP
configuration (examples) DC-479
configuring DC-476
dial addressing schemes
Cisco Easy IP DC-789
classic IP DC-789
remote client DC-789
remote LAN DC-789
fast switching
DDR DC-372
disabling DC-586
enabling DC-586
legacy DDR DC-402
IP-SLIP (example) DC-41
performance parameters, configuring DC-584
PPP, configuring over DC-578
PPP-IP (example) DC-41
route cache invalidation DC-587
ip address command DC-208, DC-477, DC-609, DC-612, DC-619
ip address negotiated command DC-478
ip address-pool command DC-605, DC-606
ip cache-invalidate-delay command DC-587
IPCP
See IP–PPP
ip dhcp-server command DC-605
ip-directed broadcast command DC-208
IP header compression
See TCP/IP, header compression
ip host command DC-152
ip local pool command DC-606, DC-607
ip local pool default command DC-637
IP multicast routing, asynchronous serial traffic over UDP DC-45
ip nat inside command DC-477
ip nat outside command DC-478
IP–PPP, enabling DC-578
ip route-cache command DC-372, DC-402, DC-586
ip route-cache-distributed command DC-372, DC-402
ip route command DC-683
ip routing command DC-431
ip tcp compression-connections command DC-585
ip tcp header-compression command DC-34, DC-585
ip tcp synwait-time command DC-585
ip tos reflect command DC-539
ip unnumbered command DC-32
ip unnumbered ethernet command DC-486, DC-496, DC-498, DC-637
ip unnumbered loopback command DC-456
IPX (Internet Packet Exchange Protocol)
over PPP
configuring DC-578
IPX (Internetwork Packet Exchange)
configuring over PPP DC-579
DDR, configuring DC-353
dialer profiles, configuring DC-429
fast switching, legacy DDR DC-402
header compression over PPP DC-585
over PPP
configuring DC-578
dedicated network numbers DC-579
loopback interfaces DC-579
ipx compression enable command DC-586
IPXCP
See IPX, over PPP
ipx network command DC-609
ipx ppp-client loopback command DC-579
ipx route-cache command DC-430
ipx sap command DC-703, DC-726
ipx spx-idle-time command DC-353, DC-430
ipx spx-spoof command DC-353, DC-368, DC-430
ipx watchdog-spoof command  DC-353, DC-430

ISDN

128 kbps leased-line service
  (example)  DC-196
  configuring  DC-191
  interface characteristics  DC-191

Advice of Charge  DC-314 to DC-315
  BRI and dialer profiles (example)  DC-323
  call history  DC-315
  destination  DC-314
  dialer map class  DC-315
  dialer profiles  DC-314
  ISDN interface, configuring  DC-314

legacy DDR  DC-314
  outgoing calls  DC-314
  overview  DC-314

PRI and legacy DDR (example)  DC-322
  short-hold mode, configuring  DC-322
  switch types  DC-314

B channel
  ascending call order (example)  DC-298
  call order default  DC-272
  outgoing call order  DC-272

 caller ID callback conflict  DC-657

 call history  DC-315

 cause codes  DC-179, DC-188
  (table)  DC-179

 override  DC-188

 channels, disabling  DC-318

 channel service states  DC-319

 dial peers
  inbound call leg  DC-328
  outbound call leg  DC-328

 disconnect timers
  See disconnect timers

 DNIS-plus-ISDN-subaddress binding, (example)  DC-436

 encapsulations
  automatic detection  DC-320

dynamic multiple  DC-436

 interfaces
  monitoring  DC-315

 TEI  DC-266

 LAPB-TA asynchronous traffic  DC-200

 leased-line service in Germany and Japan  DC-191

 multiple switch types  DC-182
  configuration (example)  DC-193

 PRI interfaces, configuring  DC-270

 restrictions  DC-270

 Network Side PRI Signaling, Trunking, and Switching
  call switching, dial peers (example)  DC-338

 COR
  configuring  DC-333
  dial peers (example)  DC-339
  outgoing dial peers (example)  DC-340

 monitoring  DC-338

 special numbers (example)  DC-341

 switch types
  configuring  DC-331
  supported  DC-327

 trunk group (example)  DC-339

 verification procedure  DC-334

 NFAS  DC-315 to DC-319

 alternate route index  DC-316

 backup D-channel  DC-317, DC-324, DC-325

 channel interface
  configuring  DC-317
  disabling  DC-318

 channelized T1 controllers (example)  DC-324, DC-325

 DDR configuration (example)  DC-325

 groups, monitoring  DC-319

 PRI group, configuring  DC-316

 primary and backup D channels  DC-316

 primary D-channel  DC-317, DC-324, DC-325

 service state (example)  DC-325

 switch types  DC-316

 semipermanent connections

 Australia, Germany  DC-190

 support  DC-265, DC-322
special signaling
  (examples)  DC-322
troubleshooting  DC-322
subaddress  DC-366, DC-393
subaddress binding  DC-189
isdn all-incoming-calls-v120 command  DC-199
isdn answer1 command  DC-187, DC-209
isdn answer2 command  DC-187
isdn bchan-number-order command  DC-272
ISDN BRI
  asynchronous access  DC-199
called party number, verifying  DC-186
caller ID screening  DC-186
calling-line identification, configuring  DC-186
calling number identification  DC-187
compression (examples)  DC-194
configuration buffers
  configuring  DC-181
  verifying  DC-181
configuration self-tests  DC-192
configuring  DC-175 to DC-195
dialer rotary group (example)  DC-194
encapsulations, configuring  DC-183
fast rollover delay, configuring  DC-188
global and interface switch type (example)  DC-193
interfaces
  configuring  DC-182
  monitoring  DC-192
leased-line service  DC-190
  128 kbps  DC-191
  normal speeds  DC-191
  platform support  DC-191
line configuration requirements  DC-176
line speed, configuring  DC-187
MLP and compression (example)  DC-195
modem use over
  BRI interface configuration (example)  DC-212
  complete configuration (example)  DC-215
  configuring  DC-207
overview  DC-206
verifying  DC-210
MTU size  DC-181
network address, configuring  DC-185
network module  DC-205
North American switch configuration  DC-176
point-to-multipoint service  DC-176
point-to-point service  DC-176
semipermanent connections  DC-185
Sending Complete information element
  Taiwan, Hong Kong  DC-189
switch types
  (table)  DC-181
  configuring  DC-180
  North American configuration  DC-176
TEI negotiation timing, configuring  DC-186
troubleshooting  DC-192
V.120 support, PPP on virtual terminal lines  DC-199
voice calls
  incoming (example)  DC-195
  outgoing (example)  DC-195
  switch type configuration  DC-176, DC-180
X.25 traffic, configuring  DC-229, DC-236
isdn caller command  DC-186, DC-209, DC-660
ISDN caller ID callback
  (examples)  DC-661
  best match system, don’t care digits  DC-661
  callback, local side  DC-659
  calling, remote side  DC-660
  DDR fast call rerouting for ISDN, calling side  DC-659
dialer enable-timeout timer  DC-659
dialer profiles
  callback actions  DC-659
  configuring  DC-660, DC-671
  processes  DC-659
dialer rotary, configuring  DC-660
dialer rotary group (example)  DC-665
dialer wait-for-carrier timer  DC-659
don’t care digits  DC-662, DC-672
Index

legacy DDR
  callback actions DC-658
  configuring DC-659
  overview DC-658
prerequisites
  dialer profiles DC-657
  legacy DDR DC-657
remote side configuration note DC-659
timers, configuring DC-659
isdn calling-number command DC-187, DC-209, DC-266
isdn disconnect-cause command DC-188
isdn fast-rollover-delay command DC-209, DC-653
isdn guard-timer command DC-268
isdn incoming-voice modem command DC-209, DC-252, DC-267
ISDN LAPB-TA
  configuration (example) DC-203
  encapsulation autodetection DC-201
  overview DC-200
isdn leased-line bri 128 command DC-191
isdn leased-line bri command DC-191
isdn modem-busy-cause command DC-209
ISDN Non-Facility Associated Signaling
  See NFAS
isdn not-end-to-end command DC-187, DC-188, DC-209
ISDN PRI
  (examples) DC-294
  B channel
    ascending call order (example) DC-298
    busyout DC-298
    outgoing call order DC-272
calling number identification DC-266
channel groups (example) DC-299
channelized E1 controllers
  configuring DC-260
  DDR configuration (example) DC-297
  slot and port numbering DC-260
channelized T1 controllers
  configuring DC-261

  DDR configuration (example) DC-296
  slot and port numbering DC-261
class of restrictions DC-321
  configuring DC-333
configuration self-tests DC-272
D-channel serial interface number DC-260, DC-262
DDR configuration requirements DC-259
encapsulations
  Frame Relay DC-264
  X.25 DC-264
guard timer, configuring DC-268
legacy DDR interface (example) DC-259
line configuration requirements DC-259
multiple switch types
  (example) DC-298
  configuring DC-270
  restrictions DC-270
North American switch configuration DC-259
NSF call-by-call (example) DC-295
point-to-multipoint service DC-259
semipermanent connections, Australia DC-265, DC-322
Sending Complete information element
  Hong Kong, Taiwan DC-268
serial interfaces, configuring DC-262
Trunk Group Resource Manager DC-328
  configuring DC-332
isdn protocol-emulate network command DC-331
isdn reject command DC-267
isdn sending-complete command DC-189, DC-209, DC-268
isdn service command DC-318
isdn snmp busyout b-channel command DC-269
isdn spid1 command DC-183, DC-209
isdn spid2 command DC-183, DC-209
isdn static-tei command DC-266
isdn switch-type command DC-180, DC-191, DC-260, DC-261, DC-270, DC-331
ISDN switch types
  See ISDN BRI; ISDN PRI; multiple switch types; switch types
isdn t306 command  DC-329
isdn t310 command  DC-329
isdn tei command  DC-186, DC-266
isdn v110 only command  DC-189
isdn v110 padding command  DC-190
isdn x25 dchannel command  DC-229
isdn x25 static-tei command  DC-229
ISO CLNS (ISO Connectionless Network Service), DDR
  access groups  DC-355
  configuring  DC-355

K

keepalive command  DC-619
keepalives
  PPP, enabling LQM  DC-599

L

L2F (Layer 2 Forwarding)
  encapsulation processes  DC-508
  fast switching stack group environment  DC-508
l2tp tunnel authentication command  DC-531
l2tp tunnel password command  DC-532
LAPB (Link Access Procedure, Balanced)
  DDR, configuring  DC-405
large-scale dial-out
  AAA network security, configuring  DC-683
  AAA server access, configuring  DC-684
  Ascend AV pairs (table)  DC-686
  asynchronous dialing (example)  DC-696
  configuration task prerequisites  DC-682
  map class attributes  DC-689
  monitoring  DC-690
  network security services  DC-683
  overview  DC-679
  RADIUS attributes  DC-688
  remote network route, configuring  DC-683
reverse DNS, configuring  DC-684
scalable dial-out service  DC-680
SGBP dial-out connection bidding, configuring  DC-684
stack group and static route download configuration (example)  DC-690
user profiles (example)  DC-695
  configuring  DC-685
leased lines
  ISDN BRI (example)  DC-435
  NM-8AM and NM-16AM analog modem support  DC-78
  configuring  DC-79
  Leased Line Support for Cisco 2600/3600 Series Analog Modems feature  DC-78
  legacy DDR (dialed-on-demand routing)
  dial backup
    asynchronous interfaces (example)  DC-452
  ISDN (example)  DC-453
  hubs (examples)  DC-406 to DC-419
  (figure)  DC-397
  access lists  DC-398
  AppleTalk (example)  DC-408
  asynchronous interfaces (example)  DC-410
  authentication  DC-395
  Banyan VINES (example)  DC-409
  bridging access control  DC-398
  configuration task flow  DC-390
  configuring  DC-389 to DC-419
  connections, monitoring  DC-406
  DECnet (example)  DC-409
  dialer group interface assignment  DC-399
  dialer hold queue  DC-401
  dialer interfaces (figure)  DC-394
  dialer rotary group  DC-393, DC-396, DC-401, DC-426
  dialing configuration (example)  DC-413
  Frame Relay  DC-403 to DC-404
  Frame Relay (examples)  DC-417
  interface diagnostics  DC-406
ISDN interfaces, enabling DC-425
ISO CLNS (example) DC-381, DC-410
LAPB (example) DC-419
LAPB, configuring DC-405
load threshold DC-401
multiple destinations DC-397, DC-428
multiple destinations (example) DC-413
PPP (example) DC-415
protocol access control DC-398
routing access control DC-399
timers, enabling DC-399
transparent bridging (example) DC-407
X.25 DC-405
X.25 encapsulation (example) DC-419
XNS (example) DC-410
ISDN caller ID callback DC-658
actions DC-658
BRI interface (example) DC-664
configuring DC-659
ISDN NFAS primary D-channel DC-325
non-V.25bis modems DC-364
PPP DDR
with authentication (example) DC-358
without authentication (example) DC-356
spokes
2-way client/server (examples) DC-378, DC-385
access lists DC-367
AppleTalk configuration (example) DC-380
bandwidth on demand DC-371
bridging access control DC-367
carrier wait time DC-370
configuring DC-361
connections, monitoring DC-375
DDR inbound traffic (example) DC-376
DECnet configuration (example) DC-380
dialer group assignment DC-369
dialer hold queue DC-371
DTR calls DC-364, DC-366
dialing (example) DC-382
Frame Relay DC-373, DC-374
Frame Relay (example) DC-386, DC-387
interface
diagnostics DC-375
idle timer DC-370
priority in dialer rotary group DC-370
IP, configuring DC-378
ISDN interfaces, enabling DC-364
line down time DC-370
multiple calls to single destination DC-371
passive interface DC-364, DC-366
protocol access control DC-367
single site calls DC-365
spoke configuration (examples) DC-376 to DC-388
transparent bridging DC-368
transparent bridging (example) DC-377
X.25
DTR dialing (example) DC-387
encapsulation DC-374
XNS configuration (example) DC-381
V.120 incoming calls (example) DC-200
virtual profiles interoperability DC-490
limit base-size command DC-748
limit command DC-747
limit overflow-size command DC-748
line aux command DC-29
linecode b8zs command DC-262
linecode command DC-281, DC-756
linecode hdb3 command DC-260, DC-276
lines
asynchronous
rotary line queueing
configuring DC-26
automatic disconnect, configuring DC-163
compared to interfaces DC-5, DC-56
DDR asynchronous
downtime, enabling DC-370
individual connections, configuring DC-61
interfaces, relationship to DC-16
leased serial (example)  DC-435
looped-back  DC-596
modem chat scripts, activating for  DC-168
modems, disabling  DC-104
NM-8AM and NM-16AM analog modem leased line support  DC-78
timeout interval, configuring  DC-161
tty  DC-16
types, description of  DC-16
load threshold, dialer rotary  DC-401, DC-433
local name command  DC-532, DC-537
logical constructs
  group asynchronous interfaces  DC-6, DC-57
  virtual template interfaces  DC-6, DC-484
logical interfaces
  dialer  DC-8
    virtual access  DC-9
    virtual asynchronous  DC-10, DC-197
login authentication dialin command  DC-70
login local command  DC-649
loopback remote (interface) command  DC-294
loopbacks
  channelized E1
    interface local  DC-293
  channelized T1, interface local  DC-293
  CSU/DSU, remote  DC-294
LQM (Link Quality Monitoring)
  keepalives, enabling LQRs  DC-599

M
Managing Port Services on the Cisco AS5800 Universal Access Server feature  DC-127
map class
  dialer profiles, configuring  DC-426
map class attributes, large-scale dial-out (table)  DC-689
map-class dialer command  DC-315, DC-426, DC-653
max-calls command  DC-332
MIB, descriptions online  xl
MICA In-Band Framing Mode Control Messages feature  DC-94
MLP (Multilink Point-to-Point Protocol)
  (example)  DC-626
  bandwidth allocation  DC-667
  See also BACP
  bundles  DC-619
caller ID authentication  DC-612
collection (example)  DC-193
dialer rotary, configuring  DC-612
Distributed MLP
  configuration (example)  DC-631
  configuring  DC-618
  overview  DC-617
  T3 configuration (example)  DC-631
topology  DC-617
interfaces
  asynchronous  DC-611
  BRI (examples)  DC-628, DC-629
  BRI multiple interfaces  DC-612
  BRI single interface  DC-611
dialer rotary  DC-612
  synchronous  DC-610
  (example)  DC-626
interleaving, weighted fair queuing  DC-615
Inverse Multiplexer
  configuration (example)  DC-631
  configuring  DC-618
  overview  DC-617
  T3 configuration (example)  DC-631
topology  DC-617
multiple BRI  DC-612
overview  DC-610
real-time traffic
  (example)  DC-630
  interleaving  DC-615, DC-616
  interleaving (example)  DC-630
rotary group
  BRI members, configuring  DC-613
Stacker compression  DC-195
virtual profiles
  cloning sequence (table)  DC-491
  interoperability  DC-491
weighted fair queuing  DC-615
MMP (Multichassis Multilink PPP)
  bundle  DC-633
  call handling and bidding  DC-634
  configuration requirements  DC-635
  dialer explicitly defined (example)  DC-639
  dialer not explicitly defined (example)  DC-640
  dialer not used (example)  DC-638
  digital and analog traffic  DC-633
  interfaces supported  DC-636, DC-644
  offload server (example)  DC-640
  overview  DC-633
platforms supported  DC-636, DC-644
PRI (example)  DC-638
stack group members
  call ownership  DC-634
  calls, answering  DC-634
  configuring  DC-636
stack groups  DC-634
  typical configuration (example)  DC-635
virtual interfaces, monitoring  DC-637
virtual template interfaces
  (caution)  DC-638
  configuring  DC-637
  virtual profiles
    configuring  DC-496
    specifying  DC-498
modem answer-timeout command  DC-161, DC-163
modem at-mode command  DC-77
modem attention (AT) commands  DC-76, DC-77
  2-wire leased-line support  DC-78
modem autoconfigure command  DC-146
modem bad command  DC-102
modem buffer-size command  DC-96
modem busyout command  DC-104
modem busyout threshold command  DC-104
modem callin command  DC-149
modem callout command  DC-163
modem connections
  See modems, connections
modem country mica command  DC-69
modem country microcom_hdms command  DC-69
modem cts-required command  DC-162
modem dialin command  DC-70, DC-159, DC-160, DC-166
modem dtr-active command  DC-159
modem hold-reset command  DC-102
modem inout command  DC-160
modem link-info poll time command  DC-93
modem management
  AT commands  DC-77
  busy out modem card  DC-104
Call Tracker, configuring  DC-91
  connection speed, verifying  DC-111
  diagnostics  DC-96
  incoming V.110 modem calls  DC-189, DC-190
  inoperable modems  DC-102
MIB traps  DC-104
  (example)  DC-107
  modem activity, monitoring  DC-84
  modem control function event buffer  DC-102
  NAS health, monitoring  DC-84
  reject incoming call  DC-267
  statistics
    connected AT sessions  DC-96
    event polling  DC-96
  modem-mgmt csm debug-rbs command  DC-763
  modem pool retry command  DC-96
  modem poll time command  DC-96
  modem pooling
    benefits  DC-83
    description  DC-82
    monitoring  DC-84
    physical partitioning
      description  DC-85
dial-in (example)  DC-86

dial-in and dial-out (example)  DC-88

network topology  DC-86

restrictions  DC-83

virtual partitioning

description  DC-90

dial-in (example)  DC-90

network topology  DC-90

modem recovery-time command  DC-102

modems

AUX (table)  DC-871

busyout cards in Cisco AS5800  DC-104

chat scripts  DC-171, DC-869

close connection  DC-162

communication, starting  DC-152

configuring using modem commands  DC-76

connections

stopping  DC-162

testing  DC-151

troubleshooting  DC-154

data compression  DC-77, DC-155

DCD operation  DC-149

dial-in  DC-149, DC-160

dial-out  DC-160

digital network module  DC-205

direct Telnet sessions  DC-152

displaying statistics  DC-95

DTR interpretation  DC-149

EC/compression  DC-869

(table)  DC-869

error correction  DC-155

external, configuring  DC-145, DC-146

features list  DC-63

flowcontrol, configuring  DC-149

high-speed

(figure)  DC-160

configuring  DC-159

incoming calls  DC-149

rejecting by type  DC-267

rejecting by type (example)  DC-299

initialization strings  DC-872

inoperable  DC-102

integrated, configuring  DC-63, DC-76

ISDN, use over  DC-205

See also ISDN BRI

line configuration

continuous CTS (figure)  DC-162

incoming and outgoing calls (figure)  DC-161

modem call-in (figure)  DC-150

modem call-out (figure)  DC-164

line timing, configuring  DC-161

log event, clearing  DC-139

MICA

command summary  DC-73

in-band framing mode control messages  DC-94

link statistics, configuring  DC-93

modem attention commands  DC-76

PIAFS, enabling  DC-319

Microcom, clearing  DC-99

modem commands, integrated modems  DC-77

NextPort SPE, command summary  DC-73

non-V.25bis DTR  DC-364, DC-392

overview  DC-58

physical partitioning  DC-85

platform-specific (table)  DC-871

protocols, enabling  DC-136

remote IP users, enabling  DC-136

reverse connections  DC-163

scripts (examples)  DC-872

show line command  DC-138

troubleshooting  DC-71, DC-154

V.110

bit rate padding  DC-190

screening incoming calls  DC-189

V.120 asynchronous access  DC-199

V.90 portware  DC-206

V.90 standard  DC-64

virtual partitioning  DC-90
modem shutdown command  DC-102, DC-104
modem status-poll command  DC-96

modes
See command modes

Monitoring Resource Availability on Cisco AS5300, AS5400, and AS5800 Universal Access Servers feature  DC-104

MPPC (Microsoft Point-to-Point Compression)
  compression scheme  DC-601
  protocol field compression flag  DC-603

MPPE encryption  DC-510

MS Callback  DC-653
  configuring  DC-654
  LCP callback option  DC-654
  Microsoft Callback Control protocol (MSCB)  DC-653

multicasts, asynchronous serial traffic over UDP  DC-45

multilink command  DC-755

multilink virtual-template command  DC-483, DC-489, DC-637

multiple switch types
  BRI interface, configuring  DC-182
  PRI interface
    configuration (example)  DC-298
    configuring  DC-270
    restrictions  DC-270

dialer interface, defining  DC-478

Easy IP  DC-475
LAN interface, defining  DC-477
NAT pool, defining  DC-477

NetBEUI (NetBIOS Extended User Interface)
  connection information  DC-584
  remote clients over PPP  DC-584

new information in this release  xli

NFAS (Non-Facility Associated Signaling)
  alternate route index  DC-316
  configuration (example)  DC-324
  configuring  DC-316
  groups, monitoring  DC-319

NTT PRI
  configuring  DC-317
  verifying  DC-317
  prerequisites  DC-316
  PRI groups, configuring  DC-315, DC-316
  switch types  DC-316

no flush-at-activation command  DC-94
notes, usage in text  xlii

NFAS (Non-Facility Associated Signaling)
  call-by-call support
    configuring  DC-269
    restriction  DC-269

number command  DC-743

O

Outbound Circuit-Switched X.25 Support feature  DC-228

P

packets, interesting  DC-398

PAD (packet assembler/disassembler)
  PPP over X.25
    (example)  DC-863
    overview  DC-862

NAS (network access server)
  call type matching  DC-731
  Cisco RPMS  DC-733
  definition  DC-508
  RPM
    standalone  DC-733
  See also VPN, NAS

NAS-initiated VPNs  DC-509

NAT (Network Address Translation)
  (example)  DC-479
  automatic timeout  DC-479
PAP (Password Authentication Protocol)
  authentication request DC-598
  CHAP authentication order DC-598
peer default ip address command DC-33, DC-607
peer default ip address pool command DC-607
peer default ip address pool dhcp command DC-607
peer neighbor-route command DC-608
per-user configuration
AAA
  RADIUS server, configuring DC-707, DC-735
  server storage location DC-699, DC-721
  TACACS server user profile (example) DC-488
authentication and authorization phases DC-701
AV pairs (table) DC-703
debugging commands (table) DC-708
dial-in features DC-699
IP
  TACACS (example) DC-709
  virtual profiles (example) DC-709, DC-712
IP address pooling
  (example) DC-702, DC-723
  operational process DC-701
IPXWAN, virtual profiles serial interface
  (example) DC-711, DC-718, DC-742
large-scale dial-out DC-701
monitoring DC-708
overview DC-699, DC-700, DC-721
RADIUS
  IP (example) DC-712
  IPX (example) DC-718
TACACS server
  CiscoSecure, configuring DC-706
  freeware DC-706
  freeware (example) DC-711, DC-742
virtual access interfaces
  creation DC-701
duration and resources DC-701
  selective creation DC-485
  selective creation (example) DC-487
VPN DC-538
PIAFS (Personal-Handyphone-System Internet Access Forum Standard)
  configuring DC-320
  description DC-319
PIAFS Wireless Data Protocol for MICA Modems
  feature DC-319
platforms, supported
  Feature Navigator, identify using liii
  release notes, identify using liii
pool-member command DC-536
POP (point of presence)
  large-scale dial
    configuration (examples) DC-852
    scaling DC-847
    stacking overview DC-848
  remote DC-581
  small-to-medium-scale dial
    configuration (examples) DC-837
port modem autotest command DC-139
ports
  UPC, configuring DC-137
PPP
  AppleTalk over, configuring DC-580, DC-602
  asynchronous access, ISDN lines DC-199
  automatic sessions, starting DC-27
  callback DC-653
    (example) DC-654
  authentication DC-651
  client, configuring DC-652
  client-server application DC-651
  DDR DC-651 to DC-655
  outgoing lines DC-645
  retries DC-652, DC-658
  server, configuring DC-653
  support required DC-651
  CHAP and PAP, authentication order DC-538
  compressions
    hardware-dependent DC-600
Index

lossless data DC-600
Microsoft DC-601
platform support DC-601
software DC-600
connections DC-582
encapsulations enabling DC-598
interfaces, configuring DC-367, DC-398
legacy DDR DC-395
half-bridging (figure) DC-609
configuring DC-608
IP
address negotiation DC-603
address pooling DC-603
configuring over DC-578
IPX
asynchronous interfaces DC-579
configuring DC-578
header compression DC-585
Magic Number support DC-634
MMP DC-633 to DC-637
MPPC
compression scheme DC-601
protocol field compression flag DC-603
MS Callback
LCP callback option DC-654
Microsoft Callback Control Protocol (MSCB) DC-653
network-layer protocols, configuring DC-578
peer neighbor routes
dialer interface effect DC-608
disabling DC-608
group-async interface effect DC-608
PPP-IP
asynchronous interfaces, configuring DC-41
reliable link DC-607
SLIP banner DC-587
(examples) DC-589
tokens DC-587
SLIP BOOTP requests DC-576
telecommuting configuration (example) DC-576, DC-596
virtual terminal lines DC-575, DC-595
ppp authentication chap command DC-367, DC-395, DC-398,
DC-427, DC-486, DC-613, DC-637, DC-652
ppp authentication command DC-598
ppp authentication pap command DC-395, DC-612, DC-652
ppp bap call accept command DC-241
ppp bap callback accept command DC-239, DC-671
ppp bap callback request command DC-241
ppp bap call request command DC-240, DC-671
ppp bap call timer command DC-672
ppp bap drop after-retries command DC-672
ppp bap link types analog command DC-671, DC-672
ppp bap link types isdn analog command DC-672
ppp bap max dial-attempts command DC-671, DC-672
ppp bap max dialers command DC-671, DC-672
ppp bap max ind-retries command DC-671, DC-672
ppp bap max req-retries command DC-671, DC-672
ppp bap monitor load command DC-671
ppp bap number command DC-244
ppp bap number default command DC-671, DC-672
ppp bap number prefix command DC-243
ppp bap number secondary command DC-671, DC-672
ppp bap timeout response command DC-671, DC-672
ppp bridge appletalk command DC-609
ppp bridge ip command DC-609
ppp bridge ipx command DC-609
ppp callback accept command DC-645
ppp callback initiate command DC-645
ppp callback request command DC-652
ppp command DC-582
ppp multilink bap command DC-238, DC-239, DC-240, DC-670
ppp multilink bap required command DC-670, DC-683
ppp multilink command DC-610, DC-611, DC-612, DC-619,
DC-637
ppp multilink endpoint command DC-615
ppp multilink fragment delay command DC-616
ppp multilink fragment disable command DC-620
Index

ppp multilink group command  DC-619
ppp multilink idle-link command  DC-238, DC-242, DC-244
ppp quality command  DC-600
ppp reliable-link command  DC-608
ppp use-tacacs command  DC-395, DC-599
pptp flow-control receive-window command  DC-534
pptp flow-control static-rtt command  DC-534
pptp tunnel echo command  DC-534
Preauthentication with ISDN PRI and Channel-Associated Signaling feature  DC-732
Preauthentication with ISDN PRI feature  DC-268
pri-group command  DC-260, DC-262
pri-group timeslots nfas d command  DC-317
printer connections  See connections, printers
privileged EXEC mode, summary of  xlviii
profiles
dialer  DC-660
large-scale dial-out user  DC-685
RPM
backup customer  DC-724, DC-747
call discriminator  DC-728, DC-731
customer  DC-723
default customer  DC-724
template  DC-724
virtual  DC-491, DC-501
prompts, system  xlviii
protocols, Combinet Proprietary Protocol  DC-264, DC-321

R

R1 modified signaling, configuring  DC-290
R2 signaling  DC-285
system requirements  DC-275
RADIUS
attributes
large-scale dial-out, (table)  DC-688
server AV pair  DC-704
servers  DC-700
radius-server host command  DC-702
radius-server key command  DC-683, DC-702
RCAPI (Remote Common Application Programming Interface)
B-channel protocols supported  DC-249
configuration (examples)  DC-252
maintaining  DC-252
overview  DC-247
rcapi number command  DC-251
rcapi server port command  DC-251
redial
legacy DDR hubs, configuring  DC-402
legacy DDR spokes, configuring  DC-372
redistribute static command  DC-378, DC-412
Redundant Dial Shelf Controller feature  DC-118
release notes
See platforms, supported
reload components command  DC-117
Remote Common Application Programming Interface for Cisco 800 Series Routers feature  DC-247
remote loopback, remote DDS CSU/DSU  DC-294
remote office routers, configuring  DC-796, DC-799
remote offices
enterprise dial  DC-788
service provider dial  DC-788
remote PCs
large-scale dial  DC-788
PPP over X.25  DC-788
small-scale dial  DC-788

Q

QoS (quality of service), preserving over VPNs  DC-539
question mark (?) command  xlviii
queueing
fancy, ISDN traffic shaping  DC-426
queues, dialer hold  DC-371, DC-401
Index

VPDN dial  DC-788
request dialin command  DC-534
request-dialout command  DC-536
resource command  DC-747
resource-pool aaa protocol command  DC-742
resource-pool aaa protocol group local command  DC-747
resource-pool call treatment profile command  DC-742
resource-pool call treatment resource command  DC-742
resource-pool enable command  DC-742
resource-pool profile customer command  DC-747, DC-750, DC-754
resource-pool profile vpdn command  DC-754
Return key
modem chat script, adding code for  DC-167
reverse Telnet
See Telnet, direct sessions
RFC
full text, obtaining  xl
RFC 1055, SLIP  DC-575
RFC 1144, TCP/IP header compression  DC-34, DC-583
RFC 1331, PPP  DC-575
RFC 1332, IPCP  DC-575
RFC 1334, CHAP and PAP protocols  DC-597, DC-636
RFC 1570, PPP callback  DC-651
RFC 1661, PPP encapsulation  DC-595
RFC 1663, PPP Reliable Transmission  DC-607
RFC 1989, PPP link quality monitoring  DC-599
RFC 1994, CHAP protocol  DC-597, DC-636
rlogin trusted-localuser-source radius command  DC-862
rlogin trusted-remoteuser-source local command  DC-862
RMP (Resource Manager Protocol), communication protocol for RPM  DC-739
robbed-bit signaling
(examples)  DC-300
analog calls  DC-258
configuring  DC-274
ROM monitor mode, summary of  xlviii
rotary command  DC-26
rotary-group command  DC-536
rotary groups
configuring  DC-25
dialer  DC-363
route cache invalidation, configuring  DC-587
routers
dedicated dial-in (example)  DC-43
IGRP dial-in (example)  DC-44
routing
asynchronous  DC-31
default  DC-31
DDR, supported protocols  DC-351, DC-366
unnumbered interfaces (example)  DC-42
RPM (Resource Pool Management)
AAA accounting records  DC-730
AAA components  DC-763
AAA server groups  DC-751
backup customer profiles  DC-747
call discrimination, configuring  DC-744
call discriminator profiles  DC-728, DC-731
call processes  DC-728
call treatments (table)  DC-728
call types  DC-725
CLID  DC-725
CLID/DNIS screening  DC-731
configuration (examples)  DC-768 to DC-777
configuring  DC-756
customer profiles  DC-747
default  DC-747
templates  DC-724 to DC-750
types  DC-723
dialer components  DC-762
direct remote services (example)  DC-774
DNIS groups  DC-725
configuring  DC-743
troubleshooting  DC-763
verifying  DC-759
incoming call management  DC-722, DC-729
outgoing call management  DC-722, DC-729
overview  DC-721
profiles
  backup customer DC-724
  default customer DC-724
resource group manager DC-762
resource groups DC-726, DC-746, DC-758
  configuring DC-746
resource pooling states DC-761
resource services DC-726
service profiles, configuring DC-746
session limits DC-735
signaling stack DC-762
standalone NAS DC-733
supported call types DC-725
troubleshooting DC-760
verifying DC-757
VPDN groups
  configuring DC-752
  description DC-727
  responsibility DC-763
  verifying DC-759
VPDN profiles DC-727, DC-752, DC-763
RPMS (Resource Pool Manager Servers)
  resource groups and DC-744
  RMP, relationship to DC-739
  troubleshooting DC-767

S
  script arap-callback command DC-647
  script callback command DC-645, DC-646
  script dialer command DC-696
  Semipermanent Circuit Support on ISDN PRI feature DC-265, DC-322
  serial interfaces
    dial backup DC-449 to DC-454
      (examples) DC-452
    asynchronous interfaces (example) DC-452
    configuring DC-450
    ISDN interfaces (example) DC-453
  line delay DC-452
  traffic load threshold DC-451
  See also interfaces
  server connections
    PPP DC-582, DC-583
    SLIP DC-583
  servers
    RADIUS DC-700
    AV pairs DC-704
    TACACS DC-700
    AV pairs DC-704
  service exec-callback command DC-646
  service internal command DC-762
  service providers
    large-scale dial DC-847
    PPP over X.25 dial DC-862
    small-to-medium-scale dial DC-837
    set 1 number command DC-803
    set 2 number command DC-803
    set bridging command DC-803
    set bridging off command DC-799
    set callerid command DC-800
    set default command DC-799
    set dhcp dns primary command DC-803
    set dhcp domain command DC-803
    set dhcp server command DC-803
    set dhcp wins command DC-803
    set encapsulation ppp command DC-799, DC-803
    set ip address command DC-799
    set ip command DC-799
    set ip framing command DC-803
    set ip pat command DC-803
    set ip route destination command DC-799, DC-803
    set ip routing command DC-799, DC-803
    set localaccess protected command DC-800
    set password system command DC-800
    set ppp authentication incoming chap command DC-800
    set ppp multilink command DC-799, DC-803
    set ppp secret client command DC-799, DC-803
set remoteaccess protected command  DC-800
set systemname command  DC-799, DC-803
set timeout command  DC-799
set user nas command  DC-799, DC-803
sgbp dial-bids command  DC-685
sgbp group command  DC-636, DC-682
sgbp member command  DC-636
sgbp seed-bid command  DC-640
sgbp seed-bid default command  DC-640
sgbp seed-bid offload command  DC-640
shelf-id command  DC-117
show appletalk traffic command  DC-376, DC-406, DC-433
show async bootp command  DC-21
show async status command  DC-21
show buffers command  DC-181, DC-206
show busyout command  DC-104
show caller command  DC-546
show controllers bri command  DC-192, DC-273, DC-338
show controllers e1 command  DC-272, DC-337
show controllers t1 command  DC-272
show debugging command  DC-549
show deenet traffic command  DC-376, DC-406, DC-433
show diag command  DC-205
show dialer command  DC-192, DC-272, DC-273, DC-375, DC-406, DC-444, DC-661, DC-672, DC-745
show dialer dns command  DC-756, DC-759
show dialer map command  DC-672
show dialer sessions command  DC-690
show dial-shelf clocks command  DC-120
show dsi command  DC-126
show dsip clients command  DC-125
show dsip command  DC-125
show dsip nodes command  DC-125
show dsip ports command  DC-125
show dsip queue command  DC-125
show dsip tracing command  DC-125
show dsip transport command  DC-126
show dsip version command  DC-126
show interface async command  DC-22
show interfaces bri command  DC-181, DC-192, DC-206, DC-375, DC-406, DC-433
show interfaces serial bchannel command  DC-273
show interfaces serial command  DC-337
show interfaces virtual-access command  DC-486
show interface virtual-access command  DC-546
show ip access-list command  DC-708
show ip interface command  DC-708
show ip local pool command  DC-708
show ip protocols command  DC-708
show ip route command  DC-684, DC-690, DC-708
show ip socket command  DC-48
show ipx access-list command  DC-708, DC-736
show ipx interface command  DC-375, DC-406, DC-433, DC-708
show ipx route command  DC-708
show ipx servers command  DC-708
show isdn command  DC-192, DC-272, DC-273, DC-315, DC-337
show isdn nfas group command  DC-319
show isdn service command  DC-319
show line async-queue command  DC-26
show line command  DC-21, DC-26, DC-138
show modem call-stats command  DC-99
show modem command  DC-111
show modem connect-speeds command  DC-111
show port config command  DC-141
show port digital log command  DC-141
show port modem log command  DC-142
show port modem test command  DC-142
show port operational-status command  DC-142
show ppp bap group command  DC-672
show ppp bap queues command  DC-672
show ppp multilink command  DC-637, DC-672
show process cpu command  DC-600, DC-601
show rcapi status command  DC-252
show redundancy command  DC-125
show resource-pool call command  DC-757
show resource-pool customer command  DC-750, DC-757
show resource-pool discriminator command  DC-758
show resource-pool resource command  DC-758
show resource-pool vpdn group command  DC-754
show resource-pool vpdn profile command  DC-754
show run command  DC-106
show running-config command  DC-210, DC-759
show sgbp command  DC-637
show sgbp queries command  DC-637
show snapshot command  DC-444
show spe command  DC-141
show spe digital active command  DC-142
show spe digital command  DC-142
show spe digital csr command  DC-142
show spe digital disconnect-reason command  DC-142
show spe digital summary command  DC-142
show spe log command  DC-141
show spe modem active command  DC-125, DC-126, DC-143
show spe modem command  DC-144
show spe modem csr command  DC-143
show spe modem disconnect-reason command  DC-143
show spe modem speed command  DC-144
show spe version command  DC-141
show version command  DC-118
show vines traffic command  DC-376, DC-406, DC-433
show vpdn command  DC-547
show vpdn multilink command  DC-755
show vpdn tunnel command  DC-547
show xns traffic command  DC-376, DC-406, DC-433
shutdown command  DC-486
signaling
channel-associated analog calls  DC-258
E1 R2
configuration (example)  DC-308
configuring  DC-285
countries supported  DC-283
country settings  DC-285
overview  DC-282
parameters  DC-285
sample topology  DC-283
troubleshooting  DC-288
in-band  DC-258
out-of-band  DC-258
R1 modified  DC-289
R2  DC-285
clock source  DC-291, DC-292
encoding options  DC-291, DC-292
framing options  DC-291, DC-292
robbed-bit  DC-258
SLIP (Serial Line Internet Protocol)
(examples)  DC-588
automatic sessions, starting  DC-27
defined  DC-583
IP, configuring over  DC-578
IP-SLIP (example)  DC-41
PPP banner  DC-587
(example)  DC-589
tokens  DC-587
PPP BOOTP requests  DC-576
server connections  DC-583
telecommuting configuration (example)  DC-576
snapshot client command  DC-443, DC-445
snapshot routing  DC-441 to DC-445
client router, configuring  DC-443
interface diagnostics  DC-444
monitoring  DC-444
overview  DC-441
periods
active  DC-442
quiet  DC-442
quiet periods, stopping  DC-444
routed protocols supported  DC-442
routing information exchange  DC-441
server configuration (example)  DC-445
server router, configuring  DC-444
snapshot server command  DC-444
snmp-server enable traps ds0-busyout command  DC-105
snmp-server enable traps isdn chan-not-avail command  DC-106
snmp-server enable traps modem-health command  DC-106
source template command DC-724, DC-750
SPE (Service Processing Element)
country code DC-132
digital statistics DC-142
download maintenance DC-140
firmware DC-67, DC-128, DC-133
country name, specifying DC-132
firmware statistics DC-141
lines and ports
configuring DC-136
verifying DC-138
log events DC-139
modem statistics DC-143
performance statistics
configuring DC-138
viewing DC-141
port statistics DC-141
reboot DC-135
recovery DC-140
shutdown DC-135
troubleshooting DC-139
verifying DC-138
spe call-record modem command DC-138
spe country command DC-69
speeds
modem, verifying DC-111
spe log-event-size command DC-138
stack groups
large-scale dial-out DC-681
MMP DC-634
PRI hunt groups DC-634
switched 56K
analog calls DC-279
benefits DC-278
BRI bearer capability DC-280
call processing components DC-280
configuring DC-281
ISDN BRI traffic DC-281
overview DC-279
prerequisites DC-278
switched 56K over CT1 RBS
56K and modem calls (example) DC-301
call processing components DC-280
configuration (example) DC-301
description DC-280
ISDN BRI solution DC-281
prerequisites DC-278
restrictions DC-278
sample topology DC-279
startup configuration (example) DC-302
T1 CAS line provisioning DC-302
switch types
ISDN BRI (table) DC-181
ISDN NFAS DC-316
ISDN PRI (table) DC-261
North American ISDN DC-176, DC-259
voice systems DC-180

T

T1 voice channels, configuring DC-277
T3 controllers, MLP configuration (example) DC-631
Tab key, command completion xlviii
TACACS
AV pairs DC-704
servers DC-700
tacacs-server host command DC-683
tacacs-server key command DC-683
Taiwan, ISDN Sending Complete information element DC-189, DC-268
TCP
connection attempt time, configuring DC-585
TCP/IP header compression
(example) DC-42
configuring DC-34, DC-584
EXEC-level DC-35
Van Jacobsen DC-34
TCP Clear Performance Optimization feature DC-779
tcpdump  DC-107
TCP header compression
   See TCP/IP, header compression
TEI (terminal endpoint identifier), ISDN interfaces
   configuring  DC-186
   (example)  DC-295
   configuring static  DC-266
   (example)  DC-299
defaults  DC-186, DC-266
telecommuting configuration (example)  DC-576
Telnet
   automatic rotary line queueing  DC-25
   connection, queued request  DC-25
   direct sessions
      (example)  DC-153
   starting  DC-152
   stopping  DC-153
   verifying  DC-153
TCP Clear performance optimization  DC-779, DC-780
terminal
   EXEC process  DC-30
   V.120 asynchronous  DC-198
terminate-from command  DC-535

test modem back-to-back command  DC-96

test port modem back-to-back command  DC-139

timers, dialer
   carrier wait time, enabling  DC-400
   disconnect  DC-329
      configuration (example)  DC-342
    enable-timeout  DC-659, DC-660
    fast idle, enabling  DC-370
    idle reset, enabling  DC-367
    line down-time, enabling  DC-370
    line idle, enabling  DC-400
    wait for carrier  DC-659
    enabling  DC-370
ToS (type of service), preserving over VPNs  DC-539

transparent bridging
dialer profiles
interfaces, configuring  DC-432
   legacy DDR, access (example)  DC-377, DC-407
   transport command  DC-70
   transport input command  DC-201
   transport output command  DC-46
   traps
      modem MIB  DC-104
         (example)  DC-107
   trunkgroup (dial-peer) command  DC-332
   trunk group (global) command  DC-332
   trunk-group (interface) command  DC-332
   tty lines
      configuring  DC-16
      numbering scheme (table)  DC-61
      relationship to interfaces  DC-15
   tunnel command  DC-582
tunneling
   packet, asynchronous host roaming  DC-581
   VPN
      authorization search order  DC-518
      local tunnel authentication  DC-530
      local tunnel authentication (examples)  DC-565

U

UDPTN (User Datagram Protocol Telnet)
   configuring  DC-46
   overview  DC-45
   udptn command  DC-47
   user EXEC mode, summary of  xlviii
   username callback-dialstring command  DC-645, DC-646, DC-647
   username callback-line command  DC-645, DC-646, DC-647
   username callback-rotary command  DC-645, DC-646, DC-647
   username command  DC-396, DC-599, DC-645, DC-808
   username nocallback-verify command  DC-646
   usernames, maximum links (example)  DC-621
V

V.110 modem calls, selective filtering of incoming DC-189
V.120 Modem Standard DC-66
V.120 standard
  dynamic detection DC-199
  dynamic detection (example) DC-200
  ISDN asynchronous communications DC-198
  on virtual asynchronous interface DC-198
V.90 modem standard DC-64
VINES
  DDR, configuring DC-354
dialer profiles DC-428
vines access-list command DC-354, DC-428
virtual access interfaces
  configuration information sources DC-484
  configuration rules DC-490
  creation criteria DC-485
description DC-9
dynamic DC-489, DC-699
monitoring DC-486
selective creation DC-485
  (example) DC-487
two configuration sources (example) DC-484
virtual asynchronous interfaces
  description DC-10
  ISDN traffic over DC-197
  V.120 support DC-198
virtual-profile aaa command DC-497, DC-498
virtual-profile if-needed command DC-486
virtual profiles
  AAA
    configuration (example) DC-494, DC-501, DC-504
    configuring DC-493, DC-495, DC-497
    per-user configuration
      TACACS+ user profile
        (example) DC-488
  configured by virtual template on PPP
    (example) DC-487
interoperations, legacy DDR DC-490
MLP
  cloning sequence (table) DC-491
  configuration requirements DC-491
  interoperations DC-491
  per-user configuration DC-700, DC-701
  physical interface interoperation, configuring DC-490
  user-specific interface configuration DC-492
virtual access interfaces
  cloning sequence (table) DC-491
  selective creation DC-485
  selective creation (example) DC-487
virtual template and AAA
  configuration (example) DC-494, DC-495, DC-502, DC-515
  configuring DC-497
virtual template interfaces
  configuration (example) DC-499
  configuring DC-492, DC-493
  information, defining DC-492
  physical interface overrides DC-492
  See also virtual template interfaces
virtual templates
  configuring DC-496
  interoperability DC-491
virtual-template virtual-template command DC-483, DC-498
virtual-template command DC-535
virtual template interfaces
  configuration (examples) DC-486 to DC-488
  configuration commands contained in DC-493
  configuration service (example) DC-487, DC-493
  configuring DC-486, DC-496, DC-498, DC-637
  features DC-485
 IP unnumbered DC-486, DC-496, DC-498
  limitations DC-483
  monitoring DC-486
  overview DC-484, DC-489
  per-user configuration DC-699
  stack groups, configuring DC-637
  virtual profiles on PPP (example) DC-487
VPN, configuring  DC-535
Virtual Template Interface Service feature  DC-484
voluntary tunneling
See client-initiated VPNs
VPDN (virtual private dialup network)
See VPDN groups; VPDN profiles; VPN
vpdn enable command  DC-530
vpdn-group command  DC-534, DC-754, DC-755
VPDN groups, description  DC-727
vpdn history failure table-size command  DC-542
vpdn logging command  DC-542
vpdn logging history failure command  DC-542
vpdn profile command  DC-754
VPDN profiles, description  DC-727
vpdn search-order command  DC-535
vpdn session-limit command  DC-540
vpdn softshut command  DC-541
VPN (Virtual Private Network)
AAA
component interface  DC-763
configuring  DC-524
negotiation, troubleshooting  DC-560
client-initiated architecture  DC-509
configuration (examples)  DC-563 to DC-569, DC-775
configuration modes  DC-521
control packet problem, troubleshooting  DC-557
debug commands  DC-548
debug output, verifying  DC-549
dial-in
configuring  DC-534
configuring, (example)  DC-566 to DC-568
L2F  DC-511
protocol negotiation  DC-512
tunnel authentication  DC-514
verifying  DC-542
L2TP
AAA tunnel definition lookup  DC-519
call sequence  DC-517
debug output  DC-549
PPTP  DC-509
flow control alarm  DC-510
protocol negotiation  DC-510
topology  DC-545
virtual template, configuring  DC-535
dial-out
configuration (example)  DC-568
dialers, configuring  DC-529
L2TP  DC-520 to DC-521
L2TP debug output  DC-550
hardware terminology  DC-508
technology-specific terms  DC-509
IP ToS preservation  DC-539
load sharing (example)  DC-776
monitoring and maintaining  DC-547
NAS
debug output  DC-549, DC-550
definition  DC-508, DC-577
dial-in, configuring  DC-534
(configuring)  DC-566
dial-out, configuration (example)  DC-568
dial-out, configuring  DC-537
outgoing connections  DC-519
Tunnel authorization search order  DC-518
NAS-initiated architecture  DC-509
per-user configuration  DC-538
PPP negotiation, troubleshooting  DC-559
prerequisites  DC-523
QoS preservation  DC-539
topology  DC-545
troubleshooting  DC-548, DC-764 to DC-767
tunnel authentication
configuration (examples)  DC-565
configuring  DC-530
tunnel lookup
DNIS  DC-519
host name  DC-519
tunnel secret, troubleshooting  DC-555
tunnel server
debug output  DC-550, DC-551
Index

definition DC-508
dial-in, configuring DC-535
(definition) DC-567
dial-out, configuring DC-536
(definition) DC-569
tunnel session limit, configuring DC-540
tunnel shutdown DC-540
tunnel soft shutdown, configuring DC-541
verifying DC-542
virtual template, configuring DC-535
VPDN MIB and Syslog Facility
event logging, configuring DC-542
supported objects DC-508
table history size, configuring DC-542
VPN group commands (table) DC-523
VPN subgroup commands (table) DC-522

W
where command DC-153

X
X.25
address mapping DC-405
DTR dialing (example) DC-419
dynamic circuit-switched client DC-228
ISDN D channel DC-228
configuration (example) DC-229
configuring DC-229, DC-236
overview DC-227
legacy DDR
dialers supported DC-374, DC-405
DTR dialing (example) DC-387, DC-419
mapping protocol address to remote host DC-375
networks, PPP calls over DC-862
See also AO/DI, clients, X.25; AO/DI, servers, X.25
x25 address command DC-240, DC-241, DC-375, DC-405
x25 aodi command DC-242
x25 htc command DC-240
x25 map command DC-375, DC-405
x25 map ppp command DC-237, DC-242, DC-243
x25 win command DC-240
x25 wout command DC-240
XNS (Xerox Network Systems)
   DDR, configuring DC-355
dialer profiles, configuring DC-430