Configuring PPP Support on the GGSN

The GGSN supports the GPRS Tunneling Protocol (GTP) with the Point to Point Protocol (PPP) in three different ways. The different types of PPP support on the GGSN are differentiated by where the PPP endpoints occur within the network, whether Layer 2 Tunneling Protocol (L2TP) is in use, and where IP packet service occurs. This chapter describes the different methods of PPP support on the GGSN and how to configure those methods.

For a complete description of the GGSN commands in this chapter, refer to the Cisco IOS Mobile Wireless Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

This chapter includes the following sections:

- Overview of PPP Support on the GGSN, page 109
- Configuring GTP-PPP Termination on the GGSN, page 111
- Configuring GTP-PPP With L2TP on the GGSN, page 116
- Configuring GTP-PPP Regeneration on the GGSN, page 122
- Monitoring and Maintaining PPP on the GGSN, page 129
- Configuration Examples, page 130

Overview of PPP Support on the GGSN

Before GGSN Release 3.0, the GGSN supported a topology of IP over PPP between the terminal equipment (TE) and mobile termination (MT). Only IP packet services and routing were supported from the MT through the SGSN, over the Gn interface and the GTP tunnel to the GGSN, and over the Gi interface to the corporate network. No PPP traffic flow was supported over the GTP tunnel, or between the GGSN and the corporate network.
Figure 13 shows the implementation of IP over GTP without any PPP support within the GPRS network.

Figure 13 IP Over GTP Topology Without PPP Support on the GGSN

The PPP PDP type was added to the Global System for Mobile Communication (GSM) standards in GSM 04.08 version 7.4.0 and GSM 09.60 version 7.0.0. PPP is a widespread Layer 2 protocol that is frequently used in a variety of WAN environments, including frame relay, ATM, and X.25 networks.

PPP provides security checking through the Password Authentication Protocol (PAP) and Challenge Handshake Authentication Protocol (CHAP), and it uses the IP Control Protocol (IPCP) sublayer to negotiate IP addresses. Perhaps the most important characteristic of PPP support within the GPRS network is PPP’s tunneling capability through a virtual private data network (VPDN) using L2TP. Tunneling allows PPP sessions to be transported through public networks to a private corporate network, without any security exposure in between. Authentication and dynamic IP address allocation can be performed at the edge of the corporate network.

As of GGSN Release 3.0, the GGSN provides the following three methods of PPP support on the GGSN:

- GTP-PPP
- GTP-PPP-L2TP
- GTP-PPP-Regeneration

Note

Under optimal conditions, the GGSN supports 8000 PDP contexts when a PPP method is configured. However, the router platform, amount of memory installed, method of PPP support configured, and the rate of PDP context creation configured, will affect this number.

The following sections in this chapter describe each method in more detail, and describe how to configure and verify that type of PPP support on the GGSN.
Configuring GTP-PPP Termination on the GGSN

This section provides an overview of and describes how to configure PPP over GTP on the GGSN. It includes the following topics:

- Overview of GTP-PPP Termination on the GGSN, page 111
- Preparing to Configure PPP Over GTP on the GGSN, page 112
- GTP-PPP Termination Configuration Task List, page 112
- GTP-PPP Termination on the GGSN Configuration Example, page 130

Overview of GTP-PPP Termination on the GGSN

The GGSN supports the PPP PDP type over GTP without using L2TP. In this topology, the GGSN provides PPP support from the terminal equipment (TE) and mobile termination (MT) or mobile station (MS) through the SGSN, over the Gn interface and the GTP tunnel to the GGSN. The PPP endpoints are at the terminal equipment (TE) and the GGSN. IP routing occurs from the GGSN over the Gi interface to the corporate network.

Figure 14 shows the implementation of PPP over GTP without L2TP support within the GPRS network.

Benefits

PPP over GTP support on the GGSN provides the following benefits:

- Different traffic types can be supported over GTP.
- Authentic negotiation of PPP options can occur for PPP endpoints (no need for proxy PPP negotiation).
- Provides the foundation for GTP to interwork with other PPP networking protocols, such as L2TP.
• Requirements for MT intelligence are simplified, with no need for support of a PPP stack on the MT.
• Additional session security is provided.
• Provides increased flexibility of IP address assignment to the TE.

Preparation to Configure PPP Over GTP on the GGSN

Before you begin to configure PPP over GTP support on the GGSN, you need to determine the method that the GGSN will use to allocate IP addresses to users. There are certain configuration dependencies based on the method of IP address allocation that you want to support.

Be sure that the following configuration guidelines are met to support the type of IP address allocation in use on your network:

• RADIUS IP address allocation
 - Be sure that users are configured on the RADIUS server using the complete username@domain format.
 - Specify the **no peer default ip address** command at the PPP virtual template interface.
 - For more information about configuring RADIUS services on the GGSN, see the “Configuring Security on the GGSN” chapter in this book.

• DHCP IP address allocation
 - Be sure that you configure the scope of the addresses to be allocated on the same subnet as the loopback interface.
 - Do not configure an IP address for users on the RADIUS server.
 - Specify the **peer default ip address dhcp** command at the PPP virtual template interface.
 - Specify the **aaa authorization network method_list none** command on the GGSN.
 - For more information about configuring DHCP services on the GGSN, see the “Configuring DHCP on the GGSN” chapter in this book.

• Local pool IP address allocation
 - Be sure that you do not configure an IP address for users on the RADIUS server.
 - Specify the **peer default ip address pool pool-name** command.

GTP-PPP Termination Configuration Task List

To configure PPP over GTP support on the GGSN, perform the following tasks:

• Configuring a Loopback Interface, page 113 (Recommended)
• Configuring a PPP Virtual Template Interface, page 113 (Required)
• Associating the Virtual Template Interface for PPP on the GGSN, page 115 (Required)
Configuring a Loopback Interface

Cisco Systems recommends that you configure the virtual template interface as unnumbered, and associate its IP numbering with a loopback interface.

A loopback interface is a software-only interface that emulates an interface that is always up. It is a virtual interface supported on all platforms. The interface-number is the number of the loopback interface that you want to create or configure. There is no limit on the number of loopback interfaces you can create. The GGSN uses loopback interfaces to support the configuration of several different features.

To configure a loopback interface on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface loopback interface-number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address ip-address mask [secondary]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuring a PPP Virtual Template Interface

To support PPP over GTP, you must configure a virtual template interface on the GGSN that supports PPP encapsulation. Therefore, the GGSN will have two virtual template interfaces: one for GTP encapsulation and one for PPP encapsulation. The GGSN uses the PPP virtual template interface to create all PPP virtual access interfaces for PPP sessions on the GGSN.

Cisco Systems recommends that you configure the virtual template interface as unnumbered, and associate its IP numbering with a loopback interface.

Because it is the default, PPP encapsulation does not appear in the show running-config output for the interface.
To configure a PPP virtual template interface on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface virtual-template number</td>
<td>Creates a virtual template interface, where number identifies the virtual template interface. This command enters you into interface configuration mode.</td>
</tr>
<tr>
<td>Note</td>
<td>This number must match the number configured in the corresponding <code>gprs gtp ppp vtemplate</code> command.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip unnumbered type number</td>
<td>Enables IP processing on the virtual template interface without assigning an explicit IP address to the interface, where type and number specifies another interface for which the router has been assigned an IP address. For the GGSN, this can be a Gi interface or a loopback interface. Cisco Systems recommends using a loopback interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# no peer default ip address (for RADIUS server)</td>
<td>Specifies the prior peer IP address pooling configuration for the interface. If you are using a RADIUS server for IP address allocation, then you need to disable peer IP address pooling.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# peer default ip address dhcp (for DHCP server)</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# peer default ip address pool pool-name (for local pool)</td>
<td></td>
</tr>
</tbody>
</table>
Configuring PPP Support on the GGSN

Step 4

```bash
Router(config-if)# encapsulation ppp
```

(Optional) Specifies PPP as the encapsulation type for packets transmitted over the virtual template interface. PPP is the default encapsulation.

Note

PPP is the default encapsulation and does not appear in the output of the `show running-config` command for the virtual template interface unless you manually configure the command.

Step 5

```bash
Router(config-if)# ppp authentication {pap [chap]} [default]
```

Enables CHAP or PAP or both and specifies the order in which CHAP and PAP authentication are selected on the interface, where

- `pap [chap]`—Enables PAP, CHAP, or both on the interface.
- `default`—Name of the method list created with the `aaa authentication ppp` command.

Associating the Virtual Template Interface for PPP on the GGSN

Before you associate the virtual template interface for PPP, you must configure the virtual template interface. The number that you configure for the virtual template interface must correspond to the number that you specify in the `gprs gtp ppp vtemplate` command.

To associate the virtual template interface for GPRS, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# gprs gtp ppp vtemplate number</code></td>
<td>Associates the virtual template interface that defines the PPP characteristics with support for the PPP PDP type over GTP on the GGSN.</td>
</tr>
</tbody>
</table>

Note

This number must match the `number` configured in the corresponding `interface virtual-template` command.
Configuring PPP Support on the GGSN

Configuring GTP-PPP With L2TP on the GGSN

This section provides an overview of and describes how to configure PPP over GTP with L2TP support on the GGSN. It includes the following topics:

- Overview of GTP-PPP With L2TP on the GGSN, page 116
- GTP-PPP With L2TP Configuration Task List, page 117
- GTP-PPP Over L2TP Configuration Example, page 132
- AAA Services for L2TP Configuration Example, page 133

Overview of GTP-PPP With L2TP on the GGSN

The GGSN supports PPP over GTP using L2TP, without IP routing. The GGSN provides PPP support from the TE and MT through the SGSN, over the Gn interface and the GTP tunnel to the GGSN, and over the Gi interface and an L2TP tunnel to the corporate network. In this scenario, the PPP termination endpoints are at the TE and the L2TP network server (LNS) at the corporate network.

With L2TP support, packets are delivered to the LNS by routing L2TP- and PPP-encapsulated IP payload. Without L2TP, pure IP payload is routed to the LNS at the corporate network.

Figure 15 shows the implementation of PPP over GTP with L2TP support within the GPRS network.

Figure 15 PPP Over GTP With L2TP Topology on the GGSN

Benefits

PPP over GTP with L2TP support on the GGSN provides the following benefits:

- VPN security using L2TP tunnels provides secure delivery of user data over the public network to a corporate network.
- Real end-to-end PPP sessions, with authentication and address negotiation and assignment.
- Corporate networks can retain control over access to their servers and do not need to provide access by the GGSN to those servers.
- Configuration changes on corporate servers can occur without requiring an update to the GGSN.
GTP-PPP With L2TP Configuration Task List

Configuring GTP over PPP with L2TP requires many of the same configuration tasks as those required to configure GTP over PPP without L2TP, with some additional tasks to configure the GGSN as an L2TP access concentrator (LAC) and to configure AAA services.

To configure PPP over GTP with L2TP support on the GGSN, perform the following tasks:

- Configuring the GGSN as a LAC, page 117 (Required)
- Configuring AAA Services for L2TP Support, page 118 (Required)
- Configuring a Loopback Interface, page 120 (Recommended)
- Configuring a PPP Virtual Template Interface, page 120 (Required)
- Associating the Virtual Template Interface for PPP on the GGSN, page 121 (Required)

Configuring the GGSN as a LAC

When you use L2TP services on the GGSN to the LNS in the corporate network, you need to configure the GGSN as a LAC by enabling VPDN services on the GGSN.

For more information about VPDN configuration and commands in the Cisco IOS software, refer to the Cisco IOS Dial Technologies Configuration Guide and Command Reference publications.

To configure the GGSN as a LAC where the tunnel parameters are configured locally on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router(config)# vpdn enable</td>
<td>Enables VPDN on the router and directs the router to look for tunnel definitions in a local database and on a remote authorization server (home gateway), if one is present.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note Only this step is required if you are using a RADIUS server to provide tunnel parameters.</td>
</tr>
<tr>
<td>2</td>
<td>Router(config)# vpdn group group-number</td>
<td>Defines a VPDN group and enters VPDN group configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>Router(config-vpdn)# request dialin</td>
<td>Enables the router to request dial-in tunnels and enters request dial-in VPDN sub-group configuration mode.</td>
</tr>
<tr>
<td>4</td>
<td>Router(config-vpdn-req-in)# protocol l2tp</td>
<td>Specifies the L2TP protocol for dial-in tunnels.</td>
</tr>
<tr>
<td>5</td>
<td>Router(config-vpdn-req-in)# domain domain-name</td>
<td>Specifies that users with this domain name will be tunnelled. Configure this command for every domain name you want to tunnel.</td>
</tr>
<tr>
<td>6</td>
<td>Router(config-vpdn-req-in)# exit</td>
<td>Returns you to VPDN group configuration mode</td>
</tr>
</tbody>
</table>
Configuring AAA Services for L2TP Support

Before the VPDN stack on the GGSN opens an L2TP tunnel to an LNS, it tries to authorize the tunnel first. The GGSN consults its local database to perform this authorization. Therefore, you need to configure the appropriate AAA services for the GGSN to support L2TP tunnel authorization. Note that this is for authorization of the tunnel itself—not for user authorization.

This section describes only those commands required to implement authorization for L2TP support on the GGSN. It does not describe all of the tasks required to configure RADIUS and AAA support on the GGSN. For more information about enabling AAA services and configuring AAA server groups on the GGSN, see the “Configuring Security on the GGSN” chapter in this book.

Note To correctly implement authentication and authorization services on the GGSN for L2TP support, you must configure the same methods and server groups for both.

Command Purpose

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>Router(config-vpdn)# initiate-to ip-address [limit limit-number] [priority priority-number]</code></td>
<td>Specifies the destination IP address for the tunnel.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>Router(config-vpdn)# local name name</code></td>
<td>Specifies the local name that is used to authenticate the tunnel.</td>
</tr>
</tbody>
</table>
To configure authorization for L2TP support on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
Router(config)# aaa authorization network default local</td>
<td>(Optional) Specifies that the GGSN consults its local database, as defined by the username command, for tunnel authorization.</td>
</tr>
<tr>
<td>Step 2
Router(config)# **aaa authorization network {default</td>
<td>list-name} group group-name [group group-name...]**</td>
</tr>
<tr>
<td></td>
<td>• network—Runs authorization for all network-related service requests, including SLIP1, PPP2, PPP NCPs3, and ARA4.</td>
</tr>
<tr>
<td></td>
<td>• default—Uses the listed authentication methods that follow this argument as the default list of methods when a user logs in.</td>
</tr>
<tr>
<td></td>
<td>• list-name—Specifies the character string used to name the list of authentication methods tried when a user logs in.</td>
</tr>
<tr>
<td></td>
<td>• group group-name—Uses a subset of RADIUS servers for authentication as defined by the aaa group server radius command.</td>
</tr>
</tbody>
</table>

Note
Be sure to use a method list and do not use the **aaa authorization network default group radius** form of the command. For L2TP support, the **group-name** must match the group that you specify in the **aaa authentication ppp** command.

| **Step 3**
Router(config)# **username name password secret** | Specifies the password to be used in CHAP caller identification, where **name** is the name of the tunnel. |

Note
A username in the form of **ciscouser**, **ciscouser@corporate1.com**, and **ciscouser@corporate2.com** are considered to be three different entries.

Repeat this step to add a username entry for each remote system from which the local router or access server requires authentication.
Configuring PPP Support on the GGSN

You can configure the L2TP tunnel parameters locally on the GGSN, or the tunnel parameters can be provided by a RADIUS server. If a RADIUS server is providing the tunnel parameters, then in this procedure you only need to configure the `username` command on the GGSN.

Configuring a Loopback Interface

Cisco Systems recommends that you configure the virtual template interface as unnumbered, and associate its IP numbering with a loopback interface.

A loopback interface is a software-only interface that emulates an interface that is always up. It is a virtual interface supported on all platforms. The interface-number is the number of the loopback interface that you want to create or configure. There is no limit on the number of loopback interfaces you can create. The GGSN uses loopback interfaces to support the configuration of several different features.

To configure a loopback interface on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>interface loopback interface-number</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ip address ip-address mask</code> <code>secondary</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: IP addresses on the loopback interface are only needed for PPP PDPs not using L2TP. Cisco Systems recommends using IP addresses for the case where PPP PDPs are destined to a domain that is not configured with L2TP.

Configuring a PPP Virtual Template Interface

To support PPP over GTP, you must configure a virtual template interface on the GGSN that supports PPP encapsulation. Therefore, the GGSN will have two virtual template interfaces: one for GTP encapsulation and one for PPP encapsulation. The GGSN uses the PPP virtual template interface to create all PPP virtual access interfaces for PPP sessions on the GGSN.

Note: If you are planning to support both GTP-PPP and GTP-PPP-L2TP (PPP PDPs with and without L2TP support), then you must use the same virtual template interface for PPP.
Cisco Systems recommends that you configure the virtual template interface as unnumbered, and associate its IP numbering with a loopback interface.

PPP is the default encapsulation, so it does not need to be explicitly configured. Because it is the default, PPP encapsulation does not appear in the `show running-config` output for the interface.

To configure a PPP virtual template interface on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface virtual-template number</td>
</tr>
<tr>
<td>Note</td>
<td>This number must match the <code>number</code> configured in the corresponding <code>gprs gtp ppp vtemplate</code> command.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip unnumbered type number</td>
</tr>
<tr>
<td></td>
<td>For the GGSN, this can be a Gi interface or a loopback interface. Cisco Systems recommends using a loopback interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# encapsulation ppp</td>
</tr>
<tr>
<td>Note</td>
<td>PPP is the default encapsulation and does not appear in the output of the <code>show running-config</code> command for the virtual template interface unless you manually configure the command.</td>
</tr>
</tbody>
</table>

Associating the Virtual Template Interface for PPP on the GGSN

Before you associate the virtual template interface for PPP, you must configure the virtual template interface. The number that you configure for the virtual template interface must correspond to the number that you specify in the `gprs gtp ppp vtemplate` command.
Configuring PPP Support on the GGSN

To associate the virtual template interface for GPRS, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# gprs gtp ppp vtemplate number</td>
<td>Associates the virtual template interface that defines the PPP characteristics with support for the PPP PDP type over GTP on the GGSN.</td>
</tr>
<tr>
<td>Note</td>
<td>This number must match the number configured in the corresponding interface virtual-template command.</td>
</tr>
</tbody>
</table>

Configuring GTP-PPP Regeneration on the GGSN

This section provides an overview of and describes how to configure PPP over GTP with L2TP support on the GGSN. It includes the following topics:

- Overview of GTP-PPP Regeneration on the GGSN, page 122
- GTP-PPP With L2TP Configuration Task List, page 117
- GTP-PPP Regeneration Configuration Example, page 133
- AAA Services for L2TP Configuration Example, page 133

Overview of GTP-PPP Regeneration on the GGSN

The GGSN supports PPP in two different areas of the network, with two different sets of PPP endpoints, and IP over GTP in between. First, IP over PPP is in use between the TE and MT. From there, IP packet support occurs between the MT through the SGSN, over the Gn interface and the GTP tunnel to the GGSN. The GGSN initiates a new PPP session on the Gi interface over an L2TP tunnel to the corporate network. So, the second set of PPP endpoints occur between the GGSN and the LNS at the corporate network.

PPP regeneration on the GGSN supports the use of an IP PDP type in combination with PPP and L2TP. For each IP PDP context that the GGSN receives at an access point that is configured to support PPP regeneration, the GGSN regenerates a PPP session. The GGSN encapsulates any tunnel packet data units (TPDUs) in PPP and L2TP headers as data traffic and forwards them to the LNS.

PPP regeneration on the GGSN implements virtual routing and forwarding (VRF) to handle overlapping IP addresses. A VRF routing table is automatically enabled at each APN when you configure PPP regeneration at that APN.
Restrictions

The GGSN supports PPP regeneration with the following restriction:
- Manual configuration of VRF is not supported.

Figure 16 shows the implementation of PPP support within the GPRS network using PPP regeneration on the GGSN.

Figure 16 PPP Regeneration Topology on the GGSN

GTP-PPP Regeneration Configuration Task List

Configuring IP over GTP with PPP regeneration on the GGSN requires similar configuration tasks as those required to configure GTP over PPP with L2TP, with some exceptions in the implementation.

To configure GTP-PPP regeneration support on the GGSN, perform the following tasks:
- Configuring the GGSN as a LAC, page 123 (Required)
- Configuring AAA Services for L2TP Support, page 124 (Required)
- Configuring a PPP Virtual Template Interface, page 127 (Required)
- Associating the Virtual Template Interface for PPP Regeneration on the GGSN, page 128 (Required)
- Configuring PPP Regeneration at an Access Point, page 128 (Required)

Configuring the GGSN as a LAC

When you use L2TP services on the GGSN to the LNS in the corporate network, you need to configure the GGSN as a LAC by enabling VPDN services on the GGSN.

For more information about VPDN configuration and commands in the Cisco IOS software, refer to the Cisco IOS Dial Technologies Configuration Guide and Command Reference publications.
To configure the GGSN as a LAC where the tunnel parameters are configured locally on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# vpdn enable</td>
</tr>
<tr>
<td>Note</td>
<td>Only this step is required if you are using a RADIUS server to provide tunnel parameters.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# vpdn group group-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-vpdn)# request dialin</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-vpdn-req-in)# protocol l2tp</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-vpdn-req-in)# domain domain-name</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-vpdn-req-in)# exit</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-vpdn)# initiate-to ip-address [limit limit-number] [priority priority-number]</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config-vpdn)# local name name</td>
</tr>
</tbody>
</table>

Note: You can configure the L2TP tunnel parameters locally on the GGSN, or the tunnel parameters can be provided by a RADIUS server. If a RADIUS server is providing the tunnel parameters, then in this procedure you only need to configure the vpdn enable command on the GGSN.

Configuring AAA Services for L2TP Support

Before the VPDN stack on the GGSN opens an L2TP tunnel to an LNS, it tries to authorize the tunnel first. The GGSN consults its local database to perform this authorization. Therefore, you need to configure the appropriate AAA services for the GGSN to support L2TP tunnel authorization. Note that this is for authorization of the tunnel itself—not for user authorization.

This section describes only those commands required to implement authorization for L2TP support on the GGSN. It does not describe all of the tasks required to configure RADIUS and AAA support on the GGSN. For more information about enabling AAA services and configuring AAA server groups on the GGSN, see the “Configuring Security on the GGSN” chapter in this book.
To correctly implement authentication and authorization services on the GGSN for L2TP support, you must configure the same methods and server groups for both.

To configure authorization for L2TP support on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# aaa authorization network default local</td>
<td>(Optional) Specifies that the GGSN consults its local database, as defined by the <code>username</code> command, for tunnel authorization.</td>
</tr>
</tbody>
</table>
Configuring PPP Support on the GGSN

Step 2
```
Router(config)# aaa authorization network {default | list-name} group group-name [group group-name...]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config)# aaa authorization network {default | list-name} group group-name [group group-name...] | Specifies one or more authentication, authorization, and accounting (AAA) authentication methods for use on interfaces running PPP where,
- **network**—Runs authorization for all network-related service requests, including SLIP1, PPP2, PPP NCPs3, and ARA4.
- **default**—Uses the listed authentication methods that follow this argument as the default list of methods when a user logs in.
- **list-name**—Specifies the character string used to name the list of authentication methods tried when a user logs in.
- **group group-name**—Uses a subset of RADIUS servers for authentication as defined by the `aaa group server radius` command. |

Note
Be sure to use a method list and do not use the `aaa authorization network default group radius` form of the command. For L2TP support, the `group-name` must match the group that you specify in the `aaa authentication ppp` command.

Step 3
```
Router(config)# username name password secret
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# username name password secret</td>
<td>Specifies the password to be used in CHAP caller identification, where <code>name</code> is the name of the tunnel.</td>
</tr>
</tbody>
</table>

Note
A username in the form of `ciscouser`, `ciscouser@corporate1.com`, and `ciscouser@corporate2.com` are considered to be three different entries.

Repeat this step to add a username entry for each remote system from which the local router or access server requires authentication.

Note
You can configure the L2TP tunnel parameters locally on the GGSN, or the tunnel parameters can be provided by a RADIUS server. If a RADIUS server is providing the tunnel parameters, then in this procedure you only need to configure the `username` command on the GGSN.
Configuring a PPP Virtual Template Interface

To support IP over GTP with PPP regeneration, you must configure a virtual template interface on the GGSN that supports PPP encapsulation. Therefore, the GGSN will have two virtual template interfaces: one for GTP encapsulation and one for PPP encapsulation. The GGSN uses the PPP virtual template interface to create all PPP virtual access interfaces for PPP sessions on the GGSN.

PPP is the default encapsulation, so it does not need to be explicitly configured. Because it is the default, PPP encapsulation does not appear in the `show running-config` output for the interface.

Be aware that the configuration commands for the PPP virtual template interface to support PPP regeneration on the GGSN is different from the previous configurations shown for GTP over PPP support.

To configure a PPP virtual template interface on the GGSN, use the following commands beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(config)# interface virtual-template number</code>
Creates a virtual template interface, where <code>number</code> identifies the virtual template interface. This command enters you into interface configuration mode.</td>
</tr>
<tr>
<td>Note</td>
<td>This number must match the <code>number</code> configured in the corresponding <code>gprs gtp ppp-regeneration vtemplate</code> command.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>Router(config-if)# ip address negotiated</code>
Specifies that the IP address for a particular interface is obtained via PPP/IPCP (IP Control Protocol) address negotiation.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router(config-if)# no peer neighbor-route</code>
Disables creation of neighbor routes.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>Router(config-if)# encapsulation ppp</code>
(Optional) Specifies PPP as the encapsulation type for packets transmitted over the virtual template interface. PPP is the default encapsulation.</td>
</tr>
<tr>
<td>Note</td>
<td>PPP is the default encapsulation and does not appear in the output of the <code>show running-config</code> command for the virtual template interface unless you manually configure the command.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>Router(config-if)# no ppp authentication</code>
(Optional) Disables PPP authentication. This is the default and does not appear in the output of the <code>show running-config</code> command.</td>
</tr>
</tbody>
</table>
Associating the Virtual Template Interface for PPP Regeneration on the GGSN

Before you associate the virtual template interface for PPP regeneration, you must configure a virtual template interface. The number that you configure for the virtual template interface must correspond to the number that you specify in the `gprs gtp ppp-regeneration vtemplate` command.

To associate the virtual template interface for PPP regeneration, use the following command in global configuration mode:

```
Router(config)# gprs gtp ppp-regeneration vtemplate number
```

Purpose
Associates the virtual template interface that defines the PPP characteristics with support for the PPP regeneration on the GGSN.

Note
This number must match the `number` configured in the corresponding `interface virtual-template` command.

Configuring PPP Regeneration at an Access Point

To enable PPP regeneration on the GGSN, you must configure each access point for which you want to support PPP regeneration. There is not a global configuration command to enable PPP regeneration for all access points on the GGSN.

To create an access point and specify its type, use the following commands beginning in global configuration mode:

```
Step 1
Router(config)# gprs access-point-list list-name
```

Purpose
Specifies a name for a new access point list, or references the name of the existing access point list and enters access-point list configuration mode.

```
Step 2
Router(config-ap-list)# access-point
access-point-index
```

Purpose
Specifies an index number for a new access point definition, or references an existing access point definition, and enters access point configuration mode.

```
Step 3
Router(config-access-point)# access-point-name
apn-name
```

Purpose
Specifies the access point network ID, which is commonly an Internet domain name.

Note
The `apn-name` must match the APN that has been provisioned at the MS, HLR, and DNS server.
Configuring PPP Support on the GGSN

Monitoring and Maintaining PPP on the GGSN

This section provides a summary list of the `show` commands that you can use to monitor the different aspects of PPP configuration on the GGSN. Not all of the show commands apply to every method of configuration.

Use the following privileged EXEC commands to monitor and maintain PPP status on the GGSN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show derived-config interface virtual-access number</code></td>
<td>Displays the PPP options that GTP has configured on the virtual access interface for PPP regenerated sessions.</td>
</tr>
<tr>
<td>Router# <code>show gprs gtp pdp-context all</code></td>
<td>Displays all currently active PDP contexts.</td>
</tr>
<tr>
<td>Router# <code>show gprs gtp pdp-context path ip-address</code></td>
<td>Displays all currently active PDP contexts for the specified SGSN path.</td>
</tr>
<tr>
<td>Router# <code>show gprs gtp pdp-context pdp-type pdp-type ppp</code></td>
<td>Displays all currently active PDP contexts that are transmitted using PPP.</td>
</tr>
<tr>
<td>Router# <code>show gprs gtp status</code></td>
<td>Displays information about the current status of the GPRS Tunneling Protocol (GTP) on the GGSN (such as activated PDP contexts, throughput, and QoS statistics).</td>
</tr>
<tr>
<td>Router# <code>show interfaces virtual-access number [configuration]</code></td>
<td>Displays status, traffic data, and configuration information about a specified virtual access interface.</td>
</tr>
</tbody>
</table>

Note: Transparent access is the default value, but it must be manually configured to support PPP regeneration at the access point if the access mode was previously non-transparent.

Enables an access point to support PPP regeneration, where:
- `max-session number`—Specifies the maximum number of PPP regenerated sessions allowed at the access point. The default value is 65535.
- `setup-time seconds`—Specifies the maximum amount of time (between 1 and 65535 seconds) within which a PPP regenerated session must be established. The default value is 60 seconds.
Configuration Examples

This section provides configuration examples for the different types of PPP support on the GGSN. It includes the following examples:

- GTP-PPP Termination on the GGSN Configuration Example, page 130
- GTP-PPP Over L2TP Configuration Example, page 132
- GTP-PPP Regeneration Configuration Example, page 133
- AAA Services for L2TP Configuration Example, page 133

GTP-PPP Termination on the GGSN Configuration Example

The following example shows a GGSN configuration for GTP over PPP using PAP authentication using a RADIUS server at 172.16.0.2 to allocate IP addresses:

```
Router# show running-config
Building configuration...
Current configuration : 3521 bytes
!
version 12.2
no service single-slot-reload-enable
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
! Enables the router for GGSN services
!
! Enables AAA globally
!
! Defines AAA server group
!
! Configures authentication and authorization
!
! Methods for PPP support.
!
! Enables AAA globally
!
! Defines AAA server group
!
! Enables AAA globally
!
! Defines AAA server group
!
! Enables AAA globally
!
! Defines AAA server group
!
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show vpdn session [all</td>
<td>packets</td>
</tr>
<tr>
<td>Router# show vpdn tunnel [all</td>
<td>packets</td>
</tr>
</tbody>
</table>
aaa accounting network default start-stop group gtp_ppp
!
ip subnet-zero
!
! Configures a loopback interface
! for the PPP virtual template interface
!
interface Loopback1
 ip address 10.88.0.4 255.255.0.0
!
interface FastEthernet0/0
 description GN interface
 ip address 10.6.6.78 255.0.0.0
 no ip route-cache
 no ip mroute-cache
duplex half
!
interface Ethernet2/0
 ip address 172.16.0.54 255.255.0.0
 no ip route-cache
 no ip mroute-cache
!
interface Ethernet2/7
 ip address 10.7.0.1 255.255.0.0
 no ip route-cache
 no ip mroute-cache
!
interface FastEthernet3/0
 description Gi interface
 ip address 10.4.0.78 255.255.0.0
 no ip route-cache
 no ip mroute-cache
duplex half
!
! Configures a VT interface for
! GTP encapsulation
!
interface Virtual-Template1
 ip address 10.30.30.1 255.255.255.0
 encapsulation gtp
gprs access-point-list gprs
!
! Configures a VT interface for
! PPP encapsulation
!
interface Virtual-Template2
 ip unnumbered Loopback1
 no ip route-cache
 no peer default ip address
 ppp authentication pap
!
ip kerberos source-interface any
ip classless
ip route 172.16.0.0 255.255.0.0 Ethernet2/0
no ip http server
!
gprs access-point-list gprs
 access-point 1
 access-point-name gprs.cisco.com
 aaa-group authentication gtp_ppp
 aaa-group accounting gtp_ppp
 exit
GTP-PPP Over L2TP Configuration Example

The following example shows a partial configuration of the GGSN to support PPP over GTP with L2TP. Tunnel parameters are configured locally on the GGSN and are not provided by a RADIUS server:

```plaintext
! Enables AAA globally
vpdn enable
! Configures a VPDN group
vpdn-group 1
   request-dialin
   protocol l2tp
   domain ppp-rlns
   initiate-to ip 4.0.0.78 priority 1
   local name nas
! Configures a loopback interface
! for the PPP virtual template interface
interface Loopback1
   ip address 10.88.0.1 255.255.255.255
interface Virtual-Template2
   description VT for PPP L2TP
   ip unnumbered Loopback1
   no peer default ip address
   no peer neighbor-route
! gprs access-point-list gprs
   access-point 15
   access-point-name ppp-lns
   exit
! Associates the PPP virtual template
! interface for use by the GGSN
! gprs gtp ppp-vtemplate 2
! ...
! ...
```

! Associates the PPP virtual template
! interface for use by the GGSN
! gprs gtp ppp-vtemplate 2
gprs default charging-gateway 10.7.0.2
! Configures a global RADIUS server host
! and specifies destination ports for
! authentication and accounting requests
! radius-server host 172.16.0.2 auth-port 2001 acct-port 2002
radius-server retransmit 3
radius-server key cisco
! end

GTP-PPP Over L2TP Configuration Example

The following example shows a partial configuration of the GGSN to support PPP over GTP with L2TP. Tunnel parameters are configured locally on the GGSN and are not provided by a RADIUS server:
GTP-PPP Regeneration Configuration Example

The following example shows a partial configuration of the GGSN to support IP over GTP with PPP regeneration on the GGSN. Tunnel parameters are configured locally on the GGSN and are not provided by a RADIUS server:

```
!
! Enables AAA globally
!
vpdn enable
!
! Configures a VPDN group
!
vpdn-group 1
request-dialin
protocol l2tp
domain ppp_regen1
initiate-to ip 4.0.0.78 priority 1
l2tp tunnel password 7 0114161648
!
! Configures a virtual template
! interface for PPP regeneration
!
interface Virtual-Template2
description VT for PPP Regen
ip address negotiated
no peer neighbor-route
!
gprs access-point-list gprs
access-point 6
access-point-name ppp_regen1
ppp-regeneration
exit
!
! Associates the PPP-regeneration
! virtual template interface for use by the GGSN
!
gprs gtp ppp-regeneration vtemplate 2
```

AAA Services for L2TP Configuration Example

L2TP support is used on the GGSN to support both the PPP over GTP topology and the IP over GTP with PPP regeneration topology. The following examples shows a partial configuration of RADIUS and AAA services on the GGSN to provide L2TP support:

```
!
! Enables AAA globally
!
aaa new-model
!
! Defines AAA server group
!
aaa group server radius gtp_ppp
server 172.16.0.2 auth-port 2001 acct-port 2002
!
! Configures authentication and authorization
! method gtp_ppp and AAA server group gtp_ppp
! for PPP support.
```
! NOTE: You must configure the same methods and groups to support L2TP as shown by the
! aaa authentication ppp gtp_ppp
! and aaa authorization network gtp_ppp commands.
!
aaa authentication ppp gtp_ppp group gtp_ppp
aaa authorization network default local
aaa authorization network gtp_ppp group gtp_ppp
aaa accounting network default start-stop group radius
username nas password 0 lab
username hgw password 0 lab
!
.
.
!
! Configures a global RADIUS server host and specifies destination ports for
! authentication and accounting requests
!
radius-server host 172.16.0.2 auth-port 2001 acct-port 2002
radius-server retransmit 3
radius-server key cisco
!
.
.
!