
XML-PI

Last Updated: October 10, 2012

The XML Programmatic Interface (XML-PI) Release 1.0 leverages the Network Configuration Protocol
(NETCONF) and offers new data models that collect show command output down to the keyword level
and running configurations without the complexity and expense of screen-scraping technologies or external
XML-to-CLI gateways. XML-PI allows you to quickly develop XML-based network management
applications that remotely adapt and control the behavior of any number of network devices
simultaneously. XML-PI uses an industry standard protocol that allows Cisco network devices to be
managed in a more automatic and programmatic way and is CLI accessible.

• Finding Feature Information, page 1
• Prerequisites for XML-PI, page 1
• Restrictions for XML-PI, page 2
• Information About XML-PI, page 3
• How to Configure XML-PI, page 10
• Configuration Examples for XML-PI, page 18
• Additional References for XML-PI, page 23
• Feature Information for XML-PI, page 24
• Glossary, page 25

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats
and feature information, see Bug Search Tool and the release notes for your platform and software release.
To find information about the features documented in this module, and to see a list of the releases in which
each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for XML-PI

Americas Headquarters:
Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA

http://www.cisco.com/cisco/psn/bssprt/bss
http://www.cisco.com/go/cfn

Note Be sure you have enough lines configured for the network devices you will be collecting command output
from. XML-PI requires that you configure at least two vty lines per NETCONF session to handle the
formatting.

• You must be familiar with NETCONF and the Programmer’s Guide for Cisco Enhanced Device
Interface 2.2.

• You must be familiar with RFC 4741, NETCONF Configuration Protocol , and RFC 4742, Using the
NETCONF Configuration Protocol over Secure Shell (SSH).

• NETCONF and Secure Shell Version 2 (SSHv2) are both required to run XML-PI. SSHv2 is the only
transport protocol supported for XML-PI Release 1.0. Together, NETCONF and SSHv2 terminate the
session layer and provide a secure connection. See the NETCONF over SSHv2 document for
additional prerequisites and information about NETCONF and SSHv2.

Restrictions for XML-PI
XML-PI Supported Only on Crypto Image Files

Use of Network Configuration Protocol (NETCONF) and Secure Shell Version 2 (SSHv2) with XML-PI
functionality is supported only on Cisco crypto reformation images, such as IPBASEK9. Use Cisco Feature
Navigator to find information about platform and software support for Cisco crypto security images; see the
“Feature Information for XML-PI” section in this document for more information about Feature Navigator.

Spec Files Must Be Local

Spec files (described in the “ODM Tool and Spec Files” section) must reside locally on the network device.
Using spec files from a remote filesystem is not supported.

XML-PI and NETCONF

There are two ways XML-PI can deliver XML output from show commands: using either NETCONF or
via the Cisco CLI from the console. In cases where non-CLI access to XML-PI is desirable, only
NETCONF can be used to retrieve show command output.

Configuration changes using XML-PI can only be done using NETCONF. XML cannot be directly entered
on the console CLI.

The Cisco running configuration can be retrieved from the console by executing the show running-config |
format command, in addition to being available via NETCONF.

Syntax Check is Not Supported

The <edit-config> operation may not work correctly.

Invalid XML Response with <get-config> Operation

The <get-config> operation with the config-format-xml filter returns missing or wrong closing tags for <X-
Interface>, as shown in the following examples:

<LineVty0-Configuration>

XML-PI
 Restrictions for XML-PI

2

 <X-Interface> password cisco<X-Interface> <X-Interface> transport input
 all<X-Interface> </LineVty0-Configuration>

XML Tag for Parameters Is Not Interpreted Correctly

The <edit-config> operation with a merge or create containing an invalid XML tag for parameters is not
interpreted correctly. You must be sure to enter the string with proper capitalization.

In the following example, the device hostname becomes “systemnetworkname” (text in bold for purpose of
example):

<?xml version="1.0"?>
<rpc message-id="7" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <xml-config-data>
 <Device-Configuration>
 <hostname>
 <systemnetworkname operation="create">XmlpiDevice</systemnetworkname>
 </hostname>
 </Device-Configuration>
 </xml-config-data>
 </config>
 </edit-config>
</rpc>

In the following example, the device hostname becomes “XmlpiDevice” because the
“Systemnetworkname” string was entered correctly with an initial capital letter:

<?xml version="1.0"?>
<rpc message-id="7" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <xml-config-data>
 <Device-Configuration>
 <hostname>
 <Systemnetworkname operation="create">XmlpiDevice</Systemnetworkname>
 </hostname>
 </Device-Configuration>
 </xml-config-data>
 </config>
 </edit-config>
</rpc>

Information About XML-PI
• XML-PI Overview, page 4
• NETCONF Enhancements, page 4
• Enhancement to Retrieve show running-config Output, page 5
• Enhancement to Change the Running Configuration, page 5
• Enhancement for Retrieving show Commands, page 7
• ODM Tool and Spec Files, page 7
• X2C Algorithm, page 8
• C2X Algorithm, page 9

 XML-PI
Information About XML-PI

 3

XML-PI Overview
XML-PI Release 1.0 offers NETCONF data models that collect show command output down to the
keyword level and running configurations without the complexity and expense of screen-scraping
technologies or external XML-to-CLI gateways. XML-PI allows the native conversion of Cisco show
command output into tagged XML and provides the associated schema definition. The resulting output is in
a consistent, unambiguous format that is easily interpreted. Additional tools allow the output format to be
customized for individual user requirements.

The following XML-PI Release 1.0 capabilities will help you quickly develop XML-based network
management applications:

• Execute selected show commands and retrieve the output in well-formed XML.
Use a format modifier that feeds the show command output through an XML converter.

• Retrieve the XML Schema Definition (XSD) for selected show commands.
Execute the show xsd-format command to display the XSD to which the XML output conforms.

• Execute the show format command to display a list of commands with a spec file entry (SFE) in the
spec file, display the XML format SFE for a specific command, or validate a spec file. For more
information on spec files and SFEs, see the “ODM Tool and Spec Files” section.

• Retrieve the running configuration in XML.
XML-PI Release 1.0 provides native XML output for the show running-config command.

• Change the running configuration on a network device by sending an XML fragment of a
configuration change.

• Quickly adapt capabilities of XML-PI using fully formed sample applications.
You can use a built-in file containing definitions for the most commonly used show commands to get
started on application development immediately.

The commands and output files are associated with NETCONF using the netconf format global
configuration command. Commands are also available to help you see XML tag hierarchy, list the show
commands that have been converted, and debug output.

NETCONF Enhancements
XML-PI is integrated as a data model for NETCONF, which builds on top of the industry standard protocol
that allows Cisco network devices to be managed in a more automatic and programmatic way.

In XML-PI, each command keyword, parameter, and submode change is wrapped in XML tokens, which
are generated based on, respectively, the keyword, help, and submode strings.

The figure below shows the key enhancements to the get-config, edit-config, and get operations, which are
entered as <get-config>, <edit-config>, and <get> strings respectively in the enhanced device interface for
XML-PI Release 1.0.

XML-PI Overview
 Information About XML-PI

4

Refer to the Programmer’s Guide for Cisco Enhanced Device Interface 2.2 for more information.

Figure 1 XML-PI Release 1.0 Key Features

Enhancement to Retrieve show running-config Output
The following subtree is added to the <get-config> operation to allow XML output for the show running-
config to be retrieved using NETCONF:

<get-config>
 <source><running/></source>
 <filter type="cli"><config-format-xml options".."></config-format-xml></filter>
</get-config>

The NETCONF <get-config> operation with the filter containing the string <config-format-xml> in the
request expects a response in XML-PI format. Only the running configuration is supported. Following is an
example:

<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="4" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source><running/></source>
 <filter type="cli"><config-format-xml options="all"></config-format-xml></filter>
 </get-config>
</rpc>]]>]]>

Enhancement to Change the Running Configuration
The following subtree is added to the Config node to allow the running configuration to be changed using
NETCONF:

<xml-config-data> ...entire subtree with C2X encoded payload </xml-config-data>

XML-PI configuration mode is allowed using the NETCONF <edit-config> operation only. The mode is
identified when the config-format-xml XML tag is seen in an <edit-config> operation. The response is
standard NETCONF success or fail. The configuration carried in the <edit-config> operation is converted
to CLI using the X2C algorithm. All standard NETCONF options such as syntax check and rollback-on-
error are supported. If the CLI generated from XML causes an error, an operation failed message is sent
back to the request originator.

 Enhancement to Retrieve show running-config Output
Information About XML-PI

 5

The ability for a NETCONF <edit-config> operation to accept XML-PI-formatted requests is not related to
the spec files. The understanding of the XML-PI configuration format is built into Cisco software and is an
algorithmic conversion, so it cannot be modified dynamically like the spec files for the show commands.

A partial configuration as a subset of the full device configuration can be sent to the network device
provided that the partial configuration unambiguously maps to a CLI configuration. The partial
configuration must have context information such as interface or other submode information, if required,
and must support rollback if the configuration cannot be applied.

Note Rollback is supported only when “archive” is configured on the network device, which is a Cisco software
requirement.

Example: Adding Two IP Hosts

The following is an example of using the <edit-config> operation to modify the running configuration by
adding two IP hosts:

<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="2" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target><running/></target>
 <config>
 <xml-config-data>
 <Device-Configuration>
 <ip>
 <host>
 <NameHost>host1</NameHost>
 <HostIPAddress>10.2.3.4</HostIPAddress>
 </host>
 </ip>
 <ip>
 <host>
 <NameHost>host2</NameHost>
 <HostIPAddress>10.2.3.5</HostIPAddress>
 </host>
 </ip>
 </Device-Configuration>
 </xml-config-data>
 </config>
 </edit-config>
</rpc>]]>]]>

Example: Deleting Two IP Hosts

The following is an example of using the <edit-config> operation to modify the running configuration by
deleting two IP hosts:

<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="3" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target><running/></target>
 <config>
 <xml-config-data>
 <Device-Configuration>
 <ip>
 <host operation="delete">
 <NameHost>host1</NameHost>
 <HostIPAddress>10.2.3.4</HostIPAddress>
 </host>
 </ip>
 <ip>
 <host operation="delete">
 <NameHost>host2</NameHost>

Enhancement to Change the Running Configuration
 Information About XML-PI

6

 <HostIPAddress>10.2.3.5</HostIPAddress>
 </host>
 </ip>
 </Device-Configuration>
 </xml-config-data>
 </config>
 </edit-config>
</rpc>]]>]]>

<edit-config> Response

The reply to the <edit-config> operation is either the standard ok or an rpc-error.

Enhancement for Retrieving show Commands
NETCONF for retrieving show commands has the ability to collect command output down to the keyword
level. The following subtree is added under the <get> operation:

 <filter type="cli">
 <config-format-text-block><text-filter-spec>| inc netconf</text-filter-spec></
config-format-text-block>
 <oper-data-format-xml><show xsd="true">...</show><show>...</show></oper-data-format-
xml>
 </filter>

<get> Response

The reply to the <get> operation generates the following response:

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="XXXX" xmlns="urn:ietf:params:netconf:base:1.0">
 <data>
 <cli-config-data-xml>... config gets embedded here ...</cli-config-data-xml>
 <cli-oper-data-xml>
 <item>
 <show>...</show>
 <xsd> ... xsd text gets embedded here ... </xsd>
 </item>
 ...multiple items ...
 </cli-oper-data-xml>
 </data>
</rpc-reply>]]>]]>

ODM Tool and Spec Files
The Cisco Enhanced Device Interface (E-DI) feature Operational Data Model (ODM) provides an interface
for creating a new ODM spec file from a CLI data file, for a particular show command. Spec files are
defined by an E-DI metalanguage and contain a pattern-matching algorithm that collects output from Cisco
EXEC show commands and places it into a specific schema. The output of each show command is
associated with an ODM spec file.

The spec file represents spatial information to extract or parse data and structural information to model the
data. A benefit of using spec files is that different format descriptions can be embedded in them, thereby
making the task of customizing applications easy.

The spec file can contain many individual command definitions stored as an SFE. Each SFE is delimited by
a line containing three pound signs (###). The lines immediately following the ### delimiter contain the
name of the command to convert. Following the command name line is spec file data, which must begin
with an XML header, for example <?xml version=“1.0” encoding=“UTF-8”?>. The ### is both a start and
stop delimiter unless the end of file (EOF) string is encountered, as shown in the following sample format:

###

 Enhancement for Retrieving show Commands
Information About XML-PI

 7

show ip arp
<?xml version="1.0" encoding="UTF-8"?>
 ... the spec conversion for ip arp
###
show ip interface brief
<?xml version="1.0" encoding="UTF-8"?>
... the spec conversion for show ip interface brief
###
show interfaces *
show another cli
<?xml version="1.0" encoding="UTF-8"?>
... The spec conversion for ip interface

A wildcard character (*) can be used to match command names and uses the following search order: Find
an exact match or, if not an exact match, use the wildcard character to match the maximum number of
characters. The table below provides examples of how the wildcard character can be used in the spec file to
match command names.

Table 1 Wildcard Character Command Name Matching

String Example of Characters Matched

show interfaces Matches “show interfaces”

show interfaces s* Matches “show interfaces summary”

show interfaces * Matches “show interfaces FastEthernet 0/0”

You can change the spec filename, and you can modify and customize the SFE to specific interpretation
formats. If the contents of the SFE do not comply with the spec file format and language, the conversion is
not loaded and no interpretation of data occurs. An error message stating the SFE is uninterpretable is
generated. The format of the error message depends on the source of the request to access the spec file.
NETCONF requests return a Remote Procedure Call (RPC) get rpc-reply with an error condition; CLI-
based requests return get error messages on the console. Limited format debug capability is provided by the
debug format all command. Each SFE is treated independently, and a badly formatted SFE does not affect
any other SFE in the file.

You can use the show format command to display a list of commands with an SFE in the spec file, display
the XML format SFE for a specific command, or validate a spec file.

Note Sample spec files are available for most commonly used Cisco IOS show commands and can be
downloaded from Cisco.com. You can use the sample files “as is” or modify them for your application.

X2C Algorithm
The X2C conversion algorithm is used to convert XML into CLI. There is no schema used with this
algorithm.

The X2C algorithm builds a Document Object Model (DOM) tree from XML. Each node in the tree can be
classified as one of three node types, depending on its name, as follows:

• KEYWORD_NODE—The tag name starts with a lowercase letter or an underscore. [a...z, _]. The
underscore is used to prefix any numeric value that is a keyword.

• SUBMODE_NODE—The tag name ends with -Configuration.
• PARAM_NODE—Any other nonzero length string.

X2C Algorithm
 Information About XML-PI

8

The X2C algorithm then decodes a DOM tree by recursively descending the tree. In the following example,
this_node is used to track the current DOM node and this_cmd is the CLI string being built:

decode_node(this_node)
 if (this_node is KEYWORD_NODE) {
 if (this_node has attribute isNegation) {
 prepend "no" to this_cmd
 }
 convert this_node name to be a keyword.
 Add keyword to end of this_cmd
 iterate children of this_node through decode_node.
 } else if (this_node is PARAM_NODE) {
 add the node body data to this_cmd
 } else if (this_node is SUBMODE_NODE) {
 this_cmd is finalised and reset to ""
 iterate children of this_node through decode_node.
 }
}

C2X Algorithm
The C2X conversion algorithm is used to convert CLI into XML. There is no schema used with this
algorithm.

For the C2X algorithm, each CLI word is categorized as one of the three node types, the same as described
in the “C2X Algorithm” section. The Cisco CLI parser is used to generate the running configuration of the
network device. As each line is generated, each word in the line is parsed through and, depending upon
whether the parser encounters a KEYWORD_NODE or a PARAM_NODE, the appropriate XML tag
conversion is made. If traversing through to the next line causes a SUBMODE_NODE change, the
submode XML wrapper is entered or closed depending on whether the mode is entered or exited.

The C2X algorithm converts Cisco CLI into XML based on keywords and parameters. CLI keywords
become XML tags and parameters become the bodies of tags whose names are made by parsing the CLI
help strings.

The following example is the CLI view of an interface command:

interface GigabitEthernet0/1
 ip address 10.4.0.13 255.0.0.0
 duplex auto
 speed auto
 media-type rj45
 no negotiation auto

The following example shows the C2X equivalent:

<Device-Configuration>
 <interface>
 <Param>GigabitEthernet0/1</Param>
 <ConfigIf-Configuration>
 <ip>
 <address>
 <IPAddress>10.4.0.13</IPAddress>
 <IPSubnetMask>255.0.0.0</IPSubnetMask>
 </address>
 </ip>
 <duplex><auto/></duplex>
 <speed><auto/></speed>
 <media-type><rj45/></media-type>
 <negotiation operation="delete" ><auto/></negotiation>
 </ConfigIf-Configuration>
 </interface>
</Device-Configuration>

 C2X Algorithm
Information About XML-PI

 9

How to Configure XML-PI
• Configuring NETCONF for XML-PI, page 10
• Generating XML Format for Commands, page 13
• Generating XSD Format for Commands, page 14
• Troubleshooting ODM Errors, page 14
• Displaying Files on a Cisco File System , page 16
• Managing Spec Files, page 16
• Validating Spec Files, page 18

Configuring NETCONF for XML-PI
Perform this required task to configure a secure login environment and define the file to use for XML-
formatted requests.

SUMMARY STEPS

1. enable

2. configure terminal

3. crypto key generate rsa

4. Enter the RSA key modulus, when prompted.

5. ip ssh timeout seconds

6. ip ssh authentication-retries integer

7. ip ssh version 2

8. line vty starting-line-number ending-line-number

9. login local

10. transport input ssh

11. exit

12. username name privilege level password secret

13. format global location:local-filename

14. netconf ssh

15. end

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Device> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Configuring NETCONF for XML-PI
 How to Configure XML-PI

10

Command or Action Purpose

Step 2 configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 3 crypto key generate rsa

Example:

Device(config)# crypto key generate rsa

Generates RSA key pairs.

Note If the crypto key has already been generated, the response of
the command will be: % You already have RSA keys defined
named xxxx-nnn.cisco.com. % Do you really want to replace
them? [yes/no]: In most cases the reply is “no” because the
crypto key has been previously generated and is stored on the
NETCONF agent side. Reply “yes” if you need to reset the
crypto key on the NETCONF agent side.

Step 4 Enter the RSA key modulus, when prompted.

Example:

How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys ...[OK]

Prompts for the RSA key modulus when not supplied as part of the
command.

• The key modulus size must be in the range from 360 to 2048 for
general purpose keys. The configuration for XML-PI requires a
minimum key modulus size of 768.

Note The system may require a few minutes to react to a key
modulus greater than 512.

Step 5 ip ssh timeout seconds

Example:

Device(config)# ip ssh timeout 60

(Optional) Configures the time interval that the network device waits
for the SSH client to respond.

Step 6 ip ssh authentication-retries integer

Example:

Device(config)# ip ssh authentication-
retries 3

(Optional) Configures the number of attempts after which the
interface is reset.

Step 7 ip ssh version 2

Example:

Device(config)# ip ssh version 2

(Optional) Configures the network device to run only SSH Version 2.

 Configuring NETCONF for XML-PI
How to Configure XML-PI

 11

Command or Action Purpose

Step 8 line vty starting-line-number ending-line-
number

Example:

Device(config)# line vty 0 8

Enters line configuration collection mode and configures a range of
virtual terminal lines for remote console access.

Note You must configure a range of lines large enough to handle two
vty lines per NETCONF session.

Step 9 login local

Example:

Device(config-line)# login local

(Optional) Enables and selects local password checking.

• Authentication is based on the username specified with the
username global configuration command.

Step 10 transport input ssh

Example:

Device(config-line)# transport input ssh

(Optional) Specifies that the SSH protocol be used for line
connection.

Step 11 exit

Example:

Device(config-line)# exit

Exits the current configuration mode and returns to the next highest
mode.

Step 12 username name privilege level password secret

Example:

Device(config)# username me privilege 15
password mypassword

(Optional) Establishes a username-based authentication system.

• privilege—Sets the privilege level, a number from 0 to 15.
• password—Sets the password, which can contain from 1 to 25

characters and embedded spaces, and must be the last option
specified in the username command.

Step 13 format global location:local-filename

Example:

Device(config)# format global
disk2:spec3.3.odm

(Recommended) Specifies a default ODM spec file to use for XML-
formatted requests.

Step 14 netconf ssh

Example:

Device(config)# netconf ssh

Enables NETCONF over SSHv2.

Configuring NETCONF for XML-PI
 How to Configure XML-PI

12

Command or Action Purpose

Step 15 end

Example:

Device(config)# end

Ends the current configuration session.

Generating XML Format for Commands
To convert Cisco show command output into XML format, XML-PI provides the format output modifier
to the show command output. This section describes how to use this modifier.

Note The show running-config command output is generated natively in XML, so the spec filename could be an
empty file. If a default spec file has been defined with the format global command, no filename is
required.

SUMMARY STEPS

1. show-command | format [location:local-filename]

2. show running-config {all | brief | full | interface interface-name} | format [filename]

DETAILED STEPS

Step 1 show-command | format [location:local-filename]
This command executes the show command then redirects the output into the format function that will generate XML
based on the specified spec file or, if no spec file is specified, the default spec file defined by the format global
configuration command. Command names can be truncated. The location:local-filename arguments and keyword are
the location and filename of the ODM spec file. Valid locations are bootflash:, flash:, nvram:, and any valid disk or
slot number (for example, disk0: or slot1:). ODM spec files have a .odm suffix. The following is a sample command
that uses the default ODM file to generate XML:

Example:

Device# show arp | format slot0:spec3.3.odm

Step 2 show running-config {all | brief | full | interface interface-name} | format [filename]
If you are generating output for the show running-config command, you can supply the following keywords and
arguments with this command:

• all—Configuration with defaults (default when no keywords are specified with the show running-config
command).

• brief—Configuration without certificate data.
• full—Full configuration.

 Generating XML Format for Commands
How to Configure XML-PI

 13

• interface interface-name—Specified interface output only. A full interface specification (interface
fastethernet0/0, for example) is required. If the interface name does not match one that is supported on the
network device, an error is returned.

Example:

Device# show running-config brief | format

Generating XSD Format for Commands
The show xsd-format command is used to display the XSD to which the XML output conforms. This
section describes how to use this command.

SUMMARY STEPS

1. show xsd-format [location:local-filename] cli command

DETAILED STEPS

show xsd-format [location:local-filename] cli command
The location and local-filename arguments are the location and filename of the ODM spec file. Valid location
keywords are bootflash:,flash:, nvram:, and any valid disk or slot number (for example, disk0: or slot1:). ODM spec
files have a .odm suffix. These arguments are not required if you want to use a default ODM file defined with the
format global command.

The first of the following two examples displays XSD output from a defined default ODM spec file:

Example:

Device# show xsd-format cli show arp
Device# show xsd-format disk2:spec3.3.odm cli show arp

Note When you are entering commands, you must enter the full command syntax; do not use truncated commands.

Troubleshooting ODM Errors
This section describes use of the debug format all command to troubleshoot Operational Data Model
(ODM) spec file errors.

Generating XSD Format for Commands
 How to Configure XML-PI

14

SUMMARY STEPS

1. enable

2. debug format all

3. show-command format location:local-filename

4. no debug format all

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode required to run debug commands.

Step 2 debug format all
Enables a verbose debugging mode that displays all ODM errors.

Step 3 show-command format location:local-filename
Generates XML output for the show interfaces command. The following is sample output:

Example:

Device# show interfaces | format slot0:spec3.3.odm

Selected debug data is displayed with comments followed by the full debug output.

The debug format statements are read in groups of two lines. As the following example shows, the first line describes
what the attempted match was; the second line provides the offset and the byte count from the beginning of the show
interfaces command output where the cursore of the screen scraper is currently located:

*May 4 01:20:35.279: ODM: Could not match Property mcast
*May 4 01:20:35.279: offset 703: 5 minute output rate 0 bits/sec, 0 packets/sec

The following output shows where the spec file entry (SFE) caused the ODM algorithm to return a truncated XML.
Notice how the offset jumps from 703 to 3001. This is a large jump that implies a search between multicast and IP
multicast probably caused the screen scraper to jump too far into the text. Because the cursor is not at a buffer, this
condition is the likely candidate for the error. Looking at the spec file entry and doing a manual search through the
show command output will confirm this suspicion.

*May 4 01:20:35.279: offset 703: 5 minute output rate 0 bits/sec, 0 packets/sec
 786 pa
*May 4 01:20:35.279: ODM: Could not match Property mcast
*May 4 01:20:35.279: offset 703: 5 minute output rate 0 bits/sec, 0 packets/sec
 786 pa
*May 4 01:20:35.279: ODM: Could not match Property IP multicasts
*May 4 01:20:35.279: offset 3001: no buffer
 Received 0 broadcasts, 0 runts, 0 giants, 0
*May 4 01:20:35.279: ODM: Could not match Property watchdog
*May 4 01:20:35.279: offset 3122: ignored, 0 abort
 0 packets output, 0 bytes, 0 underru
*May 4 01:20:35.279: ODM: Could not match Property input packets with dribble condition detected

Step 4 no debug format all
Disables the debug command when troubleshooting is complete.

Example:
Device# no debug format all

 Troubleshooting ODM Errors
How to Configure XML-PI

 15

Displaying Files on a Cisco File System
Use the show format location:local-filename command to display files on a Cisco file system. The
following example shows how to display a list of files:

Device# show format slot0:?

slot0:spec3.3.odm slot0:spec3.ALR.odm slot0:spec3.empty.odm

Note The question mark (?) character can be used following any of the location keywords (bootflash, slot, and
so on) in the show format and show xsd-format commands, to list all files. Spec files have a .odm file
extension.

Managing Spec Files
Use the spec-file install privileged EXEC command to manage the spec files. The following commands
allow you to make backup copies of the built-in spec file before changing the contents of the file and to
restore the contents of a previous spec file. You can also copy and remove spec file entries (SFEs) from one
spec file to another.

Valid locations for local files are bootflash:, flash:, nvram:, and any valid disk or slot number (for
example disk0: or slot1:).

Valid URLs for remote files are archive:, bootflash:, cns:, flash:, ftp:, http:, null:, nvram:, pram:, rcp:,
scp:, system:, tar:, tftp:, tmpsys:, and any valid disk or slot number (for example, disk0: or slot1:).

In all cases, the force keyword performs the command without prompting you to verify the file operation
by entering a “yes” or “no” response.

SUMMARY STEPS

1. spec-file install [force] location:local-filename add-entry url:remote-filename command

2. spec-file install [force] location:local-filename built-in

3. spec-file install [force] location:local-filename file url:remote-filename

4. spec-file install [force] location:local-filename remove-entry command

5. spec-file install [force] location:local-filename restore

Displaying Files on a Cisco File System
 How to Configure XML-PI

16

DETAILED STEPS

Command or Action Purpose

Step 1 spec-file install [force] location:local-filename
add-entry url:remote-filename command

Example:

Device# spec-file install
slot0:spec_file.odm add-entry tftp://
system1/user1/show_arp.odm show arp

Copies an SFE from a remote location and adds it to a local spec file.

• A check is performed on the loaded SFE to ensure that the
command is not already present in the spec file and that the SFE can
be parsed correctly in XML.

• If the spec file does not exist, you will be prompted before the file is
created.

• If the command SFE already exists in the spec file, you will be
prompted before the command SFE is replaced.

• A backup copy of the local spec file is created before the remote
SFE is added.

Step 2 spec-file install [force] location:local-filename
built-in

Example:

Device# spec-file install
slot0:spec_file.odm built-in

Replaces the current spec file with the built-in spec file.

• You will be prompted before the current file is replaced and
filename.bak will be created.

Step 3 spec-file install [force] location:local-filename
file url:remote-filename

Example:

Device# spec-file install
slot0:spec_file.odm file tftp://
system1/user1/spec_file.odm

Replaces a local spec file with a remote spec file.

• A check of the loaded file is performed to ensure that each specified
command is included only once and that the SFE can be parsed
correctly in XML.

Step 4 spec-file install [force] location:local-filename
remove-entry command

Example:

Device# spec-file install
slot0:spec_file.odm remove-entry show
arp

Removes an SFE from a spec file.

• A check is performed to ensure that the command SFE is present in
the spec file.

• If the spec file does not exist, this command fails.
• A backup copy of the spec file is created before the SFE is removed.

Step 5 spec-file install [force] location:local-filename
restore

Example:

Device# spec-file install
slot0:spec_file.odm restore

Restores a spec file to its original contents using a backup (.bak) file.

• If the .bak file does not exist, this command fails.

 Managing Spec Files
How to Configure XML-PI

 17

Validating Spec Files
This section describes use of the show format command to validate a spec file.

The show format built-in validate form of the command is used to validate the built-in spec file. The
show format location:local-filename validate form of the command is used to validate a specific spec file.

Note Spec files must reside locally on the network device. Using spec files from a remote file system is not
supported.

SUMMARY STEPS

1. enable
2. show format [built-in | location:local-filename] [cli command | validate]

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Device> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 show format [built-in | location:local-filename] [cli
command | validate]

Example:

Device# show format built-in validate

Displays a fully expanded list of commands that have an SFE.

• The example shows how to validate the built-in spec file.

Configuration Examples for XML-PI
• Example: Configuring NETCONF for XML-PI, page 18
• Example: Generating show Command XML Format, page 19
• Example: Generating show running-config XML Format, page 20
• Example: Generating show Command XSD Format, page 21
• Example: Displaying the SFEs, page 21
• Example: Displaying Spec File Tag Hierarchy, page 22
• Example: Validating a Spec File, page 23

Example: Configuring NETCONF for XML-PI
The following example shows how to configure a secure login environment. We recommend that you
define a default Operational Data Model (ODM) file to be used for all requests using the format global

Validating Spec Files
 Configuration Examples for XML-PI

18

command. You can associate that file with Network Configuration Protocol (NETCONF) for all XML-
formatted requests using the netconf format command. If no file is specified, the built-in spec file is used
for all requests. See the format global and netconf format command reference pages for more
information. The netconf ssh configuration command enables NETCONF over Secure Shell Version 2
(SSHv2), which terminates the session layer and provides a secure connection.

ip domain-name cisco.com
crypto key generate rsa
ip ssh timeout 60
ip ssh authentication-retries 3
ip ssh version 2
line vty 0 8
 login local
 transport input ssh
 exit
username me privilege 15 password mypassword
format global disk2:spec3.3.odm
netconf format disk2:spec3.3.odm
netconf ssh
end

Example: Generating show Command XML Format
The following examples show how to generate XML format of standard show command output.

Standard show Command Output

Following is sample output from the show arp command:

Device# show arp

Protocol Address Age (min) Hardware Addr Type Interface
Internet 10.1.1.1 67 0001.42df.59e2 ARPA FastEthernet0/0
Internet 10.3.1.2 8 0002.55c6.19a0 ARPA FastEthernet0/0
Internet 10.4.0.5 - 000b.60dc.9408 ARPA FastEthernet0/0

Generating XML

Following is an example of generating XML output from the show arp command for a default ODM file:

Device# show arp | format

<?xml version="1.0" encoding="UTF-8"?>
 <ShowArp xmlns="ODM://disk0:/spec.odm//show_arp">
 <ARPTable>
 <entry>
 <Protocol>Internet</Protocol>
 <Address>10.1.1.1</Address>
 <Age>67</Age>
 <MAC>0001.42df.59e2</MAC>
 <Type>ARPA</Type>
 <Interface>FastEthernet0/0</Interface>
 </entry>
 <entry>
 <Protocol>Internet</Protocol>
 <Address>10.3.1.2</Address>
 <Age>8 </Age>
 <MAC>0002.55c6.19a0</MAC>
 <Type>ARPA</Type>
 <Interface>FastEthernet0/0</Interface>
 </entry>
 <entry>
 <Protocol>Internet</Protocol>
 <Address>10.4.0.5</Address>
 <MAC>000b.60dc.9408</MAC>

 Example: Generating show Command XML Format
Configuration Examples for XML-PI

 19

 <Type>ARPA</Type>
 <Interface>FastEthernet0/0</Interface>
 </entry>
 </ARPTable>
 </ShowArp>

Example: Generating show running-config XML Format
The following examples show the mapping between actual show running-config command output and the
XSD format generated by piping the output through the spec3.3.odm spec file. (For sake of brevity, output
from each command has been truncated.)

show running-config Command

Device# show running-config

Building configuration...
Current configuration : 1190 bytes
!
upgrade fpd auto
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
service internal
!
hostname Router1
!
boot-start-marker
boot system flash:c7200-js-mz.123-5.9.T
boot-end-marker
!
logging message-counter syslog
enable password secret
!
no aaa new-model
ip cef
!
no ip domain lookup
ip domain name cisco.com
ip host host1 10.66.152.11
ip host host2 10.2.2.2
multilink bundle-name authenticated
.
.
.

Piped Output to Generate XML

Device# show running-config | format

Building configuration...
<Device-Configuration>
<upgrade><fpd><auto/></fpd></upgrade>
<version><Param>12.4</Param></version>
<service><timestamps><debug><datetime><msec/></datetime></debug></timestamps></>
<service><timestamps><log><datetime><msec/></datetime></log></timestamps></serv>
<service operation="delete" ><password-encryption/></service>
<service><internal/></service>
<hostname><SystemNetworkName>Router1</SystemNetworkName></hostname>
<boot-start-marker></boot-start-marker>
<boot><system><TFTPFileNameURL>flash:c7200-js-mz.123-5.9.T</TFTPFileNameURL></s>
<boot-end-marker></boot-end-marker>
<logging><message-counter><syslog/></message-counter></logging>
<enable><password><UnencryptedEnablePassword>secret</UnencryptedEnablePassword><>
<aaa operation="delete" ><new-model/></aaa>
<ip><cef/></ip>

Example: Generating show running-config XML Format
 Configuration Examples for XML-PI

20

<ip operation="delete" ><domain><lookup/></domain></ip>
<ip><domain><name><DefaultDomainName>cisco.com</DefaultDomainName></name></doma>
<ip><host><NameHost>host1 </NameHost><HostIPAddress>10.66.152.11</HostIPAddre>
<ip><host><NameHost>host2 </NameHost><HostIPAddress>10.2.2.2</HostIPAddress></ho>
<multilink><bundle-name><authenticated/></bundle-name></multilink>
.
.
.

The returned data is the requested configuration converted using the C2X algorithm.

Example: Generating show Command XSD Format
The following example shows how to generate XSD with the show arp command:

Device# show xsd-format disk2:spec3.3.odm cli show arp

<?xml version="1.0"?>
 <xsd:schema elementFormDefault="qualified" attributeFormDefault="unqualified"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="ShowArp_def">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="Info"/>
 <xsd:element name="ARPTable" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="entry" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Protocol" minOccurs="0" type="string" />
 <xsd:element name="Address" minOccurs="0" type="string" />
 <xsd:element name="Age" minOccurs="0" type="integer" />
 <xsd:element name="MAC" minOccurs="0" type="string" />
 <xsd:element name="Type" minOccurs="0" type="string" />
 <xsd:element name="Interface" minOccurs="0" type="string" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="Info" type="xsd:string"/>
 <xsd:element name="ShowArp" type="ShowArp_def"/>
 </xsd:schema>

Example: Displaying the SFEs
The following example shows how to display the spec file entry (SFE) with the show arp command:

Device# show format disk2:spec3.3.odm cli show arp

<?xml version="1.0" encoding="UTF-8"?>
<ODMSpec>
 <Command>
 <Name>show arp</Name>
 </Command>
 <OS>ios</OS>
 <DataModel>
 <Container name="ShowArp" >
 <Table name="ARPTable">
 <Header name = "Protocol" start = "0" end = "10" type = "String"/>
 <Header name = "Address" start = "10" end = "26" type = "IpAddress"/>
 <Header name = "Age (min)" alias = "Age" start = "26" end = "36" type =
"Integer"/>

 Example: Generating show Command XSD Format
Configuration Examples for XML-PI

 21

 <Header name = "Hardware Addr" alias="MAC" start = "36" end = "53" type =
"String"/>
 <Header name = "Type" start = "53" end = "59" type = "String"/>
 <Header name = "Interface" start = "59" end = "-1" nullable = "true" type =
"String"/>
 </Table>
 </Container>
 </DataModel>
</ODMSpec>

The following example shows a list of fully expanded command names that have spec files in the default
Operational Data Model (ODM) file:

Device# show format

The following CLI are supported in slot0:spec3.3.odm
show arp
show cdp neighbors detail
show context
show flash:
show interfaces*
show inventory
show ip interface brief
show ip nat translations
show line value
show line
show processes cpu
show processes memory
show region
show spanning-tree
show stacks
show vlans

Example: Displaying Spec File Tag Hierarchy
The show odm-format command displays the spec file structure in a fixed output that you can refer to in
order to understand the spec file tag hierarchy. The following example shows the fixed output from the
show odm-format command. Refer to the Programmer’s Guide for Cisco Enhanced Device Interface 2.2
for more information about the Operational Data Model (ODM) tool and tag hierarchy.

Device# show odm format

New Name Space ''
<NotARealTag> Either 0 or 1 allowed
 <ODMSpec> Exactly 1 required
 <Command> Exactly 1 required
 <Name> Exactly 1 required
 <AliasSet> Either 0 or 1 allowed
 <Alias> At least 1 required
 <OS> Either 0 or 1 allowed
 <DataModel> Exactly 1 required
 <Container> Exactly 1 required
 <Table> 0 or more is allowed
 <Header> At least 1 required
 <Option> 0 or more is allowed
 <EndOfTheTable> Either 0 or 1 allowed
 <Property> 0 or more is allowed
 <Option> 0 or more is allowed
 <Container> 0 or more is allowed
 <Table> 0 or more is allowed
 <Header> At least 1 required
 <Option> 0 or more is allowed
 <EndOfTheTable> Either 0 or 1 allowed
 <Property> 0 or more is allowed
 <Option> 0 or more is allowed
 <Container> 0 or more is allowed
 <Legends> 0 or more is allowed
 <Legend> At least 1 required

Example: Displaying Spec File Tag Hierarchy
 Configuration Examples for XML-PI

22

 <IgnorableLinesList> 0 or more is allowed
 <Line> At least 1 required
 <Legends> 0 or more is allowed
 <Legend> At least 1 required
 <IgnorableLinesList> 0 or more is allowed
 <Line> At least 1 required

Example: Validating a Spec File
The following example shows how to validate a built-in spec file:

Device# show format built-in validate

The file built-in has been validated

Additional References for XML-PI
Related Documents

Related Topic Document Title

Cisco IOS commands Cisco IOS Master Command List, All Releases

Cisco IOS network management commands Cisco IOS Network Management Command
Reference

NETCONF Network Configuration Protocol

ODM tool Programmer’s Guide for Cisco Enhanced Device
Interface 2.2

Standards and RFCs

Standards/RFCs Title

XML-PI based on NETCONF standards • User Guide for Cisco Enhanced Device
Interface 2.2

• Programmer’s Guide for Cisco Enhanced
Device Interface 2.2

RFC 4741 NETCONF Configuration Protocol

RFC 4742 Using the NETCONF Configuration Protocol over
Secure SHell (SSH)

 Example: Validating a Spec File
Additional References for XML-PI

 23

http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html

Technical Assistance

Description Link

The Cisco Support and Documentation website
provides online resources to download
documentation, software, and tools. Use these
resources to install and configure the software and
to troubleshoot and resolve technical issues with
Cisco products and technologies. Access to most
tools on the Cisco Support and Documentation
website requires a Cisco.com user ID and
password.

http://www.cisco.com/cisco/web/support/
index.html

Feature Information for XML-PI
The following table provides release information about the feature or features described in this module.
This table lists only the software release that introduced support for a given feature in a given software
release train. Unless noted otherwise, subsequent releases of that software release train also support that
feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Example: Validating a Spec File
 Feature Information for XML-PI

24

http://www.cisco.com/cisco/web/support/index.html
http://www.cisco.com/cisco/web/support/index.html
http://www.cisco.com/go/cfn

Table 2 Feature Information for XML-PI

Feature Name Releases Feature Information

XML-PI 12.4(20)T

12.2(33)SRE

12.2(54)SG

12.2(50)SY

15.1(1)SY

The XML Programmatic
Interface (XML-PI) Release 1.0
leverages the Network
Configuration Protocol
(NETCONF) and offers new data
models that collect show
command output down to the
keyword level and running
configurations without the
complexity and expense of
screen-scraping technologies or
external XML-to-CLI gateways.
XML-PI allows you to quickly
develop XML-based network
management applications.

The following commands were
introduced or modified by this
feature: debug format, format
global, netconf format show
format, show odm-format, show
xsd-format, spec-file install
add-entry, spec-file install built-
in, spec-file install file, spec-file
install remove-entry, and spec-
file install restore.

Glossary
C2X—CLI to XML.

CLI—command-line interface. An interface that allows the user to interact with the operating system by
entering commands and optional arguments.

E-DI—Enhanced Device Interface.

NETCONF—Network Configuration Protocol.

ODM—Operational Data Model.

RSA—Rivest, Shamir, and Adleman, the inventors of the technique. Public-key cryptographic system that
can be used for encryption and authentication.

SSH—Secure Shell.

X2C—XML to CLI.

XML—Extensible Markup Language.

XSD—XML Schema Definition.

 Example: Validating a Spec File
Glossary

 25

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S.
and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks.
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner
does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be
actual addresses and phone numbers. Any examples, command display output, network topology diagrams,
and other figures included in the document are shown for illustrative purposes only. Any use of actual IP
addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2012 Cisco Systems, Inc. All rights reserved.

Example: Validating a Spec File

26

http://www.cisco.com/go/trademarks

	XML-PI
	Finding Feature Information
	Prerequisites for XML-PI
	Restrictions for XML-PI
	Information About XML-PI
	XML-PI Overview
	NETCONF Enhancements
	Enhancement to Retrieve show running-config Output
	Enhancement to Change the Running Configuration
	Enhancement for Retrieving show Commands
	ODM Tool and Spec Files
	X2C Algorithm
	C2X Algorithm

	How to Configure XML-PI
	Configuring NETCONF for XML-PI
	Generating XML Format for Commands
	Generating XSD Format for Commands
	Troubleshooting ODM Errors
	Displaying Files on a Cisco File System
	Managing Spec Files
	Validating Spec Files

	Configuration Examples for XML-PI
	Example: Configuring NETCONF for XML-PI
	Example: Generating show Command XML Format
	Example: Generating show running-config XML Format
	Example: Generating show Command XSD Format
	Example: Displaying the SFEs
	Example: Displaying Spec File Tag Hierarchy
	Example: Validating a Spec File

	Additional References for XML-PI
	Feature Information for XML-PI
	Glossary

