
XML-PI

Last Updated: August 04, 2011

The eXtensible Markup Language Programmatic Interface (XML-PI) Release 1.0 leverages the Network
Configuration Protocol (NETCONF) and offers new data models that collect show command output down
to the keyword level and running configurations without the complexity and expense of screen-scraping
technologies or external XML-to-Command Line Interface (CLI) gateways. XML-PI allows you to quickly
develop XML-based network management applications that remotely adapt and control the behavior of any
number of network devices simultaneously. XML-PI uses an industry standard protocol that allows Cisco
network devices to be managed in a more automatic and programmatic way and is CLI accessible.

• Finding Feature Information,  page 1

• Prerequisites for XML-PI,  page 2

• Restrictions for XML-PI,  page 2

• Information About XML-PI,  page 3

• How to Use XML-PI,  page 10

• Configuration Examples for XML-PI,  page 18

• Additional References,  page 23

• Feature Information for XML-PI,  page 24

• Glossary,  page 25

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest feature
information and caveats, see the release notes for your platform and software release. To find information
about the features documented in this module, and to see a list of the releases in which each feature is
supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

 XML-PI
Finding Feature Information  

 

   
    1

http://www.cisco.com/go/cfn


Prerequisites for XML-PI

Note Be sure you have enough lines configured for the network devices you will be collecting command output
from. XML-PI requires that you configure at least two vty lines per NETCONF session to handle the
formatting.

• You must be familiar with NETCONF and the Programmer’s Guide for Cisco Enhanced Device
Interface 2.2 .

• You must be familiar with RFC 4741, NETCONF Configuration Protocol and RFC 4742, Using the
NETCONF Configuration Protocol over Secure SHell (SSH) .

• NETCONF and Secure Shell Version 2 (SSHv2) are both required to run XML-PI. SSHv2 is the only
transport protocol supported for XML-PI Release 1.0. Together, NETCONF and SSHv2 terminate the
session layer and provide a secure connection. See the Network Configuration Protocol document for
additional prerequisites and information about NETCONF and SSHv2.

Restrictions for XML-PI
XML-PI Supported Only on Crypto Image Files

Use of NETCONF and SSHv2 with XML-PI functionality is supported only on Cisco IOS crypto
reformation images, such as IPBASEK9. Use Cisco Feature Navigator to find information about platform
and software support for Cisco IOS crypto security images; see the GUID-BB3F6ACB-3AD0-42CD-
AA50-1D90EC670E8E in this document for more information about Feature Navigator.

Spec Files Must Be Local

Spec files (described in the ODM Tool and Spec Files,  page 7 section) must reside locally on the
network device. Using spec files from a remote filesystem is not supported.

XML-PI and NETCONF

There are two ways XML-PI can deliver XML output from show commands: using either NETCONF or
via the Cisco CLI from the console. In cases where non-CLI access to XML-PI is desirable, only
NETCONF can be used to retrieve show command output.

Configuration changes using XML-PI can only be done using NETCONF. XML cannot be directly entered
on the console CLI.

The Cisco IOS running configuration can be retrieved from the console by executing the show running-
config | formatcommand, in addition to being available via NETCONF.

Syntax Check is Not Supported

The <edit-config> operation may not work correctly.

XML-PI  
 Prerequisites for XML-PI
 

    
2    



Invalid XML Response with <get-config> Operation

The <get-config> operation with the config-format-xml filter returns missing or wrong closing tags for <X-
Interface>, as shown in the following examples:

<LineVty0-Configuration>
    <X-Interface> password cisco<X-Interface> <X-Interface> transport input
    all<X-Interface> </LineVty0-Configuration>

XML Tag for Parameters Is Not Interpreted Correctly

The <edit-config> operation with a merge or create containing an invalid XML tag for parameters is not
interpreted correctly. You must be sure to enter the string with proper capitalization.

In the following example, the router hostname becomes “systemnetworkname” (text in bold for purpose of
example):

<?xml version="1.0"?>
<rpc message-id="7" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <edit-config>
    <target>
      <running/>
    </target>
    <config>
      <xml-config-data>
        <Device-Configuration>
        <hostname>
          <systemnetworkname operation="create">XmlpiRouter</systemnetworkname>
        </hostname>
        </Device-Configuration>
      </xml-config-data>
    </config>
  </edit-config>
</rpc>

In the following example, the router hostname becomes “XmlpiRouter” because the “Systemnetworkname”
string was entered correctly with an initial capital letter:

<?xml version="1.0"?>
<rpc message-id="7" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <edit-config>
    <target>
      <running/>
    </target>
    <config>
      <xml-config-data>
        <Device-Configuration>
        <hostname>
          <Systemnetworkname operation="create">XmlpiRouter</Systemnetworkname>
        </hostname>
        </Device-Configuration>
      </xml-config-data>
    </config>
  </edit-config>
</rpc>

Information About XML-PI
• XML-PI Overview,  page 4

• NETCONF Overview,  page 4

• ODM Tool and Spec Files,  page 7

 XML-PI
Information About XML-PI  

 

   
    3



• XML-CLI Conversion Algorithms,  page 8

XML-PI Overview
XML-PI Release 1.0 offers new NETCONF data models that collect show command output down to the
keyword level and running configurations without the complexity and expense of screen-scraping
technologies or external XML-to-CLI gateways. XML-PI allows the native conversion of Cisco IOS show
command output into tagged XML and provides the associated schema definition. The resulting output is in
a consistent, unambiguous format that is easily interpreted. Additional tools allow the output format to be
customized for individual user requirements.

The following XML-PI Release 1.0 capabilities will help you quickly develop XML-based network
management applications:

• Execute selected show commands and retrieve the output in well-formed XML.

Use a format modifier that feeds the show command output through an XML converter.

• Retrieve the XML Schema Definition (XSD) for selected show commands.

Execute the show xsd-format command to display the XSD to which the XML output conforms.

• Execute the show format command to display a list of commands with a spec file entry (SFE) in the
spec file, display the XML format SFE for a specific command, or validate a spec file. For more
information on spec files and SFEs, see the ODM Tool and Spec Files,  page 7

• Retrieve the running configuration in XML.

XML-PI Release 1.0 provides native XML output for the show running-config command.

• Change the running configuration on a network device by sending an XML fragment of a
configuration change.

• Quickly adapt capabilities of XML-PI using fully formed sample applications.

You can use a built-in file containing definitions for the most commonly used show commands to get
started on application development immediately.

The commands and output files are associated with NETCONF using the netconf format global
configuration command. Commands are also available to help you see XML tag hierarchy, list the show
commands that have been converted, and debug output.

NETCONF Overview
The following sections summarize the NETCONF operations:

• NETCONF Enhancements,  page 4

• Enhancement to Retrieve show running-config Output,  page 5

• Enhancement to Change the Running Configuration,  page 5

• Enhancement for Retrieving show Commands,  page 7

NETCONF Enhancements
XML-PI is integrated as a data model for NETCONF, which builds on top of the industry standard protocol
that allows Cisco network devices to be managed in a more automatic and programmatic way.

XML-PI Overview  
 NETCONF Enhancements
 

    
4    



In XML-PI, each command keyword, parameter, and submode change is wrapped in XML tokens, which
are generated based on, respectively, the keyword, help, and submode strings.

The figure below shows the key enhancements to the get-config, edit-config, and get operations, which are
entered as <get-config>, <edit-config>, and <get> strings respectively in the enhanced device interface for
XML-PI Release 1.0.

The following sections summarize these enhancements. Refer to the Programmer’s Guide for Cisco
Enhanced Device Interface 2.2 for more information.

Figure 1

Enhancement to Retrieve show running-config Output
The following subtree is added to the <get-config> operation to allow XML output for the show running-
config to be retrieved using NETCONF:

<get-config>
    <source><running/></source>
    <filter type="cli"><config-format-xml options".."></config-format-xml></filter>
</get-config>

The NETCONF <get-config> operation with the filter containing the string <config-format-xml> in the
request expects a response in XML-PI format. Only the running configuration is supported. Following is an
example:

<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="4" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
  <source><running/></source>
  <filter type="cli"><config-format-xml options="all"></config-format-xml></filter>
 </get-config>
</rpc>]]>]]>

Enhancement to Change the Running Configuration
The following subtree is added to the Config node to allow the running configuration to be changed using
NETCONF:

<xml-config-data>  ...entire subtree with C2X encoded payload </xml-config-data>

 NETCONF Overview
Enhancement to Retrieve show running-config Output  

 

   
    5



XML-PI configuration mode is allowed using the NETCONF <edit-config> operation only. The mode is
identified when the config-format-xml XML tag is seen in an <edit-config> operation. The response is
standard NETCONF success or fail. The configuration carried in the <edit-config> operation is converted
to CLI using the X2C algorithm. All standard NETCONF options such as syntax check and rollback-on-
error are supported. If the CLI generated from XML causes an error, an operation failed message is sent
back to the request originator.

The ability for a NETCONF <edit-config> operation to accept XML-PI formatted requests is not related to
the spec files. The understanding of the XML-PI configuration format is built into Cisco IOS and is an
algorithmic conversion, so it cannot be modified dynamically like the spec files for the show commands.

A partial configuration as a subset of the full device configuration can be sent to the network device
provided that the partial configuration unambiguously maps to a CLI configuration. The partial
configuration must have context information such as interface or other submode information, if required,
and must support rollback if the configuration cannot be applied.

Note Rollback is supported only when “archive” is configured on the network device, which is a Cisco IOS
requirement.

Adding Two IP Hosts: Example

The following is an example of using the <edit-config> operation to modify the running configuration by
adding two IP hosts:

<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="2"  xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <edit-config>
    <target><running/></target>
    <config>
      <xml-config-data>
        <Device-Configuration>
          <ip>
            <host>
              <NameHost>host1</NameHost>
              <HostIPAddress>10.2.3.4</HostIPAddress>
            </host>
          </ip>
          <ip>
            <host>
              <NameHost>host2</NameHost>
              <HostIPAddress>10.2.3.5</HostIPAddress>
            </host>
          </ip>
        </Device-Configuration>
      </xml-config-data>
    </config>
  </edit-config>
</rpc>]]>]]>

Deleting Two IP Hosts: Example

The following is an example of using the <edit-config> operation to modify the running configuration by
deleting two IP hosts:

<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="3"  xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <edit-config>
    <target><running/></target>
    <config>
      <xml-config-data>

NETCONF Overview  
 Enhancement to Change the Running Configuration
 

    
6    



        <Device-Configuration>
          <ip>
            <host operation="delete">
              <NameHost>host1</NameHost>
             <HostIPAddress>10.2.3.4</HostIPAddress>
           </host>
         </ip>
         <ip>
            <host operation="delete">
             <NameHost>host2</NameHost>
             <HostIPAddress>10.2.3.5</HostIPAddress>
            </host>
          </ip>
        </Device-Configuration>
      </xml-config-data>
    </config>
  </edit-config>
</rpc>]]>]]>

<edit-config> Response

The reply to the <edit-config> operation is either the standard ok or an rpc-error.

Enhancement for Retrieving show Commands
NETCONF for retrieving show commands has the ability to collect command output down to the keyword
level. The following subtree is added under the <get> operation:

    <filter type="cli">
      <config-format-text-block><text-filter-spec>| inc netconf</text-filter-spec></
config-format-text-block>
      <oper-data-format-xml><show xsd="true">...</show><show>...</show></oper-data-format-
xml>
    </filter>

<get> Response

The reply to the <get> operation generates the following response:

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="XXXX" xmlns="urn:ietf:params:netconf:base:1.0">
  <data>
    <cli-config-data-xml>... config gets embedded here ...</cli-config-data-xml>
    <cli-oper-data-xml>
      <item>
        <show>...</show>
        <xsd>  ... xsd text gets embedded here ... </xsd>
      </item>
      ...multiple items ...
    </cli-oper-data-xml>
  </data>
</rpc-reply>]]>]]>

ODM Tool and Spec Files
The Operational Data Model (ODM) tool developed by Cisco Enhanced Device Interface (E-DI) provides
an interface for creating a new ODM spec file from a CLI data file, for a particular show command. Spec
files are defined by an E-DI metalanguage and contain a pattern-matching algorithm that collects output
from Cisco IOS EXEC show commands and places it into a specific schema. The output of each show
command is associated with an ODM spec file.

The spec file represents spatial information to extract or parse data and structural information to model the
data. A benefit of using spec files is that different format descriptions can be embedded in them, thereby
making the task of customizing applications easy.

 ODM Tool and Spec Files
Enhancement for Retrieving show Commands  

 

   
    7



The spec file can contain many individual command definitions stored as an SFE. Each SFE is delimited by
a line containing three pound signs (###). The lines immediately following the ### delimiter contain the
name of the command to convert. Following the command name line is spec file data, which must begin
with an XML header, for example <?xml version=“1.0” encoding=“UTF-8”?> . The ### is both a start and
stop delimiter unless the end of file (EOF) string is encountered, as shown in the following sample format:

###
show ip arp
<?xml version="1.0" encoding="UTF-8"?>
 ... the spec conversion for ip arp
###
show ip interface brief
<?xml version="1.0" encoding="UTF-8"?>
... the spec conversion for show ip interface brief
###
show interfaces *
show another cli
<?xml version="1.0" encoding="UTF-8"?>
... The spec conversion for ip interface

A wildcard character (*) can be used to match command names, and uses the following search order: Find
an exact match or, if not an exact match, use the wildcard character to match the maximum number of
characters. The table below provides examples of how the wildcard character can be used in the spec file to
match command names.

Table 1 Wildcard Character Command Name Matching

String Example of Characters Matched

show interfaces Matches “show interfaces”

show interfaces s* Matches “show interfaces summary”

show interfaces * Matches “show interfaces FastEthernet 0/0”

You can change the spec filename, and you can modify and customize the SFE to specific interpretation
formats. If the contents of the SFE do not comply with the spec file format and language, the conversion is
not loaded and no interpretation of data occurs. An error message stating the SFE is uninterpretable is
generated. The format of the error message depends on the source of the request to access the spec file.
NETCONF requests return a Remote Procedure Call (RPC) get rpc-reply with an error condition; CLI-
based requests return get error messages on the console. Limited format debug capability is provided by the
debug format all command. Each SFE is treated independently, and a badly formatted SFE does not affect
any other SFE in the file.

You can use the show format command to display a list of commands with an SFE in the spec file, display
the XML format SFE for a specific command, or validate a spec file.

Note Sample spec files are available for most commonly used Cisco IOS show commands and can be
downloaded from Cisco.com. You can use the sample files “as is” or modify them for your application.

XML-CLI Conversion Algorithms
The X2C and C2X conversion algorithms are used to convert XML into CLI and CLI into XML,
respectively. There are no schema used with these algorithms. The following sections provide more
information about these algorithms:

XML-CLI Conversion Algorithms  
 Enhancement for Retrieving show Commands
 

    
8    



• X2C Algorithm,  page 9
• C2X Algorithm,  page 9

X2C Algorithm
The X2C algorithm builds a Document Object Model (DOM) tree from XML. Each node in the tree can be
classified as one of three node types, depending on its name, as follows:

• KEYWORD_NODE--The tag name starts with a lowercase letter or an underscore. [a...z, _]. The
underscore is used to prefix any numeric value that is a keyword.

• SUBMODE_NODE--The tag name ends with -Configuration.
• PARAM_NODE--Any other nonzero length string.

The X2C algorithm then decodes a DOM tree by recursively descending the tree. In the following example,
this_node is used to track the current DOM node and this_cmd is the CLI string being built:

decode_node(this_node)
    if (this_node is KEYWORD_NODE) {
        if  (this_node has attribute isNegation) {
          prepend "no" to this_cmd
        }
        convert this_node name to be a keyword.
        Add keyword to end of this_cmd
        iterate children of this_node through decode_node.
    } else if (this_node is PARAM_NODE) {
        add the node body data to this_cmd
    } else if (this_node is SUBMODE_NODE) {
      this_cmd is finalised and reset to ""
      iterate children of this_node through decode_node.
    }
}

C2X Algorithm
For the C2X algorithm, each CLI word is categorized as one of the three node types, the same as described
in the X2C Algorithm,  page 9. The Cisco IOS CLI parser is used to generate the running configuration of
the network device. As each line is generated, each word in the line is parsed through and, depending upon
whether the parser encounters a KEYWORD_NODE or a PARAM_NODE, the appropriate XML tag
conversion is made. If traversing through to the next line causes a SUBMODE_NODE change, the
submode XML wrapper is entered or closed depending on whether the mode is entered or exited.

The C2X algorithm converts Cisco IOS CLI into XML based on keywords and parameters. CLI keywords
become XML tags and parameters become the bodies of tags whose names are made by parsing the CLI
help strings.

The following example is the CLI view of an interface command:

interface GigabitEthernet0/1
 ip address 10.4.0.13 255.0.0.0
 duplex auto
 speed auto
 media-type rj45
 no negotiation auto

The following example shows the C2X equivalent:

<Device-Configuration>
  <interface>
    <Param>GigabitEthernet0/1</Param>
    <ConfigIf-Configuration>
      <ip>

 XML-CLI Conversion Algorithms
X2C Algorithm  

 

   
    9



        <address>
          <IPAddress>10.4.0.13</IPAddress>
          <IPSubnetMask>255.0.0.0</IPSubnetMask>
        </address>
      </ip>
      <duplex><auto/></duplex>
      <speed><auto/></speed>
      <media-type><rj45/></media-type>
      <negotiation operation="delete" ><auto/></negotiation>
    </ConfigIf-Configuration>
  </interface>
</Device-Configuration>

How to Use XML-PI
• Configuring NETCONF for XML-PI,  page 10

• Generating XML Format for Commands,  page 13

• Generating XSD Format for Commands,  page 14

• Troubleshooting ODM Errors,  page 15

• Managing Files,  page 16

Configuring NETCONF for XML-PI
Perform this required task to configure a secure login environment and define the file to use for XML-
formatted requests.

SUMMARY STEPS

1. enable

2. configure terminal

3. crypto key generate rsa

4. Enter the RSA key modulus, when prompted.

5. ip ssh timeout seconds

6. ip ssh authentication-retries integer

7. ip ssh version 2

8. line vty starting-line-number ending-line-number

9. login local

10. transport input ssh

11. exit

12. username name privilege level password secret

13. format global location:local-filename

14. netconf ssh

15. end

Configuring NETCONF for XML-PI  
 How to Use XML-PI
 

    
10    



DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 crypto key generate rsa

Example:

Router(config)# crypto key generate rsa

Generates RSA key pairs.

Note If the crypto key has already been generated, the response of
the command will be: % You already have RSA keys defined
named xxxx-nnn.cisco.com. % Do you really want to replace
them? [yes/no]: In most cases the reply is “no” because the
crypto key has been previously generated and is stored on the
NETCONF agent side. Reply “yes” if you need to reset the
crypto key on the NETCONF agent side.

Step 4 Enter the RSA key modulus, when prompted.

Example:

How many bits in the modulus [512]: 1024

Example:

% Generating 1024 bit RSA keys ...[OK]

Prompts for the RSA key modulus when not supplied as part of the
command.

• The key modulus size must be in the range from 360 to 2048 for
general purpose keys. The configuration for XML-PI requires a
minimum key modulus size of 768.

Note The system may require a few minutes to react to a key
modulus greater than 512.

Step 5 ip ssh timeout seconds

Example:

Router(config)# ip ssh timeout 60

(Optional) Configures the time interval that the network device waits
for the SSH client to respond.

Step 6 ip ssh authentication-retries integer

Example:

Router(config)# ip ssh authentication-
retries 3

(Optional) Configures the number of attempts after which the
interface is reset.

 Configuring NETCONF for XML-PI
How to Use XML-PI  

 

   
    11



Command or Action Purpose

Step 7 ip ssh version 2

Example:

Router(config)# ip ssh version 2

(Optional) Configures the network device to run only SSH Version 2.

Step 8 line vty starting-line-number ending-line-number

Example:

Router(config)# line vty 0 8

Enters line configuration collection mode and configures a range of
virtual terminal lines for remote console access.

Note You must configure a range of lines large enough to handle
two vty lines per NETCONF session.

Step 9 login local

Example:

Router(config-line)# login local

(Optional) Enables and selects local password checking.

• Authentication is based on the username specified with the
username global configuration command.

Step 10 transport input ssh

Example:

Router(config-line)# transport input ssh

(Optional) Specifies that the SSH protocol be used for line
connection.

Step 11 exit

Example:

Router(config-line)# exit

Exits the current configuration mode and returns to the next highest
mode.

Step 12 username name privilege level password secret

Example:

Router(config)# username me privilege 15 
password mypassword

(Optional) Establishes a username-based authentication system.

• privilege --Sets the privilege level, a number from 0 to 15.
• password --Sets the password, which can contain from 1 to 25

characters and embedded spaces, and must be the last option
specified in the username command.

Step 13 format global location:local-filename

Example:

Router(config)# format global 
disk2:spec3.3.odm

(Recommended) Specifies a default ODM spec file to use for XML-
formatted requests.

Configuring NETCONF for XML-PI  
 How to Use XML-PI
 

    
12    



Command or Action Purpose

Step 14 netconf ssh

Example:

Router(config)# netconf ssh

Enables NETCONF over SSHv2.

Step 15 end

Example:

Router(config)# end

Ends the current configuration session.

Generating XML Format for Commands
To convert Cisco IOS show command output into XML format, XML-PI provides the formatoutput
modifier to the show command output. This section describes how to use this modifier. For examples of
command output, see the Examples Generating show Command XML Format,  page 19 and the 
Examples Generating show running-config XML Format,  page 20.

Note The show running-config command output is generated natively in XML, so the spec filename could be an
empty file. If a default spec file has been defined with the format global command, no filename is
required.

SUMMARY STEPS

1. show-command | format[location:local-filename]

2. show running-config {all| brief| full| interface interface-name} | format[filename

DETAILED STEPS

Step 1 show-command | format[location:local-filename]
This command executes the show command then redirects the output into the format function that will generate XML
based on the specified spec file or, if no spec file is specified, the default spec file defined by the format global
configuration command. Command names can be truncated. The location : local-filenamearguments and keyword are
the location and filename of the ODM spec file. Valid locations are bootflash:, flash:, nvram:, and any valid disk or
slot number (for example: disk0: or slot1:). ODM spec files have a .odm suffix. The following is a sample command
that uses the default ODM file to generate XML:

Example:

Router# show arp | format slot0:spec3.3.odm

Step 2 show running-config {all| brief| full| interface interface-name} | format[filename

 Generating XML Format for Commands
How to Use XML-PI  

 

   
    13



If you are generating output for the show running-config command, you can supply the following keywords and
arguments with this command:

• all --Configuration with defaults (default when no keywords are specified with the show running-config
command).

• brief --Configuration without certificate data.
• full --Full configuration.
• interface interface-name --Specified interface output only. A full interface specification (interface

fastethernet0/0, for example) is required. If the interface name does not match one that is supported on the
network device, an error is returned.

The following is a sample command:

Example:

Router# show running-config brief | format

 

Generating XSD Format for Commands
The show xsd-format command is used to display the XSD to which the XML output conforms. This
section describes how to use this command. For example of command output, see Example Generating
show Command XSD Format,  page 21.

SUMMARY STEPS

1. show xsd-format [location:local-filename] cli command

DETAILED STEPS

show xsd-format [location:local-filename] cli command
The locationand local-filenamearguments are the location and filename of the ODM spec file Valid location keywords
are bootflash:, flash:, nvram:, and any valid disk or slot number (for example: disk0: or slot1:). ODM spec files
have a .odm suffix. These arguments are not required if you want to use a default ODM file defined with the format
global command.

The first of the following two examples, displays XSD output from a defined default ODM spec file:

Example:

Router# show xsd-format cli show arp
Router# show xsd-format disk2:spec3.3.odm cli show arp

Note When the user is entering command names, the full command name must be entered; do not use command
truncation.

 

Generating XSD Format for Commands  
 How to Use XML-PI
 

    
14    



Troubleshooting ODM Errors
This section describes use of the debug format allcommand to troubleshoot spec file errors.

SUMMARY STEPS

1. enable

2. debug format all

3. show-command format location:local-filename

4. no debug format all

DETAILED STEPS

Step 1 enable
Enter this command to enable the privileged EXEC mode required to run debug commands.

Step 2 debug format all
Enter this command to enable a verbose debugging mode that displays all ODM errors.

Step 3 show-command format location:local-filename
Enter this command to generate XML output for the show interfacescommand. The following is sample output:

Example:

Router# show interfaces | format slot0:spec3.3.odm

Selected debug data is displayed with comments followed by the full debug output.

The debug format statements are read in groups of two lines. As the following example shows, the first line describes
what the attempted match was; the second line provides the offset and the byte count from the beginning of the show
interfacescommand output that the cursor of the screen scraper is currently at:

Example:

*May  4 01:20:35.279: ODM: Could not match Property mcast
*May  4 01:20:35.279: offset 703: 5 minute output rate 0 bits/sec, 0 packets/sec

The following example shows where the SFE caused the ODM algorithm to return a truncated XML. Notice how the
offset jumps from 703 to 3001. This is a large jump that implies a search between multicast and IP multicast probably
caused the screen scraper to jump too far into the text. Because the cursor is not at a buffer, this condition is the likely
candidate for the error. Looking at the spec file entry and doing a manual search through the show command output
will confirm this suspicion.

Example:

*May  4 01:20:35.279: offset 703: 5 minute output rate 0 bits/sec, 0 packets/sec
     786 pa
*May  4 01:20:35.279: ODM: Could not match Property mcast
*May  4 01:20:35.279: offset 703: 5 minute output rate 0 bits/sec, 0 packets/sec
     786 pa
*May  4 01:20:35.279: ODM: Could not match Property IP multicasts
*May  4 01:20:35.279: offset 3001: no buffer
     Received 0 broadcasts, 0 runts, 0 giants, 0

 Troubleshooting ODM Errors
How to Use XML-PI  

 

   
    15



*May  4 01:20:35.279: ODM: Could not match Property watchdog
*May  4 01:20:35.279: offset 3122: ignored, 0 abort
     0 packets output, 0 bytes, 0 underru
*May  4 01:20:35.279: ODM: Could not match Property input packets with dribble condition detected

Step 4 no debug format all
Disable the debug command when troubleshooting is complete.

 

Managing Files
This section provides the following procedures for managing files in XML-PI:

• Displaying Files on a Cisco IOS Filesystem Example,  page 16

• Managing Spec Files,  page 16

• Validating Spec Files,  page 18

Displaying Files on a Cisco IOS Filesystem Example
The following example shows how to display a list of files:

Router# show format slot0:?
slot0:spec3.3.odm      slot0:spec3.ALR.odm      slot0:spec3.empty.odm

Note The question mark (?) command can be used following any of the locationkeywords (bootflash, slot, and
so on) in the show format and show xsd-format commands, to list all files. Spec files have a .odm file
extension.

Managing Spec Files
Use the spec-file install privileged EXEC command to manage the spec files. The following commands
allow you to make backup copies of the built-in spec file before changing the contents of the file, and to
restore the contents of a previous spec file. You can also copy and remove SFEs from one spec file to
another.

Valid locations for local files are bootflash:, flash:, nvram:, and any valid disk or slot number (example:
disk0: or slot1:).

Valid URLs for remote files are archive:, bootflash:, cns:, flash:, ftp:, http:, null:, nvram:, pram:, rcp:,
scp:, system:, tar:, tftp:, tmpsys:and any valid disk or slot number (for example, disk0: or slot1:).

In all cases, the force keyword performs the command without prompting you to verify the file operation
by entering a “yes” or “no” response.

Managing Files  
 Displaying Files on a Cisco IOS Filesystem Example
 

    
16    



SUMMARY STEPS

1. spec-file install [force] location:local-filename add-entry url:remote-filename command

2. spec-file install [force] location:local-filename built-in

3. spec-file install [force] location:local-filename file url:remote-filename

4. spec-file install [force] location:local-filename remove-entry command

5. spec-file install [force] location:local-filename restore

DETAILED STEPS

Command or Action Purpose

Step 1 spec-file install [force] location:local-filename
add-entry url:remote-filename command

Example:

Router# spec-file install 
slot0:spec_file.odm add-entry tftp://
system1/user1/show_arp.odm show arp

Copies an SFE from a remote location and adds it to a local spec file.

• A check is performed on the loaded SFE to ensure that the
command is not already present in the spec file, and that the SFE
can be parsed correctly in XML.

• If the spec file does not exist, you will be prompted before the file
is created.

• If the command SFE already exists in the spec file, you will be
prompted before the command SFE is replaced.

• A backup copy of the local spec file is created before the remote
SFE is added.

Step 2 spec-file install [force] location:local-filename
built-in

Example:

Router# spec-file install 
slot0:spec_file.odm built-in

Replaces the current spec file with the built-in spec file.

• You will be prompted before the current file is replaced and
filename.bak will be created.

Step 3 spec-file install [force] location:local-filename
file url:remote-filename

Example:

Router# spec-file install 
slot0:spec_file.odm file tftp://system1/
user1/spec_file.odm

Replaces a local spec file with a remote spec file.

• A check of the loaded file is performed to ensure that each
specified command is included only once, and that the SFE can be
parsed correctly in XML.

Step 4 spec-file install [force] location:local-filename
remove-entry command

Example:

Router# spec-file install 
slot0:spec_file.odm remove-entry show 
arp

Removes an SFE from a spec file.

• A check is performed to ensure that the command SFE is present in
the spec file.

• If the spec file does not exist, this command fails.
• A backup copy of the spec file is created before the SFE is

removed.

 Managing Files
Managing Spec Files  

 

   
    17



Command or Action Purpose

Step 5 spec-file install [force] location:local-filename
restore

Example:

Router# spec-file install 
slot0:spec_file.odm restore

Restores a spec file to its original contents using a backup (.bak) file.

• If the .bak file does not exist, this command fails.

Validating Spec Files
This section describes use of the show formatcommand to validate a spec file.

The show format built-in validate form of the command is used to validate the built-in spec file. The
show format location : local-filename validate form of the command is used to validate a specific spec
file.

Note Spec files must reside locally on the network device. Using spec files from a remote filesystem is not
supported.

>

SUMMARY STEPS

1. enable

2. show format [built-in | location:local-filename] [cli command | validate]

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 show format [built-in | location:local-filename] [cli command | validate]

Example:

Router# show format built-in validate

Validates the built-in spec file.

Configuration Examples for XML-PI

Managing Files  
 Validating Spec Files
 

    
18    



• Example Configuring NETCONF for XML-PI,  page 19
• Examples Generating show Command XML Format,  page 19
• Examples Generating show running-config XML Format,  page 20
• Example Generating show Command XSD Format,  page 21
• Example Displaying the SFEs,  page 21
• Example Displaying Spec File Tag Hierarchy,  page 22
• Example Validating a Spec File,  page 23

Example Configuring NETCONF for XML-PI
The following example shows how to configure a secure login environment. Cisco recommends that you
define a default ODM file to be used for all requests using the format globalcommand. You can associate
that file with NETCONF for all XML-formatted requests using the netconf format command. If no file is
specified, the built-in spec file is used for all requests. See the format global and netconf format
command reference pages for more information. The netconf ssh configuration command enables
NETCONF over SSHv2, which terminates the session layer and provides a secure connection.

ip domain-name cisco.com
crypto key generate rsa
ip ssh timeout 60
ip ssh authentication-retries 3
ip ssh version 2
line vty 0 8
  login local
  transport input ssh
  exit
username me privilege 15 password mypassword
format global disk2:spec3.3.odm
netconf format disk2:spec3.3.odm
netconf ssh
end

Examples Generating show Command XML Format
The following examples show how to generate XML format of standard Cisco IOS showcommand output.

Standard show Command Output

Following is an example of the Cisco IOS show arp command output:

Router# show arp
Protocol  Address          Age (min)  Hardware Addr   Type   Interface
Internet  10.1.1.1               67   0001.42df.59e2  ARPA   FastEthernet0/0
Internet  10.3.1.2                8   0002.55c6.19a0  ARPA   FastEthernet0/0
Internet  10.4.0.5                -   000b.60dc.9408  ARPA   FastEthernet0/0

Generating XML

Following is an example of generating XML output of the show arp command from a default ODM file:

Router# show arp | format
<?xml version="1.0" encoding="UTF-8"?>
  <ShowArp xmlns="ODM://disk0:/spec.odm//show_arp">
    <ARPTable>
      <entry>
        <Protocol>Internet</Protocol>
        <Address>10.1.1.1</Address>
        <Age>67</Age>

 Example Configuring NETCONF for XML-PI
Configuration Examples for XML-PI  

 

   
    19



        <MAC>0001.42df.59e2</MAC>
        <Type>ARPA</Type>
        <Interface>FastEthernet0/0</Interface>
      </entry>
      <entry>
        <Protocol>Internet</Protocol>
        <Address>10.3.1.2</Address>
        <Age>8 </Age>
        <MAC>0002.55c6.19a0</MAC>
        <Type>ARPA</Type>
        <Interface>FastEthernet0/0</Interface>
      </entry>
      <entry>
        <Protocol>Internet</Protocol>
        <Address>10.4.0.5</Address>
        <MAC>000b.60dc.9408</MAC>
        <Type>ARPA</Type>
        <Interface>FastEthernet0/0</Interface>
      </entry>
    </ARPTable>
  </ShowArp>

Examples Generating show running-config XML Format
The following examples show the mapping between actual show running-config command output and the
XSD format generated by piping the output through the spec3.3.odm spec file. (For sake of brevity, output
from each command has been truncated.)

show running-config Command

Router# show running-config
Building configuration...
Current configuration : 1190 bytes
!
upgrade fpd auto
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
service internal
!
hostname Router1
!
boot-start-marker
boot system flash:c7200-js-mz.123-5.9.T
boot-end-marker
!
logging message-counter syslog
enable password secret
!
no aaa new-model
ip cef
!
no ip domain lookup
ip domain name cisco.com
ip host host1 10.66.152.11
ip host host2 10.2.2.2
multilink bundle-name authenticated
.
.
.

Piped Output to Generate XML

Router# show running-config | format
Building configuration...
<Device-Configuration>

Examples Generating show running-config XML Format  
 Configuration Examples for XML-PI
 

    
20    



<upgrade><fpd><auto/></fpd></upgrade>
<version><Param>12.4</Param></version>
<service><timestamps><debug><datetime><msec/></datetime></debug></timestamps></>
<service><timestamps><log><datetime><msec/></datetime></log></timestamps></serv>
<service operation="delete" ><password-encryption/></service>
<service><internal/></service>
<hostname><SystemNetworkName>Router1</SystemNetworkName></hostname>
<boot-start-marker></boot-start-marker>
<boot><system><TFTPFileNameURL>flash:c7200-js-mz.123-5.9.T</TFTPFileNameURL></s>
<boot-end-marker></boot-end-marker>
<logging><message-counter><syslog/></message-counter></logging>
<enable><password><UnencryptedEnablePassword>secret</UnencryptedEnablePassword><>
<aaa operation="delete" ><new-model/></aaa>
<ip><cef/></ip>
<ip operation="delete" ><domain><lookup/></domain></ip>
<ip><domain><name><DefaultDomainName>cisco.com</DefaultDomainName></name></doma>
<ip><host><NameHost>host1 </NameHost><HostIPAddress>10.66.152.11</HostIPAddre>
<ip><host><NameHost>host2 </NameHost><HostIPAddress>10.2.2.2</HostIPAddress></ho>
<multilink><bundle-name><authenticated/></bundle-name></multilink>
.
.
.

The returned data is the requested configuration converted using the C2X algorithm.

Example Generating show Command XSD Format
The following example shows how to generate XSD for the show arp command:

Router# show xsd-format disk2:spec3.3.odm cli show arp
<?xml version="1.0"?>
  <xsd:schema elementFormDefault="qualified" attributeFormDefault="unqualified" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
    <xsd:complexType name="ShowArp_def">
      <xsd:sequence>
        <xsd:choice minOccurs="0" maxOccurs="unbounded">
          <xsd:element ref="Info"/>
          <xsd:element name="ARPTable" minOccurs="0">
            <xsd:complexType>
              <xsd:sequence>
                <xsd:element name="entry" minOccurs="0" maxOccurs="unbounded">
                  <xsd:complexType>
                    <xsd:sequence>
                      <xsd:element name="Protocol" minOccurs="0" type="string" />
                      <xsd:element name="Address" minOccurs="0" type="string" />
                      <xsd:element name="Age" minOccurs="0" type="integer" />
                      <xsd:element name="MAC" minOccurs="0" type="string" />
                      <xsd:element name="Type" minOccurs="0" type="string" />
                      <xsd:element name="Interface" minOccurs="0" type="string" />
                    </xsd:sequence>
                  </xsd:complexType>
                </xsd:element>
              </xsd:sequence>
            </xsd:complexType>
          </xsd:element>
        </xsd:choice>
      </xsd:sequence>
    </xsd:complexType>
    <xsd:element name="Info" type="xsd:string"/>
    <xsd:element name="ShowArp" type="ShowArp_def"/>
  </xsd:schema>

Example Displaying the SFEs
The following example shows how to display the SFE for the show arp command:

Router# show format disk2:spec3.3.odm cli show arp
<?xml version="1.0" encoding="UTF-8"?>

 Example Generating show Command XSD Format
Configuration Examples for XML-PI  

 

   
    21



<ODMSpec>
  <Command>
    <Name>show arp</Name>
  </Command>
  <OS>ios</OS>
  <DataModel>
    <Container name="ShowArp" >
      <Table name="ARPTable">
        <Header name = "Protocol" start = "0" end = "10" type = "String"/>
        <Header name = "Address" start = "10" end = "26" type = "IpAddress"/>
        <Header name = "Age (min)" alias = "Age" start = "26" end = "36" type = 
"Integer"/>
        <Header name = "Hardware Addr" alias="MAC" start = "36" end = "53" type = 
"String"/>
        <Header name = "Type" start = "53" end = "59" type = "String"/>
        <Header name = "Interface" start = "59" end = "-1" nullable = "true" type = 
"String"/>
      </Table>
    </Container>
  </DataModel>
</ODMSpec>

The following example shows a list of fully expanded command names that have spec files in the default
ODM file:

Router# show format
The following CLI are supported in slot0:spec3.3.odm
show arp 
show cdp neighbors detail 
show context 
show flash:
show interfaces*
show inventory
show ip interface brief
show ip nat translations
show line value
show line
show processes cpu
show processes memory
show region
show spanning-tree
show stacks
show vlans

Example Displaying Spec File Tag Hierarchy
The show odm-formatcommand displays the spec file structure in a fixed output that you can refer to in
order to understand the spec file tag hierarchy. The following example shows the fixed output from the
show odm-formatcommand. Refer to the Programmer’s Guide for Cisco Enhanced Device Interface 2.2
for more information about the ODM tool and tag hierarchy.

Router# show odm format
New Name Space ''
<NotARealTag> Either 0 or 1 allowed
  <ODMSpec> Exactly 1 required
    <Command> Exactly 1 required
      <Name> Exactly 1 required
      <AliasSet> Either 0 or 1 allowed
        <Alias> At least 1 required
    <OS> Either 0 or 1 allowed
    <DataModel> Exactly 1 required
      <Container> Exactly 1 required
        <Table> 0 or more is allowed
          <Header> At least 1 required
            <Option> 0 or more is allowed
          <EndOfTheTable> Either 0 or 1 allowed
        <Property> 0 or more is allowed
          <Option> 0 or more is allowed

Example Displaying Spec File Tag Hierarchy  
 Configuration Examples for XML-PI
 

    
22    



        <Container> 0 or more is allowed
          <Table> 0 or more is allowed
            <Header> At least 1 required
              <Option> 0 or more is allowed
            <EndOfTheTable> Either 0 or 1 allowed
          <Property> 0 or more is allowed
            <Option> 0 or more is allowed 
             <Container> 0 or more is allowed
          <Legends> 0 or more is allowed
            <Legend> At least 1 required
          <IgnorableLinesList> 0 or more is allowed
            <Line> At least 1 required
        <Legends> 0 or more is allowed
          <Legend> At least 1 required
        <IgnorableLinesList> 0 or more is allowed
          <Line> At least 1 required

Example Validating a Spec File
The following example shows how to validate a built-in spec file:

Router# show format built-in validate
 
The file built-in has been validated

Additional References
Related Documents

Related Topic Document Title

Cisco IOS commands Cisco IOS Master Commands List, All Releases

Cisco IOS network management commands Cisco IOS Network Management Command
Reference

NETCONF Network Configuration Protocol

ODM tool Programmer’s Guide for Cisco Enhanced Device
Interface 2.2

Standards

Standard Title

XML-PI based on NETCONF standards • User Guide for Cisco Enhanced Device
Interface 2.2

• Programmer’s Guide for Cisco Enhanced
Device Interface 2.2

 Example Validating a Spec File
Additional References  

 

   
    23

http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html


MIBs

MIB MIBs Link

None To locate and download MIBs for selected
platforms, Cisco software releases, and feature sets,
use Cisco MIB Locator found at the following
URL:

http://www.cisco.com/go/mibs

RFCs

RFC Title

RFC 4741 NETCONF Configuration Protocol

RFC 4742 Using the NETCONF Configuration Protocol over
Secure SHell (SSH)

Technical Assistance

Description Link

The Cisco Support website provides extensive
online resources, including documentation and
tools for troubleshooting and resolving technical
issues with Cisco products and technologies.

To receive security and technical information about
your products, you can subscribe to various
services, such as the Product Alert Tool (accessed
from Field Notices), the Cisco Technical Services
Newsletter, and Really Simple Syndication (RSS)
Feeds.

Access to most tools on the Cisco Support website
requires a Cisco.com user ID and password.

http://www.cisco.com/cisco/web/support/
index.html

Feature Information for XML-PI
The following table provides release information about the feature or features described in this module.
This table lists only the software release that introduced support for a given feature in a given software
release train. Unless noted otherwise, subsequent releases of that software release train also support that
feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Example Validating a Spec File  
 Feature Information for XML-PI
 

    
24    

http://www.cisco.com/go/mibs
http://www.cisco.com/cisco/web/support/index.html
http://www.cisco.com/cisco/web/support/index.html
http://www.cisco.com/go/cfn


Table 2 Feature Information for XML-PI

Feature Name Releases Feature Information

XML-PI 12.4(20)T 12.2(33)SRE
12.2(54)SG 12.2(50)SY

The eXtensible Markup
Language Programmatic Interface
(XML-PI) Release 1.0 leverages
the Network Configuration
Protocol (NETCONF) and offers
new data models that collect
show command output down to
the keyword level and running
configurations without the
complexity and expense of
screen-scraping technologies or
external XML-to-CLI gateways.
XML-PI allows you to quickly
develop XML-based network
management applications.

The following commands were
introduced or modified by this
feature: debug format, format
global, netconf format show
format, show odm-format,
show xsd-format, spec-file
install add-entry, spec-file
install built-in, spec-file install
file, spec-file install remove-
entry, and spec-file install
restore.

This feature was integrated into
Cisco IOS Release 12.2(33)SRE.

The following command was
introduced or modified by this
feature: show format.

Glossary
C2X --CLI to XML.

CLI --command-line interface. An interface that allows the user to interact with the operating system by
entering commands and optional arguments.

E-DI --Enhanced Device Interface.

NETCONF --Network Configuration Protocol.

ODM --Operational Data Model.

RSA --Rivest, Shamir, and Adelman, the inventors of the technique. Public-key cryptographic system that
can be used for encryption and authentication.

 Example Validating a Spec File
Glossary  

 

   
    25



SSH --Secure Shell.

X2C --XML to CLI.

XML --eXtensible Markup Language.

XSD --XML Schema Definition.

Example Validating a Spec File  
 Glossary
 

    
26    


	XML-PI
	Finding Feature Information
	Prerequisites for XML-PI
	Restrictions for XML-PI
	Information About XML-PI
	XML-PI Overview
	NETCONF Overview
	NETCONF Enhancements
	Enhancement to Retrieve show running-config Output
	Enhancement to Change the Running Configuration
	Enhancement for Retrieving show Commands

	ODM Tool and Spec Files
	XML-CLI Conversion Algorithms
	X2C Algorithm
	C2X Algorithm


	How to Use XML-PI
	Configuring NETCONF for XML-PI
	Generating XML Format for Commands
	Generating XSD Format for Commands
	Troubleshooting ODM Errors
	Managing Files
	Displaying Files on a Cisco IOS Filesystem  Example
	Managing Spec Files
	Validating Spec Files


	Configuration Examples for XML-PI
	Example  Configuring NETCONF for XML-PI
	Examples  Generating show Command XML Format
	Examples  Generating show running-config XML Format
	Example  Generating show Command XSD Format
	Example  Displaying the SFEs
	Example  Displaying Spec File Tag Hierarchy
	Example  Validating a Spec File

	Additional References
	Feature Information for XML-PI
	Glossary


