The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2014 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1

Wide-Area Networking Overview

- Finding Feature Information 1
- Frame Relay 1
 - Frame Relay-ATM Internetworking 4
- Switched Multimegabit Data Service 5
- Link Access Procedure - Balanced and X.25 5
- Layer 2 Virtual Private Network 7
 - Layer 2 Tunneling Protocol Version 3 7
 - L2VPN Pseudowire Redundancy 7
 - Layer 2 Virtual Private Network Interworking 7
 - Layer 2 Local Switching 7
- Wide Area Application Services 8

CHAPTER 2

Configuring SMDS

- Finding Feature Information 9
- Prerequisites for SMDS 9
- Information About SMDS 10
 - SMDS Hardware Requirements 10
 - SMDS Addresses 10
- Customizing the SMDS Network 11
 - Configuring Specific Protocols 11
 - Configuring ARP and IP 12
 - Configuring DECnet 12
 - Configuring CLNS 12
 - Configuring IPX 12
 - Configuring XNS 12
 - Configuring AppleTalk 13
 - Configuring Banyan VINES 13
Transparent Bridging over SMDS 13
SMDS Subinterfaces for Multiple Logical IP Subnetworks 13
Reenabling Data Exchange Interface Version 3.2 with Heartbeat Support 14
Pseudobroadcasting 14
Fast Switching 14
SMDS Configuration Task List 14
Enabling SMDS on the Interface 14
Setting SMDS Encapsulation 14
Specifying the SMDS Address 15
Establishing Address Mapping 15
Mapping a Multicast Address to an SMDS Address 15
Enabling ARP 17
Enabling Broadcast ARP Messages 17
Enabling Dynamic Address Mapping for IPX over SMDS 17
Customizing Your SMDS Network 18
Enabling Transparent Bridging over SMDS 18
Configuring SMDS Subinterfaces for Multiple Logical IP Subnetworks 18
Reenabling Data Exchange Interface Version 3.2 with Heartbeat Support 19
Configuring Pseudobroadcasting 20
Enabling Fast Switching 20
Monitoring the SMDS Connection 21
SMDS Configuration Examples 21
Typical Multiprotocol Configuration Example 21
Remote Peer on the Same Network Example 22
IPX Dynamic Address Mapping Example 22
AppleTalk Configuration Examples 22
Extended AppleTalk Network Example 22
Nonextended Appletalk Network Example 23
Multiple Logical IP Subnetworks over SMDS Example 23
Pseudobroadcasting Example 24
Feature Information for SMDS 25

CHAPTER 3 Configuring X.25 and LAPB 27
Finding Feature Information 28
Information about LAPB and X.25 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishing the Packet Acknowledgment Policy</td>
<td>43</td>
</tr>
<tr>
<td>X.25 User Facilities</td>
<td>43</td>
</tr>
<tr>
<td>X.25 Routing</td>
<td>44</td>
</tr>
<tr>
<td>X.25 Route</td>
<td>45</td>
</tr>
<tr>
<td>Additional X.25 Routing Features</td>
<td>45</td>
</tr>
<tr>
<td>X.25 Load Balancing</td>
<td>45</td>
</tr>
<tr>
<td>XOT to Use Interface Default Flow Control Values</td>
<td>46</td>
</tr>
<tr>
<td>Calling Address Interface-Based Insertion and Removal</td>
<td>47</td>
</tr>
<tr>
<td>DNS-Based X.25 Routing</td>
<td>47</td>
</tr>
<tr>
<td>Overview</td>
<td>47</td>
</tr>
<tr>
<td>Address Resolution</td>
<td>48</td>
</tr>
<tr>
<td>Mnemonic Resolution</td>
<td>49</td>
</tr>
<tr>
<td>X.25 over Frame Relay (Annex G)</td>
<td>50</td>
</tr>
<tr>
<td>CMNS Routing</td>
<td>50</td>
</tr>
<tr>
<td>Priority Queueing or Custom Queueing for X.25</td>
<td>50</td>
</tr>
<tr>
<td>X.25 Closed User Groups</td>
<td>51</td>
</tr>
<tr>
<td>Closed User Group</td>
<td>51</td>
</tr>
<tr>
<td>Understanding CUG Configuration</td>
<td>53</td>
</tr>
<tr>
<td>Point of Presence</td>
<td>54</td>
</tr>
<tr>
<td>CUG Membership Selection</td>
<td>54</td>
</tr>
<tr>
<td>CUG Service Access and Properties</td>
<td>55</td>
</tr>
<tr>
<td>POP with No CUG Access</td>
<td>56</td>
</tr>
<tr>
<td>POP with Access Restricted to One CUG</td>
<td>56</td>
</tr>
<tr>
<td>POP with Multiple CUGs and No Public Access</td>
<td>56</td>
</tr>
<tr>
<td>POP with Multiple CUGs and Public Access</td>
<td>56</td>
</tr>
<tr>
<td>CUG Selection Facility Suppression</td>
<td>57</td>
</tr>
<tr>
<td>DDN or BFE X.25</td>
<td>57</td>
</tr>
<tr>
<td>DDN</td>
<td>57</td>
</tr>
<tr>
<td>Understanding DDN X.25 Dynamic Mapping</td>
<td>57</td>
</tr>
<tr>
<td>IP Precedence Handling</td>
<td>59</td>
</tr>
<tr>
<td>Blacker Front End X.25</td>
<td>59</td>
</tr>
<tr>
<td>X.25 Remote Failure Detection</td>
<td>59</td>
</tr>
<tr>
<td>X.29 Access Lists</td>
<td>60</td>
</tr>
<tr>
<td>How to Configure LAPB</td>
<td>61</td>
</tr>
<tr>
<td>Configuring a LAPB Datagram Transport</td>
<td>61</td>
</tr>
</tbody>
</table>
Selecting an Encapsulation and Protocol 61
Configuring Compression over LAPB 62
Configuring Compression over Multi-LAPB 62
Configuring Transparent Bridging over Multiprotocol LAPB 63

How to Configure X.25 64
Configuring an X.25 Interface 64
 Configuring X.25 Encapsulation 64
 Setting the Virtual Circuit Ranges 64
 Setting the Packet-Numbering Modulo 65
 Setting the X.121 Address 65
 Configuring X.25 Switch Local Acknowledgment 66
 Verifying Local Acknowledgement 66
 Enabling Flow Control Parameter Negotiation 66
 Verifying Flow Control Parameter Negotiation 66
 Setting Default Flow Control Values 67
 Setting Default Window Sizes 67
 Setting Default Packet Sizes 67
 Enabling Asymmetrical Flow Control 68
Configuring Additional X.25 Interface Parameters 68
 Configuring X.25 Failover 68
 Configuring X.25 Failover on an Interface 68
 Configuring X.25 Failover on an X.25 Profile 69
 Verifying X.25 Failover 69
 Configuring the X.25 Level 3 Timers 70
 Configuring X.25 Addresses 70
 Configuring an Interface Alias Address 70
 Suppressing or Replacing the Calling Address 71
 Suppressing the Called Address 71
 Establishing a Default VC Protocol 71
 Disabling PLP Restarts 71
Configuring an X.25 Datagram Transport 72
 Configuring Point-to-Point and Multipoint Subinterfaces 72
 Mapping Protocol Addresses to X.121 Addresses 73
 Mapping Datagram Addresses to X.25 Hosts 73
 Configuring PAD Access 73
Contents

Establishing an Encapsulation PVC 73
Setting X.25 TCP IP Header Compression 74
Configuring X.25 Bridging 74

Configuring Additional X.25 Datagram Transport Features 74
Configuring X.25 Payload Compression 74
Configuring the Encapsulation VC Idle Time 74
Increasing the Number of VCs Allowed 75
Configuring the Ignore Destination Time 75
Establishing the Packet Acknowledgment Policy 76
Configuring X.25 User Facilities 77
Defining the VC Packet Hold Queue Size 78

Restricting Map Usage 79

Configuring X.25 Routing 79
Enabling X.25 Routing 79
Configuring an X.25 Route 80
Configuring a PVC Switched Between X.25 Interfaces 82
 Configuring a Locally Switched PVC 82
 Ensuring the TCP sessions are Connected 83
Configuring X.25 Switching Between PVCs and SVCs 83
 Displaying the Switched Information 83

Configuring Additional X.25 Routing Features 84
Configuring X.25 Load Balancing 84
 Verifying X.25 Load Balancing 84
Configuring XOT to Use Interface Default Flow Control Values 85
Configuring Calling Address Interface-Based Insertion and Removal 85
 Verifying Interface-Based Calling Address Insertion 85
Substituting Addresses in an X.25 Route 86
Configuring XOT Alternate Destinations 86

Configuring DNS-Based X.25 Routing 87
 Verifying DNS-Based X.25 Routing 87
 Verifying DNS-Based X.25 Mnemonic Resolution 88
Configuring X.25 over Frame Relay (Annex G) 88
Configuring CMNS Routing 89
 Enabling CMNS on an Interface 89
 Configuring a Route to a CMNS Host 90
Configuring Priority Queueing or Custom Queueing for X.25 90
Configuring X.25 Closed User Groups 91
 Configuring X.25 CUG Service Access and Properties 91
 Configuring a POP with No CUG Access 91
 Configuring a POP with Access Restricted to One CUG 92
 Configuring a POP with Multiple CUGs and No Public Access 92
 Configuring a POP with Multiple CUGs and Public Access 93
Configuring CUG Selection Facility Suppression 94
 Configuring CUG Selection Facility Suppression on an Interface 94
 Configuring CUG Selection Facility Suppression on an X.25 Profile 95
Verifying X.25 CUG Service 95
Troubleshooting Tips for X.25 CUG Service 95
Configuring DDN or BFE X.25 96
 Enabling DDN X.25 96
 Defining IP Precedence Handling 96
 Configuring Blacker Front End X.25 96
Configuring X.25 Remote Failure Detection 97
 X.25 Remote Failure Detection with IP Static Routes 97
 X.25 Remote Failure Detection and the Backup Interface 98
 Verifying X.25 Remote Failure Detection 99
Creating X.29 Access Lists 100
 Creating an X.29 Access List 100
 Applying an Access List to a Virtual Terminal Line 100
Creating an X.29 Profile Script 100
Monitoring and Maintaining LAPB and X.25 101
X.25 and LAPB Configuration Examples 102
 Typical LAPB Configuration Example 102
 Transparent Bridging for Multiprotocol LAPB Encapsulation Example 102
 Typical X.25 Configuration Example 102
 VC Ranges Example 103
 X.25 Failover Example 104
 PVC Switching on the Same Router Example 104
 X.25 Route Address Pattern Matching Example 104
 X.25 Routing Examples 105
 PVC Used to Exchange IP Traffic Example 106
Point-to-Point Subinterface Configuration Example 106
Simple Switching of a PVC over XOT Example 106
PVC Switching over XOT Example 107
X.25 Load Balancing Examples 108
 X.25 Load Balancing Using VC-Count Distribution Method Example 108
 X.25 Load Balancing with Multiple Hunt Groups Example 108
X.25 Switching Between PVCs and SVCs Example 109
Inserting and Removing X.121 Addresses As Calls Are Routed Example 110
Forwarding Calls Using the *continue* Keyword Example 110
 X.25 Routing Statements Before *continue* Keyword 111
 Same X.25 Network Configuration with *continue* Keyword 112
DNS-Based X.25 Routing Example 112
X.25 over Frame Relay Annex G Example 113
CMNS Switching Example 114
CMNS Switching over a PDN Example 114
CMNS Switched over Leased Lines Example 116
Configuring Local Acknowledgment Example 117
Setting Asymmetrical Window and Packet Sizes Flow Control Never Example 118
Configuring Flow Control Always Example 118
X.25 CUGs Examples 119
 X.25 CUG Service and Access with CUG Properties Example 119
 POP with No CUG Access Example 119
 POP with Access Restricted to One CUG Example 120
 POP with Multiple CUGs and No Public Access Example 120
 POP with Multiple CUGs and Public Access Example 121
 CUG Selection Facility Suppression for the Preferential CUG Example 121
 CUG Selection Facility Suppression for All CUGs Example 121
DDN X.25 Configuration Example 122
Blacker Front End Example 122
X.25 Ping Support over Multiple Lines Example 122
Booting from a Network Server over X.25 Example 123
X.25 Remote Failure Detection Examples 124
 X.25 Remote Failure Detection with IP Static Routes Example 124
 X.25 Remote Failure Detection and the Backup Interface Example 124
X.29 Access List Example 125
CHAPTER 4

Terminal Line Security for PAD Connections 127

Finding Feature Information 127
Prerequisites for Terminal Line Security for PAD Connections 127
Restrictions for Terminal Line Security for PAD Connections 128
Information About Terminal Line Security for PAD Connections 128
Security Considerations 128
PAD Call Behavior When a Line Is Configured for CUG Subscription 129
PAD Call Behavior When Only the Line Is Configured for CUG Service 129
PAD Call Behavior When Both a Line and an Interface Are Configured for CUG Service 130
Benefits 131
How to Configure Terminal Line Security for PAD Connections 131
Configuring X.25 CUG Support on Terminal Lines 131
Verifying X.25 CUG Support on Terminal Lines 132
Monitoring and Maintaining X.25 CUG Support on Terminal Lines 134
Configuration Examples for Terminal Line Security for PAD Connections 134
Configuring X.25 CUG Support on Terminal Lines Example 134
Additional References 135
Feature Information for Terminal Line Security for PAD Connections 136
Glossary 136

CHAPTER 5

X.25 Annex G Session Status Change Reporting 139

Finding Feature Information 139
Feature Overview 139
Benefits 140
Restrictions 140
Related Documents 140
Supported Platforms 140
Supported Standards and MIBs and RFCs 141
Prerequisites 141
Configuration Tasks 141
Enabling X.25 Annex G Session Status Change Reporting 141
Verifying X.25 Annex G Session Status Change Reporting 141
CHAPTER 10

X.25 Call Confirm Packet Address Control 181
Finding Feature Information 181
Information About X.25 Call Confirm Packet Address Control 182
Address Encoding in X.25 Call Confirm Packets 182
X.25 Call Confirm Packet Address Control 182
Benefits of X.25 Call Confirm Packet Address Control 183
How to Configure X.25 Call Confirm Packet Address Control 183
Configuring X.25 Call Confirm Packet Address Control on an Interface 183
Troubleshooting Tips 184
Configuring X.25 Call Confirm Packet Address Control in an X.25 Profile 184
Troubleshooting Tips 185
Configuration Examples for X.25 Call Confirm Packet Address Control 186
Suppressing Addresses in Call Confirm Packets Example 186
Using Addresses from Original Call Packets in the Call Confirm Packets Example 186
Additional References 186
Feature Information for X.25 Call Confirm Packet Address Control 187

CHAPTER 11

X.25 Data Display Trace 189
Finding Feature Information 189
Displaying the Contents of X.25 Packets 189
Additional References 191
Feature Information for X.25 Data Display Trace 192

CHAPTER 12

X.25 Version Configuration 193
Finding Feature Information 193
Information About X.25 Version Configuration 194
Wide-Area Networking Overview

Cisco IOS software provides a range of wide-area networking capabilities to fit almost every network environment need. Cisco offers cell relay via the Switched Multimegabit Data Service (SMDS), circuit switching via ISDN, packet switching via Frame Relay, and the benefits of both circuit and packet switching via Asynchronous Transfer Mode (ATM). LAN emulation (LANE) provides connectivity between ATM and other LAN types. The Cisco IOS Wide-Area Networking Configuration Guide presents a set of general guidelines for configuring the following software components:

This module gives a high-level description of each technology. For specific configuration information, see the appropriate module.

- Finding Feature Information, page 1
- Frame Relay, page 1
- Switched Multimegabit Data Service, page 5
- Link Access Procedure - Balanced and X.25, page 5
- Layer 2 Virtual Private Network, page 7
- Wide Area Application Services, page 8

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Frame Relay

The Cisco Frame Relay implementation currently supports routing on IP, DECnet, AppleTalk, XNS, Novell IPX, CLNS, Banyan VINES, and transparent bridging.
Although Frame Relay access was originally restricted to leased lines, dialup access is now supported. For more information, for dialer profiles or for legacy dial-on-demand routing (DDR) see the see the module Dial-on-Demand Routing Configuration.

To install software on a new router or access server by downloading software from a central server over an interface that supports Frame Relay, see the module Loading and Maintaining System Images.

To configure access between Systems Network Architecture (SNA) devices over a Frame Relay network, see the module Configuring SNA Frame Relay Access Support.

The Frame Relay software provides the following capabilities:

- Support for the three generally implemented specifications of Frame Relay Local Management Interfaces (LMIs):
 - The Frame Relay Interface joint specification produced by Northern Telecom, Digital Equipment Corporation, StrataCom, and Cisco Systems
 - The ANSI-adopted Frame Relay signal specification, T1.617 Annex D
 - The ITU-T-adopted Frame Relay signal specification, Q.933 Annex A

- Conformity to ITU-T I-series (ISDN) recommendation as I122, "Framework for Additional Packet Mode Bearer Services":
 - The ANSI-adopted Frame Relay encapsulation specification, T1.618
 - The ITU-T-adopted Frame Relay encapsulation specification, Q.922 Annex A

- Conformity to Internet Engineering Task Force (IETF) encapsulation in accordance with RFC 2427, except bridging.

- Support for a keepalive mechanism, a multicast group, and a status message, as follows:
 - The keepalive mechanism provides an exchange of information between the network server and the switch to verify that data is flowing.
 - The multicast mechanism provides the network server with a local data-link connection identifier (DLCI) and a multicast DLCI. This feature is specific to our implementation of the Frame Relay joint specification.
 - The status mechanism provides an ongoing status report on the DLCIs known by the switch.

- Support for both PVCs and SVCs in the same sites and routers.

SVCs allow access through a Frame Relay network by setting up a path to the destination endpoints only when the need arises and tearing down the path when it is no longer needed.

- Support for Frame Relay Traffic Shaping beginning with Cisco IOS Release 11.2. Traffic shaping provides the following:
 - Rate enforcement for individual circuits--The peak rate for outbound traffic can be set to the committed information rate (CIR) or some other user-configurable rate.
 - Dynamic traffic throttling on a per-virtual-circuit basis--When backward explicit congestion notification (BECN) packets indicate congestion on the network, the outbound traffic rate is automatically stepped down; when congestion eases, the outbound traffic rate is stepped up again.
• Enhanced queueing support on a per-virtual circuit basis—Custom queueing, priority queueing, and weighted fair queueing can be configured for individual virtual circuits.

• Transmission of congestion information from Frame Relay to DECnet Phase IV and CLNS. This mechanism promotes forward explicit congestion notification (FECN) bits from the Frame Relay layer to upper-layer protocols after checking for the FECN bit on the incoming DLCI. Use this Frame Relay congestion information to adjust the sending rates of end hosts. FECN-bit promotion is enabled by default on any interface using Frame Relay encapsulation. No configuration is required.

• Support for Frame Relay Inverse ARP as described in RFC 1293 for the AppleTalk, Banyan VINES, DECnet, IP, and IPX protocols, and for native hello packets for DECnet, CLNP, and Banyan VINES. It allows a router running Frame Relay to discover the protocol address of a device associated with the virtual circuit.

• Support for Frame Relay switching, whereby packets are switched based on the DLCI—a Frame Relay equivalent of a Media Access Control (MAC)-level address. Routers are configured as a hybrid DTE switch or pure Frame Relay DCE access node in the Frame Relay network.

Frame Relay switching is used when all traffic arriving on one DLCI can be sent out on another DLCI to the same next-hop address. In such cases, the Cisco IOS software need not examine the frames individually to discover the destination address, and, as a result, the processing load on the router decreases.

The Cisco implementation of Frame Relay switching provides the following functionality:

• Switching over an IP tunnel
 • Switching over Network-to-Network Interfaces (NNI) to other Frame Relay switches
 • Local serial-to-serial switching
 • Switching over ISDN B channels
 • Traffic shaping on switched PVCs
 • Congestion management on switched PVCs
 • Traffic policing on User-Network Interface (UNI) DCE
 • FRF.12 fragmentation on switched PVCs

• Support for subinterfaces associated with a physical interface. The software groups one or more PVCs under separate subinterfaces, which in turn are located under a single physical interface. See the Configuring Frame Relay module.

• Support for fast-path transparent bridging, as described in RFC 1490, for Frame Relay encapsulated serial and High-Speed Serial Interfaces (HSSIs) on all platforms.

• Support of the Frame Relay DTE MIB specified in RFC 1315. However, the error table is not implemented. To use the Frame Relay MIB, refer to your MIB publications.

• Support for Frame Relay fragmentation. Cisco has developed the following three types of Frame Relay fragmentation:
 • End-to-End FRF.12 Fragmentation

FRF.12 fragmentation is defined by the FRF.12 Implementation Agreement. This standard was developed to allow long data frames to be fragmented into smaller pieces (fragments) and interleaved with real-time frames.
End-to-end FRF.12 fragmentation is recommended for use on PVCs that share links with other PVCs that are transporting voice and on PVCs transporting Voice over IP (VoIP).

- Frame Relay Fragmentation Using FRF.11 Annex C

When VoFR (FRF.11) and fragmentation are both configured on a PVC, the Frame Relay fragments are sent in the FRF.11 Annex C format. This fragmentation is used when FRF.11 voice traffic is sent on the PVC, and it uses the FRF.11 Annex C format for data.

See the module Configuring Voice over Frame Relay in the Cisco IOS Voice, Video, and Fax Configuration Guide for configuration tasks and examples for Frame Relay fragmentation using FRF.11 Annex C.

- Cisco Proprietary Fragmentation

Cisco proprietary fragmentation is used on data packets on a PVC that is also used for voice traffic.

See the module Configuring Voice over Frame Relay in the Cisco IOS Voice, Video, and Fax Configuration Guide for configuration tasks and examples for Cisco proprietary fragmentation.

Frame Relay-ATM Internetworking

Cisco IOS software supports the Frame Relay Forum implementation agreements for Frame Relay-ATM Interworking. Frame Relay-ATM Interworking enables Frame Relay and ATM networks to exchange data, despite differing network protocols. There are two types of Frame Relay-ATM Interworking:

FRF.5 Frame Relay-ATM Network Interworking

FRF.5 provides network interworking functionality that allows Frame Relay end users to communicate over an intermediate ATM network that supports FRF.5. Multiprotocol encapsulation and other higher-layer procedures are transported transparently, just as they would be over leased lines.

FRF.5 describes network interworking requirements between Frame Relay Bearer Services and Broadband ISDN (BISDN) permanent virtual circuit (PVC) services.

The FRF.5 standard is defined by the Frame Relay Forum Document Number FRF.5: Frame Relay/ATM PVC Network Interworking Implementation Agreement. For information about which sections of this implementation agreement are supported by Cisco IOS software, see Frame Relay-ATM Interworking Supported Standards.

FRF.8 Frame Relay-ATM Service Interworking

FRF.8 provides service interworking functionality that allows a Frame Relay end user to communicate with an ATM end user. Traffic is translated by a protocol converter that provides communication among dissimilar Frame Relay and ATM equipment.

FRF.8 describes a one-to-one mapping between a Frame Relay PVC and an ATM PVC.

The FRF.8 standard is defined by the Frame Relay Forum Document Number FRF.8: Frame Relay/ATM PVC Network Service Interworking Implementation Agreement. For information about which sections of this implementation agreement are supported by Cisco IOS software, see Frame Relay-ATM Interworking Supported Standards.
Switched Multimegabit Data Service

The Cisco implementation of the SMDS protocol is based on cell relay technology as defined in the Bellcore Technical advisories, which are based on the IEEE 802.6 standard. We provide an interface to an SMDS network using DS1 or DS3 high-speed transmission facilities. Connection to the network is made through a device called an SDSU--an SMDS digital service unit (DSU). The SDSU attaches to a router or access server through a serial port. On the other side, the SDSU terminates the line.

The implementation of SMDS supports the IP, DECnet, AppleTalk, XNS, Novell IPX, Banyan VINES, and OSI internetworking protocols, and transparent bridging.

The implementation of SMDS also supports SMDS encapsulation over an ATM interface. For more information and for configuration tasks, see Configuring ATM.

Routing of AppleTalk, DECnet, IP, IPX, and ISO CLNS is fully dynamic; that is, the routing tables are determined and updated dynamically. Routing of the other supported protocols requires that you establish a static routing table of SMDS neighbors in a user group. Once this table is set up, all interconnected routers and access servers provide dynamic routing.

Note

When configuring IP routing over SMDS, you may need to make adjustments to accommodate split horizon effects. Refer to the Configuring EIGRP module for information about how Cisco software handles possible split horizon conflicts. By default, split horizon is disabled for SMDS networks.

The SMDS implementation includes multiple logical IP subnetworks support as defined by RFC 1209. This RFC describes routing IP over an SMDS cloud in which each connection is considered a host on one specific private network, and points to cases where traffic must transit from network to network.

The implementation of SMDS also provides the Data Exchange Interface (DXI) Version 3.2 with heartbeat mechanism periodically generates a heartbeat poll frame.

When a multicast address is not available to a destination, pseudobroadcasting can be enabled to broadcast packets to those destinations using a unicast address.

Link Access Procedure - Balanced and X.25

X.25 is one of a group of specifications published by the ITU-T. These specifications are international standards that are formally called Recommendations. The ITU-T Recommendation X.25 defines how connections between DTE and DCE are maintained for remote terminal access and computer communications. The X.25 specification defines protocols for two layers of the Open Systems Interconnection (OSI) reference model. The data link layer protocol defined is LAPB. The network layer is sometimes called the packet level protocol (PLP), but is commonly (although less correctly) referred to as the X.25 protocol.

The ITU-T carries out the functions of the former CCITT. The 1988 X.25 standard was the last published as a CCITT Recommendation. The first ITU-T Recommendation is the 1993 revision.

In addition to providing remote terminal access, The Cisco X.25 software provides transport for LAN protocols--IP, DECnet, XNS, ISO CLNS, AppleTalk, Novell IPX, Banyan VINES, and Apollo Domain--and bridging.

Cisco IOS X.25 software provides the following capabilities:

- LAPB datagram transport--LAPB is a protocol that operates at Level 2 (the data link layer) of the OSI reference model. It offers a reliable connection service for exchanging data (in units called frames) with one other host. The LAPB connection is configured to carry a single protocol or multiple protocols. Protocol datagrams (IP, DECnet, AppleTalk, and so forth) are carried over a reliable LAPB connection, or datagrams of several of these protocols are encapsulated in a proprietary protocol and carried over a LAPB connection. Cisco also implements transparent bridging over multiprotocol LAPB encapsulations on serial interfaces.

- X.25 datagram transport--X.25 can establish connections with multiple hosts; these connections are called virtual circuits. Protocol datagrams (IP, DECnet, AppleTalk, and so forth) are encapsulated inside packets on an X.25 virtual circuit. Mappings between the X.25 address of a host and its datagram protocol addresses enable these datagrams to be routed through an X.25 network, thereby permitting an X.25 PDN to transport LAN protocols.

- X.25 switch--X.25 calls can be routed based on their X.25 addresses either between serial interfaces on the same router (local switching) or across an IP network to another route r, using X.25 over TCP (XOT). XOT encapsulates the X.25 packet level inside a TCP connection, allowing X.25 equipment to be connected via a TCP/IP-based network. The Cisco X.25 switching features provide a convenient way to connect X.25 equipment, but do not provide the specialized features and capabilities of an X.25 PDN.

- ISDN D channel--X.25 traffic over the D channel, using up to 9.6 kbps bandwidth, can be used to support many applications. For example, it may be required as a primary interface where low volume sporadic interactive traffic is the normal mode of operation. For information on how to configure X.25 on ISDN, refer to the modules Configuring X.25 on ISDN and Configuring X.25 on ISDN Using AO/DI.

- PAD--User sessions can be carried across an X.25 network using the packet assembler/disassembler (PAD) protocols defined by the ITU-T Recommendations X.3 and X.29.

- QLLC--The Cisco IOS software can use the Qualified Logical Link Control (QLLC) protocol to carry SNA traffic through an X.25 network.

- Connection-Mode Network Service (CMNS)--CMNS is a mechanism that uses OSI-based network service access point (NSAP) addresses to extend local X.25 switching to nonserial media (for example, Ethernet, FDDI, and Token Ring). This implementation provides the X.25 PLP over Logical Link Control, type 2 (LLC2) to allow connections over nonserial interfaces. The Cisco CMNS implementation supports services defined in ISO Standards 8208 (packet level) and 8802-2 (frame level).

- DDN and BFE X.25--The DDN-specified Standard Service is supported. The DDN X.25 Standard Service is the required protocol for use with DDN Packet-Switched Nodes (PSNs). The Defense Communications Agency (DCA) has certified the Cisco DDN X.25 Standard Service implementation for attachment to the DDN. The Cisco DDN implementation also includes Blacker Front End operation.

- X.25 MIB--Subsets of the specifications in SNMP MIB Extension for X.25 LAPB (RFC 1381) and SNMP MIB Extension for the X.25 Packet Layer (RFC 1382) are supported. The LAPB XID Table, X.25 Cleared
Circuit Table, and X.25 Call Parameter Table are not implemented. All values are read-only. To use the X.25 MIB, refer to the RFCs.

- Closed User Groups (CUGs)--A CUG is a collection of DTE devices for which the network controls access between two members and between a member and a nonmember. An X.25 network can support up to 10,000 CUGs. CUGs allow various network subscribers (DTE devices) to be segregated into private subnetworks that have limited incoming or outgoing access.

The Cisco X.25 implementation does not support fast switching.

Layer 2 Virtual Private Network

L2VPN services are point-to-point. They provide Layer 2 point-to-point connectivity over either an MPLS or a pure IP (L2TPv3) core.

Layer 2 Tunneling Protocol Version 3

The Layer 2 Tunneling Protocol Version 3 feature expands Cisco's support of Layer 2 VPNs. Layer 2 Tunneling Protocol Version 3 (L2TPv3) is an IETF I2pext working group draft that provides several enhancements to L2TP to tunnel any Layer 2 payload over L2TP. Specifically, L2TPv3 defines the L2TP protocol for tunneling Layer 2 payloads over an IP core network by using Layer 2 VPNs.

L2VPN Pseudowire Redundancy

L2VPNs can provide pseudowire resiliency through their routing protocols. When connectivity between end-to-end PE routers fails, an alternative path to the directed LDP session and the user data can take over. However, there are some parts of the network where this rerouting mechanism does not protect against interruptions in service. The L2VPN Pseudowire Redundancy feature provides the ability to ensure that the CE2 router in can always maintain network connectivity, even if one or all the failures in the figure occur. The L2VPN Pseudowire Redundancy feature enables you to set up backup pseudowires. You can configure the network with redundant pseudowires (PWs) and redundant network elements.

Layer 2 Virtual Private Network Interworking

Layer 2 transport over MPLS and IP already exists for like-to-like attachment circuits, such as Ethernet-to-Ethernet or PPP-to-PPP. L2VPN Interworking builds on this functionality by allowing disparate attachment circuits to be connected. An interworking function facilitates the translation between the different Layer 2 encapsulations. The L2VPN Interworking feature supports Ethernet, 802.1Q (VLAN), Frame Relay, ATM AAL5, and PPP attachment circuits over MPLS and L2TPv3.

Layer 2 Local Switching

Local switching allows you to switch Layer 2 data between two interfaces of the same type (for example, ATM to ATM, or Frame Relay to Frame Relay) or between interfaces of different types (for example, Frame Relay to ATM) on the same router. The interfaces can be on the same line card or on two different cards.
During these kinds of switching, the Layer 2 address is used, not any Layer 3 address. Same-port local switching allows you to switch Layer 2 data between two circuits on the same interface.

Wide Area Application Services

Cisco's WAAS Express software interoperates with WAN optimization headend applications from Cisco and improves WAN access and use by optimizing applications that require high bandwidth or are bound to a LAN, such as backup.

WAAS Express helps enterprises meet the following objectives:

- Complements the Cisco WAN optimization system by adding the capability to the branch routers.
- Provide branch office employees with LAN-like access to information and applications across a geographically distributed network.
- Minimize unnecessary WAN bandwidth consumption through the use of advanced compression algorithms.
- Virtualize print and other local services to branch office users.
- Improve application performance over the WAN by addressing the following common issues:
 - Low data rates (constrained bandwidth)
 - Slow delivery of frames (high network latency)
 - Higher rates of packet loss (low reliability)

The Network Analysis Module (NAM) Performance Agent (PA) for WAAS Express analyzes and measures network traffic. The PA enables baselining, monitoring, and troubleshooting of application performance. The analysis and measurement of network traffic is done by the Measurement, Aggregation, and Correlation Engine (MACE). MACE performs the required measurements on a subset of traffic and exports the necessary metrics to a target.
Configuring SMDS

The Switched Multimegabit Data Service (SMDS) is a WAN service offered by a variety of service providers.

- Finding Feature Information, page 9
- Prerequisites for SMDS, page 9
- Information About SMDS, page 10
- SMDS Configuration Task List, page 14
- SMDS Configuration Examples, page 21
- Feature Information for SMDS, page 25

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for SMDS

You must have already obtained your SMDS addresses from your service provider. You need the following two types of addresses:

- The group address for broadcasts
- The SMDS hardware (individual) address for each router that interfaces directly into the SMDS network (that is, customer premises equipment)
Information About SMDS

SMDS Hardware Requirements

You need the following hardware, equipment, and special software to configure SMDS:

- CSC-MCI or CSC-SCI serial interface controller card, or a HSSI interface on chassis-based systems, or the serial port on a router

To operate on CSC-SCI or CSC-MCI cards, SMDS requires that the appropriate microcode version be installed. Version numbers are 1.2 (or later) for CSC-SCI and 1.7 (or later) for CSC-MCI.

- EIA/TIA-449 or V.35 applique
- SMDS data service unit (SDSU) device

The figure below illustrates the connections among the components.

Figure 1: Typical SMDS Configuration

SMDS Addresses

All addresses for SMDS service are assigned by the service provider and can be assigned to individuals and groups.

You must enter addresses in the Cisco SMDS configuration software using an E prefix for multicast addresses and a C prefix for unicast addresses.

Cisco IOS software expects the addresses to be entered in E.164 format, which is 64 bits (15-digit addressing). The first 4 bits are the address type, and the remaining 60 bits are the address. If the first 4 bits are 1100 (0xC), the address is a unicast SMDS address, which is the address of an individual SMDS host. If the first 4 bits are 1110 (0xE), the address is a multicast SMDS address, which is used to broadcast a packet to multiple end points. The 60 bits of the address are in binary-coded decimal (BCD) format. Each 4 bits of the address field presents a single telephone number digit, allowing for up to 15 digits. At a minimum, you must specify at least 11 digits (44 bits). Unused bits at the end of this field are filled with ones.

Note

The `arp smds` command supports 48-bit addresses only (C or E followed by 11 digits). The addresses must be entered in dotted notation--for example, C141.5556.1414.

An example of a 15-digit E.164 address follows:

C14155561313FFFF
Older versions of Cisco IOS software supported 48-bit SMDS addresses. If, when using the current version of the software, you write the configuration to NVRAM, the full 64-bit SMDS address is written. Older versions of the software will no longer be able to read the new SMDS configuration from NVRAM. However, the current version of the software can read previous versions of the configuration in NVRAM.

The addresses can be entered with periods in a manner similar to Ethernet-style notation, or simply as a string of digits.

The following is an example of an individual address entered in Ethernet-style notation:

\[\text{C141.5555.1212.FFFF} \]

The following is an example of a group address:

\[\text{E180.0999.9999.FFFF} \]

An SMDS network can be thought of in much the same way as an X.25 cloud. The premises equipment (in this case Cisco routers) represents the edge of the cloud. The service provider enables communication across the cloud. However, proper configuration is needed for communication to occur. This configuration will differ from one protocol family to another.

One major difference between protocol families is dynamic versus static routing among the routers (called remote peers) on the periphery of the cloud. For IP, routing across the SMDS cloud is fully dynamic. No action on the user’s part is needed to map higher-level protocol addresses to SMDS addresses. Both IP and ARP can be configured and a dynamic ARP routing table enabled.

The \texttt{arp smds} command requires 12-digit dotted-notation SMDS addresses—for example, C141.5678.9012.

Customizing the SMDS Network

Configuring Specific Protocols

Some protocol families are dynamically routed. For IP and CLNS, routing is fully dynamic, and no action on your part is needed to map higher-level protocol addresses to SMDS addresses. But for the other supported protocols, you must make a static entry for each router to communicate with all other peer routers. The static entries need to be made only for those routers that are SMDS remote peers. Nothing additional needs to be done to assure communication with other nodes behind the peer routers.

For an example of how to configure specific protocols, see the section "Typical Multiprotocol Configuration Example, on page 21" later in this chapter.

The table below lists protocol families and the multicasts that are needed.

<table>
<thead>
<tr>
<th>Protocol Family</th>
<th>Multicasts Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>IP</td>
</tr>
</tbody>
</table>

Table 1: Protocol Families and Types of Multicasts Needed
Configuring ARP and IP

For both IP and ARP, the multicast address must be configured and ARP must be enabled. ARP multicast is required only for ARP servers; the IP multicast is used for ARP and routing updates.

Configuring DECnet

Static maps must be configured for DECnet. In addition, a separate `smds multicast` command is needed for DECNET, DECNET_NODE, DECNET_ROUTER-L1, and DECNET_ROUTER-L2.

Configuring CLNS

Multicasts must be configured for CLNS_ES and CLNS_IS. No static maps are necessary. End system hello (ESH), intermediate system hello (ISH), and router hello packets are sent to the multicast address, and neighbor entries are created automatically.

Configuring IPX

For Novell IPX, the multicast address must be configured. A static map entry can be made for each remote peer, or you can use the `smds glean` command to dynamically map addresses. Static map entries override any dynamic map entries.

Routing Information Protocol (RIP) routing packets, Service Advertisement Protocol (SAP) packets, NetBIOS Name Lookups, directed broadcasts, and traffic to the helper addresses (if that helper address is a broadcast address) are sent to the SMDS IPX multicast address.

Configuring XNS

For XNS, the multicast address must be configured, and a static map entry must be made for each remote peer. Only RIP, directed broadcasts, and helper traffic are sent to the XNS multicast address.
Configuring AppleTalk

The SMDS cloud must be treated by all AppleTalk routers connected to it as either extended or nonextended. The network types cannot be mixed on the same SMDS cloud. Instead, all AppleTalk routers on an SMDS cloud must agree about the network type: extended or nonextended.

If any router in the SMDS cloud uses Cisco IOS Release 10.3(3) (or earlier), use a nonextended AppleTalk configuration for the SMDS cloud. To use nonextended AppleTalk, use the `appletalk address` command and configure static maps.

If all routers in the SMDS cloud use Cisco IOS Release 10.3(4) (or later), you can use extended AppleTalk to support dynamic AARP for SMDS addresses. To use extended AppleTalk, use the `appletalk cable-range` command.

For information on the `appletalk address` and `appletalk cable-range` commands, refer to the *Cisco IOS AppleTalk and Novell IPX Command Reference*.

For an example of how to configure AppleTalk, see the section "AppleTalk Configuration Examples, on page 22" later in this chapter.

Configuring Banyan VINES

For Banyan VINES, the multicast address must be configured. Also note that VINES works only with static maps.

Transparent Bridging over SMDS

You can enable transparent bridging for SMDS encapsulated serial and HSSI interfaces. Cisco's implementation of IEEE 802.6i transparent bridging for SMDS supports 802.3, 802.5, and FDDI frame formats. The router can accept frames with or without frame check sequence (FCS).

Fast-switched transparent bridging is the default and is not configurable. If a packet cannot be fast switched, it will be process switched.

For more information about bridge groups and the `bridge-group` command, see the "Configuring Transparent Bridging" chapter in the *Cisco IOS Bridging and IBM Networking Configuration Guide*.

SMDS Subinterfaces for Multiple Logical IP Subnetworks

Multiple logical IP subnetworks are supported as defined by RFC 1209. This RFC explains routing IP over an SMDS cloud where each connection is considered a host on one specific private network, and describes cases where traffic must transit from network to network.

This solution allows a single SMDS interface to be treated as multiple logical IP subnetworks and to support routing of packets from one network to the next without using intervening routers. When multiple logical IP subnetworks are enabled, the router performs routing between the subnetworks using IP addresses on an SMDS interface. Each supported subnetwork has an IP address, a unicast SMDS E.164 address, and a multicast SMDS E.164 address configured on the SMDS interface. Broadcast packets are duplicated and transmitted to all IP networks on the specified SMDS interface and use the associated multicast SMDS address for the network.

Only routers that require knowledge of multiple IP networks need to be configured with multipoint subinterfaces that correspond to different networks.
Reenabling Data Exchange Interface Version 3.2 with Heartbeat Support

By default, SMDS provides the Data Exchange Interface (DXI) Version 3.2 heartbeat process as specified in the SIG-TS-001/1991 standard. The DXI mechanism encapsulates SMDS packets in a DXI frame before they are transmitted. The heartbeat mechanism automatically generates a heartbeat poll frame every 10 seconds. The Interim Local Management Interface (ILMI) is not supported. See the Cisco IOS Wide-Area Networking Command Reference for more information about DXI 3.2.

Note

If you are running serial lines back-to-back, disable keepalive on SMDS interfaces. Otherwise, DXI declares the link down.

Pseudobroadcasting

Some hosts do not support multicast E.164 addresses. This is a problem in IP where frequent broadcast packets are sent because routing updates are generally broadcast. IP and ARP depend on the use of multicast addresses to determine a route to a destination IP address. A mechanism was needed to artificially support the use of broadcast where multicast E.164 addresses do not exist; the result is pseudobroadcasting. If a multicast address is not available to a destination, pseudobroadcasting can be enabled to broadcast packets to those destinations using a unicast address.

Fast Switching

SMDS fast switching of IP, IPX, and AppleTalk packets provides faster packet transfer on serial links with speeds above 56 kbps. Use fast switching if you use high-speed, packet-switched, datagram-based WAN technologies such as Frame Relay offered by service providers.

By default, SMDS fast switching is enabled.

SMDS Configuration Task List

Enabling SMDS on the Interface

Setting SMDS Encapsulation

To set SMDS encapsulation at the interface level, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# encapsulation smds</td>
<td>Enables SMDS on the interface.</td>
</tr>
</tbody>
</table>
Specifying the SMDS Address

To specify the SMDS individual address for a particular interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# smds address smds-address</td>
<td>Enters an individual address provided by the SMDS service provider.</td>
</tr>
</tbody>
</table>

Establishing Address Mapping

Routing tables are configured dynamically when DECnet, extended AppleTalk, IP, IPX, and ISO CLNS routing are configured. However, you can configure static mapping for these protocols, if needed. For other protocols, you must configure a static map between an individual SMDS address and a higher-level protocol address.

To establish address mapping, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config-if)# smds static-map protocol protocol-address smds-address [broadcast] | Defines static entries for those routers that are SMDS remote peers.

The supported protocols and the keywords to enable them are as follows:

- AppleTalk--appletalk
- Banyan VINES--vines
- DECnet--decnet
- IP--ip
- ISO CLNS--clns
- Novell IPX--ipx
- XNS--xns

Mapping a Multicast Address to an SMDS Address

You can map an SMDS group address to a broadcast or multicast address used by a higher-level protocol. If you do so, you need not specify the broadcast keyword in the smds static-map command, and the Cisco IOS software need not replicate each broadcast address.
To map an SMDS group address to a multicast address, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# smds multicast protocol smds-address</code></td>
<td>Maps an SMDS group address to a multicast address used by a higher-level protocol. The protocols supported and the keywords to enable them are as follows:</td>
</tr>
<tr>
<td></td>
<td>• AppleTalk--<code>appletalk</code></td>
</tr>
<tr>
<td></td>
<td>• AppleTalk ARP address--<code>aarp</code></td>
</tr>
<tr>
<td></td>
<td>• Banyan VINES--<code>vines</code></td>
</tr>
<tr>
<td></td>
<td>• Bridging--<code>bridge</code></td>
</tr>
<tr>
<td></td>
<td>• DECnet--<code>decnet</code></td>
</tr>
<tr>
<td></td>
<td>• DECnet multicast address for all Level 1 routers--<code>decnet_router-L1</code></td>
</tr>
<tr>
<td></td>
<td>• DECnet multicast address for all Level 2 routers--<code>decnet_router-L2</code></td>
</tr>
<tr>
<td></td>
<td>• DECnet multicast address for all end systems--<code>decnet_node</code></td>
</tr>
<tr>
<td></td>
<td>• IP--<code>ip</code></td>
</tr>
<tr>
<td></td>
<td>• ISO CLNS--<code>clns</code></td>
</tr>
<tr>
<td></td>
<td>• Multicast address for all CLNS intermediate systems--<code>clns_is</code></td>
</tr>
<tr>
<td></td>
<td>• Multicast address for all CLNS end systems--<code>clns_es</code></td>
</tr>
<tr>
<td></td>
<td>• Novell IPX--<code>ipx</code></td>
</tr>
<tr>
<td></td>
<td>• XNS--<code>xns</code></td>
</tr>
</tbody>
</table>

Note Bridging is not a protocol, but the `bridge` keyword is valid for providing a map to a multicast address.
Enabling ARP

When you enable the Address Resolution Protocol (ARP), you can choose to enable either a dynamic ARP cache or one built statically. To enable ARP, use one of the following commands in the specified configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# smds enable-arp</td>
<td>Enables ARP and dynamic address resolution (interface).</td>
</tr>
<tr>
<td>Router(config)# arp ip-address smds-address</td>
<td>Enables ARP with a static entry for the remote router (global).</td>
</tr>
</tbody>
</table>

Enabling Broadcast ARP Messages

When an ARP server is present in the network, you can enable broadcast ARP messages that are sent to all ARP SMDS addresses or to all IP SMDS multicast addresses when ARP addresses are not present. To enable broadcast ARP messages, use the following commands in interface configuration mode:

SUMMARY STEPS

1. Router(config-if)# smds enable-arp
2. Router(config-if)# smds multicast arp smds-address[ip-address mask]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables ARP and dynamic address resolution.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables broadcast ARP messages.</td>
</tr>
</tbody>
</table>

Enabling Dynamic Address Mapping for IPX over SMDS

To enable dynamic address mapping for IPX on an SMDS interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# smds glean ipx [timeout-value] [broadcast]</td>
<td>Enables dynamic address mapping for IPX.</td>
</tr>
</tbody>
</table>
Customizing Your SMDS Network

Enabling Transparent Bridging over SMDS

To enable transparent bridging, use the following commands beginning in global configuration mode:

SUMMARY STEPS

1. `Router(config)# interface type number`
2. `Router(config-if)# encapsulation smds`
3. `Router(config-if)# bridge-group bridge-group`
4. `Router(config-if)# smds multicast bridge smds-address`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# encapsulation smds</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# bridge-group bridge-group</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# smds multicast bridge smds-address</td>
</tr>
</tbody>
</table>

Configuring SMDS Subinterfaces for Multiple Logical IP Subnetworks

To configure the Cisco IOS software to have multipoint subinterfaces for multiple logical IP subnetworks, use the following commands beginning in global configuration mode:

SUMMARY STEPS

1. `Router(config)# interface serial interface . subinterface multipoint`
2. `Router(config-if)# ip address ip-address mask`
3. `Router(config-if)# smds address smds-address`
4. `Router(config-if)# smds multicast protocol smds-address`
5. `Router(config-if)# smds enable-arp`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Defines a logical subinterface for each IP network.</td>
</tr>
<tr>
<td>Router(config)# interface serial interface . subinterface multipoint</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface serial slot / port . subinterface multipoint</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>(for Cisco 7000 series routers)</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Configures the subinterface as an IP network.</td>
</tr>
<tr>
<td>Router(config-if)# ip address ip-address mask</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Assigns unicast SMDS E.164 address to the subinterface.</td>
</tr>
<tr>
<td>Router(config-if)# smds address smds-address</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Assigns multicast SMDS E.164 address for each protocol supported on the subinterface.</td>
</tr>
<tr>
<td>Router(config-if)# smds multicast protocol smds-address</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables ARP on the subinterface, if required by the protocol.</td>
</tr>
<tr>
<td>Router(config-if)# smds enable-arp</td>
<td></td>
</tr>
</tbody>
</table>

1 Beginning in Cisco IOS Release 11.3, all commands supported on the Cisco 7500 series are also supported on the Cisco 7000 series.

Reenabling Data Exchange Interface Version 3.2 with Heartbeat Support

To reenable the DXI heartbeat, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# smds dxi</td>
<td>Enables DXI 3.2.</td>
</tr>
</tbody>
</table>
Configuring Pseudobroadcasting

To configure pseudobroadcasting, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# smds static-map protocol protocol-address smds-address broadcast</td>
<td>Configures pseudobroadcasting.</td>
</tr>
</tbody>
</table>

For an example of how to configure pseudobroadcasting, see the section "Pseudobroadcasting Example, on page 24" later in this chapter.

Enabling Fast Switching

To re-enable fast switching, use the following commands beginning in global configuration mode:

SUMMARY STEPS

1. Router(config)# interface type number
2. Router(config-if)# encapsulation smds
3. Router(config-if)# ip route-cache
4. Router(config-if)# ipx route-cache
5. Router(config-if)# appletalk route-cache

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# encapsulation smds</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip route-cache</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# ipx route-cache</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# appletalk route-cache</td>
</tr>
</tbody>
</table>
Monitoring the SMDS Connection

To monitor the SMDS connection, use one or more of the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show arp</td>
<td>Monitors ARP activity.</td>
</tr>
<tr>
<td>Router# show smds addresses</td>
<td>Displays the individual addresses and the interface with which they are associated.</td>
</tr>
<tr>
<td>Router# show smds map</td>
<td>Displays all SMDS addresses that are mapped to higher-level protocol addresses.</td>
</tr>
<tr>
<td>Router# show smds traffic</td>
<td>Displays packet traffic activity.</td>
</tr>
</tbody>
</table>

SMDS Configuration Examples

Typical Multiprotocol Configuration Example

The following example is a typical interface configured for IP, DECnet, ISO CLNS, Novell IPX, XNS, and AppleTalk. DECnet needs to be configured globally and at the interface level.

```
interface serial 4
ip address 1.1.1.2 255.0.0.0
decnet cost 4
appletalk address 92.1
appletalk zone smds
clns router igrp FOO
ipx net 1a
xns net 17
encapsulation SMDS
! SMDS configuration follows
smds address c120.1580.4721
smds static-map APPLETALK 92.2 c120.1580.4592
smds static-map APPLETALK 92.3 c120.1580.4593
smds static-map APPLETALK 92.4 c120.1580.4594
smds static-map NOVELL 1a.0c00.0102.23ca c120.1580.4792
smds static-map XNS 17.0c00.0102.23ca c120.1580.4792
smds static-map NOVELL 1a.0c00.0102.23dd c120.1580.4728
smds static-map XNS 17.0c00.0102.23aa c120.1580.4727
smds multicast NOVELL e180.0999.9999
smds multicast XNS e180.0999.9999
smds multicast ARP e180.0999.9999
smds multicast IP e180.0999.9999
smds multicast APPLETALK e180.0999.9999
smds multicast AARP e180.0999.9999
smds multicast CLNS IS e180.0999.9999
smds multicast CLNS ES e180.0999.9999
smds multicast DECENT_ROUTER e180.0999.9992
smds multicast DECENT_NODE e180.0999.9992
smds multicast DECENT e180.0999.9992
smds enable-arp
```
Remote Peer on the Same Network Example

The following example illustrates a remote peer on the same SMDS network. DECnet needs to be configured globally and at the interface level.

```
interface serial 0
  ip address 1.1.1.1 255.0.0.0
  decnet cost 4
  appletalk address 92.2
  appletalk zone smds
  clns router igrp FOO
  ipx net 1a
  xns net 17
  encapsulation_SMDS
    ! SMDS configuration follows
    smds address c120.1580.4792
    smds static-map APPLETALK 92.1 c120.1580.4721
    smds static-map APPLETALK 92.3 c120.1580.4593
    smds static-map APPLETALK 92.4 c120.1580.4594
    smds static-map NOVELL 1a.0c00.0102.23cb c120.1580.4721
    smds static-map XNS 17.0c00.0102.23cb c120.1580.4721
    smds static-map NOVELL 1a.0c00.0102.23dd c120.1580.4728
    smds static-map XNS 17.0c00.0102.23aa c120.1580.4727
    smds multicast NOVELL e180.0999.9999
    smds multicast XNS e180.0999.9999
    smds multicast IP e180.0999.9999
    smds multicast APPLETALK e180.0999.9999
    smds multicast AARP e180.0999.9999
    smds multicast CLNS IS e180.0999.9990
    smds multicast CLNS_ES e180.0999.9990
    smds multicast DECNET_ROUTER e180.0999.9992
    smds multicast DECNET_NODE e180.0999.9992
    smds multicast DECNET e180.0999.9992
    smds enable-arp
```

IPX Dynamic Address Mapping Example

The following example enables dynamic address mapping for IPX on interface serial 0 and sets the time to live (TTL) to 14 minutes.

```
interface serial 0
  encapsulation smds
  smds address c141.5797.1313
  smds multicast ipx e180.0999.9999
  smds glean ipx 14
```

AppleTalk Configuration Examples

The following two sections provide basic examples of configuration for an extended AppleTalk network and for a nonextended AppleTalk network. For more information on AppleTalk commands, refer to the Cisco IOS AppleTalk and Novell IPX Command Reference.

Extended AppleTalk Network Example

If all AppleTalk routers on the SMDS cloud are running Cisco IOS Release 10.3(4) or later releases, you can use an AppleTalk extended network. To do so, use the appletalk cable-range interface command.
When SMDS is configured for an extended AppleTalk network, SMDS static maps are not required and not used. Dynamic AARP is supported on the multicast channel.

```conf
interface Serial0
  ip address 192.168.200.1 255.255.255.0
  encapsulation smds
  appletalk cable-range 10-10
  appletalk zone SMDS
  smds address c151.0988.1923
  smds static-map ip 192.168.200.2 c151.0988.8770
  smds multicast APPLETALK e151.0988.2232
  smds multicast AARP e151.0988.2232
  smds multicast IP e151.0988.2232
  smds multicast ARP e151.0988.2232
  smds enable-arp
```

Nonextended Appletalk Network Example

The following example configures SMDS for a nonextended AppleTalk network. When SMDS is configured for a nonextended AppleTalk network, SMDS static maps are required and the `appletalk address` command is used. Dynamic AppleTalk Address Resolution Protocol (AARP) is not supported on the multicast channel.

```conf
interface Serial0
  ip address 192.168.200.1 255.255.255.0
  encapsulation smds
  appletalk address 10.1
  appletalk zone SMDS
  smds address c151.0988.1923
  smds static-map ip 192.168.200.2 c151.0988.8770
  smds static-map appletalk 10.2 c151.0988.8770
  smds multicast APPLETALK e151.0988.2232
  smds multicast IP e151.0988.2232
  smds multicast ARP e151.0988.2232
  smds enable-arp
```

Multiple Logical IP Subnetworks over SMDS Example

In the following example, routers A, B, and C are connected to an SMDS cloud by means of two logical subnetworks labeled 1 and 2, as shown in the figure below.

Router A recognizes two IP networks and can communicate with Routers B and C directly. Router B can communicate with router A directly, and with router C through router A. Router C can communicate with router A directly and with router B through router A.
Notice that a packet destined to router B from router C must make two hops on the cloud through the same interface on router A. Notice also that this configuration is nonstandard. This issue was considered when the multiple logical IP subnetworks proposal was made, and was deemed not to be critical.

Figure 2: Multiple Logical IP Subnetworks Configuration

The following example shows all routers as Cisco 7200 routers, but they can be other platforms.

Configuration for Router A

```
interface serial 2/0
   encapsulation smds

interface serial 2/0.1 multipoint
   smds addr c111.3333.3333
   ip address 2.2.2.1 255.0.0.0
   smds multicast ip e122.2222.2222
   smds enable-arp
   smds multicast ARP e122.2222.2222
```

Configuration for Router B

```
interface serial 4/0
   encapsulation smds
   smds address c111.2222.2222
   ip address 1.1.1.3 255.0.0.0
   smds multicast ip e180.0999.9999
   smds enable-arp
```

Configuration for Router C

```
interface serial 1/0
   encapsulation smds
   smds address c111.4444.4444
   ip address 2.2.2.2 255.0.0.0
   smds multicast ip e122.2222.2222
   smds enable-arp
```

Pseudobroadcasting Example

In the following example, an ARP broadcast from router A is sent to multicast address E180.0999.9999.FFFF to router B and to unicast address C120.1234.5678.FFFF to router C. The reply from router C uses the unicast address C120.1111.2222.FFFF for the return reply if it is the target of the ARP request. IGRP broadcast updates follow the same rules.
Configuration for Router A

interface s 0
encapsulation smds
smds address c120.1111.2222
ip address 172.20.1.30 255.255.255.0
smds multicast ip e180.0999.9999
smds static-map ip 172.20.1.10 c120.1234.5678 broadcast
smds enable-arp

Configuration for Router B

interface s 4
smds address c120.9999.8888
ip address 172.20.1.20
smds multicast ip e180.0999.9999
smds enable-arp

Configuration for Router C

interface serial 2
smds address c120.1234.5678
ip address 172.20.1.10
smds static-map ip 172.20.1.30 c120.1111.2222 broadcast
smds enable-arp

Feature Information for SMDS

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 2: Feature Information for Phrase Based on Module Title

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switched Multimegabit Data Service (SMDS)</td>
<td>11.2(1) 15.0(1)S</td>
<td>The Switched Multimegabit Data Service (SMDS) is a WAN service offered by a variety of service providers. The following sections provide information about this feature:</td>
</tr>
</tbody>
</table>
CHAPTER 3

Configuring X.25 and LAPB

This chapter describes how to configure connections through Link Access Procedure, Balanced (LAPB) connections and X.25 networks. LAPB tasks are presented first for users who only want to configure a simple, reliable serial encapsulation method. For a complete description of the commands mentioned in this chapter, refer to the chapter "X.25 and LAPB Commands" in the Cisco IOS Wide-Area Networking Command Reference.

For information on the following related topics, see the corresponding Cisco publications:

<table>
<thead>
<tr>
<th>Task</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring PAD access</td>
<td>"Configuring the Cisco PAD Facility for X.25 Connections" chapter in the Cisco IOS Terminal Services Configuration Guide</td>
</tr>
<tr>
<td>Translating between an X.25 PAD connection and another protocol</td>
<td>Cisco IOS Terminal Services Command Reference (commands in alphabetical order)</td>
</tr>
<tr>
<td>Configuring X.25 traffic over an ISDN D channel</td>
<td>"Configuring X.25 on ISDN" and "Configuring X.25 on ISDN using Always On/Direct ISDN (AO/DI)" chapters in the Cisco IOS Dial Technologies Configuration Guide</td>
</tr>
<tr>
<td>Referencing a complete list of Dial commands</td>
<td>Cisco IOS Dial Technologies Command Reference (commands in alphabetical order)</td>
</tr>
</tbody>
</table>

- Finding Feature Information, page 28
- Information about LAPB and X.25, page 28
- How to Configure LAPB, page 61
- How to Configure X.25, page 64
- X.25 and LAPB Configuration Examples, page 102
Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information about LAPB and X.25

LAPB Overview

You use LAPB as a serial encapsulation method only if you have a private serial line. You must use one of the X.25 packet-level encapsulations when attaching to an X.25 network.

LAPB standards distinguish between the following two types of hosts:

- Data terminal equipment (DTE)
- Data circuit-terminating equipment (DCE)

At Level 2 (data link layer) in the OSI model, LAPB allows orderly and reliable exchange of data between a DTE and a DCE device. A router using LAPB encapsulation can act as a DTE or DCE at the protocol level, which is distinct from the hardware DTE or DCE identity.

Using LAPB under heavy traffic conditions can result in greater throughput than is possible using High-Level Data Link Control (HDLC) encapsulation. When LAPB detects a missing frame, the router resends the frame instead of waiting for the higher layers to recover the lost information. This behavior is useful only if the host timers are relatively slow. In the case of quickly expiring host timers, however, LAPB spends much time sending host retransmissions. If the line is not busy with data traffic, HDLC encapsulation is more efficient than LAPB. When long-delay satellite links are used, for example, the lockstep behavior of LAPB makes HDLC encapsulation the better choice.

LAPB Data Compression

You can configure point-to-point software compression on serial interfaces that use a LAPB or multi-LAPB encapsulation. Compression reduces the size of a LAPB or multi-LAPB frame via lossless data compression. Compression is performed in the software and can substantially affect system performance. You should disable compression if the router CPU load exceeds 65 percent. To display the CPU load, use the `show process cpu` command.

Predictor compression is recommended when the bottleneck is caused by the load on the router or access server. Stacker compression is recommended when the bottleneck is the result of line bandwidth. Compression is not recommended if the majority of your traffic is already compressed files. Compression is also not recommended for line speeds greater than T1. The added processing time slows performance on fast lines.
Modifying LAPB Protocol Parameters

LAPB specifies methods for exchanging data (frames), detecting out-of-sequence or missing frames, retransmitting frames, and acknowledging frames. Several protocol parameters can be modified to change LAPB protocol performance on a particular link. Because X.25 operates the Packet Level Protocol (PLP) on top of the LAPB protocol, these tasks apply to both X.25 links and LAPB links. The parameters and their default values are summarized in the table below. Detailed descriptions of each parameter are given after the table.

Table 3: LAPB Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose (LAPB Parameter)</th>
<th>Values or Ranges</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>lapb modulo modulus</td>
<td>Sets the modulo.</td>
<td>8 or 128</td>
<td>8</td>
</tr>
<tr>
<td>lapb k window-size</td>
<td>Sets the window size (K).</td>
<td>1- (modulo minus 1) frames</td>
<td>7</td>
</tr>
<tr>
<td>lapb n1 bits</td>
<td>Sets the maximum bits per frame (N1).</td>
<td>Bits (multiple of 8)</td>
<td>Based on hardware MTU and protocol overhead</td>
</tr>
<tr>
<td>lapb n2 tries</td>
<td>Sets the count for sending frames (N2).</td>
<td>1-255 tries</td>
<td>20</td>
</tr>
<tr>
<td>lapb t1 milliseconds</td>
<td>Sets the retransmission timer (T1).</td>
<td>1-64000 milliseconds</td>
<td>3000</td>
</tr>
<tr>
<td>lapb interface-outage milliseconds</td>
<td>Sets the hardware outage period.</td>
<td>0 (disabled)</td>
<td></td>
</tr>
<tr>
<td>lapb t4 seconds</td>
<td>Sets the idle link period (T4).</td>
<td>0 (disabled)</td>
<td></td>
</tr>
</tbody>
</table>

The following sections provide more information about the LAPB parameters in the table above:

- LAPB modulo--The LAPB modulo determines the operating mode. Modulo 8 (basic mode) is widely available because it is required for all standard LAPB implementations and is sufficient for most links. Modulo 128 (extended mode) can achieve greater throughput on high-speed links that have a low error rate (satellite links) by increasing the number of frames that can be sent before the sending device must wait for acknowledgment (as configured by LAPB parameter K).

- LAPB parameter K--LAPB K must be at most one less than the operating modulo. Modulo 8 links can send seven frames before an acknowledgment must be received by the sending device; modulo 128 links can send as many as 127 frames. By default, LAPB links use the basic mode with a window of 7.

- LAPB N1--When you configure a connection to an X.25 network, use the N1 parameter value set by the network administrator. This value is the maximum number of bits in a LAPB frame, which determines the maximum size of an X.25 packet. When you use LAPB over leased lines, the N1 parameter should be eight times the hardware MTU size plus any protocol overhead. The LAPB N1 range is dynamically calculated by the Cisco IOS software whenever an MTU change, a Layer 2/Layer 3 modulo change, or a compression change occurs on a LAPB interface.
The LAPB N1 parameter provides little benefit beyond the interface MTU, and can easily cause link failures if misconfigured. Cisco recommends that you leave this parameter at its default value.

Caution

- LAPB N2--The transmit counter (N2) is the number of unsuccessful transmit attempts that are made before the link is declared down.
- LAPB T1--The retransmission timer (T1) determines how long a sent frame can remain unacknowledged before the Cisco IOS software polls for an acknowledgment. For X.25 networks, the retransmission timer setting should match that of the network.

For leased-line circuits, the T1 timer setting is critical because the design of LAPB assumes that a frame has been lost if it is not acknowledged within period T1. The timer setting must be large enough to permit a maximum-sized frame to complete one round trip on the link. If the timer setting is too small, the software will poll before the acknowledgment frame can return, which may result in duplicated frames and severe protocol problems. If the timer setting is too large, the software waits longer than necessary before requesting an acknowledgment, slowing throughput.

- LAPB interface outage--Another LAPB timer function that allows brief hardware failures while the protocol is up, without requiring a protocol reset. When a brief hardware outage occurs, the link continues uninterrupted if the outage corrects before the specified outage period expires.
- LAPB T4--The LAPB standards define a timer to detect unsignaled link failures (T4). The T4 timer resets every time a frame is received from the partner on the link. If the T4 timer expires, a Receiver Ready frame with the Poll bit set is sent to the partner, which is required to respond. If the partner does not respond, the standard polling mechanism is used to determine whether the link is down. The period of T4 must be greater than the period of T1.

For an example of configuring the LAPB T1 timer, see the section "Typical LAPB Configuration Example, on page 102".

Configuring Priority and Custom Queueing for LAPB

LAPB uses priority and custom queueing, which improves the responsiveness of a link to a given type of traffic by specifying the handling of that type of traffic for transmission on the link.

Priority queueing is a mechanism that classifies packets based on certain criteria and then assigns packets to one of four output queues, with high, medium, normal, or low priority.

Custom queueing similarly classifies packets, assigns them to one of ten output queues, and controls the percentage of the available bandwidth of an interface that is used for a queue.

For example, you can use priority queueing to ensure that all Telnet traffic is processed promptly and that Simple Mail Transfer Protocol (SMTP) traffic is sent only when there is no other traffic to send. Priority queueing in this example can starve the non-Telnet traffic; custom queueing can be used instead to ensure that some traffic of all categories is sent.

Both priority and custom queueing can be defined, but only one can be assigned to a given interface. To configure priority and custom queueing for LAPB, perform these tasks in the following order:

1 Perform standard priority and custom queueing tasks except the task of assigning a priority or custom group to the interface, as described in the chapters "Configuring Priority Queueing" and "Configuring Custom Queueing" in the Cisco IOS Quality of Service Solutions Configuration Guide.
2 Perform standard LAPB encapsulation tasks, as specified in the section "Configuring a LAPB Datagram Transport, on page 61".

3 Assign either a priority group or a custom queue to the interface, as described in the chapters "Configuring Priority Queueing" and "Configuring Custom Queueing" in the Cisco IOS Quality of Service Solutions Configuration Guide.

The lapb hold-queue command is no longer supported, but the same functionality is provided by the standard queue control command hold-queue size out.

X.25 Interfaces

X.25 Encapsulation

A router using X.25 Level 3 encapsulation can act as a DTE or DCE protocol device (according to the needs of your X.25 service supplier), can use DDN or BFE encapsulation, or can use the Internet Engineering Task Force (IETF) standard encapsulation, as specified by RFC 1356.

Because the default serial encapsulation is HDLC, you must explicitly configure an X.25 encapsulation method.

Note

We recommend that you use the no encapsulation x25 command to remove all X.25 configurations from the interface before changing the encapsulation.

Typically a public data network (PDN) will require attachment as a DTE device. (This requirement is distinct from the hardware interface DTE or DCE identity.) The default mode is DTE, and the default encapsulation method is the Cisco pre-IETF method. If either DDN or BFE operation is needed, it must be explicitly configured. For an example of configuring X.25 DTE operation, see the section "Typical X.25 Configuration Example, on page 102" later in this chapter.

Virtual Circuit Ranges

X.25 maintains multiple connections--virtual circuits (VCs) or logical circuits (LCs)--over one physical link between a DTE and a DCE device. X.25 can maintain up to 4095 VCs. A VC is identified by its logical channel identifier (LCI) or virtual circuit number (VCN).

Note

Many documents use the terms virtual circuit and LC, VCN, LCN, and LCI interchangeably. Each of these terms refers to the VC number.

An important part of X.25 operation is the range of VC numbers. These numbers are broken into the following four ranges:

1 Permanent virtual circuits (PVCs)
2 Incoming-only circuits
3 Two-way circuits
4 Outgoing-only circuits
The incoming-only, two-way, and outgoing-only ranges define the VC numbers over which a switched virtual circuit (SVC) can be established by the placement of an X.25 call, much as a telephone network establishes a switched voice circuit when a call is placed.

The rules about DCE and DTE devices initiating calls are as follows:

- Only the DCE can initiate a call in the incoming-only range.
- Only the DTE can initiate a call in the outgoing-only range.
- Both the DCE and DTE can initiate a call in the two-way range.

Note

The International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) functions in place of the former Consultative Committee for International Telegraph and Telephone (CCITT). ITU-T Recommendation X.25 defines "incoming" and "outgoing" in relation to the DTE or DCE interface role. Cisco documentation uses the more intuitive sense. Unless the ITU-T sense is explicitly referenced, a call received from the interface is an **incoming call** and a call sent out to the interface is an **outgoing call**.

There is no difference in the operation of SVCs in the different ranges except the restrictions on which device can initiate a call. These ranges can be used to prevent one side from monopolizing the VCs, which is important for X.25 interfaces with a small number of SVCs available. Six X.25 parameters define the upper and lower limit of each of the three SVC ranges. These ranges cannot overlap. A PVC must be assigned a number lower than those assigned to the SVC ranges.

Note

Because X.25 requires the DTE and DCE devices to have identical VC ranges, changes you make to the VC range limits when the interface is up are held until X.25 restarts the packet service.

Packet-Numbering Modulo

The Cisco implementation of X.25 supports modulo 8 (default) and modulo 128 packet sequence numbering.

Note

Because X.25 requires the DTE and DCE devices to have identical modulos, changes you make to the modulo when the interface is up remain until X.25 restarts the packet service.

The X.25 modulo and the LAPB modulo are distinct and serve different purposes. LAPB modulo 128 (or extended mode) can be used to achieve higher throughput across the DTE or DCE interface, which affects only the local point of attachment. X.25 PLP modulo 128 can be used to achieve higher end-to-end throughput for VCs by allowing more data packets to be in transit across the X.25 network.

X.121 Address

If your router does not originate or terminate calls but only participates in X.25 switching, this task is optional. However, if your router is attached to a PDN, you must set the interface X.121 address assigned by the X.25 network service provider. Interfaces that use the DDN or BFE mode will have an X.121 address generated from the interface IP address; for correct DDN or BFE operation, any such X.121 address must not be modified.
X.25 Switch Local Acknowledgment

X.25 switch local acknowledgment allows you the choice of configuring local or end-to-end acknowledgment on your router. End-to-end acknowledgment can result in lower overall throughput and restrictive performance because an endpoint can only have a limited number of its packets in transit at any given time. End-to-end acknowledgment cannot send more packets until all have been acknowledged by the transmission and receipt of the delivery-confirming packet containing the D-bit.

Local acknowledgment means that the Cisco router can send acknowledgments for packets that do not have the D-bit set, before receiving an acknowledgment from the interface to which the packet was forwarded. This results in higher throughput of packets because acknowledgment is sent between local hops much faster and more efficiently than between end-to-end hops.

The figure below shows the Cisco router receiving packets from DTE A destined for DTE B. Without local acknowledgment enabled, the router forwards packets to the X.25 network and then forwards acknowledgments from the network back to DTE A. With local acknowledgment enabled, the router can acknowledge packets received from DTE A before it has received acknowledgments from the network for the forwarded packets. In this illustration, the X.25 network may also generate local acknowledgments.

Figure 3: Local Acknowledgment Between DTE A and DTE B

Flow Control Parameter Negotiation

Flow control is an X.25 optional user facility. When the `x25 subscribe flow-control` command is used, it permits flow control parameter negotiation of packet sizes and window sizes. This command can be altered to one of three states: default behavior (no `x25 subscribe flow-control`), facilities always included, or facilities never included (flow control parameter negotiation is not enabled). By default, these flow control parameter negotiation facilities are included in call setup (outgoing) packets only when their values differ from the default values.

When flow control parameter negotiation is enabled, the `x25 subscribe windowsize` and `x25 subscribe packetsize` commands allow you to configure flow control restrictions by specifying window size and packet size ranges for permitted and target values. A value that cannot be negotiated into the permitted range is treated as illegal, causing the call to fail. The router first attempts values within the target range, but allows values outside the target range to be considered as long as the range complies with procedures defined in the ITU-T Recommendation X.25. With this feature, the Cisco router allows different flow control value configurations and acceptable window and packet size formats for both DTE devices.

The ability to disable flow control parameter negotiation provides compatibility with equipment that does not support flow control parameter negotiation. Similarly, forcing flow control parameter negotiation provides
compatibility with devices that require the flow control parameter negotiation facilities to be present in all calls.

To control packet transmission flow values on the interface, use one or more of the flow control commands—\texttt{x25 subscribe flow-control}, \texttt{x25 subscribe windowsize}, or \texttt{x25 subscribe packetsize}—in interface configuration mode.

The flow control subscription commands may be applied to an X.25 interface, to an X.25 profile, or to a LAN interface on which the \texttt{cmns enable} command has been configured. For X.25 over TCP (XOT), the flow control parameter negotiation facilities are always included (the equivalent of \texttt{x25 subscribe flow-control always}).

Default Flow Control Values

Setting correct default flow control parameters of window size and packet size is essential for correct operation of the link because X.25 is a strongly flow controlled protocol. Mismatched default flow control values will cause X.25 local procedure errors, evidenced by Clear and Reset events.

Note

Because X.25 requires the DTE and DCE devices to have identical default maximum packet sizes and default window sizes, changes made to the window and packet sizes when the interface is up are held until X.25 restarts the packet service.

Default Window Sizes

X.25 networks have a default input and output window size (the default is 2) that is defined by your network administrator. You must set the Cisco IOS software default input and output window sizes to match those of the network. These defaults are the values that an SVC takes on if it is set up without explicitly negotiating its window sizes. Any PVC also uses these default values unless different values are configured.

Default Packet Sizes

X.25 networks have a default maximum input and output packet size (the default is 128) that is defined by your network administrator. You must set the Cisco IOS software default input and output maximum packet sizes to match those of the network. These defaults are the values that an SVC takes on if it is set up without explicit negotiation of its maximum packet sizes. Any PVC also uses these default values unless different values are configured.

To send a packet larger than the agreed-on X.25 packet size over an X.25 VC, the Cisco IOS software must break the packet into two or more X.25 packets with the M-bit ("more data" bit) set. The receiving device collects all packets in the M-bit sequence and reassembles them into the original packet.

It is possible to define default packet sizes that cannot be supported by the lower layer (see the LAPB N1 parameter). However, the router will negotiate lower maximum packet sizes for all SVCs so the agreed-on sizes can be carried. The Cisco IOS software will also refuse a PVC configuration if the resulting maximum packet sizes cannot be supported by the lower layer.

Asymmetrical Flow Control

Asymmetrical flow control is supported by the permitted configuration of asymmetrical window and packet sizes. For data flow from a channel with a smaller packet size than its outbound channel, the switch may
combine data packets, and for a channel with a larger packet size than its outbound channel, the switch will fragment the packets.

The figure below shows asymmetrical configuration of the Cisco router. DTE A (window size 3; packet size 128) and DTE B (window size 5; packet size 256) are able to communicate despite differing window and packet sizes.

Figure 4: Asymmetrical Window and Packet Sizes Between DTE A and DTE B

To use asymmetrical flow control effectively, use the `x25 subscribe flow-control never` command to disable flow control parameter negotiation, and use the `x25 routing acknowledge local` command to enable local acknowledgment.

X.25 Interface Parameters

Some X.25 applications have unusual or special needs. Several X.25 parameters are available to modify X.25 behavior for these applications.

X.25 Failover

Multiple routes can be configured in an X.25 routing table to allow one or more secondary or backup interfaces to be used when a preferred (primary) interface is not usable. Routes are examined in the order in which they appear in the X.25 routing table, and the first matching route is taken. However, since X.25 traffic is circuit-oriented, once a connection is established via the secondary interface, the connection remains active even after the primary interface returns to service. This situation is undesirable when the path via the secondary interface is slower or more expensive than the path via the primary interface.

X.25 Failover enables you to configure the secondary or backup interface to reset once the primary interface has come back up and remained operational for a specified amount of time, terminating any connections that are still using the secondary interface. Subsequent calls will then be forwarded over the preferred interface.

X.25 Failover supports Annex G (X.25 over Frame Relay), but it does not support XOT.

You can configure X.25 Failover on an X.25 interface or X.25 profile.

X.25 Level 3 Timers

The X.25 Level 3 event timers determine how long the Cisco IOS software waits for acknowledgment of control packets. You can set these timers independently. Only those timers that apply to the interface are configurable. (A DTE interface does not have the T1x timers, and a DCE interface does not have the T2x timers.)
X.25 Addresses

When you establish SVCs, X.25 uses addresses in the form defined by ITU-T Recommendation X.121 (or simply an "X.121 address"). An X.121 address has from zero to 15 digits. Because of the importance of addressing to call setup, several interface addressing features are available for X.25.

The X.121 address of an X.25 interface is used when it is the source or destination of an X.25 call. The X.25 call setup procedure identifies both the calling (source) and the called (destination) X.121 addresses. When an interface is the source of a call, it encodes the interface X.121 address as the source address. An interface determines that it is the destination of a received call if the destination address matches the address of the interface.

Cisco IOS X.25 software can also route X.25 calls, which involves placing and accepting calls, but the router is neither the source nor the destination for these calls. Routing X.25 does not modify the source or destination addresses, thus preserving the addresses specified by the source host. Routed (switched) X.25 simply connects two logical X.25 channels to complete an X.25 VC. An X.25 VC, then, is a connection between two hosts (the source host and the destination host) that is switched between zero or more routed X.25 links.

The null X.121 address (the X.121 address that has zero digits) is a special case. The router acts as the destination host for any call it receives that has the null destination address.

A subaddress is an X.121 address that matches the digits defined for the X.121 address of the interface, but has one or more additional digits after the base address. X.25 acts as the destination host for an incoming PAD call with a destination that is a subaddress of the address of the interface; the trailing digits specify which line a PAD connection is requesting. This feature is described in the chapter "Configuring Protocol Translation and Virtual Asynchronous Devices" in the Cisco IOS Terminal Services Configuration Guide. Other calls that use a subaddress can be accepted if the trailing digit or digits are zeros; otherwise, the router will not act as the destination host of the call.

Interface Alias Address

You can supply alias X.121 addresses for an interface. Supplying alias addresses allows the interface to act as the destination host for calls having a destination address that is neither the address of the interface, an allowed subaddress of the interface, nor the null address.

Local processing (for example, IP encapsulation) can be performed only for incoming calls whose destination X.121 address matches the serial interface or alias of the interface.

Suppressing or Replacing the Calling Address

Some attachments require that no calling (source) address be presented in outgoing calls. This requirement is called suppressing the calling address. When attached to a PDN, X.25 may need to ensure that outgoing calls use only the assigned X.121 address for the calling (source) address. Routed X.25 normally uses the original source address. Although individual X.25 route configurations can modify the source address, Cisco provides a simple command to force the use of the interface address in all calls sent; this requirement is called replacing the calling address.

Suppressing the Called Address

Some attachments require that no called (destination) address be presented in outgoing calls; this requirement is called suppressing the called address.
Default VC Protocol

The Call Request packet that sets up a VC can encode a field called the Call User Data (CUD) field. Typically the first few bytes of the CUD field identify which high-level protocol is carried by the VC. The router, when acting as a destination host, normally refuses a call if the CUD is absent or the protocol identification is not recognized. The PAD protocol, however, specifies that unidentified calls be treated as PAD connection requests. Other applications require that they be treated as IP encapsulation connection requests, in accordance with RFC 877, *A Standard for the Transmission of IP Datagrams over Public Data Networks*.

Disabling PLP Restarts

By default, a PLP restart is performed when the link level resets (for example, when LAPB reconnects). Although PLP restarts can be disabled for those few networks that do not allow restarts, we do not recommend disabling these restarts because doing so can cause anomalous packet layer behavior.

Caution

Very few networks require this feature. Cisco does not recommend that it be enabled except when you are attaching to a network that requires it.

X.25 Datagram Transport

Overview

X.25 support is most commonly configured as a transport for datagrams across an X.25 network. Datagram transport (or encapsulation) is a cooperative effort between two hosts communicating across an X.25 network. You configure datagram transport by establishing a mapping on the encapsulating interface between the protocol address of the far host (for example, IP or DECnet) and its X.121 address. Because the call identifies the protocol that the VC will carry (by encoding a Protocol Identifier, or PID, in the first few bytes of the CUD field), the terminating host can accept the call if it is configured to exchange the identified traffic with the source host.

The figure below illustrates two routers sending datagrams across an X.25 PDN.

Figure 5: Transporting LAN Protocols Across an X.25 PDN

Point-to-Point and Multipoint Subinterfaces

Subinterfaces are virtual interfaces that can be used to connect several networks to each other through a single physical interface. Subinterfaces are made available on Cisco routers because routing protocols, especially those using the split horizon principle, may need help to determine which hosts need a routing update. The split horizon principle, which allows routing updates to be distributed to other routed interfaces except the
interface on which the routing update was received, works well in a LAN environment in which other routers reached by the interface have already received the routing update.

However, in a WAN environment using connection-oriented interfaces (like X.25 and Frame Relay), other routers reached by the same physical interface might not have received the routing update. Rather than forcing you to connect routers by separate physical interfaces, Cisco provides subinterfaces that are treated as separate interfaces. You can separate hosts into subinterfaces on a physical interface, X.25 is unaffected, and routing processes recognize each subinterface as a separate source of routing updates, so all subinterfaces are eligible to receive routing updates.

There are two types of subinterfaces: point-to-point and multipoint. Subinterfaces are implicitly multipoint unless configured as point-to-point.

A point-to-point subinterface is used to encapsulate one or more protocols between two hosts. An X.25 point-to-point subinterface will accept only a single encapsulation command (such as the `x25 map` or `x25 pvc` command) for a given protocol, so there can be only one destination for the protocol. (However, you can use multiple encapsulation commands, one for each protocol, or multiple protocols for one map or PVC.) All protocol traffic routed to a point-to-point subinterface is forwarded to the one destination host defined for the protocol. (Because only one destination is defined for the interface, the routing process need not consult the destination address in the datagrams.)

A multipoint subinterface is used to connect one or more hosts for a given protocol. There is no restriction on the number of encapsulation commands that can be configured on a multipoint subinterface. Because the hosts appear on the same subinterface, they are not relying on the router to distribute routing updates among them. When a routing process forwards a datagram to a multipoint subinterface, the X.25 encapsulation process must be able to map the destination address of the datagram to a configured encapsulation command. If the routing process cannot find a map for the datagram destination address, the encapsulation will fail.

Because of the complex operations dependent on a subinterface and its type, the router will not allow a subinterface’s type to be changed, nor can a subinterface with the same number be reestablished once it has been deleted. After a subinterface has been deleted, you must reload the Cisco IOS software (by using the `reload` command) to remove all internal references. However, you can easily reconstitute the deleted subinterface by using a different subinterface number.

For more information about configuring subinterfaces, refer to the chapter "Configuring Serial Interfaces" in the *Cisco IOS Interface Configuration Guide*.

When configuring IP routing over X.25, you might need to make adjustments to accommodate split horizon effects. Refer to the chapter "Configuring RIP" in the *Cisco IOS IP Configuration Guide* for details about possible split horizon conflicts. By default, split horizon is enabled for X.25 attachments.

Mapping Protocol Addresses to X.121 Addresses

Understanding Protocol Encapsulation for Single-Protocol and Multiprotocol VCs

Cisco has long supported encapsulation of a number of datagram protocols across X.25, using a standard method when available or a proprietary method when necessary. These traditional methods assign a protocol to each VC. If more than one protocol is carried between the router and a given host, each active protocol will have at least one VC dedicated to carrying its datagrams.
Cisco also supports a newer standard, RFC 1356, *Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode*, which standardizes a method for encapsulating most datagram protocols over X.25. It also specifies how one VC can carry datagrams from more than one protocol.

The Cisco IOS software can be configured to use any of the available encapsulation methods with a particular host.

After you establish an encapsulation VC using any method, the Cisco IOS software sends and receives a datagram by simply fragmenting it into and reassembling it from an X.25 complete packet sequence. An X.25 complete packet sequence is one or more X.25 data packets that have the M-bit set in all but the last packet. A VC that can carry multiple protocols includes protocol identification data as well as the protocol data at the start of each complete packet sequence.

Understanding Protocol Identification

This section contains background material only.

The various methods and protocols used in X.25 SVC encapsulation are identified in a specific field of the call packet; this field is defined by X.25 to carry CUD. Only PVCs do not use CUD to identify their encapsulation (because PVCs do not use the X.25 call setup procedures).

The primary difference between the available Cisco and IETF encapsulation methods is the specific value used to identify a protocol. When any of the methods establishes a VC for carrying a single protocol, the protocol is identified in the call packet by the CUD.

The table below summarizes the values used in the CUD field to identify protocols.

Table 4: Protocol Identification in the CUD Field

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Cisco Protocol Identifier</th>
<th>IETF RFC 1356 Protocol Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apollo Domain</td>
<td>0xD4</td>
<td>0x80 (5-byte SNAP encoding)²</td>
</tr>
<tr>
<td>AppleTalk</td>
<td>0xD2</td>
<td>0x80 (5-byte SNAP encoding)</td>
</tr>
<tr>
<td>Banyan VINES</td>
<td>0xC0 00 80 C4³</td>
<td>0x80 (5-byte SNAP encoding)</td>
</tr>
<tr>
<td>Bridging</td>
<td>0xD5</td>
<td>Not implemented</td>
</tr>
<tr>
<td>ISO CLNS</td>
<td>0x81</td>
<td>0x81²</td>
</tr>
<tr>
<td>Compressed TCP</td>
<td>0xD8</td>
<td>0x00 (multiprotocol)§</td>
</tr>
<tr>
<td>DECnet</td>
<td>0xD0</td>
<td>0x80 (5-byte SNAP encoding)</td>
</tr>
<tr>
<td>IP</td>
<td>0xCC</td>
<td>0xCC§ or 0x80 (5-byte SNAP encoding)</td>
</tr>
<tr>
<td>Novell IPX</td>
<td>0xD3</td>
<td>0x80 (5-byte SNAP encoding)</td>
</tr>
<tr>
<td>PAD</td>
<td>0x01 00 00 00²</td>
<td>0x01 00 00 006</td>
</tr>
</tbody>
</table>
Mapping Datagram Addresses to X.25 Hosts

Encapsulation is a cooperative process between the router and another X.25 host. Because X.25 hosts are reached with an X.121 address (an X.121 address has 0 to 15 decimal digits), the router must have a means to map protocols and addresses of the host to its X.121 address.

Each encapsulating X.25 interface must be configured with the relevant datagram parameters. For example, an interface that encapsulates IP typically will have an IP address.

A router set up for DDN or BFE service uses a dynamic mapping technique to convert between IP and X.121 addresses. These techniques have been designed specifically for attachment to the DDN network and to Blacker encryption equipment. Their design, restrictions, and operation make them work well for these specific applications, but not for other networks.

You must also establish the X.121 address of an encapsulating X.25 interface using the `x25 address` interface configuration command. This X.121 address is the address to which encapsulation calls are directed, and is also the source X.121 address used for originating an encapsulation call. It is used by the destination host to map the source host and protocol to the protocol address. An encapsulation VC must be a mapped at both the source and destination host interfaces. A DDN or BFE interface will have an X.121 address generated from the interface IP address, which, for proper operation, should not be modified.

For each X.25 interface, you must explicitly map the protocols and addresses for each destination host to its X.121 address. If needed and the destination host has the capability, one host map can be configured to support several protocols; alternatively, you can define one map for each supported protocol.

To establish an X.25 map, use the `x25 map` command in interface configuration mode.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Cisco Protocol Identifier</th>
<th>IETF RFC 1356 Protocol Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLC</td>
<td>0xC3</td>
<td>Not available</td>
</tr>
<tr>
<td>XNS</td>
<td>0xD1</td>
<td>0x80 (5-byte SNAP encoding)</td>
</tr>
<tr>
<td>Multiprotocol</td>
<td>Not available</td>
<td>0x00</td>
</tr>
</tbody>
</table>

2. SNAP encoding is defined according to the Assigned Numbers RFC; the Cisco implementation recognizes only the IETF organizational unique identifier (OUI) 0x00 00 00 followed by a 2-byte Ethernet protocol type.

3. The use of 0xC0 00 80 C4 for Banyan VINES is defined by Banyan.

5. Compressed TCP traffic has two types of datagrams, so IETF encapsulation requires a multiprotocol VC.

7. The use of 0x01 00 00 00 for PAD is defined by ITU-T Recommendation X.29.
Forexample,ifyouareencapsulatingIPoveragivenX.25interface,youmustdefineanIPaddressforthe
interfaceand,foreachofthedesireddestinationhosts,maptheIPaddressofthehosttoitsX.121address.

Note

You can map an X.121 address to as many as nine protocol addresses, but each protocol can be mapped only once in the command line.

An individual host map can use keywords to specify the following protocols:

- **apollo** --Apollo Domain
- **appletalk** --AppleTalk
- **bridge** --Bridging
- **clns** --OSI Connectionless Network Service
- **compressedtcp** --TCP/IP header compression
- **decnets** --DECnet
- **ip** --IP
- **ipx** --Novell IPX
- **pad** --Packet assembler/disassembler
- **qlle** --IBM QLLC
- **vines** --Banyan VINES
- **xns** --XNS

Each mapped protocol, except bridging and CLNS, takes a datagram address. All bridged datagrams are either broadcast to all bridging destinations or sent to the X.121 address of a specific destination host, and CLNS uses the mapped X.121 address as the subnetwork point of attachment (SNPA), which is referenced by a clns neighbor command. The configured datagram protocols and their relevant addresses are mapped to the X.121 address of the destination host. All protocols that are supported for RFC 1356 operation can be specified in a single map. (Bridging and QLLC are not supported for RFC 1356 encapsulation.) If IP and TCP/IP header compression are both specified, the same IP address must be given for both protocols.

When setting up the address map, you can include options such as enabling broadcasts, specifying the number of VCs allowed and defining various user facility settings.

Note

Multiprotocol maps, especially those configured to carry broadcast traffic, can result in significantly larger traffic loads, requiring a larger hold queue, larger window sizes, or multiple VCs.

For specific information about how to establish a protocol to run over X.25, refer to the appropriate protocol chapters in the *Cisco IOS IP Configuration Guide*, *Cisco IOS AppleTalk and Novell IPX Configuration Guide*, and *Cisco IOS Apollo Domain, Banyan VINES, DECnet, ISO CLNS, and XNS Configuration Guide*.

You can simplify the configuration for the Open Shortest Path First (OSPF) protocol by adding the optional broadcast keyword. See the x25 map command description in the *Cisco IOS Wide-Area Networking Command Reference* for more information.
PAD Access

By default, PAD connection attempts are processed for session creation or protocol translation (subject to the configuration of those functions) from all hosts. You can configure outgoing PAD access using the optional features of the `x25 map pad` command without restricting incoming PAD connections to the configured hosts.

Encapsulation PVC

PVCs are the X.25 equivalent of leased lines; they are never disconnected. You need not configure an address map before defining a PVC; an encapsulation PVC implicitly defines a map.

To establish a PVC, use the `x25 pvc` command. The `x25 pvc` command uses the same protocol keywords as the `x25 map` command. See the section "Mapping Datagram Addresses to X.25 Hosts, on page 40" earlier in this chapter for a list of protocol keywords. Encapsulation PVCs also use a subset of the options defined for the `x25 map` command.

The user may establish multiple, parallel PVCs that carry the same set of encapsulation traffic by specifying the identical mappings for each PVC. Additionally, the user can permit a mixture of SVCs and PVCs to carry the traffic set by using the `x25 map` command to specify an `nvc` count that exceeds the number of configured PVCs. The total number of VC's, of whatever type, can never exceed 8.

X.25 TCP/IP Header Compression

Cisco supports RFC 1144 TCP/IP header compression (THC) on serial lines using HDLC and X.25 encapsulation. THC encapsulation is only slightly different from other encapsulation traffic, but the differences are worth noting. The implementation of compressed TCP over X.25 uses one VC to pass the compressed packets. Any IP traffic (including standard TCP) is separate from THC traffic; it is carried over separate IP encapsulation VCs or identified separately in a multiprotocol VC.

Note

If you specify both `ip` and `compressedtcp` in the same `x25 map compressedtcp` command, they must both specify the same IP address.

X.25 Bridging

Cisco IOS transparent bridging software supports bridging over X.25 VCs. Bridging is not supported for RFC 1356 operation. Bridge maps must include the `broadcast` option for correct operation.

Additional X.25 Datagram Transport Features

The Cisco IOS software allows you to configure additional X.25 datagram transport features, including various user facilities defined for X.25 call setup by using the options in the `x25 map` or `x25 pvc` encapsulation command (or by setting an interface default).
X.25 Payload Compression

For increased efficiency on relatively slow networks, the Cisco IOS software supports X.25 payload compression of outgoing encapsulation traffic.

The following restrictions apply to X.25 payload compression:

- The compressed VC must connect two Cisco routers, because X.25 payload compression is not standardized.

The data packets conform to X.25 rules, so a compressed VC can be switched through standard X.25 equipment. However, only Cisco routers can compress and decompress the data.

- Only datagram traffic can be compressed, although all the encapsulation methods supported by Cisco routers are available (for example, an IETF multiprotocol VC can be compressed).

SVCs cannot be translated between compressed and uncompressed data, nor can PAD data be compressed.

- X.25 payload compression must be applied carefully.

Each compressed VC requires significant memory resources (for a dictionary of learned data patterns) and computation resources (every data packet received is decompressed and every data packet sent is compressed). Excessive use of compression can cause unacceptable overall performance.

- X.25 compression must be explicitly configured for a map command.

A received call that specifies compression will be rejected if the corresponding host map does not specify the `compress` option. An incoming call that does not specify compression can, however, be accepted by a map that specifies compression.

To enable payload compression over X.25, use the `x25 map` command. This command specifies that X.25 compression is to be used between the two hosts. Because each VC established for compressed traffic uses significant amounts of memory, compression should be used with careful consideration of its impact on the performance. The `compress` keyword may be specified for an encapsulation PVC.

Establishing the Packet Acknowledgment Policy

You can instruct the Cisco IOS software to send an acknowledgment packet when it has received a threshold of data packets it has not acknowledged, instead of waiting until its input window is full. A value of 1 sends an acknowledgment for each data packet received if it cannot be acknowledged in an outgoing data packet. This approach improves line responsiveness at the expense of bandwidth. A value of 0 restores the default behavior of waiting until the input window is full.

X.25 User Facilities

X.25 software provides commands to support X.25 user facilities options (specified by the ITU-T Recommendation X.25) that allow you to use network features such as reverse charging, user identification, and flow control negotiation. You can choose to configure facilities on a per-map basis or on a per-interface basis. In the following table, the `x25 map` commands configure facilities on a per-map basis; the `x25 facility` commands specify the values set for all encapsulation calls originated by the interface. Routed calls are not affected by the facilities specified for the outgoing interface.
The **packetsize** and **windowsize** and options are supported for PVCs, although the options have a slightly different meaning on PVCs from what they mean on interfaces because PVCs do not use the call setup procedure. If the PVC does not use the interface defaults for the flow control parameters, these options must be used to specify the values. Not all networks will allow a PVC to be defined with arbitrary flow control values.

Additionally, the D-bit is supported, if negotiated. PVCs allow the D-bit procedure because there is no call setup to negotiate its use. Both restricted and unrestricted fast select are also supported and are transparently handled by the software. No configuration is required for use of the D-bit or fast select facilities.

X.25 Routing

The X.25 software implementation allows VCs to be routed from one X.25 interface to another and from one router to another. The routing behavior can be controlled with switching and XOT configuration commands, based on a locally built table.

X.25 encapsulation can share an X.25 serial interface with the X.25 switching support. Switching or forwarding of X.25 VC can be done two ways:

- **Incoming calls received from a local serial interface running X.25 can be forwarded to another local serial interface running X.25.** This method is known as **local X.25 switching** because the router handles the complete path. It does not matter whether the interfaces are configured as DTE or DCE devices, because the software takes the appropriate actions.

- **An incoming call can also be forwarded using the XOT service (previously remote switching or tunneling).** Upon receipt of an incoming X.25 call, a TCP connection is established to the destination XOT host (for example, another Cisco router) that will, in turn, handle the call using its own criteria. All X.25 packets are sent and received over the reliable TCP data stream. Flow control is maintained end-to-end. It does not matter whether the interface is configured for DTE or DCE devices, because the software takes the appropriate actions.

Running X.25 over TCP/IP provides a number of benefits. The datagram containing the X.25 packet can be switched by other routers using their high-speed switching abilities. X.25 connections can be sent over networks running only the TCP/IP protocols. The TCP/IP protocol suite runs over many different networking technologies, including Ethernet, Token Ring, T1 serial, and FDDI. Thus X.25 data can be forwarded over these media to another router, where it can, for example, be switched to an X.25 interface.

When the connection is made locally, the switching configuration is used; when the connection is across a LAN, the XOT configuration is used. The basic function is the same for both types of connections, but different configuration commands are required for each type of connection.

The X.25 switching subsystem supports the following facilities and parameters:

- **D-bit negotiation** (data packets with the D-bit set are passed through transparently)

- **Variable-length interrupt data** (if not operating as a DDN or BFE interface)

- **Flow control parameter negotiation**:
 - Window size up to 7, or 127 for modulo 128 operation
 - Packet size up to 4096 (if the LAPB layers used are capable of handling the requested size)

- **Basic CUG selection**

- **Throughput class negotiation**
• Reverse charging and fast select

The handing of these facilities is described in the appendix "X.25 Facility Handling."

X.25 Route

An X.25 route table enables you to control which destination is selected for several applications. When an X.25 service receives a call that must be forwarded, the X.25 route table determines which X.25 service (X.25, CMNS, or XOT) and destination should be used. When a PAD call is originated by the router, either from a user request or from a protocol translation event, the route table similarly determines which X.25 service and destination should be used.

You create the X.25 route table and add route entries to it. You can optionally specify the order of the entries in the table, the criteria to match against the VC information, and whether to modify the destination or source addresses. Each entry must specify the disposition of the VC (that is, what is done with the VC). Each route can also specify XOT keepalive options.

The route table is used as follows:

- VC information is matched against selection criteria specified for each route.
- The table is scanned sequentially from the top.
- The first matching route determines how the VC is handled.
- Once a matching entry is found, the call addresses can be modified and the call disposed of (forwarded or cleared) as instructed by the entry.

Each application can define special conditions if a route will not be used or what occurs if no route matches. For instance, switched X.25 will skip a route if the disposition interface is down and clear a call if no route matches. X.25 PAD and PAD-related applications, such as protocol translation using X.25, will route the call to the default X.25 interface, which is the first X.25 interface configured.

To configure an X.25 route (thus adding the route to the X.25 routing table), use the `x25 route` command.

Additional X.25 Routing Features

X.25 Load Balancing

X.25 load balancing was created to solve the problem that arises when the number of users accessing the same host causes an overload on Internet service provider (ISP) application resources.

In the past, in order to increase the number of users they could support, ISPs had to increase the number of X.25 lines to the host. To support a large number of VCs to a particular destination, they had to configure more than one serial interface to that destination. When a serial interface is configured to support X.25, a fixed number of VCs is available for use. However, the X.25 allocation method for VCs across multiple serial lines filled one serial line to its VC capacity before utilizing the second line at all. As a result, the first serial line was frequently carrying its maximum data traffic before it ran out of VCs.

Using a facility called *hunt groups*, the X.25 Load Balancing feature causes a switch to view a pool of X.25 lines going to the same host as one address and assign VCs on an idle logical channel basis. With this feature, X.25 calls can be load-balanced among all configured outgoing interfaces to fully use and balance performance.
of all managed lines. X.25 load balancing allows two load-balancing distribution methods--rotary and
vc-count--utilizing multiple serial lines.

The rotary method sends every call to the next available interface, regardless of line speed and the number of
available VCs on that interface.

The vc-count method sends calls to the interface that has the largest number of available logical channels.
This method ensures a good load balance when lines are of equal speed. If the line speeds are unequal, the
vc-count method will favor the line with the higher speed. To distribute calls equally among interfaces
regardless of line speed, configure each interface with the same number of VCs. In cases where interfaces
have the same line speed, the call is sent to the interface that is defined earliest in the hunt group.

With the vc-count distribution method, if a hunt group does not contain an operational interface, the call is
forwarded to the next route if one has been specified. An interface is considered unoperational if that interface
is down or full. If a session is terminated on an interface within the hunt group, that interface now has more
available VCs, and it will be chosen next.

Note

XOT cannot be used in hunt groups configured with the vc-count distribution method. XOT does not limit
the number of calls that can be sent to a particular destination, so the method of selecting the hunt group
member with the largest number of available VCs will not work. XOT can be used in hunt groups configured
with the rotary distribution method.

Only one distribution method can be selected for each hunt group, although one interface can participate in
one or more hunt groups. Reconfiguration of hunt groups does not affect functionality, but distribution methods
are limited to rotary and vc-count only.

XOT to Use Interface Default Flow Control Values

When a connection is set up, the source and destination XOT implementations must cooperate to determine
the flow control values that apply to the SVC. The source XOT ensures cooperation by encoding the X.25
flow control facilities (the window sizes and maximum packet sizes) in the X.25 Call packet; the XOT
implementation of the far host can then correctly negotiate the flow control values at the destination interface
and, if needed, indicate the final values in the X.25 Call Confirm packet.

When XOT receives a call that leaves one or both flow control values unspecified, it supplies the values. The
values supplied are a window size of 2 packets and maximum packet size of 128 bytes; according to the
standards, any SVC can be negotiated to use these values. Thus when XOT receives a call from an older XOT
implementation, it can specify in the Call Confirm packet that these flow control values must revert to the
lowest common denominator.

The older XOT implementations required that the source and destination XOT router use the same default
flow control values on the two X.25 interfaces that connect the SVC. Consequently, connections with
mismatched flow control values were created when this assumption was not true, which resulted in mysterious
problems. In the Cisco IOS Release 12.2 XOT implementation, the practice of signalling the values used in
the Call Confirm packet avoids these problems.

Occasionally the older XOT implementation will be connected to a piece of X.25 equipment that cannot handle
modification of the flow control parameters in the Call Confirm packet. These configurations should be
upgraded to use a more recent version of XOT; when upgrade is not possible, the behavior of XOT causes a
migration problem. In this situation, you may configure the Cisco IOS software to cause XOT to obtain
unspecified flow control facility values from the default values of the destination interface.
Calling Address Interface-Based Insertion and Removal

This feature describes a modification to the x25 route command that allows interface-based insertion and removal of the X.121 address in the X.25 routing table.

This capability allows Cisco routers running X.25 to conform to the standard that specifies that X.25 DCE devices should not provide the X.25 calling address, but instead that it should be inserted by the X.25 DTE based on interface. This calling address insertion and removal feature was designed for all routers performing X.25 switching and requiring that an X.121 address be inserted or removed by the X.25 DTE based on the interface.

This feature does not support XOT to X.25 routing using the input-interface keyword introduced by the Calling Address Insertion and Removal feature.

DNS-Based X.25 Routing

Overview

Managing a large TCP/IP network requires accurate and up-to-date maintenance of IP addresses and X.121 address mapping information on each router database in the network. Because these IP addresses are constantly being added and removed in the network, the routing table of every router needs to be updated, which is a time consuming and error-prone task. This process has also been a problem for mnemonics (an easy-to-remember alias name for an X.121 address).

X.25 has long operated over an IP network using XOT. However, large networks and financial legacy environments experienced problems with the amount of route configuration that needed to be done manually, as each router switching calls over TCP needed every destination configured. Every destination from the host router needed a static IP route statement, and for larger environments, these destinations could be as many as several thousand per router. Until the release of Domain Name System (DNS)-based X.25 routing, the only way to map X.121 addresses and IP addresses was on a one-to-one basis using the x25 route x121address xot ipaddress command.

The solution was to centralize route configurations that routers could then access for their connectivity needs. This centralization is the function of DNS-based X.25 routing, because the DNS server is a database of all domains and addresses on a network.

DNS-based X.25 routing scales well with networks that have multiple XOT routers, simplifies maintenance of routing table and creation of new routes, and reduces labor-intensive tasks and the possibility of human error during routing table maintainance. You must have DNS activated and X.25 configured for XOT to enable DNS-based X.25 routing.

DNS has the following three components:

- Domain name space or resource records--Define the specifications for a tree-structured domain name space.
- Name servers--Hold information about the domain tree structure.
- Resolvers--Receive a client request and return the desired information in a form compatible with a local hosts data formats.

You need to maintain only one route statement in the host router to connect it to the DNS. When DNS is used, the following rules apply:
• You must use Cisco IOS name server configuration commands.
• X.28 mnemonic restrictions apply (for example, not using -, ., P, or D in the mnemonic).
• You cannot specify any x25 route command options on the DNS. These options must be configured within the x25 route command itself.
• Names must consist of printable characters.
• No embedded white space is permitted.
• Periods must separate subdomains.
• Names are case sensitive.
• You must append any domain configured for the router to the user-specified name format.
• The total length of the name must not exceed 255 characters.

For more information on configuring the DNS, see the chapter "Configuring the DNS Service" in the Cisco DNS/DHCP Manager Administrator's Guide.

Note
This feature should not be used in the public Internet. It should be used only for private network implementations because in the Internet world the DNS has conventions for names and addresses with which DNS-based X.25 routing does not comply.

Address Resolution

With DNS-based X.25 routing, managing the X.121-to-IP addressing correlation and the mnemonic-to-X.121 addressing correlation is easy. Instead of supplying the router multiple route statements to all destinations, it may be enough to use a single wildcard route statement that covers all addresses in the DNS.

The `x25 route disposition xot` command option has been modified to include the `dns pattern` argument after the `xot` keyword, where `pattern` is a rewrite element that works in the same way that address substitution utilities work (see the Cisco IOS Wide-Area Networking Command Reference for further details).

The wildcard `^.*` characters and `\0` pattern of the modified `x25 route ^.* xot dns \0` command give the command more universality and effectiveness and make DNS-based X.25 routing simple and easy to use. These characters and pattern already exist and are explained in detail under the `x25 route` command in the Cisco IOS Wide-Area Networking Command Reference. This command functions only if the DNS route table mapping has been configured in a method recognized and understood by X.25 and the DNS server.

The following example is a setup from a DNS route table showing which X.121 address relates to which IP address:

```
222 IN A 172.18.79.60
444 IN A 10.1.1.3
555 IN A 10.1.1.2 10.1.2.2 10.1.3.2 10.1.4.2 10.1.5.7 10.1.6.3
```

The command line `x25 route 444 xot dns \0` shown in the DNS-based X.25 routing configuration example is what extracts the IP address from the DNS. The `\0` pattern replaces itself with 444. The 444 is then used as the index into the DNS route table to generate the IP address 10.1.1.3. Other characters can be combined with the pattern; for example, `A-\0`. In the DNS database, the index would appear as A-444.

As the example in the figure below shows, a call sent by the router goes to the DNS. The DNS checks its route table and identifies the X.121 address 444 and its related IP address 10.1.1.3. The DNS returns the IP
address to the host router, which then creates a route statement and forwards the data to the IP address of the destination router (10.1.1.3).

If the DNS-based X.25 routing configuration example included the command `x25 route 555 xot dns 0`, then a call to the X.121 address 555 would also go to the DNS. Since multiple IP addresses have been configured in the domain name space records, all of the IP addresses for that domain name would be returned to the router. Each address would be tried in sequence, just as if the X.25 routing configuration had been `x25 route 555 xot 10.1.1.2 10.1.2.2 10.1.3.2 10.1.4.2 10.1.5.7 10.1.6.3`. The router will accept up to 6 IP addresses from DNS for the domain name. If there are more than six, there will be an error message, and the list will be truncated to the first six received.

Figure 6: DNS-Based X.25 Routing Using XOT over an IP Cloud

Mnemonic Resolution

DNS-based X.25 routing can be used for mnemonic resolution with or without use of XOT routing. For more information on mnemonic addressing, refer to the chapter "Configuring the Cisco PAD Facility for X.25 Connections" chapter in the *Cisco IOS Terminal Services Configuration Guide*.

When mnemonics are used with XOT, the same communication with the DNS occurs, except that the router needs to contact the DNS twice--first to get the X.121 address using the mnemonic, and then to get the IP address using the X.121 address. However, there is no substantial performance issue because the process happens very quickly.

The following example is a setup from the DNS route table showing a mnemonic and its related X.121 address ("destination_host" represents 222). The `X25` keyword ensures that this line will be recognized by DNS-based X.25 routing in the DNS server.

```
destination_host IN X25 222
```

Using X.28 to retrieve this address, you would enter the following commands:

```
Router# x28
  *destination_host
Translating "destination_host"...domain server (10.1.1.40)
Notice the output line requesting mnemonic resolution from the DNS server with IP address 10.1.1.40.
If you were using PAD, you would need to enter only the mnemonic name, as in the following example:

```
Router# pad destination_host
```
You must remove any permanent entry for X.25 located in the host table of the router that has been duplicated in the DNS route table (as part of the enabling process for DNS-based X.25 routing). Otherwise, DNS-based X.25 routing will be overridden by the host table entries of the router.

To configure DNS-based X.25 routing, use the following command in global configuration mode. This task assumes that you already have XOT and DNS configured and enabled and that the route table in the DNS server has been correctly organized.

X.25 over Frame Relay (Annex G)

Annex G (X.25 over Frame Relay) facilitates the migration of traffic from an X.25 backbone to a Frame Relay backbone by permitting encapsulation of X.25 traffic within a Frame Relay connection. With Annex G, transporting X.25 over Frame Relay has been simplified by allowing direct and transparent X.25 encapsulation over a Frame Relay network. Annex G is supported only on Frame Relay main interfaces (not subinterfaces) and over Frame Relay PVCs. However, X.25 PVC connections are not supported, but only X.25 SVC connections.

X.25 profiles make Annex G easy to configure for both X.25 and LAPB because they consist of bundled X.25 and LAPB commands. Once created and named, X.25 profiles can be simultaneously associated with more than one DLCI connection, using just the profile name. This process means that you need not enter the same X.25 or LAPB commands for each DLCI you are configuring. Multiple Annex G DLCIs can use the same X.25 profile, but the DLCIs can be configured for only one Frame Relay service at a time. The creation of X.25 profiles allows the specification of X.25 and LAPB configurations without the need to allocate hardware interface data block (IDB) information. X.25 profiles do not support IP encapsulation.

Annex G provides multiple logical X.25 SVCs per Annex G link, and modulo 8 and 128 are supported. X.25 Layers 2 and 3 are transparently supported over Annex G. LAPB treats the Frame Relay network like an X.25 network link and passes all of the data and control messages over the Frame Relay network. Before enabling Annex G connections you must establish a Frame Relay connection.

CMNS Routing

CMNS provides a mechanism through which X.25 services can be extended to nonserial media through the use of packet-level X.25 over frame-level logical link control (LLC2). For information about configuring LLC2 parameters, refer to the chapter "Configuring SDLC and LLC2 Parameters" in the Cisco IOS Bridging and IBM Networking Configuration Guide.

The Cisco CMNS implementation permits most X.25 services to be extended across a LAN, although datagram encapsulation and QLLC operations are not available. For example, a DTE host and a Sun workstation can be interconnected via the router's LAN interfaces and to a remote OSI-based DTE through a WAN interface to an X.25 packet-switched network (PSN).

Priority Queueing or Custom Queueing for X.25

Two types of output queueing are available for X.25:

- Priority queueing--Classifies packets on the basis of certain criteria and then assigns the packets to one of four output queues, with high, medium, normal, or low priority.
• Custom queueing—Classifies packets, assigns them to one of 16 output queues, and controls the percentage of available bandwidth for an interface that is used for a queue.

Output queueing for X.25 interfaces differs subtly from its use with other protocols because X.25 is a strongly flow-controlled protocol. Each X.25 VC has an authorized number of packets it can send before it must suspend transmission to await acknowledgment of one or more of the packets that were sent.

Queue processing is also subject to a VC’s ability to send data; a high priority packet on a VC that cannot send data will not stop other packets from being sent if they are queued for a VC that can send data. In addition, a datagram that is being fragmented and sent may have its priority artificially promoted if higher-priority traffic is blocked by the fragmentation operation.

Both priority queueing and custom queueing can be defined, but only one method can be active on a given interface.

---

**Note**

Connection-oriented VCs (for example, QLLC, PAD, and switched X.25) will use the default queue of the interface. To maintain the correct order, all connection-oriented VCs use a single output queue for sending data.

---

**X.25 Closed User Groups**

**Closed User Group**

A closed user group (CUG) is a collection of DTE devices for which the network controls access between two members and between a member and a nonmember. An X.25 network can support up to 10,000 CUGs (numbered from 0 to 9999), each of which can have any number of member DTE devices. An individual DTE becomes a member of a specific network CUG by subscription. The subscription data includes the local number the DTE will use to identify the network CUG (which may or may not be the same as the network number, as determined by network administration and the requirements of the DTE device), and any restriction that prohibits the DTE from placing a call within the CUG or, conversely, prohibits the network from presenting a call within the CUG to the DTE device.

The X.25 DCE interfaces of the router can be configured to perform the standard CUG access controls normally associated with a direct attachment to an X.25 network POP. The DCE interface of the router acts as the boundary between the DTE and the network, and CUG use ensures that only those incoming and outgoing SVCs consistent with the configured CUG subscriptions are permitted. X.25 CUG configuration commands on the router are specified at every POP, and CUG security decisions are made solely from those commands. However, CUG service is not supported on XOT connections.

CUG security depends on CUG decisions made by the two POPs used to connect an SVC through the network, so CUG security depends on the collective configuration of all POPs that define the network boundary. The standalone interface configuration determines if the POP will permit user access for a given incoming or outgoing call within the authorized CUG.

CUGs are a network service designed to allow various network subscribers (DTE devices) to be segregated into private subnetworks with limited incoming or outgoing access. This means that a DTE must obtain membership from its network service (POP) for the set of CUGs it needs access to. A DTE may subscribe to zero, one, or several CUGs at the same time. A DTE that does not require CUG membership for access is considered to be in the open part of the network. Each CUG typically permits subscribing users to connect to each other, but precludes connections with nonsubscribing DTE devices.
However, CUG behavior is highly configurable. For instance, a CUG configuration may subscribe a DTE to a given CUG, but bar it from originating calls within the CUG or, conversely, bar it from receiving calls identified as being within the CUG. CUG configuration can also selectively permit the DTE to originate calls to a DTE on the open network, or permit the DTE to receive calls from a DTE on the open network.

CUG access control is first applied when the originating DTE places a call to the POP, and again when the POP of the destination DTE device receives the call for presentation. Changes to the POP CUG subscriptions will not affect any SVCs that have already been established.

When a DTE belongs to more than one CUG, it must specify its preferential CUG, unless a call is specifically aimed at devices outside the CUG network. However, the number of CUGs to which a DTE can belong depends on the size of the network. Unsubscribing from one CUG or the overall CUG service will not result in the termination of the SVC connections.

CUG behavior is a cooperative process between two network devices. The DCE offers this service to the connecting subscribers via the DTE device. There is no global database regarding CUG membership; therefore, the Cisco router uses information configured for the various X.25 devices and the encoded CUG information in the outgoing and incoming packets.

X.25 CUGs are used for additional X.25 access protection and security. In a setup where DTE devices are attached to a PDN, you can derive a private subnetwork by subscribing your DTE devices to a set of CUGs, which allows closer control of your DTE devices, such as permitting or restricting which DTE can talk to other DTE devices and for what particular purpose. For example, a distinct CUG can be defined to handle each of the different modes of connectivity, such as the following:

- Datagram encapsulation operation among all company sites
- PAD services for customers seeking public information
- PAD services for system administration internal access to consoles
- QLLC access restricted to the company financial centers

One site could have different CUG subscriptions, depending on connectivity requirements. These sites could all have restrictions regarding which other company devices can be reached (within a CUG), whether a device is permitted to call the open network for a given function, and whether a public terminal can access the device for a given function.

By default, no CUG behavior is implemented. Therefore, in order to observe CUG restrictions, all users attached to the network must be subscribed to CUG behavior (CUG membership) even if they are not subscribed to a specific CUG.

The figure below shows two CUGs (CUG 1 and CUG 2). DTE devices A, B, and C are members of CUG 1. They can initiate and receive calls only from the other members of CUG 1. They are therefore members of a private subnet with no access to other DTE devices. DTE A is also a member of CUG 2 with DTE D, but DTE D cannot send calls to or receive calls from DTE B or DTE C. The router checks each received call to determine if it is intended for their CUG. If not, the router rejects the call.

You can subscribe to multiple CUGs per interface, but each CUG that is permitted must be specifically configured. All CUGs are sorted by their local identifier. The main limitation to the number of CUGs configured is the amount of nonvolatile memory to store the configuration. Having subscribed to a CUG, the DTE indicates which CUG is being called. If the DTE does not indicate a CUG, its DCE determines which CUG is used and if the call should be allowed.
CUG service is implemented at the DCE interface, which means that it specifies a network function. For a summary of DCE operations, refer to ITU-T 1996 Recommendation X.301 tables 7-6 and 7-8.

Understanding CUG Configuration

Answering the following questions will help you set up your CUG service and CUGs:

• Do you want to permit incoming public access to the DTE device?

If so, configure the `x25 subscribe cug-service incoming-access` command on the DCE so that the CUG service from the open network allows incoming calls to the DTE device.

• Do you want to permit outgoing public access for the DTE device?

If so, configure the `x25 subscribe cug-service outgoing-access` command on the DCE so that the CUG service allows public outgoing calls from the DTE to the open network.

• Will the CUG users require restricted access to the PDN?

If so, configure the `x25 subscribe local-cug` command for mapping the local CUG to the network CUG for the same CUG entity. To obtain full access to the PDN, the CUG service will need to be subscribed to by both incoming and outgoing access.

If you want a secure CUG with no access to the PDN, subscribe the CUG to no incoming or outgoing access, and configure it to communicate only with other attachments within CUGs that it has defined.

After establishing that you want PDN CUG access, you must then answer the following questions:

• Can the user place calls within the CUG?
The default is set for users to be able to place calls. If you do not want this setting, use the **no-outgoing** keyword.

- Can the user receive calls within the CUG?

The default is set for users to be able to receive calls. If you do not want this setting, use the **no-incoming** keyword.

- Do you want a subscribed CUG to be assumed when a CUG member places a call without specifying a CUG?

If so, use the **preferential** keyword.

**Point of Presence**

X.25 is not a POP by default, and POP behavior does not automatically enforce CUG security. Within PDNs, all devices are connected by POPs, which are open entry points into a network and, as such, pose a potential security risk.

When you enable X.25 CUG service, you are configuring your network like a PDN, and so for every POP with attachments in the network you must configure CUG security. CUG security is particularly important on those POPs that do not subscribe to CUGs, because they could act as a "back door" into your CUGs.

---

**Note**

If you do not configure CUG security on your network POPs, you are creating a security risk for your network. Configuration must be done manually for every POP in your network.

---

**CUG Membership Selection**

CUG membership selection occurs from the calling DTE in an outgoing (call request) packet to specify the CUG membership selected for the call. CUG membership selection is requested or received by a DTE only after the DTE has subscribed to one or more of the following facilities:

- Relevant CUG service
- Outgoing access CUG, which allows the source DTE to identify the CUG within which it is placing the call
- Incoming access CUG, which allows the destination DTE to identify the CUG to which both DTE devices belong

**Preferential CUGs**

A DTE that subscribes to more than one CUG (and permits neither incoming nor outgoing access from or to the open network) must designate a preferential CUG. Its use is assumed when no CUG selection is enabled in the outgoing call (call request) or incoming call. Using a preferential CUG achieves a higher level of security. Preferential CUG designation is for DTE devices meant to operate without requiring a CUG selection facility in every outgoing call, or for DTE devices not capable of encoding a CUG selection.

Preferential CUG designation options are as follows:
• If no preferential CUG has been designated and a CUG member presents a call without specifying a receiving CUG, the call will be rejected, unless incoming access from the open network is configured.

• If a preferential CUG has been designated and the user presents a call without specifying a CUG, the call will be directed to the preferential CUG.

• If outgoing access is permitted on your CUG and you present an outgoing call without designating a preferential CUG, then your CUG assumes the call is meant either for the open network or for the preferential CUG.

• A single CUG specified at a DCE interface is treated as the preferential CUG.

Incoming and Outgoing Access CUGs

CUG service with incoming access allows you to receive incoming calls from the open part of the network and from DTE devices belonging to other outgoing access CUGs. If the DTE does not subscribe to incoming access, any incoming call without the CUG membership selection facility will not be accepted.

A CUG with outgoing access allows you to make outgoing calls to the open part of the network and to DTE devices with incoming access capability. Subscribing to the outgoing access CUG allows a DTE to belong to one or more CUGs and to originate calls to DTE devices in the open part of the network (DTE devices not belonging to any CUGs) and to DTE devices belonging to incoming access CUGs. If the DTE has not subscribed to outgoing access, the outgoing packets must contain a valid CUG membership selection facility. If a CUG membership selection facility is not present, the local DCE defaults to the preferential CUG, or rejects the call if a preferential CUG is not specified.

Incoming and Outgoing Calls Barred Within a CUG

When a DTE wishes to initiate only outgoing calls, it specifies "incoming calls barred." With this CUG option subscribed to, a subscriber DTE is permitted only to originate calls and not to receive calls within the CUG. The DCE will clear an incoming call before it reaches the DTE.

If a DTE subscribes to the "outgoing calls barred" option, it is permitted to receive calls but not to originate calls within the CUG. An attempted outgoing call will be cleared by the DCE, which in turn will notify the DTE of its actions.

CUG Service Access and Properties

Note

If you do not want to enable the `x25 subscribe cug-service` command, you will be subscribed to CUG service automatically the first time you subscribe to a CUG (using the `x25 subscribe local-cug` command), with CUG service default settings of no incoming and no outgoing access.

You must establish X.25 DCE encapsulation and X.25 CUG service on the interface to enable this feature. Within the `x25 subscribe cug-service` command, establish the type of CUG public access (incoming or outgoing) you want. If you do not enter this command, the default will be enabled.

To set up the individual CUGs, use the `x25 subscribe local-cug` command to specify each local CUG and map it to a network CUG, setting the access properties of the local CUG--no-incoming, no-outgoing, preferential, all, or none--at the same time.
POP with No CUG Access

⚠️ Caution ⚠️
This configuration is critical to enforcing full CUG security on your network. You must conduct this configuration on every POP in your network. If you do not configure this for all POPs in your network, you will not have a secure network, and a security breach could occur.

With the POP configuration of no individual CUG subscriptions, the POP is a member of the open network. Even though it does not have a CUG attached, you must configure CUG security on it to ensure that the rest of your network remains secure. The POP has CUG incoming access and outgoing access permitted—the least restrictive setting. The POP will allow calls that do not require CUG authorization to and from the open network, but it will refuse any CUG-specified calls because the POP does not belong to a CUG. A call from an intranetwork connection with no CUG selected is permitted as incoming access from the open network, but a call that requires CUG access will be refused.

POP with Access Restricted to One CUG

In the POP configuration with one CUG subscribed, it is important to have no public access permitted on it. You do this by configuring the default setting (no incoming and no outgoing access) for the `x25 subscribe cug-service` command. When an outgoing call not specifying a CUG is made, the POP assumes the call to be for its one subscribed CUG. An incoming call that does not specify that CUG is rejected. This single CUG configuration assumes the CUG to be the preferential CUG.

POP with Multiple CUGs and No Public Access

With the POP configuration of multiple CUGs and no public access permitted, the only difference from the POP configuration with one subscribed CUG is that one of the CUGs must be chosen as preferential. If you do not specify a preferential CUG, no calls can be made or accepted. Notice the omission of the keywords from the `x25 subscribe cug-service` command. This omission enables the default settings of no incoming and no outgoing access.

POP with Multiple CUGs and Public Access

The least restrictive POP configuration is a POP configured to allow public access to members of several CUG and to originate and receive calls from the open network (that is, to or from users that do not subscribe to one of the CUGs to which this POP subscribes). Configuring the POP with multiple CUGs and public access is achieved using the `x25 subscribe cug-service` command with the addition of the keywords `incoming-access` and `outgoing-access` to allow calls to be made and received to and from outside hosts not in the specified CUG network.

To set up the individual CUGs, use the `x25 subscribe local-cug` command to specify each local CUG and map it to a network CUG, setting the access properties of the local CUG—no-incoming, no-outgoing, preferential, all, or none—at the same time.

An outgoing call may select any of the local CUGs or not. When no CUG is selected, it is assumed that the call is intended for the open network. The call will be refused if it specifies a local CUG different from the one to which the POP is subscribed. An incoming call may or may not select related network CUGs. If no CUG is selected, the call is accepted as coming from the open network. A call that requires access to a different CUG will be refused.
CUG Selection Facility Suppression

A CUG selection facility is a specific encoding element that can be presented in a call request or an incoming call. A CUG selection facility in a call request allows the source DTE to identify the CUG within which it is placing the call. A CUG selection facility in an incoming call allows the destination DTE to identify the CUG to which both DTEs belong.

You can configure an X.25 DCE interface or X.25 profile with a DCE station type to selectively remove the CUG selection facility before presenting an incoming call packet to a subscribed DTE. The CUG selection facility can be removed from incoming call packets destined for the preferential CUG only or for all CUGs. You can also remove the selection facility from a CUG with outgoing access (CUG/OA). The CUG selection facility suppression mechanism does not distinguish between CUGs and CUG/OAs.

Note

The CUG Selection Facility Suppress Option feature will not in any way compromise CUG security.

CUG selection facility supression is supported by X.25 over Frame Relay (Annex G). If Annex G is being used, you must configure CUG selection facility suppression in an X.25 profile.

DDN or BFE X.25

DDN

The Defense Data Network (DDN) X.25 protocol has two versions: Basic Service and Standard Service. Cisco System’s X.25 implementation supports only the Standard Service which also includes Blacker Front End (BFE).

DDN X.25 Standard Service requires that the X.25 data packets carry IP datagrams. The DDN packet switching nodes (PSNs) can extract the IP datagram from within the X.25 packet and pass data to another Standard Service host.

The DDN X.25 Standard is the required protocol for use with DDN PSNs. The Defense Communications Agency (DCA) has certified Cisco Systems’ DDN X.25 Standard implementation for attachment to the Defense Data Network. As part of the certification, Cisco IOS software is required to provide a scheme for dynamically mapping Internet addresses to X.121 addresses.

Understanding DDN X.25 Dynamic Mapping

The DDN X.25 standard implementation includes a scheme for dynamically mapping all classes of IP addresses to X.121 addresses without a table. This scheme requires that the IP and X.121 addresses conform to the formats shown in the figures below. These formats segment the IP addresses into network (N), host (H),
logical address (L), and PSN (P) portions. For the BFE encapsulation, the IP address is segmented into Port (P), Domain (D), and BFE ID number (B). The DDN algorithm requires that the host value be less than 64.

**Figure 8: DDN IP Address Conventions**

| Class A: | Net.Host.LHPSN → 0000 0 PPPH00 |
| Class B: | Net.Net.Host.PSN → 0000 0 PPPH00 |
| Class C: | Net.Net.Net.Host.PSN → 0000 0 PPPH00 |

**Figure 9: BFE IP Address Conventions**

| BFE Class A: | Net.unused.Port.Domain.BFE → 0000 0 PDDDBBB |

The DDN conversion scheme uses the host and PSN portions of an IP address to create the corresponding X.121 address. The DDN conversion mechanism is limited to Class A IP addresses; however, the Cisco IOS software can convert Class B and Class C addresses as well. As indicated, this method uses the last two octets of a Class B address as the host and PSN identifiers, and the upper and lower four bits in the last octet of a Class C address as the host and PSN identifiers, respectively. The BFE conversion scheme requires a Class A IP address.

The DDN conversion scheme uses a physical address mapping if the host identifier is numerically less than 64. (This limit derives from the fact that a PSN cannot support more than 64 nodes.) If the host identifier is numerically larger than 64, the resulting X.121 address is called a logical address. The DDN does not use logical addresses.

The format of physical DDN X.25/X.121 addresses is ZZZZFIIHHZZ(SS). Each character represents a digit, described as follows:

- **ZZZZ** represents four zeros.
- **F** is zero to indicate a physical address.
- **III** represents the PSN octet from the IP address padded with leading zeros.
- **HH** is the host octet from the IP address padded with leading zeros.
- **ZZ** represents two zeros.
- **(SS)** represents the optional and unused subaddress.

The physical and logical mappings of the DDN conversion scheme always generate a 12-digit X.121 address. Subaddresses are optional; when added to this scheme, the result is a 14-digit X.121 address. The DDN does not use subaddressing.

Packets using routing and other protocols that require broadcast support can successfully traverse X.25 networks, including the DDN. This traversal requires the use of network protocol-to-X.121 maps, because the router must know explicitly where to deliver broadcast datagrams. (X.25 does not support broadcasts.) You can mark network protocol-to-X.121 map entries to accept broadcast packets; the router then sends...
broadcast packets to hosts with marked entries. For DDN or BFE operation, the router generates the interface X.121 addresses from the interface IP address using the DDN or BFE mapping technique.

**IP Precedence Handling**

Using Standard Service, the DDN can be configured to provide separate service for datagrams with high precedence values. When IP precedence handling is enabled, the router uses a separate X.25 SVC to handle each of four precedence classes of IP traffic—routine, priority, immediate, and other. An IP datagram is transmitted only across the SVC that is configured with the appropriate precedence.

By default, the DDN X.25 software opens one VC for all types of service values. Verify that your host does not send nonstandard data in the TOS field. Nonstandard data can cause multiple, wasteful VC's to be created.

**Blacker Front End X.25**

For environments that require a high level of security, the Cisco IOS software supports attachment to Defense Data Network (DDN) Blacker Front End (BFE) equipment. BFE encapsulation operates to map between Class A IP addresses and the X.121 addresses expected by the BFE encryption device.

**X.25 Remote Failure Detection**

X.25 remote failure detection is important because after a primary link failure, the router can establish a secondary link and continue sending data. The router detects a call failure and uses a secondary route to send subsequent packets to the remote destination, at the same time making periodic attempts to reconnect to its primary link. The number of these attempts and the interval between such attempts is controlled using the `x25 retry` command. The failed link is marked up again when any of the following occurs:

- An attempt to reestablish the link via the retry mechanism is successful.
- An incoming call is received on the subinterface.
- The X.25 packet layer on the interface is restarted.

X.25 remote failure detection needs to be manually configured on each intended subinterface. However, because it is a per-destination configuration rather than a per-user configuration, you need it enabled only on the subinterface requiring the retry option—typically your primary interface. This feature is not automatically enabled and only responds to failed outgoing call attempts. The feature applies only to point-to-point subinterfaces and works only on SVC's. It is not necessary if you are running IP routing, because IP routing already implements alternate routing. This feature is targeted at environments that have static IP routing across an X.25 network, where these static IP routes currently need to be manually added to the route tables.

The `x25 retry` command is activated by a call failure notification. Retry occurs only with calls initiated on a subinterface configured with the `x25 retry` command. This command works only when no VC's are up. When reconnection occurs, traffic begins to reuse the primary interface. This resetting of the line protocol to up is the last activity that the `x25 retry` command conducts. Issuing the `clear x25` command on the remote failure detection configured interface, or receiving a call during retry, will disable the `x25 retry` and the subinterface will be marked "up." An incoming call can be conducted in a way similar to how the `ping` command is used to check connectivity (by definition, a successful incoming call indicates that connectivity is functioning). Also, if the router reaches its retry attempts limit, the `x25 retry` command will discontinue and the subinterface will remain down.
X.25 remote failure detection is designed to work with any network layer routed protocol. However, the feature depends on the ability of the protocol to handle more than one static route to the same destination at the same time. Currently, only IP can accomplish this multistatic route handling.

Alternatively, X.25 remote failure detection can be used to activate a backup link should the subinterface configured for retry be marked down via the retry mechanism. See the X.25 Remote Failure Detection and the Backup Interface, on page 98 configuration tasks for further details.

The benefits of this feature are network cost savings because IP routing updates (requiring dynamic but costly network connectivity) are not necessary; improved responsiveness and versatility of X.25 primary and alternate links; and more robust networking options for data transmission.

The figure below shows how X.25 remote failure detection works:

1. The data cannot reach its destination using its primary route.
2. A call failure notification is sent to the transmitting router.
3. The x25 retry command is activated, and IP then activates the preassigned secondary route in its route table and begins sending data. The x25 retry command also shuts down subinterface 1.1 and begins its retry attempts on this link.

**Figure 10: X.25 Remote Failure Detection in Action over an X.25 Cloud**

**X.29 Access Lists**

Protocol translation software supports access lists, which make it possible to limit access to the access server from X.25 hosts. Access lists take advantage of the message field defined by Recommendation X.29, which describes procedures for exchanging data between two PADs or between a PAD and a DTE device.

When configuring protocol translation, you can specify an access list number with each translate command. When translation sessions result from incoming PAD connections, the corresponding X.29 access list is used. Refer to the Cisco IOS Dial Technologies Command Reference for more information about the translate command.
An access list can contain any number of lines. The lists are processed in the order in which you type the entries. The first match causes the permit or deny condition. If an X.121 address does not match any of the entries in the access list, access is denied.

When applying the access list to a virtual terminal line, the access list number is used for incoming TCP access, for incoming local-area transport (LAT) access, and for incoming PAD access. For TCP access, the protocol translator uses the defined IP access lists. For LAT access, the protocol translator uses the defined LAT access list. For incoming PAD connections, the protocol translator uses an X.29 access list. If you want to have access restrictions only on one of the protocols, you can create an access list that permits all addresses for the other protocol.

### How to Configure LAPB

#### Configuring a LAPB Datagram Transport

To set the appropriate LAPB encapsulation to run datagrams over a serial interface, use the following command in global configuration mode. One end of the link must be a DTE device, and the other must be DCE. Because the default serial encapsulation is HDLC, you must explicitly configure a LAPB encapsulation method. You should shut down the interface before changing the encapsulation.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# interface type number</code></td>
<td>Specifies a serial interface.</td>
</tr>
</tbody>
</table>

#### Selecting an Encapsulation and Protocol

To select an encapsulation and protocol (if you are using a single protocol), or to select the multiple protocol operation, use one or more of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# encapsulation lapb dce [protocol]</code></td>
<td>Enables encapsulation of a single protocol on the line using DCE operation.</td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation lapb dte [protocol]</code></td>
<td>Enables encapsulation of a single protocol on the line using DTE operation.</td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation lapb dce multi</code></td>
<td>Enables use of multiple protocols on the line using DCE operation.</td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation lapb dte multi</code></td>
<td>Enable use of multiple protocols on the line using DTE operation.</td>
</tr>
</tbody>
</table>
Single protocol LAPB defaults to IP encapsulation.  
Multiprotocol LAPB does not support source-route bridging or TCP/IP header compression, but does support transparent bridging. A multiprotocol LAPB encapsulation supports all of the protocols available to a single-protocol LAPB encapsulation plus transparent bridging.

Configuring Compression over LAPB

To configure compression over LAPB, use the following commands in interface configuration mode:

SUMMARY STEPS

1. Router(config-if)# encapsulation lapb[protocol]
2. Router(config-if)# compress[predictor | stac]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables encapsulation of a single protocol on the serial line.</td>
</tr>
<tr>
<td>Router(config-if)# encapsulation lapb[protocol]</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enables compression.</td>
</tr>
<tr>
<td>Router(config-if)# compress[predictor</td>
<td>stac]</td>
</tr>
</tbody>
</table>

Configuring Compression over Multi-LAPB

To configure compression over multi-LAPB, use the following commands in interface configuration mode:

SUMMARY STEPS

1. Router(config-if)# encapsulation lapb multi
2. Router(config-if)# compress[predictor | stac]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables encapsulation of multiple protocols on the serial line.</td>
</tr>
<tr>
<td>Router(config-if)# encapsulation lapb multi</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enables compression.</td>
</tr>
<tr>
<td>Router(config-if)# compress[predictor</td>
<td>stac]</td>
</tr>
</tbody>
</table>
What to Do Next

When using compression, adjust the maximum transmission unit (MTU) for the serial interface and the LAPB N1 parameter as in the following example, to avoid informational diagnostics regarding excessive MTU or N1 sizes:

interface serial 0
  encapsulation lapb
  compress predictor
  mtu 1509
  lapb n1 12072

For information about configuring X.25 TCP/IP header compression and X.25 payload compression, see the sections Setting X.25 TCP IP Header Compression, on page 74 and Configuring X.25 Payload Compression, on page 74.

Configuring Transparent Bridging over Multiprotocol LAPB

To configure transparent bridging over multiprotocol LAPB, use the following commands beginning in global configuration mode:

**SUMMARY STEPS**

1. Router(config)# interface serial number
2. Router(config-if)# no ip address
3. Router(config-if)# encapsulation lapb multi
4. Router(config-if)# bridge-group bridge-group
5. Router(config)# bridge bridge-group protocol {ieee | dec}

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface serial number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# no ip address</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# encapsulation lapb multi</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# bridge-group bridge-group</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# bridge bridge-group protocol {ieee</td>
</tr>
</tbody>
</table>

Note: You must use the encapsulation lapb multi command rather than the encapsulation lapb protocol bridge command to configure transparent bridging over multiprotocol LAPB.
How to Configure X.25

LAPB frame parameters can be modified to optimize X.25 operation and these features can coexist on an X.25 interface.

Default parameters are provided for X.25 operation. However, you can change the settings to meet the needs of your X.25 network or as defined by your X.25 service supplier. Cisco also provides additional configuration settings to optimize your X.25 usage.

If you connect a router to an X.25 network, use the parameters set by your network administrator for the connection. These parameters are described in the sections "Configuring an X.25 Interface, on page 64" and "Modifying LAPB Protocol Parameters, on page 29". Also, note that the X.25 Level 2 parameters described in the section "Modifying LAPB Protocol Parameters, on page 29" affect X.25 Level 3 operations.

Configuring an X.25 Interface

Configuring X.25 Encapsulation

To configure the mode of operation and encapsulation type for a specified interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# encapsulation x25 [dte</td>
<td>dce] [[ddn</td>
</tr>
</tbody>
</table>

Setting the Virtual Circuit Ranges

Each of these parameters can range from 1 to 4095. The values for these parameters must be the same on both ends of the X.25 link. For connection to a PDN, these values must be set to the values assigned by the network. An SVC range is unused if its lower and upper limits are set to 0; other than this use for marking unused ranges, VC 0 is not available.
To configure X.25 VC ranges, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>x25 lic circuit-number</code></td>
<td>Sets the lowest incoming-only circuit number. The default is 0.</td>
</tr>
<tr>
<td>Router(config-if)# <code>x25 hic circuit-number</code></td>
<td>Sets the highest incoming-only circuit number. The default is 0.</td>
</tr>
<tr>
<td>Router(config-if)# <code>x25 ltc circuit-number</code></td>
<td>Sets the lowest two-way circuit number. The default is 1.</td>
</tr>
<tr>
<td>Router(config-if)# <code>x25 htc circuit-number</code></td>
<td>Sets the highest two-way circuit number. The default is 1024 for X.25; 4095 for CMNS.</td>
</tr>
<tr>
<td>Router(config-if)# <code>x25 loc circuit-number</code></td>
<td>Sets the lowest outgoing-only circuit number. The default is 0.</td>
</tr>
<tr>
<td>Router(config-if)# <code>x25 hoc circuit-number</code></td>
<td>Sets the highest outgoing-only circuit number. The default is 0.</td>
</tr>
</tbody>
</table>

**Setting the Packet-Numbering Modulo**

To set the packet-numbering modulo, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# `x25 modulo {8</td>
<td>128}`</td>
</tr>
</tbody>
</table>

**Setting the X.121 Address**

To set the X.121 address, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>x25 address x121-address</code></td>
<td>Sets the X.121 address.</td>
</tr>
</tbody>
</table>
Configuring X.25 Switch Local Acknowledgment

To configure local acknowledgment, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# x25 routing acknowledge local</td>
<td>Enables X.25 switching with local acknowledgment.</td>
</tr>
</tbody>
</table>

Verifying Local Acknowledgment

To verify that local acknowledgment is configured on your router, use the `show running-configuration` command in EXEC mode. In the following example, X.25 encapsulation has been set on serial interface 1/4 with acknowledgment set to "local":

```
Router# show running-configuration
x25 routing acknowledge local
```

You can also use the `show protocol` command in EXEC mode to verify local acknowledgment:

```
Router# show protocol
Global values:
 Internet Protocol routing is enabled
 X.25 routing is enabled, acknowledgements have local significance only
```

Enabling Flow Control Parameter Negotiation

To control packet transmission flow values on the interface, use one or more of the flow control commands in interface configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 subscribe flow-control {always</td>
<td>never}</td>
</tr>
<tr>
<td>Router(config-if)# x25 subscribe windowsize {permit wmin wmax</td>
<td>target wmin wmax}</td>
</tr>
<tr>
<td>Router(config-if)# x25 subscribe packetsize {permit pmin pmax</td>
<td>target pmin pmax}</td>
</tr>
</tbody>
</table>

Verifying Flow Control Parameter Negotiation

To verify flow control parameter settings, use the `show running-configuration` command in EXEC mode. In the following example, X.25 encapsulation has been set on serial interface 1/4 with flow control negotiation set to "always." Permitted packet sizes are set at 64 (minimum) and 1024 (maximum), with target packet sizes
set at 128 (minimum) and 1024 (maximum). Permitted window sizes are set at 1 (minimum) and 7 (maximum), with target window sizes set at 2 (minimum) and 4 (maximum).

Router# show running-configuration
x25 subscribe flow-control always
x25 subscribe packetsize permit 64 1024 target 128 1024
x25 subscribe windowsize permit 1 7 target 2 4

Setting Default Flow Control Values

Setting Default Window Sizes
To set the default window sizes, use the following commands in interface configuration mode:

SUMMARY STEPS

1. Router(config-if)# x25 win packets
2. Router(config-if)# x25 wout packets

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# x25 win packets</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# x25 wout packets</td>
</tr>
</tbody>
</table>

Setting Default Packet Sizes
To set the default input and output maximum packet sizes, use the following commands in interface configuration mode:

SUMMARY STEPS

1. Router(config-if)# x25 ips bytes
2. Router(config-if)# x25 ops bytes

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# x25 ips bytes</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# x25 ops bytes</td>
</tr>
</tbody>
</table>
### Enabling Asymmetrical Flow Control

To use asymmetrical flow control effectively, use the `x25 subscribe flow-control never` command to disable flow control parameter negotiation, and use the `x25 routing acknowledge local` command to enable local acknowledgment.

#### SUMMARY STEPS

1. Router(config)# x25 routing acknowledge local
2. Router(config-if)# x25 subscribe flow-control never

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# x25 routing acknowledge local</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# x25 subscribe flow-control never</td>
</tr>
</tbody>
</table>

### Configuring Additional X.25 Interface Parameters

#### Configuring X.25 Failover

You can configure X.25 Failover on an X.25 interface or X.25 profile.

#### Configuring X.25 Failover on an Interface

To configure X.25 failover on an interface, use the following commands beginning in global configuration mode:

#### SUMMARY STEPS

1. Router(config)# interface type number
2. Router(config-if)# encapsulation x25
3. Router(config-if)# x25 fail-over seconds interface type number [dlci | MAC address]

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type number</td>
</tr>
</tbody>
</table>
Configuring X.25 Failover on an X.25 Profile

To configure X.25 failover on an X.25 profile, use the following commands beginning in global configuration mode:

**SUMMARY STEPS**

1. `Router(config)# x25 profile name {dce | dte | dxe}`
2. `Router(config-x25)# x25 fail-over seconds interface type number [dlci | MAC address]`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# x25 profile name {dce</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-x25)# x25 fail-over seconds interface type number [dlci</td>
</tr>
</tbody>
</table>

**Verifying X.25 Failover**

To display information about the X.25 Failover feature, use the following EXEC command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show x25 context</td>
<td>Displays information about all X.25 links.</td>
</tr>
</tbody>
</table>
Configuring the X.25 Level 3 Timers

To set the event timers, use any of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 t20 seconds</td>
<td>Sets DTE T20 Restart Request timeout.</td>
</tr>
<tr>
<td>Router(config-if)# x25 t10 seconds</td>
<td>Sets DCE T10 Restart Indication timeout.</td>
</tr>
<tr>
<td>Router(config-if)# x25 t21 seconds</td>
<td>Sets DTE T21 Call Request timeout.</td>
</tr>
<tr>
<td>Router(config-if)# x25 t11 seconds</td>
<td>Sets DCE T11 Incoming Call timeout.</td>
</tr>
<tr>
<td>Router(config-if)# x25 t22 seconds</td>
<td>Sets DTE T22 Reset Request timeout.</td>
</tr>
<tr>
<td>Router(config-if)# x25 t12 seconds</td>
<td>Sets DCE T12 Reset Indication timeout.</td>
</tr>
<tr>
<td>Router(config-if)# x25 t23 seconds</td>
<td>Sets DTE T23 Clear Request timeout.</td>
</tr>
<tr>
<td>Router(config-if)# x25 t13 seconds</td>
<td>Sets DCE T13 Clear Indication timeout.</td>
</tr>
</tbody>
</table>

For an example of setting the event timers, see the section "DDN X.25 Configuration Example, on page 122" later in this chapter.

Configuring X.25 Addresses

Configuring an Interface Alias Address

To configure an alias, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 alias x121-address-pattern cud pattern</td>
<td>Enables an alias X.121 address for the interface.</td>
</tr>
</tbody>
</table>
Suppressing or Replacing the Calling Address

To suppress or replace the calling address, use the appropriate command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# x25 suppress-calling-address</code></td>
<td>Suppresses the calling (source) X.121 address in outgoing calls.</td>
</tr>
<tr>
<td><code>Router(config-if)# x25 use-source-address</code></td>
<td>Replaces the calling (source) X.121 address in switched calls.</td>
</tr>
</tbody>
</table>

Suppressing the Called Address

To suppress the called address, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# x25 suppress-called-address</code></td>
<td>Suppresses the called (destination) X.121 address in outgoing calls.</td>
</tr>
</tbody>
</table>

Establishing a Default VC Protocol

To configure either PAD or IP encapsulation treatment of unidentified calls, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config-if)# x25 default {ip</td>
<td>pad}`</td>
</tr>
</tbody>
</table>

Disabling PLP Restarts

To disable PLP restarts, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# no x25 linkrestart</code></td>
<td>Disables packet-level restarts.</td>
</tr>
</tbody>
</table>
Configuring an X.25 Datagram Transport

Configuring Point-to-Point and Multipoint Subinterfaces

To create and configure a subinterface, use the Step 1 command and one or both of the Step 2 commands beginning in global configuration mode:

**SUMMARY STEPS**

1. Router(config)# interface serial type number . subinterface-number [point-to-point | multipoint]
2. Do one of the following:
   - Router(config-subif)# x25 map protocol address [protocol2 address2[... [protocol9 address9]]] x121-address [option]
   - •
   - •
   - • Router(config-subif)# x25 pvc circuit protocol address [protocol2 address2[...[protocol9 address9]]] x121-address [option]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| Router(config)# interface serial type number . subinterface-number [point-to-point | multipoint] | Creates a point-to-point or multipoint subinterface. |
| **Step 2**
| Do one of the following:
| • Router(config-subif)# x25 map protocol address [protocol2 address2[... [protocol9 address9]]] x121-address [option] | Configures an X.25 encapsulation map for the subinterface.
| • • | Establishes an encapsulation PVC for the subinterface. |
| • • | • Router(config-subif)# x25 pvc circuit protocol address [protocol2 address2[...[protocol9 address9]]] x121-address [option] |
Mapping Protocol Addresses to X.121 Addresses

Mapping Datagram Addresses to X.25 Hosts

To establish an X.25 map, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>x25 map protocol address [protocol2 address2 [...[protocol9 address9]]] x121-address [option]</code></td>
<td>Maps one or more host protocol addresses to the X.121 address of the host.</td>
</tr>
</tbody>
</table>

Configuring PAD Access

To restrict PAD connections only to statically mapped X.25 hosts, use the following commands in interface configuration mode:

**SUMMARY STEPS**

1. Router(config-if)# `x25 pad-access`
2. Router(config-if)# `x25 map pad x121-address [option]`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# <code>x25 pad-access</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# <code>x25 map pad x121-address [option]</code></td>
</tr>
</tbody>
</table>

Establishing an Encapsulation PVC

To establish a PVC, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>x25 pvc circuit protocol address [protocol2 address2 [...[protocol9 address9]]] x121-address [option]</code></td>
<td>Sets an encapsulation PVC.</td>
</tr>
</tbody>
</table>
Setting X.25 TCP IP Header Compression

To set up a separate VC for X.25 THC, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# x25 map compressedtcp ip-address [protocol2 address2 ... [protocol9 address9]] x121-address [option]</code></td>
<td>Allows a separate VC for compressed packets.</td>
</tr>
</tbody>
</table>

Configuring X.25 Bridging

To enable the X.25 bridging capability, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# x25 map bridge x121-address broadcast [option]</code></td>
<td>Defines bridging of X.25 frames.</td>
</tr>
</tbody>
</table>

Configuring Additional X.25 Datagram Transport Features

Configuring X.25 Payload Compression

To enable payload compression over X.25, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# x25 map protocol address (protocol2 address2 ... [protocol9 address9]) x121-address compress</code></td>
<td>Enables payload compression over X.25.</td>
</tr>
</tbody>
</table>

Configuring the Encapsulation VC Idle Time

The Cisco IOS software can clear a datagram transport or PAD SVC after a set period of inactivity. Routed SVCs are not timed for inactivity.

To set the time, use the following commands in interface configuration mode:
### SUMMARY STEPS

1. Router(config-if)# x25 idle minutes
2. Router(config-if)# x25 map protocol address[protocol2 address2 [...[protocol9 address9]]] x121-address idle minutes

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config-if)# x25 idle minutes</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# x25 map protocol address[protocol2 address2 [...[protocol9 address9]]] x121-address idle minutes</td>
</tr>
</tbody>
</table>

### Increasing the Number of VCs Allowed

For X.25 datagram transport, you can establish up to eight VCs to one host for each map. To increase the number of VCs allowed, use one or both of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 nvc count</td>
<td>Specifies the default maximum number of SVCs that can be open simultaneously to one host for each map.</td>
</tr>
<tr>
<td>Router(config-if)# x25 map protocol address[protocol2 address2 [...[protocol9 address9]]] x121-address nvc count</td>
<td>Specifies the maximum number of SVCs allowed for a map.</td>
</tr>
</tbody>
</table>

### Configuring the Ignore Destination Time

Upon receiving a Clear for an outstanding datagram transport Call Request, the X.25 encapsulation code immediately tries another Call Request if it has more traffic to send. This action can overrun some X.25 switches. To define the number of minutes for which the Cisco IOS software will prevent calls from going to a previously failed destination, use the following command in interface configuration mode (incoming calls will still be accepted and cancel the timer):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 hold-vc-timer minutes</td>
<td>Configures the ignore destination time.</td>
</tr>
</tbody>
</table>
Establishing the Packet Acknowledgment Policy

To establish the acknowledgment threshold, use the following command in interface configuration mode (the packet acknowledgment threshold also applies to encapsulation PVCs):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 threshold delay-count</td>
<td>Sets data packet acknowledgement threshold.</td>
</tr>
</tbody>
</table>
### Configuring X.25 User Facilities

To set the supported X.25 user facilities options, use one or more of the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>x25 facility cug number</code>&lt;br&gt;or&lt;br&gt;<code>x25 map protocol address [protocol2 address2&lt;br&gt; (...[protocol9 address9])] x121-address cug group-number</code></td>
<td>Selects the closed user group (CUG).</td>
</tr>
<tr>
<td>Router(config-if)# <code>x25 facility packetsize in-size out-size</code>&lt;br&gt;or&lt;br&gt;Router(config-if)# <code>x25 map protocol address [protocol2 address2&lt;br&gt; (...[protocol9 address9])] x121-address packetsize in-size out-size</code>&lt;br&gt;or&lt;br&gt;Router(config-if)# <code>x25 facility windowsize in-size out-size</code>&lt;br&gt;or&lt;br&gt;Router(config-if)# <code>x25 map protocol address [protocol2 address2&lt;br&gt; (...[protocol9 address9])] x121-address windowsize in-size out-size</code></td>
<td>Sets the flow control parameter negotiation values to be requested on outgoing calls.</td>
</tr>
<tr>
<td>Router(config-if)# <code>x25 facility reverse</code>&lt;br&gt;or&lt;br&gt;Router(config-if)# <code>x25 map protocol address [protocol2 address2&lt;br&gt; (...[protocol9 address9])] x121-address reverse</code></td>
<td>Sets reverse charging.</td>
</tr>
<tr>
<td>Router(config-if)# <code>x25 accept-reverse</code>&lt;br&gt;or&lt;br&gt;Router(config-if)# <code>x25 map protocol address [protocol2 address2&lt;br&gt; (...[protocol9 address9])] x121-address accept-reverse</code></td>
<td>Allows reverse charging acceptance.</td>
</tr>
<tr>
<td></td>
<td>Selects throughput class negotiation.</td>
</tr>
</tbody>
</table>
### Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config-if)# x25 facility throughput *in* *out*  
  or  
  Router(config-if)# x25 map protocol address  
  (protocol2 address2 [..(protocol9 address9)])  
  x121-address throughput *in* *out* | DefinestheVCpacketholdqueue size. |
| Router(config-if)# x25 facility transit-delay *milliseconds*  
  or  
  Router(config-if)# x25 map protocol address  
  (protocol2 address2 [..(protocol9 address9)])  
  x121-address transit-delay *milliseconds* | Selectstransitdelay. |
| Router(config-if)# x25 facility roa *name*  
  or  
  Router(config-if)# x25 map protocol address  
  (protocol2 address2 [..(protocol9 address9)])  
  x121-address roa *name* | SetswhichRecognizedOperatingAgency(ROA)to use. |
| Router(config-if)# x25 map protocol address  
  (protocol2 address2 [..(protocol9 address9)])  
  x121-address nuid username password | SetstheCiscostandardnetworkuseridentification. |
| Router(config-if)# x25 map protocol address  
  (protocol2 address2 [..(protocol9 address9)])  
  x121-address nudata string | Setsauser-definednetworkuseridentification,allowingtheformattobedeterminedbyyournetworkadministrator. |

### Defining the VC Packet Hold Queue Size

To define the maximum number of packets that can be held while a VC is unable to send data, use the following command in interface configuration mode. A hold queue size of an encapsulation VC is determined when it is created; the `x25 hold-queue` command does not affect existing VCs. This command also defines the hold queue size of encapsulation PVCs.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 hold-queue <em>packets</em></td>
<td>Defines the VC packet hold queue size.</td>
</tr>
</tbody>
</table>
Restricting Map Usage

An X.25 map can be restricted so that it will not be used to place calls or so that it will not be considered when incoming calls are mapped. To restrict X.25 map usage, use the following commands in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 map protocol address (protocol2 address2 [... [protocol9 address9]]) x121-address no-incoming</td>
<td>Restricts incoming calls from a map.</td>
</tr>
<tr>
<td>Router(config-if)# x25 map protocol address (protocol2 address2 [... [protocol9 address9]]) x121-address no-outgoing</td>
<td>Restricts outgoing calls from a map.</td>
</tr>
</tbody>
</table>

Configuring X.25 Routing

Enabling X.25 Routing

You must enable X.25 routing to use switch VCs. To enable X.25 routing, use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# x25 routing [use-tcp-if-defs]</td>
<td>Enables X.25 routing. The use-tcp-if-defs keyword is used by some routers that receive remote routed calls from older versions of XOT; it might be needed if the originating router cannot be updated to a new software release. This keyword is described in the &quot;Configuring XOT to Use Interface Default Flow Control Values, on page 85&quot; section.</td>
</tr>
</tbody>
</table>
Configuring an X.25 Route

To configure an X.25 route (thus adding the route to the X.25 routing table), use the following command in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# x25 route [position] [selection-options] [modification-options] disposition-options [xot-keepalive-options]</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Purpose</td>
<td></td>
</tr>
</tbody>
</table>

Configures an X.25 route.

- **#position** --Indicate the number of the entry in the route table. For example, #9 indicates the ninth entry from the top. The route table is always searched sequentially from the top, and the first match found will be used.

- **selection-options** --Criteria to define the VCs to which the route will apply. You can match against zero to four of the following optional selection elements:
  - **destination-pattern**
  - **source** source-pattern
  - **dest-ext** nsap-destination-pattern
  - **cud** user-data-pattern

- **modification -options** --Modifications to the source or destination address for address translation. You can use neither, one, or both of the following optional modification elements to change the source or destination address before forwarding the call to the destination:
  - **substitute-source** rewrite-source
  - **substitute-dest** rewrite-destination

**Note** You must include a selection option or a modification option in an x25 route command.

- **disposition -options** --Where the VC will be forwarded or whether it will be cleared. You are required to use one of the following disposition elements:
  - **interface** serial-interface--A route to a specific serial-interface will send the VC to an X.25 service on a synchronous serial interface.
  - **interface** cmns-interface mac
    *mac-address*--A route to a broadcast interface will send the VC to a CMNS partner reachable on a broadcast medium at a specified MAC address. The CMNS interface can be an Ethernet, Token Ring, or FDDI interface.
### Configuring a PVC Switched Between X.25 Interfaces

You can configure an X.25 PVC in the X.25 switching software. As a result, DTE devices that require permanent circuits can be connected to a router acting as an X.25 switch and have a properly functioning connection. X.25 resets will be sent to indicate when the circuit comes up or goes down. Both interfaces must define complementary locally switched PVCs.

### Configuring a Locally Switched PVC

To configure a locally switched PVC, use the following command in interface configuration mod:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>x25 pvc number1 interface type number pvc number2 [option]</code></td>
<td>Configures a locally switched PVC. The command options are <code>packetsize in out</code> and <code>windowsize in out</code>; they allow the flow control values of a PVC to be defined if they differ from the interface defaults.</td>
</tr>
</tbody>
</table>
Ensuring the TCP sessions are Connected

To ensure that TCP sessions remain connected in the absence of XOT traffic, use the following command in global configuration mode. TCP keepalives also inform a router when an XOT SVC session is not active, thus freeing router resources.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# service tcp-keepalives-in</code></td>
<td>Enables received keepalives for TCP sessions to ensure timely detection of a connection failure.</td>
</tr>
<tr>
<td><code>Router(config)# service tcp-keepalives-out</code></td>
<td>Enables sent keepalives for TCP sessions to ensure timely detection of a connection failure.</td>
</tr>
</tbody>
</table>

Configuring X.25 Switching Between PVCs and SVCs

In order for PVC to SVC switching to be configured between two serial interfaces, both interfaces must already be configured for X.25. In addition, X.25 switching must be enabled using the `x25 routing` global configuration command. The PVC interface must be a serial interface configured with X.25 encapsulation. (The SVC interface may use X.25, XOT, or CMNS.) To configure X.25 switching between PVCs and SVCs, use the following command in interface configuration mode. X.25 switching must already be configured on the interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# x25 pvc number1 svc x121-address [flow-control-options] [call-control-options]</code></td>
<td>Configures PVC traffic to be forwarded to an SVC.</td>
</tr>
</tbody>
</table>

Displaying the Switched Information

To display information about the switched PVC to SVC circuit, use the following command in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# show x25 vc [lcn ]</code></td>
<td>Displays information about the active SVCs and PVCs.</td>
</tr>
</tbody>
</table>
Configuring Additional X.25 Routing Features

Configuring X.25 Load Balancing

Before enabling X.25 load balancing, you must activate the X.25 routing software and configure the interfaces participating in the hunt group for X.25 encapsulation. To configure X.25 load balancing, use the following commands beginning in global configuration mode:

**SUMMARY STEPS**

1. Router(config)# x25 routing
2. Router(config)# encapsulation x25
3. Router(config)# x25 hunt-group name {rotary | vc-count}
4. Router(config)# x25 route [#position] [selection-options] [modification-options] disposition-options [xot-keepalive-options]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# x25 routing</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# encapsulation x25</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# x25 hunt-group name {rotary</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# x25 route [#position] [selection-options] [modification-options] disposition-options [xot-keepalive-options]</td>
</tr>
</tbody>
</table>

**What to Do Next**

For examples of configuring X.25 load balancing, see the section "X.25 Load Balancing Examples, on page 108" later in this chapter.

**Verifying X.25 Load Balancing**

To verify X.25 load balancing, use the following command in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show x25 hunt-group</td>
<td>Displays hunt groups and detailed interface statistics and distribution methods.</td>
</tr>
</tbody>
</table>
Configuring XOT to Use Interface Default Flow Control Values

To configure this behavior, use the following command when enabling X.25 routing in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# x25 routing [tcp-use-if-defs]</td>
<td>Enables X.25 routing and optionally modifies XOT source of unencoded flow control values.</td>
</tr>
</tbody>
</table>

Configuring Calling Address Interface-Based Insertion and Removal

To configure an input interface-based route statement into the X.121 address routing table, use either of the following commands beginning in global configuration command mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# x25 route input-interface</td>
<td>Inserts an input interface-based route statement into the routing table.</td>
</tr>
<tr>
<td>interface source source-pattern substitute-source [continue]</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>Insert simplest input interface-based statement into the routing table.</td>
</tr>
<tr>
<td>Router(config)# x25 route input-interface</td>
<td>continue → (Optional) Performs address substitution without address forwarding. That is, it executes the address substitution instructions in each statement, but then stops short of actual call switching, thereby postponing the actual switching process until a matching route statement with a disposition other than continue is reached. The continue keyword is most useful when you switch calls among four or more routes. If your network has three or fewer routes, the continue keyword will not save any steps.</td>
</tr>
<tr>
<td>interface disposition</td>
<td></td>
</tr>
</tbody>
</table>

Verifying Interface-Based Calling Address Insertion

SUMMARY STEPS

1. To display the routes assigned by the x25 route command, use the show x25 route command in EXEC mode. A sample display follows.

DETAILED STEPS

To display the routes assigned by the x25 route command, use the show x25 route command in EXEC mode. A sample display follows.

Router# show x25 route
Substituting Addresses in an X.25 Route

When interconnecting two separate X.25 networks, you must sometimes provide address substitution for routes. The `x25 route` command supports modification of X.25 source and destination addresses.

**Note**
Address substitution is available for all applications of X.25 routes.

To modify addresses, use either or both of the following commands in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `Router(config)# x25 route [#position]
destination-pattern {source source-pattern | substitute-source rewrite-source} interface interface number` | Modifies the X.25 source address. |
| `Router(config)# x25 route [#position]
destination-pattern {source source-pattern | substitute-dest rewrite-dest} interface interface number` | Modifies the X.25 destination address. |

Configuring XOT Alternate Destinations

Routes to XOT hosts can be configured with alternate destination hosts. On routing a call, XOT will try each XOT destination host in sequence; if the TCP connection attempt fails, the next destination will be tried. Up to six XOT destination addresses can be entered.

**Note**
Because of TCP timings, it can take up to 50 seconds to try an alternate route.

Example:

```
Match Substitute Route to
1 dest ^01 input-int Serial0 Sub-dest \1 Sub-source 00\0 Serial1
```
To configure an XOT route with alternate destinations (thus adding it to the X.25 routing table), use the following command in global configuration mode (the sequence of alternate destination XOT host addresses is added to the x25 route command using the xot keepalive-options):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# x25 route [destination-pattern xot ip-address [ip-address2 ... [ip-address6]]]</td>
<td>Configures an XOT route. Optionally defines alternate XOT destination hosts.</td>
</tr>
</tbody>
</table>

### Configuring DNS-Based X.25 Routing

To configure DNS-based X.25 routing, use the following command in global configuration mode. This task assumes that you already have XOT and DNS configured and enabled and that the route table in the DNS server has been correctly organized.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# x25 route x121address xot dns pattern</td>
<td>Configures XOT routing to search for IP addresses in DNS.</td>
</tr>
</tbody>
</table>

For an example of configuring DNS-based X.25 routing, see the section **DNS-Based X.25 Routing Example**, on page 112 later in this chapter.

### Verifying DNS-Based X.25 Routing

**SUMMARY STEPS**

1. To verify that the DNS-Based X.25 Routing feature is configured, use the `show x25 route` command in EXEC mode:

2. If DNS-based X.25 routing is not functioning correctly, check that your DNS is configured properly and operating correctly as follows:

**DETAILED STEPS**

**Step 1**

To verify that the DNS-Based X.25 Routing feature is configured, use the `show x25 route` command in EXEC mode:

**Example:**

```
Router# show x25 route
Match Substitute Route to
```
Step 2  If DNS-based X.25 routing is not functioning correctly, check that your DNS is configured properly and operating correctly as follows:

- Use the `show hosts` command to display temporary entries cached by DNS at the router.
- Use `debug x25 events` and `debug domain` commands to display current data flow. See the *Cisco IOS Debug Command Reference* for more information.

---

**Verifying DNS-Based X.25 Mnemonic Resolution**

**SUMMARY STEPS**

1. To verify DNS-based X.25 mnemonic resolution, use the `show hosts` command in EXEC mode. All permanent (perm) entries of type X.121 should be removed from the route table for DNS-based X.25 routing to work.

**DETAILED STEPS**

To verify DNS-based X.25 mnemonic resolution, use the `show hosts` command in EXEC mode. All permanent (perm) entries of type X.121 should be removed from the route table for DNS-based X.25 routing to work. In the following example, the mnemonic "destination_host" is showing itself to be a permanent entry:

```
Example:
Router# show hosts
Default domain is home.com
Name/address lookup uses domain service
Name servers are 10.1.1.40

Host Flags Age Type Address(es)
destination_host (perm, OK) 1 X.121 222
```

---

**Configuring X.25 over Frame Relay (Annex G)**

To configure an Annex G connection (assuming you have already configured a Frame Relay connection on your router), use the following commands beginning in global configuration mode:
SUMMARY STEPS

1. Router(config)# x25 profile name
2. Router(config)# interface type number
3. Router(config-if)# encapsulation frame-relay
4. Router(config-if)# frame-relay interface-dlci
5. Router(config-fr-dlci)# x25-profile name
6. Router(config)# x25 routing
7. Router(config)# x25 route number interface serial-interface dlci number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# x25 profile name</td>
<td>Creates the X.25 profile.</td>
</tr>
<tr>
<td>Step 2 Router(config)# interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# encapsulation frame-relay</td>
<td>Activates Frame Relay encapsulation on each interface that will be using Annex G connections.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# frame-relay interface-dlci</td>
<td>Configures the Frame Relay DLCI.</td>
</tr>
<tr>
<td>Step 5 Router(config-fr-dlci)# x25-profile name</td>
<td>Assigns the named X.25 profile to the DLCI.</td>
</tr>
<tr>
<td>Step 6 Router(config)# x25 routing</td>
<td>(Optional) Enables X.25 routing of outgoing calls.</td>
</tr>
<tr>
<td>Step 7 Router(config)# x25 route number interface serial-interface dlci number</td>
<td>(Optional) Assigns an X.25 route for the DLCI on that interface. Required if you want the router to accept switched calls, as well as originating them.</td>
</tr>
</tbody>
</table>

Configuring CMNS Routing

Enabling CMNS on an Interface

To enable CMNS on a nonserial interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# cmns enable</td>
<td>Enables CMNS.</td>
</tr>
</tbody>
</table>
Configuring a Route to a CMNS Host

Once CMNS is enabled on a nonserial interface, the router can forward calls over that medium by configuring `x25 route` commands that define the MAC address of each CMNS host that can be reached. To define routes to CMNS hosts, use the following command--plus pattern and character match options for the `x25 route` command--in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# x25 route pattern-character match options interface cmns-interface mac mac-address</td>
<td>Defines route to CMNS host.</td>
</tr>
</tbody>
</table>

Configuring Priority Queueing or Custom Queueing for X.25

To configure priority queueing and custom queueing for X.25, perform the following steps:

**SUMMARY STEPS**

1. Perform the standard priority and custom queueing tasks *except* the task of assigning a priority or custom group to the interface, as described in the chapters "Configuring Priority Queueing" and "Configuring Custom Queueing" in the *Cisco IOS Quality of Service Solutions Configuration Guide*.
2. Perform the standard X.25 encapsulation tasks, as specified in the section "Configuring an X.25 Datagram Transport, on page 72" earlier in this chapter.
3. Assign either a priority group or a custom queue to the interface, as described in the chapters "Configuring Priority Queueing" and "Configuring Custom Queueing" in the *Cisco IOS Quality of Service Solutions Configuration Guide*.

**DETAILED STEPS**

**Step 1**
Perform the standard priority and custom queueing tasks *except* the task of assigning a priority or custom group to the interface, as described in the chapters "Configuring Priority Queueing" and "Configuring Custom Queueing" in the *Cisco IOS Quality of Service Solutions Configuration Guide*.

**Step 2**
Perform the standard X.25 encapsulation tasks, as specified in the section "Configuring an X.25 Datagram Transport, on page 72" earlier in this chapter.

**Step 3**
Assign either a priority group or a custom queue to the interface, as described in the chapters "Configuring Priority Queueing" and "Configuring Custom Queueing" in the *Cisco IOS Quality of Service Solutions Configuration Guide*.
Configuring X.25 Closed User Groups

Configuring X.25 CUG Service Access and Properties

To configure X.25 CUG service, access, and properties, use the following commands beginning in global configuration mode:

**SUMMARY STEPS**

1. Router(config)# interface number
2. Router(config-if)# encapsulation x25 dce
3. Router(config-if)# x25 subscribe cug-service [incoming-access | outgoing-access]
4. Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming | no-outgoing | preferential]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface number</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# encapsulation x25 dce</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# x25 subscribe cug-service [incoming-access</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming</td>
</tr>
</tbody>
</table>

**Configuring a POP with No CUG Access**

To configure a POP with no CUG access, use the following commands beginning in global configuration mode:

**SUMMARY STEPS**

1. Router(config)# interface number
2. Router(config-if)# encapsulation x25 dce
3. Router(config-if)# x25 subscribe cug-service incoming-access outgoing-access
# Configuring X.25 Closed User Groups

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface number</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# encapsulation x25 dce</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# x25 subscribe cug-service incoming-access outgoing-access</td>
</tr>
</tbody>
</table>

## Configuring a POP with Access Restricted to One CUG

To configure a POP with access restricted to one CUG, use the following commands beginning in global configuration mode:

### SUMMARY STEPS

1. Router(config)# interface number
2. Router(config-if)# encapsulation x25 dce
3. Router(config-if)# x25 subscribe cug-service
4. Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming | no-outgoing | preferential]

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface number</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# encapsulation x25 dce</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# x25 subscribe cug-service</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming</td>
</tr>
</tbody>
</table>

## Configuring a POP with Multiple CUGs and No Public Access

To configure a POP with multiple CUGs and no public access, use the following commands beginning in global configuration mode:
**SUMMARY STEPS**

1. Router(config)# interface number
2. Router(config-if)# encapsulation x25 dce
3. Router(config-if)# x25 subscribe cug-service
4. Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming | no-outgoing | preferential]
5. Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming | no-outgoing | preferential]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# interface number</td>
<td>Selects the interface to be configured.</td>
</tr>
<tr>
<td>Router(config-if)# encapsulation x25 dce</td>
<td>Enables X.25 DCE network operation.</td>
</tr>
<tr>
<td>Router(config-if)# x25 subscribe cug-service</td>
<td>Sets default CUG behavior on an X.25 DCE interface.</td>
</tr>
<tr>
<td>Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming</td>
<td>no-outgoing</td>
</tr>
<tr>
<td>Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming</td>
<td>no-outgoing</td>
</tr>
</tbody>
</table>

**Configuring a POP with Multiple CUGs and Public Access**

To configure a POP with multiple CUGs and public access, use the following commands beginning in global configuration mode:

**SUMMARY STEPS**

1. Router(config)# interface number
2. Router(config-if)# encapsulation x25 dce
3. Router(config-if)# x25 subscribe cug-service incoming-access outgoing-access
4. Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming | no-outgoing | preferential]
5. Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming | no-outgoing | preferential]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface number</td>
<td>Selects the interface to be configured.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# encapsulation x25 dce</td>
<td>Enables X.25 DCE network operation.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# x25 subscribe cug-service incoming-access outgoing-access</td>
<td>Permits incoming and outgoing CUG access on an X.25 DCE interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming</td>
<td>no-outgoing</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# x25 subscribe local-cug number network-cug number [no-incoming</td>
<td>no-outgoing</td>
</tr>
</tbody>
</table>

Configuring CUG Selection Facility Suppression

Configuring CUG Selection Facility Suppression on an Interface

To configure X.25 CUG selection facility suppression on an interface, use the following commands beginning in global configuration mode:

SUMMARY STEPS

1. Router(config)# interface type number
2. Router(config-if)# encapsulation x25 dce
3. Router(config-if)# x25 subscribe cug-service [incoming-access | outgoing-access] [suppress preferential | suppress all]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type number</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# encapsulation x25 dce</td>
<td>Specifies that a serial interface will operate as an X.25 DCE device.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# x25 subscribe cug-service [incoming-access</td>
<td>outgoing-access] [suppress preferential</td>
</tr>
</tbody>
</table>
Configuring CUG Selection Facility Suppression on an X.25 Profile

To configure X.25 CUG selection facility suppression on an X.25 profile, use the following commands beginning in global configuration mode:

**SUMMARY STEPS**

1. `Router(config)# x25 profile name dce`
2. `Router(config-x25)# x25 subscribe cug-service [incoming-access | outgoing-access] [suppress preferential | suppress all]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>Router(config)# x25 profile name dce</code> Configures an X.25 profile and specifies a DCE station type.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>`Router(config-x25)# x25 subscribe cug-service [incoming-access</td>
</tr>
</tbody>
</table>

**Verifying X.25 CUG Service**

To show current settings of the X.25 CUGs feature, use the `show x25 cug` (either keyword `local-cug` or `network-cug` must be designated) command in EXEC mode. In the following example local CUGs 100, 200, 300, and 5000 are shown mapped to their related network CUGs 11, 22, 33, and 55, respectively, all with incoming and outgoing public access, and with network CUG 55 being set as the preferential:

```
Router# show x25 cug local-cug
X.25 Serial0, 4 CUGs subscribed with incoming and outgoing public access
local-cug 100 <-> network-cug 11
local-cug 200 <-> network-cug 22
local-cug 300 <-> network-cug 33
local-cug 5000 <-> network-cug 55, preferential
```

**Troubleshooting Tips for X.25 CUG Service**

You can use `debug x25 events` command to verify if and when CUG calls are being made and how the CUGs are behaving. The following example shows messages concerning a rejection of a call by a DCE because CUG 40 is not configured at the DCE interface, either by design or by administrative mistake:

```
Router# debug x25 events
00:48:33:Serial1:X.25 I R1 Call (14) 8 lci 1024
00:48:33: From (3):111 To (3):444
00:48:33: Facilities:(2)
00:48:33: Closed User Group (basic):40
00:48:33: Call User Data (4):0x01000000 (pad)
00:48:33:X.25 Incoming Call packet, Closed User Group (CUG) protection, selected network CUG not subscribed
```
Configuring X.25 and LAPB

Configuring DDN or BFE X.25

Enabling DDN X.25

Both DCE and DTE operation causes the Cisco IOS software to specify the Standard Service facility in the Call Request packet, which notifies the PSNs to use Standard Service. To enable DDN X.25, use one of the following commands in interface configuration mode, as appropriate for your network:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# encapsulation x25 ddn</td>
<td>Sets DDN X.25 DTE operation.</td>
</tr>
<tr>
<td>Router(config-if)# encapsulation x25 dce ddn</td>
<td>Sets DDN X.25 DCE operation.</td>
</tr>
</tbody>
</table>

Defining IP Precedence Handling

By default, the DDN X.25 software opens one VC for all types of service values. To enable the precedence-sensitivity feature, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 ip-precedence</td>
<td>Allows a new VC based on the type of service (TOS) field.</td>
</tr>
</tbody>
</table>

Configuring Blacker Front End X.25

To set BFE encapsulation on the router attached to a BFE device, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# encapsulation x25 bfe</td>
<td>Sets BFE encapsulation on the router attached to a BFE device.</td>
</tr>
</tbody>
</table>
Configuring X.25 Remote Failure Detection

X.25 Remote Failure Detection with IP Static Routes

To configure X.25 remote failure detection with IP static routes, use the following commands beginning in global configuration mode:

**SUMMARY STEPS**

1. `Router(config)# interface number`
2. `Router(config-if)# encapsulation x25`
3. `Router(config-if)# x25 address x121-address`
4. `Router(config-if)# interface subinterface number point-to-point`
5. `Router(config-subif)# ip address address mask`
6. `Router(config-subif)# x25 map ipaddress x121address`
7. `Router(config-subif)# x25 retry interval seconds attempts count`
8. `Router(config)# ip route address mask serial subinterface number weight`
9. `Router(config)# ip route address mask serial nextsubinterface number weight`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters specified interface configuration mode.</td>
</tr>
<tr>
<td><code>Router(config)# interface number</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables X.25 encapsulation on the interface.</td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation x25</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Sets X.121 address of the network interface.</td>
</tr>
<tr>
<td><code>Router(config-if)# x25 address x121-address</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enters specified subinterface and enables point-to-point for it.</td>
</tr>
<tr>
<td><code>Router(config-if)# interface subinterface number point-to-point</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Creates IP address and mask for the subinterface.</td>
</tr>
<tr>
<td><code>Router(config-subif)# ip address address mask</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Maps IP address to an X.121 address.</td>
</tr>
<tr>
<td><code>Router(config-subif)# x25 map ipaddress x121address</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Enables the X.25 retry option on the subinterface.</td>
</tr>
<tr>
<td><code>Router(config-subif)# x25 retry interval seconds attempts count</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Configures static route from point-to-point interface specified to a destination.</td>
</tr>
<tr>
<td><code>Router(config)# ip route address mask serial subinterface number weight</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Configures static route from next point-to-point interface specified for the same destination.</td>
</tr>
<tr>
<td><code>Router(config)# ip route address mask serial nextsubinterface number weight</code></td>
<td></td>
</tr>
</tbody>
</table>
X.25 Remote Failure Detection and the Backup Interface

To configure X.25 remote failure detection and create a backup interface, use the following commands beginning in global configuration mode. Note that IP static routes need not be configured because this backup route is being only configured as a secondary route.

SUMMARY STEPS

1. Router(config)# interface number
2. Router(config-if)# encapsulation x25
3. Router(config-if)# x25 address x121-address
4. Router(config)# interface subinterface number point-to-point
5. Router(config-subif)# ip address address mask
6. Router(config-subif)# x25 map ipaddress x121address
7. Router(config-subif)# x25 retry interval seconds attempts count
8. Router(config-subif)# backup interface serial number
9. Router(config)# interface number
10. Router(config-if)# encapsulation x25
11. Router(config-if)# x25 address x121-address
12. Router(config-if)# ip address address mask
13. Router(config-if)# x25 map ipaddress x121address

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> Router(config)# interface number</td>
<td>Enters specified interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> Router(config-if)# encapsulation x25</td>
<td>Enables X.25 encapsulation on the interface.</td>
</tr>
<tr>
<td><strong>Step 3</strong> Router(config-if)# x25 address x121-address</td>
<td>Sets X.121 address of the network interface.</td>
</tr>
<tr>
<td><strong>Step 4</strong> Router(config)# interface subinterface number point-to-point</td>
<td>Enters specified subinterface and configures point-to-point for it.</td>
</tr>
<tr>
<td><strong>Step 5</strong> Router(config-subif)# ip address address mask</td>
<td>Creates IP address and mask for the subinterface.</td>
</tr>
<tr>
<td><strong>Step 6</strong> Router(config-subif)# x25 map ipaddress x121address</td>
<td>Maps IP address to an X.121 address.</td>
</tr>
<tr>
<td><strong>Step 7</strong> Router(config-subif)# x25 retry interval seconds attempts count</td>
<td>Enables the X.25 retry option on the subinterface.</td>
</tr>
<tr>
<td><strong>Step 8</strong> Router(config-subif)# backup interface serial number</td>
<td>Configures specified interface as the backup.</td>
</tr>
<tr>
<td><strong>Step 9</strong> Router(config)# interface number</td>
<td>Enters specified interface configuration mode to configure the backup.</td>
</tr>
<tr>
<td><strong>Step 10</strong> Router(config-if)# encapsulation x25</td>
<td>Enables X.25 encapsulation on the interface.</td>
</tr>
</tbody>
</table>
Verifying X.25 Remote Failure Detection

SUMMARY STEPS

1. To verify X.25 remote failure detection, use the `show interfaces serial` command on the interface with the `x25 retry` command configured. The last line in the following output shows the X.25 retry mechanism currently in action on subinterface 1.1, which is currently down—as indicated by the "(retry in progress)" statement—and which has "tried" one out of its possible 100 retry attempts.

2. To verify which route is currently in use by IP, use the `show ip route` command.

3. The `debug x25 events` command can be also activated, so that you can see a call being attempted by the X.25 retry mechanism every configured interval.

DETAILED STEPS

Step 1
To verify X.25 remote failure detection, use the `show interfaces serial` command on the interface with the `x25 retry` command configured. The last line in the following output shows the X.25 retry mechanism currently in action on subinterface 1.1, which is currently down—as indicated by the "(retry in progress)" statement—and which has "tried" one out of its possible 100 retry attempts.

Example:

```
Router# show interfaces serial1
Serial1 is up, line protocol is up
 Hardware is QUICC Serial
 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation X25, loopback not set
 X.25 DTE, address 11111, state R1, modulo 8, timer 0
 Defaults:idle VC timeout 0
 cisco encapsulation
 input/output window sizes 2/2, packet sizes 128/128
 Timers:T20 180, T21 200, T22 180, T23 180
 Channels:Incoming-only none, Two-way 1-1024, Outgoing-only none
 RESTARTs 2/0 CALLs 0+0/0+0/0+0 DIAGs 0/0
 Interface Serial1.1:retry-interval 5, attempts 100, tried 1 (retry in progress)
```

Step 2
To verify which route is currently in use by IP, use the `show ip route` command.

Step 3
The `debug x25 events` command can be also activated, so that you can see a call being attempted by the X.25 retry mechanism every configured interval.
Creating X.29 Access Lists

Creating an X.29 Access List

To specify the access conditions, use the following command beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# x29 access-list access-list-number {deny</td>
<td>permit} x121-address</td>
</tr>
</tbody>
</table>

Applying an Access List to a Virtual Terminal Line

To apply an access list to a virtual line, use the following command in line configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# access-class access-list-number in</td>
<td>Restricts incoming and outgoing connections between a particular vty (into a Cisco access server) and the addresses in an access list.</td>
</tr>
</tbody>
</table>

Creating an X.29 Profile Script

You can create an X.29 profile script for use by the translate command. When an X.25 connection is established, the protocol translator then acts as if an X.29 Set Parameter packet had been sent that contained the parameters and values set by this command.

To create an X.29 profile script, use the following command beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# x29 profile {default</td>
<td>name} parameter : value {parameter : value}</td>
</tr>
</tbody>
</table>

For an example of a profile script, see the section X.29 Profile Script Example, on page 125 at the end of this chapter.
## Monitoring and Maintaining LAPB and X.25

To monitor and maintain X.25 and LAPB, use any of the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Router# clear x25</strong> *(serial number</td>
<td>cmns-interface mac-address)* <em>(vc-number)</em></td>
</tr>
<tr>
<td><strong>Router# clear xot remote</strong> ip-address port local ip-address port</td>
<td>Clears an XOT SVC or resets an XOT PVC.</td>
</tr>
<tr>
<td><strong>Router# show cmns</strong> [type number ]</td>
<td>Displays CMNS information.</td>
</tr>
<tr>
<td><strong>Router# show interfaces serial</strong> number</td>
<td>Displays operation statistics for an interface.</td>
</tr>
<tr>
<td><strong>Router# show llc2</strong></td>
<td>Displays CMNS connections over LLC2.</td>
</tr>
<tr>
<td><strong>Router# show x25 interface</strong> *(serial number</td>
<td>cmns-interface mac mac-address)*</td>
</tr>
<tr>
<td><strong>Router# show x25 map</strong></td>
<td>Displays the protocol-to-X.121 address map.</td>
</tr>
<tr>
<td><strong>Router# show x25 remote-red</strong></td>
<td>Displays the one-to-one mapping of the IP addresses of the host and the IP addresses of the remote BFE device.</td>
</tr>
<tr>
<td><strong>Router# show x25 route</strong></td>
<td>Displays routes assigned by the <em>x25 route</em> command.</td>
</tr>
<tr>
<td><strong>Router# show x25 services</strong></td>
<td>Displays information about X.25 services.</td>
</tr>
<tr>
<td><strong>Router# show x25 vc</strong> [vc-number]</td>
<td>Displays details of active VCs.</td>
</tr>
<tr>
<td><strong>Router# show x25 xot</strong> <em>(local ip-address [port port])</em> <em>(remote ip-address [port port])</em></td>
<td>Displays information for all XOT VCs or, optionally, for VCs that match a specified set of criteria.</td>
</tr>
</tbody>
</table>
X.25 and LAPB Configuration Examples

Typical LAPB Configuration Example

In the following example, the frame size (N1), window size (k), and maximum retransmission (N2) parameters retain their default values. The `encapsulation` interface configuration command sets DCE operation to carry a single protocol, IP by default. The `lapb t1` interface configuration command sets the retransmission timer to 4,000 milliseconds (4 seconds) for a link with a long delay or slow connecting DTE device.

```plaintext
interface serial 3
 encapsulation lapb dce
 lapb t1 4000
```

Transparent Bridging for Multiprotocol LAPB Encapsulation Example

The following example configures transparent bridging for multiprotocol LAPB encapsulation:

```plaintext
no ip routing
!
interface Ethernet 1
 no ip address
 no mop enabled
 bridge-group 1
!
interface serial 0
 no ip address
 encapsulation lapb multi
 bridge-group 1
!
bridge 1 protocol ieee
```

Typical X.25 Configuration Example

The following example shows the complete configuration for a serial interface connected to a commercial X.25 PDN for routing the IP protocol. The IP subnetwork address 172.25.9.0 has been assigned for the X.25 network.

When you are routing IP over X.25, you must treat the X.25 network as a single IP network or subnetwork. Map entries for routers that have addresses on subnetworks other than the one on which the IP address of the interface is stored are ignored by the routing software. Additionally, all routers using the subnet number must have map entries for all other routers. Moreover, using the broadcast option with dynamic routing can result in significantly larger traffic loads, requiring a larger hold queue, larger window sizes, or multiple VCs.

```plaintext
interface serial 2
 ip address 172.25.9.1 255.255.255.0
 !
 ! The "bandwidth" command is not part of the X.25
```
configuration; it is especially important to understand that it does not
have any connection with the X.25 entity of the same name.
"bandwidth" commands are used by IP routing processes (currently only IGRP)
to determine which lines are the best choices for traffic.
Since the default is 1544 Kbaud, and X.25 service at that rate is not generally
available, most X.25 interfaces that are being used with IGRP in a
real environment will have "bandwidth" settings.

This is a 9.6 Kbaud line:

bandwidth 10
You must specify an X.121 address to be assigned to the X.25 interface by the PDN.
x25 address 31370054065
The following Level 3 parameters have been set to match the network.
You generally need to change some Level 3 parameters, most often
those listed below. You might not need to change any Level 2
parameters, however.
x25 htc 32
These Level 3 parameters are default flow control values; they need to
match the PDN defaults. The values used by an SVC are negotiable on a per-call basis:
x25 win 7
x25 wout 7
x25 ips 512
x25 ops 512
The following commands configure the default behavior for our encapsulation
SVCs:
x25 idle 5
x25 nvc 2
The following commands configure the X.25 map. If you want to exchange
routing updates with any of the routers, they would need
"broadcast" flags.
If the X.25 network is the only path to the routers, static routes are
generally used to save on packet charges. If there is a redundant
path, it might be desirable to run a dynamic routing protocol.
x25 map IP 172.25.9.3 31370019134 ACCEPT-REVERSE
ACCEPT-REVERSE allows collect calls
x25 map IP 172.25.9.2 31370053087
If the PDN cannot handle fast back-to-back frames, use the
"transmitter-delay" command to slow down the interface.
transmitter-delay 1000

VC Ranges Example

The following example sets the VC ranges of 5 to 20 for incoming calls only (from the DCE to the DTE) and
25 to 1024 for either incoming or outgoing calls. It also specifies that no VCs are reserved for outgoing calls
(from the DTE to the DCE). Up to four permanent VCs can be defined on VCs 1 through 4.
x25 lic 5
x25 hic 20
x25 ltc 25
**X.25 Failover Example**

In the following example, X.25 failover is configured on a network that is also configured for Annex G. If data-link connection identifier (DLCI) 13 or DLCI 14 on serial interface 1/0 goes down, dialer interface 1 will serve as the secondary interface. After DLCI 13 or 14 comes back up and remains up for 20 seconds, dialer interface 1 will reset, sending all calls back to the primary interface.

```plaintext
interface serial1/0
 encapsulation frame-relay
 frame-relay interface-dlci 13
 x25-profile frame1
 exit
 frame-relay interface-dlci 14
 x25-profile frame1
 exit
interface dialer1
 encapsulation x25
 exit
x25 route ^1234 interface serial1/0 dlci 13
x25 route ^1234 interface serial1/0 dlci 14
x25 route ^1234 interface dialer1
!
x25 profile frame1 dte
!
x25 fail-over 20 interface dialer1
exit
```

**PVC Switching on the Same Router Example**

In the following example, a PVC is connected between two serial interfaces on the same router. In this type of interconnection configuration, the destination interface must be specified along with the PVC number on that interface. To make a working PVC connection, two commands must be specified, each pointing to the other.

```plaintext
interface serial 0
 encapsulation x25
 x25 ltc 5
 x25 pvc 1 interface serial 1 pvc 4
!
interface serial 1
 encapsulation x25
 x25 ltc 5
 x25 pvc 4 interface serial 0 pvc 1
```

**X.25 Route Address Pattern Matching Example**

The following example shows how to route X.25 calls with addresses whose first four Data Network Identification Code (DNIC) digits are 1111 to interface serial 3. This example also shows how to change the DNIC field to 2222 in the addresses presented to equipment connected to that interface. The $1$ in the rewrite pattern indicates the portion of the original address matched by the digits following the 1111 DNIC.

```plaintext
x25 route ^1111(.*) substitute-dest 2222$1 interface serial 3
```
The figure below shows a more contrived command intended to illustrate the power of the rewriting scheme.

**Figure 11: X.25 Route Address Pattern Matching Example**

```
x25 route ^(...) ... (...) (...) ($) substitute-decl \2|\3|\4 interface serial 0
```

The command in the figure above causes all X.25 calls with 14-digit called addresses to be routed through interface serial 0. The incoming DNIC field is moved to the end of the address. The fifth, sixth, ninth, and tenth digits are deleted, and the thirteenth and fourteenth are moved before the eleventh and twelfth.

### X.25 Routing Examples

The following examples illustrate how to enable the X.25 switch service and how to configure a router on a Tymnet/PAD switch to accept and forward calls.

The first example shows enabling X.25 switching and entering routes in the X.25 routing table:

```
! Enable X.25 forwarding
x25 routing
! Enter routes into the table. Without a positional parameter, entries
! are appended to the end of the table
x25 route ^100$ interface serial 0
x25 route 100 cud ^pad$ interface serial 2
x25 route 100 interface serial 1
x25 route ^3306 interface serial 3
x25 route .* ip 10.2.0.2
```

The routing table forwards calls for X.121 address 100 out interface serial 0. Otherwise, calls are forwarded onto serial 1 if the X.121 address contains 100 anywhere within it and contains no call user data (CUD), or if the CUD is not the string "pad." If the X.121 address contains the digits 100 and the CUD is the string "pad," the call is forwarded onto serial 2. All X.121 addresses that do not match the first three routes are checked for a DNIC of 3306 as the first four digits. If they do match, they are forwarded over serial 3. All other X.121 addresses will match the fifth entry, which is a match-all pattern and will have a TCP connection established to the IP address 10.2.0.2. The router at 10.2.0.2 will then handle the call according to its configuration.

This second example configures a router that sits on a Tymnet/PAD switch to accept calls and have them forwarded to a DEC VAX system. This feature permits running an X.25 network over a generalized existing IP network, thereby making another physical line for one protocol unnecessary. The router positioned next to the DEC VAX system is configured with X.25 routes, as follows:

```
x25 route vax-x121-address interface serial 0
x25 route .* ip cisco-on-tymnet-ipaddress
```

These commands route all calls to the DEC VAX X.121 address out to serial 0, where the VAX is connected running PSI. All other X.121 addresses are forwarded to the "cisco-on-tymnet" address through its IP address. As a result, all outgoing calls from the VAX are sent to "cisco-on-tymnet" for further processing.

On the router named "cisco-on-tymnet", you enter these commands:

```
x25 route vax-x121-address ip cisco-on-vax
x25 route .* interface serial 0
```
These commands force all calls with the VAX X.121 address to be sent to the router that has the VAX connected to it. All other calls with X.121 addresses are forwarded out to Tymnet. If Tymnet can route them, a Call Accepted packet is returned, and everything proceeds normally. If Tymnet cannot handle the calls, it clears each call and the Clear Request packet is forwarded back toward the VAX.

**PVC Used to Exchange IP Traffic Example**

The following example, illustrated in the figure below, demonstrates how to use the PVC to exchange IP traffic between router X and router Y.

*Figure 12: Establishing an IP Encapsulation PVC Through an X.25 Network*

**Configuration for Router X**

```
interface serial 2
 ip address 172.20.1.3 255.255.255.0
 x25 pvc 4 ip 172.20.1.4
```

**Configuration for Router Y**

```
interface serial 3
 ip address 172.20.1.4 255.255.255.0
 x25 pvc 3 ip 172.20.1.3
```

In this example, the PDN has established a PVC through its network, connecting PVC number 3 of access point A to PVC number 4 of access point B. On router X, a connection is established between router X and router Y’s IP address, 172.20.1.4. On router Y, a connection is established between router Y and router X’s IP address, 172.20.1.3.

**Point-to-Point Subinterface Configuration Example**

The following example creates a point-to-point subinterface, maps IP and AppleTalk to a remote host, and creates an encapsulating PVC for DECnet to the same remote host, identified by the X.121 address in the commands:

```
interface Serial0.1 point-to-point
 x25 map ip 172.20.170.90 170090 broadcast
 x25 map appletalk 4.50 170090 broadcast
 x25 pvc 1 decnet 1.2 170090 broadcast
```

**Simple Switching of a PVC over XOT Example**

In the following simple example, a connection is established between two PVCs across a LAN. Because the connection is remote (across the LAN), the XOT service is used. This example establishes a PVC between
router X, serial 0, PVC 1 and router Y, serial 1, PVC 2. Keepalives are enabled to maintain connection notification. The figure below provides a visual representation of the configuration.

**Figure 13: X.25 PVC Connection**

**Configuration for Router X**

```plaintextservice tcp-keepalives-in
service tcp-keepalives-out
interface serial 0
 x25 pvc 1 xot 172.20.1.2
interface serial 1
```

**Configuration for Router Y**

```plaintextservice tcp-keepalives-in
service tcp-keepalives-out
interface serial 1
 x25 pvc 2 xot 172.20.1.1
```

**PVC Switching over XOT Example**

In the more complex example shown in the figure below, the connection between points A and B is switched, and the connections between point C and points A and B are made using XOT. Keepalives are enabled to maintain connection notification.

**Figure 14: PVC Switching over XOT**

**Configuration for Router X**

```plaintextservice tcp-keepalives-in
service tcp-keepalives-out
interface ethernet 0
 ip address 172.20.1.1 255.255.255.0
```
X.25 Load Balancing Examples

For examples of X.25 load balancing, see the following sections:

X.25 Load Balancing Using VC-Count Distribution Method Example

In the following example, the vc-count distribution method is used on two serial interfaces that have different numbers of VCs. Assuming that no sessions are being terminated at this time, the first 450 calls will be sent to Serial1, and subsequent calls will alternate between Serial0 and Serial1 until the interfaces are full.

```
! interface serial0
 description 56k link supporting 50 virtual circuits
 x25 htc 50
!
interface serial1
 description T1 line supporting 500 virtual circuits
 x25 htc 500
!
x25 hunt-group hg-vc vc-count
interface serial0
 interface serial1
```

X.25 Load Balancing with Multiple Hunt Groups Example

The following example enables X.25 encapsulation on relevant serial interfaces and configures serial interfaces 1 and 2 to participate in X.25 hunt group "HG1," and serial interfaces 0 and 3 to participate in X.25 hunt group "HG2." Serial interfaces 1 and 2 and XOT IP addresses 172.17.125.54 and 172.17.125.34 are then associated with hunt group "HG1" (with rotary distribution assigned); and serial interfaces 0 and 3 are associated with hunt group "HG2" (with vc-count distribution assigned). These hunt groups are then added to the routing table, where X.25 route 1111 will use "HG1" and X.25 route 1112 will use "HG2".

```
x25 routing
interface serial 0
 encapsulation x25
```
X.25 Switching Between PVCs and SVCs Example

The following example allows X.25 switching between a PVC on the first interface and an SVC on the second interface. X.25 traffic arriving on PVC 20 on serial interface 0 will cause a call to be placed to 000000160100, if one does not already exist.

```
x25 routing
interface serial0
 encapsulation x25
 x25 address 000000180100
 x25 ltc 128
 x25 pvc 20 svc 000000160100 packetsize 128 128 windowsize 2 2
 interface serial2
 encapsulation x25 dce
 x25 route ^000000160100$ interface Serial2
 x25 route ^000000180100$ interface Serial10
```

The `x25 route` command adds the two X.121 addresses to the X.25 routing table. Data traffic received on PVC 20 on serial interface 0 will cause a call to be placed with a Called (destination) Address of 000000160100; this call will be routed to serial interface 2. Alternatively, an X.25 call received with a Called Address of 000000180100 and a Calling Address of 000000160100 will be associated with PVC 20 on serial interface 0. In either case, subsequent X.25 traffic on either the SVC or the PVC will be forwarded to the other circuit. Because no idle timeout has been specified for the interface or for the circuit, the router will not clear the call.
Inserting and Removing X.121 Addresses As Calls Are Routed Example

The following example shows insertions and removals in the X.121 address as calls from the X.25 network get routed to X.25 devices. The figure below shows the topology for this example.

**Figure 15: Typical X.25 Network Configuration**

```
Example Configuration

x25 route ^2(.*) input-interface serial1 substitute-dest \1 interface serial2
x25 route input-interface serial2 source .* substitute-source 2\0 interface serial0
```

For a call coming from interface serial 1 with a called address starting with 2, the 2 is stripped off the called address and the call forwarded to serial interface 2.

For a call coming from interface serial 2 with any calling address, a 2 will be inserted to its calling address and the call forwarded to serial interface 0.

Forwarding Calls Using the continue Keyword Example

This section provides two examples of the same configuration. Both examples show how to forward calls among a number of local X.25 devices; however, the second example shows how the `continue` keyword reduces the number of routing statements. (Keep in mind that the `continue` keyword is most useful when you will be switching calls among four or more routes.)
The figure below illustrates the network topology for both examples.

**Figure 16: X.25 Network with Multiple Interfaces**

The following examples show how to forward calls among a number of local X.25 devices without using the `continue` keyword:

```plaintext
x25 route ^02 input-interface serial 1 substitute-source 01\0 substitute-dest \1 interface serial 2
x25 route ^03 input-interface serial 1 substitute-source 01\0 substitute-dest \1 interface serial 3
x25 route ^04 input-interface serial 1 substitute-source 01\0 substitute-dest \1 interface serial 4
x25 route ^05 input-interface serial 1 substitute-source 01\0 substitute-dest \1 interface serial 5 !
x25 route ^01 input-interface serial 2 substitute-source 02\0 substitute-dest \1 interface serial 1
x25 route ^03 input-interface serial 2 substitute-source 02\0 substitute-dest \1 interface serial 3
x25 route ^04 input-interface serial 2 substitute-source 02\0 substitute-dest \1 interface serial 4
x25 route ^05 input-interface serial 2 substitute-source 02\0 substitute-dest \1 interface serial 5 !
x25 route ^02 input-interface serial 3 substitute-source 03\0 substitute-dest \1 interface serial 2
x25 route ^01 input-interface serial 3 substitute-source 03\0 substitute-dest \1 interface serial 1
x25 route ^04 input-interface serial 3 substitute-source 03\0 substitute-dest \1 interface serial 4
x25 route ^05 input-interface serial 3 substitute-source 03\0 substitute-dest \1 interface serial 5 !
x25 route ^02 input-interface serial 4 substitute-source 04\0 substitute-dest \1 interface serial 2
x25 route ^03 input-interface serial 4 substitute-source 04\0 substitute-dest \1 interface serial 3
x25 route ^01 input-interface serial 4 substitute-source 04\0 substitute-dest \1 interface serial 1
x25 route ^05 input-interface serial 4 substitute-source 04\0 substitute-dest \1 interface serial 5 !
x25 route ^02 input-interface serial 5 substitute-source 05\0 substitute-dest \1 interface serial 2
```

**X.25 Routing Statements Before continue Keyword**

The following example shows how to forward calls among a number of local X.25 devices without using the `continue` keyword:
Same X.25 Network Configuration with continue Keyword

The following example shows how to forward calls among a number of local X.25 devices using the continue keyword:

```
x25 route input-interface serial 1 source .* substitute-source 01\0 continue
x25 route input-interface serial 2 source .* substitute-source 02\0 continue
x25 route input-interface serial 3 source .* substitute-source 03\0 continue
x25 route input-interface serial 4 source .* substitute-source 04\0 continue
x25 route input-interface serial 5 source .* substitute-source 05\0 continue
x25 route ^01(.*) substitute-dest \1 interface serial 1
x25 route ^02(.*) substitute-dest \1 interface serial 2
x25 route ^03(.*) substitute-dest \1 interface serial 3
x25 route ^04(.*) substitute-dest \1 interface serial 4
x25 route ^05(.*) substitute-dest \1 interface serial 5
```
X.25overFrameRelayAnnexGExample

The following example configures X.25 profile "NetworkNodeA" (using the X.25 commands \texttt{x25 htc}, \texttt{x25 idle}, \texttt{x25 accept-reverse} and \texttt{x25 modulo}) on DLCI interfaces 20 and 30; and X.25 profile "NetworkNodeB" (using the X.25 command \texttt{x25 address}) on DLCI interface 40; all on serial interface 1. The example shows the final step of assigning your X.25 profile to the DLCI interface by using the \texttt{frame-relay interface-dlci} command, and then assigning X.25 routes to DLCIs 20, 30, and 40 using the \texttt{x25 route} command.

The new \texttt{x25 profile} command mode (config-x25) can be seen in this example. This mode is used for configuring the parameters of your X.25 profile. For a complete description of this command and mode, refer to the \texttt{x25 profile} command section in the chapter "X.25 and LAPB Commands" in the \textit{Cisco IOS Wide-Area Networking Command Reference}.

This example assumes that you already have Frame Relay enabled on your router.

```
Router(config)# x25 routing
Router(config)# x25 profile NetworkNodeA dce
Router(config-x25)# x25 htc 128
Router(config-x25)# x25 idle 5
Router(config-x25)# x25 accept-reverse
Router(config-x25)# x25 modulo 128
Router(config-x25)# end
Router(config)# x25 profile NetworkNodeB dce
Router(config-x25)# x25 address 1111
Router(config-x25)# end
Router(config)# interface serial1
Router(config-if)# encapsulation frame-relay
Router(config-if)# frame-relay interface-dlci 20
Router(config-fr-dlci)# x25-profile NetworkNodeA
Router(config-fr-dlci)# end
Router(config)# interface serial1
Router(config-if)# frame-relay interface-dlci 30
Router(config-fr-dlci)# x25-profile NetworkNodeA
Router(config-fr-dlci)# end
Router(config)# interface serial1
Router(config-if)# frame-relay interface-dlci 40
Router(config-fr-dlci)# x25-profile NetworkNodeB
Router(config-fr-dlci)# end
Router(config)# x25 route 2000 interface serial1 dlci 20
```
CMNS Switching Example

The following example illustrates enabling CMNS and configuring X.25 routes to the available CMNS host and the PDN connectivity:

```
interface ethernet 0
 cmns enable
interface serial 0
 encapsulation x25
!interface serial 1
 encapsulation x25
!x25 route dest-ext ^38.8261.1000.0150.1000.17 interface Ethernet0 mac 0000.0c00.ff89
 ! Above maps NSAP to MAC-address on Ethernet0
!x25 route dest-ext ^38.8261.1000.0150.1000.18 substitute-dest 3110451 interface Serial0
 ! Above maps NSAP to X.121-address on Serial0 assuming the link is over a PDN
!x25 route dest-ext ^38.8261.1000.0150.1000.20 interface Serial1
 ! assuming that the link is over a leased line
```

CMNS Switching over a PDN Example

The following example depicts switching CMNS over a packet-switched PDN. The figure below illustrates the general network topology for a CMNS switching application where calls are being made between resources...
on opposite sides of a remote link to Host A (on an Ethernet) and Host B (on a Token Ring), with a PDN providing the connection.

**Figure 17: Example Network Topology for Switching CMNS over a PDN**

![Network Diagram](image)

The following configuration listing allows resources on either side of the PDN to call host A or host B. This configuration allows traffic intended for the remote NSAP address specified in the `x25 route` commands (for the serial ports) to be switched through the serial interface for which CMNS is configured.

**Configuration for Router C2**

```plaintext
interface token 0
 cmns enable
!
interface serial 0
 encapsulation x25
 x25 address 4085551234
!
x25 route dest-ext ^38.8261.17 interface Token0 mac 0800.4e02.1f9f
!
! The line above specifies that any traffic from any other interface
! intended for any NSAP address with NSAP prefix 38.8261.17 will be
! switched to MAC address 0800.4e02.1f9f through Token Ring 0
!
x25 route dest-ext ^38.8261.18 substitute-dest 2095551000 interface Serial0
!
! The line above specifies that traffic from any other interface
! on Cisco Router C2 that is intended for any NSAP address with
! NSAP-prefix 38.8261.18 will be switched to
! X.121 address 2095551000 through Serial 0

```

Wide-Area Networking Configuration Guide: SMDS and X.25 and LAPB, Cisco IOS Release 15M&T
**Configuration for Router C1**

```plaintext
interface ethernet 0
cms enable
!
interface serial 1
encapsulation x25
x25 address 2095551000
!
x25 route dest-ext ^38.8261.18 interface Ethernet0 mac 0800.4e02.2abc
!
-x25 route dest-ext ^38.8261.17 substitute-dest 4085551234 interface Serial1
```

**CMNS Switched over Leased Lines Example**

The following example illustrates switching CMNS over a leased line. The figure below illustrates the general network topology for a CMNS switching application where calls are being made by resources on the opposite sides of a remote link to host C (on an Ethernet) and host B (on a Token Ring), with a dedicated leased line providing the connection.

The following configuration listing allows resources on either side of the leased line to call host C or host B. This configuration allows traffic intended for the remote NSAP address specified in the `x25 route` commands (for the serial ports) to be switched through the serial interface for which CMNS is configured.

**Figure 18: Example Network Topology for Switching CMNS over a Leased Line**
A key difference for this configuration compared with the previous example is that with no PDN, the substitution of the destination X.121 address in the x25 route command is not necessary. The specification of an X.25 address also is not needed, but it is included for symmetry with the previous example.

**Configuration for Router C4**

```text
interface token 0
cmns enable
!
interface serial 0
encapsulation x25
x25 address 4085551234
!
x25 route dest-ext ^38.8261.17 interface Token0 mac 0800.4e02.1f9f
!
! The line above specifies that any traffic from any other interface
! intended for any NSAP address with NSAP prefix 38.8261.17 will be
! switched to MAC address 0800.4e02.1f9f through Token Ring 0
!
x25 route dest-ext ^38.8261.18 interface Serial0
!
! The line above specifies that traffic from any other interface
! on Cisco Router C2 that is intended for any NSAP address with
! NSAP-prefix 38.8261.18 will be switched to
! X.121 address 2095551000 through Serial 0
```

**Configuration for Router C3**

```text
interface ethernet 0
cmns enable
!
interface serial 1
encapsulation x25
x25 address 2095551000
!
x25 route dest-ext ^38.8261.18 interface Ethernet0 mac 0800.4e02.2abc
!
! The line above specifies that any traffic from any other
! interface intended for any NSAP address with NSAP 38.8261.18
! will be switched to MAC address 0800.4e02.2abc through Ethernet 0
!
x25 route dest-ext ^38.8261.17 interface Serial1
!
! The line above specifies that traffic from any other interface
! on Cisco Router C1 that is intended for any NSAP address with
! NSAP-prefix 38.8261.17 will be switched to X.121 address
! 4085551234 through Serial 1
```

**Configuring Local Acknowledgment Example**

The following example shows X.25 local acknowledgment being configured on the router:

```text
Router(config)# x25 routing acknowledge local
```
Setting Asymmetrical Window and Packet Sizes Flow Control Never Example

The following example shows asymmetrical window and packet sizes being set on the router on serial interfaces 0 and 1, with local acknowledgment enabled globally, and flow control disabled on both interfaces to allow asymmetrical flow control to occur:

Router(config)#
interface serial0
Router(config-if)#
x25 win 2
Router(config-if)#
x25 wout 3
Router(config-if)#
x25 ips 256
Router(config-if)#
x25 ops 512
Router(config-if)#
x25 ops 512
Router(config-if)#
exit
Router(config)#
interface serial1
Router(config-if)#
x25 win 4
Router(config-if)#
x25 wout 5
Router(config-if)#
x25 ips 128
Router(config-if)#
x25 ops 512
Router(config-if)#
exit
Router(config)#
x25 routing acknowledge local
Router(config)#
interface serial 0
Router(config-if)#
encapsulation x25 dte
Router(config-if)#
x25 subscribe flow-control never
Router(config-if)#
exit
Router(config)#
interface serial 1
Router(config-if)#
encapsulation x25 dte
Router(config-if)#
x25 subscribe flow-control never

Configuring Flow Control Always Example

The following example shows X.25 routing with local acknowledgment being enabled globally and flow control negotiation being enabled on serial interface 1/4. Window size ranges are set at a permitted rate of 1 (minimum) and 7 (maximum) and target rate of 2 (minimum) and 4 (maximum).

Packet size ranges are set at a permitted rate of 64 (minimum) and 1024 (maximum), and target rate of 128 (minimum) and 1024 (maximum).
interface serial 1/4
Router(config-if)#
encapsulation x25 dte
Router(config-if)#
x25 subscribe flow-control always
Router(config-if)#
x25 subscribe windowsize permit 1 7 target 2 4
Router(config-if)#
x25 subscribe packetsize permit 64 1024 target 128 1024
You do not have to configure window and packet size ranges because their default settings are appropriate for most configurations. The following example shows X.25 routing with local acknowledgment being enabled globally and flow control negotiation being enabled on serial interface 1/4 with default window and packet size settings:

Router(config)#
interface serial 1/4
Router(config-if)#
encapsulation x25 dte
Router(config-if)#
x25 subscribe flow-control always

X.25 CUGs Examples

X.25 CUG Service and Access with CUG Properties Example

In the following example, X.25 CUG service is being subscribed to on serial 0, which then permits the subscription to local CUGs (5000, 100, 200, and 300). Subscription to local CUGs cannot be achieved without subscription to X.25 CUG service (although this occurs automatically—with CUG service default settings of no incoming and no outgoing access—the first time you subscribe to a specific CUG using the x25 subscribe local-cug command).

Local CUG 5000 has been designated as the preferential CUG, which means that it will be used when a call with no CUG membership selection is made. These local CUGs all belong to different network identifiers (IDs) (local 5000 = network 55; local 100 = network 11; local 200 = network 22; local 300 = network 33), but they could also subscribe to the same network ID if desired.

Router(config)#
interface serial 0
Router(config-if)#
encapsulation x25 dce
Router(config-if)#
x25 subscribe cug-service incoming-access outgoing-access
Router(config-if)#
x25 subscribe local-cug 5000 network-cug 55 preferential
Router(config-if)#
x25 subscribe local-cug 100 network-cug 11
Router(config-if)#
x25 subscribe local-cug 200 network-cug 22
Router(config-if)#
x25 subscribe local-cug 300 network-cug 33

POP with No CUG Access Example

In the following example, serial interface 0 is being configured as a POP for a user that has no access to any of the CUGs in the network, but full public access (incoming and outgoing access)—the least restrictive setting:
**POP with Access Restricted to One CUG Example**

In the following example, serial interface 0 is configured as a POP with access only to members of its own CUG and no public access. The POP is being configured for CUG service security using the most restrictive settings (the default) of the `x25 subscribe cug-service` command--no incoming and no outgoing access permitted. Local CUG 5000, which is associated with network 55, is being subscribed to this POP.

An outgoing call from the DTE may select local CUG 5000 or not. Because there is only one CUG subscribed to, its use is implicit. CUG 5000 will always select its related network CUG 55. An outgoing call that specifies a different local CUG will be refused. An incoming call must specify network CUG 55; otherwise the call will be refused.

**POP with Multiple CUGs and No Public Access Example**

In the following example, serial interface 0 is being configured as a POP with access to members of several CUGs, using the most restrictive settings (the default) of the `x25 subscribe cug-service` command--no incoming and no outgoing access permitted. Local CUGs (5000, 100, 200, and 300) are then subscribed to this POP. Local CUG 5000 has been designated as the preferential CUG, which means that it will be used when a call with no CUG membership selection was made.

These local CUGs all belong to different networks (local 5000 = network 55; local 100 = network 11; local 200 = network 22; local 300 = network 33), but they could also subscribe to the same network if desired.

An outgoing call from the DTE may select any of the local CUGs (5000, 100, 200, and 300) or not. Because there is a preferential CUG (5000), its use will be implicit when no CUG is specified. The related network CUG (55) will be selected when switched to an intranetwork connection. A call specifying a different local CUG will be refused. An incoming call must select one of the network CUGs (55, 11, 22, or 33); otherwise the call will be refused.
POP with Multiple CUGs and Public Access Example

In the following example, serial interface 0 is being configured as a POP with public access to members of several CUGs and the means to originate and receive calls from the open network (that is, to or from users that do not subscribe to one of the CUGs to which this POP subscribes).

An outgoing call from the DTE may select any of the local CUGs (1, 2, 3, or 4) or not. When no CUG is selected, it is assumed that the call is intended for the open network. When a CUG is selected, the related network CUG will be selected when the call is switched to an intranetwork connection. The call will be refused if it specifies a different local CUG from the one to which the POP is subscribed.

An incoming call to the DTE from an intranetwork connection may select related network CUGs (101, 202, 303, or 404) or no CUG. If no CUG is selected, the call is accepted as coming from the open network. A call that requires access to a different CUG will be refused.

```
Router(config)#
interface serial0
Router(config-if)#
encapsulation x25 dce
Router(config-if)#
x25 subscribe cug-service incoming-access outgoing-access
Router(config-if)#
x25 subscribe local-cug 1 network-cug 101
Router(config-if)#
x25 subscribe local-cug 2 network-cug 202
Router(config-if)#
x25 subscribe local-cug 3 network-cug 303
Router(config-if)#
x25 subscribe local-cug 4 network-cug 404
```

CUG Selection Facility Suppression for the Preferential CUG Example

In the following example, CUG selection facility suppression is configured for the preferential CUG only on serial interface 0:

```
interface serial0
encapsulation x25 dce
x25 subscribe cug-service suppress preferential
x25 subscribe local-cug 0 network-cug 10 preferential
x25 subscribe local-cug 50 network-cug 500
```

CUG Selection Facility Suppression for All CUGs Example

In the following example, CUG selection facility suppression and incoming access are configured for all CUGs, including the preferential CUG on the X.25 profile:

```
x25 profile CUG-SUPRS-ALL dce
x25 subscribe cug-service incoming-access suppress all
x25 subscribe local-cug 0 network-cug 10 preferential
x25 subscribe local-cug 20 network-cug 202
x25 subscribe local-cug 40 network-cug 40
```
DDN X.25 Configuration Example

The following example illustrates how to configure a router interface to run DDN X.25:

```plaintext
interface serial 0
 ip address 192.31.7.50 255.255.255.240
 encapsulation x25 ddn
 x25 win 6
 x25 wout 6
 x25 ops 1024
 x25 ops 1024
 x25 t20 10
 x25 t21 10
 x25 t22 10
 x25 t23 10
 x25 nvc 2
 x25 map IP 192.31.7.49 000000010300 BROADCAST
```

Blacker Front End Example

In the following example, interface serial 0 is configured to attach to the DDN X.25 network via a Blacker Front End.

```plaintext
interface serial 0
 ip address 21.0.0.2 255.0.0.0
 encapsulation x25 bfe
```

X.25 Ping Support over Multiple Lines Example

For `ping` commands to work in an X.25 environment (when load sharing is occurring over multiple serial lines), you must include entries for all adjacent interface IP addresses in the `x25 map` command for each serial interface. The following example illustrates this point.

Consider two routers, router A and router B, communicating with each other over two serial lines via an X.25 PDN (see the figure below) or over leased lines. In either case, all serial lines must be configured for the same IP subnet address space. The configuration that follows allows for successful `ping` commands. A similar configuration is required for the same subnet IP addresses to work across X.25.

![Figure 19: Parallel Serial Lines to an X.25 Network](image)
All four serial ports configured for the two routers in the following configuration example must be assigned to the same IP subnet address space. In this case, the subnet is 172.20.170.0.

Configuration for Router A

interface serial 1
ip 172.20.170.1 255.255.255.0
x25 address 31370054068
x25 alias ^31370054069$
x25 map ip 172.20.170.3 31370054065
x25 map ip 172.20.170.4 31370054065
!
interface serial 2
ip 172.20.170.2 255.255.255.0
x25 address 31370054069
x25 alias ^31370054068$
x25 map ip 172.20.170.4 31370054067
x25 map ip 171.20.170.3 31370054067
! allow either destination address

Configuration for Router B

interface serial 0
ip 172.20.170.3 255.255.255.0
x25 address 31370054065
x25 alias ^31370054067$
x25 map ip 172.20.170.1 31370054068
x25 map ip 172.20.170.2 31370054068
!
interface serial 3
ip 172.20.170.4 255.255.255.0
x25 address 31370054067
x25 alias ^31370054065$
x25 map ip 172.20.170.2 31370054069
x25 map ip 172.20.170.1 31370054069
! allow either destination address

Booting from a Network Server over X.25 Example

You cannot boot a router over an X.25 network using broadcasts. Instead, you must boot from a specific host. Also, an x25 map command must exist for the host that you boot from. The x25 map command maps an IP address to an X.121 address. The x25 map command must match the IP address given on the boot system command line. The following is an example of such a configuration:

boot system gs3-k.100 172.18.126.111
interface Serial 1
ip address 172.18.126.200 255.255.255.0
encapsulation X25
x25 address 10004
x25 map IP 172.18.126.111 10002 broadcast
lapb nl 12040
clockrate 56000

In this case, 10002 is the X.121 address of the remote router that can get to host 172.18.126.111. The remote router must have the following x25 map entry for the remote router to return a boot image from the host to the router booting over X.25.

x25 map IP 172.18.126.200 10004 broadcast
X.25 Remote Failure Detection Examples

You must have X.25 encapsulation activated for X.25 remote failure detection to function. See the section Configuring X.25 Encapsulation, on page 64 for further details. You must also have IP static routes or a backup link configured for X.25 encapsulation.

These examples show the `x25 retry` command being used only with a secondary route. However, the `x25 retry` command can be configured for as many subinterfaces that require an alternative route. Use either one of the following examples to configure X.25 remote failure detection:

### X.25 Remote Failure Detection with IP Static Routes Example

The following is an example of X.25 remote failure detection being configured on subinterfaces 1.1 and 1.2 using the `x25 retry` command. Subinterface 1.1 has been set at a retry every 60 seconds up to a maximum of 10 attempts.

Observe the weighting of 100 on subinterface 1.1 over 200 on subinterface 1.2 in the `ip route` command, because subinterface 1.1 is the primary route and 1.2 is the secondary route. The latter becomes activated only when subinterface 1.1 is unable to function. Weights make for predictable routing events and therefore promote the concept of primary and secondary routes.

```
Router(config)# interface serial1
Router(config-if)# encapsulation x25
Router(config-if)# x25 address 11111
Router(config-if)# exit
Router(config)# interface serial1.1 point-to-point
Router(config-subif)# ip address 172.30.22.1 255.255.255.0
Router(config-subif)# x25 map ip 172.30.22.2 22222
Router(config-subif)# x25 retry interval 60 attempts 10
Router(config-subif)# exit
Router(config)# interface serial1.2 point-to-point
Router(config-subif)# ip address 172.30.22.1 255.255.255.0
Router(config-subif)# x25 map ip 172.30.22.4 44444
Router(config-subif)# exit
Router(config)# ip route 172.30.11.1 255.255.255.0 serial1.1 100
Router(config)# ip route 172.30.11.1 255.255.255.0 serial1.2 200
```

### X.25 Remote Failure Detection and the Backup Interface Example

The following configuration example is an alternative to the method previously described. X.25 remote failure detection is configured on subinterface 1.1, and interface 2 is made the backup interface. The `x25 retry` command has been set with an interval of 50 seconds up to a maximum of 20 attempts. In this example, there is no need to configure any IP static routes (as is done with the above configuration) because the backup interface is functioning as the secondary route. In other situations, there may be a need for static IP routes, depending on how the backup interface is configured.

For more details about backup, see the `backup interface` command in the chapter in the *Cisco IOS Dial Technologies Command Reference*.

```
Router(config)# interface serial1
Router(config-if)# encapsulation x25
Router(config-if)# x25 address 11111
Router(config-if)# exit
Router(config)# interface serial1.1 point-to-point
Router(config-subif)# ip address 172.30.22.1 255.255.255.0
Router(config-subif)# x25 map ip 172.30.22.2 22222
```
X.29 Access List Example

The following example illustrates an X.29 access list. Incoming permit conditions are set for all IP hosts and LAT nodes that have specific characters in their names. All X.25 connections to a printer are denied. Outgoing connections are list restricted.

!Permit all IP hosts and LAT nodes beginning with "VMS".
!Deny X.25 connections to the printer on line 5.
!access-list 1 permit 0.0.0.0 255.255.255.255
   lat access-list 1 permit ^VMS.*
x29 access-list 1 deny .*
!
line vty 5
   access-class 1 in
!
!Permit outgoing connections for other lines.
!
!Permit IP access with the network 172.30
   access-list 2 permit 172.30.0.0 0.0.255.255
!
!Permit LAT access to the boojum/snark complexes.
   lat access-list 2 permit ^boojum$
   lat access-list 2 permit ^snark$
!
!Permit X.25 connections to Infonet hosts only.
   x29 access-list 2 permit ^31370$
!
line vty 0 16
   access-class 2 out

X.29 Profile Script Example

The following profile script turns local edit mode on when the connection is made and establishes local echo and line termination upon receipt of a Return. The name linemode is used with the translate command to effect use of this script.

x29 profile linemode 2:1 3:2 15:1
translate tcp 172.30.1.26 x25 5551234 profile linemode

The X.3 PAD parameters set in the profile file and the translate command are described in the chapter "Configuring Protocol Translation and Virtual Asynchronous Devices" in the Cisco IOS Terminal Services Configuration Guide.
CHAPTER 4

Terminal Line Security for PAD Connections

This document describes the Terminal Line Security for PAD Connections feature. The Terminal Line Security for PAD Connections feature allows a CUG service to be configured on terminal lines, enabling terminal lines to participate in X.25 CUG security for packet assembler/disassembler (PAD) connections.

- Finding Feature Information, page 127
- Prerequisites for Terminal Line Security for PAD Connections, page 127
- Restrictions for Terminal Line Security for PAD Connections, page 128
- Information About Terminal Line Security for PAD Connections, page 128
- How to Configure Terminal Line Security for PAD Connections, page 131
- Configuration Examples for Terminal Line Security for PAD Connections, page 134
- Additional References, page 135
- Feature Information for Terminal Line Security for PAD Connections, page 136
- Glossary, page 136

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Terminal Line Security for PAD Connections

The tasks in this document assume a basic understanding of the X.25 CUG service and how it works.
Restrictions for Terminal Line Security for PAD Connections

The CUG selection facility suppression options are not available for terminal lines because incoming PAD calls are terminated by the terminal line.

Information About Terminal Line Security for PAD Connections

X.25 closed user group (CUG) service is a network service that allows subscribers to be segregated into private subnetworks with limited outgoing and incoming access. A data terminal equipment (DTE) device becomes a member of a CUG by subscription; the DTE must obtain membership from its network service for the set of CUGs to which it needs access.

The Terminal Line Security for PAD Connections feature allows a CUG service to be configured on terminal lines, enabling terminal lines to participate in X.25 CUG security for packet assembler/disassembler (PAD) connections. A CUG service can be applied to console lines, auxiliary lines, and tty and vty devices. Configuring a CUG service on terminal lines allows you to specify CUG protection for lines that are part of the point of presence (POP). Before the introduction of this feature, a CUG service could be configured only on X.25 synchronous data communications equipment (DCE) interfaces.

A line configured for CUG service will apply CUG security to PAD, X.28 mode, and protocol translation sessions. The Terminal Line Security for PAD Connections feature ensures that CUG protection is applied to incoming calls destined for the terminal line and call requests specified from the line. This feature also supports the signaling of the CUG selection facility in call requests that originated on the line and incoming calls received on an X.25 service that are terminated by the line.

Figure 1 shows a typical topology in which CUG service would be configured on asynchronous terminal lines.

Security Considerations

Caution

X.25 CUG security relies on the correct, complementary configuration of CUG sets at all the boundaries between customer premises equipment (CPE) and POPs. Any POP that is connected to a CPE device that is not configured for CUG security has compromised the X.25 network security because that CPE device will be a considered a trusted host, even though it is not secure.
PAD Call Behavior When a Line Is Configured for CUG Subscription

This section describes the overall behavior of PAD-initiated calls when a terminal line or an X.25 interface is configured for CUG subscription.

The `x25 map pad` and `x25 facility cug` commands can be used to cause a CUG selection facility to be encoded in calls placed within the networks. The following rules describe which CUG selection facility is encoded in the call:

- A call initiated using the `pad` command or in X.28 mode without a CUG subscription set encodes the interface CUG selection facility, if one was specified.
- A call initiated using the `pad` command with the `/use-map` option encodes the CUG selection facility for the matching map entry, if one was specified.
- A call initiated in X.28 mode with a specified CUG encodes the specified X.28 CUG.

PAD Call Behavior When Only the Line is Configured for CUG Service

This section describes PAD call behavior when only the line is configured for CUG service.

Configuration A

In the following example, a line is configured for CUG subscription, and the interface on which the resulting call is to be placed is configured with the `x25 facility cug` and `x25 map pad` commands. CUG subscription is not configured on the interface.

```plaintext
interface Serial1
 encapsulation x25 dce
 x25 facility cug 99
 x25 map pad 1221 cug 10 no-outgoing
 x25 map pad 1222 cug 99
 x25 map pad 1234 cug 10

d line tty 1
 x25 subscribe cug-service
 x25 subscribe local-cug 99 network-cug 9999 preferential
 x25 subscribe local-cug 10 network-cug 100
 x25 subscribe local-cug 20 network-cug 200

x25 route ^12..$ interface Serial1

[...]
```

When the line initiates an X.28 mode or PAD call without a CUG subscription set, the line will decode the interface’s CUG selection facility, and the network will encode the line’s signaled CUG selection facility. The `x25 facility cug` command implicitly identifies the local CUG to use for PAD-originated calls.

The table below shows the CUG value sent when a line initiates a PAD or an X.28 mode call without a CUG subscription set.

<table>
<thead>
<tr>
<th>User Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>pad 1234</td>
<td>Call 1234, CUG 9999 sent on Serial 1.</td>
</tr>
</tbody>
</table>
Using configuration A, if a call is initiated on a line using the `pad` command with the `/use-map` option, the line will decode the matching map entry's CUG, and the network will encode the line's signaled CUG selection facility. The map's CUG identifies the local CUG to use for PAD-originated calls and overrides the interface's CUG selection facility on a per-call basis.

If the `pad` command is used with the `/use-map` option, the interface on which the resulting call is to be placed must have a matching X.25 map statement for the PAD call and must permit outgoing calls. Any CUG specified in the map statement must identify the local CUG ID to be used for generating the call.

The table below shows the values sent when a line initiates a PAD call with the `/use-map` option.

**Table 6: CUG Value Sent for Line-Initiated PAD Calls Initiated with the `/use-map` Option**

<table>
<thead>
<tr>
<th>User Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1234</td>
<td>Call 1234, CUG 9999 sent on Serial 1.</td>
</tr>
<tr>
<td><code>pad</code> 1234 <code>/use-map</code></td>
<td>Call 1234, CUG 100 sent on Serial 1.</td>
</tr>
<tr>
<td><code>pad</code> 1221 <code>/use-map</code></td>
<td>Call is cleared, outgoing calls are barred.</td>
</tr>
<tr>
<td><code>pad</code> 1255 <code>/use-map</code></td>
<td>Call is cleared (no matching map found on Serial 1).</td>
</tr>
</tbody>
</table>

Using configuration A, if an X.28 mode call specifies a CUG, the line will decode the specified CUG, and the network will encode the line's signaled CUG selection facility. The X.28 mode commands do not use X.25 map statements when originating calls.

The table below shows the CUG value sent when a line initiates a call using an X.28 interface with CUG specified.

**Table 7: CUG Value Sent for Line-Initiated Calls Using an X.28 Mode with CUG Specified**

<table>
<thead>
<tr>
<th>User Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>*g10-1234</td>
<td>Call 1234, CUG 100 sent on Serial 1.</td>
</tr>
</tbody>
</table>

**PAD Call Behavior When Both a Line and an Interface Are Configured for CUG Service**

This section describes PAD call behavior when a line and an interface are both configured for CUG service.

**Configuration B**

In the following example a line and an interface are configured for CUG subscription:

```plaintext
interface Serial1
encapsulation x25 dce
x25 subscribe cug-service
x25 subscribe local-cug 5599 network-cug 9999 preferential
```
x25 subscribe local-cug 5510 network-cug 100
x25 subscribe local-cug 5520 network-cug 200
x25 facility cug 99
x25 map pad 1234 cug 10
x25 map pad 1221 cug 10 no-outgoing
x25 map pad 1222 cug 99
!
line tty 1
x25 subscribe cug-service
x25 subscribe local-cug 10 network-cug 100
x25 subscribe local-cug 20 network-cug 200
x25 subscribe local-cug 99 network-cug 9999 preferential
!
[...]
!
x25 route ^12..$ interface Serial1
[...]

The table below shows examples of line-initiated PAD commands and the CUG values sent when the terminal line and the X.25 interface are both configured for CUG subscription.

<table>
<thead>
<tr>
<th>User Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>pad 1234</td>
<td>Call 1234, CUG 5599 sent on Serial 1.</td>
</tr>
<tr>
<td>pad 1221</td>
<td>Call 1221, CUG 5599 sent on Serial 1.</td>
</tr>
<tr>
<td>pad 1222</td>
<td>Call 1222, CUG 5599 sent on Serial 1.</td>
</tr>
<tr>
<td>pad 1234 /use-map</td>
<td>Call 1234, CUG 5510 send on Serial 1.</td>
</tr>
<tr>
<td>pad 1221 /use-map</td>
<td>Call is cleared, outgoing calls are barred</td>
</tr>
<tr>
<td>pad 1222 /use-map</td>
<td>Call 1222, CUG 5599 sent on Serial 1</td>
</tr>
</tbody>
</table>

**Benefits**

Before the introduction of this feature, CUG functionality required all CPE devices to be attached to the router at an X.25 synchronous DCE interface. The Terminal Line Security for PAD Connections feature extends the existing X.25 CUG functionality to terminal lines, allowing PAD access devices (console lines, auxiliary lines, and tty and vty devices) to be configured for CUG security enforcement.

**How to Configure Terminal Line Security for PAD Connections**

**Configuring X.25 CUG Support on Terminal Lines**

To configure X.25 CUG support on terminal lines, use the following commands beginning in global configuration mode:
SUMMARY STEPS

1. Router(config)# line [aux | console | tty | vty] line-number [ending-line-number]
2. Router(config-line)# x25 subscribe cug-service [incoming-access | outgoing-access]
3. Router(config-line)# x25 subscribe local-cug number network-cug number [no-incoming | no-outgoing | preferential]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> Router(config)# line [aux</td>
<td>console</td>
</tr>
<tr>
<td><strong>Step 2</strong> Router(config-line)# x25 subscribe cug-service [incoming-access</td>
<td>outgoing-access]</td>
</tr>
<tr>
<td><strong>Step 3</strong> Router(config-line)# x25 subscribe local-cug number network-cug number [no-incoming</td>
<td>no-outgoing</td>
</tr>
</tbody>
</table>

Verifying X.25 CUG Support on Terminal Lines

To verify support for X.25 CUG service on terminal lines, perform the following steps:

SUMMARY STEPS

1. Enter the `show running-config` command to verify that the configuration is correct.
2. Enter the `show line` command to display the configured CUG capability in the Capabilities field:
3. Enter the `show x25 cug` command with the `local-cug` keyword to display information about all local CUGs configured on the router:
4. Enter the `show x25 cug` command with the `network-cug` keyword to display information about all network CUGs configured on the router. The following sample output displays the local CUGs associated with network CUG 10:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enter the <code>show running-config</code> command to verify that the configuration is correct.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enter the <code>show line</code> command to display the configured CUG capability in the Capabilities field:</td>
<td></td>
</tr>
</tbody>
</table>
Step 3 Enter the `show x25 cug` command with the `local-cug` keyword to display information about all local CUGs configured on the router:

Example:

```
Router# show x25 cug local-cug
X.25 Serial1/1, 3 CUGs subscribed with no public access
 local-cug 99 <-> network-cug 9999, no-incoming, preferential
 local-cug 100 <-> network-cug 1000
 local-cug 101 <-> network-cug 1001
PROFILE cugs, 2 CUGs subscribed with with incoming public access
 local-cug 1 <-> network-cug 10, no-outgoing
 local-cug 2 <-> network-cug 20, no-incoming, preferential
Line: 129 aux 0 , 1 CUGs subscribed with no public access
 local-cug 1 <-> network-cug 10
Line: 130 vty 0 , 4 CUGs subscribed with incoming and outgoing public access
 local-cug 1 <-> network-cug 10
 local-cug 50 <-> network-cug 5, preferential
 local-cug 60 <-> network-cug 6, no-incoming
 local-cug 70 <-> network-cug 7, no-outgoing
Line: 131 vty 1 , 1 CUGs subscribed with no public access
 local-cug 1 <-> network-cug 10
```

Step 4 Enter the `show x25 cug` command with the `network-cug` keyword to display information about all network CUGs configured on the router. The following sample output displays the local CUGs associated with network CUG 10:

Example:

```
Router# show x25 cug network-cug 10
PROFILE cugs, 2 CUGs subscribed with no public access
 network-cug 10 <-> local-cug 1, no-outgoing
Line: 129 aux 0 , 1 CUGs subscribed with no public access
 network-cug 10 <-> local-cug 1
Line: 130 vty 0 , 4 CUGs subscribed with incoming and outgoing public access
 network-cug 10 <-> local-cug 1
```

Verifying X.25 CUG Support on Terminal Lines

Terminal Line Security for PAD Connections
## Monitoring and Maintaining X.25 CUG Support on Terminal Lines

To monitor and maintain X.25 CUG support on terminal lines, use the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# debug pad</code></td>
<td>Displays debug messages for all PAD connections.</td>
</tr>
</tbody>
</table>

## Configuration Examples for Terminal Line Security for PAD Connections

### Configuring X.25 CUG Support on Terminal Lines Example

The following example shows the configuration of CUG behavior on asynchronous line 1 and virtual terminal lines 0 to 9. The user of async line 1 has only outgoing access to CPE that is subscribed to the corporate CUG designated for finance (CUG 1101) but can receive calls from those same CUG members or from the open network (that is, calls from a network X.25-class service that are destined for the line and have no CUG restriction).

The users of virtual terminal lines 0 to 9 have access only within the corporate CUGs designated for engineering (CUGs 1102 or 1103). Any call from a network X.25-class service destined for the line will be refused unless the inbound POP validates it as a member of one of those two CUGs.

```
Line 1
Location Company A. Finance Connection
x25 subscribe cug-service incoming-access
x25 subscribe local-cug 1 network-cug 1101 preferential
!
line vty 0 9
Location Company A. Engineering Access
x25 subscribe cug-service
x25 subscribe local-cug 2 network-cug 1102 preferential
x25 subscribe local-cug 3 network-cug 1103
!```
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Wide-Area Networking commands</td>
<td>Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
<tr>
<td>X.25 and LAPB configuration</td>
<td>Configuring X.25 and LAPB</td>
</tr>
<tr>
<td>PAD Connections</td>
<td>• Configuring the Cisco PAD Facility for X.25 Connections</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Terminal Services Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Terminal Line Security for PAD Connections

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Line Security for PAD Connections</td>
<td>12.2(13)T</td>
<td>The Terminal Line Security for PAD Connections feature allows a CUG service to be configured on terminal lines, enabling terminal lines to participate in X.25 CUG security for packet assembler/disassembler (PAD) connections. The following commands were introduced or modified: debug pad, show line, show x25 cug, x25 subscribe cug-service, x25 subscribe local-cug.</td>
</tr>
</tbody>
</table>

Glossary

call request -- An X.25 call packet sent from a DTE to a DCE that initiates a connection to a destination DTE.
closed user group selection facility -- A specific encoding element that can be presented in a call request or incoming call. A CUG selection facility in a call request allows the source DTE to identify the CUG within which it is placing the call. A CUG selection facility in an incoming call allows the destination DTE to identify the CUG to which both DTEs belong.

CPE -- customer premises equipment. Terminating equipment, such as terminals, telephones, and modems, supplied by the telephone company, installed at customer sites, and connected to the telephone company network. This equipment is available for customer modification and is considered insecure by the network.

CUG -- closed user group. A collection of DTE devices for which the network controls access among members and between members and nonmembers. A DTE may subscribe to zero, one, or more CUGs. A DTE that does not subscribe to a CUG is referred to as being in the open part of the network.

DCE -- data communications equipment. A network connection where a subscriber can be attached. A DCE is configured with the operational details for which a given subscriber (DTE) has contracted.

DTE -- data terminal equipment. A network subscriber that can be reached at a specific network attachment point. A network identifies each DTE device by assigning an X.121 address.

incoming call -- An X.25 call packet sent from a DCE to a DTE that presents a connection requested by the source DTE.

PAD -- packet assembler/disassembler. Device used to connect simple devices (like character-mode terminals) that do not support the full functionality of a particular protocol to a network. PADs buffer data and assemble and disassemble packets sent to such end devices.

POP -- point of presence. In the context of a public data network, a POP is the part of the network to which CPE is attached. A POP is configured and controlled by the public network and serves as the boundary equipment between the trusted network and insecure client attachments.

preferential closed user group -- The CUG that is assumed when a CUG is not specified in call setup. A DTE that subscribes to more than one CUG and does not have incoming or outgoing access must designate a preferred CUG.
CHAPTER 5

X.25 Annex G Session Status Change Reporting

This feature module describes the X.25 Annex G Session Status Change Reporting feature and includes the following sections:

- Finding Feature Information, page 139
- Feature Overview, page 139
- Supported Platforms, page 140
- Supported Standards and MIBs and RFCs, page 141
- Prerequisites, page 141
- Configuration Tasks, page 141
- Configuration Examples, page 142

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Overview

The X.25 Annex G Session Status Change Reporting feature introduces the `logging event frame-relay x25` interface configuration command, which provides console or system log notification of X.25 Annex G session status changes when an X.25 Annex G session changes state. Before this feature was introduced, there was no notification.

This feature detects changes in X.25 Annex G session status using an X.25 Link Access Procedure, Balanced (LAPB) N2 counter. The LAPB N2 counter records the number of unsuccessful transmit attempts that are made before the link is declared down. If the N2 consecutive polled commands have not been answered, a
notification is generated, indicating that the X.25 profile or context associated with the data-link connection identifier (DLCI) that is running across the failed link has gone down. A message is generated to the console or system log when the link goes down. A message is also generated to the console or system log when the link comes back up. The notification response time is contingent on the values assigned to the LAPB N2 counter and the LAPB the retransmission timer in milliseconds (T1) timer.

Benefits

For X.25 Annex G sessions, if Local Management Interface (LMI) keepalives are disabled, Frame Relay (FR) DLCI status changes can be detected using the `logging event frame-relay x25` interface configuration command.

Restrictions

The following restrictions apply to the X.25 Annex G Session Status Change Reporting feature:

- Notification is displayed for the UP or DOWN event only if traffic is initiated when an X.25 Annex G session is active.
- The notification response time is contingent on the values assigned to the LAPB N2 counter and the LAPB T1 timer.
- The PVCs continue to be reported as UP unless the serial link directly connected to the router goes down.

Related Documents

- Cisco IOS Wide-Area Networking Command Reference, Release 12.2

Supported Platforms

- Cisco 1600 series
- Cisco 2500
- Cisco 2600
- Cisco 3640
- Cisco 3660
- Cisco 4000
- Cisco 4500
- Cisco 7000 series
- Cisco 7200 series
- Cisco 7500 series
Supported Standards and MIBs and RFCs

Standards

No new or modified standards are supported by this feature.

MIBs

No new or modified MIBs are supported by this feature.

To obtain lists of supported MIBs by platform and Cisco IOS release, and to download MIB modules, go to the Cisco MIB website on Cisco.com at http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml.

RFCs

No new or modified RFCs are supported by this feature.

Prerequisites

The logging event frame-relay x25 interface configuration command is available for all interfaces that have Frame Relay encapsulation.

Configuration Tasks

Enabling X.25 Annex G Session Status Change Reporting

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# logging event frame-relay x25</td>
<td>Enables notification of X.25 Annex G session status changes to be displayed on a console or system log.</td>
</tr>
</tbody>
</table>

Verifying X.25 Annex G Session Status Change Reporting

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# show run logging event frame-relay x25</td>
<td>Shows whether the command is enabled.</td>
</tr>
</tbody>
</table>
Configuration Examples

X.25 Annex G Session Status Change Reporting Configuration Example

The following configuration example shows how to enable notification of X.25 Annex G session status changes to be displayed on a console or system log using the `logging event frame-relay x25` interface configuration command:

```
router(config-if)# logging event frame-relay x25
```

The following is an example of the Annex G session status change notifications:

```
%X25-5-UPDOWN: Interface <interface> - DLCI <dlci number> X.25 packet layer changed state to DOWN
%X25-5-UPDOWN: Interface <interface> - DLCI <dlci number> X.25 packet layer changed state to UP
```
CHAPTER 6

X.25 Dual Serial Line Management

Feature History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(13)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

This document describes the X.25 Dual Serial Line Management feature in Cisco IOS Release 12.2(13)T. It includes the following sections:

- Finding Feature Information, page 143
- Feature Overview, page 143
- Supported Standards and MIBs and RFCs, page 146
- Configuration Tasks, page 146
- X.25 Dual Serial Line Management Configuration Example, page 149
- Glossary, page 149

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Overview

Telco service providers use data communications networks (DCNs) to provide communications between network management applications (also called operations support systems or OSSs) and network elements.
The telco DCNs use the X.25 protocol (or a variation of X.25) to send network management information across the DCN.

The figure below shows a typical DCN that uses the BX.25 protocol developed by Bell Communications Research (now Telcordia Technologies). The Lucent 5ESS switch in this network uses the BX.25 protocol for monitoring, provisioning and collecting billing data.

Figure 21: Network Management Application Monitors Lucent 5ESS Switch over Datakit Network

![Diagram of Datakit network](image)

The Datakit node provides the communications front end to a network management application and provides two links, SCC0 and SCC1, for link redundancy. One link is active and passes data across the network; the other remains in standby mode.

The Datakit node acts as a transport, so that to the network management application and the Lucent 5ESS switch, the node looks like it has two individual circuits. The network management application host is supplying leads on both interfaces but ignoring Set Asynchronous Balanced Mode (SABM) messages on the standby interface. If communication is lost on the active interface, the network management application host responds to the SABM messages on the standby interface and it becomes the active interface.

In the past, incumbent local exchange carriers (ILECs) have built either Lucent Datakit or X.25 networks to carry the network management data. Large ILEC customers are currently replacing the Lucent Datakit portion of the networks with Cisco IP core routers in their DCN. The figure below shows a typical migration path using X.25 over TCP/IP (XOT) and the Cisco Serial Tunneling (STUN) features.

Figure 22: Network Management Application Monitors Lucent 5ESS Switch Using XOT and STUN

![Diagram of XOT and STUN network](image)

Although the solution shown in the figure above eliminates some of the Lucent Datakit network elements in ILEC networks, the network still requires a Lucent Datakit node as a front end to the network management application from the Lucent 5ESS switch.

Additionally, competitive local exchange carriers (CLECs) do not have DCNs or have very limited ones. Furthermore, the CLECs are not interested in purchasing the legacy Lucent Datakit solution shown in the first figure above, nor do they want to install a network management application with a Lucent Datakit front end as shown in the second figure above.
Both the CLECs and the ILECs want the DCN based on IP intranet technologies shown in the figure below.

Figure 23: Network Management Application Monitors Lucent 5ESS Switch over IP Network

As the figure above shows, Cisco offers solutions that allow telco service providers to reduce operating costs, translate and migrate existing X.25-based DCNs to IP-based DCNs, and bridge traditional telephony operations to newer ones. The X.25 Dual Serial Line Management feature is a part of the Cisco IOS Telco Feature Set, a bundle of applications specific to the DCN environment. Specifically, this feature supports X.25-to-TCP protocol translation, and provides dual serial interfaces to preserve the redundancy and monitoring capability available from the SCC0 and SCC1 links on the Lucent 5ESS switch in the DCN network.

Benefits

The X.25 Dual Serial Line Management feature provides the following benefits:

- Preserves the redundancy and monitoring capability available from the SCC0 and SCC1 links on the Lucent 5ESS switch in the DCN network.
- Allows telco service providers to reduce operating costs by migrating existing X.25-based DCNs to IP-based DCNs.

Additionally, the Cisco IOS `translate tcp` command has been updated with the `dynamic` keyword for PVC options. The `dynamic` keyword provides a backup facility for PVC applications. Dynamic PVCs can be made part of an active backup configuration by using the dual serial line management feature.

Restrictions

The X.25 Dual Serial Line Management feature is used in DCN networks utilizing the Lucent 5ESS switch and running the X.25 protocol.

Related Documents

The Cisco protocol translation feature is described in the Configuring Protocol Translation and Virtual Asynchronous Devices " chapter of the *Cisco IOS Terminal Services Configuration Guide*.

The `translate` command used for protocol translation is described in the *Cisco IOS Terminal Services Command Reference*.
The section "Switch Monitoring Networks: Cisco X.25 BA OSS Connectivity Solution" in the *Cisco Network Solutions for the Telco DCN: Telephone Switch Environments* white paper provides tasks and examples for configuring a backup interface using dual serial lines in a telco DCN.

The "X.25 Record Boundary Preservation for Data Communications Networks" chapter of the *Wide-Area Networking Configuration Guide* provides related information about X.25 record boundary preservation.

Supported Standards and MIBs and RFCs

Standards

None

MIBs

None

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

RFCs

None

Configuration Tasks

Configuring X.25 Dual Serial Line Management

To configure the X.25 Dual Serial Line Management feature, you must configure dual serial lines running the X.25 protocol, and activate a backup function on one of the interfaces. To enter these configurations, use the following commands beginning in global configuration mode:

SUMMARY STEPS

1. Router(config)# interface serial x / y
2. Router(config-if)# backup active interface serial x / y
3. Router(config-if)# encapsulation x25 dce
4. Router(config-if)# x25 address address
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Router(config)# interface serial x/y
| | Begins interface configuration on a serial interface (serial1/6, for example, which could be the primary interface). |
| **Step 2** | Router(config-if)# backup active interface serial x/y
| | Assigns a serial interface (serial 1/7, for example) as backup or standby, for the primary serial interface. |
| **Step 3** | Router(config-if)# encapsulation x25 dce
| | Specifies operation of a serial interface as an X.25 DCE device. |
| **Step 4** | Router(config-if)# x25 address address
| | (Optional) Sets the X.121 address on the interface. |

What to Do Next

Refer to the documents listed in the Related Documents, on page 145 section for additional configuration information. The section X.25 Dual Serial Line Management Configuration Example, on page 149 also lists commands that you might enter to configure X.25 and X.25-to-TCP protocol translation.

Verifying X.25 Dual Serial Line Management

The verification process described in this section is based on the following configuration:

```plaintext
!  
interface Serial0/0  
description connects to X.25 switch  
ip address 10.10.0.15 255.255.255.0  
encapsulation x25 dce  
backup active interface Serial0/1  
x25 ltc 10  
clockrate 64000  
```

To verify correct operation of the X.25 Dual Serial Line Management feature, perform the following steps in EXEC mode:

SUMMARY STEPS

1. Use the `show backup` command to display which interface is the active backup:
2. Use the `show interfaces` command to monitor the serial interfaces. In the following display, serial interface 0/1 is up (active), and its backup interface is serial interface 0/0:

DETAILED STEPS

Step 1
Use the `show backup` command to display which interface is the active backup:

Example:

```plaintext
Router# show backup  
Primary Interface Secondary Interface Status  
```
Step 2 Use the **show interfaces** command to monitor the serial interfaces. In the following display, serial interface 0/1 is up (active), and its backup interface is serial interface 0/0:

Example:

```
Router# show interfaces s0/1
Serial0/1 is up, line protocol is up
    Hardware is PowerQUICC Serial
    Internet address is 10.10.0.30/24
    Backup interface Serial0/0, failure delay 0 sec, secondary disable delay 0 sec,
    kickin load not set, kickout load not set
    MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation X25, loopback not set
    X.25 DCE, address 0303, state R1, modulo 8, timer 0
      Defaults: idle VC timeout 0
      cisco encapsulation
      input/output window sizes 2/2, packet sizes 128/128
      Timers: T10 60, T11 180, T12 60, T13 60
      Channels: Incoming-only none, Two-way 10-1024, Outgoing-only none
      RESTARTs 2/0 CALLs 4+0/2+0/0+0 DIAGs 0/0
      LAPB DCE, state CONNECT, modulo 8, k 7, N1 12056, N2 20
      T1 3000, T2 0, interface outage (partial T3) 0, T4 0
      VS 1, VR 1, tx NR 1, Remote VR 1, Retransmissions 0
      Queues: U/S frames 0, I frames 0, unack. 0, reTx 0
      IFRAMES 130/130 RNRs 0/0 REJs 0/0 SABMs 2/1 FRMRs 0/0 DISCs 0/0
      Last input never, output 1w3d, output hang never
      Last clearing of "show interface" counters 2w2d
      Queueing strategy: fifo
      Output queue 0/40, 0 drops; input queue 0/75, 0 drops
      5 minute input rate 0 bits/sec, 0 packets/sec
      5 minute output rate 0 bits/sec, 0 packets/sec
      242 packets input, 4224 bytes, 0 no buffer
      Received 0 broadcats, 0 runts, 0 giants, 0 throttles
      2 input errors, 0 CRC, 2 frame, 0 overrun, 0 ignored, 0 abort
      188 packets output, 1337 bytes, 0 underruns
      0 output errors, 0 collisions, 131 interface resets
      0 output buffer failures, 0 output buffers swapped out
      5 carrier transitions
      DCD=up DSR=up DTR=up RTS=up CTS=up
```
X.25 Dual Serial Line Management Configuration Example

In the following example, dual serial lines (serial 1/6 and 1/7) are configured for the X.25 protocol. Serial interface 1/6 is configured as the primary interface, and serial interface 1/7 is configured as the backup interface. X.25-to-TCP protocol translation is also configured.

```plaintext
interface Serial1/6
  description SCC0
  backup active interface serial 1/7
  encapsulation x25 dce
  x25 address 66666666
  x25 ltc 8
  x25 ips 256
  x25 ops 256
  clockrate 9600

! interface Serial1/7
  description SCC1
  encapsulation x25 dce
  x25 address 66666666
  x25 ltc 8
  x25 ips 256
  x25 ops 256
  clockrate 9600

! x25 route ^66666666 interface Serial1/6
! x25 route ^66666666 interface Serial1/7

! translate tcp 172.20.21.188 port 1025 x25 66666666 pvc 1 dynamic max-users 1
! translate tcp 172.20.21.188 port 1026 x25 66666666 pvc 2 dynamic max-users 1
! translate tcp 172.20.21.188 port 1027 x25 66666666 pvc 3 dynamic max-users 1
! translate tcp 172.20.21.188 port 1028 x25 66666666 pvc 4 dynamic max-users 1
! translate tcp 172.20.21.188 port 1029 x25 66666666 pvc 5 dynamic max-users 1
! translate tcp 172.20.21.188 port 1030 x25 66666666 pvc 6 dynamic max-users 1
! translate tcp 172.20.21.188 port 1031 x25 66666666 pvc 7 dynamic max-users 1
```

Glossary

data communications network --See DCN.

DCN --data communications network. An out-of-band network that provides connectivity between network elements and their respective operations support system (OSS). Its primary function is enabling the surveillance and the status of a telco network, yet it also facilitates network operations and management functions such as provisioning, billing, planning, and service assurance.

CLEC --competitive local exchange carrier. Company that builds and operates communication networks in metropolitan areas and provides its customers with an alternative to the local telephone company.

competitive local exchange carrier --See CLEC.

ILEC --incumbent local exchange carrier. The local telephone company that controls the cable that makes up the telephone network.

incumbent local exchange carrier --See ILEC.

Lucent 5ESS switch --A Class 5 local telephony switch that connects a local subscriber to a telephone network.

network element --A single piece of telecommunications equipment used to perform a function or service integral to the underlying network.
network management application -- A application for managing elements in a service providers’ network. For a Class 5 local telephony switch, the applications are used monitor the switch, provision the switch, collect call detail records, and collect traffic data. Examples of these applications include an OSS such as Lucent’s Network Fault Management (NFM) application and Telcordia Technologies’ Network Monitoring and Assurance (NMA) System.

operations support system -- See OSS.

OSS -- operations support system. DCN network management and operations applications.

SABM -- Set Asynchronous Balanced Mode. Link Access Procedure, Balanced (LAPB) data link layer message that sets the operational mode of a link.

Set Asynchronous Balanced Mode -- See SABM.

telco -- Abbreviated form of the two words "telephone company."

X.25 protocol -- ITU-T standard that defines how connections between data terminal equipment and data communications equipment are maintained for remote terminal access and computer communications in a network.
CHAPTER 7

X.25 over TCP Profiles

Feature History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(8)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

This document describes the X.25 over TCP Profiles feature in Cisco IOS Release 12.2(8)T. It includes the following sections:

- Finding Feature Information, page 151
- Feature Overview, page 152
- Supported Platforms, page 155
- Supported Standards and MIBs and RFCs, page 155
- Prerequisites, page 156
- Configuration Tasks, page 156
- Configuration Examples, page 158
- Glossary, page 159

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Feature Overview

Cisco's X.25 over TCP (XOT) service was originally developed as an X.25 class of service that was only designed to switch X.25 traffic across an IP network. This functionality allowed network administrators to connect X.25 devices across the rich connectivity and media features available to IP traffic. XOT uses a set of default parameters to make this type of network easy to design.

When XOT’s capabilities were enhanced to support packet assembler/disassembler (PAD) traffic on an XOT session, network designers saw a need to be able to configure parameters for increased flexibility. For instance, because XOT does not have any physical interfaces that an administrator can configure, PAD over XOT sessions cannot be configured with interface map or facility commands to establish a PAD connection using nondefault values.

The introduction of X.25 profiles for XOT allows the network designer the added flexibility to control the X.25 class services of XOT for PAD and XOT switching usage.

Another important aspect of this feature is that it affords you to associate access lists with XOT connections, enabling you to apply security on the basis of IP addresses and to have a unique X.25 configuration for specified IP addresses.

X.25 over TCP Profiles Functional Description

XOT Access Groups

The X.25 over TCP Profiles feature introduces the `xot access-group` command, which allows you to create XOT access groups by associating IP access lists with XOT. An access list provides a pass or fail indicator of whether a particular IP address is authorized.

Only standard IP access lists are supported. Standard IP access lists use the remote address, which can be either a source or destination address, depending on where a call originated. For outgoing XOT calls, the destination IP address is tested against the access lists. For incoming XOT calls, the source IP address is tested.

The XOT access groups are sorted by access-group number. When a new XOT connection is made, the IP address is tested against the access list of the first access group. If the IP address does not match the first list, the second list is tested, and so on.

Deleting an access list while it is still associated with XOT will cause the access list to be skipped when a new XOT connection is evaluated. If the access list has been deleted and is being recreated, any XOT access not yet permitted (because the commands have not been configured) will be denied.

A nonexistent access list will deny all access in the same way that an access list configured to "deny all" will. The result is that a call fails to match that access list and moves on to the next XOT access-group entry. If the deleted access list is the last one on the access-group list, then the call is rejected.

The `xot access-group` command disables the legacy XOT behavior and enables the new XOT access behavior. If you enter the `xot access-group` command after the legacy XOT context has been created, the message "Active connection(s) will terminate [confirm]" will be displayed if any XOT connections are active. If the message is confirmed, any active XOT connections using the legacy context will be detached and the legacy context will be deleted.

Deleting an XOT access group by entering the `no xot access-group` command will also cause the message "Active connection(s) will terminate [confirm]" to be displayed if any connections are active. Confirming the
message will cause active connections using the access list to be detached and the associated XOT context to be deleted.

X.25 Profiles for XOT

XOT access groups can be associated with X.25 profiles. By this means, the IP addresses specified in the access list can have a unique X.25 configuration. An access group can be associated with one X.25 profile. If an access group is not associated with an X.25 profile, then the XOT connections associated with the access group will use the default X.25 configuration.

An X.25 profile must already have been created and must specify a data exchange equipment (DXE) station type before it can be associated with an XOT access group. An X.25 profile can be associated with multiple access groups.

The station type of a profile cannot be changed once the profile has been created.

An X.25 profile cannot be deleted as long as it is associated with one or more XOT access groups.

Application of X.25 Profiles on XOT Switched Virtual Circuits

The X.25 parameter settings will be applied to incoming or an outgoing XOT switched virtual circuits (SVCs) according to the following rules:

1. If one or more access lists are applied to XOT, an XOT call will be rejected unless it matches at least one of the access lists.

2. The first access list that permits the XOT connection defines the X.25 settings that apply to the XOT connection. If an X.25 profile was associated with the first qualifying access list, the X.25 settings from that profile are used. If an X.25 profile was not associated with the qualifying access list, the default X.25 settings are used.

3. If no access lists are applied to XOT, the default X.25 settings are used.

Application of X.25 Profiles on Remote Switched XOT Permanent Virtual Circuits

The X.25 parameter settings will be applied to remote switched XOT permanent virtual circuits (PVCs) according to the following rules:

1. If the destination of the XOT PVC does not pass any of the access lists because the access lists have not been defined, the PVC setup will be retried every 20 seconds until the access list is defined.

2. The PVC setup retry will be canceled if the XOT PVC is deleted.

3. The first access list that includes the destination of the XOT PVC defines the X.25 settings that apply to the XOT PVC setup. If an X.25 profile was associated with the qualifying access list, the X.25 settings from that profile are used. If an X.25 profile was not associated with the qualifying access list, the default X.25 settings are used.

Benefits

The X.25 over TCP Profiles feature
• Enables you to apply X.25 profiles to XOT connections so you can configure the X.25 parameters for use by the XOT service.
• Allows a Cisco router to have multiple X.25 configurations that can be used for XOT connection.
• Allows IP access lists to be associated with XOT, enabling you to apply security on the basis of IP addresses.
• Allows the IP addresses specified in the access list to have a unique X.25 configuration.

Restrictions

• An X.25 profile must already have been created and must specify a DXE station type before it can be referenced by the XOT command. To create an X.25 profile with a DXE station type, use the `x25 profile` command with the `dxe` keyword in global configuration mode.
• Closed user group (CUG) service cannot be configured for XOT. CUG behavior is defined to occur at the boundary between user and network. XOT connections are defined as internetwork connections. The CUG facility in a switched Call or Call Confirm packet can only be passed transparently over XOT.
• Named and extended access lists are not supported by XOT access groups.
• LAPB parameters do not apply to XOT and are ignored if configured under an X.25 profile applied to XOT connections. For information about why LAPB parameters do not apply to XOT, see RFC 1613, *Cisco Systems X.25 over TCP (XOT)*.
• The `x25 subscribe flow-control` command with the `never` keyword should not be configured in an X.25 profile that will be used for XOT connections. The `never` keyword means that negotiation of flow-control parameters is disabled and that flow-control parameters will not be included with call setup packets and will not be permitted on inbound packets. Because XOT always sends window and packet size facilities in call setup packets, the application of the `x25 subscribe flow-control never` command to XOT services will cause calls to fail.

Related Documents

For more information about configuring X.25, see the following documents:

• The chapter "Configuring X.25" in the *Cisco IOS Wide-Area Networking Configuration Guide*, Release 12.2
• The chapter "X.25 Commands" in the *Cisco IOS Wide-Area Networking Command Reference*, Release 12.2

For information about configuring IP access lists, see the following documents:

• The chapter "Configuring IP Services" in the *Cisco IOS IP Configuration Guide*, Release 12.2.
• The chapter "IP Services Commands" in the *Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services*, Release 12.2.
Supported Platforms

- Cisco 805 Serial Router
- Cisco 1400 series
- Cisco 1600 series
- Cisco 1751
- Cisco 2600 series
- Cisco 3600 series
- Cisco 3725
- Cisco 3745
- Cisco 7100 series
- Cisco 7200 series
- Cisco 7500 series
- Cisco MC3810

XOT is available on any Cisco router that runs Cisco IOS software and supports X.25.

Determining Platform Support Through Feature Navigator

Cisco IOS software is packaged in feature sets that support specific platforms. To get updated information regarding platform support for this feature, access Feature Navigator. Feature Navigator dynamically updates the list of supported platforms as new platform support is added for the feature.

Feature Navigator is a web-based tool that enables you to quickly determine which Cisco IOS software images support a specific set of features and which features are supported in a specific Cisco IOS image.

To access Feature Navigator, you must have an account on Cisco.com. If you have forgotten or lost your account information, send a blank e-mail to eco-locksmith@cisco.com. An automatic check will verify that your e-mail address is registered with Cisco.com. If the check is successful, account details with a new random password will be e-mailed to you. Qualified users can establish an account on Cisco.com by following the directions at http://www.cisco.com/register.

Feature Navigator is updated regularly when major Cisco IOS software releases and technology releases occur. For the most current information, go to the Feature Navigator home page at the following URL:

http://www.cisco.com/go/fn

Supported Standards and MIBs and RFCs

Standards

No new or modified standards are supported by this feature.
MIBs

No new or modified MIBs are supported by this feature.
To obtain lists of supported MIBs by platform and Cisco IOS release, and to download MIB modules, go to
the Cisco MIB website on Cisco.com at the following URL:

RFCs

RFC 1613, *Cisco Systems X.25 over TCP*

Prerequisites

The configuration tasks in the following sections assume you know how to configure IP access lists and X.25
profiles.

Configuration Tasks

Configuring an XOT Access Group

To configure an XOT access group and associate an X.25 profile with it, use the following command in global
configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# xot access-group</code></td>
<td>Creates an XOT access group.</td>
</tr>
<tr>
<td><code>access-list-number [profile profile-name]</code></td>
<td></td>
</tr>
</tbody>
</table>

Verifying XOT Access Groups

To verify XOT access group configuration and performance, perform the tasks in the following steps. For
descriptions of the output fields, see the command pages later in this document.

SUMMARY STEPS

1. Use the `show x25 xot` command with the `access-group` keyword to find out which X.25 profiles are
 associated with each XOT access group.
2. Use the `show x25 profile` command to view the X.25 parameter settings that apply to XOT connections.
3. Use the `show x25 context` command with the `xot` keyword to display information about the operational
 state of XOT links.
DETAILED STEPS

Step 1 Use the `show x25 xot` command with the `access-group` keyword to find out which X.25 profiles are associated with each XOT access group.

Example:

```
Router# show x25 xot access-group
xot access-group 1 using built-in default configuration
xot access-group 10 using x.25 profile xot-cisco
xot access-group 55 using x.25 profile xot-sita
```

Step 2 Use the `show x25 profile` command to view the X.25 parameter settings that apply to XOT connections.

Example:

```
Router# show x25 profile
X.25 profile name: XOT-DEFAULT
In use by:
  Access-group 2
  Access-group 10
PROFILE dxe/DTE, address 12345, state R/Inactive, modulo 128, timer 0
Defaults: idle VC timeout 0
input/output window sizes 20/20, packet sizes 256/256
Timers: T20 180, T21 200, T22 180, T23 180
Channels: Incoming-only none, Two-way 1-4095, Outgoing-only none
```

Step 3 Use the `show x25 context` command with the `xot` keyword to display information about the operational state of XOT links.

Example:

```
Router# show x25 context xot
XOT Access-group 2
PROFILE mod128 station DXE/DTE, address 2222, state R1, modulo 128, timer 0
Defaults: idle VC timeout 0
  input/output window sizes 80/80, packet sizes 256/256
  Timers: T20 180, T21 200, T22 180, T23 180
  RESTARTs 0/0 CALLs 5+0/7+0/0+0 DIAGs 0/0
XOT Access-group 3
station DXE/DTE, address <none>, state R1, modulo 8, timer 0
Defaults: idle VC timeout 0
  input/output window sizes 2/2, packet sizes 128/128
  Timers: T20 180, T21 200, T22 180, T23 180
  RESTARTs 0/0 CALLs 21+0/50+0/0+0 DIAGs 0/0
```
Troubleshooting Tips

To troubleshoot XOT connections, use the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# debug x25 events</td>
<td>Displays information about all X.25 traffic except data and resource record packets.</td>
</tr>
<tr>
<td>Router# show x25 services</td>
<td>Displays information pertaining to X.25 services.</td>
</tr>
</tbody>
</table>

Configuration Examples

Unrestricted XOT Access with Defined X.25 Parameters for All XOT Connections Example

In the following example, an access list is defined to permit all XOT connections. All XOT connections will use the X.25 configuration defined in the X.25 profile called "NEW-DEFAULT".

```
! Create a DXE station type profile with any name and configure the X.25 parameters under ! the named profile
! x25 profile NEW-DEFAULT dxe
x25 address 12345
x25 modulo 128
x25 win 15
x25 wout 15
x25 ips 256
x25 ops 256
!
! Define an IP standard access list to permit any XOT connection
! access-list 10 permit any
!
! Apply the access list and X.25 profile to all XOT connections
! xot access-group 10 profile NEW-DEFAULT
```

Restricted XOT Access with Default X.25 Parameters for All XOT Connections Example

In the following example, an X.25 profile is not associated with the access group, so the default X.25 configuration will be applied to all permitted XOT connections.

```
! Define an IP access list by specifying an IP access list number and access condition
! access-list 12 permit 192.89.55.0 0.0.0.255
!
! Apply the access list to XOT connections
```
Restricted XOT Access with Multiple X.25 Parameter Configurations Example

In the following example, XOT connections permitted by access list 10 will use the default X.25 configuration. XOT connections permitted by access list 22 will use the X.25 configuration that is defined in the X.25 profile "TRANSPAC".

! Define the IP access lists by specifying an IP access list number and access condition
!
ip access-list standard 10
 permit 10.0.155.9
deny any
ip access-list standard 22
 permit 171.69.0.0 0.0.255.255 log
deny any
!
! Apply the default X.25 configuration to XOT connections permitted by access list 10
!
xot access-group 10
!
! Configure an X.25 profile with station type DXE
!
x25 profile TRANSPAC dxe
 x25 modulo 128
 x25 win 80
 x25 wout 80
 x25 default pad
!
! Apply the X.25 profile to XOT connections permitted by access list 22
!
xot access-group 22 profile TRANSPAC

Glossary

access list --List kept by routers to control access to or from the router for a number of services (for example, to prevent packets with a certain IP address from leaving a particular interface on the router).

CMNS --Connection Mode Network Service. Extends local X.25 switching to a variety of media (Ethernet, FDDI, Token Ring).

CUG --closed user group. A collection of DTE devices for which the network controls access between members and between members and nonmembers. A DTE may subscribe to zero, one, or more CUGs. A DTE that does not subscribe to a CUG is referred to as being in the open part of the network.

DCE --data communications equipment. Devices and connections of a communications network that make up the network end of the user-to-network interface. The DCE provides a physical connection to the network, forwards traffic, and provides a clocking signal used to synchronize data transmission between DCE and DTE devices. Modems and interface cards are examples of DCE.

DTE --data terminal equipment. Device at the user end of a user-network interface that serves as a data source, destination, or both. DTE connects to a data network through a DCE device (for example, a modem) and typically uses clocking signals generated by the DCE. DTE includes such devices as computers, protocol translators, and multiplexers.

HDLC-- high-level data link control. Bit-oriented synchronous data link layer protocol developed by ISO. HDLC specifies a data encapsulation method on synchronous serial links using frame characters and checksums.
LAPB -- Link Access Procedure, Balanced. Data link layer protocol in the X.25 protocol stack. LAPB is a bit-oriented protocol derived from high-level data link control (HDLC).

PVC -- permanent virtual circuit. Virtual circuit that is permanently established.

SVC -- switched virtual circuit. Virtual circuit that is dynamically established on demand and is torn down when transmission is complete.

X.25 -- ITU-T standard that defines how connections between DTE and DCE are maintained for remote terminal access and computer communications in PDNs. X.25 specifies LAPB, a data-link-layer protocol, and PLP, a network-layer protocol.

X.25 profile -- Bundled X.25 and LAPB commands that can be applied to specific connections.

XOT -- X.25 over TCP.
X.25 Record Boundary Preservation for Data Communications Networks

Feature History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(8)T</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.4(5th)T</td>
<td>Capability was added for conveying Q-bit data packets between X.25 and TCP/IP hosts.</td>
</tr>
</tbody>
</table>

This document describes the X.25 Record Boundary Preservation for Data Communications Networks feature in Cisco IOS Release 12.2(8)T. It includes the following sections:

- Finding Feature Information, page 161
- Feature Overview, page 162
- Supported Standards and MIBs and RFCs, page 165
- Prerequisites, page 165
- Configuration Tasks, page 165
- Monitoring and Maintaining RBP, page 170
- Configuration Examples, page 171
- Glossary, page 171

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Overview

The X.25 Record Boundary Preservation for Data Communications Networks feature enables hosts using TCP/IP-based protocols to exchange data with devices that use the X.25 protocol, retaining the logical record boundaries indicated by use of the X.25 "more data" bit (M-bit).

When to Use Record Boundary Preservation

Before the introduction of the X.25 Record Boundary Preservation for Data Communications Networks feature, Cisco IOS software provided two methods for enabling the exchange of data between X.25 hosts and hosts using TCP/IP-based protocols: protocol translation and X.25 over TCP (XOT). Protocol translation supports a variety of configurations, including translation of a data stream between an X.25 circuit that is using X.29 and a TCP session. The X.29 protocol is an integral part of protocol translation. One aspect of X.29 is that it is asymmetric and allows the packaging of data into X.25 packets to be controlled in one direction only. The TCP protocol is stream-oriented, rather than packet-oriented. TCP does not attach significance to TCP datagram boundaries, and those boundaries can change when a datagram is retransmitted. This inability to preserve boundaries makes protocol translation appropriate only for configurations in which the X.25 packet boundary is not significant.

The XOT feature allows X.25 packets to be forwarded over a TCP session. This allows full control over the X.25 circuit, but the host terminating the TCP session must implement the XOT protocol and the X.25 packet layer protocol.

The Record Boundary Preservation (RBP) feature offers a solution positioned between these two options: it allows logical message boundaries to be indicated without requiring the TCP host to be aware of X.25 protocol details.

How Record Boundary Preservation Works

The TCP protocol does not attach significance to datagram boundaries, so a protocol must be layered over a TCP session to convey record boundary information. The Record Boundary Preservation protocol implements a 6-byte record header that specifies the amount of data following and indicates whether that data should be considered the final part of a logical record. Table 1 describes the format and contents of the record header.

<table>
<thead>
<tr>
<th>Table 10: Record Header Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
</tr>
<tr>
<td>Byte 0</td>
</tr>
<tr>
<td>Byte 1</td>
</tr>
</tbody>
</table>
When a router configured with RBP receives an X.25 call that matches a configured X.25 RBP map, the router attempts to open a TCP connection to the specified TCP destination. Each TCP session is mapped to one X.25 virtual circuit. If the TCP session is established, then X.25 data packets received from the caller are combined into logical records as indicated by use of the X.25 M-bit, and the contents of the data packets are forwarded to the TCP destination. The boundaries of these records are preserved by the record header.

The router will not split an X.25 data packet across multiple records unless the data packet exceeds the configured maximum record size; however, TCP will segment the data stream at arbitrary byte boundaries in accordance with TCP specifications.

X.25 data packets with the M-bit set may be combined as long as the resulting record does not exceed the configured maximum record size or, if a maximum record size was not configured, the maximum datagram size for the X.25 interface. The "more data" flag in the record header will reflect the value of the M-bit in the final X.25 data packet. This process of combining packets results in a series of zero or more records whose "more data" flag is set to the value 1 followed by a record whose "more data" flag is set to 0.

Incoming X.25 calls with the "delivery confirmation" bit (D-bit) set will be answered with the D-bit set. However, since the router is the endpoint of the X.25 circuit, X.25 data packets will be acknowledged as soon as their contents have been passed to the TCP connection without waiting for an acknowledgment for the TCP data, regardless of the value of the D-bit. TCP data will be acknowledged as soon as it has been converted to X.25 data packets.

The router will not send Receiver Not Ready (RNR) packets on the X.25 circuit; flow control will be accomplished by withholding acknowledgment.

The following situations will cause the X.25 circuit to be cleared (for an SVC) or reset (for a PVC) and the TCP connection to be closed: receipt of a data packet with the "qualified" bit (Q-bit) set; receipt of any packet type other than data, Receiver Ready (RR), or RNR; or a restart or lower-layer reset on the X.25 interface. When the circuit is cleared or reset, any data not yet passed to the TCP connection will be discarded.

When the router receives the records from the TCP session, it strips the record header and, on the basis of the information in the record header, reassembles the records into X.25 data packets. The data is interpreted as a fixed-length header followed by a variable-length payload whose length is specified in the record header. If the protocol ID or flag field in the header is invalid, the TCP connection will be closed and the X.25 circuit will be cleared or reset. The payload length may be greater than the X.25 packet size and need not be a multiple of the X.25 packet size.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes 2 and 3</td>
<td>Payload length, in bytes, not including the header. Byte 2 contains the most significant byte of the length; byte 3 contains the least significant byte.</td>
</tr>
<tr>
<td>Byte 4</td>
<td>"More data" flag. This byte must contain one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• 0x00--Indicates that this record is the final part of the data unit.</td>
</tr>
<tr>
<td></td>
<td>• 0x01--Indicates that this record is not the final part of the data unit.</td>
</tr>
<tr>
<td>Byte 5</td>
<td>Must contain the value 0x00.</td>
</tr>
</tbody>
</table>
A record that has the "more data" flag set will be logically combined with following records until a record that has the "more data" flag cleared is received. This process results in a sequence of maximum-sized X.25 data packets, each with the M-bit set, followed by an X.25 data packet containing the remaining data that does not have the M-bit set. The router will not wait for an entire record to be received before sending a maximum-size X.25 data packet.

As the records are reassembled into X.25 data packets, the packets are forwarded to the corresponding X.25 circuit.

The router will not set the D-bit or Q-bit on X.25 data packets being sent over circuits that are configured with RBP.

Data received by a router from a TCP session will be buffered while waiting for the other connection to be established. If the connection attempt fails, the data will be discarded. When a TCP connection is closed, the X.25 circuit will be cleared or reset, and any data not yet sent on the X.25 circuit will be discarded.

Benefits

The X.25 Record Boundary Preservation for Data Communications Networks feature enables X.25 and TCP/IP hosts to exchange data while preserving X.25 packet boundaries and without having to carry the full X.25 protocol over the TCP session.

Restrictions

- X.25 connections will be supported over leased-line X.25 interfaces only.
- Only the contents of the X.25 data packets and the record boundary information defined by the X.25 M-bit are conveyed to the TCP session. The contents of the X.25 call packet are used only to identify the corresponding x25 map rbp command; information from the call packet is not otherwise forwarded to the TCP host.
- When the X.25 circuit is cleared or reset, the X.25 cause and diagnostic codes are not forwarded to the TCP host.
- The call user data specified in incoming or outgoing calls must not conflict with protocol ID values recognized by the router.

Related Documents

For more information about configuring X.25 networks, refer to the following documents:

- The section "X.25 and LAPB Commands" in the Cisco IOS Wide-Area Networking Command Reference, Release 12.2
Supported Standards and MIBs and RFCs

Standards

No new or modified standards are supported by this feature.

MIBs

No new or modified MIBs are supported by this feature.

To obtain lists of supported MIBs by platform and Cisco IOS release, and to download MIB modules, go to the Cisco MIB website on Cisco.com at the following URL:

RFCs

No new or modified RFCs are supported by this feature.

Prerequisites

Documentation of the configuration tasks in this document assumes that you know how to configure X.25 networks.

Configuration Tasks

Configuring a PVC to Use RBP for Incoming X.25 Connections

To configure the router to establish a TCP session in response to data received on an X.25 PVC and to use RBP protocol to transfer data between the X.25 host and the TCP session, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 pvc circuit rbp remote host ip-address port port [packetsize in-size out-size] [source-interface interface] [recordsize size] [windowsize in-size out-size]</td>
<td>Configures the router to establish a TCP session in response to data received on an X.25 PVC and to use RBP protocol to transfer data between the X.25 host and the TCP session.</td>
</tr>
<tr>
<td></td>
<td>• When a PVC is configured to use RBP, the VC must be unique. Multiple commands referencing the same VC (matching logical channel identifier and interface) are not permitted.</td>
</tr>
</tbody>
</table>

When the `x25 pvc rbp remote` command is configured, the router will wait until a data packet is received on the specified X.25 PVC; in the meantime, the router will acknowledge any X.25 reset packets on the circuit.
When a data packet is received, the router will attempt to establish a TCP connection to the configured IP address and TCP port, using a dynamically assigned local TCP port number. If the connection attempt fails, the router will reset the permanent virtual circuit and will wait for another data packet before attempting to establish the TCP connection. Since this command is associated with a specific X.25 circuit, at most one connection may be active per command.

Configuring SVCs to Use RBP for Incoming X.25 Connections

To configure the router to establish TCP sessions in response to incoming X.25 calls, and to use RBP to transfer data between the X.25 circuit and the corresponding TCP session, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# x25 map rbp x121-address [cud string] remote host ip-address port port [accept-reverse] [recordsize size] [source-interface interface]</code></td>
<td>Configures the router to establish TCP sessions in response to incoming X.25 calls and to use RBP to transfer data between the X.25 circuit and the corresponding TCP session.</td>
</tr>
</tbody>
</table>

When the `x25 map rbp remote` command is configured, the router will accept an incoming X.25 call if the destination address matches an X.25 address configured on the interface on which the call is received, and if the calling address and call user data matches the configured value. When the call is accepted, the router will attempt to open a TCP connection to the configured IP address and TCP port, using a dynamically assigned local TCP port number. If the TCP connection cannot be opened, the X.25 call will be cleared. The number of X.25 calls that may be accepted is limited only by router resources. No information from the X.25 call packet is provided to the TCP/IP host.
Configuring a PVC to Use RBP for Incoming TCP Connections

To configure the router to accept an incoming TCP connection on a specified TCP port, and to use RBP over that session to transfer data between the TCP host and an X.25 PVC, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config-if)# `x25 pvc circuit rbp local port port [packetsize in-size out-size] [recordsize size] [windowsize in-size out-size]` | Configures the router to establish a TCP session to a specified TCP host and port in response to incoming data on an X.25 PVC and to use the RBP protocol over that TCP session to transfer data between the TCP host and the X.25 PVC.
 - The local TCP port number must be unique, with the exception that the same TCP port number may be configured once on each of multiple X.25 interfaces that will not be active simultaneously; this includes the case in which one X.25 interface is configured as a backup interface for another X.25 interface.
 - When a PVC is configured to use RBP, the VC must be unique. Multiple commands referencing the same VC (matching logical channel identifier and interface) are not permitted. |

When the `x25 pvc rbp local` command is configured, the router will listen for a TCP connection request to the configured TCP port. Until the connection request is received, any data packets received on the X.25 PVC will cause the PVC to be reset. When the TCP connection request is received, the connection will be accepted, and the router will send an X.25 reset packet over the configured X.25 destination circuit. If the reset packet is not acknowledged, the TCP connection will be closed. Since this command is associated with a specific X.25 circuit, only one connection may be active per command.
Configuring SVCs to Use RBP for Incoming TCP Connections

To configure the router to establish X.25 circuits in response to incoming TCP connections, and to use RBP to transfer data between the TCP session and the corresponding X.25 circuit, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# x25 map rbp x121-address [cud string] local port port [cug group-number] [packetsize in-size out-size] [recordsize size] [reverse] [roa name] [throughput in out] [transit-delay milliseconds] [windowsize in-size out-size]</td>
<td>Configures the router to establish X.25 circuits in response to incoming TCP connections on a specified TCP port and to use RBP to transfer data between the TCP session and the corresponding X.25 circuit. The local TCP port number must be unique, with the exception that the same TCP port number may be configured once on each of multiple X.25 interfaces that will not be active simultaneously; this includes the case in which one X.25 interface is configured as a backup interface for another X.25 interface.</td>
</tr>
</tbody>
</table>

When the x25 map rbp local port command is configured, the router will listen for a TCP connection request to the configured TCP port. When the connection is accepted, the router will place an X.25 call using the configured X.25 destination interface, destination address, and call user data. If the call is not successfully completed, the TCP connection will be closed. The number of connections that may be established to the TCP port is limited only by router resources. No information from the TCP connection is included in the X.25 call packet sent to the X.25 host.

Verifying Record Boundary Preservation

To verify that RBP connections are configured and performing correctly, complete the following steps.

SUMMARY STEPS

1. Enter the `show x25 map` command to display information about the configured address maps.
2. Enter the `show x25 vc` command to display information about configured SVCs and PVCs.
3. Enter the `show tcp` command to display the status of TCP connections.

DETAILED STEPS

Step 1 Enter the `show x25 map` command to display information about the configured address maps.

The following is sample output of the `show x25 map` command for a router that is configured with RBP using the `x25 pvc rbp remote` command:
Example:

Router# show x25 map
Serial1/0:-> rbp, destination host 10.0.0.33 port 9999
 PVC, 1 VC:1/P

The following is sample output of the `show x25 map` command for a router that is configured with RBP using the `x25 map rbp remote` command:

Example:

Router# show x25 map
Serial3/0:12132 -> rbp, destination host 10.0.0.32 port 9999
 permanent, 1 VC:1024

The following is sample output of the `show x25 map` command for a router that is configured with RBP using the `x25 pvc rbp local` command:

Example:

Router# show x25 map
Serial3/0:<- rbp, listening at port 9999
 PVC, 1 VC:2/P

The following is sample output of the `show x25 map` command for a router that is configured with RBP using the `x25 map rbp local` command:

Example:

Router# show x25 map
Serial1/0:12131 <- rbp, listening at port 9999
 permanent, 1 VC:1

For descriptions of the `show x25 map` display fields, see the `show x25 map` command page later in this document.

Step 2

Enter the `show x25 vc` command to display information about configured SVCs and PVCs.

The following is sample output of the `show x25 vc` command for a PVC configured with record boundary preservation:

Example:

Router# show x25 vc

PVC 2, State:D1, Interface:Serial3/0
 Started 00:08:08, last input 00:00:01, output 00:00:01
 recordsize:1500, connected
 local address 10.0.0.1 port 9999; remote address 10.0.0.5 port 11029
 deferred ack:1
 Window size input:2, output:2
 Packet size input:128, output:128
 PS:2 PR:2 ACK:1 Remote PR:2 RCNT:1 RNR:no
 P/D state timeouts:0 timer (secs):0
 data bytes 8000/8000 packets 80/80 Resets 9/0 RNRs 0/0 REJs 0/0 INTs 0/0

For descriptions of the `show x25 pvc` display fields, see the `show x25 vc` command page later in this document.
Monitoring and Maintaining RBP

To monitor RBP, use the following command in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router debug x25</td>
<td>Displays information about X.25 traffic.</td>
</tr>
</tbody>
</table>
Configuration Examples

PVC Configured to Use RBP for Incoming X.25 Connections Example

In the following example, when PVC 1 receives a data packet from the X.25 host, the router will attempt to establish a TCP connection to port 9999 at the TCP/IP host that has the IP address 10.0.0.1.

```
interface Serial1/0
  encapsulation x25
  x25 pvc 1 rbp remote host 10.0.0.1 port 9999
```

SVCs Configured to Use RBP for Incoming X.25 Connections Example

In the following example, if serial interface 1/0 receives an X.25 call from 12132, the router will map the call and open a TCP connection to port number 9999 at the remote TCP/IP host that has the IP address 10.0.0.1.

```
interface Serial1/0
  encapsulation x25 dce
  x25 address 12030
  x25 map rbp 12132 remote host 10.0.0.1 port 9999
```

PVC Configured to Use RBP for Incoming TCP Connections Example

In the following example, the router is configured to listen for a TCP connection request on port 9999. When a TCP connection is established, the router will send an X.25 reset over the configured X.25 destination circuit.

```
interface serial2/1
  encapsulation x25
  x25 pvc 2 rbp local port 9999
```

SVCs Configured to Use RBP for Incoming TCP Connections Example

In the following example, if the router receives a request for a TCP connection at port 9999, the router will make an X.25 call with no call user data to address 12131.

```
interface Serial1/0
  encapsulation x25 dce
  x25 address 13133
  x25 map rbp 12131 local port 9999
```

Glossary

CUD -- call user data. Field in an X.25 data packet that contains encapsulated upper-layer information.

CUG -- closed user group. A collection of DTE devices for which the network controls access among members and between members and nonmembers. A DTE may subscribe to zero, one, or more CUGs. A DTE that does not subscribe to a CUG is referred to as being in the open part of the network.
D-bit -- "delivery confirmation" bit. Data packet flag used to request end-to-end acknowledgment for the packet.

DCE -- data communications equipment. Devices and connections of a communications network that make up the network end of the user-to-network interface. The DCE provides a physical connection to the network, forwards traffic, and provides a clocking signal used to synchronize data transmission between DCE and DTE devices. Modems and interface cards are examples of DCE.

DTE -- data terminal equipment. Device at the user end of a user-network interface that serves as a data source, destination, or both. DTE connects to a data network through a DCE device (for example, a modem) and typically uses clocking signals generated by the DCE. DTE includes such devices as computers, protocol translators, and multiplexers.

local acknowledgment -- Method whereby a switch acknowledges a received data packet before it has received acknowledgment of the data from the next hop.

M-Bit -- "more data" bit. Data packet flag that indicates that at least one more data packet is required for completion of a message of contiguous data.

PVC -- permanent virtual circuit. Virtual circuit that is permanently established.

Q-bit -- "qualified" bit. Data packet flag that signifies that the packet's user data is a control signal for the remote device, not a message for the user.

RBP -- record boundary preservation. Protocol that defines a way for hosts using TCP/IP-based protocols to exchange data with devices that use the X.25 protocol, preserving the logical record boundaries conveyed by the X.25 M-bit ("more data" bit).

SVC -- switched virtual circuit. Virtual circuit that is dynamically established on demand and is torn down when transmission is complete. SVCs are used in situations in which data transmission is sporadic.

X.121 -- ITU-T standard describing an addressing scheme used in X.25 networks. Sometimes called the X.25 address.

X.25 -- ITU-T standard that defines how connections between DTE and DCE are maintained for remote terminal access and computer communications in PDNs. X.25 specifies LAPB, a data-link layer protocol, and PLP, a network layer protocol.

XOT -- X.25 over TCP.
X.25 Suppression of Security Signaling Facilities

The X.25 Suppression of Security Signaling Facilities feature allows the X.25 Call Redirection/Call Deflection Notification (CRCDN) and Called Line Address Modified Notification (CLAMN) security signaling facilities to be disabled (suppressed) in X.25 Call and Call Confirm packets (respectively) sent by an X.25-class service. This feature may be required when connecting to equipment that implements a proprietary or nonstandard X.25 service that does not accept X.25 security signaling facilities.

Feature Specifications for the X.25 Suppression of Security Signaling Facilities

<table>
<thead>
<tr>
<th>Feature History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td></td>
</tr>
<tr>
<td>12.2(13)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

Supported Platforms

Cisco Catalyst 4000 Gateway, Cisco 800 series, Cisco 805 router, Cisco 1400 series, Cisco 1600 series, Cisco 1600R series, Cisco 1710 router, Cisco 2500 series, Cisco 2610 to 2613 series, Cisco 2620 and 2621 routers, Cisco 2650 and 2651 routers, Cisco 2691 router, Cisco 3620 router, Cisco 3631 router, Cisco 3640 router, Cisco 3660 router, Cisco 3725 router, Cisco 3745 router, Cisco 5300 series, Cisco 5350 router, Cisco 5400 series, Cisco 5800 series, Cisco 5850 router, Cisco 7100 series, Cisco 7200 series, Cisco 7400 series, Cisco 8850-RPM, IGX8400-URM, Cisco MC3810 router, Cisco uBR 7200 router

Determining Platform Support Through Cisco Feature Navigator

Cisco IOS software is packaged in feature sets that are supported on specific platforms. To get updated information regarding platform support for this feature, access Cisco Feature Navigator. Cisco Feature
Navigator dynamically updates the list of supported platforms as new platform support is added for the feature.

Cisco Feature Navigator is a web-based tool that enables you to quickly determine which Cisco IOS software images support a specific set of features and which features are supported in a specific Cisco IOS image. You can search by feature or release. Under the release section, you can compare releases side by side to display both the features unique to each software release and the features in common.

To access Cisco Feature Navigator, you must have an account on Cisco.com. If you have forgotten or lost your account information, send a blank e-mail to cco-locksmith@cisco.com. An automatic check will verify that your e-mail address is registered with Cisco.com. If the check is successful, account details with a new random password will be e-mailed to you. Qualified users can establish an account on Cisco.com by following the directions found at this URL:

http://www.cisco.com/register

Cisco Feature Navigator is updated regularly when major Cisco IOS software releases and technology releases occur. For the most current information, go to the Cisco Feature Navigator home page at the following URL:

http://www.cisco.com/go/fn

Availability of Cisco IOS Software Images

Platform support for particular Cisco IOS software releases is dependent on the availability of the software images for those platforms. Software images for some platforms may be deferred, delayed, or changed without prior notice. For updated information about platform support and availability of software images for each Cisco IOS software release, refer to the online release notes or Cisco Feature Navigator.

- Finding Feature Information, page 174
- Information About the X.25 Suppression of Security Signaling Facilities Feature, page 175
- How to Suppress the X.25 Security Signaling Facilities, page 177
- Configuration Example for Suppressing X.25 Security Signaling Facilities, page 178
- Additional References, page 178

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About the X.25 Suppression of Security Signaling Facilities Feature

X.25 Security Facilities Suppression Scenarios

X.25 networks encode security facilities in X.25 Call, Call Confirm, and Clear packets to notify both stations participating in the setup of a switched virtual circuit (SVC) of events that may result in a station connecting to an unexpected partner.

Note

This document refers to Call packets and Call Confirm packets. These names differ from those standardized by X.25. The standard distinguishes between a Call packet sent by the DTE station (a Call Request) and one sent by the DCE station (an Incoming Call), and similarly between a Call Confirm packet sent by the DTE (a Call Accepted) and one sent by the DCE (a Call Connected). The packets are encoded identically and, in many cases, the processing that X.25 does is identical; however, there are cases where the behavior is predicated on the station type receiving or sending the packet.

For example, when an X.25 Call is redistributed by a network through a hunt group, a standard implementation will encode a CRCDN facility in the forwarded call. Thus, the receiver is notified that the Call packet was redistributed by a hunt group and is notified of the original destination address. A standard network will also, if such a Call is accepted by a returned Call Confirm packet, encode a CLAMN facility when forwarding the Call Confirm packet. This encoding notifies the originator that the accepting destination was reached by distribution through a hunt group, and may also encode the destination address of the accepting station. Both stations receive notification of what happened so each can decide to either proceed with the SVC, if the resulting connection is permissible, or to clear the channel if not.

When Suppressing the Security Signaling Facilities Is Necessary

Danger

X.25 security signaling facilities are used to explicitly notify the connecting stations of events that may raise security issues if they were not signalled. Suppression of these facilities should only be configured when the attached equipment and network configurations are sufficiently secure that the signalled information is unnecessary.

There are many X.25 implementations that will not operate as intended if presented with X.25 features or facilities beyond a narrow set of those that occur most commonly. The security signaling facilities are less common, and there are a significant number of X.25 implementations that will not proceed with an SVC that encodes them during Call setup. This can cause connection failures when Cisco equipment is used to implement an X.25 hunt group. There are two security facilities that the Cisco hunt group feature encodes: An X.25 Call packet forwarded out from a hunt group has the CRCDN facility encoded in the packet and, when accepted, the returning X.25 Call Confirm packet has the CLAMN facility encoded in the packet.

Both the originator of the Call packet and the destination it reaches should be notified of the hunt group event, thus allowing each side to clear the SVC if communication is not permitted by the station’s security policy. For this reason, the Cisco implementation of hunt groups is designed to signal both stations participating in
the Call setup using the X.25-designated CRCDN and CLAMN facilities. The X.25 Suppression of Security Signaling Facilities feature allows this signaling to be suppressed by the CRCDN facility in a Call packet. The **no x25 security crcdn** command introduced in this feature provides this function, and there are no implications for correct protocol behavior by using it.

X.25 operation can also be modified to suppress a CLAMN facility in X.25 Call Confirm packets when the **no x25 security clamn** command is configured to disable that signaling. Configuring suppression of the CLAMN security signaling facility has an implication for correct protocol behavior: The X.25 Recommendations specify that the CLAMN facility must be present in a Call Confirm packet if that packet encodes a destination address that is not the null address and that differs from the address encoded in the Call packet. When X.25 is configured to suppress the encoding of a CLAMN facility, it will also suppress the encoding of the destination address. That is, when the address block is encoded in the Call Confirm packet, the destination address will be encoded as the null address (zero digits) because no representation should be made as to what destination was reached.

An X.25 profile may also be configured to suppress the X.25 security signaling facilities. This profile can be useful if the network administrator wants to localize the suppression of these facilities. For example, a hunt group that switches a connection using X.25 over TCP/IP (XOT) may be configured so that the security signaling facilities are not transmitted to either hop participating in the Call setup.

As another example, some telephone company data communications networks (telco DCNs) use a nonstandard X.25 implementation that blends elements of the 1980 and 1984 International Telecommunication Union Telecommunication Standardization Sector (ITU-T) Recommendations. The figure below shows a portion of a telco DCN network where X.25 devices, also called CPE, are connected to Cisco routers and the IP backbone network using serial links.

Figure 24: DCN Network Devices Connected to a Cisco IP Backbone Network

![Figure 24: DCN Network Devices Connected to a Cisco IP Backbone Network](image)

Early equipment in the telco DCN conformed to the ITU-T 1980 X.25 Recommendation, and Cisco provides support for this standard. However, substantial ITU-T 1984 X.25 Recommendation elements, such as maximum packet sizes of 2048 and 4096 and X.25 Annex G operation, have since been incorporated into the DCN. This mix of ITU-T 1980 and 1984 X.25 Recommendations in the telco DCN has resulted in a design requirement that would allow the CPE to operate according to the ITU-T 1984 X.25 Recommendation, but with a modification that would allow suppressing security signaling facilities encoded by the Cisco hunt group feature. Because the ITU-T 1980 X.25 Recommendation does not define these security signaling facilities, the Cisco X.25 implementation can now be configured to suppress them in the packets where they would otherwise be encoded.
How to Suppress the X.25 Security Signaling Facilities

Disabling the X.25 Security Signaling Facilities

To disable the X.25 CLAMN and CRCDN signaling facilities, perform the following steps:

SUMMARY STEPS

1. enable
2. configure {terminal | memory | network}
3. interface serial interface-number
4. encapsulation x25
5. no x25 security credn
6. no x25 security clamn
7. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables higher privilege levels, such as privileged EXEC mode.
 • Enter your password if prompted. |
| Example:
 Router> enable |
| **Step 2** configure {terminal | memory | network} | Enters global configuration mode.
 Example:
 Router# configure terminal |
| **Step 3** interface serial interface-number | Enters interface configuration mode.
 Example:
 Router(config)#
 interface serial 0 |
| **Step 4** encapsulation x25 | Enables the default X.25 DTE operation mode.
 Example:
 Router(config-if) encapsulation x25 |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td><code>no x25 security crcdn</code></td>
<td>Disables the CRCDN security signaling facility in X.25 Call packets transmitted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if) no x25 security crcdn</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>no x25 security clamn</code></td>
<td>Disables the CLAMN security signaling facility in X.25 Call Confirm packets and suppresses any destination address.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if) no x25 security clamn</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>exit</code></td>
<td>Ends interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if) exit</code></td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting Tips

Use the `debug x25` EXEC command to determine when the X.25 facilities are present and when they are suppressed by the configured feature.

Configuration Example for Suppressing X.25 Security Signaling Facilities

The following example shows how to suppress both the CRCDN and CLAMN security signaling facilities:

```bash
interface serial 0  
  no ip address  
  encapsulation x25  
  no x25 security crcdn  
  no x25 security clamn
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.25 commands</td>
<td>Cisco IOS Wide-Area Networking Command Reference, Release 12.2</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
</table>
• ITU-T 1984 X.25 Recommendation
• ITU-T 1988 X.25 Recommendation
• ITU-T 1993 X.25 Recommendation |

10 Not all supported standards are listed.

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
</table>
| None | To obtain lists of supported MIBs by platform and Cisco IOS release, and to download MIB modules, go to the Cisco MIB website on Cisco.com at the following URL:

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
http://tools.cisco.com/ITDIT/MIBS/servlet/index

If Cisco MIB Locator does not support the MIB information that you need, you can also obtain a list of supported MIBs and download MIBs from the Cisco MIBs page at the following URL:

To access Cisco MIB Locator, you must have an account on Cisco.com. If you have forgotten or lost your account information, send a blank e-mail to eco-locksmith@cisco.com. An automatic check will verify that your e-mail address is registered with Cisco.com. If the check is successful, account details with a new random password will be e-mailed to you. Qualified users can establish an account on Cisco.com by following the directions found at this URL:
http://www.cisco.com/register
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of</td>
<td>http://www.cisco.com/public/</td>
</tr>
<tr>
<td>searchable technical content, including links to products, technologies,</td>
<td>support/tac/home.shtml</td>
</tr>
<tr>
<td>solutions, technical tips, tools, and lots more. Registered Cisco.com</td>
<td></td>
</tr>
<tr>
<td>users can log in from this page to access even more content.</td>
<td></td>
</tr>
</tbody>
</table>
X.25 Call Confirm Packet Address Control

The X.25 Call Confirm Packet Address Control feature provides options for controlling the source and destination addresses that are encoded in outgoing Call Confirm packets. You can suppress the addresses completely or specify that the addresses originally proposed in the received Call packet be encoded in the Call Confirm packet. This feature may be necessary when connecting to equipment that implements a nonstandard or proprietary X.25 service.

Finding Support Information for Platforms and Cisco IOS Software Images

Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click Cancel at the login dialog box and follow the instructions that appear.

- Finding Feature Information, page 181
- Information About X.25 Call Confirm Packet Address Control, page 182
- How to Configure X.25 Call Confirm Packet Address Control, page 183
- Configuration Examples for X.25 Call Confirm Packet Address Control, page 186
- Additional References, page 186
- Feature Information for X.25 Call Confirm Packet Address Control, page 187

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About X.25 Call Confirm Packet Address Control

Address Encoding in X.25 Call Confirm Packets

This document refers to Call packets and Call Confirm packets. These names differ from those standardized by X.25. The standard distinguishes between a Call packet sent by the data terminal equipment (DTE) station (a Call Request) and one sent by the data communications equipment (DCE) station (an Incoming Call), and similarly between a Call Confirm packet sent by the DTE (a Call Accepted) and one sent by the DCE (a Call Connected). The packets are encoded identically, and in many cases the processing that X.25 does is identical; however, there are cases where the behavior is predicated on the station type that is receiving or sending the packet.

An X.25 switched virtual circuit (SVC) is established between two stations through the exchange of a Call and a Call Confirm packet. The X.25 standards specify that Call packets include source and destination addresses. Call Confirm packets might also encode source and destination addresses, depending on the circumstances. When the source address is encoded in a Call Confirm packet, the X.25 standards require that it be the same address that was specified in the Call packet. When the destination address is encoded in a Call Confirm packet and is different from the destination address in the Call packet, the newer X.25 standards (those after ITU-T 1980 X.25) require that the reason for the difference be signaled by the encoding of the Called Line Address Modified Notification (CLAMN) facility.

For example, when an X.25 Call is routed through a configured hunt group, a Call Redirection/Call Deflection Notification (CRCDN) facility is encoded in the forwarded call along with the original destination address. This encoding notifies the receiver that the Call packet was redistributed by a hunt group. If such a Call is accepted by a returned Call Confirm packet, a CLAMN facility and the destination address of the accepting station will be encoded in the Call Confirm packet. This encoding notifies the originator that the accepting destination was reached by distribution through a hunt group.

X.25 Call Confirm Packet Address Control

Network devices that implement nonstandard X.25 service may have different requirements for address encoding in the Call Confirm packet. The no x25 security call-confirm address out command enables you to control the source and destination addresses that are encoded in outgoing Call Confirm packets. You can suppress the addresses completely, or you can specify that the addresses originally presented in the received Call packet be encoded unmodified in the Call Confirm packet. When address suppression is configured, any address block in the Call Confirm packet will specify the null address (zero digits) for the suppressed addresses.

Caution

X.25 specifies address signaling behavior as a security measure to ensure that connecting devices are given clear notice of a Call setup that encountered redirection, deflection, or distribution to an alternate destination. Disabling these security features should be done only when the risks of doing so are understood and acceptable.

X.25 Call Confirm packet address control can be configured on an interface or in an X.25 profile. When the feature is configured on an interface, all Call Confirm packets sent over the services that use that interface
will be affected, including SVCs that use a configuration from a subinterface. When the feature is configured in an X.25 profile, all services using that profile will be affected.

Benefits of X.25 Call Confirm Packet Address Control

Users implementing nonstandard X.25 service may have specific requirements for the encoding of source and destination addresses in Call Confirm packets. The X.25 Call Confirm Packet Address Control feature enables you to control the source and destination addresses that are encoded in outgoing Call Confirm packets. This feature allows you to suppress the addresses completely or specify that the addresses originally proposed in the received Call packet be encoded in the Call Confirm packet.

How to Configure X.25 Call Confirm Packet Address Control

Configuring X.25 Call Confirm Packet Address Control on an Interface

To suppress the addresses in a Call Confirm packet, or to specify that the addresses presented in the original Call packet are to be encoded in the Call Confirm packet, perform the following steps:

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface serial number**
4. **encapsulation x25**
5. **no x25 security call-conf address out source {suppress | unmodified} dest {suppress | unmodified}**
6. **exit**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 3 | interface serial *number*
Example:
Router(config)# interface serial 0
| Specifies an interface and enters interface configuration mode. |
Step 4 | encapsulation x25
Example:
Router(config-if)# encapsulation x25
| Enables the default X.25 DTE operation mode. |
Step 5 | no x25 security call-conf address out source {suppress | unmodified} dest {suppress | unmodified}
Example:
Router(config-if)# no x25 security call-conf address out source suppress dest suppress
| Suppresses the addresses in transmitted X.25 Call Confirm packets or specifies that the addresses originally received in a Call packet are to be encoded in the Call Confirm packet. |
Step 6 | exit
Example:
Router(config-if)# exit
| Returns to global configuration mode. |

Troubleshooting Tips

Use the **debug x25 events** command to determine when the source and destination addresses in Call Confirm packets have been suppressed or configured to remain unmodified from the addresses proposed in the original Call packet.

Configuring X.25 Call Confirm Packet Address Control in an X.25 Profile

To suppress the addresses in a Call Confirm packet, or to specify that the addresses presented in the original Call packet are to be encoded in the Call Confirm packet, perform the following steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. x25 profile *name* {dce | dte | dxe}
4. no x25 security call-conf address out source {suppress | unmodified} dest {suppress | unmodified}
5. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>x25 profile name {dce</td>
<td>dte</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>x25 profile NetworkNodeA dce</td>
<td>x25 profile NetworkNodeA dce</td>
</tr>
<tr>
<td>Step 4</td>
<td>no x25 security call-conf address out source {suppress</td>
<td>unmodified} dest {suppress</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no x25 security call-conf address out source suppress dest suppress</td>
<td>Router(config-if)# no x25 security call-conf address out source suppress dest suppress</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# exit</td>
<td>Router(config-if)# exit</td>
</tr>
</tbody>
</table>

Troubleshooting Tips

Use the **debug x25 events** command to determine when the source and destination addresses in Call Confirm packets have been suppressed or configured to remain unmodified from the addresses proposed in the original Call packet.
Configuration Examples for X.25 Call Confirm Packet Address Control

Suppressing Addresses in Call Confirm Packets Example

The following example shows how to suppress both the source and destination addresses in Call Confirm packets:

```
interface serial 0
no ip address
encapsulation x25
no x25 security call-conf address out source suppress dest suppress
```

Using Addresses from Original Call Packets in the Call Confirm Packets Example

The following example shows how to specify that the addresses presented in the original Call packet are encoded in the Call Confirm packet:

```
interface serial 0
no ip address
encapsulation x25
no x25 security call-conf address out source unmodified dest unmodified
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands and tasks for configuring suppression of</td>
<td>X.25 Suppression of Security Signaling Facilities, 12.2(13)T new feature</td>
</tr>
<tr>
<td>CRCDN and CLAMN security signaling facilities</td>
<td>document</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• ITU-T 1984 X.25 Recommendation</td>
</tr>
<tr>
<td></td>
<td>• ITU-T 1988 X.25 Recommendation</td>
</tr>
<tr>
<td></td>
<td>• ITU-T 1993 X.25 Recommendation</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/public/support/tac/home.shtml</td>
</tr>
</tbody>
</table>

Feature Information for X.25 Call Confirm Packet Address Control

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 11: Feature Information for X.25 Call Confirm Packet Address Control

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.25 Call Confirm Packet Address Control</td>
<td>12.3(2)T</td>
<td>The X.25 Call Confirm Packet Address Control feature provides options for controlling the source and destination addresses that are encoded in outgoing Call Confirm packets. You can suppress the addresses completely or specify that the addresses originally proposed in the received Call packet be encoded in the Call Confirm packet. This feature may be necessary when connecting to equipment that implements a nonstandard or proprietary X.25 service. In Cisco IOS Release 12.3(2)T, this feature was introduced. The following commands were introduced or modified: <code>x25 security call-conf address out</code>.</td>
</tr>
</tbody>
</table>
X.25 Data Display Trace

The X.25 Data Display Trace feature enhances the Cisco IOS debugging capability for X.25. This feature enables an authorized user to display the entire X.25-encoded traffic stream, including user data, for those packets specified by an X.25 debug command.

- Finding Feature Information, page 189
- Displaying the Contents of X.25 Packets, page 189
- Additional References, page 191
- Feature Information for X.25 Data Display Trace, page 192

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Displaying the Contents of X.25 Packets

To augment the reporting of X.25 traffic information to include the contents of the X.25 packets, use the commands listed in the following task. Note that an entry of the debug x25, debug x25 interface, debug x25 vc, or debug x25 xot commands will override any prior entry of any of these commands.

Caution

The reported X.25 packet information may contain sensitive data; for example, clear-text account identities and passwords. The network access policies and router configuration should be controlled appropriately to address this risk.
The X.25 debug commands can generate large amounts of debugging output. If logging of debug output to the router console is enabled (the default condition), this output may fill the console buffer, preventing the router from processing packets until the contents of the console buffer have been printed.

Summary Steps

1. `enable`
2. `debug x25 [only | cmns| xot] [events | all] [dump]`
3. `debug x25 interface {serial-interface | cmns-interface [mac mac-address]} [vc number][events | all] [dump]`
4. `debug x25 vc number [events | all] [dump]`
5. `debug x25 xot [remote ip-address [port number]] [local ip-address [port number]] [events | all] [dump]`

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Displays information about all X.25 traffic or a specific X.25 service class.</td>
</tr>
<tr>
<td>`debug x25 [only</td>
<td>cmns</td>
</tr>
<tr>
<td>Step 3</td>
<td>Displays information about X.25, Annex G or CMNS contexts or virtual circuits that occur on the identified interface.</td>
</tr>
<tr>
<td>`debug x25 interface {serial-interface</td>
<td>cmns-interface [mac mac-address]} [vc number][events</td>
</tr>
<tr>
<td>Step 4</td>
<td>Displays information about traffic for all virtual circuits that use a given number.</td>
</tr>
<tr>
<td>`debug x25 vc number [events</td>
<td>all] [dump]`</td>
</tr>
<tr>
<td>Step 5</td>
<td>Displays information about traffic to or from a specific X.25 over TCP (XOT) host.</td>
</tr>
<tr>
<td>`debug x25 xot [remote ip-address [port number]] [local ip-address [port number]] [events</td>
<td>all] [dump]`</td>
</tr>
</tbody>
</table>
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-T 1993 Recommendation X.25</td>
<td>Interface between DTE and DCE for terminals operating in the packet mode and connected to public data networks by dedicated circuit</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/public/support/tac/home.shtml</td>
</tr>
</tbody>
</table>
Feature Information for X.25 Data Display Trace

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 12: Feature Information for X.25 Data Display Trace

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.25 Data Display Trace</td>
<td>12.3(2)T</td>
<td>The X.25 Data Display Trace feature enhances the Cisco IOS debugging capability for X.25. This feature enables an authorized user to display the entire X.25-encoded traffic stream, including user data, for those packets specified by an X.25 debug command. In Cisco IOS Release 12.3(2)T, this feature was introduced. The following commands were introduced or modified: <code>debug x25</code>, <code>debug x25 interface</code>, <code>debug x25 vc</code>.</td>
</tr>
</tbody>
</table>
CHAPTER 12

X.25 Version Configuration

The X.25 Version Configuration feature introduces the `x25 version` command. The `x25 version` command allows you to specify the International Telecommunication Union Telecommunication Standardization Sector (ITU-T) X.25 recommendation and corresponding behavior set to be used by an interface or profile.

Feature History for the X.25 Version Configuration Feature

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(8)T</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.3(9)</td>
<td>This feature was integrated into Cisco IOS Release 12.3(9).</td>
</tr>
</tbody>
</table>

Finding Support Information for Platforms and Cisco IOS Software Images

Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click Cancel at the login dialog box and follow the instructions that appear.

- Finding Feature Information, page 193
- Information About X.25 Version Configuration, page 194
- How to Specify the X.25 Version, page 202
- Configuration Examples for X.25 Version Configuration, page 204
- Additional References, page 207

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About X.25 Version Configuration

X.25 Version Configuration

Cisco IOS X.25 support was designed to conform to the Consultative Committee for International Telegraph and Telephone (CCITT) 1984 X.25 recommendation, both because it represented the largest set of X.25 devices deployed at that time and because protocol conformance testing to the 1984 standard was readily available.

The introduction of the `x25 version` command allows you to specify alternative X.25 behavior sets as defined by the 1980, 1988, or 1993 X.25 recommendation. By default, Cisco IOS operates to the CCITT 1984 X.25 recommendation. The `X.25 version` command can be used to change the version for both X.25-class services (for example, X.25 and Connection-Mode Network Service (CMNS)) and X.25 configuration profiles.

A common use of the `X.25 version` command is the specification of 1980 X.25 behavior set in order to suppress the signaling of facilities that are not defined by that recommendation. This functionality benefits customers with an attached X.25 device that is not capable of correctly handling one or more of the facilities defined in the subsequent standards.

Note

The Cisco IOS implementations of the 1980, 1988, and 1993 X.25 behavior sets have not been tested for compliance with the recommendations. For example, configuring an interface with the `x25 version 1988` command will not necessarily create an interface that offers an X.25 connection that is in full compliance with the 1988 recommendation; it only enables select features from the 1988 standard that are supported by the Cisco IOS X.25 implementation.

Typical Uses of the `x25 version` Command

The `x25 version` command is typically used to access functionality that is available in other X.25 behavior sets and to prevent problems that arise when a network is attached to X.25 devices that use nonstandard or older behavior sets. The table below describes some common problems that can be solved by specifying a particular X.25 behavior set.
Table 13: Common Problems That Are Solved by the x25 version Command

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some X.25 hosts reject calls that include Internetwork Call Redirection</td>
<td>X.25 hosts may conform to the 1980 standard, which does not support</td>
<td>Specify the 1980 X.25 behavior set on the interface or X.25 profile.</td>
</tr>
<tr>
<td>and Deflection Notification (ICRD) or Called Line Address Modification</td>
<td>these facilities, or the host may be nonstandard.</td>
<td></td>
</tr>
<tr>
<td>Notification (CLAMN).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An incoming call that includes Protection QoS facilities (an ITU-T-</td>
<td>The interface defaults to the 1984 X.25 behavior set, which does not</td>
<td>Specify the 1988 or 1993 behavior set on the interface to allow</td>
</tr>
<tr>
<td>specified DTE facility) is cleared by the Cisco router.</td>
<td>define the Protection QoS facility.</td>
<td>Protection QoS facilities to be encoded and passed through</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transparently by the router.</td>
</tr>
<tr>
<td>Incoming calls requesting a throughput of 64,000 bits per second (bps)</td>
<td>The throughput facility in the 1984 recommendation defines a maximum</td>
<td>Specify the 1988 behavior set for services where you need</td>
</tr>
<tr>
<td>are rejected while other calls requesting a throughput of 48,000 bps</td>
<td>value of 48,000 bps.</td>
<td>throughput facility values up to 64,000 bps, and the 1993 behavior set</td>
</tr>
<tr>
<td>are accepted.</td>
<td></td>
<td>for services where you need throughput facility values up to 2,048,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bps.</td>
</tr>
<tr>
<td>After a packet assembler/disassembler (PAD) call is initiated over</td>
<td>The called X.25 address has been modified on the Call Confirm by the</td>
<td>If the security risks are acceptable, specify the 1980 behavior set on</td>
</tr>
<tr>
<td>X.25 over TCP (XoT), the Call packet is cleared by the router when the</td>
<td>remote X.25 host without signaling the fact by also encoding a CLAMN</td>
<td>an X.25 profile configured for the XoT connection.</td>
</tr>
<tr>
<td>Call Confirm packet includes a modified destination address.</td>
<td>facility--a potential security issue.</td>
<td></td>
</tr>
</tbody>
</table>

Description of Cisco IOS X.25 Behavior Sets

Cisco IOS Implementation of the 1980 X.25 Behavior Set

The 1980 X.25 behavior set differs from the default 1984 behavior set in the following ways:

- Only the facilities and facility value encodings defined by the CCITT 1980 X.25 recommendation will be accepted on packets received; receipt of a facility encoding not specified by that standard will cause the packet to be rejected as specified in the 1980 recommendation.

- Packets sent will use only the facilities and facility value encodings defined by the CCITT 1980 X.25 recommendation.

- The maximum Data packet size is 1024 bytes of user data. This limit affects configurable packet sizes (for example, PVCs and interface flow control default values) as well as flow control negotiation for X.25 switching.
• The maximum throughput facility value that can be encoded is 48,000 bps. This limit affects configurable throughput facility values, as well as truncating larger values when an X.25 Call packet is switched to the service.

• The maximum closed user group (CUG) that can be identified is 99. This limit affects configurable CUG facility values as well as interoperability for X.25 switching.

• The facility block that is used to encode X.25 facilities (for example, in a Call packet) cannot exceed 64 bytes.

• The Interrupt packet must have 1 byte of user data.

• A Clear packet cannot have an address block encoded.

• A Clear Confirm packet cannot have an address block encoded.

• A received Call Confirm packet is permitted to have a destination address that differs from the address encoded in the original Call packet.

• The cause and diagnostic codes encoded under various circumstances can differ from the default behavior.

Cisco IOS Implementation of the 1984 X.25 Behavior Set

The 1984 X.25 behavior set is the default X.25 behavior set used by Cisco IOS software and uses the following default protocol procedures:

• The 1984 X.25 behavior for both Layer 2 and Layer 3 has been tested for compliance with the NET2 and GOSIP test suites. This does not mean that all elements of the standard are implemented, but the protocol features implemented and tested were accepted as compliant.

• Only the facilities and facility value encodings defined by the CCITT 1984 X.25 recommendation will be accepted on packets received. Receipt of a facility encoding not specified by that standard will cause the packet to be rejected as specified in the 1984 recommendation.

• Packets sent will use only the facilities and facility value encodings defined by the CCITT 1984 X.25 recommendation.

• The maximum Data packet size is 4096 bytes of user data.

• The maximum throughput facility value that can be encoded is 48,000 bps. This limit affects configurable throughput facility values, as well as truncating larger values when an X.25 Call packet is switched to the service.

• The maximum closed user group (CUG) that can be identified is 9999.

• The facility block that is used to encode X.25 facilities (for example, in a Call packet) cannot exceed 110 bytes.

• The Interrupt packet can encode between 1 and 32 bytes of user data.

• A Clear packet may, under certain conditions, encode an address block.

• A Clear Confirm packet can encode an empty address block (that is, both address lengths are required to be 0).

• If a received Call Confirm or Clear packet encodes a destination address that differs from the address encoded in the original Call packet, the Call Confirm or Clear packet is also required to encode a CLAMN facility to signal the reason.
Cisco IOS Implementation of the 1988 X.25 Behavior Set

The 1988 X.25 behavior set differs from the default 1984 behavior set in the following ways:

- Only the facilities and facility value encodings defined by the CCITT 1988 X.25 recommendation will be accepted on packets received; receipt of a facility encoding not specified by that standard will cause the packet to be rejected as specified in the 1988 recommendation.

- Packets sent will use only the facilities and facility value encodings defined by the CCITT 1988 X.25 recommendation.

- The maximum throughput facility value that can be encoded is 64,000 bps. This limit affects configurable throughput facility values, and it truncates larger values when an X.25 Call packet is switched to the service.

- A Call, Call Confirm, Clear, or Clear Confirm packet that has the A-bit set is not treated as a bad General Format Identifier, but A-bit encoded addresses are not otherwise supported.

- The cause and diagnostic codes encoded under various circumstances can differ from the default behavior.

Cisco IOS Implementation of the 1993 X.25 Behavior Set

The 1993 X.25 behavior set differs from the default 1984 behavior set in the following ways:

- The 1993 behavior set is the default for XoT service because it simplifies X.25 switching service configuration.

- Only the facilities and facility value encodings defined by the ITU-T 1993 X.25 recommendation will be accepted on packets received. Receipt of a facility encoding not specified by that standard will cause the packet to be rejected as specified in the 1993 recommendation.

- Packets sent will use only the facilities and facility value encodings defined by the ITU-T 1993 X.25 recommendation.

- The maximum throughput facility value that can be encoded is 2,048,000 bps using the extended throughput class negotiation facility, or 192,000 bps using the facility defined in the prior standards. This limit affects configurable throughput facility values, as well as truncating larger values when an X.25 Call packet is switched to the service.

- The Internetwork Call Redirection and Deflection (ICRD) facility can be encoded and decoded.

- A Call, Call Confirm, Clear, or Clear Confirm packet may be encoded up to a total length of 259 bytes.

- A Call, Call Confirm, Clear, or Clear Confirm packet that has the A-bit set is not treated as a bad General Format Identifier, but A-bit encoded addresses are not otherwise supported.

- The cause and diagnostic codes encoded under various circumstances can differ from the default behavior.

X.25 Facility Support

The table below lists the X.25 standard facilities and shows which X.25 versions permit those facilities to be encoded in each packet type. A dash (--) in a cell means that the facility is not permitted by any standard.
<table>
<thead>
<tr>
<th>Facility</th>
<th>Packet Types in Which the Facility May Be Used</th>
<th>Code</th>
<th>Packet size</th>
<th>Flow Control</th>
<th>Window size</th>
<th>Extended Window size</th>
<th>Throughput</th>
<th>Closed User Group</th>
<th>Basic</th>
<th>Extended</th>
<th>CUGOA basic</th>
<th>CUGOA extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Request</td>
<td>Incoming Call</td>
<td>Call Accepted</td>
<td>Call Connected</td>
<td>Clear Request</td>
<td>Clear Indication</td>
<td>DCE Clear Confirm</td>
<td>Flow Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Packet size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extended Window size</td>
<td></td>
<td>Extended Window size</td>
<td>Extended Window size</td>
<td>D5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Throughput</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>Packet Types in Which the Facility May Be Used</td>
<td>Code</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>ICRD Status Selection</td>
<td>1993</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charging Information</td>
<td></td>
</tr>
<tr>
<td>ROA Selection</td>
<td></td>
</tr>
<tr>
<td>• Basic</td>
<td>1980 1984 1988 1993</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>• Extended</td>
<td>1984 1988 1993</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td>Packet Types in Which the Facility May Be Used</td>
<td>Code</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call Deflection Selection</td>
<td>--</td>
<td>1988 1993</td>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call Redirection or Call Deflection Notification</td>
<td>1984 1988 1993</td>
<td>--</td>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Called Line Address Modified Notification</td>
<td>--</td>
<td>1984 1988 1993</td>
<td>08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>--</td>
<td>--</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11 The Reverse Charging, Fast Select and ICRD Status Selection values are encoded as bit fields in the single byte value of this facility code.
12 The NUI Selection facility can be encoded in a Call Accepted packet (for those Recommendations that permit it) only in conjunction with the NUI Subscription option.
13 A DTE cannot encode both the Call Deflection Selection and Called Line Address Modified Notification facilities in the same Clear Request packet.
14 A Call Redirection or Call Deflection Notification facility can only encode the reason "Calling DTE originated" in a Call Request packet.
15 The Called Line Address Modified Notification facility can only encode the reason "Called DTE originated" in a Call Accepted or Clear Request packet.
16 Both notes 3 and 4 apply.
17 The 1988 CCITT Recommendation X.25 Table 29/X.25 indicates that a Marker facility is not permissible in a DCE Clear Confirmation packet, however that interpretation is not stated in the text of the Recommendation, nor does there seem to be such a restriction in the prior Recommendations. It is advisable to permit it.

The table below lists the X.25 ITU-T-Specified DTE facilities and shows which X.25 versions permit those facilities to be encoded in each packet type. A dash (--) in a cell means that the facility is not permitted by any standard.
Table 15: Summary of Support for X.25 ITU-T-Specified DTE Facilities (X.25 Annex G)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Packet Types in Which the Facility May Be Used</th>
<th>Code</th>
<th>Clear Indication</th>
<th>Clear Request</th>
<th>DCE Clear Confirm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Request</td>
<td>Incoming Call</td>
<td>Call Accepted</td>
<td>Call Connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Extended</td>
<td></td>
<td>1993</td>
<td>1993</td>
<td>1993</td>
<td>0A</td>
</tr>
</tbody>
</table>
How to Specify the X.25 Version

How to Specify the X.25 Version

Specifying the X.25 Behavior Set to Be Used by an Interface or X.25 Profile

Perform this task to specify the X.25 behavior set that is to be used by an interface or X.25 profile.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>**x25 profile name {dce</td>
<td>dte</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface serial 1</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# x25 profile</td>
</tr>
<tr>
<td>Step 4</td>
<td>**x25 version {1980</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# x25 version 1980</td>
</tr>
<tr>
<td>Specifies an X.25 behavior set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The behavior sets are defined by the CCITT 1980, 1984, and 1988 and ITU-T 1993 X.25 recommendations.</td>
</tr>
</tbody>
</table>

Verifying the X.25 Behavior Set for an Interface or X.25 Profile

Perform this task to verify which X.25 behavior set is being used by an interface or X.25 profile.

SUMMARY STEPS

1. *enable*
2. *show interfaces [type number]*
3. *show x25 profile [name]*
4. *show x25 context [xot | interface serial number [dlci number] | cmns-interface-type number [mac*]
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>show interfaces</code> [type number]</td>
<td>Displays statistics for all interfaces configured on the router or access server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show interfaces serial 0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>show x25 profile</code> [name]</td>
<td>Displays details of the X.25 profiles on your router.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show x25 profile profile1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>show x25 context</code> [xot</td>
<td>Displays operating configuration status details of an X.25 link.</td>
</tr>
<tr>
<td></td>
<td>interface serial number [dlci number]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mac-address]</td>
</tr>
<tr>
<td></td>
<td>]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show x25 context interface serial 1/1</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for X.25 Version Configuration

Specifying the X.25 Version to Be Used by an Interface in a Hunt Group Example

The X.25 hunt group feature will signal a Call's destination device of the hunt group handling by forwarding the Call with a Call Redirection or Call Deflection Notification (CRCDN) facility. In addition, the Call's originating device will be notified by forwarding a Call Confirm reply back with a Called Line Address Modified Notification (CLAMN) facility.

The following example configures an interface to use the 1980 X.25 behavior set:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
```
Router(config)# interface serial 3/2
Router(config-if)# x25 version 1980
Router(config-if)# end

This interface, on receipt of a Call packet that is processed through a hunt group, will now suppress the CLAMN facility on the returned Call Confirm, as demonstrated by the following output of the x25 debug command:

*14:14:51.899: Serial3/2: X.25 I R1 Call (13) 8 lci 1024
*14:14:51.899: From (6): 170093 To (2): 91
*14:14:51.899: Facilities: (0)
*14:14:51.899: Call User Data (4): 0xCC000000 (ip)
*14:14:51.899: Serial3/3: X.25 O R1 Call (22) 8 lci 1
*14:14:51.899: From (6): 170093 To (6): 170091
*14:14:51.899: Facilities: (7)
*14:14:51.899: Call redirection/deflection notice, reason 0x80 specified by source (6): 170091
*14:14:51.899: Call User Data (4): 0xCC000000 (ip)
*14:14:51.903: Serial3/3: X.25 I R1 Call Confirm (3) 8 lci 1
*14:14:51.903: : X.25 Stripped facility: Called Line Address Modified notice
*14:14:51.903: Serial3/2: X.25 O R1 Call Confirm (9) 8 lci 1024
*14:14:51.903: From (6): 170093 To (2): 91
*14:14:51.903: Facilities: (0)

Specifying the X.25 Version to Be Used by Both Interfaces in a Hunt Group Example

The following example configures the 1980 X.25 behavior set on both interfaces participating in a hunt group:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface serial 3/2
Router(config-if)# x25 version 1980
Router(config-if)# interface serial 3/3
Router(config-if)# x25 version 1980
Router(config-if)# end

The interfaces, on receipt of a Call packet that is processed through a hunt group, will now suppress both the CRCDN facility on the forwarded Call packet and the CLAMN facility on the returned Call Confirm, as demonstrated by the following output of the x25 debug command:

*14:16:33.167: Serial3/2: X.25 I R1 Call (13) 8 lci 1024
*14:16:33.167: From (6): 170093 To (2): 91
*14:16:33.167: Facilities: (0)
*14:16:33.171: Call User Data (4): 0xCC000000 (ip)
*14:16:33.171: ; X.25 Stripped facility: Call redirection/deflection notice
*14:16:33.171: Serial3/3: X.25 O R1 Call (15) 8 lci 1
*14:16:33.171: From (6): 170093 To (6): 170091
*14:16:33.171: Facilities: (0)
*14:16:33.171: Call User Data (4): 0xCC000000 (ip)
*14:16:33.171: Serial3/3: X.25 I R1 Call Confirm (3) 8 lci 1
*14:16:33.171: ; X.25 Stripped facility: Called Line Address Modified notice
*14:16:33.171: Serial3/2: X.25 O R1 Call Confirm (9) 8 lci 1024
*14:16:33.171: From (6): 170093 To (2): 91
*14:16:33.171: Facilities: (0)

Verifying the X.25 Version for an Interface or X.25 Profile

The following examples show output for the commands that can be used to verify X.25 version configuration.
show interfaces Sample Output: Example

Router# show interfaces serial 1/1
Serial1/1 is up, line protocol is up
 Hardware is CD2430 in sync mode
 Description: connected to stroll Serial1/1
 Internet address is 1.0.0.2/8
 MTU 1500 bytes, BW 128 Kbit, DLY 20000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation X25, loopback not set
 X.25 DCE, version 1984, address 170092, state R1, modulo 8, timer 0
 Defaults: idle VC timeout 0
cisco encapsulation
 input/output window sizes 2/2, packet sizes 128/128
 Timers: T10 60, T11 180, T12 60, T13 60
 Channels: Incoming-only none, Two-way 10-100, Outgoing-only 200-210
 RESTARTs 0/0 CALLs 0+0/0+0+0 DIAGs 0/0
 LAPB DCE, state CONNECT, modulo 8, k 7, N1 12056, N2 20
 ...
 ...

show x25 profile Sample Output: Example

Router# show x25 profile profile1
X.25 profile name: profile1
 PROFILE DTE, version 1993, address <none>, state R/Inactive, modulo 8, timer 0
 Defaults: idle VC timeout 0
 input/output window sizes 2/2, packet sizes 128/128
 Timers: T20 180, T21 200, T22 180, T23 180
 Channels: Incoming-only none, Two-way 1-1024, Outgoing-only none

show x25 context Sample Output: Examples

Router# show x25 context interface serial 1/1
X.25 DCE, version 1984, address 170092, state R1, modulo 8, timer 0
 Defaults: idle VC timeout 0
cisco encapsulation
 input/output window sizes 2/2, packet sizes 128/128
 Timers: T10 60, T11 180, T12 60, T13 60
 Channels: Incoming-only none, Two-way 1-100, Outgoing-only 200-210
 RESTARTs 0/0 CALLs 0+0/0+0+0 DIAGs 0/0
 LAPB DCE, state CONNECT, modulo 8, k 7, N1 12056, N2 20
 T1 3000, T2 0, interface outage (partial T3) 0, T4 0
 VS 2, VR 2, tx NR 2, Remote VR 2, Retransmissions 0
 Queues: U/S frames 0, I frames 0, unack. 0, reTx 0
 IFRAMES 2/2 RNRs 0/0 REJs 0/0 SABMs 0/0 FRMRs 0/0 DISCs 0/0

Router# show x25 context xot
XOT
 station DTE/DTE, version 1993, address <none>, state R1, modulo 8
 Defaults: idle VC timeout 0
 input/output window sizes 2/2, packet sizes 128/128
 Timers: T20 180, T21 200, T22 180, T23 180
 RESTARTs 0/0 CALLs 0+1+0+0+0 DIAGs 0/0

Router# show x25 context interface serial 1/0
Serial1/0 DLCI 16
 PROFILE dxe/DTE, version 1993, address 2001510, state R1, modulo 8, timer 0
 Defaults: idle VC timeout 0
 input/output window sizes 2/2, packet sizes 128/128
 Timers: T20 180, T21 200, T22 180, T23 180
 Channels: Incoming-only none, Two-way 1-4095, Outgoing-only none
 RESTARTs 0/0 CALLs 0+0/0+0+0 DIAGs 0/0
 LAPB dxe/DTE, state CONNECT, modulo 8, k 7, N1 12056, N2 20
 T1 3000, T2 0, interface outage (partial T3) 0, T4 0
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.25 configuration information</td>
<td>Wide-Area Networking Protocols</td>
</tr>
<tr>
<td>X.25 commands</td>
<td>Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
<tr>
<td>Information about X.25 facility handling</td>
<td>X.25 Facility Handling</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCITT 1980 Recommendation X.25</td>
<td>Interface Between Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) for Terminals Operating in the Packet Mode and Connected to Public Data Networks by Dedicated Circuit</td>
</tr>
<tr>
<td>CCITT 1984 Recommendation X.25</td>
<td>Interface Between Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) for Terminals Operating in the Packet Mode and Connected to Public Data Networks by Dedicated Circuit</td>
</tr>
<tr>
<td>CCITT 1988 Recommendation X.25</td>
<td>Interface Between Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) for Terminals Operating in the Packet Mode and Connected to Public Data Networks by Dedicated Circuit</td>
</tr>
<tr>
<td>ITU-T 1993 Recommendation X.25</td>
<td>Interface Between Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) for Terminals Operating in the Packet Mode and Connected to Public Data Networks by Dedicated Circuit</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of</td>
<td>http://www.cisco.com/public/support/tac/home.shtml</td>
</tr>
<tr>
<td>searchable technical content, including links to products, technologies,</td>
<td></td>
</tr>
<tr>
<td>solutions, technical tips, and tools. Registered Cisco.com users can log</td>
<td></td>
</tr>
<tr>
<td>in from this page to access even more content.</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 13

X.25 Station Type for ISDN D-channel Interface

The X.25 Station Type for ISDN D-channel Interface feature permits configuration of the X.25 station type for the ISDN D-channel interface with the `encapsulation x25` command on this interface. This feature allows the mapping of closed user group (CUG) of the X.25 packets that originates from the point-of-sale devices terminating the ISDN-BRI D-channel interface configured as an X.25 data communications equipment (DCE) station of Cisco routers with an ISDN BRI interface.

The default encapsulation of the BRI D-channel interface is X.25 encapsulation in data terminal equipment (DTE) mode. To change the X.25 station type on the ISDN BRI D-channel interface, use the `encapsulation 25` command with the appropriate keyword in the interface configuration mode. If no keyword is specified, the interface will be configured with X.25 encapsulation in DTE mode.

When a router boots up with the new ISDN BRI interface, the encapsulation will not show up explicitly in the ISDN BRI D-channel interface configuration although the encapsulation will be set as an X.25 DTE station, the default for this interface. When the `no encapsulation` command is issued on the ISDN BRI D-channel interface, the interface will be set as an X.25 DTE station, the default. This will show up in the running configuration of the interface as `encapsulation x25`.

Feature History for X.25 Station Type for ISDN D-channel Interface

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(7)XR</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.3(14)T</td>
<td>This feature was integrated into Cisco IOS Release 12.3(14)T.</td>
</tr>
</tbody>
</table>

Finding Support Information for Platforms and Cisco IOS Software Images

Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click Cancel at the login dialog box and follow the instructions that appear.

- Finding Feature Information, page 210
- Prerequisites for X.25 Station Type for ISDN D-channel Interface, page 210
Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for X.25 Station Type for ISDN D-channel Interface

- The BRI interface needs to be configured for X.25 traffic over an ISDN D-channel using the `isdn x25 dchannel` command in interface configuration mode.

For more details, see the following URL:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios123/123cgcr/dial_r/dia_i2g.htm#1050084

- The ISDN BRI D-channel interface of the peer that is connected to this interface should be a complementary station type.

Information About X.25 Station Type for ISDN D-channel Interface

Configuring X.25 on ISDN D-channel Interface

If the D channel of an ISDN BRI interface will carry X.25 traffic, you need to configure the feature that is described in the Configuring X.25 on ISDN feature guide.

A BRI is an ISDN interface. It consists of two B channels (B1 and B2) and one D-channel. The B channels are used to transfer data, voice, and video. The D channel controls the B channels.

ISDN uses the D-channel to carry signal information. ISDN can also use the D-channel in a BRI to carry X.25 packets. The D-channel has a capacity of 16 kbps; the X.25 over D-channel can use up to 9.6 kbps.

When this feature is configured, a separate X.25-over-D-channel logical interface is created. You can set its parameters without disrupting the original ISDN interface configuration. The original BRI interface will continue to represent the D, B1, and B2 channels.
An interface configured for X.25 traffic over the D channel can be used as a primary interface where low-volume, sporadic, interactive traffic is the normal mode of operation. Supported traffic includes IPX, AppleTalk, transparent bridging, XNS, DECnet, and IP.

For more details on how to configure the X.25 over ISDN D-channel Interface feature, see the following URL:

X.25 Closed User Groups

A closed user group (CUG) is a collection of DTE devices for which the network controls access between two members and between a member and a non-member. An X.25 network can support up to 10,000 CUGs (numbered between 0 and 9999), each of which can have any number of member DTE devices. An individual DTE becomes a member of a specific network CUG by subscription. The subscription data includes the local number that the DTE will use to identify the network CUG (which may or may not be the same as the network number, as determined by network administration and the DTE device’s requirements), and any restriction that prohibits the DTE from placing a call within the CUG or, conversely, prohibits the network from presenting a call within the CUG to the DTE.

With the X.25 CUGs feature, the router’s X.25 DCE interfaces can be configured to perform the standard CUG access controls that are normally associated with a direct attachment to an X.25 network point of presence (POP). The router’s DCE interface acts as the boundary between the DTE and the network, and CUG use ensures that only those incoming and outgoing switched virtual circuits (SVCs) consistent with the configured CUG subscriptions are permitted. X.25 CUG configuration commands on the router are specified at every POP, and CUG security decisions are made solely from those commands.

The X.25 CUGs feature is used for additional X.25 access protection and security. In a setup where DTE devices are attached to a public data network (PDN), you can derive a private subnetwork by subscribing your DTE devices to a set of CUGs, which allows closer control of your DTE devices, such as permitting or restricting which DTE can talk to other DTE devices and for what particular purpose. For example, a distinct CUG can be defined to handle each of the different modes of connectivity, such as following:

- Datagram encapsulation operation between all company sites
- Packet assembler/disassembler (PAD) services for customers seeking public information
- PAD services for system administration internal access to consoles
- Qualified Logical Link Control (QLLC) access restricted to the company financial centers

For more details, see the following URL:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t7/x25scugs.htm
How to Configure X.25 Encapsulation on ISDN BRI D-channel Interface

Configuring X.25 Encapsulation on ISDN BRI D-channel Interface

Note
Use the `interface BRI2/0` and `isdn x25 dchannel` commands if the configurable interface for X.25 traffic over ISDN D-channel does not exist.

To configure X.25 encapsulation on ISDN BRI D-channel Interface, perform the following steps.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface BRI2/0`
4. `isdn x25 dchannel`
5. `interface BRI2/0:0`
6. `encapsulation X25 dce`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface BRI2/0</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# interface BRI2/0</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies an ISDN BRI interface.</td>
</tr>
<tr>
<td></td>
<td>Note Use this command if the configurable interface for X.25 traffic over ISDN D-channel does not exist.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>4</td>
<td><code>isdn x25 dchannel</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router# <code>isdn x25 dchannel</code></td>
</tr>
<tr>
<td>5</td>
<td><code>interface BRI2/0:0</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router# <code>interface BRI2/0:0</code></td>
</tr>
<tr>
<td>6</td>
<td><code>encapsulation X.25 dce</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router# <code>encapsulation X.25 dce</code></td>
</tr>
<tr>
<td>7</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router# <code>end</code></td>
</tr>
</tbody>
</table>

Example

The following example configures the X.25 encapsulation in DCE mode on an BRI interface 2/0:0:

```plaintext
interface BRI2/0:0
ip address 1.1.1.2 255.255.255.0
encapsulation X.25 dce
no ip mroute-cache
X.25 subscribe cug-service
X.25 subscribe local-cug 10 network-cug 100
!
```

Configuration Examples for X.25 Encapsulation on ISDN BRI D-channel Interface

X.25 Encapsulation on an ISDN BRI D-channel Interface Example

The following example shows X.25 encapsulation configured on interface BRI2/0:

```plaintext
Current configuration: 2275 bytes
!
version 12.3
service timestamps debug datetime msec
```
service timestamps log datetime msec
no service password-encryption
!
hostname Router
!
boot system flash c1700-voice-mz
enable password cisco
!
memory-size iomem 15
tdm clock bri-auto
voice-card 2
!
no aaa new-model
ip subnet-zero
!
no ftp-server write-enable
isdn switch-type basic-net3
!
no voice hpi capture buffer
no voice hpi capture destination
!
interface FastEthernet0/0
 ip address 10.0.2.199 255.255.255.0
 speed 100
!
interface BRI2/0
no ip address
isdn switch-type basic-net3
isdn protocol-emulate network
isdn layer1-emulate network
no isdn outgoing display-ie
isdn x25 static-tei 1
isdn x25 dchannel
isdn skipsend-idverify
!
interface BRI2/0:0
no ip address
encapsulation x25 dce
x25 subscribe cug-service incoming-access outgoing-access
x25 subscribe local-cug 5000 network-cug 55 preferential
!
interface BRI2/1
no ip address
shutdown
isdn switch-type basic-net3
!
ip classless
no ip http server
!
voice-port 2/0
!
voice-port 2/1
!
line con 0
line aux 0
line vty 0 4
login
!
end
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Release 12.3 Configuration Guides and Command References</td>
<td>Cisco IOS Release 12.3 Configuration Guides and Command References</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/public/support/tac/home.shtml</td>
</tr>
</tbody>
</table>
CHAPTER 14

X.25 Throughput Negotiation

This feature enables a router to negotiate X.25 throughput parameters on behalf of end devices, thereby making it possible for X.25 calls to reach devices that may not themselves be able to negotiate throughput.

History for the X.25 Throughput Negotiation Feature

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(11)YN</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.4(4)T</td>
<td>This feature was integrated into Cisco IOS 12.4(4)T.</td>
</tr>
</tbody>
</table>

Finding Support Information for Platforms and Cisco IOS Software Images

Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click Cancel when presented with the login screen and then follow the instructions that subsequently appear.

• Finding Feature Information, page 217
• Restrictions for X.25 Throughput Negotiation, page 218
• Information about X.25 Throughput Negotiation, page 218
• How to Configure X.25 Throughput Negotiation, page 223
• Configuration Examples for X.25 Throughput Negotiation, page 224
• Additional References, page 225

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.
Restrictions for X.25 Throughput Negotiation

This feature currently supports only basic throughput classes; extended throughput classes are not supported.

Information about X.25 Throughput Negotiation

In order for end devices in a network to support X.25 calls, they need to be able to negotiate X.25 throughput parameters. This feature enables a router to handle that negotiation on behalf of end devices that cannot do it themselves.

The router does this by stripping out or inserting values, as appropriate for each case, in the "throughput facility field" of the X.25 calls’ setup and confirmed messages (specifically, in the Call Request, Incoming Call, Call Accepted, and Call Confirmed packets).

In order to insert values appropriately, the router interface connected to the end device must earlier have been configured with the input and output bit rates that are intended to be used by the eventual X.25 call.

The rules according to which the router removes or inserts those bit rates are set by the `x25 subscribe throughput` command, which can have three distinct states: no, basic or never. These forms of the command work as follows when the router receives a call from the network and forwards that call onward to the end device:

- If the router has been configured by the command `no x25 subscribe throughput`, it will make no change to the values it receives in the call’s facility field. The router merely forwards the message, and those values, onward.

- If the router has been configured by the `25 subscribe throughput basic` form of this command, the router will insert the bit rate values previously configured on its interface into the call’s facility field. (The only exception is when those values are larger than the call’s values, in which case the router will leave the call’s smaller values in place when it forwards the message.)

In cases when the router has substituted its own configured values for the values it detected in the incoming call, the router also reports those new values in a Call Confirmed packet back out through the network to the source device.

- If the `x25 subscribe throughput never` form of the command has been entered, the router will remove the values it receives in the call’s facility field. (And if the values previously configured on the router’s interface are smaller than those contained in the call, the router will also replace the call’s values with those smaller ones when it forwards the end device’s Call Confirmed packet back out to the network.)
How these behavior rules apply to each possible case is presented in the first table below.

When calls originate not in the network but in the end device, this command’s three states can have somewhat different results, which are detailed in the second table below.

Table 16: Router Treatment of Throughput Facility Field in Incoming Call

<table>
<thead>
<tr>
<th>Incoming call’s ‘Call Request’ packet</th>
<th>Cisco IOS commands applied</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is interface configured with throughput values?</td>
<td>How is Serial Line’s throughput subscription configured?</td>
<td>Within ‘Incoming Call’ packet</td>
</tr>
<tr>
<td>Contains throughput facility field</td>
<td>YES: "x25 facility throughput xxx yyyy"</td>
<td>no x25 sub throughput</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x25 sub throughput never</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x25 sub throughput basic</td>
</tr>
<tr>
<td>Has no throughput facility field</td>
<td>no x25 sub throughput</td>
<td>No facility field sent to end device.</td>
</tr>
<tr>
<td></td>
<td>x25 sub throughput never</td>
<td>No facility field sent to end device.</td>
</tr>
<tr>
<td></td>
<td>x25 sub throughput basic</td>
<td>Router inserts facility field into message, and forwards that to the end device.</td>
</tr>
<tr>
<td>Incoming call’s 'Call Request' packet</td>
<td>Cisco IOS commands applied</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Contains throughput facility field</td>
<td>NO : "no x25 facility throughput"</td>
<td>no x25 sub throughput Facility field sent to end device. End device includes no facility field in its Call Accepted packet to the router. And the router includes no facility field in the Call Confirmed packet it sends out to the network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x25 sub throughput never Router strips out facility field, then forwards message to end device. No facility field sent back out to network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x25 sub throughput basic Facility field sent on to end device. No facility field sent back out to network.</td>
</tr>
<tr>
<td>Has no throughput facility field</td>
<td>no x25 sub throughput</td>
<td>No facility field sent to end device. No facility field sent out to network.</td>
</tr>
<tr>
<td></td>
<td>x25 sub throughput never</td>
<td>No facility field sent to end device. No facility field sent back out to network.</td>
</tr>
<tr>
<td></td>
<td>x25 sub throughput basic</td>
<td>No facility field sent to end device. No facility field sent out to network.</td>
</tr>
</tbody>
</table>

*Shaded rows (in PDF version) describe calls that contain no throughput facility field before they reach the router.

Table 17: Router Treatment of Throughput Facility Field in Outgoing Call

<table>
<thead>
<tr>
<th>Outgoing call’s 'Call Request' packet</th>
<th>Cisco IOS commands applied</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is interface configured with throughput values?</td>
<td>How is Serial Line’s throughput subscription configured?</td>
<td>Within outgoing 'Call Request' packet Within received 'Call Confirmed' packet</td>
</tr>
<tr>
<td>Outgoing call’s ‘Call Request’ packet</td>
<td>Cisco IOS commands applied</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Contains throughput facility field</td>
<td>YES: "x25 facility throughput xxx yyyy"</td>
<td>no x25 sub throughput</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router forwards facility field it receives in the end device’s Call Request packet out to the network unmodified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router forwards facility field it receives in the Call Confirmed packet from the network on to the end device unmodified.</td>
</tr>
<tr>
<td></td>
<td>x25 sub throughput never</td>
<td>Router refuses to forward call on to the network, and cancels it, sending back to the end device a Clear Request packet with the Cause Code field set to 3 (‘3’ stands for "Invalid Facility Request"). Router also sends to the end device a Diagnostic Code field set to 65 (which stands for "Facility Code Not Allowed").</td>
</tr>
<tr>
<td></td>
<td>x25 sub throughput basic</td>
<td>Router compares values in message with those configured on its interface, and sends to network the lower set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router sends that lower set to the end device, unless still different values are received in the Call Confirmed message from the network. In that case, the router forwards that network set to the end device.</td>
</tr>
<tr>
<td>Has no throughput facility field</td>
<td>no x25 sub throughput</td>
<td>No facility field sent to network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No facility field sent to end device.</td>
</tr>
<tr>
<td></td>
<td>x25 sub throughput never</td>
<td>Router sends values configured on its interface out to the network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No facility field sent to end device.</td>
</tr>
<tr>
<td></td>
<td>x25 sub throughput basic</td>
<td>Router inserts facility field into message, and forwards that to the network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router sends the inserted facility field to the end device.</td>
</tr>
</tbody>
</table>
X.25 Throughput Negotiation

<table>
<thead>
<tr>
<th>Outgoing call’s ‘Call Request’ packet</th>
<th>Cisco IOS commands applied</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains throughput facility field</td>
<td>NO : “no x25 facility throughput”</td>
<td>no x25 sub throughput</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x25 sub throughput never</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x25 sub throughput basic</td>
</tr>
<tr>
<td>Has no throughput facility field</td>
<td>no x25 sub throughput</td>
<td>Facility field sent back to end device.</td>
</tr>
<tr>
<td></td>
<td>x25 sub throughput never</td>
<td>No facility field sent to network.</td>
</tr>
<tr>
<td></td>
<td>x25 sub throughput basic</td>
<td>No facility field sent to end device.</td>
</tr>
</tbody>
</table>

Shaded rows (in PDF version) describe calls that contain no throughput facility field before they reach the router.
How to Configure X.25 Throughput Negotiation

Configuring X.25 Throughput Negotiation

Before You Begin

If you choose the `basic` keyword of the `x25 subscribe throughput` command below, you must first configure the interface with the appropriate class negotiation values for input and output throughput across the network by using the `throughput in` or `out` keyword and arguments of the `x25 facility` command. For more information about the `x25 facility` command, see the Cisco IOS Wide-Area Networking Command Reference.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `x25 subscribe throughput { never | basic }`
5. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
<td>Specifies the interface which is connected to the end device, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface serial2/0</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>x25 subscribe throughput { never</td>
<td>basic }</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# x25 subscribe throughput basic</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Exits interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples

In this example, the end device never expects the throughput facility field to be present in incoming call setup packets:

```
Router>
enable
Router# configure terminal
Router(config)# interface serial2/0
Router(config-if)# x25 subscribe throughput never
Router(config-if)# exit
```

In this example, the end device always expects the throughput facility field to be present in incoming call setup packets:

```
Router>
enable
Router# configure terminal
Router(config)# interface serial0/0
Router(config-if)# x25 subscribe throughput basic
Router(config-if)# exit
```

In this example, the active throughput negotiation capability on the just-illustrated interface (Serial 0/0) gets turned off:

```
Router(config)# interface serial0/0
Router(config-if)# no x25 subscribe throughput
Router(config-if)# exit
```

Configuration Examples for X.25 Throughput Negotiation

Basic example

In this example, the end device always expects the throughput facility field to be present in Incoming Call packets. The router inserts its configured bit rate values—unless they are larger than the values in the incoming call.

```
Router# configure terminal
Router(config)# interface serial2/0
Router(config-if)# x25 facility throughput 300 300
Router(config-if)# x25 subscribe throughput basic
```
Never example

In this example, the end device never expects the throughput facility field to be present in Incoming Call packets. The router removes the facility field from incoming calls.

```
Router# configure terminal
Router(config)# interface serial2/0
Router(config-if)# x25 facility throughput 300 300
Router(config-if)# x25 subscribe throughput never
Router(config-if)# end
Router#
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring X.25 throughput facilities</td>
<td>Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
X.25 Facility Handling

This appendix provides reference material describing how X.25 facilities are handled by the Cisco IOS software.

- X.25 Facility Handling in Datagram Transport Virtual Circuits, page 227
- X.25 Facility Handling in Switching Virtual Circuits, page 227

X.25 Facility Handling in Datagram Transport Virtual Circuits

A router either originates or accepts datagram transport (encapsulation) switched virtual circuits (SVCs) to transport LAN traffic through an X.25 network.

When the router originates a call for LAN traffic encapsulation, the facilities in the call are controlled by the facilities configured for the interface and the map statement that specifies the LAN and X.25 encapsulation. Because a router can be attached to a public data network (PDN), the interface and map configurations allow a number of facilities to be specified in outgoing calls. These facilities are specified in all originated calls relating to the given interface and map, with one exception: the incoming and outgoing maximum packet sizes proposed are lowered if the LAPB cannot support the specified data packet size.

When the router accepts an encapsulation call, many facilities are simply ignored. The maximum packet sizes are lowered if the LAPB cannot support the sizes proposed. A reverse-charge call is cleared if neither the interface nor the map allows it. A call that specifies a network user identification (NUID) is cleared if the user authentication fails.

If an interface is configured as a DCE that is subscribed to closed user group (CUG) services, datagram encapsulation calls that originate and terminate on the interface will be subject to the requirements of CUG security.

X.25 Facility Handling in Switching Virtual Circuits

As a general rule, the X.25 switch services will forward facilities encoded in Call, Call Confirm, Clear, and Clear Confirm packets. This handling, however, is subject to the following restrictions:

- The facilities must be valid for the X.25-class service on which they were received and must be consistent with the other information presented in the packet and any prior signaling for the SVC.
• The facilities must be valid for the X.25-class service to which they are forwarded and must be consistent with the other information being encoded in the packet and any prior signaling for the SVC. Some limited amount of modification of facility values may be performed to meet various standard requirements; for example, some facility values have restrictions based on the station identity of the DTE/DCE sending the packet.

• Some facilities are subject to modification, insertion, or deletion by specific features configured for the incoming or outgoing X.25-class service, or by the X.25 switch service itself.

X.25 Standard Facilities

The table below describes how X.25 standard facilities are treated when a switched virtual circuit (SVC) is routed. If the facility was introduced in a recommendation later than the 1980 X.25 recommendation, the recommendation in which the facility was introduced is listed in parentheses after the facility name. By default, Cisco IOS software supports the 1984 recommendation.

Table 18: Treatment of Standard X.25 Facilities by Cisco IOS Software

<table>
<thead>
<tr>
<th>Facility</th>
<th>Treatment When Switched by Cisco IOS Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Control Negotiation</td>
<td>Adds, removes, or changes flow control parameter values, depending on the requirements of the X.25-class services supporting the connection and the X.25 switch service. For information about flow control parameters, see the "Enabling Flow Control Parameter Negotiation" section of the "Configuring X.25 and LAPB" chapter.</td>
</tr>
<tr>
<td>• Packet size</td>
<td></td>
</tr>
<tr>
<td>• Window size</td>
<td></td>
</tr>
<tr>
<td>• Extended window size (1996)</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>The 1980 recommendation defines maximum Data packet sizes from 32 to 1024 bytes. The 1984 recommendation extends the upper limit to 4096 bytes.</td>
</tr>
<tr>
<td>Throughput Negotiation</td>
<td>Forwards incoming Throughput facilities.</td>
</tr>
<tr>
<td>• Throughput facility, basic encoding</td>
<td></td>
</tr>
<tr>
<td>• Throughput facility, extended encoding (1993)</td>
<td></td>
</tr>
<tr>
<td>Closed User Group Selection</td>
<td>Forwards Closed User Group (CUG) selection facilities. If an interface is configured as a DCE that is subscribed to CUG services, all calls that originated and terminated on the interface will be subject to the requirements of CUG security.</td>
</tr>
<tr>
<td>• CUG facility, basic encoding</td>
<td></td>
</tr>
<tr>
<td>• CUG facility, extended encoding (1984)</td>
<td></td>
</tr>
<tr>
<td>• CUG with Outgoing Access facility, basic encoding (1984)</td>
<td></td>
</tr>
<tr>
<td>• CUG with Outgoing Access facility, extended encoding (1984)</td>
<td></td>
</tr>
<tr>
<td>• Bilateral CUG facility</td>
<td></td>
</tr>
<tr>
<td>Reverse Charging</td>
<td>Forwards the incoming Reverse Charging facility.</td>
</tr>
<tr>
<td>Facility</td>
<td>Treatment When Switched by Cisco IOS Software</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Fast Select</td>
<td>Forwards the incoming Fast Select facility.</td>
</tr>
<tr>
<td>Internetwork Call Redirection and Deflection (ICRD) Status Selection (1993)</td>
<td>Forwards the ICRD Status Selection facility.</td>
</tr>
<tr>
<td>Charging</td>
<td>Forwards Charging facilities.</td>
</tr>
<tr>
<td>• Charging request (1984)</td>
<td></td>
</tr>
<tr>
<td>• Monetary report (1984)</td>
<td></td>
</tr>
<tr>
<td>• Segment report (1984)</td>
<td></td>
</tr>
<tr>
<td>• Duration report (1984)</td>
<td></td>
</tr>
<tr>
<td>ROA</td>
<td>Forwards ROA facilities.</td>
</tr>
<tr>
<td>• ROA facility, basic encoding</td>
<td></td>
</tr>
<tr>
<td>• ROA facility, extended encoding (1984)</td>
<td></td>
</tr>
<tr>
<td>Called Line Address Modified Notification (CLAMN) (1984)</td>
<td>Forwards the CLAMN facility. A router will insert a CLAMN facility in the call confirm if the call was routed through a hunt group.</td>
</tr>
<tr>
<td>Call Deflection Selection (1988)</td>
<td>Forwards the Call Deflection Selection facility.</td>
</tr>
<tr>
<td>Call Redirection or Call Deflection Notification (CRCDN) (1984)</td>
<td>Forwards the CRCDN facility. A router will insert a CRCDN facility in a call that is routed through a hunt group.</td>
</tr>
<tr>
<td>Marker Facilities, including the following:</td>
<td></td>
</tr>
<tr>
<td>• Local and remote network marker</td>
<td>Forwards a block of private network facilities preceded by either a local network marker or a remote network maker, presuming that the information following the network marker can be parsed according to the X.25 rules that define encoding for Class A, B, C, and D facilities. An X.25 interface configured for DDN or BFE can encode facilities behind a local network marker. The X.25 switching service will forward these facilities.</td>
</tr>
</tbody>
</table>
ITU-T-Specified Marker Facilities

The table below describes how CCITT/ITU-T-specified marker facilities are treated when an SVC is routed.

Table 19: Default Treatment of ITU-T-Specified Marker Facilities

<table>
<thead>
<tr>
<th>Facility</th>
<th>Treatment When Switched by Cisco IOS Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calling Address Extension (1984)</td>
<td>Forwards the incoming Calling Address Extension facility.</td>
</tr>
<tr>
<td>Called Address Extension (1984)</td>
<td>Forwards the incoming Called Address Extension facility.</td>
</tr>
<tr>
<td>Quality of Service (QoS) Negotiation</td>
<td></td>
</tr>
<tr>
<td>• Minimum Throughput Class QoS facility, basic encoding (1984)</td>
<td>Forwards the QoS facilities and their associated values.</td>
</tr>
<tr>
<td>• Minimum Throughput Class QoS facility, extended encoding (1993)</td>
<td></td>
</tr>
<tr>
<td>• End-to-End Transit Delay QoS facility (1984)</td>
<td></td>
</tr>
<tr>
<td>• Priority QoS (1988)</td>
<td></td>
</tr>
<tr>
<td>• Protection QoS (1988)</td>
<td></td>
</tr>
</tbody>
</table>

CMNS hosts commonly use the Called Address Extension facility, which can be used to make X.25 routing decisions.

The encoding of any CCITT/ITU-T facilities is preceded by a marker, as displayed in the output of the `debug x25` command.
X.28 Configurable PAD Options

The X.28 Configurable Packet Assembler Disassembler (PAD) Options feature provides a configurable option to prevent the padding character from being sent to the Point of Sale (POS) terminal. The ability to not to send the padding character is required as there are some POS terminals that are incompatible with X.28 padding as specified by the ITU-T standard. ITU-T standard section 3.5.2 specifies that the padding character is sent when the terminal operates at a speed below 9600 bps.

- Finding Feature Information, page 231
- Information About X.28 Configurable PAD Options, page 231
- How to Configure X.28 PAD Options, page 232
- Configuration Examples for X.28 Configurable PAD Options, page 234
- Additional References for X.28 Configurable PAD Options, page 234
- Feature Information for X.28 Configurable PAD Options, page 235

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About X.28 Configurable PAD Options

X.28 Configurable PAD Options Overview

X.28 enables Packet Assembler Disassembler (PAD) system administrators to dial in to X.25 networks or set PAD parameters using the X.28 standard user interface. X.28 adheres to the X.28 ITU-T standards.
The X.28 interface is designed for asynchronous devices that require X.25 transport to access a remote or native asynchronous or synchronous host application. For example, dial-up applications can use the X.28 interface to access a remote X.25 host. X.28 PAD calls are often used by banks to support applications in the back office such as ATM machines, Point of Sale (POS) authorization devices, and alarm systems. An ATM machine may have an asynchronous connection to an alarm host and a Cisco device. When the connection is broken, the alarm host sends a distress call to the authorities through the Cisco device using an X.28 PAD call.

The X.28 PAD Configurable PAD Options feature provides an option to prevent the padding character from being sent when an asynchronous device connects at any access speed below 9600 bps. The ITU X.28 recommends different padding character combinations depending on the speed. The option prevents the padding character from being added to a POS terminal that accepts 0 padding at a lower speed. The `x28` command is enhanced to support this feature.

How to Configure X.28 PAD Options

The X.28 Configurable Packet Assembler Disassembler (PAD) options feature provides a configurable option to prevent the padding character from being sent to the Point of Sale (POS) terminal. This section describes how to configure the X.28 PAD options. You can configure X.28 PAD options in privileged EXEC mode or in line configuration mode.

Configuring X.28 PAD Options in Privileged EXEC Mode

SUMMARY STEPS

1. `enable`
2. `x28 no-padding`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>x28 no-padding</code></td>
<td>Ignores X.28 ITU-T section 3.5.2 for padding and prevents the padding</td>
</tr>
<tr>
<td>Example:</td>
<td>character from being sent to the Point of Sale (POS) terminal.</td>
</tr>
<tr>
<td><code>Device# x28 no-padding</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring X.28 PAD Options in Line Configuration Mode

SUMMARY STEPS

1. enable
2. configure terminal
3. line aux 0
4. modem InOut
5. autocomand x28 no-padding
6. speed data-rates
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>line aux 0</td>
<td>Configures the auxiliary line with the line number and enters line configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# line aux 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>modem InOut</td>
<td>Configures the auxiliary line for incoming and outgoing use of modem.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-line)# modem InOut</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>autocomand x28 no-padding</td>
<td>Ignores X.28 ITU-T section 3.5.2 for padding and prevents the padding character being sent to the Point of Sale POS (POS) terminal.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-line)# autocommand x28 no-padding</td>
<td></td>
</tr>
</tbody>
</table>

Wide-Area Networking Configuration Guide: SMDS and X.25 and LAPB, Cisco IOS Release 15M&T

233
Configuration Examples for X.28 Configurable PAD Options

Example: Configuring the X.28 PAD Options

The following example shows how to configure X.28 PAD options in line configuration mode:

```
Device> enable
Device# configure terminal
Device(config)# line aux 0
Device(config-line)# modem InOut
Device(config-line)# autocommand x28 no-padding
Device(config-line)# speed 1200
Device(config-line)# end
```

The following example shows how to configure X.28 PAD options in privileged EXEC mode:

```
Device> enable
Device# x28 no-padding
```

Additional References for X.28 Configurable PAD Options

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Wide-Area Networking commands</td>
<td>Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
</tbody>
</table>
Feature Information for X.28 Configurable PAD Options

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.28 Configurable PAD Options</td>
<td>15.4(1)T</td>
<td>The X.28 Configurable Packet Assembler Disassembler (PAD) Options feature provides a configurable option to prevent the padding character from being sent to the Point of Sale (POS) terminal. The following command was introduced: x28 padding.</td>
</tr>
</tbody>
</table>