
Configuring Frame Relay

Frame Relay is a high-performance Wide Area Network (WAN) protocol that operates at the physical and
data link layers. The Cisco IOS XE Frame Relay implementation currently supports routing for IPv4, IPv6,
and Multiprotocol Label Switching (MPLS).

• Finding Feature Information, on page 1
• Restrictions for Configuring Frame Relay, on page 1
• Information About Frame Relay, on page 2
• How to Configure Frame Relay, on page 11
• Configuration Examples for Frame Relay, on page 22
• Additional References, on page 27
• Feature Information for Configuring Frame Relay, on page 28

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Restrictions for Configuring Frame Relay
Cisco IOS XE software does not support the following:

• Multipoint permanent virtual circuits (PVCs)

• Switched virtual circuits (SVCs)

• Frame relay switching

• 4-byte extended addresses

• End-to-end keepalives

• FRF.9 payload compression

Configuring Frame Relay
1

https://tools.cisco.com/bugsearch/search
https://cfnng.cisco.com/

• Data stream compression

• Packet by packet encapsulation payload compression

• Multi-point frame-relay

• Legacy frame-relay traffic shaping (Cisco IOS XE software supports only policy map-based MQC.)

• MQC based frame relay traffic shaping is not supported on frame relay main interface.

• Function "set fr-de" for HQos configuration

Information About Frame Relay

Frame Relay Hardware Configurations
You can create Frame Relay connections using one of the following hardware configurations:

• Devices and access servers connected directly to the Frame Relay switch

• Devices and access servers connected directly to a channel service unit/digital service unit (CSU/DSU),
which then connects to a remote Frame Relay switch

Devices can connect to Frame Relay networks either by direct connection to a Frame Relay switch, through
a direct connection to a Point of sale (POS) interface or a T1/T3 interface, or through CSU/DSUs. However,
a single device interface configured for Frame Relay can be configured for only one of these methods.

Note

The CSU/DSU converts V.35 or RS-449 signals to the properly coded T1 transmission signal for successful
reception by the Frame Relay network. The figure below illustrates the connections among the components.

Figure 1: Typical Frame Relay Configuration

The Frame Relay interface actually consists of one physical connection between the network server and the
switch that provides the service. This single physical connection provides direct connectivity to each device
on a network.

Configuring Frame Relay
2

Configuring Frame Relay
Information About Frame Relay

Frame Relay Encapsulation
Frame Relay supports encapsulation of all supported protocols in conformance with RFC 1490,Multiprotocol
Interconnect over Frame Relay, allowing interoperability among multiple vendors. Use the IETF form of
Frame Relay encapsulation if your device or access server is connected to another vendor’s equipment across
a Frame Relay network. IETF encapsulation is supported either at the interface level or on a per-VC basis.

Shut down the interface prior to changing encapsulation types. Although shutting down the interface is not
required, it ensures that the interface is reset for the new encapsulation.

Dynamic or Static Address Mapping

Dynamic Address Mapping
Dynamic address mapping uses Frame Relay Inverse Address Resolution Protocol (ARP) to request the
next-hop protocol address for a specific connection, given its known Data link connection identifier (DLCI).
Responses to Inverse ARP requests are entered in an address-to-DLCI mapping table on the device or access
server. The DLCImapping table is then used to supply the next-hop protocol address or the DLCI for outgoing
traffic.

Inverse ARP is enabled by default for all protocols it supports. However, it can be disabled for specific
protocol-DLCI pairs. As a result, you can use dynamic mapping for some protocols and static mapping for
other protocols on the same DLCI. You can explicitly disable Inverse ARP for a protocol-DLCI pair if you
know that the protocol is not supported on the other end of the connection. For more information, see the
Disabling or Reenabling Frame Relay Inverse ARP section.

Because Inverse ARP is enabled by default, no additional command is required to configure dynamicmapping
on an interface and packets are not sent out for protocols that are not enabled on the interface.

Note

Static Address Mapping
A static map links a specified next-hop protocol address to a specified Data link connection identifier (DLCI).
Static mapping removes the need for Inverse Address Resolution Protocol (ARP) requests; when you supply
a static map, Inverse ARP is automatically disabled for the specified protocol on the specified DLCI. You
must use static mapping in the any of the following scenarios:

• If the device at the other end does not support Inverse ARP at all

• If the device does not support Inverse ARP for a specific protocol that you want to use over Frame Relay.

You can simplify the configuration for the Open Shortest Path First (OSPF) protocol by adding the optional
broadcast keyword when doing this task. Refer to the frame-relay map command description in the Cisco
IOS Wide-Area Networking Command Reference and the examples at the end of this chapter for more
information about using the broadcast keyword.

Configuring Frame Relay
3

Configuring Frame Relay
Frame Relay Encapsulation

LMI
The software supports LocalManagement Interface (LMI) autosense, which enables the interface to determine
the LMI type supported by the switch. Support for LMI autosense means that you need not configure the LMI
explicitly.

LMI autosense is active in the following situations:

• The device is powered up or the interface changes state to up.

• The line protocol is down but the line is up.

• The interface is a Frame Relay Data Terminal Equipment (DTE).

• The LMI type is not explicitly configured.

Activating LMI Autosense

Status Request

When Local Management Interface (LMI) autosense is active, it sends out a full status request in all three
LMI types to the switch. The order which is implemented in rapid succession is as follows:

• ANSI

• ITU

• Cisco

software provides the ability to listen in on both DLCI 1023 (cisco LMI) and DLCI 0 (ANSI and ITU)
simultaneously.

Status Messages

One or more of the status requests will prompts a reply (status message) from the switch. The device decodes
the format of the reply and configures itself automatically. If more than one reply is received, the device
configures itself with the type of the last received reply. This is to accommodate intelligent switches that can
handle multiple formats simultaneously.

LMI Autosense

If Local Management Interface (LMI) autosense is unsuccessful, an intelligent retry scheme is built in. Every
N391 interval (default is 60 seconds, which is 6 keep exchanges at 10 seconds each), LMI autosense attempts
to ascertain the LMI type. For more information about N391, see the frame-relay lmi-n391dte command in
the chapter "Frame Relay Commands " in the Cisco IOS Wide-Area Networking Command Reference .

The only visible indication to the user that LMI autosense is in progress is that debug frame lmi is enabled.
At every N391 interval, the user sees 3 rapid status inquiries from the serial interface one in each of the
following LMI-type:

• ANSI

• ITU

• Cisco

Configuring Frame Relay
4

Configuring Frame Relay
LMI

Configuration Options

No configuration options are provided; LMI autosense is transparent to the user. You can turn off LMI
autosense by explicitly configuring an LocalManagement Interface (LMI) type. The LMI type must be written
into NVRAM so that next time the device powers up, LMI autosense will be inactive. At the end of autoinstall,
a frame-relay lmi-type xxx statement is included within the interface configuration. This configuration is not
automatically written to NVRAM; you must explicitly write the configuration to NVRAM by using the copy
system:running-config or copy nvram:startup-config command.

MQC-Based Frame Relay Traffic Shaping
Legacy frame-relay traffic shaping is not supported. Cisco IOS XE software only supports policy map based
MQC.

Traffic-Shaping Map Class for the Interface
If you specify a Frame Relay map class for a main interface, all the virtual circuits (VCs) on its subinterfaces
inherit all the traffic-shaping parameters defined for the class. You can override the default for a specific data
link connection identifier (DLCI) on a specific subinterface by using the class VC configuration command
to assign the DLCI explicitly to a different class. For information about setting up subinterfaces, refer the
section Configuring Frame Relay Subinterfaces, on page 17 .

Specifying Map Class with Queueing and Traffic-Shaping Parameters
When defining a map class for Frame Relay, you can specify the average and peak rates (in bits per second)
allowed on virtual circuits (VCs) associated with the map class. You can also specify either a custom queue
list or a priority queue group to use on VCs associated with the map class.

Defining Access Lists
You can specify access lists and associate them with the custom queue list defined for any map class. The list
number specified in the access list and the custom queue list tie them together. See the appropriate protocol
chapters for information about defining access lists for the protocols you want to transmit on the Frame Relay
network.

Understanding Frame Relay Subinterfaces
Frame Relay subinterfaces provide a mechanism for supporting partially meshed Frame Relay networks. Most
protocols assume transitivity on a logical network; that is, if station A can communicate with station B, and
station B can communicate to station C, then station A should be able to communicate to station C directly.
Transitivity is true on LANs, but not on Frame Relay networks unless A is directly connected to C.

Additionally, certain protocols such as AppleTalk and transparent bridging are not supported on partially
meshed networks because they require split horizon . Split horizon is a routing technique in which a packet
received on an interface cannot be sent from the same interface even if received and transmitted on different
virtual circuits (VCs) .

Configuring Frame Relay subinterfaces ensures that a single physical interface is considered as multiple virtual
interfaces. Hence, packets received on one virtual interface can be forwarded to another virtual interface even
if they are configured on the same physical interface.

Subinterfaces address the limitations of Frame Relay networks by providing an option to subdivide a partially
meshed Frame Relay network into a number of smaller, fully meshed (or point-to-point) subnetworks. Each

Configuring Frame Relay
5

Configuring Frame Relay
Configuration Options

subnetwork is assigned its own network number and appears to the protocols as if it were reachable through
a separate interface. (Note that point-to-point subinterfaces can be unnumbered for use with IP, thus reducing
the addressing burden that might otherwise result.)

Cisco IOS XE software supports configuration of point-to-point subinterfaces.Note

The figure below shows a five-node Frame Relay network that is partially meshed (network A). If the entire
network is viewed as a single subnetwork (with a single network number assigned), most protocols assume
that node A can transmit a packet directly to node E, when, in fact it must be relayed through nodes C and D.
This network can work with certain protocols (for example, IP). However, this network does not work with
other protocols (for example, AppleTalk), because nodes C and D do not relay the packet out at the same
interface on which it was received. To make this network fully functional, we need to created a fully meshed
network (network B). However, a fully meshed network requires a large number of permanent virtual circuits
(PVCs), which may not be economically feasible.

Figure 2: Using Subinterfaces to Provide Full Connectivity on a Partially Meshed Frame Relay Network

By using subinterfaces, you can divide the Frame Relay network into 3 smaller subnetworks (network C) with
separate network numbers. Nodes A, B, and C are connected to a fully meshed network, and nodes C and D,
as well as nodes D and E, are connected via point-to-point networks. In this configuration, nodes C and D
can access 2 subinterfaces and can therefore forward packets without violating split horizon rules. If transparent
bridging is being used, each subinterface is viewed as a separate bridge port.

Configuring Frame Relay
6

Configuring Frame Relay
Understanding Frame Relay Subinterfaces

Subinterface Addressing
For point-to-point subinterfaces, the destination is presumed to be known and is identified or implied in the
frame-relay interface-dlci command.

The frame-relay interface-dlci command is typically used on subinterfaces; however, it can also be applied
to main interfaces. The command is used to enable routing protocols on main interfaces that are configured
to use Inverse ARP. This command is also helpful for assigning a specific class to a single permanent virtual
circuit (PVC) on a multipoint subinterface.

Note

If you define a subinterface for point-to-point communication, you cannot reassign the same subinterface
number to be used for multipoint communication without first rebooting the device or access server. Instead,
you can simply avoid using that subinterface number and use a different subinterface number.

Backup Interface for a Subinterface
Both point-to-point and multipoint Frame Relay subinterfaces can be configured with a backup interface. This
approach allows individual permanent virtual circuit (PVCs) to be backed up in case of failure rather than
depending on the entire Frame Relay connection to fail before the backup takes over. You can configure a
subinterface for backup on failure only, not for backup based on loading of the line.

If the main interface has a backup interface, it has a precedence over the backup interface of the subinterface
in the case of complete loss of connectivity with the Frame Relay network. As a result, a subinterface backup
is activated only in the following cases:

• If the main interface is up
• If the interface is down and does not have a backup interface defined

If a subinterface fails while its backup interface is in use, and the main interface goes down, the backup
subinterface remains connected.

Disabling or Reenabling Frame Relay Inverse ARP
Frame Relay Inverse Address Resolution Protocol (ARP) is a method of building dynamic address mappings
in Frame Relay networks that run DECnet, IP, and Novell IPX. Inverse ARP allows the device or access
server to discover the protocol address of a device associated with the virtual circuit (VC).

Inverse ARP creates dynamic address mappings, as contrasted with the frame-relay map command, which
defines static mappings between a specific protocol address and a specific data link connection identifier
(DLCI) (see the section Configuring Static Address Mapping, on page 12 for more information).

Inverse ARP is enabled by default but can be disabled explicitly for a given protocol and DLCI pair. Disable
or reenable Inverse ARP under the following conditions:

• Disable Inverse ARP for a selected protocol and DLCI pair when you know that the protocol is not
supported at the other end of the connection.

• Reenable Inverse ARP for a protocol and DLCI pair if conditions or equipment change and the protocol
is then supported at the other end of the connection.

Configuring Frame Relay
7

Configuring Frame Relay
Subinterface Addressing

If you change from a point-to-point subinterface to a multipoint subinterface, change the subinterface number.
Frame Relay Inverse ARP will be on by default, and no further action is required.

Note

You do not need to enable or disable Inverse ARP if you have a point-to-point interface.

Frame Relay Fragmentation

End-to-End FRF.12 Fragmentation
The purpose of end-to-end Frame Relay Fragmentation 12 (FRF.12) is to support real-time and non-real-time
data packets on lower-speed links without causing excessive delay to the real-time data transmission. FRF.12
fragmentation is defined by the FRF.12 Implementation Agreement. This standard was developed to allow
long data frames to be fragmented into smaller pieces (fragments) and interleaved with real-time frames. In
this way, real-time and non-real-time data frames can be carried together on lower-speed links without causing
excessive delay to the real-time traffic.

End-to-end FRF.12 fragmentation is recommended for use on permanent virtual circuits (PVCs) that share
links with other PVCs that are transporting voice and on PVCs transporting Voice over IP (VoIP). Although
VoIP packets should not be fragmented, they can be interleaved with fragmented packets.

FRF.12 is configured on a per-PVC basis using a Frame Relay map class. The map class can be applied to
one or many PVCs. Frame Relay traffic shaping must be enabled on the interface for fragmentation.

When Frame Relay fragmentation is configured, Weighted Fair Queuing (WFQ) or Low Latency Queuing
(LLQ) is mandatory. If a map class is configured for Frame Relay fragmentation and the queuing type on that
map class is not WFQ or LLQ, the configured queueing type is automatically overridden by WFQ with the
default values. To configure LLQ for Frame Relay, refer to the Cisco IOS XE Quality of Service Solutions
Configuration Guide .

Note

Setting the Fragment Size

Set the fragment size so that voice packets are not fragmented and do not experience a serialization delay
greater than 20 ms.

To set the fragment size, the link speed must be taken into account. The fragment size should be larger than
the voice packets, but small enough to minimize latency on the voice packets. Turn on fragmentation for low
speed links (less than 768 kbps).

Set the fragment size based on the lowest port speed between the routers. For example, if there is a hub and
spoke Frame Relay topology where the hub has a T1 speed and the remote routers have 64 kbps port speeds,
the fragment size needs to be set for the 64 kbps speed on both routers. Any other PVCs that share the same
physical interface need to configure the fragmentation to the size used by the voice PVC.

If the lowest link speed in the path is 64 kbps, the recommended fragment size (for 10 ms serialization delay)
is 80 bytes. If the lowest link speed is 128 kbps, the recommended fragment size is 160 bytes.

For more information, refer to the " Fragmentation (FRF.12)" section in the VoIP over Frame Relay with
Quality of Service (Fragmentation, Traffic Shaping, LLQ / IP RTP Priority) document.

Configuring Frame Relay
8

Configuring Frame Relay
Frame Relay Fragmentation

http://www.cisco.com/en/US/tech/tk652/tk698/technologies_configuration_example09186a0080094af9.shtml#topic9

TCP IP Header Compression
TCP/IP header compression, as described by RFC 1144, Compressing TCP/IP Headers for Low-Speed Serial
Links is designed to improve the efficiency of bandwidth utilization over low-speed serial links. A typical
TCP/IP packet includes a 40-byte datagram header. Once a connection is established, the header information
is redundant and need not be repeated in every packet that is sent. Reconstructing a smaller header that identifies
the connection, indicates the fields that have changed and the amount of change reduces the number of bytes
transmitted. The average compressed header is 10 bytes long.

For this algorithm to function, packets must arrive in order. If packets arrive out of order, the reconstruction
will appear to create regular TCP/IP packets but the packets will not match the original. Because priority
queueing changes the order in which packets are transmitted, enabling priority queueing on the interface is
not recommended.

If you configure an interface with Cisco-proprietary encapsulation and TCP/IP header compression, Frame
Relay IP maps inherit the compression characteristics of the interface. However, if you configure the interface
with IETF encapsulation, the interface cannot be configured for compression. Frame Relay maps will have
to be configured individually to support TCP/IP header compression.

Note

Specifying an Individual IP Map for TCP IP Header Compression

An interface configured to support TCP/IP header compression does not also support priority queuing or
custom queuing.

Note

TCP/IP header compression requires Cisco-proprietary encapsulation. If you need to have IETF encapsulation
on an interface as a whole, you can still configure a specific IP map to use Cisco-proprietary encapsulation
and TCP header compression. In addition, if you configure the interface to perform TCP/IP header compression,
you can still configure a specific IP map not to compress TCP/IP headers.

You can specify whether TCP/IP header compression is active or passive. Active compression subjects every
outgoing packet to TCP/IP header compression. Passive compression subjects an outgoing TCP/IP packet to
header compression only if a packet had a compressed TCP/IP header when it was received.

Specifying an Interface for TCP IP Header Compression
You can configure the interface with an active or passive TCP/IP header compression. Active compression,
the default, subjects all outgoing TCP/IP packets to header compression. Passive compression subjects an
outgoing packet to header compression only if the packet had a compressed TCP/IP header when it was
received on that interface.

If an interface configured with Cisco-proprietary encapsulation is later configured with IETF encapsulation,
all TCP/IP header compression characteristics are lost. To apply TCP/IP header compression over an interface
configured with IETF encapsulation, you must configure individual IP maps, as described in the Configuring
an Individual IP Map for TCP IP Header Compression section.

Note

Configuring Frame Relay
9

Configuring Frame Relay
TCP IP Header Compression

Real-Time Header Compression with Frame Relay Encapsulation
Real-time Transport Protocol (RTP) is a protocol used for carrying packetized audio and video traffic over
an IP network. It provides end-to-end network transport functions intended for these real-time traffic applications
and multicast or unicast network services. RTP is described in RFC 1889,A Transport Protocol for Real-Time
Applications . RTP is not intended for data traffic, which uses TCP or UDP.

For configuration tasks and examples of RTP header compression using Frame Relay encapsulation, see the
Cisco IOS XE IP Multicast Configuration Guide .

The commands for configuring this feature are available in the Cisco IOS IP Multicast Command Reference.

Discard Eligibility
Frame Relay packets can be set with low priority or low time sensitivity. These packets will be the first to be
dropped when a Frame Relay switch is congested. The mechanism that allows a Frame Relay switch to identify
such packets is the discard eligibility (DE) bit.

Discard eligibility requires the Frame Relay network to be able to interpret the DE bit. Some networks take
no action when the DE bit is set, and others use the DE bit to determine which packets to discard. The best
interpretation is to use the DE bit to determine which packets should be dropped first and also which packets
have lower time sensitivity.

You can create DE lists that identify the characteristics of packets to be eligible for discarding, and you can
also specify DE groups to identify the data link connection identifier (DLCI) that is affected.

You can create DE lists based on the protocol or the interface, and on characteristics such as fragmentation
of the packet, a specific TCP or UDP port, an access list number, or a packet size.

DLCI Priority Levels
Data Link Connection Identifier (DLCI) priority levels allow you to separate different types of traffic and
provides a traffic management tool for congestion problems caused by the following:

• Mixing batch and interactive traffic over the same DLCI

• Queuing traffic from sites with high-speed access to destination sites with lower-speed access

Before you configure the DLCI priority levels, you must:

• Enable Frame Relay encapsulation.

• Define dynamic or static address mapping.

• Ensure that you define each of the DLCIs to which you intend to apply levels. You can associate
priority-level DLCIs with subinterfaces.

• Configure the LMI.

DLCI priority levels provide a way to define multiple parallel DLCIs for different types of traffic. DLCI
priority levels do not assign priority queues within the device or access server. In fact, they are independent
of the priority queues of the device. However, if you enable queuing and use the same DLCIs for queuing,
then high-priority DLCIs can be put into high-priority queues.

Note

Configuring Frame Relay
10

Configuring Frame Relay
Real-Time Header Compression with Frame Relay Encapsulation

How to Configure Frame Relay

Enabling Frame Relay Encapsulation on an Interface

Frame Relay encapsulation is a prerequisite for any Frame Relay commands on an interface.Note

To enable Frame Relay encapsulation on the interface level, use the following commands beginning in global
configuration mode:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface typenumber

4. encapsulation frame-relay[ietf]
5. end

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Specifies the interface, and enters interface configuration
mode.

interface typenumber

Example:

Step 3

Device(config)# int ethernet 0/1

Enables and specifies the Frame Relay encapsulation
method.

encapsulation frame-relay[ietf]

Example:

Step 4

Device(config-if)# encapsulation frame-relay ietf

Returns to privileged EXEC mode.end

Example:

Step 5

Device(config-if)# end

Configuring Frame Relay
11

Configuring Frame Relay
How to Configure Frame Relay

Configuring Static Address Mapping
To establish static mapping according to your network requirements, use the following command in interface
configuration mode:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface typenumber

4. frame-relay map protocol protocol-address dlci [broadcast] [ietf] [cisco]
5. end

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Specifies the interface, and enters interface configuration
mode.

interface typenumber

Example:

Step 3

Device(config)# int ethernet 0/1

Enables and specifies the Frame Relay encapsulation
method.

frame-relay map protocol protocol-address dlci
[broadcast] [ietf] [cisco]

Example:

Step 4

Device(config-if)#

Returns to privileged EXEC mode.end

Example:

Step 5

Device(config-if)# end

Configuring Frame Relay
12

Configuring Frame Relay
Configuring Static Address Mapping

Explicitly Configuring the LMI

Setting the LMI Type
If the device or access server is attached to a public data network (PDN), the LMI type must match the type
used on the public network. Otherwise, the LMI type can be set to suit the requirements of your private Frame
Relay network. You can set one of the following three types of LMIs on Cisco devices:

• ANSI T1.617 Annex D
• Cisco
• ITU-T Q.933 Annex A

To do so, use the following commands beginning in interface configuration mode:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface typenumber

4. frame-relay lmi-type {ansi | cisco | q933a}
5. end
6. copy nvram:startup-config destination

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Specifies the interface, and enters interface configuration
mode.

interface typenumber

Example:

Step 3

Device(config)# int ethernet 0/1

Sets the LMI type.frame-relay lmi-type {ansi | cisco | q933a}

Example:

Step 4

Device(config-if)#

Returns to privileged EXEC mode.end

Example:

Step 5

Configuring Frame Relay
13

Configuring Frame Relay
Explicitly Configuring the LMI

PurposeCommand or Action

Device(config-if)# end

Writes the LMI type to NVRAM.copy nvram:startup-config destination

Example:

Step 6

Device#

Setting the LMI Keepalive Interval
A keepalive interval must be set to configure the Local Management Interface (LMI). By default, this interval
is 10 seconds. According to the LMI protocol, the keepalive interval must be less than the corresponding
interval on the switch. To set the keepalive interval, use the following command in interface configuration
mode:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface typenumber

4. keepalive keepalive period

5. end

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Specifies the interface, and enters interface configuration
mode.

interface typenumber

Example:

Step 3

Device(config)# int ethernet 0/1

Sets the keepalive interval.keepalive keepalive periodStep 4

Example: • keepalive period- Valid range is from 0 to 32767.

Device(config-if)# keepalive 300
To disable keepalives on networks that do not
utilize LMI, use the no keepalive command.

Note

Configuring Frame Relay
14

Configuring Frame Relay
Setting the LMI Keepalive Interval

PurposeCommand or Action

Returns to privileged EXEC mode.end

Example:

Step 5

Device(config-if)# end

Setting the LMI Polling and Timer Intervals
You can set various optional counters, intervals, and thresholds to fine-tune the operation of your Local
Management Interface data terminal equipment (LMI DTE) and data communications equipment (DCE)
devices. Set these attributes by using one or more of the following commands in interface configurationmode:

PurposeCommand

Sets the DCE and Network-to-Network Interface (NNI)
error threshold.

frame-relay lmi-n392dce threshold

Sets the DCE and NNI monitored events count.frame-relay lmi-n393dce events

Sets the polling verification timer on a DCE or NNI
interface.

frame-relay lmi-t392dce seconds

Sets a full status polling interval on a DTE or NNI
interface.

frame-relay lmi-n391dte
keep-exchanges

Sets the DTE or NNI error threshold.frame-relay lmi-n392dte threshold

Sets the DTE and NNI monitored events count.frame-relay lmi-n393dte events

Configuring MQC-Based Frame Relay Traffic Shaping

Specifying a Traffic-Shaping Map Class for the Interface
To specify a map class for the specified interface, use the following command beginning in interface
configuration mode:

SUMMARY STEPS

1. Router(config-if)# frame-relay class map-class-name

DETAILED STEPS

PurposeCommand or Action

Specifies a Frame Relay map class for the interface.Router(config-if)# frame-relay class map-class-nameStep 1

Defining a Map Class with Queueing and Traffic-Shaping Parameters
To define a map class, use the following commands beginning in global configuration mode:

Configuring Frame Relay
15

Configuring Frame Relay
Setting the LMI Polling and Timer Intervals

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-map-name

4. class class-default
5. bandwidth {bandwidth-in-kbps | remaining | percent }
6. priority [bandwidth-in-kbps | level | percent]
7. shape average {rate-in-bps |percent}
8. shape adaptive rate-in-bps

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Specifies a policy map to define and enters policy map
configuration mode.

policy-map policy-map-name

Example:

Step 3

Device(config)# policy-map testmap

Specifies a system default class and enters policy-map class
configuration .

class class-default

Example:

Step 4

Device(config-pmap)# class class-default

Configures a minimum bandwidth guarantee for a class.bandwidth {bandwidth-in-kbps | remaining | percent }

Example:

Step 5

Device(config-pmap-c)# bandwidth 50

Assigns priority to a class of traffic belonging to a policy
map.

priority [bandwidth-in-kbps | level | percent]

Example:

Step 6

Device(config-pmap-c)# priority 150

Shapes traffic to the indicated bit rate according to the
algorithm specified.

shape average {rate-in-bps |percent}

Example:

Step 7

Device(config-pmap-c)# shape average 8000

Shapes traffic to the indicated bit rate according to the
algorithm specified.

shape adaptive rate-in-bps

Example:

Step 8

Device(config-pmap-c)# shape adaptive 9000

Configuring Frame Relay
16

Configuring Frame Relay
Defining a Map Class with Queueing and Traffic-Shaping Parameters

Customizing Frame Relay for Your Network

Configuring Frame Relay Subinterfaces

Configuring Subinterfaces

Multipoint DLCI configurations are currently not supported. Cisco IOS XE software supports point-to-point
connections.

Note

To configure subinterfaces on a Frame Relay network, use the following commands beginning in global
configuration mode:

SUMMARY STEPS

1. Router(config)# interface type number . subinterface-number {multipoint | point-to-point}
2. Router(config-subif)# encapsulation frame-relay

DETAILED STEPS

PurposeCommand or Action

Creates a point-to-point or multipoint subinterface.Router(config)# interface type number .
subinterface-number {multipoint | point-to-point}

Step 1

• Cisco IOS XE software only supports point-to-point
subinterfaces.

Configures Frame Relay encapsulation on the serial
interface.

Router(config-subif)# encapsulation frame-relayStep 2

Defining Subinterface Addressing on Point-to-Point Subinterfaces

If you specified a point-to-point subinterface in the preceding procedure, use the following command in
subinterface configuration mode:

SUMMARY STEPS

1. Router(config-subif)# frame-relay interface-dlci dlci

DETAILED STEPS

PurposeCommand or Action

Associates the selected point-to-point subinterface with a
DLCI.

Router(config-subif)# frame-relay interface-dlci dlciStep 1

Configuring a Backup Interface for a Subinterface

To configure a backup interface for a Frame Relay subinterface, use the following commands beginning in
global configuration mode:

Configuring Frame Relay
17

Configuring Frame Relay
Customizing Frame Relay for Your Network

SUMMARY STEPS

1. Router(config)# interface type number

2. Router(config-if)# encapsulation frame-relay
3. Router(config)# interface type number . subinterface-number point-to-point
4. Router(config-subif)# frame-relay interface-dlci dlci

5. Router(config-subif)# backup interface type number

6. Router(config-subif)# backup delay enable-delay disable-delay

DETAILED STEPS

PurposeCommand or Action

Specifies the interface.Router(config)# interface type numberStep 1

Configures Frame Relay encapsulation.Router(config-if)# encapsulation frame-relayStep 2

Configures the subinterface.Router(config)# interface type number .
subinterface-number point-to-point

Step 3

Specifies DLCI for the subinterface.Router(config-subif)# frame-relay interface-dlci dlciStep 4

Configures backup interface for the subinterface.Router(config-subif)# backup interface type numberStep 5

Specifies backup enable and disable delay.Router(config-subif)# backup delay enable-delay
disable-delay

Step 6

Disabling or Reenabling Frame Relay Inverse ARP
To select or disable Inverse ARP, use one of the following commands in interface configuration mode:

PurposeCommand

Enables Frame Relay Inverse ARP for a specific protocol and
DLCI pair, only if it was previously disabled.

frame-relay inverse-arp
protocol dlci

Disables Frame Relay Inverse ARP for a specific protocol and
DLCI pair.

no frame relay inverse-arp
protocol dlci

Configuring Frame Relay Fragmentation

Configuring End-to-End FRF.12 Fragmentation

To configure FRF.12 fragmentation in a Frame Relay map class, use the following commands beginning in
global configuration mode:

SUMMARY STEPS

1. Router(config)# map-class frame-relay map-class-name

2. Router(config-map-class)# frame-relay fragment fragment_size

Configuring Frame Relay
18

Configuring Frame Relay
Disabling or Reenabling Frame Relay Inverse ARP

DETAILED STEPS

PurposeCommand or Action

Specifies a map class to define QoS values for a Frame
Relay SVC or PVC. The map class can be applied to one
or many PVCs.

Router(config)# map-class frame-relay map-class-nameStep 1

Configures Frame Relay fragmentation for the map class.
The fragment_size argument defines the payload size of a

Router(config-map-class)# frame-relay fragment
fragment_size

Step 2

fragment; it excludes the Frame Relay headers and any
Frame Relay fragmentation header. The valid range is from
16 to 1600 bytes, and the default is 53.

Verifying the Configuration of End-to-End FRF.12 Fragmentation

To verify FRF.12 fragmentation, use one or more of the following EXEC commands:

PurposeCommand

Displays Frame Relay fragmentation information.show frame-relay fragment [interface
interface] [dlci]

Displays statistics about PVCs for Frame Relay
interfaces.

show frame-relay pvc [interface
interface] [dlci]

Configuring TCP IP Header Compression

Configuring an Individual IP Map for TCP IP Header Compression

To configure an IP map to use Cisco-proprietary encapsulation and TCP/IP header compression, use the
following command in interface configuration mode:

PurposeCommand

Configures an IP map to use TCP/IP header
compression. Cisco-proprietary encapsulation is
enabled by default.

frame-relay map ip ip-address dlci

[broadcast] tcp header-compression
[active | passive] [connections number]

Configuring an Interface for TCP IP Header Compression

To apply TCP/IP header compression to an interface, you must use the following commands in interface
configuration mode:

SUMMARY STEPS

1. Router(config-if)# encapsulation frame-relay
2. Router(config-if)# frame-relay ip tcp header-compression [passive]

Configuring Frame Relay
19

Configuring Frame Relay
Verifying the Configuration of End-to-End FRF.12 Fragmentation

DETAILED STEPS

PurposeCommand or Action

Configures Cisco-proprietary encapsulation on the interface.Router(config-if)# encapsulation frame-relayStep 1

Enables TCP/IP header compression.Router(config-if)# frame-relay ip tcp header-compression
[passive]

Step 2

Disabling TCP IP Header Compression

You can disable TCP/IP header compression by using either of two commands that have different effects,
depending on whether Frame Relay IP maps have been explicitly configured for TCP/IP header compression
or have inherited their compression characteristics from the interface.

Frame Relay IP maps that have explicitly configured TCP/IP header compression must also have TCP/IP
header compression explicitly disabled.

To disable TCP/IP header compression, use one of the following commands in interface configuration mode:

PurposeCommand

Disables TCP/IP header compression on all Frame Relay IP
maps that are not explicitly configured for TCP header
compression.

no frame-relay ip tcp
header-compression

Disables RTP and TCP/IP header compression on a specified
Frame Relay IP map.

frame-relay map ip ip-address dlci

nocompress

Configuring Discard Eligibility

Defining a DE List

To define a DE list specifying the packets that can be dropped when the Frame Relay switch is congested,
use the following command in global configuration mode:

SUMMARY STEPS

1. Router(config)# frame-relay de-list list-number {protocol protocol | interface type number}
characteristic

DETAILED STEPS

PurposeCommand or Action

Defines a DE list.Router(config)# frame-relay de-list list-number {protocol
protocol | interface type number} characteristic

Step 1

Defining a DE Group

To define a DE group specifying the DE list and DLCI affected, use the following command in interface
configuration mode:

Configuring Frame Relay
20

Configuring Frame Relay
Disabling TCP IP Header Compression

PurposeCommand

Defines a DE group.frame-relay de-group group-number dlci

Configuring DLCI Priority Levels
To configure DLCI priority levels, use the following command in interface configuration mode:

PurposeCommand

Enables multiple parallel DLCIs for different Frame Relay traffic types;
associates and sets level of specified DLCIs with same group.

If you do not explicitly specify a DLCI for each of the
priority levels, the last DLCI specified in the command line
is used as the value of the remaining arguments. At a
minimum, you must configure the high-priority and the
medium-priority DLCIs.

Note

frame-relay
priority-dlci-group
group-number high-dlci
medium-dlci normal-dlci
low-dlci

Monitoring and Maintaining the Frame Relay Connections
To monitor Frame Relay connections, use any of the following commands in EXEC mode:

PurposeCommand

Clears dynamically created Frame Relaymaps, which are
created by the use of Inverse ARP.

clear frame-relay-inarp

Displays information about Frame Relay DLCIs and the
LMI.

show interfaces serial type number

Displays LMI statistics.show frame-relay lmi [type number]

Displays the current Frame Relay map entries.show frame-relay map

Displays PVC statistics.show frame-relay pvc [type number
[dlci]]

Displays configured static routes.show frame-relay route

Displays Frame Relay traffic statistics.show frame-relay traffic

Displays information about the status of LAPF.show frame-relay lapf

Displays all the SVCs under a specified map list.show frame-relay svc maplist

Configuring Frame Relay
21

Configuring Frame Relay
Configuring DLCI Priority Levels

Configuration Examples for Frame Relay

Example IETF Encapsulation

Example IETF Encapsulation on the Interface
The following example sets IETF encapsulation at the interface level. The keyword ietf sets the default
encapsulation method for all maps to IETF.
encapsulation frame-relay ietf
frame-relay map ip 131.108.123.2 48 broadcast
frame-relay map ip 131.108.123.3 49 broadcast

Example IETF Encapsulation on a Per-DLCI Basis
The following example configures IETF encapsulation on a per-DLCI basis. This configuration has the same
result as the configuration in the first example.
encapsulation frame-relay
frame-relay map ip 131.108.123.2 48 broadcast ietf
frame-relay map ip 131.108.123.3 49 broadcast ietf

Example Static Address Mapping

Example Two Routers in Static Mode
The following example shows how to configure two routers for static mode:

Configuration for Router 1

interface serial0
ip address 131.108.64.2 255.255.255.0
encapsulation frame-relay
keepalive 10
frame-relay map ip 131.108.64.1 43

Configuration for Router 2

interface serial1
ip address 131.108.64.1 255.255.255.0
encapsulation frame-relay
keepalive 10
frame-relay map ip 131.108.64.2 43

Example Subinterface

Example Basic Subinterface
In the following example, subinterface 1 is configured as a point-to-point subnet and subinterface 2 is configured
as a multipoint subnet.

Configuring Frame Relay
22

Configuring Frame Relay
Configuration Examples for Frame Relay

interface serial 0
encapsulation frame-relay
interface serial 0.1 point-to-point
ip address 10.0.1.1 255.255.255.0
frame-relay interface-dlci 42
!
interface serial 0.2 multipoint
ip address 10.0.2.1 255.255.255.0
frame-relay map ip 10.0.2.2 18

Example Frame Relay Traffic Shaping

Example Configuring Class-Based Weighted Fair Queueing
The following example provides a sample configuration for Class-Based Weighted Fair Queueing (CBWFQ)
with FRTS:
class-map voice
match ip dscp ef
policy-map llq
class voice
priority 32

policy-map shape-policy-map
class class-default
shape average 64000
shape adaptive 32000
service-policy llq

map-class frame-relay shape-map-class

service-policy output shape-policy-map
interface serial 0/0
encapsulation frame-relay
interface serial 0/0.1 point-to-point
ip address 192.168.1.1 255.255.255.0
frame-relay interface-dlci 100
class shape-map-class

Example Configuring Class-Based Weighted Fair Queueing with Fragmentation
The following example provides a sample configuration for CBWFQ and fragmentation with FRTS. This
configuration example is exactly the same as the example shown in the Example Configuring Class-Based
Weighted Fair Queueing section, with the addition of the frame-relay fragment command to configure
fragmentation.
class-map voice
match ip dscp ef
policy-map llq
class voice
priority 32

policy-map shape-policy-map
class class-default
shape average 64000
shape adaptive 32000
service-policy llq

map-class frame-relay shape-map-class
frame-relay fragment 80
service-policy output shape-policy-map
interface serial 0/0
encapsulation frame-relay
interface serial 0/0.1 point-to-point
ip address 192.168.1.1 255.255.255.0

Configuring Frame Relay
23

Configuring Frame Relay
Example Frame Relay Traffic Shaping

frame-relay interface-dlci 100
class shape-map-class

Example Backward Compatibility
The following configuration provides backward compatibility and interoperability with versions not compliant
with RFC 1490. The ietf keyword is used to generate RFC 1490 traffic. This configuration is possible because
of the flexibility provided by separately defining each map entry.
encapsulation frame-relay
frame-relay map ip 131.108.123.2 48 broadcast ietf
! interoperability is provided by IETF encapsulation
frame-relay map ip 131.108.123.3 49 broadcast ietf
frame-relay map ip 131.108.123.7 58 broadcast
! this line allows the router to connect with a
! device running an older version of software
frame-relay map decnet 21.7 49 broadcast

Example Booting from a Network Server over Frame Relay
When booting from a TFTP server over Frame Relay, you cannot boot from a network server via a broadcast.
You must boot from a specific TFTP host. Also, a frame-relay map command must exist for the host from
which you will boot.

For example, if file "gs3-bfx" is to be booted from a host with IP address 131.108.126.2, the following
commands would need to be in the configuration:
boot system gs3-bfx 131.108.126.2
!
interface Serial 0
encapsulation frame-relay
frame-relay map IP 131.108.126.2 100 broadcast

The frame-relay map command is used to map an IP address into a DLCI address. To boot over Frame Relay,
you must explicitly give the address of the network server to boot from, and a frame-relay map entry must
exist for that site. For example, if file "gs3-bfx.83-2.0" is to be booted from a host with IP address
131.108.126.111, the following commands must be in the configuration:
boot system gs3-bfx.83-2.0 131.108.13.111
!
interface Serial 1
ip address 131.108.126.200 255.255.255.0
encapsulation frame-relay
frame-relay map ip 131.108.126.111 100 broadcast

In this case, 100 is the DLCI that can get to host 131.108.126.111.

The remote router must be configured with the following command:
frame-relay map ip 131.108.126.200 101 broadcast

This entry allows the remote router to return a boot image (from the network server) to the router booting
over Frame Relay. Here, 101 is a DLCI of the router being booted.

Configuring Frame Relay
24

Configuring Frame Relay
Example Backward Compatibility

Example Frame Relay Fragmentation Configuration

Example FRF.12 Fragmentation
The following example shows the configuration of pure end-to-end FRF.12 fragmentation and weighted fair
queueing in the map class called "frag". The fragment payload size is set to 40 bytes. The "frag" map class is
associated with DLCI 100 on serial interface 1.
router(config)#
interface serial 1

router(config-if)# frame-relay interface-dlci 100
router(config-fr-dlci)# class frag
router(config-fr-dlci)# exit
router(config)# map-class frame-relay frag
router(config-map-class)# frame-relay fragment 40

Example TCP IP Header Compression

Example IP Map with Inherited TCP IP Header Compression

Shut down the interface or subinterface prior to adding or changing compression techniques. Although
shutdown is not required, shutting down the interface ensures that it is reset for the new data structures.

Note

The following example shows an interface configured for TCP/IP header compression and an IP map that
inherits the compression characteristics. Note that the Frame Relay IP map is not explicitly configured for
header compression.
interface serial 1
encapsulation frame-relay
ip address 131.108.177.178 255.255.255.0
frame-relay map ip 131.108.177.177 177 broadcast
frame-relay ip tcp header-compression passive

Use of the show frame-relay map command will display the resulting compression and encapsulation
characteristics; the IP map has inherited passive TCP/IP header compression:
Router> show frame-relay map
Serial 1 (administratively down): ip 131.108.177.177

dlci 177 (0xB1,0x2C10), static,
broadcast,
CISCO
TCP/IP Header Compression (inherited), passive (inherited)

This example also applies to dynamic mappings achieved with the use of Inverse ARP on point-to-point
subinterfaces where no Frame Relay maps are configured.

Example Using an IP Map to Override TCP IP Header Compression
The following example shows the use of a Frame Relay IPmap to override the compression set on the interface:
interface serial 1
encapsulation frame-relay
ip address 131.108.177.178 255.255.255.0

Configuring Frame Relay
25

Configuring Frame Relay
Example Frame Relay Fragmentation Configuration

frame-relay map ip 131.108.177.177 177 broadcast nocompress
frame-relay ip tcp header-compression passive

Use of the show frame-relay map command will display the resulting compression and encapsulation
characteristics; the IP map has not inherited TCP header compression:
Router> show frame-relay map
Serial 1 (administratively down): ip 131.108.177.177

dlci 177 (0xB1,0x2C10), static,
broadcast,
CISCO

Example Disabling Inherited TCP IP Header Compression
In this example, following is the initial configuration:
interface serial 1
encapsulation frame-relay
ip address 131.108.177.179 255.255.255.0
frame-relay ip tcp header-compression passive
frame-relay map ip 131.108.177.177 177 broadcast
frame-relay map ip 131.108.177.178 178 broadcast tcp header-compression

Enter the following commands to enable inherited TCP/IP header compression:
serial interface 1
no frame-relay ip tcp header-compression

Use of the show frame-relay map command will display the resulting compression and encapsulation
characteristics:
Router> show frame-relay map
Serial 1 (administratively down): ip 131.108.177.177 177

dlci 177(0xB1, 0x2C10), static,
broadcast
CISCO

Serial 1 (administratively down): ip 131.108.177.178 178
dlci 178(0xB2,0x2C20), static
broadcast
CISCO
TCP/IP Header Compression (enabled)

As a result, header compression is disabled for the first map (with DLCI 177), which inherited its header
compression characteristics from the interface. However, header compression is not disabled for the second
map (DLCI 178), which is explicitly configured for header compression.

Example Disabling Explicit TCP IP Header Compression
In this example, the initial configuration is the same as in the preceding example, but you must enter the
following set of commands to enable explicit TCP/IP header compression:
serial interface 1
no frame-relay ip tcp header-compression
frame-relay map ip 131.108.177.178 178 nocompress

Use of the show frame-relay map command will display the resulting compression and encapsulation
characteristics:
Router> show frame-relay map
Serial 1 (administratively down): ip 131.108.177.177 177

dlci 177(0xB1,0x2C10), static,
broadcast
CISCO

Serial 1 (administratively down): ip 131.108.177.178 178

Configuring Frame Relay
26

Configuring Frame Relay
Example Disabling Inherited TCP IP Header Compression

dlci 178(0xB2,0x2C20), static
broadcast
CISCO

The result of the commands is to disable header compression for the first map (with DLCI 177), which inherited
its header compression characteristics from the interface, and also explicitly to disable header compression
for the second map (with DLCI 178), which was explicitly configured for header compression.

Additional References
Related Documents

Document TitleRelated Topic

Cisco IOS XE Wide-Area Networking Configuration
Guide, Release 2

Cisco IOS XE Wide-Area Networking
configuration tasks

Cisco IOS Wide-Area Networking Command ReferenceWide-Area networking commands

Standards

TitleStandard

--None

MIBs

MIBs LinkMIB

To locate and download MIBs for selected platforms, Cisco IOS XE software releases, and feature
sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

None

RFCs

TitleRFC

--None

Configuring Frame Relay
27

Configuring Frame Relay
Additional References

http://www.cisco.com/go/mibs

Technical Assistance

LinkDescription

http://www.cisco.com/techsupportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you
can subscribe to various services, such as the Product Alert Tool (accessed
from Field Notices), the Cisco Technical Services Newsletter, and Really
Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com
user ID and password.

Feature Information for Configuring Frame Relay
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for Configuring Frame Relay

Feature InformationReleasesFeature Name

Frame Relay is a high-performance WAN protocol that
operates at the physical and data link layers.

Cisco IOS XE Release
2.1

Frame Relay

Frame Relay supports encapsulation of all supported
protocols in conformance with RFC 1490, allowing
interoperability between multiple vendors.

Cisco IOS XE Release
2.1

Frame Relay
Encapsulation

End-to-end FRF.12 fragmentation supports real-time and
non-real-time data packets on lower-speed links without
causing excessive delay to the real-time data. FRF.12
fragmentation is defined by the FRF.12 Implementation
Agreement.

Cisco IOS XE Release
2.1

Frame Relay
Fragmentation (FRF.12)

Local Management Interface (LMI) autosense enables an
interface to determine the LMI type supported by a switch.
With the support for LMI autosense, you do not need to
configure the LMI explicitly.

Cisco IOS XE Release
2.1

Local Management
Interface

Configuring Frame Relay
28

Configuring Frame Relay
Feature Information for Configuring Frame Relay

http://www.cisco.com/public/support/tac/home.shtml
http://www.cisco.com/go/cfn

	Configuring Frame Relay
	Finding Feature Information
	Restrictions for Configuring Frame Relay
	Information About Frame Relay
	Frame Relay Hardware Configurations
	Frame Relay Encapsulation
	Dynamic or Static Address Mapping
	Dynamic Address Mapping
	Static Address Mapping

	LMI
	Activating LMI Autosense
	Status Request
	Status Messages
	LMI Autosense
	Configuration Options

	MQC-Based Frame Relay Traffic Shaping
	Traffic-Shaping Map Class for the Interface
	Specifying Map Class with Queueing and Traffic-Shaping Parameters
	Defining Access Lists

	Understanding Frame Relay Subinterfaces
	Subinterface Addressing
	Backup Interface for a Subinterface

	Disabling or Reenabling Frame Relay Inverse ARP
	Frame Relay Fragmentation
	End-to-End FRF.12 Fragmentation
	Setting the Fragment Size

	TCP IP Header Compression
	Specifying an Individual IP Map for TCP IP Header Compression
	Specifying an Interface for TCP IP Header Compression

	Real-Time Header Compression with Frame Relay Encapsulation
	Discard Eligibility
	DLCI Priority Levels

	How to Configure Frame Relay
	Enabling Frame Relay Encapsulation on an Interface
	Configuring Static Address Mapping
	Explicitly Configuring the LMI
	Setting the LMI Type
	Setting the LMI Keepalive Interval
	Setting the LMI Polling and Timer Intervals

	Configuring MQC-Based Frame Relay Traffic Shaping
	Specifying a Traffic-Shaping Map Class for the Interface
	Defining a Map Class with Queueing and Traffic-Shaping Parameters

	Customizing Frame Relay for Your Network
	Configuring Frame Relay Subinterfaces
	Configuring Subinterfaces
	Defining Subinterface Addressing on Point-to-Point Subinterfaces
	Configuring a Backup Interface for a Subinterface

	Disabling or Reenabling Frame Relay Inverse ARP
	Configuring Frame Relay Fragmentation
	Configuring End-to-End FRF.12 Fragmentation
	Verifying the Configuration of End-to-End FRF.12 Fragmentation

	Configuring TCP IP Header Compression
	Configuring an Individual IP Map for TCP IP Header Compression
	Configuring an Interface for TCP IP Header Compression
	Disabling TCP IP Header Compression

	Configuring Discard Eligibility
	Defining a DE List
	Defining a DE Group

	Configuring DLCI Priority Levels

	Monitoring and Maintaining the Frame Relay Connections

	Configuration Examples for Frame Relay
	Example IETF Encapsulation
	Example IETF Encapsulation on the Interface
	Example IETF Encapsulation on a Per-DLCI Basis

	Example Static Address Mapping
	Example Two Routers in Static Mode

	Example Subinterface
	Example Basic Subinterface

	Example Frame Relay Traffic Shaping
	Example Configuring Class-Based Weighted Fair Queueing
	Example Configuring Class-Based Weighted Fair Queueing with Fragmentation

	Example Backward Compatibility
	Example Booting from a Network Server over Frame Relay
	Example Frame Relay Fragmentation Configuration
	Example FRF.12 Fragmentation

	Example TCP IP Header Compression
	Example IP Map with Inherited TCP IP Header Compression
	Example Using an IP Map to Override TCP IP Header Compression
	Example Disabling Inherited TCP IP Header Compression
	Example Disabling Explicit TCP IP Header Compression

	Additional References
	Feature Information for Configuring Frame Relay

