Configuring Frame Relay-ATM Interworking

Last Updated: November 26, 2012

The Frame Relay-ATM Interworking features enable Frame Relay and ATM networks to exchange data, despite differing network protocols. There are two types of Frame Relay-ATM Interworking:

- FRF.5 Frame Relay-ATM Network Interworking, page 2
- FRF.8 Frame Relay-ATM Service Interworking, page 3

For further general information about Frame Relay-ATM Interworking, see the "Wide-Area Networking Overview" chapter at the beginning of this book.

For a description of the commands used to configure Frame Relay-ATM Interworking, refer to the chapter "Frame Relay-ATM Interworking Commands" in the Cisco IOS Wide-Area Networking Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index or search online.

To identify the hardware platform or software image information associated with a feature, use the Feature Navigator on Cisco.com to search for information about the feature or refer to the software release notes for a specific release. For more information, see the section "Identifying Supported Platforms" in the chapter "Using Cisco IOS Software."

For Cisco IOS Release 12.2, Frame Relay-ATM Interworking is supported on the following platforms and interface types:

- Cisco MC3810: T1/E1 ATM interface
- Cisco 3600 series routers: OC-3 and inverse multiplexing over ATM (IMA) network modules
- Cisco 2600 series routers: OC-3 and IMA network modules
- Cisco 7200 series routers: all Cisco 7200 series ATM interface types

Finding Feature Information, page 1
Prerequisites, page 2
Information About Frame Relay-ATM Interworking, page 2
How to Configure Frame Relay-ATM Interworking, page 3
Configuration Examples for Frame Relay-ATM Interworking, page 11

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release.
To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites

If the end station is a Cisco router that is connected to an FRF.8 router or switch in translation mode, you must configure the end station with IETF encapsulation (not Cisco encapsulation, which is the default). To do so, you use the `encapsulation frame relay ietf` command.

IETF encapsulation on the end station is not required for FRF.8 in transparent mode (or for FRF.5 in translation mode or transparent mode). The FRF.5 or FRF.8 router or switch itself does not need IETF encapsulation in translation mode or transparent mode.

Information About Frame Relay-ATM Interworking

- FRF.5 Frame Relay-ATM Network Interworking, page 2
- FRF.8 Frame Relay-ATM Service Interworking, page 3

FRF.5 Frame Relay-ATM Network Interworking

FRF.5 provides network interworking functionality that allows Frame Relay end users to communicate over an intermediate ATM network that supports FRF.5. Multiprotocol encapsulation and other higher-layer procedures are transported transparently, just as they would be over leased lines. The figure below illustrates this concept.

![Figure 1: Frame Relay-to-ATM Network Interworking (FRF.5)](image)

FRF.5 describes network interworking requirements between Frame Relay Bearer Services and Broadband ISDN (BISDN) permanent virtual circuit (PVC) services.
The FRF.5 standard is defined by the Frame Relay Forum Document Number FRF.5: Frame Relay/ATM PVC Network Interworking Implementation Agreement. For more information about which sections of this implementation agreement are supported by Cisco IOS software, see the appendix "Frame Relay-ATM Interworking Supported Standards" in this book.

Note

On Cisco 7200 series routers, Frame Relay-ATM interworking does not support congestion management bit mapping.

FRF.8 Frame Relay-ATM Service Interworking

FRF.8 provides service interworking functionality that allows a Frame Relay end user to communicate with an ATM end user. Traffic is translated by a protocol converter that provides communication between dissimilar Frame Relay and ATM equipment. The figure below illustrates this concept.

![Frame Relay-to-ATM Service Interworking (FRF.8)](image)

FRF.8 describes a one-to-one mapping between a Frame Relay and an ATM PVC.

The FRF.8 standard is defined by the Frame Relay Forum Document Number FRF.8: Frame Relay/ATM PVC Network Service Interworking Implementation Agreement. For more information about which sections of this implementation agreement are supported, see the appendix "Frame Relay-ATM Interworking Supported Standards" in this book.

Note

On Cisco 7200 series routers, Frame Relay-ATM interworking does not support congestion management bit mapping.

How to Configure Frame Relay-ATM Interworking

- Configuring and Verifying FRF.5, page 3
- Configuring and Verifying FRF.8, page 8
- Monitoring and Maintaining Frame Relay-to-ATM Interworking, page 11

Configuring and Verifying FRF.5

- Configuring an FRF.5 One-to-One Network Interworking Connection, page 4
- Configuring an FRF.5 Many-to-One Network Interworking Connection, page 5
- Verifying FRF.5 Configuration, page 6
Configuring an FRF.5 One-to-One Network Interworking Connection

To configure FRF.5 encapsulation for a one-to-one connection between two Frame Relay end users over an intermediate ATM network, use the following commands beginning in global configuration mode:

SUMMARY STEPS

1. Router(config)# interface serial number
2. Router(config-if)# frame-relay interface-dlci dlci switched
3. Router(config)# interface atm number
4. Router(config-if)# pvc [PVC-name] vpi / vci
5. Router(config-if-atm-vc)# encapsulation aal5mux frame-relay
6. Router(config)# connect connection-name FR-interface FR-DLCI ATM-interface ATM-PVC network-interworking
7. Do one of the following:
 - Router(config-frf5)# clp-bit {0 | 1 | map-de}
 -
 -
 - Router(config-frf5)# de-bit map-clp
8. Router(config-frf5)# end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface serial number</td>
<td>Configures the Frame Relay interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# frame-relay interface-dlci dlci switched</td>
<td>Configures a switched Frame Relay DLCI.</td>
</tr>
<tr>
<td>Step 3 Router(config)# interface atm number</td>
<td>Configures the ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# pvc [PVC-name] vpi / vci</td>
<td>Creates the ATM PVC and virtual path identifier/virtual channel identifier (VPI/VCI). The VCI is a 16-bit field in the header of the ATM cell.</td>
</tr>
<tr>
<td>Step 5 Router(config-if-atm-vc)# encapsulation aal5mux frame-relay</td>
<td>Configures the ATM adaption layer (AAL) and encapsulation type for the ATM PVC.</td>
</tr>
<tr>
<td>Step 6 Router(config)# connect connection-name FR-interface FR-DLCI ATM-interface ATM-PVC network-interworking</td>
<td>Creates a connection to connect the Frame Relay DLCI to the ATM PVC and configures FRF.5 encapsulation.</td>
</tr>
</tbody>
</table>
Configuring and Verifying FRF.5

Configuring an FRF.5 Many-to-One Network Interworking Connection

To configure FRF.5 encapsulation for a many-to-one connection between two Frame Relay end users over an intermediate ATM network, use the following commands beginning in global configuration command mode:

SUMMARY STEPS

1. Router(config)# interface serial number
2. Router(config-if)# frame-relay interface-dlci dlci switched
3. Router(config)# vc-group group-name
4. Router(config-vc-group)# FR-interface-name FR-DLCI[FR-SSCS-DLCI]
5. Router(config)# interface atm number
6. Router(config-if)# pvc [PVC-name] vpi / vci
7. Router(config-if-atm-vc)# encapsulation aal5mux frame-relay
8. Router(config)# connect connection-name vc-group group-name ATM-interface ATM-vpi/vci
9. Do one of the following:
 - Router(config-frf5)# clp-bit {0 | 1 | map-de}
 -
 -
10. Router(config-frf5)# end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface serial number</td>
<td>Configures the Frame Relay interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# frame-relay interface-dlci dlci switched</td>
<td>Configures a switched Frame Relay DLCI.</td>
</tr>
</tbody>
</table>
Verifying FRF.5 Configuration

To verify correct configuration of the Frame Relay-to-ATM Network Interworking (FRF.5) feature, perform the following tasks:

SUMMARY STEPS

1. Enter the **show connect id** EXEC command to view information, including interworking parameters set, for the specified connection identifier:

2. Enter the **show connect port** EXEC command to view information about the connection on a specific interface:

3. Enter the **show frame-relay pvc** EXEC command to view statistics about Frame Relay interfaces:

4. Enter the **show atm pvc** EXEC command to view ATM PVCs and statistics:
DETAILED STEPS

Step 1
Enter the `show connect id` EXEC command to view information, including interworking parameters set, for the specified connection identifier:

Example:

```
Router# show connect id 5
FR/ATM Network Interworking Connection: network-1
    Status - UP
    Segment 1 - VC-Group network-1
    Segment 2 - ATM3/0 VPI 1 VCI 34
    Interworking Parameters -
        de-bit map-clp
        clp-bit map-de
```

Step 2
Enter the `show connect port` EXEC command to view information about the connection on a specific interface:

Example:

```
Router# show connect port atm3/0
ID  Name               Segment 1            Segment 2           State
========================================================================
 5    network-1         VC-Group network-1   ATM3/0 1/34          UP
```

Step 3
Enter the `show frame-relay pvc` EXEC command to view statistics about Frame Relay interfaces:

Example:

```
Router# show frame-relay pvc
PVC Statistics for interface Serial1/0 (Frame Relay DCE)
  Active  Inactive  Deleted  Static
Local    0        0        0        0
Switched 1        0        0        0
Unused   0        0        0        0
DLCI = 18, DLCI USAGE = FRF.5, PVC STATUS = ACTIVE, INTERFACE =
Serial1/0
  input pkts 22          output pkts 21          in bytes 2140
  out bytes 2110         dropped pkts 0          in FECN pkts 0
  in BECN pkts 0         out FECN pkts 0         out BECN pkts 0
  in DE pkts 0           out DE pkts 0
  out bcast pkts 0       out bcast bytes 0       Num Pkts
Switched 22
  pvc create time 02:02:49, last time pvc status changed 02:02:42
```

Step 4
Enter the `show atm pvc` EXEC command to view ATM PVCs and statistics:

Example:

```
Router# show atm pvc
VCD/
Interface  Name  VPI  VCI  Type  Encaps  SC  Peak  Avg/Min  Burst
3/0   10   1   32  PVC  FR-ATM  UBR  155000   UP
```
Configuring and Verifying FRF.8

- Configuring an FRF.8 Service Interworking Connection, page 8
- Verifying FRF.8 Configuration, page 9

Configuring an FRF.8 Service Interworking Connection

To configure FRF.8 one-to-one protocol mapping between a Frame Relay end user and an ATM end user, use the following commands beginning in global configuration command mode:

SUMMARY STEPS

1. Router(config)# interface serial number
2. Router(config-if)# frame-relay interface-dlci dlci switched
3. Router(config)# interface atm number
4. Router(config-if)# pvc [PVC-name] vpi/vci
5. Router(config-if)# encapsulation aal5mux fr-atm-srv
6. Router(config)# connect connection-name FR-interface FR-DLCI ATM-interface ATM-vpi/vci service-interworking
7. Do one of the following:
 - Router(config-frf8)# clp-bit {0 | 1 | map-de}
 -
 -
8. Router(config-frf8)# service translation
9. Router(config-frf8)# end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface serial number</td>
<td>Configures the Frame Relay interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# frame-relay interface-dlci dlci switched</td>
<td>Configures a switched Frame Relay DLCI.</td>
</tr>
<tr>
<td>Step 3 Router(config)# interface atm number</td>
<td>Configures the ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# pvc [PVC-name] vpi/vci</td>
<td>Creates the ATM PVC and virtual path identifier/virtual channel identifier (VPI/VCI). The VCI is a 16-bit field in the header of the ATM cell.</td>
</tr>
<tr>
<td>Step 5 Router(config-if)# encapsulation aal5mux fr-atm-srv</td>
<td>Configures the ATM adaption layer (AAL) and encapsulation type for the ATM PVC.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6 Router(config)# connect connection-name FR-interface FR-DLCI ATM-interface ATM-vpi / vci service-interworking</td>
<td>Creates a connection to connect the Frame Relay DLCI to the ATM PVC and configures FRF.8 encapsulation.</td>
</tr>
<tr>
<td>Step 7 Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>• Router(config-frf8)# clp-bit { 0</td>
<td>1</td>
</tr>
<tr>
<td>•</td>
<td>(On Cisco MC3810, 2600 series, and 3600 series routers only) Sets the Frame Relay discard eligible (DE) bit field in the Frame Relay cell header.</td>
</tr>
<tr>
<td>•</td>
<td>(On Cisco MC3810, 2600 series, and 3600 series routers only) Sets the explicit forward congestion indication (EFCI) bit field in the ATM cell header.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-frf8)# de-bit { 0</td>
<td>1</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 8 Router(config-frf8)# service translation</td>
<td>Enables upper layer user protocol encapsulation for Frame Relay-to-ATM service interworking.</td>
</tr>
<tr>
<td>Step 9 Router(config-frf8)# end</td>
<td>Ends configuration mode and enters EXEC mode. Use the exit command to exit a submode and reenter global configuration command mode.</td>
</tr>
</tbody>
</table>

To disconnect the FRF.8 interworking connection, use the shutdown connect subcommand.

Verifying FRF.8 Configuration

To verify correct configuration of the Frame Relay-to-ATM Service Interworking (FRF.8) feature, perform the following tasks:
SUMMARY STEPS

1. Enter the `show connect id` EXEC command to view information, including interworking parameters set, about the specified connection identifier:
2. Enter the `show connect port` EXEC command to view information about the connection on a specific interface:
3. Enter the `show frame-relay pvc` EXEC command to view statistics about Frame Relay interfaces:
4. Enter the `show atm pvc` EXEC command to view ATM PVCs and statistics:

DETAILED STEPS

Step 1
Enter the `show connect id` EXEC command to view information, including interworking parameters set, about the specified connection identifier:

Example:

Router# show connect id 10
FR/ATM Service Interworking Connection: service-1
 Status - UP
 Segment 1 - Serial1/0 DLCI 16
 Segment 2 - ATM3/0 VPI 1 VCI 32
 Interworking Parameters -
 service translation
 efc-bi 0
del-bit map-clp
cip-bit map-del

Step 2
Enter the `show connect port` EXEC command to view information about the connection on a specific interface:

Example:

Router# show connect port atm3/0
ID Name Segment 1 Segment 2 State
==
10 service-1 Serial1/0 16 ATM3/0 1/32 UP

Step 3
Enter the `show frame-relay pvc` EXEC command to view statistics about Frame Relay interfaces:

Example:

Router# show frame-relay pvc
PVC Statistics for interface Serial1/0 (Frame Relay DCE)
<table>
<thead>
<tr>
<th>Active</th>
<th>Inactive</th>
<th>Deleted</th>
<th>Static</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Switched</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unused</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

DLCI = 18, DLCI USAGE = FRF.5, PVC STATUS = ACTIVE, INTERFACE = Serial1/0
input pkts 22 output pkts 21 in bytes 2140
out bytes 2110 dropped pkts 0 in FECN pkts 0
in BECN pkts 0 out BECN pkts 0 out DE pkts 0
in DE pkts 0 out DE pkts 0
out bcast pkts 0 out bcast bytes 0 Num Pkts
Switched 22
pvc create time 02:02:49, last time pvc status changed 02:02:42

Step 4
Enter the `show atm pvc` EXEC command to view ATM PVCs and statistics:
Example:

```
Router# show atm pvc
VCD/                                      Peak  Avg/Min   Burst
Interface   Name   VPI   VCI   Type   Encaps    SC    Kbps   Kbps     Cells    Sts
3/0          10     1     32    PVC   FRATMSRV    UBR  155000                            UP
```

Monitoring and Maintaining Frame Relay-to-ATM Interworking

To display the status of the virtual circuits and the Frame Relay-to-ATM interworking connections, use any of the following commands in EXEC mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Router# show atm pvc [signalling</td>
<td>interface</td>
</tr>
<tr>
<td>**Router# show connect [all</td>
<td>element</td>
</tr>
<tr>
<td>Router# show frame-relay pvc</td>
<td>Displays statistics about Frame Relay interfaces.</td>
</tr>
<tr>
<td>Router# show vc-group</td>
<td>Displays the names of all VC groups.</td>
</tr>
</tbody>
</table>

Configuration Examples for Frame Relay-ATM Interworking

- FRF.5 One-to-One Connection Example, page 11
- FRF.5 Many-to-One Connection Example, page 12
- FRF.8 Service Interworking Example, page 12

FRF.5 One-to-One Connection Example

The following example shows how to configure an FRF.5 one-to-one connection:

```
! Configure a switched Frame Relay DLCI
! interface serial0
  frame-relay interface-dlci 100 switched
! Configure ATM PVC with FRF.5 encapsulation
```
FRF.5 Many-to-One Connection Example

The following example shows how to configure an FRF.5 many-to-one connection:

```
! interface atm3/0
  pvc 0/32
    encapsulation aal5mux frame-relay
! Create a connection to connect Frame Relay DLCI 100 to ATM PVC 0/32
! connect serial0 100 atm3/0 0/32 network-interworking
  clp-bit 1
  de-bit map-clp
```

Note
Congestion management parameters are not available for Frame Relay-ATM Interworking on the Cisco 7200 series routers.

FRF.8 Service Interworking Example

The following example shows how to configure an FRF.8 service interworking connection:

```
! Configure a switched Frame Relay DLCI
! interface serial 0
  frame-relay interface-dlci 100 switched
! Configure an ATM PVC with FRF.8 encapsulation
! interface atm1/0
  pvc 0/32
    encapsulation aal5mux fr-atm-srv
! Create a connection that connects Frame Relay DLCI 100 to ATM PVC 1/32
```
connect service-1 Serial0 100 ATM3/0 0/32 service-interworking
efc1-bit map-fecn

Note
Congestion management parameters are not available for Frame Relay-ATM Interworking on the Cisco 7200 series routers.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2012 Cisco Systems, Inc. All rights reserved.