THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2014 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1

H.323 Overview 1

Prerequisites for Configuring an H.323 Network 1

Restrictions for Configuring an H.323 Network 2

H.323 Version 2 Restrictions 2

H.323 Signaling Enhancement Restrictions 2

Source Call Signal Address and H.245 Empty Capabilities Set Restrictions 3

Call Transfer Restrictions 3

Ecosystem Gatekeeper Interoperability Restrictions 4

H.323 Gatekeepers and Proxies Restrictions 4

Information About H.323 4

H.323 Standards 4

Network Components 6

H.323 Terminals 6

Multipoint Control Unit 7

H.323 Gateways 7

H.323 Proxies 8

H.323 Gatekeepers 8

Alternate Gatekeepers 9

Alternate Endpoints 9

GKTMP Messages 10

Billing Information 10

Least-Cost Routing 10

Load Balancing 10

Border Elements 10

Gatekeeper Zones 10

Discovery and Registration 10

Call Setup 11

Call Termination 13
Basic H.323 Setup and Management 19
- Prerequisites for Basic H.323 Setup and Management 20
- Restrictions for Basic H.323 Setup and Management 21
- How to Set Up and Manage Basic H.323 Features 21
 - Managing Basic Nonconfigurable Gateway Features 21
 - H.323 Signaling 21
 - End-to-End Alerting 21
 - Cut-Through of Voice Path 21
 - H.245 Initiation 22
 - Overlap Dialing 22
 - H.323 Call Statistics 22
 - Source Call Signal Address 24
 - Tunneling of Redirecting Number Information Element 25
 - H.323 Version 2 25
 - H.323 Version 4 25
 - H.323 Call Redirection 25
 - Route Call to Gatekeeper 26
 - Call Forward 26
 - Call Transfer 27
 - Multizone Features 27
 - Codec Negotiation 27
 - H.245 Empty Capabilities Set 29
 - Lightweight Registration 29
 - H.450.2 Call Transfer 30
 - H.450.3 Call Deflection 30
 - Gateway Support for a Network-Based Billing Number 31
 - Answer Supervision Reporting 31
 - Managing Basic Nonconfigurable Gatekeeper Features 31
 - Gateway-to-Gatekeeper Billing Redundancy 31
 - Ecosystem Gatekeeper Interoperability 32
 - AltGKInfo in GRJ Messages 32
 - AltGKInfo in RRJ Messages 32
<table>
<thead>
<tr>
<th>Configuration Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatekeeper-Management Statistics</td>
<td>33</td>
</tr>
<tr>
<td>Displaying and Clearing Gatekeeper-Management Statistics</td>
<td>34</td>
</tr>
<tr>
<td>Toll Fraud Prevention</td>
<td>36</td>
</tr>
</tbody>
</table>

CHAPTER 3

Configuring H.323 Gateways | 39 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Finding Feature Information</td>
<td>39</td>
</tr>
<tr>
<td>Prerequisites for Configuring H.323 Gateways</td>
<td>39</td>
</tr>
<tr>
<td>Restrictions for Configuring H.323 Gateways</td>
<td>40</td>
</tr>
<tr>
<td>How to Configure H.323 Gateways</td>
<td>40</td>
</tr>
<tr>
<td>Configuring a Router Interface as a Gateway</td>
<td>40</td>
</tr>
<tr>
<td>Verifying a Router Interface as a Gateway</td>
<td>42</td>
</tr>
<tr>
<td>Shutting Down and Enabling VoIP Services on a Gateway</td>
<td>43</td>
</tr>
<tr>
<td>Shutting Down and Enabling VoIP Service</td>
<td>43</td>
</tr>
<tr>
<td>Shutting Down and Enabling VoIP Submodes</td>
<td>43</td>
</tr>
<tr>
<td>Verifying Gateway Status</td>
<td>44</td>
</tr>
<tr>
<td>Configuring Gateway RAS</td>
<td>45</td>
</tr>
<tr>
<td>Configuring Basic RAS</td>
<td>46</td>
</tr>
<tr>
<td>Verifying Basic RAS Configuration</td>
<td>48</td>
</tr>
<tr>
<td>Troubleshooting Tips for Basic RAS Configuration</td>
<td>49</td>
</tr>
<tr>
<td>Configuring RAS Retries and Timers</td>
<td>49</td>
</tr>
<tr>
<td>Configuring RRQ Time-to-Live Value</td>
<td>51</td>
</tr>
<tr>
<td>Verifying RAS Retries and Timers</td>
<td>51</td>
</tr>
<tr>
<td>Examples for RAS Retries and Timers</td>
<td>52</td>
</tr>
<tr>
<td>Configuring Gateway-Resource-Availability Reporting</td>
<td>52</td>
</tr>
<tr>
<td>Configuring E.164-Address Registration</td>
<td>53</td>
</tr>
<tr>
<td>Configuring In-Band Tones and Announcements</td>
<td>53</td>
</tr>
<tr>
<td>Configuring Gateway AAA</td>
<td>54</td>
</tr>
<tr>
<td>Configuring H.235 Gateway Security</td>
<td>55</td>
</tr>
<tr>
<td>Information About H.235 Gateway Security</td>
<td>55</td>
</tr>
<tr>
<td>Settlement with the Gatekeeper</td>
<td>56</td>
</tr>
<tr>
<td>Call Tracking</td>
<td>56</td>
</tr>
<tr>
<td>Downloading IVR Scripts</td>
<td>59</td>
</tr>
<tr>
<td>voip_auth_acct_pin_dest.tcl Script</td>
<td>59</td>
</tr>
<tr>
<td>voip_auth_acct_pin_dest_2.tcl Script</td>
<td>60</td>
</tr>
<tr>
<td>Configuring H.235 Gateway Security</td>
<td>60</td>
</tr>
</tbody>
</table>
Verifying H.235 Gateway Security 62
Configuring Alternate-Gatekeeper Support 63
 Restrictions for Alternate-Gatekeeper Support 63
 Information About Alternate-Gatekeeper Support 63
 Configuring Alternate-Gatekeeper Support 64
 Verifying Configuration of Alternate-Gatekeeper Support 65

Configuring DTMF Relay 66
 Restrictions for DTMF Relay 66
 Information About DTMF Relay 66
 Relay Types 66
 Capabilities and Priorities 67
 Payload Types 67
 H.245 Tunneling of DTMF Relay in Conjunction with Fast Connect 68

Configuring DTMF Relay 68

Monitoring and Maintaining DTMF Relay 70

Configuring FXS Hookflash Relay 71

Configuring Multiple Codecs 73
 Verifying Preservation 74

Configuring Rotary Calling Pattern 75

Configuring H.323 Support for Virtual Interfaces 75
 Configuring the Source IP Address of a Gateway 76
 Verifying the Source IP Address of the Gateway 76

Configuring Annex G 77
 Information About Annex G 77
 Configuring and Provisioning an Annex G Border Element 79
 Removing an Annex G Border Element ID 82
 Configuring Basic Service Relationships 84
 Restrictions for Basic Service Relationships 84
 Configuring Usage Indication 86
 Verifying Annex G Configuration 88

Configuring H.225 89
 Associating the H.323 Voice Class with Each VoIP Dial Peer 89
 Configuring the SETUP Response Timeout Value 90
 Configuring the Number of Concurrent Calls Per Connection 91
 Changing the Idle Timer for Concurrent Calls 91
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troubleshooting Tips</td>
<td>120</td>
</tr>
<tr>
<td>Configuring Cisco Unified CallManager</td>
<td>122</td>
</tr>
<tr>
<td>Configuration Examples for H.323 Gateways</td>
<td>124</td>
</tr>
<tr>
<td>RAS Example</td>
<td>124</td>
</tr>
<tr>
<td>Gateway Security Example</td>
<td>125</td>
</tr>
<tr>
<td>Alternate Gatekeeper Support Example</td>
<td>127</td>
</tr>
<tr>
<td>DTMF Relay Example</td>
<td>127</td>
</tr>
<tr>
<td>Multiple Codecs Example</td>
<td>128</td>
</tr>
<tr>
<td>Rotary Calling Pattern Example</td>
<td>128</td>
</tr>
<tr>
<td>H.323 Support for Virtual Interfaces Example</td>
<td>129</td>
</tr>
<tr>
<td>H.225 Annex-G Example</td>
<td>129</td>
</tr>
<tr>
<td>GTD Payload Examples</td>
<td>129</td>
</tr>
<tr>
<td>H.323v4 Gateway Zone Prefix Registration Enhancements Examples</td>
<td>131</td>
</tr>
<tr>
<td>Signal ISDN B-Channel ID Example</td>
<td>134</td>
</tr>
<tr>
<td>H.323 VoIP Call Preservation Enhancements for WAN Link Failures Examples</td>
<td>136</td>
</tr>
<tr>
<td>H.323 VoIP Call Preservation for All Calls Example</td>
<td>136</td>
</tr>
<tr>
<td>H.323 VoIP Call Preservation for a Dial Peer Example</td>
<td>136</td>
</tr>
<tr>
<td>H.323 Call Preservation for RTP and RTCP and Silence Detection Example</td>
<td>136</td>
</tr>
<tr>
<td>RTP and RTCP Inactivity Detection Configuration Example</td>
<td>137</td>
</tr>
<tr>
<td>Bidirectional Silence Detection Enable Example</td>
<td>137</td>
</tr>
<tr>
<td>Additional References</td>
<td>137</td>
</tr>
<tr>
<td>Feature Information for Configuring H.323 Gateways</td>
<td>139</td>
</tr>
</tbody>
</table>

CHAPTER 4

Configuring H.323 Gatekeepers and Proxies 143

Prerequisites for Configuring H.323 Gatekeepers and Proxies 146

Restrictions for Configuring H.323 Gatekeepers and Proxies 146

How to Configure H.323 Gatekeepers and Proxies 147

Configuring Hot Standby 147

Configuring Gatekeeper Zones 148

Restrictions for Gatekeeper Zones 148

Information About Gatekeeper Zones 148

Zone and Subnet Configuration 148

Gateway Selection Process 148

Redundant H.323 Zone Support 149

Configuring Gatekeeper Zones 150
Configuring Destination Zones 152
Configuring Intergatekeeper Communication 154
 Configuring Intergatekeeper Communication Using DNS 154
 Configuring Intergatekeeper Communication Manually 155
Configuring Gatekeeper Alias Registration and Address Resolution 156
 Alias Registration 156
 Address Resolution 157
 Request Processing 158
Configuring Load Balancing with Alternate Gatekeepers 159
 Restrictions for Load Balancing with Alternate Gatekeepers 159
 Information About Load Balancing with Alternate Gatekeepers 160
 Configuring Load Balancing with Alternate Gatekeepers 160
 Verifying Load Balancing with Alternate Gatekeepers 162
Configuring Remote Clusters 163
 Configuring Remote Clusters 163
 Verifying Remote Clusters 164
Configuring Static Nodes 167
Configuring AAA and RADIUS 169
 Configuring H.323 Users via RADIUS 169
 Configuring a RADIUS AAA Server 172
 Configuring User Activity for RADIUS 173
Configuring Security and Authentication 175
 Restrictions for Security and Authentication 175
 Information About Security and Authentication 175
 Interzone ClearTokens 176
 Cisco Access Tokens 178
 Tokenless Call Authorization 181
Configuring Domain Zones and the IZCT Password 181
 Verifying Domain Zones and IZCT Password 182
Configuring Cisco Access Tokens 183
 Verifying Cisco Access Tokens 184
Configuring Tokenless Call Authorization 185
 Configuring the IP Access List 185
 Configuring IP-Access-List Security on the Gatekeeper 186
Configuring E.164 Interzone Routing 187
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information About E.164 Interzone Routing</td>
<td>187</td>
</tr>
<tr>
<td>Configuring a Dialing Prefix for Each Gateway</td>
<td>189</td>
</tr>
<tr>
<td>Configuring Gatekeeper Interaction with External Applications</td>
<td>191</td>
</tr>
<tr>
<td>Configuring Gatekeeper-to-GKTMP Server Flow Control</td>
<td>191</td>
</tr>
<tr>
<td>Verifying Gatekeeper-to-GKTMP Server Flow Control</td>
<td>192</td>
</tr>
<tr>
<td>Setting the Retry Timer for Failed GKTMP Server Connections</td>
<td>194</td>
</tr>
<tr>
<td>Verifying the Retry Timer for Failed GKTMP Server Connections</td>
<td>195</td>
</tr>
<tr>
<td>Configuring Registration and Call Rejection</td>
<td>195</td>
</tr>
<tr>
<td>Verifying Registration and Call Rejection</td>
<td>196</td>
</tr>
<tr>
<td>Configuring Gatekeeper Proxied Access</td>
<td>197</td>
</tr>
<tr>
<td>Verifying Gatekeeper Proxied Access</td>
<td>199</td>
</tr>
<tr>
<td>Configuring a Forced Disconnect on a Gatekeeper</td>
<td>199</td>
</tr>
<tr>
<td>Verifying a Forced Disconnect on a Gatekeeper</td>
<td>200</td>
</tr>
<tr>
<td>Configuring an H.323 Proxy Server</td>
<td>201</td>
</tr>
<tr>
<td>Proxy Inside the Firewall</td>
<td>201</td>
</tr>
<tr>
<td>Proxy in Co-Edge Mode</td>
<td>201</td>
</tr>
<tr>
<td>Proxy Outside the Firewall</td>
<td>201</td>
</tr>
<tr>
<td>Proxy and NAT</td>
<td>202</td>
</tr>
<tr>
<td>Configuring Quality of Service</td>
<td>202</td>
</tr>
<tr>
<td>Prerequisites for QoS</td>
<td>202</td>
</tr>
<tr>
<td>Information About QoS</td>
<td>203</td>
</tr>
<tr>
<td>RSVP and IP Precedence</td>
<td>203</td>
</tr>
<tr>
<td>Application-Specific Routing</td>
<td>203</td>
</tr>
<tr>
<td>Configuring QoS Using a Multimedia Backbone</td>
<td>204</td>
</tr>
<tr>
<td>Enabling the Proxy to Forward H.323 Packets</td>
<td>204</td>
</tr>
<tr>
<td>Isolating the Multimedia Network</td>
<td>205</td>
</tr>
<tr>
<td>Configuring QoS on a Proxy Without ASR</td>
<td>206</td>
</tr>
<tr>
<td>Configuring QoS on a Proxy with ASR</td>
<td>208</td>
</tr>
<tr>
<td>ASR Enabled on the Proxy Using One Type of Routing Protocol</td>
<td>208</td>
</tr>
<tr>
<td>ASR Enabled on the Proxy Using Two Different Autonomous Systems</td>
<td>214</td>
</tr>
<tr>
<td>Configuring Border Elements</td>
<td>219</td>
</tr>
<tr>
<td>Configuring Endpoints</td>
<td>221</td>
</tr>
<tr>
<td>Information About Endpoints</td>
<td>221</td>
</tr>
<tr>
<td>Alternate Endpoints</td>
<td>221</td>
</tr>
<tr>
<td>Carrier-Based Routing Without a GKTMP Application Server</td>
<td>223</td>
</tr>
</tbody>
</table>
Additional Routes to Alternate Endpoints 223
Nonavailability Information for Terminating Endpoints 224
Endpoint-Based Call-Capacity Management 225
Configuring Alternate Endpoints 225
Verifying Alternate Endpoints 226
Configuring Additional Routes to Alternate Endpoints 227
Configuring Nonavailability Information for Terminating Endpoints 228
Verifying the Sending of Nonavailability Information 229
Configuring Endpoint-Based Call-Capacity Management 229
Forcing Endpoint Unregistration 230
Prerequisites for Forcing Unregistration 230
Verifying Endpoint Unregistration 231
Configuring the IRR Timer and Disable IRQ Requests 232
Restrictions for the IRR Timer and Disable IRQ Requests 232
Information About the IRR Timer and Disable IRQ Requests 232
Configuring IRR Periodic Intervals on the Gatekeeper 233
Disabling IRQ Requests for All Calls in the Gatekeeper 233
Configuring Sequential LRQs 234
Restrictions for Sequential LRQs 234
Information About Sequential LRQs 234
Call Flow Using Sequential LRQ Enhancement Feature 235
Configuring Sequential LRQ Enhancement 236
Configuring the Sequential LRQ Timer 236
Verifying Sequential LRQ Enhancement 237
Configuration Examples for H.323 Gatekeepers and Proxies 238
HSRP Example 238
Gatekeeper Zones Example 239
Load Balancing with Alternate Gatekeepers Example 241
Security and Authentication Example 242
Domain Zones and the IZCT Password 242
Cisco Access Tokens 243
Tokenless Call Authorization 244
E.164 Interzone Routing Example 245
Interaction with External Applications Example 246
Proxy Use Example 248
Co-Edge Proxy Example 249
Endpoints Example 256
IRR Timer and Disable IRQ Requests Example 257
Sequential LRQ Enhancement Example 258
Additional References 258
H.323 Overview

This chapter provides an overview of the ITU-H.323 standard for sending and receiving audio, video, and data on an IP-based internetwork.

Note

- Prerequisites for Configuring an H.323 Network, page 1
- Restrictions for Configuring an H.323 Network, page 2
- Information About H.323, page 4
- Additional References, page 14

Prerequisites for Configuring an H.323 Network

- Establish a working IP network. For information on IP configuration, see the references listed in the "Related Documents" section.

- Install the appropriate voice network module and voice-interface card for the Cisco router. For information on the module and card, see the Voice Network Module and Voice Interface Card Configuration Note that came with the voice network module.

- Configure your H.323 gateways, gatekeepers, and proxies. For information on VoIP configuration, see the resources in the "Related Documents" section.

- To ensure network security, configure a RADIUS authentication, authorization, and accounting (AAA) server. Configure the following information in your CiscoSecure AAA server:
 - In the /etc/raddb/clients file, ensure that the following information is provided:

```bash
#Client Name   Key
#----------- -------------------
gk215.cisco.com testing123
```
Where $gk215.cisco.com$ is resolved to the IP address of the gatekeeper requesting authentication

- In the `/etc/raddb/users` file, ensure that the following information is provided:

 taeduk@cisco.com Password = "thiswouldbethepassword"
 User-Service-Type = Framed-User,
 Login-Service = Telnet

Where $taeduk@cisco.com$ is the h323-id of the gateway authenticating to gatekeeper $gk215.cisco.com$.

- Configure an NTP server for your network.
- For gatekeeper-management statistics, do the following:
 - Configure the Simple Network Management Protocol (SNMP) agent in global configuration mode.
 - Update the MIB data files on your management workstations so that the management application knows what the new objects are.

Restrictions for Configuring an H.323 Network

This section describes the following restrictions:

H.323 Version 2 Restrictions

- All systems must be running either Cisco IOS Release 11.3(9)NA and later releases or Cisco IOS Release 12.0(3)T and later releases to interoperate with the Cisco H.323 Version 2 features. Earlier releases contain H.323 Version 1 software that does not support protocol messages that have an H.323 Version 2 protocol identifier. The earlier releases do not interoperate with Cisco H.323 Version 2 Phase 2 features.
- To use H.450 services (call transfer or call deflection), use Cisco IOS Release 12.1(1)T or later on the gatekeeper: H.450 on the gateways is incompatible with previous releases of the Cisco gatekeeper.
- If a Cisco AS5300 is used, the software requires the appropriate version of VCWare.
- The H.323 Version 2 Fast Connect feature is not explicitly configurable. It is assumed that the gateway is capable of sending and receiving fast-connect procedures unless its corresponding dial peer is configured for RSVP (in other words, the req-qos is set to a value other than the default of best-effort). In the latter case, traditional "slow" connect procedures are followed, and the endpoint neither attempts to initiate fast connect nor responds to a fast-connect request from its peer.

H.323 Signaling Enhancement Restrictions

- Supplementary voice services are not supported with ISDN and CAS over an H.323 network—except on the NET5 switch.
- Progress messages require a PI value, and only ITU-T standards are supported.
- Progress indicator 2 is not supported in progress messages for the DMS100 switch.
- TCL 2.0 for IVR supports the interworking signaling enhancements only on the Cisco AS5300. For IVR on other Cisco platforms, select TCL 1.0 as the session application. To use standard IVR applications
with TCL 1.0, configure the application name as "session.t.old" by using the **call application voice** command. It is not necessary to do this if customized scripts are used.

- The Cisco AS5300 sends a connect message to the originating gateway after it receives a setup message only when it is configured for one of the following supported switch types:
 - 5ESS
 - NET5
 - NTT
 - QSIG
 - QSIGP

- For the SS7 interconnect for voice gateways solution, the following behavior applies to suspend and resume messages, which are supported on NET5 and NI2+ ISDN interfaces:
 - If the ISDN interface is NET5, the Cisco AS5300 sends a notify message with the notification indicator (NI) set to user-suspended or user-resumed.
 - If the ISDN interface is NI2+, the Cisco AS5300 sends a suspend or resume message to the Cisco SC2200.
 - If the Cisco SC2200 receives an ISUP suspend or resume message, it sends an NI2+ suspend or resume message to the Cisco AS5300.
 - Both the Cisco AS5300 and the Cisco SC2200 timers start when a suspend message is received. The Cisco AS5300 timer, T307, is configurable from 30 to 300 seconds. The Cisco SC2200 timer, T6, is not configurable and has a default of 120 seconds if the ISUP variant Q.761 is used.
 - When the Cisco AS5300 and the Cisco SC2200 receive a resume message, the timers are stopped. If either of the timers expires, the call is released with a cause code of normal clearing.

Source Call Signal Address and H.245 Empty Capabilities Set Restrictions

- To use H.450 services (call transfer or call deflection), Cisco IOS Release 12.1(2)T of the gatekeeper must be used. H.450 on the gateways is incompatible with previous releases of the Cisco gatekeeper.
 - If a Cisco AS5300 is used, the system requires the appropriate version of VCWare.

Call Transfer Restrictions

- Interactive Voice Response (IVR) must be configured on the router and supplementary services must be provided for processing. For information about configuring IVR and supplementary services, see Configuring Interactive Voice Response for Cisco Access Platforms.
 - The "session" application must be specified properly for the dial-peers.
 - Release 12.1(1)T (or later) of the Cisco H.323 Gatekeeper is required.
 - The H.323 Call Redirection Enhancements feature does not provide the ability for a Cisco H.323 Gateway to initiate a call transfer request.
Ecosystem Gatekeeper Interoperability Restrictions

- The maximum number of alternate gatekeepers is eight (including static gatekeepers).
- During the retransmission of the GRQ or RRQ messages, the gateway responds only to the current gatekeeper (regardless of the state of the altGKisPermanent flag).
- The process of retransmission to an alternate gatekeeper can be time-consuming.

H.323 Gatekeepers and Proxies Restrictions

- Both the gateway H323_ID and the generalID in ClearTokens should be same.

Information About H.323

Note

When you configure H.323 on a router, the ports on all its interfaces are open by default. This makes the router vulnerable to malicious attackers who can execute toll fraud across the gateway if the router has a public IP address and a public switched telephone network (PSTN) connection. To eliminate the threat, you should bind an interface to private IP address that is not accessible by untrusted hosts. In addition, you should protect any public or untrusted interface by configuring a firewall or an access control list (ACL) to prevent unwanted traffic from traversing the router.

H.323 Standards

The table below lists H.323 standards and applicable Cisco VoIP features.
Table 1: H.323 Standards and Applicable Cisco VoIP Features

<table>
<thead>
<tr>
<th>Standard</th>
<th>Applicable Cisco VoIP Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.323 Version 1</td>
<td>• Multimedia conferencing protocol which includes voice, video, and data conferencing for use over packet-switched networks</td>
</tr>
<tr>
<td></td>
<td>• Provides a framework that uses others to describe the actual protocol</td>
</tr>
<tr>
<td></td>
<td>• H.245 conference-control protocol</td>
</tr>
<tr>
<td></td>
<td>• H.225 call signaling and communication between endpoints (call signaling) and the gatekeeper (RAS)</td>
</tr>
<tr>
<td></td>
<td>• Q.931</td>
</tr>
<tr>
<td></td>
<td>• RTP/RTCP audio and video</td>
</tr>
<tr>
<td>H.323 Version 2</td>
<td>• Improved gateway selection process</td>
</tr>
<tr>
<td></td>
<td>• Gateway resource availability reporting</td>
</tr>
<tr>
<td></td>
<td>• Support for single proxy configurations</td>
</tr>
<tr>
<td></td>
<td>• Registration of E.164 addresses for gateway-attached devices</td>
</tr>
<tr>
<td></td>
<td>• Tunneling of redirecting number information element</td>
</tr>
<tr>
<td></td>
<td>• DTMF-relay</td>
</tr>
<tr>
<td></td>
<td>• Hookflash relay</td>
</tr>
<tr>
<td></td>
<td>• CODEC negotiation</td>
</tr>
<tr>
<td>H.323 Version 3</td>
<td>• Caller ID</td>
</tr>
<tr>
<td></td>
<td>• Language preference</td>
</tr>
<tr>
<td></td>
<td>• Annex E--Protocol for Multiplexed Call Signaling Transport</td>
</tr>
<tr>
<td></td>
<td>• Annex F--Simple Endpoint Type</td>
</tr>
<tr>
<td></td>
<td>• Annex G--Communication Between Administrative Domains</td>
</tr>
</tbody>
</table>
Network Components

The figure below shows a typical H.323 network. Network components are described below.

Figure 1: Gatekeeper in an H.323 Network

H.323 Terminals

An H.323 terminal is an endpoint in the network that provides for real-time, two-way communications with another H.323 terminal, gateway, or multipoint control unit (MCU). The communications consist of control, indications, audio, moving color video pictures, or data between the two terminals. A terminal may provide audio only; audio and data; audio and video; or audio, data, and video. The terminal can be a computer-based video conferencing system or other device.
A gatekeeper supports a broad variety of H.323 terminal implementations from many different vendors. These terminals must support the standard H.323 Registration, Admission, and Status (RAS) protocol to function with the gatekeeper.

Gatekeepers recognize one of two types of terminal aliases, or terminal names:

- H.323 IDs, which are arbitrary, case-sensitive text strings
- E.164 addresses, which are telephone numbers

If an H.323 network deploys interzone communication, each terminal should at least have a fully qualified e-mail name as its H.323 identification (ID), for example, bob@cisco.com. The domain name of the e-mail ID should be the same as the configured domain name for the gatekeeper of which it is to be a member. As in the previous example, the domain name would be cisco.com.

Multipoint Control Unit

A multipoint control unit (MCU) is an endpoint on the network that allows three or more endpoints to participate in a multipoint conference. It controls and mixes video, audio, and data from endpoints to create a robust multimedia conference. An MCU may also connect two endpoints in a point-to-point conference, which may later develop into a multipoint conference.

Note

Some terminals have limited multipoint control built into them. These terminals may not require an MCU that includes all the functionality mentioned.

H.323 Gateways

An H.323 gateway is an endpoint on the LAN that provides real-time communications between H.323 terminals on the LAN and other ITU terminals on a WAN or to other H.323 gateways.

Gateways allow H.323 terminals to communicate with devices that are running other protocols. They provide protocol conversion between the devices that are running different types of protocols. For example, the figure below shows a gateway between an H.323 terminal and a non-H.323 terminal.

Figure 2: Gateway Between an H.323 Terminal and an H.320 Terminal
H.323 Proxies

H.323 proxies are special types of gateways that relay H.323 calls to another H.323 endpoint. They can be used to isolate sections of an H.323 network for security purposes, to manage quality of service (QoS), or to perform special application-specific routing tasks.

H.323 Gatekeepers

An H.323 gatekeeper is an H.323 entity on the LAN that provides address translation and that controls access to the LAN for H.323 terminals, gateways, and MCUs.

Gatekeepers are optional nodes that manage endpoints in an H.323 network. The endpoints communicate with the gatekeeper using the RAS protocol.

Endpoints attempt to register with a gatekeeper on startup. When they wish to communicate with another endpoint, they request admission to initiate a call using a symbolic alias for the endpoint, such as an E.164 address or an e-mail address. If the gatekeeper decides that the call can proceed, it returns a destination IP address to the originating endpoint. This IP address may not be the actual address of the destination endpoint, but it may be an intermediate address, such as the address of a proxy or a gatekeeper that routes call signaling.

Note

Although the gatekeeper is an optional H.323 component, it must be included in the network if proxies are used.

The Cisco gatekeeper provides H.323 call management, including admission control, bandwidth management, and routing services for calls in the network.

The Cisco H.323-compliant Multimedia Conference Manager (MCM) is a subset of gatekeeper functionality available in a special image.
Note

To learn about MCM and other special images, use Cisco Feature Navigator. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click Cancel at the login dialog box and follow the instructions that appear.

Figure 3: Cisco H.323/Gatekeeper Overview

Alternate Gatekeepers

An endpoint that detects the failure of its gatekeeper can safely recover from that failure by utilizing an alternate gatekeeper for future requests, including requests for existing calls. A gateway can only be registered to a single GK at a time. Only one GK is allowed to manage a single zone. The cluster manages up to five similarly configured zones and shares resources between the alternate gatekeepers in the cluster for each zone. You can define up to 100 zones in a single GK.

Alternate Endpoints

A calling endpoint can recover from a call setup failure by sending a setup message to one of the alternate endpoints so that it is possible for a call to finish even if a gateway goes down and the gatekeeper is not yet aware of the problem. Cisco supports a maximum of 20 alternates for each endpoint, and any alternates received through registration, admission, and status protocol (RAS) messages are merged with those entered manually in the gatekeeper command-line interface. If more than 20 alternates are submitted, the total list of alternates reverts back to 20.
GKTMP Messages

The Gatekeeper Transaction Message Protocol (GKTMP) servers can set triggers for disengage request (DRQ) and resource availability indication (RAI) messages. Other messages are extended to contain more parameters for added call control.

Billing Information

The gatekeeper sends detailed call information to a RADIUS distributed client/server system that can be used for billing purposes. RADIUS servers use the vendor-specific attribute (VSA) capability to configure features for individual users.

Least-Cost Routing

Cost and priority fields are included with each remote zone definition, which ensures that the zones with lower cost are given an advantage over zones with higher cost.

Load Balancing

Load balancing allows the gatekeeper to move registered H.323 endpoints to an alternate gatekeeper or to reject new calls and registrations once a certain threshold is met.

Border Elements

Border elements (BE) exchange addressing information and participate in call authorization between the administrative domains. The BEs are often located with a gatekeeper. The BE can reduce the routing information passed though the network by aggregating address information.

Gatekeeper Zones

An H.323 endpoint is an H.323 terminal, gateway, or MCU. An endpoint can call and be called. H.323 endpoints are grouped into zones. Each zone has one gatekeeper that manages all the endpoints in the zone. A zone is an administrative convenience similar to a Domain Name System (DNS) domain. (Because a zone is, by definition, the area of control of a gatekeeper, the terms "zone name" and "gatekeeper name" are used synonymously in this chapter.)

Note

The maximum number of local zones defined in a gatekeeper should not exceed 100.

Discovery and Registration

Gateways and gatekeepers communicate using the Registration, Admission, and Status (RAS) protocol for discovery and registration. When endpoints are brought online, they first attempt to discover their gatekeeper. They discover their gatekeeper either by sending multicast a discovery request or by being configured with the address and, optionally, with the name of the gatekeeper and by sending a unicast discovery request.
Following successful discovery, each endpoint registers with the gatekeeper. The gatekeeper keeps track of which endpoints are online and available to receive calls.

Cisco IOS Network Address Translation (NAT) supports all H.225 and H.245 message types, including those sent in the RAS protocol.

Call Setup

In a typical H.323 call setup scenario, after RAS messages are exchanged, H.225 setup messages are sent over a control channel. For example, in the figure below, both gateways are registered to the same gatekeeper, and the gatekeeper has chosen direct call signaling.

1. Gateway 1 (the calling gateway) initiates the admission request (ARQ) (1)/admission confirmation (ACF) (2) exchange with that gatekeeper.
2. The gatekeeper returns the call signaling channel address of Gateway 2 (the called gateway) in the ACF.
3. Gateway 1 then sends the setup (3) message to Gateway 2 using that transport address.
4. The setup is complete and the call is proceeding (4).
5. If Gateway 2 wishes to accept the call, it initiates an ARQ (5)/ACF (6) exchange with the gatekeeper.
6. The gatekeeper responds with ACF/ARJ (6).
7. Gateway 2 sends an alerting (7) message to Gateway 1. (If Gateway 2 receives an admission reject [ARJ] (6) message instead of an ACF message, it sends a release complete message to Gateway 1 instead of the alerting message.)
8. Gateway 2 responds with the connect (8) message to Gateway 1.
An H.245 control channel transport for use in H.245 signalling can send in any of the H.225 messages: call proceeding, alerting, or connect.

Fast connect allows endpoints to establish media channels without waiting for a separate H.245 connection to be opened. This streamlines the number of messages that are exchanged and the amount of processing that must be done before endpoint connections can be established. A high-level view of the fast-connect procedures within the H.323 protocol follows:

1. The calling endpoint transmits a setup message containing the fastStart element that contains a sequence of encoded logical channel structures, each representing a different capability media type for both "send" and "receive" directions.

2. The called endpoint selects one or more of the media types offered by the calling endpoint for the send and receive directions and returns its selections in a fastStart element in any H.225 message up to and including connect. At this point, the called endpoint must be prepared to receive media along any of the channels it selected.

3. If H.245 procedures are needed and one or both of the endpoints do not support tunneling, a separate H.245 connection is used.

Fast connect is not explicitly configurable. All H.323 Version 2 VoIP endpoints are capable of initiating or accepting fast-connect calls. It is assumed that the gateway is capable of sending and receiving fast-connect procedures unless its corresponding dial peer has been configured for the Resource Reservation Protocol (RSVP). RSVP means the quality of service is set by the `req-qos` command to a value other than the default of best-effort. If the dial peer has been configured for RSVP, traditional "slow" connect procedures are followed, and the endpoint neither attempts to initiate fast connect nor responds to a fast-connect request from its peer.
A terminating endpoint can reject fast connect by simply omitting the fastStart element from all H.225 messages up to and including connect. In this case, normal H.245 procedures are followed and a separate H.245 TCP connection is established. So, if an endpoint does not support the fast-connect procedures, normal H.245 procedures are followed. In addition, certain conditions can cause a fast-connect call to fall back to normal H.245 procedures to complete the call.

Once a media connection has been opened (an audio path has been established), either endpoint has the option of switching to H.245 procedures (if they are needed) by using H.245 tunneling, whereby H.245 messages are encapsulated within the h245Control element of H.225 messages.

The `dtmf-relay` command is the only H.245-cognizant command that can initiate H.245-tunneling procedures from a fast-connect call. If H.245 tunneling is active on the call, switching to a separate H.245 connection is not supported.

A Cisco terminating endpoint accepts a fast-connect request only if a pair of symmetric codecs (codecs that in both directions are equivalent or identical) can be selected from a list that has been offered. The originating endpoint is constrained only by what it can send through the codec (or voice class codec list) associated with the dial peer.

If the Cisco originating endpoint has offered multiple codecs and the terminating endpoint selects a pair of asymmetric (mismatched) codecs, the originating endpoint initiates separate H.245 procedures to correct the asymmetric codec situation.

Fast connect is backward compatible with H.323 Version 1 configurations.

Call Termination

Either gateway may terminate a call in one of the following ways:

1. Discontinuing transmission of video at the end of a complete picture and then closes all logical channels for video.
2. Discontinuing transmission of data and then closes all logical channels for data.
3. Discontinuing transmission of voice and then closes all logical channels for voice.
4. Transmitting the H.245 endSessionCommand message in the H.245 control channel, indicating to the far end that it wishes to disconnect the call and then discontinues H.245 message transmission.
5. Waiting to receive the endSessionCommand message from the other gateway and then closes the H.245 control channel.
6. Sending a release complete message if the call signaling channel is open and the channel is closed.
7. Clearing the call by using the procedures defined below.

An endpoint receiving an endSessionCommand message without first having transmitted it carries out steps 1 and 7 above, except that in Step 5, the gateway waits for the endSessionCommand message from the first endpoint.

Terminating a call may not terminate a conference; a conference may be explicitly terminated using an H.245 message (dropConference). In this case, the gateways wait for the multipoint controller to terminate the calls as described.

In networks that contain a gatekeeper, the gatekeeper needs to know about the release of bandwidth. After performing steps 1 to 6 in the preceding section, each endpoint transmits an H.225 disengage request (DRQ) message (3) to its gatekeeper as shown in the figure below. The gatekeeper responds with a disengage confirm...
(DCF) message (4). After sending the DRQ message, the endpoints do not send further unsolicited information request response (IRR) messages that relate to that call to the gatekeeper. At this point, the call is terminated. The figure below shows the direct call model. The DRQ and DCF messages are sent on the RAS channel.

Cisco IOS H.323 gateways will terminate a call if a TCP connection is closed while the call is in progress, or if a TCP connection error is detected when signaling message are sent or received.

Figure 5: Call Termination Direct Call Model

![Figure 5: Call Termination Direct Call Model](image)

Security

Security for RAS protocol signaling between H.323 endpoints and gatekeepers is enhanced in H.323 Version 2 software by including secure endpoint registration of the Cisco gateway to the Cisco gatekeeper and secure per-call authentication. In addition, it provides for the protection of specific messages related to Open Settlement Protocol (OSP) and to other messages as required via encryption tokens. The authentication type is "password with hashing" as described in the ITU H.235 specifications. Specifically, the encryption method is to use the MD5 algorithm, with password hashing. This functionality is provided by the `security token required-for` command on the gatekeeper and the `security password` command on the gateway.

The gatekeeper can interact with a RADIUS security server to perform the authentications. The gateway can also authenticate an external application by using the Gatekeeper Transaction Message Protocol (GKTMP) application programming interface (API).

Per-call authentication is accomplished by validating account and pin numbers that are entered by the user connected to the calling gateway by using an IVR prompt.

The security mechanisms described above require the gateway and gatekeeper clocks to be synchronized within 30 seconds of each other by using a Network Time Protocol (NTP) server.

Additional References

The following sections provide references related to H.323.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Release 12.4</td>
<td>• Cisco IOS Release 12.4 Configuration Guides</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Release 12.4T Configuration Guides</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Release 12.4 Command References</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Voice Configuration Library</td>
</tr>
<tr>
<td>Cisco IOS Release 12.3</td>
<td>• Cisco IOS Release 12.3 documentation</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS voice commands</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Voice Troubleshooting and Monitoring Guide</td>
</tr>
<tr>
<td></td>
<td>• Tel IVR Version 2.0 Programming Guide</td>
</tr>
<tr>
<td>Cisco IOS Release 12.2</td>
<td>• Cisco IOS Voice, Video, and Fax Configuration Guide, Release 12.2 at</td>
</tr>
<tr>
<td>Troubleshooting and Debugging guides</td>
<td>• Cisco IOS Debug Command Reference, Release 12.4 at</td>
</tr>
<tr>
<td></td>
<td>• Troubleshooting and Debugging VoIP Call Basics at</td>
</tr>
<tr>
<td></td>
<td>• VoIP Debug Commands at</td>
</tr>
</tbody>
</table>
Related Topic

Document Title

- **Local-to-remote network using the IPiPGW**

Related Application Guides

- **Cisco Unified Communications Manager and Cisco IOS Interoperability Guide**
- **Cisco IOS Fax, Modem, and Text Support over IP Configuration Guide**
- "Configuring T.38 Fax Relay" chapter
- **Cisco IOS SIP Configuration Guide**

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-T E.164</td>
<td>Overall network operation, telephone service, service operation and human factors</td>
</tr>
<tr>
<td>ITU-T H.225 Version 2</td>
<td>Call signalling protocols and media stream packetization for packet-based multimedia communication systems</td>
</tr>
<tr>
<td>ITU-T H.235</td>
<td>Security and encryption for H-Series (H.323 and other H.245-based) multimedia terminals</td>
</tr>
<tr>
<td>ITU-T H.323</td>
<td>Packet-based multimedia communications systems</td>
</tr>
<tr>
<td>ITU-T H.450</td>
<td>Supplementary services for multimedia</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CISCO-GATEKEEPER-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2833</td>
<td>RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Basic H.323 Setup and Management

This chapter describes nonconfigurable H.323 features.

Feature History for Gatekeeper Ecosystem Interoperability

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(1)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

Feature History for Gatekeeper Management Statistics

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)T</td>
<td>This feature was introduced, and the CISCO-GATEKEEPER-MIB was enhanced to display gatekeeper-management statistics.</td>
</tr>
</tbody>
</table>

Feature History for Gateway-to-Gatekeeper Billing Redundancy

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(1)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

Feature History for H.323 Call Redirection Enhancements

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(5)XM</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.2(2)T</td>
<td>This feature was integrated into this release.</td>
</tr>
<tr>
<td>12.2(2)XB1</td>
<td>This feature was implemented on the Cisco AS5850.</td>
</tr>
</tbody>
</table>
Feature History for H.323 Version 2 Enhancements

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.1(5)XM2</td>
<td>Support was added for the Cisco AS5350 and Cisco AS5400.</td>
</tr>
<tr>
<td>12.2(2)XA</td>
<td>The <code>call rscmon update-timer</code> command was added.</td>
</tr>
<tr>
<td>12.2(4)T</td>
<td>The <code>call rscmon update-timer</code> command was integrated into this release. Support for the Cisco AS5300, Cisco AS5350, and Cisco AS5400 is not included.</td>
</tr>
<tr>
<td>12.2(2)XB1</td>
<td>This feature was implemented on the Cisco AS5850.</td>
</tr>
<tr>
<td>12.2(11)T</td>
<td>This feature was integrated into this release.</td>
</tr>
</tbody>
</table>

Finding Support Information for Platforms and Cisco IOS Software Images

Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

- Prerequisites for Basic H.323 Setup and Management, page 20
- Restrictions for Basic H.323 Setup and Management, page 21
- How to Set Up and Manage Basic H.323 Features, page 21
- Toll Fraud Prevention, page 36

Prerequisites for Basic H.323 Setup and Management

Prerequisites are described in the "Prerequisites for Configuring an H.323 Network" section.
Restrictions for Basic H.323 Setup and Management

Restrictions are described in the "Restrictions for Configuring an H.323 Network" section.

How to Set Up and Manage Basic H.323 Features

Managing Basic Nonconfigurable Gateway Features

The following sections describe H.323 features on the gateway that do not require user configuration:

H.323 Signaling

When interworking with ISDN, with T-1 channel-associated signaling (CAS), and with E-1 R2 services from the PSTN, H.323 signaling enables VoIP networks to properly signal the setup and teardown of calls. In-band tones and announcements are generated as needed at the originating or terminating switch. When a tone is played at the destination switch, the backward voice path from the called party to the calling party is cut through early so that the calling party can hear the tone or announcement. To prevent fraudulent calls, the voice path is cut through in both directions only after the connect message is received from the destination. The call progress indicator, which signals the availability of in-band communication, is carried end to end as required when interworking with ISDN and CAS protocols.

The H.323 signaling feature prevents unexpected behavior, such as early alerting (when an alert message is returned immediately after a call proceeding message is sent), to ensure that the calling party does not hear conflicting call progress information, such as a ringback tone followed by a busy tone, and does not miss hearing a tone or announcement when one should play. Support for network-side ISDN and reduction in the risk of speech clipping is also addressed.

The H.323 signaling feature is dependent on Cisco H.323 gateways, gatekeepers, and VoIP features.

H.323 signaling provides the following capabilities:

End-to-End Alerting

Early alerting is prevented in these ways:

• For calls that terminate at an ISDN switch--The terminating gateway sends an alert message to the originating gateway only after it receives an alert message from the terminating switch.

• For calls that terminate at a CAS switch--The terminating gateway sends a progress message, rather than an alert message, to the originating gateway after it receives a setup message.

Cut-Through of Voice Path

When tones and announcements are generated at the destination switch, the backward voice path from the called party to the calling party is cut through before the tones and announcements are played. This allows announcements, such as "The number you have called has been changed," or allows tones for error conditions, such as network congestion, to be forwarded to the calling party. To prevent fraudulent calls, the originating
gateway does not perform full cut-through until it receives a connect message from the destination switch. Cut-through is performed as follows:

- For calls that terminate at an ISDN switch--The terminating gateway performs backward cut-through when it receives an alert or progress message and full cut-through (both directions) when it receives a connect message. The originating gateway performs backward cut-through when it receives a call proceeding message and full cut-through when it receives a connect message.

- For calls that terminate at a CAS switch--The terminating gateway performs backward cut-through after it sends a progress message and full cut-through (both directions) when it receives an off-hook signal. The originating gateway performs backward cut-through when it receives a progress message and full cut-through when it receives a connect message.

Note

If the originating or terminating gateway sends a call proceeding message and then receives a call proceeding message with a progress indicator of 1, 2, or 8, the gateway converts this call proceeding message into a progress message with a corresponding PI.

H.245 Initiation

To avoid speech clipping, H.245 capabilities are now initiated at the originating gateway at the earliest possible moment, when the originating gateway receives a call proceeding message from the terminating gateway. Previously, call proceeding messages were not passed end to end across the VoIP network; H.245 was initiated only after the originating gateway received an alert message.

Overlap Dialing

To enhance overlap dialing, the call proceeding message is now passed transparently from the terminating switch to the originating switch if the originating switch does not include the sending complete information element in the setup message. The call proceeding message notifies the originating switch that the terminating switch has collected all dialed digits that are required to route the call. If the originating switch sends a sending complete IE, the originating gateway responds with a call proceeding message, and the session application drops the call proceeding message sent by the terminating switch.

H.323 Call Statistics

Beginning with Cisco IOS Release 12.2(4)T, enhancements to H.323 call statistics allow you to clear the gateway counters, display H.323 messages that have been sent and received, obtain statistics on the reasons calls are disconnected, and display debug output for various components within the H.323 subsystem. To enable these enhancements, the following commands are available: clear h323 gateway command, show h323 gateway command, and debug cch323 command.

Note

Using any of the debug cch323 commands could slow your system and flood the TTY if there is significant call traffic.

The enhancements to H.323-call-statistics commands do not affect Cisco H.323 configurations. Therefore, there are no configuration tasks in this document.
To display and clear H.323 call statistics, use the following commands in privileged EXEC mode.

SUMMARY STEPS

1. clear h323 gateway [cause-code stats] h225 | ras]
2. show h323 gateway [cause-code stats] h225 | ras]
3. debug cch323 {all | error | h225 | h245 | ras | rawmsg | session]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 clear h323 gateway [cause-code stats] h225</td>
<td>ras]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# clear h323 gateway</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 2 show h323 gateway [cause-code stats] h225</td>
<td>ras]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show h323 gateway</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 3 debug cch323 {all</td>
<td>error</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# debug cch323 all</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>ras</td>
<td>Traces the state transition of the RAS state machine on the basis of the processed events.</td>
</tr>
<tr>
<td>rawmsg</td>
<td>Troubleshoots raw message buffer problems.</td>
</tr>
<tr>
<td>session</td>
<td>Traces general H.323 events and can be used to troubleshoot H.323 problems.</td>
</tr>
</tbody>
</table>

Source Call Signal Address

Note: To learn about restrictions that apply, see the “Source Call Signal Address and H.245 Empty Capabilities Set Restrictions” section.

Source call signal address allows a source call-signal address field to be included in the ARQ.

Previously, in the Cisco IOS implementation of H.323 gateway software, if the terminating gateway was registered to an H.323 gatekeeper and used RAS, the ARQ message sent for each incoming call did not contain the H.225 source call signal address (CSA). The source CSA is an optional parameter in the ARQ message. The source CSA is also an optional parameter in the H.225 call setup message sent by the originating endpoint. Source call signal address also allows for the source CSA parameter to be included in the ARQ message, as illustrated by the message sequence shown in the figure below.

Figure 6: Source Call Signal Message Sequence

In the message sequence shown in the figure above, the ARQ messages are enhanced to send the source CSA. The originating gateway (EP1) sends the H.225 setup message to the destination gateway. The setup message contains the source CSA parameter, which is the combination of the IP address of the originator and the dynamic TCP port number used or obtained for the H.225 call signaling channel. If the terminating gateway (EP2) accepts the call upon receipt of the setup message, the gateway sends an ARQ message to the gatekeeper. The terminating gateway retrieves the source CSA parameter sent by the originating gateway in the setup message. It then sends an ARQ message to the gatekeeper with the source CSA parameter. The CSA parameter is optional and has the same value as the source CSA in the received setup message. If the setup message does
not contain the source CSA parameter, the terminating gateway determines the source CSA by using the H.225 call-signaling TCP socket connection of the peer endpoint, which it uses in the ARQ message.

If the originating gateway is registered to a gatekeeper and RAS is used as the session target, the originating gateway also sends an ARQ message. This ARQ does not include the optional source CSA parameter.

Tunneling of Redirecting Number Information Element

An incoming PRI setup message may contain either a Redirecting Number (RDN) Information Element (IE) or an Original Called Number (OCN) IE. These IEs indicate that the call has been redirected (forwarded) and that each message contains the following:

- Destination number (DN) that was originally called
- Reason for the call being redirected
- Other related information

OCN IE is a Nortel variant of the RDN IE.

H.323 Version 2

H.323 Version 2 gateway passes the entire RDN or OCN IE from an incoming PRI message into the H.225 SETUP message. The IE is encapsulated in the nonStandardData field within the user-to-user information element (UIUE) of the H.225 SETUP message. The nonStandardData field can contain the encapsulated RDN or OCN IE and a tunneled global, signaling, and control standard QSIG message, or it can contain only the OCN or RDN. Cisco and other third-party H.323 endpoints can access the redirected information by decoding the nonStandardData field. In accordance with the H.225 specification, the nonStandardData is ignored by third-party endpoints and causes no interoperability problems.

For redirected PRI calls that are routed to a Cisco gateway, that are sent using H.323 to another Cisco gateway, and that exit the gateway using PRI, the RDN/OCN IE is tunneled from the source gateway to the destination gateway. The incoming PRI setup message is tunneled through H.225 and is encoded into the outgoing PRI setup message by the destination gateway.

Tunneling the RDN or OCN IE is important for applications such as Unified Messaging servers that need to know the telephone number that was originally dialed so as to access the correct account information.

H.323 Version 4

H.323 Version 4 introduces a standard-based RDN IE in the H.225 SETUP message in Cisco IOS Release 12.3(11)T. The RDN IE is sent as a Q.931 IE in the H.225 SETUP message. The nonStandardData RDN and OCN IE are still supported for backward compatibility. When both H.225 Q.931 RDN IE and nonStandardData IE are received, the RDN in the H.225 Q.931 is decoded and the nonStandardData is not decoded.

H.323 Call Redirection

The user-to-user information element (UIUE) of the Facility message is used primarily for call redirection. The UIUE contains a field, facilityReason, that indicates the nature of the redirection. The H.323 Call Redirection Enhancements feature adds support for two of the reasons: routeCallToGatekeeper and callForwarded. It also provides a nonstandard method for using the Facility message to effect call transfer.
Route Call to Gatekeeper

There are two situations in which the Cisco H.323 gateway might receive or generate a facility message with a routeCallToGatekeeper reason.

- The gateway receives a facility message with routeCallToGatekeeper as a response to its H.225 SETUP message. Upon receiving the Facility message, the Cisco H.323 gateway attempts to route the call to the new gatekeeper, using the new IP address specified in the alternativeAddress field of the facility message.

 - If the IP address is not available, the gateway ignores the facility message and sends a release complete toward the original destination end-point. The release complete message contains a ReleaseCompleteReason of facilityCallDeflection.

 - If the IP address is available, the gateway sends a disengage request (DRQ) message to the gatekeeper and waits for the disengage confirmation (DCF) message before it sends the SETUP message to the new destination gatekeeper.

- During the admission request (ARQ) phase of a call, a gatekeeper might determine that a call, which has come through an intermediate gateway, needs to be routed to another gatekeeper. The gatekeeper sends an admission rejection (ARJ) message with a RejectReason of routeCallToGatekeeper to the gateway. Upon receiving the message, the intermediate Cisco H.323 gateway sends a Facility message to the originator of the SETUP message. This message indicates that the SETUP message should be sent to another address. (The gateway includes the callSignalAddress from ARJ in the alternativeAddress field of the Facility message.) Upon receiving the Facility message, the calling gateway terminates the initial call and sends a new SETUP message to the specified gatekeeper, using the new IP address specified in the alternativeAddress field of the facility message. If the callSignalAddress is not provided, the gateway does not send the Facility message and the call is terminated without any rerouting.

Call Forward

In certain cases, an H.323 endpoint might determine that a call needs to be forwarded. The endpoint then sends a Facility message to the gateway with a facilityReason of callForwarded. This message includes the address of the new destination (either an alternativeAddress or alternativeAliasAddress). Upon receiving the Facility message, the Cisco H.323 gateway sends a release complete to the original destination endpoint and initiates a new call using the new destination address supplied in the Facility message. The release complete message contains a ReleaseCompleteReason of facilityCallDeflection. If the gateway is registered with a gatekeeper, the gateway sends a DRQ to the gatekeeper and waits for the DCF before sending a setup message to the destination gatekeeper.

The Facility message must contain an E.164 address in the alternativeAliasAddress field. If no address is included, the Facility message is ignored. The E.164 is required because the call forwarding process initiates a new call, which may be subject to authentication processes that can handle only E.164 addresses.

If the Facility message contains both and IP address (in the alternativeAddress field) and an E.164 address (in the alternativeAliasAddress field), the gateway first attempts to find a match for the new E.164 and the dial-peer. If there is no match, the gateway uses the same incoming peer to determine if there is a matching peer to reroute the call. If there is no match to the incoming peer, the message is ignored.
Call Transfer

To learn about restrictions that apply, see the "Call Transfer Restrictions" section.

If a Facility message with a facilityReason of callForwarded is received after the call has been accepted, it is considered a call transfer. In this case, the Cisco H.323 gateway places the call on hold and initiates a new call using the address (alternativeAddress or alternativeAliasAddress) supplied in the Facility message.

As with call forwarding, the Facility message must contain an E.164 address in the alternativeAliasAddress field. If no address is included, the Facility message is ignored. The E164 is required because the call forwarding process initiates a new call, which may be subject to authentication processes that can handle only E.164 addresses.

If the Facility message contains both an IP address (in the alternativeAddress field) and an E.164 address (in the alternativeAliasAddress field), the gateway first attempts to find a match for the new E.164 and the dial-peer. If there is no match, the gateway uses the same incoming peer to determine if there is a matching peer to reroute the call. If there is no match to the incoming peer, the message is ignored.

Unlike in call forwarding case, the Facility message is accepted by both the called side and the originating side.

This use of call forwarded is not defined by ITU standard.

Multizone Features

Cisco multizone software enables the Cisco gateway to provide information to the gatekeeper using additional fields in the RAS messages. The gatekeeper no longer terminates a call if it is unable to resolve the destination E.164 phone number with an IP address.

Previously, the source gateway attempted to set up a call to a destination IP address as provided by the gatekeeper in an admission confirm (ACF) message. If the gatekeeper was unable to resolve the destination E.164 phone number to an IP address, the incoming call was terminated.

Multizone software allows a gatekeeper to provide additional destination information and modify the destinationInfo field in the ACF message. The gateway includes the canMapAlias-associated destination information in setting up the call to the destination gateway.

The gatekeeper indicates to the gateway that the call should be destined to a new E.164 number by sending an ACF message with an IP address of 10.0.0.0 in the destCallSignalAddress field and the new destination E.164 phone number in the destinationInfo field.

The gateway that receives such an ACF falls back to routing the call on the basis of this new E.164 address and performing another lookup of the configured dial plan for the gateway. If the gateway routes the call on the basis of the new E.164 address, the call might be routed back to the PSTN or to an H.323 endpoint.

Codec Negotiation

Codec negotiation allows the gateway to offer several codecs during the H.245 capability exchange phase and to ultimately settle on a single common codec during the call establishment phase. Offering several codecs
 increases the probability of establishing a connection because there is a greater chance of overlapping voice capabilities between endpoints. Normally, only one codec can be specified when a dial peer is configured, but codec negotiation allows a prioritized list of codecs associated with a dial peer to be specified. During call establishment, the router uses the highest-priority codec from the list that it has in common with the remote endpoint. It also adjusts to the codec selected by the remote endpoint so that a common codec is established for both the receive and send voice directions.

When a call is originated, all the codecs associated with the dial peer are sent to the terminating endpoint in the H.245 terminal capability set message. At the terminating endpoint, the gateway advertises all the codecs that are available in firmware in its terminal capability set. If there is a need to limit the codecs advertised to a subset of the available codecs, a terminating dial peer must be matched that includes this subset. The incoming \textbf{called-number} command in dial peer configuration mode can be used to force this match.

Supported codecs (see table below) are available for use with Cisco H.323 Version 2 software.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|}
\hline
\textbf{Codecs} & \textbf{Range (bytes)} & \textbf{Default (bytes)} & \textbf{Bit Rate (kbps)} \\
\hline
G.711ulaw & 40-240 & 160 & 64 \\
G.711alaw & 40-240 & 160 & 64 \\
G.723r63 & 24-240 & 24 & 6.3 \\
G.723r53 & 20-240 & 20 & 5.3 \\
G.723ar63 & 24-240 & 24 & 6.3 \\
G.723ar53 & 20-240 & 20 & 5.3 \\
G.726r32 & 20-240 & 40 & 32 \\
G.726r24 & 15-240 & 30 & 24 \\
G.726r16 & 10-240 & 20 & 16 \\
G.728 & 10-240 & 10 & 16 \\
G.729br8 & 10-240 & 20 & 8 \\
G.729r8 pre-ietf & 10-240 & 20 & 8 \\
G.729r8 & 10-240 & 20 & 8 \\
\hline
\end{tabular}
\caption{Codec Default Packet Size}
\end{table}

A separate codec for G.729 Annex B is included, which adds Annex B functionality to G.729. A separate codec for G.723.1 Annex A adds Annex A functionality to G.723.1.
• The Annex B functionality added to G.729 and the Annex A functionality added to G.723.1 are the built-in, codec-specific voice-activated detection/calling tone (VAD/CNG) functions.

H.245 Empty Capabilities Set

To learn about restrictions that apply, see the "Source Call Signal Address and H.245 Empty Capabilities Set Restrictions" section.

Empty capabilities set support is a mandatory part of the H.323 Version 2 standard. It is used by applications to redirect the voice media stream. This feature is particularly useful for applications such as the following:

• Selsius IP phones, which rely on a hub or call manager to direct the media stream to IP phones.
• Unified messaging for which it is desirable to redirect the media stream to various message servers for message playout.

The empty capabilities set feature was added to provide a way to redirect RTP streams. The RTP streams are redirected as follows:

• The sequence starts with the an empty capabilities set being received at an endpoint.
• After an open logical channel (OLC) is established (or if in the middle of this process) one of the endpoints sends an empty capabilities set message.
• When the empty capabilities set message is received, the other endpoints close the logical channel if any was opened with that endpoint and move to a pause state, waiting for a nonempty capability set message.

After receiving the nonempty capabilities set message, the endpoint moves to the beginning of Phase B, which is the initial communication and capabilities exchange, as described in H.323 Version 3 (June 1999), item 8.4.6.

In other words, the exchange of the capabilities message determines a master/slave relationship, and a new OLC message is created to open a new logical channel with another endpoint. From this point on, the RTP streams are sent to the new endpoint.

Lightweight Registration

Before the release of its H.323 Version 2 software, Cisco gateways reregistered with the gatekeeper every 30 seconds. Each registration renewal used the same process as the initial registration, even though the gateway was already registered with the gatekeeper. These registration renewals generated considerable overhead at the gatekeeper.

Cisco H.323 Version 2 software defines a lightweight registration procedure that still requires the full registration process for initial registration but that uses an abbreviated renewal procedure to update the gatekeeper and minimize overhead.

Lightweight registration requires each endpoint to specify a time-to-live (TTL) value in its registration request (RRQ) message. When a gatekeeper receives an RRQ message with a TTL value, it returns an updated TTL timer value in a registration confirmation (RCF) message to the endpoint. Shortly before the TTL timer expires, the endpoint sends an RRQ message with the KeepAlive field set to TRUE, which refreshes the existing registration.
It is not required that an H.323 Version 2 endpoint indicate a TTL in its registration request. If the endpoint does not indicate a TTL, the gatekeeper assigns one and sends it to the gateway in the RCF message. No configuration changes are permitted during a lightweight registration, so all fields other than the endpointIdentifier, gatekeeperIdentifier, tokens, and TTL are ignored. In the case of H.323 Version 1 endpoints that cannot process the TTL field in the RCF, the gatekeeper probes the endpoint with information requests (IRQs) for a predetermined grace period to see if the endpoint is still alive.

H.450.2 Call Transfer

Call transfer allows an H.323 endpoint to redirect an answered call to another H.323 endpoint. Cisco gateways support H.450.2 call transfer as the transferring and transferred-to party. The transferring endpoint must be an H.450-capable terminal; the Cisco gateway cannot act as the transferring endpoint. Gatekeeper-controlled or gatekeeper-initiated call transfer is not supported.

Note

Certain devices are limited in their support of H.450. The Cisco 1700 and Cisco uBR820 platforms do not support IVR. Therefore, these platforms are not able to act as H.450 transferring endpoints.

H.450.2 specifies two variants of call transfer:

- Transfer without consultation--The transferring endpoint supplies the number of the transferred-to endpoint as part of the transfer request, and the two remote endpoints are transferred together. A Cisco gateway cannot be the transferring endpoint.

- Transfer with consultation--This feature is not currently supported.

H.450.3 Call Deflection

Call deflection is a feature under H.450.3 Call Diversion (Call Forwarding) that allows a called H.323 endpoint to redirect the unanswered call to another H.323 endpoint. Cisco gateways support H.450.3 call deflection as the originating, deflecting, and deflected-to gateway. The Cisco gateway as the deflecting gateway supports invocation of call deflection only by using an incoming PRI QSIG message (call deflection cannot be invoked by using any other trunk type).

If the deflecting endpoint is a Cisco gateway, the telephony endpoint on the PRI of the deflecting gateway invokes call deflection by sending an equivalent QSIG reroute invoke request within a FACILITY message to the gateway. The deflecting gateway then uses the procedures outlined in the H.450.3 call deflection standard to transfer the call to another endpoint. Note that the initiation of deflection using QSIG reroute invoke is valid only on calls that arrived as H.323 calls at the deflecting gateway. In other words, for calls that arrive at the gateway through a telephony interface (such as a hairpin call) or by using a non-H.323 IP protocol, QSIG reroute invoke is ignored.

Cisco H.323 Version 2 software does not support gatekeeper-controlled or gatekeeper-initiated call deflection.

Note

Certain devices are limited in their support of the H.450 standard. The Cisco AS5800 is not able to convert QSIG to H.450. The Cisco 1700 and Cisco uBR820 do not support IVR. Therefore, these devices are not able to act as H.450 deflecting endpoints.
Gateway Support for a Network-Based Billing Number

Gateway support for a network-based billing number informs the gatekeeper of the specific voice port or T1/E1 span from which an incoming call entered the ingress gateway. This is done using a Cisco-proprietary, nonstandard field that has been added to the ARQ message sent by the ingress gateway. No configuration is necessary for this feature.

Answer Supervision Reporting

Answer supervision reporting is an enhancement to the information request (IRR) Registration, Admission, and Status (RAS) protocol message that enables gatekeepers to maintain call accounting information by reporting the call connection time of connected calls to the gatekeeper.

In H.323 configurations, the endpoint (gateway) uses direct call-routed signaling. Gatekeepers do not have real-time knowledge or control over the state of a call and are dependent on the endpoints to provide them with necessary real-time information, such as call connect time, call termination time, and call termination reason.

When a call ends, the gateway sends a DRQ message with the BillingInformationToken (which contains the duration of the call) to the gatekeeper. If for some reason the gatekeeper does not receive the DRQ message, the gatekeeper does not have the information about when the call started or the duration of the call, which is necessary to maintain accounting information.

Answer supervision reporting allows the call connection time to be reported to the gatekeeper upon the connection of a call and at periodic intervals thereafter. Answer supervision reporting adds a proprietary Cisco parameter, the call connection time, to the perCallInfo parameter in the nonStandardData field, which is located in the IRR message. When a connect message is received, the originating gateway sends the unsolicited IRR message to its gatekeeper. On sending a connect message, the terminating gateway sends the unsolicited IRR message to its gatekeeper. If the ACF message has a nonzero value for the IRR frequency parameter, the gateway sends the unsolicited IRR message to its gatekeeper at periodic intervals, which are determined by the value in the IRRfrequency parameter.

With the exception of containing the call connection time in the perCallInfo parameter, the IRR message and its functionality remain the same.

Managing Basic Nonconfigurable Gatekeeper Features

The following sections describe H.323 features on the gateway that do not require user configuration:

Gateway-to-Gatekeeper Billing Redundancy

Gateway-to-gatekeeper billing enhances the accounting capabilities of the Cisco H.323 gateway and provides support for VocalTec™ gatekeepers. Gateway-to-gatekeeper billing redundancy provides for redundant billing information to be sent to an alternate gatekeeper if the primary gatekeeper to which a gateway is registered becomes unavailable.

During the process of establishing a call, the primary gatekeeper sends an ACF message to the registered gateway. The ACF message includes the billing information of the user and an access token. To provide the billing information to an alternate gatekeeper if the primary gatekeeper is unavailable when the call session ends, the access token information sent in the ACF message is also included in the DRQ message that is sent to the alternate gatekeeper.
This feature enables the alternate gatekeeper to obtain the billing information required to successfully complete the transaction.

Ecosystem Gatekeeper Interoperability

To learn about restrictions that apply, see the "Ecosystem Gatekeeper Interoperability Restrictions" section.

Ecosystem gatekeeper interoperability adds support for the alternate gatekeeper field (altGKInfo) in the gatekeeper rejection (GRJ), registration rejection (RRJ), and admission rejection (ARJ) messages. This allows a gateway to move between gatekeepers during the GRQ, RRQ, and ARQ phases. There is no need for gateway reconfiguration or a gatekeeper failover in the gateway.

Gateways can be configured to switch from their primary gatekeeper to an alternate gatekeeper if a failure or outage occurs. If an outage occurs and gateways move from one gatekeeper to another, there may be an imbalance in the number of gateways registered to each gatekeeper. The ecosystem gatekeeper interoperability feature helps to restore the balance (when the outage has been corrected) by allowing some of the gateways to be moved back to their proper gatekeepers.

The altGKInfo consists of two subfields: the alternateGatekeeper and the altGKisPermanent flag. The alternateGatekeeper is the list of alternate gatekeepers. The altGKisPermanent is a flag that indicates whether the gatekeepers in the associated alternateGatekeeper field are permanent or temporary.

- If the current state of the altGKisPermanent flag is TRUE, the new altGKInfo of any RAS message received from one of the alternate gatekeepers is accepted and the new list replaces the existing list.
- If the current state of the altGKisPermanent flag is FALSE, the altGKInfo of any RAS message received from one of the alternate gatekeepers is ignored.

If the current permanent gatekeeper becomes nonresponsive and the altGKisPermanent flag is set to FALSE, the gateway sets the internal state of the altGKisPermanent flag to TRUE. This allows the gateway to accept the alternate gatekeeper list from one of the gatekeepers in the existing alternate gatekeeper list.

The handling of the altGKInfo field varies depending on whether it is included in a GRJ or an RRJ message.

AltGKInfo in GRJ Messages

When the gateway accepts the alternate gatekeeper list from the GRJ, the gateway sends a GRQ message to a gatekeeper on the list. The selection is based on priority of the alternate gatekeepers. Each alternate gatekeeper is tried until a GCF message is received.

If the gateway receives a GRJ message without the AltGKInfo field, it accepts the rejection. Because this is the first phase for the gateway to contact a gatekeeper, the gateway is considered lost without a gatekeeper.

During the GRQ phase, the gateway ignores the value of the altGKisPermanent flag in any RAS message and sets the value internally to TRUE.

AltGKInfo in RRJ Messages

When the gateway accepts the alternate gatekeeper list from the first RRJ message, the gateway retransmits an RRQ message to a gatekeeper on the alternate gatekeeper list. The selection is based on priority of the alternate gatekeepers.
The retransmission of the RRQ message depends on the type of RRQ (full or lightweight), the current state of the altGKisPermanent flag, and the current state of the needToRegister flag of each alternate gatekeeper as follows:

- If the state of the altGKisPermanent flag is TRUE and the state of the needToRegister flag is NO, the gateway retransmits the full RRQ to an alternate gatekeeper for full RRQs and a lightweight RRQ for lightweight RRQs.
- If the state of the altGKisPermanent flag is TRUE and the state of the needToRegister flag is YES, the gateway retransmits the full RRQ to an alternate gatekeeper for full RRQs.
- If the state of the altGKisPermanent flag is FALSE and the state of the needToRegister flag is NO, the gateway retransmits a lightweight RRQ for lightweight RRQs and nothing for full RRQs.
- If the state of the altGKis Permanent flag is TRUE and the state of the needToRegister flag is YES, the gateway does not retransmit the RRQ.

If the gateway receives an RRJ message without the AltGKInfo field, it accepts the rejection and returns to the GRQ phase. If the state of the altGKisPermanent flag is FALSE, the gateway sends the GRQ message to the original gatekeeper that sent the first RRJ. If the state of the altGKisPermanent flag is TRUE, the gateway sends the GRQ to the current gatekeeper.

If the current state of the altGKisPermanent flag is TRUE, then the next RAS message is sent to the new gatekeeper. Otherwise, the next RAS message is sent to the original gatekeeper.

If the gateway exhausts the list of alternate gatekeepers without receiving any response from an alternate gatekeeper, the gateway returns to the GRQ phase.

For more information on the Cisco ecosystem gatekeeper interoperability feature, see the "Configuring Alternate-Gatekeeper Support" section.

Gatekeeper-Management Statistics

Performance-management parameters provide gatekeeper-management statistics that may be used to monitor a network and troubleshoot problems on the network. Parameters provide statistics such as the following:

- Number of calls that originate and terminate from a specific location
- Number of ongoing calls
- Aggregate messaging information per zone
- Equipment behavior
- Registration and unregistration information
- Counter information (such as location requests [LRQs]) to gauge the level of activity

Statistics are counted when the Registration, Admission, and Status (RAS) messages are sent and received by the gatekeeper. They are in raw form and reflect only a count of messages. Retries or retransmissions are not counted.

There are two ways to monitor gatekeeper-management statistics:
• Using the MIB module--The MIB module consists of a repository of characteristics and parameters that support the gatekeeper function. The MIB gathers statistics and responds to queries as specified by the Simple Network Management Protocol (SNMP). SNMP operations are supported on the object identifiers (OIDs) for the managed objects. These OIDs can configure, manage, or analyze aspects of SNMP operation. Gatekeeper-management statistics are supported by the CISCO-GATEKEEPER-MIB; parameters for this MIB are shown in a table that you can access on your network management station.

• Using the command-line interface as in the following steps.

Displaying and Clearing Gatekeeper-Management Statistics

To display and clear gatekeeper-management statistics, use the following commands beginning in global configuration mode.

Before You Begin

SUMMARY STEPS

1. show gatekeeper performance stats
2. clear h323 gatekeeper statistics
3. show h323 gatekeeper statistics aggregate

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>show gatekeeper performance stats</td>
<td>Displays performance statistics gathered from the gatekeeper that include per-gatekeeper and per-zone-level statistics, counters, and other gatekeeper-management statistics.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show gatekeeper performance stats</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>clear h323 gatekeeper statistics</td>
<td>Clears the counters of H.323 gatekeeper statistics.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# clear h323 gatekeeper statistics</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>show h323 gatekeeper statistics aggregate</td>
<td>Displays the system statistics since it was started, regardless of whether or not the counters have been cleared. Without the aggregate keyword, the counters reflects the activity since the last clear command.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show h323 gatekeeper statistics aggregate</td>
</tr>
</tbody>
</table>

Examples

The following sample output displays BASIC gatekeeper-management statistics.

Router# show gatekeeper performance stats
-----Gatekeeper Performance Statistics-----
Performance statistics captured since: 00:17:00 UTC Mon Mar 1 1993
Gatekeeper level Admission Statistics:
 ARQs received: 1
 ARQs received from originating endpoints: 0
 ACFs sent: 1
 ACFs sent to the originating endpoint: 0
 ARJs sent: 0
 ARJs sent to the originating endpoint: 0
 ARJs sent due to overload: 0
 Number of concurrent calls: 0
 Number of concurrent originating calls: 0
Gatekeeper level Location Statistics:
 LRQs received: 1
 LRQs sent: 0
 LCFs received: 0
 LCFs sent: 1
 LRJs received: 0
 LRJs sent: 0
 LRJs sent due to overload: 0
Gatekeeper level Registration Statistics:
 RRJ due to overload: 0
 Total Registered Endpoints: 1
Gatekeeper level Disengage Statistics:
 DRQs received: 1
 DRQs sent: 0
 DCFs received: 0
 DCFs sent: 1
 DRJs received: 0
 DRJs sent: 0
 Load balancing events: 0

The following CUMULATIVE sample output is the same as for BASIC output; the difference is that the
BASIC counters are cleared by the clear h323 gatekeeper statistics command, and CUMULATIVE counters
are not.

Router# show gatekeeper performance stats zone name voip3-2600-2
Performance statistics for zone voip3-2600-2
-----Zone Level Performance Statistics-----
Performance statistics captured since: 00:17:00 UTC Mon Mar 1 1993
Zone level Admission Statistics:
 ARQs received: 1
 ARQs received from originating endpoints: 0
 ACFs sent: 1
 ACFs sent to the originating endpoint: 0
 ARJs sent: 0
 ARJs sent to the originating endpoint: 0
 ARJs sent due to overload: 0
 Number of concurrent total calls: 0
 Number of concurrent originating calls: 0
Zone level Location Statistics:
 LRQs received: 1
 LRQs sent: 0
 LCFs received: 0
 LCFs sent: 1
 LRJs received: 0
 LRJs sent: 0
Zone level Registration Statistics:
 Full ARQs received: 1
 Light RRQs received: 574
 RCFs sent: 576
 RRJs sent: 0
 Total Registered Endpoints: 1
Zone level UnRegistration Statistics:
 URQs received: 0
 URQs sent: 0
 UCFs received: 0
 UCFs sent: 0
 URJs received: 0
 URJs sent: 0
 URQs sent due to timeout: 0
Zone level Disengage Statistics:
 DRQs received: 1
Toll Fraud Prevention

When a Cisco router platform is installed with a voice-capable Cisco IOS software image, appropriate features must be enabled on the platform to prevent potential toll fraud exploitation by unauthorized users. Deploy these features on all Cisco router Unified Communications applications that process voice calls, such as Cisco Unified Communications Manager Express (CME), Cisco Survivable Remote Site Telephony (SRST), Cisco Unified Border Element (UBE), Cisco IOS-based router and standalone analog and digital PBX and public-switched telephone network (PSTN) gateways, and Cisco contact-center VoiceXML gateways. These features include, but are not limited to, the following:

- **Disable secondary dial tone on voice ports**—By default, secondary dial tone is presented on voice ports on Cisco router gateways. Use private line automatic ringdown (PLAR) for foreign exchange office (FXO) ports and direct-inward-dial (DID) for T1/E1 ports to prevent secondary dial tone from being presented to inbound callers.

- **Cisco router access control lists (ACLs)**—Define ACLs to allow only explicitly valid sources of calls to the router or gateway, and therefore to prevent unauthorized Session Initiation Protocol (SIP) or H.323 calls from unknown parties to be processed and connected by the router or gateway.

- **Close unused SIP and H.323 ports**—If either the SIP or H.323 protocol is not used in your deployment, close the associated protocol ports. If a Cisco voice gateway has dial peers configured to route calls outbound to the PSTN using either time division multiplex (TDM) trunks or IP, close the unused H.323 or SIP ports so that calls from unauthorized endpoints cannot connect calls. If the protocols are used and the ports must remain open, use ACLs to limit access to legitimate sources.

- **Change SIP port 5060**—If SIP is actively used, consider changing the port to something other than well-known port 5060.

- **SIP registration**—If SIP registration is available on SIP trunks, turn on this feature because it provides an extra level of authentication and validation that only legitimate sources can connect calls. If it is not available, ensure that the appropriate ACLs are in place.

- **SIP Digest Authentication**—If the SIP Digest Authentication feature is available for either registrations or invites, turn this feature on because it provides an extra level of authentication and validation that only legitimate sources can connect calls.

- **Explicit incoming and outgoing dial peers**—Use explicit dial peers to control the types and parameters of calls allowed by the router, especially in IP-to-IP connections used on CME, SRST, and Cisco UBE. Incoming dial peers offer additional control on the sources of calls, and outgoing dial peers on the destinations. Incoming dial peers are always used for calls. If a dial peer is not explicitly defined, the implicit dial peer 0 is used to allow all calls.

- **Explicit destination patterns**—Use dial peers with more granularity than .T for destination patterns to block disallowed off-net call destinations. Use class of restriction (COR) on dial peers with specific destination patterns to allow even more granular control of calls to different destinations on the PSTN.

- **Translation rules**—Use translation rules to manipulate dialed digits before calls connect to the PSTN to provide better control over who may dial PSTN destinations. Legitimate users dial an access code and an augmented number for PSTN for certain PSTN (for example, international) locations.
- Tcl and VoiceXML scripts--Attach a Tcl/VoiceXML script to dial peers to do database lookups or additional off-router authorization checks to allow or deny call flows based on origination or destination numbers. Tcl/VoiceXML scripts can also be used to add a prefix to inbound DID calls. If the prefix plus DID matches internal extensions, then the call is completed. Otherwise, a prompt can be played to the caller that an invalid number has been dialed.

- Host name validation--Use the "permit hostname" feature to validate initial SIP Invites that contain a fully qualified domain name (FQDN) host name in the Request Uniform Resource Identifier (Request URI) against a configured list of legitimate source hostnames.

- Dynamic Domain Name Service (DNS)--If you are using DNS as the "session target" on dial peers, the actual IP address destination of call connections can vary from one call to the next. Use voice source groups and ACLs to restrict the valid address ranges expected in DNS responses (which are used subsequently for call setup destinations).

For more configuration guidance, see the "Cisco IOS Unified Communications Toll Fraud Prevention" paper.
CHAPTER 3

Configuring H.323 Gateways

This chapter explains how to configure H.323 Gateways.

- Finding Feature Information, page 39
- Prerequisites for Configuring H.323 Gateways, page 39
- Restrictions for Configuring H.323 Gateways, page 40
- How to Configure H.323 Gateways, page 40
- Configuration Examples for H.323 Gateways, page 124
- Additional References, page 137
- Feature Information for Configuring H.323 Gateways, page 139

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring H.323 Gateways

- Perform the prerequisites that are listed in the "Prerequisites for Configuring an H.323 Network" section.
- Develop a network plan that details the requirements and characteristics of your VoIP network. For more information, see the documents in the "Additional References" section.
- Ensure that the routers you intend to configure as H.323 gateways are running a Cisco IOS software image that contains gateway functionality.
- To use H.323 security and accounting features, do the following:
• These features use the H.235 standard. Because the standard is broad, ensure that the gatekeeper provides H.235 functionality that specifically complements the gateway implementation described in this document.

• The H.323 gateway sends accounting information using a nonstandard field in the ClearToken field. Ensure that the gatekeeper can retrieve this information from the ClearToken field.

Restrictions for Configuring H.323 Gateways

Restrictions are described in the "Restrictions for Configuring an H.323 Network" section.

Note
The gatekeeper authenticates the endpoint based on the general ID. It does not relate the H.323 ID and general ID. Both the gateway H323_ID and the generalID in ClearTokens should be same.

How to Configure H.323 Gateways

Configuring a Router Interface as a Gateway

To configure a Cisco device as an H.323 gateway in a service provider environment, configure at least one of its interfaces as a gateway interface. Use either an interface that is connected to the gatekeeper or a loopback interface for the gateway interface. The interface that is connected to the gatekeeper is usually a LAN interface: Fast Ethernet, Ethernet, FDDI, or Token Ring.

To configure a gateway interface, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. gateway
2. exit
3. ip cef
4. interface type number [nametag]
5. h323-gateway voip interface
6. h323-gateway voip id gatekeeper-id {ipaddr ip-address [port] multicast} [priority priority]
7. h323-gateway voip h323-id interface-id
8. h323-gateway voip tech-prefix prefix
9. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>gateway</td>
<td>Enters gateway configuration mode and enables the gateway.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# gateway</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-gateway)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip cef</td>
<td>(Optional) Enables Cisco Express Forwarding routing.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip cef</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>interface type number</td>
<td>Enters interface configuration mode for the interface that is connected to the gatekeeper. Keywords and arguments are as follow:</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface serial 0</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>h323-gateway voip interface</td>
<td>Identifies this as a VoIP gateway interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# h323-gateway voip interface</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>h323-gateway voip id gatekeeper-id {ipaddr ip-address [port]} multicast {priority priority}</td>
<td>(Optional) Defines the name and location of the gatekeeper for this gateway. Keywords and arguments are as follows:</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# h323-gateway voip id gk3.gg-dnl ipaddr 172.18.0.0 1719</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>priority priority</td>
<td>Priority of this gatekeeper. Range: 1 to 127. Default: 127.</td>
<td></td>
</tr>
</tbody>
</table>

Step 7

```bash
h323-gateway voip h323-id interface-id
```

Example:

```bash
Router(config-if)# h323-gateway voip h323-id name@domainname
```

(Optional) Defines the H.323 name of the gateway, identifying this gateway to its associated gatekeeper. Usually this ID is the name of the gateway, with the gatekeeper domain name appended: `name@domainname`.

Step 8

```bash
h323-gateway voip tech-prefix prefix
```

Example:

```bash
Router(config-if)# h323-gateway voip tech-prefix 1#
```

(Optional) Defines the numbers used as the technology prefix that the gateway registers with the gatekeeper. Can contain up to 11 characters. Although not strictly necessary, a pound symbol (#) is frequently used as the last digit in a prefix. Valid characters: 0 to 9, #, and *.

Step 9

```bash
exit
```

Example:

```bash
Router(config-if)# exit
```

Exits the current mode.

Verifying a Router Interface as a Gateway

To verify the router interface, perform the following step.

SUMMARY STEPS

1. show gateway

DETAILED STEPS

```bash
show gateway
```

Use this command to verify gateway configuration by displaying the current registration information and gateway status.

Example:

```bash
Router# show gateway
```
Shutting Down and Enabling VoIP Services on a Gateway

This section contains the following procedures:

Shutting Down and Enabling VoIP Service

To shut down or enable all VoIP services on a Cisco gateway, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. voice service voip
2. no shutdown forced
3. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>voice service voip</td>
<td>Enters voice-service-VoIP configuration mode.</td>
</tr>
<tr>
<td>Example</td>
<td>Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>no shutdown forced</td>
<td>Shuts down or enables VoIP call services.</td>
</tr>
<tr>
<td>Example</td>
<td>Router(conf-voi-serv)# shutdown forced</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example</td>
<td>Router(conf-voi-serv)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Shutting Down and Enabling VoIP Submodes

To shut down and enable VoIP submodes, use the following commands beginning in global configuration mode.
SUMMARY STEPS

1. voice service voip
2. h323
3. no call service stop forced maintain-registration
4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>voice service voip</td>
<td>Enters voice-service-VoIP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>h323</td>
<td>Selects H.323-call-processing submode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(conf-voi-serv)# h323</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>no call service stop forced maintain-registration</td>
<td>Shuts down or enables VoIP call services for the selected submode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(conf-voi-serv)# call service stop maintain-registration</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(conf-voi-serv)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Verifying Gateway Status

To verify gateway status, perform the following step.

SUMMARY STEPS

1. show gateway

DETAILED STEPS

show gateway
Use this command to display gateway status.
The following example displays output after the gateway has been shut down:

Example:

```
Router# show gateway
H.323 ITU-T Version: 4.0    H323 Stack Version: 0.1
H.323 service is shutdown
Gateway Router is not registered to any gatekeeper
```

The following example displays output after a graceful shutdown with calls in progress:

Example:

```
Router# show gateway
H.323 ITU-T Version: 4.0    H323 Stack Version: 0.1
H.323 service is shutting down
Gateway Router is registered to Gatekeeper GK1
```

The following example displays output when H.323 call service has been shut down with the `call service stop maintain-registration` command:

Example:

```
Router# show gateway
H.323 ITU-T Version: 4.0    H323 Stack Version: 0.1
H.323 service is shutdown
Gateway Router is registered to Gatekeeper GK1
```

Configuring Gateway RAS

This section contains the following information:

Registration, Admission, and Status (RAS) signaling performs registration, admissions, status, and disengage procedures between the H.323 VoIP gateway and the H.323 VoIP gatekeeper. RAS tells the gatekeeper to translate a E.164 phone number of the session target into an IP address.

In the RAS exchange between a gateway and a gatekeeper, a technology prefix is used to identify the specific gateway when the selected zone contains multiple gateways. The `tech-prefix` command is used to define technology prefixes.

In most cases there is a dynamic protocol exchange between the gateway and the gatekeeper that enables the gateway to inform the gatekeeper about technology prefixes and where to forward calls. If, for some reason, that dynamic registry feature is not in effect, statically configure the gatekeeper to query the gateway for this information.

Note

To configure the gatekeeper to query for prefix and forwarding information, see the "Configuring H.323 Gatekeepers and Proxies" section.
To configure RAS, define specific parameters for the applicable POTS and VoIP dial peers. The POTS dial peer informs the system of which voice port to direct incoming VoIP calls to and (optionally) determines that RAS-initiated calls have a technology prefix prepended to the destination telephone number. The VoIP dial peer determines how to direct calls that originate from a local voice port into the VoIP cloud to the session target. The session target indicates the address of the remote gateway where the call is terminated. There are several different ways to define the destination gateway address:

- By statically configuring the IP address of the gateway.
- By defining the Domain Name System (DNS) name of the gateway.
- By using RAS. If RAS is used, the gateway determines the destination target by querying the RAS gatekeeper.

Configuring Basic RAS

To configure basic RAS, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. `dial-peer voice tag pots`
2. `destination-pattern string [T]`
3. `port controller :D`
4. `exit`
5. `dial-peer voice tag voip`
6. `destination-pattern string [T]`
7. `tech-prefix number`
8. `session target ras`
9. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>dial-peer voice tag pots</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# dial-peer voice 456 pots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>destination-pattern string [T]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# destination-pattern 1513200...</td>
</tr>
</tbody>
</table>

- *string* --E.164 or private dialing plan telephone number. Valid entries: digits 0 to 9, letters A to D, and the following special characters:
 - Asterisk (*) and pound sign (#)--Keys that appear on standard touchtone dial pads.
 - Comma (,)--Pause between digits.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Period (.)--Match to any entered digit (used as a wildcard).</td>
<td></td>
</tr>
<tr>
<td>• Percent sign (%)--The previous digit or pattern zero or multiple times, similar to wildcard usage in the regular expression.</td>
<td></td>
</tr>
<tr>
<td>• Circumflex (^)--Match to the beginning of the string.</td>
<td></td>
</tr>
<tr>
<td>• Dollar sign ($)--Match to the null string at the end of the input string.</td>
<td></td>
</tr>
<tr>
<td>• Backslash ()--Is followed by a single character matching that character or used with a single character having no other significance (matching that character).</td>
<td></td>
</tr>
<tr>
<td>• Question mark (?)--The previous digit occurred zero or one time.</td>
<td></td>
</tr>
<tr>
<td>• Brackets ([])--Range of digits. Digits (0 to 9) are enclosed in brackets. Similar to a regular expression rule.</td>
<td></td>
</tr>
<tr>
<td>• Parentheses (())--A pattern. Same as the regular expression rule--for example, 408(555). Use parentheses in conjunction with symbols ? or %.</td>
<td></td>
</tr>
</tbody>
</table>

For more information on applying wildcard symbols to destination patterns and the dial strings that result, see the "Dial Peer Configuration on Voice Gateway Routers" module.

- **T**--Control character indicating that the destination-pattern value is a variable-length dial string.

Step 3

<table>
<thead>
<tr>
<th>port controller :D</th>
<th>(Cisco AS5300 only) Associates this POTS dial peer with a specific voice port. Keywords and arguments are platform dependent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# port 0:D</td>
</tr>
</tbody>
</table>

Step 4

<table>
<thead>
<tr>
<th>exit</th>
<th>Exits the current mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# exit</td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>dial-peer voice tag voip</th>
<th>Enters dial-peer configuration mode for the VoIP peer designated by tag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# dial-peer voice 123 voip</td>
</tr>
</tbody>
</table>
Configuring Gateway RAS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>destination-pattern (string[T])</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# destination-pattern 1513200....</td>
<td>See Step 2 above.</td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>tech-prefix (number)</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# tech-prefix 9#</td>
<td>Defines the numbers used as the technology prefix that the gateway registers with the gatekeeper. Can contain up to 11 characters. Although not strictly necessary, a pound symbol (#) is frequently used as the last digit in a prefix. Valid characters: 0 to 9, #, and *.</td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>session target ras</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# session target ras</td>
<td>Specifies that the RAS protocol is being used to determine the IP address of the session target--meaning that a gatekeeper translates the E.164 address to an IP address.</td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# exit</td>
<td>Exits the current mode.</td>
</tr>
</tbody>
</table>

Verifying Basic RAS Configuration

To verify RAS configuration, perform the following step.

SUMMARY STEPS

1. `show dial-peer voice`

DETAILED STEPS

```
show dial-peer voice
```

Use this command to verify the POTS and VoIP dial-peer configuration.

The following example shows output for a VoIP dial peer using RAS on a Cisco AS5300:

Example:

```
Router# show dial-peer voice 1234
VoiceOverfipPeer1234
tag = 1234, destination-pattern = 1234',
answer-address = ',
```
Troubleshooting Tips for Basic RAS Configuration

- To display the types and addressing of RAS messages sent and received, use the `debug ras` command. The debug output lists the message type using mnemonics defined in ITU-T specification H.225.
- To display additional information about the actual contents of the H.225 RAS messages, use the `debug h225 asn1` command.

Configuring RAS Retries and Timers

You can configure RAS message timeout values, message retry counter values, and registration request (RRQ) message time-to-live and early transmit time margins on Cisco gateways. This provides greater flexibility in configuring gateways in different network environments.

The `ras timeout` command configures the number of seconds for the gateway to wait before resending a RAS message to a gatekeeper. The `ras retry` command configures the number of times to resend the RAS message after the timeout period expires. The default values for timeouts and retries are acceptable in most networks. You can use these commands if you are experiencing problems in RAS message transmission between gateways and gatekeepers. For example, if you have gatekeepers that are slow to respond to a type of RAS request, increasing the timeout value and the number of retries increases the call success rate, preventing lost billing information and unnecessary switchover to an alternate gatekeeper.

The `ras rrq ttl` command configures the number of seconds that the gateway should be considered active by the gatekeeper. The gateway transmits this value in the RRQ message to the gatekeeper. The `margin time` keyword and argument allow the gateway to transmit an early RRQ to the gatekeeper before the time-to-live value advertised to the gatekeeper.

To configure RAS message timeout values and retry counters, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. voice service voip
2. h323
3. ras timeout {all | arq | brq | drq | grq | rai | rrq} value
4. ras retry {all | arq | brq | drq | grq | rai | rrq} value
5. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>voice service voip</td>
</tr>
<tr>
<td>Example:</td>
<td>voice service voip</td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice service voip</td>
</tr>
<tr>
<td>Step 2</td>
<td>h323</td>
</tr>
<tr>
<td>Example:</td>
<td>h323</td>
</tr>
<tr>
<td></td>
<td>Router(conf-voi-serv)# h323</td>
</tr>
<tr>
<td>Step 3</td>
<td>**ras timeout {all</td>
</tr>
<tr>
<td>Example:</td>
<td>ras timeout all 10</td>
</tr>
<tr>
<td></td>
<td>Router(conf-serv-h323)# ras timeout all 10</td>
</tr>
<tr>
<td>Step 4</td>
<td>**ras retry {all</td>
</tr>
<tr>
<td>Example:</td>
<td>ras retry grq 5</td>
</tr>
<tr>
<td></td>
<td>Router(conf-serv-h323)# ras retry grq 5</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Router(conf-serv-h323)# exit</td>
</tr>
</tbody>
</table>
Configuring RRQ Time-to-Live Value

To configure the RRQ time-to-live value, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. `voice service voip`
2. `h323`
3. `ras rrq ttl time-to-live [margin time]`
4. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>voice service voip</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# voice service voip</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>h323</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(conf-voi-serv)# h323</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>ras rrq ttl time-to-live [margin time]</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(conf-serv-h323)# ras rrq ttl 90 margin 30</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(conf-serv-h323)# exit</code></td>
</tr>
</tbody>
</table>

Verifying RAS Retries and Timers

To verify RAS retries and timers, perform the following step.
SUMMARY STEPS

1. show running config

DETAILED STEPS

show running config
Use this command to verify RAS message retry counters, timeout values, and time-to-live values.

Example:

Router# show running-config
Current configuration : 925 bytes
!
version 12.3
.
.
voice service voip
h323
 ras rrq ttl 90 margin 30
 ras timeout all 7
 ras timeout grq 10
 ras timeout drq 30
 ras retry all 10
 ras retry grq 5
.
.

Examples for RAS Retries and Timers

The following example shows the GRQ message timeout value set to 10 seconds and all other RAS message timeout values set to 7 seconds:

Router(conf-serv-h323)# ras timeout grq 10
Router(conf-serv-h323)# ras timeout all 7
The following example shows the GRQ message counter set to 5 and all other RAS message counters set to 10:

Router(conf-serv-h323)# ras retry all 10
Router(conf-serv-h323)# ras retry grq 5
The following example shows the time-to-live value configured to 90 seconds and the margin time value configured to 30 seconds:

Router(conf-serv-h323)# ras rrq ttl 90 margin 30

Configuring Gateway-Resource-Availability Reporting

To allow gatekeepers to make intelligent call-routing decisions, the gateway reports the status of its resource availability to its gatekeeper. Resources that are monitored are digital-signal-level 0 (DS0) channels and digital-signal-processor (DSP) channels.
The gateway reports its resource status to the gatekeeper using the RAS Resource Availability Indication (RAI). When a monitored resource falls below a configurable threshold, the gateway sends a RAI to the gatekeeper indicating that the gateway is almost out of resources. When the available resources then cross over another configurable threshold, the gateway sends an RAI indicating that the resource depletion condition no longer exists.

You can configure resource-reporting thresholds by using the `resource threshold` command. Upper and lower thresholds are separately configurable to prevent the gateway from operating sporadically because of the availability or lack of resources.

Configuring E.164-Address Registration

If phones are connected directly to the gateway, the Cisco H.323 Version 2 gateway allows fully qualified E.164 numbers to be registered with the gatekeeper. When configuring the gateway, use the `register e164` command to register these E.164 numbers.

Configuring In-Band Tones and Announcements

In-band progress tones and announcements are required for PSTN services and for ISDN speech and 3.1-kHz voice services, per Bellcore and ANSI specifications. To guarantee that in-band tones and announcements are generated when required and at the appropriate switch, Cisco H.323 signaling software ensures that the progress indicator (PI) is carried end-to-end in call-signaling messages between the called party and the calling party. The PI in outbound dial peers can also be configured at the H.323 VoIP gateway, if necessary.

The PI is an IE that signals when in-band tones and announcements are available. The PI controls whether the local switch generates the appropriate tone or announcement or whether the remote switch is responsible for the generation. For example, if the terminating switch generates the ringback tone, it sends a PI of 1 or 8 in the alerting message. If the originating switch receives an alerting message without a PI, it generates the ringback tone.

The specific PI that a switch sends in call messages, if any, depends on the model of the switch. To ensure that in-band communication is generated appropriately, it may be necessary in some instances to override the default behavior of the switch by manually configuring the PI at the Cisco H.323 gateway.

The PI is configurable in setup messages from the outbound VoIP dial peer, typically at the originating gateway, and in alert, progress, and connect messages from the outbound POTS dial peer, typically at the terminating gateway. The PI is configured by the `progress_ind` command. The table below shows the PI values that can be configured on the H.323 gateway.

<table>
<thead>
<tr>
<th>PI</th>
<th>Description</th>
<th>Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No progress indicator is included.</td>
<td>Setup</td>
</tr>
<tr>
<td>1</td>
<td>Call is not end-to-end ISDN; further call progress information may be available in-band.</td>
<td>Alert, setup, progress, connect</td>
</tr>
<tr>
<td>2</td>
<td>Destination address is non-ISDN.</td>
<td>Alert, progress, connect</td>
</tr>
<tr>
<td>PI</td>
<td>Description</td>
<td>Message Type</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>3</td>
<td>Origination address is non-ISDN.</td>
<td>Setup</td>
</tr>
<tr>
<td>8</td>
<td>In-band information or appropriate pattern is now available.</td>
<td>Alert, progress, connect</td>
</tr>
</tbody>
</table>

When interworking is between ISDN and non-ISDN networks, the originating gateway reacts as follows:

- If the originating switch does not include a PI in setup messages, the originating gateway assumes that the originating switch is ISDN and expects the switch to generate the ringback tone. Determine which device generates the ringback tone by using the `progress_ind` command in dial-peer configuration mode:
 - To enable the terminating switch to generate the ringback tone, set the PI to 8 in the alert messages on the terminating gateway. The progress indicator is configured in the POTS dial peer.
 - To enable the originating gateway to generate the ringback tone, set the PI to 3 in setup messages on the originating gateway. The PI is configured in the VoIP dial peer.

Note

If the terminating gateway sends an alert message with no PI value, the originating gateway generates the ringback tone. But if the terminating gateway sends an alert message that has a PI of 1, 2, or 8, the originating gateway does not generate ringback tone.

- The originating gateway cuts through the voice path in the backward direction when it receives a progress or alert message that has a PI of 1, 2, or 8.

Note

Pure ISDN calls may use different protocols at the originating and terminating ends. For example, a call may originate on ETSI and terminate on NI2. If the two protocols are not compatible end to end, the gateway drops all IEs from messages, including the progress indicator. Because a progress indicator is required in all progress messages, the originating gateway inserts a PI of 1 in the progress message. To avoid dropping IEs, use the `isdn gateway-max-internetworking` command to prevent the gateway from checking protocol compatibility.

Configuring Gateway AAA

For the gateway to provide authentication and accounting services, enable and configure your gateway to support authentication, authorization, and accounting (AAA) services. AAA enables the gateway to interact with a RADIUS security server to authenticate users (typically incoming calls) and to perform accounting services.

Note

Configuring H.235 Gateway Security

This section contains the following information:

Information About H.235 Gateway Security

The Cisco H.235-based security and accounting features described in this section can be used by a gatekeeper, which is considered a known and trusted entity, to authenticate, authorize, and route H.323 calls.

The Cisco H.323 gateway supports the use of CryptoH323Tokens for authentication. The CryptoH323Token is defined in the ITU-T H.225 Version 2 standard and is used in a "password-with-hashing" security scheme as described in section 10.3.3 of the H.235 specification.

A cryptoToken can be included in any RAS message to authenticate the sender of the message. A separate database can be used for userID and password verification.

Cisco H.323 gateways support three levels of authentication:

- **Endpoint**—The RAS channel used for gateway-to-gatekeeper signaling is not a secure channel. To ensure secure communication, H.235 allows gateways to include an authentication key in their RAS messages. This key is used by the gatekeeper to authenticate the source of the messages. At the endpoint level, validation is performed on all messages from the gateway. The cryptoTokens are validated using the password configured for the gateway.

 Note

 To secure the RAS messages and calls, it is essential that the gatekeeper provides authentication based on the secure key. The gatekeeper must support H.235 security using the same security scheme as the Cisco gateway.

- **Per-Call**—When the gateway receives a call over the telephony leg, it prompts the user for an account number and PIN. These two numbers are included in certain RAS messages sent from the endpoint to authenticate the originator of the call.

- **All**—This option is a combination of the other two. With this option, the validation of cryptoTokens in ARQ messages is based on the account number and PIN of the user making a call. The validation of cryptoTokens sent in all the other RAS messages is based on the password configured for the gateway.

CryptoTokens for RRQs, unregistration requests (URQs), DROs, and the terminating side of ARQs contain information about the gateway that generated the token. The cryptoTokens include the gateway identification (ID)—which is the H.323 ID configured on the gateway—and the gateway password. The cryptoTokens for the originating-side ARQ messages contain information about the user that is placing the call, including the user ID and PIN.

Although the scenarios in this document describe how to use the security and accounting features in a prepaid call environment, these features may also be used to authorize IP calls that originate in another domain (interservice provider or intercompany calls).
H.235-based security and accounting features can be used with AAA. The gateway can be configured to use the gatekeeper for call authentication or authorization, and AAA can be used for call accounting.

In addition, H.235-based security and accounting features include support for the following:

- Settlement with the gatekeeper, which allows the gateway to obtain, track, and return accounting information
- Call metering, which allows the gateway to terminate a call if it exceeds the allotted time (in the case of prepaid calls)

Note

The H.235 security and accounting features described in this document are separate from, and should not be confused with, the standard interactive-voice-response (IVR) and AAA features used to authenticate inbound calls or with the settlement functions provided by the Open Settlement Protocol (OSP).

Settlement with the Gatekeeper

The H.235 security and accounting features are designed to support a variety of situations in which some form of authentication or tracking is required. The security features control access through a userID-password database. The accounting enhancements allow call usage to be tracked at the origin and at the destination.

Fields in the RAS messages allow the gateway to report call-usage information to the gatekeeper. The call-usage information is included in the DRQ message that is sent when the call is terminated.

Call Tracking

With prepaid calling services, an account number and PIN must be entered and the duration of the call must be tracked against the remaining credit of the customer. The Cisco H.323 gateway monitors prepaid account balances and terminates a call if the account is exceeded.
Because authentication information includes a time stamp, it is important that all Cisco H.323 gateways and gatekeepers (or other entities that perform authentication) be synchronized. Cisco H.323 gateways must be synchronized using the Network Time Protocol (NTP). The figure below illustrates the flow of a possible call for which H.323 security and accounting features are used.

Figure 7: Flow for a Call That Requires H.323 Security and Accounting Features

In this example, Telephone A is attempting to establish a phone call to Telephone B. The following numbered explanations correspond to the action taking place at each number in the figure above.

Gateways Establish Secure Communication with the Gatekeepers

1. Gateways A and B send GRQ messages to their respective gatekeepers. The GRQ message includes the authentication capability and the algorithm object ID.

2. Gatekeepers A and B respond to their respective gateways with gatekeeper confirmation (GCF) messages. The GCF message includes the authentication capability and the algorithm object ID.

3. If the values for the H.323 security parameters do not match what is expected, the gatekeeper responds with a gatekeeper rejection (GRJ) message that contains a reject reason of securityDenial. This prompts the gateway to resend the GRQ.

4. Gateways A and B send RRQ messages to their respective gatekeepers. The RRQ message includes authentication information in the cryptoToken field.

5. Gatekeepers A and B respond to their respective gateways with registration confirmation (RCF) messages. If an authentication failure occurs, the gatekeeper responds with a registration rejection (RRJ) message.
Secure Telephone Communications Initiated

1 Telephone A establishes a connection with Gateway A.

2 Gateway A initiates the IVR script to obtain the account number and PIN of the user and the desired destination telephone number.

3 Gateway A sends an ARQ message to Gatekeeper A. The gateway must include additional information in the ARQ message to enable the gatekeeper to authenticate the call. The information included in the ARQ message varies depending on whether the ARQ message is being sent by the source or the destination gateway. At this point in the scenario, it is the source gateway that is requesting admission. Therefore, the ARQ message includes the account number and PIN of the user. This information is encrypted using MD5 hashing and is included in the cryptoTokens field.

4 Gatekeeper A validates the authentication information, resolves the destination telephone number, and determines the appropriate destination gateway (which is Gateway B in this case). Then Gatekeeper A sends an admission confirmation (ACF) message to Gateway A. The ACF message includes the billing information of the user (such as a reference ID and current account balance for prepaid call services) and an access token.

5 Gateway A sends a setup message to Gateway B. The setup message also includes the access token.

6 Gateway B sends an ARQ message to Gatekeeper B. The ARQ message includes the access token received from Gateway A.

7 Gatekeeper B validates the authentication information in the access token and responds to Gateway B with an ACF message.

If the authentication information is in error, Gatekeeper B sends an admission rejection (ARJ) message to Gateway B with a reject reason of securityDenial.

1 Gateway B initiates a call to the destination telephone.

2 When the destination telephone is answered, Gateway B sends a connect message to Gateway A.

3 Gateways A and B start their timers to meter the call. If the caller is using prepaid call services, the meter is constantly compared to the account balance of the user, which was included in the ACF message sent in Step 9.

Telephone Communications Terminated

1 The call is terminated when one of the parties hangs up or, in the case of prepaid call services, when either of the gateways determines that the account balance of the user has been exceeded.

2 Gateways A and B send DRQ messages to their respective gatekeepers. The DRQ message contains the resulting billing information.

3 Gatekeepers A and B send disengage confirmation (DCF) messages to their respective gateways.

Communication Between the Gateways and the Gatekeepers Terminated

1 Gateways A and B send URQ messages to their respective gatekeepers.

2 Gatekeepers A and B send unregistration confirmation (UCF) messages to their respective gateways.
Downloading IVR Scripts

Tool Command Language (TCL) IVR scripts are the default scripts for all Cisco voice features that use IVR. The H.323 security and accounting enhancements described in this document require the use of one of the following IVR scripts:

- voip_auth_acct_pin_dest.tcl
- voip_auth_acct_pin_dest_2.tcl

Note

The voip_auth_acct_pin_dest.tcl script does the following:

- Prompts the caller to enter an account number, PIN, and destination number. This information is provided to an H.323 gatekeeper, which authenticates and authorizes the call.

If the caller is using a debit card account number, the following occurs:

- The gatekeeper returns the remaining credit time amount.
 - The TCL script monitors the time remaining and, based on a configured value, plays a "time running out" message to the caller. The message (such as, "You have only 3 minutes remaining on your credit.") is played only to the calling party. The called party hears silence during this time. For example, if the configured timeout value is 3 minutes, the message is played when the caller has only 3 minutes of credit left.
 - The TCL script plays a warning message when the credit of the user has been exhausted. The message (such as, “Sorry, you have run out of credit.”) is played only to the calling party. The called party hears silence during this time.

- Allows the caller to make subsequent calls to different destinations without disconnecting from the call leg. Thus, the caller is required to enter the account ID and PIN only once (during initial authorization). For making subsequent calls, the caller needs to enter only the destination number. After completing a call to one destination, the caller can disconnect the call by pressing the pound (#) key on the keypad and holding it down from 1 to 2 seconds. If the # key is pressed down for more than 1 second, it is treated as a long pound (#). The called party is disconnected, and the caller is prompted to enter a new destination number. Once a new destination number is entered, the call is authenticated and authorized using this number and the previously provided account number and PIN.

This feature also allows the caller to continue making additional calls if the called party hangs up.

- Reauthenticates and authorizes each new call. Each time a caller enters a new destination number, the TCL script reauthenticates or authorizes the call with the gatekeeper and, if the caller is using a debit card account, obtains the remaining credit time information.
• Allows the caller to enter the necessary information without having to hear all or any of the prompts. The TCL script stops playing (or does not begin playing) the prompt if it detects that the caller wants to enter the information without listening to the prompt.

The normal terminating character for the account number, PIN, and destination number is the pound (#) key.

• Allows the caller to interrupt announcements by pressing the touchtone key. This TCL script stops playing announcements when the system detects that the caller has pressed any touchtone key.

• Allows the caller to interrupt partially entered numbers and restart from the beginning by pressing a designated key on the keypad. The asterisk (*) key is configured as the interrupt key in the TCL script. The caller can use the asterisk key to cancel an entry and then reenter the account number, PIN, or destination number. The caller is allowed to re-enter a field only a certain number of times. The number of retries may be configured. The default is three times.

• Can terminate a field by size instead of the terminating character (#). The TCL script allows a specified number of digits to be entered in the account number and PIN fields. This means that the caller can type all the digits (without the terminating character) and the script determines how to extract different fields from the number strings. If the caller uses the terminating character, the terminating character takes precedence and the fields are extracted accordingly.

• Supports two languages. The IVR script supports two languages, which must be similar in syntax. The languages must be similar in the manner in which numbers are constructed—especially for currency, amount, and time. All the prompts are recorded and stored in both languages. The language selection is made when the caller presses a predefined key in response to a prompt (such as, "For English, press 1. For Spanish, press 2."). The TCL script uses the selected language until the caller disconnects.

voip_auth_acct_pin_dest_2.tcl Script

The voip_auth_acct_pin_dest_2.tcl script is a simplified version of the voip_auth_acct_pin_dest.tcl script. It prompts the caller for an account number followed by a PIN. The caller is then prompted for a destination number. This information is provided to the H.323 gatekeeper that authenticates and authorizes the call. This script provides prompts only in English.

If the caller is using a debit account number, it plays a "time running out" message when the caller has 10 seconds of credit time remaining. It also plays a "time has expired" message when the credit of the caller has been exhausted.

Configuring H.235 Gateway Security

To use the H.235 security features for routing H.323 calls as illustrated above, do the following:

• Enable H.323 security on the gateway.

• Download the appropriate TCL IVR scripts from the Cisco Connection Online Software Support Center. The URL to this site is as follows:

http://www.cisco.com/cgi-bin/tablebuild.pl/tclware

• Configure the IVR inbound dial peer on the gateway router.
To enable security on the gateway, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. gateway
2. security password *password* level {endpoint | per-call | all}
3. exit
4. dial-peer voice *tag* pots
5. call application voice application-name location word
6. destination-pattern string [T]
7. port controller-number :D
8. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>gateway</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# gateway</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters gateway configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>security password password level {endpoint</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-gateway)# security password password level all</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enables security and specifies the level of validation to be performed.</td>
</tr>
<tr>
<td></td>
<td>• password --Gateway password.</td>
</tr>
<tr>
<td></td>
<td>• endpoint --Validation is performed on all RAS messages sent by the gateway using the cryptoTokens that are generated based on the security password configured for the gateway.</td>
</tr>
<tr>
<td></td>
<td>• per-call --Validation is performed only on the admission messages from the H.323 endpoints to the gateway ARQ messages). The gateway prompts the user for an account number and PIN. These two numbers are sent from the endpoint and are used to authenticate the originator of the call.</td>
</tr>
<tr>
<td></td>
<td>• all --Combination of the endpoint and per-call options. Specifies that validation be performed on all RAS messages sent by the gateway. The validation of cryptoTokens in ARQ messages is based on the account number and PIN of the user making the call, and the validation of cryptoTokens sent in all other RAS messages is based on the password configured for the gateway.</td>
</tr>
<tr>
<td>Step 3</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-gateway)# exit</td>
</tr>
<tr>
<td>Purpose</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4
dial-peer voice tag pots
Example:
Router(config)# dial-peer voice 1 pots</td>
<td>Enters dial-peer configuration mode for the POTS dial peer designated by the tag value.</td>
</tr>
<tr>
<td>Step 5
call application voice application-name location word
Example:
Router(config-dial-peer)# call application voice xyz tftp://172.18.16.2/samp/xyz.tcl</td>
<td>Initiates the IVR application and the selected TCL application name. application-name -- Character string that defines the name of the application.location -- Location of the TCL file in URL format. Valid values: TFTP, FTP, or flash.word -- Text string that defines an attribute-value (AV) pair specified by the TCL script and understood by the RADIUS server.</td>
</tr>
<tr>
<td>Step 6
destination-pattern string [T]
Example:
Router(config-dial-peer)# destination-pattern 1513200...</td>
<td>Specifies the E.164 address associated with this dial peer. For an explanation of the keywords and arguments, see Configuring Gateway RAS, Step 2.</td>
</tr>
<tr>
<td>Step 7
port controller-number :D
Example:
Router(config-dial-peer)# port 0:D</td>
<td>(Cisco AS5300 only) Configures the voice port associated with this dial peer. Keywords and arguments are as follows:controller-number -- The T1 or E1 controller.:D -- D channel associated with the ISDN PRI.Note Command syntax varies by platform.</td>
</tr>
<tr>
<td>Step 8
exit
Example:
Router(config-dial-peer)# exit</td>
<td>Exits the current mode.</td>
</tr>
</tbody>
</table>

Verifying H.235 Gateway Security

To verify H.235 gateway security, perform the following step.

SUMMARY STEPS

1. show running-config
DETAILED STEPS

show running-config

Use this command to display the security password and level when it is enabled. By default, security is disabled.

Example:

```
Router# show running-config
security password 151E0A0E level all
```

Configuring Alternate-Gatekeeper Support

This section contains the following information:

Restrictions for Alternate-Gatekeeper Support

- You can use this feature only with a gatekeeper that supports the alternate gatekeeper functionality.
- The timer/retry number of RAS messages remains internal to the gateway as currently implemented. This feature does not include commands to allow tuning of these parameters.
- The alternate gatekeeper list is volatile—when the gateway loses power or is reset or reloaded, the alternate gatekeeper list that has been acquired from the gatekeeper is lost.

Information About Alternate-Gatekeeper Support

A gatekeeper manages H.323 endpoints in a consistent manner, allowing them to register with the gatekeeper and to locate another gatekeeper. The gatekeeper provides logic variables for proxies or gateways in a call path to provide connectivity with the Public Switched Telephone Network (PSTN), to improve quality of service (QoS), and to enforce security policies. Multiple gatekeepers may be configured to communicate with one another, either by integrating their addressing into the DNS or by using Cisco IOS configuration options.

An alternate gatekeeper provides redundancy for a gateway in a system in which gatekeepers are used. Redundant H.323 zone support in the gateway allows a user to configure two gatekeepers in the gateway (one as the primary and the other as the alternate). All gatekeepers are active. Each alternate gatekeeper, or gatekeeper node, shares its local zone information so that the cluster can effectively manage all local zones within the cluster. Each alternate gatekeeper has a unique local zone. Clusters provide a mechanism for distributing call processing seamlessly across a converged IP network infrastructure to support IP telephony, facilitate redundancy, and provide feature transparency and scalability.

An endpoint that detects the failure of its gatekeeper can safely recover from that failure by utilizing an alternate gatekeeper for future requests, including requests for existing calls. A gateway can only be registered to a single gatekeeper at a time. Only one gatekeeper is allowed to manage a single zone. The cluster manages up to five similarly configured zones and shares resources between the alternate gatekeepers in the cluster for each zone. You can define up to 100 zones in a single gatekeeper.
With gatekeeper clustering there is the potential that bandwidth may be overcommitted in a cluster. For example, suppose that there are five gatekeepers in a cluster and that they share 10 Mbps of bandwidth. Suppose that the endpoints registered to those alternates start placing calls quickly. It is possible that within a few seconds, each gatekeeper could be allocating 3 Mbps of bandwidth if the endpoints on each of the gatekeepers request that much bandwidth. The net result is that the bandwidth consumed in the cluster is 15 Mbps.

The alternate gatekeeper was purposely designed to restrict bandwidth because there is no clear way to sync bandwidth information quickly and efficiently. To work around this problem, "announcement" messages were restricted to intervals as small as 10 seconds. If the gatekeepers get into a situation in which endpoints request bandwidth rapidly, the problem is discovered and corrective action takes place within 10 seconds. Assuming that the gatekeepers are not synchronized on their timers, the announcement messages from the various gatekeepers are likely to be heard more quickly. Therefore, the problem is less severe. The potential exists, however, for overcommitment of the bandwidth between announcement messages if the call volume increases substantially in a short amount of time (as small as 10 seconds).

If you monitor your bandwidth, it is recommended that you consider lowering the maximum bandwidth so that if "spikes" such as those described above do occur, some bandwidth is still available.

Configuring Alternate-Gatekeeper Support

To configure alternate gatekeeper support on a gateway, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. `interface Ethernet 0/1`
2. `h323-gateway voip interface`
3. `h323-gateway voip id {ipaddr ip-address [port] multicast} [priority priority]`
4. `h323-gateway voip id {ipaddr ip-address [port] multicast} [priority priority]`
5. `h323-gateway voip h323-id interface-id`
6. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters interface configuration mode for the selected Ethernet interface.</td>
</tr>
<tr>
<td><code>interface Ethernet 0/1</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface Ethernet 0/1</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring H.323 Gateways

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>h323-gateway voip interface</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# h323-gateway voip interface</td>
</tr>
<tr>
<td>Step 3</td>
<td>h323-gateway voip id gatekeeper-id {ipaddr ip-address [port] multicast} [priority priority]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# h323-gateway voip id gk3.gg-dn1 ipaddr 172.18.0.0 1719</td>
</tr>
<tr>
<td>Step 4</td>
<td>h323-gateway voip id gatekeeper-id {ipaddr ip-address [port] multicast} [priority priority]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# h323-gateway voip id gk3.gg-dn1 ipaddr 172.18.0.0 1721</td>
</tr>
<tr>
<td>Step 5</td>
<td>h323-gateway voip h323-id interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# h323-gateway voip id gk4.gg-dn1 ipaddr 209.165.202.132 1719</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
</tr>
</tbody>
</table>

Verifying Configuration of Alternate-Gatekeeper Support

To verify configuration of alternate-gatekeeper support, perform the following step.

SUMMARY STEPS

1. show gateway

DETAILED STEPS

show gateway
Use this command to verify that an alternate gatekeeper is configured.

Example:

Router# show gateway
Permanent Alternate Gatekeeper List
priority 127 id bmx1 ipaddr 10.77.241.103 1719 register needed
priority 127 id bmx2 ipaddr 10.77.241.117 1719 register needed
Primary gatekeeper ID bmx1 ipaddr 10.77.241.103 1719

Configuring DTMF Relay

This section contains the following information:

Restrictions for DTMF Relay

- Asynchronous dtmf-relay signaling configuration is not supported.
- DTMF-relay signaling must have the same configuration on both the outbound gateway and the trunking gateway.

Information About DTMF Relay

Dual-tone multifrequency (DTMF) is the tone generated on a touchtone phone when the keypad digits are pressed. During a call, DTMF may be entered to access interactive voice response (IVR) systems, such as voice mail and automated banking services.

Although DTMF is usually transported accurately when using high-bit-rate voice codecs such as G.711, low-bit-rate codecs such as G.729 and G.723.1 are highly optimized for voice patterns and tend to distort DTMF tones. As a result, IVR systems may not correctly recognize the tones.

DTMF relay solves the problem of DTMF distortion by transporting DTMF tones "out of band," or separate from the encoded voice stream.

Relay Types

Cisco gateways currently support the following methods of DTMF relay:

- Cisco-proprietary Real-Time Transport Protocol (RTP)--DTMF tones are sent in the same RTP channel as voice data. However, the DTMF tones are encoded differently from the voice samples and are identified by a different RTP payload type code. Use of this method accurately transports DTMF tones, but because it is proprietary, it requires the use of Cisco gateways at both the originating and terminating endpoints of the H.323 call.

- H.245 signal or alphanumeric--These methods separate DTMF digits from the voice stream and send them through the H.245 signaling channel instead of through the RTP channel. The tones are transported in H.245 User Input Indication messages. The H.245 signaling channel is a reliable channel, so the packets that transport the DTMF tones are guaranteed to be delivered. However, because of the overhead
of using a reliable protocol, and depending on network congestion conditions, the DTMF tones may be slightly delayed. All H.323 version 2 compliant systems are required to support the "h245-alphanumeric" method, while support of the "h245-signal" method is optional.

• Named Telephone Events (NTEs). Using NTE to relay DTMF tones provides a standardized means of transporting DTMF tones in RTP packets according to section 3 of RFC 2833, RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals, developed by the Internet Engineering Task Force (IETF) Audio/Video Transport (AVT) working group. RFC 2833 defines formats of NTE RTP packets used to transport DTMF digits, hookflash, and other telephony events between two peer endpoints. With the NTE method, the endpoints perform per-call negotiation of the DTMF relay method. They also negotiate to determine the payload type value for the NTE RTP packets. User preference for DTMF relay types is not supported, and DTMF relay forking is not supported.

The ability of a gateway to receive DTMF digits in a particular format and the ability to send digits in that format are independent functions. No configuration is necessary to receive DTMF digits from another H.323 endpoint using any of the methods described. The Cisco gateway is capable of receiving DTMF tones transported by any of these methods at all times.

Capabilities and Priorities

Cisco H.323 gateways advertise capabilities using H.245 capabilities messages. By default, they advertise that they can receive all DTMF relay modes. If the capabilities of the remote gateway do not match, the Cisco H.323 gateway transmits DTMF tones as in-band voice.

Configuring DTMF relay on the Cisco H.323 gateway sets preferences for how the gateway handles DTMF transmission. You can enable more than one DTMF relay option for a particular dial peer. If more than one option is enabled and if the peer indicates that it is capable of receiving DTMF in more than one of these formats, the gateway sends DTMF using the method among the supported formats that it considers to be the most preferred. If the remote device supports multiple formats, the gateway chooses the format according to the following priority:

1. cisco-rtp (highest priority)
2. h245-signal
3. h245-alphanumeric
4. rtp-nte
5. None--DTMF sent in-band

Payload Types

In addition, Cisco gateways provide support for asymmetrical payload types. Payload types can differ between local and remote endpoints. Therefore, the Cisco gateway can transmit one payload type value and receive a different payload type value.

The `dtmf-relay h245-signal` command relays a more accurate representation of a DTMF digit than does the `dtmf-relay h245-alphanumeric` command because tone duration information is included along with the digit value. This information is important for applications requiring that a key be pressed for a particular length of time. For example, one popular calling card feature allows the caller to terminate an existing call by pressing the # key for more than 2 seconds and then making a second call without having to hang up in between. This feature is beneficial because the access number and personal identification number (PIN) code do not need to be dialed again. Outside-line access charges, which are common at hotels, may also be avoided.
The **dtmf-relay h245-alphanumeric** command simply relays DTMF tones as ASCII characters. For instance, the DTMF digit 1 is transported as the ASCII character 1. There is no duration information associated with tones in this mode. When the Cisco H.323 gateway receives a DTMF tone using this method, the gateway generates the tone on the PSTN interface of the call using a fixed duration of 500 ms. All systems that are H.323 Version 2-compliant are required to support the **dtmf-relay h245-alphanumeric** command, but support of the **dtmf-relay h245-signal** command is optional.

H.245 Tunneling of DTMF Relay in Conjunction with Fast Connect

Through H.245 tunneling, H.245 messages are encapsulated within H.225 messages without using a separate H.245 TCP connection. When tunneling is enabled, one or more H.245 messages can be encapsulated in any H.225 message. H.245 tunneling is not supported as a stand-alone feature; initiation of H.245 tunneling procedures can be initiated only by using the **dtmf-relay** command and only from an active fast connect call. Furthermore, if **dtmf-relay** is configured on a Version 2 VoIP dial peer and the active call has been established by using fast connect, tunneling procedures initiated by the opposite endpoint are accepted and supported. H.245 tunneling is backward compatible with H.323 Version 1 configurations.

Configuring DTMF Relay

To configure DTMF relay on a gateway, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. **dial-peer voice** *tag* *voip*
2. **dtmf-relay** [cisco-rtp] [h245-alphanumeric] [h245-signal] [rtp-nte]
3. **rtp payload-type** *nte* *number*
4. **codec** [clear-channel] | g711alaw | g711ulaw | g723ar53 | g723ar63 | g723r53 | g723r63 | g726r16 | g726r24 | g726r32 | g726r53 | g726r63 | g728 | g729abr8 | g729ar8 | g729br8 | g729r8 | gsmefr | gsmfr | [bytes payload_size]
5. **destination-pattern** *string* [T]
6. Cisco 2600 Series and Cisco 3600 Series
7. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Eneters dial-peer configuration mode for the VoIP dial peer designated by tag.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dial-peer voice tag voip</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Forwards DTMF tones. Keywords are as follows:</td>
</tr>
<tr>
<td></td>
<td>• cisco-rtp --Forwards DTMF tones by using RTP with a Cisco-proprietary payload type.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Example:** | • **h245-alphanumeric** --Forwards DTMF tones by using the H.245 "alphanumeric" User Input Indication (UII) method. Range: tones 0 to 9, *, #, and A to D. Use this keyword to configure DTMF relay.
  ```bash
  Router(config-dial-peer)# dtmf-relay cisco-rtp h245-alphanumeric h245-signal rtp-nte
  ``` |
| **Step 3** **rtp payload-type** **nte** **number** | Identifies the payload type of a Real-Time Transport Protocol (RTP) packet. Keyword and argument are as follows:
 • **nte number** --Payload type is a Named Telephone Event (NTE). Range: 96 to 127. Default: 101.
 Do not use the following numbers, because they have preassigned values: 96, 97, 100, 121 to 123, and 125 to 127.
 Use of these values causes the command to fail. You must first reassign the value in use to a different unassigned number, for example:
  ```bash
  rtp payload-type nse 105
  rtp payload-type nte 100
  ``` |
| **Example:** |
  ```bash
  Router(config-dial-peer)# rtp payload-type nte 100
  ``` |
| **Step 4** **codec** | Specifies the voice coder rate of speech for a dial peer.
  ```bash
  codec {clear-channel | g711alaw | g711ulaw | g723ar53 | g723ar63 | g723r53 | g723r63 | g726ar16 | g726ar24 | g726ar32 | g726ar53 | g726r32 | g726r53 | g728 | g729abr8 | g729r8 | g729br8 | g729r8 | gsmefr | gsmfr} [bytes payload_size]
  ``` |
| **Example:** |
  ```bash
  Router(config-dial-peer)# codec g711alaw
  ``` |
| **Step 5** **destination-pattern** **string** **[T]** | Specifies the prefix, the full E.164 telephone number, or an ISDN directory number to be used for a dial peer (depending on the dial plan).
 For an explanation of the keywords and arguments, see Configuring Gateway RAS, Step 2.
  ```bash
  Router(config-dial-peer)# destination-pattern 1513200....
  ``` |
| **Step 6** **Cisco 2600 Series and Cisco 3600 Series** | Specifies a network-specific address for a specified dial peer or destination gatekeeper.
  ```bash
  session target {ipv: destination-address | dns:$s$
  ``` |
Monitoring and Maintaining DTMF Relay

To monitor and maintain H.323 DTMF relay using NTE, use the following commands.

SUMMARY STEPS

1. debug voip rtp session named-event
2. show voip rtp connections

DETAILED STEPS

Step 1

debug voip rtp session named-event

Use this command to turn on debugging for RTP NTEs.

Step 2

show voip rtp connections

Use this command to display local and remote calling ID and IP address and port information.
Configuring FXS Hookflash Relay

A hookflash indication is a brief on-hook condition that occurs during a call. It is not long enough in duration to be interpreted as a signal to disconnect the call. Create a hookflash indication by quickly depressing and then releasing the hook on your telephone.

PBXs and telephone switches are frequently programmed to intercept hookflash indications and use them as a way to allow a user to invoke supplemental services. For example, your local service provider may allow you to enter a hookflash as a means of switching between calls if you subscribe to a call waiting service.

In the traditional telephone network, a hookflash results in a voltage change on the telephone line. Because there is no equivalent of this voltage change in an IP network, the ITU H.245 standard defines a message representing a hookflash. To send a hookflash indication using this message, an H.323 endpoint sends an H.245 user input indication message containing a "signal" structure with a value of "!". This value represents a hookflash indication.

Cisco H.323 Version 2 software includes limited support for relaying hookflash indications using the H.245 protocol. H.245 user input indication messages containing hookflash indications that are received on the IP call leg are forwarded to the plain old telephone service (POTS) call leg if the POTS interface is Foreign Exchange Office (FXO). If the interface is not FXO, any H.245 hookflash indication that is received is ignored. This support allows IP telephony applications to send hookflash indications to a PBX through the Cisco gateway and thereby invoke the IOS supplementary services of the PBX if the PBX supports access to those features using hookflash.

The gateway does not originate H.245 hookflash indications in this release. For example, it does not forward hookflash indications from foreign-exchange-station (FXS) interfaces to the IP network over H.245.

The acceptable duration of a hookflash indication varies by equipment vendor and by country. Although one PBX may consider a 250-ms on-hook condition to be a hookflash, another PBX may consider this condition to be a disconnect. Therefore, the timing hookflash-out command allows the administrator to define the duration of a hookflash signal generated on an FXO interface.

The figure below illustrates an FXS hookflash being translated to an H.245 user input.

Figure 8: Translating an FXS Hookflash to an H.245 User Input

In Cisco H.323 Version 2 software, an FXS hookflash relay is generated only if the following two conditions are met:

- The other endpoint supports the reception of an H.245 hookflash and advertise this using the "Receive User Input Capability" message during H.245 capabilities exchange.
- The call is established with either the h245-alphanumeric or h245-signal variant of the dtmf-relay command.
This implies that the VoIP dial peer is configured for dtmf-relay h245-alphanumeric or dtmf-relay h245-signal, but not cisco-rtp.

Enter the `timing hookflash-input` command on FXS interfaces to specify the maximum length of a hookflash indication. If the hookflash lasts longer than the specified limit, then the FXS interface processes the indication as an onhook.

To configure hookflash relay on a gateway, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. Cisco 2600 and 3600 Series
2. `timing hookflash-input duration`
3. `timing hookflash-out duration`
4. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Cisco 2600 and 3600 Series</td>
<td>Enters voice-port configuration mode. Keywords and arguments vary by platform.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>`Router(config)# voice-port {slot / subunit / port}</td>
<td>{slot / port:ds0-group-no}`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Cisco 7200 Series</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>`Router(config)# voice-port {slot / port:ds0-group-no}</td>
<td>{slot-number / subunit-number / port}`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# voice-port 1/0/0</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>timing hookflash-input duration</code></td>
<td>Specifies the maximum duration of a hookflash indication, in ms. If the hookflash lasts longer than the specified limit, the Foreign Exchange Station (FXS) interface processes the indication as an on-hook. Range: 50 to 1550. Default: 600.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-voice-port)# timing hookflash-input 200</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>timing hookflash-out duration
Example:
Router(config-voice-port)# timing hookflash-out 200</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit
Example:
Router(config-voice-port)# exit</td>
</tr>
</tbody>
</table>

Configuring Multiple Codecs

Normally only one codec is specified when a dial peer is configured on a gateway. However, you can configure a prioritized list of codecs to increase the probability of establishing a connection between endpoints during the H.245 exchange phase.

Codec-order preservation enables a gateway to pass codec preferences to the terminating leg of a VoIP call. This feature was developed primarily for Cisco multiservice IP-to-IP gateways (IPIPGWs), which are configured to use a transparent codec. The transparent codec enables an IPIPGW to pass codecs from the originating endpoint to the terminating endpoint; however, previous versions of the IPIPGW did not preserve the preferential order of the codecs.

With codec-order preservation, the IPIPGW passes codecs transparently from the originating device, listed in order of preference, to the terminating device. It also enables gateways to pass user-configured codecs in their preferred order when the endpoints exchange capabilities, enabling endpoints to use the codec that best suits both devices.

Codec-order preservation is enabled by default in Cisco gateways running Cisco IOS Release 12.3(1) and later releases. No further configuration is needed.

To configure multiple codecs for a dial peer, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. voice class codec tag
2. codec preference value codec-type [bytes payload-size]
3. exit
4. dial-peer voice tag voip
5. voice-class codec tag
6. exit
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>voice class codec tag</code></td>
<td>Enters voice-class configuration mode and assigns an identification tag number for a codec voice class. The tag argument is the unique number assigned to the voice class. Range: 1 to 10000. Each tag must be unique on the router. Example: <code>Router(config)# voice class codec 123</code></td>
</tr>
</tbody>
</table>
| 2 | `codec preference value codec-type [bytes payload-size]` | Adds codecs to the prioritized list of codecs. Keyword and arguments are as follows:
 - **value** --Order of preference, with 1 being the most preferred and 12 being the least preferred.
 - **codec-type** --Type of codec preferred.
 - **bytes payload-size** --Size of the voice frame in bytes. Values depend on the codec type and the packet voice protocol. Example: `Router(config-class)# codec preference 1 g711alaw` |
| 3 | `exit` | Exits the current mode. Example: `Router(config-class)# exit` |
| 4 | `dial-peer voice tag voip` | Enters dial-peer configuration mode for the VoIP dial peer designated by `tag`. Example: `Router(config)# dial-peer voice 456 voip` |
| 5 | `voice-class codec tag` | Assigns a previously configured codec selection preference list (codec voice class) to the VoIP dial peer designated by `tag`. Range: 1 to 10000. Maps to the tag number created using the voice class codec command. Example: `Router(config-dial-peer)# voice-class codec 123` |
| 6 | `exit` | Exits the current mode. Example: `Router(config-dial-peer)# exit` |

Verifying Preservation

To verify preservation, perform the following step.
SUMMARY STEPS

1. show running-config

DETAILED STEPS

```show running-config```
Use this command to verify the codecs defined for a particular prioritized list of codecs.

Router(config-dial-peer)# show running config

Configuring Rotary Calling Pattern

Rotary calling pattern routes an incoming call that arrives over a telephony interface back out through another telephony interface under certain circumstances. Rotary calling pattern primarily provides reliable service during network failures.

Call establishment using rotary calling pattern is supported by rotary group support of dial peers, where multiple dial peers may match a given destination phone number and be selected in sequence. In addition, if the destinations need to be tried in a certain order, preference may be assigned. Use the `preference` command when configuring the dial peers to reflect the preferred order (0 being the highest preference and 10 the lowest).

If several dial peers match a particular destination pattern, the system attempts to place a call to the dial peer configured with the highest preference. If the call cannot be completed because of a system outage (for example, the gatekeeper or gateway cannot be contacted), the rotary call pattern performs the following tasks:

- Lists all the conditions under which this instance occurs.
- Retries the call to the next highest preference dial peer.
- Continues until no more matching dial peers are found.

If there are equal priority dial peers, the order is determined randomly.


Configuring H.323 Support for Virtual Interfaces

H.323 support for virtual interfaces allows the IP address of the gateway to be configured so that the IP address included in the H.323 packet is always the source IP address of the gateway, regardless of the physical interface and protocol used. This single-address feature allows firewall applications to be easily configured to work with H.323 messages.
Configuring the Source IP Address of a Gateway

To configure a source IP address for a gateway, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `interface type slot/port`
2. `h323-gateway voip bind srcaddr ip-address`
3. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters interface configuration mode for the specified interface. Keywords and arguments vary by platform.</td>
</tr>
<tr>
<td><code>interface type slot/port</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface serial 0/0</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Sets the source IP address to be used for this gateway. The argument is as follows:</td>
</tr>
<tr>
<td><code>h323-gateway voip bind srcaddr ip-address</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# h323-gateway voip bind srcaddr 192.168.0.0</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

Verifying the Source IP Address of the Gateway

To verify the source IP address of the gateway, perform the following step.

**SUMMARY STEPS**

1. `show running-config`

**DETAILED STEPS**

`show running-config`
Use this command to verify the source IP address of the gateway. The output shows the source IP address that is bound to the interface.

Example:

```
router# show running-config
interface Loopback0
 ip address 10.0.0.0 255.255.255.0
 no ip directed-broadcast
 h323-gateway voip bind srcaddr 10.0.0.0
!
interface Ethernet0/0
 ip address 172.18.194.50 255.255.255.0
 no ip directed-broadcast
 h323-gateway voip interface
 h323-gateway voip id j70f_2600_gk2 ipaddr 172.18.194.53 1719
 h323-gateway voip h323-id j70f_3640_gw1
 h323-gateway voip tech-prefix 3#
```

In the following example, Ethernet interface 0/0 is used as the gateway interface. For convenience, the `h323-gateway voip bind srcaddr` command has been specified on the same interface. The designated source IP address is the same as the IP address assigned to the interface.

Example:

```
interface Ethernet0/0
 ip address 172.18.194.50 255.255.255.0
 no ip directed-broadcast
 h323-gateway voip interface
 h323-gateway voip id j70f_2600_gk2 ipaddr 172.18.194.53 1719
 h323-gateway voip h323-id j70f_3640_gw1
 h323-gateway voip tech-prefix 3#
 h323-gateway voip bind srcaddr 172.18.194.50
```

## Configuring Annex G

This section contains the following information:

### Information About Annex G

Annex G of the H.323 standard provides address resolution using border elements (BE). The BE (as described in Annex G) is colocated with the Cisco H.323 gatekeeper and provides additional address resolution capabilities. The BE can cache address information from neighboring BEs. When the gatekeeper receives a call that it cannot resolve, it can contact its local BE. If the address is in the BE’s cache, the BE on the gatekeeper sends an AccessRequest to the BE in the terminating domain. If the address is not in the BE’s cache, then the BE attempts to resolve the address by sending an AccessRequest to each of its neighboring BEs.
The Annex G BEs support Hot Standby Routing Protocol (HSRP) for high reliability and availability. You can identically configure multiple gatekeepers and BEs and use HSRP to designate a primary BE and other standby BEs. If the primary BE is down, a standby BE operates in its place. You configure the local address with an HSRP address in BE configuration.

The figure below illustrates a call flow for a scenario in which a call has originated in the zone administered by Border Element D, but the address cannot be resolved locally.

**Figure 9: Address Resolution Using Border Elements**

![Diagram of address resolution using border elements]

The table below describes how address resolution works in the illustration.

**Table 4: Address Resolution Using Border Elements**

<table>
<thead>
<tr>
<th>Elements</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway A to Gatekeeper D/Border Element D</td>
<td>GW A sends an ARQ to GK D/BE D.</td>
</tr>
<tr>
<td>Gatekeeper D/Border Element D to Border Element B</td>
<td>GK D/BE D is a noncaching BE and cannot resolve the address internally. Therefore, BE D sends an AccessRequest to BE B.</td>
</tr>
<tr>
<td>Border Element B to Border Element F/Gatekeeper F</td>
<td>BE B searches its cache to for the closest match and locates a descriptor that indicates that the access request should be sent to BE F/GKF.</td>
</tr>
<tr>
<td>Border element F/gatekeeper F to Border Element D</td>
<td>BE F/GKF F returns an access confirmation to BE D. The access confirmation contains a template with a single address indicating where the SETUP message should be sent.</td>
</tr>
<tr>
<td>Gatekeeper D/Border Element D to Gateway A</td>
<td>GK D/BE D sends an ACF to GW A.</td>
</tr>
<tr>
<td>Gateway A to Gateway F</td>
<td>GW A sends a SETUP message to GW F.</td>
</tr>
</tbody>
</table>
Configuring and Provisioning an Annex G Border Element

To configure and provision an Annex G border element, use the following commands beginning in global configuration mode.

Note
Cisco supports one BE per gatekeeper.

SUMMARY STEPS

1. call-router h323-annexg border-element-id
2. local ip ip-address [port local-port]
3. neighbor ip-address
4. port neighbor-port
5. id neighbor-id
6. cache
7. query-interval query-interval
8. exit
9. Repeat Steps 3 to 8 for each neighbor BE that you configure.
10. advertise [static | dynamic | all]
11. ttl value
12. hopcount value
13. no shutdown
14. timer accessrequest sequential delay value
15. exit
16. gatekeeper
17. h323-annexg border-element-id cost cost priority priority
18. prefix prefix* * [seq | blast]
19. exit
20. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters Annex G configuration mode for the border element.</td>
</tr>
</tbody>
</table>

Example:

```
Router(config)# call-router h323-annexg be20
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong> local ip ip-address [port local-port]</td>
<td>Defines the local domain, including the IP address and port that this BE should use for interacting with remote BEs. Specify a port only if you want to use a nonstandard port number; otherwise, use the default standard well-known port 2099.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-annexg)# local ip 192.168.0.0</td>
</tr>
<tr>
<td><strong>Step 3</strong> neighbor ip-address</td>
<td>Enters neighbor configuration mode to configure a neighboring BE that interacts with the local BE for the purpose of obtaining addressing information and aiding in address resolution.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-annexg)# neighbor 192.168.0.0</td>
</tr>
<tr>
<td><strong>Step 4</strong> port neighbor-port</td>
<td>(Optional) Specifies the neighbor’s port number that is used for exchanging Annex G messages. Default: 2099. Do not use this command if you want to use the default value; use it only if you want a value other than 2099.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-annexg-neigh)# port 2000</td>
</tr>
<tr>
<td><strong>Step 5</strong> id neighbor-id</td>
<td>(Optional) Sets the local ID of the neighboring BE. The ID is used locally to identify the neighbor and has no global significance in the Annex G network.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-annexg-neigh)# id be20</td>
</tr>
<tr>
<td><strong>Step 6</strong> cache</td>
<td>(Optional) Configures the local BE to cache the descriptors received from its neighbors. If caching is enabled, the neighbors are queried at the specified interval for their descriptors.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-annexg-neigh)# cache</td>
</tr>
<tr>
<td><strong>Step 7</strong> query-interval query-interval</td>
<td>(Optional) Sets the interval at which the local BE queries the neighboring BE, in minutes. Default: 30. Do not use this command if you want to use the default query interval; use it only if you want a query interval other than 30 minutes.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-annexg-neigh)# query-interval 20</td>
</tr>
<tr>
<td><strong>Step 8</strong> exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-annexg-neigh)# exit</td>
</tr>
<tr>
<td><strong>Step 9</strong> Repeat Steps 3 to 8 for each neighbor BE that you configure.</td>
<td>--</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Step 10</td>
<td>`advertise [static</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td><code>ttl value</code></td>
</tr>
<tr>
<td>Step 12</td>
<td><code>hopcount value</code></td>
</tr>
<tr>
<td>Step 13</td>
<td><code>no shutdown</code></td>
</tr>
<tr>
<td>Step 14</td>
<td><code>timer accessrequest sequential delay value</code></td>
</tr>
<tr>
<td>Step 15</td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Step 16</td>
<td><code>gatekeeper</code></td>
</tr>
<tr>
<td>Step 17</td>
<td><code>h323-annexg  border-element-id  cost  cost  priority  priority</code></td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

**Example:**

Router(config-gk)# h323-annexg be20
cost 35 priority 20

| Step 18 | prefix prefix* * [seq | blast] | (Optional) Specifies the prefixes for which a BE should be queried for address resolution. Default: the GK forwards all remote zone queries to the BE. Do not use this command unless you want to restrict queries sent to the BE to a specific prefix or set of prefixes. |
|---------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example: | Router(config-gk-annexg)# 419* |                                                                                                                                                                                                 |

<table>
<thead>
<tr>
<th>Step 19</th>
<th>exit</th>
<th>Exits the current mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-gk-annexg)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 20</th>
<th>exit</th>
<th>Exits the current mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-gk)# exit</td>
<td></td>
</tr>
</tbody>
</table>

### Removing an Annex G Border Element ID

To remove an Annex G border element ID, use the following commands beginning in global configuration mode.

- **border-element-id** -- Identifier of the border element that you are provisioning. Associates the gatekeeper with the BE identifier that is configured on the BE. Valid values: any International Alphabet 5 (IA5) string, without spaces and up to 20 characters in length.
- **cost** -- Cost associated with this border element. A gatekeeper sends requests to remote zones and to the BE in its attempt to resolve an address, the remote zone or BE that resolves the address and has the lowest cost and highest priority is given preference. Range: 1 to 99. Default: 50.
- **priority** -- Priority associated with this border element. When a gatekeeper sends requests to remote zones and to the BE in its attempt to resolve an address, the remote zone or BE that resolves the address and has the lowest cost and highest priority is given preference. Range: 1 to 99. Default: 50.
SUMMARY STEPS

1. call-router h323-annexg border-element-id
2. neighbor ip-address
3. no id neighbor-id
4. exit
5. Repeat Steps 3 to 8 for each neighbor BE that you configure.
6. shutdown
7. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>call-router h323-annexg border-element-id</td>
<td>Enters Annex G configuration mode for the border element.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# call-router h323-annexg be20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>neighbor ip-address</td>
<td>Enters neighbor configuration mode to configure a neighboring BE that interacts with the local BE for the purpose of obtaining addressing information and aiding in address resolution.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-annexg)# neighbor 192.168.0.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>no id neighbor-id</td>
<td>Removes a neighbor ID from the list of configured neighbor BEs.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-annexg-neigh)# no id be20</td>
<td>Note: If a undefined neighbor ID is entered a error message stating &quot;Entry not valid, id not configured&quot;.</td>
</tr>
<tr>
<td>4</td>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-annexg-neigh)# exit</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Repeat Steps 3 to 8 for each neighbor BE that you configure.</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>shutdown</td>
<td>Starts the BE. By default, when a BE is first configured, it is shut down, so you must use this command after you configure each BE.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-annexg)# no shutdown</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-annexg-neigh)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Basic Service Relationships

Cisco H.225 Annex G implementation supports the minimal set of Annex G features that are needed to allow Cisco border elements (BE) to interoperate with other BEs per the iNow profile for IP telephony interoperability. The implementation also allows Cisco BEs to interoperate with ClearingHouse and other third-party elements. The figure below depicts a basic network configuration of BEs, gatekeepers, and Clearing Houses. This feature addresses the link between the gatekeeper/border element (GK/BE) in a Cisco domain and the ClearingHouse border element that complies with the Annex G specification and the iNow profile.

Figure 10: Basic Network Configuration

Restrictions for Basic Service Relationships

Restrictions

- Authentication is not supported
- Packet-level integrity checking is not supported.
- ClearingHouse CryptoTokens are not supported.
- Clustered gatekeeper and border element are not supported.
- Interoperation with LRQ-based gatekeeper networks is not supported.
- Layered Annex G networks are not supported.
- Usage indications are supported only within the context of active Service Relationships.

Prerequisites

- Provision Annex G border elements before configuring Annex G service relationships.
### SUMMARY STEPS

1. call-router h323-annexg  
   border-element-id
2. access-policy neighbors-only
3. domain-name  
   id
4. neighbor  
   ip-address
5. service-relationship
6. outbound retry-interval  
   interval_number
7. inbound ttl  
   ttl-value
8. no shutdown
9. exit
10. exit
11. exit

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** call-router h323-annexg  
   border-element-id | Enters Annex-G configuration mode for the specified border element. |
| Router(config)# call-router h323-annexg be20 | |
| **Step 2** access-policy neighbors-only | As a prerequisite for configuring service relationships, sets the access-policy to accept requests only from known neighbors. Default: no access-policy allows request from any border element. |
| Router(config-annexg)# access-policy neighbors-only | |
| **Step 3** domain-name  
   id | Sets the domain name reported in service relationships. |
| Router(config-annexg)# domain-name id | |
| **Step 4** neighbor  
   ip-address | Enters neighbor configuration mode to configure a neighboring BE that interacts with the local BE for the purpose of obtaining addressing information and aiding in address resolution. |
| Router(config-annexg-neigh)# neighbor  
   192.168.0.0 | |
| **Step 5** service-relationship | Enters service-relationship mode. |
| Router(config-annexg-neigh)#  
   service-relationship | |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>outbound retry-interval</strong> <em>interval_number</em></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-nxg-neigh-svc)# outbound retry-interval 15</td>
</tr>
<tr>
<td>(Optional)</td>
<td>Defines the retry period for attempting to establish the outbound relationship between border elements, in seconds. Default: 30.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>inbound <em>ttl</em> <em>ttl-value</em></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-nxg-neigh-svc)# inbound 100</td>
</tr>
<tr>
<td>(Optional)</td>
<td>Sets the duration of the inbound service relationship and interval in which the remote peer must reestablish the service relationship, in seconds. Default: 120.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>no shutdown</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-nxg-neigh-svc)# no shutdown</td>
</tr>
<tr>
<td>Enables the service relationship.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-nxg-neigh-svc)# exit</td>
</tr>
<tr>
<td>Exits the current mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-annexg-neigh)# exit</td>
</tr>
<tr>
<td>Exits the current mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-annexg)# exit</td>
</tr>
<tr>
<td>Exits the current mode.</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring Usage Indication**

To enter usage indication submode and configure usage-indicators after service relationships are established, use the following commands beginning in global configuration mode.
### SUMMARY STEPS

1. `call-router h323-annexg border-element-id`
2. `neighbor ip-address`
3. `usage-indication`
4. `retry interval seconds`
5. `retry window minutes`
6. `exit`
7. `exit`
8. `Router(config-annexg)# exit`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>call-router h323-annexg border-element-id</code></td>
<td>Enters Annex-G configuration mode for the specified border element.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config)# call-router h323-annexg be20</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>neighbor ip-address</code></td>
<td>Enters neighbor configuration mode to configure a neighboring BE that interacts with the local BE for the purpose of obtaining addressing information and aiding in address resolution.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config-annexg)# neighbor 192.168.0.0</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>usage-indication</code></td>
<td>Enters config-nxg-neigh-usg mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config-annexg-neigh)# usage-indication</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>retry interval seconds</code></td>
<td>(Optional) Defines the time, in seconds, between delivery attempts. Default: 900.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config-nxg-neigh-usg)# retry interval 600</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>retry window minutes</code></td>
<td>(Optional) Defines the total time, in minutes, that a border element attempts delivery. Default: 1440 (24 hours).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config-nxg-neigh-usg)# retry window 1200</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>exit</code></td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits the current mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-annexg-neigh)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-annexg)# exit</td>
<td>Exits the current mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-annexg)# exit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Verifying Annex G Configuration**

To verify Annex G configuration, perform the following step.

**SUMMARY STEPS**

1. show call-router status

**DETAILED STEPS**

**show call-router status**

Use this command to display Annex G border-element status.

**Example:**

Router# show call-router status neighbors

ANNEX-G CALL ROUTER STATUS:

-----------------------------
Border Element ID Tag : Celine
Domain Name : Celine-Domain
Border Element State : UP
Border Element Local IP : 172.18.193.31:2099
Advertise Policy : STATIC descriptors
Hopcount Value : 7
Descriptor TTL : 3180
Access Policy : Neighbors only
Current Active Calls : 0
Current Calls in Cache : 0
Cumulative Active Calls : 0
Usage Ind Messages Sent : 0
Usage Ind Cfm Rcvd : 0
IRRs Received : 0
DRQs Received : 0
Usage Ind Send Retrys : 0
NEIGHBOR INFORMATION:

-----------------------------
Local Neighbor ID : (none)
Remote Element ID : (unknown)
Remote Domain ID : (unknown)
IP Addr : 1.2.3.4:2099
Configuring H.225

This section contains the following information:

**Associating the H.323 Voice Class with Each VoIP Dial Peer**

To associate the H.323 voice class with a dial peer, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. **dial-peer voice tag voip**
2. **voice-class h323 number**
3. **exit**

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>dial-peer voice  tag voip</td>
<td>Enters dial-peer configuration mode for the remote VoIP dial peer designated by <em>tag</em>.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dial-peer voice 123 voip</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>voice-class h323 number</td>
<td>Associates the specified H.323 voice class (and all of its related attributes) with the dial peer.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# voice-class h323 456</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>exit</td>
</tr>
</tbody>
</table>

### Configuring the SETUP Response Timeout Value

To configure the timeout value for the response of the outgoing SETUP message, use the following commands in global configuration mode.

#### SUMMARY STEPS

1. `voice class h323 number`
2. `h225 timeout setup value`
3. `exit`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters voice-class mode to create or modify the specified H.323 voice class.</td>
</tr>
<tr>
<td>voice class h323</td>
<td>number</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td>voice class h323 123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Step 2</strong></th>
<th>Sets the timeout value, in seconds, for the response of the outgoing SETUP message. If the timer expires, the GK tries an alternate endpoint (if configured and specified in the ACF); otherwise, it terminates the call. Range: 0 to 30. Default: 15.</th>
</tr>
</thead>
<tbody>
<tr>
<td>h225 timeout setup</td>
<td>value</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-class)#</td>
<td>h225 timeout setup 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Step 3</strong></th>
<th>Exits the current mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-class)#</td>
<td>exit</td>
</tr>
</tbody>
</table>
Configuring the Number of Concurrent Calls Per Connection

To limit the number of concurrent calls on an H.225 TCP connection, use the following commands in global configuration mode.

**SUMMARY STEPS**

1. `voice service voip`
2. `h323`
3. `session transport tcp [calls-per-connection value]`
4. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>voice service voip</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice service voip</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters voice-service configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>h323</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(conf-voi-serv)# h323</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters H.323-voice-service configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>session transport tcp [calls-per-connection value]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(conf-serv-h323)# session transport tcp</td>
</tr>
<tr>
<td>Purpose</td>
<td>Sets the number of concurrent calls for a single TCP connection. Range: 1 to 9999. Default: 5.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(conf-serv-h323)# exit</td>
</tr>
<tr>
<td>Purpose</td>
<td>Exits the current mode.</td>
</tr>
</tbody>
</table>

Changing the Idle Timer for Concurrent Calls

To change the H.225 idle timer for concurrent calls, use the following commands in global configuration mode.
SUMMARY STEPS

1. voice service voip
2. h323
3. h225 timeout tcp call-idle \{value value | never\}
4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>voice service voip</td>
<td>Enters voice-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>h323</td>
<td>Enter s H.323-voice-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(conf-voi-serv)# h323</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>h225 timeout tcp call-idle {value value</td>
<td>never}</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(conf-serv-h323)# h225 timeout tcp call-idle never</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(conf-serv-h323)# exit</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring Overlap Signaling on H.323 Terminating Gateways**

The terminating gateway is responsible for collecting all the called number digits. Overlap signaling is implemented by matching destination patterns on the dial peers. When H.225 signal overlap is configured on the originating gateway, it sends the SETUP to the terminating gateway once a dial-peer match is found. The originating gateway sends all further digits received from the user to the terminating gateway using INFO messages until it receives a sending complete message from the user. The terminating gateway receives the digits in SETUP and subsequent INFO messages and does a dial-peer match. If a match is found, it sends a SETUP with the collected digits to the PSTN. All subsequent digits are sent to the PSTN using INFO messages to complete the call.

To configure overlap signaling on H.323 terminating gateways, perform the following steps.
### SUMMARY STEPS

1. `voice service voip`
2. `h323`
3. `h225 signal overlap`
4. `h225 timeout t302 seconds`
5. `exit`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>Enters VoIP voice-service configuration mode.</strong></td>
</tr>
<tr>
<td><code>voice service voip</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config)# voice service voip</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>Enters H.323 voice-service configuration mode.</strong></td>
</tr>
<tr>
<td><code>h323</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(conf-voi-serv)# h323</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>Activates overlap signaling to the destination gateway.</strong></td>
</tr>
<tr>
<td><code>h225 signal overlap</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(conf-serv-h323)# h225 signal overlap</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>Sets the t302 timer timeout value. The argument is as follows:</strong></td>
</tr>
<tr>
<td><code>h225 timeout t302 seconds</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(conf-serv-h323)# h225 timeout t302 15</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>Exits the current mode.</strong></td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(conf-serv-h323)# exit</code></td>
</tr>
</tbody>
</table>

### Configuring No Retry on User Busy in an H.323 Gateway

This section describes how to configure the alternate endpoint hunt for failed calls in an IP-to-IP Gateway (IPIPGW) based on Q.850 disconnect cause codes.
The default behavior of the gateway is to retry all alternate endpoints received from the gatekeeper regardless of the ReasonComplete reason. Perform this task if you want to stop the alternate endpoint hunt retry attempts when the ReasonComplete is User-busy or Invalid-number.

**SUMMARY STEPS**

1. *enable*
2. *configure terminal*
3. *voice service voip*
4. *h323*
5. *no h225 alt-ep hunt user-busy*

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><em>enable</em></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><em>configure terminal</em></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><em>voice service voip</em></td>
<td>Enters voice service configuration mode and specifies a voice encapsulation type.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><em>h323</em></td>
<td>Enters H.323 configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(conf-voice-service)# h323</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><em>no h225 alt-ep hunt user-busy</em></td>
<td>Enables alternate endpoint hunts.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• all--Continue hunt for all disconnect cause codes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• cause-code--May be entered as standard Q.850 number or as text.</td>
</tr>
</tbody>
</table>
|        |                      | Note: Alternate endpoint hunt is enabled for all cause codes by default. Command will be visible only for the negated hunt cause codes (with no prefixed).
|        |                      | Note: This functionality, requires a Cisco Gatekeeper. See the "Configuring H.323 Gatekeepers and Proxies" chapter of this guide. |
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>voice service voip</td>
<td>Enlists voice-service configuration mode.</td>
</tr>
<tr>
<td>h323</td>
<td>Enters H.323-voice-service configuration mode.</td>
</tr>
</tbody>
</table>

### Examples

The following example shows a configuration that disables the alternate endpoint hunt for user busy and no answer:

```plaintext
! voice service voip
h323
no h225 alt-ep hunt user-busy
no h225 alt-ep hunt no-answer
!
```

### Configuring the VoIP Transport Method

To configure the VoIP transport method, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. voice service voip
2. h323
3. session transport {udp | tcp}
4. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>voice service voip</td>
<td>Enters voice-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>h323</td>
<td>Enters H.323-voice-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(conf-voi-serv)# h323</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Zone Bandwidth Management

In the current version of the Cisco H.323 gateway (which conforms with H.323 version 3), the reported bandwidth is bidirectional. Initially, 128 kb is reserved. If the endpoints in the call select a more efficient codec, the gatekeeper is notified of the bandwidth change.

If you prefer to use the behavior of previous Cisco H.323 gateway versions for zone bandwidth management, configure the gateway accordingly.

To configure the Cisco H.323 gateway to use its previous behavior, use the following commands beginning in global configuration mode.

#### SUMMARY STEPS

1. gateway
2. emulate cisco h323 bandwidth
3. exit

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> gateway</td>
<td>Enters gateway configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# gateway</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> emulate cisco h323 bandwidth</td>
<td>Sets the gateway to use its previous behavior for bandwidth management.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-gateway)# emulate cisco h323 bandwidth</td>
<td></td>
</tr>
</tbody>
</table>
**Configuring Generic Transparency Descriptor for GKTMP Using SS7 Interconnect for Voice Gateways Version 2.0**

This section contains the following information:

**Information About GTD for GKTMP Using SS7 Interconnect for Voice Gateways**

The GTD for GKTMP Using SS7 Interconnect for Voice Gateways feature provides additional functionality to Cisco gateways and gatekeepers in a Cisco SS7 Interconnect for Voice Gateways Solution. The generic transparency descriptor or generic telephony descriptor (GTD) format is defined in the a Cisco-proprietary draft. GTD format defines parameters and messages of existing SS7 ISUP protocols in text format and allows SS7 messages to be carried as a payload in the H.225 RAS messages between gateway and gatekeeper. With the GTD feature, the gatekeeper extracts the GTD message and the external route server derives routing and accounting information based upon the GTD information provided from the Cisco Gatekeeper Transaction Message Protocol (GKTMP).

Currently routing on Cisco gateways is based on generic parameters such as originating number, destination number, and port source. Adding support for SS7 ISUP messages allows the VoIP network to use additional routing enhancements found in traditional TDM switches.

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>.Router (config-gateway) # exit</td>
<td></td>
</tr>
</tbody>
</table>
The figure below shows an example of a Cisco SS7 Interconnect for Voice Gateways solution using the GTD feature.

Figure 11: Cisco SS7 Interconnect for Voice Gateways Solution With the GTD Feature

In the originating network, the following events occur:

- The Cisco SC2200 receives SS7 messages from the SS7 network and encapsulates them into GTD format. The messages are then passed to the Cisco originating gateway (OGW).
- Using the GTD feature, the OGW transmits the GTD payload in the Admission Request (ARQ) message to GK1.
- GK1 transmits the GTD payload in a Location Request (LRQ) message to GK2.
- GK 2 uses GKTMP with the GTD feature to decode the GTD payload and transmits it to the route server with the REQUEST LRQ message.
- The route server returns a RESPONSE LCF (Location Confirmation) message that includes the GTD payload to GK2. The route server also returns a service descriptor code (SC) field to GK2. (The SC field is transmitted to the AAA server for billing purposes. The SC field conveys the Carrier ID and trunk number information that is determined by and passed from the Route Server.)
- GK2 passes the LCF that includes the GTD payload and the SC field to GK1.
- GK1 sends an Admission Confirmation (ACF) message that includes the GTD payload to the OGW, along with the SC field.
- The OGW sends the SC field and call detail records (CDRs) to the AAA server.
- When the call ends, the Cisco SC2200 receives the SS7 messages, encodes them into GTD format, and passes them to the OGW.
- The OGW sends a Disengage Request (DRQ) with the GTD payload to GK1.
• GK1 sends the DRQ with the GTD payload to the route server.

In the terminating network, the following events occur:
• The OGW sends the GTD in H.225 the SETUP message to the terminating gateway (TGW).
• The TGW sends regular RAS messages to the gatekeeper.

Prerequisites for GTD for GKTMP Using SS7 Interconnect for Voice Gateways

• Configure your VoIP network and the Cisco SS7 Interconnect for Voice Gateways Solution, including the following components:
  • Cisco SC2200--Cisco MGC Software Release 9.1(5) or higher
  • Cisco IOS gateways--Cisco IOS Release 12.2(2)XU or higher
  • Cisco IOS gatekeepers--Cisco IOS Release 12.2(2)XU or higher
  • Route servers
  • AAA servers

Note: For more information on software and components of the Cisco SS7 Interconnect for Voice Gateways Solution, see the release notes and other documentation at http://www.cisco.com/univercd/cc/td/doc/product/access/sc/rel7/soln/das/index.htm

Configuring GTD System-Wide

To configure the GTD feature system-wide for a VoIP network, enter the commands shown below. If you want to configure the feature on individual dial peers rather than system-wide, use the commands in the "Configuring GTD for a Dial Peer" module.

SUMMARY STEPS

1. voice service voip
2. signaling forward { unconditional | none }
3. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>voice service voip</td>
<td>Enters voice-service configuration mode.</td>
</tr>
</tbody>
</table>

Example:

Router(config)# voice service voip
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>signaling forward</td>
<td>Chooses whether or not the gateway forwards signaling payload to another gateway. Keywords are as follows:</td>
</tr>
<tr>
<td>{unconditional}</td>
<td>• unconditional --Forward payload to the remote end, even if the attached external route server has modified the payload.</td>
</tr>
<tr>
<td>{none}</td>
<td>• none --Do not forward payload.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(conf-voi-serv)# signaling forward unconditional</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(conf-voi-serv)# exit</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring GTD for a Dial Peer

To configure the GTD feature on an individual dial peer, follow the steps below.

**SUMMARY STEPS**

1. dial-peer voice tag voip
2. signaling forward conditional | unconditional | none
3. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>dial-peer voice</td>
<td>Enters dial-peer configuration mode for the VoIP dial peer designated by tag.</td>
</tr>
<tr>
<td>tag voip</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dial-peer voice 4 voip</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Chooses whether or not the gateway forwards signaling payload to another gateway. Keywords are as follows:</td>
</tr>
<tr>
<td>signaling forward</td>
<td>• conditional --Forward payload as defined in the session target command.</td>
</tr>
<tr>
<td>conditional</td>
<td>• If the target is a non-RAS target, forward to the H.323 endpoint using H.225 messages.</td>
</tr>
<tr>
<td>unconditional</td>
<td>• If the target is a RAS target, for a non-GTD payload, forward. For a GTD payload, encapsulate the payload in an ARQ/DRQ message and send it to the originating gateway. The gateway conveys the</td>
</tr>
<tr>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# signaling forward conditional</td>
<td></td>
</tr>
</tbody>
</table>
payload to the GKTMP and external route server for a flexible route decision based up the ISUP GTD parameters. The gateway then conditionally forwards the payload based upon the route server's instruction.

- **unconditional** -- Forward the payload to the remote end, even if the attached external route server has modified the payload.
- **none** -- Do not forward payload.

**Step 3**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
</tbody>
</table>

**Example:**

Router(config-dial-peer)# exit

---

**Verifying GTD**

To verify GTD, perform the following step.

**SUMMARY STEPS**

1. **show running-config**

**DETAILED STEPS**

**show running-config**

Use this command to verify that the GTD feature is configured.

The following shows sample output for system-wide employment.

**Example:**

Router# show running-config
Building configuration...
Current configuration : 4192 bytes
!
version 12.2
service config
no service single-slot-reload-enable
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service internal
service udp-small-servers
!
hostname as5300-2
!
voice service voip
  signaling forward unconditional
  h323
  ...

The following shows sample output for employment on select dial peers.

Example:

Router# show running-config
Building configuration...
Current configuration : 4192 bytes
  !
  version 12.2
  service config
  no service single-slot-reload-enable
  no service pad
  service timestamps debug uptime
  service timestamps log uptime
  no service password-encryption
  service internal
  service udp-small-servers
  !
  hostname as5300-2
  !
  dial-peer voice 1 pots
    application session
    incoming called-number 25164
    port 0:D
  !
  dial-peer voice 1513 voip
    destination-pattern 1513.......
    session target ipv4:1.8.156.3
  !
  dial-peer voice 1408525 voip
    destination-pattern 1408525....
  !
  dial-peer voice 1800877 voip
    destination-pattern 1800877....
    session target ipv4:1.8.156.3
  !
  dial-peer voice 2 pots
    destination-pattern 51550
    no digit-strip
    direct-inward-dial
    port 3:D
  !
  dial-peer voice 51557 voip
    destination-pattern 51557
    signaling forward unconditional
    session target ras
  !
  dial-peer voice 52557 voip
    destination-pattern 52557
    signaling forward unconditional
    session target ipv4:1.8.156.3
  !
  ...
Configuring H.323 Version 4 Zone Prefix Registration

The H.323v4 Gateway Zone Prefix Registration Enhancements feature provides support for two capabilities included in H.323 Version 4: additive registration and dynamic zone prefix registration. Additive registration allows a gateway to add to or modify a list of aliases contained in a previous registration without first unregistering from the gatekeeper. Dynamic zone prefix registration allows a gateway to register actual public switched telephone network (PSTN) destinations served by the gateway with its gatekeeper.

Information About H.323v4 Gateway Zone Prefix Registration Enhancements

To configure the H.323v4 Gateway Zone Prefix Registration Enhancements feature, you must understand the following concepts:

Additive Registration

Prior to H.323 version 4, there was no way for a large device, such as a gateway, to register hundreds or thousands of E.164 alias addresses with a gatekeeper. The limiting factor was the size of a User Datagram Protocol (UDP) packet, which does not allow an unlimited number of aliases in a single heavyweight registration request (RRQ) RAS message.

To allow an endpoint to register an unlimited number of aliases with the gatekeeper, H.323v4 introduces the concept of additive registration. When the gateway registers with a gatekeeper, it provides an initial list of aliases. Additive registration allows the gateway to send subsequent RRQ messages with more lists of aliases until the gatekeeper has the complete list of the gateway’s aliases.

When the gatekeeper wants to acknowledge only a subset of the aliases proposed in an additive RRQ, the gatekeeper returns a registration confirm (RCF) RAS message specifying the accepted aliases. The gateway assumes that the aliases not listed in the RCF were rejected.

Dynamic Zone Prefix Registration

H.323v4 allows a gateway to register actual zone prefixes that it can terminate to the PSTN with a gatekeeper. A gateway can register multiple zone prefixes with the gatekeeper via the RRQ message and subsequently remove one or more zone prefixes using an unregistration request (URQ) RAS message indicating the specific prefixes to be removed. When the gatekeeper receives the URQ, it leaves the gateway registered and removes the specified zone prefixes.

When the H.323v4 Gateway Zone Prefix Registration Enhancements feature is enabled on a trunking gateway, all addresses specified by the destination patterns in the plain old telephone service (POTS) dial peers that are operational are advertised to the gatekeeper.

The gatekeeper treats these addresses similarly to configured zone prefixes. The dynamically registered zone prefixes are used in routing decisions just as if they had been entered using the zone prefix command. Dynamically registered zone prefixes have a default gateway priority of 5.

The table below shows destination patterns on gateway GW1 and how the gatekeeper GK1 views the dynamically registered prefixes.
Table 5: Gateway Prefixes Dynamically Registered on the Gatekeeper

<table>
<thead>
<tr>
<th>GW1 Configuration</th>
<th>GK1 Corresponding Pseudo Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>dial-peer voice 919 pots</td>
<td>gatekeeper</td>
</tr>
<tr>
<td>destination-pattern 919.......</td>
<td>zone local GK1 cisco.com 172.18.197.132</td>
</tr>
<tr>
<td>port 0:D</td>
<td>zone prefix GK1 919....... gw-priority 5 GW1</td>
</tr>
<tr>
<td>dial-peer voice 5551001pots</td>
<td>gatekeeper</td>
</tr>
<tr>
<td>destination-pattern 5551001</td>
<td>zone local GK1 cisco.com 172.18.197.132</td>
</tr>
<tr>
<td>port 0:D</td>
<td>zone prefix GK1 5551001* gw-priority 5 GW1</td>
</tr>
<tr>
<td>dial-peer voice 408 pots</td>
<td>gatekeeper</td>
</tr>
<tr>
<td>destination-pattern 408T</td>
<td>zone local GK1 cisco.com 172.18.197.132</td>
</tr>
<tr>
<td>port 0:D</td>
<td>zone prefix GK1 408* gw-priority 5 GW1</td>
</tr>
</tbody>
</table>

Configuring H.323v4 Gateway Zone Prefix Registration Enhancements

This section contains the following tasks:

Enabling the Dynamic Zone Prefix Registration

This task shows you how to enable the gateway to send an advertisement of dynamic prefixes in additive RRQ RAS messages automatically to the gatekeeper.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. voice service voip
4. h323
5. ras rrq dynamic prefixes
6. exit
7. gatekeeper
8. rrq dynamic-prefixes-accept
9. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters voice service configuration mode.</td>
<td></td>
</tr>
<tr>
<td>voice service voip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice service voip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enters the H.323 voice service configuration mode.</td>
<td></td>
</tr>
<tr>
<td>h323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-voice-service)# h323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables the gateway to send an advertisement of dynamic prefixes in additive RRQ RAS messages.</td>
<td></td>
</tr>
<tr>
<td>ras rrq dynamic prefixes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(conf-serv-h323)# ras rrq dynamic prefixes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>In Cisco IOS Release 12.2(15)T, this command was enabled by default.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beginning in Cisco IOS Release 12.3(3), this command is disabled by</td>
<td></td>
</tr>
<tr>
<td></td>
<td>default.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Exits voice service voip h323 configuration mode and enters global</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(conf-serv-h323)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Enters gatekeeper configuration mode.</td>
<td></td>
</tr>
<tr>
<td>gatekeeper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# gatekeeper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Enables the gatekeeper to receive the RRQ RAS messages from the</td>
<td></td>
</tr>
<tr>
<td>rrq dynamic-prefixes-accept</td>
<td>gateway.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# rrq dynamic-prefixes-accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>In Cisco IOS Release 12.2(15)T, this command was enabled by default.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beginning in Cisco IOS Release 12.3(3), this command is disabled by</td>
<td></td>
</tr>
<tr>
<td></td>
<td>default.</td>
<td></td>
</tr>
</tbody>
</table>
Enabling the Dynamic Zone Prefix Registration Along with the Gateway Priority

This task shows you how to configure the priority to the dynamic prefixes on the gateway. Allowing you to configure a different priority to each of the dynamic prefix. When configured, the gateway sends the priority along with the prefixes in additive RRQ and the gatekeeper assigns the received priority to the gateway for a given dynamic prefix.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. h323
5. terminal-alias-pattern 22... priority 8
6. terminal-alias-pattern 23* priority 7
7. Repeat Step 5 for each priority you configure.
8. ras rrq dynamic prefixes
9. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>voice service voip</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Enters voice-service configuration mode.</td>
</tr>
<tr>
<td>Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>h323</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Enters H.323 voice-service configuration mode.</td>
</tr>
<tr>
<td>Router(config-voice-service)# h323</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>terminal-alias-pattern 22... priority 8</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Assigns priority to a dynamic prefix. The prefixes mentioned in this command should exactly match the prefixes configured in the <em>destination-pattern</em> command of POTS dial-peer.</td>
</tr>
<tr>
<td>Router(conf-serv-h323)# terminal-alias-pattern 23 priority 8</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Dynamic zone prefix does not support destination patterns with regular expression. It accepts the patterns ending with dot &quot;.&quot; and asterisk &quot;*&quot; only.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>terminal-alias-pattern 23* priority 7</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Assigns priority to a dynamic prefix. The prefixes mentioned in this command should exactly match the prefixes configured in the <em>destination-pattern</em> command of POTS dial-peer.</td>
</tr>
<tr>
<td>Router(conf-serv-h323)# terminal-alias-pattern 23* priority 7</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Dynamic zone prefix does not support destination patterns with regular expression. It accepts the patterns ending with dot &quot;.&quot; and asterisk &quot;*&quot; only.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Repeat Step 5 for each priority you configure.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>ras rrq dynamic prefixes</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Enables the gateway to send an advertisement of dynamic prefixes in additive RRQ RAS messages.</td>
</tr>
<tr>
<td>Router(conf-serv-h323)# ras rrq dynamic prefixes</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>In Cisco IOS Release 12.2(15)T, this command was enabled by default. Beginning in Cisco IOS Release 12.3(3), this command is disabled by default.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>exit</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Exits gatekeeper configuration mode.</td>
</tr>
<tr>
<td>Router(conf-serv-h323)# exit</td>
<td></td>
</tr>
</tbody>
</table>

**Verifying Gateway Advertisement of Dynamic Zone Prefixes**

Perform this task to verify that the gateway is advertising dynamic zone prefixes.
SUMMARY STEPS

1. enable
2. show gateway
3. show h323 gateway prefixes

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 show gateway</td>
<td>Displays the current status of the gateway.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show gateway</td>
<td></td>
</tr>
<tr>
<td>Step 3 show h323 gateway prefixes</td>
<td>Displays the status of the gateway destination pattern database and the status of the individual destination patterns along with it's configured priority.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show h323 gateway prefixes</td>
<td>Verify that gateway additive RRQ support is enabled, that the pattern database is active, and that destination patterns have been acknowledged by the gatekeeper.</td>
</tr>
</tbody>
</table>

Verifying Gatekeeper Processing of Additive RRQ Messages

Perform this task to verify that the gatekeeper is processing additive RRQ messages.

SUMMARY STEPS

1. enable
2. show gatekeeper zone prefix [all]
3. show gatekeeper gw-type-prefix
4. show gatekeeper endpoints

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>show gatekeeper zone prefix [all]</td>
<td>Displays the gatekeeper zone prefix table.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show gatekeeper zone prefix all</td>
<td>• Use the all keyword to display the dynamic zone prefixes registered by each gateway.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use the include filter with the all keyword to display the prefixes associated with a particular gateway.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>show gatekeeper gw-type-prefix</td>
<td>Displays the gateway technology prefix table.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show gatekeeper gw-type-prefix</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>show gatekeeper endpoints</td>
<td>Displays the status of all registered endpoints for a gatekeeper.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show gatekeeper endpoints</td>
<td></td>
</tr>
</tbody>
</table>

**Troubleshooting H.323v4 Gateway Zone Prefix Registration Enhancements**

Use the `debug h225 asn1` command to observe the dynamic registration process. The `debug h225 asn1` command is intended only for troubleshooting purposes because the volume of output generated by the software can result in severe performance degradation on the router.

**Before You Begin**

Attach a console directly to a router running Cisco IOS Release 12.2(15)T or a later release.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. logging buffered  `[buffer-size | level]`
4. no logging console
5. end
6. debug h225 asn1
7. show logging  `[history | slot slot-number | summary | count]`
8. no debug h225 asn1
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router&gt; enable</td>
</tr>
</tbody>
</table>

**Step 2**	Enters global configuration mode.
`configure`	
`terminal`	
**Example:**	Router# configure terminal

**Step 3**	Limits messages logged to an internal buffer based on severity.	
`logging buffered`	[buffer-size	level]
**Example:**	Router(config)# logging buffered 65536	

**Step 4**	Disables all logging to the console terminal.
`no logging console`	
**Example:**	Router(config)# no logging console

**Step 5**	Exits to privileged EXEC mode.
`end`	
**Example:**	Router(config)# end

**Step 6**	Displays ASN1 contents of RAS and Q.931 messages.
`debug h225 asn1`	
**Example:**	Router# debug h225 asn1

**Step 7**	Displays the state of logging (syslog).			
`show logging`	[history	slot slot-number	summary	count]
**Example:**	Router# show logging			

**Step 8**	Disables display of ASN1 contents of RAS and Q.931 messages.
`no debug h225 asn1`	
**Example:**	Router# no debug h225 asn1
Configuring Call Admission Control

Cisco H.323 gateways provide the ability to support resource-based call admission control (CAC) processes. These resources include system resources such as CPU, memory, and call volume, and interface resources such as call volume.

If system resources are not available to admit the call, two kinds of actions are provided: system denial which busyouts all of T1 or E1 or per call denial, which disconnects, hairpins, or plays a message or tone. If the interface-based resource is not available to admit the call, the call is dropped from the session protocol.

Note

Configuring Trunk-Based and Carrier-Based Routing

Voice wholesalers use multiple ingress and egress carriers to route traffic. A call coming into a gateway on a particular ingress carrier must be routed to an appropriate egress carrier. As networks grow and become more complicated, the dial plans needed to route the carrier traffic efficiently become more complex and the need for carrier-sensitive routing (CSR) increases.

Note
For information on routing, see VoIP Gateway Trunk and Carrier Based Routing Enhancements at the following URL: http://www.cisco.com/en/US/docs/ios/12_2t/12_2t11/feature/guide/ftgwrepg.html.

Configuring Signal ISDN B-Channel ID to Enable Application Control of Voice Gateway Trunks

This section contains the following information:

Information About Signal ISDN B-Channel ID
The Signal ISDN B-Channel ID to Enable Application Control of Voice Gateway Trunks feature enables call-management applications to identify specific ISDN bearer (B) channels used during a voice-gateway call for billing purposes. With identification of the B channel, H.323 gateways can enable port-specific features such as voice recording and call transfer.

In Cisco IOS releases prior to 12.3(7)T, fields used to store call leg information regarding the telephony port do not include B channel information. B-channel information is used to describe incoming ISDN call legs. The Signal ISDN B-Channel ID to Enable Application Control of Voice Gateway Trunks feature allows H.323
and SIP gateways to receive B-channel information from incoming ISDN calls. The acquired B-channel information can be used during call transfer or to route a call.

SIP and H.323 gateways use two different commands to enable receiving the B channel of a telephony call leg. Using a different command for each protocol allows users to run the two protocols on one gateway simultaneously.

For information on using this feature on SIP gateways, see the information on SIP ISDN support features in the Cisco IOS SIP Configuration Guide at http://www.cisco.com/en/US/docs/ios/voice/sip/configuration/guide/15_0/sip_15_0_book.html

For H.323, if the billing b-channel command is configured, the H.323 gateway accesses B-channel information on all calls in the ARQ, LRQ, and GKTMP messages.

### Configuring Signal ISDN B-Channel ID

To provide H.323 users with B-channel information, use the following commands beginning in global configuration mode.

#### SUMMARY STEPS

1. voice service voip
2. h323
3. billing b-channel
4. exit

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>voice service voip</td>
<td>Enters voice-service configuration mode and specifies a voice-encapsulation type.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice service voip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>h323</td>
<td>Enters H.323-voice-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(conf-voi-serv)# h323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>billing b-channel</td>
<td>Enables the H.323 gateway to access B-channel information on all H.323 calls.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(conf-serv-h323)# billing b-channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Exits the current mode.</td>
<td></td>
</tr>
<tr>
<td>Router (conf-serv-h323)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Troubleshooting Signal ISDN B-Channel ID**

To troubleshoot signal ISDN B-channel ID problems, perform the following steps.

**SUMMARY STEPS**

1. debug h245 asn1
2. debug gatekeeper servers

**DETAILED STEPS**

**Step 1**

**debug h245 asn1**

Use this command to display ASN1 contents of H.245 messages.

The following sample command output shows an H.323 ARQ nonstandard message. The format of the B-channel billing information is: 1 is the D-channel ID, 1 is the T1 controller, and 10 is the B-channel.

Example:

```
Router# debug h245 asn1
...
value ARQnonStandardInfo ::= {
 sourceAlias { }
 sourceExtAlias { }
 interfaceSpecificBillingId 1:D 1:DS1 10:DS0
 gtd '49414d2c0d0a50524e2c6973646e2a2c2...'H
}
...
```

**Step 2**

**debug gatekeeper servers**

Use this command on gatekeeper to trace all the message exchanges between a gatekeeper and an external application. It also displays any errors that occur in sending messages to the external application or in parsing messages from the external application.
The following sample command output also shows B-channel information. The format of the B-channel billing information is as follows: 1 is the D-channel ID, 1 is the T1 controller, and 10 is the B-channel.

Example:

```
Router# debug gatekeeper servers
"REQUEST ARQ
Version-id:402
From:voip6-2600-1
To:GKTPF_SERVER
Transaction-Id:81A3EB40000000001
Content-Length:258
i=1.1.3.26.21:1720
a=E:91900001 H:voip6-5300-1
d=E:40800001
b=1280
A=F
C=C13CB8DE-C47F-11D3-80A9-FC0BFCA7B068
c=C13D5506-C47F-11D3-80AB-FC0BFCA7B068
B= 1:D 1:DS1 10:DS0
```

Configuring H.323 VoIP Call Preservation Enhancements for WAN Link Failures

H.323 VoIP call preservation enhancements for WAN link failures sustains connectivity for H.323 topologies where signaling is handled by an entity that is different from the other endpoint, such as a gatekeeper that provides routed signaling or a call agent, such as the Cisco BTS 10200 Softswitch, Cisco PGW 2200, or Cisco CallManager, that brokers signaling between the two connected parties.

Call preservation is useful when a gateway and the other endpoint (typically an Cisco Unified IP phone) are collocated at the same site and the call agent is remote and therefore more likely to experience connectivity failures.

**Note**

If a preserved H.323 call is torn down at an IP PBX, a call-stop record will be generated while Real-time Transport Protocol (RTP) is still flowing. Such an event can be misused to generate a signaling error and allow toll bypass, thus affecting per-call billing integrity.

H.323 call preservation covers the following types of failures and connections:

**Failure Types**

- WAN failures that include WAN links flapping or degraded WAN links
- Cisco Unified CallManager software failure, such as when the ccm.exe service crashes on a Cisco Unified CallManager server.
- LAN connectivity failure, except when a failure occurs at the local branch

**Connection Types**

- Calls between two Cisco Unified CallManager controlled endpoints
• During Cisco Unified CallManager reloads

• When a Transmission Control Protocol (TCP) connection between one or both endpoints and Cisco Unified CallManager used for signaling H.225.0 or H.245 messages is lost or flapping

• Between endpoints that are registered to different Cisco Unified CallManagers in a cluster and the TCP connection between the two Cisco Unified CallManagers is lost

• Between IP phones and the PSTN at the same site

• Calls between Cisco IOS gateway and an endpoint controlled by a softswitch where the signaling (H.225.0, H.245 or both) flows between the gateway and the softswitch and media flows between the gateway and the endpoint.

  • When the softswitch reloads.

  • When the H.225.0 or H.245 TCP connection between the gateway and the softswitch is lost, and the softswitch does not clear the call on the endpoint

  • When the H.225.0 or H.245 TCP connection between softswitch and the endpoint is lost, and the soft-switch does not clear the call on the gateway

• Call flows that involve a Cisco IP in IP (IPIP) gateway running in media flow-around mode that reload or lose connection with the rest of the network

Note that after the media is preserved, the call is torn down later when either one of the parties hangs up or media inactivity is detected. In cases where there is a machine-generated media stream, such as music streaming from a media server, the media inactivity detection will not work and the call may hang. Cisco Unified CallManager addresses such conditions by indicating to the gateway that such calls should not be preserved, but third-party devices or IPIP gateways would not do this.

Flapping is defined for this feature as the repeated and temporary loss of IP connectivity that can be caused by WAN or LAN failures. H.323 VoIP calls between a Cisco IOS gateway and Cisco Unified CallManager may be torn down when flapping occurs. When Cisco Unified CallManager detects that the TCP connection is lost, it clears the call and closes the TCP sockets used for the call by sending a TCP FIN, without sending an "H.225.0 Release Complete" or "H.245 End Session" message. This is called quiet clearing. The TCP FIN sent from the Cisco Unified CallManager could reach the gateway if the network comes up for a short duration, and the gateway will tear the call down. Even if the TCP FIN does not reach the gateway, the TCP keepalives sent from the gateway could reach Cisco Unified CallManager when the network comes up. Cisco Unified CallManager will send TCP RST messages in response to the keepalives as it has already closed the TCP connection. The gateway will tear down H.323 calls if it receives the RST message.

Configuration of H.323 VoIP call preservation enhancements for WAN link failures involves configuring the **call preserve** command. If you are using Cisco Unified CallManager you must enable the "Allow Peer to Preserve H.323 Calls" parameter from Cisco Unified CallManager’s Service Parameters window.

The **call preserve** command causes the gateway to ignore socket closure or socket errors on H.225.0 or H.245 connections for active calls, allowing the socket to be closed without tearing down calls using those connections.

Call preservation may be reported through Syslog, which optionally can be obtained through a simple network management protocol (SNMP) trap. New syslog messages are printed when call preservation is applied. An SNMP trap can be configured on this syslog message, so you can be notified when call preservation occurs on a gateway.
Preservation information is displayed through the `show h323 calls preserved` command. The following is an example of the command's output:

```
CallID = 11EC , Calling Number = , Called Number = 3210000 ,
RemoteSignallingIPAddress=9.13.0.26 , RemoteSignallingPort=49760 ,
RemoteMediaIPAddress=9.13.0.11 , RemoteMediaPort=17910 , Preserved Duration = 262 , Total Duration = 562 , H225 FD = -1 , H245 FD = -1
```

The previous example represents one preserved call. One such display is provided per preserved call. The `show h323 calls preserved` displays active calls only. No history is output.

To obtain additional information about a call, you can also use the `show call active voice` command. Calls can be cleared with the `clear call voice causecode` command.

**Prerequisites**

- This feature may be used on all Cisco Unified CallManager system hardware configurations. If you are not using Cisco Unified CallManager, this feature can only be configured on the Cisco AS5000 Series.
- For bidirectional silence detection, Cisco IOS gateways with 5510 digital signal processors (DSPs) are needed.
- It is recommended that media inactivity detection be configured so that preserved calls are torn down after conversations are over. Two available media inactivity detection features are discussed in the "Configuring Signal ISDN B-Channel ID" module. They are RTP and RTP Control Protocol (RTCP) inactivity detection and bidirectional silence detection. For more information about media inactivity detection, see the "Configuring Media Inactive Call Detection" chapter in the *Cisco IOS Tcl IVR and VoiceXML Application Guide*.(14)T and Later.

**Restrictions**

H.323 VoIP Call preservation enhancements for WAN link failures does not support the following:

- Calls in transient call states
- Calls in for which a H.225.0 connection has not occurred
- Calls on which supplementary services are in progress, such as when one of the parties is on hold.
- Calls that involve a media resource located across a WAN, such as conference resources
- Calls where the two parties are registered to different Cisco Unified CallManager clusters
- The "Do Not Preserve" function (using an H.225 Notify message) on networks without Cisco CallManager.

**Configuring H.323 Call Preservation Enhancements for WAN Link Failures**

The tasks for configuring H.323 VoIP call preservation enhancements for WAN link failures include the following:
Configuring the Gateway

The call preserve command activates H.323 VoIP call preservation. RTP and RTCP inactivity detection and bidirectional silence detection can be used with this feature. Note that voice activity detection (VAD) must be set to off if you are using RTP and RTCP inactivity detection. VAD may be set to on, for bidirectional silence detection. For configuration examples, see the "Configuring the Gateway Example" and "Bidirectional Silence Detection Enable Example" sections.

When bidirectional silence and RTP and RTCP inactivity detection are configured, they are enabled for all calls by default. To enable them for H.323 VoIP preserved calls only, you must use the call preserve command’s limit-media-detection keyword.

H.323 VoIP call preservation can be applied to all calls and to dial peers. The required steps are described in the following sections:

Configuring H.323 VoIP Call Preservation for All Calls

The following describes how to configure H.323 VoIP call preservation for all calls.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. h323
5. call preserve [limit-media-detection]
6. exit
7. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> voice service voip</td>
<td>Enters voice-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router (config)# voice service voip</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action | Purpose
---|---
**Step 4** | h323
**Example:**
Router (config-voi-serv)# h323
| Enables the H.323 voice service configuration commands.

**Step 5** | call preserve [limit-media-detection]
**Example:**
Router (config-voi-h323)# call preserve
| Enables the preservation of H.323 VoIP calls.
- **limit-media-detection** --Limits RTP and RTCP inactivity detection and bidirectional silence detection (if configured) to H.323 VoIP preserved calls only.

**Step 6** | exit
**Example:**
Router# exit
| Exits H.323 configuration mode.

**Step 7** | exit
**Example:**
Router# exit
| Exist voice service voip configuration mode.

### Examples
The following configuration example enables H.323 VoIP call preservation for all calls.

```
voice service voip
 h323
 call preserve
```

The following configuration example enables H.323 VoIP call preservation and limits RTP and RTCP inactivity detection and bidirectional silence detection (if configured) to preserved calls only:

```
voice service voip
 h323
 call preserve limit-media-detection
```

### Configuring H.323 VoIP Call Preservation for a Dial Peer
The following describes how to configure H.323 VoIP call preservation for a dial peer.
SUMMARY STEPS

1. enable
2. configure terminal
3. voice-class h323  tag
4. call preserve [limit-media-detection]
5. exit
6. dial-peer voice  tag  voip
7. voice-class h323  tag
8. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**        | Enables privileged EXEC mode.  
| enable            | • Enter your password if prompted. |
| Example:          | Router> enable |
| **Step 2**        | Enters global configuration mode. |
| configure terminal| Router# configure terminal |
| **Step 3**        | Assigns an H.323 voice class to a VoIP dial peer.  
| voice-class h323  tag | • tag--Unique number to identify the voice class. Range is from 1 to 10000. |
| Example:          | Router (config)# voice-class h323 4 |
| **Step 4**        | Enables the preservation of H.323 VoIP calls.  
<p>| call preserve [limit-media-detection] | • limit-media-detection --Limits RTP and RTCP inactivity detection and bidirectional silence detection (if configured) to H.323 VoIP preserved calls only. |
| Example:          | Router (config-class)# call preserve |
| <strong>Step 5</strong>        | Exits H.323 voice class configuration mode. |
| exit              | Router (config)# exit |
| <strong>Step 6</strong>        | Defines a particular dial peer. |
| dial-peer voice  tag  voip | Router (config)# dial-peer voice 1 voip |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td>voice-class h323</td>
<td>Assigns an H.323 voice class to a VoIP dial peer.</td>
</tr>
<tr>
<td><em>tag</em></td>
<td>- <em>tag</em>—Unique number to identify the voice class. Range is from 1 to 10000.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router (config-dial-peer)# voice-class h323 4</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits dial-peer voice configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# exit</td>
<td></td>
</tr>
</tbody>
</table>

**Examples**

The following configuration example enables H.323 VoIP call preservation for dial peer 1.

```
voice-class h323 4
call preserve
dial-peer voice 1 voip
voice-class h323 4
```

**Troubleshooting Tips**

- Enable the `voice iec syslog` command in global configuration mode to display the reason that a call has disconnected after call preservation. The following is an example of the `voice iec syslog` command output line that display this information:

```
```

- Calls on hold are not preserved and a non-standard message with "callPreserveIE FALSE" is sent in the notify message. Use the `debug h225 asn` command for debug. The following is example output:

```
Router# debug h225 asn
H.225 ASN1 Messages debugging is on 3725-GW1#
*May 3 15:57:27.920: H225.0 INCOMING ENCODE BUFFER::=
2850190006000894A0004000000D2D6D687EB11D0200000090D194410A00100101140B5000120A80A8004000101000100
*May 3 15:57:27.920:
*May 3 15:57:27.920: H225.0 INCOMING PDU ::= value H323_UserInformation ::= {
 h323-uu-pdu
 h323-message-body notify :
 { protocolIdentifier { 0 0 8 2250 0 4 }
 callIdentifier
 { guid '00D2D6D687EB11D0200000090D1944'\n }
 h245Tunneling FALSE }
```
When the call is resumed, "callPreserve" is again set to True as shown in the following output example:

```
Router# debug h225 asn
*May 3 15:57:32.676: H225.0 INCOMING ENCODE BUFFER::= 28501900060008914A00040000D2D6D6D87EB11D02000000090D194410A001001B0140B50000121480A6800400010100943004C0580323030301400
*May 3 15:57:32.676: H225.0 INCOMING PDU ::= value H323_UserInformation ::= {
 h323-uu-pdu {
 h323-message-body notify :
 protocolIdentifier { 0 0 8 2250 0 4 }
 callIdentifier {
 guid '00D2D6D6D87EB11D02000000090D1944'H
 }
 h245Tunneling FALSE
 nonStandardControl {
 nonStandardIdentifier h221NonStandard :
 t35CountryCode 181
 t35Extension 0
 manufacturerCode 18
 } data '80A68004000101000943004C058032303030140'H
 }
}
```
• Use the `debug cch323 all` command after call setup to see if call is going into preserved state. Note that this command generates verbose output, and a console message is printed for every preserved call. In the following output, the relevant information appears in boldface:

```plaintext
Router# debug cch323 all
(CCH323-6-CALL_PRESERVED).
Nov 29 12:39:55.167: //-1/xxxxxxxxxxxx/H323/cch323_ct_main: SOCK 3 Event 0x1
Nov 29 12:39:55.167: //31/A9E0FB268017/H323/cch323_h225_handle_conn_loss:
 cch323_h225_handle_conn_loss Call not torn down despite H.225.0 socket error: socket error
 status = 1, ccb status = 403760899, fd = 3, pre-V3 = 0
 preserved due to socket closure or error, Call Id = 4593, fd = 3
Nov 29 12:39:55.167: %VOICE_IEC-3-GW: H323: Internal Error (Socket error): IEC=1.1.186.5.7.6
 on callID 31 GUID=A9E0FB26600B11DA8017000653455072
Nov 29 12:39:55.167: //-1/xxxxxxxxxxxx/H323/h323_set_release_source_for_peer:
 ownCallId[31], src[6]
```

• The following are additional debug commands can be used to troubleshoot the problems associated with H.323 VoIP call preservation:

  - `debug h225 asn1`
  - `debug h225 q931`
  - `debug h245 asn1`

### Configuring Cisco Unified CallManager

If you are using Cisco Unified CallManager, you must activate H.323 call preservation through the "Allow Peer to Preserve H.323 Calls" parameter, which preserves the following:

- Active H.323 calls with quiet clear triggered by the other half of the call
- Active H.323 calls with TCP socket closed on the H.323 end before the H.225 or H.245 release signal is received
- Active H.323 calls with a signal distribution layer (SDL) link that is out of service and detected on the H323 end

**Procedure**
SUMMARY STEPS

1. Choose Service > Service Parameters.
2. From the Service menu select Cisco Unified CallManager.
3. Click Advanced.
4. Scroll to the Clusterwide Parameter (Device -- H.323) section.
5. Set the "Allow Peer to Preserve H.323 Calls" parameter to True.
6. At the top of the screen click Update.

DETAILED STEPS

Step 1  Choose Service > Service Parameters.
Step 2  From the Service menu select Cisco Unified CallManager.
Step 3  Click Advanced.
Step 4  Scroll to the Clusterwide Parameter (Device -- H.323) section.
Step 5  Set the "Allow Peer to Preserve H.323 Calls" parameter to True.
Step 6  At the top of the screen click Update.
RAS Example

The figure below shows a Cisco 2600 and a Cisco AS5800 as gateways and a Cisco 3640 as a gatekeeper.

The following example shows a Cisco AS5800 as a gateway using RAS:

```
! Configure the T1 controller. (This configuration is for a T3 card.)
controller T1 1/0/0:1
 framing esf
 linecode b8zs
 pri-group timeslots 1-24

! Configure POTS and VoIP dial peers.
dial-peer voice 11111 pots
 incoming called-number 12345
 destination-pattern 9#11111
 direct-inward-dial
 port 1/0/0:1:D
 prefix 11111

dial-peer voice 12345 voip
 destination-pattern 12345
 tech-prefix 6#
 session target ras

! Enable gateway functionality.
gateway

! Enable Cisco Express Forwarding.
ip cef

! Configure and enable the gateway interface.
interface FastEthernet0/3/0
```
Gateway Security Example

**H.323 Gateway Security**

The following example illustrates H.323 security configuration on a Cisco AS5300 gateway.

```
hostname um5300
!
enable password xyz
!
resource-pool disable
!
clock timezone EST -5
clock summer-time EDT recurring
ip subnet-zero
no ip domain-lookup
!
isdn switch-type primary-5ess
isdn voice-call-failure 0
call application voice xyz tftp://172.18.16.2/samp/xyz.tcl
call application voice load xys
mta receive maximum-recipients 1024
!
xgcp snmp sgcp
!
controller T1 0
framing esf
clock source line primary
linecode b8zs
pri-group timeslots 1-24
!
controller T1 1
framing esf
clock source line secondary 1
linecode b8zs
pri-group timeslots 1-24
!
controller T1 2
!
controller T1 3
!
voice-port 0:D
!
voice-port 1:D
!
dial-peer voice 4001 pots
application xyz
destination-pattern 4003
port 0:D
```
prefix 4001
  !
dial-peer voice 513 voip
  destination-pattern 1513200....
  session target ras
  !
dial-peer voice 9002 voip
  destination-pattern 9002
  session target ras
  !
dial-peer voice 4191024 pots
  destination-pattern 4192001024
  port 0:D
  prefix 4001
  !
dial-peer voice 1513 voip
  destination-pattern 1513........
  session target ras
  !
dial-peer voice 1001 pots
  destination-pattern 14192001001
  port 0:D
  !
gateway
  security password 151E0A0E level all
  !
  interface Ethernet0
  ip address 10.99.99.7 255.255.255.0
  no ip directed-broadcast
  shutdown
  !
  interface Serial0:23
  no ip address
  no ip directed-broadcast
  isdn switch-type primary-5ess
  isdn protocol-emulate user
  isdn incoming-voice modem
  fair-queue 64 256 0
  no cdp enable
  !
  interface Serial1:23
  no ip address
  no ip directed-broadcast
  isdn switch-type primary-5ess
  isdn protocol-emulate user
  isdn incoming-voice modem
  isdn guard-timer 3000
  isdn T203 10000
  fair-queue 64 256 0
  no cdp enable
  !
  interface FastEthernet0
  ip address 172.18.72.121 255.255.255.192
  no ip directed-broadcast
duplex auto
  speed auto
h323-gateway voip interface
h323-gateway voip id um5300@vgkcisco3 ipaddr 172.18.72.58 1719
h323-gateway voip h323-id um5300
h323-gateway voip tech-prefix 1#

  }
  no ip http server
  ip classless
  ip route 10.0.0.0 172.18.72.65
  !
  line con 0
  exec-timeout 0 0
  length 0
transport input none
line aux 0
line vty 0 4
password xyz
login
!
ntp clock-period 17179974
ntp server 172.18.72.124

H.323 Gateway Security

The following example shows output from configuring secure registrations from the gatekeeper and identifying which RAS messages the gatekeeper checks to find authentication tokens:

dial-peer voice 10 voip
destination-pattern 4088000
session target ras
dtmf-relay h245-alphanumeric
!
gateway
security password 09404F0B level endpoint

The following example shows output from configuring which RAS messages contain gateway-generated tokens:

dialer-list 1 protocol ip permit
dialer-list 1 protocol ipx permit
radius-server host 10.25.0.0 auth-port 1645 acct-port 1646
radius-server retransmit 3
radius-server deadtime 5
radius-server key lab
radius-server vsa send accounting
!
gatekeeper
zone local GK1 test.com 10.0.0.3
zone remote GK2 test2.com 10.0.2.2 1719
accounting
security token required-for registration
no use-proxy GK1 remote-zone GK2 inbound-to terminal
no use-proxy GK1 remote-zone GK2 inbound-to gateway
no shutdown

Alternate Gatekeeper Support Example

In the following example, the gateway is configured to have alternate gatekeepers. The primary and secondary gatekeepers are configured with the priority option. The priority range is 1 to 127. The first alternate gatekeeper is configured as priority 120; the second alternate gatekeeper is not configured, so remains at the default setting of 127.

interface Ethernet 0/1
ip address 172.18.193.59 255.255.255.0
h323-gateway voip interface
h323-gateway voip id GK1 ipaddr 172.18.193.65 1719 priority 120
h323-gateway voip id GK2 ipaddr 172.18.193.66 1719
h323-gateway voip h323-id cisco2

DTMF Relay Example

The following example configures DTMF relay with the cisco-rtp keyword when sending DTMF tones to dial peer 103:

dial-peer voice 103 voip
dtmf-relay cisco-rtp
The following example configures DTMF relay with the `cisco-rtp` or `h245-signal` keywords when DTMF tones are sent to dial peer 103:

```
dial-peer voice 103 voip
dtmf-relay cisco-rtp h245-signal
```

The following example configures the gateway to send DTMF in-band (the default) when DTMF tones to are sent dial peer 103:

```
dial-peer voice 103 voip
no dtmf-relay
```

The following example shows that DTMF relay is configured on an H.323 gateway using NTE RTP and H.245 signaling. In this example, the Named Signaling Event (NSE) value in use is reassigned to a different, unassigned number (110). NTE payload is then assigned to the previously used value (100).

```
dial-peer voice 400 voip
 destination-pattern 400
 dtmf-relay rtp-nte h245-signal
 rtp payload nse 110
 rtp payload-type nte 100
 session target ipv4:172.18.193.181
```

### Multiple Codecs Example

The following configuration shows how to create a list of prioritized codecs and apply that list to a specific VoIP dial peer:

```
voice class codec 99
 codec preference 1 g711alaw
 codec preference 2 g711ulaw bytes 80
 codec preference 3 g723ar53
 codec preference 4 g723ar63 bytes 144
 codec preference 5 g723r53
 codec preference 6 g723r63 bytes 120
 codec preference 7 g726r16
 codec preference 8 g726r24
 codec preference 9 g726r32 bytes 80
 codec preference 10 g728
 codec preference 11 g729br8
 codec preference 12 g729r8 bytes 50
!
dial-peer voice 1919 voip
 voice-class codec 99
```

### Rotary Calling Pattern Example

The following example configures POTS dial peer 10 for a preference of 1, POTS dial peer 20 for a preference of 2, and Voice over Frame Relay dial peer 30 for a preference of 3:

```
dial-peer voice 10 pots
 destination pattern 5552150
 preference 1

dial-peer voice 20 pots
 destination pattern 5552150
 preference 2

dial-peer voice 30 vofr
 destination pattern 5552150
 preference 3
```
**H.323 Support for Virtual Interfaces Example**

In the following example, Ethernet interface 0/0 is used as the gateway interface. For convenience, the `h323-gateway voip bind srcaddr` command is specified on the same interface. The designated source IP address is the same as the IP address assigned to the interface.

```plaintext
interface Ethernet0/0
 ip address 172.18.194.50 255.255.255.0
 no ip directed-broadcast
 h323-gateway voip interface
 h323-gateway voip id j70f_2600_gk2 ipaddr 172.18.194.53 1719
 h323-gateway voip h323-id j70f_3640_gw1
 h323-gateway voip tech-prefix 3#
 h323-gateway voip bind srcaddr 172.18.194.50
```

**H.225 Annex-G Example**

The following example shows the gatekeeper border element router with service relationship and usage-reporting functionality turned on:

```plaintext
Router# show running config
Building configuration...

call-router h323-annexg boston1
 neighbor 1.2.3.4
 service-relationship
 outbound retry interval 120
 inbound ttl 1200
 no shutdown
 usage-indication
 retry interval 600
 retry window 3600
 domain-name Celine-Domain
 access-policy neighbors-only
 local ip 172.18.193.31
 no shutdown
```

**GTD Payload Examples**

**GTD Payload System-Wide**

The following example shows the GTD feature configured on the system:

```plaintext
Router# show running-config
Building configuration... Current configuration : 4192 bytes
! version 12.2
service config
 no service single-slot-reload-enable
 no service pad
 service timestamps debug uptime
 service timestamps log uptime
 no service password-encryption
```

---

*H.323 Configuration Guide, Cisco IOS Release 15M&T*
service internal
service udp-small-servers
!
hostname as5300-2
!
voice service voip
  signaling forward unconditional
  h323
  
.
.
.
.

GTD Payload on a Dial Peer

The following example shows GTD configured with unconditional forwarding on two dial peers:

Router# show running-config
Building configuration...
Current configuration : 4192 bytes
!
version 12.2
service config
no service single-slot-reload-enable
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service internal
service udp-small-servers
!
hostname as5300-2
!

dial-peer voice 1 pots
  application session
  incoming called-number 25164
  port 0:D
!
dial-peer voice 1513 voip
  destination-pattern 1513.......  
  session target ipv4:1.8.156.3
!
dial-peer voice 1408525 voip
  destination-pattern 1408525....
!
dial-peer voice 1800877 voip
  destination-pattern 1800877....
  session target ipv4:1.8.156.3
!
dial-peer voice 2 pots
  destination-pattern 51550
  no digit-strip
  direct-inward-dial
  port 3:D
!
dial-peer voice 51557 voip
  destination-pattern 51557
  signaling forward unconditional
  session target ras
!
dial-peer voice 52557 voip
  destination-pattern 52557
  signaling forward unconditional
  session target ipv4:1.8.156.3
!
gateway
!
H.323v4 Gateway Zone Prefix Registration Enhancements Examples

Verifying Gateway Advertisement of Dynamic Zone Prefixes

The following example displays the status of the destination pattern database and the status of the individual destination patterns for Gatekeeper1:

Gateway1# show h323 gateway prefixes
GK Supports Additive RRQ : True
GW Additive RRQ Support Enabled : True
Pattern Database Status : Active

<table>
<thead>
<tr>
<th>Destination Pattern</th>
<th>Status</th>
<th>Dial-Peers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110509*</td>
<td>ADD ACKNOWLEDGED</td>
<td>2</td>
</tr>
<tr>
<td>1110511*</td>
<td>ADD ACKNOWLEDGED</td>
<td>2</td>
</tr>
<tr>
<td>23*</td>
<td>ADD ACKNOWLEDGED</td>
<td>2</td>
</tr>
</tbody>
</table>

Verifying Gatekeeper Processing of Additive RRQs Example

The following example displays the zone prefix table, including the dynamic zone prefixes, for Gatekeeper1:

Gatekeeper1# show gatekeeper zone prefix all
ZONE PREFIX TABLE

<table>
<thead>
<tr>
<th>GK-NAME</th>
<th>E164-PREFIX</th>
<th>Dynamic GW-priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>gatekeeper1</td>
<td>1110507*</td>
<td>gateway2 /5</td>
</tr>
<tr>
<td>gatekeeper2</td>
<td>1110508*</td>
<td></td>
</tr>
<tr>
<td>gatekeeper1</td>
<td>1110509*</td>
<td>gateway1 /5</td>
</tr>
<tr>
<td>gatekeeper1</td>
<td>1110511*</td>
<td>gateway1 /5</td>
</tr>
<tr>
<td>gatekeeper1</td>
<td>23*</td>
<td>gateway1 /5</td>
</tr>
<tr>
<td>gatekeeper1</td>
<td>4666002*</td>
<td></td>
</tr>
<tr>
<td>gatekeeper3</td>
<td>55530...</td>
<td></td>
</tr>
<tr>
<td>gatekeeper1</td>
<td>7779...</td>
<td></td>
</tr>
</tbody>
</table>

Verifying Dynamic Zone Prefix Registration based on Gateway Priority Lists Example

The following example displays the gateway destination-pattern database status:

Router# show h323 gateway prefixes

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Status</th>
<th>Dial-Peers</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110509*</td>
<td>ADD ACKNOWLEDGED</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1110511*</td>
<td>ADD ACKNOWLEDGED</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>23*</td>
<td>ADD ACKNOWLEDGED</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Troubleshooting H.323v4 Gateway Zone Prefix Registration Enhancements Example

The following example displays the ASN1 contents of RAS messages sent during the registration process:

Gatekeeper1# debug h225 asnl
U.S. Eastern time (GMT -5/-4)
voice:(919) 392-6007.Feb 5 16:27:05.894:RAS INCOMING ENCODE BUFFER::=- 00 A0004306 0008914A
00040001 07072ACC 3D2800B5 00001240 0238500A 00320036 00300030 002D0031 02400500 33003600 34003000 2D003101 00C4C0
.Feb 5 16:27:05.906:
.RAS INCOMING PDU ::= value RasMessage ::= gatekeeperRequest :
  { requestSeqNum 68
    protocolIdentifier { 0 0 8 2250 0 4 }
    rasAddress ipAddress :
    { ip '0107072A'H
      port 52285
    }
    endpointType
    { vendor
      { vendor
        { t35CountryCode 181
          t35Extension 0
          manufacturerCode 18
        }
      } gateway
      { protocol
        { voice :
          { h323 :
            { }
          }
        }
      }
      mc FALSE
      undefinedNode FALSE
    }
    gatekeeperIdentifier {"2600-1"}
    endpointAlias
    { h323-ID :"3640-1",
      dialedDigits :"919"
    }
  }
.Feb 5 16:27:05.926:
.RAS OUTGOING PDU ::= value RasMessage ::= gatekeeperConfirm :
  { requestSeqNum 68
    protocolIdentifier { 0 0 8 2250 0 4 }
    gatekeeperIdentifier {"2600-1"}
    rasAddress ipAddress :
    { ip '01070721'H
      port 1719
    }
  }
.Feb 5 16:27:05.934:
.RAS OUTGOING ENCODE BUFFER ::= 04 80004306 0008914A 00040A00 32003600 30003000 2D003100 01070721 06B7
.Feb 5 16:27:05.938:
.RAS INCOMING ENCODE BUFFER ::= 0E C0004406 0008914A 00048001 00010707 2A06B801 00010707 2ACC3D28 00B50000 12400238 50024005 00330036 00340030 002D0031 0100C4C0 A0003200 36003000 30020000 3100B500 001228B8 08000200 3B010001 00018002 7000
.Feb 5 16:27:05.958:
.Feb 5 16:27:05.959:
.RAS INCOMING PDU ::= value RasMessage ::= registrationRequest :
  { requestSeqNum 69
    protocolIdentifier { 0 0 8 2250 0 4 }
    discoveryComplete TRUE
callSignalAddress
    { ipAddress :
      { }
    }
  }
.Feb 5 16:27:05.934:
.RAS OUTGOING ENCODE BUFFER ::= 04 80004306 0008914A 00040A00 32003600 30003000 2D003100 01070721 06B7
.Feb 5 16:27:05.938:
Signal ISDN B-Channel ID Example

The following example shows an H.323 and SIP ISDN B-channel configuration example.

Current configuration : 3394 bytes
  !
  version 12.3
  service timestamps debug uptime
  service timestamps log uptime
  no service password-encryption
  service internal
  !
  memory-size iomem 15
  ip subnet-zero
  !
  no ip domain lookup
  !
  voice service voip
  h323
  billing b-channel
  sip
  ds0-num
  ip dhcp pool vespa
  network 192.168.0.0 255.255.255.0
  option 150 ip 192.168.0.1
  !
  !

voice call carrier capacity active
!
voice class codec 1
codec preference 2 g711ulaw
!
no voice hpi capture buffer
no voice hpi capture destination
!
fax interface-type fax-mail
mta receive maximum-recipients 0
!
interface Ethernet0/0
  ip address 10.8.17.22 255.255.0.0
  half-duplex
!
interface FastEthernet0/0
  ip address 192.168.0.1 255.255.255.0
  speed auto
  no cdp enable
h323-gateway voip interface
h323-gateway voip id vespa2 ipaddr 10.8.15.4 1718
!
router rip
  network 10.0.0.0
  network 192.168.0.0
!
ip default-gateway 10.8.0.1
ip classless
ip route 0.0.0.0 0.0.0.0 10.8.0.1
no ip http server
ip pim bidir-enable
!
! tftp-server flash:SEPDEFAULT.cnf
tftp-server flash:P005B302.bin
call fallback active
!
call application global default.new
call rsvp-sync
!
voice-port 1/0
!
voice-port 1/
!
mgcp profile default
!
! dial-peer voice 1 pots
destination-pattern 5100
  port 1/0
!
dial-peer voice 2 pots
destination-pattern 9998
  port 1/1
!
dial-peer voice 123 voip
destination-pattern [12]...
session protocol sipv2
session target ipv4:10.8.17.42
dtmf-relay sip-notify
!
gateway
!
sip-ua
  retry invite 3
  retry register 3
  timers register 150
  registrar dns:myhost3.cisco.com expires 3600
  registrar ipv4:10.8.17.40 expires 3600 secondary
H.323 VoIP Call Preservation Enhancements for WAN Link Failures Examples

This section includes the following configuration examples:

H.323 VoIP Call Preservation for All Calls Example

The following configuration example enables H.323 VoIP call preservation for all calls:

```
voice service voip
 h323
 call preserve
```

H.323 VoIP Call Preservation for a Dial Peer Example

The following configuration example enables H.323 VoIP call preservation for one dial peer:

```
voice class h323 4
 call preserve
 dial-peer voice 1
 voice class h323 4
```

H.323 Call Preservation for RTP and RTCP and Silence Detection Example

The following configuration example enables H.323 VoIP call preservation and limits RTP and RTCP inactivity detection and bidirectional silence detection (if configured) to H.323 VoIP preserved calls only:

```
voice service voip
 h323
 call preserve limit-media-detection
```
RTP and RTCP Inactivity Detection Configuration Example

The following configuration example can be used to enable RTP and RTCP inactivity detection for dial peers. Note that for call preservation VAD must be set to off (no vad command):

```
dial-peer voice 10 voip
 no vad
 gateway
 timer receive-rtcp 4
 ip rtcp report-interval 60
```

Bidirectional Silence Detection Enable Example

The following configuration example enables bidirectional silence detection:

```
gateway
 timer media-inactive 5
 ip rtcp report-interval
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>
| Cisco IOS Release 12.4 | • Cisco IOS Release 12.4 Configuration Guides  
| | • Cisco IOS Release 12.4T Configuration Guides  
| | • Cisco IOS Release 12.4 Command References  
| | • Cisco IOS Voice Configuration Library |
| Cisco IOS Release 12.3 | • Cisco IOS Release 12.3 documentation  
| | • Cisco IOS voice commands  
| | • Cisco IOS Voice Troubleshooting and Monitoring Guide  
| | • Tcl IVR Version 2.0 Programming Guide |

Note: This website contains the library preface and glossary.
### Related Topic

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Related Topic</th>
</tr>
</thead>
</table>
| **Related Application Guides** | - Cisco Unified Communications Manager and Cisco IOS Interoperability Guide
- Cisco IOS Fax, Modem, and Text Support over IP Configuration Guide
- "Configuring T.38 Fax Relay" chapter
- Cisco IOS SIP Configuration Guide

### Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-T E.164</td>
<td>Overall network operation, telephone service, service operation and human factors</td>
</tr>
</tbody>
</table>
### Standards

<table>
<thead>
<tr>
<th>Title</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call signalling protocols and media stream packetization for packet-based multimedia communication systems</td>
<td>ITU-T H.225 Version 2</td>
</tr>
<tr>
<td>Security and encryption for H-Series (H.323 and other H.245-based) multimedia terminals</td>
<td>ITU-T H.235</td>
</tr>
<tr>
<td>Packet-based multimedia communications systems</td>
<td>ITU-T H.323</td>
</tr>
<tr>
<td>Supplementary services for multimedia</td>
<td>ITU-T H.450</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIBs Link</th>
<th>MIBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
<td>- CISCO-GATEKEEPER-MIB</td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>Title</th>
<th>RFCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals</td>
<td>RFC 2833</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>

### Feature Information for Configuring H.323 Gateways

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

**Feature History for Basic Service Relationships (H.225 Annex-G)**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

**Feature History forCisco H.323 Scalability and Interoperability Enhancements for Gatekeepers**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(2)XA</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.2(4)T</td>
<td>This feature was integrated into this release.</td>
</tr>
<tr>
<td>12.2(2)XB1</td>
<td>This feature was implemented on the Cisco AS5850.</td>
</tr>
<tr>
<td>12.2(11)T</td>
<td>This feature was integrated into this release.</td>
</tr>
</tbody>
</table>

**Feature History for Gateway Codec Order Preservation and Shutdown Control**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

**Feature History for H.323 Dual Tone Multifrequency Relay Using Named Telephone Events**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(2)XB</td>
<td>The Dual Tone Multifrequency Relay for SIP Calls Using Named Telephone Events feature was introduced. The Media Gateway Control Protocol-Based Fax (T.38) and Dual Tone Multifrequency (IETF RFC 2833) Relay feature was also introduced.</td>
</tr>
<tr>
<td>12.2(11)T</td>
<td>H.323 support for DTMF relay was added.</td>
</tr>
</tbody>
</table>

**Feature History for H.323 Version 2 Enhancements**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>12.1(5)XM2</td>
<td>Support was added for the Cisco AS5350 and Cisco AS5400.</td>
</tr>
<tr>
<td>12.2(2)XA</td>
<td>The <code>call rscmon update-timer</code> command was added.</td>
</tr>
<tr>
<td>12.2(4)T</td>
<td>The <code>call rscmon update-timer</code> command was integrated into this release. Support for the Cisco AS5300, Cisco AS5350, and Cisco AS5400 is not included.</td>
</tr>
<tr>
<td>12.2(2)XB1</td>
<td>This feature was implemented on the Cisco AS5850.</td>
</tr>
<tr>
<td>12.2(11)T</td>
<td>This feature was integrated into this release.</td>
</tr>
</tbody>
</table>

**Feature History for H.323v4 Gateway Zone Prefix Registration Enhancements**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)T</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.3(3)</td>
<td>The <code>ras rrq dynamic prefixes</code> and the <code>rrq dynamic-prefixes-accept</code> commands were modified to be disabled by default.</td>
</tr>
<tr>
<td>12.3(4)T</td>
<td>This feature was integrated into this release.</td>
</tr>
<tr>
<td>12.4(9)T</td>
<td>The terminal-alias-pattern command was introduced to send the gateway priority along with dynamic zone prefixes from the gateway.</td>
</tr>
</tbody>
</table>

**Feature History for Signal ISDN B-Channel ID to Enable Application Control of Voice Gateway Trunks**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(7)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

**Feature History for H.323 VoIP Call Preservation Enhancements for WAN Link Failures**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4(4)XC</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.4(9)T</td>
<td>This feature was integrated into this release.</td>
</tr>
</tbody>
</table>
CHAPTER 4

Configuring H.323 Gatekeepers and Proxies

This chapter describes how to configure Cisco H.323 gatekeepers. It also presents information about gatekeeper features that are not configurable.

Feature History for Call Status Tracking Optimization

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

Feature History for Configuring a Gatekeeper to Provide Nonavailability Information for Terminating Endpoints

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)T</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.3(8)T1</td>
<td>The carrier based routing without the presence of the GKTMP application server was introduced.</td>
</tr>
<tr>
<td>12.3(11)T</td>
<td>The carrier based routing without the presence of the GKTMP application server was implemented in this release.</td>
</tr>
</tbody>
</table>

Feature History for Gatekeeper Alias Registration and Address Resolution Enhancements

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
### Feature History for Gatekeeper Endpoint Control Enhancements

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

### Feature History for Gatekeeper Enhancements for Managed Voice Services

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

### Feature History for Gatekeeper-to-Gatekeeper Authentication

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)T</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.2(11)T2</td>
<td>The encrypted keyword was added to the security password-group command.</td>
</tr>
</tbody>
</table>

### Feature History for Gatekeeper Transaction Message Protocol Interface Resiliency Enhancement

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(2)XB</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.2(8)T</td>
<td>This feature was integrated into this release. The Cisco 2500 series is not supported in this release.</td>
</tr>
</tbody>
</table>

### Feature History for H.323 Version 2 Enhancements

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0(5)T</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.1(5)XM2</td>
<td>Support was added for the Cisco AS5350 and Cisco AS5400.</td>
</tr>
<tr>
<td>12.2(2)XA</td>
<td>The call rscmon update-timer command was added.</td>
</tr>
<tr>
<td>12.2(4)T</td>
<td>The call rscmon update-timer command was integrated into this release. Support for the Cisco AS5300, Cisco AS5350, and Cisco AS5400 is not included.</td>
</tr>
</tbody>
</table>
### Feature History for High Performance Gatekeeper

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(5)XM</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.2(2)T</td>
<td>This feature was integrated into this release.</td>
</tr>
</tbody>
</table>

### Feature History for Inter-Domain Gatekeeper Security Enhancement

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(2)XA</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>12.2(4)T</td>
<td>This feature was integrated into this release.</td>
</tr>
<tr>
<td>12.2(2)XB1</td>
<td>This feature was implemented on the Cisco AS5850.</td>
</tr>
<tr>
<td>12.2(11)T</td>
<td>This feature was implemented on the Cisco AS5300 and Cisco AS5850 and integrated into this release.</td>
</tr>
</tbody>
</table>

### Feature History for NAT Support of H.323 v2 RAS

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(2)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

### Feature History for Sequential Location Request Enhancement

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(4)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

### Feature History for Tokenless Call Authorization

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(15)T</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Feature History for VoIP Outgoing Trunk Group ID and Carrier ID for Gateways and Gatekeepers

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(11)T</td>
<td>This feature was introduced, and the <code>carrier-id</code> keyword and <code>carrier-name</code> argument were introduced for the <code>endpoint alt-ep h323id</code> command.</td>
</tr>
</tbody>
</table>

Finding Support Information for Platforms and Cisco IOS Software Images

Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at [http://www.cisco.com/go/fn](http://www.cisco.com/go/fn). You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click Cancel at the login dialog box and follow the instructions that appear.

For more information about these and other related Cisco IOS voice features, see the following:

- "H.323 Overview" section

- Prerequisites for Configuring H.323 Gatekeepers and Proxies, page 146
- Restrictions for Configuring H.323 Gatekeepers and Proxies, page 146
- How to Configure H.323 Gatekeepers and Proxies, page 147
- Configuration Examples for H.323 Gatekeepers and Proxies, page 238
- Additional References, page 258

Prerequisites for Configuring H.323 Gatekeepers and Proxies

- Perform the prerequisites that are listed in the "Prerequisites for Configuring an H.323 Network" section.
- Install Cisco IOS Release 12.3 or later on your gatekeeper.

Restrictions for Configuring H.323 Gatekeepers and Proxies

Restrictions are described in the "Restrictions for Configuring an H.323 Network" section.
How to Configure H.323 Gatekeepers and Proxies

Configuring Hot Standby

Cisco routers support Hot Standby Router Protocol (HSRP), which allows one router to serve as a backup to another router. Cisco gatekeepers can be configured to use HSRP so that when one gatekeeper fails, the standby gatekeeper assumes its role.

To configure a gatekeeper to use HSRP, perform the following tasks.

SUMMARY STEPS

1. Select one interface on each gatekeeper to serve as the HSRP interface and configure these two interfaces so that they belong to the same HSRP group but have different priorities. The one with the higher priority becomes the active gatekeeper; the other assumes the standby role. Make a note of the virtual HSRP IP address shared by both of these interfaces.
2. Configure the gatekeepers so that the HSRP virtual IP address is the RAS address for all local zones.
3. Make sure that the gatekeeper-mode configurations on both routers are identical.
4. If the endpoints and gateways are configured so that they use a specific gatekeeper address (rather than multicasting), use the HSRP virtual IP address as the gatekeeper address. You can also let the endpoints and gateways find the gatekeeper by multicasting. As long as it is on standby status, the secondary gatekeeper neither receives nor responds to multicast or unicast requests.

DETAILED STEPS

Step 1
Select one interface on each gatekeeper to serve as the HSRP interface and configure these two interfaces so that they belong to the same HSRP group but have different priorities. The one with the higher priority becomes the active gatekeeper; the other assumes the standby role. Make a note of the virtual HSRP IP address shared by both of these interfaces.

Note

Step 2
Configure the gatekeepers so that the HSRP virtual IP address is the RAS address for all local zones.

Step 3
Make sure that the gatekeeper-mode configurations on both routers are identical.

Step 4
If the endpoints and gateways are configured so that they use a specific gatekeeper address (rather than multicasting), use the HSRP virtual IP address as the gatekeeper address. You can also let the endpoints and gateways find the gatekeeper by multicasting. As long as it is on standby status, the secondary gatekeeper neither receives nor responds to multicast or unicast requests.

What to Do Next

As long as both gatekeepers are up, the one with the higher priority on its HSRP interface is the active gatekeeper. If this active gatekeeper fails, or if its HSRP interface fails, the standby HSRP interface assumes the virtual HSRP address and, with it, the active gatekeeper role. When the gatekeeper with the higher HSRP
priority comes back online, it reclaims the HSRP virtual address and the gatekeeper function, while the secondary gatekeeper goes back to standby status.

---

**Note**
Gatekeeper failover is not completely transparent to endpoints and gatekeepers. When the standby gatekeeper takes over, it does not have the state of the failed gatekeeper. If an endpoint that had registered with the failed gatekeeper now makes a request to the new gatekeeper, the gatekeeper responds with a reject, indicating that it does not recognize the endpoint. The endpoint must reregister with the new gatekeeper before it can continue H.323 operations.

---

### Configuring Gatekeeper Zones

#### Restrictions for Gatekeeper Zones

- The gateway can register with only one gatekeeper at a time.
- Only E.164 address resolution is supported.
- Because the gateway can register with only one gatekeeper at a time, redundant H.323 zone support provides only redundancy and does not provide any load balancing.
- Although redundant H.323 zone support allows you to configure alternate gatekeepers, it does not insert information in the alternate gatekeeper field of some RAS messages.

#### Information About Gatekeeper Zones

**Zone and Subnet Configuration**

A zone is defined as the set of H.323 nodes controlled by a single gatekeeper. Gatekeepers that coexist on a network may be configured so that they register endpoints from different subnets.

Endpoints attempt to discover a gatekeeper and consequently the zone of which they are members by using the Registration, Admission, and Status (RAS) message protocol. The protocol supports a discovery message that may be sent multicast or unicast.

If the message is sent multicast, the endpoint registers nondeterministically with the first gatekeeper that responds to the message. To enforce predictable behavior, where endpoints on certain subnets are assigned to specific gatekeepers, the `zone subnet` command can be used to define the subnets that constitute a given gatekeeper zone. Any endpoint on a subnet that is not enabled for the gatekeeper is not accepted as a member of that gatekeeper zone. If the gatekeeper receives a discovery message from such an endpoint, it sends an explicit reject message.

**Gateway Selection Process**

Cisco H.323 Version 2 software improves the gateway selection process as follows:

- When more than one gateway is registered in a zone, the updated `zone prefix` command allows selection priorities to be assigned to these gateways on the basis of the dialed prefix.
Gateway resource reporting allows the gateway to notify the gatekeeper when H.323 resources are getting low. The gatekeeper uses this information to determine which gateway to use to complete a call.

The gatekeeper maintains a separate gateway list, ordered by priority, for each of its zone prefixes. If a gateway does not have an assigned priority for a zone prefix, it defaults to priority 5, which is the median. To explicitly bar the use of a gateway for a zone prefix, the gateway must be defined as having a priority 0 for that zone prefix.

When selecting gateways, the gatekeeper identifies a target pool of gateways by performing a longest zone prefix match; then it selects from the target pool according to priorities and resource availability. If all high-priority gateways are busy, a low-priority gateway might be selected.

**Redundant H.323 Zone Support**

Redundant H.323 zone support allows for the following:

**Gatekeeper Multiple Zone Support**

Redundant H.323 zone support allows users to configure multiple remote zones to service the same zone or technology prefix. A user is able to configure more than one remote gatekeeper to which the local gatekeeper can send location requests (LRQs). This allows for more reliable call completion.

Redundant H.323 zone support is supported on all gatekeeper-enabled IOS images.

**Zone Prefixes**

The zone prefixes (typically area codes) serve the same purpose as the domain names in the H.323-ID address space.

For example, the local gatekeeper can be configured with the knowledge that zone prefix "212....." (that is, any address beginning "212" and followed by 7 arbitrary digits) is handled by the gatekeeper gatekeeper_2. Then, when the local gatekeeper is asked to admit a call to destination address 2125551111, it knows to send the LRQ to gatekeeper_2.

When gatekeeper_2 receives the request, the gatekeeper must resolve the address so that the call can be sent to its final destination. There may be an H.323 endpoint with that E.164 address that has registered with gatekeeper_2, in which case gatekeeper_2 returns the IP address for that endpoint. However, it is possible that the E.164 address belongs to a non-H.323 device (for example, a telephone or an H.320 terminal). Because non-H.323 devices do not register with gatekeepers, gatekeeper_2 cannot resolve the address. The gatekeeper must be able to select a gateway that can be used to reach the non-H.323 device. This is where the technology prefixes (or "gateway-type") become useful.

**Technology Prefixes**

The network administrator selects technology prefixes (tech-prefixes) to denote different types or classes of gateways. The gateways are then configured to register with their gatekeepers with these prefixes. For example, voice gateways can register with tech-prefix 1#, H.320 gateways with tech-prefix 2#, and voicemail gateways with tech-prefix 3#. More than one gateway can register with the same type prefix. When this happens, the gatekeeper makes a random selection among gateways of the same type.

If the callers know the type of device that they are trying to reach, they can include the technology prefix in the destination address to indicate the type of gateway to use to get to the destination. For example, if a caller knows that address 2125551111 belongs to a regular telephone, the destination address of 1#2125551111 can be used, where 1# indicates that the address should be resolved by a voice gateway. When the voice gateway
receives the call for 1#2125551111, it strips off the technology prefix and bridges the next leg of the call to the telephone at 2125551111.

Configuring Gatekeeper Zones

To configure gatekeeper zones, use the following commands starting in global configuration mode.

SUMMARY STEPS

1. gatekeeper
2. zone local zone-name domain-name [ ras-ip-address ] [ port ]
3. zone remote zone-name domain-name ip-address [port] [cost cost [priority priority]]
4. zone prefix gatekeeper-name e164-prefix [blast | seq] [gw-priority priority gw-alias [gw-alias, ...]]
5. use-proxy local-zone remote-zone zone-name outbound-from gateway
6. zone subnet local-gatekeeper-name / default | subnet-address {/ bits-in-mask | mask} enable }
7. Repeat Step 6 for each subnet.
8. no shutdown
9. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# gatekeeper</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 zone local zone-name domain-name [ ras-ip-address ] [ port ]

Example:

Router(config-gk)# zone local
gk408or650 xyz.com

Specifies a zone controlled by a gatekeeper. Arguments are as follows:

- **zone-name** --Gatekeeper name or zone name. This is usually the fully domain-qualified host name of the gatekeeper. For example, if the domain name is cisco.com, the gatekeeper name might be gk1.cisco.com. However, if the gatekeeper is controlling multiple zones, the zone name for each zone should be some unique string that has a mnemonic value.

- **domain-name** --Domain name served by this gatekeeper.

- **ras-ip-address** -- IP address of one of the interfaces on the gatekeeper. When the gatekeeper responds to gatekeeper discovery messages, it signals the endpoint or gateway to use this address in future communications. Setting this address for one local zone makes it the address used for all local zones.

- **port** --RAS signaling port number for the local zone. Range: 1 to 65535. Default: 1719.

Step 3 zone remote zone-name domain-name ip-address [port] [cost cost [priority priority]]

Defines the remote zone cluster. Keywords and arguments are as follows:

- **zone-name** --ID of the remote zone.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# zone remote</td>
<td></td>
</tr>
<tr>
<td>zone1 domain 192.168.0.0 123</td>
<td></td>
</tr>
<tr>
<td>cost 25 priority 25</td>
<td></td>
</tr>
<tr>
<td>• domain-name --ID of the domain the remote zone is</td>
<td></td>
</tr>
<tr>
<td>serving.</td>
<td></td>
</tr>
<tr>
<td>• ip-address --IP address for the remote gatekeeper.</td>
<td></td>
</tr>
<tr>
<td>• port -- RAS signaling port number for the remote</td>
<td></td>
</tr>
<tr>
<td>zone. Range: 1 to 65535. Default: the well-known RAS</td>
<td></td>
</tr>
<tr>
<td>port number 1719.</td>
<td></td>
</tr>
<tr>
<td>• cost cost --Cost of the zone. Range: 1 to 100.</td>
<td></td>
</tr>
<tr>
<td>Default: 50.</td>
<td></td>
</tr>
<tr>
<td>• priority priority --Priority of the zone. Range:</td>
<td></td>
</tr>
<tr>
<td>1 to 100. Default: 50.</td>
<td></td>
</tr>
<tr>
<td>When several remote zones are configured, you can</td>
<td></td>
</tr>
<tr>
<td>rank them by cost and priority value. A zone with a</td>
<td></td>
</tr>
<tr>
<td>lower cost value and a higher priority value is</td>
<td></td>
</tr>
<tr>
<td>given preference over others.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>zone prefix gatekeeper-name</td>
<td>Adds a prefix to the gatekeeper zone list.</td>
</tr>
<tr>
<td>e164-prefix [blast</td>
<td>seq] gw-priority priority gw-alias [gw-alias, ...]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# zone prefix</td>
<td></td>
</tr>
<tr>
<td>gatekeeper1 888 blast</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>use-proxy local-zone</td>
<td>Specifies that all calls originating from gateways in the</td>
</tr>
<tr>
<td>remote-zone zone-name</td>
<td>local zone and bound to the</td>
</tr>
<tr>
<td>outbound-from gateway</td>
<td>remote zone route through a proxy, which should be registered with</td>
</tr>
<tr>
<td>the gatekeeper.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# use-proxy</td>
<td></td>
</tr>
<tr>
<td>zone123 remote-zone remote456</td>
<td></td>
</tr>
<tr>
<td>outbound-from gateway</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td>zone subnet local-gatekeeper-name</td>
<td>Defines a set of subnets that constitute the gatekeeper zone. Enables</td>
</tr>
<tr>
<td>[ default</td>
<td>subnet-address ] / [ bits-in-mask</td>
</tr>
<tr>
<td>the gatekeeper for each of these subnets and disables</td>
<td></td>
</tr>
<tr>
<td>it for all other subnets. (Repeat for each subnet.)</td>
<td></td>
</tr>
<tr>
<td>Keywords and arguments are as follows:</td>
<td></td>
</tr>
<tr>
<td>• local-zone --Local zone.</td>
<td></td>
</tr>
<tr>
<td>• remote-zone zone-name --Proxy policy for calls to</td>
<td></td>
</tr>
<tr>
<td>or from a specific gatekeeper or zone.</td>
<td></td>
</tr>
<tr>
<td>• outbound-from --Proxy policy as it applies to</td>
<td></td>
</tr>
<tr>
<td>calls that are outbound from the local zone to a</td>
<td></td>
</tr>
<tr>
<td>remote zone. Each use-proxy command defines the policy</td>
<td></td>
</tr>
<tr>
<td>for only one direction.</td>
<td></td>
</tr>
<tr>
<td>• gateway --Type of local device to which the policy</td>
<td></td>
</tr>
<tr>
<td>applies. Applies the policy only to local gateways.</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Gatekeeper Zones

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# zone subnet gatekeeper3 default</td>
<td></td>
</tr>
</tbody>
</table>

- **local-gatekeeper-name** -- Name of the local gatekeeper. Should be a Domain Name System (DNS) host name if you use DNS to locate remote zones.
- **default** -- Applies to all other subnets that are not specifically defined by this command.
- **subnet-address** -- Address of the subnet that is being defined.
- **/ bits-in-mask** -- Number of bits of the mask to be applied to the subnet address. You must enter a slash before this argument.
- **mask** -- Mask (in dotted string format) to be applied to the subnet address.
- **enable** -- Gatekeeper accepts discovery and registration from the specified subnets.

To define the zone as being all but one set of subnets by disabling that set and enabling all other subnets, use the **no** form of the command as follows: Configure `no zone subnet local-gatekeeper-name subnet-address { /bits-in-mask | mask } enable`.

To accept the default behavior, which is that all subnets are enabled, use the **no** form of the command as follows: `no zone subnet local-gatekeeper-name default enable`.

You can use this command more than once to create a list of subnets controlled by a gatekeeper. The subnet masks need not match actual subnets in use at your site. For example, to specify a particular endpoint, show its address as a 32-bit netmask.

If a local gatekeeper name is contained in the message, it must match the `local-gatekeeper-name` argument.

**Note** To explicitly enable or disable a particular endpoint, specify its host address using a 32-bit subnet mask.

---

### Configuring Destination Zones

When a gatekeeper receives an admission request (ARQ) message from a local zone gateway, if bandwidth management is enabled in the gatekeeper checks the bandwidth. The gatekeeper sends an admission reject (ARJ) message to the local zone gateway if the local zone is out of bandwidth and if no remote zone has been configured. The ARJ reject reason is set to "resource unavailable."
If a remote zone has been configured, the gatekeeper sends a location request (LRQ) message to that zone. A check is made of the total, interzone, and session bandwidth limits of the remote zone. If no remote zone has been defined or if the gatekeeper receives location request reject (LRJ) messages from all the remote gateways to which it has sent LRQ messages, the gatekeeper sends an ARJ message (with the reject reason set to "resource unavailable") to the requesting gateway.

**Note**
The ARJ message functionality is available for only tech and zone prefix routing. By default, this functionality is not enabled.

In addition to the gatekeeper maintaining concurrent call counts per zone, after receiving ARQ and LRQ messages from a requesting gateway, the gatekeeper can also check the concurrent call count of the destination zone. If the call count exceeds a preconfigured maximum threshold and if no other remote zone has been configured, the gatekeeper sends an ARJ or LRJ message to the requesting gateway. The ARJ reject reason is shown as "resource unavailable" and the LRJ reject reason is shown as "undefined reason."

If a remote zone has been configured, the gatekeeper sends LRQ messages to the remote zones. If no remote zone has been defined or if the gatekeeper receives LRJ messages from all the remote gateways to which it has sent LRQ messages, the gatekeeper sends an ARJ message (with the reject reason set to "resource unavailable") and an LRJ message (with the reject reason set to "undefined reason") to the requesting gateway.

After receiving an ARQ message from a requesting gateway and if the destination is a local zone, the gatekeeper sends an ACF message to the requesting gateway only if the local destination gateway has resources. If the local destination gateway is out of resources, the gatekeeper tries to send an LRQ message to remote destination zones until it receives a location confirmation (LCF) message or until no remote zones remain. If no remote zone has been defined or if the gatekeeper receives LRJ messages from remote destinations for all the LRQ messages sent, the gatekeeper sends an ARJ message to the requesting gateway. The reject reason in the ARJ message to the requesting gateway is set to "resource unavailable."

To configure session bandwidth limits of the destination zones and how the gateway should handle requests if resources run low, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. gatekeeper
2. bandwidth check-destination
3. arq reject-resource-low
4. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

Router(config)# gatekeeper
### Configuring Intergatekeeper Communication

You can configure intergatekeeper communication either by means of DNS or manually.

#### Configuring Intergatekeeper Communication Using DNS

To configure intergatekeeper communication using DNS, use the following commands in global configuration mode.

**SUMMARY STEPS**

1. `ip name-server dns-servername [ server-address2...server-address6 ]`
2. `ip domain-name name`
3. `ras [gk-id@] host [:port] [priority]`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** `ip name-server dns-servername [ server-address2...server-address6 ]` | Specifies the DNS server address. Arguments are as follows:  
  - `dns-servername` --IP address of the name server.  
  - `server-address2...server-address6` --IP addresses of up to five additional name servers. |

Example:

```
Router(config)# ip name-server 192.168.0.0 192.168.1.1
```
### What to Do Next

How you enter the text record for a particular domain depends on the DNS implementation. The following examples are for the Berkeley Internet Name Domain (BIND). These records are typically entered into the "hosts" database:

```
zonel.comintxt"ras gk.zonel.com"
zone2.comintxt"ras gk2@gk.zone2.com"
zone3.comintxt"ras gk3@gk.zone3.com:1725"
zone4.comintxt"ras gk4@gk.zone4.com:1725 123"
zzone5.comintxt"ras gk5@101.0.0.1:1725"
```

### Configuring Intergatekeeper Communication Manually

If you choose not to use DNS or if DNS is not available, configure intergatekeeper communication manually. To configure intergatekeeper manual communication, use the following command in gatekeeper configuration mode for every other gatekeeper in the network.
SUMMARY STEPS

1. gatekeeper
2. zone remote other-gatekeeper-name other-domain-name other-gatekeeper-address [port]
3. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td>gatekeeper</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# gatekeeper</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	Statically specifies a remote zone if Domain Name System (DNS) is
zone remote other-gatekeeper-name	unavailable or undesirable. Enter this command for each gatekeeper.
other-domain-name other-gatekeeper-address	Arguments are as follows:
[port]	
Example:	
Router(config-gk)# zone remote gatekeeper	
4 xxx.com 192.168.0.0	
• other-gatekeeper-name --Name of the	
remote gatekeeper.	
• other-domain-name --Domain name of the	
remote gatekeeper.	
• other-gatekeeper-address --IP address	
of the remote gatekeeper.	
• port --RAS signaling port for the	
remote zone. Range: 1 to 65 535.	
Default: the well-known RAS port	
number 1719.	

**Step 3**	Exits the current mode.
exit	
Example:	
Router(config-gk)# exit	

Configuring Gatekeeper Alias Registration and Address Resolution

You can configure multiple prefixes for a local zone and register an endpoint belonging to multiple zone prefixes. Gatekeepers can accept a registration request (RRQ) message with multiple E.164 aliases with different prefixes.

Alias Registration

When a gatekeeper receives an RRQ message from a gateway with a Foreign Exchange Station (FXS) port configured to register its E.164 address, it performs either of the following steps:
• If the E.164 alias is prefix-qualified, the gatekeeper tries to match the prefix with the zone prefixes it has defined. If a prefix is found, the gatekeeper searches its E.164 alias table with the exact alias from the RRQ message, including the prepended prefix, to make sure the alias is unique.

• If no zone prefix is found, the gatekeeper searches its E.164 alias table with the exact alias from the RRQ message:
  • If the alias does exist and it is not owned by the same endpoint, the gatekeeper sends a registration reject (RRJ) message.
  • If the alias does not exist, the gatekeeper creates an entry in the table for the exact alias name from the RRQ message, with or without the prefix qualifier, and sends a registration confirm (RCF) message.

**Note**
With the Gatekeeper Alias Registration and Address Resolution Enhancements feature, the gatekeeper creates an entry in its E.164 alias table for the exact alias name from the RRQ message. It does not strip off the prefix before creating the entry.

---

**Address Resolution**

**Resolution for ARQ Messages**

When a gatekeeper receives an admission request (ARQ) message from a gateway, it performs either of the following steps:

• If there is a technology prefix specified in the admission request and it is a hopoff technology prefix, the gatekeeper sends a location request (LRQ) message.

• If there is no technology prefix or the technology prefix is not a hopoff technology prefix, the gatekeeper uses the exact E.164 alias in the ARQ message, including the zone prefix, if any, to search its zone prefix table and the E.164 aliases registered by local endpoints:
  • If no zone-prefix match is found and the `arq reject-unknown prefix` command is set, the gatekeeper sends an admission reject (ARJ) message.
  • If a match is found and the destination zone is not local, the gatekeeper sends an LRQ message to the remote zone.
  • If the destination address is an E.164 alias registered by an endpoint, the gatekeeper sends an admission confirm (ACF) message
  • If the destination zone is local and the destination address is not registered but the local gateway is found with the specified technology prefix or the default technology prefix, the gatekeeper sends an ACF. If no local gateway with the specified technology prefix is found, the gatekeeper sends an ARJ message.

If there is no matching technology prefix and no default technology prefix is set, the gatekeeper sends an ARJ message.
Resolution for LRQ Messages

When a gatekeeper receives an LRQ message from a gateway, it performs either of the following steps:

- If a hop-off technology prefix is found in the Location Request and the destination zone is not local, the gatekeeper sends an LRQ message, if the lrq forward-queries command is set.

- If there is no technology prefix or the technology prefix is not a hop-off technology prefix, the gatekeeper uses the exact E.164 alias in the LRQ message to search its zone prefix table and the registered E.164 aliases.

  • If no match is found and the lrq reject-unknown prefix command is set, the gatekeeper sends a location reject (LRJ) message.

  • If a match is found and the destination zone is a remote zone, and the lrq forward-queries command is set, the gatekeeper sends an LRQ message to the destination zone.

  • If the destination zone is local and the destination address is registered, the gatekeeper sends a location confirm (LCF) message.

  • If the destination zone is local and the destination address is not registered but the local gateway is found with the specified technology prefix or the default technology prefix, the gatekeeper sends an LCF message. If no local gateway with the specified technology prefix is found, the gatekeeper sends an LRJ message.

  • If the destination zone is local and the destination address is not registered, and there is no matching technology prefix and no default technology prefix is set, the gatekeeper sends an LRJ message.

Request Processing

A gatekeeper with the Gatekeeper Alias Registration and Address Resolution Enhancements feature processes requests in a new way, as showing in the following examples. The gatekeeper is configured with two local zones, zone1 and zone2, and three prefixes, as follows:

```
Router(config-gk)#zone local zone1 domain.com
Router(config-gk)#zone local zone2 domain.com
Router(config-gk)#zone prefix zone2 407
Router(config-gk)#zone prefix zone1 408
Router(config-gk)#zone prefix zone1 409
```

The table below shows various E.164 alias registration requests and the resulting gatekeeper actions.

**Table 6: E.164 Alias Registration Requests and Gatekeeper Actions**

<table>
<thead>
<tr>
<th>RRQ</th>
<th>Without This Feature</th>
<th>With This Feature</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4085551000</td>
<td>RRJ</td>
<td>RCF</td>
<td>Two entries are created in the E.164 alias hash table: 4085551000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4095552000</td>
</tr>
<tr>
<td>4095551000</td>
<td>RCF</td>
<td>RCF</td>
<td>4095551000 is created in the table.</td>
</tr>
<tr>
<td>4085553000</td>
<td>RCF</td>
<td>RCF</td>
<td>4085553000 is created in the table.</td>
</tr>
<tr>
<td>RRQ</td>
<td>Without This Feature</td>
<td>With This Feature</td>
<td>Action</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>5551234</td>
<td>RRJ</td>
<td>RCF</td>
<td>5551234 is created in the table.</td>
</tr>
<tr>
<td>4085551000</td>
<td>RRJ</td>
<td>RRJ</td>
<td>Gatekeeper rejects the request because it is a duplicate alias.</td>
</tr>
<tr>
<td>4085554000 4075554000</td>
<td>RRJ</td>
<td>RRJ</td>
<td>Gatekeeper rejects the request because the two prefixes (407 and 408) have different zone names (zone1 and zone2).</td>
</tr>
</tbody>
</table>

To allow endpoints to communicate between zones, gatekeepers must be able to determine which zone an endpoint is in and be able to locate the gatekeeper responsible for that zone. If the Domain Name System (DNS) mechanism is available, a DNS domain name can be associated with each gatekeeper.

\[\text{Note}\]

For more information on DNS, see the "Configuring Intergatekeeper Communication" section.

### Configuring Load Balancing with Alternate Gatekeepers

This section contains the following information:

#### Restrictions for Load Balancing with Alternate Gatekeepers

- The gatekeeper-to-gatekeeper redundancy and load-sharing mechanism requires the Cisco H.323 VoIP Gatekeeper for Cisco Access Platforms feature.
- The order in which LRQs are sent to the gatekeepers is based on the order in which the gatekeepers are listed. You cannot specify a priority number for a gatekeeper.
- Regardless of the order in which the LRQs are sent, the gateway still uses the first gatekeeper that sends an LCF.
- The settings for delay between LRQs and the LRQ window are global and cannot be set on a per-zone or technology-prefix basis.
- The number of remote gatekeepers multiplied by the delay per LRQ cannot exceed the Routing Information Protocol (RIP) timeout. Therefore, we recommend that you limit your list of remote gatekeepers to two or three.
- If LRQ forwarding is enabled on the directory gatekeeper, the sequential setting for LRQs is ignored.
- Only E.164 address resolution is supported.
• Using redundant H.323 zone support in the "directory gatekeeper" can generate extra RAS messages. Therefore, the number of "directory gatekeeper" levels should be kept to a minimum (two or three at the maximum).

• If a gatekeeper fails, the endpoint might use alternate gatekeepers to continue operation. The example below creates a local cluster associated with a local zone and defines an alternate gatekeeper within the cluster.

Information About Load Balancing with Alternate Gatekeepers

Load balancing allows the gatekeeper to move registered H.323 endpoints to an alternate gatekeeper or to reject new calls and registrations once a certain threshold is met.

If a gatekeeper fails, the endpoint might use alternate gatekeepers to continue operation.

The gatekeeper-to-gatekeeper redundancy and load-sharing mechanism expands the capability that is provided by the redundant H.323 zone support feature. Redundant H.323 zone support allows you to configure multiple gatekeepers to service the same zone or technology prefix by sending LRQs to two or more gatekeepers.

With the redundant H.323 zone support feature, the LRQs are sent simultaneously (in a "blast" fashion) to all of the gatekeepers in the list. The gateway registers with the gatekeeper that responds first. Then, if that gatekeeper becomes unavailable, the gateway registers with another gatekeeper from the list.

The gatekeeper-to-gatekeeper redundancy and load-sharing mechanism allows you to configure gatekeeper support and to give preference to specific gatekeepers. You may choose whether the LRQs are sent simultaneously or sequentially (one at a time) to the remote gatekeepers in the list. If the LRQs are sent sequentially, a delay is inserted after the first LRQ and before the next LRQ is sent. This delay allows the first gatekeeper to respond before the LRQ is sent to the next gatekeeper. The order in which LRQs are sent to the gatekeepers is based on the order in which the gatekeepers are listed (using either the zone prefix command or the gw-type-prefix command).

Once the local gatekeeper has sent LRQs to all the remote gatekeepers in the list (either simultaneously or sequentially), if it has not yet received a location confirmation (LCF), it opens a "window." During this window, the local gatekeeper waits to see whether a LCF is subsequently received from any of the remote gatekeepers. If no LCF is received from any of the remote gatekeepers while the window is open, the call is rejected.

Configuring Load Balancing with Alternate Gatekeepers

To configure load balancing and alternate gatekeepers, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. gatekeeper
2. zone local  local-zone-name domain-name  [ras-ip-address]
3. zone cluster local  cluster-name local-zone-name
4. element  alternateGK ip-address [port]
5. exit
6. load-balance  [endpoints max-endpoints]  [calls max-calls]  [cpu max-%cpu]  [memory max-%mem-used]
7. exit
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>gatekeeper</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config)# gatekeeper</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>zone local  local-zone-name domain-name [ras-ip-address]</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-gk)# zone local gk408or650 xyz.com</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>zone cluster local  cluster-name local-zone-name</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-gk)# zone cluster local RTPCluster RTPGK1</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>element  alternateGK ip-address [port]</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-gk-cluster)# element alternateGK1 192.168.0.0</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>exit</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-gk-cluster)# exit</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>load-balance  [endpoints max-endpoints] [calls max-calls] [cpu max-%cpu] [memory max-%mem-used]</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-gk)# load-balance endpoints 200 calls 100 cpu 75 memory 80</code></td>
</tr>
</tbody>
</table>
### Command or Action
### Purpose

<table>
<thead>
<tr>
<th>Step 7</th>
<th>exit</th>
<th>Exits the current mode.</th>
</tr>
</thead>
</table>

**Example:**

```
Router(config-gk)# exit
```

---

## Verifying Load Balancing with Alternate Gatekeepers

To verify load balancing and alternate gatekeeper configuration, perform the following steps.

### SUMMARY STEPS

1. `show gatekeeper status`
2. `show gatekeeper performance statistics`

### DETAILED STEPS

**Step 1**  
**show gatekeeper status**

Use this command to see if load balancing is configured and if accounting vendor-specific attributes (VSAs) are enabled. The last five lines shown below, starting with Load Balance Count, display only when load balancing is enabled.

**Example:**

```
Router# show gatekeeper status
Gatekeeper State: UP
Load Balancing: ENABLED
Zone Name: RoseGK
Zone Name: PurpleGK
Accounting: DISABLED
Security: DISABLED
Maximum Remote Bandwidth: unlimited
Current Remote Bandwidth: 0 kbps
Current Remote Bandwidth (w/Alt GKS): 0 kbps
Load Balance Count: 0
Calls: 0/unlimited
Endpoints: 0/unlimited
Memory: 0%/90%
CPU: 0%/80%
```

**Step 2**  
**show gatekeeper performance statistics**

Use this command to verify performance statistics.

**Example:**

```
Router# show gatekeeper performance statistics
Performance statistics captured since:19:00:12 EST Sun Feb 28 1993
RAS inbound message counters:
 Originating ARQ:426 Terminating ARQ:306 LRQ:154
RAS outbound message counters:
```
Configuring Remote Clusters

The following commands define a group of associated gatekeepers in a remote cluster. This remote cluster can then be addressed using the `zone prefix` command in the same way that a remote gatekeeper would be addressed to route calls. However, rather than individually addressing each remote gatekeeper within the cluster, you can address the cluster as a single entity. Additionally, location requests (LRQs) are now sent round-robin to each gatekeeper within the remote cluster.

### Configuring Remote Clusters

To configure remote clusters, use the following commands beginning in global configuration mode.

### SUMMARY STEPS

1. `gatekeeper`
2. `zone local` `zonename` `domainname` `[ras-ip-address]` `[port]`
3. `zone cluster` `remote` `remote-cluster-name` `domainname` `[cost]` `[cost]` `[priority]` `[priority]`
4. `element` `alternateGK` `IP-address` `[port]`
5. `exit`
6. `zone prefix` `remote-clustername` `e164-prefix`
7. `exit`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>gatekeeper</code></td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# gatekeeper</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>zone local</code> <code>zonename</code> <code>domainname</code> <code>[ras-ip-address]</code> <code>[port]</code></td>
<td>Defines the gatekeeper’s name or zone name.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-gk)# zone local gk408or650 xyz.com</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 3** zone cluster remote remote-cluster-name domainname [cost cost [priority priority]] | Defines a remote cluster. Keywords and arguments are as follows:  
- `remote-cluster-name` -- Remote cluster name.  
- `domain-name` -- ID of the domain the remote cluster is serving.  
- `cost` -- Cost. Range: 1 to 100. Default: 50.  
- `priority` -- Priority value. Range: 1 to 100. Default: 50. |
| Example:  
Router(config-gk)# zone cluster remote SJCluster cisco.com | |
| **Step 4** element alternateGK IP-address [port] | Defines component elements of local or remote clusters.  
**Example:**  
Router(config-gk-cluster)# element alternateGK1 192.168.0.0 | |
| **Step 5** exit | Exits the current mode.  
**Example:**  
Router(config-gk-cluster)# exit | |
| **Step 6** zone prefix remote-clustername e164-prefix | Keywords and arguments are as follows:  
- `remote-clustername` -- Name of a local or remote cluster, which must have been defined by using the `zone local` or `zone remote` command.  
- `e164-prefix` -- E.164 prefix in standard form followed by dots (.). Each dot represents a number in the E.164 address. For example, 212...... is matched by 212 and any seven numbers.  
**Note** Although a dot representing each digit in an E.164 address is the preferred configuration method, you can also enter an asterisk (*) to match any number of digits.  
**Example:**  
Router(config-gk)#  
zone prefix 40_gatekeeper 408* | |
| **Step 7** exit | Exits the current mode.  
**Example:**  
Router(config-gk)# exit | |

**Verifying Remote Clusters**

To verify configuration of remote clusters, perform the following steps.
SUMMARY STEPS

1. show gatekeeper status cluster
2. show gatekeeper zone status
3. show gatekeeper zone cluster
4. show proxy h323 status
5. show gatekeeper cluster

DETAILED STEPS

Step 1  show gatekeeper status cluster
Use this command to display each element of a cluster. This command shows the health of the elements in a cluster and reports on the percentage of memory and CPU usage, the number of active calls, and the number of endpoints registered on the element. The Last Announce field tells you the time since the last announcement message was received from the alternate gatekeeper. In this example, MsPacman and LavenderGK are part of a local cluster.

Example:

Router# show gatekeeper status cluster
CLUSTER INFORMATION
------------------------
Active Endpoint Last
Hostname %Mem %CPU Calls Count Announce
-------- ---- ---- ------ -------- --------
MsPacman 17 2 0 1 Local Host
LavenderGK 30 1 0 4 14s

Step 2  show gatekeeper zone status
Use this command to display the bandwidth information for all zones.

Example:

Router# show gatekeeper zone status
GATEKEEPER ZONES
----------------
GK name Domain Name RAS Address PORT FLAGS
------- ----------- ----------- ----- ----- RoseGK cisco.com 209.165.201.30 1719 LS

BANDWIDTH INFORMATION (kbps):
 Maximum interzone bandwidth : unlimited
 Current interzone bandwidth : 0
 Current interzone bandwidth (w/ Alt GKs) : 0
 Maximum total bandwidth : unlimited
 Current total bandwidth : 0
 Current total bandwidth (w/ Alt GKs) : 0
 Maximum session bandwidth : unlimited

SUBNET ATTRIBUTES:
 All Other Subnets : (Enabled)

PROXY USAGE CONFIGURATION:
 Inbound Calls from all other zones :
 to terminals in local zone RoseGK : use proxy
to gateways in local zone RoseGK : do not use proxy
Outbound Calls to all other zones :
 from terminals in local zone RoseGK : use proxy
 from gateways in local zone RoseGK : do not use proxy

Step 3  show gatekeeper zone cluster
Use this command to display information about alternate gatekeepers. PRI represents the priority value assigned to an alternate gatekeeper. This field ranges from 0 to 127, with 127 representing the lowest priority.

Example:

```
Router# show gatekeeper zone cluster
ALTERATE GATEKEEPER INFORMATION

LOCAL GK NAME ALT GK NAME PRI (kbps) INT BW (kbps) REM BW (kbps) LAST ANNOUNCE STATUS
------------------------------- ----------- ------ -------- ------ ------- -------- -----
RoseGK LilacGK 120 0 0 0 7s CONNECTED
```

Step 4

**show proxy h323 status**

Use this command to display information about the proxy such as the T.120 mode and what port is being used.

Example:

```
Router# show proxy h323 status
H.323 Proxy Status

H.323 Proxy Feature:Enabled
Proxy interface = Ethernet0:UP
Proxy IP address = 209.165.200.254
Proxy IP port = 11720
Application Specific Routing:Disabled
RAS Initialization:Complete
Proxy aliases configured:
 H323_ID:PROXY
Proxy aliases assigned by Gatekeeper:
 H323_ID:PROXY
Gatekeeper multicast discovery:Disabled
Gatekeeper:
 Gatekeeper ID:DVM1
 IP address:209.165.200.254
 Gatekeeper registration succeeded
 T.120 Mode:PROXY
 RTP Statistics:OFF
 Number of calls in progress:0
```

Step 5

**show gatekeeper cluster**

Use this command to display all clusters defined in the gatekeeper and with their component elements.

Example:

```
Router# show gatekeeper cluster
gatekeeper
 zone local RTPGK1cisco.com
 zone cluster local RTPCluster RTPGK1
 element RTPGK2 209.165.200.1719
 element RTPGK3 209.165.200.1719
 zone cluster remote SJCluster cisco.com
 element SJGK1 209.18.79.23 1719
 element SJGK2 209.18.79.24 1719
 element SJGK3 209.18.79.25 1719
no shutdown
```

```
Router# show gatekeeper cluster
CONFIGURED CLUSTERS

Cluster Name Type Local Zone Elements IP
---------- ----- --------- -------- -----
RTPCluster Local RTPGK1 RTPGK2 RTPGK3 209.165.200.254 1719
```

H.323 Configuration Guide, Cisco IOS Release 15M&T
Configuring Static Nodes

In some cases, registration information is not accessible for a terminal or endpoint from any gatekeeper. This inaccessible registration information may be because the endpoint does not use RAS, is in an area where no gatekeeper exists, or is in a zone where the gatekeeper addressing is unavailable either through DNS or through configuration. These endpoints can still be accessed via a gatekeeper by entering them as static nodes.

To enter endpoints as static nodes, use the following commands beginning in global configuration mode.

**Before You Begin**
- Obtain the address of the endpoint.

### SUMMARY STEPS

1. **gatekeeper**
2. **zone local** gatekeeper-name domain-name [ras-ip-address]
3. **alias static** ip-signaling-addr [ port ] gkid gatekeeper-name [ ras ip-ras-addr port ] [ terminal ] [ mcu ] [ gateway { h320 h323-proxy voip } ] [ e164 e164-address [ h323id h323-id ] ]
4. Repeat Step 3 for each E.164 address that you want to add for the endpoint.
5. **exit**

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# gatekeeper</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> zone local gatekeeper-name domain-name [ras-ip-address]</td>
<td>Specifies a zone controlled by a gatekeeper.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# zone local gatekeeper1 domain1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> alias static ip-signaling-addr [ port ] gkid gatekeeper-name [ ras ]</td>
<td>Creates a static entry in the local alias table for each E.164 address. Keywords and arguments are as follows:</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`ip-ras-addr port [ terminal</td>
<td>mcu</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# alias static ip-signalling-addr gkid gatekeeper1</td>
<td></td>
</tr>
<tr>
<td><strong>ip-signaling-addr</strong> -- IP address of the H.323 node, used as the address to signal when establishing a call.</td>
<td></td>
</tr>
<tr>
<td><strong>port</strong> -- Port number other than the endpoint call-signaling well-known port number (1720).</td>
<td></td>
</tr>
<tr>
<td><strong>gkid</strong> -- Local gatekeeper of whose zone this node is a member.</td>
<td></td>
</tr>
<tr>
<td><strong>ras</strong> -- Node remote access server (RAS) signaling address. Default: ip-signalling-addr parameter is used in conjunction with the RAS well-known port.</td>
<td></td>
</tr>
<tr>
<td><strong>port</strong> -- Port number other than the RAS well-known port number (1719).</td>
<td></td>
</tr>
<tr>
<td><strong>terminal</strong> -- Alias is a terminal.</td>
<td></td>
</tr>
<tr>
<td><strong>mcu</strong> -- Alias is a multiple control unit (MCU).</td>
<td></td>
</tr>
<tr>
<td><strong>gateway</strong> -- Alias is a gateway.</td>
<td></td>
</tr>
<tr>
<td><strong>h320</strong> -- Alias is an H.320 node.</td>
<td></td>
</tr>
<tr>
<td><strong>h-323 proxy</strong> -- Alias is an H.323 proxy.</td>
<td></td>
</tr>
<tr>
<td><strong>voip</strong> -- Alias is VoIP.</td>
<td></td>
</tr>
<tr>
<td><strong>e164 e164-address</strong> -- Node E.164 address. Can be used more than once to specify as many E.164 addresses as needed. A maximum number of 128 characters can be entered for this address. To avoid exceeding this limit, you can enter multiple alias static commands with the same call-signaling address and different aliases.</td>
<td></td>
</tr>
<tr>
<td><strong>h323-id h323-id</strong> -- Node H.323 alias. Can be used more than once to specify as many H.323 identification aliases as needed. A maximum number of 256 characters can be entered for this address. To avoid exceeding this limit, you can enter multiple commands with the same call signaling address and different aliases.</td>
<td></td>
</tr>
</tbody>
</table>

**Step 4** Repeat Step 3 for each E.164 address that you want to add for the endpoint.

**Step 5**

<table>
<thead>
<tr>
<th>exit</th>
<th>Exits the current mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring AAA and RADIUS

Version 1 of the H.323 specification does not provide a mechanism for authenticating registered endpoints. Credential information is not passed between gateways and gatekeepers. However, by enabling AAA on the gatekeeper and configuring for RADIUS and TACACS+, a rudimentary form of identification can be achieved.

In Version 2 and higher, authentication is done using tokens. See the "Configuring Security and Authentication" section for more information.

If the AAA feature is enabled, the gatekeeper attempts to use the registered aliases along with a password and completes an authentication transaction to a RADIUS and TACACS+ server. The registration is accepted only if RADIUS and TACACS+ successfully authenticates the name.

The gatekeeper can be configured so that a default password can be used for all users. It can also be configured to recognize a password separator character that allows users to piggyback their passwords onto H.323-ID registrations. In this case, the separator character separates the ID and password fields.

**Note**
The names loaded into RADIUS and TACACS+ are probably not the same names provided for dial access because they may all have the same password.

If AAA is enabled on the gatekeeper, the gatekeeper emits an accounting record each time a call is admitted or disconnected.

### Configuring H.323 Users via RADIUS

**Note**

To authenticate H.323 users via RADIUS, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `aaa new-model`
2. `aaa authentication login {default | listname} method1 [method2...]`
3. `radius-server host {hostname | ip-address} [auth-port port] [acct-port port] [timeout seconds] [retransmit retries] [key string]`
4. `radius-server key { 0 string | 7 string | string }
5. `gatekeeper`
6. `security {any | h323-id | e164} {password default password | password separator character}`
7. `exit`
8. Enter each user into the RADIUS database.
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> aaa new-model</td>
<td>Enables the authentication, authorization, and accounting (AAA) access model.</td>
</tr>
<tr>
<td>Example: Router(config)# aaa new-model</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> aaa authentication login {default</td>
<td>listname} method1 [method2...]</td>
</tr>
<tr>
<td>Example: Router(config)# aaa authentication login default</td>
<td>- <strong>default</strong> --Uses the listed authentication methods that follow this keyword as the default list of methods when a user logs in.</td>
</tr>
<tr>
<td></td>
<td>- <strong>listname</strong> --Character string used to name the list of authentication methods activated when a user logs in. Configuring the listname as h323 is recommended.</td>
</tr>
<tr>
<td></td>
<td>- <strong>method1</strong> [method2...]--At least one of the following authentication methods:</td>
</tr>
<tr>
<td></td>
<td>• <strong>enable</strong>--Enable password</td>
</tr>
<tr>
<td></td>
<td>• <strong>krb5</strong>--Kerberos 5</td>
</tr>
<tr>
<td></td>
<td>• <strong>krb5-telnet</strong>--Kerberos 5 Telnet authentication protocol when using Telnet to connect to the router</td>
</tr>
<tr>
<td></td>
<td>• <strong>line</strong>--Line password</td>
</tr>
<tr>
<td></td>
<td>• <strong>local</strong>--Local username database</td>
</tr>
<tr>
<td></td>
<td>• <strong>local-case</strong>--Case-sensitive local username</td>
</tr>
<tr>
<td></td>
<td>• <strong>none</strong>--No authentication</td>
</tr>
<tr>
<td></td>
<td>• <strong>group radius</strong>--List of all RADIUS servers</td>
</tr>
<tr>
<td></td>
<td>• <strong>group tacacs+</strong>--List of all TACACS+ servers</td>
</tr>
<tr>
<td></td>
<td>• <strong>group group-name</strong>--Subset of RADIUS or TACACS+ servers as defined by the group server radius or aaa group server tacacs+ command</td>
</tr>
<tr>
<td><strong>Step 3</strong> radius-server host {hostname</td>
<td>ip-address}[ auth-port port] [acct-port port] [timeout seconds] [retransmit retries] [key string]</td>
</tr>
<tr>
<td>Example: Router(config)# radius-server host 10.0.0.1 auth-port 1645 acct-port 1646</td>
<td>- <strong>auth-port</strong> port --User Datagram Protocol (UDP) destination port for authentication requests; the host is not used if set to 0. Default: 1645.</td>
</tr>
<tr>
<td></td>
<td>- <strong>acct-port</strong> port --UDP destination port for accounting requests; the host is not used if set to 0. Default: 1646.</td>
</tr>
<tr>
<td></td>
<td>- <strong>timeout</strong> seconds--Time, in seconds, for which the router waits for the RADIUS server to reply before retransmitting. This setting overrides the global value of the radius-server timeout command. Range: 1 to 1000. Default: global value.</td>
</tr>
<tr>
<td></td>
<td>- <strong>retransmit</strong> retries --Number of times that a RADIUS request is resent to a server if that server is not responding or responding slowly. Overrides the global setting of the radius-server retransmit command. Range: 1 to 100. Default: the global value.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>• key string --Authentication and encryption key used between the router and the RADIUS daemon running on this RADIUS server. Must match the encryption used on the RADIUS daemon. Overrides the global setting of the radius-server key command. Default: the global value.</td>
<td></td>
</tr>
</tbody>
</table>

**Step 4**

```
radius-server key { 0 string | 7 string | string }
```

Sets the authentication and encryption key for all RADIUS communications between the router and the RADIUS daemon. Keywords and arguments are as follows:

- • 0 string--Unencrypted (cleartext) shared key
- • 7 string--Hidden shared key
- • string--Unencrypted (cleartext) shared key

**Example:**
```
Router(config)# radius-server key 0 143212343
```

**Step 5**

gatekeeper

Enters gatekeeper configuration mode.

**Example:**
```
Router(config)# gatekeeper
```

**Step 6**

```
security {any | h323-id | e164} {password default password | password separator character}
```

Enables authentication and authorization on a gatekeeper and specifies the means of identifying the user to RADIUS/TACACS+. Keywords and arguments are as follows:

- • any--First alias of an incoming Registration, Admission, and Status (RAS) registration, regardless of its type.
- • h323-id--First H.323 ID type alias.
- • e164--First E.164 address type alias.
- • password default password--Default password that the gatekeeper associates with endpoints when authenticating them with an authentication server. Must be identical to the password on the authentication server.
- • password separator character--Character that endpoints use to separate the H.323-ID from the piggybacked password in the registration. This allows each endpoint to supply a user-specific password. The separator character and password are stripped from the string before it is treated as an H.323-ID alias to be registered.

Note that passwords may be piggybacked only in the H.323-ID, not the E.164 address. This is because the E.164 address allows a limited set of mostly numeric characters. If the endpoint does not wish to register an H.323-ID, it can still supply an H.323-ID that consists of just the separator character and password. This is understood to be a password mechanism, and no H.323-ID is registered.

**Example:**
```
Router(config-gk)# security any password default thisismypassword
```

**Step 7**

```
exit
```

Exits the current mode.

**Example:**
```
Router(config-gk)# exit
```
### Purpose

**Command or Action**

**Purpose**

Step 8: Enter each user into the RADIUS database.

Use either of the following:

- If using the `security password default` command, use the default password.
- If using the piggybacked password mechanism or the actual passwords, use the user H.323-ID or the E.164 address, depending on how the gatekeeper was configured.

---

### Configuring a RADIUS AAA Server

To configure a RADIUS/AAA server with information about the gatekeeper for your network installation, use the following commands in global configuration mode.

#### SUMMARY STEPS

1. `aaa new-model`
2. `aaa authentication login { default | listname } method1 [ method2... ]`
3. `radius-server deadtime minutes`
4. `radius-server host { hostname | ip-address } [ auth-port port ] [ acct-port port ] [ timeout seconds ] [ retransmit retries ] [ key string ]`
5. `radius-server key { 0 string | 7 string | string }`
6. Configure the CiscoSecure AAA server.

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>aaa new-model</code></td>
<td>Enables the authentication, authorization, and accounting (AAA) model.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# aaa new-model</td>
<td></td>
</tr>
<tr>
<td>Step 2 `aaa authentication login { default</td>
<td>listname } method1 [ method2... ]`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# aaa authentication login default</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Command or Action</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>radius-server deadline minutes</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# radius-server deadline 120</td>
</tr>
<tr>
<td>Step 4</td>
<td>radius-server host { hostname</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>auth-port port</td>
</tr>
<tr>
<td></td>
<td>acct-port port</td>
</tr>
<tr>
<td></td>
<td>timeout seconds</td>
</tr>
<tr>
<td></td>
<td>retransmit retries</td>
</tr>
<tr>
<td></td>
<td>key string</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# radius-server host 10.0.0.1 auth-port 1645 acct-port 1646</td>
</tr>
<tr>
<td>Step 5</td>
<td>radius-server key { 0 string</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: Router(config) radius-server key 7 anykey</td>
</tr>
<tr>
<td>Step 6</td>
<td>Configure the CiscoSecure AAA server.</td>
</tr>
<tr>
<td></td>
<td>• In the /etc/raddb/clients file, provide the following information:</td>
</tr>
<tr>
<td></td>
<td>#Client Name Key</td>
</tr>
<tr>
<td></td>
<td>#---------- ----------</td>
</tr>
<tr>
<td></td>
<td>gk215.cisco.com testing123</td>
</tr>
<tr>
<td></td>
<td>Where gk215.cisco.com is resolved to the IP address of the gatekeeper requesting authentication.</td>
</tr>
<tr>
<td></td>
<td>• In the /etc/raddb/users file, provide the following information:</td>
</tr>
<tr>
<td></td>
<td><a href="mailto:h323id@cisco.com">h323id@cisco.com</a> Password = &quot;password&quot;</td>
</tr>
<tr>
<td></td>
<td>User-Service-Type = Framed-User,</td>
</tr>
<tr>
<td></td>
<td>Login-Service = Telnet</td>
</tr>
<tr>
<td></td>
<td>Where <a href="mailto:h323id@cisco.com">h323id@cisco.com</a> is the h323-id of the gateway authenticating to gatekeeper gk215.cisco.com.</td>
</tr>
</tbody>
</table>

**Configuring User Activity for RADIUS**

After you enable AAA and configure the gateway to recognize RADIUS as the remote security server providing authentication services, the next step is to configure the gateway to report user activity to the RADIUS server in the form of connection accounting records.
To send connection accounting records to the RADIUS server, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. `aaa accounting connection h323 { stop-only | start-stop | wait-start | none } | broadcast | group groupname`
2. `gatekeeper`
3. `accounting`
4. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`aaa accounting connection h323 { stop-only</td>
<td>start-stop</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# aaa accounting connection h323 start-stop group group1</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defines the accounting method list H.323 with RADIUS as a method. Keywords and arguments are as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• stop-only -- Sends a &quot;stop&quot; accounting notice at the end of the requested user process.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• start-stop -- Sends a &quot;start&quot; accounting notice at the beginning of a process and a &quot;stop&quot; notice at the end of a process. The &quot;start&quot; notice is sent in the background. The requested process begins regardless of whether the &quot;start&quot; accounting notice is received by the server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• wait-start -- Sends a &quot;start&quot; accounting notice at the beginning of a process and a &quot;stop&quot; notice at the end of a process. The &quot;start&quot; notice is sent in the background. The requested process does not begin until the &quot;start&quot; accounting notice is received by the server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• none -- Disables accounting services on this line or interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• broadcast -- Sends accounting records to multiple AAA servers. Simultaneously sends accounting records to the first server in each group. If the first server is unavailable, failover occurs using the backup servers defined within that group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• group groupname -- Server group to be used for accounting services. The following are valid group names:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• string -- Character string used to name a server group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• radius -- List of all RADIUS hosts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• tacacs+ -- List of all TACACS+ hosts</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>gatekeeper</code></td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# gatekeeper</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| accounting       | Enables authentication, authorization, and accounting (AAA) of requested services for billing or security purposes when you use RADIUS or TACACS+.

**Example:**
```
Router(config-gk)# aaa accounting
```

<table>
<thead>
<tr>
<th>Step 3</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Exits the current mode.</td>
</tr>
</tbody>
</table>
```
Router(config-gk)# exit
```

**What to Do Next**

**Note**

## Configuring Security and Authentication

This section contains the following information:

### Restrictions for Security and Authentication

- CAT is a Cisco-proprietary security mechanism and requires a Cisco solution to receive the full end-to-end benefits of the Gatekeeper-to-Gatekeeper Authentication feature.

- LRQ message authentication is done on a hop-by-hop basis. Because a non-Cisco gatekeeper does not support CATs, authentication stops at the non-Cisco gatekeeper. If a non-Cisco gatekeeper can support LRQ forwarding, end-to-end authentication is achieved. However, LRQ message authentication is performed only at the Cisco gatekeepers.

- If IZCT is used for Clustered Gatekeepers, the same IZCT password should be used on all the Gatekeepers belonging to the same cluster

### Information About Security and Authentication

This section contains the following information:
Interzone ClearTokens

The Inter-Domain Gatekeeper Security Enhancement provides a means of authenticating and authorizing H.323 calls between the administrative domains of Internet Telephone Service Providers (ITSPs).

An interzone ClearToken (IZCT) is generated in the originating gatekeeper when a location request (LRQ) is initiated or an admission confirmation (ACF) is about to be sent for an intrazone call within an ITSP's administrative domain. As the IZCT traverses through the routing path, each gatekeeper stamps the IZCT's destination gatekeeper ID with its own ID. This identifies when the IZCT is being passed over to another ITSP's domain. The IZCT is then sent back to the originating gateway in the location confirmation (LCF) message. The originating gateway passes the IZCT to the terminating gateway in the SETUP message.

The terminating gateway forwards the IZCT in the AnswerCall admission request (ARQ) to the terminating gatekeeper, which then validates it.

Within the IZCT format, the following information is required:

- srcCarrierID -- Source carrier identification
- dstCarrierID -- Destination carrier identification
- intCarrierID -- Intermediate carrier identification
- srcZone -- Source zone
- dstZone -- Destination zone
- interzone type
  - INTRA_DOMAIN_CISCO
  - INTER_DOMAIN_CISCO
  - INTRA_DOMAIN_TERM_NOT_CISCO
  - INTER_DOMAIN_ORIG_NOT_CISCO
The figure below shows a simple inter-ITSP diagram of the IZCT flow.

**Figure 13: Inter-ITSP Diagram of the Inter-Domain Gatekeeper Security Enhancement Flow**

1. The originating gateway sends an ARQ message with an interface description as a nonstandard field to originating gatekeeper 1 (OGK1). The interface description is treated as a source carrier identifier.

2. Upon receiving the ARQ, OGK1 creates an IZCT with the following:

   - **srcCarrierID**: Source carrier identification, received from the ARQ
   - **dstCarrierID**: Destination carrier identification, received from the CSR
intCarrierID--Intermediate carrier identification, received from the CSR

srcZone--Source zone name or a cluster name if the gatekeeper is a member of a cluster
dstZone--Destination zone is set to null
interZoneType--Interzone type is set to INTRA_DOMAIN_CISCO

The IZCT is sent in an LRQ to OGK2.

OGK2 determines that the LRQ did not come from a foreign domain, replaces the IZCT's srcZoneID with its ID (or cluster name, if the gatekeeper is member of a cluster), and forwards the LRQ with the updated IZCT to terminating gatekeeper 2 (TGK2).

TGK2 determines that the LRQ came from a foreign domain, updates the IZCT's dstZone with its own ID (or cluster name, if the gatekeeper is a member of a cluster) and the interZoneType as INTER_DOMAIN_CISCO, and passes the updated IZCT to TGK1. TGK2 treats the zone from which an LRQ is received as foreign-domain zone in either of the following two scenarios:

1. The TGK2's remote zone list does not contain the zone from which an LRQ is received.
2. The TGK2's remote zone list contains the zone from which an LRQ is received and the zone is marked with a foreign-domain flag.

TGK1 updates the IZCT's dstCarrierID to Carrier E, which is determined by the routing process; generates a hash with the IZCT's password; and sends an LCF with the updated IZCT in it. If TGK1 is a clustered gatekeeper, then the IZCT password is identical across the cluster.

TGK2 forwards the LCF to OGK2.
OGK2 forwards the LCF to OGK1.
OGK1 extracts the IZCT from the LCF and sends it in an ACF to the OGW.
The OGW sends the IZCT to the TGW in the H.225 SETUP message.
The TGW passes the IZCT to the TGK1 in an ARQ answerCall.
TGK1 authenticates the destination IZCT successfully, because TGK1 generated the hash in the IZCT.

In the case of an inter-ITSP call, border zones (in the above example, OGK2 and TGK2) are identified as the srcZone and dstZone of the IZCT that is returned in the ACF to the OGW. If the call is intra-ITSP, leaf zones are identified as the srcZone and dstZone of the IZCT that is returned in the ACF to the OGW.

The main tasks are marking foreign and local domain zones and setting up an IZCT password for use in all the zones. After the security izct password command is issued, the technology prefix for the gatekeepers must be configured for the gateways. The gatekeeper must be enabled to forward LRQ messages that contain E.164 addresses matching zone prefixes controlled by remote gatekeepers.

Cisco Access Tokens

The Gatekeeper-to-Gatekeeper Authentication feature provides additional security for H.323 networks by introducing the ability to validate intradomain and interdomain gatekeeper-to-gatekeeper LRQ messages on a per-hop basis. When used in conjunction with per-call security using the interzone ClearToken (IZCT), network resources are protected from attackers and security holes are prevented.
The Gatekeeper-to-Gatekeeper Authentication feature provides a Cisco access token (CAT) to carry authentication within zones. The CAT is used by adjacent gatekeepers to authenticate each other and is configured on a per-zone basis. In addition, service providers can specify inbound passwords to authenticate LRQ messages that come from foreign domains and outbound passwords to be included in LRQ messages to foreign domains.

The call flows illustrated in the figures below show the steps that occur with a successful LRQ authentication and with an unsuccessful LRQ authentication.

Note

Although the IZCT is not required for use with the Gatekeeper-to-Gatekeeper Authentication feature, it is recommended and is shown below in the call flow examples.

**Figure 14: Call Flow with Successful LRQ Authentication**

The following sequence occurs in the call flow:

1. User A calls User B. The originating dial peer is configured for H.323 Registration, Admission, and Status (RAS) and sends an Admission Request (ARQ) message to the originating gatekeeper (OGK).
2. Assuming the OGK has security enabled, the OGK generates an IZCT and a CAT to include in the LRQ message. The IZCT is used for per-call authorization while the CAT is used for gatekeeper-to-gatekeeper authentication. The CAT includes the following:
   3. `general_id`: gatekeeper ID (OGK)
   4. `timeStamp`: local gatekeeper time
   5. `randomValue`: a random number
   6. `MD5 hash value`
7 The border gatekeeper (BGK) receives the LRQ message, checks its gatekeeper configuration, and determines that the LRQ should be authenticated before forwarding the LRQ message to the terminating gatekeeper (TGK). Once accepted, the BGK creates a new CAT and includes it in the LRQ message sent to the TGK.

8 The TGK receives the LRQ message, checks its gatekeeper configuration, and determines that the LRQ should be authenticated. The E.164 address indicates that the destination is a local gateway, so the TGK acknowledges the request by sending a Location Confirmation (LCF) message, including an updated IZCT, to the BGK.

9 The BGK transfers the LCF to the OGK. Normal call signaling proceeds.

10 The OGK sends an Admission Confirmation (ACF) message to the OGW. The IZCT is copied to the ACF.

11 The OGW sends a SETUP message to the terminating gateway (TGW).

12 The TGW sends an ARQ message to the TGK. The TGK authorizes the call by comparing the IZCT with a locally created IZCT.

13 The TGK sends an ACF to the TGW. The call is set up between the TGW and User B.

**Figure 15: Call Flow with Unsuccessful LRQ Authentication**

The following sequence occurs in the call flow:

1 User A calls User B. The originating dial peer is configured for H.323 RAS and sends an ARQ to the OGK.

2 Assuming the OGK has security enabled, the OGK generates an IZCT and a CAT to include in the LRQ message. The IZCT is used for per-call authorization while the CAT is used for gatekeeper-to-gatekeeper authentication. The CAT includes the following:

3 `general_id--Gatekeeper ID (OGK)`
4  timeStamp--Local gatekeeper time
5  randomValue--A random number
6  MD5 hash value
7  The BGK receives the LRQ message, checks its gatekeeper configuration, and determines that the LRQ should be authenticated before forwarding the LRQ message to the TGK. Once accepted, the BGK creates a new CAT and includes it in the LRQ message sent to the TGK. However, in this example, an incorrect outbound password is used.
8  The TGK receives the LRQ message, checks its gatekeeper configuration, and determines that the LRQ should be authenticated. Because an incorrect outbound password was used by the BGK, the LRQ CAT and the locally created CAT are not equivalent. The TGK sends a Location Reject (LRJ) message back to the BGK and includes a reject reason of LRJ_INVAL_PERMISSION.
9  The BGK sends the LRJ to the OGK.
10 The OGK sends an Admission Reject (ARJ) message to the OGW and signaling is terminated.

Tokenless Call Authorization

The Tokenless Call Authorization feature is an alternative to using IZCTs and CATs to provide gatekeeper security in an H.323 voice network. ITSPs may not control gatekeepers in other domains to which they connect; for example, if these domains do not have Cisco software installed on the gatekeepers, tokens cannot be used. Additionally, the Tokenless Call Authorization feature can be used with Cisco Call Manager; tokens cannot.

With the Tokenless Call Authorization feature, an access list of all known endpoints is configured on the gatekeeper. The gatekeeper is configured to use the access list when processing calls. Rather than rejecting all calls that do not contain IZCTs or CATs, gatekeepers reject only calls that do not have tokens and are not from endpoints on the access list.

Configuring Domain Zones and the IZCT Password

To configure domain zones and the IZCT password, use the following commands beginning in global configuration mode.

SUMMARY STEPS

1. gatekeeper
2. security izct password password
3. no shutdown
4. exit
### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>gatekeeper</code></td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# <code>gatekeeper</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>security izct password password</code></td>
<td>Sets the IZCT password. The password must be from six to eight alphanumeric characters. All gatekeepers in a cluster should have the same IZCT password. To disable the IZCT password, use the <em>no</em> form of the command as defined in the <em>Cisco IOS Voice Command Reference</em>.</td>
</tr>
<tr>
<td>Example: Router(config-gk)# <code>security izct password thisismypassword</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>no shutdown</code></td>
<td>Ensures that the gatekeepers are activated.</td>
</tr>
<tr>
<td>Example: Router(config-gk)# <code>no shutdown</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example: Router(config-gk)# <code>exit</code></td>
<td></td>
</tr>
</tbody>
</table>

### Verifying Domain Zones and IZCT Password

To verify that the IZCT is enabled, perform the following step.

### Summary Steps

1. `show running-config`

### Detailed Steps

**show running-config**

Use this command to display configuration information.

Example:

```
Router# `show running-config`
gatekeeper
zone local 35_dirgk cisco.com 172.18.198.196
zone remote 40_gatekeeper cisco.com 172.18.198.91 1719
zone remote 34_dirgk cisco.com 172.18.198.197 1719 foreign-domain
```
zone prefix 40_gatekeeper 408*
zone prefix 34_dirgk *
security izct password ABCDEF
lrq forward-queries
no shutdown

Configuring Cisco Access Tokens

To configure gatekeeper-to-gatekeeper authentication, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `gatekeeper`
2. `security password-group groupname lrq {receive password [encrypted] [effective hh:mm day month year] | send password [encrypted]}`
3. `security zone {zonename | *} password-group groupname`
4. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# gatekeeper</code></td>
<td></td>
</tr>
</tbody>
</table>
| **Step 2** security password-group groupname lrq {receive password [encrypted] [effective hh:mm day month year] | send password [encrypted]} | Defines the passwords used by remote gatekeeper zones and associates them with an ID. Keywords and arguments are as follows:  
  - `groupname`--ID given to a group of passwords. The group can contain inbound and outbound passwords. The group name can include up to 16 characters (any characters on the keyboard).  
  - `lrq receive password`--Password that is used to validate any LRQ messages that are received from the specified remote zone. The password can be up to 16 characters (any characters on the keyboard) for cleartext format and 34 characters for encrypted format.  
  - `encrypted`--Password is in encrypted format. The password is always displayed in encrypted format. Default: the password is in cleartext format.  
  - `effective hh:mm day month year`--Time and date on which the current `lrq receive password` expires. Old and new passwords are valid until the configured time value expires. After expiration, only the new password is valid. After you configure the |
### Purpose

Command or Action	Purpose

keyword and time (for example, a day later), the following syslog message displays ("china" is the password-group name):

```
%GK-5-RX_LRQ_PASSWORD_UPDATED:LRQ receive password for security password-group 'china' has been updated.
```

- **lrq send password**-- Password that is contained in the CAT and sent in the outbound LRQ messages. Can be up to 16 characters (any characters on the keyboard) for cleartext format and 34 characters for encrypted format. If multiple changes are made to the password groups, the latest update takes precedence.

---

**Step 3**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **security zone** {zonename | *} password-group groupname | Associates a remote zone gatekeeper with a specific password group. If a remote zone sends an LRQ message to the gatekeeper, the gatekeeper checks to see if there is a security password group configured for that remote zone name. If one exists, the gatekeeper gets the password information from the group name configured for that security zone.

For example, if you used the command in Step 2 to create a password group named "china," you could use this command to associate one or more of your remote gatekeepers with that password group.

Keywords and arguments are as follows:

- **zonename**--Remote zone gatekeeper.

- ***-- Using the wildcard (*) means that remote zones that do not have a security zone configured defaults to the security zone password group on the receiving gatekeeper and that the received LRQ message is authenticated using the wildcard-related passwords. Using the wildcard does not affect transmitted LRQ messages.

- **password-group groupname**-- Password group created using the security password-group command.

---

**Step 4**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>exit</strong></td>
<td>Exits the current mode.</td>
</tr>
</tbody>
</table>

---

### Verifying Cisco Acess Tokens

To verify configuration of access tokens, perform the following step.

### SUMMARY STEPS

1. **show running-config**
DETAILED STEPS

show running-config
Use this command to verify configuration of remote zone and security features.

Note: For security reasons, passwords created using the security password-group command are encrypted when displayed in the command output.

Example:
Router# show running-config
gatekeeper
zone local tsunamiGK cisco 172.18.195.138
zone remote laharGK cisco 172.18.195.139 1719
zone prefix laharGK 987*
security izct password 123456
security password-group 1 lrq receive 0257550A5A57 encrypted
security password-group 1 lrq send 144540595E56 encrypted
security password-group 2 lrq receive 091F1D5A4A56 encrypted
security password-group 2 lrq send 135143465F58 encrypted
security zone larharGK password-group 1
no shutdown

Configuring Tokenless Call Authorization

Configuring the IP Access List
Perform this task to create a list of endpoints known to the gatekeeper. Calls from these endpoints are accepted by the gatekeeper even if the endpoints are located in a different domain.

To configure the IP access list, use the following command beginning in global configuration mode.

SUMMARY STEPS

1. access-list access-list-number {permit | deny | remark} source [source-wildcard] [log]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> access-list access-list-number {permit</td>
<td>deny</td>
</tr>
<tr>
<td></td>
<td>• access-list-number--Number of an access list. Range: a decimal number 1 to 99 (standard) or 1300 to 1999 (extended). Only standard IP access lists 1 to 99 are supported for the Tokenless Call Authorization feature.</td>
</tr>
<tr>
<td></td>
<td>• permit--Permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>• deny--Denies access when there is an address match.</td>
</tr>
<tr>
<td></td>
<td>• remark--Comment that describes the access list entry, up to 100 characters long.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# access-list 20 permit 172.16.10.190</td>
</tr>
</tbody>
</table>
Configuring IP-Access-List Security on the Gatekeeper

To enable a gatekeeper to use an IP access list to perform tokenless call authorization, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. gatekeeper
2. security acl answerarq access-list-number
3. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# gatekeeper</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>security acl answerarq access-list-number</td>
<td>Instructs the gatekeeper to use an IP access list--also known as an access control list (ACL)--to verify calls.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# security acl answerarq 20</td>
<td>Calls received from endpoints listed in the ACL are processed by the gatekeeper regardless of whether they contain IZCTs or CATs in the ARQ message from the endpoint. Rather than sending a Location Reject (LRJ) message for calls without tokens from these endpoints, the gatekeeper sends an admission confirm (ACF) message and accepts the calls.</td>
</tr>
</tbody>
</table>

**Step 3**

<table>
<thead>
<tr>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td>Router(config-gk)# exit</td>
</tr>
</tbody>
</table>

---

### Configuring E.164 Interzone Routing

This section contains the following information:

#### Information About E.164 Interzone Routing

You can configure interzone routing using E.164 addresses.

Two types of address destinations are used in H.323 calls. You can specify a destination using either an H.323-ID address (a character string) or an E.164 address (a string that contains telephone keypad characters). The way in which interzone calls are routed depends on the type of address being used.

When using H.323-ID addresses, interzone routing is handled through the use of domain names. For example, to resolve the domain name bob@cisco.com, the source endpoint gatekeeper finds the gatekeeper for cisco.com and sends it the location request for the target address bob@cisco.com. The destination gatekeeper looks in its registration database, sees bob registered, and returns the appropriate IP address to get to bob.

When using E.164 addresses, call routing is handled through zone prefixes and gateway-type prefixes, also referred to as technology prefixes. The zone prefixes, which are typically area codes, serve the same purpose as domain names in H.323-ID address routing. Unlike domain names, however, more than one zone prefix can be assigned to one gatekeeper, but the same prefix cannot be shared by more than one gatekeeper.

Use the `zone prefix` command to define gatekeeper responsibilities for area codes. The command can also be used to tell the gatekeeper which prefixes are in its own zones and which remote gatekeepers are responsible for other prefixes.

---

**Note**

Area codes are used as an example in this section, but a zone prefix need not be an area code. It can be a country code, an area code plus local exchange (NPA-NXX), or any other logical hierarchical partition.

The following sample command shows how to configure a gatekeeper with the knowledge that zone prefix 212...... (that is, any address beginning with area code 212 and followed by seven arbitrary digits) is handled by gatekeeper gk-ny:

```
my-gatekeeper(config-gk)# zone prefix gk-ny 212......
```
When my-gatekeeper is asked to admit a call to destination address 2125551111, it knows to send the location request to gk-ny.

However, once the query gets to gk-ny, gk-ny still needs to resolve the address so that the call can be sent to its final destination. There could be an H.323 endpoint that has registered with gk-ny with that E.164 address, in which case gk-ny would return the IP address for that endpoint. However, it is more likely that the E.164 address belongs to a non-H.323 device, such as a telephone or an H.320 terminal.

Because non-H.323 devices do not register with gatekeepers, gk-ny has no knowledge of which device the address belongs to or which type of device it is, so the gatekeeper cannot decide which gateway should be used for the hop off to the non-H.323 device. (The term hop off refers to the point at which the call leaves the H.323 network and is destined for a non-H.323 device.)

The number of zone prefixes defined for a directory gatekeeper that is dedicated to forwarding LRQs, and not for handling local registrations and calls, should not exceed 10,000; 4 MB of memory must be dedicated to describing zones and zone prefixes to support this maximum number of zone prefixes. The number of zone prefixes defined for a gatekeeper that handles local registrations and calls should not exceed 2000.

To enable the gatekeeper to select the appropriate hop-off gateway, use the gw-type-prefix command to configure technology or gateway-type prefixes. Select technology prefixes to denote different types or classes of gateways. The gateways are then configured to register with their gatekeepers using these technology prefixes.

For example, voice gateways might register with technology prefix 1#, and H.320 gateways might register with technology prefix 2#. If there are several gateways of the same type, configure them to register with the same prefix type. By having them register with the same prefix type, the gatekeeper treats the gateways as a pool out of which a random selection is made whenever a call for that prefix type arrives. If a gateway can serve more than one type of hop-off technology, it can register more than one prefix type with the gatekeeper.

Callers must identify the type of gateway by prepending the appropriate technology prefix for that gateway type to the destination address. For example, callers might request 1#2125551111 if they know that address 2125551111 is for a telephone and that the technology prefix for voice gateways is 1#. The voice gateway is configured with a dial peer (using the dial-peer command) so that when the gateway receives the call for 1#2125551111, it strips off the technology prefix 1# and bridges the next leg of the call to the telephone at 2125551111.

In cases in which the call scenario is as shown in the figure below, voice-gw1 can be configured to prepend the voice technology prefix 1# so that the use of technology prefixes is completely transparent to the caller.

**Figure 16: Call Scenario**

```
PSTN ← H.323 network → PSTN
```

Additionally, in using the gw-type-prefix command, a particular gateway-type prefix can be defined as the default gateway type to be used for addresses that cannot be resolved. It also forces a technology prefix to always hop off in a particular zone.
If the majority of calls hop off on a particular type of gateway, the gatekeeper can be configured to use that type of gateway as the default type so that callers no longer have to prepend a technology prefix on the address. For example, if voice gateways are mostly used in a network, and all voice gateways have been configured to register with technology prefix 1#, the gatekeeper can be configured to use 1# gateways as the default technology if the following command is entered:

```
Router(config-gk)# gw-type-prefix 1# default-technology
```

Now a caller no longer needs to prepend 1# to use a voice gateway. Any address that does not contain an explicit technology prefix is routed to one of the voice gateways that registered with 1#.

With this default technology definition, a caller could ask the gatekeeper for admission to 2125551111. If the local gatekeeper does not recognize the zone prefix as belonging to any remote zone, it routes the call to one of its local (1#) voice gateways so that the call hops off locally. However, if it knows that gk-ny handles the 212 area code, it can send a location request for 2125551111 to gk-ny. This requires that gk-ny also be configured with some default gateway type prefix and that its voice gateways be registered with that prefix type.

For ease of maintenance, the same prefix type should be used to denote the same gateway type in all zones under your administration.

Also, with the `gw-type-prefix` command, a hop off can be forced to a particular zone. When an endpoint or gateway makes a call-admission request to its gatekeeper, the gatekeeper determines the destination address by first looking for the technology prefix. When that is matched, the remaining string is compared against known zone prefixes. If the address is determined to be a remote zone, the entire address, including technology and zone prefixes, is sent to the remote gatekeeper in a location request. That remote gatekeeper then uses the technology prefix to decide on which of its gateways to hop off. In other words, the zone prefix (defined using the `zone prefix` command) determines the routing to a zone, and once there, the technology prefix (defined using the `gw-type-prefix` command) determines the gateway to be used in that zone. The zone prefix takes precedence over the technology prefix.

This behavior can be overridden by associating a forced hop-off zone with a particular technology prefix. Associating a forced hop-off zone with a particular technology prefix forces the call to the specified zone, regardless of what the zone prefix in the address is. As an example, you are in the 408 area code and want callers to the 212 area code in New York to use H.323-over-IP and hop off there because it saves on costs. However, the only H.320 gateway is in Denver. In this example, calls to H.320 endpoints must be forced to hop off in Denver, even if the destination H.320 endpoint is in the 212 area code. The forced hop-off zone can be either a local zone (that is, one that is managed by the local gatekeeper) or a remote zone.

### Configuring a Dialing Prefix for Each Gateway

To configure a dialing prefix for each gateway, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `gatekeeper`
2. `zone local` `gatekeeper-name` `domain-name` `ras-ip-address`
3. `zone prefix` `gatekeeper-name` `e164-prefix` `gw-priority` `pri-0-to-10` `gw-alias` `gw-alias`
4. `exit`
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td>gatekeeper</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# gatekeeper</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Specifies a zone controlled by a gatekeeper.</td>
</tr>
<tr>
<td>zone local gatekeeper-name domain-name [ ras-ip-address ]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-gk)# zone local gatekeeper1 domain1</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Adds a prefix to the gatekeeper zone list. To remove knowledge of a zone prefix, use the no form of this command with the gatekeeper name and prefix. To remove the priority assignment for a specific gateway, use the no form of this command with the gw-priority keyword.</td>
</tr>
<tr>
<td>zone prefix gatekeeper-name e164-prefix gw-priority pri-0-to-10 gw-alias gw-alias ...</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-gk)# zone prefix localgk 415....... gw-priority 10 gw1 gw2</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-gk)# exit</td>
</tr>
</tbody>
</table>

**What to Do Next**

To put all of your gateways in the same zone, use the gw-priority keyword and specify which gateways are used for calling different area codes. For example:

```
zone local localgk xyz.com
zone prefix localgk 408....... gw-priority 10 gw1 gw2
zone prefix localgk 415....... gw-priority 0 gw1
```

The above commands accomplish the following:

- Domain xyz.com is assigned to gatekeeper localgk.
Prefix 408 is assigned to gatekeeper localgk, and no gateway priorities are defined for it; therefore, all gateways registering to localgk can be used equally for calls to the 408 area code. No special gateway lists are built for the 408 prefix; a selection is made from the master list for the zone.

The prefix 415 is added to gatekeeper localgk, and priority 10 is assigned to gateways gw1 and gw2.

Prefix 650 is added to gatekeeper localgk, and priority 0 is assigned to gateway gw1.

A priority 0 is assigned to gateway gw1 to exclude it from the gateway pool for prefix 650. When gw2 registers with gatekeeper localgk, it is added to the gateway pool for each prefix as follows:

- For gateway pool for 415, gateway gw2 is set to priority 10.
- For gateway pool for 650, gateway gw2 is set to priority 5.

### Configuring Gatekeeper Interaction with External Applications

There are two ways of configuring the gatekeeper for interaction with an external application. You can configure a port number where the gatekeeper listens for dynamic registrations from applications. Using this method, the application connects to the gatekeeper and specifies the trigger conditions in which it is interested.

The second method involves using the command-line interface to statically configure the information about the application and its trigger conditions, in which case the gatekeeper initiates a connection to the external application.

Cisco provides a Gatekeeper Transaction Message Protocol (GKTMP) server and commands to configure the gatekeeper to communicate with the server using GKTMP messages.

---

**Note**

For configuration information, see VoIP Gatekeeper Trunk and Carrier Based Routing Enhancements at http://www.cisco.com/en/US/docs/ios/12_2t/12_2t11/feature/guide/ftgkrenb.html

This section contains the following information:

### Configuring Gatekeeper-to-GKTMP Server Flow Control

You can set a timeout value for responses from the GKTMP server to the gatekeeper. The gatekeeper measures the average time taken by the server to process each transaction. If the time period for processing reaches 80 percent of the configured timeout value, the server is marked as unavailable. The gatekeeper routes transactions bound for this server to alternate servers if they are available. If no alternate servers are available, the gatekeeper handles the calls.

To configure server flow control, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `gatekeeper`
2. `server flow-control [onset value] [abatement value] [qcount value]`
3. `exit`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# gatekeeper</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> server flow-control [onset value] [abatement value] [qcount value]</td>
<td>Enables flow control and resets all the thresholds to default. Keywords and arguments are as follows:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# server flow-control onset 50 abatement 25 qcount 100</td>
<td>• onset value -- Percentage of the server timeout value that is used to mark the server as usable or unusable. Range: 1 to 100. Default: 80.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• abatement value -- Percentage of the server timeout value that is used to mark the server as unusable or usable. Range: 1 to 100; cannot be greater than or equal to the onset value. Default: 50.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For example, if the server timeout value is 3 seconds, onset value is 50, and abatement value is 40, when the average response time from the server to the GKTMP reaches 1.5 seconds (the onset percentage of the server timeout value), the server is marked as unusable. During the period that the server is marked as unusable, REQUEST ALV messages are still sent to the unusable server. When the response time is lowered to 1.2 seconds (the abatement percentage of the timeout value), the server is marked usable again and the GKTMP resumes sending messages to the server.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• qcount value -- Threshold length of the outbound queue on the GK. The queue contains messages waiting to be transmitted to the server. The TCP socket between the GK and GKTMP server queues messages if it has too many to transmit. If the count of outbound queue length on the server reaches the qcount value, the server is marked unusable. Range: 1 to 2000. Default: 400.</td>
</tr>
<tr>
<td><strong>Step 3</strong> exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# exit</td>
<td></td>
</tr>
</tbody>
</table>

### Verifying Gatekeeper-to-GKTMP Server Flow Control

#### SUMMARY STEPS

1. show running-config
2. show gatekeeper status
3. show gatekeeper servers
DETAILED STEPS

Step 1  
**show running-config**

Use this command to verify that server flow-control appears in the output.

**Example:**

```bash
Router# show running-config
Building configuration...
Current configuration : 1055 bytes
!
version 12.2
no service single-slot-reload-enable
service timestamps debug datetime msec
service timestamps log uptime
!
hostname snet-3660-3
!
.
.
.
gatekeeper
 zone local snet-3660-3 cisco.com
 zone remote snet-3660-2 cisco.com 209.165.200.225 1719
 zone prefix snet-3660-2 408*
lrq forward-queries
no use-proxy snet-3660-3 default inbound-to terminal
no use-proxy snet-3660-3 default outbound-from terminal
no shutdown
server registration-port 8000
server flow-control
!
.
.
```

Step 2  
**show gatekeeper status**

Use this command to view the status of the GKTMP Interface Resiliency Enhancement feature.

The following example shows that the GKTMP Interface Resiliency Enhancement feature is enabled:

**Example:**

```bash
Router# show gatekeeper status
Gatekeeper State: UP
 Load Balancing: DISABLED
 Flow Control: ENABLED
 Zone Name: snet-3660-3
 Accounting: DISABLED
 Endpoint Throttling: DISABLED
 Security: DISABLED
 Maximum Remote Bandwidth: unlimited
 Current Remote Bandwidth: 0 kbps
 Current Remote Bandwidth (w/ Alt GKs): 0 kbps
```

Step 3  
**show gatekeeper servers**

Use this command to view the server statistics, including timeout encountered, average response time, and server status.

**Example:**

```bash
Router# show gatekeeper servers
```
Setting the Retry Timer for Failed GKTMP Server Connections

To configure faster reconnection to a GKTMP server when its TCP connection fails, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `gatekeeper`
2. `timer server retry seconds`
3. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td><code>gatekeeper</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# gatekeeper</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Sets the retry timer for failed GKTMP server connections, in seconds. After the gatekeeper detects that its GKTMP server TCP connection has failed, the gatekeeper retries the server based on the setting of this timer, and keep retrying until the connection is established. Range: 1 to 300. Default: 30.</td>
</tr>
<tr>
<td><code>timer server retry seconds</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# timer server retry 20</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>This timer applies only to deployments where static triggers are used between the gatekeeper and the GKTMP server. If dynamic triggers are used, the server must determine and implement a retry mechanism if the TCP connection to the gatekeeper fails.</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config-gk)# exit
```

### Verifying the Retry Timer for Failed GKTMP Server Connections

**SUMMARY STEPS**

1. `show gatekeeper servers`

**DETAILED STEPS**

```
show gatekeeper servers
```

Use this command to verify the retry timer for failed server connections.

**Example:**

```
Router# show gatekeeper servers
GATEKEEPER SERVERS STATUS

Gatekeeper Server listening port:0
Gatekeeper Server response timeout value:30 (100ms)
Gatekeeper Server connection retry timer value:30 (sec)
Gatekeeper GKTMP version:4.1
```

### Configuring Registration and Call Rejection

To configure the gatekeeper to reject new registrations or calls when it is unable to reach the GKTMP server because the TCP connection between the gatekeeper and GKTMP server is down, use these commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `gatekeeper`
2. `server absent reject {rrq | arq}`
3. `exit`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config)# gatekeeper</td>
</tr>
</tbody>
</table>
| Step 2 | server absent reject \{rrq | arq\} | Configures the gatekeeper to reject new registrations or calls when it is unable to reach the GKTMP server because the TCP connection between gatekeeper and server is down. If multiple GKTMP servers are configured, the gatekeeper tries all of them and rejects registrations or calls only if none of the servers responds. Keywords are as follows:  
• rrq --Reject registrations by RRQ messages  
• arq --Reject calls by admission request (ARQ) messages  
You can also use this feature for security or service denial if a connection with the server is required to complete a registration.  
Default: this feature is not enabled; the gatekeeper does not reject new registrations or calls.  
**Note** This command assumes that RRQ and ARQ triggers are used between the gatekeeper and GKTMP server. |
|      | Example: | Router(config-gk)# server absent reject rrq |
| Step 3 | exit | Exits the current mode. |
|      | Example: | Router(config-gk)# exit |

### Verifying Registration and Call Rejection

#### SUMMARY STEPS

1. **show running-config**

#### DETAILED STEPS

**show running-config**  
Use this command to verify that the gatekeeper is rejecting new registrations when unable to reach the GKTMP server.

**Example:**

Router# show running-config
By default, a gatekeeper offers the IP address of the local proxy when queried by a remote gatekeeper (synonymous with remote zone) or the border element. This is considered proxied access.

The use-proxy command replaces the zone access command. The use-proxy command, configured on a local gatekeeper, affects only the use of proxies for incoming calls (that is, it does not affect the use of local proxies for outbound calls). When originating a call, a gatekeeper uses a proxy only if the remote gatekeeper offers a proxy at the remote end. A call between two endpoints in the same zone is always a direct (nonproxied) call.

To configure a proxy for inbound calls from remote zones or the border element to gateways in its local zone and to configure a proxy for outbound calls from gateways in its local zone to remote zones or the border element, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. gatekeeper
2. use-proxy local-zone-name / default | h323-annexg | remote-zone remote-zone-name / / inbound-to | outbound-from / / gateway | terminal /
3. exit
# DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# gatekeeper</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enables proxy communications for calls between local and remote zones. Keywords and arguments are as follows:</td>
</tr>
<tr>
<td>use-proxy local-zone-name</td>
<td></td>
</tr>
<tr>
<td>default</td>
<td>Name or zone name of the gatekeeper, which is usually the fully domain-qualified host name of the gatekeeper. For example, if the domain name is cisco.com, the gatekeeper name might be gk1.cisco.com. However, if the gatekeeper is controlling multiple zones, the name of the gatekeeper for each zone should be a unique string that has a mnemonic value.</td>
</tr>
<tr>
<td>h323-annexg</td>
<td></td>
</tr>
<tr>
<td>remote-zone remote-zone-name</td>
<td></td>
</tr>
<tr>
<td>inbound-to</td>
<td></td>
</tr>
<tr>
<td>terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# use-proxy zonename default inbound-to gateway</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-gk)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Verifying Gatekeeper Proxied Access

SUMMARY STEPS

1. show gatekeeper zone status

DETAILED STEPS

```
show gatekeeper zone status
```

Use this command to see information about the configured gatekeeper proxies and gatekeeper zone information (as shown in the following output).

Example:

```
Router# show gatekeeper zone status
GATEKEEPER ZONES

GK name Domain Name RAS Address PORT FLTGS MAX-BW CUR-BW
------- ----------- ----------- ----- ---- ---- ----- ----
 sj.xyz.com xyz.com 10.0.0.9 1719 LS 0
 SUBNET ATTRIBUTES:
 All Other Subnets : (Enabled)
 PROXY USAGE CONFIGURATION:
 inbound calls from germany.xyz.com:
to terminals in local zone sj.xyz.com :use proxy
to gateways in local zone sj.xyz.com :do not use proxy
outbound calls to germany.xyz.com:
from terminals in local zone germany.xyz.com :use proxy
from gateways in local zone germany.xyz.com :do not use proxy
inbound calls from H.225 AnnexG border element:
to terminals in local zone germany.xyz.com :use proxy
to gateways in local zone germany.xyz.com :do not use proxy
outbound calls to H.225 AnnexG border element:
from terminals in local zone germany.xyz.com :use proxy
from gateways in local zone germany.xyz.com :do not use proxy
inbound calls from all other zones:
to terminals in local zone sj.xyz.com :use proxy
to gateways in local zone sj.xyz.com :do not use proxy
outbound calls to all other zones:
from terminals in local zone sj.xyz.com :do not use proxy
from gateways in local zone sj.xyz.com :do not use proxy
tokyo.xyz.co xyz.com 172.21.139.89 1719 RS 0
milan.xyz.co xyz.com 172.16.00.00 1719 RS 0
```

Configuring a Forced Disconnect on a Gatekeeper

To force a disconnect on a gatekeeper, use the following command in privileged EXEC mode.

SUMMARY STEPS

1. clear h323 gatekeeper call {all | local-callID local-call-id}
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Forces a disconnect on a specific call or on all calls currently active on this gatekeeper. Keywords and arguments are as follows:</td>
</tr>
</tbody>
</table>
| clear h323 gatekeeper call {all | local-callID local-call-id} | - all --All active calls associated with this gatekeeper
- local-callID local-call-id --Local call identification number (CallID) that identifies the call to be disconnected |

**Example:**

Router# clear h323 gatekeeper call all

**What to Do Next**

To force a particular call to disconnect (as opposed to all active calls on the H.323 gateway), use the local call identification number (CallID) to identify that specific call. Find the local CallID number for a specific call by using the `show gatekeeper calls` command; the ID number is displayed in the LocalCallID column.

---

**Verifying a Forced Disconnect on a Gatekeeper**

**SUMMARY STEPS**

1. `show gatekeeper calls`

**DETAILED STEPS**

`show gatekeeper calls`

Use this command to show the status of each ongoing call that a gatekeeper is aware of. If you have forced a disconnect either for a particular call or for all calls associated with a particular H.323 gatekeeper, the system does not display information about those calls.

**Example:**

`router# show gatekeeper calls`

```
Total number of active calls = 1

Gatekeeper Call Info

LocalCallID: 12-3339 Age (secs): 94 BW: 768 (Kbps)
Endpt(s): Alias E.164Addr CallSignalAddr Port RASSignalAddr Port
 src EP: epA 10.0.0.11 1720 10.0.0.11 1700
 dst EP: epB zoneB.com
 src PX: pxA 10.0.0.1 1720 172.21.139.90 24999
 dst PX: pxB 172.21.139.90 1720 172.21.139.90 24999
```
Configuring an H.323 Proxy Server

The following sections describe how the proxy feature can be used in an H.323 network.

When terminals signal each other directly, they must have direct access to each other’s addresses. This exposes an attacker to key information about a network. When a proxy is used, the only addressing information that is exposed to the network is the address of the proxy; all other terminal and gateway addresses are hidden.

There are several ways to use a proxy with a firewall to enhance network security. The configuration to be used depends on how capable the firewall is of handling the complex H.323 protocol suite. Each of the following sections describes a common configuration for using a proxy with a firewall:

Proxy Inside the Firewall

H.323 is a complex, dynamic protocol that consists of several interrelated subprotocols. During H.323 call setup, the ports and addresses released with this protocol require a detailed inspection as the setup progresses. If the firewall does not support this dynamic access control based on the inspection, a proxy can be used just inside the firewall. The proxy provides a simple access control scheme, as illustrated in the figure below.

Because the gatekeeper (using RAS) and the proxy (using call setup protocols) are the only endpoints that communicate with other devices outside the firewall, it is simple to set up a tunnel through the firewall to allow traffic destined for either of these two endpoints to pass through.

Proxy in Co-Edge Mode

If H.323 terminals exist in an area with local interior addresses that must be translated to valid exterior addresses, the firewall must be capable of decoding and translating all addresses passed in the various H.323 protocols. If the firewall is not capable of this translation task, a proxy may be placed next to the firewall in a co-edge mode. In this configuration, interfaces lead to both inside and outside networks. (See the figure below.)

In co-edge mode, the proxy can present a security risk. To avoid exposing a network to unsolicited traffic, configure the proxy to route only proxied traffic. In other words, the proxy routes only H.323 protocol traffic that is terminated on the inside and then repeated to the outside. Traffic that moves in the opposite direction can be configured this way as well.

Proxy Outside the Firewall

To place the proxy and gatekeeper outside the firewall, two conditions must exist. First, the firewall must support H.323 dynamic access control. Second, Network Address Translation (NAT) must not be in use.

If NAT is in use, each endpoint must register with the gatekeeper for the duration of the time it is online. This quickly overwhels the firewall because a large number of relatively static, internal-to-external address mappings need to be maintained.

If the firewall does not support H.323 dynamic access control, the firewall can be configured with static access lists that allow traffic from the proxy or gatekeeper through the firewall. This can present a security risk if an attacker can spoof, or simulate, the IP addresses of the gatekeeper or proxy and use them to attack the network.

The figure below illustrates proxy outside the firewall.
Proxy and NAT

When a firewall is providing NAT between an internal and an external network, proxies may allow H.323 traffic to be handled properly, even in the absence of a firewall that can translate addresses for H.323 traffic. The tables below provide guidelines for proxy deployment for networks that use NAT.

Table 7: Guidelines for Networks That Use NAT

<table>
<thead>
<tr>
<th>For Networks Using NAT</th>
<th>Firewall with H.323 NAT</th>
<th>Firewall Without H.323 NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall with dynamic access control</td>
<td>Gatekeeper and proxy inside the firewall</td>
<td>Co-edge gatekeeper and proxy</td>
</tr>
<tr>
<td>Firewall without dynamic access control</td>
<td>Gatekeeper and proxy inside the firewall, with static access lists on the firewall</td>
<td>Co-edge gatekeeper and proxy</td>
</tr>
</tbody>
</table>

Table 8: Guidelines for Networks That Do Not Use NAT

<table>
<thead>
<tr>
<th>For Networks Not Using NAT</th>
<th>Firewall with H.323. NAT</th>
<th>Firewall Without H.323 NAT</th>
</tr>
</thead>
</table>
| Firewall with Dynamic Access Control | Gatekeeper and proxy inside the firewall
                                      | Gatekeeper and proxy outside the firewall |
| Firewall Without Dynamic Access Control | Gatekeeper and proxy inside the firewall, with static access lists on the firewall | Gatekeeper and proxy inside the firewall, with static access lists on the firewall |

Configuring Quality of Service

This section contains the following information:

Prerequisites for QoS

- The proxy is not capable of modifying the Quality of Service (QoS) between the terminal and itself. To achieve the best overall QoS, ensure that terminals are connected to the proxy using a network that intrinsically has good QoS. In other words, configure a path between a terminal and proxy that provides good bandwidth, delay, and packet-loss characteristics without the terminal needing to request special QoS. A high-bandwidth LAN works well for this.
Information About QoS

QoS enables complex networks to control and predictably service a variety of applications. QoS expedites the handling of mission-critical applications while sharing network resources with noncritical applications. QoS also ensures available bandwidth and minimum delays required by time-sensitive multimedia and voice applications. In addition, QoS gives network managers control over network applications, improves cost-efficiency of WAN connections, and enables advanced differentiated services. QoS technologies are elemental building blocks for other Cisco IOS-enabling services such as its H.323-compliant gatekeeper. Overall call quality can be improved dramatically in the multimedia network by using pairs of proxies between regions of the network where QoS can be requested.

RSVP and IP Precedence

When two H.323 terminals communicate directly, the resulting call quality can range from good (for high-bandwidth intranets) to poor (for most calls over the public network). As a result, deployment of H.323 is almost always predicated on the availability of some high-bandwidth, low-delay, low-packet-loss network that is separate from the public network or that runs overlaid with the network as a premium service and adequate QoS.

Adequate QoS usually requires terminals that are capable of signaling such premium services. There are two major ways to achieve such signaling:

- Resource Reservation Protocol (RSVP) to reserve flows having adequate QoS based on the media codecs of H.323 traffic
- IP precedence bits to signal that the H.323 traffic is special and that it deserves higher priority

Unfortunately, the vast majority of H.323 terminals cannot achieve signaling in either of these ways. The proxy can be configured to use any combination of RSVP and IP precedence bits.

Note

For more information on RSVP, synchronous reservation timers, and slow connect, see Quality of Service for Voice at http://www.cisco.com/en/US/docs/ios/qos/configuration/guide/15_0/qos_15_0_book.html

Application-Specific Routing

To achieve adequate QoS, a separate network may be deployed that is partitioned away from the standard data network. The proxy can take advantage of such a partitioned network using a feature known as application-specific routing (ASR).

Application-specific routing is simple. When the proxy receives outbound traffic, it directs traffic to an interface that is connected directly to the QoS network. The proxy does not send the traffic using an interface that is specified for the regular routing protocol. Similarly, inbound traffic from other proxies is received on the interface that is connected to the QoS network. This is true if all these other proxies around the QoS network use ASR in a consistent fashion. ASR then ensures that ordinary traffic is not routed into the QoS network by mistake.

Implementation of ASR ensures the following:

- Each time a connection is established with another proxy, the proxy automatically installs a host route pointing at the interface designated for ASR.
The proxy is configured to use a loopback interface address. The proxy address is visible to both the ASR interface and all regular interfaces, but there are no routes established between the loopback interface and the ASR interface. This ensures that no non-H.323 traffic is routed through the ASR interface.

**Note**

ASR is not supported on Frame Relay or ATM interfaces for the Cisco MC3810.

### Configuring QoS Using a Multimedia Backbone

The examples in this section illustrate a separate multimedia backbone network dedicated to transporting only H.323 traffic. The closed functionality of the H.323 proxy is necessary for creating this type of backbone. Place a closed H.323 proxy on each edge of the multimedia backbone to achieve the following goals:

- The proxy directs all inter-proxy H.323 traffic, including Q.931 signaling, H.245, and media stream, to the multimedia backbone.
- The proxy shields the multimedia backbone so that routers on edge networks and other backbone networks are not aware of its existence. In this way, only H.323-compliant packets can access or traverse the multimedia backbone.
- The proxy drops any unintended non-H.323 packets that attempt to access the multimedia backbone.

The figure below illustrates a network that has a multimedia backbone. A gatekeeper (not shown) in the edge network (zone) directs all out-of-zone H.323 calls to the closed proxy on the edge of that network. The closed proxy forwards this traffic to the remote zone through the multimedia backbone. A closed proxy and the edge router may reside in the same router or they may be in separate routers, as shown in the figure.

**Figure 20: Sample Network with Multimedia Backbone**

Enabling the Proxy to Forward H.323 Packets

To enable the proxy to forward H.323 packets received from the edge network to the multimedia backbone, designate the interface that connects the proxy to the multimedia backbone to the ASR interface by entering the `h323 asr` command in interface configuration mode. Enabling the proxy to forward H.323 packets satisfies the first goal identified earlier in this section.

Because the proxy terminates two call legs of an H.323 call and bridges them, any H.323 packet that traverses the proxy has the proxy address either in its source field or in its destination field.
To prevent problems that can occur in proxies that have multiple IP addresses, designate only one interface to be the proxy interface by entering the `h323 interface` command in interface configuration mode. Then all H.323 packets that originate from the proxy has the address of this interface in their source fields, and all packets that are destined to the proxy has the address of this interface in their destination fields.

*Enabling the Proxy to Forward H.323 Packets* illustrates that all physical proxy interfaces belong either to the multimedia network or to the edge network. These two networks must be isolated from each other for the proxy to be closed; however, the proxy interface must be addressable from both the edge network and the multimedia network. For this reason, a loopback interface must be created on the proxy and configured to the proxy interface.

It is possible to make the loopback interface addressable from both the edge network and the multimedia network without exposing any physical subnets on one network to routers on the other network. Only packets that originate from the proxy or packets that are destined to the proxy can pass through the proxy interface to the multimedia backbone in either direction. All other packets are considered unintended packets and are dropped. This can be achieved by configuring access control lists (ACLs) so that the closed proxy acts like a firewall that only allows H.323 packets to pass through the ASR interface. This satisfies the second goal identified earlier in this section, which is to ensure that only H.323-compliant packets can access or traverse the multimedia backbone.

**Isolating the Multimedia Network**

The last step is to configure the network so that non-H.323 traffic never attempts to traverse the multimedia backbone and so that it never risks being dropped by the proxy. This is achieved by completely isolating the multimedia network from all edge networks and from the data backbone and by configuring routing protocols on the various components of the networks.

The example provided in *Isolating the Multimedia Network* requires availability of six IP address classes, one for each of the four autonomous systems and one for each of the two loopback interfaces. Any Cisco-supported routing protocol can be used on any of the autonomous systems, with one exception: Routing Information Protocol (RIP) cannot be configured on two adjacent autonomous systems because this protocol does not include the concept of an autonomous system. The result would be the merging of the two autonomous systems into one.

If the number of IP addresses are scarce, use subnetting, but the configuration can get complicated. In this case, only the Enhanced IGRP, Open Shortest Path First (OSPF), and RIP Version 2 routing protocols, which allow variable-length subnet masks (VLSMs), can be used.

Assuming these requirements are met, configure the network illustrated in *Isolating the Multimedia Network* as follows:

- Configure each of the four networks as a separate routing autonomous system and do not redistribute routes between the multimedia backbone and any other autonomous system.
- Create a loopback interface on the proxy and configure it to be the proxy interface. That way no subnets of the multimedia backbone are exposed to the edge network, or the other way around.
- To ensure that the address of the loopback interface does not travel outside the edge network, configure the appropriate distribution list on the edge router that connects the edge network to the data backbone. Configuring the appropriate distribution list guarantees that any ongoing H.323 call is interrupted if the multimedia backbone fails. Otherwise, H.323 packets that originate from one proxy and that are destined to another proxy might discover an alternate route using the edge networks and the data backbone.
In some topologies, the two edge networks and the data backbone may be configured as a single autonomous system, but it is preferable to separate them as previously described because they are different networks with different characteristics.

**Configuring QoS on a Proxy Without ASR**

To start the proxy without application-specific routing (ASR), start the proxy and then define the H.323 name, zone, and QoS parameters on the interface whose IP address the proxy uses. To start the proxy without ASR, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. proxy h323
2. interface type number [nametag]
3. h323 interface [ port ]
4. h323 h323-id h323-id
5. h323 gatekeeper [ id gatekeeper-id ] [ ipaddr ip-address [ port ] | multicast ]
6. h323 qos [ip-precedence | rsvp {controlled-load | guaranteed-qos}]
7. ip route-cache [ cbus ] same-interface [ flow ] distributed
8. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> proxy h323</td>
<td>Starts the proxy.</td>
</tr>
<tr>
<td>Example: Router(config)# proxy h323</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> interface type number [nametag]</td>
<td>Enters interface configuration mode for a particular interface or subinterface. Keywords and arguments are platform dependent; for more information, see the IOS interface command reference listed in the Additional References.</td>
</tr>
<tr>
<td>Example: Router(config)# interface serial 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> h323 interface [ port ]</td>
<td>Selects an interface whose IP address is used by the proxy to register with the gatekeeper. The argument are as follows:</td>
</tr>
<tr>
<td>Example: Router(config-if)# h323 interface 1</td>
<td>• port --Port on which the proxy listens for incoming call setup requests. Range: 1 to 65356. Default:</td>
</tr>
<tr>
<td></td>
<td>• 11720 in -isx- or -jsx- Cisco IOS images</td>
</tr>
<tr>
<td></td>
<td>• 1720 in -ix- Cisco IOS images, which do not contain the VoIP gateway</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>h323 h323-id h323-id</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-if)# h323 h323-id PX1@zone1.com</code></td>
</tr>
<tr>
<td></td>
<td>- <strong>h323-id</strong> -- Name of the proxy. We recommend that this be a fully qualified e-mail identification (ID), with the domain name being the same as that of its gatekeeper.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>**h323 gatekeeper [ id gatekeeper-id</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-if)# h323 gatekeeper ipaddr 10.0.0.0</code></td>
</tr>
<tr>
<td></td>
<td>- <strong>id gatekeeper-id</strong> -- Gatekeeper name. Typically, this is a Domain Name System (DNS) name, but it can also be a raw IP address in dotted form. If this parameter is specified, gatekeepers that have either the default or the explicit flags set for the subnet of the proxy respond. If this parameter is not specified, only those gatekeepers with the default subnet flag respond.</td>
</tr>
<tr>
<td></td>
<td>- **ipaddr ip-address [port</td>
</tr>
<tr>
<td></td>
<td>- <strong>multicast</strong> -- Gatekeeper discovery message is multicast to the well-known Registration, Admission, and Status (RAS) multicast address and port.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>**h323 qos { ip-precedence</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-if)# h323 qos rsvp guaranteed-qos</code></td>
</tr>
<tr>
<td></td>
<td>- <strong>ip-precedence</strong> -- Realtime Transport Protocol (RTP) streams set their IP precedence bits to the specified value</td>
</tr>
<tr>
<td></td>
<td>- <strong>rsvp [ controlled-load]</strong> -- Controlled load class of service</td>
</tr>
<tr>
<td></td>
<td>- <strong>rsvp [ guaranteed-qos]</strong> -- Guaranteed QoS class of service</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>**ip route-cache</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-if)# ip route-cache same-interface distributed</code></td>
</tr>
<tr>
<td></td>
<td>- <strong>cbus</strong> -- Both autonomous switching and fast switching</td>
</tr>
<tr>
<td></td>
<td>- <strong>same-interface</strong> -- Fast-switching packets to back out through the interface on which they arrived</td>
</tr>
<tr>
<td></td>
<td>- <strong>flow</strong> -- The route switch processor (RSP) performs flow switching on the interface.</td>
</tr>
<tr>
<td></td>
<td>- <strong>distributed</strong> -- Versatile Interface Processor (VIP) distributed switching on the interface. This feature can be enabled on Cisco 7500 series routers with RSP and VIP controllers. If both the <strong>ip route-cache flow</strong> and the <strong>ip route-cache distributed</strong> command are configured, the VIP does distributed flow switching. If only the <strong>ip route-cache distributed</strong> command is configured, the VIP does distributed switching.</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
</tbody>
</table>

#### Configuring QoS on a Proxy with ASR

To enable ASR on the proxy, start the proxy and then define the H.323 name, zone, and QoS parameters on the loopback interface. Next, determine which interface is used to route the H.323 traffic and configure ASR on it. The ASR interface and all other interfaces must be separated so that routing information never travels from one to the other. There are two different ways to separate the ASR interface and all other interfaces:

- Use one type of routing protocol on the ASR interface and another on all the non-ASR interfaces. Include the loopback subnet in both routing domains.
- Set up two different autonomous systems, one that contains the ASR network and the loopback network and another that contains the other non-ASR networks and loopback network.

To ensure that the ASR interface and all other interfaces never route packets between each other, configure an access control list. (The proxy traffic is routed specially because it is always addressed to the loopback interface first and then translated by the proxy subsystem.)

#### Note

ASR is not supported on Frame Relay or ATM interfaces for the Cisco MC3810.

---

**ASR Enabled on the Proxy Using One Type of Routing Protocol**

To start the proxy with ASR enabled on the proxy using one type of routing protocol on the ASR interface and another on all of the non-ASR interfaces, and with the loopback subnet included in both routing domains, use the following commands beginning in global configuration mode.
SUMMARY STEPS

1. proxy h323
2. interface type number | nametag |
3. ip address ip-address mask [ secondary ]
4. h323 interface | port |
5. h323 h323-id h323-id
6. h323 gatekeeper | id gatekeeper-id | { ipaddr ip-address | port | multicast }
7. h323 qos {ip-precedence | rsvp {controlled-load | guaranteed-qos}}
8. interface type number | nametag |
9. h323 asr [bandwidth max-bandwidth]
10. ip address ip-address mask [ secondary ]
11. exit
12. interface type number | nametag |
13. ip address ip-address mask [ secondary ]
14. exit
15. router rip
16. network network-number
17. router igrp autonomous-system
18. network network-number
19. network loopback-addr
20. access-list access-list-number { permit | deny } source source-mask | destination destination-mask | { eq | neq } | source-object | destination-object | identification | any |
21. exit
22. interface type number | nametag |
23. ip access-group { access-list-number | access-list-name } { in | out }
24. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>proxy h323</td>
<td>Starts the proxy.</td>
</tr>
</tbody>
</table>

Example:

Router(config)# proxy h323
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>interface      type number [ nametag ]</code></td>
<td>Enters loopback-interface configuration mode. Keywords and arguments are platform dependent; for more information, see the IOS interface command reference listed in the Additional References. To configure a proxy with ASR enabled on the proxy using one type of routing protocol, set <code>type</code> to <code>loopback</code>. The <code>loopback</code> type specifies the software-only loopback interface that emulates an interface that is always up. It is a virtual interface supported on all platforms. The <code>number</code> argument is the number of the loopback interface that you want to create or configure. There is no limit on the number of loopback interfaces that you can create.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface loopback 3</td>
<td></td>
</tr>
</tbody>
</table>

**Step 3**	
`ip address  ip-address mask [ secondary ]`	Sets a primary or secondary IP address for an interface. Keywords and arguments are as follows:
**Example:**	
Router(config-if)# ip address 192.168.0.0 225.225.225.0	

**Step 4**	
`h323 interface [ port ]`	Signals the proxy that this interface IP address is the one to use. The argument are as follows:
**Example:**	
Router(config-if)# h323 interface	

**Step 5**	
`h323 h323-id h323-id`	Configures the proxy name. (More than one name can be configured if necessary.) The argument is as follows:
**Example:**	
Router(config-if)# h323 h323-id PX1@zone1.com	

**Step 6**		
`h323 gatekeeper [ id `gatekeeper-id` ]{ ipaddr  ip-address [ port ]	multicast }`	Specifies the gatekeeper associated with a proxy and controls how the gatekeeper is discovered. For an explanation of the keywords and arguments, see Configuring QoS on a Proxy Without ASR, Step 5.
**Example:**		
Router(config-if)# h323 gatekeeper ipaddr 10.0.0.0		

<p>| <strong>Step 7</strong>        |         |
| <code>h323 qos {ip-precedence| rsvp {controlled-load | guaranteed-qos}}</code> | Enables QoS on the proxy. For an explanation of the keywords and arguments, see Configuring QoS on a Proxy Without ASR, Step 6. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Example:** 
Router(config-if)# h323 qos rsvp guaranteed-qos | |
| **Step 8** interface type number [ nametag ] | If ASR is to be used, enters the interface through which outbound H.323 traffic should be routed. Keywords and arguments are platform dependent; for more information, see Step 2 above. |
| **Example:** 
Router(config)# interface serial 0 | |
| **Step 9** h323 asr [bandwidth max-bandwidth] | Enables ASR and specifies the maximum bandwidth for a proxy. Keyword and argument are as follows: 
- **bandwidth** *max-bandwidth* --Maximum bandwidth on the interface, in kbps. Range: 1 to 10,000,000. Default: the bandwidth on the interface. If you specify a value greater than the interface bandwidth, the bandwidth defaults to the interface bandwidth. |
| **Example:** 
Router(config-if)# h323 asr bandwidth 5000000 | |
| **Step 10** ip address ip-address mask [ secondary ] | Sets up the ASR interface network number. For an explanation of the keywords and arguments, see Step 3 in this configuration task table. |
| **Example:** 
Router(config-if)# ip address 192.168.0.0 225.225.225.0 | |
| **Step 11** exit | Exits the current mode. |
| **Example:** 
Router(config-if)# exit | |
| **Step 12** interface type number [ nametag ] | Enters interface configuration mode for a non-ASR interface. Keywords and arguments are platform dependent; for more information, see Step 2 above. |
| **Example:** 
Router(config)# interface serial 0 | |
| **Step 13** ip address ip-address mask [ secondary ] | Sets up a non-ASR interface network number. For an explanation of the keywords and arguments, see Step 3 above. |
| **Example:** 
Router(config-if)# ip address 192.168.0.0 225.225.225.0 | |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>router rip</td>
<td>Configures Routing Information Protocol (RIP) for a non-ASR interface.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# router rip</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>network network-number</td>
<td>Specifies a list of networks for the RIP routing process or a loopback interface in an Interior Gateway Routing Protocol (IGRP) domain. The argument is as follows:</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# network 192.168.0.0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>router igrp autonomous-system</td>
<td>Configures Interior IGRP for an ASR interface. The argument is as follows:</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# router igrp 109</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>network network-number</td>
<td>Specifies a list of networks for the Routing Information Protocol (RIP) routing process. The argument is as follows:</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# network 172.16.0.0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>network loopback-addr</td>
<td>Includes a loopback interface in an IGRP domain.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# network 10.0.0.0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>access-list access-list-number { permit</td>
<td>deny } source source-mask [ destination destination-mask ] [ eq</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# access-list 20 permit 172.16.10.190 eq</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

- **eq | neq** -- Item matches the packet if all the specified parts of the source object, destination object, and identification match (or do not match) the data in the packet.

- **source-object** -- Contains the mandatory keyword src and one of the following optional keywords:
  - **eq | neq | lt | gt** -- Equal to, not equal to, less than, or greater than. Must be followed by the argument object-number, a numeric DECnet object number.
  - **exp** -- Expression; followed by a regular-expression that matches a string. For more information, see the "Regular Expressions" appendix in the Cisco IOS Dial Technologies Command Reference.

- **destination-object** -- Contains the mandatory keyword dst and one of the following optional keywords:
  - **eq | neq | lt | gt** -- Equal to, not equal to, less than, or greater than. These keywords must be followed by the argument object-number, a numeric DECnet object number.
  - **exp** -- Expression; followed by a regular expression that matches a string. For more information, see the "Regular Expressions" appendix in the Cisco IOS Dial Technologies Command Reference.

- **uic** -- User identification code; followed by a numeric UID expression. The argument [group, user] is a numeric UID expression. In this case, the bracket symbols are literal; they must be entered. The group and user parts can be specified either in decimal, in octal by prefixing the number with a 0, or in hex by prefixing the number with 0x. The uic expression displays as an octal number.

- **identification** -- Any of the following three keywords:
  - **id** -- Regular expression; refers to the user ID.
  - **password** -- Regular expression; the password to the account.
  - **account** -- Regular expression; the account string.
  - **any** -- Item matches if any of the specified parts do match the corresponding entries for source-object, destination-object, or identification.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 22</strong> interface type number [ nametag ]</td>
<td>Enters interface configuration mode on an ASR interface. Keywords and arguments are platform dependent; for more information, see Step 2 above.</td>
</tr>
<tr>
<td>Example: Router(config)# interface serial 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 23</strong> ip access-group { access-list-number</td>
<td>access-list-name } { in</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip access-group 101 in</td>
<td>• access-list-number --Number of an access list. Range: 1 to 199 and 1300 to 2699.</td>
</tr>
<tr>
<td></td>
<td>• access-list-name --Name of an IP access list as specified by an IP access-list command.</td>
</tr>
<tr>
<td></td>
<td>• in --Filters on inbound packets.</td>
</tr>
<tr>
<td></td>
<td>• out --Filters on outbound packets.</td>
</tr>
<tr>
<td><strong>Step 24</strong> exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

**ASR Enabled on the Proxy Using Two Different Autonomous Systems**

To start the proxy with ASR enabled on the proxy using two different autonomous systems (one that contains the ASR network and the loopback network and another that contains the other non-ASR networks and the loopback network), use the following commands beginning in global configuration mode.
SUMMARY STEPS

1. proxy h323
2. interface type number [ nametag ]
3. ip address i p-address mask [ secondary ]
4. h323 interface [ port ]
5. h323 h323-id h323-id
6. h323 gatekeeper [ id gatekeeper-id ] { ipaddr ip-address [ port ] | multicast }
7. h323 qos {ip-precedence | rsvp {controlled-load | guaranteed-qos}}
8. interface type number [ nametag ]
9. h323 asr [bandwidth max-bandwidth]
10. ip address ip-address mask [ secondary ]
11. exit
12. interface type number [ nametag ]
13. ip address ip-address mask [ secondary ]
14. exit
15. router igrp autonomous-system
16. network network-number
17. network network-number
18. router igrp autonomous-system
19. network network-number
20. network network-number
21. access-list access-list-number { permit | deny } source source-mask [ destination destination-mask ]{ eq | neq } [ source-object ] [ destination-object ] [ identification ] any ]
22. interface type number [ nametag ]
23. ip access-group { access-list-number | access-list-name } { in | out }
24. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Starts the proxy.</td>
</tr>
</tbody>
</table>
| proxy h323 | **Example:**
| Router(config)# proxy h323 | |
| **Step 2** | Enters loopback-interface configuration mode. Keywords and arguments are platform dependent; for more information, see the IOS interface command reference listed in the Additional References. |
| interface type number [ nametag ] | **Example:**
<p>| Router(config)# interface loopback 3 | To start the proxy with ASR enabled on the proxy using two different autonomous systems, the type argument is <strong>loopback</strong>. The <strong>loopback</strong> type |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip address i p-address mask [ secondary ]</code></td>
<td>specifies the software-only loopback interface that emulates an interface that is always up. It is a virtual interface supported on all platforms. The number argument is the number of the loopback interface that you want to create or configure. There is no limit on the number of loopback interfaces you can create.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Sets a primary or secondary IP address for an interface. Keyword and arguments are as follows:</td>
</tr>
<tr>
<td></td>
<td>- <code>ip-address</code> --IP address.</td>
</tr>
<tr>
<td></td>
<td>- <code>mask</code> --Mask for the associated IP subnet.</td>
</tr>
<tr>
<td></td>
<td>- <code>secondary</code> --The configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.</td>
</tr>
</tbody>
</table>

**Example:**
```
Router(config-if)# ip address 192.168.0.0 225.225.225.0
```

**Step 4**
```
h323 interface [port]
```
Signals the proxy that this interface IP address is the one to use. The argument are as follows:

- `port` --Port on which the proxy listens for incoming call setup requests. Range: 1 to 65356. Default:
  - 11720 in -isx- or -jsx- Cisco IOS images
  - 1720 in -ix- Cisco IOS images, which do not contain the VoIP gateway

**Example:**
```
Router(config-if)# h323 interface 1
```

**Step 5**
```
h323 h323-id h323-id
```
Configures the proxy name. (More than one name can be configured if necessary.) The argument is as follows:

- `h323-id` --Name of the proxy. It is recommended that this be a fully qualified e-mail identification (ID), with the domain name being the same as that of its gatekeeper.

**Example:**
```
Router(config-if)# h323 h323-id PX1@zone1.com
```

**Step 6**
```
h323 gatekeeper [id gatekeeper-id] [ipaddr ip-address [port]] multicast
```
Specifies the gatekeeper associated with a proxy and controls how the gatekeeper is discovered.

For an explanation of the keywords and arguments, see Step 5 in the configuration task table in the Configuring QoS on a Proxy Without ASR.

**Example:**
```
Router(config-if)# h323 gatekeeper ipaddr 10.0.0.0
```

**Step 7**
```
h323 qos {ip-precedence | rsvp [controlled-load | guaranteed-qos]}
```
Enables quality of service (QoS) on the proxy. Keywords and arguments are as follows:

- `ip-precedence` value --Real-time Transport Protocol (RTP) streams should set their IP precedence bits to the specified value
- `rsvp` {controlled-load} --Controlled load class of service

**Example:**
```
Router(config-if)# h323 qos rsvp guaranteed-qos
```
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• <strong>rsvp</strong> {<strong>guaranteed-qos</strong>}</td>
<td>--Guaranteed QoS class of service</td>
</tr>
</tbody>
</table>

### Step 8

**Interface**

```plaintext
interface type number \ [nametag]
```

**Example:**

```plaintext
Router(config)# interface serial 0
```

If application-specific routing (ASR) is to be used, enters the interface through which outbound H.323 traffic should be routed. Keywords and arguments are platform dependent; for more information, see Step 2 above.

### Step 9

**H323 ASR**

```plaintext
h323 asr \[bandwidth max-bandwidth]
```

**Example:**

```plaintext
Router(config-if)# h323 asr bandwidth 5000000
```

Enables ASR and specifies the maximum bandwidth for a proxy. The argument is as follows:

- **max-bandwidth** --Maximum bandwidth on the interface, in kbps.
  Range: 1 to 10,000,000. Default: the bandwidth on the interface.
  If you specify a value greater than the interface bandwidth, the bandwidth defaults to the interface bandwidth.

### Step 10

**IP Address**

```plaintext
ip address ip-address mask \ [secondary]
```

**Example:**

```plaintext
Router(config-if)# ip address 192.168.0.0 225.225.225.0
```

Sets up the ASR interface network number.

For an explanation of the keywords and arguments, see Step 3 in this configuration task table.

### Step 11

**Exit**

```plaintext
exit
```

**Example:**

```plaintext
Router(config-if)# exit
```

Exits the current mode.

### Step 12

**Interface**

```plaintext
interface type number \ [nametag]
```

**Example:**

```plaintext
Router(config)# interface serial 0
```

Enters interface configuration mode on a non-ASR interface. Keywords and arguments are platform dependent; for more information, see Step 2 above.

### Step 13

**IP Address**

```plaintext
ip address ip-address mask \ [secondary]
```

**Example:**

```plaintext
Router(config-if)# ip address 192.168.0.0 225.225.225.0
```

Sets up a non-ASR interface network number.

For an explanation of the keywords and arguments, see Step 3 in this configuration task table.

### Step 14

**Exit**

```plaintext
exit
```

**Example:**

```plaintext
Router(config-if)# exit
```

Exits the current mode.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 15</strong></td>
<td><strong>router igrp  autonomous-system</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config)# router igrp 4&lt;br&gt;Configures Interior Gateway Routing Protocol (IGRP) for a non-ASR interface. The argument is as follows:&lt;br&gt;• <em>autonomous-system</em> --Autonomous system number that identifies the routes to the other IGRP routers. It is also used to tag the routing information.</td>
</tr>
<tr>
<td><strong>Step 16</strong></td>
<td><strong>network network-number</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config)# network 192.168.0.0&lt;br&gt;Includes a non-ASR interface in an IGRP domain. The argument is as follows:&lt;br&gt;• <em>network-number</em> --IP address of the network of the directly connected networks</td>
</tr>
<tr>
<td><strong>Step 17</strong></td>
<td><strong>network network-number</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config)# network 192.169.0.0&lt;br&gt;Includes a loopback interface in an IGRP domain. The argument is as follows:&lt;br&gt;• <em>network-number</em> --IP address of the network of the directly connected networks</td>
</tr>
<tr>
<td><strong>Step 18</strong></td>
<td><strong>router igrp autonomous-system</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config)# router igrp 5&lt;br&gt;Configures IGRP for an ASR interface. The argument is as follows:&lt;br&gt;• <em>autonomous-system</em> --Autonomous system number that identifies the routes to the other IGRP routers. It is also used to tag the routing information.</td>
</tr>
<tr>
<td><strong>Step 19</strong></td>
<td><strong>network network-number</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config)# network 192.170.0.0&lt;br&gt;Specifies a list of networks for the Routing Information Protocol (RIP) routing process. The argument is as follows:&lt;br&gt;• <em>network-number</em> --Should include an ASR interface in an IGRP domain</td>
</tr>
<tr>
<td><strong>Step 20</strong></td>
<td><strong>network network-number</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config)# network 192.171.0.0&lt;br&gt;Specifies a list of networks for the RIP routing process. The argument is as follows:&lt;br&gt;• <em>network-number</em> --Should include a loopback interface in an IGRP domain</td>
</tr>
</tbody>
</table>
| **Step 21** | **access-list access-list-number { permit | deny } source source-mask [ destination destination-mask ] { eq | neq } [ [ source-object ] [ destination-object ] [ identification ] | any ]**<br>**Example:**<br>Router(config)# access-list 20 permit 172.16.10.190 eq<br>Creates an access list.<br>For an explanation of the keywords and arguments, see Step 20 in the configuration task table in the "Configuring QoS on a Proxy with ASR" section."
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 22</td>
<td><code>interface</code></td>
<td>Enters interface configuration mode on an ASR interface. Keywords and</td>
</tr>
<tr>
<td></td>
<td><code>type number</code></td>
<td>arguments are platform dependent; for more information, see Step 2</td>
</tr>
<tr>
<td></td>
<td>`</td>
<td>nametag`</td>
</tr>
<tr>
<td></td>
<td><code>number</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>`</td>
<td>nametag`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)#</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>interface</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>serial 03</code></td>
<td></td>
</tr>
<tr>
<td>Step 23</td>
<td><code>ip access-group</code></td>
<td>Controls access to an interface. Use this command to set the outbound</td>
</tr>
<tr>
<td></td>
<td><code>{ access-list-number</code></td>
<td>access group and then the inbound access group. Keywords and</td>
</tr>
<tr>
<td></td>
<td>`</td>
<td>access-list-name`</td>
</tr>
<tr>
<td></td>
<td>`</td>
<td>in`</td>
</tr>
<tr>
<td></td>
<td>`</td>
<td>out`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)#</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>ip access-group</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>101</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>in</code></td>
<td></td>
</tr>
<tr>
<td>Step 24</td>
<td><code>exit</code></td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)#</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>exit</code></td>
<td></td>
</tr>
</tbody>
</table>

### Configuring Border Elements

**Note**

Cisco supports one border element per gatekeeper. For gateway configuration commands, see Configuring Annex G.

To configure and provision an Annex G border element, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `gatekeeper`
2. `h323-annexg border-element-id cost cost priority priority`
3. `prefix prefix * [seq | blast]`
4. `exit`
5. `exit`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# gatekeeper</td>
</tr>
<tr>
<td><strong>Step 2</strong> h323-annexg border-element-id cost cost priority priority</td>
<td>Enables the BE on the GK and enters BE configuration mode. Keywords and arguments are as follows:</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-gk)# h323-annexg h323-annexg be20 cost 10 priority 40</td>
</tr>
<tr>
<td>- border-element-id -- Identifier of the Annex G border element that you are provisioning. Associates the gatekeeper with the BE identifier that is configured on the BE. Possible values: any International Alphabet 5 (IA5) string, without spaces and up to 20 characters in length.</td>
<td></td>
</tr>
<tr>
<td>- cost cost -- Cost associated with this Annex G border element. When a gatekeeper sends requests to remote zones and to the BE in its attempt to resolve an address, the remote zone or BE that resolves the address and has the lowest cost and highest priority is given preference. Range: 1 to 99. Default: 50.</td>
<td></td>
</tr>
<tr>
<td>- priority priority -- Priority associated with this Annex G border element. When a gatekeeper sends requests to remote zones and to the BE in its attempt to resolve an address, the remote zone or BE that resolves the address and has the lowest cost and highest priority is given preference. Range: 1 to 99. Default: 50.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> prefix prefix * [seq</td>
<td>blast]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-gk-annexg)# prefix 414*</td>
</tr>
<tr>
<td><strong>Step 4</strong> exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-gk-annexg)# exit</td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-gk)# exit</td>
</tr>
</tbody>
</table>
Configuring Endpoints

This section contains the following information:

### Information About Endpoints

This section contains the following information:

### Alternate Endpoints

A calling endpoint can recover from a call setup failure by sending a setup message to one of the alternate endpoints so that it is possible for a call to finish even if a gateway goes down and the gatekeeper is not yet aware of the problem. Cisco supports a maximum of 20 alternates for each endpoint, and any alternates received through registration, admission, and status protocol (RAS) messages are merged with those entered manually in the gatekeeper command-line interface. If more than 20 alternates are submitted, the total list of alternates reverts back to 20.

Alternate endpoints are configured using the `endpoint alt-ep h323id` command. This command defines the IP address for an alternate endpoint for the primary endpoint identified by its H.323 ID. The IP address is returned in the alternate endpoint field whenever the primary endpoint is returned in an ACF or LCF. The alternate endpoint gives an alternate address to place the call in case the call to the primary endpoint fails.

This command provides a failover mechanism if a gateway becomes disabled for a period of time before the gatekeeper becomes aware of the problem. After receiving an admission confirmation (ACF) from the gatekeeper with an alternate endpoint list, the Cisco gateway may attempt to use an alternate if a SETUP message results in no reply from the destination. This command causes the alternate endpoints specified to be sent in all subsequent ACF/location confirmation (LCF) messages for the endpoint named in the `h323-id` argument. Gatekeepers that support this `endpoint alt-ep h323id` command also support receiving alternate endpoint information using RAS messages. The gatekeeper accepts IP and port call signal address information in endpoint registration request (RRQ) messages. The gatekeeper list of alternates for a given endpoint is the union of the configured alternates and alternates received in RRQs from that endpoint.

The Outgoing Trunk Group ID and Carrier ID for H.323 VoIP Networks feature provides an enhancement to Registration, Admission, and Status (RAS) Admission Confirmation and Location Confirmation messages. RAS messages include a circuitInfo field that provides trunk group label or carrier ID information for remote endpoints (gateways) in H.323 networks. The Outgoing Trunk Group ID and Carrier ID for H.323 VoIP Networks feature also adds trunk group label and carrier ID support for the alternate endpoint field in the Gatekeeper Transaction Message Protocol (GKTMP) Response Admission Request (ARQ), Admission Confirmation (ACF), Location Request (LRQ), and Location Confirmation (LCF) messages.

This feature allows a gatekeeper to specify a primary route-server trunk group as the destination to which a call is to be routed. The gatekeeper provides the IP address of the terminating gateway and the trunk group label or carrier ID of that gateway (in the circuitInfo field) to the requesting gateway. The GKTMP application server provides the trunk group label or carrier ID of the terminating gateway to the gatekeeper in the RESPONSE ARQ, ACF, LRQ, or LCF messages. The gatekeeper converts the trunk group ID or carrier ID information and sends it in the circuitInfo field of its RAS message to the requesting gateway.

The GKTMP application server may also provide a list of alternate gateways in the RESPONSE ARQ, ACF, LRQ, or LCF messages that the gatekeeper sends to the requesting gateway. The alternate gateway list includes a separate call signal address and circuitInfo field (trunk group label or carrier ID) for each alternate gateway. The gatekeeper removes identical alternate gateway routes from the consolidated alternate gateway list before sending the list to the requesting gateway.
The gatekeeper does not validate whether the alternate gateway is valid or whether the target carrier ID will have enough capacity if the destination gateways and their trunk group labels and carrier IDs are registered to the local gatekeeper zone.

The figure below illustrates that this feature allows the gatekeeper in Zone 1 to receive routing information from the primary gateway, Gateway 2 in Zone 2, and from the alternate gateway, Gateway 3, also in Zone 2. The routing information is passed from the gatekeeper in Zone 1 to requesting Gateway 1.

**Figure 21: Topology of Routing Between Zone 1 and Zone 2**

The RAS message includes a new field called circuitInfo. The information in the circuitInfo field corresponds to the information in the Q and J tags in the GKTMP message. The trunk group label (Q tag) or carrier ID (J tag) of the primary gateway is provided in the alternateEndpoint structure of the GKTMP message, along with the call signal address of the primary gateway. The trunk group label or carrier ID of each alternate gateway is also provided in the alternateEndpoint structure of the GKTMP message. The Q and J tags of each alternate gateway are embedded inside the existing A-tagged fields of the GKTMP message, as shown in the following example:

```
A-c:{I:172.18.194.1:1720} J:CARRIER_ID
A-c:{I:10.1.1.1:1720} Q:TRUNK_GROUP_LABEL
```

The following is an example of a RAS message from a gatekeeper to a requesting gateway. (The gatekeeper has converted the information in the Q and J fields of the GKTMP message that it received from the GKTMP application server.) The RAS message contains two alternate endpoints, each of which has a circuitInfo field:

```
alternateEndpoints
callSignalAddress
ipAddress :
'AC12C826'H
port 1720
```
Limitations for Alternate Endpoints

The gatekeeper can be instructed by GKTMP servers to send alternate endpoints with same call signaling address and different calling or called numbers in the ACF. When this happens the Cisco gateway acting as the endpoint will send an alternate endpoint attempt to the same call signaling address as the primary call. If the first call is still active on the terminating gateway when the second call arrives the TGW would detect a call loop because the calls share the same GUID, and the second call will be rejected with a 'CALL_LOOP' message printed on syslog.

- Effective with Cisco IOS Release 12.4(9)T2 and before, the first call can be active on the TGW when the second call arrives in the following cases.
- A Release Complete message has been sent on the first call, but the TGW keeps the call active till a Release Complete message arrives from OGW or till the release timer expires.
- A Release Complete message has been sent out on the first call, but a DRQ has not arrived from the GK.
- Effective with Cisco IOS Release 12.4(9)T3 and later, the first call can be active on the TGW when the second call arrives because:
  - The TGW keeps the call active if Maintain connection timeout is turned off, even if a Release Complete message has been sent on the first call. The call is kept active till a Release Complete message arrives from OGW or till the release timer expires.
  - A Release Complete message has been sent out on the first call, but a DRQ has not arrived from the GK.

Carrier-Based Routing Without a GKTMP Application Server

Carrier-based routing is possible without the presence of the GKTMP application server if you have Cisco IOS Release 12.3(8)T1, Cisco IOS Release 12.3(11)T, or higher. The trunk group label or carrier ID of the terminating gateway can also be provided by the destination circuitInfo field in ARQ. Incoming ARQ to the gatekeeper has the destination circuitInfo field. When both GKTMP and incoming ARQ provide the trunk group ID or carrier ID, the ID provided by the GKTMP server is accepted. The GKTMP server can also add, modify, or delete the trunk group ID or carrier ID present in ARQ using RESPONSE ARQ or ACF message. If the RESPONSE ARQ or the ACF message does not include a Q or J tag, only the trunk group or carrier ID provided by the incoming ARQ is used for routing.

Additional Routes to Alternate Endpoints

The Location Confirmation Enhancements for Alternate Endpoints feature allows a Cisco IOS gatekeeper to collect additional routes to endpoints that are indicated by multiple location confirmation (LCF) responses.
from remote gatekeepers and convey a collection of those routes to the requesting (calling) endpoint. Currently, the originating gatekeeper sends Location Request (LRQ) messages to multiple remote zones. Remote gatekeepers in the zones return LCF responses to the originating gatekeeper. The LCF responses indicate alternate routes to the endpoints of the remote gatekeeper. The consolidation of LCF responses to multiple LRQ messages can provide many alternate routes to reach a given destination. An endpoint can have up to 20 alternate endpoints.

The remote gatekeeper zones have been configured in the originating gatekeeper using the zone remote command, specifying the cost and priority to each remote zone. After receiving the LCF responses, the originating gatekeeper determines the best route to an endpoint on the basis of the cost and priority of remote zones returning the responses. The originating gatekeeper then forwards route information to the requesting endpoint in the Admission Confirmation (ACF) message, which contains an ordered list of alternate endpoints.

The Location Confirmation Enhancements for Alternate Endpoints feature allows the originating gatekeeper to discover and relay more possible terminating endpoints to the requesting endpoint, therefore providing alternate routes to endpoints that can be used if the best route is busy or does not provide any alternate routes. The endpoint that receives the list of alternate endpoints tries to reach them in the order in which the alternate endpoints were received. The Location Confirmation Enhancements for Alternate Endpoints feature can be used on gatekeepers that originate LRQ messages and directory gatekeepers that forward LRQ messages.

The Location Confirmation Enhancements for Alternate Endpoints feature allows you to choose the number of alternate routes you want the gatekeeper to collect during the existing LRQ timer window. When the timer expires or the best response and sufficient alternates are received, the resolved address and alternate endpoints from all the LCFs received by the gatekeeper are consolidated in a single list. Identical alternate endpoints are removed from the list. That is, if an alternate endpoint that was received in an LCF message has an identical IP address or trunk group label or carrier ID as any alternate endpoints received in previous LCF messages, the previous duplicate alternate endpoints are removed from the consolidated list.

The address and endpoints are sent as alternate endpoints in the ACF or LCF messages from the gatekeeper. If this feature is not enabled, the gatekeeper stops collecting routes after the LRQ timer expires and then chooses the best LCF and sends it in the ACF message. After you enable the feature, the gatekeeper stops collecting routes after the LRQ timer expires and then consolidates the endpoints from all LCF messages received.

Note

Annex G border element (BE) interaction is not affected. The LCF responses from BEs are treated like any remote gatekeeper LCF.

Effective with Cisco IOS Release 12.2(11)T, duplicate alternate endpoints that are received in a Location Confirmation (LCF) message are removed from the consolidated list of endpoints. The current gatekeeper limitations apply:

- Ten LRQ messages can be sent by the gatekeeper; therefore, there is a limit of 10 remote zones that are handled by the gatekeeper.
- ACF and LCF messages can carry up to 20 alternate endpoints.

Nonavailability Information for Terminating Endpoints

An H.323 Location Request (LRQ) message is sent by a gatekeeper to another gatekeeper to request a terminating endpoint. The second gatekeeper determines the appropriate endpoint on the basis of the information contained in the LRQ message. However, sometimes all the terminating endpoints are busy servicing other calls and none are available. If you configure the lrq reject-resource-low command, the second gatekeeper
rejects the LRQ request if no terminating endpoints are available. If the command is not configured, the second
gatekeeper allocates and returns a terminating endpoint address to the sending gatekeeper even if all the
terminating endpoints are busy. A call has a higher chance of succeeding if the availability of the endpoint is
determined in advance. Returned addresses are only those that have available capacity. Rejecting an LRQ
message forces the sending gatekeeper to query other gatekeepers to find an endpoint that has available
capacity.

**Endpoint-Based Call-Capacity Management**

Gatekeepers can currently provide dynamic calculation of maximum calls for endpoints that report v4 call
capacity in Registration, Admission, and Status (RAS) messages. This enhancement enables the static
assignment of a maximum number of calls to an endpoint and the dynamic calculation of maximum calls to
be overridden for an endpoint. You can also statically assign maximum calls to non-v4 endpoints that do not
report call capacity and to override the dynamic calculation of maximum calls for an endpoint that does report
call capacity. The `endpoint circuit-id h323id` command is used to configure the dynamic calculation of
maximum calls.

While managing endpoint call capacity, a gatekeeper uses one of two different fields of the endpoint structure
to store endpoint call capacity (based on the flag voice_GwCallsAvailable_present and
h323_GwCallsAvailable_present of call capacity reported by an endpoint). If the Endpoint-Based Call Capacity
Management feature is used to configure maximum calls, the gatekeeper stores endpoint call capacity in the
field that is already in use (e_voicecallCapacity and e_h323CalICapacity). If no field is in use (if the endpoint
is not reporting call capacity), the gatekeeper uses the field associated with the time-division multiplexing
(TDM) gateway (this is e_voicencallCapacity) to store endpoint call capacity.

A gatekeeper also does active call counting for carrier-based routing when an endpoint reports capacity or
carrier ID information in an ARQ or disengage request (DRQ) message or is statically configured for carrier
ID and maximum call. Call accounting is extended if an endpoint does not report capacity or carrier ID
information in the ARQ or DRQ message or is not statically configured for carrier ID and maximum calls.
The `show gatekeeper endpoints` command displays the current call count for the endpoint. The current call
should be updated for the call reported using the information response (IRR) message.

Gatekeeper resource monitoring is enabled using the `endpoint resource-threshold onset` command. If the
command is configured, a gatekeeper currently indicates that a gateway is "out-of-resource" when the available
call percentage is less than the configured value. For prefix-based routing, nothing special needs to be configured
for the gatekeeper to select a local destination gateway. For carrier-based routing, before selecting a local
destination endpoint, a gatekeeper currently checks to ensure that the endpoint is not out-of-resource for the
destination carrier. The gatekeeper must perform an additional check to ensure that the endpoint is not
out-of-resource (as reported through the Resource Availability Indicator (RAI) out-of-resource flag).

**Configuring Alternate Endpoints**

To configure alternate endpoints, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `gatekeeper`
2. `endpoint alt-ep h323id h323-id ip-address [port] [carrier-id carriername]`
3. `exit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# gatekeeper</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configures alternate endpoints. Keywords and arguments are as follows:</td>
</tr>
<tr>
<td>endpoint alt-ep h323id h323-id</td>
<td></td>
</tr>
<tr>
<td>ip-address [port]</td>
<td></td>
</tr>
<tr>
<td>carrier-id carriername</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config-gk)# endpoint alt-ep h323id h323-id 192.168.0.0</td>
</tr>
<tr>
<td>Step 3</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config-gk)# exit</td>
</tr>
</tbody>
</table>

Verifying Alternate Endpoints

To verify alternate endpoints, perform the following steps.

SUMMARY STEPS

1. show gatekeeper endpoints alternates

DETAILED STEPS

show gatekeeper endpoints alternates
Use this command to display the status of all registered endpoints for a gatekeeper.

The following example shows three carrier IDs (CARRIER_ABC, CARRIER_DEF, and CARRIER_GHI):
Configuring Additional Routes to Alternate Endpoints

To configure a collection of alternate endpoints, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `gatekeeper`
2. `endpoint alt-ep collect value [distribute]`
3. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
</tbody>
</table>

Example:
```
Router (config)# gatekeeper
```

| **Step 2** endpoint alt-ep collect value [distribute] | Configures the number of alternate routes to consolidate from various LCF responses before ending the collection process and sending the LCF message to the requesting endpoint. Keywords and arguments are as follows:

- **value** --Number of routes. Range: 1 to 20. Default: 0, which indicates that alternate route consolidation is not enabled. When the feature is not enabled, the gatekeeper gets alternates from only one LCF (the best LCF with the least-cost routing). The gatekeeper ignores the alternates present in other LCF messages even if they are present and there is no consolidation.

| **Example:**
```
Router(config-gk)# endpoint alt-ep collect 20
```
PurposeCommand or Action  Purpose

ID as any alternate endpoints received in previous LCF messages, the previous duplicate
alternate endpoints are removed from the consolidated list.
  • distribute --Gatekeeper includes alternate routes from as many LCF messages
    as possible in the consolidated list. Use of this keyword allows the gatekeeper to
give fairness to the information of alternate routes present in various LCFs.

Step 3 exit Exits the current mode.

Example:
Router (config-gk)# exit

Configuring Nonavailability Information for Terminating Endpoints
To configure a gatekeeper to notify a sending gatekeeper on receipt of an LRQ message that no terminating
dependents are available, use the following commands beginning in global configuration mode.

SUMMARY STEPS
1. gatekeeper
2. lrq reject-resource-low
3. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>gatekeeper</td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router (config)# gatekeeper</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>lrq reject-resource-low</td>
<td>Configures the gatekeeper to notify a sending gatekeeper on receipt of</td>
</tr>
<tr>
<td></td>
<td>an LRQ message that no terminating endpoints are available.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router (config-gk)# lrq reject-resource-low</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router (config-gk)# exit</td>
</tr>
</tbody>
</table>
Verifying the Sending of Nonavailability Information

To verify gatekeeper configuration, perform the following steps.

**SUMMARY STEPS**

1. `show running-config`

**DETAILED STEPS**

```
show running-config
```

Use this command to verify that the gatekeeper is configured to notify a sending gatekeeper on receipt of an LRQ message that no terminating endpoints are available.

Configuring Endpoint-Based Call-Capacity Management

**Note**

The `endpoint resource-threshold onset` command must be configured for the gatekeeper to perform endpoint-based call-capacity management.

To configure endpoint-based call-capacity management, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `gatekeeper`
2. `endpoint max-calls h323id endpoint-id max-calls`
3. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | gatekeeper

Example:

```
Router(config)# gatekeeper
```
### Purpose

#### Command or Action

**Step 2**

- **endpoint max-calls h323id endpoint-id max-calls**

  **Example:**
  
  Router(config-gk)# endpoint max-calls h323id GW-1 1000

Sets the maximum number of calls that are allowed for an endpoint. Arguments are as follows:

- **endpoint-id** -- ID of the endpoint.
- **max-calls** -- Maximum number of calls allowed to the endpoint. Range: 1 to 100000.

#### Step 3

- **exit**

  **Example:**
  
  Router(config-gk)# exit

Exits the current mode.

### Forcing Endpoint Unregistration

To force a gatekeeper to unregister an endpoint, use the **clear h323 gatekeeper endpoint** command as described below. Alternatively, you can issue a command from the GKTMP server to unregister an endpoint.

#### Note


### Prerequisites for Forcing Unregistration

For gatekeeper cluster configurations, the **clear h323 gatekeeper endpoint** command must be entered on the gatekeeper where the endpoint is registered. Use the **show gatekeeper endpoints** command to locate the endpoint in a gatekeeper cluster.

### SUMMARY STEPS

1. **clear h323 gatekeeper endpoint**  
   
   {alias {e164 name | h323id name} | all | id number | ipaddr ip-address [port]}

### DETAILED STEPS

#### Command or Action

**Step 1**

- **clear h323 gatekeeper endpoint** {alias {e164 name | h323id name} | all | id number | ipaddr ip-address [port]}

Forces the gatekeeper to send an unregistration request (URQ) message to the specified endpoint or all endpoints and removes the endpoint from the gatekeeper registration database. The endpoint that is unregistered can come back if it sends the RRQ message back to the gatekeeper after unregistration. Keywords and arguments are as follows:
Configuring H.323 Gatekeepers and Proxies

Configuring Endpoints

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
| Router# clear h323 gatekeeper endpoint all | • **alias e164** name --E.164 alphanumeric address that is specified in the local alias table.  
• **alias h323id** name --H.323 ID name that is specified in the local alias table and is an alternate way to reach an endpoint.  
• **all** --All endpoints.  
• **id** number --ID of the endpoint.  
• **ipaddr** ip-address [port]--Call signaling address and port (optional) of the endpoint. Default: 1720. |

### Verifying Endpoint Unregistration

To verify unregistration, perform the following steps.

**SUMMARY STEPS**

1. Verify that you did not receive an error message after entering the `clear h323 gatekeeper endpoint` command.
2. `show gatekeeper endpoints`  
3. Verify that the unregistered endpoint is not displayed in the list of endpoints.

**DETAILED STEPS**

**Step 1** Verify that you did not receive an error message after entering the `clear h323 gatekeeper endpoint` command.

**Step 2** `show gatekeeper endpoints`  
Use this command to view all endpoints registered to the gatekeeper:

**Example:**

```bash
Router# show gatekeeper endpoints
GATEKEEPER ENDPOINT REGISTRATION
--
CallSignalAddr Port RASSignalAddr Port Zone Name Type
--------------- ----- --------------- ----- --------- ----
------------- ----- --------------- ----- --------- ----
1.1.1.1 1720 1.1.1.1 1719 gk-e4-2 VOIP-GW S
H323-ID: test (static)
Total number of active registrations = 1
```

**Step 3** Verify that the unregistered endpoint is not displayed in the list of endpoints.
Configuring the IRR Timer and Disable IRQ Requests

This section contains the following information:

Restrictions for the IRR Timer and Disable IRQ Requests

- If the gatekeeper is configured to not send IRQs with the CRV set to zero, bandwidth control is not supported.
- Adjusting the IRR frequency while there are existing calls should be avoided.
- All gatekeepers should have the same IRR frequency configured to prevent problems during gatekeeper switchover.
- RQ retries from two to nine increases DRQ reliability. This value is not configurable.

Information About the IRR Timer and Disable IRQ Requests

Call Status Tracking Optimization reduces unnecessary messages between gatekeeper and the gateways, reducing network congestion and CPU over-utilization.

In an H.323 VoIP network, gatekeepers use information request (IRQ) messages to obtain information about a certain call or all calls from an endpoint (for example, an originating gateway). The gatekeeper can send an IRQ to request information from the endpoint, which responds with an information request response (IRR). The gatekeeper can also use the irrFrequency field in the initial admission confirm (ACF) message to instruct the endpoint to periodically report with IRR messages during call admission.

Currently, the Cisco gatekeeper maintains the call states of all calls it has admitted, to track bandwidth usage. In addition, the gatekeeper must be able to reconstruct call structures for a newly transferred gateway from an alternate gatekeeper, if a gatekeeper switchover has occurred. In a gatekeeper switchover, the new gatekeeper sends an IRQ message with the call reference value (CRV) set to 0 to the newly registered gateway to obtain information about existing calls before the switchover.

If a gateway supports a large volume of calls, the number of IRR messages as responses to an IRQ with the CRV set to zero could be very CPU intensive and cause congestion. Additionally, if a gatekeeper serves many endpoints or high-capacity gateways, the IRQ requests and the resulting IRR messages received can flood the network, causing high CPU utilization and network congestion.

The Call Status Tracking Optimization feature provides the following methods to address this potential problem:

- A command to configure IRR frequency that is included in the ACF message. Currently, the IRR frequency is set to 240 seconds (4 minutes), based on an average 4-minute call hold time. The IRR allows the gatekeepers to terminate calls for which a disengage request (DRQ) has not been received. If missing DRQs are not a problem, the IRR frequency can be set to a larger value than four minutes, minimizing the number of unnecessary IRRs sent by a gateway.

- A command to disable the gatekeeper from sending an IRQ with the CRV set to zero when the gatekeeper is requesting the status of all calls after its initialization. Disabling the IRQ can eliminate unnecessary IRR messages in cases where the reconstruction of call structures can be postponed until the next IRR, or in cases where the call information is no longer required because calls are terminated before the periodic IRR is sent. Disabling the IRQ is advantageous if direct bandwidth control is not used in the gatekeeper.
• An increase from two to nine in the number of retries for sending the DRQ. If the reliability of DRQ messages is increased, a longer period can be used before the next IRR is sent. Third-party gatekeepers must support this feature.

**Configuring IRR Periodic Intervals on the Gatekeeper**

To configure IRR periodic intervals on the gatekeeper, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `gatekeeper`
2. `timer irr period value`
3. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td><code>gatekeeper</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# gatekeeper</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Configures the IRR timer, or the periodic interval of IRR messages sent by the gatekeeper, in minutes. The gatekeeper uses this value to populate the <code>irrFrequency</code> field in the ACF message. Range: 1 to 60. Default: 4.</td>
</tr>
<tr>
<td><code>timer irr period value</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-gk)# timer irr period 30</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-gk)# exit</code></td>
</tr>
</tbody>
</table>

**Disabling IRQ Requests for All Calls in the Gatekeeper**

To disable IRQ requests for all calls in the gatekeeper, use the following commands beginning in global configuration mode.

**SUMMARY STEPS**

1. `gatekeeper`
2. `no irq global-request`
3. `exit`
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>gatekeeper</code></td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# gatekeeper</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>no irq global-request</code></td>
<td>Prohibits the gatekeeper from sending IRQ requests with a CRV set to zero to endpoints to obtain information about all calls. These IRQ requests are usually sent after a gatekeeper initializes upon switchover. Default: sends IRQ requests with a CRV set to zero.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-gk)# no irq global-request</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-gk)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

**Configuring Sequential LRQs**

This section contains the following information:

**Restrictions for Sequential LRQs**

- In a network where LRQs are forwarded through multiple gatekeepers along a single path, a single LRQ sent from a gatekeeper could solicit multiple LRJ and Location Confirmation (LCP) responses. If an LRJ response is received first, a potentially unnecessary LRQ could be sent to the next zone, increasing traffic.

To avoid this problem, ensure that the gatekeepers do not use the `blast` option, or carefully configure the sequential timer on each gatekeeper along the path. Using sequential LRQs in a directory gatekeeper along the path can also help because sequential LRQs in the directory gatekeeper always send one response back to an LRQ request.

**Information About Sequential LRQs**

You can configure the gatekeeper to provide a potentially faster LRQ response to the originator of the request when a location reject (LRJ) response is received while the gatekeeper is sending sequential LRQs. The Sequential LRQ Enhancement feature introduces a fixed delay for the gatekeeper to send sequential LRQs to successive zones even when a negative response or an LRJ is received from the current zone.
You configure this fixed delay using the **lrq lri immediate-advance** command. If an LRJ is received from the current zone, the gatekeeper assumes that the current zone cannot satisfy the request and immediately sends an LRQ to the next zone. This feature works for both typical and directory gatekeepers.

The "Call Flow Using Sequential LRQ Enhancement Feature" section shows how the Sequential LRQ Enhancement feature affects call flows. The originating gatekeeper sends LRQ1 to the first gatekeeper. GK1 responds with LRJ1. Immediately upon receipt of LRJ1, the originating gatekeeper sends LRQ2 to GK2.

**Call Flow Using Sequential LRQ Enhancement Feature**

![Figure 22: Call Flow Using Sequential LRQ Enhancement Feature](image)

The figure below shows a call flow with the Sequential LRQ Enhancement feature when LRJ1 arrives after the delay timer has expired and after LRQ2 has been sent. If this occurs, the originating gatekeeper does not send LRQ3 and ignores LRQ2.

**Figure 23: Call Flow with LRJ1 Arriving After Delay Timer Expiration**

![Figure 23: Call Flow with LRJ1 Arriving After Delay Timer Expiration](image)
### Configuring Sequential LRQ Enhancement

To configure sequential LRQ enhancement, use the following commands beginning in global configuration mode.

#### SUMMARY STEPS

1. `gatekeeper`
2. `lrq lrj immediate-advance`
3. `exit`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>gatekeeper</code></td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# gatekeeper</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>lrq lrj immediate-advance</code></td>
<td>Enables the GK to immediately send an LRQ to the next zone after it receives an LRJ from a GK in the current zone.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-gk)# lrq lrj immediate-advance</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-gk)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

### Configuring the Sequential LRQ Timer

To configure the sequential LRQ timer, use the following commands beginning in global configuration mode.

#### SUMMARY STEPS

1. `gatekeeper`
2. `timer lrq seq delay time-in-100-ms-units`
3. `exit`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>gatekeeper</code></td>
<td>Enters gatekeeper configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# gatekeeper</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>timer lrq seq delay</code></td>
<td>Defines the intervals for the GK to send successive sequential LRQs.</td>
</tr>
<tr>
<td><code>time-in-100-ms-units</code></td>
<td>The LRQ sequential timing source (SEQ) delay is used to set the time between sending LRQs to remote gatekeepers for address resolution. To resolve an address, the gatekeeper might have several remote zones configured, and it can send the LRQs simultaneously (blast) or sequentially (seq). The gatekeeper chooses the best route based on availability and cost. Using LRQs sequentially results in lower network traffic, but can increase latency of calls when the most preferred route is unavailable.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-gk)# timer lrq seq delay 3</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-gk)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

## Verifying Sequential LRQ Enhancement

### SUMMARY STEPS

1. `show running-config`

### DETAILED STEPS

```
show running-config
Use this command to verify that the Sequential LRQ Enhancement feature is enabled.
```

**Example:**
```
Router# show running-config
```
Configuration Examples for H.323 Gatekeepers and Proxies

HSRP Example

This sample configuration uses Ethernet 0 as the HSRP interface on both gatekeepers.

Primary Gatekeeper

```
configure terminal
! Enter global configuration mode.
interface ethernet 0
! Enter interface configuration mode for interface ethernet 0.
standby 1 ip 172.21.127.55
! Member of standby group 1, sharing virtual address 172.21.127.55.
standby 1 preempt
! Claim active role when it has higher priority.
standby 1 timers 5 15
! Hello timer is 5 seconds; hold timer is 15 seconds.
standby 1 priority 110
! Priority is 110.
```

Backup Gatekeeper

```
configure terminal
interface ethernet 0
standby 1 ip 172.21.127.55
standby 1 preempt
standby 1 timers 5 15
```
The configurations are identical except that gk2 has no standby priority configuration, so it assumes the default priority of 100—meaning that gk1 has a higher priority.

**gk1 and gk2 Gatekeeper Mode Configurations**

```plaintext
configure terminal
 ! Enter global configuration mode.
gatekeeper
 ! Enter gatekeeper configuration mode.
 zone local gk-sj cisco.com 172.21.127.55
 ! Define local zone using HSRP virtual address as gatekeeper RAS address.
 .
 .
 ! Various other gk-mode configurations.
 no shut
 ! Bring up the gatekeeper.
configure terminal
 ! Enter global configuration mode.
gatekeeper
 ! Enter gatekeeper configuration mode.
 zone local gk-sj cisco.com 172.21.127.55
 ! Define local zone using HSRP virtual address as gatekeeper RAS address.
 ! Note this uses the same gkname and address as on gk1.
 .
 .
 ! Various other gk-mode configurations.
 no shut
 ! Bring up the gatekeeper.
```

The **no shut** command is issued on both gatekeepers, primary and secondary. If the **show gatekeeper status** command is issued on the two gatekeepers, gk1 shows the following:

```
Gatekeeper State: UP
! But gk2 shows the following:
Gatekeeper State: HSRP STANDBY
```

**Gatekeeper Zones Example**

**Multiple Zones**
The following example shows how to define multiple local zones for separating gateways:

```plaintext
zone local gk408or650 xyz.com
zone local gk415 xyz.com
zone prefix gk408or650 408........
zone prefix gk408or650 650........
zone prefix gk415 415........
```

All the gateways used for area codes 408 or 650 can be configured so that they register with gk408or650, and all gateways used for area code 415 can be configured so that they register with gk415.

**One Zone for Multiple Gateways**
The following example shows how to put all the gateways in the same zone and use the **gw-priority** keyword to determine which gateways are used for calling different area codes:

```plaintext
zone local localgk xyz.com
zone prefix localgk 408........
```
zone prefix localgk 415....... gw-priority 10 gw1 gw2
zone prefix localgk 650....... gw-priority 0 gw1

The commands shown accomplish the following tasks:

- Domain xyz.com is assigned to gatekeeper localgk.
- Prefix 408....... is assigned to gatekeeper localgk, and no gateway priorities are defined for it; therefore, all gateways that register to localgk can be used equally for calls to the 408 area code. No special gateway lists are built for the 408....... prefix; selection is made from the master list for the zone.
- The prefix 415....... is added to gatekeeper localgk, and priority 10 is assigned to gateways gw1 and gw2.
- Prefix 650....... is added to gatekeeper localgk, and priority 0 is assigned to gateway gw1.

A priority 0 is assigned to gateway gw1 to exclude it from the gateway pool for prefix 650....... When gateway gw2 registers with gatekeeper localgk, it is added to the gateway pool for each prefix as follows:

- For gateway pool for 415....... gateway gw2 is set to priority 10.
- For gateway pool for 650....... gateway gw2 is set to priority 5.

To change gateway gw2 from priority 10 for zone 415....... to the default priority 5, enter the following command:

no zone prefix localgk 415....... gw-pri 10 gw2

To change both gateways gw1 and gw2 from priority 10 for zone 415....... to the default priority 5, enter the following command:

no zone prefix localgk 415....... gw-pri 10 gw1 gw2

In the preceding example, the prefix 415....... remains assigned to gatekeeper localgk. All gateways that do not specify a priority level for this prefix are assigned a default priority of 5. To remove the prefix and all associated gateways and priorities from this gatekeeper, enter the following command:

no zone prefix localgk 415.......*

**Session Bandwidth Limits**

The following example shows session bandwidth limits and resource information for destination zones configured on the gatekeeper:

Router# show running-config

Building configuration...
Current configuration : 1329 bytes
version 12.3
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
hostname router
username all
memory-size iomem 10
clock timezone GMT 0
clock timezone GMT 0
no ip domain lookup

---

H.323 Configuration Guide, Cisco IOS Release 15M&T
Load Balancing with Alternate Gatekeepers Example

Redundant Gatekeepers for a Zone Prefix

In the following example, two remote gatekeepers are configured to service the same zone prefix:

gatekeeper
zone remote c2600-1-gk cisco.com 172.18.194.70 1719
zone remote c2514-1-gk cisco.com 172.18.194.71 1719
zone prefix c2600-1-gk 919.......
zone prefix c2514-1-gk 919.......
Redundant Gatekeepers for a Technology Prefix

In the following example, two remote gatekeepers are configured to service the same technology prefix:

gatekeeper
zone remote c2600-1-gk cisco.com 172.18.194.70 1719
zone remote c2514-1-gk cisco.com 172.18.194.71 1719
gw-type-prefix 3#* hopoff c2600-1-gk hopoff c2514-1-gk

Security and Authentication Example

Domain Zones and the IZCT Password

All of the configuration examples are for the figure below. One IZCT password is enabled for all of the gatekeepers.

Figure 24: Set-Up Diagram for the Example Configuration

Originating Gatekeeper 1

config terminal
gatekeeper
zone local 39_gatekeeper cisco.com 172.18.198.92
zone remote 34_dirgk cisco.com 172.18.198.197 1719
zone prefix 39_gatekeeper 919*
zone prefix 34_dirgk *
security izct password cisco
gw-type-prefix 1#* default-technology
no shutdown

Terminating Gatekeeper 1

config terminal
gatekeeper
zone local 40_gatekeeper cisco.com 172.18.198.91
zone remote 35_dirgk cisco.com 172.18.198.196 1719
zone prefix 40_gatekeeper 408*
zone prefix 35_dirgk *
security izct password cisco
gw-type-prefix 1#* default-technology
no shutdown
Configuring H.323 Gatekeepers and Proxies

Security and Authentication Example

**Originating Gatekeeper 2**

cfg terminal
gatekeeper
zone local 34_dirgk cisco.com 172.18.198.197
zone remote 39_gatekeeper cisco.com 172.18.198.92 1719
zone remote 35_dirgk cisco.com 172.18.198.196 1719
zone prefix 39_gatekeeper 919*
zone prefix 35_dirgk *
security izct password cisco
lrq forward-queries
no shutdown

**Terminating Gatekeeper 2**

cfg terminal
gatekeeper
zone local 35_dirgk cisco.com 172.18.198.196
zone remote 40_gatekeeper cisco.com 172.18.198.91 1719
zone remote 34_dirgk cisco.com 172.18.198.197 1719 foreign-domain
zone prefix 40_gatekeeper 408*
zone prefix 34_dirgk *
security izct password cisco
lrq forward-queries
no shutdown

**Cisco Access Tokens**

The following examples do not reflect the actual display of the passwords as you would see them in output. Actual displays show the passwords as being encrypted. The displays here show them in cleartext format for clarity purposes only.

---

**Originating Gatekeeper**

In this example, LRQ messages received from the border gatekeeper authenticate the LRQ message by using the password "ogk_123." LRQ messages sent to the border gatekeeper contain the password "bgk_123" in the CAT.

gatekeeper
zone remote bgk china 172.18.195.137 1719 foreign-domain
security password-group china lrq send bgk_123
security password-group china lrq receive ogk_123
security zone bgk password-group china

**Border Gatekeeper Configuration**

In this example, LRQ messages received from the originating gatekeeper authenticate the LRQ message by using the password "bgk_123." LRQ messages sent to the originating gatekeeper contain the password "ogk_123" in the CAT. LRQ messages received from the terminating gatekeeper authenticate the LRQ message by using the password "bgk_123." LRQ messages sent to the terminating gatekeeper contain the password "tgk_123" in the CAT.

gatekeeper
zone remote ogk usa 172.18.195.138 1719 foreign-domain
zone remote tgk china 172.18.195.139 1719
security password-group usa lrq send ogk_123
security password-group usa lrq receive Bgk_123
security password-group china lrq send tgk_123
security password-group china lrq receive bgk_123
security zone ogk password-group usa
security zone tgk password-group china

**Terminating Gatekeeper Configuration**

In this example, LRQ messages received from the border gatekeeper authenticate the LRQ message by using the password "tgk_123." LRQ messages sent to the border gatekeeper contain the password "bgk_123" in the CAT.

gatekeeper
zone remote bgk china 172.18.195.137 1719
security password-group china lrq send bgk_123
security password-group china lrq receive tgk_123
security zone bgk password-group china

**Gatekeeper Configuration Using the Wildcard**

In this example, LRQ messages are received from the terminating gatekeeper, which does not have a password group configured. Therefore, the LRQ messages received are authenticated using the password group configured for the originating gatekeeper (in this example, "ogk_123").

gatekeeper
zone remote tgk china 172.18.195.137 1719 foreign-domain
security password-group china lrq send tgk_123
security password-group china lrq receive ogk_123
security zone * password-group china

**Tokenless Call Authorization**

**Tokenless Call Authorization**

The following example shows how to configure tokenless call authorization. You create an IP ACL containing endpoints from which the gatekeeper should accept calls. After the router enters gatekeeper configuration mode, you instruct the gatekeeper to check the ACL before processing the call.

Router# enable
Router# configure terminal
Router(config)# access-list 20 permit 172.16.10.190
Router(config)# access-list 20 permit 192.16.18.2
Router(config)# access-list 20 permit 192.16.10.12
Router(config)# access-list 20 permit 192.16.12.1
Router(config)# gatekeeper
Router(config-gk)# security acl answerarq 20

**IP Access Lists**

The following example shows how to verify the IP access lists and that the gatekeeper has been configured to use them:

Router# show running-config
Building configuration...
.
.
.
 ip access-list standard WORD
 !
access-list 20 permit 172.16.10.190
access-list 20 permit 192.16.18.2
**E.164 Interzone Routing Example**

Interzone routing may be configured by using E.164 addresses.

In this example, there are two gatekeepers that need to be able to resolve E.164 addresses. One is in San Jose and the other is in New York. (See the figure below.)

**Figure 25: E.164 Interzone Routing**

In sj (San Jose in the 408 area code), the gateways are configured to register with gk-sj as follows:

- gw-sj2 configured to register with technology prefix 2#
- gw-sj3 configured to register with technology prefix 3#
- gw-sj4 configured to register with technology prefix 4#

Similarly, in ny (New York in the 212 area code), gateways are configured to register with gk-ny as follows:

- gw-ny2 configured to register with technology prefix 2#
- gw-ny3 configured to register with technology prefix 3#
- gw-ny4 configured to register with technology prefix 4#

For the gatekeeper for San Jose, the configuration commands are as follows:

```bash
gatekeeper
zone local gk-sj cisco.com
zone remote gk-ny cisco.com 172.21.127.27
use-proxy gk-sj default direct
zone prefix gk-sj 408.......
zone prefix gk-ny 212.......
```
gw-type-prefix 3# hopoff gk-sj
gw-type-prefix 4# default-technology

For the gatekeeper for New York, the configuration commands are as follows:

```text
gatekeeper
zone local gk-ny cisco.com
zone remote gk-sj cisco.com 172.21.1.48
use-proxy gk-ny default direct
zone prefix gk-sj 408........
zone prefix gk-ny 212........
gw-type-prefix 3# hopoff gk-sj
```

When a call is presented to gatekeeper gk-sj with the following target address in San Jose:

```
2#2125551212
```

Gatekeeper gk-sj recognizes that 2# is a technology prefix. It was not configured as such, but because gw-sj2 registered with it, the gatekeeper now treats 2# as a technology prefix. It strips the prefix, which leaves the telephone number 2125551212. This is matched against the zone prefixes that have been configured. It is a match for 212........, so gk-sj knows that gk-ny handles this call. Gatekeeper gk-sj forwards the entire address 2#2125551212 over to Gatekeeper gk-ny, which also looks at the technology prefix 2# and routes it to gw-ny2.

When a call is presented to gatekeeper gk-sj with the following target address in San Jose:

```
2125551212
```

Gatekeeper gk-sj checks it against known technology prefixes but finds no match. It then checks it against zone prefixes and matches on 212........ for gk-ny, and therefore routes this call to gk-ny. Gatekeeper gk-ny does not have any local registrations for this address, and there is no technology prefix on the address, but the default prefix is 4#, and gw-ny4 is registered with 4#, so the call gets routed to gw-ny4.

Another call is presented to gatekeeper gk-sj with the following target address in San Jose:

```
3#2125551212
```

The call has technology prefix 3#, which is defined as a local hopoff prefix, so gk-sj routes this call to gw-sj3, despite the fact that it has a New York zone prefix.

In this last example, a call is presented to gatekeeper gk-sj with the following target address in San Jose:

```
6505551212
```

Gatekeeper gk-sj checks for a technology prefix match but does not find one. It then searches for a zone prefix match and fails again. But there is a match for default gateway prefix of 4#, and gw-sj4 is registered with 4#, so the call is routed out on gw-sj4.

### Interaction with External Applications Example

**Gatekeeper Flow Control**

In the following example, server flow-control is set with an onset level of 50:

```
Router# server flow-control onset 50
*Mar 8 20:05:34.081: gk_srv_handle_flowcontrol: Flow control enabled
Router# show running-config
Building configuration...
Current configuration : 1065 bytes
!
version 12.2
no service single-slot-reload-enable
service timestamps debug datetime msec
service timestamps log uptime
```
no service password-encryption
!
hostname snet-3660-3
!
.
.
gatekeeper
zone local snet-3660-3 cisco.com
zone remote snet-3660-2 cisco.com 209.165.200.225 1719
zone prefix snet-3660-2 408*
lrq forward-queries
no use-proxy snet-3660-3 default inbound-to terminal
no use-proxy snet-3660-3 default outbound-from terminal
no shutdown
server registration-port 8000
server flow-control onset 50
!
.
.
end

Retry Timer

The following example shows that the retry timer has been set to 45 seconds:

.
.
.
gw-type-prefix 1#* default-technology
gw-type-prefix 9#* gw ipaddr 1.1.1.1 1720
timer server retry 45
no shutdown
.
.

Registration and Call Rejection

The following example shows that the gatekeeper rejects registrations when it cannot connect to the GKTMP server:

.
.
.
gw-type-prefix 1#* default-technology
gw-type-prefix 9#* gw ipaddr 1.1.1.1 1720
no shutdown
server absent reject rrq
.
.

The following example shows that the gatekeeper rejects calls when it cannot connect to the GKTMP server:

.
.
.
gw-type-prefix 1#* default-technology
gw-type-prefix 9#* gw ipaddr 1.1.1.1 1720
no shutdown
server absent reject arq
.
.
Proxy Use Example

Proxy for Inbound Calls
In the following example, the local zone sj.xzy.com is configured to use a proxy for inbound calls from remote zones tokyo.xzy.com and milan.xzy.com to gateways in its local zone. The sj.xzy.com zone is also configured to use a proxy for outbound calls from gateways in its local zone to remote zones tokyo.xzy.com and milan.xzy.com.

```plaintext
gatekeeper
use-proxy sj.xzy.com remote-zone tokyo.xzy.com inbound-to gateway
use-proxy sj.xzy.com remote-zone tokyo.xzy.com outbound-from gateway
use-proxy sj.xzy.com remote-zone milan.xzy.com inbound-to gateway
use-proxy sj.xzy.com remote-zone milan.xzy.com outbound-from gateway
```

Because the default mode disables proxy communications for all gateway calls, only the gateway call scenarios listed can use the proxy.

Proxy for Outbound Calls
In the following example, the local zone sj.xzy.com uses a proxy for only those calls that are outbound from H.323 terminals in its local zone to the specified remote zone germany.xzy.com:

```plaintext
gatekeeper
no use-proxy sj.xzy.com default outbound-from terminal
use-proxy sj.xzy.com remote-zone germany.xzy.com outbound-from terminal
```

Note that any calls inbound to H.323 terminals in the local zone sj.xzy.com from the remote zone germany.xzy.com use the proxy because the default applies.

Proxy Removal
The following example shows how to remove one or more proxy statements for the remote zone germany.xzy.com from the proxy configuration list:

```plaintext
no use-proxy sj.xzy.com remote-zone germany.xzy.com
```

The command removes all special proxy configurations for the remote zone germany.xzy.com. After the command is entered like this, all calls between the local zone (sj.xzy.com) and germany.xzy.com are processed according to the defaults defined by any `use-proxy` commands that use the `default` option.

H.235 Security
The following example shows output from configuring secure registrations from the gatekeeper and identifying which RAS messages the gatekeeper checks to find authentication tokens:

```plaintext
dial-peer voice 10 voip
 destination-pattern 4088000
 session target ras
dcmf-relay h245-alphanumeric

gateway
 security password 09404F0B level endpoint
```

The following example shows output from configuring which RAS messages contain gateway-generated tokens:

```plaintext
dialer-list 1 protocol ip permit
```
Prohibition of Proxy Use for Inbound Calls

To prohibit proxy use for inbound calls to H.323 terminals in a local zone from a specified remote zone, enter a command similar to the following:

```
no use-proxy sj.xyz.com remote-zone germany.xyz.com inbound-to terminal
```

This command overrides the default and disables proxy use for inbound calls from remote zone germany.xyz.com to all H.323 terminals in the local zone sj.xyz.com.

Co-Edge Proxy Example

Co-Edge Proxy with ASR Without Subnetting

The figure below and the following configuration examples show how to configure RIP on the two edge networks and how to configure IGRP on the two backbone networks.

Figure 26: Sample Configuration Without Subnetting

The following output is for the PX1 configuration:

```
! proxy h323
! interface Loopback0
ip address 10.0.0.0 255.0.0.0
!Assume PX1 is in Zone 1, and the gatekeeper resides in the same routers as PX1:
```
h323 interface
h323 h323-id PX1@zone1.com
h323 gatekeeper ipaddr 10.0.0.0
!
interface Ethernet0
ip address 172.20.0.1 255.255.0.0
!
interface Ethernet1
ip address 172.22.0.1 255.255.0.0
ip access-group 101 in
ip access-group 101 out
h323 asr
!
router rip
network 172.20.0.0
network 10.0.0.0
!
router igrp 4000
network 172.22.0.0
network 10.0.0.0
!
access-list 101 permit ip any host 10.0.0.0
access-list 101 permit ip host 10.0.0.0 any
access-list 101 permit igrp any any

The following output is for the R1 configuration:

!
interface Ethernet0
ip address 172.20.0.2 255.255.0.0
!
interface Ethernet1
ip address 172.21.0.1 255.255.0.0
!
router rip
redistribute igrp 5000 metric 1
network 172.20.0.0
!
router igrp 5000
redistribute rip metric 10000 10 255 255 65535
network 172.21.0.0
distribute-list 10 out
!
access-list 10 deny ip 10.0.0.0 255.255.255
access-list 10 permit any

Note
The configuration for PX2 and R2 is the same as that for PX1 and R1.
Co-Edge Proxy with Subnetting

The figure below and the examples that follow show how to configure Enhanced IGRP on all networks.

**Figure 27: Sample Configuration with Subnetting**

The following output is for the PX1 configuration:

```plaintext
! proxy h323
! interface Loopback0
 ip address 172.21.10.1 255.255.255.192
 h323 interface
 h323 h323-id PX1@zone1.com
 h323 gatekeeper ipaddr 172.21.20.1
!
 interface Ethernet0
 ip address 172.21.0.1 255.255.255.192
!
 interface Ethernet1
 ip address 172.21.2.1 255.255.255.192
 ip access-group 101 in
 ip access-group 101 out
 h323 asr
!
 router eigrp 4000
 redistribute connected metric 10000 10 255 255 65535
 passive-interface Ethernet1
 network 172.21.0.0
 distribute-list 10 out
 no auto-summary
!
 router eigrp 5000
 redistribute connected metric 10000 10 255 255 65535
 passive-interface Ethernet0
 network 172.21.0.0
 distribute-list 11 out
 no auto-summary
!
 access-list 10 deny 172.21.2.0 0.0.0.63
 access-list 10 permit any
 access-list 11 deny 172.21.0.0 0.0.0.63
 access-list 11 permit any
 access-list 101 permit ip any host 172.21.10.1
 access-list 101 permit ip host 172.21.10.1 any
 access-list 101 permit eigrp any any
```

The following output is for the PX1 configuration:
The following output is for the R1 configuration:

```plaintext
! interface Ethernet0
 ip address 172.21.0.2 255.255.255.192
! interface Ethernet1
 ip address 172.21.1.1 255.255.255.192
! router eigrp 4000
 redistribute eigrp 6000 metric 10000 10 255 255 65535
 network 172.21.0.0
 no auto-summary
! router eigrp 6000
 redistribute eigrp 4000 metric 10000 10 255 255 65535
 passive-interface Ethernet0
 network 172.21.0.0
 distribute-list 10 out
 no auto-summary
! access-list 10 deny 172.21.10.0 0.0.0.63
! access-list 10 permit any
```

The configuration for PX2 and R2 is the same as that for PX1 and R1.

---

**Inside-Edge Proxy with ASR Without Subnetting**

The configuration of the co-edge proxy in Edge net 1 has already been presented above. The figure below shows the configuration of the inside-edge proxy PX2 and edge router R2 of Edge net 2. RIP is used on the edge networks. IGRP is used on the data backbone and the multimedia backbone.

*Figure 28: Edge Net 2 with Inside-Edge Proxy and No Subnetting*

The following output is for the PX2 configuration:

```plaintext
! proxy h323
! interface Ethernet0
 ip address 172.23.0.2 255.255.0.0
!```
To guarantee that all traffic between the proxy and other proxies is carried over the multimedia backbone, run IGRP 4000 on the 10.0.0.0 network and on the 172.22.0.0 network. Make sure that the H.323 proxy interface address (10.0.0.2) is not advertised over the data network (distribution list 10 in IGRP 5000). Doing this also eliminates the need to configure policy routes or static routes.
QoS-Enforced Open Proxy Using RSVP

The figure below shows a proxy configuration that was created on a Cisco 2500 router with one Ethernet interface and two serial interfaces. Only the Ethernet interface is in use.

![Diagram showing a proxy configuration](image)

Figure 29: Configuring a QoS-Enforced Open Proxy Using RSVP

The following output is for the PX1 configuration:

```
! version 11.3
no service password-encryption
service tcp-small-servers
!
hostname ExampleProxy
!
no ip domain-lookup
!
proxy h323
!
interface Ethernet0
 ip address 172.21.127.38 255.255.255.192
 no ip redirects
 ip rsvp bandwidth 7000 7000
 ip route-cache same-interface
fair-queue 64 256 1000
h323 interface
h323 qos rsvp controlled-load
h323 h323-id px1@zone1.com
h323 gatekeeper ipaddr 172.21.127.39
!
interface Serial0
 no ip address
 shutdown
!
interface Serial1
 no ip address
 shutdown
!
router rip
 network 172.21.0.0
!
 ip classless
!
line con 0
 exec-timeout 0 0
 line aux 0
 transport input all
 line vty 0 4
 password lab
 login
!
end
```
Closed Co-Edge Proxy with ASR Without Subnetting

The figure below shows how to configure RIP on the edge networks and IGRP on the two backbone networks. A Cisco 2500 router is used for the proxy.

Figure 30: Configuring a Closed Co-Edge Proxy with ASR

The following output is for the PX1 configuration:

```
! version 11.3
no service password-encryption
service tcp-small-servers
!
hostname ExampleProxy
!
!
no ip domain-lookup
!
!
proxy h323
!
interface Loopback0
  ip address 10.0.0.1 255.0.0.0
h323 interface
h323 qos ip-precedence 4
h323 h323-id px1@zone1.com
h323 gatekeeper ipaddr 172.20.0.3
!
interface Ethernet0
  ip address 172.20.0.1 255.255.255.192
  no ip redirects
!
interface Serial0
  no ip address
  shutdown
!
interface Serial1
  ip address 172.22.0.1 255.255.0.0
  ip access-group 101 in
  ip access-group 101 out
h323 asr
!
router rip
  network 172.20.0.0
  network 10.0.0.0
!
router igrp 4000
  network 172.22.0.0
  network 101.0.0.0
```
Endpoints Example

Alternate Endpoints

The following example shows that an alternate endpoint has been configured. There are three carrier IDs (CARRIER_ABC, CARRIER_DEF, and CARRIER_GHI).

```plaintext
gatekeeper
  zone local GK cisco.com 172.16.32.12
  zone remote gk2 cisco.com 172.32.33.44 1719
  zone prefix gk2 414*
  gw-type-prefix 919*
  no shutdown
  endpoint alt-ep h323id gwid 1.1.1.1 carrier-id CARRIER_ABC
  endpoint alt-ep h323id gwid 1.1.1.1 carrier-id CARRIER_DEF
  endpoint alt-ep h323id gwid 2.2.2.2 carrier-id CARRIER_GHI
```

The following example shows that the endpoint at 172.16.53.15 1719 has been configured as an alternate for GW10. There are no carrier IDs:

```plaintext
endpoint alt-ep h323id
  GW10 172.16.53.15 1719
```

Nonavailability

The following example shows that the `lrq reject-resource-low` command has been configured on the gatekeeper:

```plaintext
gatekeeper
  lrq reject-resource-low
```

Endpoint-Based Call Capacity Management

The following example shows that the maximum number of calls that GW-1 can handle is 1000:

```plaintext
Router(config)# gatekeeper
Router(config-gk)# endpoint max-calls h323id GW-1 1000
```

The following example displays concurrent calls for the endpoint. In the first call example, "Voice Capacity Max.= 10000" means that the maximum calls for the endpoint are 10000. "Avail.= 10000" indicates that currently available calls for the endpoint are 10000. "Current.= 0" shows that current active calls for the endpoint are 0. (If the endpoint is not reporting capacity and the `endpoint max-calls h323id` command is not configured, "Voice Capacity Max." and "Avail." are shown as -1.)

```plaintext
Router# show gatekeeper endpoints
GATEKEEPER ENDPOINT REGISTRATION
```

```
```
CallSignalAddr	Port	RASSignalAddr	Port	Zone	Name	Type	Flags
172.18.200.27 | 1720 | 172.18.200.27 | 57245| GK-1 | VOIP-GW|
H323-ID:GW1 |
Voice Capacity | Max.: 10000 | Avail.: 10000 | Current.: 0 |
172.18.200.29 | 1720 | 172.18.200.29 | 58703| GK-2 | VOIP-GW|
H323-ID:GW2 |
Voice Capacity | Max.: 23 | Avail.: 23 | Current.: 0 |
Total number of active registrations = 2

Endpoint Unregistration

The following example shows that all endpoints have been unregistered:

GATEKEEPER ENDPOINT REGISTRATION

CallSignalAddr	Port	RASSignalAddr	Port	Zone	Name	Type	Flags
Total number of active registrations = 0

IRR Timer and Disable IRQ Requests Example

IRI R Messages Are Sent

The following example shows that the endpoint that is registered to the gatekeeper has sent an IRR in response to the IRQ:

```
.
.
gatekeeper
.
lrq reject-resource-low
no irq global-request
timer lrq seq delay 10
timer lrq window 6
timer irr period 45
no shutdown
.
```

IRI R Messages Are Not Sent

The following example shows that IRQ messages are not sent from the gatekeeper:

```
.
.
lrq reject-resource-low
no irq global-request
timer lrq seq delay 10
timer lrq window 6
timer irr period 6
no shutdown
.
```
Sequential LRQ Enhancement Example

The following example shows a gatekeeper with the Sequential LRQ Enhancement feature enabled:

Router# show running-config
Building configuration...
Current configuration : 1802 bytes

! version 12.2
!
gatekeeper
zone local Zone1 cisco.com
zone remote c3620-1-gk cisco.com 209.165.200.225 1719
zone remote c2514-2-gk cisco.com 209.165.200.228 1719
zone remote gk-cisco-mn cisco.com 209.165.200.230 1719
zone remote gkzone3 cisco.com 209.165.200.235
zone remote gk-catapult cisco.com 209.165.200.229 1719
zone prefix gkzone3 405........
zone prefix gk-gk5 515....
zone prefix c2514-2-gk 910........
zone prefix c3620-1-gk 917300....
zone prefix gk-cisco-mn 919........
zone prefix c3620-1-gk 919........
lrq reject-resource-low
lrq lrj immediate-advance
timer lrq window 6
no shutdown
!

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Release 12.4</td>
<td>- Cisco IOS Release 12.4 Configuration Guides</td>
</tr>
<tr>
<td></td>
<td>- Cisco IOS Release 12.4T Configuration Guides</td>
</tr>
<tr>
<td></td>
<td>- Cisco IOS Release 12.4 Command References</td>
</tr>
<tr>
<td></td>
<td>- Cisco IOS Voice Configuration Library</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| Cisco IOS Release 12.3 | • Cisco IOS Release 12.3 documentation
• Cisco IOS voice commands
• *Cisco IOS Voice Troubleshooting and Monitoring Guide*
• Tcl IVR Version 2.0 Programming Guide |
| Troubleshooting and Debugging guides | • Cisco IOS Debug Command Reference, Release 12.4 at
• Troubleshooting and Debugging VoIP Call Basics at
• VoIP Debug Commands at
| Cisco Unified Border Element Configuration Examples | • Local-to-remote network using the IP/IPGW:
• Remote-to-local network using the IP/IPGW:
• Remote-to-remote network using the IP/IPGW:
• Remote-to-remote network using two IP/IPGWs:
Related Topic

<table>
<thead>
<tr>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cisco Unified Communications Manager and Cisco IOS Interoperability Guide</td>
</tr>
<tr>
<td>• Cisco IOS Fax, Modem, and Text Support over IP Configuration Guide</td>
</tr>
<tr>
<td>• "Configuring T.38 Fax Relay" chapter</td>
</tr>
<tr>
<td>• Cisco IOS SIP Configuration Guide</td>
</tr>
<tr>
<td>• Cisco Unified Communications Manager (CallManager) Programming Guides at:</td>
</tr>
<tr>
<td>• Quality of Service for Voice over IP at</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-T E.164</td>
<td>Overall network operation, telephone service, service operation and human factors</td>
</tr>
<tr>
<td>ITU-T H.225 Version 2</td>
<td>Call signalling protocols and media stream packetization for packet-based multimedia communication systems</td>
</tr>
<tr>
<td>ITU-T H.235</td>
<td>Security and encryption for H-Series (H.323 and other H.245-based) multimedia terminals</td>
</tr>
<tr>
<td>ITU-T H.323</td>
<td>Packet-based multimedia communications systems</td>
</tr>
<tr>
<td>ITU-T H.450</td>
<td>Supplementary services for multimedia</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CISCO-GATEKEEPER-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2833</td>
<td>RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
INDEX

A

AAA 54, 56, 169
 call tracking 56
 configuring 54
 RADIUS 169
aaa accounting connection h323 command 173
aaa authentication login command 169, 172
aaa new-model command 169, 172
access-list command 185, 208, 214
ACF 11
additive registration 103
address resolution 157
admission confirmation 11, 56
 See ACF 11, 56
admission reject 152
 See ARJ 152
admission request 11, 152
 See ARQ 11, 152
advertise command 79
alerting 21
alias static command 167
alternate endpoints 9, 221, 223
 additional routes 223
alternate gatekeeper 9, 10, 32, 63, 65, 127
 configuration (example) 127
 configuration verification 65
 ecosystem gatekeeper interoperability 32
 load balancing 10
 restrictions 63
alternate-gatekeeper 63
AltGKInfo 32
 in GRJ messages 32
 in RRJ messages 32
Annex G 77, 79, 82, 84, 88
 border element 79, 82
 gateways 79, 82
 configuring 77
 gateways 77
 implementation, H.225 84
 restrictions 84
 verification 88

answer supervision reporting 31
application-specific routing 206, 208
 See ASR 206, 208
ARJ 152
ARQ 11, 152
arq reject-resource-low command 152
ASR 203
authentication, authorization, and accounting 54
 See AAA 54

B

bandwidth check-destination command 152
bandwidth management 96
BE 84
billing 31
 gateway-to-gatekeeper 31
 billing b-channel command 112
BIND 154
 RAS text record (example) 154
border element 84, 219
 Annex G 84
 gatekeeper 84, 219
 border elements 84
 See BE 84

C

CAC 111
cache command 79
call admission control 111
 See CAC 111
call application command 60
call application voice command 2
call deflection 30
 H.450.3 30
 description 30
call forward 26
configuring (continued)

Annex G 77, 219
 border element 219
Cisco access tokens 183
codecs 73
collection of alternate endpoints 227
destination zones 152
dialing prefix for each gateway 189
disable IRQ requests 232
domain zones, passwords 181
DTMF relay 68
dynamic zone prefix registration 104
E.164 routing 187
 inter-zone 187
forced-based call-capacity management 229
dependencies 221
gatekeeper disconnect on a gatekeeper 199
gatekeeper proxied access 197
 inbound or outbound 197
gatekeeper with external applications 191
gatekeeper zones 148, 150
gatekeeper-to-gatekeeper authentication 183
GTD 99, 100
dial-peer 100
 system-wide 99
H.323 proxy server 201
intergatekeeper communication 154
IP access list 185
IP-access-list security 186
IRR periodic intervals 233
IRR Timer 232
ISDN B-Channel ID 111
 limit the number of concurrent calls 91
load balancing and alternate gatekeepers 160
QoS 202
QOS 204, 206, 208
 multimedia backbone network 204
 proxy with ASR 208
 proxy without ASR 206
RADIUS, TACACS 169
RADIUS/AAA server 172
remote cluster 163
remote security server 173
retry timer for failed GKTMP server 194
 rotary calling pattern 75
security and authentication 175
 sequential LRQ enhancement 236
 sequential LRQ timer 236
 sequential LRQs 234
SETUP response timeout value 90
signal ISDN B-Channel ID 112
 static nodes 167
tokenless call authorization 185
tokens 183

H.323 Configuration Guide, Cisco IOS Release 15M&T

Index
configuring (continued)
 trunk-based and carrier-based routing 111
 VoIP transport method 95
 zone bandwidth management 96
 zone prefix 187
configuring dial-peers 89
 associating voice class 89
CSA 24

d debug cch323 command 22
d debug gatekeeper servers command 113
d debug h225 asnl command 49
d debug ras command 49
d destination-pattern command 46, 60, 68
dial-peer command 187
dial-peer voice command 46, 60, 68, 73, 89, 100
digital-signal-level 0 52
 See DS0 52
digital-signal-processor 52
 See DSP 52
disable IRQ requests 233
disengage confirmation 56
 See DCF 56
DNS 154
 Domain Name System 154
 See DNS 154
domain-name command 84
DS0 52
 channels 52
DSP 52
 channels 52
DTMF (Dual Tone Multi-Frequency) relay 68
 fast connect, H.245 tunneling 68
DTMF relay 66, 68, 127
 configuration (example) 127
 configuring 66, 68
 types 66
DTMF tones 66
 NTE 66
dtmf-relay command 11, 68, 71
dtmf-relay h245-alphanumeric command 67, 71
dtmf-relay h245-signal command 67, 71
dual-tone multifrequency 66
 See DTMF 66
dynamic zone prefix registration 103

E
E.164 addresses 53, 187
 registration 53
ecosystem gatekeeper interoperability 4, 32
 description 32
 software restrictions 4
element command 160, 163
 empty capabilities set 29
 H.245 29
 emulate cisco h323 bandwidth command 96
endpoint alt-ep collect command 227
endpoint alt-ep h323id command 221, 225
endpoint circuit-id h323id command 225
endpoint max-calls h323id command 229, 256
endpoint resource-threshold onset command 225, 229

F
fast connect 11
 H.245 11
 H.323 Version 2 11
 description 11
firewall 202
 proxy and NAT 202
firewalls, H.323 proxy 201
forcing endpoint unregistration 230
 configuring 230
Foreign Exchange Station 71
 See FXS 71
FXS 71
 hookflash relay 71
 configuring 71

G
gatekeeper 10, 14, 56, 148, 191, 199, 219, 221, 233, 258
 additional references 258
 border element 219
 discovery 10
 forced disconnect 199
 gateway selection process 148
 GKTMP server flow control 191
 IRQ request, disable 233
 security 14
 settlement 56
 zone 10
 description 10
 zones 148
gatekeeper command 79, 150, 152, 167, 169, 189, 197
gatekeeper confirmation 56
See GCF 56
gatekeeper rejection 56
See GRJ 56
Gatekeeper Transaction Message Protocol 10
See GKTMP 10
gatekeeper-management statistics, description 33
gatekeepers 10, 56, 63, 147, 148, 156, 158, 160, 167, 169, 238, 239, 241, 242, 243, 244, 245, 246, 248, 249, 256, 257, 258
proxy removing 248
configuration (example) 248
access tokens 243
configuration (examples) 243
alias registration 156
border element 10
clustering 63
co-edge proxy (examples) 249
communication 158
interzone 158
configuring 147, 148
HSRP 147
zone and subnet 148
defining one zone 239
configuration (example) 239
E.164 interzone routing 245
configuration (examples) 245
endpoint 256
configuration (examples) 256
endpoint identification 169
HSRP 238
configuration (example) 238
interaction with external applications 246
configuration (examples) 246
IRR timer and IRQ request 257
configuration (examples) 257
load balancing 160
multiple zones 239
configuration (example) 239
proxy outbound calls 248
configuration (example) 248
proxy use 248
configuration (examples) 248
RCF message 156
redundant zone prefix 241
configuration (example) 241
RRJ message 156
RRQ message 156
secure communication 56
security and authentication 242
configuration (examples) 242
sequential LRQ 258
configuration (example) 258
static node 167
terminal name registration 156
gatekeepers (continued)
tokenless call authorization 244
configuration (example) 244
gateway 13, 60, 76, 152
call termination 13
H.325 security 60
local zone 152
ARJ message 152
ARQ message 152
LRJ message 152
source IP address 76
gateway command 60, 96
gateway security 55
configuration 55
gateway zone prefix registration 131
configuration (example) 131
gateway-to-gatekeeper billing redundancy 31
gateways 25, 27, 31, 39, 40, 42, 45, 48, 52, 55, 62, 65, 71, 77, 92, 97, 137, 148, 189
additional references 137
Annex G 77
calling different area codes 189
codec negotiation 27
configuration 40, 45
interface 40
RAS 45
gateway security 55
configuration 55
GTD for GKTMP using SS7 Interconnect for Voice 97
H.225 signal overlap 92
hookflash relay 71
network-based billing number 31
prerequisite tasks 39
redirect number information tunnel 25
resource availability reporting 52
description 52
selection process 148
verification 42, 48, 62, 65
alternate gatekeeper configuration 65
gateway interface configuration 42
gateway security configuration 62
RAS configuration 48
GKTMP 10
messages 10
GKTMP (Gatekeeper Transaction Message Protocol), RAS messages 248
configuration (example) 248
GTD payload dial-peer 129
configuration (example) 129
GTD payload system-wide 129
configuration (example) 129
gw-type-prefix command 160, 187
H.225, 84, 91, 92
 Annex G 84
 idle timer for concurrent calls 91
 signal overlap 92
 H.323 terminating gateway 92
H.225 Annex-G 129
 configuration (example) 129
H.225 setup messages 11
H.235, 55, 60, 125, 248
 account and security enhancements 55
 for Cisco gateways 55
 gateway security 60, 125
 configuration (example) 125
 security 248
 configuration (example) 248
H.245, 3, 22, 27, 29, 67, 68
 capabilities 22
 capabilities messages 67
 capability exchange 27
 empty capabilities set 3, 29
 software restrictions 3
 tunneling 68
 DTMF relay with fast connect 68
H.323, 2, 4, 6, 7, 8, 11, 25, 27, 29, 71, 77, 89, 96, 103, 114, 169, 201, 221
 H.323 VoIP call preservation enhancements for WAN link failures 114
Version 2, 2, 4, 11, 25, 27, 29, 71
 codec description 27
 fast connect, description 11
Annex G, 77
 authenticate via RADIUS 169
 call redirection 25, 26, 27
 call forward 26
 call transfer 27
 route call to gatekeeper 25
call setup 11
 H.225 setup 11
 dynamic access control 201
 gatekeeper 8
 gateways 7
 protocol conversion 7
 network components 6
proxy 8, 201
 co-edge mode 201
 inside the firewall 201
proxy server, configuring 201
 terminal 6
trunk ID group 221
 RAS 221
 tunneling 25
 OCN IE 25
 RDN IE 25
H.323 (continued)
Version 1, 4
Version 2, 2, 4, 11, 25, 27, 29, 71
 fast connect, restrictions 2
 hookflash relay 71
 lightweight registration 29
 OCN IE 25
 RDN IE 25
 software restrictions 2
Version 3, 4, 96
 zone bandwidth management 96
Version 4, 4, 25, 103
 additive registration 103
 dynamic zone prefix registration 103
 OCN IE 25
 RDN IE 25
 zone prefix registration 103
Version 4, 25
 H.225 SETUP message 25
 voice class 89
H.323 call statistics 22
 debug 22
H.323 gateway RAS 124
 configuration (examples) 124
H.323 gateway security 125
 configuration (example) 125
H.323 gateways 124
 examples 124
H.323 network 1, 2
 configuring 1, 2
 prerequisites 1
 restrictions 2
H.323 signaling 21, 22
 alerting 21
 cut-through 21
 description 21
 overlap dialing 22
 speech clipping 22
H.323 standards 4
 VoIP features 4
H.323 support 129
 virtual interfaces 129
 configuration (examples) 129
H.323 Version 2, 14, 189, 191, 197
 dialing prefix for each gateway 189
 gatekeeper proxied access 197
 gatekeeper with external applications 191
 security 14
H.450.2, 30
 call transfer 30
H.450.3, 30
 call deflection 30
 description 30
h225 signal overlap command 92
Index

network-based billing number 31
 gateway support 31
no shutdown command 79, 82
NTE 66
 DTMF relay 66

O

OCN 25
Original Called Number 25
 See OCN 25
outbound retry-interval command 84
overlap dialing 22

P

payload types 67
PI 53
 alerting messages 53
port command 46, 60, 79
prefix command 79, 219
preservation, call preservation for H.323 VoIP 114
progress indicator 53
 See PI 53
progress_ind command 53
proxy 201, 202, 203, 204, 206, 208, 214, 248, 249
 access control 201
 application-specific routing 203
 description 203
ASR 203, 208, 214, 248
 configuration (examples) 248
 enabling one type of routing protocol 208
 enabling two different autonomous system 214
co-edge mode 201
co-edge with subnetting 249
 configuration (example) 249
configuration (example) 249
forwarding H.323 packets 204
H.323 multimedia backbone, configuring 204
inside-edge 249
 ASR configuration (example) 249
network address translation 202
 configuration (example) 248
QoS, configuring 249
security 201
 with ASR 208
 without ASR 206
proxy h323 command 206, 208, 214

Q

Q.931 IE 25
QoS 202, 203, 249
 ASR 203
 H.323 proxy 249
 configuration (example) 249
Quality of Service 202
 See QoS 202
query-interval command 79

R

RADIUS 173
 user accounting 173
 configuring 173
RADIUS server 10
 billing 10
radius-server deadtime command 172
radius-server host command 169, 172
radius-server key command 169, 172
RADIUS, TACACS+ 169
 H.323 login authentication 169
 multimedia conference calls 169
RADIUS/AAA server 172
 configuring 172
RAI 52
RAS 31, 45, 48, 49, 221
 dial-peer configuration 49
 troubleshooting 49
 retires, timers 49
 verification 48
RAS (registration, admission, and status protocol) 154
 BIND text record (example) 154
ras command 154
RAS messages 27
 multizone 27
ras retry command 49
ras rq tll command 49
ras timeout command 49
RCF 56, 156
RDN 25
RDN or OCN IE 25
 H.225 setup message 25
redirect number information tunnel, description 25
Redirecting Number 25
 See RDN 25
redundant H.323 zones 149
references 14
register e164 command 53
registration confirmation 56
 See RCF 56
registration rejection 56, 156
See RRJ 56, 156
registration request 156
See RRQ 156
Registration, Admission, and Status 31, 45, 221
See RAS 31, 45, 221
relay 66
DTMF tones 66
remote zone 10
least-cost routing 10
req-qos command 11
request processing 158
resource availability 52
Resource Availability Indication 52
See RAI 52
Resource Reservation Protocol 11
See RSVP 11
resource threshold command 52
restrictions 2, 3, 63, 84, 148, 159
alternate-gatekeeper 63
Annex G 84
gatekeeper-to-gatekeeper redundancy, load-sharing mechanism 159
H.323 signaling enhancement 2
H.323 Version 2 2
redundant H.323 zone support 148
source call signal address 3
retry interval command 86
retry timer for failed GKTMP server 194
retry window command 86
RIP (Routing Information Protocol) 208
configuring H.323 proxy 208
rotary calling pattern 75, 128
configuration (example) 128
configuring 75
router igrp command 208, 214
router rip command 208
RRJ 56, 156
RRQ 156
RSVP 2, 11, 203

S

security 14, 248
endpoints and gatekeeper 14
H.323 248
configuration (example) 248
security acl answerarq command 186
security and authentication 175
restrictions 175
security command 169
security izct password command 176, 181
security password command 14, 60
security password-group command 183
security token required-for command 14
security zone command 183
sequential LRQs 234, 235
call flow 235
server absent reject command 195
server flow-control command 191
service-relationship command 84
session target command 68
session target ras command 46
session transport command 95
session transport tcp command 91
settlement 56
gatekeeper 56
show call-router status command 88
show gatekeeper calls command 200
show gatekeeper cluster command 164
show gatekeeper endpoints alternates command 226
show gatekeeper endpoints command 225
show gatekeeper performance statistics command 162
show gatekeeper performance stats command 34
show gatekeeper servers command 192, 195
show gatekeeper status cluster command 164
show gatekeeper status command 162, 192
show gatekeeper zone cluster command 164
show gatekeeper zone status command 164, 199
show h323 calls preserved command 114
show h323 gatekeeper statistics aggregate command 34
show h323 gateway command 22
show proxy h323 status command 164
shutdown command 150
signal ISDN B-channel ID 112, 113
configuring 112
troubleshoot 113
signal ISDN B-Channel ID, description 111
signaling 21
signaling forward command 99, 100
source call signal address 24
sequence 24
source IP address 76
gateway 76
verification 76

T

tech-prefix command 45, 46
technology prefix 187
call scenario 187
hop-off gateway 187
terminating endpoint 224
nonavailability information 224
timeout value 90
 timer 91
 concurrent calls 91
 timer access request sequential delay command 79
 timer IRR period command 233
 timer IRR seq delay command 236
 timer server retry command 194
 timing command 71
 timing hook flash input command 71
 timing hook flash output command 71
 tokenless call authorization 181
 troubleshoot 109, 113
 gateway zone prefix registration 109
 signal ISDN B-channel ID 113
 troubleshooting 49
 RAS 49
 dial-peer configuration 49
 ttl command 79

U

unregistration forcing 230
usage indication 86
 configuration 86
 usage indication command 86
 use-proxy command 150, 197, 248

V

 access 199
 access tokens 184
 additive RRQ messages 108
 advertisement 107
 dynamic zone prefix registration 107
 alternate gatekeeper 162
 Annex G 88
 flow control 192
 gateway interface configuration 42
 gateway status 44
 GTD 101
 H.235 security 62
 load balancing 162
verification (continued)
 RAS 48
 registration and call rejection 196
 remote clusters 164
 sequential LRQ 237
 source IP address 76
 timer 195
 unregistration 231
 virtual interfaces 75, 129
 H.323 support 75, 129
 configuration (example) 129
 voice class codec command 73
 Voice over IP 1
 See VoIP 1
 voice service voip command 91
 voice-class codec command 73
 voice-class h323 command 89
 voice-port command 71
 VoIP 25, 27, 43, 52, 71
 codec negotiation 27
 gateway 52
 resource availability reporting 52
 hook flash relay 71
 redirect number information tunnel 25
 service 43
 shut down, enable 43
 submodes 43
 shut down, enable 43

Z

zone cluster local command 160
zone cluster remote command 163
zone local command 150, 160, 163, 167, 189
zone prefix command 148, 150, 160, 163, 187, 189
zone prefix registration 103
zone remote command 150, 155, 223
zone subnet command 148, 150
zones 10, 197, 221
 accessing 197
 gatekeeper 10
 local gatekeeper 197
 remote gatekeeper 197
 routing between gateways 221