The Cisco Unified Border Element Support for SRTP-RTP Internetworking feature allows secure enterprise-to-enterprise calls and provides operational enhancements for Session Initiation Protocol (SIP) trunks from Cisco Unified Call Manager and Cisco Unified Call Manager Express. Support for Secure Real-Time Transport Protocol (SRTP)-Real-Time Transport Protocol (RTP) internetworking between one or multiple Cisco Unified Border Elements (Cisco UBEs) is enabled for SIP-SIP audio calls.

In Cisco IOS Release 15.2(1) and Cisco IOS XE Release 3.7S, the SRTP-RTP Interworking feature was extended to support supplementary services on Cisco UBEs.

- Prerequisites for CUBE Support for SRTP-RTP Internetworking, page 1
- Restrictions for CUBE Support for SRTP-RTP Internetworking, page 2
- Information About CUBE for SRTP-RTP Internetworking, page 2
- How to Configure Cisco UBE Support for SRTP-RTP Internetworking, page 5
- Configuration Examples for CUBE Support for SRTP-RTP Internetworking, page 23
- Feature Information for CUBE Support for SRTP-RTP Internetworking, page 25

Prerequisites for CUBE Support for SRTP-RTP Internetworking

- The Cisco Unified Border Element Support for SRTP-RTP Internetworking feature is supported in Cisco Unified CallManager 7.0 and later releases.

Cisco Unified Border Element

- Cisco IOS Release 12.4(22)YB or a later release must be installed and running on your Cisco Unified Border Element.

Cisco Unified Border Element (Enterprise)

- Cisco IOS XE Release 3.7S or a later release must be installed and running on your Cisco ASR 1000 Series Router.
Restrictions for CUBE Support for SRTP-RTP Internetworking

The following features are not supported by the Cisco Unified Border Element Support for SRTP-RTP Internetworking feature:

- Asymmetric SRTP fallback configurations
- Call admission control (CAC) support
- Rotary SIP-SIP
- SRTCP-RTCP interworking
- SRTP-RTP and SRTP-SRTP video calls
- Transcoding for SRTP-SRTP audio calls

Information About CUBE for SRTP-RTP Internetworking

To configure support for SRTP-RTP internetworking, you should understand the following concepts:

CUBE Support for SRTP-RTP Internetworking

The Cisco Unified Border Element Support for SRTP-RTP Internetworking feature connects SRTP Cisco Unified CallManager domains with the following:

- RTP Cisco Unified CallManager domains. Domains that do not support SRTP or have not been configured for SRTP, as shown in the figure below.
- RTP Cisco applications or servers. For example, Cisco Unified MeetingPlace, Cisco WebEx, or Cisco Unity, which do not support SRTP, or have not been configured for SRTP, or are resident in a secure data center, as shown in the figure below.
- RTP to third-party equipment. For example, IP trunks to PBXs or virtual machines, which do not support SRTP.

Figure 1: SRTP Domain Connections
The Cisco Unified Border Element Support for SRTP-RTP Internetworking feature connects SRTP enterprise domains to RTP SIP provider SIP trunks. SRTP-RTP internetworking connects RTP enterprise networks with SRTP over an external network between businesses. This provides flexible secure business-to-business communications without the need for static IPsec tunnels or the need to deploy SRTP within the enterprise, as shown in the figure below.

Figure 2: Secure Business-to-Business Communications

SRTP-RTP internetworking also connects SRTP enterprise networks with static IPsec over external networks, as shown in the figure below.

Figure 3: SRTP Enterprise Network Connections

SRTP-RTP internetworking on the Cisco UBE in a network topology uses single-pair key generation. Existing audio and dual-tone multifrequency (DTMF) transcoding is used to support voice calls. SRTP-RTP internetworking support is provided in both flow-through and high-density mode. SRTP-SRTP pass-through is not impacted.

SRTP is configured on one dial peer and RTP is configured on the other dial peer using the `srtp` and `srtp fallback` commands. The dial-peer configuration takes precedence over the global configuration on the Cisco UBE.

Fallback handling occurs if one of the call endpoints does not support SRTP. The call can fall back to RTP-RTP, or the call can fail, depending on the configuration. Fallback takes place only if the `srtp fallback` command is configured on the respective dial peer. RTP-RTP fallback occurs when no transcoding resources are available for SRTP-RTP internetworking.
TLS on the Cisco Unified Border Element

The Cisco Unified Border Element Support for SRTP-RTP Internetworking feature allows Transport Layer Security (TLS) to be enabled or disabled between the Skinny Call Control Protocol (SCCP) server and the SCCP client. By default, TLS is enabled, which provides added protection at the transport level and ensures that SRTP keys are not easily accessible. Once TLS is disabled, the SRTP keys are not protected.

SRTP-RTP internetworking is available with normal and universal transcoders. The transcoder on the Cisco Unified Border Element is invoked using SCCP messaging between the SCCP server and the SCCP client. SCCP messages carry the SRTP keys to the digital signal processor (DSP) farm at the SCCP client. The transcoder can be within the same router or can be located in a separate router. TLS should be disabled only when the transcoder is located in the same router. To disable TLS, configure the `no` form of the `tls` command in dsp farm profile configuration mode. Disabling TLS improves CPU performance.

Supplementary Services Support on the Cisco UBE for RTP-SRTP Calls

The Supplementary Services Support on Cisco UBE for RTP-SRTP Calls feature supports the following supplementary services on the Cisco UBE:

- Midcall codec change with voice class codec configuration for SRTP-RTP and SRTP pass-through calls.
- Reinvite-based call hold.
- Reinvite-based call resume.
- Music on hold (MoH) invoked from the Cisco Unified Communications Manager (Cisco UCM), where the call leg changes between SRTP and RTP for an MoH source.
 - Reinvite-based call forward.
- Reinvite-based call transfer.
- Call transfer based on a REFER message, with local consumption or pass-through of the REFER message on the Cisco UBE.
- Call forward based on a 302 message, with local consumption or pass-through of the 302 message on the Cisco UBE.
 - T.38 fax switchover.
 - Fax pass-through switchover.
 - DO-EO for SRTP-RTP calls.
 - DO-EO for SRTP pass-through calls.

When the initial SRTP-RTP or SRTP pass-through call is established on the Cisco UBE, a call can switch between SRTP and RTP for various supplementary services that can be invoked on the end points. Transcoder resources are used to perform SRTP-RTP conversion on Cisco UBE. When the call switches between SRTP and RTP, the transcoder is dynamically inserted, deleted, or modified. Both normal transcoding and high-density (optimized) transcoding are supported.

For call transfers involving REFER and 302 messages (messages that are locally consumed on Cisco UBE), end-to-end media renegotiation is initiated from Cisco UBE only when you configure the supplementary-service media-renegotiate command in voice service voip configuration mode.
When supplementary services are invoked from the end points, the call can switch between SRTP and RTP during the call duration. Hence, Cisco recommends that you configure such SIP trunks for SRTP fallback.

How to Configure Cisco UBE Support for SRTP-RTP Internetworking

Configuring Cisco UBE Support for SRTP-RTP Internetworking

Configuring the Certificate Authority

Perform the steps described in this section to configure the certificate authority.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip http server
4. crypto pki server *cs-label*
5. database level complete
6. grant auto
7. no shutdown
8. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip http server</td>
<td>Enables the HTTP server on your IPv4 or IPv6 system, including the Cisco web browser user interface.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# ip http server</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 4 | `crypto pki server cs-label` | Enables a Cisco IOS certificate server and enters certificate server configuration mode.
Example:
Device(config)# crypto pki server 3854-cube |
| 5 | `database level complete` | Controls what type of data is stored in the certificate enrollment database.
Example:
Device(cs-server)# database level complete |
| 6 | `grant auto` | Specifies automatic certificate enrollment.
Example:
Device(cs-server)# grant auto |
| 7 | `no shutdown` | Reenables the certificate server.
Example:
Device(cs-server)# no shutdown |
| 8 | `exit` | Exits certificate server configuration mode.
Example:
Device(cs-server)# exit |

Configuring a Trustpoint for the Secure Universal Transcoder

Perform the task in this section to configure, authenticate, and enroll a trustpoint for the secure universal transcoder.

Before You Begin

Before you configure a trustpoint for the secure universal transcoder, you should configure the certificate authority, as described in the Configuring the Certificate Authority, on page 5.
SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint name
4. enrollment url url
5. serial-number
6. revocation-check method
7. rsakeypair key-label
8. end
9. crypto pki authenticate name
10. crypto pki enroll name
11. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>crypto pki trustpoint name</td>
<td>Declares the trustpoint that the router uses and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• In the example, the trustpoint is named secdsp.</td>
</tr>
<tr>
<td>Device(config)# crypto pki trustpoint secdsp</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>enrollment url url</td>
<td>Specifies the enrollment parameters of a certification authority (CA).</td>
</tr>
<tr>
<td>Example:</td>
<td>• In the example, the URL is defined as http://10.13.2.52:80.</td>
</tr>
<tr>
<td>Device(ca-trustpoint)# enrollment url http://10.13.2.52:80</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>serial-number</td>
<td>Specifies whether the router serial number should be included in the certificate request.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(ca-trustpoint)# serial-number</td>
<td></td>
</tr>
</tbody>
</table>
Configuring DSP Farm Services

Perform the task in this section to configure DSP farm services.

Before You Begin

Before you configure DSP farm services, you should configure the trustpoint for the secure universal transcoder, as described in the Configuring a Trustpoint for the Secure Universal Transcoder, on page 6.
SUMMARY STEPS

1. enable
2. configure terminal
3. voice-card slot
4. dspfarm
5. dsp services dspfarm
6. Repeat Steps 3, 4, and 5 to configure a second voice card.
7. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice-card slot</td>
<td>Configures a voice card and enters voice-card configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# voice-card 0</td>
<td>• In the example, voice card 0 is configured.</td>
</tr>
<tr>
<td>Step 4 dspfarm</td>
<td>Adds a specified voice card to those participating in a DSP resource pool.</td>
</tr>
<tr>
<td>Example: Device(config-voicecard)# dspfarm</td>
<td></td>
</tr>
<tr>
<td>Step 5 dsp services dspfarm</td>
<td>Enables DSP farm services for a particular voice network module.</td>
</tr>
<tr>
<td>Example: Device(config-voicecard)# dsp services dspfarm</td>
<td></td>
</tr>
<tr>
<td>Step 6 Repeat Steps 3, 4, and 5 to configure a second voice card.</td>
<td>--</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step 7</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-voicecard)# exit</td>
</tr>
<tr>
<td>Purpose</td>
<td>Exits voice-card configuration mode.</td>
</tr>
</tbody>
</table>

Associating SCCP to the Secure DSP Farm Profile

Perform the task in this section to associate SCCP to the secure DSP farm profile.

Before You Begin

Before you associate SCCP to the secure DSP farm profile, you should configure DSP farm services, as described in the Configuring DSP Farm Services, on page 8.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `sccp local interface-type interface-number`
4. `sccp ccm ip-address identifier identifier-number version version-number`
5. `sccp`
6. `associate ccm identifier-number priority priority-number`
7. `associate profile profile-identifier register device-name`
8. `dspfarm profile profile-identifier transcode universal security`
9. `trustpoint trustpoint-label`
10. `codec codec-type`
11. Repeat Step 10 to configure required codecs.
12. `maximum sessions number`
13. `associate application sccp`
14. `no shutdown`
15. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
</tr>
<tr>
<td>3</td>
<td>sccp local interface-type interface-number</td>
</tr>
</tbody>
</table>
| | Example: Device(config)# sccp local GigabitEthernet 0/0 | • In the example, the following parameters are set:
 • GigabitEthernet is defined as the interface type that the SCCP application uses to register with Cisco CallManager.
 • The interface number that the SCCP application uses to register with Cisco CallManager is specified as 0/0. |
| 4 | sccp ccm ip-address identifier identifier-number version version-number | Adds a Cisco Unified Communications Manager server to the list of available servers. |
| | Example: Device(config)# sccp ccm 10.13.2.52 identifier 1 version 5.0.1 | • In the example, the following parameters are set:
 • 10.13.2.52 is configured as the IP address of the Cisco Unified Communications Manager server.
 • The number 1 identifies the Cisco Unified Communications Manager server.
 • The Cisco Unified Communications Manager version is identified as 5.0.1. |
| 5 | sccp | Enables SCCP and related applications (transcoding and conferencing) and enters SCCP Cisco CallManager configuration mode. |
| | Example: Device(config)# sccp | |
| 6 | associate ccm identifier-number priority priority-number | Associates a Cisco Unified CallManager with a Cisco CallManager group and establishes its priority within the group. |
| | Example: Device(config-sccp-ccm)# associate ccm 1 priority 1 | • In the example, the following parameters are set:
 • The number 1 identifies the Cisco Unified CallManager.
 • The Cisco Unified CallManager is configured with the highest priority within the Cisco CallManager group. |
<p>| 7 | associate profile profile-identifier register device-name | Associates a DSP farm profile with a Cisco CallManager group. |
| | Example: | • In the example, the following parameters are set: |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| Device(config-sccp-ccm)# associate profile 1 register sxcoder | • The number 1 identifies the DSP farm profile.
• Sxcoder is configured as the user-specified device name in Cisco Unified CallManager. |

Step 8

dspfarm profile profile-identifier
transcode universal
security

Example:

Device(config-sccp-ccm)# dspfarm profile 1 transcode universal security

Defines a profile for DSP farm services and enters DSP farm profile configuration mode.

• In the example, the following parameters are set:
 • Profile 1 is enabled for transcoding.
 • Profile 1 is enabled for secure DSP farm services.

Step 9

trustpoint trustpoint-label

Example:

Device(config-dspfarm-profile)# trustpoint secdsp

Associates a trustpoint with a DSP farm profile.

• In the example, the trustpoint to be associated with the DSP farm profile is labeled secdsp.

Step 10

codec codec-type

Example:

Device(config-dspfarm-profile)# codec g711ulaw

Specifies the codecs that are supported by a DSP farm profile.

• In the example, the g711ulaw codec is specified.

Step 11

Repeat Step 10 to configure required codecs.

Step 12

maximum sessions number

Example:

Device(config-dspfarm-profile)# maximum sessions 84

Specifies the maximum number of sessions that are supported by the profile.

• In the example, a maximum of 84 sessions are supported by the profile. The maximum number of sessions depends on the number of DSPs available for transcoding.

Step 13

associate application sccp

Example:

Device(config-dspfarm-profile)# associate application sccp

Associates SCCP to the DSP farm profile.

Step 14

no shutdown

Example:

Device(config-dspfarm-profile)# no shutdown

Allocates DSP farm resources and associates them with the application.
Registering the Secure Universal Transcoder to the CUBE

Perform the task in this section to register the secure universal transcoder to the Cisco Unified Border Element. The Cisco Unified Border Element Support for SRTP-RTP Internetworking feature supports both secure transcoders and secure universal transcoders.

Before You Begin
Before you register the secure universal transcoder to the Cisco Unified Border Element, you should associated SCCP to the secure DSP farm profile, as described in the Associating SCCP to the Secure DSP Farm Profile, on page 10.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. sdspfarm transcode sessions number
5. sdspfarm tag number device-name
6. em logout time1 time2 time3
7. max-ephones max-ephones
8. max-dn max-directory-numbers
9. ip source-address ip-address
10. secure-signaling trustpoint label
11. tftp-server-credentials trustpoint label
12. create cnf-files
13. no sccp
14. sccp
15. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Step 4 sdspfarm transcode sessions number</td>
<td>Specifies the maximum number of transcoding sessions allowed per Cisco CallManager Express router.</td>
</tr>
<tr>
<td>Step 5 sdspfarm tag number device-name</td>
<td>Permits a DSP farm to be registered to Cisco Unified CallManager Express and associates it with an SCCP client interface's MAC address.</td>
</tr>
<tr>
<td>Step 6 em logout time1 time2 time3</td>
<td>Configures three time-of-day-based timers for automatically logging out all Extension Mobility feature users.</td>
</tr>
<tr>
<td>Step 7 max-ephones max-ephones</td>
<td>Sets the maximum number of Cisco IP phones to be supported by a Cisco CallManager Express router.</td>
</tr>
<tr>
<td>Step 8 max-dn max-directory-numbers</td>
<td>Sets the maximum number of extensions (ephone-dns) to be supported by a Cisco Unified CallManager Express router.</td>
</tr>
</tbody>
</table>

Example:

- Device> **enable**
- Device> **configure terminal**
- Device(config)# **telephony-service**
- Device(config-telephony)# **sdspfarm transcode sessions 84**
- Device(config-telephony)# **sdspfarm tag 1 sxcoder**
- Device(config-telephony)# **em logout 0:0 0:0 0:0**
- Device(config-telephony)# **max-ephones 4**
- Device(config-telephony)# **max-dn 4**
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td><code>ip source-address ip-address</code></td>
<td>Identifies the IP address and port through which IP phones communicate with a Cisco Unified CallManager Express router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>In the example, 10.13.2.52 is configured as the router IP address.</td>
</tr>
<tr>
<td>10</td>
<td><code>secure-signaling trustpoint label</code></td>
<td>Specifies the name of the Public Key Infrastructure (PKI) trustpoint with the certificate to be used for TLS handshakes with IP phones on TCP port 2443.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>In the example, PKI trustpoint secdsp is configured.</td>
</tr>
<tr>
<td>11</td>
<td><code>tftp-server-credentials trustpoint label</code></td>
<td>Specifies the PKI trustpoint that signs the phone configuration files.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>In the example, PKI trustpoint scme is configured.</td>
</tr>
<tr>
<td>12</td>
<td><code>create cnf-files</code></td>
<td>Builds the XML configuration files that are required for IP phones in Cisco Unified CallManager Express.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><code>no sccp</code></td>
<td>Disables SCCP and its related applications (transcoding and conferencing) and exits telephony-service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><code>sccp</code></td>
<td>Enables SCCP and related applications (transcoding and conferencing).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td><code>end</code></td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring SRTP-RTP Internetworking Support

Perform the task in this section to enable SRTP-RTP internetworking support between one or multiple Cisco Unified Border Elements for SIP-SIP audio calls. In this task, RTP is configured on the incoming call leg and SRTP is configured on the outgoing call leg.

Before You Begin

Before you configure the Cisco Unified Border Element Support for SRTP-RTP Internetworking feature, you should register the secure universal transcoder to the Cisco Unified Border Element, as described in the Registering the Secure Universal Transcoder to the CUBE, on page 13.

The Cisco Unified Border Element Support for SRTP-RTP Internetworking feature is available only on platforms that support transcoding on the Cisco Unified Border Element. The feature is also available only on secure Cisco IOS images on the Cisco Unified Border Element.

SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice tag voip
4. destination-pattern string
5. session protocol sipv2
6. session target ipv4: destination-address
7. incoming called-number string
8. codec codec
9. end
10. dial-peer voice tag voip
11. Repeat Steps 4, 5, 6, and 7 to configure a second dial peer.
12. srtp
13. codec codec
14. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Device> enable
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>dial-peer voice tag voip Defines a particular dial peer, to specify the method of voice encapsulation, and enters dial peer voice configuration mode.</td>
</tr>
</tbody>
</table>
| **Example:** | Device(config)# dial-peer voice 201 voip **In the example, the following parameters are set:**
- Dial peer 201 is defined.
- VoIP is shown as the method of encapsulation. |
<p>| Step 4 | destination-pattern string Specifies either the prefix or the full E.164 telephone number to be used for a dial peer string. |
| Example: | Device(config-dial-peer)# destination-pattern 5550111 In the example, 5550111 is specified as the pattern for the telephone number. |
| Step 5 | session protocol sipv2 Specifies a session protocol for calls between local and remote routers using the packet network. |
| Example: | Device(config-dial-peer)# session protocol sipv2 In the example, the sipv2 keyword is configured so that the dial peer uses the IETF SIP. |
| Step 6 | session target ipv4: destination-address Designates a network-specific address to receive calls from a VoIP or VoIPv6 dial peer. |
| Example: | Device(config-dial-peer)# session target ipv4:10.13.25.102 In the example, the IP address of the dial peer to receive calls is configured as 10.13.25.102. |
| Step 7 | incoming called-number string Specifies a digit string that can be matched by an incoming call to associate the call with a dial peer. |
| Example: | Device(config-dial-peer)# incoming called-number 5550111 In the example, 5550111 is specified as the pattern for the E.164 or private dialing plan telephone number. |
| Step 8 | codec codec Specifies the voice coder rate of speech for the dial peer. |
| Example: | Device(config-dial-peer)# codec g711ulaw In the example, G.711 mu-law at 64,000 bps, is specified as the voice coder rate for speech. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-dial-peer)#end</td>
</tr>
<tr>
<td>Purpose</td>
<td>Exits dial peer voice configuration mode.</td>
</tr>
<tr>
<td>Step 10</td>
<td>dial-peer voice tag voip</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# dial-peer voice 200 voip</td>
</tr>
<tr>
<td>Purpose</td>
<td>Defines a particular dial peer, to specify the method of voice encapsulation, and enters dial peer voice configuration mode.</td>
</tr>
<tr>
<td>In the example, the following parameters are set:</td>
<td></td>
</tr>
<tr>
<td>• Dial peer 200 is defined.</td>
<td></td>
</tr>
<tr>
<td>• VoIP is shown as the method of encapsulation.</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Repeat Steps 4, 5, 6, and 7 to configure a second dial peer.</td>
</tr>
<tr>
<td>Purpose</td>
<td>--</td>
</tr>
<tr>
<td>Step 12</td>
<td>srtp</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-dial-peer)# srtp</td>
</tr>
<tr>
<td>Purpose</td>
<td>Specifies that SRTP is used to enable secure calls for the dial peer.</td>
</tr>
<tr>
<td>Step 13</td>
<td>codec codec</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-dial-peer)# codec g711ulaw</td>
</tr>
<tr>
<td>Purpose</td>
<td>Specifies the voice coder rate of speech for the dial peer.</td>
</tr>
<tr>
<td>In the example, G.711 mu-law at 64,000 bps, is specified as the voice coder rate for speech.</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-dial-peer)# exit</td>
</tr>
<tr>
<td>Purpose</td>
<td>Exits dial peer voice configuration mode.</td>
</tr>
</tbody>
</table>

Troubleshooting Tips

The following commands can help troubleshoot Cisco Unified Border Element support for SRTP-RTP internetworking:

- show crypto pki certificates
- show sccp
- show sdspfarm
Enabling SRTP on the Cisco UBE

You can configure SRTP with the fallback option so that a call can fall back to RTP if SRTP is not supported by the other call end. Enabling SRTP is required for supporting nonsecure supplementary services such as MoH, call forward, and call transfer.

Enabling SRTP Globally

Perform this task to enable SRTP globally.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. srtp fallback
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>voice service voip</td>
<td>Enters voice-service configuration mode and specifies VoIP encapsulation as the voice-encapsulation type.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>srtp fallback</td>
<td>Enables call fallback to nonsecure mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RoDeviceuter(conf-voi-serv)# srtp fallback</td>
<td></td>
</tr>
</tbody>
</table>

Note: If the secure SIP trunk is towards the Cisco UCM, you must configure the **srtp negotiate cisco** command in voice-service configuration mode for a non-Cisco fallback to work.
Purpose	Command or Action	Example:	Purpose
Step 5 | exit | Device(conf-voi-serv)# exit | Exits voice service configuration mode.

Example: Enabling SRTP Globally

Device(config)# voice service voip
Device(conf-voi-serv)# srtp fallback
Device(conf-voi-serv)# exit

Enabling SRTP on a Dial Peer

Perform this task to enable SRTP on a dial peer.

SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice tag voip
4. srtp fallback
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>dial-peer voice tag voip</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# dial-peer voice 10 voip</td>
</tr>
</tbody>
</table>
Configuring Cisco UBE Support for SRTP-RTP Internetworking

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>srtp fallback</code></td>
<td>Enables specific dial-peer calls to fall back to nonsecure mode.</td>
</tr>
<tr>
<td>Note</td>
<td>If the secure SIP trunk is towards the Cisco UCM, you must configure the <code>srtp negotiate cisco</code> command in dial peer voice configuration mode for a non-Cisco fallback to work.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-dial-peer)# srtp fallback</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Exits dial peer voice configuration mode.</td>
</tr>
<tr>
<td><code>Device(config-dial-peer)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

Example: Enabling SRTP on a Dial Peer

```
Device(config)# dial-peer voice 10 voip
Device(config-dial-peer)# srtp fallback
Device(config-dial-peer)# exit
```

Troubleshooting Tips

The following commands can help troubleshoot SRTP-RTP supplementary services support on Cisco UBE:

- `debug ccsip all`
- `debug scgp all`
- `debug voip ccapi inout`

Verifying SRTP-RTP Supplementary Services Support on the Cisco UBE

Perform this task to verify the configuration for SRTP-RTP supplementary services support on the Cisco UBE. The `show` commands need not be entered in any specific order.

SUMMARY STEPS

1. `enable`
2. `show call active voice brief`
3. `show scgp connection`
4. `show dspfarm dsp active`

DETAILED STEPS

Step 1

`enable`

Enables privileged EXEC mode.
Example:

Device> enable

Step 2

show call active voice brief
Displays call information for voice calls in progress.

Example:

Device# show call active voice brief
Telephony call-legs: 0
SIP call-legs: 2
H323 call-legs: 0
Call agent controlled call-legs: 0
SCCP call-legs: 2
ulticast call-legs: 0
Total call-legs: 4
0 1 12:49:45.256 IST Fri Jun 3 2011.1 +29060 pid:1 Answer 10008001 connected
dur 00:01:19 tx:1653/271092 rx:2831/464284 dscp:0 media:0
IP 10.45.40.40:7892 SRTP: on rtt:0ms pl:0/0ms lost:0/0 delay:0/0/0ms g711ulaw TextRelay: off
media inactive detected:n media contrl rcvd:n/a timestamp:n/a
long duration call detected:n long duration call duration:n/a/0ms
0 2 12:49:45.256 IST Fri Jun 3 2011.2 +29060 pid:22 Originate 20009001 connected
dur 00:01:19 tx:2831/452960 rx:1653/264480 dscp:0 media:0
IP 10.45.40.40:7893 SRTP: off rtt:0ms pl:0/0ms lost:0/0 delay:0/0/0ms g711ulaw TextRelay: off
media inactive detected:n media contrl rcvd:n/a timestamp:n/a
long duration call detected:n long duration call duration:n/a/0ms
0 3 12:50:14.326 IST Fri Jun 3 2011.1 +0 pid:0 Originate connecting
dur 00:01:19 tx:2831/452960 rx:1653/264480 dscp:0 media:0
IP 10.45.34.252:2000 SRTP: off rtt:0ms pl:0/0ms lost:0/0 delay:0/0/0ms g711ulaw TextRelay: off
media inactive detected:n media contrl rcvd:n/a timestamp:n/a
long duration call detected:n long duration call duration:n/a/0ms
0 5 12:50:14.326 IST Fri Jun 3 2011.2 +0 pid:0 Originate connecting
dur 00:01:19 tx:2831/452960 rx:1653/264480 dscp:0 media:0
IP 10.45.34.252:2000 SRTP: on rtt:0ms pl:0/0ms lost:0/0 delay:0/0/0ms g711ulaw TextRelay: off
media inactive detected:n media contrl rcvd:n/a timestamp:n/a
long duration call detected:n long duration call duration:n/a/0ms

Step 3

show sccp connection
Displays SCCP connection details.

Example:

Device# show sccp connection
sess_id conn_id stype mode codec sport rport ripaddr conn_id_tx
65537 4 s-xcode sendrecv g711u 17124 2000 10.45.34.252
65537 8 sendrecv g711u 30052 2000 10.45.34.252
Total number of active session(s) 1, and connection(s) 2

Step 4

show dspfarm dsp active
Displays active DSP information about the DSP farm service.

Example:

Device# show dspfarm dsp active
SLOT DSP VERSION STATUS CHNL USE TYPE RSC_ID BRIDGE_ID PKTS_TXED PKTS_RXED
Configuration Examples for CUBE Support for SRTP-RTP Internetworking

SRTP-RTP Internetworking Example

The following example shows how to configure Cisco Unified Border Element support for SRTP-RTP internetworking. In this example, the incoming call leg is RTP and the outgoing call leg is SRTP.

```
enable
configure terminal
ip http server
crypto pki server 3845-cube
database level complete
grant auto
no shutdown
%PKI-6-CS_GRANT_AUTO: All enrollment requests will be automatically granted.
% Some server settings cannot be changed after CA certificate generation.
% Please enter a passphrase to protect the private key or type Return to exit
Password:
Re-enter password:
% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]
% SSH-5-ENABLED: SSH 1.99 has been enabled
% Exporting Certificate Server signing certificate and keys...
% Certificate Server enabled.
%PKI-6-CS_ENABLED: Certificate server now enabled.
!
crypto pki trustpoint secdsp
enrollment url http://10.13.2.52:80
serial-number
revocation-check crl
rsakeypair 3845-cube
exit
!
crypto pki authenticate secdsp
Certificate has the following attributes:
  Fingerprint MD5: CCC82E9E 4382CCFE ADA0EB8C 524E2FC1
  Fingerprint SHA1: 34B9C4BF 4841AB31 7B0810AD 80084475 3965F140
% Do you accept this certificate? [yes/no]: yes
Trustpoint CA certificate accepted.
crypto pki enroll secdsp
% Start certificate enrollment ..
% Create a challenge password. You will need to verbally provide this password to the CA Administrator in order to revoke your certificate. For security reasons your password will not be saved in the configuration. Please make a note of it.
Password:
Re-enter password:
% The subject name in the certificate will include: 3845-CUBE
% The serial number in the certificate will be: FHK1212F4MU
% Include an IP address in the subject name? [no]:
Request certificate from CA? [yes/no]: yes
% Certificate request sent to Certificate Authority
% The 'show crypto pki certificate secdsp verbose' command will show the fingerprint.
```
CRYPTO_PKI: Certificate Request Fingerprint MD5: 56CE5FC3 B8411CF3 93A343DA 785C2360
CRYPTO_PKI: Certificate Request Fingerprint SHA1: EE029629 55F5CA10 21E50F08 F56440A2 DDC7460X

%PKI-6-CERTRET: Certificate received from Certificate Authority!

! voice-card 0
dspfarm
dsp services dspfarm
voice-card 1
dspfarm
dsp services dspfarm
exit!

! sccp local GigabitEthernet 0/0
sccp ccm 10.13.2.52 identifier 1 version 5.0.1
sccp
SCCP operational state bring up is successful. sccp ccm group 1
associate ccm 1 priority 1
associate profile 1 register sxcoder

dspfarm profile 1 transcode universal security
trustpoint secdsp
codec g711ulaw
codec g711alaw
codec g729ar8
codec g729abr8
codec g729b8

dispfarm profile 1 transcode universal security
trustpoint secdsp
codec g711ulaw
codec g711alaw
codec g729ar8
codec g729abr8
codec g729b8
maximum sessions 84
associate application sccp
no shutdown
exit!

! telephony-service

%LINEPROTO-5-UPDOWN: Line protocol on Interface EDSP0, changed state to up

dispfarm units 1

dispfarm transcode sessions 84

dispfarm tag 1 sxcoder

em logout 0:0 0:0 0:0
max-ephones 4
max-dn 4
ip source-address 10.13.2.52

Updating CNF files

CNF-FILES: Clock is not set or synchronized, retaining old versionStamps

CNF files updating complete
secure-signaling trustpoint secdsp
tftp-server-credentials trustpoint secdsp

CNF-FILES: Clock is not set or synchronized, retaining old versionStamps
CNF files update complete (post init)
create cnf-files

CNF-FILES: Clock is not set or synchronized, retaining old versionStamps

no sccp
!

scrp
SCCP operational state bring up is successful.
end

%SDSPFARM-6-REGISTER: mtp-1:sxcoder IP:10.13.2.52 Socket:1 DeviceType:MTP has registered.

%SYS-5-CONFIG_I: Configured from console by console
dial-peer voice 201 voip
destination-pattern 5550111
session protocol sipv2
session target ipv4:10.13.25.102
incoming called-number 5550112
codec g711ulaw
!

dial-peer voice 200 voip
destination-pattern 5550112
session protocol sipv2
session target ipv4:10.13.2.51
incoming called-number 5550111
srtp
codec g711ulaw
Feature Information for CUBE Support for SRTP-RTP Internetworking

Table 1: Feature Information for Cisco Unified Border Element Support for SRTP-RTP Internetworking

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Cisco Unified Border Element Support for SRTP-RTP Internetworking | 12.4(22)YB , 15.0(1)M | This feature allows secure enterprise-to-enterprise calls. Support for SRTP-RTP internetworking between one or multiple Cisco Unified Border Elements is enabled for SIP-SIP audio calls.
 The following sections provide information about this feature:
 The following command was introduced: **tls**. |
| Supplementary Services Support on Cisco UBE for RTP-SRTP Calls | 15.2(1)T | The SRTP-RTP Internetworking feature was enhanced to support supplementary services for SRTP-RTP calls on Cisco UBE. |
| Supplementary Services Support on Cisco UBE for RTP-SRTP Calls | Cisco IOS XE Release 3.7S | The SRTP-RTP Internetworking feature was enhanced to support supplementary services for SRTP-RTP calls on Cisco UBE. |