SIP Binding

The SIP Binding feature enables you to configure a source IP address for signaling packets and media packets.

- Feature Information for SIP Binding, on page 1
- Information About SIP Binding, on page 2
- Configuring SIP Binding, on page 8
- Verifying SIP Binding, on page 10

Feature Information for SIP Binding

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for SIP Binding

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP Gateway Support for the bind Command</td>
<td>Cisco IOS 12.2(2)XB, 12.2(2)XB2, 12.2(8)T, 12.2(11)T, and 12.3(4)T Cisco IOS XE 3.1.0S</td>
<td>The SIP Gateway Support for the bind Command feature allows you to configure the source IP address of signaling packets and media packets. In 12.2(2)XB, this feature was introduced. In 12.3(4)T, this feature was expanded to provide the flexibility to specify different source interfaces for signaling and media, and allow network administrators a finer granularity of control on the network interfaces used for voice traffic. The following commands were introduced or modified: bind, show dial-peer voice, show ip sockets, show sip-ua connections, and show sip-ua status.</td>
</tr>
</tbody>
</table>
Feature Name | Releases | Feature Information
--- | --- | ---
Support for Ability to Configure Source IP Address for Signaling and Media per SIP Trunk | 15.1(2)T | This feature allows you to configure a separate source IP address per SIP trunk. This source IP address is embedded in all SIP signaling and media packets that traverse the SIP trunk. This feature enables service providers for better profiling and billing policies. It also enables greater security for enterprises by the use of distinct IP addresses within and outside the enterprise domain.

The following command was introduced or modified:

```
voice-class sip bind.
```
The `bind media` command relaxes the constraints imposed by the `bind control` and `bind all` commands, which cannot be set during an active call. The `bind media` command works with active calls.

Source Address

In early releases of Cisco IOS software with SIP functionality, the source address of a packet going out of the gateway was never deterministic. That is, the session protocols and VoIP layers always depended on the IP layer to give the best local address. The best local address was then used as the source address (the address showing where the SIP request came from) for signaling and media packets. Using this non-deterministic address occasionally caused confusion for firewall applications, because a firewall could not be configured with an exact address and would take action on several different source address packets.

However, the `bind` command enables you to configure the source IP address of signaling and media packets to a specific interface’s IP address. Thus, the address that goes out on the packet is bound to the IP address of the interface specified with the `bind` command. Packets that are not destined to the bound address are discarded.

When you do not want to specify a bind address or if the interface is down, the IP layer still provides the best local address.

The Support Ability to Configure Source IP Address for Signaling and Media per SIP Trunk feature extends the global bind functionality to support the SIP signaling Transport Layer Socket (TLS) with UDP and TCP. The source address at the dial peer is the source address in all the signaling and media packets between the gateway and the remote SIP entity for calls using the dial-peer. Multiple SIP listen sockets with specific source address handle the incoming SIP traffic from each selected SIP entity. The order of preference for retrieving the SIP signalling and media source address for inbound and outbound calls is as follows:

- Bind configuration at dial peer level
- Bind configuration at global level
- Best local IP address to reach the destination

The table below describes the state of the system when the `bind` command is applied in the global or dial peer level:

<table>
<thead>
<tr>
<th>Bind State</th>
<th>System Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>No global bind</td>
<td>The best local address is used in all outbound SIP messages. Only one SIP listen socket with a wildcard source address.</td>
</tr>
<tr>
<td>Global bind</td>
<td>Global bind address used in all outbound SIP messages. Only one SIP listen socket with global bind address.</td>
</tr>
<tr>
<td>No global bind</td>
<td>Dial peer bind address is used in outbound SIP messages of this dial peer. The remaining SIP messages use the best local address. One SIP listen socket with a wildcard source address. Additional SIP listen socket for each different dial peer bind listening on the specific dial peer bind address.</td>
</tr>
<tr>
<td>Dial peer bind</td>
<td></td>
</tr>
</tbody>
</table>
Bind State | **System Status**
--- | ---
Global bind | Dial peer bind address is used in outbound SIP messages of this dial peer. The remaining SIP messages use the global bind address.
Dial peer bind | One SIP listen socket with global bind address.
 | Additional SIP listen socket for each different dial peer bind command listening on the specific dial peer bind address.

The **bind** command performs different functions based on the state of the interface (see the table below).

Table 3: State of the Interface for the bind Command

<table>
<thead>
<tr>
<th>Interface State</th>
<th>Result Using Bind Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shut down</td>
<td>TCP, TLS, and User Datagram Protocol (UDP) socket listeners are initially closed. (Socket listeners receive datagrams addressed to the socket.) Then the sockets are opened to listen to any IP address. If the outgoing gateway has the bind command enabled and has an active call, the call becomes a one-way call with media flowing from the outgoing gateway to the terminating gateway. The dial peer bind socket listeners of the interface are closed and the configuration turns inactive for all subsequent SIP messages.</td>
</tr>
<tr>
<td>With or without active calls</td>
<td></td>
</tr>
<tr>
<td>No shut down</td>
<td>TCP, TLS, and UDP socket listeners are initially closed. (Socket listeners receive datagrams addressed to the socket.) Then the sockets are opened and bound to the IP address set by the bind command. The sockets accept packets destined for the bound address only. The dial peer bind socket listeners of the interface are reopened and the configuration turns active for all subsequent SIP messages.</td>
</tr>
<tr>
<td>No active calls</td>
<td></td>
</tr>
<tr>
<td>No shut down</td>
<td>TCP, TLS, and UDP socket listeners are initially closed. Then the sockets are opened to listen to any IP address. The dial peer bind socket listeners of the interface are reopened and the configuration turns active for all subsequent SIP messages.</td>
</tr>
<tr>
<td>Active calls</td>
<td></td>
</tr>
<tr>
<td>No shut down</td>
<td></td>
</tr>
<tr>
<td>No active calls</td>
<td></td>
</tr>
<tr>
<td>Interface State</td>
<td>Result Using Bind Command</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Bound-interface IP address is removed.</td>
<td>TCP, TLS, and UDP socket listeners are initially closed.
Then the sockets are opened to listen to any address, because the IP address has been removed. This happens even when SIP was never bound to an IP address.
A message stating that the IP address has been deleted from the SIP bound interface is printed.
If the outgoing gateway has the <code>bind</code> command enabled and has an active call, the call becomes a one-way call with media flowing from the outgoing gateway to the terminating gateway.
The dial peer bind socket listeners of the interface are closed and the configuration turns inactive for all subsequent SIP messages.</td>
</tr>
<tr>
<td>The physical cable is pulled on the bound port or the interface layer is down.</td>
<td>TCP, TLS, and UDP socket listeners are initially closed.
Then the sockets are opened and bound to listen to any address.
When the pulled cable is replaced, the result is as documented for <code>no shutdown</code> interfaces.
The dial peer bind socket listeners of the interface are closed and the configuration turns inactive for all subsequent SIP messages.</td>
</tr>
<tr>
<td>A bind interface is shut down or its IP address is changed or the physical cable is pulled while SIP calls are active.</td>
<td>The call becomes a one-way call with media flowing in only one direction. It flows from the gateway where the change or shutdown took place, to the gateway where no change occurred. Thus, the gateway with the status change no longer receives media.
The call is then disconnected, but the disconnected message is not understood by the gateway with the status change, and the call is still assumed to be active.
If the bind interface is shutdown, the dial peer bind socket listeners of the interface are closed. If the IP address of the interface is changed, the socket listeners representing the bind command is opened with the available IP address of the interface and the configuration turns active for all subsequent SIP messages.</td>
</tr>
</tbody>
</table>

Note
If there are active calls, the `bind` command does not take effect if it is issued for the first time or if another `bind` command is in effect. A message reminds you that there are active calls and that the change cannot take effect.
The **bind** command applied at the dial peer level can be modified only in the following situations:

- Dial peer bind is disabled in the supported IOS configuration options.
- Dial peer bind is removed when the bound interface is removed.
- Dial peer bind is removed when the dial peer is removed.

Voice Media Stream Processing

The SIP Gateway Support Enhancements to the bind Command feature extends the capabilities of the **bind** command by supporting a deterministic network interface for the voice media stream. Before the voice media stream addition, the **bind** command supported a deterministic network interface for control (signaling) traffic or all traffic. With the SIP Gateway Support Enhancements to the bind Command feature, a finer granularity of control is achieved on the network interfaces used for voice traffic.

If multiple **bind** commands are issued in sequence—that is, if one **bind** command is configured and then another **bind** command is configured—a set interaction happens between the commands. The table below describes the expected command behavior.

Table 4: Interaction Between Previously Set and New bind Commands

<table>
<thead>
<tr>
<th>Interface State</th>
<th>bind Command</th>
<th>Result Using bind Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without active calls</td>
<td>bind all</td>
<td>Generated bind control and bind media commands to override existing bind control and bind media commands.</td>
</tr>
<tr>
<td></td>
<td>bind control</td>
<td>Overrides existing bind control command.</td>
</tr>
<tr>
<td></td>
<td>bind media</td>
<td>Overrides existing bind media command.</td>
</tr>
</tbody>
</table>
| With active calls | **bind all** or **bind control** | Blocks the command, and the following messages are displayed:
 - 00:16:39: There are active calls
 - 00:16:39: configure_sip_bind_command: The bind command change will not take effect |
| | **bind media** | Succeeds and overrides any existing **bind media** command. |

The **bind all** and **bind control** commands perform different functions based on the state of the interface.

Note

The **bind all** command only applies to global level, whereas the **bind control** and **bind media** command apply to global and dial peer. The table below applies to **bind media** only if the media interface is the same as the **bind control** interface. If the two interfaces are different, media behavior is independent of the interface state.
Table 5: bind all and bind control Functions, Based on Interface State

<table>
<thead>
<tr>
<th>Interface State</th>
<th>Result Using bind all or bind control Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shut down</td>
<td>TCP, TLS, and UDP socket listeners are initially closed. (Socket listeners receive datagrams addressed to the socket.)</td>
</tr>
<tr>
<td>With or without active calls</td>
<td>Then the sockets are opened to listen to any IP address.</td>
</tr>
<tr>
<td></td>
<td>If the outgoing gateway has the bind command enabled and has an active call, the call becomes a one-way call with media flowing from the outgoing gateway to the terminating gateway.</td>
</tr>
<tr>
<td></td>
<td>The dial peer bind socket listeners of the interface are closed and the configuration turns inactive for all subsequent SIP messages.</td>
</tr>
<tr>
<td>Not shut down</td>
<td>TCP, TLS, and UDP socket listeners are initially closed. (Socket listeners receive datagrams addressed to the socket.)</td>
</tr>
<tr>
<td>Without active calls</td>
<td>Then the sockets are opened and bound to the IP address set by the bind command.</td>
</tr>
<tr>
<td></td>
<td>The sockets accept packets destined for the bound address only.</td>
</tr>
<tr>
<td></td>
<td>The dial peer bind socket listeners of the interface are reopened and the configuration turns active for all subsequent SIP messages.</td>
</tr>
<tr>
<td>Not shut down</td>
<td>TCP, TLS, and UDP socket listeners are initially closed.</td>
</tr>
<tr>
<td>With active calls</td>
<td>Then the sockets are opened to listen to any IP address.</td>
</tr>
<tr>
<td></td>
<td>The dial peer bind socket listeners of the interface are reopened and the configuration turns active for all subsequent SIP messages.</td>
</tr>
<tr>
<td>Bound interface’s IP address is removed.</td>
<td>TCP, TLS, and UDP socket listeners are initially closed.</td>
</tr>
<tr>
<td></td>
<td>Then the sockets are opened to listen to any address because the IP address has been removed.</td>
</tr>
<tr>
<td></td>
<td>A message is printed that states the IP address has been deleted from the bound SIP interface.</td>
</tr>
<tr>
<td></td>
<td>If the outgoing gateway has the bind command enabled and has an active call, the call becomes a one-way call with media flowing from the outgoing gateway to the terminating gateway.</td>
</tr>
<tr>
<td></td>
<td>The dial peer bind socket listeners of the interface are closed and the configuration turns inactive for all subsequent SIP messages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The physical cable is pulled on the bound port, or the interface layer goes down.</th>
<th>TCP, TLS, and UDP socket listeners are initially closed.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Then the sockets are opened and bound to listen to any address.</td>
</tr>
<tr>
<td></td>
<td>When the pulled cable is replaced, the result is as documented for interfaces that are not shut down.</td>
</tr>
<tr>
<td></td>
<td>The dial peer bind socket listeners of the interface are closed and the configuration turns inactive for all subsequent SIP messages.</td>
</tr>
<tr>
<td>Interface State</td>
<td>Result Using bind all or bind control Commands</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>A bind interface is shut down, or its IP address is changed, or the physical cable is pulled while SIP calls are active.</td>
<td>The call becomes a one-way call with media flowing in only one direction. The media flows from the gateway where the change or shutdown took place to the gateway where no change occurred. Thus, the gateway with the status change no longer receives media. The call is then disconnected, but the disconnected message is not understood by the gateway with the status change, and the call is still assumed to be active. If the bind interface is shutdown, the dial peer bind socket listeners of the interface are closed. If the IP address of the interface is changed, the socket listeners representing the bind command is opened with the available IP address of the interface and the configuration turns active for all subsequent SIP messages.</td>
</tr>
</tbody>
</table>

Configuring SIP Binding

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip address ip-addressmask [secondary]
5. exit
6. Use one of the following commands to configure SIP binding:
 - `bind {control | all} source-interface interface-id [ipv6-address ipv6-address]` in SIP configuration mode.
 - `bind media [source-address ipv4 ipv4-address | source-interface interface-id [ipv6-address ipv6-address]]` in SIP configuration mode.
 - `voice-class sip bind control source interface interface-id [ipv6-address ipv6-address]` in dial-peer configuration mode.
 - `voice-class sip bind media {source-address ipv4 ipv4-address | source-interface interface-id [ipv6-address ipv6-address]}` in dial-peer configuration mode.
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Configures an interface type and enters the interface configuration mode.</td>
</tr>
</tbody>
</table>

Step 3

interface type number

Example:

```
Router(config)# interface fastethernet0/0
```

Sets a source interface for signaling and media packets. The binding applies to the specified interfaces only. SIP must be configured globally or at a dial peer level.

- **control** — Binds signaling packets.
- **media** — Binds media packets.
- **all** — Binds signaling and media packets.
- **source-address** — Binds media packets directly to an IP address.
- **ipv4 ipv4-address** — Configures the IPv4 address.
- **source interface interface-id** — Type of interface and its ID.
- **ipv6-address ipv6-address** — Configures the IPv6 address. Ensure that the IPv6 address has been applied to an interface.

Step 4

ip address ip-addressmask [secondary]

Example:

```
Router(config-if)# ip address 192.168.200.33 255.255.255.0
```

Sets a source interface for signaling and media packets. The binding applies to the specified interfaces only. SIP must be configured globally or at a dial peer level.

- **control** — Binds signaling packets.
- **media** — Binds media packets.
- **all** — Binds signaling and media packets.
- **source-address** — Binds media packets directly to an IP address.
- **ipv4 ipv4-address** — Configures the IPv4 address.
- **source interface interface-id** — Type of interface and its ID.
- **ipv6-address ipv6-address** — Configures the IPv6 address. Ensure that the IPv6 address has been applied to an interface.

Step 5

exit

Example:

```
Router(config-if)# exit
```

Sets a source interface for signaling and media packets. The binding applies to the specified interfaces only. SIP must be configured globally or at a dial peer level.

- **control** — Binds signaling packets.
- **media** — Binds media packets.
- **all** — Binds signaling and media packets.
- **source-address** — Binds media packets directly to an IP address.
- **ipv4 ipv4-address** — Configures the IPv4 address.
- **source interface interface-id** — Type of interface and its ID.
- **ipv6-address ipv6-address** — Configures the IPv6 address. Ensure that the IPv6 address has been applied to an interface.
Verifying SIP Binding

SUMMARY STEPS

1. `show ip sockets`
2. `show sip-ua status`
3. `show sip-ua connections {tcp [tls] | udp} {brief | detail}`
4. `show dial-peer voice`
5. `show running-config`

DETAILED STEPS

Step 1: `show ip sockets`

Use this command to display IP socket information and indicate whether the bind address of the receiving gateway is set.

The following sample output indicates that the bind address of the receiving gateway is set:

Example:

```
Device# show ip sockets
Proto Remote Port Local Port In Out Stat TTY Output IF
17 0.0.0.0 0--any-- 2517 0 0 9 0
17 --listen-- 172.18.192.204 1698 0 0 1 0
17 0.0.0.0 0 172.18.192.204 67 0 0 489 0
17 0.0.0.0 0 172.18.192.204 5060 0 0 A1 0
```

Example:

Step 2: `show sip-ua status`

Use this command to display SIP user-agent status and indicate whether bind is enabled.
The following sample output indicates that signaling is disabled and media on 172.18.192.204 is enabled:

Example:

```
Device# show sip-ua status
SIP User Agent Status
SIP User Agent for UDP : ENABLED
SIP User Agent for TCP : ENABLED
SIP User Agent for TLS over TCP : ENABLED
SIP User Agent bind status(signaling): DISABLED
SIP User Agent bind status(media): ENABLED 172.18.192.204
SIP early-media for 180 responses with SDP: ENABLED
SIP max-forwards : 70
SIP DNS SRV version: 2 (rfc 2782)
NAT Settings for the SIP-UA
Role in SDP: NONE
Check media source packets: DISABLED
Maximum duration for a telephone-event in NOTIFYs: 2000 ms
SIP support for ISDN SUSPEND/RESUME: ENABLED
Redirection (3xx) message handling: ENABLED
Reason Header will override Response/Request Codes: DISABLED
Out-of-dialog Refer: DISABLED
Presence support is DISABLED
protocol mode is ipv4
SDP application configuration:
  Version line (v=) required
  Owner line (o=) required
  Timespec line (t=) required
  Media supported: audio video image
  Network types supported: IN
  Address types supported: IP4 IP6
  Transport types supported: RTP/AVP udptl
```

Step 3

```
show sip-ua connections {tcp [tls] | udp} {brief | detail}
```

Use this command to display the connection details for the UDP transport protocol. The command output looks identical for TCP and TLS.

Example:

```
Device# show sip-ua connections udp detail

Total active connections : 0
No. of send failures : 0
No. of remote closures : 0
No. of conn. failures : 0
No. of inactive conn. ageouts : 10

--------Printing Detailed Connection Report--------

Note:
  ** Tuples with no matching socket entry
    - Do 'clear sip <tcp[tls]/udp> conn t ipv4:<addr>:<port>'
      to overcome this error condition
  ++ Tuples with mismatched address/port entry
    - Do 'clear sip <tcp[tls]/udp> conn t ipv4:<addr>:<port> id <connid>'
      to overcome this error condition

No Active Connections Found

----------- SIP Transport Layer Listen Sockets -----------

Conn-Id          Local-Address
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
2       [9.42.28.29]:5060
```

Step 4

```
show dial-peer voice
```
Use this command, for each dial peer configured, to verify that the dial-peer configuration is correct. The following is sample output from this command for a VoIP dial peer:

Example:

```
Device# show dial-peer voice 101
```

```
VoiceOverIpPeer1234
    peer type = voice, system default peer = FALSE, information type = voice,
    description = '',
    tag = 1234, destination-pattern = '',
    voice reg type = 0, corresponding tag = 0,
    allow watch = FALSE
    answer-address = '', preference=0,
    CLID Restriction = None
    CLID Network Number = ''
    CLID Second Number sent
    CLID Override RDNIS = disabled,
    rtp-ssrc mux = system
    source carrier-id = '', target carrier-id = '',
    source trunk-group-label = '', target trunk-group-label = '',
    numbering Type = 'unknown'
    group = 1234, Admin state is up, Operation state is down,
    incoming called-number = '', connections/maximum = 0/unlimited,
    DTMF Relay = disabled,
    modem transport = system,
    URI classes:
        Incoming (Request) =
        Incoming (Via) =
        Incoming (To) =
        Incoming (From) =
        Destination =
    huntstop = disabled,
    in bound application associated: 'DEFAULT'
    out bound application associated: ''
    dnis-map =
    permission :both
    incoming COR list:maximum capability
    outgoing COR list:minimum requirement
    outgoing LPCOR:
    Translation profile (Incoming):
    Translation profile (Outgoing):
    incoming call blocking:
        translation-profile = '
        disconnect-cause = 'no-service'
    advertise 0x40 capacity_update_timer 25 addrFamily 4 oldAddrFamily 4
    mailbox selection policy: none
    type = voip, session-target = '',
    technology prefix:
    settle-call = disabled
    ip media DSCP = ef, ip media rsvp-pass DSCP = ef
    ip media rsvp-fail DSCP = af31, ip signaling DSCP = af31, ip video rsvp-none DSCP = af41, ip video rsvp-pass DSCP = af41
    ip video rsvp-fail DSCP = af41,
    ip defending Priority = 0, ip preemption priority = 0
    ip policy locator voice:
    ip policy locator video:
    UDP checksum = disabled,
    session-protocol = sipv2, session-transport = system,
    req-qos = best-effort, acc-qos = best-effort,
    req-qos video = best-effort, acc-qos video = best-effort,
    req-qos audio def bandwidth = 64, req-qos audio max bandwidth = 0,
    req-qos video def bandwidth = 384, req-qos video max bandwidth = 0,
```
RTP dynamic payload type values: NTE = 101
Cisco: NSE=100, fax=96, fax-ack=97, dtmf=121, fax-relay=122
CAS=123, TTY=119, ClearChan=125, PCM switch over u-law=0,
A-law=8, GSMAMR-NB=117, iLBC=116, AAC-ld=114, iSAC=124
lmr_tone=0, nte_tone=0
h263+=118, h264=119
G726r16 using static payload
G726r24 using static payload
RTP comfort noise payload type = 19
fax rate = voice, payload size = 20 bytes
fax protocol = system
fax-relay ecm enable
Fax Relay ans enabled
Fax Relay SG3-to-G3 Enabled (by system configuration)
fax NSF = 0xAD0051 (default)
codec = g729r8, payload size = 20 bytes,
video codec = None
voice class codec = `'
voice class sip session refresh system
voice class sip rsvp-fail-policy voice post-alert mandatory keep-alive interval 30
voice class sip rsvp-fail-policy voice post-alert optional keep-alive interval 30
voice class sip rsvp-fail-policy video post-alert mandatory keep-alive interval 30
voice class sip rsvp-fail-policy video post-alert optional keep-alive interval 30
text relay = disabled
Media Setting = forking (disabled) flow-through (global)
Expect factor = 10, Icpif = 20,
Playout Mode is set to adaptive,
Initial 60 ms, Max 1000 ms
Playout-delay Minimum mode is set to default, value 40 ms
Fax nominal 300 ms
Max Redirects = 1, signaling-type = cas,
VAD = enabled, Poor QOV Trap = disabled,
Source Interface = NONE
voice class sip url = system,
voice class sip tel-config url = system,
voice class sip relxx = system,
voice class sip anat = system,
voice class sip outbound-proxy = "system",
voice class sip associate registered-number = system,
voice class sip asserted-id system,
voice class sip privacy system
voice class sip e911 = system,
voice class sip history-info = system,
voice class sip reset timer expires 183 = system,
voice class sip pass-thru headers = system,
voice class sip pass-thru content unsupp = system,
voice class sip pass-thru content sdp = system,
voice class sip copy-list = system,
voice class sip g729 annexb-all = system,
voice class sip early-offer forced = system,
voice class sip negotiate cisco = system,
voice class sip block 180 = system,
voice class sip block 183 = system,
voice class sip block 181 = system,
voice class sip preloaded-route = system,
voice class sip random-contact = system,
voice class sip random-request-uri validate = system,
voice class sip call-route p-called-party-id = system,
voice class sip call-route history-info = system,
voice class sip privacy-policy send-always = system,
voice class sip privacy-policy passthru = system,
voice class sip privacy-policy strip history-info = system,
voice class sip privacy-policy strip diversion = system,
voice class sip map resp-code 181 = system,
voice class sip bind control = enabled, 9.42.28.29,
voice class sip bind media = enabled, 9.42.28.29,
voice class sip bandwidth audio = system,
voice class sip bandwidth video = system,
voice class sip encap clear-channel = system,
voice class sip error-code-override options-keepalive failure = system,
voice class sip calltype-video = false
voice class sip registration passthrough = System
voice class sip authenticate redirecting-number = system,
redirect ip2ip = disabled
local peer = false
probe disabled,
Secure RTP: system (use the global setting)
voice class pers tag = '','
Time elapsed since last clearing of voice call statistics never
Connect Time = 0, Charged Units = 0,
Successful Calls = 0, Failed Calls = 0, Incomplete Calls = 0
Accepted Calls = 0, Refused Calls = 0,
Last Disconnect Cause is "",
Last Disconnect Text is "",
Last Setup Time = 0.
Last Disconnect Time = 0.

Note If the bind address is not configured at the dial-peer, the output of the show dial-peer voice command remains the same except for the values of the voice class sip bind control and voice class sip bind media, which display “system,” indicating that the bind is configured at the global level.

Step 5 show running-config

Although the bind all command is an accepted configuration, it does not appear in show running-config command output. Because the bind all command is equivalent to issuing the commands bind control and bind media, those are the commands that appear in the show running-config command output.

Example:
The following sample output shows that bind is enabled on router 172.18.192.204:

Building configuration...
Current configuration : 2791 bytes
!
version 12.2
service config
no service single-slot-reload-enable
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service internal
service udp-small-servers
!
ip subnet-zero
ip ftp source-interface Ethernet0
!
voice service voip
sip
 bind control source-interface FastEthernet0
!
interface FastEthernet0
 ip address 172.18.192.204 255.255.255.0
duplex
speed auto
fair-queue 64 256 1000
ip rsvp bandwidth 75000 100
! voice-port 1/1/1
no supervisory disconnect lcfo
!
dial-peer voice 1 pots
application session
destination-pattern 5550111
port 1/1/1
!
dial-peer voice 29 voip
application session
destination-pattern 5550133
session protocol sipv2
session target ipv4:172.18.200.33
codec g711ulaw
!
gateway
!
line con 0
line aux 0
line vty 0 4
login
!
end