Support for Multi-VRF

The Virtual Routing and Forwarding (VRF) feature allows Cisco Unified Border Element (CUBE) to have multiple instances of routing and forwarding table to co-exist on the same device at the same time.

With Multi-VRF feature, each interface or subinterface can be associated with a unique VRF.

Note

The information in this chapter is specific to Multi-VRF feature beginning in Cisco IOS Release 15.6(2)T. However, there is some information on Voice-VRF feature for the reference purpose only. For detailed information on the Voice-VRF feature, see http://www.cisco.com/c/en/us/td/docs/ios/12_4t/12_4t15/vrfawvgw.html.

• Feature Information for VRF, on page 1
• Information About Voice-VRF, on page 3
• Information About Multi-VRF, on page 3
• VRF Preference Order, on page 4
• Restrictions, on page 4
• Recommendations, on page 5
• Configuring VRF, on page 5
• Configure VRF Specific RTP Port Ranges, on page 11
• Directory Number (DN) Overlap across Multiple-VRFs, on page 14
• IP Overlap with VRF, on page 16
• Using Server Groups with VRF, on page 18
• Inbound Dial-Peer Matching Based on Multi-VRF, on page 19
• VRF Aware DNS for SIP Calls, on page 21
• High Availability with VRF, on page 22
• Configuration Examples, on page 22
• Troubleshooting Tips, on page 40

Feature Information for VRF

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for VRF

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Voice-VRF (VRF-Aware)</td>
<td>Cisco IOS 12.4(11)XJ</td>
<td>This feature provides support to configure a VRF specific to voice traffic.</td>
</tr>
<tr>
<td>Support for Multi-VRF</td>
<td>Cisco IOS 15.6(2)T</td>
<td>This feature allows CUBE to have multiple instances of VRF to co-exist on the same device at the same time. The following commands are introduced: <code>media-address voice-vrf name port-range min-max</code>, <code>show voice vrf</code></td>
</tr>
</tbody>
</table>
| Enhancement to support up to 54 VRF instances | Cisco IOS 15.6(3)M
Cisco IOS XE Denali 16.3.1 | This feature enhancement provides support for up to 54 VRFs. Each of the VRFs supports up to 10 different RTP port ranges. |
| Support for Inbound Dial-peer Matching using VRF-ID | Cisco IOS 15.6(3)M
Cisco IOS XE Denali 16.3.1 | This feature supports inbound dial-peer matching using VRF ID. |
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Support for media flow-around using Multi-VRF | Cisco IOS XE Gibraltar 16.12.2 | This feature adds media flow-around support for the following intra-VRF call flows in standalone and high availability scenarios:
- Basic Audio Call
- Call Hold and Resume
- Re-INVITE based Call Transfer
- 302 based Call Forward
- Fax Pass Through Calls
- T.38 Fax Calls
With media flow-around using Multi-VRF, only signalling is routed using VRFs and Cisco UBE passes across the media IP and ports which it receives. For detailed information on media flow-around, see Media Path. |

Information About Voice-VRF

Support for Voice-VRF (also known as VRF-Aware) was introduced in Cisco IOS Release 12.4(11)XJ to provide support for configuring a VRF specific to voice traffic. Voice-VRF can be configured using the `voice vrf vrf-name` command. For more information on voice-VRF, see http://www.cisco.com/c/en/us/td/docs/ios/12_4t/12_4t15/vrfawvgw.html.

Information About Multi-VRF

The Multi-VRF feature allows you to configure and maintain more than one instance of routing and forwarding tables within the same CUBE device and segregate voice traffic based on the VRF. Multi-VRF uses input interfaces to distinguish calls for different VRFs and forms VRF tables by associating with one or more Layer 3 interfaces. Interface can be physical interface (such as FastEthernet ports, Gigabit Ethernet ports) or sub-interface. CUBE supports bridging calls on both intra-VRF and inter-VRF.

Note

One physical interface or sub-interface can be associated with one VRF only. One VRF can be associated with multiple interfaces.
As per the Multi-VRF feature, the dial-peer configuration must include the use of the interface bind functionality. This is mandatory. It allows dial-peers to be mapped to a VRF via the interface bind.

The calls received on a dial-peer are processed based on the interface to which it is associated with. The interface is in turn associated with the VRF. So, the calls are processed based on the VRF table associated with that particular interface.

VRF Preference Order

Voice-VRF and Multi-VRF configurations can co-exist. The following is the binding preference order for call processing:

Table 2: VRF Preference Order and Recommendations

<table>
<thead>
<tr>
<th>Preference Order</th>
<th>Bind</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dial-peer Bind</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Tenant Bind</td>
<td>Recommended for SIP trunk, especially when Cisco UBE is collocated with Cisco Unified Survivability Remote Site Telephony. If Tenant bind is not configured, Voice-VRF is preferred for SIP trunk.</td>
</tr>
<tr>
<td>3</td>
<td>Global Bind</td>
<td>Not recommended.</td>
</tr>
<tr>
<td>4</td>
<td>Voice-VRF</td>
<td>Recommended for hosted and cloud services configurations when Cisco UBE is collocated with Cisco Unified Survivability Remote Site Telephony.</td>
</tr>
</tbody>
</table>

Note
Voice-VRF is not supported if Cisco Unified Survivability Remote Site Telephony is running on Cisco 4000 Series Integrated Services Router.

Restrictions

- Supports only SIP-SIP calls.
- Cisco Unified Communications Manager Express (Unified CME) and CUBE co-located with VRF is not supported.
- Cisco Unified Survivability Remote Site Telephony (Unified SRST) and CUBE co-location is not supported on releases before Cisco IOS XE Fuji 16.7.1.
- IPv6 on VRF is not supported.
- SDP pass-through is not supported on releases before Cisco IOS Release 15.6(3)M and Cisco IOS XE Denali 16.3.1.
• Calls are not supported when incoming dial-peer matched is default dial-peer (dial-peer 0).
• Media Anti-trombone is not supported with VRF.
• Cisco UC Services API with VRF is not supported.
• Multi-VRF is not supported on TDM-SIP gateway.
• VRF aware matching is applicable only for inbound dial-peer matching and not for outbound dial-peer matching.
• Invoking TCL scripts through a dial-peer is not supported with the Multi-VRF.
• Multi-VRF using global routing table or default routing table (VRF 0) with virtual interfaces is not supported on ISR-G2 (2900 and 3900 series) routers.
• SCCP-based media resources are not supported with VRF.
• Multi-VRF configured in media flow-around mode is supported only for intra-VRF calls. The following are not supported with Multi-VRF configured in media flow-around mode:
 - Supplementary services with REFER Consume, Mid-call (or Early Dialogue) block
 - Session Description Protocol (SDP) Passthrough
 - Media Recording
 - DSP flows (DTMF, transcode)

Recommendations

• For new deployments, we recommend a reboot of the router once all VRFs' are configured under interfaces.
• No VRF Route leaks are required on CUBE to bridge VoIP calls across different VRFs.
• High Availability (HA) with VRF is supported where VRF IDs are check-pointed in the event of fail-over. Ensure that same VRF configuration exists in both the HA boxes.
• Whenever destination server group is used with VRF, ensure that the server group should have the session targets, belonging to the same network as that of sip bind on the dial-peer, where the server-group is configured. This is because, dial-peer bind is mandatory with VRF and only one sip bind can be configured on any given dial-peer.
• If there are no VRF configuration changes at interface level, then reload of the router is not required.

Configuring VRF

Note
We recommend you NOT to modify VRF settings on the interfaces in a live network as it requires CUBE reload to resume VRF functionality.
This section provides the generic configuration steps for creating a VRF. For detailed configuration steps specific to your network scenario (Multi-VRF and Multi-VRF with HA), refer to Configuration Examples section.

You can also use the latest configuration option, which allows creation of multiprotocol VRFs that support both IPv4 and IPv6. Entering the command `vrf definition vrf-name` creates the multiprotocol VRF. Under VRF definition submode, you can use the command `address-family {ipv4 | ipv6}` to specify appropriate address family. To associate the VRF with an interface, use the command `vrf forwarding vrf-name` under the interface configuration submode.

For more information about the `vrf definition` and `vrf forwarding` commands, refer to the Cisco IOS Easy Virtual Network Command Reference Guide.

Create a VRF

SUMMARY STEPS

1. enable
2. configure terminal
3. ip vrf vrf-name
4. rd route-distinguisher
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip vrf vrf-name</td>
<td>Creates a VRF with the specified name. In the example, VRF name is VRF1.</td>
</tr>
<tr>
<td>Example: Device(config)# ip vrf VRF1</td>
<td></td>
</tr>
<tr>
<td>Step 4 rd route-distinguisher</td>
<td>Creates a VRF table by specifying a route distinguisher. Enter either an AS number and an arbitrary number (xxx:y) or an IP address and arbitrary number (A.B.C.D:y)</td>
</tr>
<tr>
<td>Example: Device(config)# rd 1:1</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits present mode.</td>
</tr>
<tr>
<td>Example: Device(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Assign Interface to VRF

Note
If an IP address is already assigned to an interface, then associating a VRF with interface will disable the interface and remove the existing IP address. An error message (sample error message shown below) is displayed on the console. Assign the IP address to proceed further.

% Interface GigabitEthernet0/1 IPv4 disabled and address(es) removed due to enabling VRF VRF1

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-name
4. ip vrf forwarding vrf-name
5. ip address ip address subnet mask
6. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode
Example:
Device> enable |
| Step 2 | configure terminal | Enters global configuration mode.
Example:
Device# configure terminal |
| Step 3 | interface interface-name | Enters the interface configuration mode.
Example:
Device(config)# interface GigabitEthernet 0/1 |
| Step 4 | ip vrf forwarding vrf-name | Associates VRF with the interface.
Note:
If there is an IP address associated with the interface, it will be cleared and you will be prompted to assign the IP address again.
Example:
Device(config-if)# ip vrf forwarding VRF1 |
| Step 5 | ip address ip address subnet mask | IP address is assigned to the interface.
Example:
Device(config-if)# ip address 10.0.0.1 255.255.255.0 |
| Step 6 | exit | Exits present mode.
Example:

Create Dial-peers

SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice number voip
4. session protocol protocol
5. Create dial-peer:
 • To create inbound dial-peer:
 incoming called number number
 • To create outbound dial-peer:
 destination pattern number
6. codec codec-name
7. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Step 2	configure terminal
Example:	Device# configure terminal
	Enters global configuration mode.

Step 3	dial-peer voice number voip
Example:	Device(config)# dial-peer voice 1111 voip
	Creates the dial-peer with the specified number.

Step 4	session protocol protocol
Example:	Device(config-dial-peer)# session protocol sipv2
	Specifies the protocol associated with the dial-peer.

<p>| Step 5 | Create dial-peer: |
| | • To create inbound dial-peer: |
| | incoming called number number |
| | Creates inbound and outbound dial-peer. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| • To create outbound dial-peer:
 destination pattern number | |
| Example:
Inbound dial-peer:
Device(config-dial-peer)# incoming called-number 1111 | |
| Example:
Outbound dial-peer:
Device(config-dial-peer)# destination pattern 3333 | |
| Step 6 codec codec-name | Specifies the codec associated with this dial-peer.
Example:
Device(config-dial-peer)# codec g711ulaw | |
| Step 7 exit | Exits present mode.
Example:
Device(config-dial-peer)# exit | |

Bind Dial-peers

You can configure SIP binding at global level as well as at dial-peer level.

- Control and Media on a dial-peer have to bind with same VRF. Else, while configuring, the CLI parser will display an error
- Whenever global sip bind interface associated with a VRF is added, modified, or removed, you should restart the sip services under 'voice service voip > sip' mode so that the change in global sip bind comes into effect with associated VRF ID.

```
CUBE(config)# voice service voip  
CUBE(config-voi-serv)# sip  
CUBE(config-serv-sip)# call service stop  
CUBE(config-serv-sip)# no call service stop  
CUBE(config-serv-sip)# end
```

SUMMARY STEPS

1. enable
2. configure terminal
3. Bind control and media to the interface
 - At dial-peer level:
 dial-peer voice number voip
voice-class sip bind control source-interface interface-name
voice-class sip bind media source-interface interface-name

- At global configuration level

 voice service voip
 sip

 bind control source-interface interface-name
 bind media source-interface interface-name

4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 Bind control and media to the interface</td>
<td>Interface bind associates VRF to the specified dial-peer.</td>
</tr>
<tr>
<td>- At dial-peer level:</td>
<td></td>
</tr>
<tr>
<td>dial-peer voice number voip</td>
<td></td>
</tr>
<tr>
<td>voice-class sip bind control source-interface interface-name</td>
<td></td>
</tr>
<tr>
<td>voice-class sip bind media source-interface interface-name</td>
<td></td>
</tr>
<tr>
<td>- At global configuration level</td>
<td></td>
</tr>
<tr>
<td>voice service voip</td>
<td></td>
</tr>
<tr>
<td>sip</td>
<td></td>
</tr>
<tr>
<td>bind control source-interface interface-name</td>
<td></td>
</tr>
<tr>
<td>bind media source-interface interface-name</td>
<td></td>
</tr>
</tbody>
</table>

Example:

At dial-peer level:

```
Device(config)# dial-peer voice 1111 voip
Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/1
Device(config-dial-peer)# voice-class sip bind
```
Configure VRF Specific RTP Port Ranges

You can configure each VRF to have its own set of RTP port range for VoIP RTP connections under voice service voip. A maximum of ten VRF port ranges are supported. Different VRFs can have overlapping RTP port range. VRF based RTP port range limits (min, max port numbers) are same as global RTP port range. All three port ranges (global, media-address, VRF based) can coexist on CUBE and the preference order of RTP port allocation is as follows:

- VRF based port range
- Media-address based port range
- Global RTP port range

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. media-address voice-vrf vrf-name port-range min max
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters voice service voip mode.</td>
</tr>
<tr>
<td>voice service voip</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Associates the RTP Port range with the VRF.</td>
</tr>
<tr>
<td>media-address voice-vrf vrf-name port-range min max</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example 1</td>
<td></td>
</tr>
<tr>
<td>Device(conf-voi-serv)# media-address voice-vrf VRF1 port 16000 32000</td>
<td></td>
</tr>
<tr>
<td>The output:</td>
<td></td>
</tr>
<tr>
<td>Device# show run</td>
<td>section voice</td>
</tr>
<tr>
<td>voice-card 0/3</td>
<td></td>
</tr>
<tr>
<td>dsp services dspfarm</td>
<td></td>
</tr>
<tr>
<td>voice service voip</td>
<td></td>
</tr>
<tr>
<td>no ip address trusted authenticate</td>
<td></td>
</tr>
<tr>
<td>media-address voice-vrf VRF1 port 16000 32000</td>
<td></td>
</tr>
<tr>
<td>*Here, the port-range is configured on the same line as the media address.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example 2</td>
<td></td>
</tr>
<tr>
<td>Device(conf-voi-serv)# media-address voice-vrf VRF1 port-range 6000 7000</td>
<td></td>
</tr>
<tr>
<td>Device(cfg-media-addr-vrf)# port-range 8000 10000</td>
<td></td>
</tr>
<tr>
<td>Device(cfg-media-addr-vrf)# port-range 11000 20000</td>
<td></td>
</tr>
<tr>
<td>The output:</td>
<td></td>
</tr>
<tr>
<td>Device# show run</td>
<td>section voice</td>
</tr>
<tr>
<td>voice-card 0/3</td>
<td></td>
</tr>
<tr>
<td>dsp services dspfarm</td>
<td></td>
</tr>
<tr>
<td>voice service voip</td>
<td></td>
</tr>
<tr>
<td>no ip address trusted authenticate</td>
<td></td>
</tr>
<tr>
<td>media-address voice-vrf VRF1</td>
<td></td>
</tr>
<tr>
<td>port-range 6000 7000</td>
<td></td>
</tr>
<tr>
<td>port-range 8000 10000</td>
<td></td>
</tr>
<tr>
<td>port-range 11000 20000</td>
<td></td>
</tr>
<tr>
<td>*In this case, multiple port range lines are configured under the media address.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example 3</td>
<td></td>
</tr>
<tr>
<td>CUBE supports a maximum of 54 VRFs. Hence, you can configure up to 54 media address instances, that is, one instance per voice-vrf.</td>
<td></td>
</tr>
<tr>
<td>Device(conf-voi-serv)# media-address voice-vrf VRF1 port-range 8000 48000</td>
<td></td>
</tr>
</tbody>
</table>
Example: VRF with overlapping and non-overlapping RTP Port Range

Example 1 - Non-overlapping Port Range

The following is example shows two VRFs with non-overlapping RTP port range:

Device(conf)# voice service voip
Device(conf-voi-serv)# no ip address trusted authenticate
Device(conf-voi-serv)# media bulk-stats
Device(conf-voi-serv)# media-address voice-vrf vrf1 port-range 25000 28000
Device(conf-voi-serv)# media-address voice-vrf vrf2 port-range 29000 32000
Device(conf-voi-serv)# allow-connections sip to sip
Device(conf-voi-serv)# redundancy-group 1
Device(conf-voi-serv)# sip

The output for command `show voip rtp connections` shows as follows:

Device# show voip rtp connections

VoIP RTP Port Usage Information:
Max Ports Available: 23001, Ports Reserved: 101, Ports in Use: 2

<table>
<thead>
<tr>
<th>Media-Address Range Port Port Available Reserved In-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Media Pool 8000 48198 19999 101 0</td>
</tr>
<tr>
<td>VRF ID Based Media Pool</td>
</tr>
<tr>
<td>vrf1 25000 28000 1501 0 1</td>
</tr>
<tr>
<td>vrf2 29000 32000 1501 0 1</td>
</tr>
</tbody>
</table>

VoIP RTP active connections:

| No. CallId dstCallId LocalRTP RmtRTP LocalIP RemoteIP MPSS VRF |
|---------------|---------|-------|--------|-------|---------|-----|
| 1 1001 1002 25000 16400 10.0.0.1 10.0.0.2 NO vrf1 |
| 2 1002 1001 29000 16392 11.0.0.1 11.0.0.2 NO vrf2 |

Found 2 active RTP connections

In the above output, you can observe that for both the VRF's having non-overlapping rtp port ranges, the local RTP port allocated for vrf1 and vrf2 are different.

Example 2 - Overlapping Port Range

The following is example shows two VRFs with overlapping RTP port range:

Example: VRF with overlapping and non-overlapping RTP Port Range
Device(conf)# voice service voip
Device(conf-voi-serv)# no ip address trusted authenticate
Device(conf-voi-serv)# media bulk-stats
Device(conf-voi-serv)# media-address voice-vrf vrf1 port-range 25000 28000
Device(conf-voi-serv)# media-address voice-vrf vrf2 port-range 25000 28000
Device(conf-voi-serv)# allow-connections sip to sip
Device(conf-voi-serv)# redundancy-group 1
Device(conf-voi-serv)# sip

The output for command `show voip rtp connections` shows as follows:

Device# show voip rtp connections

VoIP RTP Port Usage Information:
Max Ports Available: 23001, Ports in Use: 2

<table>
<thead>
<tr>
<th>Ports</th>
<th>Media-Address Range</th>
<th>Min</th>
<th>Max</th>
<th>Ports</th>
<th>Available</th>
<th>Reserved</th>
<th>In-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Media Pool</td>
<td>8000 48198 19999</td>
<td>101</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRF ID Based Media Pool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vrf1</td>
<td>25000 28000</td>
<td>1501</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vrf2</td>
<td>25000 28000</td>
<td>1501</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VoIP RTP active connections:

<table>
<thead>
<tr>
<th>No.</th>
<th>CallId</th>
<th>dstCallId</th>
<th>LocalRTP</th>
<th>RmtRTP</th>
<th>LocalIP</th>
<th>RemoteIP</th>
<th>MPSS</th>
<th>VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1001</td>
<td>1002</td>
<td>25000</td>
<td>16400</td>
<td>10.0.0.1</td>
<td>10.0.0.2</td>
<td>NO</td>
<td>vrf1</td>
</tr>
<tr>
<td>2</td>
<td>1002</td>
<td>1001</td>
<td>25000</td>
<td>16392</td>
<td>11.0.0.1</td>
<td>11.0.0.2</td>
<td>NO</td>
<td>vrf2</td>
</tr>
</tbody>
</table>

Found 2 active RTP connections

In the above output, you can observe that for both the VRF’s having overlapping rtp port ranges, the local RTP port allocated for vrf1 and vrf2 is same.

Directory Number (DN) Overlap across Multiple-VRFs

CUBE has the capability to bridge calls across VRFs without the need for route leaks to be configured.

If multiple dial-peers on two different VRFs have the same destination-pattern and preference, CUBE will randomly choose a dial-peer and route the call using the session target of the selected dial-peer. Due to this, the call intended for one VRF may be routed to another VRF.

Dial-peer group feature allows you to route calls within the same VRF and not across VRFs. Configuring dial-peer group, routes the call to a specific VRF even if multiple dial-peers on two different VRFs have the same destination-pattern and preference.

To use dial-peer group feature, configure dial-peers such that there is a unique inbound dial-peer match for calls related to each VRF. Configuring dial-peer group, limits the outbound dial-peer search within the VRF.
Example: Associating Dial-peer Groups to Overcome DN Overlap

If a call is received on VRF1 and there are two dial-peers with same destination-pattern (one dial-peer bind to VRF1 and second dial-peer bind to VRF2), then by default, CUBE picks the VRF in random to route the call.

If you intended to route this call only to VRF1 dial-peer, then dial-peer group can be applied on inbound dial-peer which will restrict the CUBE to route the call only across the dial-peers within the dial-peer group and not pick a dial-peer bind to a different VRF.

Figure 1: Associating Dial-peer Group to overcome DN overlap

The following scenario is considered in the below example:

- VRF1 associated with Gigabitethernt Interface 0/0 and 0/1
- VRF 2 associated with Gigabitethernet Inetrface 0/2
- Dial-peer Group: dpg1
- VRF1 is associated with dial-peer group - dpg 1
- Outbound dial-peer 300 is selected as preference 1
- Inbound dial-peer 3000 associated with VRF 1 and dial-peer group 1 (dpg1)
- Outbound Dial-peer: 300 – destination pattern “3001” associated with VRF1
- Outbound dial-peer: 301 – destination pattern “3001” associated with VRF2

Configure a dial-peer group and set the outbound dial-peer preference.

```
Device# enable
Device# configure terminal
Device(config)# voice class dpg 1
Device(voice-class)# dial-peer 300 preference 1
```

Create inbound dial-peer and associated with dial-peer group 1 (dpg1)

```
Device(config)# dial-peer voice 3000 voip
Device(config-dial-peer)# video codec h264
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# session transport udp

Device(config-dial-peer)# destination dpg 1
Device(config-dial-peer)# incoming called-number 3001
Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/1
```
Device(config-dial-peer)# voice-class sip bind media source-interface GigabitEthernet0/1
Device(config-dial-peer)# dtmf-relay sip-kpml
Device(config-dial-peer)# srtp fallback
Device(config-dial-peer)# codec g711ulaw

Creating outbound dial-peer with destination pattern ‘3001’ associated with VRF1.

Device(config)# dial-peer voice 300 voip
Device(config-dial-peer)# destination-pattern 3001
Device(config-dial-peer)# video codec h264
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# session target ipv4:10.0.0.1
Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/1
Device(config-dial-peer)# voice-class sip bind media source-interface GigabitEthernet0/1
Device(config-dial-peer)# dtmf-relay sip-kpml
Device(config-dial-peer)# codec g711ulaw

Creating outbound dial-peer with destination pattern ‘3001’ associated with VRF2.

Device(config)# dial-peer voice 301 voip
Device(config-dial-peer)# destination-pattern 3001
Device(config-dial-peer)# video codec h264
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# session target ipv4:11.0.0.1
Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/2
Device(config-dial-peer)# voice-class sip bind media source-interface GigabitEthernet0/2
Device(config-dial-peer)# dtmf-relay sip-kpml
Device(config-dial-peer)# codec g711ulaw

With above dial-peer group configuration, whenever dial-peer “3000” is matched as inbound dial-peer, CUBE will always route call using dial-peer “300” (VRF1). Without dial-peer group, CUBE would have picked dial-peers “300”(VRF1) and “301”(VRF2) in random to route the call.

Device# show vrf brief
Name Default RD Protocols Interfaces
VRF1 1:1 ipv4 Gi0/0
 1:1 ipv4 Gi0/1
VRF2 2:2 ipv4 Gi0/2

Device# show dial-peer voice summary
dial-peer hunt 0
TAG TYPE MIN OPER PREFIX DEST-PATTERN PRE PASS THRU SESS-TARGET OUT
KEEPALIVE VRF AD OPER PREFIX DEST-PATTERN FER THRU SESS-TARGET STAT PORT 3000 voip up up 3001 0 syst
VRF1
300 voip up up 3001 0 syst ipv4: 10.0.0.1
VRF1
301 voip up up 3001 0 syst ipv4: 11.0.0.1
VRF2

IP Overlap with VRF

Generally, on a router, two interfaces cannot be configured with the same IP address. With the VRF feature, you can configure two or more interfaces with the same IP address because, each interface having the same IP address belongs to a unique VRF and hence belongs to a different routing domain. However, for successful call processing, you must ensure that appropriate call routing protocols are configured on the VRFs.
The following is a sample configuration:

Configure Gigabit Ethernet 0/0 that belongs to VRF1 with IP address 10.0.0.0.

```
Device# enable
Device# configure terminal
Device(config)# ip vrf VRF1
Device(config)# rd 1:1
Device(config)# exit
```

```
Device> enable
Device# configure terminal
Device(config)# interface GigabitEthernet0/0
Device(config-if)# ip vrf forwarding VRF1
Device(config-if)# ip address 10.0.0.0 255.255.255.0
Device(config-if)# speed auto
Device(config-if)# exit
```

Configure Gigabit Ethernet 0/1 that belongs to VRF2 with IP address 10.0.0.0.

```
Device# enable
Device# configure terminal
Device(config)# ip vrf VRF2
Device(config)# rd 1:1
Device(config)# exit
```

```
Device> enable
Device# configure terminal
Device(config)# interface GigabitEthernet0/1
Device(config-if)# ip vrf forwarding VRF2
Device(config-if)# ip address 10.0.0.0 255.255.255.0
Device(config-if)# speed auto
Device(config-if)# exit
```

For call routing on VRF1 and VRF2, ensure that appropriate routing entries are configured for both VRF1 and VRF2.

Note

The above configurations are specific to VRF support only. For call routing, appropriate routing protocols must be configured in the network.

Even though Gigabit Ethernet 0/0 and Gigabit Ethernet 0/1 have an overlapping IP address, the call processing is not overlapped as they belong to different VRFs.

`show ip interface brief` command shows that GigabitEthernet 0/0 and GigabitEthernet 0/1 have an overlapping IP address:

```
Device# show ip interface brief
Interface               IP-Address OK? Method Status    Protocol
Embedded-Service-Engine0/0 unassigned YES NVRAM administratively down down
GigabitEthernet0/0      10.0.0.0  YES NVRAM up          up
GigabitEthernet0/1      10.0.0.0  YES NVRAM up          up
GigabitEthernet0/1.1    unassigned YES NVRAM up          up
GigabitEthernet0/2      unassigned YES NVRAM up          up
```
show voip rtp connections command shows a video call that is established on CUBE across different interfaces belonging to different VRFs having Overlap IP address:

```
Device# show voip rtp connections
VoIP RTP Port Usage Information:
Max Ports Available: 11700, Ports Reserved: 303, Ports in Use: 4

<table>
<thead>
<tr>
<th>Media-Address Range</th>
<th>Min</th>
<th>Max</th>
<th>Ports</th>
<th>Available</th>
<th>Reserved</th>
<th>In-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Media Pool</td>
<td>20000</td>
<td>22000</td>
<td>900</td>
<td>101</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VRF ID Based Media Pool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POD2</td>
<td>30002</td>
<td>32000</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>POD1</td>
<td>20000</td>
<td>30000</td>
<td>4900</td>
<td>101</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>POD3</td>
<td>20000</td>
<td>30000</td>
<td>4900</td>
<td>101</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
```

VoIP RTP active connections:*

<table>
<thead>
<tr>
<th>No.</th>
<th>CallId</th>
<th>dstCallId</th>
<th>LocalRTP</th>
<th>RmtRTP</th>
<th>LocalIP</th>
<th>RemoteIP</th>
<th>MPSS</th>
<th>VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>39</td>
<td>20000</td>
<td>18164</td>
<td>10.0.0.0</td>
<td>11.0.0.3</td>
<td>NO</td>
<td>VRF1</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>40</td>
<td>20002</td>
<td>18166</td>
<td>11.0.0.3</td>
<td>10.0.0.0</td>
<td>NO</td>
<td>VRF1</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>37</td>
<td>20002</td>
<td>16388</td>
<td>11.0.0.3</td>
<td>10.0.0.0</td>
<td>NO</td>
<td>VRF2</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>38</td>
<td>20000</td>
<td>16390</td>
<td>11.0.0.3</td>
<td>10.0.0.0</td>
<td>NO</td>
<td>VRF2</td>
</tr>
</tbody>
</table>

Found 4 active RTP connections

Using Server Groups with VRF

Whenever destination server group is used with VRF, ensure that the server group should have the session targets, belonging to the same network as that of sip bind on the dial-peer, where the server-group is configured. This is because the dial-peer bind is mandatory with VRF and only one sip bind can be configured on any given dial-peer.

The following scenario is considered in the below example:

Interfaces and associated IP address

- GigabitEthernet0/0/2 12.0.0.1
- GigabitEthernet0/0/1 11.0.0.1

```
Device# show ip interface brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK?</th>
<th>Method</th>
<th>Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet0/0/0</td>
<td>10.0.0.1</td>
<td>YES</td>
<td>NVRAM</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>GigabitEthernet0/0/1</td>
<td>11.0.0.1</td>
<td>YES</td>
<td>NVRAM</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>GigabitEthernet0/0/2</td>
<td>12.0.0.1</td>
<td>YES</td>
<td>NVRAM</td>
<td>up</td>
<td>up</td>
</tr>
</tbody>
</table>
```

- dial-peer 200 is bind to GigabitEthernet0/0/1
- server-group 1 (belonging to VRF1) is applied to dial-peer 200

```
Device(config)# dial-peer voice 200 voip
Device(config-dialpeer)# destination-pattern 4.....
Device(config-dialpeer)# session protocol sipv2
Device(config-dialpeer)# session transport udp
Device(config-dialpeer)# session server-group 1
Device(config-dialpeer)# voice-class sip bind control source-interface GigabitEthernet0/0/1
Device(config-dialpeer)# voice-class sip bind media source-interface GigabitEthernet0/0/1
```
Device(config-dialpeer)# codec g711ulaw

As dial-peer 200 is bind to GigabitEthernet0/0/1, the session targets configured in the “server-group 1” should belong to the network which is reachable by the bind source interface GigabitEthernet0/0/1 as shown below:

Device(config)# voice class server-group 1
Device(config-class)# ipv4 11.0.0.22
Device(config-class)# ipv4 11.0.0.8 preference 2

Inbound Dial-Peer Matching Based on Multi-VRF

From Cisco IOS Release 15.6(3)M and Cisco IOS XE Denali 16.3.1 onwards, dial-peer matching is done based on the VRF ID associated with a particular interface.

Example: Inbound Dial-Peer Matching based on Multi-VRF

Prior to Cisco IOS 15.6(3)M and Cisco IOS XE Denali 16.3.1 releases, when an incoming out-of-dialog message such as INVITE, REGISTER, OPTIONS, NOTIFY, and so on are received on a particular VRF bound interface, inbound dial-peer matching was done using the complete set of inbound dial-peers regardless of the VRF association. The response would be sent based on this matched dial-peer. Since the inbound dial-peer selected could have a different VRF bound to it, the response was sent to the wrong VRF.

To overcome this issue, the inbound dial-peers are filtered based on the incoming VRF and then followed by the regular inbound dial-peer matching. Now, the response is sent to the same VRF on which the request was received.

Consider the following configuration example output to understand the inbound dial-peer matching criteria used in multi-VRF:

```text
interface GigabitEthernet0/0
ip address 8.39.18.37 255.255.0.0
duplex auto
ip vrf forwarding VRF ID1
speed auto

interface GigabitEthernet0/1
ip address 9.39.18.55 255.255.0.0
duplex auto
ip vrf forwarding VRF ID2
speed auto

interface GigabitEthernet0/2
ip address 10.39.18.68 255.255.0.0
duplex auto
ip vrf forwarding VRF ID3
speed auto

dial-peer voice 1000 voip
description “Inbound dial-peer bound to VRF ID2”
session protocol sipv2
session target sip-server
session transport udp
incoming called-number 5678
voice-class sip bind control source-interface GigabitEthernet0/1
voice-class sip bind media source-interface GigabitEthernet0/1
```
Example: Inbound Dial-Peer Matching based on Multi-VRF

codec g711ulaw

dial-peer voice 2000 voip
description "Inbound dial-peer bound to VRF ID1"
 session protocol sipv2
 session target sip-server
 session transport udp
 incoming called-number 5678
 voice-class sip bind control source-interface GigabitEthernet0/0
 voice-class sip bind media source-interface GigabitEthernet0/0
 codec g711ulaw

dial-peer voice 3000 voip
description "Inbound dial-peer bound to VRF ID3"
 session protocol sipv2
 session target sip-server
 session transport udp
 incoming called-number 8000
 voice-class sip bind control source-interface GigabitEthernet0/2
 voice-class sip bind media source-interface GigabitEthernet0/2
 codec g711ulaw

dial-peer voice 4000 voip
description "Inbound dial-peer bound to VRF ID1"
 session protocol sipv2
 session target sip-server
 session transport udp
 incoming called-number 2000
 voice-class sip bind control source-interface GigabitEthernet0/0
 voice-class sip bind media source-interface GigabitEthernet0/0
 codec g711ulaw

Prior to Cisco IOS 15.6(3)M and Cisco IOS XE Denali 16.3.1 releases, when an incoming call is received for the dialed number 5678 on GigabitEthernet0/0 (VRF ID1), inbound dial-peer matching was done based on the called-number 5678. In this case, dial-peer 1000 which is bound to GigabitEthernet0/1 (VRF ID2) was considered to be the first matched dial-peer for this call. And, the response was sent incorrectly to VRF ID2 instead of VRF ID1.

With the introduction of VRF aware inbound dial-peer matching, the initial filtering is done based on the VRF ID and then based on the called-number. For the above example, a call with called-number of 5678 that is received on GigabitEthernet 0/0 with VRF ID 1 configured, the dial-peers will first be filtered to those that are bound to GigabitEthernet 0/0 before selection of the inbound dial-peer is performed. Now, the response is sent successfully on VRF ID1.

Note
Whenever the VRF ID is added, modified, or removed under the interface, it is mandatory to execute the following command before making any calls: clear interface <interface>. If the clear interface <interface> command is not executed, the dial-peer is bound to the old VRF ID and not to the new VRF ID.
Inbound dial-peer matching based on VRF ID is selected in the following order of preference:

1. Dial-peer based configuration
2. Tenant based configuration
3. Global based configuration

Example: Tenant based Inbound Dial-Peer Matching

voice class tenant 1
 bind control source-interface GigabitEthernet0/0
 bind media source-interface GigabitEthernet0/0
 dial-peer voice 2000 voip
 description "Inbound dial-peer bound to VRF-ID 1"
 session protocol sipv2
 session target sip-server
 session transport udp
 incoming called-number 5678
 voice-class sip tenant 1
 codec g711ulaw

Example: Global based Inbound Dial-Peer Matching

voice service voip
 sip
 bind control source-interface GigabitEthernet0/0
 bind media source-interface GigabitEthernet0/0

VRF Aware DNS for SIP Calls

The VRF Aware DNS for SIP Calls feature enables you to specify the Virtual Routing and Forwarding (VRF) table so that the domain name system (DNS) can forward queries to name servers using the VRF table.

Because the same IP address can be associated with different DNS servers in different VRF domains, a separate list of name caches for each VRF is maintained. The DNS looks up the specific VRF name cache before sending a query to the VRF name server. All IP addresses obtained from a VRF-specific name cache are routed using the VRF table.

While processing a SIP call, if a hostname has to be resolved, only the VRF associated with the SIP call is used during DNS resolutions.

Ensure that the name-server is configured using `ip name-server vrf` command. For configuration details, see Name Server Configuration.
High Availability with VRF

CUBE supports VRF in both HSRP and RG Infra high availability mode. VRF is supported on CUBE box-to-box and inbox high availability types.

For box-to-box high availability in Aggregation Services Routers 1000 Series and Integrated Services Routers 4000 Series, RG interface must not be associated with VRF where as the inbound and outbound interfaces (meant for handling VoIP traffic) can be associated with VRF’s depending upon the deployment.

For box-to-box high availability in Integrated Services Routers Generation 2, HSRP interface must not be associated with VRF where as the inbound and outbound interfaces (meant for handling VoIP traffic) can be associated with VRFs depending upon the deployment.

All the configurations including the VRF based RTP port range has to be identical on active and standby routers. VRF IDs will be check pointed before and after the switchover.

Configuration Examples

Note

The steps in the following configuration example is for a new network and hence it is assumed that there is no existing configuration.

Example: Configuring Multi-VRF in Standalone Mode

The configuration in this scenario is as shown below where the Gigabitethernet 0/1 is assigned to VRF1 and GigabitEthernet 0/2 is assigned to VRF2.

Figure 2: Multi-VRF in Standalone Mode

Configuring VRF

Device# enable
Device# configure terminal
Device(config)# ip vrf VRF1
Device(config)# rd 1:1
Device(config)# ip vrf VRF2
Device(config)# rd 2:2
Device(config)# exit

Associating interfaces with VRF
Device(config)# interface GigabitEthernet0/1
Device(config-if)# ip vrf forwarding VRF1
Device(config)# interface GigabitEthernet0/2
Device(config-if)# ip vrf forwarding VRF2

If an IP address is already assigned to an interface, then associating a VRF with an interface will disable the interface and remove the existing IP address. An error message (sample error message shown below) is displayed on the console. Assign the IP address to proceed further.

% Interface GigabitEthernet0/1 IPv4 disabled and address(es) removed due to enabling VRF VRF1

Configure Interface GigabitEthernet0/1

Device> enable
Device# configure terminal
Device(config)# interface GigabitEthernet0/1
Device(config-if)# ip address 10.0.0.2 255.255.255.0
Device(config-if)# speed auto
Device(config-if)# exit

Configure Interface GigabitEthernet0/2

Device(config)# interface GigabitEthernet0/2
Device(config-if)# ip address 11.0.0.2 255.255.255.0
Device(config-if)# speed auto
Device(config-if)# exit

Creating Dial-peer
Creating Inbound Dial-peer:

Device(config)# dial-peer voice 1111 voip
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# incoming called-number 1111
Device(config-dial-peer)# codec g711ulaw

Creating Outbound Dial-peer:

Device(config)# dial-peer voice 2222 voip
Device(config-dial-peer)# destination pattern 1111
Device(config-dial-peer)# session protocol sipv2

Execute the following command to verify the dial-peer association with interface:

Device# show dial-peer voice summary

<table>
<thead>
<tr>
<th>TAG</th>
<th>TYPE</th>
<th>MIN</th>
<th>OPER</th>
<th>PREFIX</th>
<th>DEST-PATTERN</th>
<th>FER</th>
<th>PASS</th>
<th>SESS-TARGET</th>
<th>STAT</th>
<th>PORT</th>
<th>KEEPALIVE</th>
<th>VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>voip</td>
<td>up</td>
<td>up</td>
<td>-</td>
<td></td>
<td>0</td>
<td>syst</td>
<td>ipv4:10.0.0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRF1</td>
<td></td>
</tr>
<tr>
<td>2222</td>
<td>voip</td>
<td>up</td>
<td>up</td>
<td>-</td>
<td></td>
<td>0</td>
<td>syst</td>
<td>ipv4:11.0.0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VRF2

Configure Binding

- Control and Media on a dial-peer have to bind with same VRF. Else, while configuring, the CLI parser will display an error.

- Whenever global sip bind interface associated with a VRF is added, modified, or removed, you should restart the sip services under voice service voip sip mode so that the change in global sip bind comes into effect with associated VRF ID.

 Device(config)# voice service voip
 Device(conf-voi-serv)# sip
 Device(conf-serv-sip)# call service stop
 Device(conf-serv-sip)# no call service stop
 Device(conf-serv-sip)# end

 Device(config)# dial-peer voice 1111 voip
 Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/1
 Device(config-dial-peer)# voice-class sip bind media source-interface GigabitEthernet0/1

 Device(config)# dial-peer voice 2222 voip
 Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/2
 Device(config-dial-peer)# voice-class sip bind media source-interface GigabitEthernet0/2

Execute the following command to verify the interface association with VRF:

 Device# show ip vrf brief

 Name Default RD Interfaces
 Mgmt-intf <not set> 1:1 Gi0
 VRF1 1:1 Gi0/1
 VRF2 2:2 Gi0/2

Execute the following command to verify a successful and active calls:

 For a single call, you should be able to see two RTP connections as shown in the below example.

 Device# show voip rtp connections

 VoIP RTP Port Usage Information:
 Max Ports Available: 23001, Ports Reserved: 101, Ports in Use: 2

 For a single call, you should be able to see two RTP connections as shown in the below example.

 Device# show voip rtp connections

 VoIP RTP active connections:
 No. CallId dstCallId LocalRTP RmtRTP LocalIP RemoteIP MFSS VRF
 1 1 2 25000 16390 10.0.0.1 10.0.0.2 NO VRF1
 2 2 1 25002 16398 11.0.0.1 11.0.0.2 NO VRF2
Device# show call active voice brief

Perf-AR1006# show call active voice brief

<table>
<thead>
<tr>
<th>ID</th>
<th>CallID</th>
<th>Start</th>
<th>Index</th>
<th>Connect</th>
<th>PID</th>
<th>Addr</th>
<th>State</th>
<th>Duration</th>
<th>TX</th>
<th>RX</th>
<th>DSCP</th>
<th>Media</th>
<th>Audio TOS</th>
<th>Video TOS</th>
<th>IP</th>
<th>RTP</th>
<th>MSG</th>
<th>PL</th>
<th>Lost</th>
<th>EARLY</th>
<th>LATE</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Media inactive detected: Y/N

long duration call detected: Y/N

Telephony call-legs: 0
SIP call-legs: 2
H323 call-legs: 0
Call agent controlled call-legs: 0
SCCP call-legs: 0
Multicast call-legs: 0
Total call-legs: 2

Answer: 777412373 active
dur 00:00:22 tx:1110/66600 rx:1111/66660 dscp:0 media:0 audio tos:0xB8 video tos:0x0
IP 10.0.0.2:30804 SRTP: off rtt:0ms pl:0/0ms lost:0/0/0 delay:0/0/0ms g729r8 TextRelay: off
Transcoded: No ICE: Off
media inactive detected: no media control received in timestamp: n/a
long duration call detected: n/a long duration call duration: n/a timestamp: n/a
LostPacketRate: 0.00 OutOfOrderRate: 0.00
VRF: VRF1

11FF : 8565723 511605470ms.1 (*16:21:53.696 IST Tue Aug 4 2015) +0 pid:400000
Originate: 777512373 active
dur 00:00:22 tx:1111/66660 rx:1110/66660 dscp:0 media:0 audio tos:0xB8 video tos:0x0
IP 11.0.0.2:30804 SRTP: off rtt:0ms pl:0/0ms lost:0/0/0 delay:0/0/0ms g729r8 TextRelay: off
Transcoded: No ICE: Off
media inactive detected: no media control received in timestamp: n/a
long duration call detected: n/a long duration call duration: n/a timestamp: n/a
LostPacketRate: 0.00 OutOfOrderRate: 0.00
VRF: VRF2

Telephony call-legs: 0
SIP call-legs: 2
H323 call-legs: 0
Call agent controlled call-legs: 0
SCCP call-legs: 0
Multicast call-legs: 0
Total call-legs: 2
Device# show sip-ua connections udp brief

<table>
<thead>
<tr>
<th>Total active connections</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of send failures</td>
<td>0</td>
</tr>
<tr>
<td>No. of remote closures</td>
<td>0</td>
</tr>
<tr>
<td>No. of conn. failures</td>
<td>0</td>
</tr>
<tr>
<td>No. of inactive conn. ageouts</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conn-Id</th>
<th>Local-Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>[10.0.0.1]:5060:VRF1</td>
</tr>
<tr>
<td>3</td>
<td>[11.0.0.1]:5060:VRF2</td>
</tr>
</tbody>
</table>

Device# show call active voice compact

<table>
<thead>
<tr>
<th><callID></th>
<th>A/O</th>
<th>Codec</th>
<th>Peer Address</th>
<th>IP</th>
<th>R<ip>:<udp></th>
<th>VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>8565722</td>
<td>ANS</td>
<td>T12</td>
<td>VOIP</td>
<td>10.0.0.2:30804</td>
<td>VRF1</td>
<td></td>
</tr>
<tr>
<td>8565723</td>
<td>ORG</td>
<td>T12</td>
<td>VOIP</td>
<td>11.0.0.2:30804</td>
<td>VRF2</td>
<td></td>
</tr>
</tbody>
</table>

Device# show call active video compact

<table>
<thead>
<tr>
<th><callID></th>
<th>A/O</th>
<th>Codec</th>
<th>Peer Address</th>
<th>IP</th>
<th>R<ip>:<udp></th>
<th>VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10193983</td>
<td>ANS</td>
<td>T30</td>
<td>VOIP-VIDEO</td>
<td>10.0.0.2:18078</td>
<td>VRF1</td>
<td></td>
</tr>
<tr>
<td>10193985</td>
<td>ORG</td>
<td>T30</td>
<td>VOIP-VIDEO</td>
<td>11.0.0.2:27042</td>
<td>VRF2</td>
<td></td>
</tr>
</tbody>
</table>

Example: Configuring RG Infra High Availability with VRF

Note
Below configuration example is applicable for Cisco ASR 1000 Series Aggregated Services Routers (ASR) and Cisco 4000 Series Integrated Services Routers (ISR G3).

Note
Do not configure VRF on the interface that is used for RG Infra. Traffic of VRF and RG Infra should be on different interfaces.

Figure 3: Multi-VRF in High Availability Mode (RG Infra)
Configuration on Active Router

The configurations of Active Router and Stand By Router should be identical.

Configuring VRF

Device> enable
Device# configure terminal
Device(config)# ip vrf VRF1
Device(config)# rd 1:1
Device(config)# ip vrf VRF2
Device(config)# rd 2:2

Device(config)# voice service voip
Device(config)# no ip address trusted authenticate
Device(config)# media bulk-stats
Device(config)# allow-connections sip to sip
Device(config)# redundancy-group 1
Device(config)# sip

Device(config)# redundancy
Device(config)# mode none
Device(config)# application redundancy
Device(config)# group 1
Device(config)# name raf-b2b
Device(config)# priority 1
Device(config)# timers delay 30 reload 60
Device(config)# control GigabitEthernet0/0/0 protocol 1
Device(config)# data GigabitEthernet0/0/0

Associating interfaces with VRF

Device(config)# interface GigabitEthernet0/2
Device(config-if)# ip vrf forwarding vrf2

Note

If an IP address is already assigned to an interface, then associating a VRF with interface will disable the interface and remove the existing IP address. An error message (sample error message shown below) is displayed on the console. Assign the IP address to proceed further.

% Interface GigabitEthernet0/1 IPv4 disabled and address(es) removed due to enabling VRF VRF1

GigabitEthernet0/0/0 is used for configuring RG Infra and therefore do not configure any VRF with this interface.

Device(config)# interface GigabitEthernet0/0/0
Device(config-if)# ip address 14.2.43.81 255.255.0.0
Device(config-if)# negotiation auto
Device(config-if)# cdp enable

Inbound interface - GigabitEthernet0/1 is used for voice traffic configured with VRF1.
Device(config)# interface GigabitEthernet0/1
Device(config-if)# ip vrf forwarding VRF1
Device(config-if)# ip address 10.0.0.3 255.0.0.0
Device(config-if)# negotiation auto
Device(config-if)# cdp enable
Device(config-if)# redundancy rii 1
Device(config-if)# redundancy group 1 ip 10.0.0.1 exclusive

Outbound interface - GigabitEthernet0/2 is used for voice traffic configured with VRF2.

Device(config)# interface GigabitEthernet0/2
Device(config-if)# ip vrf forwarding VRF2
Device(config-if)# ip address 11.0.0.3 255.0.0.0
Device(config-if)# negotiation auto
Device(config-if)# cdp enable
Device(config-if)# redundancy rii 2
Device(config-if)# redundancy group 1 ip 11.0.0.1 exclusive

Creating Dial-peer
Creating Inbound Dial-peer:

Device(config)# dial-peer voice 1111 voip
Device(config-dial-peer)# destination pattern 1111
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# session target ipv4:10.0.0.2
Device(config-dial-peer)# incoming called-number 1111

Creating Outbound Dial-peer:

Device(config)# dial-peer voice 3333 voip
Device(config)# destination-pattern 2222
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# session target ipv4:11.0.0.2

Configuring Binding

Note
Control and Media on a dial-peer have to bind with same VRF. Else, while configuring, the CLI parser will display an error.

Device(config)# dial-peer voice 1111 voip
Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/1
Device(config-dial-peer)# voice-class sip bind media source-interface GigabitEthernet0/1

Device(config)# dial-peer voice 3333 voip
Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/2
Device(config-dial-peer)# voice-class sip bind media source-interface GigabitEthernet0/2

Configuration on Standby Router
The configurations of Active and Stand By should be identical.

Configuring VRF

```
Device> enable
Device# configure terminal
Device(config)# ip vrf VRF1
Device(config)# rd 1:1
Device(config)# ip vrf VRF2
Device(config)# rd 2:2

Device(config)# voice service voip
Device(config)# no ip address trusted authenticate
Device(config)# media bulk-stats
Device(config)# allow-connections sip to sip
Device(config)# redundancy-group 1
Device(config)# sip

Device(config)# redundancy
Device(config)# mode none
Device(config)# application redundancy
Device(config)# group 1
Device(config)# name raf-b2b
Device(config)# priority 1
Device(config)# timers delay 30 reload 60
Device(config)# control GigabitEthernet0/0/0 protocol 1
Device(config)# data GigabitEthernet0/0/0
```

Associating interfaces with VRF

```
Device(config)# interface GigabitEthernet0/2
Device(config-if)# ip vrf forwarding VRF2
```

Note

If an IP address is already assigned to an interface, then associating a VRF with interface will disable the interface and remove the existing IP address. An error message (sample error message shown below) is displayed on the console. Assign the IP address to proceed further.

```
% Interface GigabitEthernet0/1 IPv4 disabled and address(es)removed due to enabling VRF VRF1
```

GigabitEthernet0/0/0 is used for configuring RG Infra and therefore do not configure any VRF with this interface.

```
Device(config)# interface GigabitEthernet0/0/0
Device(config-if)# ip address 14.2.43.81 255.255.0.0
Device(config-if)# negotiation auto
Device(config-if)# cdp enable
```

Inbound interface - GigabitEthernet0/1 is used for voice traffic configured with VRF1.

```
Device(config)# interface GigabitEthernet0/1
```
Device(config-if)# ip vrf forwarding VRF1
Device(config-if)# ip address 10.0.0.4 255.0.0.0
Device(config-if)# negotiation auto
Device(config-if)# cdp enable
Device(config-if)# redundancy rii 1
Device(config-if)# redundancy group 1 ip 10.0.0.1 exclusive

Outbound interface - GigabitEthernet0/2 is used for voice traffic configured with VRF2.

Device(config)# interface GigabitEthernet0/2
Device(config-if)# ip vrf forwarding VRF2
Device(config-if)# ip address 11.0.0.4 255.0.0.0
Device(config-if)# negotiation auto
Device(config-if)# cdp enable
Device(config-if)# redundancy rii 2
Device(config-if)# redundancy group 1 ip 11.0.0.1 exclusive

Creating Dial-peer

Creating Inbound Dial-peer:

Device(config)# dial-peer voice 1111 voip
Device(config-dial-peer)# destination pattern 1111
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# session target ipv4:10.0.0.2
Device(config-dial-peer)# incoming called-number 1111

Creating Outbound Dial-peer:

Device(config)# dial-peer voice 3333 voip
Device(config)# destination-pattern 2222
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# session target ipv4:11.0.0.2

Configuring Binding

Note: Control and Media on a dial-peer have to bind with same VRF. Else, while configuring, the CLI parser will display an error.

Device(config)# dial-peer voice 1111 voip
Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/1
Device(config)# voice-class sip bind media source-interface GigabitEthernet0/1

Device(config)# dial-peer voice 3333 voip
Device(config)# voice-class sip bind control source-interface GigabitEthernet0/2
Device(config)# voice-class sip bind media source-interface GigabitEthernet0/2

Verification of Calls Before and After Switchover

RTP Connections on Active router:
Device# show voip rtp connections

VoIP RTP Port Usage Information:
Max Ports Available: 19999, Ports Reserved: 101, Ports in Use: 2

<table>
<thead>
<tr>
<th>Media-Address Range</th>
<th>Min</th>
<th>Max</th>
<th>Port</th>
<th>Available</th>
<th>Reserved</th>
<th>In-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Media Pool</td>
<td>8000</td>
<td>48198</td>
<td>19999</td>
<td>101</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

VoIP RTP active connections:

<table>
<thead>
<tr>
<th>No.</th>
<th>CallId</th>
<th>dstCallId</th>
<th>LocalRTP</th>
<th>RmtRTP</th>
<th>LocalIP</th>
<th>RemoteIP</th>
<th>MPSS</th>
<th>VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>8008</td>
<td>16388</td>
<td>10.0.0.1</td>
<td>10.0.0.2</td>
<td>NO</td>
<td>VRF1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>5</td>
<td>8010</td>
<td>16388</td>
<td>11.0.0.1</td>
<td>11.0.0.2</td>
<td>NO</td>
<td>VRF2</td>
</tr>
</tbody>
</table>

Found 2 active RTP connections

RTP Connections on Standby Router after switchover

Device# show voip rtp connections

VoIP RTP Port Usage Information:
Max Ports Available: 19999, Ports Reserved: 101, Ports in Use: 2

<table>
<thead>
<tr>
<th>Media-Address Range</th>
<th>Min</th>
<th>Max</th>
<th>Port</th>
<th>Available</th>
<th>Reserved</th>
<th>In-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Media Pool</td>
<td>8000</td>
<td>48198</td>
<td>19999</td>
<td>101</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

VoIP RTP active connections:

<table>
<thead>
<tr>
<th>No.</th>
<th>CallId</th>
<th>dstCallId</th>
<th>LocalRTP</th>
<th>RmtRTP</th>
<th>LocalIP</th>
<th>RemoteIP</th>
<th>MPSS</th>
<th>VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>8012</td>
<td>16390</td>
<td>10.0.0.1</td>
<td>10.0.0.2</td>
<td>NO</td>
<td>VRF1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>7</td>
<td>8014</td>
<td>16390</td>
<td>11.0.0.1</td>
<td>11.0.0.2</td>
<td>NO</td>
<td>VRF2</td>
</tr>
</tbody>
</table>

Found 2 active RTP connections

Active calls on Active Router

Device# show call active voice brief

11F3 : 5 243854170ms.1 (*11:48:43.972 UTC Mon May 25 2015) +6770 pid:0 Answer active
dur 00:00:14 tx:843/50551 rx:1028/61680 dscp:0 media:0 audio tos:0xB8 video tos:0x0
IP 10.0.0.2:16388 SRTP: off rtt:1ms pl:0/0ms lost:0/0/0 delay:0/0/0ms g729r8 TextRelay: off
media inactive detected:n media contrl rcvd:n/a timestamp:n/a
long duration call detected:n long duration call duration:n/a timestamp:n/a
LostPacketRate:0.00 OutOfOrderRate:0.00

dur 00:00:14 tx:1028/61680 rx:843/50551 dscp:0 media:0 audio tos:0xB8 video tos:0x0
IP 11.0.0.2:16388 SRTP: off rtt:65522ms pl:0/0ms lost:0/0/0 delay:0/0/0ms g729r8 TextRelay: off
media inactive detected:n media contrl rcvd:n/a timestamp:n/a
long duration call detected:n long duration call duration:n/a timestamp:n/a
LostPacketRate:0.00 OutOfOrderRate:0.00

Telephony call-legs: 0
SIP call-legs: 2
Example: Configuring HSRP High Availability with VRF

Below configuration example is applicable for Cisco Integrated Services Routers Generation 2 (ISR G2) Platforms. [Cisco 2900 Series Integrated Services Routers and Cisco 3900 Series Integrated Services Routers]
Do not configure VRF on the interface that is used for HSRP. Traffic of VRF and HSRP should be on different interfaces.

Figure 4: Multi-VRF in High Availability Mode (HSRP)

Configuration on Active Router

The configurations of Active Router and Stand By Router should be identical.

Configuring VRF

Device> `enable`
Device# `configure terminal`
Device(config)# `ip vrf VRF1`
Device(config)# `rd 1:1`
Device(config)# `ip vrf VRF2`
Device(config)# `rd 2:2`

Associating interfaces with VRF

Device(config)# `interface GigabitEthernet0/1`
Device(config-if)# `ip vrf forwarding VRF1`

Device(config)# `interface GigabitEthernet0/2`
Device(config-if)# `ip vrf forwarding VRF2`

Note If an IP address is already assigned to an interface, then associating a VRF with interface will disable the interface and remove the existing IP address. An error message (sample error message shown below) is displayed on the console. Assign the IP address to proceed further.

```
% Interface GigabitEthernet0/1 IPv4 disabled and address(es) removed due to enabling VRF VRF1
```

The interface used for HSRP should not be configured with any VRF. In this example, GigabitEthernet0/0/0 is used for configuring HSRP and therefore no VRF is associated with this interface.
Example: Configuring HSRP High Availability with VRF

Device(config)# interface GigabitEthernet0/0/0
Device(config-if)# ip address 14.2.43.81 255.255.0.0
Device(config-if)# standby version 2
Device(config-if)# standby 93 ip 14.2.43.82
Device(config-if)# standby 93 priority 50
Device(config-if)# standby 93 preempt
Device(config-if)# standby 93 name cubeha
Device(config-if)# standby 93 track 1 decrement 5
Device(config-if)# standby 93 track 2 decrement 5
Device(config-if)# duplex auto
Device(config-if)# speed auto

Inbound interface - GigabitEthernet0/1 is used for voice traffic configured with VRF1.

Device(config)# interface GigabitEthernet0/1
Device(config-if)# ip vrf forwarding VRF1
Device(config-if)# ip address 10.0.0.3 255.0.0.0
Device(config-if)# standby version 2
Device(config-if)# standby 63 ip 10.0.0.4
Device(config-if)# standby 63 priority 50
Device(config-if)# standby 63 preempt
Device(config-if)# standby 63 track 1 decrement 5
Device(config-if)# duplex auto
Device(config-if)# speed auto
Device(config-if)# media-type rj45

Outbound interface - GigabitEthernet0/2 is used for voice traffic configured with VRF2.

Device(config)# interface GigabitEthernet0/2
Device(config-if)# ip vrf forwarding VRF2
Device(config-if)# ip address 11.0.0.3 255.0.0.0
Device(config-if)# standby version 2
Device(config-if)# standby 36 ip 11.0.0.4
Device(config-if)# standby 36 priority 50
Device(config-if)# standby 36 preempt
Device(config-if)# standby 36 track 1 decrement 5
Device(config-if)# duplex auto
Device(config-if)# speed auto
Device(config-if)# media-type rj45

Device(config)# ipc zone default
Device(config-ipczone)# association 1
Device(config-ipczone-assoc)# no shutdown
Device(config-ipczone-assoc)# protocol sctp
Device(config-ipc-protocol-sctp)# local port 5000
Device(config-ipc-protocol-sctp)# local-ip 14.2.43.81
Device(config-ipc-protocol-sctp)# exit
Device(config-ipc-protocol-sctp)# remote port 5000
Device(config-ipc-remote-sctp)# remote-ip 14.2.43.82

Creating Dial-peer

Creating Inbound Dial-peer:

Device(config)# dial-peer voice 1111 voip
Device(config-dial-peer)# destination pattern 1111
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# session target ipv4:10.0.0.2
Device(config-dial-peer)# incoming called-number 1111

Creating Outbound Dial-peer:

Device(config)# dial-peer voice 3333 voip
Device(config)# destination-pattern 2222
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# session target ipv4:11.0.0.2

Configuring Binding

Note
Control and Media on a dial-peer have to bind with same VRF. Else, while configuring, the CLI parser will display an error.

Device(config)# dial-peer voice 1111 voip
Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/1
Device(config-dial-peer)# voice-class sip bind media source-interface GigabitEthernet0/1

Device(config)# dial-peer voice 3333 voip
Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/2
Device(config-dial-peer)# voice-class sip bind media source-interface GigabitEthernet0/2

Configuration on Standby Router

Note
The configurations of Active and Stand By should be identical.

Configuring VRF

Device> enable
Device# configure terminal
Device(config)# ip vrf VRF1
Device(config)# rd 1:1
Device(config)# ip vrf VRF2
Device(config)# rd 2:2

Associating interfaces with VRF

Device(config)# interface GigabitEthernet0/1
Device(config-if)# ip vrf forwarding VRF1

Device(config)# interface GigabitEthernet0/2
Device(config-if)# ip vrf forwarding VRF2
If an IP address is already assigned to an interface, then associating a VRF with the interface will disable the interface and remove the existing IP address. An error message (sample error message shown below) is displayed on the console. Assign the IP address to proceed further.

```
% Interface GigabitEthernet0/1 IPv4 disabled and address(es) removed due to enabling VRF VRF1
```

The interface used for HSRP should not be configured with any VRF. In this example, GigabitEthernet0/0/0 is used for configuring HSRP and therefore no VRF is associated with this interface.

```
Device(config)# interface GigabitEthernet0/0/0
Device(config-if)# ip address 14.2.43.82 255.255.0.0
Device(config-if)# standby version 2
Device(config-if)# standby 93 ip 14.2.43.81
Device(config-if)# standby 93 priority 50
Device(config-if)# standby 93 preempt
Device(config-if)# standby 93 name cubeha
Device(config-if)# standby 93 track 1 decrement 5
Device(config-if)# standby 93 track 2 decrement 5
Device(config-if)# duplex auto
Device(config-if)# speed auto
```

Inbound interface - GigabitEthernet0/1 is used for voice traffic configured with VRF1.

```
Device(config)# interface GigabitEthernet0/1
Device(config-if)# ip vrf forwarding VRF1
Device(config-if)# ip address 10.0.0.4 255.0.0.0
Device(config-if)# standby version 2
Device(config-if)# standby 63 ip 10.0.0.3
Device(config-if)# standby 63 priority 50
Device(config-if)# standby 63 preempt
Device(config-if)# standby 63 track 1 decrement 5
Device(config-if)# duplex auto
Device(config-if)# speed auto
Device(config-if)# media-type rj45
```

Outbound interface - GigabitEthernet0/2 is used for voice traffic configured with VRF2.

```
Device(config)# interface GigabitEthernet0/2
Device(config-if)# ip vrf forwarding VRF2
Device(config-if)# ip address 11.0.0.4 255.0.0.0
Device(config-if)# standby version 2
Device(config-if)# standby 36 ip 11.0.0.3
Device(config-if)# standby 36 priority 50
Device(config-if)# standby 36 preempt
Device(config-if)# standby 36 track 1 decrement 5
Device(config-if)# duplex auto
Device(config-if)# speed auto
Device(config-if)# media-type rj45
```

```
Device(config)# ipc zone default
Device(config-ipczone)# association 1
Device(config-ipczone-assoc)# no shutdown
```
Device(config-ipzone-assoc)# protocol sctp
Device(config-ip-protocol-sctp)# local port 5000
Device(config-ip-local-sctp)# local-ip 14.2.43.82
Device(config-ip-local-sctp)# exit
Device(config-ip-protocol-sctp)# remote port 5000
Device(config-ip-remote-sctp)# remote-ip 14.2.43.81

Creating Dial-peer

Creating Inbound Dial-peer:

Device(config)# dial-peer voice 1111 voip
Device(config-dial-peer)# destination pattern 1111
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# session target ipv4:10.0.0.2
Device(config-dial-peer)# incoming called-number 1111

Creating Outbound Dial-peer:

Device(config)# dial-peer voice 3333 voip
Device(config)# destination-pattern 2222
Device(config-dial-peer)# session protocol sipv2
Device(config-dial-peer)# session target ipv4:11.0.0.2

Configuring Binding

Control and Media on a dial-peer have to bind with same VRF. Else, while configuring, the CLI parser will display an error.

Device(config)# dial-peer voice 1111 voip
Device(config-dial-peer)# voice-class sip bind control source-interface GigabitEthernet0/1
Device(config)# voice-class sip bind media source-interface GigabitEthernet0/1

Device(config)# dial-peer voice 3333 voip
Device(config)# voice-class sip bind control source-interface GigabitEthernet0/2
Device(config)# voice-class sip bind media source-interface GigabitEthernet0/2

Verification of redundancy States

On Active Router

Device(config)# show redundancy status

my state = 13 -ACTIVE
peer state = 8 -STANDBY HOT
Mode = Duplex
Unit ID = 0

Maintenance Mode = Disabled
Manual Swact = enabled
Communications = Up

client count = 17
client_notification_TMR = 120000 milliseconds
On Standby Router

Device(config)# show redundancy status

my state = 8 -STANDBY HOT
peer state = 13 ACTIVE
Mode = Duplex
Unit ID = 0

Maintenance Mode = Disabled
Manual Swact = enabled
Communications = Up

client count = 17
client_notification_TMR = 120000 milliseconds
RF debug mask = 0x0

Verification of Calls Before and After Switchover

RTP Connections on Active router:

Device# show voip rtp connections

VoIP RTP Port Usage Information:
Max Ports Available: 19999, Ports Reserved: 101, Ports in Use: 2

<table>
<thead>
<tr>
<th>Media-Address Range</th>
<th>Min</th>
<th>Max</th>
<th>Ports Available</th>
<th>Ports Reserved</th>
<th>In-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Media Pool</td>
<td>8000</td>
<td>48198</td>
<td>19999</td>
<td>101</td>
<td>2</td>
</tr>
</tbody>
</table>

VoIP RTP active connections :

<table>
<thead>
<tr>
<th>No. CallId</th>
<th>dstCallId</th>
<th>LocalRTP</th>
<th>RmtRTP</th>
<th>LocalIP</th>
<th>RemoteIP</th>
<th>MPSS</th>
<th>VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>8008</td>
<td>16388</td>
<td>10.0.0.1</td>
<td></td>
<td>VRF1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>5</td>
<td>8010</td>
<td>16388</td>
<td>11.0.0.1</td>
<td></td>
<td>VRF2</td>
</tr>
</tbody>
</table>

Found 2 active RTP connections

RTP Connections on Standby Router after switchover

Device# show voip rtp connections

VoIP RTP Port Usage Information:
Max Ports Available: 19999, Ports Reserved: 101, Ports in Use: 2

<table>
<thead>
<tr>
<th>Media-Address Range</th>
<th>Min</th>
<th>Max</th>
<th>Ports Available</th>
<th>Ports Reserved</th>
<th>In-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Media Pool</td>
<td>8000</td>
<td>48198</td>
<td>19999</td>
<td>101</td>
<td>2</td>
</tr>
</tbody>
</table>

VoIP RTP active connections :

<table>
<thead>
<tr>
<th>No. CallId</th>
<th>dstCallId</th>
<th>LocalRTP</th>
<th>RmtRTP</th>
<th>LocalIP</th>
<th>RemoteIP</th>
<th>MPSS</th>
<th>VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>8012</td>
<td>16390</td>
<td>10.0.0.1</td>
<td></td>
<td>VRF1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>7</td>
<td>8014</td>
<td>16390</td>
<td>11.0.0.1</td>
<td></td>
<td>VRF2</td>
</tr>
</tbody>
</table>

Found 2 active RTP connections

Example: Configuring HSRP High Availability with VRF
Active calls on Active Router

Device# show call active voice brief

11F3 : 5 243854170ms.1 (*11:48:43.972 UTC Mon May 25 2015) +6770 pid:0 Answer active
dur 00:00:14 tx:843/50551 rx:1028/61680 dscp:0 audio tos:0xB8 video tos:0x0
IP 10.0.0.2:16388 SRTPF: off rtt:1ms pl:0/0ms lost:0/0/0ms g729r8 TextRelay:
off Transcoded: No ICE: Off
media inactive detected:n media contrl rcvd:n/a timestamp:n/a
long duration call detected:n long duration call duration:n/a timestamp:n/a
LostPacketRate:0.00 OutOfOrderRate:0.00

active
dur 00:00:14 tx:1028/61680 rx:843/50551 dscp:0 audio tos:0xB8 video tos:0x0
IP 11.0.0.2:16388 SRTPF: off rtt:65522ms pl:0/0ms lost:0/0/0ms g729r8 TextRelay:
off Transcoded: No ICE: Off
media inactive detected:n media contrl rcvd:n/a timestamp:n/a
long duration call detected:n long duration call duration:n/a timestamp:n/a
LostPacketRate:0.00 OutOfOrderRate:0.00

Telephony call-legs: 0
SIP call-legs: 2
H323 call-legs: 0
Call agent controlled call-legs: 0
SCCP call-legs: 0
Multicast call-legs: 0
Total call-legs: 2

Device# show sip-ua connections udp brief

Total active connections : 2
No. of send failures : 0
No. of remote closures : 0
No. of conn. failures : 0
No. of inactive conn. ageouts : 2

--------------- SIP Transport Layer Listen Sockets ---------------
Conn-Id Local-Address
============= =============================
2 [10.0.0.1]:5060:VRF1
3 [11.0.0.1]:5060:VRF2

Active calls on Standby router after switchover:

Device# show call active voice brief

connected
dur 00:03:37 tx:6757/405420 rx:6757/405420 dscp:0 audio tos:0x0 video tos:0x0
IP 11.0.0.2:16390 SRTPF: off rtt:65531ms pl:0/0ms lost:0/0/0ms g729r8 TextRelay:
off Transcoded: No ICE: Off
media inactive detected:n media contrl rcvd:n/a timestamp:n/a
long duration call detected:n long duration call duration:n/a timestamp:n/a
LostPacketRate:0.00 OutOfOrderRate:0.00

11F9 : 7 245073588ms.1 (*12:16:18.114 UTC Mon May 25 2015) +26840 pid:0 Answer connected
dur 00:03:37 tx:6757/405420 rx:6757/405420 dscp:0 audio tos:0x0 video tos:0x0
Troubleshooting Tips

The following commands are helpful for troubleshooting:

- **show voip rtp connections**

 The following is an example where media flow-around is configured. The output shows 0 connections since media does not flow through Cisco UBE.

 Device#show voip rtp connections
 VoIP RTP Port Usage Information:
 Max Ports Available: 19999, Ports Reserved: 101, Ports in Use: 0
 Port range not configured

<table>
<thead>
<tr>
<th>Media-Address Range</th>
<th>Min</th>
<th>Max</th>
<th>Ports Available</th>
<th>Ports Reserved</th>
<th>Ports In-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Media Pool</td>
<td>8000</td>
<td>48198</td>
<td>19999</td>
<td>101</td>
<td>0</td>
</tr>
</tbody>
</table>

 No active connections found

- **show call active voice compact**

 Device#show call active voice compact
 <callID> A/O FAX T<sec> Codec type Peer Address IP R<ip>:<udp> VRF
 4021 ORG T45 g711ulaw VOIP F7474 8.41.17.71:27754 VRF1
 4020 ANS T45 g711ulaw VOIP Psipp 8.41.17.71:17001 VRF1

- **debug ccsip verbose**

 The output of `debug ccsip verbose` command is wordy and may cause issues when enabled on a busy network environment.