ICE-Lite Support on CUBE

Interactive Connectivity Establishment (ICE) is a protocol for Network Address Translator (NAT) traversal for UDP-based multimedia sessions established with the offer-answer model. ICE makes use of the Session Traversal Utilities for NAT (STUN) protocol and its extension, Traversal Using Relay NAT (TURN), and can be used by any protocol utilizing the offer-answer model, such as the Session Initiation Protocol (SIP).

The ICE-Lite Support on CUBE feature enables the remote peers of CUBE (that may be behind a NAT and doing ICE) to use the ICE semantics in the session description protocol (SDP) and perform an offer-answer exchange of SDP messages. The CUBE can also interwork with endpoints that support or do not support ICE. ICE agents (devices) that are always attached to the public Internet have a special type of implementation called Lite. CUBE will be in ICE-lite mode only. CUBE supports the ICE-lite feature from Cisco IOS Release 15.5(2)S.

- Feature Information for ICE-Lite Support on CUBE, on page 1
- Restrictions for ICE-lite Support on CUBE, on page 2
- Information About ICE-Lite Support on CUBE, on page 2
- How to Configure ICE-Lite Support on CUBE, on page 4
- Additional References, on page 13

Feature Information for ICE-Lite Support on CUBE

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1: Feature Information for ICE-Lite Support on CUBE

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICE-Lite Support on CUBE</td>
<td>Cisco IOS 15.5(3)M, Cisco IOS XE 3.16S</td>
<td>The ICE-Lite Support on CUBE feature enables the remote peers of CUBE (that may be behind a NAT and doing ICE) to use the ICE semantics in the session description protocol (SDP) and perform an offer-answer exchange of SDP messages. The CUBE can also interwork with endpoints that support or do not support ICE. ICE agents (devices) that are always attached to the public Internet have a special type of implementation called Lite. CUBE will be in ICE-lite mode only. The following commands were introduced or modified: debug voip icelib, show voip ice global-stats, show voip ice instance call-id call-id, show voip ice summary, and stun usage ice</td>
</tr>
</tbody>
</table>

Restrictions for ICE-lite Support on CUBE

The following features are not supported with ICE:

- IPv6
- Alternative Network Address Types (ANAT)
- ANAT-ICE interworking
- Media anti-trombone
- High availability support for video calls
- Codec Transparent
- SDP passthrough
- Media flow-around
- Resource Reservation Protocol (RSVP)
- SIP-to-TDM gateway support
- Media Termination Point (MTP)
- VXML and TCL Scripts

Information About ICE-Lite Support on CUBE

Characteristics

The following are some of the key characteristics of ICE-lite.

- A CLI configured for ICE-lite.
• Support for ICE-lite in the contact header with a media-tag option of REGISTER message (as per RFC 5768).

• ICE-lite feature is in compliance with section 4.2 of RFC 7584, with CUBE acting as ICE termination Back-to-Back UA.

• CUBE accepts Full ICE Offer and responds in ICE-lite mode.

• CUBE responds to mid call updates or early dialog updates with changes to SDP parameters, and which requires ICE to restart.

• For outbound offer from CUBE, a Session Description Protocol (SDP) with ICE-lite semantics is sent.

• ICE protocol verifies all types of media streams (audio, video, application media lines) and components (RTP, RTCP), wherever applicable.

ICE Candidate

To execute ICE, an agent has to identify all of its address candidates. A candidate is a transport address—a combination of IP address and port for a transport protocol, such as UDP. A candidate can be derived from physical or logical network interfaces, or discoverable using STUN and TURN. A viable candidate is a transport address obtained directly from a local interface; such a candidate is called a host candidate. The local interface could be ethernet or WiFi, or it could be one that is obtained through a tunnel mechanism, such as a Virtual Private Network (VPN) or Mobile IP (MIP). In all cases, such a network interface appears to the agent as a local interface from which ports (and thus candidates) can be allocated.

Refer to RFC 5245 for more information about ICE candidates.

ICE Lite

ICE agents (devices) that are always attached to the public Internet have a special type of implementation called Lite. For ICE to be used in a call, both the endpoints (agents) must support it. An ICE agent that supports Lite neither gathers ICE candidates nor triggers ICE connectivity checks; however, the agent responds to connectivity checks and includes only host candidates for any media stream. An ICE agent that supports the lite mode is called an ICE-lite endpoint.

Refer to RFC 5245 for more information about ICE-lite implementation and connectivity checks.

High Availability Support with ICE

High availability (HA) is supported only for audio calls that use ICE. For video calls, as the size of SDP is larger, HA will not work. Some of the design considerations are the following:

• No new checkpoint module for ICE instance.

• ICE instance will be re-created on the standby device from SIP HA re-creation path by using source SDP, destination SDP, and configuration profile.
As no information related to ICE is checkpointed, in the standby device, the ICE valid list (created after connectivity checks are done) is populated from currently used media address.

How to Configure ICE-Lite Support on CUBE

Configuring ICE on the CUBE

ICE lite can be configured under STUN, and the decision to use ICE for a session is based on the offer/answer. This configuration is used for outbound dial-peers of CUBE to decide whether to offer ICE in SDP or not. For an incoming offer, the decision to do ICE is based on what the remote end offers in SDP.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice class stun-usage tag
4. stun usage ice lite
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice class stun-usage tag</td>
<td>Sets STUN usage global parameters, and enters voice class configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# voice class stun-usage 5</td>
<td></td>
</tr>
<tr>
<td>Step 4 stun usage ice lite</td>
<td>Configures ICE in ICE-Lite mode.</td>
</tr>
<tr>
<td>Example: Device(config-class)# stun usage ice lite</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-class)# end</td>
<td></td>
</tr>
</tbody>
</table>
Verifying ICE-Lite on the CUBE (Success Flow Calls)

The following `show` commands can be used to verify ICE for success flow calls. The `show` commands can be entered in any order.

SUMMARY STEPS

1. `show call active video compact`
2. `show voip rtp connections`
3. `show voip ice instance call-id call-id-1`
4. `show voip ice instance call-id call-id-2`
5. `show voip ice summary`
6. `show voip ice global-stats`

DETAILED STEPS

Step 1

show call active video compact

Example:

```
Device# show call active video compact
<callID> A/O FAX T<sec> Codec type Peer Address IP R<ip>:<udp>
Total call-legs: 4
25 ANS T189 H264 VOIP-VIDEO P8181 72.163.212.137:2328
30 ORG T189 H264 VOIP-VIDEO P9191 9.45.46.16:8028
35 ANS T189 H264 VOIP-VIDEO P8181 9.45.46.16:8008
36 ORG T189 H264 VOIP-VIDEO P9191 72.163.212.163:2328
```

Step 2

show voip rtp connections

The following sample output displays the VoIP RTP usage information and RTP active connections.

Example:

```
Device# show voip rtp connections
VoIP RTP Port Usage Information:
Media-Address Range Port Port Available Reserved In-use
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Media Pool</td>
<td>8000</td>
<td>48198</td>
<td>19999</td>
<td>101</td>
</tr>
</tbody>
</table>
VoIP RTP active connections:
<table>
<thead>
<tr>
<th>No.</th>
<th>CallId</th>
<th>dstCallLocalRTP</th>
<th>RmtRTP</th>
<th>LocalIP</th>
<th>RemoteIP</th>
<th>MPSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>30</td>
<td>8000</td>
<td>2326</td>
<td>10.104.45.107</td>
<td>72.163.212.137</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>31</td>
<td>8002</td>
<td>2328</td>
<td>10.104.45.107</td>
<td>72.163.212.137</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>32</td>
<td>8036</td>
<td>2454</td>
<td>10.104.45.107</td>
<td>72.163.212.137</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>33</td>
<td>8004</td>
<td>2330</td>
<td>10.104.45.107</td>
<td>72.163.212.137</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>34</td>
<td>8038</td>
<td>2332</td>
<td>10.104.45.107</td>
<td>72.163.212.137</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>25</td>
<td>8006</td>
<td>8016</td>
<td>9.45.46.16</td>
<td>9.45.46.16</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>26</td>
<td>8008</td>
<td>8028</td>
<td>9.45.46.16</td>
<td>9.45.46.16</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>27</td>
<td>8010</td>
<td>8030</td>
<td>9.45.46.16</td>
<td>9.45.46.16</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>28</td>
<td>8012</td>
<td>8032</td>
<td>9.45.46.16</td>
<td>9.45.46.16</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>29</td>
<td>8014</td>
<td>8034</td>
<td>9.45.46.16</td>
<td>9.45.46.16</td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>36</td>
<td>8016</td>
<td>8006</td>
<td>9.45.46.16</td>
<td>9.45.46.16</td>
</tr>
</tbody>
</table>
```
Verifying ICE-Lite on the CUBE (Success Flow Calls)

Step 3 show voip ice instance call-id call-id-1

The following sample output displays the active ICE sessions on the ICE-full and the ICE-lite legs where there are ICE negotiations.

Example:

Device# show voip ice instance call-id 25

Interactive Connectivity Check (ICE) Instance details:
Call-ID is 25
Instance is 0x7FC617FC0508
Overall ICE-State is COMPLETED
LocalAgent's mode is ICE-CONTROLLED
RemoteAgent's mode is ICE-CONTROLLING

m-line:1

ICE-State: ACTIVE
NominatedPairs:
 - LocalIP 10.104.45.107 port 8000 type host RemoteIP 72.163.212.137 port 2326 type host

m-line:2

ICE-State: ACTIVE
NominatedPairs:
 - LocalIP 10.104.45.107 port 8002 type host RemoteIP 72.163.212.137 port 2328 type host
 - LocalIP 10.104.45.107 port 8003 type host RemoteIP 72.163.212.137 port 2329 type host

m-line:3

ICE-State: ACTIVE
NominatedPairs:
 - LocalIP 10.104.45.107 port 8036 type host RemoteIP 72.163.212.137 port 2454 type host

m-line:4

ICE-State: ACTIVE
NominatedPairs:
 - LocalIP 10.104.45.107 port 8004 type host RemoteIP 72.163.212.137 port 2330 type host
 - LocalIP 10.104.45.107 port 8005 type host RemoteIP 72.163.212.137 port 2331 type host

m-line:5

ICE-State: ACTIVE
NominatedPairs:
 - LocalIP 10.104.45.107 port 8038 type host RemoteIP 72.163.212.137 port 2332 type host

Total Rx STUN Bind Reg 22
Total Tx STUN Bind Succ Resp 22
Total Tx STUN Bind failure resp 0

Step 4 show voip ice instance call-id call-id-2
The following sample output displays the idle ICE sessions on the ICE-lite and the ICE-lite legs where there are no ICE negotiations.

Example:

```
Device# show voip ice instance call-id 30
Interactive Connectivity Check(ICE) Instance details:
Call-ID is 30
Instance is 0x7FC617FC03F8
Overall ICE-State is RUNNING
LocalAgent's mode is ICE-CONTROLLED
RemoteAgent's mode is ICE-CONTROLLING
m-line:1
--------
ICE-State: IDLE
No candidate has been nominated
m-line:2
--------
ICE-State: IDLE
No candidate has been nominated
m-line:3
--------
ICE-State: IDLE
No candidate has been nominated
m-line:4
--------
ICE-State: IDLE
No candidate has been nominated
m-line:5
--------
ICE-State: IDLE
No candidate has been nominated
Total Rx STUN Bind Req 0
Total Tx STUN Bind Succ Resp 0
Total Tx STUN Bind failure resp 0
```

Step 5 show voip ice summary

The following sample output displays a summary of active ICE sessions.

Example:

```
Device# show voip ice summary
CALL-ID  ICE-STATE
---------  ------------
 25        COMPLETED
 30        RUNNING
 35        RUNNING
 36        COMPLETED
```

Step 6 show voip ice global-stats

The following sample output displays the global ICE statistics.

Example:
Device# `show voip ice global-stats`

Interactive Connectivity Establishment (ICE) global stats:
Total Rx Stun BindingRequests : 43
Total Tx Stun BindingSuccessResponses: 43
Total Tx Stun BindingErrorResponses : 0

ICE-Lite on CUBE (Error Flow Calls)

The following are the `show` command sample outputs followed by the system logs for error flow calls. The `show` commands can be entered in any order.

SUMMARY STEPS

1. `show call active voice compact`
2. `show voip rtp connections`
3. `show voip ice instance call-id call-id`
4. `show voip ice instance call-id call-id`
5. `show voip ice summary`
6. `show voip ice global-stats`

DETAILED STEPS

Step 1

show call active voice compact

Example:

```
Device# `show call active video compact`
```

<table>
<thead>
<tr>
<th><callID></th>
<th>A/O FAX T<sec></th>
<th>Codec</th>
<th>type</th>
<th>Peer Address</th>
<th>IP R<ip>::<udp></th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>ANS</td>
<td>T4</td>
<td>g711ulaw</td>
<td>VOIP Padithym</td>
<td>173.39.64.79:7078</td>
</tr>
<tr>
<td>58</td>
<td>ORG</td>
<td>T4</td>
<td>g711ulaw</td>
<td>VOIP F9191</td>
<td>72.163.212.163:2336</td>
</tr>
</tbody>
</table>
```

**Step 2**

**show voip rtp connections**

The following sample output displays the VoIP RTP usage information and RTP active connections.

**Example:**

```
Device# `show voip rtp connections`
```

VoIP RTP Port Usage Information:
Max Ports Available: 19999, Ports Reserved: 101, Ports in Use: 2

<table>
<thead>
<tr>
<th>Media-Address Range</th>
<th>Min</th>
<th>Max</th>
<th>Ports Available</th>
<th>Ports Reserved</th>
<th>In-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Media Pool</td>
<td>8000</td>
<td>48198</td>
<td>19999</td>
<td>101</td>
<td>2</td>
</tr>
</tbody>
</table>

VoIP RTP active connections:
```
No. CallId dstCallLocalRTP RmtRTP LocalIP RemoteIP MPSS
1 57 58 8040 7078 10.104.45.107 173.39.64.79 NO
```
Step 3  `show voip ice instance call-id call-id`

The following sample output displays the ICE sessions.

**Example:**

```
Device# show voip ice instance call-id 57

Interactive Connectivity Check(ICE) Instance details:
Call-ID is 57
Instance is 0x7FC617FC03F8
Overall ICE-State is RUNNING
LocalAgent's mode is ICE-CONTROLLED
RemoteAgent's mode is ICE-CONTROLLING
m-line:1

ICE-State: IDLE
No candidate has been nominated

Total Rx STUN Bind Req 2
Total Tx STUN Bind Succ Resp 0
Total Tx STUN Bind failure resp 2
```

Step 4  `show voip ice instance call-id call-id`

The following sample output displays the ICE sessions.

**Example:**

```
Device# show voip ice instance call-id 58

Interactive Connectivity Check(ICE) Instance details:
Call-ID is 58
Instance is 0x7FC617FC0508
Overall ICE-State is RUNNING
LocalAgent's mode is ICE-CONTROLLED
RemoteAgent's mode is ICE-CONTROLLING
m-line:1

ICE-State: IDLE
No candidate has been nominated

Total Rx STUN Bind Req 2
Total Tx STUN Bind Succ Resp 0
Total Tx STUN Bind failure resp 2
```

Step 5  `show voip ice summary`

The following sample output displays a summary of active ICE sessions.

**Example:**

```
Device# show voip ice summary

CALL-ID | ICE-STATE
--------|----------
57 | RUNNING
58 | RUNNING
Total number of sessions: 2
```
Step 6  

show voip ice global-stats

The following sample output displays the global ICE statistics.

**Example:**

```
Device# show voip ice global-stats

Interactive Connectivity Establishment(ICE) global stats:
Total Rx Stun BindingRequests : 47
Total Tx Stun BindingSuccessResponses: 43
Total Tx Stun BindingErrorResponses : 4
```

The following are the sys logs for invalid message integrity and for sending ICE-controlled parameter.

**Sys Log for invalid message integrity:**

```
004012: *Aug 8 14:25:30.876 IST: %CISCO_STUN-4-INVALID_MESSAGE_INTEGRITY: Invalid Message-Integrity attribute in the received STUN message on UDP IP address 10.104.45.107 port 8040##STUN Message structure start###
Message Type : STUN_MSG_TYPE_BINDING_REQ
Magic Cookie : 2112A442
Transaction ID : 01C661B24C077331ECD27A5B
Mapped Address : Not Set/Present
User Name : Not Set/Present
Error code not present
Alternate Server : Not Set/Present
Realm : Not Set/Present
nonce : Not Set/Present
Xormapped Address : Not Set/Present
Server : Not Set/Present
ICE Priority : Not Set/Present
ICE Controlled : Not Set/Present
ICE Controlling : Not Set/Present
Cisco-flowdata : cisco-flowdata is not present
Message Integrity : Not Set/Present
Finger Print : Not Set/Present
##STUN Message structure End###
STUN Message Length = 64
```
STUN Message Length = 44
Encoded MI attribute. Exit
with success
004036: *Aug 8 14:25:30.876 IST: //57/91300134802E/STUN/Detail/stunSendMsgToNetwork: Message sending
from, 10.104.45.107:8040, to 173.39.64.79:7078
004038: *Aug 8 14:25:30.876 IST: //57/91300134802E/STUN/Detail/stunSendMsgToNetwork: Stun Message:
011002c211244201c61b24c077331edc27a5b000900000000400261a20526571756573740000000014d2e829448f3d07cc5c06d026d8909b85ef3e9
004040: *Aug 8 14:25:30.876 IST: Finger Print : Not Set/Present
###STUN Message structure start###

####STUN MSG TYPE BINDING_ERR_RESP

<table>
<thead>
<tr>
<th>Message Type</th>
<th>STUN_MSG_TYPE_BINDING_ERR_RESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magic Cookie</td>
<td>2112A442</td>
</tr>
<tr>
<td>Transaction ID</td>
<td>01C61B24C077331EDC27A5B</td>
</tr>
<tr>
<td>Mapped Address</td>
<td>Not Set/Present</td>
</tr>
<tr>
<td>User Name</td>
<td>Not Set/Present</td>
</tr>
<tr>
<td>Error Code</td>
<td>Number = 400, Reason = Bad Request</td>
</tr>
<tr>
<td>Alternate Server</td>
<td>Not Set/Present</td>
</tr>
<tr>
<td>Realm</td>
<td>Not Set/Present</td>
</tr>
<tr>
<td>nonce</td>
<td>Not Set/Present</td>
</tr>
<tr>
<td>Xormapped Address</td>
<td>Not Set/Present</td>
</tr>
<tr>
<td>Server</td>
<td>Not Set/Present</td>
</tr>
<tr>
<td>ICE Priority</td>
<td>Not Set/Present</td>
</tr>
<tr>
<td>ICE Controlled</td>
<td>Not Set/Present</td>
</tr>
<tr>
<td>ICE Controlling</td>
<td>Not Set/Present</td>
</tr>
<tr>
<td>Cisco-flowdata</td>
<td>cisco-flowdata is not present</td>
</tr>
<tr>
<td>Message Integrity</td>
<td>D0E2E82944BF3D07CC5C06D026D8909B85EF3E9</td>
</tr>
</tbody>
</table>

004040: *Aug 8 14:25:30.876 IST: Finger Print : Not Set/Present
###STUN Message structure End###
the transaction
message Sent

Sys Log for sending ICE-controlled parameter instead of ICE-controlling parameter:

reason:Role Conflict, code:487
with success
Post Message to Application
004138: *Aug 8 14:25:30.912 IST: //1/xxxxxxxxxxxx/STUN/Detail/cisco_stun/process_send_stun_pak_rcvd_event:
Received New STUN message###STUN Message structure start###
**ICE-Lite Support on CUBE**

**ICE-Lite Support on CUBE**

**ICE-Lite on CUBE (Error Flow Calls)**

- **Mapped Address**: Not Set/Present
- **User Name**: GAah:4wWY
- **Error code not present**
- **Alternate Server**: Not Set/Present
- **Realm**: Not Set/Present
- **nonce**: Not Set/Present
- **Xormapped Address**: Not Set/Present
- **Server**: Cisco
- **ICE Priority**: 186270975
- **ICE Controlled**: 1192003560347232620
- **ICE Controlling**: Not Set/Present
- **Cisco-flowdata**: cisco-flowdata is not present
- **Message Integrity**: 0AF4B8C2378CB90AB0B0A3806507D766BF5CD1DD
- **Finger Print**: 4235512547

###STUN Message structure End###


###STUN Message structure Start###

- **Message Type**: STUN_MSG_TYPE_BINDING_ERR_RESP
- **Magic Cookie**: 2112A442
- **Transaction ID**: F1CF84958263697400000000801430259062065392623573977347678806E
- **Mapped Address**: Not Set/Present
- **User Name**: Not Set/Present

---

**ICE-Lite Support on CUBE**

**ICE-Lite Support on CUBE**

**ICE-Lite Support on CUBE**
Troubleshooting ICE-Lite Support on CUBE

You can use the following debug commands to troubleshoot the ICE-lite support on CUBE feature. Use these commands to enable ICE debugs for each call.

• debug voip icelib all
• debug voip icelib default
• debug voip icelib detail
• debug voip icelib error
• debug voip icelib event
• debug voip icelib inout
• debug voip stun all
• debug voip stun default
• debug voip stun detail
• debug voip stun error
• debug voip stun event
• debug voip stun inout
• debug voip stun message
• debug voip stun packet

Additional References

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 5389</td>
<td><em>Session Traversal Utilities for NAT (STUN)</em></td>
</tr>
<tr>
<td>RFC 5245</td>
<td><em>Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols</em></td>
</tr>
</tbody>
</table>
## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>